

CIVIL ENGINEER AND ARCHITECT'S

J O U R NAL,

INCORPORATED WITH

© Ife arditirt.

VOLUME XV.-1852.

LONDON:
R. GROOMBRIDGE AND SONS, 5, PATERNOSTER ROW; J. WEALE, HIGH HOLBORN; W. ROBERTSON, DUBLIN; SUTHERLAND, EDINBURGH; MATHIAS, PARIS; MUQUARUT, BRUSSELS; C. MONIER, MADRID; WILEY AND PUTNAM, NEW YORK.

फेमा
4
凸円

- WESLEYAN NORMAL COLLEGE, WESTMINSTER.

INDEX TO VOLUME XV.

1852.

Architecture, Greek, colonr ln. Donaldson $.00,0,49$
Archltecture, Gothle, Colling on (rev.) 86 Architecture, Gothic, Duthoit on, 85 Architecture, naval, Duplo on, 374 Architectore, naral, Iontaga on (rev.) 184
Architecture, ecclealantical, Bharpe on, 316 Archltecture, progress in, Beddon (rev.)
Arehtecture, raral, Gray (rev.) 400 Arehitecture, school, 161
Arman's Improved thipbuilding, 817
Arnott, on veniliation and lighting of
Eomees of Paritament, 341
Armonx, on pottery and porcelaln, 238
Arsenical pyriten, eeparation from gold 290
Artifelal fuel, Pidding'o pat. 813
Artindal hydraulic cement, White on, 198
Artifical refiectort, Heaketh 0n, 204, 207 Artificere' work, tindente' guide (rev.)
Garbett, 275
Ariate conversasione, 110
Artiatic educatlon, 824
Arta, Soefety of, London, 92, 188, 195, 165,
177, 192, 198, 200, 232, 200, 276, 281, 285,
522, 409
Artis, Society of, 8cothah, 89, 78, 118, 158, 183, 191, 196, 197
Asbetto store, Goddard's 198
Astrogamloal instruesents, Glalgher on
177 177
Astronomy, and natural philotophy, Lardner (rev.) 509
Ansted, on non-metallic mineral manafne-
tures, 165
A 458 (tralia, engineering in, Biacizbnm (rev.) 858
Auntrallian bomerans propeller, 481
Agrtrallan gold felds, 8 hilling $0 n, 289$
Anatria, rall waye in, 279
Aris, neetral, Lees on, 78
Axles, railway, Thorneycrot on, 259
Bailey, on Orvieto cathedral, 96
Bakewell, on aceldents in coal mives, 197 Barewell, on electric telegraph, 829 Bala's pat. ornmmental surfaces, 85 Balmoral new pulace, 859
Baly, on baths and whahhouses (rev.) 408 Bangor farves, 89
Bard well, on rentilation and lightug of
Eonses of Paritament
Elouses of Paritament, 373
Barizer, on discharge of water, 887
Bery, on venuliation of Houtes of Parlin
ment, 298
Barton, on permaneat miy, 838
Barton, on atralay in latilce-girders, 827
Batlice of St. John Leteran, 272; Santa
Marla Magilore, 272
Bateima, on Mancheater rewervolis, 71,
148, 160 ,
143, 160
Baths and wahhoasee, Baiy (rev.) 400
Batterles, graphite, Walher on, 828
Bavarla, statue of, 392
Betm, brick, at Great Exhibition, 198
Beam, combination of Iron and wood, 40
Beams, combinatioo of lron and wood, 401
Beams, Lees on streng hh, 78
Heam, malleable iron, Gladstone on, 350
Beardniore's hydraulle tables (rev.) 88
Beatuen pat. rallway engines, carriages,
Beautpal philoso 19
Besuufal, philosophy of, Oereted on, 187
224 (De la) on hydraulle engineering,

Belfast harbour, Garrett 0n, 885
Belgan patente, 119
Belginm, ralwayi in, 279, 390
Bertall's pat. chilling Iron, 423
Bergue's pat. permaneat way, 199
Berrington's knepesck, 279
Bearicr's pat. bricke, tilet, and Hina, 19
Biddel's pat. ornamental surfaces, 194
Bubarry reservolf, barilng of, Lealle on
191
Bilingerate bew market, 820
Bitnminous articles, Dnadonald's pat, 34
Bieckburn, engineering in Australla, g5s
Blackhill canal lacllned plane, 201, 270
Blenting operations, 400
Blomer, on Schintel and Cologne cethe-
dral, 167
Board of Eealth expensen, 400
Board of Fealth Eurvers,7l
Boate in the Grent Exhibitlon, Nicolay on.
192
Boats, tuspending and loweriog, Lacon's
pat. 113; Forbee, 429
Boiter exploalong, pravention of, 200
Boller incleator, 8 mith's pat. 238
Bollers and nteam-engiaes, Comper'i pat
73,346
Botlers and steam genertions, Btenson*e
Pht. 285
Boilers, Harrison's pat. 287 ; Johneon's
pat. 815; Milim pat. 195 ; Thoman'
pat. 105; Farrell'e pat. 430
Bollery marise, Lamb 0n, 178; Rumeelf
Boller, 117
on,
Bollert of 9.9. Palion, Isherwood on
288
Bollers, tubalar, Earl Dandonald on.y
Fatrbalin on, 330
Bonerang propeller: 481
Boring apparatur, U.S., 360
Boult, on diness in dedga, 410
Bouthgny's disphragm tean-generator,
118
118
111
Breake, draght of wragons whe, 890
Brick besm it Great Exhibition, 198
Brick retorts, Cllf on, 835
Bricks, mortice, Wagner's, 409
Brtck-making machinery; Buratall'm pat.
237
237
Brick manufacture, Woodworth' pat.
267
Bricki and brickwort, Clegt on, 206
Brick and thles, Beawher's pat. 195 ; Pid-
ding's pat. 238
Brfckn, luating, 42
Bricka, ornamental, Biddell's pat. 194
Bricks, waterproor, Workman's pat. 112
Brickwork sud macoury, Clesg, 138, 208
Bridge, Rochester, 79
Bridge, suspeneton, NLagars Hiver, 396
Bridge, swing, at Bre, May on, 158 ; at
Peterhead Garbour, Kerr on, 79
Peterhead barbour, Kerr on, 79
Hridge, tmber, U.S., 860
Bridge, Putney, proponed, 431
Bridge, Wentminater, proponed, 40l
Bridges, theory and practice of, Clarke
(rev.) 225
Briggen, tobular girder, Falibain on, 8
Brittol and Gloucenter craining ingtitu:Ion,
${ }^{\infty} 1$
Bristol hospltal commiesion. 400
Britigh Aspociation, 826,381
British Museum ralling, 41
Brittany and Normandy, Seddon on
Brock monument, Toronto, 868

Broadie, repaling alipit bottomi aflom
Broadie, repairing alipi bottomi
347
Brootwh pit stoves and fate, 394
Brooks, on improvement of eatuaries, 420
Brown on venulation and Ushting of Hounet of Parliamegt, 872
Browng, on negative eign (rev.) 91
Brafe pat, rall and tram ronds, 427
Bramels national monument, 396
Buchanan, on Art-armes, 156
Buckingham palice, 240
Burgens, on the Boman forum, 2\$1
Buiders' Benevolent Institution, 491
Ballders' ball,79
Bumlay mechanfea' intitate, 81, 121, 166
Buratal's pat. brick-malding machinery,

Calseon, fouting, New York, 891

Caloric engines, Ericeson's, 891
Campbell, on Cleveland iron district. 197
Campanila, Itallan, dimensions of, 172
Canis, Blacthill, 201, 270
Canal, Netheriands and Henover, 280
Canals, steam propulsion on, Lake's pat.
Cape town dock, 279 ; rallway, 40
Carriages and enganes, Beatule's pat. 194
Carriages and wheelo, PIdding's pat. 394
Curriggen, boilery, and englaes, Cowper's
pat. 78, 846
894
Canting and annealing, Onfon's par, 144
Custingt, Gurdineres pat. 298
Cantingh, hollow, Periling's pat. 347
Cant-iron Viaduct, Manchester rallway ate.
tion, 89, 77
Cast-Iron twing-bridge, Peterhewd harbour,
79; at Rye, 138
Cathedral, 8t. Aeaph's, 423
Cathedral' (8t. Paul's) decorntion of, 244
Gathedral, Bayeux, 85; Cologne, 167 ;
Fireax, 81; Lonviers, 81; Normandy,
81; Orvieto, 96 ; Rouen, 82
Catue-wartets, London, 808
Cazalet, on mudical instrumente In Great
Exhibltion, 192
Cemente and mortar, Cletg on, 53
Cement, Francls'M, 168, 223
Cement, Portiand, White on, 19%
Cemetery (proposed) Woring, 358
Ceramic manufactures, Arooux on, 232
Coramic manufacturee, Hodge's pat. I44;
Bidgway's pat. 395
Chalr, rallway joint, 8
Chalriand aleepera, Ademe on, 77 ; Barton 0n, 833
Chalrs and aleepers, De Bergue's pat. 193;
Doull'm pati 164; Brutre pat. 46^{77}
Chally abmorbent power of, Aasted on, $10 s$;
Bralth walte on, 111
Chamberlaln, on ornamentition of churches
Chance' pat. glame Aettenlig, 76 ; pat.
chlase manufacture, 895
Chartography, Jackion on, 161
Chemical combination, Woods on, 381
Cheaney, on Arearms (rer.)
Cheater, on mailiation of Iltermry institu-
chlliting cat
Chiling catt-iron, Bentall's pat. 428
Chimneys and ventilatlon, Eclateln on,
Chimaejs, mmoly, Dupre's pati. 898
Chins orngmeutition, Rudgwat's jat. 395
Chins ornsmeution, Rdgway'

Charch architecture, 8harpe on, 316
Charch, Kidmore End, $4 ; 8$. Helen's.
Paddington, 241; St. Sepalchre's, North
ampton, Poole on, 123; Walton, 56
Chorches, Chamberialn on ornamenting, 87
Churchee of Brittany and Normandy, 81
Churches of the Lake district. 122
City churches, Clayton on ipires of. 169
clark (D. K.), ou expansive action of
theam, 209, 296, 362; on rallway plant
(rev) 92, 409
Clarly (W.) on ventilation and lighting of
Houses of Parllament, 843
Clarice (W. T.) theory and practice of
bridges (rev.) 225 ; death of, 899
Charke (J.) views, Ace, of schoolhouede,
(rev.) 16
Clarimion's desigal for monumente (rwe.) 164
Cleasenn'o pat. aline compounds, 477
Clayton, on Wren't towers and spirem, 169
Cleg8; on construction, 198 ; of briciswork,
200 ; on mortars and cem
stantiary improvements, 26
Cleveland iron diatrict, 197
Clin, on Arebricy gas-retorts, 895
Clivis capltolinas, Burgets on, 251
Clock, electro-magnetic, shepherd'n, 188
Clocke, and chronometert, con
Clyde, hipbulid
Coal traftc, 119
Coal-mine ventilation, 286; Bakewell on,
197; Phillips on, 394
Cols-mlnes, report on explosions In, 239
Colliery, Wallsend, 334
Colliert, Wallend, SL Columba, Dablin, 281
Culles, Wesleyan Normal, Westmineter, 1
College, dioceman tralaing, near Bristol, $88!$
Colope Gothic detalls (rev.) 56
Cologne cathedral, Blomer on, 167
Colosenm, Eaton on, 278
Colour In the decorative arts, Jones on,
Colour in Greek architecture, Donaldson
on, $B, 42$
Combination, chemical, Woods on, 881
Comblation reflectora, 267
Commissloners of sewert, 167,289
Commtantoners report on Great Exhbition
(rev.) 246
Committee-men, provistonal, 239
Committee on coal-mide explosions, 288
Committee on ventilition and lighting
Honses of Parliament, 292, 369, 368
Competitlons, 119
Compostion for preservitos from decey,
Nemton's pat. 111
Concrite, Clegs on, 56
Concrite houete, 168, 228
Construction of brickwort, Clegt on, 206 Continuous experidon entine, Samuel's, 175
119; Mr. Rendel'n, 199
Cook's pat. rotatory valves, 267
Coollog alr, Rantine on, 826
Cooper, on St. Asaph's cathedrai, 428
Copper and iron, use of by the anclents,
Ritchie 00, 218
Copper ores, Longmatd on, 196
Corrosion of tron shipe, 400
Cowper (C.) pat angines, bollers, and car. riaget, 78 ; pat. multpiying motion, 846 Cowper (C.) on Great Exhibition bullding: (rev.) 225
Cowper (E.) on clocks and chronometers
135; death of, 399
Cremorne gardens, 200
Creptadoro's eylundrical dram propeller, 424
Cresy on metropolitan water eupply, 81
Crickmer's pat. packlog. 84
Criticiam, retrosprative, 121, 16
Crunhlng stralne, Falrbalrn on, 146
Cutiong and embankment tables, H ender
son (rev.) 154
Cutting end shaping metal, Preartion's pat. 238
Cylindert, Remsen's pat. 430
Cyllndrical drum propeller, 424
Dangerfeld, prevention of boller expiodion 208
Danube nargation, 280
Danken, on reptliation and lighting of the
Hounes of Parliament, $8+4,372$
Davya, on churches of Laike diatrict, 122
Daylight, admiasion of lato bulldinga, Hetketh on, 204, 267
De Bergue'a pat. permanent way, 198
Decpration of buildings, Redgrave on, 852
lecoration of St. Paul'i cathedral, Pearase on, 244
Decoradive arts, Jones on colour in. 281 Decorative arts, Wyatt on form in 286 Decorative painting, Froggart's pat. 840 Deeley's pat. glass furnacen, 76
Delineadigg appuratus, Pulmer's pat. 111

Dempery, on machiaery of 19 h ceatury, (rev.) 92.190
Denmark, raliways in, 860,80
Dealccating, Payue's pat. S6
Design, Hoult on finessin, 410
Degign, eccleniastical, F nging on, 400 Deaign, ecclenlastical, Puggins on, 409
Deaign at the Greti Exhlbition, Redgrave Deuign at
on 849
on 849
Diggonal planking, 817, 396
Diaphiagm steam-generator, Bontigny's
118
Dineet
Dineesan tralalng Institution, near Briteol, tach
Discherge of water, Barker on, 387 Discount tebles, Gomertall on (rev.) 86 Jock, New Yort, 304,321
Docke, Americas (ryt.) Sturt, 304, 221 Docke and rillway, Philadelphia, 397 Docks, Great Grimiby, 88; Liverpooi, 89;
Donaldeon (G.) on dralnage of Richnond, 168
Donaldson (T.) on condition of royal tombi in Wentminiter Abbey, 108, 126,
Donaldeon (T.) on polychromatie embellithmente in Greelr arehliecture, B, bell
42
Doull'e pst. permanent way, 164
Downe't, on Great Exhibition bullding, (rev.) 225
Drains and sewers, alsee of, 364, 413
Drainage in Ireland, 160,400
Draingge in Ireland, 160 , 400
Dralnage of Haarlem meer, Grainger on
118 of of Rlahmond, Donaldeon on, 158 of Elchmond, Donaldson on
Drake's pat. construction of shlpg, 113 pat. paddle coreele and propeling. 113 Drawings, Palmer's pat. for dellmeating, 111
Draught of wapons with breake, $\$ 90$ Drew, on meteorologital eclence ln England, 101,128 ; on adjust
Drinkable watern, Marchaed on, 141
Dring snbetances, Paype's pat. 85
Doblin, St. Colum ba College at, 281
Dundonald (Eari), pat. dralns, plpes, an
columns, 34 on tubular bollers, 117
columns, 84 ; on tubular bollers, 1
Dupre'n pat. amolry chimneys, 896
Dutholt, on poetry of Gothle art, 85
Dryer, on bydraillc englaceering (rev.)
skg
Eaton, on Rome In 191h centary (rev.) 271
Eecentric turbing (rev.) 408
Eccleplatical architectnre, Sharpe on, 316 Ecelestantieal destgn, Huggins on, 409
Ecelesiolory of the Iake diserict, Davje on, 122
gckateln, on chimneys (rev.) 388
Edinborgh, Stewart's Hospital, 121
Edmeston, annual addrelt, Architectural
Association, 302
Edncation, archisectural, Jones on, 822
Education, profescional, 14
Educatlon of the working clamen, 824
Edward II., tomb of, 137
Edward the Confescor, shrine of, propoeed reatoration, 103, 124, 198
Esypt, rallwaysin, 482
Electric telegraph, Adley on, 117, BakeFell on, 829 ; Litde on, 185 ; Window on, 116
Electic telegraph, Highton't pat. 814; 8mith's pal. 847
Electric telegraph communication, Ban-
true 00,829 ; Walker on, 828
Electro magnettc clock, Shepherd's, 183
Biectro-metallurgy, jmee on (rev.) 92
Ellioth, on sulie-rule (rev.) 190
Ellipses, Silght's mode of drawing, 118
Elmes, on thermometer cales, 275
Embanting landa from the sea, Wigina on (rav.) 154
Embankment tables, Henderson (rev.) 154 Embankment, Thamet, 279
Enginet, Cowper's pah 73, 346; Harri-
son's pat. 287 : Mactotonh's pat. 237; Bmith's pat. 394
Englue boliern, marine, Lamb on, 178 Engine, contlauous expantor, Stmuel's, 175
Engines, caloric, Ericsson's, 301
Enginet, rotatory, Maudslay's pat. 845
Engloes and carriages, Beattie's pat. 194
Engines, bolleit, and carriafes, Cowper's pat. 78, 846
Entlaes and governors, Whitelew's pat.
Englneern, Clili, Inatitution of, 8 , annual mesting 88; $57,77,108$, 116,148 ; 1%, $228,257.259,428$, कWrard of primes 818 , subjerta for preminms 319
Engifeers. mechanical, Inactitation of, 178,
Engincers : 2
Engincert atrine, 36
Eofineerln
Work in New Tork, 166

Engineerfor, hydrallic, De lo Beche on
224; Dwyer (rev.) 389
Equatoriat, sdjuttment of, Drew on, 214
Erdeseon's caloric englaen, 391
Eituarlet, Brooks on Improvement of, 428
Erans and Lowe'a pas. gas manufacture,
892
Erreux cathedral, 81
Excavations at Sawley abbey, 861
Exhibition, architectnral, 2
Exhibltion bullding. New Yort, 888
Exhibltion, roynd academy, 162
Exhibition of 1861 -report of commision-
84, 825; reporti of Jories, 874, 807,
Rzhibition
plens detalle ting, oonstructlon of, 57 ;
plans, detaile, tre., Downee and Cowper,
Enhibition le
Ansted, marble and stonety of A rta-
insted, marble and stonework, 876
Δ osted, non-mecallic mineral manithe
tures, 165
Araoux, porelalo and pottery, ass
Caralet, marical instruments, 192
Giabiber, philosophieal inetrumenta, 177
Joner, architectural ducation, 8\%
Jones, colour in the decorative arts, 281
Papworth, productions connect
Papwoltecture, 18
Redgreve, on deslgn, 849
Wyath, form in the decorntive arts, 285
Wjath conatruction of the Exhibition bullding, 57
Willis, mechinet and tools, 98
Expanaive scllon of Ateam, Clark on, 209, 296, 361; Rankine on, 191, 348, 417 sxpanion of leoluted steam, siemens on, 204
Expansion engine, continuone, Bamne'ls,
Exploalon (boller), Dangerfield on prevenExplon of, 200
Explosions In coal mines, report on, 223 ;
Hazewell on, 197; Nasmyth's inction.
(tan, 306

Faclogt, Bale't pat. 35

Fairbairn, on metallic construction, 145 ;
on minie rifie, 331 ; on shipbulldiag, 147 ;
on strength of Iron, 145 . on tubular
boilere, 350 ; on tubular slíder bridget 8
Pan, stemm snction. Nammyth's, 296
Figure drawing, Weighall on (rev.) 91
Finger's pat. water-wheel regulator, 172
Firearms, Buchaman on, 156 ; Falrbairn
on, 381; Chesney on (rev.) 89 ; 8coffers on (rev.) 89

Firearms, Glfard'm pat. 395

Fire-brick gas retorts, Cllf on, 385
Pitness in dealgn, Boult 00,410
Flax dresting machine, 329
Floatiog bricks, 421
Floods, 80,431
Flues, Brookres and Jones' pat, 894
Flnids, evaporation of, Roberts's pat. 264
Flalds, machinery for agifatlog, Roberte's pet. 264
Flulds, meanrement of, Robert's pat. 263
Fluids, regnlation of Now, Roberis's pat. 288
Fiy-wheels, anallery, Thomas'e pat. 195 Pontalnemoreau's pat. gas burners, 118 , 815 ; pal. preating and priatiog machinory, 312; pat. solution for premerving:
Poord'a pat. glasa bending and manealling,
Forben's ship lifo-boat, 429
Form in the decorative arte, Wyats on, 885 Porster (P.) deash of, 160
Porater ${ }^{\text {E }}$ apartment houses, Vienna, 88, 168
Porum, Roman, Burgene on, 251 ; excava-
tione st, 400
Foundationr, Sanders on plle-driving for, 87
Poze
Pozenrth, achoolhouses \&t, 161
Pinodere, rallwayo in 432
Ploatling gate, New York, 821
France, rallways ln. 388, 482
Prancis's cement, 168, 228
Frearmon's pat. metal cutting and ahapling, 238
Preematon's achool, Wandaworth, 282
Preecoes in wown halle of Germany, \$54
Progstett': pat. decoratlve palnting, 34
Fnel, artinclal, Pidding's pal 818
Fulton (nteamehip), Inherwood on bollere of, 228
Furasees,
Furnace: slas, Deeley's pat. 76
Purnaces, Jone's pst. 814 ; Stenson'a pat.
285
Golvanic apparatas, Eart's, 39
Garbett's guide to artificer's work (rev.)
275
Gardiner's pat. caatings, 288
Garrett, on Belfant harbour, 388
815 barvers, Pontalpemorean'a pat. 113,

Gen, evolation of, Phililpi on, 884
Gas generating, Henderion's pat. 144
Ge manufacture, Lowe and Evans' pat.
392
347 retorta, Cunt on, 896 ; Perlina's pat.
347 ; Swarbrick'e pat. 427
Gan works, Hamburgh, 24
Genersior, diaphragm, Boutipny on, 118
Generator, Stevenson's pat, 245
Generator, Stevenson's pat. 200
Geography, malbematlical, Hughes, (rev.)
278
Geographlcel solence (row.) 150
Geographical noelety, 200
Geology of Ireland, Grifith on. 888
Geometric mouldings of Greek erehitec-
ture, Hay on, 16 . ture, Hay on, 16
225 (reom for achooln and workmen (rev.)
Gervo
Gervoy's pat. for hardening ralls, 267
Glffurd's pat. Arearme 800
Gifna'ı pat. Grearms, 880
Girder bridge, Wentmingter, propowed, 401 Glider bridges, tubnlar, Fajrbsirn on, 8
Girders, Letuce, Barion on strain
Ginder
Lete on strength of, 78
Girders, Enalleable Iron, Gladstone on, 850
Girders, vialleable lron, Giadstone on, 880 Gisdstone, on malleable iron sirders, 880 Gialt
177
Claisher'a meteorologicel quarterf \bar{y} report,
Glage and china ornementation, Hidgwes'a
Glat. 395 bending end anoelling, Thomeon's
Ghas bendiag and andeallag, Thomson'a
gate 265
Glase, coloured, Bedgrave on, 864 ; Wing. Glasi, colour
Lon $0 \mathrm{D}, 241$
Glats finttening, Chance's pat. 76
Glass furnaces, Deeley's pat. 76
Glas mannfacture, Chance't pat. 895 ; Clark's pat. 430
Glazing tron tubes. Kenrick's pat, 144
Glonctiter and Bristol tralaing institation, Glouct
801
Godderd's asbeaton ntove, 198
Gold felds of Autralla, Shilling on, 289
Gold-seetrers' manual, Ansted's (rev.) 228 Gold, separation trom pyrites, 280
Cordon's lighthouse tower, Bermuda, 267
Gordhic art, pretry of, Dethoit on, 86
Gothic art, poetry
Gothle detalla, 66
Goverior for water-wheelt, Finley'm, 172
Governort, Whitelaw'e pat. SI
Grilnger, on drainage of Haarlem mee
118 ; death of, 316
Graphite buttertea, Walker on, 828
Gray, on rural architecture (rev.) 40 e
Great Grimshy docks, 88
Green, on retronpective critlcism, 166
Green's pat. ornamental surfaces, 104
Greely archlteclure, Doasldson on colour In, 5, 41
Orepli architecture, $\boldsymbol{E a y}$ on mouldingt of,
Greenatreet's pat. Inc conting, 208
Greenwich obertratory, 124
Grifith, on geology of Ireland, 888
Grimety docks, 80
Guano, Peruvien, Newblt on (rvv.) 225
Gurnef, on ventitating and Hehting the
Haprlem meer, Gralnger on dralnage of 118
Gall, public, Wigan, 906
Hamburgb gamorika, 24
Harbour improvemente, Broolt on, 428
Harbonr of Belfant, Garrett on, 385
Harboure of refuge, 159.160
Harbourt, shfety, Sannders on, 386
Harbours, theory and formation, Rennie on (rev.) 189
Hardolci's Freemasons' school. WandeWorth, 234
Harrison's pat. steum-engines and bollera,

Bornit (L. At J. B.) on Derrted's monl in nature (ret.) 187
Hopptal, \&wewert's, Bdinburph, 121 ; Bris-
Howard, pet. chl ling cestifron, 428
Howard, per. ching castiron,
Howese and
sousen atd
Eutying, on ecelestastical dexlgn, 400
Huphen, on mabemotical geography (rov.)
Eubob, oo rallway aceldents, 189, 190
Hupgarif tonocling in, 280
Hgdranlic cemert, White on, 198
Eyranlle endneering, De in Becte on,
Erdran
Gptraulle endoeeting, Dwyer (ruv.) $\mathbf{3 8 9}$
Hydralle machlowr, Boberta't pat. 282
H rifralic machloe in Oreat Exhlbition,
274
Bydranlic mortars and cement, By
Eydraolic tahien, Beardmort's (rnv.) 86
Inclined plane, Blecthill cana, 201, 270
Inalined planes on caraly, Lake's pat. 24
Indin, rallmepe in, 880
Imdicetor, Smilh'a pat. 238
ingitute, mechanies', Burniey, 81, 121, 1 10stitu
Incutodons, afiatlon ot, 78
Ionodatione, 80, 491
I relaed, prology of, Grifith 00, 888
lroland, dramege of, 160,400
lroy and copper, nee of by the anckeats, Ritehie on, 218
Irois and mood beams, comblontion of, 401
Iron chillint Beatalys pal. 498
Iroo durnbility of, Faithairn on 150
Iron furmees, Jonet's pat. 314
Iroa girders, Barton on, 387 ; Fairbaira on,
8, GIadstore on, 890
Iron Herthonse, Bermuda, 247
Iron mparictinte, 259,860 ; Srenion's pat. 206
Iroo, reatatiot pownr, Pairbaim on, 145
Iros shlpe, corrosiose of, 400
Iron trede, 197
Irombork, eaployment of colonr in, 41 Ishernood, on the bolleri of stem, m-ihlp Palton, 226
lealated ateem, expancion of Slement on,
1tily, rall wiyt $1 n_{1} 899,482$
Jachron, os ebartorruphy, 151
Jee, on viadret at Manchester, 89,7
Jet purgp, Thoensos on, 282
Johseara' pat. steam-botlert, 815
J oint chalr for fill waym, 8
Jones, on architectorsl education, 522
Jonen, on calour in deeorative arts, 281
Junes; pal. fernees, 814 ; toves and
Jurter' reporte on Oreat Erbibition, 274, 207, 940,374
 79
Eem obencratory, 182
Ellos, Beewrick't pal. 105
Elp; on ventliation and lightag of Hoasen
of Parlinment, 88
Engeton waterworks, 136
Eidnore End church, 4
Easpenely, Bertogton's, 279
Incon't pat, anpending and lowerlogship: boate 118
Leke district, ecciestoloyy of, Davy on, 12

alru's pate atoam propalaton on canale,

1-9by, on maripe-engipe bollers, 178
Lapbech waterworke, Ringston, 135
Latester, Hew or, Lin con (ret) 880
Lankester, on organic objects in water, 404
Lasd lnctoware, Netberiands, 261
Land hip, Blrmioghem raliway, 359
Lapd t'p, Manchever revervoir, 148
Iandiner, bapdbook of netural philoeophy,
(rev.) 830
Lithea in Oreat Rrhibition, 274
Letiles-betm Fiaduct, Kilienpy, Moorsom on, 189
Lartice girders, Barton on atralus in, 827 Laaneh of the Aunteritis, 359 ; Jean Bart, 80
Lanes (Mr.) deeth of, 167
Laxd plpe mechinery, 480
Lata arseltioc, Patifneon's pat. 428
Leede, on the Ordert (
Lever, poet-once, 383 otragth of materiale, 78
Lealic, on Bilberry remervolr, 101
Ledte, on Blackhill canal incifine plane, 201,270
Lathe, wnillowion and iltbting of the
Boomes of Parliseneot, 370
Bonves of Parliemeot, 370

LARIng machine, portable, Long'a, 217 Ltehting, artiAcial, Beaketh on, 204, 207 IIghthouse tower. Ir,jn, Bermuda, 207 Lightiog and warming of Rouses of Par. Limment, 292, 339, Mo8
Lindiey, on Hamburgh gatworkg, 24
Lindiey, on Hamburgh gatworing, 24
Linton's vew of Lancaster (rev) 889
Linton's vew of Lancaster (rev) 889
Lithographer, practucal (rev.) Manon, 275
Lithographer, practical (ret.) M
Litile, on electric telegraph, 185
Litile, on eiectric telegrsph, 185
Liverpooh, arehitecture $\mathrm{in}, 410$
Lrerpoo, arehitectare in, 410
Lreppol, shipbuilding lat, 431
Liverpool new north doche,
Livirpool water supply, 98
Lock, Whyte'improved, 118 , Cowper' pec. 78, 846
Locomotivet, Smith's pat. 394
Looomolivet, Smith's pat. 3
Lond's portabie Iffting mechlne, 217
Lod's portabie ifting mechine, 217
Lonimald, on copper orem, 196 ; recover of sulphup, 196
Louvlera cathedral, 81
Lowe and Evans' pat. ges manuficture, 392

McAlpine, on dimendon: of Ametican steam ahips, 425
McGlathen's pat, remoring housen, 428 Mechines and tools. Wult on, 92
Machinery of 19th ceninry, Dempary on Machinery, of
(rev.) 98,190
Mactatonh's pat. ntean-englaes and promaciotosh's
peller, 237
mpelier, $2 x$ clock, Bhepherd's 188
Manlefert'm submarine operations, New Yort, 119,160
Malns apd cawre, sizes of, 864, 418
Malleable Iron girders, Giadstone on, $\mathbf{3 9 0}$
Malleable iron manufecture. Thorneycrof
on, 259
Manchester cast-Iron Fiadict, Jee on, 59 ,
77
3
Mancheater corporation meterworke, 71, 143,160
Map of England, Reynoids' (rev.) 190
Mape, topographical, Jeckeoa on, is
Murbie and atonework, Ansted on, 276
Merble areh, 240
Marchaed, on drinirabie wratera, 141
Marchant, on iron and wood beams, 401
Marise bolters, Ragetil on, 117 ; Lamh on, 178
Marionetie theatre, 70
Market, Billingrgate, 320
Markete, cattie, $\$ 06$
Meson's prectical ithographer (new.) 275
Masonry and brichwort, Clegs on, 138
Mants, Maclatorh't pat. 237 ; 8cott's pat.
Mathles (M.) death of, 8
Maudalay's pat. rotatory enginew, 345
Mansoleum, nathonal, 850
May, on aring-bridge at Rye, 188
Mechanical proceas mor coollng alr, 320
Mechanlce' Intutute, Burniey, 81, 121, 166 Hechanics, tey to Tate's exercises (rev.) ${ }^{86}$
Med lmoval art and artiata, 126
Meeson, on ventilation and IIshting of the Housee of Parifinment, $\$ 70$
Melbonrae, Blackburn on Improremente jn, 358
Menturation. solld, Morris on, 210
Metal cuttho and theplng, Frearion's pat. 238
Metal cutting machibery, Holmes'a pat. 35
Metal
Metal pipes and retorta, Perilns's pat. 847 Metal puoching and riveting, 8colt's pat. 194
Metai work, Redgrave on, 356
Metala, combinalion whth oxygen, Woods 0n, 882
Metala, nse of by the anclenta, Ritchie on, ${ }^{218}$
MeLaliic componads, Clanten'a pat. 4177
Metallic couttructions, Falrbaira on, iss
Melallic nurfaces, ormmentint, Sturgea' pat. 423
Metallargy, Percy on, 97; Smee (rev.) 92 Meteorological Inatriments, Drew on, $1<8$; Gielsher on, 180
Meteorologlcal quarteriy report, 118
Meterological semence In Eugiand, 101, 128
Meters in Great Exblbition, 275
Metropoiltan water bill, 289
Metropollean water anppiy, Cresy on, 31
Microecopic objecta in Microseopic objects in witter, 404
Milt't pat. boller and propelifigg machinery, 195
Millowners' fight to underground apringw, 142
Mine ventliation, 286; Bakewell on, 197; Phllifip: on, $\mathbf{3 3 4}$
Minet, government sehool of, 200
Mines, report on explostuns in, 238
Mineralogy and mining, Bmyth on, 66
Mining schools, 228
Minit HAe, Buchamen on, 189; Chesney
0a, 90 ; Falrbalra on, 351

Mitcheil's bomerang propalier, 481 Montagu, on naval archliecture (rev.) 184 Montravel's pat. motive power, 39 Monument-Bavaria, 392; Sir T. Brock 368 ; Brussels pational 396 : Charle Albert, 889; Edwand II., 187
(Earl) $160 ;$ Stephenson, 431 (Barl) 160; Stephenson, 431
Monumenta, Westminster Abbey, 108, 120 198
Monumenke designe for, Clartson (rev.) 164; Wileon, on decoration of, 89 Moorsom, on lattice. beam Fiaducts, 188 Morectabe bay, 200, 389
Morris, on solld mensuration, 210
Mortar, Clegs on, 88
Mortice bricim, 409
Moalic pavemanta, Redgrave on, 856
Motaic pavementig, Redgrave on, 856
Motive power, Hediard's pat. 814, Mon.

trevel pat. 394; Eloberta's pat. 204
MOuldiage of anclent Grecian archltecture
May on, 16 (16 , Mouling
pat. 104
Mower'a pat. bricks and thee, 207
Multiplying motion, Cowper': pal. 346
Nunleh trumphal arch, 892
Mualeh trumphal arch, 892
Huseum (Brtinh) ralifig, 41
Mustcal Instra nents in Great Exhbition
Caralet on, 192
Nall makiog machsoery. 430
Napier'a pat. rotatory engines, 260
Netmyth is team suction-fan, 236
National Gallery, Smith on enlarging, 418
Nationa, Gallery, Smilh on eniarg
Nautical matronomicai Instramente, Glais.
her 00, 179
Naval srchiteetnre, Dupla on, 874 ; Mon.
trgu on (rev.) 184
Necropoile company, 359
Needle munket, Cbesney on, 90
Negative sign, Browalog (rev.) 9
Neablt, on Perurian auano (rwv.) 225
Netherlands land Inclosure; 251
Newton's pat. pigment, 111
New York Dock, Stuart on, 304, 821
New York engineering works, 166
New York exhibition buiding, 368 York, submarine operations, 119,160
Nlagare suspepsion hridge, 896
Nicoley, on ahipe and boate ln Gt. Exhbt. tlon, 192
Non-metallic mineral manuflactures, Ansted on, 165
Normandy, churches of, Seddon on, 81
Northampton, 8t. Sepulehre's church, 6.
Poole OD, 128
Norwey, rallweye in, 398
Obltzary-Allazon, 159-Barned, s9JBuchanan, 432 -Clarke, 399 -Clyburn 899-Coiby, 819-Cowper, 899-Creure, 432-Deciline, 432-Eisensten, 899 Fairland, 899 -Forster, 160 -Geara, 399 -Gibwon, 399 -Graloger, 816-Grffith 399 - Haterell, 432 - Hiviland, 227 Hornby, 899 -Jeason, 399 -Lawev, 167 Manteff, 432-Mathias, 39 - Morgan
432-Pagin, 858-Ramey, 432-Savage
226-Seguin, 482-Slater, 399
Observatory; Greenwich, 128; Kew, 132
Odontography, Sang on (rev.) 387
Oersted, on sou! in ninture (rev.) 188
Onlon" pat. castlag, 144
Optical instrumente, Glaieher on, 179
Orders, Leeds on (rev), 35
Ortanic objects in water, 404
Ornamentai bricks and tles, Pidding'a pel. 238
Oraamental turfaces, Bale's pat. ss ; Bid-
deil's pal. 194; Sturges, 428
Ormanentation of china, nidgway's pat
893; of sinc, Greenstreet's put. 266
Ornamentation of churches, Chamberialn on 87
Ornamen
Ornaments, Gothic, 58
Orvieto cathedral, 96
Ozygen, comblnation of metale into, T.
Woods on, 381
Packiog tufing-boxes, Cifckmer's pat. 34
Paddie-wheele, Drake's pat.113; Stevens's
pat. 230
Paint or plgment, Newton' pat. 111
Palintiog, decorative, Proggarts pat. 347
Palace, Bucknghme. 240; Balmoral, 359;
Hampton Court, 423
Palace, Westminacer, ventliation and itght-
ing, 292, 859, 168
Paleces, Roman, Eaton on, 272
Palmer'a pat. delineating apparatuc, 111
Panaras raliwry, 119
Paperhangloga, Redgrave on, 355
Papworth, on architectural productiona in
Parest suppiy of tent 18
Parig, supply of whier to, 318
Parliament hnuses, ventitaltou and lighting 292, 839, 868
Pateat Law acceadmeat, 79, Webster 0a,
Pakents, Beldias, 119

Parinyt (Specithettions of New)-
Ann altas, Onlone, 144; Thomeon, 205
Bizuminous buflding materiale, Dus-
donald (Earl) 34
Bollert, Cow per, 75, 346; Harricon, 287 ;
Johmwon, tis; Mils, 198 ; 8ieneon.
245; Thomas, 196
Brick-makiag machinery, Buratall, 237 Brickend tlles, Beswick, 103; Wood worth, 247 ; Ormamental, Biddoll, 194 ; Pidding, 288; waterprool, Workman, 118
Owringes, Beattie, 194; Cowper, 78 Hodge, SO4; Pldding. 894
Casting and sonealing, Onions, 144
Cantrgin, Gerdiner, es8; Perkina, 847
Ceranit manufuctures, Hodge, 144 ; Chilling centation, Riditimay, Bental, 498
Chimneys, smoky, Dupre, sos
Chimneys, sraoky, Dupre,
Drying, Payue, S5
Drying, Payue,
Bngines, Reatie, 194; Comper, 78, s40;
Harrigon, 287; Mecintorh, 857 ; Smith,
894; Whitolew. 51 ; -rotetory, Mecin-
tosh, 8S7; Mavdeley, 315; Napler, 266
Evaporating, Payde, 35
Ev sporating, Pay er,
Firearma, Brooken, 304
Fiues, Brooken, 804
Furnsces, Deeley, 70; Jones, s14
Gas-burners, Pontainemoreau, 118, 815
One manufacture, Lowe and Evans, 292
Generators, Stention, 865
Glate-annealing, Thornion, 285 ; bend-
Ing, Thomion, 265 ; flattenlng, Chance, 76 ; furnaces, Deeley, 76 ; ornaments tion, RIdgway, 80; ; manufacture, Chance, 305 ; Hodze, : 44
Glasing iron tuben, Keprick, 14
Goveraorm, Whitilaw, 51
Goveraors, Whitolaw, 1 Healigg and vantilating, Henderson, 144
Houses and trees, removing, McGlahan, 488
Hydraulic machinery, Roberts, 908
Indlealor for boliert, Smith, 288
Iron madufacture, Stenson, 285
Kilon, Benwick, 196
Masts, Macintom, 287 ; Beott, 104
Moarurlog luids, Roberts, 208
Metal cuttiog ind shaplag, Frearion, 888; contug and stemplog, Eolmen
Motive power, Montravel, 804 ; Schlele. 815
Multipling metlon, Cowper, 840
Ornamental surfaces, Bale, 3 ; Diddell
and Green, 194; Btarget, 420
Packiog stufing-boxes, Crickmar, 84
Paddle-wheelf, Dreke, 118; Btovens,
936
Palat, Nemion, 111
Painting, decorative, Froggar, 847
Permanent way, De Bercue, 198 ; Doull,
164 ; Bruff, 487
Plpes, bituminous, Duedonald (Earl) \&
Plpes and retorts, Perking, 847
Porcelaln, Hodge, 144
Preserving composiluon, Newton, 111; colution, Fontainemorean, 111
Preaing machinery, Pontalnemoresu, 819
P
Printing protees, Pontalnemorean, 119
Projectlles, Gifierd, 295
Propelllng, Drake, 118; EHedlard, 14;

Patenta (Enplith), monthly liste, 40, 80, $120,160,200,240,230,320,860,400,432$ Paterion on Hebthouse tower, Bermada, | 287 |
| :--- |
| |

Petifineon, pat. meiting, 428
Pal't (St.) proposed decoration, Pearose $\mathrm{OH}_{4} 244$
Paviny of towns, Taylor on, 228
Parne's pat. deatcentint process, 95
Pencila, stephens's propealing, 240
Penroae, on decoration of $\mathrm{St}^{\text {. Prul'e cathe- }}$ dral, 244
Percy, on metallargy. 97
Perkias'e pat. hollow catioge, 347
Permanent way of rallwnys, Adsma on 77; Bartun on, 383; De Bergue'e pat. 198; Doull's pet. $164 ;$ Bru省's pat. 427
Peruian guno, Neabic on (rev.) 225
Peruvian quapo, Nenbit on (rev.) 2 25
Peterhead harbour atiog bridte, 74
Phlledelphla dry dock and rallway, 89 ?
Phillips, on evolution of ges, 884
Philosophy and matronomy, Lardner (rev.) 889
Philueophical lotiruments, Glainher on, 177
Phosphorns, Wition on mansflacture, 190
Photography in meteorological phepomeDE, 180
Photography, Thorathmalte's guide (rev.)
92
Phowgraphical instruments, Glaisher on,
Phyleal powerg, convertibillity ot, Rankine
on, 848,417 ; Clirk on, 862
Pictares in National Galiery, 418
Pidding's pat. artificial fuel,' 313 ; pat. or. mamentil bricks, 289 ; pat. wheels and corriaget, 894
PIlbrow's wrater waste preventer, 156
Plle foundations, Sanders on, 37
Plpet and cantloge, Dundonald's pat. 84
Gerdluer's pat. 238 ; Peridns' pat. 847
Platon packing, Crictrmer's pat. 44
Planidng, diagonal, Arman'e pat. 817; White't pat. 395
Plates, wrought-Iron, atreagth ef, 14I
Poetry of Gothic art, Dutholt on, 88
Polren, on draught of wagons with brenke $\$ 90$
Polychromy in Greek architeeture, 5, 42
Polychromatic Ironwork, 41
Poole (B.) on rall way economy, 159, 188
Poole ($\mathbf{O} . \mathrm{A}$) on St^{2}. Sepulohre's church, Northempion, 123
Porcelala and pottery, Arnour on, 232
Portable liftiog machipe, Long'n, 217
Porter's pat. anchor, 279
Portiand cement, White on, 198
Poot-onice, Leed, 892
Pottery and porcelain, Arnous on, 252
Pottery, Hodge's pat. 144
Powls (Earl) monument, 160
Preatrilag compoaltion, Newton's pat. 111
Preaerving solution, Fontalnemorenu's pat. 111
Presaing and printing machinery, Fontainmoreen'th pit. 312
Price, on rentliatlon and lightiag of \mathbf{H}. of Parilament, 869,872
Princess'a theatre, 400
Printlig premees, Foatalnemoreeu' pat. 812
Profeselonal education, 14
Progrestion in architeoture and art, 362
Profectllon-Brchanan on, 156 ; Chesney (rev.) 89 ; Palrbalin 0n, 881; Glfard's
pat. 895 ; Beoffern (re7.) 89
Propeller, bomerang, 481
Propeller, cylladrical drum, 424
Propelling-Drake'I pat. 113 ; Hediard'a pat. 314; Macintosh'a pat. 237; Mils's pat, 195 ; Reed's pat. 814; Thomats
pat. 196 ; - on canalr, Lelt
Pugin (W.) memolr or, 858
Pugin (V.) memoir of, 868
Pronp, Jet, Thomen on, 832
Pump, Jet, Thomeon on, 832
Pumplog machine, Robert's pet. 264
Pumplog machine, Bobert's pat. 264
Punching and rireting, Seotits pat. 194
Punching and rireting, seatt
Putney proposed bridge, 451
Puszolana, Clegg on,
Pyrometer, Denlell's, 210; Wedgwood's,
210; Wilson's, 211; alr, 210
Ralitigg of Britjah Moseum, 41
Rall and tram roads, Brufi's pat. 427
Ralls and aleepert, Barton on, 833
Rallis, hardealng of, Gerver'a pat, 287
Rallway-Great Western; 240 ; London and North-Wentern 240; 8outh-Wentern 270
Ballway-Norway 398; Denmark 360, 898; Kuben 898; Turkey 279, 998; Italy 898, 482; Holland 279; Belgium, 279, 398; Yrance 898, 482; 8pain 807 ; India 292 ; Anatrh 279 ; Ferris 40 ; Flamderis 482 ; Egypt 492 40; 8erris 40; Ylandert 482; Egypt Rallway end docks, Philedelphia, 897
Railwey accidants, Hulah oo, 150,188
Rallway accidank, Huish oa, 109,150
Ralway azles, Thornegcron on, 259
Ralway carriages, Hodge'a pat. 294 ; Pid. Radiwny carriget
ding's pat. 804
Reilway construction, Hodge's pat, 894
Rillwhy economy, Puole on, 159, 198

Ballway ongines and cmindage, Beattio's pet. 194
Relliway Joint chalr, 8
Raliway mechlnery, Deatule's pato 194; Bruer pat. 4e7
Rallway machinery, Clark on (rev.) 92, 409 Billways' permadent tray, Adama ox, 77 ; Barton on, 333; De Bergue's pat. 193; Darton on, 838 ;
Rallway purpencion-bridse, Niagarn, sis Rallwey traing, traction of, 890 ; plan for for protecting (rer.) 409
Rallway wheeli and shath, Gardiner'i pat. 238
Rankline, on expanalon of steam, 191, 348 417; on procesa for cooltng alr; 828; on telegraph between Engiand and Irelind 329
Rapheel, Flli of, Enton on, 273
Rewifneon, on dralage of towns, 420 Redgrave on deafgn it Great Exhibition, 349
Redman, on allovil formations, 88
Heed's pat. screw-propellert, 8 is
Reflectors, atilicial, Fesketh 0 , 204, 287 Heflectors, comblantion, 267
Refraction, Drew on, 216
Regulator for water-wheels, Maler'a 172 Beld, on ventilition of Bouges of Parile ment, 292
Readel's (Mr.) conversasione, 199
Renale, on Netherland land Inclorure, 261
Benale, on theory and formation of herbourt (ret.) 189
Report of committee on ventilation of Aoumes of Parliament, 292, 399, 368 Report of commistioners on coal-mine ex. plosions, 283
Report of commitationers on Great Exhibltlon (rev.) 225
Beport on detign at the Great Exhbition, 349
Report
Report, meteorological quarterly, 115
Report on metropolitan water anpply
(Creet) 31 (Crety) 31
Report on microscopic objects in water, 404
Report on supply of water to Swangen, 8cott, 837
Reaervalr, Buberry, Lealle on burting of 191
Reservolra, calculation for emptying, 80
Remervolrs, Mancheter
Remervolrs, Mancheater waterworks, 71 , 143, 160°
Realatance of tralas to traction, 890
Ratorts, Swarbrick's pat. 427
Retorts, cent metal, Pertion's pat. 347
Retorti, fire brjck, CIIN On, 335
Reviews of Booss -
Architeature and art, progrees ln; Beddon, 408
Architecture, Gothic, detalla; Colllag, Archi
Architecture, rural, Gray; 408
Aruflcer's work, etudent's gulde; Garbett, 275
Baths and wabhouses, statement of; Ahaly, 408
Bridgen, supplement to theory and preetice of; Clarke, 296
Britich Joarnal,
Cheteatu de Gallion: Devilla, 190
Chimneys, treatise on; Eckteln, 888 Dicoount tablet; Gomersall, 80
Docks, Ameriem; 8tuart, 804 , 391
Bectro-metallurgy, lecture on; Bmee,
g2
92
Embaning lands from the wes; Wiggins, 154
Embankmenta and cuttinges, tablea of, Hendereon; 154;
Bngineer and contractor's proket-book Sngineer ar $1852-8,875$
frhibttion bulldinge plams, dec.; Downen Bubihttion building
Exhlbltion (Great) report of commlesloners, 895 ; report of juries, 874 fioners, ess; report of furies, 874 Firearms, oberrvation on; Chemey, an; 8 eoffern, 89
Geography, mathematcal; Iuchea, 975 Geographicel ectonce, manual of, 150
Geometry for cichools mod workmen, ge Goldseeker's manus); Ansted, 286 Gonno, Peruvian; Nebbit, 2\%5
Harbours of the United Kingdom-Belfast, 284
Rarbours, theory and formation of; Rennie, 109
Hydraulle endoeerint; Dwjer, 89 Hydraullo tablet ; Beerlmore, 80
Linton, 889 Morecambe bey; W
Lithographer, practical ; Mason, 275
Machinery of the 19th century; Demp107, 99, 100
Mep of England; Reynolds, 190
Mechanics, rey to oxercises on; Tate, 85
Melbo 838

Monarmenta and tombs; Clarkson, 184
Natural philooophy and astrosomy
Lardner, 889
Neval archliecturs; Lord B. Montage,
Neval archlectora;
Negetive wign, theory of; Arman, 817 ;
Browning, of
Photography, guide to; Thornthwalte
Pbotography, guide 10 ; Thornthwaice,
92 Prolectil weapona of ver; Chempery, 89; Scoftarn, 89
Elitimay machinary; Vlark, 92,400
Eallway trainat plan for protecting
Wechter, 409
Pome in the I9th century; Beton, 971
Rome, ofr viewt of antiquitien; Thotier 880
Brhool of mines, lnaugral lectures, ges Behools and rehoolbouren ; Clarke, 181 slide-rule; Elliolt, 190
Boul in nature, Oarated; I., and J. B. Hiorser, 187
Stencm, prectienl mamingtor; Trmplo-
ton, 858
Toulb of wheols, new theory; Bans, 887 Turalot; eveentile; an Amitear
Vietor' (Ot) choreh, Xaniten; Bcholten,

10

Rlchardson's rallway Jolat chalr, 8
Richmond dralnege, Doundeon on, 158
Bidgway'e pat. chion and glem ornement
log, 395
Fatrbalin on, 881
Rigeing, Nactritorh's pat. 283
Birchle, on use of metals by the anciente
218
Rivelug and punching, Scott's pat. 194
Robertis pat. bydraulic machatory, 262
Rochenter bridre, 79
Roe, an form and slso of cewers, 417 Rolling and preaalng machlnory, Fontalnemoreau's pat. 812
Rome, maclent, Eaton, 278
Rome in 194h century (rep.) Eatod, 271
Rome, fix view of catiqualies, Tinkle
(rev.) 389
Boman foram, Burgess 0n, 251; excaretions at, 400
Rotatury eagines, Macintosh's pat. 237
Maudslay's pat. 846 ; Napler's pat. 286
Rotatory valven, Cook'1 pat. 267
Ronen cathedral, 82
Round chureh, Northampton, 129
Royal Acadeusy exhibition, 162
Royal tomba in Weatmloitier Abbey, 108
126,198
Rural architecture, Gray (rev.) 408
Rusell, on marine botlers, 117
Rusila, rill way in, 898
Bye, ewing bridge at, May on, 158
8aile, Montagu on (rev.) 184

St. Relen's church, Paddington, 241
St. Helen's church, Padington,
St. Lute's charch, Cheleen, 279
8t. Late's charch, Cheleen, 27.
8t. Eepulchre's church. No
8t. Sepulchre's church, Northampton
8t. Paul On, 123
8t. Paul', proposed decoration, 244
8t. Peter's, Rome, Eaton on, 271
Salloe and metaille compound, Claumen's
8amuel's continuous expansion engine, 17
Sandert, on pile foundations, 87
Sang, on teeth of Theeld (ret.) 887
8anitary lup provementis in town, Clegt on,
8awley abbey excavation, 881
gawiey abicy (W.) entalotue of woods, 307
8annders (J .) on mafety harboura, $8 * 6$
8arage (J.) denth of 228
8chicle's pat. motlve power, $\$ 15$
Schinkel and Cologne cathedral, 16
8chool arehitectare Clark (rev) 16
Bchool of devign, 824
Schwol of mines, 200,228
School, Fozearth, Eseex, 161 ; Freemason's
Wandsworth,'232; KIdmore End, 4;
Wealeyen dormal, Weitminster, l; Dio cenan, near Briatol, 861
Scboolmiatremes training tntitintion, near
Briatol, 861
Scoffern on projectlle wespons (rev.) 89 Scott (M.) on whiter mupply in townt, 397 8cott's (M.) pat. mats and veasely, 194 Scott's (M.) pat. punching and rivetug, 194
8crew-propeliers, Reed's pat, 814 Ecrew propalilo, Roberti's pat. 264 Seddon, on Bayenx cathedral. 85
Seddon, on charchet of Normendy, 81 Seddion, on progrete in archltecture (rev.) 408
Bepulchral monument, Wileon on decort-
Ulon, 89 ; Clarision on (rep.) 154 ; West tlon, 89 ; Clerlinon on (rev.) 154; Went micaster abby; $103,126,198$; Edward II
Glouceter, 187

Servian rillinuy;
Sewers and dralns, Rawitusan on, 400
gewer and maios, clyes of, 84
Sewert commitation, 167, 259
Sewers and pipes, Dundonald's pat 84
Sharpe, on ecelealantical archlteclure, 316 Shethiog remela, Beot'' pat. 124

8 beph 189

Shililat, on Aastrallen sold-felda, sa. Ship life.bout, Porbes's, 429
shlpbuilding on the Clyde, 491; Livarpeol
481
8hipbullding-Arman on, 317; Dupin ap 374; HoDtegn on, 184; Nleoler on, 1 shipbailding-Drake's pat 118; Beotit pat. 194; Whte' pat. 805
shipbuilding, iron, Falrbairn on, 14 corroalon of, 400
Sblpa and boats in Great Exhibitiong Dapin on, 374 ; Nicolyy on, 182
8hlpe' boata, gispending and bowertat
Limeon's pat. 118
Ships' botcoms, compoaition lor, 287 ; ropaling white alloat, 847
147
Shrine of Edward the Confentior, 103, 126 slemeni, on expandion of molated stenm 294
Bignale, velestaph, Bekewell on, 329 ; Gkew brid 0n, 80
Sleepers and chalrs, Adems on; 77
8teepers and chatri, De Bergue's pat. 198
Doull'a pat 164
Sleepers and ralla, Barton on, 308
Silde-rule, Biliott on (rev.) 190
slight, on drawing ellipees, 118
Slob lands, Ireland, 400
Smee, on electro.metallurgy (rov.) 92
Smeltia leed, Pattinan's pat. 49d
Smith (C. R.) on enlerging Nallonal Gallery, 418
Smith's (J.) pat. locomotivee, 894
Smith's (R.) pat. steering appuratus, 267
Smlth's (S.) pat. boller-ladicator, 298
Smith's (W. \& A.) pat. electitc telegraph apparatua, 347
Smlthbeld eattle market, 806
Smoky chlmney, Dapre's pat. 89a; Eck-
steln on (rep.) 888
Smyrna, ancleat thentre at, 400
Smyth (P.) on proceses for cooling air, 828
Smyth (W.) on value of knowledge of mineralogy, 66
Soep manufacture, Thomale pat. 428
Boointize -
Antlquarief,
Antlquaries, 200, 424
Architects, Brisish, Inatitate of. 6,18, 42, 126, 169 , annual mesting 198,204 $241,2+4,251,418$
Architectural issociation, 85, 882
4rts, 8ocitit of, London, 92,133 , 185,
$165,177,192,196,200,232,259,270$,
281, 285, 322, 409
Arta, Society of, 8eatdsh, 39, 78, 118 , 156, 183, 191, 196, 197
Engineers, Civil, Institution of, 8, annual
Engineert, Clivi, Institution of, 8, annual
meting $88 ; 57,77,108,116,158,199$,
meting $88 ; 57,77,108,116,158,198$,
$228,257,259,428$, awrard of price 818,
$288,257,259,428$, award of prices 818
aubjects for premiumes 819
Englneers, Mechanicel, Intilation of,

Bteam propulaton on canala, Lalre's pet. 2387
Atearm suction-fan, Naemrth', 236
8teamohip-Austerilts 859; Benthck 174; Bity of Pilaburg 397; Glasfow 175; layah 175; Jean Bart 850 ; Keera 431 ; Layah $175 ;$ Jean Bart 860; Ketre Sic
Pottinger 174; Ripon 178 ; 8t. Jean Pottinget 174; Ripon 178; 8e. Jean deamehtp Fulton, bollere of, 226
8ceamabipe, American, dimensions of, 425
Suenmapts, improved building of, 817,305
Steerto ipparatas, 8 mish's pet. 267
steendp apparatas, smach's pat. 204
steneon'e pat. Iron manufcture, 206
8tembon'e pat. Iron manufacture, 206 Elouses of Parliament, 872
Btephernon M onument, 451
Stophens's propelling penclle, 240
Stewart's houplial, Edinburgh, 121
stome dreadng michine, 408
8teveon'a pat. plddio-wheels, 220
stove and Hame, CLues on, 138
Stone and marble work, Alated on, 876
gtowe, abbeator, 198
Atoves and fines, Brooke's pato 304
Strins in lestice- diders, Berton on, 827
street-pertag, Taylor on, 248
8tuart, on Americen docks (rev.) 304.821
Stafif boy packlag, Crickmer'e pat. 8
Sturge's pas. metallic surficesi, 420
Aabomarine deetife leverrephs, Bazewel on, 829 ; to Ireland, 829 ; to Bolland 259 ; to Outbec, 838
tabmarle operations, New Yort, 119 100
8alphur, recorery of, Longmand on, 158 dell's pat. 104 ;
Sorreying instramente, Giaioher on, 179
suapensiod-bridge, Ntagera river, 398
mancet whiter supply, 8eots on (rev.) 887
Awarbriche's pat get retorts, it
blof bridge at Rye. May on, 158; at Peterhead harboar, Kerr on, 79

Trebet's pat. mood proparing, $2: 8$
Tate's zey to exarchees on mechanlen (rev.) 88
Taylor, on street paring, 220
Teeth of wheels, Sang (rev.) 88
Telegraph, tlectr c , Adre7 on, 117 ; Bakt. well on, 329 ; Leltile on, 185 ; Waller on 28; Window on, 116
Tolegraph, electice, Highton'/ pel. 814 ; 8mith's pat. 847
Telestraph, olectric, between Grent Britaln and Ireland, Rankibe and Thomson 0 . 820 ; to Holland, 209 ; to Quebec, 838 Telegraph signaly and batceries, Walker 00, 228
Tamperakares, high, Wihon on measurement, 210; coolling of, 320

Tvemploton, on ateam-angine (rev.; 350 Teapile strains, Falrbalra on, 145 TVernes embankmeat, 278
Thentre, Marfonette, 79 ; Princean's, 400 ; anctent, it 8 myras, 400
Thomand pes. bollers and propelllas machipery, 195
Thomen's pat. soap manufacture, 428
Thomeon (J), on fot pump, 832; on tele reph between Gt. Britala and Irelent 329; on vortex writer-wheel, 392
Thomeon's (\mathbf{F}) pat. glase beading and monealisg, 20 malleable tron and rall. wray axien, 269
Thornth walte's faide to photogrephy (rev.)
Idal aavigation and trilanget Brook: on 428
Tlie manafactare. Woodwortib's pat. 267
Then, brictit, and kilas, Bengick pat, 18
Thes, ormamental, Pidding's pal. 248
THies, waterproof, Worlman'l pat. 118
Timber, Clegg on, 128
Mmber and ornamental woods, catilotre of, 807
Manber bridge, U.S. 860
Minler, Fiaws of Boman antiquition (rev.) 389
Tite, on ercervitions at Rome, 251
Tomb of Edward 11_{n} Gloncenter, 187
rombs, desigut Sor, Clarkeon (rev.) 154 decorntion of, Wison 0n, 8
Tombs (royal), Weatminster Abbyy, 103, 126, 198
Tools and mechlnes, Willita on, 92
Tools (engiaeers') in Greft Exbibltion, 274
Topotriphtel mape, Jectson OB, 162
Topostephy of Boman forum, Burgess on, 31
Torkey tnbalar bridge, Fairbairn on, 8
Toronto, Brock monument, 888
Tour in Britteny and Normandy, by J. Seddon, 81

Tonert and splres of the Clty churchas

 Clayton $\mathrm{On}_{,} 169$Town hall, Wigan, 805
Towns, dratnage of, Rawlingon on, 4\%
Traction of rallway tralnis, 800
Tralaing intilution, diocesen, 361; Weslejao, 1
Traing, plan for prouecting (rev.) 409
Tratas, resitatance of alr ta, 890
Tram roads, Brume pat. 24
Trasalt etrele, Drew on adjustment of, 212
Transplanting trees and huoses, 428
Crees, tragplanting, LeGleshen'l pat. 42d
Triumphal arch, Manich, 892
Tubes, glazing of, Kenrick's pat. 144
Tabular girder bridges, Falrbairn op, 8

Tubular boilers, Earl Dundonald on, 117 ; Fairbalrn on. 880
Tunneling in Hungary, 280
Turbine, Thomson's improved, 882
Tuminf, eccentric (rev.) 408
Tarntabie, Johason's pat. Jis
Turury, rallwaytin, 279, 898
Tayerea, double-jet, stenson'e pat. 265
Underground apriages tolllownert right to, 142
Upion bridse competition, 119
Valve for thoat paddle-wheels, 430 Valve for pumpe, 480
Valve, rotetory. Cook's pat. 287
Valve, tarety, Dangerfield's, 200
Veneeriag bricke, tles, \&e. Piddiag's pat. 238
Veatilating, Henderson's pat. 144
Ventllation of baildings, Renidibe on, 828 ; E.latiofn (rev.) 388

Ventilation of cond-minet, 226; Bakemell On, 197; Ph!Hipt on, 334
Vondiation of Horees of Parliment, 292, 850, 808
Fenthor chapel competilion, 869
Viadwet as Nanchaster, Jee on, 39,77
Viaduch lattice. beem, Kiltenny, 158
Victory gate, Muplch, 292
Vienow, ipertaselt boames at, 88, 188 Vortex miter. Wheth Thomeon on, 332

Wechter's plan for protecting trellwey tralas (ret.) 409
Wagons with breate, drangla 0,800 Whaper's mortice brich. 400
Walbrau, on excavatioes at sawley ebtey,
881
Walkor (J_{s}) addrtem to Britioh Amocistion,
320
Walker (J.) on graphlec batiertes, ess;
cielegraph tume aignals, 828
Wandeworih, freematon' mehool, 208
Warming and verfitating of Housee of
Parliameot, 992, 350, 803
Witer supply, metropoliten, 81, 71, 839;
Liverpool, 96 ; Perla, 818
Waler supply in Lowns, Beort 00, 997
Water, dilicherse of, Barker on, 887
Wuter, diecharge of over welrs, 40
Water, drinkable, Marchaed en, 141
Water melurs in Greal Rahlbition, 975
Water-wisle preventer, Pilbrow's, 164
Water-wbeel regulacor, Fialay's, 179
Water-wheel pump, Thometo on, 388
Welerwortit-Orand Junetion, 31 ; Eouch-
Fark snd Yauxhall, 52: Lembeth, 88,
155; Woot Middiesex, 5s; Chelsen, fis :
New River, 38 ; Rast Loodon, as;
Hempetead, 88 ; Manchester, 71, 1es,

Water, orcanic oblects In, 104
Waterproof bricks and tige, Workman's Waterproof
pal. 118
Water colours, prize, 900
Watford, report on purtiy of water, 104
Whatord, repors on purity of
Weiton church, Norfolt, 56
Wave theory in shipbuildijng, 188
Wave theory in shipbullding, 180
Wear fiver isnprovements, \&5s
Wear fiver isoprovements, 88
Webster, on new pthent law, 886
Weil
Wetybali, on new pare dranting (rwr.) ol
Weirs and overfalis, diecherge of Water
Welrs
over, 40
Wealeyan pormal college, Westminster,
Wentaineter abbey, royal tombe in, ios,
126, 108
Wretmingier bridge, dedign for, 401
Veatmincter palace, warming and Ifhting, 929, 889, 808
Wheols and carriages, PIddion't pit. 804
Wheels, leeth of, 8aps (rut.) 887
Whith, on Porland centent, 188
White's pet, uhiptrildtog, 806
Whitelaw's pat. steam-engines and po-
versorn, 81
Fhyte's Improved lock, 118
Whytis's ias-dremios machine, 80
Wick harbour of refuge, 100
Wigtn towe-hall, tos
Wisgint, on embanking lands from the see (rev.) 184
Wilis, on machinee and tools, 9 Wilson (D.) on decoration of eapulchrel mosuments, 80
Wilson (J.) on meaturvement of high temperature, 810
Wilson (G.) on ghephend's electro-magbelic cloci, 188 ; on amorphous phos phorous, 196
Findow (P.) on electric relerraph, 110
Window. 8t. Lake's church, Cheisen, g7t
Window, anerent coloared giam in, Win1070100, 841
Wlastos, on celoured slecs, 94I
Wollas, national mecropolis, 850
Wood and Iron beams, combination of, 401
Wood prepartas. Twehet's pal. 288
Woods (T.) on chemical combiation, 8
Wooda and tisaber, catalogue of, 207
Woodworth's pat. bricks and thes, 807
Workman's pat. vaterfiool briekl and tilas, 118
Wren's towers and spires, ciajton on, 100
Wyats (M.) on conatruction of Exhibition bullding, 57; on uedieval are, 198; on form lo the decoralive arts, 285
Zinc coating and ornamenting, Greenstreet's pel. 900
zandasdelfowthr, Cboney on, 00

LIST OF PLATE ENGRAVINGS, AND DIRECTIONS TO BINDER.

LIST OF ILLUSTRATIONS.

Anemoraetar, 180	
Animals, microseople, in watrr, 4ns	
	Arch, 56, 84, 26, 137, 200, sut
Astronomical instrumenis, 177, 179, 817	
	Balcony, 168
Barometer, 199, 181	
	Bate plates, 87
Bathe, 145	
Beam, 401	
	Boatt, 114, 501
Boller, 78, 176, 108, 201, 831 Bridge, 8, 401	
	Brick maling, 801
Brick work, $807,408,200$	
	Burners, 118
Calvo0n, 201, 381	
	Cam, 88
Casal incling machinery, 901	
	Canopy, 187
Capplal, 86, 88, 96, 187	
	Carriage, POL
Cathodral, 82, 84, 98, 187	
	Cbalr, 8, 104, 198
Chancel. 4	
Chapel, 281, 361	
	Chimnejs, 984
Chureh, 4, 5, 82, 841	
Chura, 864	
	Clarestory, 86
Cocks, 156, 201, 845	
Cog wherl, 139, 173, 901, 217	
College, 1, 281,561	
Column, 86, 67, 88, 304	
	Cone, 810
Conpectup-rod, 78	
Cornice, 00	
Crank, 73	
Cylinder, 199, 345	
Delineating epparatus, 118	
Derriek, 257	
Diegonal planking, 817, 398	

Meteorological apparalus, 129, 181	Rellugg 41
Meter, 804	Ram, 201,804
Mill, 8 Cd	Refiector, 177, 258, 260, 270
Monument, 187	Betort, 24, 256, 835
Mouldings, 16, 56, 8s, 392	B1b, 61, 65
Needle, olectric, 138	Roof, 81, 62
Paddle wheel, 118, 180	Rope theave, 901
Paintiog machiue, 64	gach bet, 88
Pendalum, 133	School, 1, 5, 161, 231, 941, 981, 501
Photogrephic apparaius, 129	Screw, 264
Palace, 428	Sewers, 414
Pltr, 56, 34, 06	Ship, 148, 149, 185, 186, $317,345,386$
Platon, 73, 170, 984, 345	Shot, 147
Phax-	8rylight, 970
Apartment houtes, 168	Sleeper, 104, 103
Boller, 176	glide valve, 78
Brider, 8	Spring 917
Canal incllne machiners, 201	Steam expansion, 294, 209
Chair, 8	$8 \mathrm{Brat}, 60$
Cill, 428	Bugar making macblnery, 264
Clerestory, 68	Sjphon, 868
Cellere 1, 281	Target, 147
Cornice, 188	Telescope, 177, 919
Dock gate, 321	Thermometer, 894
Engine, 178	Tllo, materproof, 112
Exhlbition bullding, New York, 808	Tomb, 187
Furum, 258	Tower, 967
Hall, public, 8cs	Truncept, 65
Hospital, 121	Tranult circle, 912
Jamb, 423	Transom plates, 821
Lighthoute, 257	Trust, 58, 59, 60
MIII, 88	Tube, 19, 145, 196, 291
School, 1, 161	Valve, 78, 381
Transept, 65	Ventilating apparatus, 145
Planti, microcopic, in water, 405	Waterproofing bricks, 114
Post office, 898	Water waste preventer, 156
Prison, 178	Water wheol, 173, 354
Propeliers, 204, 245	Wedre, 144, 194, 910
Pulley, 114, 185	Wheel, 73, 112, 133, 173, 201, 217, 287,
Pump, 201, 244, 232	
Rall, 8, 164, 188, 910	Windles, 114

CIVIL ENGINEER AND ARCHITECT'S

 JOURNAL.WESLEYAN NORMAL COLLEGE, WESTMINSTER.——James Wilson, Esq., Architect.

(With Engravings, Plates I. and II.)

Tms establishment, situated in the Horseferry-road, is an example of a normal college on a large scale, and therefore will be found useful as a study by those who may contemplate the erection of such a building, for which with the spread of education the demand is likely to become greater than it even now is. This College is intended for the reception of 100 studeats, male and female, under course of training as teachers, and has attached to it preparatory and infant schools for boys and girls, in which the ehildren of the neighbourhood are educated, and which serve for the practice of the atudents in school management. There schools affording the chief occupation for the students in the course of their training, the plan does not exhibit so many special class-rooms as would be found in other colleges having the same number of attendants. On the other hand, it is to be observed that the space occupied by the attached schools so much extends the area of the buildings, that a normal college constitutes an eatablishment of a large class; this the one in the Horseferry-road, with its playgrounds, covers a space of more than five acres. It is to be observed, nevertheless, that there is an economy in the cost of a normal college, because it provides not only for the instraction of the required number of schoolmasters, but likewise for the construction of schools for the neighbourhood. The architect of the large structure, which we have partially illustrated in our engravings, is Mr. James Wilson, of 38, Parliamentstreet, London, and Bath. The contractors for the building were Messrs. Curtis, of Stratford. The style is the Late Perpendicular; and the endeavour of the architect has been to obtain as much effect as the requirements of the economy imposed upon him by the committee would allow. The material is stock brick, with stone dressings, except for the Principal's house, which fronts the Horseferry-road, and which is of Sneaton stone, with dressings of Bath stone.
The portion of boundary on the Horseferry-road being restricted, the Principal's house is placed there, as shown in the annered plan, and the elevation, Plate II., and is constructed of a more ornamental character and material. The ground-floor is pierced by the entrance-gate of the College, and the whole front is divided into three compartments of four stories each, in Which the projecting oriel windows form an ornamental feature. Within the gateway there is, on one side the entrance to the Principal's apartments, which consist of ten rooms; and on the other, that to the secretary's room, board-room, library, and other office helonging to the managers.

The College, properly so called, stands behind this house, and forms three sides of a square. The elevation is given in Plate I., but it is to be observed that the low gables there shown are the end elevations of the projecting wings. The College is approached from the entrance archway, and in its centre is a flight of steps leading to a front terraca, and to a door under an oriel window, and which leads to a small central hall, having a corridor on each side reaching to the wings. Beneath the terrace floor is a basement story, which includes the extensive domestic offices necessary for such a large establishment, and in one wing two exercising and other rooms for the male students. This basement story opens behind, on a lower level, and is there provided with a range of cloisters.
On the ground-floor are, in one wing, three clase-rooms, an apparatus-room, and a lecture-hall for male students, with two masters sitting-rooms; and in the other wing a female students' sitting-room (which is a long hall), a mistress's sitting-room, and a dining-hall, 59 feet long by 82 feet wide, with an organ recess. Near this dining-hall is a lift, for the service of the kitchen. The lecture-hall being a principal apartment, is carried up to the top of the wing, and has an open roof with hammer-beams. The dining-hall, however, is only one story in height, and its ceiling is panelled, with moulded ribs. The three upper stories are appropriated to dormitories, the third story to female students, and the two others for the young men. The dormitories are well provided with lavatories and baths, and comprise a separate apartment for each student, the dimensions being 9 feet by 7 feet, and 9 feet high. The central clock tower is made useful for containing the cistern for the supply of the apartments with water, and for security against fire. The building is throughout lighted with gas, and warmed with hot water.
Behind the College are the several practising schools, having separate entrances from the adjoining streets for the scholars. The practising schools include those for infants and older children of both вexes. There are four spacious rooms with the appropriate "galleries," and twelve clase-rooms with a "gallery" in each. Within these schools is a quadrangle, serving as playgrounds, surrounded with cloisters and flanked with the two masters' houses. As the elevation of the street front of the schools is not given in our Plates, we may mention that it consists of a projecting centre gable, ornamented with an oriel window, and on either flank are cloisters communicating witb belfry turrets at each corner.

THE ARCHITECTURAL EXHIBITION.

The opening of the Architectural Exhibition for 1852 is one of the events of the year, and is calculated to exercise a very beneficial influence on the art. There are, of course, many who will remark the absence of grand and original conceptions, and of colossal works; but such objections have not the slightest weight. The Royal Academy Exhibition is as little remarkable for such productions; but the Architectural Exhibition having originated with the younger members, still chiefly relies on them for support, though in the present year a great accession has taken place of names better known to the public. The younger member will mostly send studies, as his practice is small; but the mere opportunity of exhibiting studies is valuable, as is exemplified in the Portland Galleries, for many of the studies display an originality of conception, and a tastefulness of treatment often wanting in the representations of works executed. After making due allowance for the competition of the Royal Academy Exhibition, and the absence of the seniors of the profession, we consider the Architectural Exhibition as successful and important. It displays a great amount of talent, and affords strong proof of the progress, in this country, of architectural study. It affords, indeed, a much better indication of the future of architecture, and gives a more hopeful prospect than can be sought in the ArchitecturalRoom of Trafalgar-square. It may be, this year's architectural display in the latter place may be stimulated by the exertions of the rival exhibitors, though this is little to be looked for; but, at any rate, the promise of successful duration lies with the Architectural Exhibition.
There is one feature prominent in the Architectural Exhibition which will challenge objection; and that is, its more popular form. The whole of the walls and some additional screens of the Portland Gallery are covered with drawings, generally well finished, and producing a most pleasing effect. l'he Exhibition is certainly well calculated to catch the public eye, and we are glad of it. We do not as yet regret the comparative minority of plans and practical details, because we consider it of great importance to inlist the popular sympathy for architecture as an artistic profession. We are glad to see the numerous welltouched elevations and perspective views; and we are glad to see the drawings of old and well-known buildings, because this is a legitimate place for such a display. Although perspective views may be abused to delude a competition committee, yet perspective views are essential to show that the designer has properly studied the artistic qualifications of his building; and with these the public have most to do. At a future period, and when the institution is better established, it will be desirable to institute a classification, distinguishing between original designs and copies of old buildings and it will follow, too, as a matter of course, that desigus which have been repeatedly exhibited should be excluded. The present collection contains several lithographs and engravings; but so far from objecting to their presence, we think great benefit may be derived from encouraging them. We would, however, form a separate branch for architectural engravings, and which would afford a very convenient opportunity for promoting the views of the architectural publishers and engravers, and thereby stimulate them to exertion. Judicious arrangements would promote the exercise of architectural painting and engraving, and thereby, while extending the basis of sympathy with the public, greatly advance the interests of architects. A good engraving of a great architectural work is calculated to do very much good, by making the labours of the architect better known, and by placing in many hands a valuable study. The painter of architectural groups and scenes, however, deserves no less the countenance of the architect, because a debt is due to every one
who exerts himself in upholding the reputation of the profeesion, and in recording its most distinguished works.

Bearing all these considerations in mind, we are very much pleased that the present constitutes a large architectural exhibition, that the list of exhibitors is long and more numernus than that of last year, and that the catalogue is consequently more voluminous. It is worthy of mention, that a separate department has been opened for the display of materials, details, and inventions, applicable for architectural purposes, and that this already includes a large collection. Indeed, altogether, the arrangements reflect great credit on the committee, which is more strongly supported, and we are gratified to find that the suggestions we have thought it right to make in the interest of the profession have been carefully considered, and in many cases adopted. This will be received as an encouragement for all who feel an interest in the Exhibition; and we hope any one having a suggestion to make calculated to further its interests, will avail himself of the opportunity of putting it before the committee. The Exhibition, in its present state, is a good evidence of tbe beneficial results of co-operation, but still more of the successful exertion of individual energy; and we hope no one will neglect to contribute to the promotion of an institution which must prove beneficial to his profession.

In the absence of those architects who are engaged on the most important structures, consequent on their connection with the Royal Academy or the Royal Institute of British Architects, there are few designs which can be considered as belonging to the first rank: but this is only a temporary evil; and there is abundance of works entitled to great admiration, and affording the most available opportunity for the practitioner to study the resources and tendencies of his art in the present and in the future. Academicians will, in due time, have to take their places in the Architectural Exhibition, as well as in the lnstitnte; but in the meanwhile, there is little cause to regret their absence. In the course of events, many of the gentlemen who now exhibit will hecome Academicians-if architectural Royal Academicians there are to be-or attain the first ranks of their profession; and for the present we have quite enough to do in studying the valuable productions they have sent to the Portland Gallery.

As a matter of course, churches figure largely in the colleclection; but we cannot say there is any prominent example, although there is a wide field of study in the various forms and combinations presented. Mr. G. Gilbert Scott, Mr. Lamb, Messrs. Habershon, Mr. G. Godwin, Mr. Wardell, and Mr. Nicholls are among the exhibitors in this department. We are glad to notice a large number of drawinge of fonts, doors, and other ecclesiastical accessories, showing the extension of architectural labour to these details. Mr. Truefitt, Mr. V. Tr. Horden, Mr. Tayler, Mr. J. D. Wyatt, and Mr. Digweed, have several designs relating to such objects.

Although there are various classes of structures worthy of remark, we may call attention to the many designs illustrative of atreet and shop architecture. This is a very useful branch of study, and one in which the public will take great interest. For one church commission there are a score for shops, and yet few take advantage of the opportunities afforded by liberal employers. Of course, the improvement of the more conspicuous monuments is desiruble; but the public taste will be sensibly affected by an improvement of those common structures which constantly meet the eye. If architects teach the public that a shop-front can and ought to be designed by an architect, the architect will be called in and employed. Indeed, in consequence of the improvement which has already taken place, architects are now frequently called upon for special designs by enterprising tradesmen; and the effect of example must be to increase the sphere of employment. Among the exhibitors of designs in this class are Mr. Fergusson, Mr. Truefitt, and Mr. R. Burt.

Not the least interesting works under this head, and not the least interesting in the whole Exhibition, are the warehouses erected in Manchester hy Mr. E. L. Walters. Without apparently increasing the outlay, he has, out of euch common structures, obtained palatial ranges which must be ornaments to the town, as they are memorials of his skill. We have often regretted that factories and warehouses, affording large and massive groups, are too often so idly, tamely, or barbarously treated as to be eye-sores to all who behold them. Mr. Edward I'Anson, jun., has a design for club-chambers, in which the ground-plan is occupied by shops.

There are, as usual, a number of drawings of villas and cottages. Among these are works by Mr. E. Walters, Mr. G. P. Kennedy, and Mr. Jayne. Mr. Walters is remarkable, as last year, by the tastefulness of his designs. Mr. G. P. Kennedy shows several designs in which judicious arrangements of terraces and gardens are made to promote the architectural effect. Some desigas by Mr. Jayne exhibit tasteful and novel combinations of windows and doors.
Several designs are shown for public improvements, for large buildings, or as exercises of a luxuriant imagination. Mr. C. Fowler shows a gigantic stone arch for the Avon at Clifton (No. 86), in which "tbe abutments are to contain vaulted warehouses and cellars, communicating with the wharves; with arched galleries over and on the spandrels for public resort." Mr. T. Allom has a variety of designs, including embankments for the Thames, public baths, and other subjects, in some of which an Eastern fancy is traceable. Mr. Fergusson has in No. 211 his plan for a National Gallery. Mr. Ashpitel shows an extensive design for rebuilding Blackfriars Bridge, and throwing open the west front of St. Paul's. Mr. H. B. Garling has an ingenious design for remodelling the National Gallery, without disturbing the line of the present front, or altering the internal arrangement.

What will interest the public, as well as professional men, is the large collection of drawings of well known buildings. Mr. Fergusson has some Indian temples, and Mr. Ruskin several Venetian sketches. Other contributors are Mr. E. Sharpe, Mr. R. W. Billings, Mr. J. P. Seddon, Mr. J. K. Colling, and the Earl of Lovelace.

In a great many drawings polychromatic decoration is effectively introduced, and some very valuable examples are afforded in an important branch of the art. Mr. J. W. Pupworth has an elaborate design for a county meeting room; a drawing by Mr. Edmeston (No. 93) has great merit; and Mr. Leonard W. Collmann shows a ceiling which has been executed at Liverpool. Mr. Boutcher has a tavern front. A screen, by Mr. S. J. Nicholls, unites polychromy and wrought-iron work, and so does a shop-front by Mr. S. F. Wadmore. Messrs, Gabriel and Hirst have introduced gilding effectively.
lron castings have not been neglected; and besides a variety of drawings for canopies and other objects, we have to mention a pair of gates by Messrs. Cottam and Hallen. There is likewise a design for gates by Mr. W. Ellis; and for a lamp by Mr. W. Purdue.
M. Hector Horeau exhibits a daguerreotype, the remarkable roof of the Panorama he is constructing at Paris, and some very bold plans. Mr. Turner, of Dublin, has a plan for a bridge over the Medina to connect.East and Weat Cowes, and to allow shipping to pass.

Although it was not our intention, in the present notice, to describe particularly any one of the drawings exhibited by members of the Architectural Association, we cannot allow this opportunity to pass without earnestly directing the attention of our readers to a design sent in by Mr. Edmeston, the indefatigable and intelligent secretary to the Association, which affords unmistakable and cheering evidence that architects-at least the junior members of the profession-are gradually freeing themselves from the fetters of mere routine, and are desiruus of availing themselves liberally and without too bigotted a regard for precedents, of whatever materials nature may offer or man may fashion for their use.

The design alluded to is No. 93, and is thus described in the catalogue: "Sketch for a Cottage, suggesting, in the simplest form, a system of iron framing, filled in with Tate's Patent Slabs of rough clay, covered with a very thin coating of porcelain clay, and then glazed. These Slabs may have any colour and pattern, or be in imitation of any marble. The cost of such a construction as this is estimated at about the same as 14" brickwork." The method employed by Mr. Tate was described by us in a former number (see Journal, Vol. XIV. p. 623), and the merits of the invention fully dwelt upon. The process is much after the manner formerly employed in erecting the oldfashioned timber and brick houses, many of which may still be seen in our country towns. We have rearon to believe that this new style of construction will soon come into general use for cottagers' and labourers' dwellings; that is, so soon as its advan-tages-cheapness, lightness, durability, and weather-proof qualities-are generally known.

Kidmore End Ceurgh, near Readne.-Arthur Bilingo, Esq., Architect.

KIDMORE END CHURCH, NEAR READING.

Turs church, of which we give an exterior and interior view, is deaigned in the Early English style. The plan is that of a double rectangle, consisting of a nave, chancel, north porch, and small veatry, the nave being 60 feet long by 92 feet wide, and the chancel 17 feet by 20 feet, the east end of which is of an apsidal form. The nave is lighted with simple lancet windows on the north and south sides; and at the west end, between each window a buttress of two stages is introduced, dividing each side of the church into four bays: in the second of these, on the north side, is the porch, which is of stone, with timber roof of open framework.

The weat front has a gable turret, of a simple character, to contain one bell. The cbancel is lighted by seven trefoilheaded lancet windows. Beneath one of the eastern windows, on the south side, is a recessed stone sedilia, for the officiating clergy. The chancel has a stone groined roof, supported by columns: the chancel arch embraces the whole width of the nave. The roof to the nave is to be of open framework.

The sittings are entirely free, and will accommodate 820 persons, and consist of plain open benches. The whole of the woodwork is to be stained and varnished. The walls are built of flint, with Bath stone dressings, and quoins to the windows and buttresses.

The funds have been supplied by voluntary contributions, aided by grants from the Incorporated Society, the Diocesan Church Building Society, and Henley Union Church Society. The site was given by the trustees of Mr. John Marshall. The contract for the work was 18201 .; Mr. Bigga, jun., of Reading, is the builder, and Mr. Wheeler the mason, who are carrying out the works under the superintendence of Mr. Arthur Billing, of Beaufort-buildinge, Strand.

POLYCHROMATIC EMBELIISHMENTS IN GREEK ARCHITECTURE.

By Thomas L. Donaldbon.

[Paper read at the Royal Institute of British Architects, Jan. 12.]
Ma. Donaldson prefaced his remarks on this subject-which is an explanation of the system, as illustrated in the recent work on the 'Polychromy of the Ancients,' by M. Hittorff-by announcing the presentation of many valuable works to the library of the Institute; among others the above-named work by M. Hittorff, and another which he could not hut regard as a honour to this country, namely, a volume published by the Society of Dilettanti on the 'Principles of Athenian Architecture,' being the result of the investigations of Mr. Penrose, Fellow of the Institute. This publication was, indeed, the most important production on the subject since the time of "Athenian Stuart," and it investigated some of the most curioun and extraordinary principles of design and construction, of which the public were totally ignorant some thirty years ago. The previous atudies of Mr. Penrose, at Cambridge, had peculiarly fitted him for the task he had undertaken, and his learning, zeal, and perseverance, had enabled him to produce a work which was alike honourable to himself and the profession. He had demonstrated that there was not a straight line in the Parthenon, either vertical or horizontal, but that the whole consisted of a series of curves, by which the Greek artists had sought to regulate the optical illusions of the building, to correct what in nature would appear to be wrong, and to make the whole harmonious to the eye. Another valuable portion of the subject had reference to the polychromy of the Athenian temples, in illustration of which various beautiful examples were displayed, for which they were specially indebted to the care and accuracy of Mr. Willson, who had assisted Mr. Penrose in his laborious researches. Such a work as this must con-
trihute to make architects better acquainted with the principles which guided the Greeks in the conception of those magic monuments which it was their pride and pleasure to imitate, and which he hoped they might some day equal.

Mr. Donaldson then proceeded to offer some explanation of the system of Polychromatic Embellishment in Greek Architecture, as illustrated in the above-mentioned work on the 'Polychromy of the Ancients,' by M. Hittorff, Honorary and Corresponding Member. He commenced his remarks hy a tribute to the liberality of the Foreign Correspondents of the Institute, who, in the valuable works they presented to the library, set a noble example to the members. The subject of polychromy had occupied attention for above thirty years. Even Stuart had intimated that some portions of the edifices of Athens, carved and uncarved, were emhellished by colour; but this fact was only considered generally, and not as a principle in the architecture of the Greeks. About the year 1630, M. Hittorff read a paper on the subject before the Institute of France, which was published in the 'Annals of the Archæological Institute of Rome.' That gentleman had been so much struck with the results of his observation of the remarkable ancient monuments of Sicily, as to arrive at the conclusion that it was necessary, for the full effect of those works, that the whole of the buildings should be painted. This principle, broadly and unreservedly advanced, was attacked by M. Raonl Rochette, then professor of archæology at Paris. a learned archœologist, but neither an architect nor an artist. In two articles on mural painting among the Greeks, M. Rochette endeavoured to prove that those works were executed simply on tablets, and not upon the walls of the temples. The subject then seemed to slumber, though M. Hittorff and others continued their investigations. He (Mr. Donaldson) had himself been quoted by many authors as the first to observe that the walls of the Theseum at Athens had been worked with a point, to receive a coating of plaster or stucco, enabling the whole surface to be painted. He had, in fuct, brought to this country fragments from the Parthenon, the Propylæ, and the Theseum, which, on being analysed by Professor Faraday, gave ample evidence that painting did exist on those buildings, and showed what materials were employed for that purpose. The subject was forcibly brought before the attention of learned Europe by an important series of illustrutions, published in Germany, by a gentleman then present, Herr Semper, some of whose drawings were displayed upon the walls of the room. Among these were restorations of a part of the Parthenon, a building at Pompeii, an Etruscan tomb, and a representation of the remains of colour visihle on the Temple of Theseus. Mr. Donaldson also referred to a restoration of the facade of the Parthenon by Mr. Owen Jones, which he characterised as more ideal than that of Herr Semper, although displaying much study and ability. The work of Semper (in 1834) was followed in 1835 by another from the pen of Dr. Franz Kugler, 'On the Polychromy and Sculpture of the Greeks, and its Limits.' The latter branch of the question was an important one, for the restorations of both Hittorff and Semper were unlimited in their application of colour, and he believed the meeting would concur with them. Following, however, in the steps of M. Raoul Rochette, Dr. Kugler was of opinion that polychromy in ancient art was limited in its application. He, however, quoted with admiration the beautiful illnstrations of Semper. Dr. Kugler's work was epitonised by Mr. Hamilton, in a paper published in the first volume of the 'Transactions of the Institute of British Architects,' which attracted much attention in this country. Another work by 11. Rochette alluded to a publication by the Duke of Serradifalco, containing some remarks upon the subject; and then there came upon the field of this discussion one of the most learned and clearest reasoning minds which could be brought to bear on such a subject, in the persou of the late M. Letronne.
The Institute of British Architects had appointed a committee to examine the traces of colour on the Elgin marbles, and the results of their researches, and the accompanying analyses of Mr. Faraday, were not only impurtant in themselves, but agreed with those arising from similar inveatigations subsequently undertaken by scientific men at Athens. Other works on this interesting subject had been published, but, without dwelling upon them, Mr. Donaldson proceeded to develope the views of M. Hittorff, premising that a professional architect and practical artist, auch as that gentleman, must necessarily possese qualifications for the investigution of such a subject superior to those of any mere antiquary or critic, however
learned. In proof of the taste and skill of M. Hittorff, and his peculiar talent for the pursuit of this subject, Mr. Donaldson referred to the buildings erected by him in Paris, including the Cirque Olympique, various cafés and restaurants in the Champs Elysees, and the Basilica of St. Vincent de Paul, all of which displayed not only great originality of deaign and constructive skill, but a remarkable degree of taste and brilliancy of decoration, combined with the peculiarly admirable management of a profusion of colouring.*

Proceeding to notice M. Hittorff's work, Mr. Donaldson explained that the first part of it took a general view of polychromy, considered historically; and the second part discussed it practically. It appeared that M. Hittorff had especially directed his attention to the remains of the small tetrastyle temple of Empedocles at Selinus, in Sicily, which edifice he had restored, with polychromatic decorations throughout, his illuytrations of that building being exhibited and referred to by Mr. Donaldson. The plan of this temple showed a portico of four columns in front, and behind them the walls of the pronaos and cella, measuring only 20 feet by 16 feet. It appeared, from the porous nature of the stone, that it required to be covered with stucco; and M. Hittorff, from his examinution of the fragments, came to the conclusion that the whole building so stuccoed was elaborately covered with painting. The floor or pavement of the cella and pronaos was represented in the drawing as executed in mosaic work. There was, however, no such mosaic work found; but, on the contrary, there were traces of a floor of plaster. M. Hittorff found, by researches in other temples, an instance of a floor of painted stucco; and such floors were also found at Pompeii, Rome, and Olympia. The author accordingly restored the pavement of the T'emple at Selinus in painted stucco, adopting forma and patterns similar to those of ancient mossic floors. M. Hittorf, in conjunction with M. Zanthe, his fellow traveller, found some fragments of a fluted shaft on the site of the temple, with portions of a Doric entablature and an Ionic capital, and formed their restoration of the building by a combination of these discoveries. This combination of the parts of t wo orders was not uncommon in Sicily, Magna Grecia, and the East. At Agrigentum the tomb of Theron had a Doric entablature, while the capital of the columns was Ionic. In the remains at Pæstum, in the tomb of Ahsolom, near Jerusalem, and in the remarkable buildings at Petraa, similar instances were to be found; while the arch at Aosta, near Turin, presented even a Corinthian capital supporting a Doric entablature. Some of these examples were of later epochs; but there was more than one such example furnished by the truly classic period of ancient art. M. Hittorff also adverted in his work to many examples of the same practice, as being represented on the vases of the ancients. It was also shown on some frescoes at Pompeii. M. Raoul Rochette, ignorant of this admixture of two orders, objected on that ground to M. Hittorff's restoration; but it wes evident, from the instances referred to, that the ancients did not confine themselves to the strict rules and limits of art, but allowed themselves, on the contrary, considerable license. Mr. Donaldson here referred to a restoration of the temple in question made by himself, from M. Hittorff's descriptions, \&c., before he had seen the drawings of that gentleman; and although there were some discrepancies in respect to the colours in the two restorations, a strong geueral resemblance was, on the whole, observable. Mr. Donaldson then pointed out in detail (referring to the engravings) the application of colour to the various parts of the temple.

The torus of the base was ornamented in conformity with an authority found at Pumpeii. The shafts of the columns had a general tone of yellow, which M. Hittorff conceived to have been the prevailing colour of the building, relieved by picking out several parts in different colours. The capital was modestly picked out, and the order generally, as restored by M. Hittorf, whs less bold and positive in colour than in that restored by Mr. Doualdson. Reference was here made to the drawing of an Ionic capital, restored in colours, the original of which had been brought from Athens by Mr. Inwood. Even if it had been necessary to employ a Doric capital, that might have been coloured in the manner shown in the drawings, in which Mr. Semper decorated the abacus of the capital of the Doric column

[^0]of the Parthenon, as well as the echinus, the latter with egg-and-tongue ornaments. Mr. Donaldson, without any conference with him, had applied the same mode of decoration, for it was not to be supposed that so important a member as the echinus, in the façade of the Parthenon, would he left plain between the fluted columns helow and the rich frieze above. M. Semper stopped at the echinus, but Mr. Donaldson was inclined to think that some small ornament was also introduced upon the hypotrachelium, to give greater height and importance to the capital. In the Roman Doric, and in some examples of the Doric in Asia Minor of a late period, there was actually a sculptured ornament in the necking of the Doric capital; Mr. Donaldson thought, theretore, there was, very possibly, some ornamentation on this member of the order. What, indeed, was its use? In some instances, its lower boundary was formed by a mere line-in the Theseum not one-eighth of an inch deep-and therefore it was highly probable that, as a division between the capital and the shaft, it had some decoration to give it emphasis and expression.

In noticing the decoration of the entablature, Mr. Donaldson adverted to the statement of Vitruvius, that the ends of the beams (represented by the triglyphs) were painted with a blue max. At Pompeii instances were found where the triglyphs were blue, and the metopes of a lighter colour; and there was an indication of blue paint on the triglyphs of an Etruscan tomb, engraved in M. Semper's work. In reference to the tympanum, Mr. Donaldson expressed a general opinion that sculpture was freely and even lavishly employed by the Greeks as a necessary adjunct to their temples, to impress upon the mind of the beholder the purpose and object of the building. The fronts of the Parthenon strikingly exemplified this view, and it was ably enforced in Mr. Peurose's work. Although there was not a frapment of sculpture left in the tympana of the Theseum, Mr. Penrose had discovered the holes by which the figures had been attached to the building. In restoring the tympanum of the pediment of the Sicilian temple, M. Hittorff, finding no traces of sculpture, had adopted a foliated ornament, based upon fragments of terracotta found in the same island. The metopes were also ornamented with a fuliated pattern, on similar anthority. It was well-known that the friezes of temples were richly decorated, often with figures and representations of processions; and although the frieze of the Erectheum, at present, was of a plain, dark-coloured marble, it was originally ornamented with figures in white marble. In the Theseum only a few of the metopes on the return were sculptured; and by some it had been supposed that the reat were painted. M. Von Klenze, in exmmining the fragments of the Propylma, found that нome of the blocks, which he supposed to belong to the metopes, were sunk to receive sculpture; whilst others had a perfectly plain face, and were incapable of receiving any, and he therefore thought they were intended to he decorated by painting: Mr. Donaldson, however, did not think there was sufficient authority for that opinion, because it would be an arrangement not only inconsistent in itself, but difficult to carry out satisfactorily, as it would involve the necessity of placing a triglyph, instead of a metope, in the centre, under the pediment on either front. With reference to the background of the tympanum, M. Hittorf had coloured it red in his restoration. Undoubtedly that surface generally bore colour of considerable depth, in order to throw out the sculpture, because the figures themselves, and the draperies, were painted, and consequently rendered a coloured ground necessary. Some fragments of the Parthenon had been thought to show traces of a red ground, and that colour had been adopted by M. Semper in his restoration of the Parthenon. The more general opinion, however, and that adopted by Mr. Owen Junes was, that the ground of the tympanum had been blue. Mr. Donaldson next referred to a running ornament introduced by M. Hittorff on the architrave. The application of colour, by M. Hittorff, to the mouldings of the pediment, was sanctioned by the authority of M. Semper, Mr. Owen Jones, and Dr. Kugler, though each of those gentlemen applied different colours. Mr. Pearose bad found traces of the design of an ornament on the crowning ovolo of the Parthenon.
It was to be observed that the forms of decorative art were to be traced by progressive steps: what was at first a mere superficial delineation of ornament, afterwards became a substantial embodiment in sculpture. A question had been raised whether these ornaments were not the production of a later periud, and of a less refined and more voluptuous taste; but, in
fact, the deaign of the ornaments was of the same style, in purity of conception, as the monument itself. The fragments in the British Museum had the outlines of the ornaments deeply engraved upon the face of the mouldings, which it was not likely would have been so treated if the ornaments painted on them were a subsequent addition. The system, moreover, was not one of mere occasional introduction, but was generally adopted. The acroteria and antefixe were introduced in M. Hittorff's restoration; and their importance in adding to the effect of the elevation must be admitted. There was ample authority for them, for they were actually discovered among the remains of the Temple at Egina, and the blocks for their reception still remain on the Parthenon. The question of the mode of covering the temple had been carefully studied by M. Hittorff. Byzas of Naxos was the first to introduce tiles of marhle, common tiles having previously been employed. The refined taste of the Greeks led them to apply ornament to their roof-tiles. By putting together the fragments found in other places, M. Hitturff had restured the roof of the Sicilian temple at Selinus. The tiles were often painted on the inside as well as outside, because they sometimes formed the whole covering of the temple, and were visihle from the interior. In other cases, as in the Parthenon, horizontal beams were used, dividing the roof into caissons.

Before proceeding to the interior of the building, the wall of the pronaos was described: the whole of this was coloured. First, there was a dado of dark colour, and of considerable height: this dado was a remarkable and effective feature in the Greek temples,-sometimes it projected slightly; above that were panels of a lighter colour. All these decorations were authorised by paintings discovered at Pompeii, drawings of which were referred to. The door-cases of the temples were of stone, marble, or bronze. From his own examination of the Parthenon and the Propylma, Mr. Donaldson was of opinion that bronze had been so employed in both those edifices; they were probably gilt, and embellished with a great variety of beautiful colours. The doors themselves were formed either of marble, wood, hronze, or mixed materials. Cicero, in his oration sgainst Verres for mal-administration in Sicily, referred to the beautiful doors of the temple of Minerva, which were enriched with panels of ivory. The bronze doors of the Parthenon were illustrated in the work of Messrs. Taylor and Cresy. In M. Hittorff's restoration, the doors were supposed to be of bronze of various tones or tints. Of course the colours of the Florentine, the Venetian, and other bronzes might be introduced, to relieve and add to the effect. The upper panel was open to admit air and light, which was more necessary, for these temples were very dark, and chiefly lighted by lamps perpetually burning, as was still the case in the modern Greek church. Within the cella, at the further end, the restoration showed a statue of Empedocles, to whom the temple was dedicated, and who had been a great benefactor to the people of Selinus. Thers was an altar in front of the statue. The principal feature of the side wall was a large mural picture. Mr. Owen Jones introduced similar paintings on the outer wall of the Parthenon; and the like decuration was found at Pompeii, Delphi, \&c. Above this painting was a frieze, or band, on which were fixed votive offerings of various kinds. It was well-known that competitors in the different games often made a vow to hang up the crown of victory in the temple, if they succeeded in'gaining it. Besides these crowns, trophies, helmets, shields, cuirasses, swords, vases, musical instruments, beds, chairs, and numerous other offerings occupied this position: some of them were of gold, silver, snd other metals. There were also statues of animals, as well as of men, busts, pictures, \&c.; and these were placed in the temple, under the protection of the divinity, or as deposits in a sacred treasury, safe from the rude hands of the spoiler. Of course, the effect of these offerings and decorations would be increased by a background of colour. It was evident, upon the whole, that the Greeks considered they could not beutow too much decoration and splendour upon their temples, thereby marking at once their taste and their deep religious feeling. Having again referred to the drawings exhibited, as calling for a more ninute examination on the part of his auditors, Mr. Donaldson expressed the hope that they would agree with M. Hittorff, that the temples of Greece and Rome were not merely occasionally or partially painted, but that the whole surface, both interior and exterior, displayed the full development of which that principle of design and embellishment was capable.

RAILWAY JOINT CHAIR.

Elevation of Ball.-Seale, 1 fnch to 2 feet.
Str-Inclosed is a sketch of a railway joint chair, which has been in use for some time on the Leopolda Railway; and as I am not aware that anything of the kind has yet been adopted in England, I have taken the liberty of begring you will not deem it unworthy of a place in your valuable Journal. The chair is 15 inches in length, and weighs about 40 lb ., or twice that of the common chair. It is supported by two cross sleepers, from 6 to 7 inches broad. The intermediate sleepers are about 1 foot by 6 inches. The rail is the common T form, with a wooden key. The advantage of this chair is, that a better and safer line can be maintained at a much less expense; the keys are less apt to shake out; and the rail is effectually prevented working out of the chair by the circular projection cast on to the bottom, and against which the corner of the rail is made to butt.

More than ten years ago, 1 pointed out the advantages of a chair on this principle on one of the most frequented lines in England; but though in possession of your Journal for the last seven years, 1 cannot find any remarks to lead me to suppose that my suggestion was ever acted upon.
$1 \mathrm{am}, \& \mathrm{c}$.
G. Rugbardson, C.E.

Della Strada Ferrata I.eopolda.
Florence, December 26th, 1851.

ON TUBULAR GIRDER BRIDGES.

By Willum Fairbairn, M. Inst. C.E.
[Paper read at the Institution of Cicil Engineere.]
(With an Engraving, Plate 1II.)
Doubts having heen entertained as to the ultimate security of the Torksey Bridge, over the river Trent, the author has investigated the subject with the utmost care and attention. A difference of opinion appears to exist,-1st, as to the application of a given formula for computing the strength of wrought-iron tubular girders; 2ndly, as to the excess of atrength that should be given to a tubular-girder bridge, over the greatest load that can be brought upon it; and, 3rdly, as to the effects of impact, and the best mode of testing the strength, and proving the security, of the bridge. These appear to be the chief points at issue: and, as a reply to both parties by whom he has been consulted, the author has endeavoured to enunciate such views as will, he trusts, settle the question, and prove satisfactory as to the strength and other properties of these important structures. Previous to entering upon the investigation, it may, however, he requisite to offer a few remarks relative to the construction, and other matters connected with the permanency and security of this description of bridge.

Every structure having for its object public convenience and the support of a public thoroughfare, should possess within itself the elements of undeniable security. Bridges and viaducts should especially contain those elements, as they are peculiarly liable to accident; and from whatever cause such accident may arise, the community must be equally interested in the strength and durability of the structure. In the introduction of a new system of construction, comprising the use of a new and comparatively untried material, it behoves the projector, on public grounds, to be careful and attentive to the most ininute circumstance, directly or indirectly affecting the security of the bridge. In those of the tubular construction, considerations of this kind are of primary importance, as much depends not only upon the principle of construction, but upon the quality of the material employed and of the workmanship

Secuun at A B.-Scale, One Finh.

introduced, which in every case should be of the very best description.
In the construction of tubular-girder bridges, the author has endeavoured to apply these principles; and having a strong conviction of their great superiority in strength, durability, and cheapness, for traversing large spans, he has not hesitated to advocate their introduction. It, however, becomes necessary, from time to time, to submit them to a rigid examination, and before opening such hridges as public thoroughfares, it is essential to subject them to severe and satisfactory tests. These tests and examinations have been various and frequent, and it may asfely be affirmed, that in no case, where tubular-girder bridges have been duly proportioned and well executed, has there been the least reason to doubt their security.

The first idea of a tubular-girder bridge originated in a long series of experimental researches, and during their first application to railway constructions the utmost precaution was observed in the due and perfect proportion of the several parts. These proportions were deduced from the experiments made at Millwall, upon the model of the Britannia Tuhular Bridge; and, after repeated tests upon a large scale (full size), the resisting powers and other properties of this kind of bridge were fully established. From these experiments a formula was deduced, for calculating the ultimate strength of every description of bridge, from 30 feet up to 300 feet, or even to 1000 feet span; and as that formula is now before the public, it is believed that it may be relied upon as perfectly accurate. To relieve it, however, from anything like ambiguity, it will be well to state, briefly, certain points which should be taken into consideration in its application.

It has already been determined by experiment, that in order to balance the two resisting forces of tension and compression in a wrought-iron tubular girder, having a cellular top, that the sectional area of the bottom should be the sectional area of the top, as 11 to 12; which being the correct relative proportion of those parta, it then follows, that by any increase to the one, without a proportionate addition to the other, the bridge will be rendered weaker; inasmuch, as increased weight is given to the girder by the introduction of a useless quantity of material, which, in this instance, is totally unproductive. This being the case, it is of importance to preserve, as nearly as possible, the

correct relative proportion of the parts，in order to insure the maximum of strength in the two resisting forces of tension and compression－an arrangement essentially important in these structures，and also in the application of the formula to deter－ mine the ultimate strength of the girder．If，for example，an excess of material was given to the buttom of a girder，the formula，$W=\frac{a d c}{d}$ ，would not apply，as the top and bottom areas would be disproportionate to each other，and that in excess would have to be reduced to the due proportion of 11 to 12；or，in other words，the additional strength must be omitted from the calculation，in computing the strength of the bridge． The same reasoning will apply，where the excess of area happens to be in the cellular top，although in this case the formula，$W=\frac{a d c}{d}$ ，still applies，as the excess cannot be con－ sidered in the calculation of the strength of the girder．As－ snming，however，that these proportions are maintained，the above formula furnishes a correct principle，on which to estimate the strength of wrought－iron tubes of this description，what－ ever may be their depths，or their relative dimensions．＊＊
In the case of the Torksey Tubular Bridge，of 130 feet clear span，the following are the dimensious of the girders in the middle，as given by Mr．Fowler：－

Sectional Area of the Top．

Here there is an evident want of proportion，the bottom being greatly in excess of the top，which renders a reduction of the area of the bottom of the girder from 54.93 to $\mathbf{4 6} .76$ abso－ lutely necessary．Hence，by the formula，$W=\frac{a d c}{b}$ ，or， $\frac{46.76 \times 120 \times 80}{1560}=887.7$ tons，or 288 tons the breaking weight in the middle．From this is given $288 \times 4=1152$ tons， as the breaking weight，equally distributed over one of the spans of the Torksey bridge，neglecting the weight of girders， ballast，rails，chairs，\＆c．，which are differently estimated，but must be deducted from the breaking weight of the bridge．

Mr．Fowler estimates an equal distribution of the load on the Torksey bridge，of a span of 130 feet，as follows：－

－Mr．Tate，an eminent mathematician，remarka upon the formula－
lat．With respect to $W=\frac{a d c}{l}$ ，
and $c=80$ ．the constant dediced on this supposition，will spply to all depthe of the tabe，Within short limiss of error，where nuch deptht，or a，are large in proportion to
the depth of the cells，and the thicinness of the plates．
ind．With respect to the formula $W=\frac{a d o}{d}$ ，when a is the area of the whale sec．
tion，and $c=28 \cdot 7$ ，then the tabes shall be similar In all reapects，bat a sight raita－ don in depih，from that of almar form，will not produce much error，espectally －hare the depth is considerable．At the tame time it tnust be observed，thet both tormole apply with great exactneat，where the tubes are aimiliar．

Now，as the ultimate strength of the bridge is 1158 tons，it follows，that 177 being a constant will reduce its bearing powers to $1159-177=975$ tons，as a resisting force to the heaviest rolling load that can be brought upon the bridge，being in the ratio of 975 to 195 ，or 5 to 1 ．＊These appear to be the facts of the case；and although the principal girders do not attain the standard of strength which the author has ventured to recommend as the limit of force，they are nevertheless suffi－ ciently strong to render the bridge perfectly secure．In the calculations for estimating the strength of bridges of this description，it is always assumed that the proportions of the top and bottom of the girder are not only correct，but that the sides are sufficiently rigid to retain the girder in shape．It is further assumed，that the whole of the plates are in the line of the forces，and that the workmanship and rivetting are good．

On the excess of strength that should be given to girder bridges there is a difference of opinion．The author，however， entertains a conviction that no girder bridge should be con－ sidered safe，unless it be tried under four times the greatest load that can be brought upon it；and in wrought－iron tubular－ girder bridges，the breaking weight is computed at 12 tons to the lineal foot，inclusive of the weight of the bridge，or about six times the maximum load．

On this calculation，the Torksey bridge should have been constructed according to the annexed tables，which exhibit the strengths，proportions，and other properties of the girders， which are recommended in structures of this kind，and for spans from 30 feet up to 300 feet．
The second column gives the length of clear span from pier to pier；the third，the breaking weight of the bridge in the middle；the fourt，the area of the plates and angle－iron of the bottom of the girder；the fifth，the area of the cellular top；and the last column，the depth of the girder in the middle． Table showing the Proportions of Tubular Girder Bridges．

	Span．	Centre break ing melght of Brdge	Sectional Area of bottum of one Girder．	Sectional Area of top of one Girder．	Depit at the
$\stackrel{\square}{6}$	Fett．	Tonn．	Inches．	Inches．	Fr．In．
－	30	180	14.63	17.06	24
$\stackrel{\square}{4}$	35	210	17.06	1991	28
0	40	210	19．50	22．75	31
$\stackrel{+}{+}$	45	270	21.94	$2 \cdot 59$	36
－	50	300	$2+38$	28.44	310
\bigcirc	55	330	26.81	31.28	43
号	60	300	2925	$34 \cdot 13$	47
	65	390	$31 \cdot 69$	$36 \cdot 97$	50
－${ }^{\circ}$	70	420	$34 \cdot 13$	39.81	55
感	75	450	36.56	42.67	59
－	80	480	39.00	45.50	62
芯．	85	510	41.44	$48 \cdot 34$	67
	90	540	43.88	51.19	611
9	95	570	$46 \cdot 31$	54.03	7
0	100	600	4875	56.88	78
	110	660	53.63	$62 \cdot 56$	86
m^{-1}	120	220	$58 \cdot 50$	68.25	93
	130	780	6338	73.94	100
\％	140	840	68.25	79.63	109
号	150	900	73.13	$85 \cdot 31$	11
¢冖	160	960	90.00	10500	10
告告	170	1020	95.63	111.56	11
Fion	180	1080	101.25	118.13	120
E．．．	190	1140	106.88	124.69	128
	200	1200	112.50	131.25	13
	210	1260	118.13	$137 \cdot 81$	14
¢	220	1320	123.75	144.38	14
	230	1380	129．38	150.94	15
\％	240	1440	135.00	157.50	16
${ }^{\circ}$	250	1500	140.63	164.06	16
	260	1560	$146 \cdot 25$	170.63	17
	270	1620	151.88	$177 \cdot 19$	18
E告㗊	280	1680	157.50	183.75	18
\％	300	1800	＇168．75	196．88	200

－It is cunsidered by sone engiurers，as very laportaut to the strenytt of thebe bridges，that the girdera ahould be contronous，or exteudiog over two or mure spalio． This is no donbi correct to a certain extent，and although the fact is admitted，set this coasideration is nerertheleae purpowely neglected in these calculations；Eny auxilimery support of that kind meting merely as connterpofere．It is considered safer to treat the subject on the privelple of compassing euch of the spans with struple and perfectly independent girders．
t The author has gezerally taken the depth of the girdert at l．15th of the apan；

In these tables, the breaking weights of all the girders are calculated from the formula $W=\frac{a d c}{l}$; as for example:Taking from the table a bridge similar to that at Torksey, 130 feet span; $W=$ the breaking weight; $a=$ area of the bottom, $63 \cdot 38$ incbes; $d=120$ inches, the depth of the girder; $c=80$, the constant deduced from experiments; and $l=$ the length, 1560 inches, between the supports.

Hence $W=\frac{63.38 \times 190 \times 80}{1560}=380 \times 2=780$ tons, the
breaking weigbt of the bridge in the middle, or 1560 tons equally distributed over the surface of the platform of the bridge.
From this it will be observed, that after deducting the permanent load of the Torksey bridge (177 tons), there remain 1383 tons as resisting force to the travelling load of 195 tons, whicb, according to calculation, is rather more than seven times the greatest weight that can be passed over the bridge;* 18 tons per lineal foot being assumed as the measure of the strength of a tubular-girder bridge, for a double line of rails, and which will cover all contingencies, either as regards the weight of the bridge, the permanent load, or the forces by which it may be assailed.
Another subject of importance is the force of impact and the effects of vibration, on bridges of this description; and although it is only recently that the author has the advantage of reference to the highly valuable Report of the Commissioners appointed to Inquire into the application of Iron to Railway Structures, he is nevertheless of opinion, that the principles upon which he has endeavoured to establish the construction of these particular bridges, ever since their first introduction, is perfectly secure, and may be relied upon as being calculated to meet all the requirements and the conditions of railway traffic.
He cannot agree with the Commissioners in some parts of that Report, as several of the experiments therein referred to do not appear to bear out the fact of increased deflection at high velocities. In several carefully conducted experiments on tubulargirder bridges, of spans varying from 60 feet to 100 feet, the deflection was found to he, as nearly as possible, the same at all velocities; and although the experiments at Portsmouth (at some of which the author was present) are highly valuable, and exceedingly interesting, he is nevertheless of opinion, that there must be a considerable difference in the effects of a weigbt, rolling over a cast-iron bar 9 feet long, and that over a bridge 60 feet long. It is true the Commissioners in their Report, have qualified the results obtained from these experiments, by others made upon existing cast-iron railway girder-bridges, where the deflection was reduced from an increase of the statical deflection, amounting to $\frac{10}{\text { in inch, as produced upon the }}$ 9 -feet bars, at the velocity of 30 miles an hour, to + -inch upon a bridge of 48 -feet span, at a velocity of 60 miles an hour; thus clearly showing, that the larger the bridge, and the greater the rigidity and inertia of the girders, the greater will be the reduction of deflection to the passing load. In the tubular-girder bridges, composed of riveted plates, it must be observed, that the Commissioners had no experience, nor were they acquainted with the strength, rigidity, and other properties of girders, composed of wrought-iron riveted plates. The deflection due to the passing load appears to be the same at all velocities, and unless there exist irregularities and inequalities on the rails, tending to cause a series of impacts, it may reasonably be concluded, that the deflections are not seriously, if at all, increased at high velocities.

On the effects of impact, the author perfectly concurs in opinion with the Commissioners, that the defections produced by
but tn canee where the apan does not exceed 150 feet, it has been found more reonomical on adopt l-1sth of the apan. For apang above 150 fees it is, however, more conventent, on account of the grewt weight of the girder, to adbere to the orginal

 the sectional aress of the botem and of the cellalar top, in the ratio of the depthe.

* Since the table referred to above was completed, and which has been cloeely adbered to to the calculations of the atreagtha and proportions of wrought iron tubular girders during the lant eighteen monthe, iton prop lineal foot has been takea as the permanent weighs of bridges, from 40 reet up to 100 feet apan, and the rolling load as 2 tone per lineal foot; and in apana verying from 100 up 20300 fret, the permanent weight of the bridge is enumated at hd ton per Uneal foot, and the rolligag load ulso at it ton per ingesl foot. For practical purposes thene propartions are weight of the structure becomes a large proportionml of she lond, it becomes neces. weight of the atructure becomes a harge proportionat of the lond, it becomes necet. meen in thoee for the Brimanis and Conwer Tubuiar Bridget.
the striking body on wrought-iron, is nearly as the velocity of impact, and those on cast-iron greater in proportion to the velocity.*' These experiments and investigations are extremely valuable.
The mode of testing bridges is a part of the inquiry which requires consideration, and in order to maintain unimpaired the elastic powers of the structures, the tests should not exceed the greatest load the bridge is intended to bear at high velocities; in fact, the Commissioners are correct in assuming that the flexure of the girders should never exceed one-third of their ultimate deflection. In wrought-iron girders, the effects of reiterated flexure are considerably less in a well-constructed bridge, of similar proportions to those given in the table, than those of cast-iron. The deflection produced in these constructions, by the greatest load, will not be more than one-sixth of the ultimate flexure of the girder. On this subject, the effects of impact and resistance of tubular girders to a rolling load, were strikingly exbibited in the experimental tests made on the first construction of this kind, erected for carrying the Blackburn and Bolton Railway across the Liverpool and Leeds Canal at Blackburn.

That bridge is $\mathbf{6 0}$ feet clear span, and three locomotives, each weighing 20 tons, coupled together, so as to occupy the entire span, were made to pass over, at velocities varying from 5 miles to 90 miles an hour, producing a deflection, in the centre of the bridge, of ouly T_{T}-inch. Two long wedges, 1 inch in thickness, were then placed upon the rails in the centre of the span, and the fall of the engines from this, when at the speed of 8 miles to 10 miles an hour, caused a deflection of only $\mathbf{4 2 0}$ inch, which was increased to -54 , or about $\frac{1}{2}$-inch, when wedges $1 \frac{1}{\frac{1}{2}}$ inch in thickness were substituted. These were severe tests, and such as would not be generally recommended, as the enormous strength of these girders is now well understood, and they may safely be considered fit for service, after being subjected to the heaviest rolling load, or one sixth of the breaking weight, taken at high velocities.
Discussion.-Mr. Fowler said he was much indebted to Mr. Fairbairn for pronouncing the bridge to be of sufficient strength; but the investigation would have been more satisfactory if the structure had been viewed as composed of continuous girders, each stretching the full length of the platform, and resting upon the three points; this would be found to add onefourth to the absolute strength of the part of the girder spanning each opening. The diagram (fig. 3,) had been prepared for the purpoee of showing the effect of the continuity of the girder, the dotted line showing the curve of deflection, due to weighting the two openings equally with the weight of the structure itself alone; the full line showing the deflection due to an additional load of two trains of locomotives upon one span. The latter experiment proved that the distance from the point of contrary flexure to the centre pier was less than 25 feet, causing a practical reduction of the span from 130 feet to about 105 feet, and adding at least one-fourth to the strength of the bridge. Now any principle that added one-fourth to the strength of the bridge was, he considered, too important to be so lightly passed over; added to which, he thought the saving of cost in the construction of the work was an important additional consideration. He thought there was an error in the computation of the proportion between the bottom and the top of the girder, as it would appear that the area of the rivetholes had not been deducted from the former, which should evidently have been done. Now the gross sectional area of the bottom being $54 \cdot 93$, and the rivet-holes diminishing the area full $\dot{j} \cdot 25$, an area of $49 \cdot 68$ would be left, making the proportion of 51 to $49 \cdot 68$, which corresponded very nearly with the proportion of 12 to 11 given in the paper. In building the first of these girder bridges (the subject being new to him), Mr. Fowler had been guided by Mr. Fairbairn's proportions, as he was the constructor of the girders; and it did appear extraordinary, that the dimensions of a bridge of 95 feet span, which had now been open for traffic for full two years, differed materially from the dimensions given in the paper. Now as that bridge had performed its duty efficiently for two years, it would be interesting to learn why Mr. Fairbairn had changed his views as to the requisite dimensions, and wby that proportion of the depth to the span, which at so recent a period had been considered sufficient, should now be deemed insufficient. The drawing represented the strength of one girder calculated according to

[^1]Mr. Fairbairn's proportion and formula; therefore the total strength of the two would be equal to 1560 tons. The bridge had been tested by placing six locomotive engines, weighing together 822 tons, on one opening, occupying the whole extent of it, which, of course, was a greater test than if a similar weight had been placed at the same time on the other opening, as, in the latter case, one load would have balanced the other. The effect of placing six heavy engines in that situation was to cause a deflection of $1 \frac{1}{4} \mathrm{inch}$, and on the removal of the load, the platform of the hridge immediately returned to its original level. Great care was taken to ascertain if the main beams had any tendency to approach each other with that weight reating on them, but there was no indication of such a change of form.
Mr. Biddes said, the Torksey bridge had excited the attention of the profession, from the fact of the Commissioners of Railways having objected to the opening of the bridge for traffic, on the plea of care for the asfety of the public. Mr. Fowler had requested him, with other engineers, to examine the structure, in order to give an opinion as to whether the strength of the bridge was sufficient, and if not, to point out where it required strengthening. After careful inspection and consideration, the general opinion arrived at was, that the bridge was sufficiently strong for all practical purposes of public safety. So far as he could gather from the paper, that also appeared to he Mr. Fairbairn's opinion, although he had detracted from the value and weight of that opinion, by assigning other proportions to a bridge of those dimensions. As, however, the principles which had guided Mr. Fairbairn in his calculations were su entirely different from those Mr. Bidder had adopted for ascertaining the strength of girder bridges, he thought it was only right to state what he believed to be the correct principle. If right, he should have done some service in laying his views before the Institution; and, if wrong, he should have the advantage of being corrected. The first point to which Mr. Fairbairn had directed attention was the relative areas of the top and bottom of the girders: and he had stated, that the proportions between them should be in the ratio of 11 to 12, and that any exeess of those proportions was so much dead weight uselessly employed; that is to say, if the 12 was increased to 13, it was so much weight added, without imparting any corresponding strength. Mr. Bidder thought that must be erroneous, because, in the thbular statement, instend of those propurtions of 11 to 18 being rigidly adhered to, the ratio of 12 to 14 was occasionally adopted. He also believed Mr. Fairbairn was in error, in saying that the increase in dimensions over any assumed ratio was an addition to the weight of the bridge, without being any addition to its atrength. The top of the bridge was exposed to compression, and the bottom to tension: between those two there existed the neutral axis; therefore, the compressing force on the one, and the tensile strength on the other, must be equal; the result must then be, that any addition to the bottom only removed the neutral axis so much further from the top, bringing it so much nearer to the bottom: it was true, that it might not gain all the advantage of that addition of metal to the bottom; but it was certain that some additional strength was obtained. Supposing the top and bottom to be in proportion of 11 to 12 , the paper implied, that if 11 was added to the bottom, making it 28 , no strength would be added to the bridge, but that it would be encumbered by an extra weight of metal. Mr. Bidder denied that position, and thought that the neutral axis being removed from the top, by any addition of metal to the bottom, even if that addition amounted to 34 , the strength of the bridge would be increased by one-third; adding 50 per cent. in weight, and gaining 30 per cent. in strength. He did not mean to say that would be a judicious distribution of the metal, but he thought it wrong to suppose it nould perform no duty, and much less, that it would be injurious. He thought it incorrect to fix any arbitrary limits to two quantities increasing in different ratios, and in that respect he was decidedly at issue with the deductions of the paper. He also dissented from the notion, that the depth of a girder should be restricted within any given limits; in practice, engineers were scarcely ever able to fix such limits, being generally guided by local considerations. The question of the proper depth of a girder was at present entirely unascertained; and it was clear the author of the paper could not have arrived at any precise notion on the subject, because the original table sent with the paper assigned the proportion of int of the span for the depth of a girder of any apan; but in the amended table, sub-
sequently transmitted, that proportion was only retained up to spans of 150 feet, and the proportion of $\frac{1}{18}$ th was adopted for all greater spans. Theoretically, the top and bottom could not be placed too far apart; in practice, the consideration was, the least amount of metal that would enable the top and bottom to be placed at a proper distance to prevent the aides from buckling. That was a question which could not be decided mathematically, but must be determined entirely by experiment. He was not aware what reasons had induced this alteration of the table within the last fortnight; but he thought it would not be wise to adopt blindly any empirical limit. He thought it a mistake to endeavour to ascertain the strength of a girder by finding the greatest weight it would austain, and he was not aware of any received coefficient so large as 20 tons to the square inch; the largest he knew of was 16 tons. He agreed in the observations on the emall effect of vibration, by railway trains passing over bridges; he believed it to be a mere ghost, raised by mathematicians to frighten engineers as to the strength of their structures; and he thought the engineers were bound, as standing between the mathematicians and the public, to apply to their deductions the principles of common sense. When once a certain length of girder was exceeded, the effect of concussion ought to be left entirely out of consideration. Mr. Fowler had placed on his bridge an extraordinary weight of 222 tons on one opening; and it was asked, what would be the effect of that weight in motion, treating it as 282 tons on one pair of wbeels, propelled in a given direction; it must be remembered, that weight would be distributed over 72 wheels, each baving a spring, and as that weight could only operate on a girder through the instrumentality of the rails, which were nearly 6 inches in depth by 1 inch in thickness, it would be seen that the effect, whether vertically or laterally, would be absolutely nothing on a structure of that weight and rigidity. The fracture of a rail, or a chair, laterally, by the action of a train, was a thing of rare occurrence, except when the carriages got off the line; as an engineer, he considered, practically, that might be omitted from consideration. It must then be supposed, that the strain would act verticully and snap the girder; but there was not a rail which was not subjected, by every train passing over it, to a much grenter strain than any on the bridge in question. In his opinion, the effect of concussion on any bridge of such a span, with girders of such dimensionk, was a matter unworthy of notice. In making a few observations, for the purpose of showing that the bridge, as constructed by Mr. Fowler, and so retained, in opposition to the report of the Inspecting Officer, was abundantly strong, he desired it might not be supposed that he wished to reflect on that gentleman, who had never shown the slightest desire to throw impediments in the way of any engineer, or that he should be supposed to wish to do more than to have the question fairly and honestly discussed before the Institution. Captain Simmons had stated in his report, that he should be satiafied if one opening of the bridge would sustain a load of 400 tons, with a strain of 5 tons to the inch, the dead weight of the bridge being 175 tons, leaving 825 tons for the rolling load. In order to submit it to a severe test, Mr. Fowler had placed 282 tons on one opening; but he would ask, under what circumstances of ordinary traffic was the bridge liable to be exposed to that test? It cuuld only be on the supposition of three coupled engines travelling on each line, without any carriage being attached to them, and meeting on one particular opening. In practice, three coupled engines were not often attached to a heavy goods train, and it wan not probable that three engines would often go out alone. The supposed test, however, required the same weight on both lines; it might he fairly presumed, that one of the sets of engines would have a train attached to it, and resting on the other opening; so that the effect would be diminished on the portion on which the engines rested. After subjecting the bridge to that weight of 282 tons, the deflection was ascertained to be $1 \frac{1}{4}$-inch. Captain Simmons said, if it would bear that weight, and not have more strain than 5 tons on the inch, he would be satisfied; whatever extent of weight that was derived from, the effect on the tension of the iron would be the same, and taking the strain on the bottom to be 5 tons to the inch, the deflection ought to be 2 inches; it was actually only $1 \frac{1}{4}$ inch, therefore the experiment proved the strain was not 5 tons to the inch. Mr. Bidder had not been quite satisfied on that point until Mr. Wild's experiments, on a similarly proportioned beam, shuwed the point of bearing was practically reduced from 130 feet to 105 feet, by the continuity of the tubes over the centre pier, by which
the length of the girder exposed to strain, was not only reduced, but the weight being equally diffused, was also diminished, and therefore the deflection would be reduced as the square; this induced the conclusion in his mind, that the Torksey bridge was abundantly strong for all purposes of public safety.

Mr. Eaton Hodokinson said, it was with great reluctance that he made any observation in the absence of Mr. Fairbairn, differing as he did from him in many of his conclusions. Mr. Fairbairn had in his paper adduced a formula, with a coefficient attached, for the strength of wrought-iron tubes; but the adequacy of that formula might be questioned; indeed if the tubes were made as proposed in the paper, it was doubtful whether it might not be unsafe and dangerons, to rely upon the formula. When Mr. Hodgkinson made experiments many years ago, to ascertain the strength and best form of cast-iron beams, they may be regarded as almost unknown in our metropolis. So he used the same simple formula, with a coefficient deduced from numerous practical experiments on the fracture of cast-iron beams. This formula depended merely on the tensile strength of the bottom rib, and on the depth and length of the beam. These data he considered sufficient for that material; for in cast-iron beams, of the best form, there would be more than t rice as much metal in the bottom flange as in all the rest of the beam in the middle." This was not the case with the new tubular girders. The defective elasticity of cast-iron rendered it difficult to draw such precise conclusions from it, as from a material of more perfect elastic force, such as wrought-iron. The formula he had found suitable for cast-iron beams would not, he conceived, be applicable to tubes of wrought-iron, where the bottom (whose tensile force was alone included) bore but a small proportion to the whole sectional ares; and the sides of the tubes had as much sectional area in them as all the rest. The side plates themselves, without the angle-irons to atiffen them, might be equal at least in sectional ares to the plates in the top and bottom; and to employ a formula that would reject half the material in the tube, because the estimation of its forces could not be easily arrived at by a simple arithmetical computation only, was not in accordance with the knowledge of the present day. It might however be said, that the formula was applicable to similar tubes of a particular form; but the tubes in Mr. Fairbairn's table were not similar, and its applicability to tubes of the various kinds in the table was doubtful; and especially to tubes of other forms, as that of the Torksey bridge, the strength of which Mr. Fairbairn had computed by it. The complete solution for the strength of tubes in general, was more troublesome than difficult. If, for instance, the top and bottom of the tube differed from each other in sectional area, or in form, it would be necessary, first, to obtain the situation of the neutral line, and this would be in the centre of gravity of the section. Secondly, it would be necessary to find the muments of the forces exerted by each of the plates in the top, bottom, and sides of the tube; or, in other words, the forces of the particles of each, multiplied by their distance from the neutral liue. The sum of these moments must be equated to that from the weight laid on, and the leverage from the length of the tube between the supports. Then, for the strength of the tube of the second form, the formuls

$$
\mathbf{W}=\frac{\boldsymbol{q} f\left(b d^{3}-b^{\prime} d^{\prime 3}\right)}{3 l d}
$$

would apply, where d, d^{\prime}, were the external and internal depths respectively; b, b^{\prime}, the external and internal breadths; b, the distance between the supports; f, the strain per square inch of section sastained at the top and bottom of the tube; and W the weight which, being laid on the middle of the tube, would produce that strain. \dagger If f be taken at 8 tons per square inch, it would be within the elastic force of the material : some tubes of simple plates bad borne as mnch as double that pressure, or more. Mr, Fairbairn asserted that the comparative thickness of the top and the bottom of a tube should be as 12 to 11 , this having been the case in the large tube made in London; but Mr. Hodgkinson contended that there could be no constant proportion between the thickness of the top and the bottom. A tube of one thickness of metal might be well proportioned, but double the thickness would render it very much out of propor-

[^2]tion. The resistance of thin plates to a crashing force applied in the direction of their length, was found to vary nearly as the cube of the thickness. Doubling the thickness of a very thin tube at the top would give six or seven times the resisting power there; whilst doubling it at the bottom only gave twice the strength. This property of compression extended only to plates of tubes not strained to more than about nine tons per square inch: it was not easy to give proper proportions for these kinds of tubes, without further practical information. Mr. Hodgkinson had made many experiments, which were given in the Report of the Commissioners, in order to supply that information; but the inquiry was still in its infancy. Empirical laws might by degrees be laid down; but real elementary calculations should, at present, alone be attempted; and these principles, when in practice the plates were thick enough not to buckle by the compression, had long been understood.*

From experiments on the resisting powers of rectangular cells of wrought-iron, 4 inches, and 8 inches square, and 10 feet long, compressed in the direction of their length, the thickness and crushing weights per square inch were-

These experiments, 80 far as they extended, showed the weakness of cells with thin plates; and rendered it probable, that the thickness of the plates should be in proportion to the lateral dimensions of the cell. The practical use of cells in the top of the tube girders was to prevent the plates from becoming crippled, or wrinkled in that spot; but this would be better done by thick plates than by rectangular cells, which, in Mr. Hodgkinson's experiments, were generally crushed with a pressure of 12 tons per square inch of section, or even less. A rectangular tube of great thickness, nearly 7 tons weight, 47 feet long, 45 feet span, 3 feet deep, and 2 feet wide, made of plates $\frac{3}{4}$ inch thick at the top, bottom, and sides, when bent transversely by a load in the middle, was not perceptibly crushed at the top, with a pressure of 12 tons or 16 tons per square inch of section; and it required upwards of 17 tons to produce any indication of wrinkling in the top. The same tube, when its top and bottom plates, in the middle, were replaced with others of the same thickness, and its side plates were made of half the thickness, or $\frac{8}{8}$ inch thick, Was not corrugated or wrinkled in the top, though it was considerably shortened by the compression there, and had taken a deflection of $7 \cdot 33$ inches, with a load of nearly 103 tons in the centre, and a pressure in the top plates of 18 tons per square inch of section. Tubes of half
made by Mr. Pairbairn, the section of the top and bottom being meariy equal, the strength might be computed, by amoming another form, of neerly equal etrength, and eadly calculable, In the following manner:-

Fig 1.
Section of Tube as formed.

atrengtb the of Tube neariy equivalent in atrength, the thickness of the botlom and uldes being equal to those tn the former;
and the top of equal sreas of sectlon to that and the top of equal srea of sectlon to that
of the cello in the former, and pleced at the height of the centre of gravity of the colle.

[^3]that thickness at the top would probably have wrinkled with a few tons per square inch of section there. These facts showed the great importance of increasing the thickness of the plates of tubes; and his experiments rendered it evident that the square cellular tops might be advantageously dispensed with, by increasing the thickness of the plates on the top by riveting them together, and thus placing the resisting forces at the top and bottom of the tube as far asunder as possible. If, also, in addition, longitudinal ribs of cast-iron were riveted to the plates along the top, to resist compression, when the wroughtiron failed, a great increase of strength would thus be obtained, as had been shown by his experiments.
Mr. C. H. Wild begged first to read the following extract from the Second Report by Captain Simmons, the Government Inspector:-
"In reply to the question, " Whether if I atill remain of opinion that this viaduct cannot be opened with safety to the public, what further atrengthening will be necessary?' I have to state, that for reasons before eddnced, I do not consider that the viaduct can be opened for the continuous pasage of truins with safety to the public, and that it will not be in a condition to be opened until it shall have been so streagthened, that a load of aboat 400 tons (inclading the weight of the heams themeelves and all the standing parts of the bridge), distribated equally over the platform of one span, shall not produce a greater pressare apon the top plate of the girders than five tons per square inch."
In consequence of this opinion, Mr. Wild had, at the request of Mr. Powler, entered into calculations to ascertain what the compressive strain on the top of the bridge would be under the prescribed conditions, when it was found that it would be less
than 5 tons per square inch, the limit defined in the report. As this result differed from that arrived at by the Government Inspector, recourse was had to experiments to confirm the truth of the calculations. Among the many points noticed in Mr. Fairbairn's paper, was one which he must consider not only unphilosophical, but positively dangerous. The paper said, "It is considered by some engineers, as very important to the strength of these bridges, that the girders should be continuous. or extending over two or more spans. This is no doubt correct to a certain extent, and although the fact is admitted, yet this consideration is purposely neglected in these calculations; any auxiliary support of that kind acting merely as a counterpoise. It is considered safer to treat the subject on the principle of compassing each of the spans with simple and perfectly independent girders." The importance of the effect of continuity was acknowledged by all authorities, so that it could not be admitted that this was an element the consideration of which might, with any propriety, be neglected. The Torksey bridge consisted of two openings, each of 130 feet; the two being spanned by a continuous girder resting on the central support. If such a beam was placed on the three supports A, B, C (fig 3), and were loaded uniformly, it would assume the shape of the dotted line A m B n C. It was evident that between A and m, the upper portion of the beam would be compressed, whilst in the part $m n$, over the support, the reverse effect, would be produced; the beam might therefure be divided into three parts. At the point of contrary flexure m, all horizontal forces ceased, and there existed merely the vertical strain due to the suspension at that point of half the weight of the beam $A \mathrm{~m}$. If the

Fig. 3. Diagram of Defection.-The dotted line represents the poilition of the girder as deflected by fie own welght only-vis., 164 tons diatribated over each span.
continuous beam were hinged at the points of contrary flexure, and so divided into three independent beams, the previously existing conditions would remain unaltered. This being the case, it would be an evident error, if in calculating the strength of such a beam, A B only were taken as its length. In order to check, practically, the calculated position of the point of contrary flexure, the experiment was tried on a large wooden model, by loading it first with such weights as represented the constant load due to the structure. The model beam then took the form shown by the dotted line, and the point of contrary flexure was found to be $30 \frac{1}{2}$ inches from the point B. The model was then severed and hinged at that point, when the curve and the deflection were found, as might have been expected, the same as before. In order to ascertain the point of contrary flexure in a beam loaded as prescribed by the Government Inspector, over one span only, an additional weight was sdded, having to the weight previously applied on that span the same proportion as 400 tons, the prescribed load, had to 150 tons, the weight of the structure; the point of contrary flexure then approached to within $21 \frac{3}{4}$ inches of the central support. The beam was again severed and hinged at that point, and the curve was formed as regularly as before, the deflection on the heavily-loaded side being $5_{\dot{s}}^{1}$ inches. The beam was then cut in half, making it into two detached beams, the ends
meeting on the central pier, when it was found on the heavilyloaded side that the deflection was increased to 9 ginches. As much weight was then removed as reduced the deflection to the same amount as had, in the continuous beam, been produced by the weight representing $\mathbf{4 0 0}$ tons, and the proportion borne by the weight requisite to produce a given deflection in the detached beam, was to that requisite to produce the same deflection in the continuous beam as $65 \frac{1}{2}$ to 180 . Having found the position of the point of contrary flexure in a beam, loaded in the proportions prescribed by the Government Inspector, it was easy to calculate the strain upon the top cells of the Torksey bridge. The virtual length of the girders would be $130-21_{3}^{Y}$ $=108 \frac{1}{4}$ feet : the load upon these girders would be $\frac{108 \frac{1}{4}}{130} \times 4(0)$ $=333$ tons; or upon each girder 166 tons, or upon the centre 83 tons. If, for the sake of simplicity, the value of the side plates was omitted, the strain upon the top cell would be-

$$
83 \times \frac{108 \frac{1}{4}}{4 \times 9.5} \times \frac{1}{50}=4.67 \text { tons per inch, }
$$

being less than the limiting strain of 5 tons per inch, defined by the Government Inspector. The experiments, therefore, fully corroborated the truth of the calculations previously made, and showed the compressive strain per square inch, on the top cell
of the girder, to be less than that for exceeding which the Government Inspector had condemned the bridge, and thus an important line had remained for some considerable period closed at a great pecuniary sacrifice: the railway company had been, and were still deprived of the use of their property, and the public convenience suffered, not in consequence of any omission on the part of the eugineer to provide adequate strength for the public security, but from the pernicious effects of government interference, and from the necessary consequence of the want of practical skill, always demonstrated when officera, whose duties weze strictly military, were intrusted with the control of civil works.

PROFESSIONAL EDUCATION.

The question of diploma or no diploma will be debated so long as there are colleges and schools for engineering, and so long as doctrinairism exists. It is a part of the tactics which the latter sect employ to lead the world astray, to point out some defects in existing systems, and to put forward some doctrinaire system, without the least reference to the absolute law that the new system must have defects as well as others. It is not enough that an existing system works very well, and that there is no evidence of other systems working better, but we must give up the testimony of our senses and all the results of experience for imaginary advantages. With regard to the riploma or scholastic system, instead of at once admitting that such system must be the acme of superiority, we earnestly request our readers to survey the history of engineering in this country, before they suffer themselves to be barked away from what, after all, may be the state of affairs most conducive to the public benefit.

In the first place we will refer to experience, whether the present system, or no system, allows first-rate men to be produced? The answer to this is-Smeaton, Milne, Brindley, Watt, Trevithick, Jessop, Dodd, Rennie, Bell, Bramah, Murdoch, Woolf, Telford, Stephenson, the Scotch Stevenson, Huddart, Brown, Galloway. In the present day we have certainly men enough to maintain the character of the profession in every department.

In most other countries of Europe, engineering, so far from being a free profession, is monopolised by government officials; but, without casting any reflections upon them, we may simply say that the engineers of no country have a superiority over ours, and that during this century foreign'engineers have been bebind, and, following in the way in which we have led, have looked up to this country as the real school of instruction. It is to be observed that many countries have a greater abundance of institutions for promoting theoretical knowledge than are to be found here, and that, in most, theoretical knowledge and the diploma system have full sway; but still the broad fact remains, that England is the great school of engineering knowledge. Even the engineering literature of the continent, copious as it is, is only a reproduction of English types. It is to be presumed, therefore, from a comparison of facts, that the diploma system is not better than our system of free practice.

It is further to be observed, that England affords abundant scope for employment, and that first-rate men are better paid than on the continent; but, notwithstanding this, so far from the superiorly-educated engineers of the continent coming here and driving ours out, it is the other way. That strangers have full liberty here is proved by the instances of Labelye, Fulton, Brunel, Perkins, and so many others; but though men of genius come here from abroad because there is a free field, and although several strangers are now in practice, yet they form an inconsiderable fraction. On the other hand, it will be observed that English engineers have always heen employed abroad, and have there executed some of their most remarkable works. We may enumerate Perry, Trevithick, the Rennies, the Stephensons, Gibbs, Tierney Clarke, Brunel, Buddicombe, Allcard, Lowe, Clegg, the Taylors, Whishaw, Galloway, Fairnairn, Lindley, Milne, Cresy, Cockerell, Manby, Simpson, Vignoles, and Locke. At this present time, from Spain to Russia, from Norway to Italy, there is hardly a country of Europe which has not placed some of its great works under the direction of our engineers; while here there is not one great work for which an engineer has been called in from abroad. Those which have been executed here, such as the Thames Tunnel, have been the productions of men established and naturalised here.

So far as to the personzel; but experience is likewise available as to the works produced. In this country, the ability of the engineers has been sufficient to carry out every class of work which has been compaused on the continent, to give the older classes of works a new or greater development, and to lead the way in new branches of employment. Aqueducts for water aupply we have not, it is true, made; but we have comparable works in those carrying our canals. When the Hollanders and French had shown us the way in artificial navigations, we quickly covered our island with a notwork of water commonications, which gave us like advantage with Holland, which surpassed Flanders, and which France has for fifty years tried to imitate. In laud drainage we are pupils of the Hollanders, but we have, in the Bedford Leveh, given examples of large undertakings of this kind, as we have on a smaller scale around our coasts. We had older instances of sea beacons, but we have on the Eddystone, the Bell Rock, the Skerryvore, and the Skerries, produced unequalled monuments, while we have intruduced constructions of iron, and the screw pile and hydraulic pile for sands. Of bridges there were many old masterpieces, but the class of works executed here justly excite admiration; while in this, one of the oldest branches of engineering, and one of the most limited type, the way has been led to numerous modifications and improvements, greatly extending the range of application. Suspension bridges, those of cast-iron, tubular bridges, snd those on Potts'e hydraulic piles, were first introduced here; while numerous examples of less striking modifications in skew arches, lattice and girder bridges, have been copionsly supplied. In tunnele and subterranean works we have ample proof of our success.
Although government docks and harbours on an extensive scale have been executed by the French engineers, yet the commercial dock system has here been so expanded as to have reached a new era. Many of the outport docks would rank as first-class works were it not that Liverpool and London so greatly surpass all other dock systems. The extension of our commercial harbours, with the jetties, chain piers, and breakwaters, is likewise a noticeable fact.
The system of town sewage, and that of agricultural drainage, have been, as it were, renewed in this country, and are now received as models elsewhere.
We hear nuch of the scientific mining of the continent, but we know this simple fact, that many branches of mining have here received an unexampled development and acquired a decided superiority; while our miners, notwithstanding the competition of the High Dutch, are extensively employed abroad.
Of many of the most important branches of engineering we may almost claim the invention. If we name the steam-engine, the railway and lucomotive, gas, the steamboat, and the electric telegraph, we enumerate strong claims to distinction, and on which it is unnecessary to expatiate. One word, "the steamengine," says enough.

Very great works have been executed on the continent since we have led the way, some by Englishmen; but even with the advantages of our preliminary essays and failures, it has nut yet been found that the theoretical proficiency of the continental engineers has acquired for them any great superiority. Even in France, large branches of engineering have been competed for by the civilians, and have been acquired by them from the corps of the Ponts et Chaussées. Of Hulland it may be remarked, that when the profession was free the Hollanders had a great nastery in engineering, and supplied us during the sixteenth and seventeenth centuries. At the present moment, with a thoroughly organised waterstast, they are followers of ours.
Of the United States we have said nothing as yet, because there, as with us, the diploma engineers are wanting; the States are independent of foreign supply of engineers, although there is full scope for talent. The Pouts et Chaussées have no more swept the field across the Atlantic than they have here. Compare, too, with the continental states the independent way in which our brethren have carried out a vast system of canals, railways, steam navigation, and electric telegraphs. Look at their bridges, waterworks, and dry ducks, and decide by facts and from the teaching of experience, whether the United States lag behind France, Prussia, or any country which cau boast of highly instructed government functionaries. When we have such strong evidence from the English on both sides the Atlantic, it becomes hardly doubtful
as to the present superiority of the open practice of engineering as compared with the diploma practice.

Those who put forward a system of imaginary perfection, nevertheless, seldom pay attention to the merits of that which they oppose: their great game is, to point to defects which must be acknowledged, while the defects in their plans may be contested by them, because no experience has yet been had. This, however, can hardly be said to be the case on the present occasion, because there is the opportunity of comparing English untested engineers with the examined engineers of France; and, moreover, with English examined engineers. We are quite rasdy to admit that there are many men of great ignorance among the large body of English engineers, but the real question is, as to the result in practice. Here we are ready to admit that bridges have fallen down, piers been washed away, and retaining walls slipped; but what we do say is, that examples of failure are not mure considerable in proportion to their works among our engineers than among those of the continent, or among the royal engineers.

In whatever way a comparison is made, it is so strongly in favour of English engineers that even the most prejudiced cannot deny the fact, while they adhere most strungly to their own views of the great benefit of scholastic instruction, college eraminations, and a university diploma. It certainly is much better that an engineer should have a sound acquaintance with matheratics, physics, and mechanics, than that he should be ignorant of them; but though this is a truism, it does not follow that we are to adopt the whole formula of college examination and diploma. As the question now stands, the onus probandi is on the other side: but what they can prove on their own behalf seems very problematical. Results are the true test, and it might suggest itself to the advocates of diplomas, that the results, not being in their totality the production of accident, must depend on some principle.

We must allow that it seems paradoxical that the diploms engineers, with all their instruction, should fall behindhand, and the other engineers, with all their ignorance, keep ahead; still, euch are the facts and we must deal with them. We may be told there is greater scope for energy in England, and many admissions may be made and explanations offered as compared with the continent; but then the case is met here, for we have a whole staff of academical engineers, but although many of these are employed by the government to take away the bread of the civil engineers, we are not aware of one Woolwich engineer who is deriving an income from the free employment of the public. In France, too, civil engineers compete with the academic engineers, so far as the monopoly given by the government to its creatures allows, and therefore local grounds cannot afford the true reasons for the difference.

We believe the great reason to be, that the diploma system is morally vicious. It puts up a wrong test-that of scholastic instruction, which experience proves is of minor importance in the course of a professional career-and it places the responsibility of a college diploma against the responsibility to public opinion: thus a schoolboy is produced, with schoolbos attainments and schoolboy self-satisfaction; and the false start is seldom made up for. In the first place, the diploma is a noneasential. A surgeon is called in on an emergency, when there is no opportunity to test his qualifications; but an engineer is called in deliberately, as is an attorney or barrister, and there is ample time to select him and to ascertain his acquirements, experience, and moral accountability. For the protection of the public a diploma cannot be wanted of an engineer, for in his case the less protection the public have the better: the public must share in the responsibility of employing an engineer, and the more discrimination they show the better it will be for the profession. The public, too, are less likely to submit for a continuance to presumption, extravagance, dilatoriness, breach of faith, and want of pucuniary honesty, all of which may flourish despite a college certificate. It happens very fortunately that the public neldom resort to a professional man without in some way inquiring about him, and recejving a satisfactory account of his previous exertions. This is a responsibility which should be in the highest degree upheld, but which the diploma system would invade without giving any effective guarantee against ignorance.

Whatever necessity may be pleaded for a diploms in the case of medical men, it is unfortunately notorious that the diploms is no guarantee for efficiency. A number of scoundrels dissipate their time and the money of their fathers in idle and dissolute
pursuits, and when the time for examination comes, prepare for it by means of a "grinder." If the farce of an engineering examination were countenanced, professors would certainly flourish, and would obtain more employment; but a new branch of occupation would forthwith start up, which would be that of the grinder-some of the professors, no doubt, figuring in that capacity, as is usually done. The medical idler having obtained his diploma, is happy to pronounce his education at an end, makes a mockery of science, and may be found at an advanced age boasting that he has not opened his books since he left college, nor has he added to them. The condition of a large mass of the general practitioners is truly deplorable: once qualified, they enjoy a certain monopoly of public appointments, which assists them in eatablishing themselves in locul practice, even if they have not a nmall sum to set up a blue-bottle shop. The settlement of one of these vipers in a small town or village ser ves most effectually to keep out a better man, and the population are exposed to the malpractices of a brute who ought not to be intrusted to the care of cattle. The diploma is no asfeguard against ignorance, and is an efficient protector of idleness, for nothing better can be invented for those dispositions who are willing to purchase a career of comparative immunity by a few month' exertion. What the physician or surgeon does from choice the engineer does from necessity. He labours assiduously and constantly throughout his life to acquire greater proficiency, knowing that he has to pass the constant examination of the public, and that he has no diploma to plead as a setoff for iguorance or malpractice.

The engineer, it is to be remarked, must secure himself in practise by his own exertion. Any one can compete with him; the smith, the mason, the carpenter, can make their way to his side and push him from his stool. There is no marked line within which he can entrench himself, nor is there any legalised scale of fees to secure his emolument. The government trains up competitors against him; the ingenuity of his Yankee bretbren is free to seek employment as he is; and any foreigner who can speak English may set up with as good a charter as he has. If, therefore, he does not qualify himself, and acquire all the theoretical and scholastic information which is necessary for him, he must take the consequences. In some cases he must share with those having special qualifications the honour and emolument of plans; in others, having launched beyond his depth, he will be subjected to complaints, litigation, inquests, commissions of inquiry, the control of the press, and indeed a severe exercise of justice which may result in the abridgment of his professional earnings or the close of his career.

With regard to the range of professional acquirements, it must vary according to the pursuits and necessities of each individual; but we are justified in believing that it is as high for all practical purposes as among any diplums practitionersnot less by the result in the works produced, than in those brilliant examples of scientific research which, notwithstanding the illiberality of the government, has been carried to such an extent as to cast lustre on our profession and country. From the time of Smeaton downwards, the career of experimental investigation has been sedulously cultivated, often from the private means of the inquirers, and which has resulted in the greatest benefit to practical science. How valuable have been these labours in promoting the improvement of the steam-engine, in ascertaining the strength of materials, and in determining the form of the screw propeller, is known to all, but we may fairly refer to that grand series of experiments which promoted the achievement of the tubular bridge. So long as such exertions flourish, it cannot be said tbat science is unhonoured among us, or that there is any fear of its abandonment; and such living proofs are more satisfactory testimony than the knowledge that all the engineers in the country have got their class certificates, and once in their lives passed through an exumination.

One special benefit we have, and which is worth all that the diploma system can offer to us, is the free career open to every one of the working classes who chooses to avail himself of it, and which the diploma would effectually stop. In perusing the annals of the profession, or in scanning its present ranks, we remark with just pride, such a man was a millwright, such a one a carpenter, another a mason, this a cabinetmaker, that a mathematical instrumeut maker, one an engine tender, here a locomotive driver, there a plumber. The rise of George Stephenson from the coal beap, to be one of the heads of the engineering profession in the world, is worth all the diplomas ever invented. A college examination would shut out our
greatest men, and would be a most clumsy test to determine when Brindley, Rennie, or Stephenson was entitled to practise as an engineer.

While the absence of the diploma or artificial test allows the profession to be recruited with men of practical acquirements from every mechanical trade, it gives the same freedom of entry to men of genius in other walks of life. Thus we draw recruits from the medical profession, the royal and merchant navy, the army, or wherever they are to be found. The ranks are open to men of collegiate education and those who have carried off university prizes; and if college men do not get the greater share of the emoluments of the profession it is their own fault and not want of opportunity. At the present time there is the likelihood of the profession being stocked with men who mean to apply themselves seriously to its pursuit, instead of being a harbour for the idle sons of industrious fatbers, who can give them sufficient to pay college expenses and make a start, leaving them to quarter themselves on the public.
A further result of the diploma system, in narrowing the profession and constituting an injurious monopoly, would be in closing it ayainst members of the middle classes of limited mesns. The diploma would be preceded by a college course and college fees, and which would act as a prohibitive tax, to the very great prejudice of the profession. Whatever the sufferings of junior members, and such must be felt in all professions, the value of the professional status of each must depend on the aggregate exertion, and which will be much less in a close profession. It must be remembered, too, that those who propose to assimilate engineering to other close professions, forget that the monopoly of public situations is not svailable, inasmuch as the government here has its own corps of nominees.

If the diploma system were adopted, civil engineers would be reduced to the same state of inertness as the government engineers, and, instead of enjoying their present superiority, would fall to a lower standard. They would abandon their present claims to public employment, bring themselves to the scholastic level of their rivals, and would be no more employed in virtue of their diploma than they are now in virtus of their practical attainments and experience. This would be the effect of a change which can produce no good, but would bring evil. For the protection of competent members of the profession, a diploma is not wanted for the keeping out of incompetent members; so far from being efficient, it would rather act as a shelter and a shield to that class, as it does in other professions.

Although many of our arguments have been shaped chiefly as the issue affects civil engineering, yet mechanical engineering is equally interested in resisting the diploms delusion. The diploma system will be introduced for mechsnical engineering if it be introduced for civil engineering. 'The French and the Prussians furm mechanical engineers in the schoolroom; and why shonld not the same scheme be tried here? It is very true, it seems to practical men highly absurd to propound such a system, but the theoretical advantages are quite as great as when assumed for the other branch of the profession. If, too, we admit that stationary and marine engines have exploded once in ten thousand times, we shall be called upon, on the ground of public security, to submit all those engaged in the manufacture of machinery to s strict examination in physics, mechanics, cinemistry, geology, and the other necessary branches of science; tor we shall be told that no man, who cannot pass a satisfactory examination as to the principles on which the construction rests, ought to be allowed to jeopardise the lives of the public. It is worth while remembering, that a system of ricutific instruction and examination was actually propounded for engine-drivers.
'T'u sum-up the question as it really stands, experience is "gainst the diploms system and in favour of the free system; and, except for the benefit of professors, examiners, and grinders, there is no object in adopting the diploma system, and thereby shifting the responsibility from the public and the enpineers and reposing it on a board of examiners. An engineer maty safely be tried by his works, and the public safely be left to judge of them, with full reference to the previous trsining or uccupation of the candidate for employment.

THE GEOMETRIC PRINCIPLE OF BEAUTY IN THE MOULDINGS OF ANCIENT GRECIAN ARCHITEC:TURE.

By D. R. Hay, F.R.S.E.

[Read at a Meeting of the Architectural Institute of Scotland.]
(With Engravings, Plate IV.)
When one of my profession presents himself before a meeting of an Architectural Institute to read a paper upon a subject in any way more intimately connected with so comprehensive an art than that of his own practice, some apology on his part is demanded.

I therefore trust that as the application of asthetic acience in architecture takes a very wide range, commencing with the simply beautiful in art, and approaching the grandly sublime in nature, and that as I have on this occasion confined my illustrations to some architectural details which lie at the very threshold of that science, and regarding which there still exists much difference of opiniou among architects themselves, the slightness of the aggression will be some excuse.

In the article "Architecture" in the Encyclopmdia Britannica, its author observes,-"Greek architecture is distinguished for nothing more than the grace and beauty of its mouldings; and it may be remarked of them generally, that they are eccentric and not regular curves,"-and adds, that "the hand alone, directed by good taste, can adapt them to their purpose and give them the spirit and feeling which renders them effective and pleasing." But the author of a similar article in the Encyclopredia Metropolitana is of a different opinion. He says that "the outline of a section of a Greek moulding is, in almost every case, a portion of some conic section, which," he adds, "may be either elliptical, parabolical, or hyperbolical." Thus it appears that these two great authorities are diametrically opposed to each other on the subject of these curves; while a later investigator (Mr. Penrose) has endeavoured to prove that all the curves of the mouldings of the Parthenon at Athens are either parabolical or hyperbolical. The subject is therefore still open to discussion. But instead of attempting by any process of measurement the difficult task of endeavouring to prove which of these kinds of curved lines have actually been employed in the construction of mouldings in the ancient architecture of Greece, I shall endeavour to point out which of them is the most practically efficient to be employed in the reproduction of similar mouldings in the greatest beauty and variety.

It will, however, be necessary, in the first place, to show what are the primary elements of all architectural forms. For this purpose I sball take the right angle as produced by the meeting of a vertical with a horizontal line for a fundamental angle, and deduce from its division these elements in the following simple manner:- lo produce a figure from the meeting of the vertical with the horizontal line, an inclined or oblique line is required, and the figure produced by these lines is a rightangled triangle, either isosceles or scalene, its parts being a right angle and two smaller angles, which together are equal to another right angle. One of the smaller angles is that made by the oblique line with the vertical line; and the other, that made by the same line with the horizontal line. If we therefore name the triangle after the smallest of these angles, the other two are understood, and a very simple terminology may thus be established. I therefore name every right-angled triangle after its smallest angle. For instance, a right-ungled scalene triangle, fig. 1 , whose hypothenuse makes an angle of 30° with its horizontal side, I call the horizontal scalene triangle of (d), because 30° make one-third of the right angle. But, on the other hand, When the hypothenuse of the sume triangle (fig. \&) makes an angle of 30° with its vertical side, I call it, for the same reason, the vertical scalene triangle of ($\frac{1}{3}$), and thus every right-angled triangle may be named.

The same terminology may be extended to rectangles. For instance, when these trianyles are united in pairs by their hypothenuses, the rectangles they form (fiys. 3 and 4) may respectively be termed the horizontal and vertical rectangles of ($\frac{1}{3}$). When the vertical angle is 45° or half the right angle, the isosceles triangle (fig. 5) may be termed simply the rightangled triangle of $\left(\frac{1}{2}\right)$. And when two of these triangles are united by their hypothenuses, the equilateral rectangle or perfect square (fig. 6) is thus formed, which may in like manner be termed the rectangle of ($\frac{1}{2}$). Thus every rectangle as well as

[^4]every triangle may have a name, which at once distinguishes it from every other figure of its own kind, and which, at the same time, conveys a perfect idea of its relative proportions.
The same terminology is equally applicable to isosceles triangles, for when the same right-angled triangles are united in pairs by their sides (as in figs. 7, 8, and 9), the two first of these triangles may be termed the horizontal and vertical isosceles triangles of ($\frac{1}{g}$), and the third simply the isosceles triangle of ($\frac{1}{2}$), by which names the relative proportions of their parts may also be perfectly understood. These two figures are the primary elements of all architectural forms.
Each rectangle and each isosceles triangle han a curvilinear figure which belongs to it, and to which may be applied the game simple but comprehensive terminology. These curvilinear figures are the circle, the ellipse, and the composite or inclined ellipse, and they may be called the secondary elements in the asthetics of architecture. The first of these belongs to the perfect square, for its axes, like the sides of that figure, are all equal. The second belongs to every other rectangle agreeably to the proportions of its elementary angle. Thus fig. 12 may be termed the curvilinear figure of ($\frac{1}{2}$); fig. 10, the horizontal curvilinear figure of (f); fig. 11, the isosceles curvilinear figure of (1); and fig. 13, the horizontal isosceles curvilinear figure of (F).

These two latter figures, although each described by one continuous line, are when analysed found to be composed of a series of ellipses harmonically combined-the first amounting to twelve, and the second ten. Two of these ellipses are always horizontal, and the remainder inclined.* As this figure has two elementary angles, one of which determines its axis, and the other its inclination, the various combinations of these angles lead to great variety.
These are the three kinds of curves which belong to the rectangle and isosceles triangle, and which I conceive to be, along with these two rectilinear figures, capable of producing all the beauty of abstract form of which architecture is susceptible, and that neither parabolic nor hyperbolic curves are requisite in the mathetics of that art.

In my present illustrations of the harmonious combination of these elements, I shall confine myself to the following mouldings which decorate the Doric temples of ancient Greecenamely, the Ovolo-the Cyma Recta-the Cyma Reversa, or Ogie -the Cavetta-the Bead-and the Hawk's Beak.

The Ovolo with Fillet and Bead.
This moulding is one of the most simple applications of the curve of an inclined ellipse. It is sometimes accompanied by a fillet, sometimes by a bead, and sometimes by a cavetta; and the proportions of these accompaniments seem derivable from the inclined ellipse, of which the body of the moulding is composed. For example, fig. 14 is the section of an ovolo monlding, similar to that which surmounts the pediment of the Parthenon at Athens, and it may be constructed as follows:-Let the line A B represent the vertical depth of the intended ovolo moulding, including its fillet. Through A draw AC at an angle of (1) with A B. Taking A C us the major axis, describe the inclined ellipse of $\left(\frac{1}{3}\right)$, whose foci are D and G, and centre S. Through D and G draw perpendiculars to the axis, meeting the ellipse in E and H. And through A, E, and H, draw horizontal lines $P Q, K L, B C$. Through S draw a vertical line $S M R$. Make APK U a square, and the section is complete, $M \mathbf{R}$ representing a part of the corona. Thus the rectilinear accompaniments being deduced from the inclined ellipse, which gives the curve of the moulding, all the parts relate harmonically to each other. This example may be termed simply the vertical ovolo of ($\frac{1}{3}$), because the angle of its curvature and the angle of its inclination are both 30°, or $\frac{1}{8}$ the right angle.

[^5]The next example, fig. 16 , is an ovolo of ($\frac{1}{3}$) and ($\frac{8}{8}$) -that is, its angle of curvature is $\frac{1}{2}$ the right angle, or 30°, and its angle of inclination $33^{\circ} 45^{\prime}$, or $\frac{5}{8}$ the right angle. This is accompanied by the bead, and is constructed as follows:-Let the line 1 B represent the full vertical depth of the intended ovolo moulding, including its bead and fillet, and $D Q$ the vertical depth of the ovolo curve. Through D draw A D M at an angle of (gig) with $D B$, and through D draw a horizontal line K, and through \mathbf{Q} another horizontal line $\mathbf{Q} \mathbf{N}$, cutting $\mathbf{A} \mathbf{M}$ in \mathbf{C}. With the inferior end of its major axis at C and its superior focus in D describe the ellipse of ($\frac{1}{3}$), whose foci are D and G, and centre S. Through G and S draw perpendiculars to the major axis meeting the ellipse in T and H. Through H draw the vertical line $H I O$, making $H I$ equal to $H G$, and I O equal to $T S$; and taking T O as the major axis, describe the ellipse of $\left(\frac{2}{3}\right)$, whose foci are U V. Through V draw V R horizontal, and through R draw RX vertical. The line KTHIOR is the section of the moulding, and $\mathbf{R X}$ the face of the antre which it surmounts.
Fif. 15 shows the various modes in which the curve of the inclined ellipse may be terminated in the construction of this moulding. In this way there may be constructed between the inclined ellipse of ($\frac{1}{\mathrm{~g}}$) and that of ((f) and ($\frac{1}{2}$) 286 varieties as to curvature and direction, setting aside the various ways in which the curves of the three examples are ended. And this can be done without in any way diverging from the harmonic relation between the angles of curvature and of inclination, a variety amply sufficient for the architect to select from according to his taste and judgment.*

The Cyma Recta.
This is one of the most beautiful compositions of the curve of the inclined ellipse, and the moulding may be constructed as follows:-
Let A B, fig. 17, represent the vertical depth of the intended moulding. Through B draw B F horizonthl and equal to A B. Join A F, and bisect it in G. Draw A C, making the angle $B A C(t)$. Draw H G P at right angles with A C. With A H and H G as semi-axes, describe the elliptic curve A G; and with P F and G P as semi-axes, describe the elliptic curve $F G$. Through the foci K and M draw $K L$ and $M N$, and where these lines cut the circumference of the ellipses ends the curve of the cyma recta.
It will be observed that the curve of this moulding is that of the verticallyt inclined ellipse of ($\frac{1}{5}$) and (t), while the direction of the moulding is that of ($\frac{1}{2}$). The varieties of the cyma recta that may be thus produced are as great as those of the ovolos. Fig. 18 is another example, the curve being that of the inclined ellipse of ($\frac{3}{10}$) and ($(\mathrm{f}$), and the direction of the moulding ($\frac{1}{2}$).

The Hawk's Bill.

This moulding, fig. 19 is composed of the cyma recta and ovolo combined, thus:-Having described the curve of the cyma recta, bisect A H in $\mathrm{O}_{\text {, and }}$ through O draw $O R$ at right angles with A H. Through R draw $R S$ vertical, and $R T$ at an angle of (f) with R S. Make R D equal to A'H, and taking it as a semi-major axis, describe the elliptic curve of (1) T L R. In the Parthenon this moulding surmounts the euriched ovolo (fig. 16) in the capital of the antæ of the pronaos.

The Cyma Reversa, with the Plinth, Cavetta, and Bead.
The cyma reversa, or ogie, as it is sometimes called, is another beautiful composition of the curve of the composite or inclined ellipse, and the moulding which it forms is of frequent occurrence in Grecian architecture. Like the ovolo, it is generally accompanied with the plinth, the cavetta, or the bead, and sometimes with all three, as in the following example, which is constructed as follows:-Let P R, fig. 20, represent the vertical depth of the intended cyma reversa between the axes of its two elliptic curves. Through P and R draw $P Q$ and $R O$ horizontally. Through \mathbf{P} draw $\mathbf{P O}$ at an angle of (d) with $\mathbf{P} \mathbf{R}$. Through R draw $R Q$ at an angle of $\left(\frac{1}{h}\right)$ with $R P$, and cutting $P O$ in C. Bisect $Q C$ in L, and $C R$ in S, and join $P L$ and S O. With PL and LC as semi-axes, describe the horizontal inclined elliptic curve of ($\frac{1}{8}$) CPH, whose superior focus

[^6]will be F , and with $\mathbf{S O}$ and 8 C as semi-axes, deacribe the horizontally inclined elliptic curve of ($(\mathrm{f}$) C O. Through the focus F draw F G perpendicular to $P Q$, cutting the elliptic curve in H, and through H draw A M HE horizontally. Produce C P to M, and through M draw M B vertically. Produce CR to B, and through B draw B N horizontally, and the line HPCON is the section of a cyma reversa or ogie moulding of ($\frac{1}{5}$) with its inclined plinth. To add the vertical plinth, cavetta, and bead, produce $F H$ to K, making $H K$ equal to ($(\boldsymbol{y}) \mathrm{M} B$, and produce HK to G, making KG(t) HK. Through K and G draw horizontal lines $K T$ and $\mathcal{G} V$. Produce $C P M$ to V, cutting K T in X; through V draw $V T$ vertical, and throagh X draw X $\cup U$ at an angle of $\left(\frac{g}{g}\right)$ with XMP. With its major axis upon X U, and through T, describe an elliptic carve of (k), whose superior focus is D, and centre U, and the cavetta and vertical plinth which surmount the cyma reversa are proportionally formed. For the bead, produce $\mathbf{O} N$ to Y, and with a major axis upon N Y equal to ($\frac{f}{\delta}$) of the whole vertical depth, deacribe an elliptic curve of ($\frac{8}{3}$) and (t), with its circumference passing through N. Through its inferior focus Z draw $Z I$, horizontal, cutting the elliptic curve in I, and throngh I draw I J, vertical, cutting O Y in J. Through J draw $\mathbf{J} \mathbf{W}$ horizontal and equal to $\frac{1}{2} I J$, and draw $W a$ vertical.

The cyma reversa is sometimes surmounted by a horizontal cavetta, as in fig. 81.

CONSIDERATIONS UPON SOME OF THE PRODUCTIONS CONNECTED WITH ARCHITECTURE IN THE EXHIBITION OF 1851.
 By John W. Papworth.

[Extracts from Papere read at the Royal Institute of British Architects, Notember 17, and December 15, 1851.]
When the possibility was suggested of assigning the investigation to the members of the Institute best qualified to report upon the different productions connected with architecture in the Exhibition, it appeared, although the utility of the proposition was at once granted, that there was but little prohability of their undertaking the task, and the attempt to accomplish it was therefore thrown upon the proposer's hands. It was not, perhaps, likely that mere visitors to the Exhibition would receive valuable new ideas as to propriety and beauty from the simple inspection of its contents: I confess to being one of those who believe that the perception of the latter is to be taught, and that those who have been familiar with the bad require able teachers to point out the difference between the good, the mediocre, and the worthless. To a considerable extent the public press has honestly and conscientioualy discharged this office, and 1 have not hesitated to reproduce some of the best suggestions from that source.

To Mr. Owen Jones we must ascribe the general effect of the arrangements. On the British side there appeared a wonderful exemplification of the national character, and of the notions whlch every one entertains of his freedom and independence of action. Like street architect,s, every body did the most for himself, desiring to display his contributions in the very best position possible, with as little regard to his neighbours as the regulations would permit; and it could only be by a conktant supervision that anything like an ensemble was obtained. Bedposts, conservatories, glass cases, and sign-boards appear to have formed the stock notions of construction, worked into a presentable form by a variety of modifications. These fittings, however, being remarkable for lightness and light-giving, for a considerable amount of elegance, and remarkable adaptation to their purpose, presented a great contrast to those on the foreign side, where government anthorities did almost everything for the exhibitors, and massed their works in decorated and darkened apartments.

Commencing our invertigation with the mineral products, we find that Tuscany submitted a granite, said to be from the quarries of S. Pietro del Campo, in Elba, which supplied the columus used in the cathedral and baptistry of Florence; and the Grand Duke Cormo I. cansed a large block to be cut into a basin, measuring nearly 66 feet in circumference, and placed in the gardens of Pitti Palace. The celebrated single block in the Duomo at Raveana, which is said to be of the same granite, was the largest example of the use of that material in construction until the erection of the statue of Peter the Great, in St. Petersburg. The monolithic columns of St. Isaac's Church,
in that city, so far surpass the most imposing English specimens that were shown at the western entrance of the building, that it is hardly worth while to mention them, except as promises of what may yet be done to rival ancient Eggytian luxury, which, imitated by Roman vanity, far surpassed in the use of this rock, and of porphyry and alabaster, anything which modern architects dare to propose even to themselves. Prussia exhibited one pedestal, of columnar form, made from a variety of granite-like formation, or rather gneiss, which might be called a garnet rock, being singularly studded with crystals of that mineral, some of them very fine and almost transparent. Such a rock was also brought from Scotland, from the summit of Ben Resipole. Of the Cornwall porphyries, 1 noticed the size 6 feet by 3 feet of that sent from Retire, in Withiel. There were not many specimens of foreign work of this kind; but the few that have to be mentioned include some specimens remarkable for the difficulty attendant upon their execution. The fine red porphyry tazza, standing upon the garnet rock column which has been mentioned, was accompanied by a slab: both of them were of exquisite finish, worked on a very fine and hard material; while the examplea of granites, porphyries, and jaspers, from Sweden and Rassia, exhibited the resulta of an amount of labour rarely expended in these days of utilitarianism, except where the rate of reward is inadequate, or where, for some especial service of luxury, the element of costliness forms the ground of an undue claim to admiration. The vases especially, constructed of materials which, as far as difficulty of working is concerned, may be regarded as gems, were marvellous instances of finished skill; while they must be cunsidered worthy of admiration for the same reasons which induce us to regard with wonder the labours of the ancient Egyptians in erecting their pyramids, and raising obelisk of monolithic blocks.

Thuse who are engaged in processes requiring the adaptation of a lathe will read with interest the account given in the descriptive catalogue of the machinery employed in the imperial factories of Ekaterinburg and Kolyvan, for producing such works, averaging three feet high. The true jaspers are probsbly in many cases altered schists; but some purphyries, and various other quartz-like rocks, are so commonly associated with them, under the same name, that it is difficult to define very exactly the meaning of the term, under which a large quantity of trifing articles passed under our eyes: we have been taught to regard it as expressing something precious, but in the mountains near the river Korgon, in the Altai, there is a mass of jasper, $\mathbf{3 0 0}$ feet thick, which rests on a bed of red porphyry.

It is to be hoped that the display of various specimens of serpentine from Ireland and Cornwall will call attention to a new mine of wealth to be upened. Already the Americans have imported these productions as one means of decoration, while they may be regarded as almost unknown in our metropolis. So much has been said and written on the stones fitted for building purposes, which we possess, and to such a length would any consideration of them extend-for the United Kingdom can show a specimen of almost every useful stone known-that I shall be content to pass by the old red sandstone and Devonian series, with the varieties of the carboniferous limestone only observing, that here again exist disregarded sourcea of manufacture in the hydraulic limes, beautiful marbles fit for interior decoration, and almost forgotten quarries, such as the black flagstone, or Posidonia schist, in the lale of Man, which is said to have supplied the stones for the steps of St. Paul's Cathedral. The green, or Mona marble, which was partially in demand five-and-twenty years ago, is another instance of the oblivion into which our own resources are allowed to fall. In the millstone grit division I observed nothing new. With the employment of white marble in objects of high art, our researches have on this occasion no connection; indeed it was in its use for chimney-pieces only that the statuary presented himself to any extent in the Exhibition. Of these the Lustrian eppecimens were decidedly the least successful; three or four very showy chimney-pieces, some with mirror frames, were exhibited, which it was impossible to pass unnoticed, but on which it was equally impossible to bestow anything like unqualified admiration. The chimney-pieces from France, in which leas attempt at display had been made, offered a hint for the revival of the now old fashioned style of box chimney-piece; these French specimens advanced nine or ten inches at least into the room, so that even in a large example, the deepest shelf need not project much before the frieze. Prussia exhibited a Carrara
marble specimen, not particularly striking; but Belgium, besides a small one, sent that by Leclercq, which appeared in my judgment the most sumptuous of its sort. No one, I am confident, can recollect the English examples by Brine, Thomas, and others, without feeling that the superiority of design was infinitels on the British side; one with a round-headed upening and curved bedmould, had considerable graceful simplicity, and vet richness of effect; and the elegance of those executed for Stuart and Co. of Sheffield, by Messrs. Nelson of Carlisle, whould not be overlooked. Decidedly successful for taste, and even more excellent for detail, was the very beautiful tazza of Oriental alabaster, sculptured hy Della Moda, which was placed in the nave near the Ruman department. It measured more then 4 feet across the handles, and was about 3 ft .6 in . diameter. The material, the stalagmitic carbonate of lime, was obtained In an unusually large block of the rarest and most beautiful quality, from quarries anciently worked in Egypt, which have recently been re-opened. The Greek government has also been occupied with attempts at restoring the value of their ancient quarries; and we sam with pleasure, that besides the celebrated white marbles, the lichnites (flesh-coloured variety), the rosso-antico, the cipolino of Karysto, and the porfido verdantico were represented. Besides these, we had assurances of other superb marbles having been found: one, reddish sky-blue with green spots, from Krukea; another from Sparta, amethyst coloured with well-marked yellow veins; another, violet breccia; a water green marble; and the porfido di vitelli, a pea green ground, with small round bright crystal spots of light green, not yet exported. Tuscany also promised to supply giallo di Siena, Broccatello, Bardiglio, Lumachella, Porta Santa, OrienLal alabaster, and Verde di Prato, in large blocks, as well as the common cipollino and white marbles. It was stated that the black and red marbles from the quarries of Pescaglia, did not sufficiently represent the blocks that had lately been extracted, which were considered fur superior as to colour, fineness of grain, diminution of specks, and total absence of small capilfary veins. The Portuguese marbles did not much please my eye; the pegmatite (a granite in which component minerals form very distinct masses closely compacted) passing into proqogine (granite, whose mica contains magnesia), arrested attenthon, from the statement that this, which seemed not very easy to work, came from the province of Alemtejo, in the district of Portalegre, within the city, and that most of the houses are built of it; the effect in a picturesque view must be remarkable. Neither in the government collections of Spanish and Portuguese marbles, nor in those of private individuals, did 1 observe anv specimens of surpassing beauty. It was noticed, that although eight contributions came from the famous Isla dos Pinos, in the vicinity of Cuba, and that marbles had long been found there in great abundance, they had not yet been used in that rich Spanish colony, which absolutely imported a supply from Italy and the United States. In fact, the ordinary marbles of these countries, and of Germany, Belgium, and France, are generally like our own, not only coloured, but distinctly veined, and their value depends upon the absence of cracks and flaws, brightnezs of the ground, a good arrangement of the veins and patches of colour, and the possibility of obtaining large blocks of equal texture and quality at a moderate cost. In the actual use of common marbles, the Exhibition proved that our continental neighbours last named had long preceded us, by the evidence of a multitude of alabs and specimens, worked for the mont part very thin, and showing that cheapness of application was considered more important than finished workmanship. Liege and Namur, in Belgium, contributed specimens of black marble, which seemed to be cut from larger blocks than that supplied from Nassau, and also to be a better material, as its fossiliferous limestones, taking a polish, were rather metamorphic than truly crystalline. Derville and Co. represented a government collection, in which one hundred and eight fine specimens of no smali size exhibited the resources of France to grest advantage, and must have helped materially to keep up the taste for the pretty marbles of Languedoc, Vosges, and the Pyrenees. Tarride, Sons, and Co. of Toulouse, recommended one piece of black and white Pyrenean marble, as being the sort selected for use in the tomb of Napoleon. Black, grey, and red marble, found near Rübeland, in Brunswick, were represented by pieces of excellent character; and it was noticed that blocks are obtained 9 feet by 5 feet in dimensions.
The small space set apart for Rome contrasted strongly with the expectations which such a name was likely to inspire; yet,
on examination, that little collection contained the representation of mercantile value to a larger extent than might be supposed; the Cavaliere Barberi alone, without the manufactory of the Vatican, would have supplied an exhibition; and if we add the illustrated works of Canink, the room would have had interest enough, even without the labours of the Cavaliere Moglia in mosaic. Barberi is, I suppose, the most celebrated practitioner in this style of ornamentation, and by the adoption of machinery, he has shortened, by nearly one half, the time which would be occupied in the execution of large works in the Vatican. Russia exhibited studies of Florentine mosaic of very high character; but, as may be naturally supposed, Tuecany, from its possession of very large quantities of pietre dure, chalcedony, the Arno pebbles, agates, and cornelians, and the help of experience, stood first in the display of that species of work. Bosi, of Florence, seemed to me to exhihit the best taste on the Italian side. On the English, Redfern was, I thought, equally successful in a table of 4 feet diameter, with judiciously introduced spots of malachite. Bovey and Champernowne also showed the class of coloured marbles which our eye demands. One specimen in Class 30, appeared to contain the germ of an original system of symbolic, or rather iconic design, in the endeavour to render the stone work, as well as the glass, in Gothic windows, figurative of familiar ideas. The mention of the Maltese carvings will close this brauch of our investigation; all of which exhibited examples of a school whose existence is as surprising as its excellence.

The slate self-acting cisterns, shown by Struthers, were ingenious illustrations of the filtration of water by ascension; the filtering medium being packed between two pierced false bottoms, the water from the cistern at the top passed by a pipe into the fourth or bottom division, through the packing in the third, and rose in the second by the pressure of the water in the cistern or top division. Slates were also exhibited from the neighbourhood of Stamford, and from several parts of Ireland, including Valentia, the slate stone from which is said to be nonabsorbent, and to require nearly six tons as the crushing weight of an inch cube. It is raised in slabs about a foot in thickness, and, having no true cleavage, requires to be sawn. Canada also possesses this useful material; as well as Trinidad, a fact which excites sume surprise, when we recollect that large quantities of shingles are sent to the West Indies. It is, 1 presume, a recent discovery. The United States, Nassau, France, and Sardinia, were the only foreign countries which showed slates; from the latter there was a slab about 5 ft . 6 in. square. France sent a slate billiard table, and some fine slabs, 5 ft .6 in . by 8 ft . 11 in . by $\frac{3}{4}$-inch thick. The Slate Company of Angers, which manufactures one hundred and thirty millions of slates, like those of Cornwall, and the Slate Company of Rimugne, exhibited each a eries of the sizes usually made. The slate of the latter company is remarkable for its tenacity and strength; by exposure to the open air it acquires increased hardness and consistency, its surface becomes polished, and upon being struck it gives out a olear metallic sound. The joints of slab roofing are generally made with tongues in grooves set in cement, covered by ribs; but it is difficult to make a joint that will stand, on account of the material swelling and shrinking like glass; at all events it is disturbed by the slightest settlement. Attempts to remedy this disadvantage were exhibited in Tanffe's patent, and in the so-called improvement on the same, by Russell, in both of which the principle of I cramps and screws or nails, with zinc gutters under each line of junction of the slate, is adopted. No arrangement, however, appears to me so good as that of lead drawn in grooves, and covered by ribs set in putty on the glates, screwed down to the rafters; as no gutters are required, and holes in the slate are avoided as much as is possible. The patent slate ridges and hips seem well contrived. It will be seen that I place no reliance on constructions of iron and slate, except under shelter, or in very peculiar circumstances.

Passing for the present the imitations of marble, we may notice those of stones. Ransome's patent stone differs from cements and other artificisl stone in the employment of silica, both as the base and the combining material. It may be regarded as a collection of particles intimately combined with silicate of soda, by which they are held together as by a kind of glass. Another manufacture consisted of an admixture of caustic carbonate of lime (with or without magnesia), and silica in a gelatinous state, which produced a hydrous silicate of lime as a result. The largest collection in illustration of this branch was shown by White and Sons, and was divided into two classes
-the natural and the artificial. The first consisted of Sheppey atone, and nodules dredged up off Harwich, from which respectively are obtained the varieties of the article known as Roman cement, introduced by Dr. Parker about fifty years ago. These stones, as well as those from Christchurch and Romsey, which yield the Medina cement, are found among the older tertiary deposits. The Whitby stone is found in the lias formation, and gives the cement known as Atkinson's. At Wolverhampton and in Derbyshire, cement stones occur in connection with iron stone, whieh imparts to them a ferruginous tint. Other districts yield natural cement stones; but the above-mentioned are those which are best known in commerce, being extensively used both for mortars and stucco. The name of Greaves is intimately connected with that of blue lias lime; and this material was abundantly represented in the Exhibition. The artificial cements, composed of a mirture of carbonate of lime and argillaceous earths calcined together, were chiefly represented by the socalled Portland cements, furnished by White and Sons, and by Robins, Aspdin, and Co. The first named firm exhibited the celebrated brick beam, and specimens of concrete, consisting of one part of cement to ten of gravel; the second showed several instances of teats of strength of the cement, pure and mixed with sand; but as some of the statements made since the exposition vary considerably from those which I noted, I have put them aside. The inutility of the experiments, made with much parade on Portland and Roman cements, is apparent when we consider that a single trial, under complicated conditions, can never be taken as affording a quotient for use as a constant in calculation, and that we have had no series of experiments made by rival manufacturers on the same day and in the same place and manner; and that, moreover, the results so obtained can only show the properties of the best materials supplied by the manufacturer, while no architect can tell with certainty on every occassion what cement the workman uses. Hamelin's mastic seemed to be wholly unrepresented or forgotten. I do not exactly know where to place what was called "cementstone," a limestone believed to be the basis of Peel Castle mortar; a cement made from the "curl-stone," found at Coal Port; Dyer's patent metallic cement; Furze's fusible mineral cement; Orsi and Armani's patent metallic lava; nor Spence's patent zinc cement. The latter should be inexpensive, as it is manufactured entirely from refuse matters. Among the British possessions, New Zealand sent a Roman cement stone; and France two hydraulic limes. It was said that by the process of Henri de Villineuve, engineer, a superior hydraulic lime might be obtained from all carbonates of lime, without the addition of other substances, and that the cement exhibited possessed different degrees of rapidity in setting. Belgium also sent an hydrofuge stucco, or plaster; Holland an hydraulic cement; and Wurtemburg "an hydraulic chalk cement, hardening under water in a few minutes." Portugal presented hydraulic clays from the Azores, and hydraulic scorie, by which, with the addition of lime, "an hydraulic hitumen, called Argamassa cement," is produced. From Prussia, we received a "Roman coment," being an argillaceuus carbonate of lime with magnegia; the double silicate may probably be of very great solidity. Ant. Peppini of Florence displayed some neat octagon paving squares, "in cement called Calcarea." The renowned Roman bydraulic cement is said to have been made of a mixture of volcanic sand and lime. I did not notice pozzolana from the Papal States, 'Tuscany, or Naples, although I' believe there were specimens. Greece rent a box of this volcanic earth (a silicate of magnesia?) from Santorin, which was ash-coloured, and said to have the same qualities as the Italian: mixed with lime it solidifies and sinks in water. A considerable quantity is exported annually to Turkey and Trieste. Spain also claimed to exhibit this material, but gave it the alias of soapstoue of Somontiu. The United States also sent steatite, or hydrated silicate of magnesia, combined with a little alumina and oxide of iron: its peculiar greasy feel has been the origin of the name of soapatone. It is much more abundant, and more extensively used in America than in England; and, being almost as readily worked as the soft woods, and with similar tools, it is applied to many purposes for which its superior durability renders it preferahle-as baths, and the jambs of fireplaces; and it is used in Switzerland for stoves of superior quality. Large beds of the pure material are found in the English possessions in Canada. The terms mortar, stucco, and cement, are at present so indiscriminately employed as to cause considerable confusion, and a strong feeling of the necessity of
some authoritativo scientific lexicon. I shall pase a few specimens, for the third great division of imitative stones. Gypsum, or hydrous sulphate of lime, called alabaster when in a semicrystalline form, and selenite when in crystals, being heated from 250° to 275° Fahrenheit, becomes an anhydrous sulphate; and, reduced to a fine powder, furnishes the plaster of Paris of commeroe. The peculiar stone obtained from the tertiary deposits of the Paris basin contains above $7 \frac{1}{2}$ per cent. carbonate of lime, and 3 per cent. of clay, which so greatly improves the cement as to have given the peculiar name to the preparation in other countries. The genuine article from Paris was submitted, as well as supplies from Ireland and Canada. The English sources are chiefly in Derbyshire, Nuttinghamshire, and Cumberland; and when combined with alum, the products are the hard artificial cements known as Keene's and Parian patent cement. The effect of the last, vitrified, is exceedingly good. Gypsum is also understood to be the basis of Martin's cement. Of these rivals we shall all recollect the handsome specimens which were exhibited. It will hardly be supposed, that of all foreign nations Tunis supplied nearly the most interesting examples of this material. The wall decoration, closely resembling that of the Alhambra, hardly seemed to be a cast, and was remarkable for the way in which the top surfaces were modelled so as to be relieved easily from the mould, and to. show to advantage either on a level with or above the eye. Spain sent an original piece of the Alhambra wall decoration; and Don Rafael Contreras, of Aranjuez, exhibited a portion of his copy of all the Alhambra-work of this kind in the same material, one-quarter of the real size.
We may divide the subject of coloured glass into four modes of manufacture-viz. stained or flashed, solid or pot, enamelled, and etched glass. Without touching, it was very difficult to decide how some specimens were executed: those by Chance and Co. obtained my highest approhation for the quality, too often lost, of lucidity; and 1 think they consisted chiefly of flashed-glass, cut, where requisite, to produce the lights. The specimens by Hall and Sons were also very satisfactory. I noticed no foreign glass of this sort. Hedgland, Hardman and Co., and Gaunt, exhibited works in the antique style; and I observed a window from a very clever design by T. T. Bury. The Belgian and French were single specimens of the second division of manufacture: the latter, consisting of works for Ely Cathedral, by Gerente, seemed poor and ineffective. The work by Toms appeared very goud in taste and execution; and I must group together here the names of Ballantyne, Claudet, Hetley, and Wailes, with one exhibitor from Austria. All these seemed to present a third-class of work, partly stained, and partly painted glass. The enamel school, I think, included Messrs. Baillie, Bland, Gibbs, Gibson, and Tobey, the St. Helen's Company (whose taste I question); two clever examples from Austria, one from Saxony, a good specimen from Holland, and five from France, of which I can say nothing favourable, but that No. 289 was perfectly a picture, and that Lasson's work contsined a beautiful female figure, and was in all respects more in accordance with our notions of glass-work. The American glass, as white glass, appeared to me to be, without exception, the finest that I had ever seen for material, but very badly manufactured. The numerous varieties of glass decorated with opaque patterns, embossed or marbled, differed in no reapect from that which we see daily advertieed. Chance and Hartley stood pre-eminent for their window-glass. The French glass, the Belgian, and the Prussian, followed in the order of merit in which they are mentioned: the Bavarian was indifferent. Glass tubing seemed to have attracted much attention both in Holland and England: metallic joints seemed generally to be contemplated; but 1 apprehend that the recent introduction of vulcanised india-rubber to form the joints of iron-pipes, is equally applicable to those of lead, terracotta, stoneware, and glass. Except Swinburne's glass domes, I did not observe any glass for ordinary use-as tiles in roofs, on the English side. France sent some, 15 inches by 9 inchem, under the name of Francis Fox, with terracotta tiles, 14 inches by 9 inches. Prussis sent glass tiles and pantiles; and Brunswick exhihited glass tiles, very good glass slates, and excellent lace glass. Before quitting the subject, it may be romarked, that the artists of the medimval ages, being much more moderate in their demands upon their material, were more primitive, and, perhaps, more successful than their modern rivals in the effect produced, while their successors have certainly advanced in an artistic point of view, but at the
expense of transparency, breadth, and simplicity. As a general rule, the modern works are too much paintings, in the strict sense of the word-too opaque in their shadows, in fact, too much abaded; whereas painting on glass, to be really effective, whould be almost entirely outline and colour, and as frea from non-transparent shading as possible, for this becomes a sort of neutral tint when opposed to the light; hence the muddy character of much modern glass. I think it must be borne in mind that a stained glass window is a means of admitting modified and tempered light into a building-hence it must be transparent; that the picture is to be seen from a distance, generally considerable-hence that boldness, breadth, and harmony are more favoursble to its effect than minute detail; and lastly, that the artist is not producing a work for isolated exhibition, but is labouring in combination with the architect of the edifice which he is to adorn, and with which his work is expected to harmonise, not to jar and contrast by painful and violent effects of light and shade; in short, that the window ought never to lose for an instant its character as a window, that is a means of admitting of light, which is its absolute and asthetic relation to the chamber which it illuminates. Enamel painting on glass is decidedly pushed much further than in former times; but we must doubt if it has advanced in its legitimate object, that of an adjunct to architectural effect.

Terracotta, as a decorative adjunct to buildings, is one of the objects which the Exhibition was well adapted to bring under notice. After the progress made of late years, particularly hy the firm of the Ladyshore works, it might seem remarkable that the comhination of elegance with durability which it offers, should not have secured employment of the material commensurate with its capabilities, did we not call to mind the competition with which it has been met by the makers of artificial stone, and which has prevented its adoption for re-duplications of a pattern.

Other difficulties arise from the very nature of the processes to which it is necessary to subject each branch of the manufacture, for we may regard the term terra cotta, in its most extended sense, as including even the finest porcelain. The component parts of the usual terracotia are potter's clay, fine sand, and pulverised potsherds, mixed with water and thoroughly incorporated, and either modelled or cast in the state of a thin paste, in porous plaster moulds, which absorb the moisture. After air drying, the objects are baked in proper kilns at a very high tempersture, during which process the shrinkage is sometimes very great. It is foreign to our purpose to enter into a detail of the different gradations in manufacture which exist between terracotta, as baked fire-clay, and porcelain, but all of them are subject to the inherent defects of contraction and distortion. The natural abundant distribution of the clays which are found underlying coal seams in the colliery districts, conduces much to the extensive application of the material, which, for the purposes of ornament, is gradually recovering the importance which it acquired in Italy, France, and Germany, from the fourteenth to the sirteenth centuries. Besides the productions of the Ladyshore works and other firms, a kind of perfect pottery, salt glazed and very nearly approaching to a true porcelain, was shown in the shape of drain and water pipes, vases, garden pots, architectural ornaments, and cases for plants, constructed upon Ward's principle. A bath, of the usual adult gize, made in one piece, of fire-clay, plated with porcelain and glazed, was also exhihited. These baths are at present much used in public as well as private establishments, and I may observe, that although they will bear a heavy blow without injury, get they are liable to crack on the first inlet of hot water, if they are bedded solidly or fitted tightly; they should therefore stand on piers or bearera, and be free from any thing which may prevent the expansion and contraction of the material. An lonic capital for Cliefden House, a Gothic pinnacle for a chapel at Tottenham, and some samples of "Parian" ritrified, seemed to promise well. In my own experience I have found that articles badly manufactured in terracotta are likely to scale away on the surface, a defect which arises chiefly, if not always, from an improper mode of filling the moulds. A beautiful chimney-piece, designed in the etyle of the Renaiseance, was an instance of the happy resulta which can be obtained in the so-called Parian or Statuary porcelain. A terracotta tablet, of the large size of 3 ft . by $q \mathrm{ft}$. 3 in . with the lines unusually sharp and true, from the Bank Park Pyropolite works, Prestonpans, arreated my attention; the colour, generally a difficult question, seemed very satisfactory, as was
also the case in a specimen from Newcaatle, in "Barnett's olay," which had a delicate reddish bue. Various decorations for bricks and cornices, in relief, would have met with my unqualified approbation, but that I am not prepared to admire branches of purple grapes pendant from green leavea, made in terracotta, either for external or internal decoration.

The foreign specimens of plastic skill were not so numerons. Holland zent stoves, bracketa, capitals, and balustrades, in all which it was rivalled by a contribution of very besutifully worked ornamental articles, including a Corinthian capital from Naspau. Wurtemburg was more ambitious, if not so fortunate in the ornaments of a church recently built in a kind of Decorated Gothic, a rose window from which, 3 ft .6 in . in diameter, was shown. Russis exhibited a table-top, 4 ft .8 in . in dismeter, a size which has perhaps never been equalled, from the Imperial porcelain manufactory; and Austria sent several specimens of syderolite, or terralite, or stone clay, in small articles. Prussia seemed to me to dieplay the best taste in the application of a union of silvering and gilding to clay ornamentation. A Gothic vase, or rather an attempt at a Gothic vase, was remarkably successful for skilful workmanship, as was aloo a fonntain by the same firm. In one instance, the sense of touch was requisite to decide whether some chimney-pieces were of bronzed iron, as they seemed, or the clay imitation, which they really were. The German ornaments for architectural uses in clay, the articles of earthenware and faience, the stoves, elevated by the designs imparted to them, all these might perhaps compete with analogous products of English manufacture for cheapness; but I am very far from conceding to them a general superiority, or eevn equality in taste. The Royal Porcelain Factory of Berlin exhibited a grand faenza dish, in the style of Giulio Romano, nearly 18 inches in diameter, whose value was perfectly arbitrary, with some colours, blue and green, such as are not used here. France alone, in the works of Debay, Mansard, and Virebent, produced architectural ornaments in terracotta of a class at all able to enter into competition with the English productions; indeed, the colossal brackets, after Puget, from the Hotel de Ville at Toulon, were works of the very highest order of decorative art. There was something interesting in the resemblance between the forms of the pottery from Tunis and the most highly prized specimens of antique Greek taste.

Roof-tiles were exhibited from France, which, although exceedingly heavy, were apparently well qualified for keeping out driving winds and rain; while they were more judicious in construction than those from Switzerland: the effect of these last, which were of a brown colour, glazed, was exceedingly good, and deserved the attention of the English builder. The same praise was due to the plain tile, spotted like granite with black on a yellow ground, from Coal Island, exhibited by the Royal Dublin Society, and to that from an estate near Tipperary. An excellent cream-coloured tile was exhibited from Darlington. With reapect to the floor-tiles, I was especially attracted by the self-coloured specimens in blue, red, snd drab; indeed, the diaplay was one of the richest in suggestions to the architect on the use of clay articles. Great merit was also displayed in a tile 12 inches square hy $1 \frac{3}{4}$ inch thick, and in a curved brick forming a portion of a chimney-shaft. Very few specimens of floor-tiles had been sent from the continent: among the best were some painted and burnt tilos from Spain-"azulejos"-and from Switzerland, among which latter was a very excellent blue tile, with a white pattern in raised work, in the style of the fifteenth and sirteenth centuries. But, beyond doubt, the most superb display of all the collections of such ornament was to be seen in the revived majolica-ware (the peculiarity of which consists in covering coarse material with a fine opaque glaze), such as is seen in tiles from the Alhambra: the pattern is stamped upon the surface by a plaster mould, it is then fired, and, the indentations being filled with the opaque glazes, the tile is complete, after having been fired a second time to fix them. The majolica-ware is perhaps best adapted for walliug'; the encaustic tiles for floors when they have to resist abrasion. The embosged-wall tiles were also deserving of great admiration, and, no doult, a means will be found of appropriately using the patent process of priating in colours. The pilaster of flowers and foliage on a blue ground, in the Raffaellesque style, on a series of bricks placed one above the other, was -perhaps the greatest curiosity in the building court. The pavement tiles above-mentioned are very different from Singer's tesserm-which are formed of ordinary porcelain, cut by machinery out of thin layers of clay, as well as from those made
by Prosser's process, in which the materiala, in a atate of powder, are subjected to great pressure, and reduced to a compact substance of excessive hardness. Exrepting from Luxemburg, Rome, and Prussia, I did not notice any other mosaic pavements: the two first seemed to be made on the antique, snd the last on Prosser's principle. Various specimens of hollow, rhomboidal, ornamental, and waterproof bricks, were furnished by different makers who put forth the respective merits of their productions: attention may be directed to those moulded apon the face as quoins, and to others from Newbury, which were intended for cornices and architravea. A circular drain-pipe, 6 inches in diameter, and only half-an-inch in thickness, was stated to have resisted a pressure of 114 lb . to the square inch, equivalent to that of a culumn of water 969 feet high. In the Austrian division the drawings, models, specimens, and explanation furnished by M. Alois Miesbach, of his seven brick manufactories, were highly deserving of notice. Of these, those at Ingersdorf, on the Wienerberg, supposed to be the largest in the world, and that at Rakos, near Pesth, are the principal. The annual production of the whole amounts to $107,150,000$ bricks and tiles, and finds employment for 4880 hands. The specimens of sand used for stuccoes and mortara, cements, \&c., were very completely furnishod from Bristul, St. Agnes, near Truro, and from Limerick. The red sand, found only at Mansfield, is of great value in the production of fine castings in metal, as it is said to possess fineness of grain, porosity, great purity and smoothness, which latter property contributes a highly smooth and even face to the castings.
'The mention of these qualities, as essential to castings, brings to our congideration the subject of working in metal, in respect to which I would venture to lay down the position, that the value of the material, if the nobler kinds are used, should not exceed that of the artistic labour; while it should be much beyond that of the mechanical working impressed upon it. In other words, if the article be merely a subject for daily use, and, consequently, nearly plain, its size is a matter of little consideration in an mesthetic point of view; but the more nearly the two values approach each other, the more likely is the labour of the artist to be disregarded and lost in the feelings excited by the material upon which he has worked. To myself this has become so very evident, tbat I am inclined to submit it as the reason why there has always been a general understanding as to the size of objects executed by the sculptor. No doubt there are some instances in which, without sufficient reflection upon the mutability of human affairs, or regard to the principles which should guide the perception of the beautiful, works of dimensions too large for the materials, have been executed in modern times in this country, as well as on the continent; but the taste of ancient days avoided with jealous care such extravagances, except in the most extreme cases. I believe I am not far wrong in saying, that for gold, a height of $4 \frac{1}{2}$ inches is the limit; that in silver, double that dimension is the extreme; and that although we may again double this for some other materials, 3 ft .6 in . is the turning point of discretion for bronze; and lastly, while for life-size we have marble at command, for colossal statues we ought to avail ourselves of the varieties of stone and granite.

The French department contained examples of the most delicate and highly-finished ornamentation in the precious metals. This is a class of work but rarely attended to by our manufacturers, the parts in English work being smaller, and the ornsment larger in proportion: now i am persuaded that rules similar to those which I have indicated for sculpture, might be well dictated to the designer of such ornaments as Holbein drew and Cellini executed. France certainly stood first, and I think almost alone in this department, the works exhibited being unequalled even by some of the productions of our own manufacturers. Austria sent a silver mirror-frame in the Renaissance style, which was excellent; and all the gold-work, manufactured by Ignace Sazikoff, of Moscuw, seemed in good taste, though the styles, it might be observed, were tainted with a foreign element, as the Gothic was Moresque, and even the Louis XV. ornament had imbibed an Asiatic feeling. The prodigious opulence and splendour of England and France are admitted to have surpassed the productions of Germany, its markets being, in fact, too poor and too contracted to admit of its maintaining any serious competition in this branch of industry with either of those wealthy countries. But in point of taste and elaborate and scientific execution, the Zollverein was not behind them in small, but valusble contributions from

Berlin, Hanau, and Dresden; and the centre piece, by Wagner of Berlin, with figures about 6 inches high, in oxidised silver, appeared to me to be in its way a most perfect production of real ornamental silver-work. A very large class of articles in bronze seemed to have great affinity with the productions of the silversmith, and to have equal claims to commendation for the taste with which they are executed. A statement of a asving of 30 to 50 per cent. on the ordinary method of gilding which was put forward by Mazarin, as the recommendation of a patented invention of a substitute for gilding, deserves atteution, especially where temporary accommodations are to be provided for large public assemblies; and the process discovered by Captain lbbetson, for bronzing iron by electro-plating, and thus dispensing with varnish, or any similar substance, must prove of great value to the architect.

The most lmportant specimens of ormulu were certainly the candelabra from Rusaia; of these, the smaller, 10 feet high, and for thirteen lights, were said to be valued at 5001 . each; and the larger, 15 feet high, and for eighty-one candles and four carcel lamps, was priced at 63sl. 6s. 6d. The ornamental parts were good in themselves, but not applied with so much taste as might have been expected; they were rivalled in this respect by n chandelier, 15 feet high and 6 ft .6 in . in diameter, for fifteen lights, which was perhaps the most tasteful specimen contributed from the United States. Nothing of this class, however, seemed to me so highly deserving of admiration as the gilt bronze lustre for sixty lights, from Hanover, which was of very beautiful design and execution in the Renaissance style. As works of mechanical art it would be unfair to rank the copies, half the size of the originalg, of the gates of the Baptistery at Florence, exhibited by Barbedienne; but the two noble brazeros, or brûleparfums, from France, deserved the honour of particular notice for their execution, as much as the French lacquered lock furniture, and the stamped brass work from Germany were below criticism.
Of the Russian productions, the various objects formed of the mineral called malachite-a green carbonate of copperattracted universal attention; and among them the chief and most costly was a pair of folding doors, with their frontispiece in the style of Louis XVI., measuring 14 ft .5 in . hlgh and 7 feet wide. The mineral was veneered upon copper, laid on oak, and great ingenuity was shown in the manner in which the pieces, when cut, were adapted to each other, so as to form a homogeneous pattern, and jointed in a very coarse cement, made of the stone itself. A chimney-piece and three vases, with their pedestals, also exhibited, were hardly leas valuable than the doors, and the whole value of these goods was stated at nearly 18,000l. All these works in malachite were open to criticism; and I confess that 1 felt much disappointed when I saw the productions that had been so much discussed. If the materlal was really one of the most valuable, it had been degraded in the opinion of persons competent to form a just estimation of such objects; for there can be no doubt smong those who studied the feeling of the connoisseurs who entered the department, that there was little more attention paid to these articles than if they had been merely imitations in plaster or painting; indeed, to bestow admiration on articles for ordinary use because they are made of extraordinary materials, is one of the significant marks of barbarism in the arts, which can only be exhibited by those who have no correct idea of the relative merits of mere intrinsic value, difficulty of workmanship, and finish of execution, as distinguished from the evidences of genins and the stamp of art. As an example illustrative of my meaning, 1 would call attention to the Bagnarols, cut out of a magnificent block of Oriental lapis-lazuli, which was exhibited in the Roman division, for it must be allowed that this simple object derived more value from its entirety, than if it had been cut up into slices and veneered to form a writing-desk; in fact, we recognised at unce that the material was shown as something rare and costly.

To all who are interested in the quality and price of iron, the statement made by M. Adrian Chenot, that the iron and steel shown by him were produced from what he called metallic sponges, must be provocative of curiosity. The Franklinite iron, from the United States, said to consist of 67 parts peroxide of iron, 17 oxide of zinc, and 16 sesqui-oxide of maganese, was stated to excel the best Swedish bar-iron in ultimate strength. Mr. Morris Stirling's experiments on the mixture of cast and scrap-iron, would lead to the supposition that the high quality must be derived from the presence of the zinc. France excepted, Russia was the only foreign country which seemed to have
reoognised iron as a principle in construction. Belgiam showed "tole" or plate-iron, stamped with excellent effect; the Austrian department contained specimens of Sengler's iron post paper, in the shape of remarkably thin sheet-iron; both theee might furnish very useful hints for the builder. Of all the iron castings, the most delicate that I bad ever seen were two busts, life size from the Royal Ordnance at Trubia in Spain, and a candelabrum. from the Prussian Royal Foundry at Berlin; but these must be considered as the finest examples that government factories could produce. For real business purposes, nothing seemed of higher merit than the railing by Mesgrs. Baily, which was the only specimen of such clean and highlyfinished work that came under my notice. Other specimens conveyed the idea, that the original forms had been softened down too much in the clay model, or that the wood patterns had been painted over so often as to have lost their sharpness.

In ornamental iron casting-a branch of trade to which France has of late years devoted special attention-it was generally supposed that our traditional superiority would be lost; fortunately, we could afford well to acknowledge the high excellence of the works exhibited by our continental neighbours in France, Austria, and Prussia, without detriment to the recognised merits of our own. It would be useless to enter into a discussion of the economic merits of the various ranges, stoves, grates, and closets which were exhibited, as they each required practical experiments, continued for some time, to test their respective advantages. Holland exhibited two stove grates, of which the design and execution were admirable. Austris sent beautifully cast stoves; and Belgium supplied a very well executed projecting stove grate, which was suggestive of a different style for such articles. In the collection sent from the United States, there was, unfortunately, not one stove whose exterior was inviting; if not excessively plain, they were overloaded with tasteless ornamentation; several varieties in principle of the Arnott and other stoves were shown, but the English patterns were not to be recognised. In the French collection, there were small grates of all kinds, and a common English elliptic register with hobs much improved; but beyond doubt the most excellent specimens of derign and execution on the part of the Continent was occupied by M. Laury; in fact, one of his productions was received into the Sheffield department. For propriety of decoration, good style, and high finish, these stoves were pro-eminent. On the English side, the articles exhibited by the various manufacturers were generally as good in execution as they were, for the most part, commendable for design; and the style of the Renaissance, adopted in several instances, was apparently re-produced in better taste than elsewhere in the came material. The minor works in metal deserving mention consisted of enamels on iron, used for the mosaics of the tomb of Napoleon at the Invalides; iron bedsteads, pure block tin pipes of all sizes to an inch in diameter from the United States, produced in continuous lengths by hydraulic pressure; carefully arranged lightning rods, and the various applications of gas to domestic purposes.

In the department of zinc ornamentation the English side had very little, and that of not much importance. Prussia sent heautiful castings for architectural decoration, plates for roofing, as tiles or slates, and thin zinc, including two pieces as thick only as paper, and a specimen of roofing to resist changes of temperature. Holland contributed very tasteful and well cast articles; and Belgium a pair of elegant vases 3 ft .6 in . high. The Vieille Montagne Company presented examples of dormer windows, with hip-knobs and gable-ornaments, which would alone have attracted every architectural visitor.

In the department of models of architectural works, England's supremacy in the Exhibition must have been so unquestioned for the number and the high finish of the specimens, that instead of speaking of the merits of these models, which were generally of works already well known, I have contented myself with noting those particulars of foreign works which appeared likely to be most intereating. In the division allotted to the United States, there was an attempt to solve the difficulty of opening the gates on a road without causing the paseenger to dismount; a model of the Pennsylvania single line railway, uniting Philadelphia with Pittsburg, exhibiting the Susquehanna viaduct, 3800 feet long, making a "rider" bridge in three sections of seven divisions, each with a clear span of 150 foet; a floating church, 90 feet long, 40 feet wide, and 106 feet bigh to the top of the spire, and an iron bridge trebled at the ende. Holland contributed two models invented by a self-
taught engineer, who was unable to express his ideas on paper; one repremented a swing bridge, in which the lines of rail formed the tops of cranes, which revolved to allow masted veesela to pasa. The original was constructed near Schiedam, where the railway crosses the river at an angle of 87°. The bridge shown by the other model was built near Leyden, where the railway croses the river at an angle of 82°. In it two parallel platforms, sliding diagonally in opposite directions, and moved simultancously by one man, afforded an opening when required. Austria sent no models of importance, but the description in the illustrated catalogue of the establishment, belonging to tbe Imperial Printing Office at Vienna, will be sufficient to surprise those who will refer to it. Prussis exhibited the model of a restoration of the Greek theatre, made by Gläzer at Breslau; the Cathedral at Madgehurg, a model in lime-tree wood; and a representation of the fountain at Nuremberg. Switzerland contributed three models in wood, in the well known style of its domestic buildings, a model of Strasburg Cathedral, in card board, and a copy of the Nuremberg fountain above mentioned. France exhibited two very important models in metal, one of the roof, 120 feet span, over the Douane at Paris, executed in 1844, by A. Gretevin, architect; the other, the moveable metal cupola of the observatory at Paris, constructed in 1843, to receive the great parallactic telescope; the diameter being 18 mètres, or 39 ft . $4 \frac{1}{2} \mathrm{in}$., the height of the cupola about 30 feet, and the weight $99,300 \mathrm{lb}$. (49,000 kilog.) The whole cupola was a most complete specimen of the construction adopted. Except in one instance I saw no model from the Continent of the modern style of framing timber roofs, as practised in England. Tordeur, of Cambray, showed a machine, weighing 25 lb ., to obviate the necessity of scaffolding in the construction of factory chimneys; and there was a most ingenious contrivance in a neat model showing a system of window, blinds, and shutters, combined in a simple manner, and without machinery, springs, or gear.
In the specimens from New South Wales Mr. Shield contributed the idea of using our squared timber in the construction of bridges, where labour, ironwork, and time, are all costly; and thig, with his other models, was well deserving of study. The twin staircase, exhibited by Banks, was one of those inventions which seem to be ingeniously useless, if we recollect the necessity in large establishments for space in the staircases, to allow persons, heavily loaded, to be continually passing each other. A similar principle was contained in the self-supporting pulpit, by Melville, which would be at least useful in crowded counting-bouses, if not thought adapted for ecclesiastical purposes. A spiral staircase was also exhibited in a small model, by Schrüder, of Darmstadt, whose series of models for the elucidation of practical geometry was one of those additions to our means of studying geometric design which I would hope to see made to the collection of this Institute.

A few years ago the upholsterer was the only professional decorator employed by the middle classes, but now they are beginaing to comprehend that, before expending large sums in decorating their houses, it may possibly be of advantage to obtain the opinion of those who understand, or may be supposed to have studied the relation which the respective parts of a room should bear to each other and to the whole when complete in its decoration; and that simply filling a house with furniture, painting, and papering in any manner, and purchasing curtaing and carpets without any reference to congruity with the other articles, may not be precisely the best mode of expending money to advantage, or obtaining a satisfactory result. At any rate, the admirable specimens displayed in the Exhibition, in almost every a vailable style of decoration, are sufficient proofs that the world is beginning to appreciate professional services, and to estimate the due importance of decorative adjuncts, as types of refinement and civilisation. And here I cannot but allude to those architects who are known to have afforded their services for these purposes on the late occasion, while I have reason to believe that the like honourable mention might be made of many others at present unknown, if the names of the designers had been attached to the different articles. The time must come when this act of justice will be done, and manufacturers generally will discover, what some of them already know, that the name of a designer of reputation is no slight recommendation to their wares. As an illustration, I would just point to the Austrian Furniture Rooms, and the English Medimval Court. This last certainly presented the most conspicuous display of harmonious art and akilh,-of art in the designer,
and of skill in the executant. The master mind which suggested the forms and the colours had evidently supervised their development; each ornament and each detail gave proof that the head which thought them directed also the hands which wrought them. The French Saloon, which might be placed in competition with the Medimval Court, presented great tact in the harmonious arrangement of articles, discordant in their stylea, but combined with such knowledge of the effect of colour as to diaguise, in a great degree, the discrepancy. In the only other instance of a combined collection, that in which the Zollverain's best goods were placed, this happy tact was not so conspicuous, and the eye soon became fatigued.

It was observed by a foreign visitor, that the Exhibition contained two states of feeling for domestic decoration, that at the western end being considerably mixed with elements foreign to it, while that at the east end was nearly free from any alloy of Angliciam; and he afterwards urged that there was no truly national taste in Russia or Germany, as the Parisian fashion for every sort of decoration was eagerly watched and followed. There can be no doubt of the correctness of this opinion. Upon the eastern side there were exhibited in the products of the European nations great elegance of proportion, vivacity of light and shade, and a wonderful fluency of design, mixed with a malicious, not to say perverse, carelessness as to whether a piece of furniture should belong to any given style at all, or equally to three or four. This was opposed on the English side by stern dignity, extreme breadth of light, and a remarkable air of utility, united, on the other hand, to a sometimes pedantic adberence to the peculiar features of the fashion employed. To sum-up this train of thought, it will suffice to add, that beauty in the one case and grandeur in its antagonist were attained; and it must be left to the spectator's particular temperament to decide, to which for himself he would give the preference. We pass to the mural decorations, most of which were of a fairly first-rate character as regarded the English side: the continental and American States followed the French fashions, and I do not feel called upon to admire the pictures, extending over the side of a room, which that fashion involves. The English paperhangings were chaste and welldrawn, based chiefly upon the observance of nature, without being merely natural in treatment. In the department which depends upon botanical productions for materials, we may class the excellent collections of the various woods employed for building and for furniture. These were so extensive, and of such equal merit, that I am compelled to refer you to the articles, "wood" and "timber,' in the 'lndex to the lllustrated Catalogue, 'to obtain an exact notion of the riches which we gain from this division of the natural kingdom. The parqueterie and marqueterie from Belgium, from Russia, and from Austria, were all remarkable specimens, and might be classed, according to their relative rank, as they are here set down. The succedanea for real wood-such as gutta-percha, cannabic, papier-maché, and carton-pierre-exhibited by various manufacturers, both in England and abroad, seemed to answer their purposes; but I must confess that the proposal from tbe United States, to veneer india-rubber upon deal for furniture, did not appear to contain the germs of a successful invention.

It may be asked, what good has our profession derived from the Exhibition? One result, at any rate, can be named with satisfaction: the critics of the daily press have discovered, for the first time, that the prestige of foreign superiority in arts was a mistake, and they have at last recognised the fact, that the examples of English skill-alike in carving in wood and stone, in metal-work of all sorts, in woven fabrics and embroidery, in stained-glase and mosaics-were of such a character as at once to refute the often-repeated fallacy, that the English, as a people, were deficient in taste; while the truth was they had simply very much neglected it. These gentlemen, however, with a few honourable exceptions, have fallen into the same mistake as the council of chairmen-they have looked to the mercantile, and not to the artiatic value of the objects exhibited.

In concluding this revision of some portions of my notebook, I have purposely omitted many things, fearing that they might be considered trivial; and had 1 known that the Messrs. Chevalier and Blanqui would have expressed almost the same opinions on many of the objects, though with far greater decision, I should have preferred offering a translation of their Report to the National Institute of France, to troubling you with listening to my own.

NEW GAS WORKS AT HAMBURGH.

Wiliam Lindley, Esq., C.E.

(With an Engraving, Plate V.)

Among the accessories for the accommodation of a modern city, a gaswork is among the most essential; but in practice it seldom happens that a complete establishment can at once be formed. A work is generally begun on a small scale, and extended without regard to unity of design, and consequently some unnecessary outlay is incurred, while the best accommodation is not obtained. We have, therefore, gladly availed ourselves of an opportunity to lay before our readers the plan of the works which Mr. Lindley has carried out for lighting the populous city of Hamburgh. It is now pretty generally known how far that engineer contributed to the reconstruction of the city, and provided for the water supply; and we shall show, from his own reports, the means adopted by him for carrying out the gas-service when it was placed under his direction. We do this the more readily, because we consider the plans have considerable merit, in carrying out a large undertaking in a restricted space, and on a comprehensive plan, without disturbing the service of the town, and which necessarily was a more protracted operation than it would have been could the enterprise at once have been carried out without impediment.

It seems that in the year 1844, the Gas Company purchased some old engine-works, for the purpose of conversion into gas-works, so that they might at once carry out the contract for lighting the town and suburbs. They built a gas-house with 168 retorts, and converted one of the old buildings into a purifying-house. They likewise set up three gasometers and several coal-sheds. In the streets mains were laid down and lamp-posts set up, and in due time the lighting of the town began. After a few months, however, a succession of unfortunate circumstances contributed to bring the enterprise into diffculties, and it became necessary to provide for a systematic reorganisation of the whole establishment. In Octuber 1846, Mr. Lindley was called in, and he proceeded to lay hefore the directors that plan which is given in our Plate. The necessary measures were taken to obtain the requisite extension of space, and leave was given by the municipal authorities for occupying some of the neighbouring land.
The first measure necessary was, on account of the situation of the establishment on the river Elbe, to take security against inundation, and the ground was raised 29 feet above the datum line, so that the new buildings could be safely proceeded with. The top of the shaken chimney of the old engine factory was taken down, and the stump having been secured with iron clamps, was used for the old gas-house until the new chimney could be completed.
It appeared, from accurate borings, that the soil was of a most dangerous character. The superstratum was partly shingle, liable to be flooded, and resting on hog. It was therefore necessary to go to a depth of 18 feet under the datum line, or a total depth of 40 feet to reach the sand and obtain the required security, and therefore piling was resorted to.
The most essential proceeding was to begin the great chimney and the purifying-house No. 1, while the old purifying apparatus was in use. The chimney shaft is $13 \frac{1}{2}$ feet below, and 12 feet above, inner diameter, and is 250 feet above the level of the new soil. It was considered necessary to carry up the shaft so high, not only to give better draft to the retort houses, but to carry the smoke to such a height as to avoid nuisance to the neigbbourhood. Outside the chimney shaft is a towerlike covering of 35 feet outer diameter, which is used for the purpose of preventing the injurious effect of the chimney cooling down, and for drawing off the injurious gases which might otherwise accumulate in the building. As the chimney and its casing were obliged to be placed on extended foundations, advantage was taken to put up a one-story building on them for the various offices.

The purifying-house stands likewise on a pile foundation, which bears the foundation of masonry on which reat the vaulted cellars and roofing. In this building are the purifying apparatus, two gas meters, the connecting maina, and the refrigerating room and apparatus. The building has a slate roof on iron girders.

The next building in order was the retort house No. 1, built for 150 retorta. This also rests on a pile foundation, and is,

like the purifying-house, on arched cellars, on which the flonring of the retort furnaces rests. The superstructure of the building is, like the others, of brick, roofed with slates and iron supports. The smoke shaft of the several furnaces is carried underground, in a channel of brick work, to the great chimney. So likewise other brick shafts carry off the noxious gases to the outer casing of the chimney.
Simultaneously was erected, between the purifying-house No. 1, and the retort-house No. 1, a coal-shed, having its roofing laid on the side walls of those buildings, and being covered in with slate and glass, and having at each end a gable wall of brick.

Meanwhile it had happened that the original retort-house, which had been set up in 1844, became so weak that it conld hardly be used with sufety. The heavy iron roof was therefore obliged to be taken off, and the manufacture of the gas carried on in the open air until the new retort-house No. 1, was completed. To provide for the stoppage of the old retort-house, the retort-house No. 2 , was begun in the previous year. This, like the companion building, rests on piles, and is of like structure, except the roof, which is of rolled zinc plates.
Between the two new retort-houses are two coal-sheds, No. 2 and 3 , the roofa of which are supported in the middle by a row of cast-iron columns, and at the sides resting on the walls of the buildings. These are roofed and finished like the coalshed No. 3. The coal-shed No. 4 alone is wanting, to finish the complete plan.

Besides the three gasometers, each of 85 feet diameter, and 26 feet high, preparations were made for building a fourth, and room is left for two more, for which the plan provides.

The drainage of the buildings is provided for by a main sewer to the Elbe, into which the side drains under the foundations discharge. These drains not only carry off the refuse of the establishment, but likewise drain the foundations, which is the more important as the vaultsare 10 feet under the highest flood point of the Elbe.

The gaswork is provided with water from the town works, and has, in the upper room of the refrigrating department, two iron tanks, each containing 100 hogsheads, kept full on constant service, and from which service pipes, provided with taps, in case of fire, lead into every part of the establishment.

The various buildings are of the most solid construction, of incombustible materials, and with every provision for durability. It will be seen from the plan that provision has been made for the extension of the buildings if required, while space and labour are economised in the design of the coal-sheds. By placing these sheds immediately by the side of the retort-houses the greatest possible convenience is afforded, and freedom of access is secured. The coal is readily conveyed to the retorts, while the cellaring provides for storing the coke, and likewise for the lime, which is kept under the purifying-houses.

The ventilation of the building is complete, so that the men can comfortably carry on their work in the retort-houses. The gases from the slaking of the lime in the vaults of the purify-ing-houses are likewise carried into the outer shaft of the chimney, and even the foul air of the waterclosets is conveyed to the same receptacle.

The capacity of the chimney for smoke and gases is such, that it is adequate not only for the present works, but any prospective extension.

From the works on the Grassbrook, two trunk-mains of 18 inches diameter each are carried into the city, through the Brook-gate. One is for the lower, the other for the higher service of the city and suburbs; each is supplied with the requisite hranches, communicating with every street and court. The length of mains is about 400,000 foot run, or 70 miles.

In 1850, the remaining outer walls of the old retort-house were well secured, and provided with a light roof of iron and rolled-zinc plates. The interior was converted into a salammoniac work, a smithy, and place for auxiliary retorts. All three establishments communicate, by underground shafts, with the chimney. Thus the noxious gases from the covered pans in the sal-ammoniac work are carried off into the inclosing shaft, and an important manufacture carried on without annoyance to the neighbourhood.

In the winter of 1850 , besides the old tar-tanks, n new one, of 40 feet diameter, was constructed to receive the tar and ammoniacal liquor from the retorts, the first being puniped-up for sale, and the other into the covered pans of the sal-ammoniac work.

On the plan will be seen a landing wharf on the river Elbe, providing for the delivery of sea-borne coal from the ship to the works.
By these arrangements, in the course of four years, a complete and new establishment has been constructed, according to a comprehensive plan, and with every regard to durability and to economy of cost and maintenance.

SANITARY IMPROVEMENTS IN TOWNS.

Lecture read before the Society for Promoting Public Improvements in the Borough of Leeds; on the 18th Docember, 1851. By Samuel Clega, jun., M. Inst. C.E.
It was with much pleasure that I accepted the flattering invitation of your committee to read the second lecture before you, for 1 anticipate that by the efforts of your Society much good will be done, not to this town only, but to those which may be induced, from seeing the benefits resulting from such a Society, to follow its example. This lecture is upon subjects which require no prefatory remarks; and as I fear I shall detain you at some length, I will, if you please, plunge into the matter at once.

The improvement of the public communications in the town, by widening narrow streets, the formation when required of new streets, well arranged and spacious;-A better and cleaner construction of the roadways of the public streets;-The more efficient consumption of smoke arising from manufactories and furnaces;-The promotion of such works as public walks and gardens, model lodging-houses and cottage dwellings, and public baths and wash-houses, -are some of the objects to which the operations of your most useful Society are to be directed: they are the most important objects, and l shall therefore beg to call your uttention to the great public benefits certain to arise from such improvements.

Upon the ornamental decoration and architectural embellishment of the streets and buildings of the town-another object of this Society-I shall not dwell, for such improvements will be self-erident. As man becomes civilised, the love of the beautiful arises: his eye requires to be pleased as well as his mere physical necessities provided for; and from this faculty of our nature the fine arts result,-but the fine arts must follow, they must not lead. We must provide the means of health, for without health the dwellers in great houses, although "adorned with Pentellic marble and fine gold," could not enjoy their beauty: and the true meaning of the word improvement, is this provision. Straight, wide streets, good pavement, the absence of smoke, open spaces for exercise, and baths for ablution, all tend towards this end; but these of themselves are not enough, and I wish to tell you what things are required besides. 1 shall apparently wander from my point, no doubt. I shall mention works required in a town beyond those I have stated, but I will not lose sight of them; and I will explain to you, as well as I am able, why such would be improvements.
Health-that great blessing which gives elasticity and vigour both to mind and body, which creates in us the energy to labour, and enables us to enjoy repose when labour is done-is not an essence parcelled out to man at his birth in unequal quantity and quality, to be borne by him through life as a gift of fate, but it is a quality which he is, by an all wise Creator, permitted to have great control over. Fresh air and water are given to him; by these agents, and the power of intellect directed to the study of their uses, he obtains ventilation and cleanliness, in which two words the whole secret of public health is contained. I say public health, meaning the health of the great mass of any community, for of those afflictions laid upon individuals for some wise thnugh unseen purpose which man cannot curb, I do not speak, nor of the diseases of individuals caused by their disobedience of Nature's laws, but of that common bealth which nay be enjoyed by the inhabitants of any town generally, if care of the general welfare be taken. Of these two elements in the sanitary condition of a town-ventilation and cleanliness -cleanliness perhaps ranks first, for pure air and dirtiness cannot co-exist. What must be the result of drawing air for tbe purposes of ventilation from foul sources? Why, drawing malaria from the outside to the inside of the house. Look at many parts of Lisbon, particularly that which lies between the castle hill and the low ground; it stands well for drainage, but there is no provision for any; the sewage and exuvimalike of
palaces and hovele are recelved upon the surface of the streets, and, until very lately, allowed to lie there. Scavengers now, after the sounds of "aqua vie" have ceased, make their lazy appearance, and partially remove the pestilential matter; but still fevers are very prevalent. The works necessary for maintaining cleanly streets, which lie beneath the surface, are wanting.

Constantinople is worse than this. The sun striking upon its domes and minarets, covers it as it were with burnished gold; a beautiful verdure surrounds it, and pure waters wash it on every side. Can this beautiful city, rich with the choicest gifts of heaven, be pre-eminently the abode of pestilence and death? where a man carries about with him the seeds of disease, to all whom he holds dear; if he extend the hand of welcome to a friend, if he embrace his child, or rub against a stranger, the friend and the child, and the stranger, follow him to the grave? -where, year after year, the angel of death stalks through the streets, and thousands, and tens of thousands, look him calmly in the face and, murmuring "Allah! Allah! God is merciful!" with a fatal trust in the prophet, lie down and die? We enter the city, and these questions are quickly answered. A lazy, lounging, and filthy population; beggars basking in the sun, and dogs licking their sores; streets never cleaned but by the winds and rains; immense burying-grounds all over the city; tombstones at the corners of the streets; graves gaping, ready to throw out their half-buried dead-the whole approaching to one vast charnel-house-dispel all illusions, and remove all doubts; and we are ready to ask ourselves if it be possible that, in such a place, health can ever dwell. We wonder that it should ever, for the briefest moment, he free from that dreadful scourge which comes with every summer's sun, and strews its streets with dead. Of what avail is it to rear splendid palaces bere? The improvements wanted lie beneath the surface.

I will yet paint another picture, and travel to Demerara for my subject: here disease takes a different form. The houses are drained, the streets are clean; but by what kind of sewerage is this effected? By open ditches, cut so as to have a fall towards the river at low water, and to be filled at the rise of tide. It is difficult to describe the horrors of these open sewers: the muddy river leaves a slime, absolutely moving with reptile life, and buhhling with the escape of noxious gases. The excessive heat, the undrained fields of Guinea grass, and its own low level, cause it to abound in paludal miasmata, especially fatal to those who sleep in the lower rooms of the houses. Drainage, by producing a dry soil, improves the healthiness of such localities iu a wonderful manner.

It may now perhaps be asked, can such spots as these exist? -and the answer at once is "Yes; nor need we travel from our own towns to find them." There are even in Leeds localities which only want the addition of a hotter sun to render them as unwholesome as any I have quoted. "By far the most unhealthy localities of Leeds," says the report of Mr. Smith, of Deanston, "are close squares of honses or yards, as they are called, which have been erected for the accommodstion of working people. Some of these, though siturted on comparatively high ground, are airless, from the inclosed atructure; and, being wholly unprovided with any form of under-drainage or convenience, or arrangements for cleansing, are one mass of damp and filth." "In some instances," he continues, "I found cellars, or under-rooms, with from two to six inches of water standing over the floors, and putrid from its stagnation in one case, from receiving the soakage of the slop-water standing in pools in the street adjoining. The ashes, garbage, and filth of all kinds, are thrown from the doors and windows of the houses upon the surface of the streets and courts. From causes besides these, the feelings of the people are blunted to all seeming decency; and from the constantly contaminated state of the atmosphere, a vast amount of ill-health prevails, leading to listlessness, and inducing a desire for spirits and opiates, the combined influence of the whole condition causing much loss of time, increasing poverty, and terminating the existence of many in premature death." We may trace the cause of disease to insulated spots even in the same street. For instance, one of the unhealthiest parts in Durham, says Dr. Reid, is n portion of the street of Gilligate, from about No. 14 to No. 50 ; and want of cleanliness is evidently the reason. And Liverpool, Nottingham, Manchester, Portsmouth, and indeed most large towns, will furnish us likewise with examples.

The inquiries into the state of districts before and after improvement have distinctly shown that increased facilities for
the removal of refuse in and about the habitations of the poor, have been rapidly followed by a marked improvement in the health, and by a reduction in the rate of mortality of the district. An instance of this kind was observed in Manchester, by ascertaining the amount of deaths in twenty streets, before and after their improvement, by which it was uscertained that the deaths immediately subsequent to the drainage and paving of the streets were diminished more than 90 per annum out of every 110. In Liverpool, by the removal of cellar dreellings, the average duration of life has been increased; in Bradford and Bristol, the same; and in the neighbourbood of London, a doctor lost his living from the arching over of an open sewer. In Leicester, the average age of death in the drained districts is 24, while in the undrained districts it is 18 . In the lowest districts of London, during the cholers in 1849, the deaths were 1 in 118. In the highest districts the deaths were 1 in 347 ; and by the present system of sewerage, the lowest and highest districts mean actually those badly and better drained.

These facts might be multiplied were it necessary, nor need we confine our observations to towns. It has been distinctly proved that the sickness we hear of (and which some of us have perhaps felt) in tropical countries does not arise from climate, but from undrained spots, covered perhaps with a thick mud produced from the decomposition of plants; the hot sun evaporates the unwholesome moisture, the wind spreads it abroad, and the night dews charged with it, fall and contaminate the breathing air of the neighhourhood. I could instance geveral cases within my own experience where the character of a neigbourhood for health, has been completely and immediately changed by drainage. It might be supposed, and very naturally supposed, that from the exceedingly imperfect sewerage of all our towns, without perhnps one exception, the subject of drainage has only very recently engaged the attention of legislature or of engineers: this, however, is not the case. The Egyptians, four thousand years ago, provided draing to lead refuse away from the vicinity of their habitations. The magnificent works of the Romans, both in Rome herself and throughout her dependencies, show the vast sums of money and the amount of thought they must have expended to maintain health and cleanliness. In Great Britain, we find a chapter of Magna Charta to protect public drainage works against encroachments. Henry III. used to visit in person embankments and watercourses, to see the laws carried out. Indeed, all our rulers up to Henry VIII. gave serious and frequent thought to such measures, and the earliest fundamental provisions were based upon the footing that drainage works, as well as measures for the maintenance of the free flow of running waters, were of general public and national, rather than of exclusively local consideration; and there can be no doubt, that it is the duty of the government by effective superintendence, to insure proper attention to works of drainage.

Whether the works shall be under the immediate management of the direct or the indirect representatives of the people, is a matter of little consequence and is fairly open to question; but no one can doubt that whosoever is empowered to construct works essential to the public safety, should be compellable to construct them, and that competent and responsible officers should be appointed to see that this evident duty is efficiently performed.

The first operation then, towards improvement in any town, must be directed to its efficient drainage and sewerage. Every particle of refuse should be taken away towards a well-chosen outfull, with a regular and certain flow through smooth, watertight, and air-tight channels, of proper dimensions and form. I say proper dimensions, for we must carefully avoid the preposterous sewers often provided: for instance, a sewer has recently been made at Newcastle-on-Tyne, 7 ft .6 in. bigh by 4 feet wide, where a 18 -inch pipe would have served the purpose much better; and other sewers, 3 feet and 4 fect high, have been made for single strepts, where a 6 -inch pipe would far better attaiu the proper objects of the construction. In all these cases, the cost of the large sewer is of course far greater than that of the pipe, and the enormous expenses attending the former have effectually prevented the proper cartying out of drainage improvements. And I say proper form, because the superiority of the egg-shape, by giving increased hydraulic depth to the run of water, and thus greatly increasing its power of removing impurities, has been so completely pstablished over that of the flatbottomed sewer, that the continued use of the latter is inexcusable.

If the natural outfall be a river, and the sewage is not to be reserved for fertilising the lands around, let its exit be far down below the town, and below the last weir or other obstruction (should such exist) to the regular current of the stream. If it be a tidal river, let the outfull be so far down that the flood tide shall not have time to return the offensive matter up to the town, but be met by the ebb, and kept away from it: this is presuming the town to be large, and the river so small as to have its waters sensibly polluted hy the sewage. If there be another town below the one I have just imagined, and on the same river, and if it be essential that the sullage should not pass that lower town, either because it takes its water supply from the river, or for other reasons, the difficulties for insuring an outfall for the upper town would be increased-not physically, but in a pecuniary point of view; it would not be an engineering, but a commercial difficulty.

My statement of this being a difficulty would, however, be denied by many, for there are strong grounds for believing that the sewage of a town, if applied to land in the form of liquid manure, would not merely repsy the expenses of its application, but leave a very large surplus towards reducing the rates of the town; there are cases of productiveness increaced four or five fold by sewage irrigation. This subject is, however, too large a one to be treated of in a lecture which merel; introduces drainage as a kind of prologue, and would not have been touched upon at all, but that in treating of improvements, I felt that the unquestionably first and greatest could not be passed over in silence.

The surface drainage of the streets is only second in importance to the drainage of the houses, for unless the water which falls upon the streets be immediately led off, the inhabitants are subjected to great annoyance from mud and dirt, and the ratepayers to great expense from rapid destruction of the roadways; and if streets are dirty the air is necessarily impure, and therefore that which enters the houses must be impure. A slight but regular rounding must be given to the paved or broken stone surface, off which the rain will immediately run into the channels, which will immediately convey it at once by the gulley shoots into the sewers; and the channel should be that only which is formed between the curve of the road and the kerbstone. No hollows, in which water can lodge, can be permitted without injury; and the greatest care must be taken to keep the gulley shoots clear, and to have them properly trapped-a most important, but almost universally neglected precaution, as is proved by the bad odours arising from gulleys in every town of which I have any knowledge. The danger and annoyance hence arising must be prevented, by insuring the rapid removal of refuse from the drains, by trapping all the openings by which foul nir from the sewers can escape to injure and annoy the inhabitanta, and by providing openings where its escape will not cause either danger or annoyance. However rapid and perfect may be the removal of solid refuse from the sewers, the air of cbannels conveying foul water must itself be foul (though less so than might be supposed), and cannot be allowed to escape into our houses or streets with impunity; hence the necessity of confining it by traps. But traps are never perfect, and may not be universal; and if they were, would render entrance into the sewers for examination or repair impossible; bence again, the expediency of providing appointed channels for the discharge of that air of which it is so important to get rid. It has been proposed to employ the stack-pipes from the roofs as foul-air channels, by connecting them with the sewers; this affords some local relief, because the escape of foul air at the top of the house is less annoying than in the street; but this is rather diffusing than removing the evil. If, however, the foul air be passed through fire, all the organic gases and vapours it contains are resolved into simpler and innocuous elements, principally nitrogen, water, and carbonic acid; and the evil is destroyed effectually. In such a town as Leeds, there ought to be no difficulty in effecting this. Here there are numerous furnaces, and there would be little expense and need be no inconvenience in connecting each large sewer with the ash-pit of one of these furnaces, by which the foul air would be drawn through the furnace, completely decomposed, and diffused in the form of inorganic and imperceptible gases, with the products of combustion. By the adoption of this plan, odours of the most distressing nature-such as those arising from bone boiling, or whale blubber-have been effectually destroyed. If this plan were adopted with the sewers, a current of fresh air through them
might also be maintained, and they might always be entered with safety, as indeed they now may be generally.

It will be perceived that this plan of ventilation, of which the passing of the foul air through fire is an essential part, is free from the objection attending projects for ventilation aimply, either by currents of air or steam-jets. These do little more than shift the nuisance from ourselves to our neighbours; and if our neighbours do the like, we shall gain little by the change. Neglecting to decompose the foul air is the reason of the failure of attempts to ventilate sewers by chimney-shafts at Paris, Antwerp, and elsewhere.

Most people are, I imagine willing to admit that there is great comfort in street cleanliness; and all will admit, with equal readiness, the sanitary and economical advantages attendant upon a completely organised system for maintaining such a state of things, when a few facts relating to it are mentioned.

The greater proportion of the dirt removed from the surface of paved streets consists of horse manure; and the quantity of it is somewhat startling, for it is estimated that it amounts, in London, to no less than 200,000 tons a-year. Between the Quadrant in Regent-street and Oxford-street, a distauce of a third of a-mile, three loads of dirt, almost all horse manure (for the surface was wooden pavement), are on an average removed daily. Much of this under ordinary circumstances dries and is pulverised, and, with the common mud, is carried into houses as dust, and soils clothes and furniture, so tbat linen is dirtied at least twice as fast as in the country districts, and the population is therefore subjected to a double expense to obtain the same amonnt of cleanliness. The odour arising from the surface evaporation of the streets when they are wet is chiefly from horsedung; and susceptible persons often feel this evaporation, after a shower, to be highly oppressive. Slight showers only wet the mud, and on ill-paved streets occasion a considerable amount of this insalubrious surface evaporation.

The most perfect mode of cleansing the surface of a street, is by applying a strong jet of water from a stand-cock, or a fireengine: it cleanses everything away, and sweeps it into the nearest sewer, leaving the pavement as clean as it would have been after a thunder shower; and with sufficient pressure, this cleansing is effected in one-third the time and at one-third the usual expense of the scavengers labour of sweeping the surface with brooms.

With respect to scavengering, Dr. Sutherland says:-_"In those narrow filthy closes, and similar close localities, which exist more or less in all large towns, it would, in my opinion, be of very little good, in a sanitary point of view, to endeavour to keep them clean by sureeping. The very process may at times do mischief, for at the best it involves the smearing of the surface with unwholesome and offensive matters, so as to expuse a Iarger evaporating surface to the atmosphere. I have often found (he says) the air in these places insupportably offensive after the work of the scavenger was completed. Not unfrequently the paving is in a very defective state; and the broken surface adds materially to the local unhealthiness by the accumulated filth which it harbours. In such cases scavengering is of no use; but it is precisely in these that surface-washing is most effectual: it cleanses away everything." But Dr. Sutherland is not an engineer, or he would have added, pavement as well as filth, for the jet of water undermining the loose stones would soon have left it without any organised covering. A good pavement is even more essential to the perfect operation of wushing than to the sweeping of the streets. Without a proper surface, atreets cannot be kept clean by any process; and the good of putting a hard surface upon a roadway is strongly shown by what is said by Mr. Evans, one of the pavement commissioners of St. Olave's Union. A dirty court had been paved: It had only been done a fortnight, and this gentleman states, "After it was done, I saw, 1 think, eighty children playing there, from about two years old up to nine; before, they could not play on account of the water which was stagnated in the channels. It struck me as a father and a grandfather; I said, 'Dear me, if we never did more good than this we ought to be very glad.' I wish to impress strongly upon the minds of any gentlemen who have the power of carrying out improvements, only to consider the eighty children, and their mothers at the wash-tub."

Now, s few words as to the most effecturl, and, in the end, most economical mode of paving; and your Society, by promoting good pavements, will find that this is not the least inmportant of its objects.

It is a very palpable, though a common error, to consider that
road the cheapest which costs the least in direct expenditure merely. If, however, this so-called cheapest road causes waste of horse-power, undue wear and tear of horses and vehicles, loss of time by being unfit for rapid transit, and also occasions loss to the inhabitants by filling their dwellings with dust and covering their clothes with dirt, it is evident that such a road, however apparently cheap, is ultimately really very dear. There is an apparent diversity of interest between those who use, and those who pay for our public streets, as the principal loss from bad roads falls directly upon those who keep or employ horses and carriages, while the expense of road repairs falls upon the inhabitants generally. A little consideration, however, will show that this diversity of interest is much more apparent than real, if it is the interest of all that there should be easy, safe, and cheap means of transit through the public streets; and any increase in the cost of transit is a source of indirect expense, even to those who have no horses of their own, as it must add to the cost of everything carried through the streets, and of all hired vehicles, and of all the numberless conveniences which accompany residence in a large town. It must also be remembered that it is very wasteful to allow a road to go out of repair, since it is less costly to keep a road up than to restore it. In no instance is the truth of the old adage - "a stitch in time saves nine" - more apparent. It is quite evident that that roadway is best for the owner or user of a horse or vehicle which can be travelled over most easily, safely, quickly, and cheaply; and that ease, safety, speed, and economy in use, are to be obtained by having the road firm, even, smooth (without being slippery), and perfectly free from mud or dust, or any form of unattached materials. It is also evident that the same qualities will render the roadway most free from noise, dirt, and dust-the three great causes of annoyance and injury to the inhabitants of all ordinary streets.

The only question which remains to be consilered is, whether the advantages of good streets to the inhabitants generally, are worth their cost? If the question had to be decided in accordance with the interests of the users and owners of houses merely, no doubt whatever would be entertained.

Of whatever nature the surface of a road is to be, it is easential that its foundation should be of firm material, well consolidated, and perfectly drained; if not, the crust becomes loosened and destroyed, the road is rough and uneven, and wears into holes and ruts. Having obtained a good foundation, the next point is to cover it with a hard, compact crust, impervious to water, and laid to a proper crose-section. Now, of what nature must be this crust to be efficient? Mr. Pigott Smith, the intelJigent surveyor to the commissioners of the Birmingham Street Act says, that when properly constructed and managed, and well water-cleansed, in conjunction with the sweeping machines of Mr. Whitworth, and kept watered, macadamised roads are the best adapted for the streets of a large town of any description of road yet tried. I however very much doubt the correctness of this assertion. 1 must, however, in candour, allow that a fair chance is rarely if ever given to broken stone roads in towns. It seems to be quite forgotten that heavy traffic necessitates proportionately frequent repairs. Perfection in the first formation of the road, and constant, never-ceasing care in maintaining the surface, are both essential to its permunent value. Under no circumstances must any imperfection of surface be allowed. If a hollow be not immediately repaired, it very quickly extends over the surface. All loose stones must be carefully picked off, as every loose stone passed over by heavily laden carriages, if not ground to powder, breaks the crust of the road. If water be permitted to lodge on the surface, it will cause great mischief. The neglect of these essential precautions render a road formed of broken stones very expensive; and I only remember one instance of such a system of management that would make labourers sufficiently attentive to do all these things, and do them well, if the surface were exposed to the constant and great wear and tear due from the traffic over the streets of a busy town. The instance to which I allude is found at Birmingham; it is done, and done well, in that town. For the outskirts, however, macadamised roads are admirable, provided they are well managed. The usual practice of allowing them to be constantly muddy in wet, and dusty in dry weather, and get thoroughly out of repair, and then to heap upon them broken stones for the wheeled traffic to grind down, is ahominable. The roads in the parish in which 1 reside are thus vilely inanaged. I pay my rates with grumbling, for they are heavy, and might be much less
with better roads; and I abuse the road surveyor with right good will. Thin coatings of broken stones or broken gravel should be laid on to every part of the road directly it requires it. The surface should be kept watered in dry weather, and swept in wet weather; the scraper is a great enemy to a broken stone road. A road which is perfectly dry loses its tenacity, and the surface grinds into dust; but watering without sweeping merely changes one nuisance into another-dust into mud. I am not sanguine enough to expect that a country road can be kept up with the care of one in the immediate vicinity of a town, for the cost would fall too heavily on the inhabitants; but they may be kept in repair with more judgment. I submit that this case comes under the head of improcement, such as is contemplated by your Society.

The chief matter under consideration, however, is street pavement; and I will beg to lay before you a method of forming your street surfaces, which I consider all but perfect. The system has been called "Euston paving," from its having been first adopted at the London terminus of the NorthWestern Railway, but should be called "Birmingham pavement," for it was introduced from that town by the able town surveyor, Mr. Pigott Smith. The manner in which this paving is laid may be simply described.
The ground is first removed to a depth of 16 inches below the intended level of the pavement, the foundation heing shaped to the convexity of the intended surface of the road, which may be very small indeed. A layer of strong gravel, 4 inches thick, is then spread over the surfice and compressed, by being rammed equally throughout; after which, another layer of 4 inches of gravel, mixed with A small quantity of chalk or hoggin, is laid on, the ramming being continued as before; this is followed by the last layer, also 4 inches thick, of the same material, but of a finer quality; the whole mass is then compressed by the rammer into the smallest possible space. Thus the surface of the foundation is sufficiently perfect in all its parts, both in shape and solidity, and is ready to receive the pavement. The stones used should be Mount Sorrel granite, from 3 to 4 inches deep, 3 inches wide, and averaging 4 inches in length, neatly dressed and squared. These stones are laid on a bed of fine sand 1 inch in depth, spread over the sarface, and are carefully and closely jointed in the laying, so as not to allow any single stone to rock in its bed. The rammer is then applied over the whole, each stone receiving its blow in rotation; and this is repeated again and again, until no further impression can possibly be made upon it. The operation of ramming having been completed, a small quantity of screened gravel is sprinkled over the surface, and the street is opened. The action of the first water upon it fills-in the interstices at the corner joints of the stones, leaving the foundation impervious to wet, and thereby securing perfect cohesion.

The street paving of many large towns, the metropolis in particular, has been for years carried on under three systemsbad, very bad, and middling. The general method is to employ granite, in blocks of from 8 inches to 14 inches long, 6 inches to 9 inches wide, and 9 inches deep. These are merely laid in rows upon the subsoil, and rarely upon concrete; and, after the usual practice of grouting and ramming, the street is thrown open for the traffic, which is expected to perform the last duty of the pavior, and to settle each stone upon its bed, for the large wooden rammer is altogether insufficient for this purpose, as may be observed from the irregular settlement of the blocks, caused by the rapid concussions from the carriage-wheels immediately after the traffic has been restored. The results produced are great noise as the carriages pass over, imperfect foothold for the horses, and risk to the axletrees and springs from the jolting; and it also totally precludes any chance of the road being kept in a systematic state of cleanliness.

The Birmingham paving is distinguished by the extreme quiet it affords under busy traffic, by the numerous joints affording a very perfect foothold for the horse, and by the traction being less than on the best macadamised road. The cleansing of this pavement is also another important consideration. The arch of the road abutting upon the kerbstone on each side, enables "Whitworth's sweeping machines" to brush off effectually every particle of dirt from kerb to kerb, this insuring the cleanliness of the road at all seasons of the year; whereas in all those roadways where the side channels are formed in deep hollows, which is usually the case, this valuable machine is found comparatively useless beyond the centre portion of the road. The cost of this Birmingham paving is much less
than the ordinary kind, the former being 9s., the latter 158. per equare yard. The average cost of maintenance, and including the first cost, wnuld not amount to more than 1 s .6 d . per yard per annum for ten years. After a trial of this paving at the Euston Station for twelve years, no perceptible abrasion had taken place on the angles of the stones, nor did the surface present any appearance of wear.

Unevenness in ordinary paving frequently arises from the constant alterations made by the gas and water companies, who take up the street, and, not having any interest in the surface, lay it down again very roughly, or as roughly as they are allowed to do; and it appears to be the general feeling now, chat no perfect state of surface, either as to smoothness or cleanliness, can be maintained until all the public bodies, such as gas and water companies, paving and sewer commissioners, be united and directed by one interest. The energies of a Society such as this, directed to the provision of good paving and a clean street surface, will, there can be no question, gain macb; and when once a general perfection is reached, more will be done to keep up the good state of things. The voice of a large section of the community is respected every where.

Having clean streets, the inhabitants of Leeds will be freed from two evils-dust in dry, and mud in wet weather; but there is a third enemy to cleanliness of house and of person, which is more difficult to be subdued: I mean smoke. Now, smoke is a nuisance however it may be produced, whether in the furnace of a manufacturer or the fireplace of a private house; and in both every particle of smoke made is so mucb fuel unburnt-i. e. lost. Ever since fires from bituminous fuel were introduced, a portion of it (cometimes thirty per cent.), in the shape of smoke and carbonic oxide has been allowed to escape up the chimney. For a long time now, the cry has been, "Consume your smoke:" the public admit the advantage that would accrue to them by doing 80, but seen to despair of the possibility-or why has the nuisance continued? Furnaces have been contrived which spread the frest coal upon the blazing mass of fire so evenly and thinly, that all the bituminous matter is converted into inflammable ges, be products of the combustion of which alone escape into the atmosphere; but all these furnaces are complicated, and thus liable to get out of order; they are expensive, and therefore not of universal application. It is true, one patentee, Mr. Chanter, offers to alter furnaces of any description, by his being paid the amount of saving in fuel for the first four years; still, he has not met with very much encouragement.

What, then, is to be done to the furnace to render it capable of consuming its own smoke? Shall I surprise you when I say, nothing? for, with few exceptions, the furnaces are capable of doing so; the exceptions are, when the grate-bar surface is short between the door and the bridge, and when the doors are so illfitted or so disproportionstely large tbat much cold air passes ocer instead of through it. Now, we will suppose the length of the fire to be 3 ft .6 in ., and this to be in a glowing heat, with little flame, and no smoke passing off from it, -this is the time for the furnace to be fed. The usual practice is to throw the coal on until it covers the fire; the portions of coal in contact with the fire become ignited and their gases are inflamed, but that coal which is not in contact with the fire is not sufficiently heated to burn completely, yet so much so, that the most volatile of its elements are driven off, and the fire being smothered no flame can ignite them, but they pass off in dense black smoke. You will constantly have observed that clouds of this volatile fuel will suddenly issue from the head of a chimney-shaft, and that it will continue to issue for some time, gradually growing lews in volume, until it disappears; this sudden appearance of smoke is caused by feeding the fire, and its disappearance is when the fresh fuel becomes incandespent.

The smoke, then, is produced by smothering the fire: do not mother it, and the nuisance will not arise. The fire should be fed thus. With a broad, hoo-shaped tool, rake back the front portion of the fre, and in the space thus left vacant deposit the fresh coal, in small quantities and rather frequently, closing the fire dour directly. The smoke that would pass off from this new fuel would have to pass over the hot surface of the old fire, and it would be converted into flame before it reached the bridge, and no smoke would issue from the chimney. When the fire is fint lighted there is no hot surface to perform this operation, and by this method there would be some smoke arise until the furnace is well in heat, but the quantity would be insignificant and its duration short. The more highly bituminous the coal used, the more care would be required in firing; with Welsh
coal there is no difficulty. I have crossed the Atlantic in a steamer consuming from 26 to 30 tons of Welsh coal daily, without seeing any smoke. I made the firemen feed their fires in the way I have described; I at first met with opposition and difficulty, but the firemen soon found that their work was lessened instead of increased; and the engineers also assisted me, finding their steam kept up more uniformly. The saving effected was at least 100 tons for the voyage of twenty days.

As 1 have already said, with few exceptions every furnace may be so used as not to smoke; and I may add, that few may not be made to smoke: the care is in instructing the fireman what to do, and in inducing him to do it. We usually succeed in making men do as we desire, by rendering their duty and their interest identical. Acting thus, s master manufacturer in Manchester, after trying without benefit several infallible patents, succeeded in preventing smoke from his furnace by simply rewarding the fireman, in the shape of a small addition to his wages for the additional uttention exacted; and there is but little doubt, that if masters would allow their servants to participate in the profits arising from the saving of fuel, that both parties would be benefitted by the arrangement, and the nuisance of smoke prevented.

With the saving of fuel the public generally have no direct concern, but the nuisance of smoke is a very serious mischief both to individuals and society: to individuals, by increasing dirt, by obscuring light, and checking ventilation by rendering persons unwilling to open their windows; sociably, by driving out of manufacturing towns all who can afford to live elsewhere, and so depriving the society of the town of many of its most intelligent and refined members.

Against such a mischief the public ought to be protected, and the law ought to compel a diminution of the nuisance to the smallest practicable amount. What hardship would there be in rendering every one liable to a moderate fine who carried on his business in such a manner as to inflict more nuisance on his neighbours than was unavoidable? What more just mode of adjudging this than to assume that if A's furnace made more smoke than B's, both being used for a like purpose, Λ made more smoke tban was necessary: if B docs nake less smoke than A, surely A might and ought do so, and if necessary ought to be made to do so. Let then the authorities proceed resolutely to find in succession the owner of the chimney that emitted the greatest quantity of smoke; there would always be a worst until all were cured. Whip up the last horse till all get to their proper speed, and very quickly there would be little cause to complain of Leeds as a particularly smoky town: and the masters, if they would confess, Fould acknowledge that such a law would be of great benefit to them.

Though most furnaces may be made, by proper and careful firing, not to smoke, yet I would not be understood as saying that with all this may be accomplished with equal ease and economy; the great fault of steam-builer furnaces, especially those in the coal districts, is that the grate-bar surface is too smallparticularly too short-to admit of that quiet combustion which is necessary for burning the fuel completely and obtaining for use the greatest possible amount of heat. It has been suggested that the most efficacious way of remedying that defect would be by putting a duty upon coal, so as to render economy of fuel a matter of as much importance in Yorkshire as it is in Cornwall, where they cannot afford to allow thousands of tons of carbon and carbonic oxide to escape unburnt. This saving is no exaggeration. I saved 100 tons of coal in twenty days, with engines of 500 -horse power, by causing complete combustion of fuel: how much, think you, might be saved by doing the same with all the furnaces of Yorkshire?

As the efficacy of a tax on coals is not likely to be tried, and certainly will not be recommended by me, I would suggest that the same good might be accomplished without the evils, by simply trying how the greatest possible effect may be got with the least quantity of fuel, and insisting then that it shall be got. The amount of heat obtained is easily calculated from the quantity of water evaporated: to ascertain this quantity, nothing but a simple water-meter is needed, and, in the absence of a better, two barrels, or other veasels of known capacity may be got, frons which the feed might be drawn alteraately, one to be filling whilst the other is emptying. Let such a plan be adopted, and smoke would quickly cease, as it would be proved to be a very expensive thing.

There are so many successful methods, when properly used, of avoiding smoke, that it may be invidious to mention any in
particular. There are, however, two that may be named, not because they prevent smoke more perfectly than others, but because a good method of feeding the fire has been adopted, Which has some attendant advantages: these are Jukes's and Hall's. Mr. Jukes uses jointed bars, which form a gort of endleas chain, made to pass slowly over rollers fixed before and behind the fire: this carries the fuel gradually along, the consumed ashes falling over the back roller into the ash-pit. Mr. Hall employs bars which, by an advancing and receding motion, slowly push the fuel from a hopper in front towards the ash-pit behind. Before the fuel reaches the back of the furnace its volatile parts have been distilled, and these passing over the incandescent oarbon are burned as bright flame.

It is clear that by either of these plans it would be easy so to mensure the speed, as to pass the coal into the ash-pit before it is consumed, but after all matter that would produce smoke in a common fire has been driven off. Such coke would be very suitable for household use, and ought to be sold at a low price, as the manufacturer would have received the full value of the gaseous parts, which are wasted when coke is made in an oven.

Domestic fires may however be made to consume their uwn smoke, and I should be glad to hear of some member of this Society trying it. The grate would require to be altered. The fuel must be confined in a cage, with bars at the top as well as at the bottom and front; and this cage must be hung upon a centre, so that it may be turned bottom up. A grate of this description was recommended by Dr. Franklin, and used by him successfully. The process would be this: when the fire required replenishing, turn the cage, open the bottom (which must be provided with hinges for that purpose), place the new coals upon those already burning, close the bottom, and turn the grate or cage down again; the smoke from the new coal would have to pass through the ignited fuel above it, and would be consumed.

The act for the prevention in the metropolis of smoke from furnaces used for the purposes of manufacture, comes into operation on the 1st of January; the possibility of obeying this most wise measure will then be proved. I mentioned that smoke vas an enemy to cleanliness: to this truism I must add, that it is likewise direct enemy to health, by irritating the lungs of those who inhale it constantly. The chief constituents of coal smoke, or soot, are carbon, sulphate of ammonia, and resin. The insoluble carbon affects the lungs mechanically, and the sulphate of ammonia chemically; but it acts still more injurionsly, by deterring cleanly housekeepers from opening their windows as frequently as is necessary for free change of nir.

We will presume now that we have obtained clean streets and clear air; and having done away with the enemies of cleanliness, let us now consider the advantages to be gained by the rich and poor alike, by affording to the workman (to the representatives of the sinews of trade and manufacture) comfortable homes. Our great and good. Prince has set us an example which all must be proud to follow; and your Society, recognising the promotion of such works as model lodging-houses, public baths and wash-houses, and parks for recreation and exercise, shows a benevolent and wise spirit, which, if it meet with its reward, will be responded to by all who recognise a poor honest man as part of God's creation. We all know the -I am afraid I must gay-usual condition of the dwellings of the working classes. The well-to-do mechanic strives, by the internal cleanliness of his house, for comfort; but he is often defeated by the had arrangements for drainage, by damp arising from the walle-especially when the subsoil is not naturally dry -by the insufficient supply of water, and by the want of ventilation; and this last want is especially felt in the sleepingrooms where often there is no fireplace, and the window and door always closed. Every adult spoils about ten cubic feet of air each minute; therefore the sleeping-room should be the first to be ventilated, as in the daytime the inmates may be much in the open air. The well-w-do mechanic, then, has difficulties to contend with; but what must he said concerning the habitations of the lower orders- the completaly ignorant and poorest classes-where several families occupy one room whose cubic contents may not exceed 1000 feet, and which is covered from floor to ceiling with antique dirt, into which light is scantily admitted, and water never finds its way? The effects of such dwellings upon the health and moral cundition of such people are too well known; and I am glad to eacape from the necessity of detailing them.

It has been said by soms who have been commissioned to report upon the condition of the poor, that it is the tenant, and not the tenement, that makes the unwholesome dwelling. If such places exist not, they will make them. Place them in an airy habitation, thef will turn it into a noisome hovel. If they have drains, they will allow them to hecome obstructed; if free ventilation, they will close it up; if the clearest sunshine, they will shut it out by negligence and filth. I cannot believe thisat all events, it is the exception, and not the rule; and if euch be the case at all, does it not arise from perfect ignorance of a better state of things? for when, until very lately, have societies been found, having for their object the amelioration of such a class? Such societies are now thickly forming, and we shall soon see if such statements be true. But granting that it be true in part, it certainly is not true generally, still lem universally. What, for instance, an be a more striking contradiction of this assertion than the efforts which every one must have observed made, under the most discouraging circumstances, by the poor inhabitants of the dirtiest streets and courts, to preserve the cleanliness and tidiness of their houses? Who has not seen the poor man's wife scrubbing away on her knees to make her door-step clean in the morning, though she must know, from repeated experience, that but for a short time can this respectability of appearance be maintained? - and who can doubt, when there is this "pursuit of cleanliness under difficulties," that such persons would not appreciate and profis by the facilities they ought to have? But we need not speculate on the point: the experiment has been tried, and has succeeded. When people find it possible to keep their houses in a state of comfort they had not before experienced, they make the effort. A higher standard of feeling gets introduced among them, their late condition becomes disgusting and unbearable, and very quickly such a change is apparent that it is hard to believe that it is the same population, that were before 80 debased and miserable.

Concerning public thoroughfares, and the sanitary ends they should be made to answer. Afstreets are originally formed as passages of communication, it is too common to regard them as such only. This is a great mistake: their office as the principal channels for fresh air is quite as important, as it is evident that if the air in them be not pure and fresh, that in the houses cannot be so. The greatest care should therefore be taken in laying-out new streets, that the new buildings should as little as possible impede the passage of the air to the centre of the town, as well as that the new thoroughfares should be ns convenient as possible to the largest majority of those who will have to use them. In general, both these objects will be attainable by the same means; but not always, for sometimes a tall building may be so placed as very seriously to impede the free passage of the air, though it may be unimportant us an impediment to traffic. Un both these accounts, it is incumbent upon the governing authority of a town to obtain powers for regulating the general arrangement of future increments of that town; otherwise the growth of auburbs will be unnecessarily injurious to the centre.

In considering the value of proposed new openings in the centre of a town, their value as ventilators, as well as facilities for traffic, must be taken into accuunt; and every opportunity should be taken advantuge of for removing impediments to both. And let us never forget that, important as trade is, health is still more so, and deserves the first consideration.

In almost all towns, there are numerous streets through Which it is rarely, if ever, necessary that a cart should pass, as they lead only to the houses in the streets themselves. If such etreets, instead of being paved, were flugged, and used only for foot-passengers, they woyld be much cleaner and drier, and much more suitable, and safer play-places for the numerous children with which such places always abound. The provision of ase play-places close to their parents dwelling, would, little as it is thought of, be among the greatest blesxings that could be conferred upon young children especially. The excesgive mortality among such in a town is most lamentable, and one of its great causes (next after foul air, the great cause) is the want of active bodily exercise; and so long as no play place but the dirty and dangerous street is provided, most town children must be debarred from that constant exercise for which nature so evidently intends them. From what I have said concerning ventilation, it will be palpable that no courta with closed entrances should be allowed to exist. From evidence, it appears that they should be at least 18 feet wide, or
wider if the houses are lofty; and the ends, if required to be fenced off, should be so by an open railing, which would obstruct the passage of the air but little.
Your Society contenplates the promotion of improved cottage dwellings; such efforts, I rejoice to sar, are increasing fast. Model lodging-houses in towns, and rural dwellings in the agricultural districts are becoming numerous: both are needed. In towns, new streets are built, new thoroughfares opened, which intersect rookeries and nests of fever, which must be removed that the new locality may be thriving; and where are the inhabitants of such to find new dwellings? Must they go still further to crowd the as yet undisturbed courts and alleys? They must if suitable abodes be not provided for them; and they are being provided. All that science and practical experience can do to render such new habitations cheap, cleanly, and durable, is being done. Such erections were first taken up as an experiment; hence they were called model dwellings. Much perseveiance on the part of improvers was necessary in the first instance: they were oljected to at first by the very people for Whom they were designed. The hollow brick, the cleanly and simple pieces of apparatus essential to their entire success were found expensive; not so now huwever, and such buildings will go on increasing. And why? Because they are found to be a species of charity which yields to the giver a reward in this world; in other words, they are found to pay.

One great secret of the growing favour of improcement projects, for the amelioration of the condition of the working classea, probally lies in the fact that these projects are discovered to be self-supporting, and not merely eleemosynary, some even yielding a large return by way of interest on capital expended. Charity is a blessed thing; but if the men who endeavour to provide the poor with better houses, and with more extended facilities for comfort, health, and recreation, make their efforts successful in a pecuniary sense, they do a far greater amount of good than any mere act of charity could accomplish. They relieve themselves from the invidious position of administering ostentatious benevolence, and at the same time place the poor upon that footing of equality which is most consistent with mutual self-respect, and permanent good feeling. When public baths and wash-houses are found to pay their cost, and to answer as mercantile speculations; when garden allotments are found to be attainable without loss to those who originate and conduct them, and with pecuniary profit to those who cultivate them; and when it is discovered by capitalists that decent dwellinge for the people, built with a proper regard both to amenity and utility, and with all the appliances of modern science and discovery, can be constructed so as to pay a very fuir per centage on the sums invested in them, a practical victory has been gained, of a higher amount of benefit than could accrue from any acts of pure philanthropy, however extensive. This is our present position; and the abolition of the window-tax, which formerly prevented the outlay of money upon blocks of buildings for the working classes, may be expected, in due time, to lead to a large increase in the number of such ealifices in all our great towns. But while rejoicing at this prospect, we would ask whether nothing is to be done for the rural districts? The agricultural labourers of England lie under peculiar disadvantages in this respect. Too often, by the operation of the law of settlement, the owners of the soil, to rid themselves of the support of paupers, demolish cottages and huts, and foree the labourers to reside beyond the boundaries of their domains or their parish; in some instances, as far as from 4 to 6 miles from the scene of their daily toil. No new homes are provided for these people, who often cluster too thickly for health or decency in buildings already overcrowded, or betake thernselves to the nearest town, to be a burden upon the shopkeepers, and to congregate in miasmatic and pestilent places, where the cholera is their visitant, and typhus their constant companion.

I fear I have detained my hearers too long, and I have not found it in my power to treat the subjects of my lecture in so interesting a manner as I should have desired. My atudies are matters of fact, hard and dry; and I have not learned those flowers of speech which go so fur to bind the attention of an andience, and take so much from the irksomeness of the task of listening. That you have lent me your ears so patiently, I beg to thank you, and conclude with wishing the Society for the Promution of Improvement in this town all the success it deserves.

METROPOLITAN WATER SUPPLY.

Report to the General Board of Health, by Edwabd Ceesy, Esq. C.E., on the Works of the Water Companies for Supplying the Metropolis woith Water.
Mr Lords and Gentlemen-In conformity with your instructions, I have visited the establishmente of the veveral waterwork companies of the metropolis, and examined their mode of supply, the extent of their reservoin and filter beds, the power of their enginen, pumps, \&e. The river Thames affords water supply to five of the companies, and the highest point from which it will be taken is at Thames Ditton. The quantity of water dowing in the river at Long Ditton on the 16th October 1847, was very aceurately observed by Mr. James Simpton, who has afforded me the following information. The length of the river over which the velocity was taken was 330 feet; the Iverage rectional ares of the river 1120 saperficial feet ; the bydraulic mean depth 3 ft . 4 in ; the mean velocity calculated from fall, and the hydrantic mean depth, 10.98 inches per second; surface velocity from the average of 30 experiments with floats, 14.24 inches per second; mean velocity 10.97 inches, or -91 feet per second: $1120 \times 91=1019$ cabic feet per second. The volume of water, therefore, passing down the Thames at Ditton in a dry summer ceason would amount in the 24 hours to $1019 \times 86,400$ seconds $=88,041,600$ cubic feat, upwards of $530,000,000$ gallons daily. And supposing the water at the time these trials were made to be as the watormen stated, lower than bad been known for 40 gears, the average annual quantity, pasing canoot be estimated at less than $193,450,000,000$ of gallons annally. Prom the atatement given in by the reveral water companies, the following is pumped from the Thamei annually:-

Asanming the five companiea annually pamp from the Thamea the above quantity, and $193,4: 50,000,000$ of gallons to be that which ennuelly dowe pat Thames Ditton, it appeara that nearly a twenty.fifth part is required by the companies for distribution throughoat their five several districts of the metropolis.

> If we add the above quantlty of
> 7,262,778,612
> That afforded by the New River
> 2,109,339,311
> East London from the Lea . . : 3,222,753,876
> Hampstead (probably)
> 100,000,000
> 12,694,871,799

And supposing the whole taken from the Thames at that point, then more than a fifeenth of the Fhole volume would be required.
The Gaand Junction Watarworis have their chief pumping eatablichment a little above Kew.bridge, on the north side of the river Thames.
Engine Power.-The engines are six in number at the Brentford works:

There are seven Cornish boilers, 33 ft . 3 in . long, 6 ft .6 in . diameter inside, with an internal tube 4 feet in diameter, which are applicable to the working of the whole or in part; 3170 tons of coal were consumed here last year. The $\mathbf{3 0 0}$-horse engine makes $7 \boldsymbol{7}$ to 11 atrokes per minute ; hut it was working, when I saw it, 8 strokes per minute, each stroke lifting 380 gallons of water. The 130 -horse engine vaies from 11 to 14 atrokea per minute, and gives 150 gallons to a stroke, or 1650 in a minute. The 40 -horse engines gire 6 stroken a minute, and produce 520 gallons a minute. The two engines of 130 -borse power made by Boulton and Watt, are capable of lifting 190 gallons each per stroke, after allowance for waste. The 40 horse, which is upon the Cornish principle, and called the Filter engine, will lift 520 gallons per stroke, and make 11 or 12 in a minate. The chimney is circular on the plan, 3 ft .8 in . internal diameter at the top, and 7 feet at the bottom; it is 131 feet in beight from the surface of the pavement of the engine-house, and 143 ft .8 i above Trinity high-water mark. There are three air-veasels, one of Which is atteched to Maudslay's engine; it is 5 feet in diameter, 14 feet sbove the relieving pipe of the pump, and uavally contains from 10 to 12 fert of compressed air when the engine is at work. The air-vessel aftached to Boulton and Watt's engine is 5 feet in diameter, 13 ft .6 in . above the delivery pipe of the pump, and usually contains from 8 to 10 feet of compressed air when the engines are working. The other airvessel is attached to the Grand Junction engine; it is 5 ff .2 in . in
diameter. 14 ft .8 in . above the delivery pipe of the pump, and usually contains from 8 to 10 feet of compressed air when the engine is working. The whole of these air-ressels are supplied with gir by means of small pumps attached to and worked hy the different engines. The stand-pipe is at the top 218 feet above Trinity bigh-water mark; it has a cistern or reservoir at the sumnit 11 feet deep and 4 ft .6 in . diameter. The larger middle or ascending pipe is 5 feet diameter at the bottom and 3 feet at the top; it is made of cast-iron. After the water has reached the cistern at the summit, it descends by four other cast-iron pipes, each 12 inches in diameter, the area of the ascending columin being four times as much as the whole of thase by which the water descends. The whole of the water is pumped up to the cistern at the summit of the pipe, descendi, and then passes off by an iron main 30 inches in diameter to Polandstreet. Oxford-street, a distance of six miles.

Supply.-The water is taken from the Thames, on tbe Surrey side of the river, 360 yards above Kew-bridge; after passing through an irnn pipe laid down in the bed of the river, it is received into a well lined with brick, 8 feet diameter and ahout 22 feet in depth; from thence it is pumped into a depositing reservoir of rather an irregular form, the area of which, as near as could he olitained, is 130,491 superficial feet at the surface, and the depth about 10 ft . 6 in., the banks heing 21 feet above the level of Trinity high-water mark. The filter-hed adjoining is 473 feet by 148 feet, and contains an area of 70,078 superficial feet. The total depth, from the top of the bank to the top of the sand, is 8 ft .9 in . The water passed into this varies in depth as it is required, the depth being at times only 3 feet, at others 7 feet, ahove the surface of the sand. Both the reservoir and filter-bed bare been partly sunk below the natural lesel of the soil, and the embankments formed of the earth removed. The insides of the slopes are puddled with clay, and a lining of concrete, as well as a brick pavement, have been intraduced, and cover the whole of the portions which receive the water. The filter-bed is composed of gravel and sand laid alternately to the entire depth of 4 feet, varying in coarseness as it ascends, the top being a layer 1 ft .6 in . in depth of fine sand. The filter-bed is frequently cleaned out by removing a few inches of the fine sand, which is put into two wonden frames, each holding ahout two cubic yards. These boxes or frames have an iron-plate, 6 inches above the wooden bottom, which is perforated with small holes five to a square inch, or about the eighth of an inch in diameter. Water is forced into the apace between the wooden and iron bottom, when all the matter held in the sand is washed to the surface and removed by hand. In twenty minutes or half an hour, the whole is so thoroughly cleansed that it is fit to be again placed in the filter-bed. A culvert of hrick, 3 feet in width and 2 ft .6 in . in depth, passes off the water from the filter to the pumping-well. The reservoir at Paddington, which is about 89 feet above the level of Trinity high-water mark, is lined with brick, and the bottom coated with gravel; it will hold $\mathbf{3 , 4 0 0 , 0 0 0}$ gallons. At Campden-hill is another similar reservoir, the contents of which are $6,000,000$ gallons; the two latter are used for stores only. The pipes for distribution, all of iron, are divided into trunk-mains, branch-mains, and side-services. The first vary in their internal diameter from 30 inchea to 24 inches; the second from 12 inches to 6 inches, and the latter, or sideservices, from 6 inches to 3 iaches. The engines emploged to puinp the water for distrihution are the four first enumerated, and the three that were at work may thus have their power summed up:-

Then 6340 gallons $\times 1440$ minutes $-9.129,600$, or $9,000,000$ of gallons in 24 hours, wonld be the quantity that could be lifted; but it does not appear necessary, to produce the monthly supply, which may be taken at the very utmost as $135,000,000$, that the engines thould work more than half their time; and it is generaily atated, that this company has double the engine power it employs. $1,289,184,930 \mathrm{gallons}$ of water are annually raised about 230 feet in height; or, at 10 lb , to the gallon, we may say $12,891,849,300 \mathrm{lb}$. is raised to that level; and considering the statement of 1 lb . of coal as sufficient to raise one million pounds of evater one foot high, we require here a sufficient quantity to lift $2,965,125,369,000 \mathrm{lb}$. to that height, we ought to assume that $2,965,125 \mathrm{lh}$. of coal would be the annual consumption, which is equivalent to about 1323 tons only. But the actual quantity of coals consumed to do that work lasa been 3170 tons for the year. The difference probably may be accounted for from the pumpings from the reservoir to the filter, which is a frequent operation; 2283l. 4s. 11d. has been the average cost of the coals, or 2350 gallons are raised 230 feet high for one pennyworth of coal. I have had no means of accurately mean suring the number of yards of mains, hut, from the information giren, believe that there are 16,060 yards of iron main, varying from 30 inches to 24 inches, internal diameter; $26,095 \ddagger$ yards of hranch-main, varying from 12 to 6 inches, internal diameter; and 98,8821 yards of sideservice, varying from 6 inches to 3 inches, internal diemeter. The highest service afforded by the company is 150 feet above bigh-water maik, and
the lowest about 12 feet. The average current expenses annually appear to he for the last seven gears $12,537 \mathrm{ll} .7 \mathrm{~s}$. 6 d ., and the quantity of water raised and supplied last year, $1,289,184,930$ gallons, which gives 1000 gallona for $21 d$. gearly. ds far as my observations have extended, I have no reason to douht the accuracy of the evidence which has been given upon the quality of the water, or the atatements with regard to revenue or supply.

Tre Southware and Vauxball Company take their water by a galvanised iron-pipe 4 feet in dianueter, which is laid to the full current of the river, near the Red House, Battersea; a sluice lets the water to the pumps.

Engine Power. -There are at the works on the Surrey side of the river four steam-engines:

No. 1 has a cylinder 64 inches in diameter, a stroke of 10 ft .6 in .; pumps, 32 inches in diameter, a stroke of 10 feet : Corniab.
No. 2 has a cylinder 64 inches ; stroke 11 ft .8 in .; pumps, 33$\}$ inches diameter, with a $10-\mathrm{ft} .6 \mathrm{in}$. stroke: Cornish.
No. 3 has a cylinder 31 inches diameter, with a $6 . f \mathrm{ft}$. 3 in. atroke; pump, 21 inches diameter, with $\mathbf{a} \mathbf{f t} .71 \mathrm{in}$. stroke.
No. 4 has combined cylinders of 24 and 40 inches diameter, with an 8 -feet atroke; pump, 60 inchea diameter, 8 feet stroke.
The power of the four engines is that of $\mathbf{3 5 5}$ horses. After the water of the Thames is admitted into the first reservoir, it then passes into a depositing reservoir; it is then passed into the two filtering reservoirs, from whence a 4-fret iron culvert leads it to the pumpa of the enginehouse, from whence it is forced into the mains for distrihution by two of the engines-viz., one of 50 harse power, and one of 130 -horse power, working over the western stand-pipe through a 20 -inch main; the other ensine of 145 -horse power, works over the eastern stand pipe, through a 27-inch main; the fourth engine lifts the water from the river into the reservoir; it is of 30 -horse power. There are eight Cornish boilers, which on an average burn daily, $17,920 \mathrm{lb}$. of coal, or annually, $6,540,800 \mathrm{lh} . ;$ four of the boilers are 28 feet long, and 5 ft .6 in . in dia. meter; and four, 32 feet long, and 6 ft .6 in . diaweter. There are six stand-pipes of cast-iron, which are 185 feet above Trinity high-water mark. There is one rising-pipe, 30 inches in diameter; one falling-pipe, 30 inches in diameter; one risiug-pipe, 18 inches in diameter; one risingpipe, 4 feet in diameter; two falling-pipes, 2 feet in diameter each : these communicate with the 27 -inch and 20 -inch iron-mains laid for dittribution. The quantity of water pumped over these stand-pipes in 1849, was $2,195,006,370$ gallons; or $21,950,063,700 \mathrm{lb}$. weight lifted 185 feet hy $6,540,800 \mathrm{lh}$. of coal. Supposing one pound of coal can raise one million pounds one foot in height, we require 185 lt , to lift the same quantity 185 feet high ; or to lift the $21,950,000,000 \mathrm{lb} ., 4,050,750 \mathrm{lb}$. of coal only, inatead of $6,540,800 \mathrm{lh}$. The two depositing reaervoirs, when filled, have a depth of 17 feet, and their surface is then 13 ft .6 in . abore high-water mark; they will contain $21,000,000$ gallons of water, and require to be filled nine or ten times during each month. The two filter-beds have an area of 120,000 superficial feet, and contain $21,000,000$ gallons when filled. Taking the average current annual expenses at $11,000 l$. per annum, and the quantity of water at $2,195,006,370$ gallons pumped in the year, it is nut $1 \frac{f}{d}$. for a thousand gallons. The engine power and mains of this company are capable of giving a much larger aupply of water than is at present demanded, and their works at Battersea are admirably arranged.

The Lambeth Waterwores at present draw their supply from the Thames, near Hungerford-bridge, where the present works are eatablished; the water is pumped to brick reservoirs at Brixton and Streat-ham-hill. The reservoirs at Brixton are built of brick, on a clay foundation; their area is about three acret, and they are calculated to contain, when full, 12,150,000 gallons. There is also another reservoir of an acre and a quarter, capable of holding $3,750,000$ gallont, on the other tide of the Brixton-road. The water is filtered through sand and gravel, which is frequently taken out, and cleaned upon floors of paved brick, laid down uear the filters. There are five steam-engines altogether employed:

		$\begin{aligned} & \text { Diameter } \\ & \text { of } \\ & \text { Cyllinders. } \end{aligned}$	$\begin{gathered} \text { 8troke } \\ \text { in } \\ \text { Fret. } \end{gathered}$	$\begin{aligned} & \text { 8trokes } \\ & \text { per } \\ & \text { minute. } \end{aligned}$	Height of Service above Trin. u.w.
One of	120 日	648	8	14	140
"	90	46t	81	12	140
	12	$20 \frac{1}{4}$	3	22	100
Brixton	20	16	3	33	200
Strestham	10	11	28	38	350

The reservairs on Brixton-hill are 110 feet ahove the level of Trinity high-water mark; that at Streatham, 185 feet above the same daturn. After the water has been pumped into the first, the 20 -horse engine pumps it into the reservoir on the opposite side of the roan, where the 10 -horse engine lifts it to the Streatham reservoir: $1,123,200,000 \mathrm{gal}$ lons of water were pumped up during the last year. The average annual expenses are 16,8771 . 168 . 5 d ., and after deducting interest on borrowed money, 2883l. 15s. 8d., the cost for every thousand gallous appears to be ahout 3d. I find no reasou whatever to doubt any portions of the evidence gived in.
 Thames, which is received in two reservoirt, in area about sixteen acres. Here the water remains until it becomes clenr, by depositing what is held in it mechanically. Prom the loweat reservoir, there is a 36 -inch iron pipe laid ander the bed of the Thames to the welle of the pumping eagines at the compeny's worka at Hammeramith.
Begine Power.-The following are the dimensions and powers of the epgines, when working fall apeed, 22 hours out of 24 hoari, to allow two boara to each engine for repain:

Na. 1	$\begin{aligned} & \text { Diamoter } \\ & \text { of } \\ & \text { Cylindere. } \\ & 54 \text { in. } \end{aligned}$	strohe.	Diameter of Pumpt. 20 in	Nominel Ronta 70	$\begin{gathered} \text { Galloss } \\ \text { per } \\ \text { 22 houra. } \\ 1,912,680 \end{gathered}$
No. 2	54	8	20	70	1,912,680
No. 3	64	8	23	105	2,530,440
			Total	245	6,355,800

or $2,319,867,000$ gallons per annam. From Hammeramith, the water is pomped into a reserroir at Kensiugton, which is 111 feet above the level of high-water mart; this is lloed with brick; its contents are $3,436,000$ gallone. Another reservoir lined with brick at Barrow-bill, the contenta of which are $4,752,000$ gallons. Tho higheat service is 207 ft .6 in . above the level of Trinity high-water mark. Taking the average current expeases at 14,095l. 5s. per annam, eich thousand gallons asppliod coste between $1 \nmid d$. and $1 \frac{1}{d} d$. There is ample land for the construction of otber reservoing or for filtering-bed, and the company hat power to deliver a much larger supply if required.

Tay Cerleza Waterwoncs derive their water from the Thames, by as iron main laid scrom the bed of the river, near the Red-honse, Batrerwea. The water is raceived into filtering resorvoirs, being pamped into them at a particalar time of the tide, when the river is most clear. These several itters are irregular in their form ; their area together may be entimated at 90,000 superficial feet ; they are huilt with great care, and on a substruction of brick is laid several conrses of coarse gravel, obells, and asnd, of 8 feet in thicknesa, through which the water is passed previous to being pamped op for delivery. Bvery precaution is taken to cleanse the surface of the water in these filtern ; at each angle is a small apertore, through which a current may be indoced, whicherer the way of the wind ; the seum accumalated can be drawn off, and passed through sewern constracted to receive it.
Eaghee Power.-From the filters the water pasees to the pampe for diatribation, and at present there are flve engines for the parpose, viz.:

Engles.
The 120 п. p.

20 E.P.	65 in.
65	50
36	31
75	54
24	27

Length
ol
Btrake.
84 ft.
8
6
8
4
stroket
per
mlote.
$13 \pm$
14
13
18
27
Meximam
Hegbs of
8errice.
137 ft
157
106
32
32

The two last pamp ap the river water into the fltern, the three first pump for diatribation. $1438,458,000$ gallont were supplied by thia company daring the lant year, and the average ananal carrent expenses is about 19,245l. 13s.7d. ; then each thousand gallons of water sent out coste aboat 3dd. These works are maintained in admirable order, and there is abondant power and means to furnish a much larger quantity of water, should it be required.

The New Rivez Watenwores receive their supply from several ources-Tiz.

2441 exhic feet of water is the quantity capable of being afforded during the sammer teamon.

Engtae Power.-At the Amwell-end well there is an engine which works two 17 -inch pompt, with 6 ft . 3 in. atroke, 10 atroked a minute, which lift 30 feat at a stroke. At the Amwell-hill well are two 20-inch pompa, with a 6 ft .3 in . stroke, making 10 atrokes a minute, and 50 feet lift At the Cheshant well is ond 12 -inch pemp, witb $a 6$ feet stroke, making 104 strokes per minute, 105 feet lift in two beighte. At the Tottenham-court-road well is one 14 -inch pamp, with a 6 feet atroke, making 11 strokes per minute, 203 to 204 feet lift in two heights. Tbore are, in addition to the above, engines for the dintribation of the water at Stoke Newington, and at the New River Head. The total amount of esgine power altogether may be eatimated at 720 horsea, one-half of which only is in use in the sammer monthe, and probably about one-third In the winter months; 2000 tons of coal are ennually consumed.

Remervoirs,-The reservoirt used by this company, and their reapective area, are as follows:

At the New River Head in another reservoir, with an area of 5 acres; and at Tottenham-court-road another, built with brick sides, about 200 feet in diameter. The quantity of water delivered is $3634,000,000$ gallone anaually. The average anoual oxpenditure is about $45,818 h$, or aboat $2 d$. for every thousand gallons delivered. The river expensee appear to be a very conaiderable item, and the maintenance of the banka, bridget, erc. incur sunually much expense, which the other water compeniet, drawing their supply from the Thamea, are not subjected to. Tbere is power in engines; and a quantity of water far beyond the prement dintribation could be afforded by thin compeny. Their works are admirable in arrangement, and execoted with the greateat skill; but notwithatending, the cost of the water to the public seems higher than that which it afforded by the other companies.

The Bast Lonbon Watemwones, at Old Ford, draw their supply of water from the River Les. There are six reservoirs and a canal, containing altogether $35,000,000$ gallons; they are generally lined with Kentish rag or fine gravel, and the whole maintained in the mont admirable order. The water is cleansed by deparation, or being suffered to reman long enough to deposit all imparities held in saspension. The water which is taken into the reservoir near Lea-bridge is diatributed by the waterWheele at that atation : the quantity may be about 12 per cent, of the whole. The waterworke stream affords about 1 par cent, of the water supplied, and a water-wbeel is employed for its diatribution : 87 per cent. of the water sapplied is distributed by the engines at the worke at Old Pord; and the following are the dimensions and power, when working at full speed for 24 bonrs round :-

	Diame. ter of Cylinder in Inches	$\begin{gathered} \text { Strok } \\ \text { In } \\ \text { Feet. } \end{gathered}$	$\begin{gathered} \text { Diame. } \\ \text { ter of } \\ \text { Pumps } \\ \text { foches. } \\ \text { Inches } \end{gathered}$	$\begin{aligned} & \text { stroke } \\ & \text { in } \\ & \text { feet. } \end{aligned}$	$\begin{aligned} & \text { Horse } \\ & \text { Powne. } \end{aligned}$	Gerlopse por Twenty-loar Rourn.
Wictrateed Eagine	90	11	44	11	170	7,854,850
Cornlah Engive ..	80	10	41	9	120	6,945,216
Tbe Ajax	00	8	27	8	80	8,723,149
The Rercules....	∞	8	27	8	60	8,720,149
The Twion........	8	8	178	8	73	3,454,016
Lea-bridge Water-wheels with Pumpa 3			$\left\{\begin{array}{l}204 \\ 11\end{array}\right.$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	\} 40	1,444,416
8tratford Water-whed			$\left\{\begin{array}{l}11 \\ 9\end{array}\right.$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	\} 8	682,482
					568	28,784,128

The quantity of water which could be raised for the supply of the district, if all the engine-power was in constant vee, would smonnt to 9,757,955,990 gallons; whilst the actual quantity for the lat year was only $3,222,753,876$, or about one-third only. The average anaual expenditure seems to amount to $17,3791.11 \mathrm{~s}$. $6 d$., which doet not mach exceed one penny for the cost of 1000 gallons. These works are most admirably arranged, and possen power far greater than is at prenent employed. Every precantion is taken to distribute the water clear that can be adopted, where flter-beds are not constructed : the reservoirs are extensive, and the water is suffered to remain a sufficient time to be freed from all imparities which are held in it mechanically.

TEE Haypstzad Waterwonge receive their supply of water from the surface drainage of Hampatead, and from two artenian welle : there are several reservoirs at Highgate and Hampetead, whose areas anited comprise about 35 acres; but no eatimate can be formed of their content withont making accurate measurements: the water is not fitered, bat delivered after it has bees sabject to deparation. At the Highgate works is a high-preseare non-condensing eagine of 12-home power; at the Kentish-town well is a 60 -horse Corninh engine, which has a 44 -inch cylinder, with a 10-feet stroke: 234 tons of conl were used under the hoilern daring the last year.

From what I have observed of the oxpenditare of these several water companiea in the constraction of engines and engine-homee, for pampiag and for the distribution of the water, vant economy would have been the consequence if one general syatem had been laid down originally, which would have permjtted of one management; one central system of works would not bave required to much as half the engine-power now em. ployed, and, consequently, the neceacery baildings and enginea would
not have cont more than one-half the original outley, besides the advantage gained of having the entire works within one boandary wall. In the laying down of the mains also, there would have heen the greatest advantage if their diametert could have been proportioned to their absolate daty, and made to perform their diatribation more after the natural arterial syatem: the trunk-mains, which vary in aize from 30 inches to 24 inches; the branch-mains, from 12 inches to 6 inches; and the sideservices, from 6 inches to 3 inches internal diameter might, by having their proportions of length given them, have been laid down with a very considerable atring of the original outlay.

The amount of engine-power employed by the several companies is an follows:-

But the cotal quantity of water delivered bad been estimated at $16,748,440,362$ gallons, some of which is not pamped. Then, from What has been already stated with regard to engines of the East London Waterworks, it would appear that if engines of 568 .horee power could raise $9,757,955,990$ gallons, and engines of 142 -horse power could raise $2,439,488,998$ gallons, engines of 710 conld raise $12,197,444,988$ gallons; then the engine-power possessed by the different companies if more than forr-and-a-half times that which is required to perform the works domanded of them. At all the engine-houses the boilers are covered with cindars, ashes, or mome other non-conducting material, the pipea jacketted with felt of several thickneasen, and it is reported, that since theie precantions have been adopted, a sering of 12 f to 25 per cent. of fuel hat been the consequence.

The length and weight of iron-main employed for the distribation of water cannot be correctly entimated from the data afforded by the different companiea; but we may uappose the following namber of yards to be not far from the trath:-

200,000 yards of trank-main, varying from 30 to 24 inches inter. nal diameter may, average 26 inches.
400,000 yards branch ditto, varying from 12 to 6 inches internal diameter say, average 8 inches.
$1,200,000$ yards side-service, verying from 6 inches to 3 inches internal diameter my, average 4 inches.
$1,800,000$ yards, or upwards of 1000 miles.
The reservoirs and filter-beds requisite to purify all the water distribated would oceupy an area only of not more than 70 acres of land. We require daily $40,000,000$ gallons of water, and therefore it should have depositing reservoirs to contain double that amonnt, and filter-beds to hold the same quantity. Seventy scren of reservoir and filter-bed, with a depth of 10 feet water, wonld contain $160,000,000$ gallons, or thereabouts.

The intereat of which at 5 per cent. would be, per annum, 232,694l. 15s.; and if we take the quantity of water which is annually distributed at

> - Kent Water Conpany's Capital

202,104 is ${ }_{6}^{6}$ 4,633,895 1811

24,856,000 12 B
$17,000,000,000$ gallons, we thall find that every 1000 gallons mast be charged $3 \$ d$. to cover the interest of the capital expended.

I have carefully read over the evidence given in by the agenta and officers of the teveral companies, and believe the whole to be correct at stated; the books of entry are well kept, and it would be practionble to obtain from them the hourly working of the enginet, end quantity of water distributed for the same period if it is required. Before concluding, I mast apologise for not rendering the report apon so important and intereating a muject complete; being limited in time, it hes not been possible to collect all the information required to do so, and which the several companies will afford mont willingly, abould it be the wish of your Honourable Board that the inquiry should be continned.

Edward Cerey, C.E.

BrazByst Of Encrix

Richard Jex Crickmer and Frederick Wilinan Crickmer, of Page's-walk, Bermondsey, engineers, for improvements in packing stuffing-baxes and pistons.-Patent dated July 3, 1851.

Claim.-Combining metal with flexible and elastic materials for packing stuffing-boxes and pistons.

For packing stuffing boxes, sheets of wire cloth (the inventors prefer three) are laid on two or more sheets of canvas, then on a sheet of vulcanised india-rubber; then on two or more sheets of canvas; and finally, on another sheet of wire cloth or metal. These are formed into a ring, and joined together at the side or edge. The india-rubber being expanded, when put in its place, contracts, which preserves a tight joint, and prevents the escape of steam or water through the stuffing-box. When the rings are placed on each other, care must be taken that the joints are not placed above each other.

For packing pistons, sheet metal, perforated with holes, is used, which the inventors prefer to wire cloth. The same system of laying the coats is adopted in this case. The indiarubber is compressed, and expanding, causes the packing to be in close contact with the interior of the cylinder. The joint enables the ring to be placed around the piston without removing the cross-head.

The canvas or other woven fabric or fibre is prepared by saturating it in a solution of sixteen parts of grease or fat, to which is added three parts of black-lead, two of sulphur, and one of alum; but the inventors do not make any claim for this.

Thomas, Earl of Dundonald, Admiral of her Majesty's Navy, late of Chesterfield-street, Middlesex, for improvements in the construction and manufacture of sewers, drains, watervags, pipes, reservirs, and receptacles for liquids or solids, and for the making of columns, pillars, capitals, pedestals, vases, and other useful and ornamental objects from a substance never heretofore employed for such purposes.- Patent dated July $92,1851$.

The invention consists in the employment of the Bitumen Petrolium, or natural pitch of Trinidad and the British North American Colonies, a substance not heretofore used for the above-mentioned purposes. When it is required that the article or construction should be firm and strong, it is recommended that the indurated bitumen should be used; when it is required that they should be flexible, the bitumen of the Pitch Lake of Trinidad should be used; and when great elssticity is required, the bitumen may be mixed with natural bitumen or naphtha.

For the construction of sewers or reservoirs, loose gravel should be thrown on to the surface, previously formed of the required shape; on this, bitumen and gravel in a fused state is poured. A core is placed along the intended sewer, so that the bitumen may not be too thick, and may have an even surface; in the same way foundations, under or above water, can be formed. The bitumen is poured into the water, which causes it to set; but it still retains sufficient heat to allow of the further quantity thrown in to unite with it. It is proposed to form pipes by casting them in a mould; the several lengthe of piping may be united by heating the ends and pressing the two portions together. Plates or sheets of bitumen are formed by pouring it out and passing heated rollers over it, care being taken that the bitumen does not stick to them: these sheets are available for forming floors; in this case one inch is the best thickness; and for lining cisterns, the walls of damp rooms, and other purposes, in this case half-an-inch is the best thickneas. The sheets can be formed into pipes by bendigg them, when hot, round a core, and uniting the edges by heat. The bitumen forms
an excellent covering for the wires of electric telegraphs. The wire can be drawn through the bitumen when warm; or when more than one wire is used, a hempen rope is placed in the centre, around which the bitumen is poured; it is then passed through a die having projections, which cause indents to be formed on the exterior of the bitumen. In these receptacles the wirea are placed, and around these and the already formed body of bitumen a further coating is formed, thus perfectly insulating them. Various articles can be formed by casting. Lastly, the indurated bitumen can be used with great advantage in forming water-courses, by which the means mountain streams which exist in many portions of the colonies can be rendered available, instead of running to waste.

Thomar Sanders Bale, of Canldon-place, Stafford, manufacturer, for certain improvements in the method of treating, ornamenting, and preserving buildings and edificer, which said improvements are also applicable to other similar purposes.-Patent dated July 17, 1851. [Reported in the Mechanics' Magazine.]

Claims.-1. The facing of buildings and edifices externally with plain hollow, corrugated or indented casings, tiles, or siabs, termed by the patentee, "weatherproof ceramic casings," such casings being either self-vitrifying bodies, or veneered, coloured, ornamented, vitrified, and glazed as described.
2. The ornamenting and preserving the interior of buildings and edifices by means of such casings adapted and applied thereto.
3. The casing of the exterior and interior of buildings and edifices with various kinds of bricks, blocks, \&cc. termed by the patentee ${ }^{\circ}$ glazed veneered bricks, such bricks being either self-vitrifying bodies or veneered, coloured, ornsmented, and glazed as described.
4. The manufacture of blocks, cornices, and other architectural subjects, either in self-vitrifying bodies, or veneered with coloured surfaces burnt in, or on the body, and vitrified, ornamented, and glazed, in order to be made weatherproof; and the application of the same to form chromo-encaustic architectural works, in contradistinction to the ordinary porous terracotta, print, 8 c.
5. The coating of bricks, tiles, blocks, slabs, or casings for buildings, either before or after firing, with a superiur surface applied thereto as "slip," "dust," or "layer," termed in every rariety, "veneer," and coloured, vitrified, and glazed; and also the veneering with other substances, as stone, glass, and vitrified surfaces, such articles in a fired state, and the application thereof to the ornamenting and preserving of buildings.
6. The manufacturing of tiles, quarries, slabs, or blocks, hollow, for floors or pavements, and the ornamenting of floors and pavements thereby.
7. Certain methods of treating and ornamenting solid tiles, quarries, slabs, bricks, or blocks for floors or pavements, tessera, \&c, and of imitating tesselated or mosaic work.
8. The manufacturing and veneering simultaneously bricks, tiles, and all such articles formed of plastic materials, as are, or may be employed for building purposes by means of suitable apparatus.
9. A method of perfecting or finishing hollow bricks, tiles, or blocks.
10. The application of glass and other diaphonous tiles or slabs, treated and ornamented in manner deacribed for the construction of flooring or pavements.
11. Certain modes of treating building stones or blocks, by vitrifying or veneering and vitrifying the surfaces thereof, or by chipping out portions of the surface of the stone, and filling in the chipped out portions with slip, and then glazing and vitrifying the same.

John Holyes, of Birmingham, machinist, for improvements in machinery for cutting and stamping metals.-Patent dated June 24, 1851 .

The invention consists, first, in an arrangement of machinery for punching buttons, eylets, rings, nails, steel pens, and other articles, from sheets of metal. The metal sheets are wound round a roller; these pass over a breast roller, and under a plate. At this point it is seized by a pair of metal jaws, which hold the sheet and draw it forward. These jaws receive the motion to perform this from a cam, worked by an eccentric in the main shaft of the machine. This main shaft also causes the punchers to move up and duwn. 'They pass through the plate
above mentioned, and the metal blanks fall down into a receptacle provided for them. The object of the plate is to prevent the sheets rising or being disturbed after each motion of the punchers. The principal claim is for the method of drawing the sheets through.

The second part of the invention relates to an improved fly press, for manufnoturing buttons, eylets, embossed discs, \&c. The framework, sorew, and lever are of the same construction as usual. To the screw is attached a hollow puncher, which the inventor claims. To this is attached a die, which fits on to a fixed die underneath. The centre part of the moveable die is fixed, but the outer portion is moveable; the centre portion forms the holes and centre of the button, the exterior the rim of the button. In the centre of the hollow puncher is affixed a spring, which forces out the finished button from the die, and renders it self-clearing. There are several claims for certain machinery to effect this; also a claim for the die. When buttons, \&cc. harder than brass, are manufactured, they are submitted to two processes; the first forms the button roughly, the second finishes it.

Charles Payne, of Wandsworth-ruad, for improvements in drying animal and vegetable substances, and in heating and cooling liquids.-Patent dated July 3, 1851.

Clains.-1. Improvements in drying animal and vegetable substances; 9 . Improvements in heating and cooling liquids.

The substance to be dried is placed in a chamber which has an exhauster attached; the chamber is air-tight, with the exception of certain openings to admit the heated air; the more numerous these openings the better, in order that the air may be divided, and the temperature in all parts be equal. Chloride of lime or quicklime is placed at the bottom, te dry the air, as it is important that an equal temperature should be maintained. For the purpose of drying many substances, a smaller chamber is attached by tubes to the one above described. This has attached to it tubes provided with throttle-valves, to which a thermometric apparatus is attached. As the temperature increases or diminishes, so this apparatus acts on the valves, and allows, in the one case, dry air from the atmosphere to pass into the mixing chamber, and heated air from a furnace in the other case, whereby an even temperature is constantly maintained.
The improvements in heating and cooling liquids consist in employing apparatus for exhausting, in combination with suitable means for producing currents of heated or cold air, according as the liquids are to be heated or cooled. By this means the liquids are heated or cooled much quicker. The inventor does not claim the use of the exhausting or thermometric apparatus separately.

REVIENB.

The Order and their Asthetic Principles. By W. H. Leeds, Esg. Second Edition, with considerable Additions. London: J. Weale. 1852.

Mr. Leeds' name cannot fail to recommend whatever it is attached to, for although every one may not agree with him in his doctrines-on the contrary, some may have reason to deprecate them-all must acknowledge, to themselves at least, that his opinions are eminently deserving of attention; and that howsoever some of them may be disliked, it would be no easy matter to gainsay them fairly, or by solid argument. With regard to the present treatise on the "Orders" it was so favourably spoken of on its appearance, and its character is now so well established, that a notice of it would be almost superfluous, were not this new edition greatly enlarged. Besides the notesone or two of them, by the bye, rather pungent ones-and other fresh matter, we now find an Appendix, containing some detached pieces of criticism, which, although certainly hors d'cuvres, are so interesting, and pregnant with instractive remarks, that most of those who have the first edition will, we fancy, gladly possess themselves of the new one also, more especially as there is no increase in price, notwithstanding the great increase in quantity. With respect to quality, the Appendix contains a good deal of shrewd and stirring stuff. The first paper in it, entitled "Ruskin's Doctrine concerning the Orders," will nu doubt greatly scandalise those who have cried up that gentleman as an oracle; and some of whom have even gone so far as to talk of the insolence of any one's presuming
to quention the soundness of the principles so dogmatically incisted upon by him. What, then, will be thought of Mr. Leeds, who, whatever others may be, shows himself to be neither awed by Mr. Ruakin's imputed ability as a critic, nor at all charmed by his eloquence as a writer? Most probably they will say just nothing, but leave Mr. Ruskin to fight his own battle, should he think fit to do so, with an adversary who is quite a match for him. On the other hand, some, and not a few either, will not be at all sorry that he has met with his match, and that he has here received well-merited castigation for his reckless and virulent abuse of the Ionic Order and of the Renaissance stylein fact, of modern architecture altogether.

The next paper, which discusses "The Possibility of a New Order," abows very clearly the mistakes and misconceptions which have hitherto unavoidably led to failure in all attempta to produce an entirely fresh order. From what is there said, it is evident that Mr. Leeds is anything but a bigotted and blindly superstitious admirer of Classical architecture. He advocates for the "Orders"-and not for them alone-that degree of freedom and unfettered artistic treatment which would first call for and exhibit individual talent. Whereas, according to the present system of atereotype forms and details, there is comparatively little difference between one man's Greek or Gothic, or whatever else the atyle may happen to be, and another'sbetween the masters and the pupils. We get correctness, but it is the correctness of plodding routine. He says truly-
"At any rate, if we have actally atudied the Classical Ordert to any purpoue, and familiarised oarmeives with the gusto of the antique generally. we ought to be ahle now to infuse something of the ipirit and tomperament of that style into our own conceptions. The positibility of doing to is indeed hardly to be quentioned, when we find that aculptors, and even architects, can produce original ideus in correct Clasical tante for rases, candelabra, and similar productions of artiatic deaign, for wbich no positive and pedeotic rulea have been laid down-rules which, though they serve to bolater up mediocrity, and help mechanical dulnesa to pass itcolf off for art, operate an a clog apon genaine talent."

After quoting the above, we need hardly say that Mr. Leeds is far from orthodox; still, for our own part, we sincerely wish that his heresy may prove contagious: nor is it at all improbable that it will apread, it being communicated to the public in the form-far more popular than dignified-of an exceedingly cheap elementary treatise, eeveral thousande of which, we understand, have been already pold.

The Glossarial Index is a feature as admirable as it is original and peculiar, and of itself alone would afford evidence, were it elsewhere wanting, not only of more than ordinary intelligence of, but also a most earnest relish for, the subject. After all, however, well satisfied as we are for the present, satisfied we shall not be for the future unless Mr. Leeds takes up his pen again, and gives a companion treatise on that general modern style of European architecture which is derived from and founded upon the Classical Orders.

Hydraulic and other Tables, with remarks on the Tiden, Tide Tables, fe., and the principal Phenomena of Britioh Tidal Rivers. Second Edition. By Nathaniel Beardmorg, M. Inbt. C.E. London: Waterlow and Sons. 1852.
Ir may be remembered that Mr. Beardmore produced some hydraulic tables which we recommended as very valuable; and we stated at the time that we thought he could produce considerable additional information, which is proved by the work now before us. We are glad to see that this has been done, and a mass of useful materials brought together, which will be found most acceptable to every branch of the profession as well as to the hydraulic engineer. The additional matter includes the whole subject of sluices, weirs, velocities, drains, circular and egg-shaped culverts, pipes under pressure, the friction of bends, water-power, steam-power, flood discharges, flow from large districts, wells, value of water by meter, rainfall of England, suspension bridges, cast-iron beams, mountain barometer, marine surveying, tidal phenomena, dimensions of docks, hydraulio ram, and hydraulic problems, with copious tables of tides. What will be none the less acceptable are the several plates, including tide charts of the Irish Channel, English Chancel, cu-tidal lines of the world, the rivers Mersey, Severn, Tyne, and Nene.

The work is very closely printed, and is put in a very compendious form.

Koy to Tate's Exercises on Mechanics and Natural Philooophy, By Thomas Tate, F.R.A.S. London: Longman, Brown, Green, and Longmans. 1858.
We were happy to notice Mr. Tate's Exercises, and we now announce the publication of the Key to those 'Exercises on Mechanics and Natural Philosophy. In this will be found many practical problems, carefully worked out, and which will be found useful, not only to the student, but the professional man.

As an example of Mr. Tate's useful work, we give a few of his exercises:-
"Ex. 19.-What must be the traction of a horse to draw a load of $\frac{z}{}$ tons up a hill having a rise of $\frac{1}{2}$ in 100 , the coefficient of friction being do

Suppose the load to be moved over 100 feet.
Resistance friction in lbs. $=$ y of $2 \times \$ 240=98 \mathrm{lb}$.
Work due to friction $=294 \times 100=82400$.
 24640.

But we have also,

$$
\text { Work of horse }=\text { traction } \times 100 \text {. }
$$

\therefore Traction $\times 100=24640 ; \therefore$ Traction $=\frac{24640}{100}=246.4 \mathrm{lb}$.
Ex. 13.-A horae can just draw a load of 1 ton up a hill (having a small inclination), while he can draw a load of $1 \frac{1}{8}$ tons down the hill: it is required to find the rise of the hill for every 100 feet, when the coefficient of friction is $\frac{1}{\text { s. }}$.

Suppose the hill to be 100 feet long, and let $x=$ the no. ft . rise of the hill in 100 ft .

Resistance friction up the hill $=\frac{1}{\text { ㅇ }}$ of $9240 \mathrm{lb} .=119 \mathrm{lb}$.
$"$ friction down the hill $=\frac{1}{y o}$ of $1 \frac{1}{8} \times 9840 \mathrm{lb}$. $=$ $168 \mathrm{lb} . "$

Work due to gravity up the hill $=9240 \times x$.
 $2240 \times x+112 \times 100$.

Work due to gravity down the hill $=1 \frac{1}{8} \times 8210 \times x=$ ${ }^{3360} \times x$.

Work due to friction down the hill $=168 \times 100$.
\therefore Total work to be done by the horse down the hill $=$ $168 \times 100-3360 \times x$.

Now, since the horse is supposed to exert the same traction in going up the hill an he does in going down the hill, therefore he must do the same work in both cases; hence we have-
$2840 \times x+112 \times 100=168 \times 100-3360 \times x$,
$\therefore 8600 x=5600 ; \therefore x=1$ foot,
which is the rise of the hill for every 100 feet.
Efc. 14.-The work in moving a load (aay of 1 ton) up a hill, of small inclination, is $1 \frac{1}{2}$ times the work in moving the same load down the hill; required the rise of the hill, supposing the coefficient of friction to be $\frac{1}{10}$.

Suppose the hill to be 100 feet long, and $x=$ the rise in this distance; then we have

Work up the hill $=\frac{1}{10}$ of $2240 \times 100+2240 \times a=22400$ $+2240 \times x$.

Work down the hill $=\frac{1}{10}$ of $8240 \times 100-8240 \times x=$ 22400-9240 $\times 2$.

Hence we have, by the question,
$29400+9240 \times x=1 \frac{1}{2}(29400-2240 \times x)$;

$$
\therefore 5600 \times x=11200, \quad \therefore x=\frac{11800}{5600}=9 \text { feet." }
$$

THE WORKING ENGINEERS STRIKE.

Fsw circumstances have given us greater pain than the strike by which the working engineers have paralysed a great branch of industry. With every feeling of commiseration for the sufferings of the men, and after a due consideration of the statemente put forward by them, we cannot find a justification of the course they have pursued, while we see painfully the injurious results which muat be inflicted on them, on their employers, and on the country. If any other ground for the strike were admissible, most certainly the issue of it must be unfortunate in a trade so much dependent on foreign orders for its prosperity, and which han to compete with foreigners for lts
existence. The amount of the export trade in machinery is so large, that it ranks among the chief staplen of manufacture; but it is carried on against the competition of Americo-English and Belgians. In some articles our rivals have advantages in the price of labour, in others by their neighbourhood to the markete to be supplied; and they are prepared to profit by every incident which promises to extend their trade and to cripple ours. The result of the strike must therefore be disastrous. The business of individual factories will be checked, that of particular towns diverted, that of the country generally diminished, while the workman will in the end receive lower wages, besides encouraging the construction of machines to supersede his labour and to give employment to other branches of trade. The effect of strikes has been uniformly injurious, but more particularly to the working classes: and this promises to be no exception.

It must not be lost sight of, that with all the pretension to be for the benefit of the working engineers, this strike is not only directed against the other labourers employed, but against the best of the working engineers themselves. The most skilled, the most thrifty, and the most industrious workmen are to be restricted in their earnings, in order that the idle and dissolute may. receive wages which they have not earned. In this, as in other instances, success has emboldened the intriguers. They have been able hitherto to annoy and coerce the employers, and thus they proceed more confidently to the present desperate venture.

With regard to the position of the employers, we think they are quite right in maintaining their ground. They are, as they say, the customers of the men, and they are contending for the rights of themselves and their workmen, to bargain with each other free from the dictation and coercion of any individual or organised body. The idea has been abandoned that legislatures can propose, or governments secure, tariffs or assizes of wages and prices; and surely the time has come when the insane pretensions of unions and union scales should be set meide by working men and the public. No union ever got for a good man better wages, but each union has deprived many a master of work and many a man of employment.

The following statement of the case of the employers gives their reason for declining arbitration, and for resisting the claimg of the onionists:-
${ }^{\omega}$ On Satarday the eatablinhments of all our members were closed. The conditions of an bonourable pledge to each other have been fuith. fully falfilled: and masters and mon, free of their matual ongagomente, will be once more alled upon to sathe the coaditions of any new contract ioto which they may find it for their reciprocal interest to enter.

* The atep which wa have adopted, with regret, made all the more weute by asense of tho bardship it will infict apon the innocent and the deserving, entaile upon us all a certain heary lons. We are roloctantly reconciled to it by the conviction, matorely weighed, and painfally arrived at, that our wall-dispoted workmen had better patiently bear a present burden than linger under a permanent oppreacion; and that we ourcelves can only arreat the encroschmente of irreaponsible dictation, and the gradan bot certain progreas of that spirit of exaction to which We have already, from motives of conciliation, too eanily yielded (to the injory of our trade, and the certain ruin of the operatives, at whow bastance unwise conceasions have been too readily made), by taking our stand at once, and coming to a reckoning now and bere.
"All we want is to be let alone. With leas than that we shall not be matisfied. Until we accomplish that, we shall not re-open our entablishmenta. With every reapect for noble and diatinguinbed referees, whose arbitration bae been tendered to us, and with no reason to doubt that their award would be boneat, intelligent, and antiafactory, we must take lemve to say, that soe alone are the compteat jndges of our own busimeas ; that we are respectively the masters of our own eatablishmenta; and that it is our firm determination to remain a0. To this principle we recognice no exceptions. We should as little dream of permitting each other, at a commen neutral stranger, to lay down the mles by which we are reapectively to mangge our individual affirt. Ours is the seoponsibility of the details; oura the riak of lose; oura the capital, its perile, and its engagements. We claim, and are resolved to assert tha rigit of every British subject, to do what me like with our own, and to visdicate the title of our workmen to the anme constitutional priviloge. Artisens and thoir employers are reapectively individuale-each legally capable of consent-each severally ontitled to contract. Oar agreements for their corvice aro made with them in their separate, not ia their aggregate capacity. They bave labour and akill to aell; we bave eapital to employ it, and to pay it. Who, then, or what, should atend between these two single parties to a lawfal bargain, and dictate to the beyer what he should give, or control the seller in the conditions of bis service? In the mont literal sense, we are the cuatomers of the working
claseen; and the interference of self-eonatitoted arbiters with the intersal economy of our eatablishments is not less preposterous than would be a command from onr baker as to the number or the price of loaves we should consume; or a mandste from our butcher as to whon we thould dine, and what should be the meat. We altogether ignore the proposition that we should anbmit to arbitration the queation whether our own property is ours, and whother we are ontitled to be the masters of our own actions.
"Our batines renders ns mort obnoxions to striket than any otber, and readers precautions againat them more imperative. The heavy expense of our machinery and tools, and the peculiar character of the work we produce, render over-time, piece-work, and irregularity of employment, an unevoidable and certain incident of our calling. We cannot, like the spinner, the weaver, or the cloth-worker, mannfecture on apeculation, and produce without order, eertain that altimately the article will be required, and mast alwas be in demand. The ame yarn will weare to any pattern, the ame cloth will fitany coat ;-but we can oaly produce to order, and we must prodnce our commodity when it is ordered. Oor customert require all their purchsaes for a specinl porpose, and at a particular time. Perhaps thoy are neelem to them, noless anppliod when stipulated-eertainly they will cease to employ un, if we fail to finish to our time. Bedgiom and Germany are not far off. Piedmont and Switzerland are quite within competitive distance. The United States begin to manufacture for themeolrea, and even to meet us in nentral markets. Prance, but recently our largeat customer, is now our most formidable rival, asd in apite of hor disedrantagea in reference to the raw material, almost entirely sopplies her owo demand. If we are to eajoy an equality of advantages with our competitorn in the common market of the world, we must consent to bind ourselves to complete our contracte on a dsy, early, and certain. Short-sigbted anioniste, aware that we mort againit time, some of ns ander actual penalties, all of us ander peril of the loss of trado if wa fail in punctuality, induce the men, when the master is in his greatest dinifuity, to take advantage of bis necessitien to wring from him bomiliating and najust concestions, which leave him withont profit, or threaten him with loas. Afraid to sobject himself to the repetition of practices which present to him only alternative betwizt heavy fines for failnre of contracts, or loss of basiness-character, and exorbitant remuneration for inferior skill, the master declines otherwise proftable orders, drawi his operations narrower, and diminishes the demand for labour; and thit dread, spreading generally through the trade, and too amply juatitiod by offenaive interforsmes, forced upon every mater, inducea a univeral diaposition to decline the most valoable cuntom, and thereby serionaly to daprese the businest, and eircomseribe the employment of tho connatry."

PILE FOUNDATIONS.

Rule for Calculating the Waight that can be safly truoted upon a Pile which is driven for the Foundation of a Heavy Structure. By Jorn Sandere, Brev. Maj. U.S. Eng.

A anchere empirical rule, derived from an exteasive series of experiments in pile-driving, made in establishing the foundation for Fort Delaware, will doubtless prove acceptable to such constructors and builders as may have to resort to the use of piles, without having an opportnnity of making similar researches. I believe that full confidence may be placed in the correctness of this rule, but I am not at present prepared to offer a statement of the facts and theory upon which it is founded.

Suppose a pile to be driven, until it meets such an uniform resistance as is indicated by alight and nearly equal penetrations, for several successive blows of the ram; and this is done with a heary ram (its weight at least exceeding that of the pile), made to fall from such a height that the force of its blow will not be spent in merely overcoming the inertion of the pile, but at the same time not from so great a height as to generate a force which would expend itself in crushing the fibres of the head of the pile. In such a case it will be found that the pile will safely bear, without danger of further suhsidence, as many times the weight of the ram as the distance which the pild is surnk the last blow is contained in the dietance which the ram falle in making that blow, divided by eight. For example, let us take a practical case in which the ram weighs 1 ton and falls 6 feet, and in which the pile is sunk half-an-inch by the lant blow; then, as half-an-inch is contained 144 times in 79 inches, the height the ram falls, if we divide 144 by 8, the quotient obtained, 18, gives the number of tons which may be built with perfect safety, in the form of a wall, upon such a pile.-Franklin Journal.

PROCEEDITGS OF BCIENTIFIC BOCIETKES

INSTITUTION OF CIVIL ENGINEERS.

Dec. 23, 1851.-Sir Williax Cobrtt, Presidedt, in the Chair.
The Anoual General Meeting for the election of the President, VicePrenidenta, and other Memberz of Conncil, for the ensuing year, for receiving the Ananal Report of the retiring Conncil, and distribating the medals and preminms, was held on this evening.
The Report referred particalarly to the late Great Exhibition, many of the competing designs for the bnilding, as well at the anggetiona for the guarantee fund, and several important points connected with the clauif.eation, de., haring emanatod from memberi of the Institution; and amidat the Royal Commisioners, the Building Committee, their Executive atafl, and the Jurora, many were to be found; even the designer of the present hailding, mad those whose energies were so successfally deroted to the takk of its conatruction, also belonged to the Inatitution; whilat the weight of reaponsibility, the arduous duty of anpervision, the hononr of acting as the mater mind to weigh the requinites, to determina the deaign, and to govern the construction, were reserved for Sir William Cabitt, the President. The vinitors from foreign lands received much amiatance and information in their inquiries in this conntry, and it was confdently hoped, that the relationa with other conntries might become more intimate, and that collective and individual benefit woald be promoted.
The principal papert which had been read were noticed, and their objecta and merite explained in a few expressivo aentences; though it was regrettod that they were not so numeroas an asual, and in conce. quence the liat of subjects for the ensuing reasion had been mach altered and modified, and the attention of gentlemen known to ponsess information on any subject, had heen directed to it, with a presing request that they would favour the Inatitation with the results of their experience.
The following medala and premiams were awarded :-Telford Medals to Measrs. Clerg, Wyatt, Swiabarne, Brace, Haghes, Strnve, and New. ton; and Conncil Premiume of Books to Mears. Glynn, Blackwell, Lenlie, and Carr.
In speaking of the subject of poblication, the completion of the Library Catalogue was mentioned, and it was atated, that not ooly was the ntility of the work admitted by the membera, but the plan of ita formation, and the accuracy of its execution, had heen generally approved hy the beat authorities; this, it was boped, wonld lead to the presentation of itandard works of reference for the lihrary, which it was deairable to bear in mind was supported entirely by voluntary contribntions.
Notwithstanding several deceases and resignations, the effective increase in the number of members, which now emounted to seven hundred and sixteen of all clasees, was equal to that of any previoas year, aud far greater than the average.
Memoirs were read of the following : the Mort Nohle the Marquis of Northampton, Honorary Member ; Mearn. W. Branton, G. S. Dalrymple, J. Farey, W. Mackenzie, and H. Renton, Memhers ; and Colonel Jervis, B.E., Mesirs. S. B. Moody, J. H. Tasker, G. B. Thorneycroft, W. Weat, and J. Wilson, Asociates.
The memoirs were succinct records of eventful lives. They noticed feelingly the virtues and talents of Lord Northampton;-the mechanical akill of Mr. Brunton-slmost the last of the old school of engineers ; the patient indastry and laboriona research of Mr. Farey, to whom, with the Lowries, the engravers, was due the merit of improving the style of illastration of the scientific works of the present time;-the gigantic ongineering undertakings of Mr. Mackenzie, who, with his coadjutors Mr. Brasey and Mr. John Stephenson, had, since 1833, executed railmay and other works, to the amount of upwarda of seventeen millions sterling. and from a very homble station, had risen by his own talent and induatry to a bigh utation among his compeers;-the brilliant military career of Colonel Jervis and his greater merita, in deroting bia time and energy to the introduction of the hleasings of edacation among the natires of India ;-the practically useful careera of Mr. Thorneycroft and Mr. Wilson, two men who, from the positions of a workman in a forge, and the son of a furmer, roso by indaatry, talent, and apright conduct to great wealth and the frat rank as eminent iron manters in Staffordshire and in Seotiand, and to serve as modela of the most useful clase of this country.

The Report concluded with the expreasion of a hope ou the part of the Council, that the profession world be firmly united for the prosecution of the legitimate objecta of the Society, and by their acta, in and out of the Institution, would strive to confirm the univeral confidence in the skill, honour, and iategrity of Eaglish engineers.
The thanks of the Institution were voted unanimously to the President, Vice-Presidents, and other members of Council; also to the Auditors and the Secretary, for their great exertions on behalf of the Institution, and to the Scrutineers of the Ballot, for the kindness with which they undertook that office.

The following gentlemen were elected to fill the several offices in the Council for the ensuing year :-James M. Rendel, Presidenf; J. K.

Branel, J. Lockn, M.P., J. Simpeor, and R. Stophensoa, M.P., PicePresidents ; G. P. Bidder, J. Cubitt, J. E. Brrington, J. Powler, C. H. Gregory, J. Hewkshaw, J. R. M'Clean, C. May, J. Millar, and J. S. Rusell, Members; and J. G. Appold, and E. L. Betts, Associatee of Cowncil.
Sir W. Cobrrt, Preaident, retoraed his sincere thanks to the members, for the kindneas which they had erinced towarde him during his tenure of office, and expresued the hope that the same good feeling would be exhibitod to his successor, whove eminence in the profession, and andonbted abilities, well qualified bim to hold the office with adrantage to the Iastitution end eredit to himpolf.

Jam. 13.-James Meadows Render, Esq., President, in the Chair.
The proceedingi of the evening were commenced by an Addrest from the Preaident on taking the Cbair, for the frat time, after his election; hat we omit giving the brief abitract of his Address, in the hope of giving it in full in our next anmber.
Jan. 20.-The Paper read was "On the Allavial Formations, and the Local Changes, of the South.Eastern Coast of England. Second Seetion, from Beachy Head to Porthand. By J. B. Redman, M. Ient. C.E.
Wetward of Beachy Head the effects produced by local variationa ia the beach were traced,-the "falls" tailing across the outfall of Cuckmere Haven, and driving the outlet eastward, creating a barrier of heach at Seaford-at an carly period the outfall of Newhaven Harbour- where an ancient outlet existed on the site of the present entrance, snbsequitatly projected eastward, by the pasagge of shingle from the weatward, until rendered permanent by piera. The recent degradation of the shore along Seaford Bay, from the shingle being arrested to the weatward, and the unavailing attempt to stop this morement by blasting the cliff at Seaford Head were noticed. The wate of the coast at Rottingdean, the modern changet at Brighton, the great variations in the outlet of Sborobam Harbour, until rendered permaneat by artificial works, were examined; at well at the analogour effects on the coant generally at Pagham, across the entrance of which a spit had been formed, similar to those at the ancient harbours of Romney and Perensey. The anchorage of the Park, off Selsey Bill, once presumed to have been a portion of the site of a bishop's see, prior to its removal to Chicheater, owing to the progressive wate of the shore. At the hack of the liste of Wight, the peculiarities of the land-locked barhours, and the protection afforded by the ahore defences to Portsmouth harbour, so little altered in it general outline siuce the time of Henry VIII., wera deecribed, as also the remarkable promontory called Hurst Point, many of the characteristion of which were similar to those of the Chesil Bank, Calshot Point, and other formations, sach as a low fat shore to leeward (eastward), and a bighly inclined beach seaward, with a tendency to curre round to the northward and eastward, and eventually to inclose a tidal mere, or eatuary. The elevation and size of the pebbles increased towards the extremity of these points, and in places on the sea slope an intermisture of coarse sand and shingle, which had become solid and homogeneous by age, cropped out through the modern beach. The remaining portion of the conat of Hampshire and that of Dorsetahire, an far as Weymonth, were then minutely described, and the paper concluded with a particular account of tbe Chesil Bank, which in magnitade far exceeded all other formationa of the kind, and which it wat considered might be attribated to the waste of the great West Bay.
Numerous diagrams, compiled from ancient and modern maps, together with sections and aketches of the rariona allavial spits along the conat. were exbibited; and it was sbown, that all these local accumulations bad many features in common, and were subject to the same alternating effects of loss and gain, and were the resultant of cances in constant operation, the whole exercising a most important infuence on harbour and marine engineering generally.
In the discussion which ensued, in which Sir C. Lyell, Sir B. Belcher, Mr. Reanie, Capt. O'Brien, Mr. Scott Rabell, and the author, took part, the pecoliarities of the different parts of the coast were still further described, and the formation of the molet of shingle were attribated, by some of the speakers, to the action of the tidal currents, bat more generally, by othera, to the méchanical power of the waves alone, which appeared to account for the apparently anomalous fact, that the largest pebblea were almaya found on the summit and to leeward. Chesil, Horst, and Dongeness beachen were referred to, as remarkable inatances of results produced by such causes ; and the effect of the severe atorm of November, 1824, on the base of Hurst Beach, was allnded to.
A short account of Mr. Denne's submarine researches on the Shamblea Shoal, of the Bill of Portland, was read, deccribing that shoal to consiat entirely of a bed of amall broken shells, arranged in parallel sheives, or steps, inatead of, as had been supposed, being formed of boulders and pebbles. This peculiar nrrangement of light shella, at depths varying from 4 to 9 fathoms, must be the result of the action of the currents forming a apot comparatively without motion, and induced curious apeenlations an to the causes of the accumulation, and the effects that might be produced on similar aggregations by artificial works.
Jan. 27.-Tbe Discusion upon the above paper was renewed, and many of the views atated by the author were still farther argued. It was
stated, that the formation of such point at Dungeness and Langley were almaga fonad to mindward of the outfall of a river, which, in the former case, pasped through a clay distriet, bringing down much deposit, forming en aceretion, or delta, in the low shallow water at the outfall. This was thought to be a more natural explanation of such phonomena, than to assign them to the mere force or action of the waves, or the tidal currente, causes which must have been in operation, unchanged, for ages; and it wat asterted, that it wis phycically impossible for any tidal correnta which existed in the chanael to have had mach to do with their formation. A shallow thelving const was aloo thonght to be favourable to the formation of these poinks, and Selmes Bill whi Inatanced as a case in which this accretion was actually in a state of progresnion, whereas Dangeness and Langley might be supposed to be nearly completed. Other apeakern argued, that thene formations took place on clay deposith, whether they simply formed the cont line, or were protruded bejond it, and that the Shambles thoal wat formed on a nuclens rock, with a superficial corering of shells.

The depth at which shingle would travel ander water wat connidered to be a very important point in this question, as on it really depended the right prizciples for executing many engineering works. Prom actual experience, it had been observed, that it did not travel at a greater depth than from two fathoms to three fathoms ; so that when a natural headland, or an artificial work, at a pior or groyne, was projected into that depth of water, the parage of shingle ronnd it was arrented.

Some difference of opinion appeared to exist at to the position of the largest pebbles on a crose section of these banks. On the one haod it whataserted, shat they were invariably fonnd to bave attained the greateat altitude; that this wat the case in the Hurat, Langley, and other beachea to the eastward, and that it might be attribated to the force of the approsching wave being grester than that of the receding one, so that large pebbles brought ap by the former would be left, whilst the tavaller onea wonld be clawed away by the reflus. On the other hand, the Chetil Baok was cited as an insance to the contrary, where the carllest pebbles were atated hy tome authorities to be on the top. Both partiet, however, agreed that the largest pebbles were always to be found at the leeward point of the formation.

With regard to the action of the meeting of the tides in the Channel, at thown by the charte of Captain Beechey, it should be obserred, that the point of junction and parting oscillated over a ses-board of nearly aisty miles, and therefore it ection would be over a correaponding intitade, and thus it conld exercise hut little infnence in isolated cases.

Tbe Paper read was a "Deecription of a Cast-Iron Fiadmet erected at Manchetler, forming part of the Joint Slation of the London and North-F estern, and Manchester, Sheffield, and Lincolnahire Raihoaya." By A. S. Jex, M. Init. C.E.
The object of this structure was to obtain incressed accommodation for the goods station of the two companies, which was formed on brick archen, at a level of about 30 feet above the adjacent atreeta, the archea themeelve being used as goods warebonses, and the commnoication between the two lerels being effected by means of hoista. This extension was 700 feet loog and 36 feet wide, and as it was necensary that it chould cover, without interfering with, the lines of way on the low level, a row of Doric colomns of castiron, zurmonated by an entablatare forming the inclosure of the station, was arranged, each shout 20 feet apart from centre to centre, on the outer bonodary of the spece to be ocerpied, and on these one end of tranavarse cast-iron girder whas placed, the other end being supported by the brick arching. To the tranarerse girders, longitadinal cast-iron girders, one to each rail, wore attached, and to these balf-balks of Memel timber were bolted, the whole being pianked with 3 -inch deala, on which three lines of way, and an ample sapply of turn-tables for working the traffic, were laid.

To effect a communication between this atation and warehouse belonging to the Sheffield Company, Store-atreet had to be crossed, which wea done by means of wrought-iron girders, 68 feet clear apan, of pecoliar construction. The top part of these girders conaisted of a cylindrical tube, 2 feet in diameter, made of boiler-plate half-inch thick; the middle web was 3 ft .6 in . in depth, and formed of plates $\frac{5}{88}$ inch thick; the bostom flange was 20 ioches in width, and at the centre wes composed of three plates, each $\frac{p}{8}$-iuch thick, diminished to one plate at the ends. These girders were each tested with a weight of 60 tons at the centre, when the deflection was not found to exceed one inch.
The whole of the cast-iron work was of Stirling's toughened iron, by which a saring in weigbt, of abont one-fourth of the quantity that would have been necessary with ordinary iron, was effected, without any diminution in the absolate strength. Messrs. Robinson and Russell were the contractors, and they had most satiofactorily performed the work, the total cont of which, including trenty-one turn-taioles, was under 14,000L. or about 20l. per lineal foot.

The Paper announced to be read at the meeting of Tuesday, Pebruary 3rd, was o The Construction and Duration of the Permenent Way of Rail. wrys, and the modifications most suitable for Bgyt, Indin, \&ec." By W. B. Adams.

ROYAL SCOTTISH SOCIETY OF ARTS.

Jam. 12.-Dr. Lenes, Preaident, in the Chair.

The following commanication were made :-
"On some new methods calculated to facilitate the application of Ancient Arts to the decoration of Sepulchral Moxumenda." By D. Wilson, LlaD. - Dr. Wilson commenced by calling attention to the want of taste, and the misapplication of heathen ismbols, to frequent in onr cemeteries, where, in Scotland especially, the Christian is seen to reject the Crost-the symhol of the Cbristian faith-for inverted torches, serpents and globes, arna, a arcophagi, and the like obsolete or meaninglesa symbols. He then stated in detail varion proceases celculated to render the reatoration of monumental brassea easy, by diminiahing the coat of their production. In illustration of this portion of the paper, a selection of rubhinge from ancient sepulcbral brasset was exhibited. The next process adverted to was a modification of the encautic atyle, highly advantageous from ite extreme darability, and ita resistance to moistare. This wis also illustrated both by ancient and modern apecimens. The third process may be described as a modification of the ancient incised slab, combining with it some of the advantageous applications of colour peculiar to the former. In describing its advantages, Dr. Wilson apecially adverted to the unsuitableness of white marble for exposare to our variable climate; and expresaed his conviction that some more durable substitute must he soon generally recognised as indispensable for the mural monnmente of our public cemeteriea.
"Description of a Galvanic Apparatus for Medical perposes." By W. Hant, Jedhnrgh. This galvanic apparatus is deaignod for medical parpones, and contains an improved regulatiog ioder, moving on a circular acule, haviag seventeen gradations of power, but which might be increased to any extent, and which is considered exceedingly convenient and economical. The battery contains aix platinised lead platen, and seven of ainc, all in one coll, which is made of lead and platinised, exposing a large surface of metal, and producing a large quantity of olectricity withont intensity. To pat the machine into action, the plates mart be let down to the botiom of the trough, which in to be provionuly half. f lled with a solntion consisting of one part of salpharic acid and nine parts of water. The two binding screwt in front of the hox fis the wiree joined to the handlea for receiviog the shock. To atop the galvanic action, the plates are to be lifted to the npper part of the half-filled trough. The mechine can be produced at a clieap rate, and kept op at very little expense; and is to simple that any perton can me it.

2TOTES OE meas viento.

M. Mathias.-It is with deep regret we announce the death of M. Mathias; and none the less so, that it was caused by himself. The civil engineers of France owe a great debt of gratitude to M. Mathias, not only for the works which he published, but for his personal exertions to promote the interests of their profession, to obtain its emancipation from government control, and to extend the bases of scientific instruction. In England -where he had so recently been to prepare a French catalogue raisonnée of the Exbibition-his merits were well known to many, and his loss will be regretted more particularly by those who having visited Paris had experienced his readiness to promote the studies of professional men.

Bangor Board of Health.-Mr. Austen, C.E., has sent in his report on the Bangor Survey to the General Board of Health. He states,-That he has examined very fully the plans of the Borough of Bangor, prepared for the purposes of the Public Health Act by Mr. Johnson, surveyor, by direction of the Local Board of Health of that district, and considers that the work has been very creditably and satisfactorily carried out. The lines of construction of the survey have been judiciously laid out, and very carefully measured and plotted. On examining the work on the ground he found that the detail had been very accurately laid down, but it appeared to be wanting generally in little features and points of information which would be found essential to its completeness for the purpose in in view, and that the plan would be improved also, owing to the peculiarity of the site, by a closer system of levels than had been inserted, or than would be usually necessary. These suggestions having met with attention, he has recommended that the approval of the General Board of this survey may be granted. The General Board bave, in accordance with this report, given their approval. The drainage of the town has been taken under consideration, and the Board have appointed Mr. Johnson, their survegor, to carry it out, and to superintend the whole of the details.

Proposed Railuay at the Cape.-The project of a railmay from Cape Town to Wellington has been under conaideration, and the engineers, Measra. Fox and Henderson, have offered to construct auch a railway, in a thoroughly efficient manner, for the sum of 500,0001 . The total length of the proposed line, inluding branches, is $78 \frac{1}{\frac{1}{2}}$ miles. The lines are to be opened and at work within eighteen months after the contractors are placed in possession of the land: and the whole work is to be completed in two yeara.
Servia.-Mr. White, C.E., is on his way to Belgrade, to treat in the name of an English Company with the Servian Government for the construction of a railroad from Alexinac (probably Alexinitza, near Nisse, on the Bulgarian frontier to Semendria. It is expected that the Servian Government will continue the railroad from Semendria to Belgrade at its own expense.

LIET OF ETWW PATEDTE

amanted in england from Decemben 11, to January $22,1852$. Str Moutht allowed for Buroiment mnlese otherwiee eapressed.

Thoman Twelle, of Notungham, manufacturer, for certain Improvencots th the masulacture of looped fatries.-Deermber 15.
Frederick Willian Norton, of Pabaley, Renfrewhitre, North Britain, mannfactarer, for certain improvemente in the mapafacture or production of plain and figured for cerce-December 16.
John Gedge, of Wellingtom-atreet, 8trand, Middlesex, for Improvemente in the treatmeot of certiln mbetances for the production of minoures. (A commanication.) - December 16.

Jamea Souter and James Worton, of Birminghan, for Improvements in the mannfacture of papler mache, and in articles made therefrom, and and in the manufecture facture of papler mache, and in articles made therefrom, and and in the manufacture of butto
ber 17.
Willam Eirut, of Manchater, mannfweturex, for certain improvements in machinery or apparatyi for mapufacturing woollea cloth, and cloth made trom wool and other materials-December 19.
Moeen Poole, of London, Eentleman, for Improvementa in apperitus for excinding dust and other mattert from rallway carriages, and for vantileting them. (A commu-alcation.)-December 19.
Henry Clayton, of Atian Workt, Upper Paft-pleet, Dorest-equare, for Improwes ments in tbe manqfecture of tubes, plpen, thles, and other articlei mede from plastic ments in tbe manqfacture
Samiel WIfes, of Wolverhampton, braed founder, for Improvementa in the manatheture of kettle, atacepans, and other cooklag veimels.-December 19.
Joweph Barch, of Cralf Worize, Maceletueld, for improvemente in priattots and ornamenting eut pile, and other fibrice and yarns.-December 19.
Christopber Rande, of Shad Thames, miller, for improvemente to friveling wheat and ofter graln,-December 19.
James Frederlck Leckerateln, of Kendingtod-aquare, divl englaent, for improvements in machinery for cutitig or aplitting wood and other gubstacies, and fo the menufucture of boxes.-December 19.
Proderick Bounfield, of Devonshire-plact, Ialington, gentlemen, for a new mina feture of menure.-December 19.
Charlet Howhand, of New York, engineer, for improvenents In apparatus for aceer sialates and indiceting the sapply of water la steam-bollers.-December 19.
Willam Elliott, of Birmingham, manaficturer, for improvementa in the manuficture of covered britons.-Deopmber 19.
Rodolphe Belbronoer, of Refant-Atreet, for Improvementa in apparatua nsed when oberiniog Instantancout Hght.-December 19.
Jobn Thoraton and James Thornton, both of Melbourne, Darty, mechandea, for mprovements in the manufecture of meshed and looped fabrics and of her weming improvements in the manufactare of mathed and looped fabrics and of her
WIlliam Emery Milligab, mechanical engineer, of New York, for certain Improvements in the conatruction of bopilers for geperatios nieam.-December 19.
Charles Lamport, of Worisiagton, Cumberlagi, ship-bullder, for lmprovementa in refing salle.-December 19.
Hichard Areblbald Brooman, of the firm of J. O. Nobertson and Co., of Fleet metet, pateat agents, for improvements th soondiar ingtrameate (A commonlca treet, patent agepts
John Davie Morriea 8drilng, of Black-rang, North Brtaen, Eeq, for certain alloge and comblsatione of metila.-December 27 .
Bydney Smith, of Nottiogham, for improvemeatis In Indicatine the height of water in etem-boilerti-December 22.
Anpatus Applegerth, of Dartiond, Kest, for Improvements in machisery need for printing.-December 24 .
Antonio De Bola, of Madrid, 8paln, for certain improveraents is the treatment of eopper minerals. (A communication.)-December 24.
Chrintopher Nickela. of Yort-rued, Lambeth, and Thoman Ball and John Woodhoane Baglef, of Nottiagham, far Improvationts in the manafincture of linlued looped, and other elistic fabrice,-December 24.
Alfred Vipeent Newton, of Chaocery-lane, Middlewa, mechanical dranghman, for Improrementif in aeparatios mbetance of diferent spectic gravition.-Decem. for 24
Jowph 8tanson, of Northampton, ongineer and Iron manufecturer, for Improve. meate in the manufacture of Iron, and to the eteam apparaton uetd therin; part or parts of which are also applicable to avaporative and motve parposes senerally. -
December 27.
Robert Beck Froggatt, of Bale Moor, Cheoter, manufactoring analytical chemint, or Is prownente to the preparation of cartala comporada to be need for the purpoe of readning woven and textile fabrles, paper, leather, wood, or other matertall of anbetacest wherproof and Areprool, and tho th mechisery or apparntes employed theren-Decernber 81 .

Francls Enatiagt Greenstreet, of Albany-etreet, Mornington-ereacent, for Imptovementin in coating and orpamenting stac.-December 81 .
George Gwynne, of Eyde Perk-aquare, Middlesex, Eeq., and Georfe Mergoment Wilson, manafig director of Price'n Patent Candte Mapnfactorf, Belmunt, Vanxhall, for Improvements in treatiof fints and ofly matters, and in the mannficiute of lampe, candies, alght-lamps, and somp.-December 81.
George Collier, of Hallfax, York, mechanic, for Improvmanti in the mannthetare of eappets and other tabites.-December 81 .
Firameis Clart Monath, of Earistown, Berwick, Iulder, for an Improved hydranle eyphon.-December 81.
 ber 81 .
Thomas Barnett, of Eingiten-upon-Bull, srover, for improveneats is machinery for grindine wheat and other grala. Janatis 8.
Joweph Addenbrooke, of Bartlet'm-panape, London, envilope manufeturter, for Improvements ta the manafocture of eaveiopel, and in mechinery need thentinJapuary 8.
Charles Diclcton Archlbald, of Porthand-plece, 1 Iiddlenex, Baqa for Improwemente In the mannfacture of brichs and other artictes made of platic materials, and is cutdne, whaplog, and drasalag the game; at aleo atone, wrood, and metalh, and in machinery and apparatus emploged therein. (A communicatlon.)-Janoary 8.
Wullem Cook, of Eingeton-mpon-Holl, workin coppermith, ict certaln Improvemente In the construetion of steam.engines, conilating of a rotary cincular valve for the regralar admisalon of atean from the bolter alternately into the chambers of the two cylunderi of double-acting englaes.-Janoary 12.
Alcide Marcellin Duthoit, of Parla, Prance, atatuary, for an Iraproved ebmalieal combination of certain agents for obtalning a new platile product.-January 12.
Bobert John 8mith, of Iglington, Middlecer, gentleman, for certaln improvements In machinery or epparatue for peeting ehfpe end other weenle, Janoery is.
Jean Antolne Firina, of Parle, Prabce, for a proces of manufecturine paperJanaty 13.
James Aliman, of Painler, Benirew, North Britaln, calenderer, for Improwemembe In the treatment or finishing of tertile fabites and materiale.-Janary 20.
Jemee Macnee, of Clagow, North Britaln, merchant, for louprovesente in the manufacture or producden of ormamental fabrict.-January 20.
Thomas Kenoedy, of Kilmarnock, North Britedn, gun mannfectarer, for faprovemente is memorigy and registerlag the fow of whter and other Aubds, Jamany 20 Peter Armand Lecomte de Fontalinemorean, of South-ntreet, Finsbury, for certale

 for improvements in the manafacture of candles.-January 20.
Peter Wright, of Dudley, Worcenter, Vice and anvil manametarbs, for tuprotemente In the manufacture of anvile. - Janaly 20 .
John Whitehead the roanger, of Elion, near Bury, Lancaster, dypr and Antaher: and Robert Diggle, of the same place, foremme, for fmprovementi in bleechin and and hobert Disgle, of the same place, fortman, for improvementio bleeching and dyelat:
ery 20.
GTM.
George Lowe, of Pinabory-ctrcot, Looden, civl eagineer, and Prederickj ohn Erains, of Eorseferry-rond, Westminater, ctill engineer, for improvements in thé manafectore of gat for the prorpoee of Huminatlon, and of Improvemente in the purficesion of san, and of improved modes in treating the products arisias trom the minulectare of gas.-Janory 20.
Prank Clarke Eills, of Depford, Keat, manufacturing chembt, for improvement in mandfactoriac and purfiying certain gases, and in preparint certain submacte far purfylos the same-January 22.
Poter Armand Lecomte de Pontainemorean, of Southatreet, Fighary, Loodon, for certaln tmprovementi in redimays and locomotive engines, which eald improvments are aloo applleable to exwry hind of tranmindion of motion. (Aicommuntere meats are aloo epplit
Hon.)-January 28.

Edward Tyer, of Gueen's-roed, Dalotion, geatieman, for certain forpfovemeats it the means of communication by alectricity, and apparatme conoected mertwith, Janary 22.
James Plllens Wilson, and George Pergusson Wilson, of Wapdsworth, pentlemeas. for improvemente in the preparation of wool for the masuficture of wool and other fabries, and in the proces of obtalning materialt to be weed for that purpeeveJanary 22.
Walter Marr Brydone, of Boeton, for improvemonts th apparatos for atral and other lighte for raliwhyt.- Janury 22.

TO GOPRERPOMDEAYF.

DISCEARGR OF WATER OVEB WEIRS AND OVBRFALLS.
If onr correapondeate, who are anable to upderatand corractly the calcalations of the Tablen, or the diacbarge of wattr over wert, will mate vee of the followins Table, they will be able to see chat Mr. Batewell's calculations conform etwethy with the formula.

Inchas.	Fractional part of a Pooh.	$\begin{aligned} & \text { Dectmal part of a } \\ & \text { Foot. } \end{aligned}$	Square root of the Dedmal.
1	12	0.0833	0.289
2	12	0.1666	0.408
3	18	0.2500	$0 \cdot 500$
4	$\frac{18}{18}$	0.3333	0.577
5	$\frac{18}{818}$	0.4166	$0-645$
6	18	0.5000	0.707
7	$\frac{7}{19}$	0.5833	0.764
8	18	$0 \cdot 6666$	0.816
9	\%	0.7500	8.866
10	+18	0.8333	0.913
11	+18	0.9166	0.937

- .

ORNAMENTAL AND POLYCHROMATIC IRONWORK.

THE RAILING OF THE BRITISH MUSEUM.
Sydney Smaner, Esq., Architect.
(With an Engraving, Plote VI.)
Two assemblages, important in their influence on English architecture, have lately been held. One is the conversazione in the gallery of the Architectural Exhibition, when Earl de Grey came forward to inangurate its permanent eatablishment, and liberally gave it a sanction which the leading architects will follow, although they ought to have given it first. The other event to which we allude is the paper read by Mr. Donaldson, at the Royal Institute of British Architects, on M. Hittorti's theory of polychromy, and the discussions which afterwards took place. These presented a gratifying aspect, and an unsatisfactory one. It was gratifying, and a striking proof of the healthy progress of architecture among us, to find a long and animated discuation held on a professional subject, and in which brethren from the leading countries of Europe took part. The public meetings of the Institute, and the publication of the proceedings, have done and will do more than anything eles for the healthy morale of architecture among ns. In the debate a man must give some testimony of the finth within him; and no more convenient opportunity presents itself of airing and deadorising those antiquated and mouldy prejudices which heretofore were carefully stored-up and garnered beyond the public ken. It was very gratifying to witness the amount of original research, practical knowledge, and great ability brought to bear in the discussion on the polychromy of the ancients; but we found, with less pleasing feelinga, an extent of prejudice and an absence of wholesome ressoning on the part of so many speakers, that we felt the Inatitute had not yet accomplished its task. Instead of the sound logical discussion of a body of men of intellect, there was a great likenem to the partizan debating of a select veatry, a Conciliation Hall conclave, or even of the Houses of Parliament. With too many of the architects it was a faction fight, not whether truth should prevail, but whether long-accustomed prejudice should be protected. As we shall have occasion to refer to some of these exemplifications of the tyranny of rococoism, we shall not now detail the list of individual actors.

Mr. Donaldson, it is true, presented a particular theory of M. Hittorff on Greek polychromy, but the discussion not unjustifiably took a wider range. Bringing the questions at issue to distinct propositions, the leading ones would be these:-First, Did the Greeks use colour in architecture? -second, Ought we to use colour in buildings of the Greek style?-third, Is colour generally admiasible in architecture? -and fourth, Ought we to adopt it here?

The first proposition is a simple one as to the general fact; but though every one was forced to allow that the Greeks did use colour in some parts of their buildings, yet the general endeavour was, to come to a conclusion that the status quo of whitewashism was the normal principle. Whatever the other queations may be, this first one is a simple question of fact; and - do say, that the course the discussion took does show an ertent of prejudice, and a partizan atyle of argumentation on scientific questiona, which in some degree detracts from the dignity of the profession. The weight of evidence is now so etrong, that when the simple question is put, no one can deny that the Greeks did use colour in architecture, but in the desire to evade the consequences, few were strong-minded enough to adopt even a justifiable form of opposition. There were, however, two courses laid open, which left an escape for the purists, -irst, that the Greeks were in the wrong in employing colour, ae they did not know anything abont it; and next, that the birds and flowers in this country did not exhibit any colour, and that therefore the climate was opposed to its indulgence by the inhabitante of the ialand.

Although the use of colour must be candidly acknowledged, doubte may exist as to the mode of its application, but we think they may be conciliated. Several opinions prevailed. One was, that the whole external surface was stuccoed and coloured; another, that the stone was covered with solid colour; and another, that the surface was only washed with ochre or otber colouring. We can see no reason for tying ourselves down to the adoption of any one of these propositions as a general law. Juit as we admit that there was a difference of
the primary material-in one district marble, white or red, in another, freestone - so we think that, as each system propounded has authority in evidence, all may have prevailed meparately or concurrently. A reasonable latitude of doubt exists as to the mode in which particular temples, the Parthenon or the Thespum, were painted; and, likewise, as to the treatment of individual members-the echinus, the epitrachelium, or hypotrachelium. These points are fairly open to doubt, and each will be determined hereafter by further research and the collation of evidence.
The real thing fought for by the opposition was not the truth -that they wished to evade, and they raised technical objections as freely as barristers-but the orthodoxy of the whitewash theory in classic art. In order to arrive at a just estimate of this theory, we will first sketch its history, then that of polychromy amng the Greeks, and bring the two into comparison. The essence of the whitewash theory is, that pure white marble is a valuable and beautiful material, and the only one to be used for first-class sculpture and architecture; and it is the belief that the Greeks held this theory. The modern doctrine, for such it is, arose at a late period, was fostered during the decline of the arts, and matured in their expiring state. In the prime of modern art this theory did not prevail, as the practice of Michael Angelo, Rafaelle, Titian, Rubens, and Alonso del Cano shows, some of whose finest monuments are elaborately decorated architectural interiors. England has had the chief part in nursing the theory. The deatruction of the monasteries had among other effects that of the deatruction of the national schools of art; and with the extension of classical teaching a greater reverence arose for classical art. The schools of art were rooflesg, the patrons of art no more, and in time even artists became extinct, so that, for work at all decent, foreigners had to be called in-and yet even these foreigners executed decorated interiors whenever allowed. The church, however, was sacred from them, and the whitewash-brush of the churchwarden swept from our finest buildings all traces of the colourist. Thus the public mind was in a blank state to take strongly to the new theory, which was fortified from withont. Of the buildings of the Greeks nothing for a long time was known, and when they were explored they were found in ruins in a condition far from their pristine glory. Careful research would however have shown, as it has to subsequent explorers, traces enough of colour. Herculaneum and Pompeii were passed over as coming within the category of the period of decadence. The specimens of aculpture which came to us from Rome had been buried and washed, and were adopted as sufficient evidences of the naked marble theory. Thus, when the Adams began the reatoration among us of what they were pleased to call classic architecture, no one permitted himself to doubt that whiteness was the sublimity of art; and if it had not been for the painters, who were then coming into life, colour would have utterly vanished before the churchwardens. Thus the accidental growth of a prejudice in this country has given it stability, and until a late period no one was allowed to contemplate external or internal polychromy as a legitimate mode of decoration. Stucco clothed the outside of a building, whitelead and whitewash gave purity and simplicity to the interior to which in some cases marble statuary, obimney-pieces, and reliefs, gave enhanced dignity. If maple and varnished deal could have been introduced, in time a whole interior might have been completed in white. Athenian Stuart and the Elgin marbles did nothing against the reign of marble, but rather confirmed it. It is said there is no book so bad as not to have something good in it; and so it soems in other things, for Puseyism and Puginism have done much to redeem us from the reign of the pseudo-classic. On the contineut, be it observed, this latter system has had little influence except among the High Dutch, and even among them it is exploded. In France, even when the Greek style ruled triumphant, the taste of the French people refused to resign colour.

We cannot go so far as one of the debaters at the Institute, and describe the Greeks as descended from the Epyptians and the Assyrians, Lecause that is as great an etbrological error as if they were said to be descended from negroes; but the Egyptians and the Assyrians were undoubtedly the fathers and teachers of the Greeks in art, and the forms which we look up to with so much admiration were no more indigenous among the Greeks than among ourselves. Yet at the Institute it was objected even to medimval decoration, that it was foreign, imitative, and not in accordance with the genius of the English
people. We may here too observe, that our climate is put forward as another obstacle to our indulgence in colour, as if we liked beautiful birds, beasts, plants, and pictures less than the inhabitants of the tropics, or as if, on the other hand, we were to seek the masters of colour not among the Titians, Rubens', and Murillos, but among the woolly denizens of Timbuctoo, Bambarra, or Ashantee. The Greeks adopted polychromatic decoration from their foreign teachers, made it their own-ss they did religious and political institutions, as they did even the alphabet-and, as the evidence of their writers and the remains of their works show, successfully practised it in common with every branch of art. Here, too, we must pause again. Treatment of form, we are told, is the distinguishing function of the architect and sculptor, with which the study or application of colour is inconsistent; yet, will these speakers tell us that Rafaelle, Corregio, or Vandyke had nothing to do with form, or are in any way inferior to him who puts up a travestie of the Parthenon or carves out the nymph Onostechneia?

The case stands thus: that the Greeks themselves tell us they used colour-their modern sectaries tell us to believe they did not; and we are called upon to deatroy the harmony of the arts, and to disintegrate colour from its natural associations. The way of nature is clear, notwitlstanding the prejudice sbout climste-in this island too, without exception, in this nursery of artists, where rich landscapes invite the imitative hand of genius-the way of nature is clear that the treatment of colour is among the great and glorious attributes of beauty. Here all is beautiful hut the works of man; and why, even if perfection of form could be obtained by the onesided practice of art, are the works of man to be exceptional? Fortunately, the healthier sympathies of the public, and the labours of enlightened artists, have solved the question. The successful exertions of our great painters, and even of our minor painters, have not been without influence on the architects, and already such examples have been produced by the latter as to claim the public approbation, and to determine the progress of art.

We might allude to several works of decoration which are worthy of any period of art; but we may successfully point to that great national monument, the British Museum, in which Mr. Sydney Smirke has not only distinguished himself, but contributed greatly to the cultivation of the public taste, and, if we mistake not, given an impulse to the progress of architecture. We have our own views as to some of the measures adopted by him; but great allowance must be made for the previous condition of the building. Originally designed to be in the achromatic style, Mr. Sydney Smirke has been allowed tentatively to introduce coloured decorations. We consider the pediment of the Museum open to some objections, but then we believe this is is chiefly because the decoration is partial; and even were there nothing else to be said in his support, there is this, that he has given the first great exsmple in England of external decoration, and which has been well followed by the magnificent railing, another work unique among many. In the interior, too, he has had to proceed step by step. First, the hall and staircase were allowed to be painted, and later, the sculpture galleries, in which he has made such an advance thet the hall seems already out of keeping. In the transition of the art such occurrences as these most be treated as the result of necessity, and as productive of advantage. We look upon the works at the British Museum already executed as unly the beginning; and when this building and the Palace at Westminster are more advanced, we shall have two of the finest monuments in their respective styles that the world possesees, and which alone would give distinction to any other metropolis.

We propose with this number to lay before our readers an Engraving of a portion of the iron railing in question, having selected it as a subject which would be acceptable and useful to our readers in the present tendency of their art; and it happens fortunately, that the discussion at the Institute, which we give in full, as we did Mr. Donaldson's paper last month, has given us the opportunity of discusaing the system of polyohromy. The example afforded by our engraving is valuable in a double point of view, because it illustrates the successful treatment of iron and the application of colour, for each of which the architect will hereafter be called upon to apply himself.

There are some remarks of Herr Licht so well expressed, that although they are to be found in the other part of our

Journal, we cannot but repeat them. He says: "The structure Which has lately developed itself in England, and announced a new ers in architecture, the structure in iron, requires the aid of colour, from the very nature of the building. With our present knowledge, no safer and more convenient way of preserving this material from the effects of the weather presents itself than to recur to colour, which will certainly require often to be renewed. The field for colour which this iron arahitecture will throw open, cannot, indeed, be calculated."

The railing we are now considering is an iron one; but instead of being 80 many feet run of spiking from the founder's patternbook, it is a special composition, and one of which no architect need be ashamed. It is, indeed, a complete illustration on a poiart we have often urged on our readers-the necessity of taking details under architectural superintendence. The man who can produce a work like this railing stamps himself an artist. Of the design we shall gay little, because we have given it of a sufficient size to enable our readers to understand it; and it possesses such merits as win for it approbation. The beight of the railing from the ground to the top of the spikes is 10 feet, and to the top of the standards 11 feet, and therefore is of such magnitude as to give a striking character to the work. The railing rests on a fine granite basis, and is connected in composition with well composed granite piers and with entrance gates, which are of themeelves important works. The main rails are 3 inches diameter, and stand 10 inches apart from centre to centre. The casting is very finely executed, and reflects great credit on the manufacturer.

The colouring of the railing is a rich maroon, portions of the work being distinguished by gilding. 'These are the spikes of the main rails, and the spearheads of the intermediate rails, and on the standards the rim of the vase, the ornament on the necking between the two upper rails, and portions of the mrsques. The treatment of the colouring is the more noticeable from the free spplicstion of gilding, which, though so successfully spplied on the continent, has here been wholly neglected. Mr. Smirke therefore deserves thanks for this detail likewise.

POLYCHROMATIC EMBELLISHMENTS IN GREEK ARCHITECTURE.

(Being a Discussion at the Royal Institute of British Architects, January 26th, and February 9th, on the Explanation given by Thomas L. Donaldson at the Meeting of January 12ch.)

Mp. Donaldeon gave a résumé of the remarke made by him at the preceding meeting (see ante p. 5), to explain the Polychromy of Greek Architecture, as illustrated in the work of M. Hittorff. He then proceeded to observe that M. Hittorf; in his very elaborate work, reviewed the different processes of painting which were followed by the ancients. Among these were described encaustic painting, a resinous or gummy description of painting, and two or three other kinds. The work also contained a summary of the researches of the most learned chemists on the subject, with a representation of the tomb of a lady painter, whose skeleton was surrounded by variens implements of her art, as palettes, mortars, brushes, and colours; a proof that the prucesses of the ancients in these matters were very similar to our own. The great point of difference on the question of polychromy would be found in the opinions entertained as to the extent of its application. The pamphlet which M. Semper had presented to the Institute at the last meetiong showed, he believed, that that gentleman adhered to the opinion of M. Raoul Rochette, that the paintings of the Greeks were not properly murul paintings, but paintings upon tablets, which might be removed at pleasure. M. Hittorff, on the contrary, was of opinion that all the paintings, used externally or internally (except votive offerings), were strictly mural, and formed part of the walls themselves, It was evident, from the Roman baths and the remains of Pompeii, that the Romans painted their walls very extensively; indeed, every fresh discovery showed that painting formed an essential part of their architecture. Mr. Donaldson was not aware that any remains of the supposed tablets had been found. As to external paintings, they must have been executed upon the walls. He then referred to s fragment exhibited by the kindneas of Mr. Angel, being part of a plain bird's-benk moulding from one of the temples at Selinus, which had evidently been coloured blue or green, and red, the outline of the ornament being left yallew or
white. In the work of the Duke of Serradifalco there were several illustrations of actual paintings upon the architectural members of the Greek temples in Sicily, especially on the aculptures from Selinus, in which the ground of the metopes was shown to have been red. Mr. Angell's work on these aculptures gave similar proofs of the employment of painted architecture. It could not, therefore, be denied that painting was applied to the external face of these temples, but the question was of course open as to interior decoration.
The subject of polychromy was not a mere question of curiosity, or pedantic antiquarian research; but it was one of great importance in their daily practice as architects, now that there was an increased demand for the employment of colour in the decoration of houses. The general use of colour by the Egyptians was well-known, and could be testified by M. Horean, Mr. Hamilton, and Mr. Scoles, who were present. The taste of the Romans was a reflection of that of the Egyptians and the Groeks, and in their architectural remains colour was universally to be traced; whilst the vases of the ancients alco afforded abundant proof of its employment in another branch of art. In the middle ages buildings were profusely decorated, not by the timid trials of inexperienced taste, but with the utmost boldness of crude but glowing colouring and gilding. A coloured monument in a mediæval building now appeared a spot upon the plain stone-work; but it should be remembered that the whole of these edifices were originally decorated with colour, so as to render the accessories in harmony with the grand mass, in order to insure the general effect. To illustrate the subject still further, Mr. Donaldson produced two srall drawings of modern works of sculpture (Mercury and Pandora, by Flarman, and a Female Sleeping, by Baily), tinted to show their appearance if painted, and said he considered that an increased degree of expression and sentiment would thus be given to sculpture. The Greeks, he believed, desired to give to their sculptare that life and sentiment, that glow of health and beauty of colour which were to be found in nature. The descriptions by classic authors of the decorated thrones and altars, \&cc., by which their statues of Jupiter and Minerva were accompanied, nsturally led to this inference. With regard to the modern use of polychromy, Mr. Donaldson referred to the highly satisfactory instance of the British Museum, the sculptures in which had received new life and animation by the coloured backgrounds introduced under the direction of Mr. Sydney Smirke. The ceilings of the sculpture galleries in the Museum had also been skilfully decorated, in unicon with the walls, and it was at length possible, in some degree, to estimate the effect of such embellishments in Greek buildinga. He had never entered the cellars, so to speak, of the Vatican-its sculpture galleries-the walls of which were of marble, without experiencing a painful sensation of coldness. The background at the British Museum was not such as to distract attention from the statues, but while it absorbed the colour, it allowed all the light to play upon the marble. Mr. Donaldson here read a communication from Mr. Smirke to the following effect:-
"Were there no surviving evidences of the practice of polychromy in ancient architecture, we should be, perhapa, justified in assuming its existence, from the fact of our finding so prevalent the practice of stuccoing the exterior surfaces of ancient masonry. I can myself bear testimony to the existence of this practice at Selinus, Agrigentum, Pestum, and Tivoli. The cold, meagre appearance of this dead white plaster would have been insupportable to the fervid eye of an architect educated amidst the brilliant profusion of painted embellishments, such as we know was lavished on every object of fictile manufacture. I beg, however, that you will note, that at all the above-named sites the masonry was executed with an exceedingly coarse material, so coarse as to render this treatment scarcely a matter of choice. The case becomes very different when the beautiful marbles of Pentelicon were used, and the Greek eye must indeed have been insatiste of colour to obliterate, without ecruple or compunction, the soft crystalline translucency of that material. But you say, ex cathedre, that the whole surface of the Athenian temples was not only psinted but plastered! se that Mr. Compo can claim a classic descent! However conconant this brilliant draping and jewellery may have been with the clear, sunny atmosphere of Greece and Sicily, you must panse before you advocste a similar proceeding in our cloudy wone; the tastes, feelings, and habits of men conform to the circomstances of external nature; even in the plumage of birds,
and in the furs of animals, how chary of colour in dame Nature herself in our cold, grey climate, and yet how lavish in the sunny south! Medisval artists felt this difference; whilst in India beautiful buildings were rising, radiant with coloured marbles and mossica, we, in Europe, were raising equally stately edifices without a touch of colour, as grey and as sombre as our hills. The contrast, however, ceases at once when we enter and shut out the face of nature. No heathen artist could have dealt in blue, red, and yellow, with more gusto and profusion than the Christian when engaged on interior decorations. Whatever doubt may still hang about the question of external painting in Greek architecture, there need, at least, be none on the subject of interior polychromy. I do not suppose that any one doubts as to the lavish use of colour within the Greek temple. There was, indeed, a sort of necessity for this, in order to bring into harmony the various natural hues of the raw materials used in its construction-the wood, stone, marble, and metal; moreover, the habit of constantly burning lamps, as a religious rite, would engender so much soot that a periodic renewal of the surface decoration must have been an absolute necessity. The smoke nuisance was, you know, so great, owing perhaps to the imperfect nature of their lamps, that the atrium of a Roman's house became so named after it. I cannot imagine however we should have sunk, in these days, into such imbecility as regards the use of positive colours: in England, too, whose painters have long been the best colourists in Europe. But the eighteenth century was truly the Batian period of our art, and when the discovery of Greek excellence awoke in us new and higher feelings, the attention of architectural students was absorbed in the study of beautiful outlines and wonderful forms: it was not till long after that the use of colour among the Greeks became an object of particular notice and research. That we have still much to learn on this subject is obvious, from the fact that the doctors still so widely differ. You, my dear sir, who are honoursbly and usefully engaged in training up in the way they should go, the minds of so large a proportion of our future Phidias's and Wren's, you cannot fulfil your misgion better than by fixing attention on this new branch of architectural study. In doing eo, however, I trust you will not confine yourself to the consideration of ancient examplars, however beautiful and ingenious they may be. Let not the study of nature ever be neglected. She does everything infinitely better than we can ever hope to do; all the concentrated taste and ingenuity of the Crystal Palace itself could not paint the back of a beetle or the tail of a humming-bird. Yet certainly the principles on which nature has worked may be inquired inte, and the very attempt to understand her must be attended with profit to the student. Let him inquire why the blossom of the rose never looks so charming as when contrasted with its own green leaves; and why the purple and yellow streaks on the corolla of the pansy make that humble little plant one of the most lovely; and let him observe with admirstion the consummate skill with which the great Instructress will cause peace and harmony to prevail between the most hostile tints, and by her magic touch will convert horrid discordg-the greens and the oranges, the browns and the purples-into new sources of beauty and pleasure."

Mr. Donaldson believed that what Mr. Smirke said about external painting could not be denied, after the abundant evidence supplied in the work of the Duke of Serradifalco, and the actual fragments which had boen submitted to the meeting. In conclusion, he repeated his opinion of the value to be attached to the illustrations of an architect and an artist, like M. Hittorff, beyond those of mere antiquary, however learned. M. Hittorff's work had enjoyed the highest estimation in Germany, and the author had received distinguishing marks of approbation in proof of the value attached to his labours by the Sovereigns of Germany, on the report and advice of the learned men by whom tbey were surrounded.

Mr. Peneose said, that although his studies at Athens had been directed rather to form than to colour, it was impossible to live, as he had, for many months under the shadow of the Parthenon and the Theseum without making some observations on the colouring of those temples. On one point in Mr. Donaldson's paper he must venture entirely to differ with him-viz., with respect to the painting of the echinus of the Doric capital. He was quite satisfied there was no painting whatever on the echinus. Then, in regard to the epitrachelium, $s s$ he would call it-not the hypotracholium-the hollow curve above the amall necking (the hypotrachelium being below it), he believed.
that that member nlso had not been painted in the Parthenon. He had examined all the best preserved capitals with very great attention, and found not the slightest trace of colour, or of those lines, engraved or incised, which were generally employed to determine the pattern of the colouring. It occurred, however, on the cymatium, on the bird's-beak moulding, and even on the architrave bands, these being in situations very much axposed; but the echinus and the epitrachelium, which retired, and were perfectly protected from the weather, presented a perfectly polished surface, as complete as when first formed, with a beautiful uniform tint, but without a single trace of any line to regulate the application of colour. Where the line was not to be traced, the surface very often stood raised up, about the thickness of a sheet of paper, indicating the use of colour where the actual engraved outline failed; but there was not an atom of such proof on the abacus or echinus of the Parthenon. There might be sufficient analogy for supposing those members to have been painted; indeed, there was an ornament-a little raised flower-on the echinus of the temple of Ceres at Pestum; but he was satisfied there was not any in the capitals of the Parthenon, nor did he think there had been in those of the Theseum. M. Semper, however, was of a different opinion, and, he believed, stated that he had seen some lines upon the echinus in the capitals of the Theseum. He (Mr. Penrose) could only say that he had examined the most perfect capitals of the Theseum with great care, and had seen no such lines. If any existed, was it not possible that they had been drawn by Stuart, or some other artist, with a view to assist in obtaining a perfect measurement of the echinus? Of course, this question was to be decided by evidence; but, as a matter of argument, he (Mr. Penrose) considered that any painting on the echinus would have an ill effect. The shadow cast by the beautiful sky of Greece from the square abacus on the swelling form of the echinus was alone sufficient to make the Doric capital the most exquisitely formed surface imaginable; and its effect would be seriously injured by the suggested lines of the eggs, which would break the figure of the shadow. Mr. Donaldson thought there would not be sufficient emphasis in the capital without such ornament; but it seemed to him that the reversed curve of the epitrachelium was quite sufficient to distinguish the shaft from the parts above it, aided by that effect of light and shade which, in the latitude 36°, was so very different from that produced in the latitude of 52°. The dado, so well shown in M. Hittorff's restoration, was a feature of such importance as to have obtained a particular name in the Erectheum inscription, first published by Dr. Chandler. He agreed with Mr. Donaldmon in thinking that the cases of the doors were of bronze at the Parthenon, and that the doors were of the same material. Proceeding to consider the subject generally, Mr. Penrose said that its importance was quite evident. The architecture of the Greeks could not be thoroughly understood without studying their polychromy. \boldsymbol{A} considerable advance had been made in that study, especially in M. Hittorf's work. From the nature of our climate, and even from our very veneration of the Greeks, we might be loath to admit their ase of pulychromy. A juster feeling, however, should make us feel that they had attained the same perfection in painting as in other arts; and we should rather doubt our own knowledge of what they did than their excellence in art. As our northern climate disinclined us to believe that the Greeks used colour, so their southern climate might have led them to adopt it. Indeed, the natural background of the sky was of great importance in regard to the different effect of plain and painted architecture. The use of colour in this climate, however, need not be absolutely denied; but it should be used with moderation. The Greeks were almost necessarily, from their origin and ancestry, led to employ colour in their temples. The Egyptians universally used it; and the Assyrians (the other progenitors of the Greeks) used it also, to an almost equal extent. The remains of the temple of Jupiter at Egina, one of the earliest Greek temples, proved that colour had been there employed. M. Hittorff had given a restoration of that temple, and he (Mr. Penrose) would refer to another reatoration by himself and Mr. Willson, chiefly copied from that of M. Blouet, in his 'Expèdition Bcientifique de Morée.' That colour was employed on the Greek temples it was impossible to doubt; the remains of it on the Parthenon were in such a state of preservation, and so correct in peint of form, that the main fact was unquestionable. This was also evident on referring to the engravings of several coffers in the ceiling of the Propylea, shomn in the work on the

Athenian remains, which had just been published by the Pllettanti Society, from the drawings and observations of himealf and Mr. Willson; and the design of those paintings proved that they were either the work of the Greeks who finished the building, or that they were executed within 100 years afterwards. The decline of art after that period rendered it impoesible that they could be materially later than the time of Pericles; and inasmuch as the sanctity of those edifices within 100 years after their erection rendered it highly improbahle that anything was done to them, inconsistent with the feeling of the original deaign, he was lerl to conclude that the whole of these paintings were executed before the temples were finished and the scaffolding removed. It was very ensy to distinguiah them from the medireval paintings which might be found upon the Parthenon. Probably the stucco which Mr. Donaldson said he had traced on the Theaum might have been prepared for medispal paintings.
Mr. Donaldsor explained, that he had observed the atuceo on the external wall of the cella, and his impression at the time -for he had referred to his notes-was that the whole external surface of the Theseum, and the columns, had been covered with stucco contemporaneously with its first erection, and with a view to receive painting.
Mr. Penrose said, that as far as the columns were concerned, his impression was, that they were as perfectly polished and as highly-finished as those of the Parthenon. He proceeded to read a passage from Langhorne's translation of Plutarch in reference to the Greek temples; offering, instead of a portion of it, the following literal translation of the words:-"In beanty each was then immediately old, and in freshness till now each is recent and young." From this he inferred that when new, they were not crude, and therefore must have been in some way painted, and that the excellence of the work was such, that it had preserved its freshness for 600 vears. Passages in the poots, and an inscription referring to the Erectheum, proved that gold was largely employed in the decoration of temples; but not, he thought, to the extent shown by the restoration of Mr. Owen Joues. Mr. Penrose here referred to some painted fragments discovered in an excavation made near the south-east angle of the Parthenon, and described by Mr. Bracebridge. These were coloured red, blue, and yellow, and, in his opinion, were of earlier date than the Parthenon, and, no doubt, fragments of the temples destroyed by the Persians. This might bave been the site of the workshops for the builders of the present Parthenon; and, indeed, among the remains, a closed jar containing colours was found. With regard to the limits of Polychromy, he was decidedly in favour of some limits, and thought that the surfaces which were coloured were comparatively small, especially in the shade; but still, though the principal remains of colours were to be found on the soffits, there were faint lines of patterns having been used on some very exposed parts, as on the tania and regula of the architrave-suficient, indeed, to lead to the belief that if the abacus, or echinus, or architrave had been painted, traces of such painting also would be found. If the views of M. Semper and others, as to the use of tablets, were correct, he did not think a particular building at Athens would have been called the Pinacotheca, or the Hall of Tablet Pictures. If the cella walle were painted, which was probable, the columns would be thrown out with great brilliancy, as shown by M. Hittorff. As to the colour of the background of the sculptures, there was no evidence at the Parthenon as to whether it had been blue or red, or whether it had been painted at all. At 历gina it certainly was painted. His observation had failed to shtisfy him that colvur had been at all employed upon the sculpture. While positive colour was limited to small surfaces, it was probable that a general tint might have pervaded the rest of the architecture. M. Semper had given a strong red tint to the whole of the 'Theseum, having found, as he supposed, remains at one angle of the external architrave to warrant the application; but it was to be observed that the natural tint of the marble there employed was very remarkable, and arose from a natural efflorescence (caused by the oxidation of the iron in the Pentelic marble), which produced a magnificent warm colour approaching to red. Mr. Penrose here referred to a highly-finished original drawing by himself, to conves an idea of the present appenrance of this temple, and of the colour which he had described. If the colunins were slightly toned down, they would have an admirsble effect in front of the dark ground of the cella. The earlier columns of Greek temples were of limestone, and these were invuriably
coated with a fine atucco; but when marble was used, as at Athens, of the finest and most expeneive kind, it was dificult to smppose that it would have been covered with stucco. Paunamias described some temples as of stone, and others as of marble; and if the latter had been covered with etucco, he could hardly have drawn any such distinction. On the other hand, Mr. Penrose did not suppose that rav and crude white marble, like that of Pentelicus, would have been left without some toning down. The columns of the Parthenon showed some faint traces of a very thin and delicate transparent wash of ochre, or some such substance. It was not a fact of which he could be very positive, but he thonght it was some kind of wash; it was, however, rather difficult to discriminate between the efflorescence he had mentioned, and the traces of actual colour. The statements of Vitruvius respecting the Attic ochro extracted from the silver mines of Laurion, and the analysis of a modern Athenian chemist, referred to by M. Hittorff, authenticated the nse of ochre by the Greeks; and Pliny expressly stated that saffron was used to tone down certain statues which he specified, milk being used as the fixing liquid. This of course was negalive evidence, but it was neecssary that the positive and the negetive should be taken conjointly. It would be a great achievement for the critical acience of the age if the polychroms of the Greeks could be aystematised. Considering that the works of Greek art took 500 years to attain perfection, they could ecarcely be surprised that no more progress had been made in the investigation during the last thirty or forty years. M. Hittorffe work, and others, proved that they were on the right track, and if the various theories now propounded were investigated with critical diacrimination, and due regard to the poesible, the probable, and the true, they might hope that on aome future oecasion those things in relation to the subject, which were now dark, might be bruught to light, and that the inquirera, like Alezander, might have cause to sigh for new fields of conquest in the realms of art.
M. Sexper addressed the meeting in explanation of his drawings, which were exhibited on the wall, and referred to a pasage in Herodotus, from which he deduced that the public buildings in the Island of Siphnos were of a red colour, "and by malogy, those in Greece generally at the same time; though this opinien was in opposition to the interpretation put on the ame prasage by M. Kugler, in his work on polychromy. M. Semper had found fuint traces of blackish lines on the echinus of the capitals in the Theseum, which, however, were not incised on the marble. Considering that the echinus over the caryatides in the Erectheum was enriched with eggs and darts, he had ventured to apply the same enrichment to the echinus in his restoration of the Parthenon. He had found traces of Fellow red colour on an angle of the external architrave over the columns in the Theseum, but not 80 decided in form and tone as the artist had shown them in the drawing. He had found sraces of colour on the antse of the cella, as mentioned in his pamphlet. It was his opinion that a transparent layer of coloured enamel or varnish was laid over the surfaces generally, the colour being of an opaque nature only on the ornamented bands and mouldings.
M. Horray, being invited by the Chairman, expressed his views on the subject, especially in reference to the polychromy of Egyptian architecture, in which, he stated, that every ornament and every colour used were gymbolical, and regulated by something beyond mere caprice. Yellow was solely employed to express sentiments in connection with sovereignty, while each province had its peculiar colour. Thus there was no ospricious ornament, and every part had a distinct signification, contrary to the custom of the Greeks, who painted the triglyphs, for example, blue, red, or perbaps green, at random. In modern times improvements in the industrial arts offered, here and on the continent, a wide field for architectural embellishments; as, for instance, in the various stuccoes, in the fictile wares, and in the extended application and combination of the metals.

The Ceareman adverted to the fading of colour from lapse of time, both when fragments remained underground, and when they were exposed to the atmosphere, and referring to the presence of Mr. Faraday, expreseed a wish that he would favour the meeting with any remarks on that, or any other point bearing upon the general question.

Mr. Famanay regretted that there was really nothing tangible yet brought forward in his department on which he could offer any remarks.

Mr. Hamicton adid that his knowledge of Greek architecture
referred to a period when it would have been considered abeolutely sacrilege to enunciate the iden thet any one of thoee exquisite temples could heve been decorated with colour. He shonld himself draw a contrary inference to that of Mr. Penrose from the passage he had quoted in Plutarch. If the temples of the Greeks had been originally painted, it was hardly to be supposed that their "original freahness," Which Plutarch spoke of, could have subsisted for so long a period as 600 years. He thought it very probsble that the temples of rough stone were colcured, but not those of marble; or at all events not to any great extent.

Mr. Twinina begged to offer a few observations on the practical application of polychromy to modern works, and to give some reasons why it should be very sparingly spplied, especially in this country. If all materials, rough stone, white marble, and the more beautiful coloured marblen, such as those in the Duomo and Campanile of Florence, were to be painted, all distinction as to the relative value would be lost. Climate was also an essential consideration; and colours which would stand, and have a good effect in Greece, would not snit the climate of England. He might observe, that when be was at Athens it appeared to him, that the tint of the columns of the Parthenon was much the same as that of the exponed surfaces of the Pentelic marble in the quarry, which aroee probably from the oxidation meutioned by Mr. Penrose. Another point was, that much of the beauty of Greek architecture depended on the exquisite effect of the shadows cast by its different members, and that colour would destroy the uniformity of the ground on which those shadow were cast, and produce a confused and unpleasant, instead of a distinct and beautiful effect. There was a danger, also, of painted decorations taking the place of carving sod sculpture, whioh were so much more beautiful and valuable. He therefore thought that pulychromy was only advantageous in particularly fine climates; that it should only be applied on uniform surfaces, esch colvur corresponding with the extent to which it was omployed, and only to cover poor, coarse, and inferior materials.

Mr. Fracuseon considered the subject would be incomplete without some reference to the use of colour in Assyria, where the recent discoveries had brought to light paintinga, and painted architecture, to an extent not found anywbere olse except in Egypt. Whilat, however, the Egyptian paintings were intended to express words and idess, colour was applied in Assyria, as in Greece, to add to the beauty and decoration of the palaces and temples. Honeysuckles, ovolos, scrolls, and other ornsments, usually called Greek, were found in Assyris, and were coloured precisely as those given in the Greek restorations before the meeting. Tbe specimen exhibited from Metapontum might, indeed, have come from Nineveh. The Ionic capital also, with its volutes, was eseentially Assyrian, and it was coloured as the one shown. There was no trace of the Doric in Aesyria; but all the Ionic mouldings and ornaments were found, and they were all coloured. Some of them ware enamelled on bricks and plaster. These discoveries were of the greatest importance in relation to the question of palychromy, being in fnct the authority for its employment by the Greeks; and a proper study of them would go far to throw light upon the question. Colour was used by the ancient inhabitants of India. A number of fresco paintings had recently been broughs to England, in which templea and other buildings were represented as adorned with the most brilliant colours; the effect was striking, and in that country would be pleasing. The Mahometans, in India, inlaid white marble with coloured scrolls, flowers, \&c., but did not otherwise omploy colour. The Persians, however, from the days of Nineveh to the present time, used colour most extensively; covering their mosques entirely with painted tilea, and relying more on colour than on form for the offect to be produced.

Mr. Billinas said it was an error to suppose that colour was generally applied to mediseval buildings; on the contrary, not one in fifty of them was so ornamented, and he should be very sorry to see the time when the tints of the material, stone and oak, Nature's own palychromy, were disguised by painting. He knew very little of Greek architecture, but had alwaya looked to it for dignity and sublimity of form. He had never expected to see a brick-dust elevation of the Parthenon; and if colour of that kind ware desirable, it would be easy to raise the finest temple in the world with the old red aandstone of England, which wes ready coloured to the hand. The ohject of the present movement appeared to be to introduce colour very
extensively in this country, a proceeding which he did not think at all expedient. Colour was very well in other countries, where shade was required; but here we wanted light, and must have it. As an instance of the bad effect of colour, he referred to the blue ground of the tympanum of the British Museum, which atterly failed as a representation of sky; whilut it destroyed the shadows of the sculpture, and gave the figures the appearance of exposure to cold, instead of being sheltered by the roof above. As to internal colouring, nothing could be better than the natural tints of the materials employed; and for anything more we had drawings and paintings to hang upon our walls, which the Greeks had not. No one would venture on the absurdity of painting the Apollo Belvedere, or the Elgin marbles. He protested against the theory altogether, and declared that the effect of colour would be to destroy the beautiful transparent appearance of the marble. If it were thought worth while to test it, he recommended its admirers to get permission to try it upon one-half of the marble arch in Hydepark. He could not admit that M. Hittorff had hit upon any system, as his illustrations were merely specimens of all kinds from various places. The classic column had been taken as a perfect type of architecture; but if the capital, the shaft, and the base, were to be of different materials, and different colours, it would be a mere nondescript.

Mr. James Benc said it appeared to him that this was altogether a question of evidence; and in reference to the original remarks of Mr. Donaldson on M. Hittorffs restorstion of the temple of Empedocles at Selinus, he thought he had failed to show any authority for them. The reason suggested for the highly decorated pavement was a piece of plastered floor without any colour; there was absolutely no authority for the colouring of the base or the shaft; the capital and the architrave were only restored by analogy; and the triglyphs on the faith of a passage in Vitruvius, which he found only referred to the original wooden type of the Groek temple. As to the metopes, it was doubtful whether they were blue or red; the authority for the tympanum was the temple at Agins; and that for the wall behind the columns was derived from the domestic architecture of Pompeii. If, therefore, any conclusions were to be drawn from the brilliant illustrations to the splendid work of M. Hittorff, it was first necessary to analyse the evidence on which they were founded; otherwise such conclusions might be very erroneous.

Mr. Cockerell, V.P., who presided, said he had been requested to state the results of his investigations at AEgina in the year 1811, which he had intended long ago to make public, and with that view had caused engravings to be made, two of which he exhibited to the meeting. It would be remembered that the temple of Egina was a work of the sixth century before Christ. It was of very amall dimensions, and constructed of freestone, being a specimen of that ancient Doric which was seen in the earliest examples. The columns and entablature were covered with a very fine coating of marble-dust and pounded stalactite, as it seemed, having an effect of great brilliancy and lustre. There were no traces of colour on the columns or steps beneath them, and no part of the architrave was coloured except the tania under the triglyphs, which was red. The triglyphs and the background of the tympanum were blue; the beak-moulding, as it was called, had the well-known leaf ornament, and within the portico a facia band of great lustre, having an enrichment highly archaic in character, coloured blue on a strong red ground, and in eeveral parts exceedingly well preserved, was discovered over the frieze. This, which no doubt had an excellent effect in its position, on account of the great strength of the colour, was not at all correctly represented by M. Blonet's drawing, either as to the form or the colour of the ornament. The tiles were of pottery, and extremely well painted. The sculpture of the pediment, the cymatium, the griffins at the angles, and the acroteria, with the antefixas and ridge tiles on the flank of the temple, were of the finest Parian marble, all more or less painted. The figure of Paris in the pediment was remarkable from the Phrygian dress, which had evidently been covered with scales of gold or some other material; this was shown by the greater relief of the marble, caused by the use of some encaustic material, which had protected the parts it covered, whilst the other parts exposed to the weather had been injured. The corona was also painted with an elegant ornament upon the Parian marble. The shields borne by the figures in the pediment were painted red internally, as were portions of the helmets. The pavement
of the cella was a very hard stucco of a deep and rich orimeon colour, and highly polished. These were the only traces of colour which he had discovered at Agins. The ancient temple of Corinth was also covered with a very fine stucco, h-inch thick, which gave to the parts the appearance of the finest marble. The same fine varnish, as he might call it, was to be found in the temple of the Gianta, and other buildings at Agrigentum in Sicily. The temple of the Giants was an ashlared temple; the columns were built round a core, and the joints concealed by the stucco, the stone itself being a tufo; even the colossal sculpture of that temple was also covered with stucco. He had found many fragments in other parts of Sicily, proving the same practice of covering the temples with stucco; and the Museum of Catania contained numerous evidences of the ane of polychromy. Colour was also to be traced on many remaing at Syracuse; all of these were early specimens, and furnished evidences of that archaic taste which always prevailed in countries remarkable for a high patriotic feeling. He thought the attachment to what he might call excessive colouring was only to be traced in works of that early and archaic tuate; and he humbly conceived, that in the marble temples of Greece, such as the Parthenon and the Theseum, which were of a more recent date, painting was employed with very great raserve. There was, however, distinct evidence that the architects of the age of Pericles employed colour - particularly crimson-and gold; and the use of crimson paintíugs on ceilings was constantly mentioned in Scripture. The same practice continued to prevail in Oriental countries; but, so far as his experience went, there whe evidence of the use of colour on the general face of the Greek temples. The employment of colour in Greek architecture was no doubt a fashion which prevailed more at some periods than others. There was an antique and barbarous fashion of painting statues; Pausanias referred to certain terminal figures, statues of Bacchus and others, which were painted crimson. Probably, in more refined times, as under Pericles, these fashions were modified by a higher reasoning, and over-ruled by a consideration of principles which ought to be carefully regarded. The subject was important in a practical point of view, and a question arose in reference to the material itself. To attempt the application of polychromy to the exquisite marble of Pentelicus appeared, indeed, to paint the lily and to gild the rose. The exceasive and painful whiteness of the new marble had been justly adverted to, but it should be remembered, that what had been well described as "Nature's polychromy" was sure to arrive in course of time. The chalky effect of new buildings was familiar to all architecta; but he thought the Greeks, in such noble buildings as the Parthenon, relied upon the nutural complexion given by time, and did not attempt to paint its beautiful surface. In considering the principles which governed the Greeks in the use of polychromy, he might observe that their temples were a kind of cabinet-work. The temple of Agina was not more than 35 feet higb, and the Parthenon only 60 feet; the temple of the Giants at Agrigentum-an unprecedented instance of magnitude-was 180 feet high. In the beautiful climate of Greece, he thought a natural love for these small but exquisite temples, and the ease and pleasure with which they could be minutely examined, would induce the Greeks to paint and otherwise embellish them; just as, in England, the fittings in our apartments, as bookcases and cabinet furniture, were richly decorated. Size was therefore an important consideration. The old English porches were highly ornamented, but not the upper parts of buildings; and he thought it was dificult to understand how polychromatic embellishment could be applied higher than 40 or 50 feet. Another natural argument of great importance was to be derived from the diffusion of colour throughout the works of nature, in regular gradation, from the tropics to the poles. This was observable in the animal and vegetable world, as well as in the atmosphere. The animals and butterflies of the tropics presented the most dazzling colours, whilst whites, greys, and blacks predominated at the poles. By a natural instinct, which could not be explained, mankind were led to adopt similar aradations; and the use of colour in architecture being governed by the same law, a moderate employment of it might therefore be expected in Greece. He believed that the extensive introduction of painting in English churches and cathedrals arose from pedantry, and not from the natural feeling of this country and climate. It was a practice brought from the east, and here adopted as a matter of fashion. A further consideration was the prevailing colour of the atmoephere. If an architectural
drawing were placed apon a background of intense blue, the bnilding represented would appear to be a mere ghost, unless certain colours (quch as erimson and gold, which were employed by the ancients) were applied to it, to bring it into harmony with that background. With a grey background, such as that supplied by the natural atmosphere of this country, no such vivid colouring was necessary; and the natural tones of the building, with such weather stains and other tints as time produced, would suffice to give it a pleasing and satisfactory effect. He would therefore suggest, in reference to the practical application of polychromy, that it should be introduced with very great reserve in this grey climate, although it may have been happily and properly applied under a more brilliant aky.

Mr. Nelson said that in a recent restoration of the Perthenon, exhibited at Paris by M. Paccard, the walls of the celle had been coloured red; and the same was atated to have been the case at Fgina.

Mr. Cockerell stated that he had found no traces of such colouring at Agina.
M. Servas de Jono, architect, of Amsterdam, said he thought the subject under consideration was a very dangerous caprice; and particularly so because it was brought forward and defended by a very skilful advocate. He did not believe that the colouring of buildings, termed Polycihromy, deserved so much consideration, especially in England. Excepting two or three gentlemen, those who had spoken after Mr. Donaldson had generally debated whether the colour applied to one edifice or another-if there really had been any colour-was blue or red. If any one had found a red stain, then the happy discoverer of such a precious stain of evanescent and transparent colour at the extremity of one angle of an architrave in Greece, was considerably astonished at finding this stain or spot much enlarged, and of an opaque and cutting colour when submitted in his drawings here. Indeed, before concluding his speech, M. Semper had rejected the hard and solid colouring of M. Hittorff, by saying, that if the exterior of sume Greek temples was painted, it could only have been done with coat of transparent ochre. Mr. Penrose, if rightly understood, was also of opinion, that if the Greek edifices were externally painted, the colouring was rather soft than harsh. M. Horeau spoke of the colours of the lotus plant in the capitals, and of the horizontal coloured bands of the columns in Egypt, in their relation to the different divisions of that country, but he omitted to bring forward a aingle proof that the exterior of Greek temples was painted. Supposing that they were painted in the manner publiahed by M. Hittorff, and not by the Arabs but by the Greeks, and that they were so painted in the time of Pericles, then M. de Jong would be very much ashamed and very sorry for the Greeks, inasmoch as he had seen from infancy this identical polychromy executed as an ornament on the little cake stalls at the Dutch fairs. He considered the work by M. Hittorff to be skilfully conceived and executed in relation to the historical and archaological portions; but nevertheless, he thought that the colouring in general was too harsh and cutting: he preferred the impressions of Messrs. Semper and Penrose as having more the air of truth, and as being more probable. As to the portions tresting of esthetical principles and the position of architectare at the present time, he thought that if colouring ever was in use among the Greeky for the external decoration of their pagan temples, it could only be considered as the expression of a frivolous and worldly, not to say physical, religion. Similar uage of colour had occurred in the interior of Roman Catholic cathedrals in the fifteenth century. But in the present day to cover the interior of an architectural work, civil or religious, with colours like the interior of a theatre, would be an imposition on the simple and modest character of the faith of the English, and an attack on the fundamental law of architecture, that the eye rests with delight, without being dazzled, upon sublime and harmonious effects, which spring from the chiaro'sanro of the profiles, and not from contrasted colouring. Polyohromy in moderation was acceptable for the interior of buildings dedicated to pleasure and relaration, as well as in private houses, being carried out on information existing long before the publication of this book; but it was not adapted to the interior of public edifices devoted to study and serious business. As the opinion of M. Hittorff would lead to polychromatiaing every interior, whether of a church or a cirque olympique, the speaker not only saw no merit in that portion of the publicution, but held it to be opposed to every element of pure and refined taste. Nor was polychromy to be adopted for
the exterior of any building, whatever might be its character or destination, since tha colouring would only resemble the decoration of a theatre; and as M. Hittorff advocated exterior painting, the speaker thought this portion of the work more destructive than useful. It was not to be aupposed that it was possible to increase the effect of buildings by adding glaring colours. It could not be too often repeated, that a person dressed as simply as possible would create a favourable impression by an elegant and noble exterior, while another in rich and gaily coloured apparel would be raally ludicrous. And whence did this difference arise, but from the fact that the one preserved harmony in his costume, while the other neglected it. The same thing occurred in architecture; we should try to be harmonious as to details in their relation to the general appearance of the whole work; and then our buildinge would approach nearer to perfection, for Harmony was the mother of Beauty and the Graces. He requested those present to recollect, that especially in the fine arts, truth alone was lovely; and to reaist the attempts of a depraved taste, known by the name of Polychromy, which was ready to destroy the sublime in architecture.

Herr Licer, architect, of Berlin, explsined his views as to the intention of the ancient Greeks in adopting polychromy, and the reasons for decorating with colours in modern architecture. He considered that the colours were intended for ornament; that they were indispensable by reason of the taste for colour existing among gouthern nations; and that they were designed for protecting the material. Colour, he said, was an effective and therefore requisite instrument in the hand of the architect; but its intended effect could only be produced when the idea which the architect wished to express was harmoniously and perspicuously carried out-when the colour completed the development of the idea itself. That the Greeks, whose architecture we admired as the perfection of art, even before we knew its connection with polychromy, employed the latter, was no subject for reproach, either to the artistic cultivation of the Greeks, or to our own admiration of the beauty of their structures. It must be remembered, that our impressions of Grecian edifices were either the offspring of the imagination alone, which pictured them as existing under our gloomy northern sky in all the dazaling whiteness of their magnificent material; or they had been acquired from actual examination of the mouldering ruins, yellow with the lapse of ages, under the clear and glorious sky of Greece; in either case no inharmonious picture met the eye of cultivated taste. If we imagined, however, the templea displayed in the glittering and almost transparent purity of their white material, under the lustre of a southern sun-the piercing glare of such an object would he not merely injurious, but destructive to the gight. Such could never have been the intention of those by whom these temples of classic art were raised, who loved to celebrate their gayest festivals around these fanes with all the full feeling of innocent liberty. The annoyance and confusion which a whitewashed wall, exposed to the sunshine, inflicted on the eje were well known; how much worse would the case be if the walls should consist of white marble, with its minute crystallisation, and covered with sculptures, the thousand reflexes of which must have a distressingly glistening and oppressive effect? Could we then avoid thinking of the necessity for calling ornamental painting to our assistance to subdue the reflection of the sunlight, to soften the wild play of the rays on the forms of the capitals and frieze, and to tone down their force into tranquil harmony? The ancient Greeks did not, perhaps, even think of this necessity when they resolved on painting their temples. It was probably another, and a more powerful motive that induced them-namely, the taste for colour. Every one knows the luminous zones of the south are more productive of colours than the darker ones of the north; that from the equator to the poles, nature's wealth in colour decreases from a boundless and a lively hue to a dreary monotony of black and white, through all the degrees of organic life, and that the predilection of the inhabitant of those regions unconsciously follows the laws of nsture, 80 long as he himself remains her simple votary. The prepossession of the Greeks for a richer scale of colours naturally led them to paint their temples, while the northern races preferred seeing theirs of one colour, black or white. Nevertheless, the northern architect should not dispense with polychromy, if it tended more clearly to develope the character and intention of his work. The use of colour, as a means of perfection agsinst the destroying influences of the weather, Herr Licht held to be of far greater importance, as it arose from
an immediate and actual necesaity, though certainly the need of colour did not involve that of polychromy, which was not of practical origin, but was the offspring of taste. It led, however, to the improvement of the material; it enlivened the plastic effect, and contributed by that meuns not a little to the perfection of the' artistic idea. A building of well burnt bricks, of hewn stone, or covered with a weather-proof cement, did not need the further protection of colour; but the structure which had Lstely developed itself in England, and announced a new ers in architecture, the structure in iron, required such aid from the very nature of the material, -a significant, eventful form of building, in which the spirit of our age was reflected in all its greatness. With our present knowledge, no safer and more convenient way of preserving this material from the effects of the weather presented itself, than to recur to colour, which would certainly require to be as often renewed as it was in the Greek temples by the hierodules, whose sole occupation it was to restore the colours which had become destroyed or extinct. The field for colour which this iron architecture would throw open, could not, indeed, be calculated. Thus much, however, we knew; the natural colour of the material did not correspond to its adaptation to the purposes of building; and whilst hy its extraordinary capabilities of formation and strength, it was fitted for the lightest constructions, and for the most elegant and minute details, the gloomy and heavy fundamental tone of its natural colour admitted as little harmonious effect in its architecture as could be produced by the material employed by the ancient architects of Greece.

Mr. Harding thought that the employment of colour by ancient architects on their buildings, had been placed beyond dispute by the observations which had been previously made, and that the point which remained to be decided was, whether the architects of the present day should follow this example, entirely or partially, or reject it altogether. Professor Donaldson had said, that we should defer to the authority of the eralted genius which had produced monuments that had been objects of admiration and text-books of study for ages; but he (Mr. Harding) could not easily agree in this opinion, unless he could previously persuade himself, that because the Greeks were great as architects, they were also great as colourists. They might, and they did possess the brightest genius for producing all that was exquisite and faultless in form, and yet be completely insensible to the true hues and associations of colour. There were not wanting instances of persons, whom the eyes as entirely misled with regard to the tones of colour as the ears misled others with regard to the tones of music. Notwithstanding the examples on the walls, which demonstrated the power possessed by the ancients in dealing with colour, he must submit that the drawings did not afford conclusive evidence that they were right. What we required was, not to know that they coloured one member of a building blue, another red, and another yellow, but evidence that in so doing they were authorised by immutable principles, whether belonging to the nature of colours, or symbolical of the purposes to which the building was applied, and the feelings and associations to which it was.intended to minister and appeal. Till these laws were enunciated he could not avoid the conclusion, that it would be se unsafe to adopt the opinion favourable to the ancients as it would be unwise to refuse when they should have been irrefragably established. But many knotty questions as to the eract colours employed in various cases still remained undecided, and, even if they were get at rest, who should say which was right, or whether any one at all was right, either in the cctual colour or the tone which had been used?-for there were many ways of failing in that respect. He therefore thought, that before we venture to follow these old masters in that puth, opinions on the question should be as unequivocal as they were with regard to the faultlees productions in form which they had bequeathed to us. With the architect, as with the sculptor, form was the great field for the digylay of his powers, in which he was the acknowledged teacher, and the public were his papils; but if he touched colour, he converted his pupils into disputants, and made those who would admire his forms entirely lose eight of them in the provoked discussion on his application of eolour. To some persons, cold colours, to others warm, were mont acceptable; hence every bebolder would persist in blaming the architeet for not administering to hia special gratification, and unless the building, chameleon-like, could change its hues in conformity with every varying fancy, there was no hope of its meeting with any, much lees with general approbation. Even

If the approval of the learned were alone to be required, be would be most reluctant to undertake the task of applying colour to a building, as he feared he could not astisfy himself, and consequently should have little hope of winning the approval of architects; while he should utterly deapair of gaining the euffrages of the public, if he did not indeed incur stroog censure from all, for having effectually diafigured a good production. To try polychromy by another test, he would suppose the effect it would produce on repreaentations of architectnral subjects introduced as component parts of landscape compoaition, and he was apprehensive that all his dreams of lovelinese would be dissipated at the bare suggestion of making the glorious bits which he had culled from Greece or Rome figure in prismatic decoration. Let them imagine the effect of pictures, such as Panini or Guardi painted, which were composed chiefly of architectural remains; would they consider the merit and the value of those productions enhanced by the addition of the primary colours and their complementaries? Mr. Harding took such instances because they appeared to him to be legitimate and natural, if not conclusive; and if he might be permitted to express a strong opinion on this subject, he confessed he should not feel greater repugnance at giving up the Parthenon, the Theseum, or the temple at Begina, to the painter, than in submitting the Apollo to the tailor, or the Venns to the marchande de modes. He admitted the greatness of the great architects, and thanked them heartily for exquisite enjoyment; but in colouring their matchlesw and stately creations, they appeared to him to have as entirely sacrificed all their enchanting and impressive attributes, as would the sculptors of old, could they have finished by clothing their statues in hroadcloth or printed cottons. He proceeded to say, that the objections which might be urged against the application of painting to sculpture were doubly potent, and that it was a perfect negution of the art. He illustrated this position by describing a supposed colouring of the Apollo Belvedere, the ultimate effect produced being the verisimilitude of a corpse. So far as he was acquainted with the history of architecture, he believed that however long the suspicion had been entertained that the ancients coloured their buildings, the fact had only recently been confirmed. During the last half-century, many able and earnest architects had travelled from our own and other lands to behold these glotiona relics of departed genius. How had they toiled to drink in all their beauty! and how many, struck with as much admiration of the colour acquired from the palette of time, or from advancing or retreating sunbeums, had tried, with the pencil, to record these evanescent beauties. Whilst thus entranced, how few had desired to see the beauty they admired otherwise painted than as they found it! Mr. Harding judged of Greece by what he knew of Italy; and often as he had sat before the buildings of Pastum or Rome, he did not remember a single instance in which he should consider that a painter with his pots of colour could add one charm to the art which had won his admiration. He could imagine the present Houses of Parliament in polychrome attire, looking very gay in the occasional sunshine of our climate,-and that should he pass them again when a few short months of a London atmosphere had rolled over them, how sadly would all their pigmental glories have become dim! Generally speaking, it was an axiom, that such a style of architecture should be selected, and such a design composed as should be not only best adapted to the required purposes, but should announce them to the spectator. Broad distinctions, such as those between a church and a prison, were thus easily marked; but polychromy would effectually undo all which had been thus accomplished, however well done, as whatever might be the building-church, prison, bank, exchange, or college-all must figure in the same dress, subject to the limited variety producible by the self-same seven colours in all cases. He would not, however, repudiate polychromy altogether. The observations which he had ventured to make had direct reference onjy to the polychromy of the old masters of architecture, but with deference, he said, not masters of colour. He hoped he might be excused for this expression of his opinion, and for saying that he preferred to be guided to conclusions in theory, and results in practice on this subject, by an older, more able, and unerring teacher-Nature. Stone of any kind might be anployed for the purposes of building; and, putting aside the cost of obtaining the different marbles, these presented tints of every variety, sufficient to satisfy abundantly the most craving appetite, or the most fastidious taste for colour. Here we stood in no need of evanescent pigments to decorate and deaden, and
bowve futurity to dimeover, by toil and truvail, whether the architeets of to-day, who would be ancient masters to posterity, were polychromists as well as arehitecta. Nature furnished material for polychromy, whose colour was as durable as the subatances in which we found it; and in the ohoice of the varions granites, porphyriet, and marbles, the architeet could exercise his imagination equally in colour as in deaign. Every tone had its colour incorporated with its eubstance, not laid on as a foraign, opaque, and unnatural skin, for the conjoint infiuence of the winds and the rains, the sunshine and the soot, to tarnink, sbrade, or obliterste,-but in ever living and enduring colours, in blockes and masses, made up of countless integers of overy harmonions hue. With such materials ready fabricated, and needing only to be fashioned by the hand of art, he could each imagine what effective resulta might ensue from the axrangement of thene natural, delicate, and beautiful coloura, and thair application to the different member thus brought into delieate or strong rolief, as occaaion might require, skilfully harmonised and adapted to a grand whole, whore the eye could cacily glance over the separate mombera, each pleasing in its colous individually, and contributing its share to a struoture sablime, consistent, imposing, and harmonious. This he should eall pictorial polychroray, and it would be, according to his views, ite true and indisputable application. If the cost of obtaining marbles were such as to prohibit their nee, almost, if not altogether, he would gabmit the following for consideration. Architeots conatantly used, whether from choice or nocemity, difforent kinds of stone in one and the asme building. Newr, as in these we had warmer and colder colours, he concaired that advantage might be taken of these differenoes, in the mannar suggeated with regard to the marblea, if not with triking, yet with very pleasing effect. When new, however, 3. these meane of obtaining colour were confessedly very timited, the building might yet look garish, and out of harmony vith all around. If in this difficuity the philosopher cuuld suggeat any means by which something like the effect derivable from the use of the marbles might be achieved, means by which to dye the tinte es Nature did,-for it must be remarked, that she employed dyes, not pigmente-ahestained, she did not atencil,by which to polychromatise our buildings as ahe eventually would by the tonch of time; if he could furnish architects with euch a palette, with which to work in imitation and in anticipation of her tonea of colour, he would confer a valuable boon on architecture, and on the arts. Architects would be justified by the great prototype they had chosen to follow, and would meet the appraval of the public. In conclusion, Mr. Harding said that his observations had been confined exclusively to the exterior, at he did not feel warranted in taxing the attention of the meeting by the expression of any opinion he might have on the application of polychromy to the interior of building. Here, bowever, as he believed, we should find its apecial province; and man. Smirke very ably obeerved, whatever doubt might still lang abont the questiun of the external painting of Greek architecture, there need, at least, be none as to interior polychromy.
Mr. Onen Jonam expreased his fear that anything he conld my on this inteating subject would be very unatisfactory. The guemion was not altugether one of taste, or whether the polychrony of the Gireeks was such as we should approve of, because we did not at present know enough about it to form an opinion on that point. Now, however, that the public attention was directed to the subject, it might be hoped that the same careful inveatigation would be bestowed upon the colouring on the Parthenon as Mr. Penruse had devoted to its form; and it would then be known whether the Greeks were as imperfect in their application of colour as Mr. Harding supposed. For himself he did not believe that would prove to be the case, or that a people so refined as they were could be so defective in their knowledge of a sister art. He could not, indeed, conceive it for an instant. There was already evidence which could not poasibly be controverted, that the Parthenon was partially coloured, and he considered that it might be ansumed, in fact, that it was entirely coloured. Not only portions of colour, but setual painted forms had been traced upon the mouldings, and he believed that the colours which bounded those forms must have been of the greatest possible intensity, as otherwise they woold have been undistinguishable, and perfectly useless at the tright from the ground at which they were placed. These, indeed, could not have been tints, but positive coioura; and as it would be totally imponible to reconcile to the eye the appear-
ance of bands of positive colourn ecparated by great masten of white marble, he could never bring himself to believe that the temples were not entirely painted. He therefore agreed with Mr. Donaldson in the opinion that the Parthenon was first covered with a thin coating of stucco. Of course this would appear very frightful to those who were accustomed to look apon the white marble of the Parthenon as such a wonderfally beautiful material. He denied that the Greeks $e 0$ regarded it. They used it, in faot, because they had it under their feet, and bechuse it was the beut ponsible material for working out thome subtle modulations of form which Mr. Penrose had elucidated; and which he thought they could not have done in sandstone. He therefore believed that they did not congider it at all a arime to cover the marble with atucco. The Egyptians covered their granite obeliaks with stucco; or, at all events, as wo knew that they coloured the hieroglyphice upon them, we could not suppose them guilty of such discordant treatment as not to colour also the granite faces of these obelisks. They also coloured their statues, because they wore emblematical, and would have been imperfect without it. He could not but feel, therefore, that the appearance of the white marble would have been excessively disagreeable, and that unless coloured throaghout, it could not have been made to harmonise with the pasitive colours, the existence of which had been already proved. The question then was, how the Greek temples were culoured. Mr. Penrose thought the marble received a stain; but he (Mr. Owen Jones) believed it would be exceedingly difficult to give an uniform and durable stain to that material, so as to agree with the strong colours still to be traced. Others thought that the natural estains, produced by time and weather, would be sufficient to get rid of that horrid glare of the white marble, which everybody felt would be unbearable. He would ask Mr. Harding whether he could make a satisfactory pioture of the Parthenon in white marble- the actual white marble of the quarries of Pentelicus?

Mr. Harding admitted that the appearance of the material would not be pictorial till nature had altered its colour.

Mr. Owen Jones remarked that it would take a very considerable time to produce that reault, and it would be produced very unequally. Some parts would be strongly tinted, and othere not at all; deatroying that evenness of tint which it wa the object to produce. The Parthenon was not complete in any way without its colour; nor were any of its mouldings perfeot without their coloured ornaments. Among the questions on which there had heen some doubt, was that of the colour of the background of the pediment. In one example that portion wat represented as red; but considering that the male figures in the pediment may have been coloured red, as they were in Egypt and the women yellow, he thought the fact was eatahlished that the ground of the pediment was blue. The great question of difficulty was as to the columns, which were supposed by difforent pereons to have heen left white, stained, or painted red, yellow, or even black. He remembered neeing a columa in the interior of the Parthenon which had some red colour upon it but there was good reason to conclude that that was mediaval painting. His own belief was that the columns were ooloured gold. It would seem at first a very startling aupposition that there ahould be such a mase of gold in the building; but if the fact were established that gold wes largely used in the enrichments of the mouldings, he did not see how the remainder of the colouring of the larthenon could be carried out by yellow colour; it must have been done by gilding upon the stucco. The Chairman had adverted to the small size of the Greek temples; but it might be observed, that although the temples of Egypt were of great magnitude, they were nevertheless profusely painted. The question of introducing colour in this country was altogether a distinct one. He did not think the time had arrived for us to do so; indeed, we were were not able yet to devise an architecture of our own. When we had made our own baildings, we might colour them according to onr own modes of thought; but at prewent we tranplanted a Greek temple into England; and, in his opinion, the colouring on it would be no more out of place than the building itself.

Mr. Penzosis observed that a very considerable time would be necessary to give a warm tint to the Pentelic marble. The marks made by the cannon balls on the Parthenon in the last war (1880) were as white as the freshest fracture of the merble in the quarry, not having acquired the slightest tint in thirty years. Even the Venetian ahot marks of $\mathbf{1 6 8 0}$, though partially
tinted by tlme, were otill very white. He only contonded that there had been a very delicate stain upon the columns, but thought the tone required would not have been left by the Greeks to be acquired only by time. He believed that the marble of Pentelicus had been chosen by the Groeks on account of its beanty. They rejected the Hymettian marble, which was within five miles of Athens, easy of access, and producing blocks large enough to furnish monolith columns; and on the contrary, they selected that of Pentelicus, at a distance of sixteen or seventeen miles over very bad roads, although they could not obtain blocka larger than 3 feet high from that quarry.
Mr. Harding observed, that the whiteness of the Greek marble was not more offensive than the red tiles, the new thatch, and paving emploged here, until time had toned them down. Certainly, if the Greeks wished to imitate the effect naturally produced by age, they would not have coloured their temples with bright reds, blues, and yellows.

Mr. Owen Jones said, that notwithstanding the use of such positive colours, he assumed that they were so well balanced and harmonised as to produce a bloom which would be satisfactory in its effect.
Mr. I'Anson stated that in the year 1836 he was at Athens, When the remains of the temple of Victory without Wings had just been discovered, and upon the fragments of it he observed distinct traces of painting, especially in the coffers under the pediment. A beautiful instance of ancient polychromy was farnished by a small sarcophagus in one of the churches of Girgenti, the colours of which were remarkably bright and clear. As to the modern application of colour to external architecture, it was evident that the prevailing feeling had been against it. The effect of colour in the restoration of the cathedral of Spires, now in progrese, was highly imposing. In the cathedrals of Coblentz and Cologne, colour was also employed, but leas successfully; and even the most ardent admirers of polychromy in Germany had only partially applied it to external decoration. In France there was a beautiful example of polychromy in the monument erected to one of the French admirals, in Père le Chaise; but the architect of St. Vincent de Paul had not applied colour externally.*

Mr. W. Lloyo said the first question to eettle was what the Greeks did; and the next, whether they were right in what they did. On the latter point there was much difference of opinion; but he was rather inclined to assume, as a matter of course, that the Greek architects of the age of Pericles were unquestionably right. The colour employed in the Parthenon was regulated, he had no doubt, by reference to the aculpture in the pediment. The painted mouldings, of which there was must evidence, formed a sort of frame for the sculpture. The Greeks used metallic ornaments, and probably gold upon their sculpture; and Mr. Cockerell had shown that the shields and helmets of the figures at Fgina were painted. Whether the Greeks were right in so colouring their sculpture would depend on whether they succeeded in doing it well. The Olympian Jupiter was profusely embellished with gold, silver, and painting, and that statue was axecuted by the brother of Phidias. It was the admiration of its time, and as there was every probability that its sculptor was also employed on the Parthenon, it was not to be supposed that he who had produced a work so perfect in one case, would produce nothing but a hideous deformity in another. We ought to hesitate in concluding that the Greeks were grossly wrong, because they munt have been either perfectly right or grossly wrong. That come of the plain mouldings were painted was evident; but there was much uncertainty about the abacus and the echinus. However, he was quite ready to conform his taste to whatever it appeared that the Greeka really did; and although he should be sorry to nee the echinus painted, it was necessary to guard against the rejection of evidence which did not accord with our own prejudices. As to the general tone of their buildings, he thought the Greeks preserved the pure and native colour of the marble. Clessical authorities constantly spoke of buildinge monuments, and tombs of white atone. The frentispisce to M. Hittorfi's work, copied from a Greek vase, represented a youth painting a sepulchral stelé. In one of his verses Pindar spoke of a sepulchral utelé as a white stone; and although the frieze and cornice might have been painted, the remainder cras prubably left white. On the other hand, the painful effect of a white

[^7]building was famillar to the eye, even in this monochromatio country. M. Semper had used a pasage in Herodotus as an argument in favour of a red tint; but it appeared to him that Herodotus clearly considered a building which he described as of Parian marble, to be a white building.
Mr. Donaldeon observed that the queation under discumion was simply a queation of research," the object being to eatablistr a fact; and juatice should be rendered to M. Hiftorff for his labours, with that end in view. No person, he believed, would attempt to deny the fact that the Greeks used colour. Even Mr. Penrose thought there had been a wash over the whole of the Parthenon. The mouldings certainly were very intensely coloured; and he concurred in the opinion that the people who produced a building so perfect as the Parthenon, would not be likely to diafigure it by unpleasing colouring: if they were capable of judging of form, it might be assumed that they could also judge of colour. Mr. Bell had objected that M. Hittorf's reatoration was based on very slight authurity; but his object being to carry out a syitem of polychromy, he had very properly avoided the Parthenon and the Theseum, and taken only a emall temple at Selinus \rightarrow temple of freestone, of which. there were few ramains. While guided by the principles which he supposed the Greeks to have sdopted generally, M. Hittorff was not hampered in the particulars of his reatoration. He had also shown very clearly the extraordinary latitude which. the Greeks allowed themselves in the use of the orders, the different parts of which were often combined in the same building. Although the climate of Greece suggested the uee of colour, this wae not even a question of climate, because in the frozen climate of Russia the churches were covered with porcelain, and their roofs gilded and painted. Size had also nothing to do with the question. There was not in London a portico of the size of the Parthenon. As to material, the Athenians employed martle because it was cheaper than stone; and it was well adapted to show those beauties of form which was a primary object with them. Mr. Harding preferred the Apollo Belvedere as a living object, and not as a dead corpse; but surely the application of colour would produce the effect of life. He had no doubt the ancient Greeks did paint their statues; and even certain modern sculptors were endeavouring, by delicate tints upon the hair and garments, to produce the same effect. Accuatomed as we were to consider a marble gtatue the perfection of art, it was difficult to overcome the prejudice against colour; but the more the question was atudied, the more should we do justice to Greek art, and advance in art ourselves. He certainly believed that the Apollo was painted originally, or at all events toned in a delicate sensitive manner to neutralise the effect of the cold marble. In his recommendation of coloured stones Mr. Harding adopted polychromy, which was not a question of material. The marble arch in Oxford-gtreet was a cold, dead, tasteless monument; but if marble of different colours had been employed for the columns, the frieze, and the panels, it would be more expresaive and more beautiful.
Mr. Cockraell (the Chairman) congratulated the meeting on the interesting nature of the diecussion. If the Greeks could rise from their graves, they would say that the various apeakers had fought like Greeks, and that their respected secretary, Mr. Donaldeon, contending through thick and through thin, was the best Greek among them.
me to refer rathar to the quallty of the materimh, atistrguiabed from the ondinary
tione, which woold be of a yellower or browner tint, and not to any aceldentel
colouring of the surface. The white fracture of marble would conkrast dectdedity
with the rellower fracture of stone, To diatinguish the quality of the marble;
anthors uve the name of the quarry whence if was extracted. Thus Piadar, Nemen.
and is frequencly referred to by mbsequent leziconraphers. Surabc nes rappapos
$\lambda, \theta o v$ and λ enko λ oor. In regard to the question, whether the palatinge were enes
crited on the walls themelvet, or on tablets, the expremelons of Panganien would
appear concludve. In the dewcription of the Poildie, Athea, be eaym- Brde TY MeV?

$\begin{aligned} & \text { (Various coloured) Indicales Its ord } \\ & \text { a mere picture gillery.-T. L. D. }\end{aligned}$

Barry.-The title of knighthood has this month been conforred on the architect of the Palace of Westminster. This compliment to him will be received with gratification by the profession, they having so long expected it would he paid to one who is among the most eminent of his art in the world.

STEAM ENGINES AND GOVERNORS,
Patented by Jame Whitblaw, of Johnetone, Renfrew, N.B. July 318t, 1851.
The specification contains twenty-three separate claims, but the following description and engravings will suffice to explain the principles of the invention. Fig. 1 is a transverse section of the improved engine, which can be adapted to a screw steamer.

Mg. 1.
A, the cylinder, is placed on one side of the vessel, and the pistonrod is connected by links to the end B, of the working beam. This beam, in place of being set to work upon a centre equidistant from each end of the beam, is carried on the centre C, placed considerably nearer to the centre line of the cylinder than to the connecting-rod centre; the distance from B, to C, the respective centres of the piston-rod connection and the main centre of the beam is one-half tbat comprehended between C, and D, the main centre and the connecting-rod centre. In this way the engine has a short stroke, and therefore admits of being worked at such correspondingly high speed as may be required to drive the shaft of the screw propeller directly or without spur-wheels or other intermediate gearing, at the same time that the reduced pressure on the crank and its increased length give to this engine most of the advantagea of one of the ordinary kind having a length of stroke even greater than that corresponding to the length of crank in this improved engine. It is also cheaper in construction, lighter, and occupies less room than the ordinary engine. The cylinders, instead of being side by side, may be set one on each side of the vessel so as to balance each other.

Fig. 2 is a horizontal-cylinder engine, arranged to work $s 0$ as to secure the advantages of the differential or unequally-divided beam. The cylinder A, has ite piston-rod connected by a link
at B, nearly at the middle of the length of a lever or beam $C D_{2}$ which works on a fixed centre at C. In this way the end D, of the beam, by having a traverse of about double that of the piston, actuates the long crank E, by means of the connectingrod F. The other end of the beam may be made available for actuating a pump, by an extending arm or lever G. On referring to fig. 1, it will be obvious that if the slide-valve were placed either on one side or behind, instead of in front of the cylinder as therein represented, the cylinder might be placed much lower down; this would edmit of the working beam being aleo lowered, provided a sufficiently long connecting-rod could still be obtained.

Fr. 8.
Fig. 3 shows a pair of vertical-cylinder engines with working beams brought very close down towards the crank-shaft. The cylinders A, are fitted up on the "trunk" principle, that is, with hollow trunks or rods B, attached to the upper sides of the pistons, and working through stuffing-boxes in the cylindercovers, like the ordinary piston-rods. The pistons are juinted at C, to the lower ends of links D, which work inside the trunks B, and are jointed by their upper ends at E, to the short ends of the working beams carried on main centres at F. The opposite long ends of these beams are jointed at G, to the lower ends of the links or short lengths of connecting-rods H, which are again connected by joints at I, to the upper ends of the main lengths J , of the connecting-rods. The latter, passing downwards, are jointed at their lower ends to their respective crank-pins K, of the main shaft L. In this instance the short links H, add, in reality, so much more effective length to the main connectingrods J. In other terms, the effective length of the connectingrods is equal to the whole length from G, at the extremity of the long end of the working beam, to K , at the crank-pin. The upper ends of the links H, are therefore not guided in a vertical direction, but each beam is made to act as a guide to the connecting-rud of the other by means of the rocking-levers M, fastened on the main centres. The upper ends of these levers are jointed to links N, the opposite ends of which are similarly connected at 1 , to the joints in the connecting-rods $\mathbf{G}, \mathrm{I}, \mathrm{K}$. By this means the action of each beam guides the connecting-rod of the opposite beam, retaining the centres I, at the proper effective angle for working; that is, the centres I, are so guided ail to work nearly in the same curve through which a point at this distance from the upper end measured along a straight, inflexible rod of the length (i I K, would work, so as to give the jointed rod the full working advantage of a straight, inflexible rod of about the same length. The rode 0 , depending from the working beams, may work air or cold-water pumps.
Fig. 4 is a Woolfs, or double-cylinder expansive engine, with. the improvements. A, is the main centre of the working beam, on each side of which centre, and at suitable distances asunder, are placed the high-preasure cylinder B, and low-preseure cylinder C , their piston-rods being connected to the main beam at D, and E. From F, the connecting-rod descends to the crankpin G. The united effect of the preseure of the steam on the two short-atroke pistons is made to act upon a long crank, as in the plans described. This action of the pressure of the steam on each piston is also balanced on each side the main centra. The steam-ways communicating between the cylinders are straighter than in the ordinary Woalf's engine, inasmuch as the steam from the upper end of the small cylinder passes directly into the corresponding upper end of the large one; and aimilarly the exhaust at the-opposite ends passes from the lower part of the small cylinder to the corresponding part of the larger one; and one oylinder being placed near the other, the
comsecting etean-pastagee are chortar thas they are in other engines of this clase. Where it is desirable to avoid the use of eypinden of very lange diameter, two shart eylinders of small

Mr. 4.
diameter, and each fitted with a pirton, may he erected one upon the other, to work with one piston-rod. The effect of a ahort stroke of piston with a long crank may be secured by placing the cylinder between the main centre and the connect-ing-rod end of the beam. This arrangement is capable of easy illustration in fig. 4, where, by removing the small cylinder B , and the short end of the beam, the cylinder C, will act upon the main beam as upon a lever of the third order, giving the connecting-rod end F, the required amount of stroke upon the same principle as that of fig. \&. It will also be obvious, that the arrangement shown in fig. 4 , may be modified by transposing the relative positions of the large and small cylinders the small cylinder being placed on the connecting-rod side of the main centre.
The invention also relates to improved governors. Fig. 5, is a side elevation of one form of governor with its regulating mechanism attached; fig. 6, is a horizontal section of the spindle, with a plan of the lower sliding cross-head; fig. 7 , is a plan of the expansion cam; and fig. B, is a diagram representing the pair of adjusting star-wheels, with two of their fixed detents.

The cam A, for working the expansion-valve, is carried round by a spiral feather B, on the luwer end of the governor spindle, and has a long bose C , fitting loosely to the spindle, and passing upwards for connection with the pendulum action above. Then, as the pendulum-balls expand with the increased rate of the engine, they draw the cam upwards, thus traversing it along its spiral feather B, and setting it forward to cut off the steam earlier. Similarly, the pendulum action brings down the cam again, as the balls contract on the diminution of the engine's speed, and thus the cam is set back. In this way the upward or downward traverse of the sliding tube D, of the governor, causes the cam A, to be set forward or back, as the case may be, on its spindle, altering the extent of expansion. The lower end of the tubular slide D, which fits loosely on the upright spindle linked to the pendulous arms above is formed with a cross-head E, having an eye at each end, bored out to receive the vertical spindles of the star-wheels F, which are carried round with the governor spindle. On the two fixed brackets G, set on opposite dides of the governor spindle, are fixed two sets of stationary pins or teeth H, and I, each pair being in the same plane; and when the engine is working at its proper rate, the star-wheels F, revolve with the spindle of the governor at such a height as to work clear of the fixed teeth H, and I; but should the engine increase its speed, the interior portions of the peripheries of the ctar-wheels F will come in contact with the inner and higher pair of pins H . When this occurs, the revolution of the starWheels with the governor spindle will cause them to turn upon thedr own individual ares; and if the governor revolves, as in-
dicated by the arrow in fig. 8 , this action will also cause the star-wheels to turn in the direction indicated by the arrowe upon them. If, on the other hend, the engine's speed abould decrease, then the exterior part of the periphery of the starwheels will similarly come in contact with the outer pine I, of the brackets G (soe fig. 8), when the star-wheels will be turnod in the opposite direction, as shown by the arrows in that figure.

FIs. 5.
These two opposite actions of the star-wheels are made available for securing an additional power or secondary action for regulating the speed of the engine through its expansion valves, by means of the vertical spindles J, on the upper ends of which the star-wheels are fast. These spindles are screwed at their lower ends, and are passed through screwed eyes in the crosehead K, attached to the upper end of the boss of the cam \mathbf{A}. This cross-head fits loosely in a ring-groove in the cam-boss, and carries a side projecting-piece L, which works into a ahort groove in the governor spindle, serving as a vertical guide for the cross-head during its traverse up or down, whilst the camboss works round within its collar. Similarly, the vertical traverse of the tubular slide D, of the governor is insured by a cotter, or flat stud, passed through the governor spindle, projecting on each side through a vertical slot in the slide. As the expansion cam A, has a partial turn communicated to it in either direction by the upward or downward traverse of the governor slide D, the star-wheels F, also get a partial revolution correspondingly, as they come in contact with one or other of the two pairs of fixed pins H, I, and thus a secondary action is given to the cam, setting it still further forward or backward by the revolution of the screwed spindles J, through the eyes of the crose-head K; and this, will go on until the gradual arrival of

140 enine of the trine rate of workiug, shall bring the starweels F, between and clear of the fixed teeth H, I. If the ergine in expoed to varying degrees of reaistance, this additional movement will give it a greatar nicety of adjustment, and keep it et a mose nniform rate.

7. 8.

Fis. 7.
Pre 8.
Frovision is made for the prevention of the accidental turning of the spindles of the wheels F, too far in either direction. The Wheela are attached to their spindles by atiff friction; and the eyes of the crosi-head K, are furnished with inclined teeth or detents on each side, corresponding to similar teeth set in reverse directions on the lower and upper sides of the upper and lower collars M, N, fast on spindles. Thus, when the spindles have turned to the full extent allotted to them in either Irection, these catches will come into action, and prevent further movement, whilst the stiff-friction connection of the wheels on their spindles will allow the wheels themselves to turn or move free when brought in contact with the fixed teeth H, I. By a alight modification one of the star-wheels may be dispensed with, a spur-pinion being placed on one of the spindles, as at O, to gear with the loose piuion P, on the governor spindle, which pinion again gears with the third pinion Q, fast on the opposite star-wheel spindle. In this way the revolution of one etar-wheel spindle is oommunicated to the other, to give both a simultaneous movement, whilst one star-wheel only is used; or the three pinions O, P, Q, may still be used even with two ter-wheels, in order to insure the simultaneous movement of the two upindles in case one star-wheel should at any time come into action before the other. Instesd of having merely two pairs of fixed pins H, I, three or more pairs may be used, and cot at different heights, in order, that when the engine's rate is only alightly faster or slower than it ought to be, tbe secondary ection may come into play with greater delicacy. The same efect may also be produced hy two pairs of pins, as shown in fig. 5. In working at a high velocity, where it might be injudiedous to work the governor spindle at the rate necessary for the ordinary aingle cam (as in fig. 7), the governor may he reduced in speed, if fitted with a cam made double or triple, to correspond to this reduction in the rate. Or instead of having the cam upon the governor spindle itself, it may be carried on separate apindle, working in connection with the engine; and If adapted to that spindle in the same way as the cam A, is conmected to the governor spindle in fig. 5 , the cam may be moved backward or forward as required, by means of a lever or other connection with the governor; and the secondary action may sloo, in this case, be applied so that the cam, if placed on a eeparate spindle, may be made to regulate the speed to as great a degree of nicety as if it were placed on the governor spindle. It may be adapted to work a tapering cam, or otber apparatus, much as "Field's valve," where the cam is simply traversed along in the direction of the axis of the spindle on which it is carried.

NOTES ON CONSTRUCTION.
 By Baruel Ciego, Jun.
 (With Engravings, Plate V1I.)

*s: Trase Noles, when compieted, will be pubilabed io a soperate form, as a HandBook for the ue of the Studentit at the Sehool of Construction,

Mixing Mortar.

The quicklime is formed into a bed 9 or 10 inches deep, and the sand to be mixed with it placed in a ring around it; water is then thrown on to the lime to slake it, and the whole thoroughly incorporated. The practical experience of the ordinary labourers enables them to judge how much water may be necemary to mix up the mortar to a proper consistency for use. Considerable labour must be bestowed upon working up the mase, which should be turned over and mixed several times with
a species of hoe, called a laryy, which is fala-round fron, about 6 or 8 inches in diameter, at right angles to a handle 8 or 6 feet long. It should be thus chafed up until there is no appearance of unmixed lime, the presence of which is easily detected; this anmixed lime is very pernicious, as it never eets, and is apt to swell and derange the brickwork. Mortar thus made is termed "larried mortar." A degree of beating or larrying, sufficient to give to the mortar all possible consistency, is of the greatest importance.

Another proces of mixing is sometimes employed: where it is required to convey tbe mortar in a dry state to the work, it is done by forming a berl of lime within a ring of sand as before, throwing on the lime a gufficient quantity of water to slake it, and covering it up immediately with cand; after it has remained some time in this state, it in turned over and soreened. The mixture is now in a state of dry powder, and can be carted to the work, where more water is added, and it is chafed ap for uge. For hydraulic limes this is the best mode of slaking, but the mixture must be used at once, and not be re-watered.

In mixing mortara, trituration must be avoided, as sand acts to more advantage in the state of crystals or sharp grains tban as a powder, with every species of lime; trituration, therefore, kept up beyond the time necessary for perfect mixture, is only hurtful. Mortar, in every season, ought to be prepared as much as possible under cover, whether it be to avoid the rapid desiccation which takes place in summer, or to obviate the still more serious inconvenience in the rainy season. Particular care must also be taken that the mortar is not mixed on the natural surface of the ground, but on a smooth platform of paving or planking. On large work, where great quantitiea of mortar are required, it is desiruble to mix it in a "pug-mill", turned by a horse, as it both insures perfect mixture and is economical as saving manual labour. The pug-mill shown in the engraving (fig. 8 , Plate V1I.) is capeble of mixing $\$ 0$ cubie yards of mortar in a day of ten hours, which will sapply aboat forty bricklayers during the same period.

Artificial Hydeatigo Mortarge

Naturally hydraulic mortars have been noticed in the preceding remarks, but rich limes, by the admixture of foreign substances, can be made into mortars that have the property of setting under water with various degrees of energy; indeed, they are very frequently to be relied upon, for sub-aqueous work, far more certainly than naturally hydraulic mortars. It must, however, be borne in mind, that the external joints of hydraulic mortar, however formed, will not become hard when exposed to the waves of the sea, or to running water, anleas protected with a pointing of cement; but in still water this pointing is not essential.

Pouzzolana, tarras, and brick or tile dust, if mixed in proper proportions with rich limes, will render it an hydraulic lime; and, if mixed with a lime already possessed of hydraulic properties, will render it more energetic. Pouzzolana and tarras, or trans, are both volcanic substances; the former is brought from Italy, the latter from Holland; both are similar in their chemical composition, consisting of silica and alumina, with a trace of lime, and sometimes of magnesia; and both act, when mixed with lime, in the same manner, although pouzzolana is the most esteemed. Most clays are thus chemically constituted, and, when burned, form artificial pouzzolanas of nearly equal value with the natural.

Smeaton found that the atrongest mortar he made for the Eddystone Lighthouse was produced by beating together equal measures of hydraulic lime and pouzzolana; the next in quality being composed, of lime 2 parts, puuzzolana 1 part, and sand 1 part; and he did not use more than 2 measures of mixed sand and pouzzolans to 1 measure of slaked lime powder, in any part of the work. Mr. Stevenson used the same sort of lime that Smeaton had done-the blue lias of Aberthaw-in the proportion of 1 measure of slaked lime powder, 1 measure of pouzzolana, and 1 measure of sand, which he says that be considered equally good as equal mensures of lime and pouzzolana. The mortar for the front work of the Humber Dock, completed in 1808, was composed of 1 measure of ground Warmsworth* ${ }^{*}$ quicklime, $\frac{y}{}$-measure of ground pouzzolana, and 1 If measure of sharp fresh-water sand. This, when the work was pulled down twenty years afterwards, was found to be exceedingly hard, being, both in colour and hardness, like a well-burned brick.

* Deacribed by Mr. Timpericy as a magnualan limentone

Pouszolana communicates to common chalk lime the property of setting under water. The proportion of it used in making mortar is, 1 pouzzolana powder, 1 of lime, and, at most, 2 measures of sand. By the experiments of Sir C. Pasley, it appears that 1 measure of rand, added to 1 of pouzzolana powder and 1 of chalk lime paste, produces the strongest pouzzolana mortar with that species of lime; and the same author remarke, that pouzzolana appears to increase both the adhesiveness and resistance of the blue lias lime in so moderate a degree, as to render it doubtful whether it is worth while to use it at all with any lime possessing such very powerful hydraulic properties.
The hydraulic virtues of the pouzzolanas were, for a long time attributed to the presence of iron. The experiments of M. Vicat, upon non-ferruginous clays, from which he produced, by caloination, artificial pouszolanas, caused him to abaudon that opinion. It would be wrong, however, to conclude that in the red coloured pouzzolanas the iron is eutirely inert; but its presence is certainly not indispensable, since there are very energetic pouzzolanas which do not contain an atom of it. Captain Smith, the translator of M. Vicat's work, saye, in confrmation of the above, that he has met with clay entirely free from iron, which, after calcination, formed a highly energetic pouzzolana; and, on the other hand, a stiff paste, prepared for experiment, with rich slaked lime and the washed peroxide of iron, was perfectly soft after several weeks immersion. The mortar used for the Ramagate Harbour new works consieted of lias lime 3 parts, sand $\&$ parts, coal-ash 4 parts, and of pouzzolana $\&$ partu, mixed thoroughly in a pug-milh.
In Holland, traas murtar is very much used in sub-aqueous constructions. M. Weeninck, a Dutch architect, states that there are four kinds of traas mortar, depending on the different proportions of lime, traas, and river sand, of which the mortar is compounded. But it is to he observed, that sand is never added when the strongest traas is used, as it tends to dilute it strength.

,	Lime.	Trat		sand.	
Strong trass	6 parts	parts		0 par
Strong bastard	"	...	"	$1 "$
Bastard	2 1	"		$1 "$
Slack bastard	3				

When the lime is produced from calcined shells, the proportions are as follows:-

Traas does not suck ap the water, it resists its action; but it is affected by dry air and by frost. In the erection of walls oxposed to cold and damp, the bastard trase should be used: cond gives strength, and the trass repels the damp. It is also used for exterior walls exposed to south-west winds in damp soils, quays, \&c. Strong trase is used for all sorts of work which it is desirable to render waterproof, as close cellarg, reservoirs, cisterns, and the like. In hydraulic works, when the closeness of the work is nut absolutely requisite, or which are more or less exposed to the air-like quay wallo-and whicb are often above high-water mark, the strength of the mortar may be diminished, by taking 5 parts of lime to 2 of trans; but for constructions almost always above water, and only now and then wetted, such as those portions of a gea wall above high meap cides 3 parts of lime to one of trass are sufficient.
The following notice of tarras is taken from Mr. Smeaton's esasy on Water Cementa in bis work on the 'Eddystone Lighthouse': - "Although really endowed with those qualities which have justly obtained it [tarras] a reputation for water building, yet it is generally admitted to have some properties that for our use were not quite eligible. In the first place, though it will cause most kinds of lime to set and become hard under water, as we have seen by several examplea, yet, if the cement grown dry by a gradual exposure to the nir, it never sets into a cubatance so hard aut if the same lime had been mixed with good, clean, common sand, but it is very friable and crumbly; and if, after it has acquired a considerable degree of hardneas by immersion in water, it is then exposed to the air, it loses a considerable part of its firmness, and also becomen crumbly, though, according to my observation, it never becomes to much so as if it never had acquired a greater hardness by a submersion in water. In a state between wet and dry, or of being wet and dry by intervala, tarras is known not to answer well."

Mr. Smeaton also saya, that when tarras mortar ts kept atway wet, and consequently in a state most favourable to its cementing principle, it throws out stalactites from the joints, which; in time become so extuberant as to deform the face of the wall. But Sir C. Pasley believes this growing out of the jointa to have arisen from the fact of too much chalk lime having been mixed with the tarras-viz., twice its own bulk; and he apprehends this is not peculiar to tarras, but would take place with pouzzolana also, if it were mixed with so great an excess of lime. The brick wharf-wall of Woolwich dockyard, removed some time ago, was built with mortar composed of 1 measure of Dorking lime, 8 measures of sharp river mand, and $\frac{1}{2}$-messure of tarras; and was found to be everywhere very hard, except in a small portion exposed to the action of running water from a culvert.

Artifcial Pouspolana may be made by calcining certain clays; indeed, nearly all clays that do not contain too much sand and lime, become, by roasting, more or less active agents in the preparation of hydraulic mortar. The Dutch are in the habit of burning a clay found under the sea on their coast, for the purpose of forming an artificial pouzzolana, which has often been sold for tarras, being so good an imitation of it. Sir C. Pasley found that the blue alluvial clay of the Medway, moderately burned, reduced to a fine powder and mixed with chalk lime putty in the proportion of 1 lime to 2 burnt clay powder, $s 0$ as to form a stifish paste, set nearly as quickly under water as the best natural pouzzolana. The brown Upnor-pit clay wae not so good, and when eand was added to the mixture its properties were less hydraulic. The value of any clay for forming an artificial pouzrolana may be easily abcertained by experiment: burn the clay in small lumps, po that it may be reduced to a fine powder; mix it into a paste with slaked lime of the deacription most easily obtained, immerse it beneath still water, and nute the time it takes to set. For practical purposes the clay may be burned in a brick or lime kiln.
M. Vicat says: "All clay, principally composed of silice and alumina, and moreover fine, soft to the touch, and which contains more or leas of the oxide of iron, and little or none of the carbonate of lime, will give a very energetic pouzzolana when calcined." Five per cent. of carbonate of lime will produce vitrification of the clay in the kiln; but the use of such a ctay. is not to be prohibited on this account, as it is easy to moderate the heat, and its presence enables the clay to be more easily. reduced to powder. The presence of oxide of iron is, as has been before mentioned, not essential.
Brick or tile dust, when mixed with about half its bulk of slaked lime gives hydraulic properties to the resulting mortar, and is, in fact, the same thing as burnt clay. The proportions of lime to any kind of artificial pouzzolana must be obtained by experiment. As a general rule, one mearure of rich lime paste and two measures of burnt clay, will make a mortar that will set beneath still water; if employed in running water, the joints must be pointed with cement. For a weather lime, equal measures of rich lime, artificial pouzzolana, and sand, may be used; if the lime used, instead of being rich, is already a weather lime, these proportions will produce an hydraulic mortar. It is necessary that the pouzzolana should be ground into a fine powder before being mixed up with the lime, as an intimate combination is essential. In fixing propurtions, it is better to err from a deficiency than an excess of lime, when making mixtures of rich lime and any kind of pouzzolanas; and vice versd in the case of hydraulic limes mixed with sand. Captain Smith makes the following note: "With an eminently hydraulic lime found in the neighbourhood of Masulipatam, I found that the mixture of two parts of a highly energetic artificial pouzzolana produced a much inferior cement to a like mixture of the same pouzzolana with rich slaked lime. I did not find the time of set to differ much, but the cement containing the hydraulic lime was meagre and friable, and soiled the finger on touching it, for a few days after molidification: that prepared with rich lime furmed a confact, perfectly hard mass, with clean surface and conchoidal fracture, and so homogeneous in texture and closely united, as to be superior to many substances which had undergone the action of heat, such as bricks, tiles, \&c."
Artificial Hydraulic Limes are made by calcining together rich slaked lime and clay, or pure limestone and clay, and the result is generally more satisfactory than when the natural or artificial pouzzolanas are mixed with the slaked lime as simple mortar, for the combination of the ingredients is more intimate and the

CBagstor
chemical changen more certain. The most perfect method is the fint, and is called "twice kilned," and may be employed when the limentone procurable is too hard to crush and form a perfect mixture with the olay; when, however, chalk, coral, or sea challs are to be used, they may be mixed with the clay without first having been reduced to quicklime, and then only one burning is necessary. The proportion of clay to lime may be reguleced no as to give to the artificial lime any degree of energy we please; for instance, 13 measures of clay added to 100 measures of chall, ground well together and burned, will produce a lime similar in its properties to the blue lias of Aberthaw; and by a further addition of clay, say 48 measures to 100 of lime, a cement cimilar to the Sheppy is produced. But here again the engineer must have recourse to experiment, in order to fix upon the exact proportions, when new materials are to be employed. Particular attention should be paid to the amalgamation of the materials, and the degree of calcination best suited to it should be carefully observed, before attempting to imitate the procesa on the large scale.
M. Vicat describes the method of manufacturing artificial hydraulic lime adopted at Meudon, near Paris, which I give in his own words. The materials made use of are, the chalk of the country and the clay of Vaugirard," which is previously broken up into lumps of the size of one's fist. A millstone set np edgeways, and a strong wheel with spokes and felloes, firmly attached to a set of harrows and rakes, are set in movement by a two-horse gin, in a circular basin of about 6 ft .6 in , radius. In the middle of the basin is a pillar of masonry, on which turns the vertical arbor to which the whole system is fixed; into this besin, to which water is conveyed by means of a cock, is thrown seccessively 4 mensures of chalk and 1 measure of clay. After an hoar and a-half working, they obtain about 63 cubic feet of a thin pulp, which they draw of by means of a conduit, pierced horizontally on a level with the bottom of tbe basin. The flaid deacends by its own weight, first into one excavation, then into a second, then a third, and so on to a fourth or fifth; theae excavations communicate with one another at the top; When the first is full, the fresh liquid, as it arrives, as well as the supernatant fuid, how over into the second excavation, from the second into the third, and so on to the last, the clear water from which drains off into a cesspool. Other excavations, cut in steps like the preceding, serve to receive the fresh products of the work, whilat the material in the first series acquires the consistency necesary for moulding. The smaller the depth of the pans in relation to their superficies, the sooner is the abovementioned consistency obtained. The mass is now subdivided into solids of a regular form, by means of a mould; this operation is executed with rapidity. A moulder, working by the piece, makes on an average 5000 prisms a-day, which will meaeare nearly 218 cubic feet (English). These prisms aro arranged on drying shelves, where in a short time they acquire the degree of desiccation and hardness proper for caloination, which may be effected in a common kiln, as described in a previous chapter. It is necessary that the prisms be thoroughly dried previous to ealcination, as experience shows that if subjected to heat while retaining any molsture, it may deprive them almost if not extirely of their hydraulic properties.

Cerents differ only from water limes in containing a greater proportion of clay (silica and alumina) and a less proportion of carbonate of lime in their composition, than eny of the water limes; and the term "cement" is merely used to distinguish them from these. Practically, cements differ from water limes in several particulars: first, they will not slake unless previously groend to powder, which is therefore always done in preparing them for use; secondly, when mired with water, they set under water in a much shorter time than the atrongest lime mortars do even above the surface of the water; thirdly, they are always Teakened by the addition of sand, nevertheless equal measures of cement powder and sand set more rapidly and harder than any lime mortar; fourthly, when "ganged" up for use, it must be applied in work before it becomes warm, after which it must not be dirturbed, so that any portion of it that could not be ned immediately must be discarded.

Natural cement is made by calcining certain stones, such as ebowe found off Harwich, in the Medway, on the Yorkahire coast, and in various other placea, and such cements are named after the places from whence they are furnished. A cement stone may be distinguished and roughly tested by the engineer in the

109 parte of thit clay conalat of-sillici 63, alumion 28, oxide of troa 7 , loee 8.
following manner. In colour, the stone ahould be of a bluish grey or brown, or of some darkish colour, as white indicates pure. limestone; touched with the tongue a cement stone, from its containing clay, will adhere to it slightly; they only dissolve partially in diluted acids, and leave a greater residue than any of the limestones. When by these rough teats the stone is prosumed to be fit for making cement, it may be burned, pulverised, and then tested by its "set." When burned at a red heat in a crucible for about three hours no effervescence should take place in acids; if, however, any effervescence is visible, the carbonic acid of the lime has not been completely driven off, and it muet be again subjected to heat; but it must not be burned too muct or its properties will be destroyed, and it will become of a day colour. After the burnt stone has become cold, rednce it to a powder, mix it with water, and knead it into a ball; if it b good cement stone it will soon become warm, and not ony hard in the heating, but if put into a basin of water it will continue hard, or even become barder beneath the water.
Cement powder, by exposure to the air or to moisture, always recovers back some of its carbonic acid, and when long kept it is termed "stale." It is always sold and kept in caske, and if stored in a dry place may remain good for a long time; and if it has lost its properties, it may be recouverted into good cement by re-burning. If any considerable quantity of damaged cement should require to be restored in this manner, as it could not conveniently be burned in a kiln whilet in the state of powder, it would be necessary first to mix it up well with water into balls or lumps of a convenient size, which, if allowed sufficient time, will probably get so far as not to fall to pieces. If, however, the cement powder should be too stale for this purpose, let a small proportion of fine clay, not exceeding one-tenth part by measure be added to it in making these lumps, which will cause them to hold togetber in the kiln, without materially injuring the quality of the cement. It would not be worth while to take so much trouble in this country, but in the colonies the knowledge of this expedient may be useful.

Artificial Cemberts may be manufactured with as great facility as artificial hydraulic lime; and the following is the description of the process:-

The first ingredient is chalk, or such other pure limestone that may be ground dry to an impalpable powder, or into a fine paste with water; all impurities must be carefully discarded. The second ingredient is the blue alluvial clay of lakes or sluggish rivers, fine, and free from sand; that procured from rapid rivers is generally mixed with sand, and is not therefore fit. The brown surface with whlch alluvial clay is usually covered must be rejected, and care must be taker not to allow it to become atale by exposure to the rir, which generally robs it of its blue colour, and, at the same time, of its virtue as an ingredient for water cement. When alluvial clay is not to be had, fine pit clay will answer the same purpose; but the cement they produce is much harder, and therefore more expensive to pulverise than that made from the alluvial clay.

The best proportions of these ingredients (when pure chalk and blue alluvial clay are used) are 1 cubic foot of atiffish chalk paste to $1 \frac{1}{2}$ cubic foot of the freah clay; but different materials require different mixturea.
To grind the chalk, it must be broken into moderately small pieces, and placed in a mill, such as represented in Plate Vil., fige 1, , 2 , which consists of a circular trough of brickwork, in which heavy spiked wheels, revolving on a horizontal arm, are made to turn by a horse: this arm turns loosely on a pivot; made of such a length as to allow the arm, and consequently the wheels attached at each end, to adjust themaelves to the height of the chalk in the trough. The wheels are placed at unequal distances from the centre, so that they act upon the whole hreadth of the chalk contained in the trough. The yokeframe is attecbed to the axle by staples and pins, to allow it to move radiaily up and down with the fixed wheel (running on the tram fixed on the outer edge of the trough) as a centre. The chalk, as it comes from this wrsh, or grinding-mill, will be too thin for immediate use, although the superfluous water is drained-off through gratings at the bottom of the trough; it must therefore be suffered to dry, until it is of the consistency of ordinary mortar, when it may be mixed with the clay. To effect this, two measurea must be provided, of the respective capacities of 1 , and $1 \frac{1}{\text { a }}$ the former for the chalk, the latter for the clay (and the maller these are the better will the mixture be). Let the contents of these measures be thrown alternately
into a pag-mill, antil it is full; the first 6Hing, as it is ejected, must be paseed through the mill a second time. To prepare this raw cement mixture for burning, it must be kneaded by hand into balls about 3 inches diameter, and dried, under cover, for about forty-eight houra or so, that they may not atick together or crush in the kiln; when thus ready, they should be burned as swon as posaible, exposure to the air being detrimental to their after-cementitious properties.

The kiln for burning this mirture may be the same as for common lime; but a kiln described by Sir C. Pailey (p. 284) is more simple, and quite as efficacious: it is in form a double truncated cone, their basen being about two-thirds from the bottom. The dimensions may be 21 feet high, 5 ft 6 in . diameter at bottom, 8 feet at two-thirds of the height, and 6 feet at the top; the chamber must be lined with fire-bricks, and the whole structure firmly bound together by four hoops of iron, 3 in. \times 各-in. The external diameter of the kiln should be uniformly about 90 feet. A kiln of these dimensions will contain nearly 30 tons of broken cement, measuring about 98 cubic feet to the ton, together with the whole of the fual necessary for burning it, which varies according to the management of the workmen. The bottom of the kiln is firnt filled with rood and shavinge, after which cosis and cement etone are laid in alternate layera, the coala being broken so small that they occupy very little more space than is necessary for filling up the interatices between the strata of the cement, each of Which is unually 1 foot in thickness. Three days after the kiln is lighted, the workmen may begin to draw the calcined cement; whilat, by laying on more coals and raw cement atone at the top, so ses to keep it continually burning, they may afterwarde draw the kiln once in every twenty-four hours. Every ton of cement atone is said to produce 81 buahels of cement powder.

The usual method of grinding the cement into powder differs in no respect from the mode of grinding corn and sifting the flour, the same sort of hoppers, mill-stones, and bolting apparatus being used for both; but it may bo ground beneath heary edge-stones-at all events, at first-and then passed through the mill-stones, if found necessary, to produce extra fineness. The cement powder is packed away in casks, for use when required. Where hard limestone, instead of chalk, is to be used, it must be burned before being ground; with this exception, the process of mixing and preparing the cement is similar to that just described.
Before using any cement supplied by a manufacturer, it is necessary to test its quality; and the best way of doing this is to mix it up into a few small balls, about 1 inch diameter, with water; allow them to become cool, which will be in about half-an-hour, place them beneath water, and if, in the course of a day or two, they have become hard inside and out, the cement may be pronounced good. If they do not set, the cement is either stale or adulterated, and in England both may be rejocted; but if abroad, it may probably he worth while to reburn the cement, in a small crucible, in the manner before described at page 602, Vol. XII.: if, after this process, it will not set, it is adulterated, and worthless.

Conometr.-For foundations and similar work the use of conerete, as a substratum in dangerous soila, has almost entirely superseded every other method; and as it offern so valuable a resource in so many different situations, I shall here give the rules for its composition and preparation, and in the chapter on Foundations give as many examples as will be useful of ite succesaful adoption. Concrete is a composition of clean gravel stonea or rubble, and asnd, with fresh-burned atone-lime ground to powder without slaking. The stones may be considered as the substance of the mass: the sand answers the double purpose of filling-in the interstices between the stones and uniting with the lime to form mortar; the quantity of asand should therefore be proportioned to the quality of the lime, as in ordinary mortar, and to the size and shape of the stones. Fur Dorking, Merstham, Halling, or limes of such quality, 3 measures of sand to 1 of lime is, as I have before stated, the general proportion used for mortar; and suppose we had to make concrete with this lime and the black Ihames ballast, from between London and Weatminster bridges, which consists of 2 of stones to 1 of eand, it would seem that the proper proportions for concrete would be 6 atone, 3 sand, 1 lime; any excess of lime must remain free, and as soft, uselems matter. When broken stone is used, the size of the stones should be sa various as possible, and none larger than a hen's egg; and coarse sand ahould be
added, to make as pearly as possible artificial Thamsen ballome. Angular stones are better than rounded nones, for the same reaeon that sharp sand makes the beat mortar. Ordinary pit gravel must be wrahed, if at all mixed with clay, \&ra, but ant screened. If perfectly inoorporated the proportions for comcrete may bo-
$\begin{array}{ccc}6 & & \\ 4 & \text { …............ } & 8 \\ 8\end{array}$ \qquad 1 for Dorking or mimilar lime 1 for lias limes.

But the dificulty of incorporating theve ingredients readers it advismble to increase the proportion of lime not more however than about 25 per cent. Theee ingredienta ahould be placed together dry upon a platform, as amall a quantity of water added as possible, and the mixture being tarned over two or three times with a shovel, it muet be pet into barrows and thrown into the situation it hat finally to oocupy as apeedily as possible from a height of 8 or 10 feet. It ceta very quickly, 50 that it is desirable that the mirture ehould be made at or close to the place from whence it is thrown, and after being expeditiously spread and brought to a level, it muat not be again touched. The whole surfice to be concreted should be got to its proper depth in uniform layera of about 12 inches in thictnesa. In eetting it expands in the same manaer as hydroulic lime, which renders it very valuable for under-metting walle and nimilar parposes. This increase of dimenaions amonnts te各-inch in a foot in height on the first setting of the conoseta, and it continues to expand insensibly for a month or two afterwards, the time of course depending upon the weather or upon its position. This expansion follows a previous condensation of about one-fifth in bulk by which the ballest and lime are foomd to be contracted after being incorporated together.

GOTHIC ARCHITECTURE.

(With Engraeings, Plates VIHI. and IX.)
Details of Gothic Architectura, Measurad and Drawn from Existing Examples. By Janes K. Courpa, Architect. Landos: David Bogue. Parts II. III. and IV.
When the first number of this work was produced, we falt it our duty to point out ite great value, we furnishing the architeot with examples on those detrils which, being now brought within his domain, are expected to receive apecial attention frem him. Patrons are more exacting now, and are not contented witheot their buildings are carefully finished within and withome. A chance font or pulpit will not pass muster with a public me well read in medieval lore as the architect himself. This is all the better, for the architect is now more appreciated, and haa gained in dignity by the extension of his functions to smaller lebouse. For ascistance in these atudies the worke of Mr. Colling, alled 'Gothic Ornaments,' and that now in progreas, will be fonad most valuable. Mr. Colling has taken as his basis the reproduetion, accurately, and in all their particulars, whether of forma, construction, or measurement, of existing examples of the several mediæval styles. The churches from which they are derived are chosen with judgment aud discrimination, as alfording good examples, and therefore the value of individual drawings is enhanced. These are not chance aketches made here and there, an omnium gatherum, or an arch mological album, but a collection of practioal works calculated to be of use to the architect.

We have availed ourselves of the opportunity to give two plates, each referring to West Walton Church, in Norfolk. One of these (Plate VIII.) shows the erterior of the clerestory; and the other (Plate IX.) the nave, piern, and clereatory. These satisfactorily exhibit Mr. Colling's arrangement of his work. The plates are produced by Mr. Jobbins, the lithographer, and are fine specimens of the art.

Tables of Discount on Simple Interoet. By T. Gomssasall. Eighth Edition. London: Effingham Wilson. 1858.
Althover there are several interest tablen, yet much in still wanted to supply all the detaila of calculation required by the public. The present book is one which will be found very useful, because it has exclusive fentures which are likely to make it popular, while great care has been bestowed on the correction of the figures. Each page is complete in itself, and the discount of any amount, from one pound up to tweaty thousand, for any number of days, may be obtained by aimplo addition.

-

CONSTRUCTION OF THE BUILDING FOR THE GREAT EXHIBITION OF 1851.

By Matthew Digby Wyatt, Absoc. Inbt. C.E.
(Abridged Paper read at the Institution of Civil Enginecrs.)
[Aumpovar the more immediate events connected with the Great Exhibition have paseed away, and although we have at different times described the mode of construction of separate portions of the Building, yet the many clever inventions and appliances brought to bear in its erection are so valuable to the profession, that we may be excused giving a more authentic and continuous account of them,-rendered the more valuable as coming from the pen of Mr. Digby Wyatt, the indefatigable Secretary to the Commissioners, prepared by him during the progress of constraction of the Building, and read at the Instifution of Civil Engineers.]

The Area Covered.-The building, as now erected, provides an area, upon the ground-fioor, equal to 77, 784 square feet, and upon the level of the galleries, 23 feet from the door, an area equal to 217,100 square feet, making a total area of availsble space of 989,884 square feet.

The General Features of the Design.-The combination upon $s 0$ vast a scale of the materials, glass, wood, and iron, of which alone the huilding is constructed, and the care which has been taken not to exaggerate the proportions of form in which those materials may be best and most economically used, will probably tend to counteract conventionality of atyle in architecture, and may be expected to produce, hereafter, important changes, alike in the construction and appearance, of many extensive buildings throughout the country. The general distribution of the deaign recalls the sygtem of a cathedral structure-a vast nave, 72 feet wide, riges to a height of 64 feet above the soil. This ia crossed by a transept 408 feet long, equally wide and lofty, but with the difference that it is crowned by a wagon vault, increasing its height to 104 feet at the centre. On each side of the nave and transept a series of aiales, $\mathbf{2 4}$ feet wide by 44 feet and 94 feet high, spread out to a total width of 456 feet. Some idea may be formed of the leading peculiarities of the building, by recalling the fact, that its main avenue, between the columns is nearly double the width of nave of St. Paul's Cathedral; while its length is more than four times ~ 9 great. The walls of St. Paul's are 14 feet thick: tbose ot the Hyde-park building are 8 inches. St. Paul's required thirty-five years to erect; the building will be finished in about half that number of weeks.

The Drainage.-It may be conceived that the arrangements for carrying off, rapidly, the entire roof-water of $17 \frac{5}{4}$ acres, involved considerahle preparation. Six rows of cast-iron pipes, each 6 inches diameter, communicating with the hollow columns supporting the roof, follow the fall of the ground from west to east, and convey the water to three draing running north and south. The latter, communicating with sewers running east and west outside the building, convey the water to the lowest points, at the east end of the site, from which it is discharged into the main sewer in the Kensington-road, by an egg-shaped culvert of 4 ft . 8 in . sectional area. A datum line having been assumed, the level of the flooring of the whole area was arranged to incline 1 inch in 24 feet, approximating to the fall of the ground.

The Flooring.-The floor was arranged to consist of boards $1 \frac{1}{2}$ inch thick, laid half-an-inch apart, upon joists 7 inches by qit inches, bearing upon sleepers 13 inches by $3 \frac{1}{4}$ inches, at intervals of 8 feet apart. The interstices were left between the boards to permit the passage of dust and dirt. This method of flooring has been found to answer well at Chatsworth and in other localities.

The Foundation and Baso-Plates (Figs. 1, \& 8).-It would have been difficult to have fonnd a better foundation than that which extends over the whole area of the building, with the exception of a few "faults" here and there. Good gravel is reached at a deph of about 3 feet below the surface of the ground, and excavations have been made, in all cases, sufficiently deep to lay bare the gravel. The extent of the horizontal area of the excavation has been determined by a rule that, making allowance for possible contingencies, the gravel cannot be exposed to a greater load than $2 \frac{1}{\frac{1}{2}}$ tons per superficial foot. The cavitios thus formed have been, in all cases, filled up with solid concrete, finished with fine mortar. On the
surface of this mortar are bedded "base-plates" or foundation pieces, consisting of a horizontal bed-plate, at right anglea to

Pio. 1.-Eirvition of Bac-Piate, ehoming connection mith Column above tt.

Fra. 2.-Flan of Bese-Piate.
the vertical lines of the building, strengthened by ahoulders, uniting the horizontal plates to the portion of the base-plate the section of which corresponds with that of the columns. The exact height, from the top of the concrete foundation to the plane of the junction between the base-plate and the column, has been so precisely calculated, and the casting of the base-plate has been, in all cases, so perfectly performed, that the snugs, cast on the upper portion of the base-plates, have exactly met and corresponded with those of the lower portion of the superincumbent columns, without leaving any interstice, or requiring any packing. From the vertical portion of the foundation pieces, which carry columns, through which the roof-water passes, sockets branch out, into which are fixed the ends of the cast-iron pipes, for conveying the water descending from the roofs to the transverse drains.

Fio. s.-Eleridion of Upper Portion of Connecting Plece, \&ke.

Fig. 4.-Elevation of Inwer Portion of Connecting Plece, showing Its attechment to a Column below, and to the Girders at the atdes.
The Columns and Connecting Pieces (Figs. 3, 4, \& 5).-The form of the supporting columns bearing upon the upper face of the base-plates was suggested by Mr. Barry. The horizontal section is a ring, of which the external diameter is uniformly 8 inches; and the substance of metal is proportioned to the various areas of roofing, \&c, to be supported at each point on
the plan. The minimum thickness of the columas thus varies from $\frac{1}{-}$-inch to $1 \frac{1}{8}$ inch; but the sectional area is increased by the addition of what would be equivalent to four fillets $3 \mathrm{~B}_{8}$ inches by $\frac{s^{3}}{}$ inch, cast upon the opposite portions of the ring, and facing, when fixed in situ, north, south, east, and west. Four snugs are cast on the top and four on the bottom of the columns, between these fillets. Corresponding snugs are cast on to connecting pieces, the snugs alternating upon the same plane, with the projections on the connecting piece which eerve to carry the girders. Bolt-holes are cast in the snugs of the columns, and in those of the connecting pieces. All the bedding surfaces are accurately faced in a lathe, and are then fitted together, so as to enable four bolts to pass through the holes in the snugs of the columns and connecting pieces, which exactly correspond to one another. Nuts then secure the bolts in their places. By these arrangements, connecting pieces may be placed on, and attached to columns; and columns may, in turn, be placed on and attached to connecting pieces, the rigidity of the whole being secured by fixing girders, at right angles to one another, on to the projections cast on the connecting pieces. The detail of these projections will be described in connection with the roof-trusses, which they serve mainly to keep in their places. The largest number of columns fixed in one week was three hundred and ten.

Fig. 3.-Plan of Connecting Plece, with Girders, \&e.
Various Heights of portions of the Building.-Facilities are thus obtained for varying the dimensions in height of portions of the building, and at the same time for preserving lateral stiffness. The main arms of the cross on plan-that is, the avenues 72 feet in width, or the nave and transept, together with their aisles 24 feet wide-rise three stories in height; an avenue 48 feet wide, and an aisle 24 feet wide, on each side of the three-story building, rises two stories in height, and the whole of the remainder of the covered area is one story only in height. The gutter level of the three-story portion is 62 ft .2 in . from the floor; that of the two-story, 42 ft .2 in .; and that of the one-story, 22 ft .2 in . As a description of the varieties of structure, induced by these several altitudes, necessarily involves an outline of the whole skeleton of the building, it will be well to consider each separately. The horizontal planes, or strata of the building, from the ground-floor upwards to the roof, in the three-story work, will be found to consist-first, of base-plates, the upper bearing surface of which rises $3 \frac{3}{4}$ inches above the ground-floor; secondly, of columns 18 ft . $5 \frac{1}{2} \mathrm{in}$. long, fixed on the base-plates; thirdly, of connecting pieces $3 \mathrm{ft} .4 \frac{3}{4} \mathrm{in}$. deep, to which are attached cast-iron girders, 24 feet long, serving to support a gallery-floor, at the height of 23 feet from the ground-floor; fourthly, of columns 16 ft . $7 \frac{1}{i} \mathrm{in}$. long; fifthly, of connecting pieces $3 \mathrm{ft} .4 \frac{3}{4} \mathrm{in}$. deep, to which are attached, transversely in one direction, and longitudinally in two directions, cast-iron girders 24 feet long, of similar form and scantling to the roof-girders, in order to retain all the columns in their places; sixthly, of columns 16 ft .74 in . long; and lastly, of connecting pieces 3 ft . $4 \frac{3}{4} \mathrm{in}$. deep, to which are atttached the roof-trusses and girders. The corresponding horizontal strata of the two-story portion of the building consist-first, of baseplates, the upper bearing surface of which rises 38 inches above the ground-fioor; secondly, of columns 18 ft . $5 \frac{1}{2} \mathrm{in}$. long, fixed on the base-plates; thirdly, of connecting pieces $3 \mathrm{ft} .4 \frac{3}{4} \mathrm{in}$. deep, to which are attached cast-iron girders, 24 feet long, serving to support a gallery-floor, at the height of 23 feet from the ground-floor; fourthly, of columns $16 \mathrm{ft} .7 \frac{1}{4} \mathrm{in}$. long; and fifthly, of connecting pieces $3 \mathrm{ft} .4 \frac{3}{4} \mathrm{in}$. deep, to which are attached the roof-trusses and girders. The horizontal strata of the one story-portion consist-first, of base-plates, the upper bearing surface of which rises $3 \frac{3}{4}$ inches above the ground-floor; secondly, of columns $18 \mathrm{ft} .5 \frac{1}{2} \mathrm{in}$. long, fixed on the base-plates; and lastly, of connecting pieces 3 ft . $4 \frac{3}{4} \mathrm{in}$. deep, to which are attached the roof-trusses and girders.
The Galleries (Figs. 6, 7, 8, \& 9). -From these dimensions it will be apparent, that at 23 feet above the floor level, galleries
are inserted, which form striking features of both the two and the three story buildings. These galleries, in two widths of 24 feet each, with frequent connecting galleries, extend entirely

Fic. 0.-Phan of half of a 24 -feet Bay of the Gallery Floor.
round the upper portion of the building, and are supported by cast-iron girders 23 feet long, similar in form to those which support the rouf, but of somewhat heavier scantling. These

Pro.7.- Details of Elevation of Truse of Gallery Floor. single castings, 3 feet deep, are divided into three parallelograms of 3 feet by 8 feet, by vertical struts connected at the top and the bottom by diagonal ties and struts. The sectional areas of their top and bottom flanges, in the centre of the length of the girder, equal respectively $5 \cdot 31$ inches, and $7 \cdot 64$ inches; those of the diagonal struts and ties average 3.50 inches. All these girders are proved, in the building, to a strain of 15 tons, and in exceptional cases, with extra scantlings, to 22 tons. Their breaking weight is calculated, and has been proved by experiment, to be not less than 30 tons. The binders, which serve to support the

Fig. 8.-Sections of the Truas.

floor of these galleries, have been so arranged by under-trussing, by means of cast-iron shoes, rods, and struts, as to take their bearing upon four, instead of upon two girders; and thus any possible accumulated load or vibration on a portion of the gallery will be transferred to double the number of points of support that would have been available, had it been constructed in the ordinary mauner. Joists of 7 ft .9 in . clear bearing, bridge these binders; and on them is laid a floor of boards $1 \frac{1}{4}$ inch thick, with iron tongues, to prevent the passage of dust, fic. Ten double staircases, each 8 feet wide, inclosed by an iron railing, designed by Mr. Owen Jones, afford access to these galleries.

The Facework (Figs. 10, 11, 18, \& 13).-Next to the internal supports of the building, the external inclosures present themselves for consideration. It is obvious, from the widths and heights given, that the north and south elevations, with the exception of the transept front, must consist of three stories, set back at various distances from each other. These three stories are, the first, or ground-floor; the tecond, or galleryfloor; and the third, or clerestory-floor. On the ground-floor, the cast-iron columns which carry the transverse roof-girders of the one-story building, constitute vertical divisions, at 24 feet from centre to centre; two wooden columns of precisely similar form, placed between the cast-iron ones, divide the 24 feet space into three bays of 8 feet each. The first horizontal line ahove the ground is a cill 9 inches by 3 inches, and $1 \frac{1}{2}$ inch above the
floor level; beneath this cill an inclosure of boards forms a plinth, against which rests a slope of turf, at an average level of $\&$ feet above that of the adjacent ground line. Λ second cill, 9 inches by 4 inches, is placed at a clear height of $4 \mathrm{ft} .3 \frac{1}{2} \mathrm{in}$.

pletely through. On the top of the filling-in frame runs a boxing, with external mouldings, and behind the boxing is a small gutter, The whole is surmounted by a cast-iron ornamental cresting, 1 ft .6 in . high, attached to the boxing.

On the gallery-floor the upper parts of the columns supporting the two-story roof, constitute the main vertical lines. The space between is divided and filled up in a similar manner to that of the ground-floor, with two exceptionsfirst, that there is no dado, and secondly, that for the vertical boarding of the ground-floor a glazed sash is substituted. The frame of the sash is fixed to the columns by castings, similar to those which secure the ledges. As these sashes form an important portion of the building, no fewer than 1500 of them being required, a short description of them may be given. The sash-frames are $2 \frac{1}{2}$ inches thick, with seven bars in their width; the sash-bars are $2 \frac{8}{8}$ inches deep, double-grooved for the glass; three bolts, 学-inch diameter, pass completely through the bars and frames, at the points where they are attached to the columns, and thus a chain tie is kept up all round the building, in order to prevent the displacement of the sashes, either bodily or in portions, by the pressure of the wind. To further guard against the same action, timber bridges, $3 \frac{1}{2}$ inches by $1 \frac{1}{2}$ inch, in the centre, are fixed across the middle of the length of the sash; and at the internal angles, where the wind will exert its greatest force, iron rods, $\frac{1}{2}$-inch diameter, are fastened from column to column, pressing against the wooden bridge, and converting it into a continuous strut, bearing up against any force applied to the exterior of the sash. In order to glaze the sashes, the glass is slipped down between the bars, and provision is made for the repairs by causing one groove to be cut deeper than the other, so that the glass may be slipped in from either side, and puttied into its exact place. Similar provision is made for mending the roof-glass.

On the third, or clerestory-floor, the external main vertical divisions are formed by the upper portion of the three-story columns, and the fill-ing-in between them corresponds exactly with that of the gallery-floor.
The east and west elevations are simply vertical sections through the main building, filledin with facework similar to, and ranging with that of the three stories of the north and south elevations. The elevations of the transept ends correspond with those of the east and west, with the exception of the addition of a semicircular head filled-in with concentric and radiating tracery.

The Exits.-In the circuit of the whole building there are fifteen exits, symmetrically disposed; wherever they occur, a pair of doors, 8 feet in width, occupy the centre of the space, and the two bays of 8 feet each, on either side of the doors, are glazed instead of being boarded.
from the lower one, the space between forming a kind of dado, and being filled in with louvres, which will be described under the head of ventilation. At 10 ft .6 in . from the upper surface of the second cill is the springing line of a light cast-iron arch, which spans from column to column, and assists in supporting the "filling-in frames." These frames, sufficiently deep to supply the idea of an entablature, and yet so light and open as not to appear to overloud the slender proportions of the columns, are 3 feet high, and are backed with louvres similar to those in the plinth. The parallelogram, bounded by the sides of the columns, the top of the dado, and the underside of the fillingin frame, is filled in, on an inner plane, behind the arch pieces, with ploughed, tongued, and beaded boarding, stiffened by stout ledges on the inside. Small castings, spanning the inner face of the column, screwed to these ledges, connect them together; and are themselves fixed to the columns by bolts, passing com-

The Roof-Girders und Trusses (Figs. 14, 15, 16, 17, 18, 19, \& 80). -The net-work of girders and trusses immediately supporting the roof next demands attention. The main gutters, run transversely, spanning the various avenues leading from end to end of the building, except where it is crossed by the transept. These avenues are all either 24 feet, 48 feet, or 72 feet wide; of these avenues there are six 24 feet wide, five 48 feet wide, and one (the central) 72 feet wide. To span these widths at least three kinds of trusses are necessary. All the trusses, with the exception of four, are 3 feet deep, and have perpendicular struts of cast-iron, fixed at distances of ' 8 feet from centre to centre, connecting the top and bottom bars. The whole parallelogram, formed by the length
and width of the trussea, is thus divided into smaller parallelograms of 8 ft . by 3 ft ., the four angles of which are diagonally connected by various materials, but of uniform width on the face, and thus regularity of form is obtained. The trusses of 78 feet and 48 feet span consist of cast-iron standards and vertical struts, an upper portion formed of two pieces of angle-iron, set 1 inch apart, s bottom portion of two bars, increasing in sectional area as they approach the centre of the bearing, and tiebars which, passing diagonally between the two piecea of angleiron in the upper portion and the two bars in the lower, are rivetted to them, and form a complete suspension truss, The
remaining diagonals in the opposite direction, which would, if in action, be under compression, are constructed of wood, and are only inserted for appearance, it being thought better to resist the diagonal strains by tension bars alone, rather than partly by diagonal suspencion bars, and partly by diagonal struts. The girders of 94 feet long are single castings, corrosponding in form to those which support the galleries, the arrangement and scantlings of the various parta of which have been elaborately studied and balanced. Every one of these trusees has been proved, in the building, with a atrain of nine tong.

Fig. 15.-Elevation of ordinary 48 -feet Treses.

Fig. 10-Froat and side Elevations of End Standarde to 72 -feet and 48-feet Trumes.

Pia. 17.-Front and Bide Elevition of Vertical Strite, or Iniermadiate Btandarde, to 72 -feet and 48-feet Tramen.

Pra. 18.-Eleration of 24-feet cant-ifon Girder.

Fio. 19.-Frout and Bide Elevatione of Ende of cuat-fron Girder.

Fra. 20.-Eievation of ordiner 72-siot Trues.

Fia. 21.-Elevition of Extremetrong 72 feet Trase,

Fiat. 22, 23, \& 24.-Side, Front, and Back Elerations of the End Standard to Extra.atrong 72 feet Trume.

Fias. 27 \& $28 .-$ Elevations of wroaghtiron Vertical Strate, or Intermediate Standarde, to Extra-strong 72 fret Trens.

The Extra-strong Trusses (Figs. 21, 22, 23, 24, 25, 26, 27, \& 28). The four 78 -feet trusses which have been alluded to, as differing from the others in depth, perform such important functions, and are consequently so different in form, as to warrant a sepa-
rate notice. They support the lead flat, covering two bays (each I feet by 78 feet) of the main avenue, where it abuts upon the eastern and western sides of the transept, and a pair of them carry, in addition, the two semicircular ribs, which, at 24 feet
from centre to cantre, form the main beams on which the samioylindrical roofing rests, over the square where the transept roof crosses the main longitudinal avenue. These trusses are made twice the depth of all the others, and the scantlings are considerably increased. In this extra depth the vertical struts remaining at 8 feet from centre to centre, and the tension bars continuing the same in number, and being set at the same angle as those in the ordinary trusses of 78 feet span, the lines arrange themselves into a lattice-form two diamonds in depth, the intersecting diagonal bars pasaing through slots cast for them in the middle of the cast-iron atruts. Although the form would appear to be that of a compound truss, the strength of all the parts is calculated so as to render these trusses suspension trusses only. In order to relieve the ordinary columns of much of the weight which is supported by these trusses, additional columns are placed beneath their two ends, secured, at frequent intervals, to the ordinary columns by wrought-iron clips.

Fio. 29.-Half-Section of Arehed Roof to Trangept, with the lead Flat.
The Semicircular Ribs (Figs. 89, 30, \& 31). -In order to form an idea of the nature of the work the extra-strong trusses have to perform, the structure of the semicircular ribs must now be defined. They are made in three thicknesses of timber, each 9 ft .6 in . long, cut into segments of a circle 74 feet extreme diameter, the central thickness being 4 in . by $13 \frac{1}{2} \mathrm{in}$., and the outer flitches, breaking joint with the centre, being 2 in . by

Fio. 30-Detall of the Foot of Arched atb on Colamn, and adjoining parts
moulded to corrempond with the form of the columns, and a bar of iron 34 in. by sin., are also bent to the curve; bolts passed through the depth of the rib, at intervals of 9 feet from centre to centre, unite these additions to each other and to the main rib, which thus increased in scantling, measures when complete 8 in. by 1 ft .6 in . The ends are stepped down upon a plate 9 in . by 6 in ., bearing on the top of the two trusees, on each side of the transept.

Pia. 32-LHalf Plan of a en feet Bay of the Truamept Roofs
The Transept Roofing (Fig. 32).-In order to ateady the ribs, purlins $4 \frac{1}{2}$ inches by 9 inches to 13 inches, and 9 ft . 2 in. apart are introduced between them; and on the top, from end to end, a narrow path of lead flat runs the whole length of the transept, for the purpose of affording convenient access for any repairs which may be necessary. Diagonal rods, intersecting each other in planes parallel to a tangent to the curve, also connect the ribs, and serve to bind every portion together; while, at the same time, their lines form reticulations over the surface of the vault, producing an agreeable effect in perspective.

The Experiments tried on the Roof-Trusses and Girders.-Previous to deciding upon the scantling of the trusses to be used in the building, Mr. C. H. Wild and the contractors entered into an elaborate series of calculations, as to the adjustment and proportions of the various parts. These calculations were submitted to the President of the Institution of Civil Engineers, and their correctness was so completely justified by the results of some experiments on the trusses and girders, made in his presence and in that of the author, that a summary must be interesting.
A 78-feet truss, cambered $4 \frac{1}{8}$ inches, and weighing complete about 35 cwt .

The maximum sectional area of the two top angle-irons being $5 \cdot 71$ inches.
The maximum sectional area of the two bot-

$$
\text { tom bars being .. : } \quad . \quad . \quad .6 .75
$$

The maximum sectional area of the principal diagonal tie being . . . $\mathbf{3} \cdot 38$ when loaded with a weight of 4 tons, deflected $1 \frac{1}{4}$ inch; 6 tons, 2 $\frac{1}{2}$ inches; 8 tons, 3 最 inches; 10 tons, $4 \frac{1}{\mathrm{~A}}$ inches; 12 tons, 5 inches; 14 tons, $5 \frac{3}{8}$ inches; 16 tons, $6 \frac{1}{2}$ inches.

A 48-feet truss, cambered 4 inches, and weighing complete about 13 cmt .,

The maximum sectional ares of the two top angle-irons being a $\dot{\text { a }}$.
The maximum sectional area of the bottom bars being. \quad. $0 \cdot 38$
The maximum sectional area of the principal diagonal tie being $2 \cdot 75$ when loaded with a weight of at tons deflected $\frac{1}{2}$-inch; s tons, $1 \frac{1}{2}$ inch; $7 \frac{1}{2}$ tons, $2 \frac{1}{1}$ inches; $8 \frac{9}{4}$ tons, $2 \frac{1}{8}$ inches; 10 tons, 3 inches.

A st-feet girder, weighing complete 11 cwt .3 qra, exactly similar in construction to the 24 -feet roof-girders, but being gcwt. 1 qr. heavier, bore 30 tons, but broke down with $30 \frac{1}{2}$ tons, flying so completely to pieces that doubts existed as to the point at which fracture commenced.

The Connections of the Roof-Trusses, \&c.-Having indicated the general construction of the roof-trusses, there remain to be noticed the arrangements for fixing and for steadying them longitudinally. In the 78 -feet and 48 -feet trusses, respectively, the standards forming their ends are cast with a projection on their top and bottom faces, and with a bolt-hole through the upper portion of their length; a hollow "connecting piece," corresponding in the form of its section to that of the columns, and $4 \frac{3}{4}$ inches longer than the height of the truss, pierced
through with a bolt-hole to agree with that of the truss standard, has cast upon its upper and lower ends a projection corresponding with those cast on the top and bottom faces of the truss standards. Thetruss being hoisted above its ultimate position, is lowered down until it can be slipped between the projections on the connecting piece, when the projections on the bottom faces of its two standards take a bearing, and clutch on to those cast on the lower ends of the connecting pieces. A screw bolt, 1 inch in diameter, passed through the bolt-hole of the standard, and completely through the connecting piece, secures the upper part of the truss from lateral motion, and, together with the stiffening of the "Paxton-gutters" counteracts any tendency to buckle. The means provided for fixing the cast-iron roof-girders of 24 -feet span into the connecting pieces, are precisely similar to those above described; but the mode of securing them from lateral movement is somewhat different. Instead of the bolt-fastening of the trusses of 78-feet and 48 -feet spans, a groove is sunk in the middle of the top and bottom projections of the connecting piece, and a corresponding tenon is cast on the bottom of the standard of the 94 -feet girder. The bottom of the truss is thus held in its place, by the fitting of its tenon into the lower groove of the connecting piece; while the upper projection of the truss, having a groove cut in it, to correspond with that on the underside of the upper projection of the connecting piece, is secured by the insertion of a wrought-iron key, which acts as a dowell, and prevents the surfaces from sliding laterally upon one another.

The Provisions for Stiffening the Building.-In order to maintain the stiffness and steadiness of the building longitudinally, girders 24 feet long are inserted between the connecting pieces, in the direction from east to west, and are attached to them in a similar manner to the other girders. Of these there are eighteen rows on the various levels of the building. The influence of the "Paxton-gutters," and of the facework giving additional stiffening to the whole, adds considerably to the good results obtained by the insertion of these longitudinal girders. In thus providing for the rigidity of the connections of the various portions of the building, care has been taken, by the substitution, in certain places, of oak for iron keys, to provide for the play of the metal, incident to any sudden variation of temperature. In the transverse direction, it was determined that the whole of the keys should be of iron, for two reasonsfirst, because the length, divided into two portions by the nave, was not sufficiently great to render the probable amount of expansion or contraction of any practical importance; and secondly, hecause it was upon the side of the building that the currents of wind would impinge with the greatest force. In the longitudinal direction, iron keys are inserted for six bays from the extreme east and west ends, and for six bays east and west of the transept, the intervening girders being keyed-up with oak keys: and thus rigidity was maintained in those parts exposed to strain, whilst elasticity was provided in the portions of the building least subject to strain from without. Twentytwo sets of horizontal, and two hundred and twenty sets of vertical diagonal bracing, consisting of wrought-iron rods secured by wrought-iron links to the columns and connecting pieces, and meeting in adjustment-plates, are inserted as a measure of extra precaution, tying the main masses of the structure together.

The "Paxton" Roofing (Figg. 33, 34, 35, 36, 37, 38, \& 39).The roof of the huilding is perhaps the most novel and interesting portion of the whole structure, and exhibits in a remarkable manner the ingenuity of Mr. Paxton's design. In order to convey the rain-water to the hollow columus, transverse gutters 24 feet apart extend the entire width of the building. These transverse gutters are capacious wooden boxes, strongly framed and attached to the upper flange of the main trusses, which cross the building, false bottoms being, in some cases, inserted to assist the flow of the water. At intervals of 8 feet from centre to centre, with their ends resting on the boxgutters, are fixed those ingenious contrivances known as "Pax-ton-gutters" for conveying away simultaneously the rain-water falling on the roof, and the condensed vapour formed inside the building, and of them a length of 24 miles is required. Each one of these consists of a piece of the best crown timber, 5 in . by 6 in . and 24 feet long. The form is given by passing it through an ingenious machine, worked by Mr. Birch, of the Phoenix Saw-mills, Camden-town. At one operation, this machine scoops from the middle of the upper surface of the timber,
and throughout its whole length, a nearly semicircular groove about $1 \frac{18}{8}$ inch radius, and at the same time cuts t wo smaller, grooves duwnwards at an oblique angle to its sides; the object of the larger groove being to receive and convey to the box-

Fio. 33.-Inometrical View of one 24 feet Bay of Rooling, parly glased.
gutters the roof-water, and that of the smaller grooves to receive the moisture, which, condensing upon the inside of the roof, would trickle down, adhering by capillary attraction, and finally deposit itself in the smaller grooves, by which it would be conducted to the box-gutters. On leaving the machine, the "Paxton-gutter" is too slight for a bearing of 24 feet, and is

Fia. 34.-Eleration of portions of a "Paxton.Gutter."
straight, so that the water in it would not have any fall: both these defects are remedied by trussing it into a curve, by means of a wrought-iron bolt, $\frac{13}{18}$ inch diameter, threaded at both ends, and bent so as to pass under and press up, to the underside of the wood, two cast-iron struts 9 inches long, the ends of the bolt being passed through holes in the two cast-iron shoes, fixed at the ends of the gutters, and the nuts on the ends of the bolts being screwed-up, the bolt is tightened, and a camber of q_{2} inches is given to the gutter, so that the whole becomes a truss, requiring a weight of $I_{\frac{1}{2}}$ ton to break it. A semicircular

cut is then given through the depth of the gutter at both ends, so that when two are placed end to end the water will flow down into the box-gutter through a circular cavity, two oblique cuts being also made, to connect the condensed water with this cavity, and twenty-seven notches are marked from a template, and worked on each side of the upper edge of the "Paxton-
gutters," whose ends are then attached to a flanged plate bolted on to the edges of the box-gutters. Of the notches on each side of the "Paxton-gutter," three are larger than the others; and on them bars of wood 2 in . by 1 fin., grooved for glass on both sides, are notched down; these bars form principal rafters, and being set at a pitch of two and a-half to one, are fixed to a ridge 3 in . by 3 in . grooved for glass on both sides: the long edge of a sheet of glass 4 ft .1 in . by 10 in . is then inserted into the groove of the principal rafter, and a sash-bar 1 in. by $1 \frac{1}{8}$ in., also doubled-grooved, is then put on to the other long edge of the glass; the sash-bar is then brought down, and secured to the ridge, and to the edge of the gutter; the lower edge of the glass, bedding on putty about $\frac{3}{3}$-inch wide, a little force applied at the lower end brings the upper edge of the glass home into the groove in the ridge. The glass being then pressed down, the putty is made good in the grooves externaliy, and thus simply is this system of roofing put together. Its lightness is one of its remarkable qualities, since the entire weight of one superficial foot averages only $3 \ddagger \mathrm{lb}$. The largest quantity of "Parton-gutter," each \& \downarrow feet in length, planed and grooved by one machine in one week, was four hundred and forty-two.

The "Paxton" Roofing over the Transept.-The area of 29,376 feet, forming the transept, is covered with roofing, similar in many particulars to that adopted by Mr. Paxton in the great conservatory at Chatsworth. The width which is spanned by the semicircular ribs, at intervals of 24 feet from centre to centre, is 72 feet. Purlins 9 ft .2 in , apart connect the semicircular ribs, and between them, at distances of 8 feet from centre to centre, are framed smaller ribs, the backs of which, as well as those of the main ribs, form water-courses, and convey the rain on to the lead flat running 84 feet in width, on each side, at the base of the semicircular ribs of the roof. These latter, which stand at 8 feet apart, are then connected by ridge-and-furrow roofing, the construction of which is nearly identical with that previously described as employed in the smaller roofs. Beneath the lead flat is constructed a horizontal truss consisting of bars, calculated to transfer the strain to the points most securely tied and abutted, and thus to counteract any tendency of the ribs to spread, or to shift under the action of wind.
In connection with the design for the building, there are atill three important items to be considered:-the mode to be adopted of tempering the intensity of the sun's rays, the ventilation, and the supply of water immediately available for the extinction of fire.
The Canvas Covering.-In order to diminish the intensity of the light and heat of the sun's rays, it is proposed to cover the whole of the roof and of the south side of the building with canvas, which will be attached to the sashes on the side, and span from ridge to ridge on the roof, the seam being arranged to occur directly over the gutters.
The Ventilation (Figs. 40, \& 41) is obtained by means of louvres set in boringa, inserted behind the "filling-in" frames

Fio. 40.-Part Elevation of Louvre Frame.
of each of the three stories of the building, 一and in the dado, between the upper and lower cills on the ground-floor. At the springing of the transept roof, a line of louvres is inserted on both sides, 3 ft .8 in . high, running the whole length of the transept; and at the very summit of the curved roof, ventilation is obtained in the gables of the roofing, where it is interrupted by the narrow path of upper lead flat. The total quantity of ventilating area in the lourres equals about 45,000 feet, in addition to which, large volumes of air will necessarily be
introduced at the numerous doorways. The louvre-frames on the ground-floor consist of boxes, in which eight

Pig. 41.-Section of Lourre Prame. louvre-blades of galvanised-iron, $6 \frac{1}{2}$ inches wide, are fixed on pivots at 6 inches from centre to centre, and so curved as to offer the minimum interruption to the ingress or egress of air when open, compatible with keeping them wea-ther-tight. Small iron brackets attached to the centre of each blade, are furnished with eyes, through which are inserted pins, passing also through holes bored at equal distances from one another, in a species of rack; by drawing these racks up and down, the opening and closing of the ventilators is effected. A number these racks will, of course, be attached to levers, and set in motion by roda and cranks; Mr. Fox has designed an ingenious method of producing simultaneous action of a considerable number, and at the same time of securing the uniform position of the louvre-blades at any desired angle. Should it ever be found necessary to reduce, by artificial means, the internal temperature of the building below that of the exterior, Mr. Paxton has proposed a system of cooling, applicable to these ventilators, somewhat on the principle of the Indian "tatties."

The Water Supply.-The water is supplied by the Chelsea Waterworks Company, through a main-pipe 9 inches in diameter, bracing into three pipes 6 inches in diameter, at the centre of the building, on the south side, at about 35 feet from the entrancc. These latter pipes go entirely round the building, and across the centre; twenty cocks of 3 inches diameter are attached to these pipes externally; eight pipes, 4 inches diameter, branch from the pipe of 6 inches diameter, at eight points on each side of the building, and run inwards to a distance equal to one-fourth the width of the building. On the ends of these pipes fire-cocks, with waterways 3 inches diameter, are fixed in such situations, that circles drawn from them as centres, with a radius of 120 feet, would intersect one another, and pass cousiderably without the limits of the building. From the pipes, 6 inches in diameter, crossing the building, it is proposed to draw the principal supply for the fountains, which will probably be distributed along the central nave and line of the transept. An ample supply of water, connected with efficient drainage, will be provided for the steam-boilers, which will be fixed in a detached building at the north-west angle, and for the refreshment-rooms, \&c., which will be placed in immediate proximity to the trees beneath the transept.

The Execution of the Works.-In proceeding to the third part of the subject, the power and dexterity with which the design has been realised, or, in other words, the feature that first claims attention is the celerity with which the various operations have proceeded. When it is remembered that Messrs. Fox, Henderson, and Co.'s tender was only verbally accepted on the 26th of July, 1850-that possession of the site was only given on the 30 th of the same month-that the first column was fixed on September 26th, exactly two months after the acceptance of the tender-and that at the present moment but little of this vast building remains to be finished-it must be felt, that England possesses mechanical appliances and physical energies, far exceeding those which gave form and being to the most celebrated monuments of antiquity. The total number of men employed in each week varied from thirty in the week ending August the 3rd, to two thousand two hundred and sixty in the week ending December the 6th.

The Proving of the Girders (Figs. 42, 43, \& 44).-To prove the girders, a very ingenious apparatus, connected with an hydraulic press and register, was contrived by Mr. Wild, by meass of which the girders are perfectly gauged, and in which they are retained in an inverted position. Pressure is then applied upwards from two pistons, at the points in the upper table of the girders upon which, in the roof-girders, the "Partongutters" will bear, and in the gallery-girders, the binders, and thus the proof is applied in a similar manner to that in which the girders will be eventually loaded. One of Mr. Henderson's patent cranes, and a weighing-machine, have been so conveniently arranged, in connection with this apparatus, that a girder has been lifted from the wagon, deposited for weighing, weighed, lifted up again, conveyed to the proving machine, slipped into its place, and secured,-proved, released, taken up
again, deposited on the ground, and stacked, in leas than four minutes. The whole of the light iron-work, with the exception of some of the gallery railing, has been cast by Messrs. Fox, Hendersou, and Co., at their works, near Birmingham; and the principal castings, consisting of the columns, girders, \&c., were supplied, all ready turned and fitted, from the works of Messrs.

Cochrane and Co., of Woodside, and Mr. Jobson, of Hollyhall, both near Dudley. The wrought-iron has beeu principally supplied by Messrs. Fothergill and Co.; the glass by Messrs. Chance, Brotherton, and Co., of Oldbury; the timber by Messrs. Dowson" and Co.; and the machine cutting, of the "Paxtongutters" at Messrs. Fox, Henderson, and Co.'s mills at Chelsea.

The Setting Out and Progress of the Work.-The perfection with which the lines of the building were set out by Mr. Brownger will be easily tested in the building, by remarking the precision with which the columns range and cover one another diagonally as well as rectangularly. To this correctness, and to the careful setting of the base-plates (of which one thousand and seventy-four were required), may be attributed, in a great measure, the uniformity of the lines exhibited by the columns from whatever points they are viewed. One of the most striking peculiarities of this building is the skill with which it has been arranged, so as to form the scaffolding for its own construction. The columns were raised by a fall descending from shear-legs, steadied by guy-ropes; so soon as two columns were fixed, two falls, descending from two pairs of shear-legs, raised a girder with the connecting piece attached; then, when four columns, four connecting pieces, and four girders had been raised, the whole became self-supporting, and the tackle and apparatus, used to erect it, could be moved off to do its work in constructing a similar bay elsewhere. The raising of much of the upper tiers was effected by suspending falls from poles lashed to columns. The trusses of 48 -feet and 78-
feet spans were raised by means of derricks, steadied by guyropes, the derricks being moved on from spot to spot in a perpendicular position. The way in which the men managed to retain the derricks in a perpendicular position, by alternately tightening, slackening, and shifting the guys, was really admirable. By this means as many as seven of the great trusses of the nave have been raised in one day; the derricks (for one was at work at each end of the building) thus travelling 168 feet. The active superintendence and direction of the whole of the labour devolved upon Mr. John Cochrane, Mr. Earee acted as clerk of the works to the Commissioners, and Mr. Harwood as their surveyor. During many weeks upwards of two thousand men were constantly employed upon the ground, four steamengines assisting in the various operations, and affording motive power to a variety of machinery for facilitating production. Ingenious arrangements of circular saws, and revolving gouges. \&c., cut and bored different portions of sash-bars, ridges, and "Paxton-guttera." Huge shears, and punching and drilling machines combined to prepare the truss-bars for being rivetted, and portable forges supplied the means of heating the rivets for the three hundred and seventy-two wrought-iron trusses.

Fig. 40.-Machine for Paixting this Sask-Bars.

The Glazing Machines (Fig. 45).-It was of great importance that arrangements should be made for carrying on the glazing of
the roofs independently of weather. To effect this purpose a travelling stage was devised by Mr. Fox, which superseded the
necesmity of any scafolding for glazing, and by means of seventysix of these machines nearly the whole of the work has been executed. The stage is about 8 feet square, and it rests on four small wheels, which travel in the "Paxton gutters." It thus embraces one bay of a span of 8 feet of the roof, with one ridge and two sloping sides; eacb bay in width requiring a separate stage. The atage, occupied by two workmen, is covered by an awning of canvas, stretched over boops to protect them in bad weather, and is provided with two bores to contain a store of glass. The aash-bars and other materials are piled upon the stage itself, the centre of the platform being left open, for the convenience of hoisting up materials. Whilst working, the men sit at one end of the platform (the ridge having been previously placed in position by means of the extra-strong sash-bars), and fix the glass in front of them, pushing the stage backwards as they complete each pane. On coming to the strong eash-bars proviously fixed, they temporarily remove them, to allow the

Fro. 47.-Seetion through the Transept, showing the arrangementa for Holating the Seriletreular Riba. Tha dotled linea Indicate the various Poadtions of the Ribe during the Holinuas.
Mode of Raising the Transept Ribs (Figs. 47, 48, \& 49).The operation about which most anxiety had been felt was the hoisting of the arched ribs of the transept. These ribs were constructed horizontally on the ground, and when completed with all their bolts, two of them were reared on end, and maintained in a vertical position, at a distance of 24 feet from each other, by guy-ropes. As the ribs possessed little lateral stiffnees, they were framed together with the purlins, intermediate amall ribs, and dingonal tie-rods, forming a complete bay of the roof, 24 feet long. Two complete sets of temporary ties were aleo introduced, to provide for the strains incident to the variations in position of the ribs during the hoisting: the feet of the ribs were bolted on to a stout cill, and the lower purlins were strutted up from it. The whole framework was then moved on rollers to the centre of the square formed by the intersection of the transept and the main avenue, whence it was hoisted: all the ribs were landed over this square, and were afterwards moved on a tramway to their permanent positions. This tramway, formed of half-balks, was constructed over the columns on each side of the transept, at a height of about 4 feet above the lead Aat. The hoisting tackle consisted of four crabs, each one being placed on the side of the transept opposite to the part of the ribs to be lifted by it, so that the men at the crabs might watch the effect of their exertions with greater convenience. The hoisting-shears were placed on the lead flat, jmmediately over the deep trusses of 72 feet span; each set consisted of three stout scaffold-poles, lashed together at the top, bearing on planks laid acruss the flat, and secured by the necessary guy-ropes. The hoisting rope passed from each of the crabs, across the transept to a leading block attached to the foot of the column in the opposite angle of the square; it then
stage to pass: in this manner each stage travels uninterruptedly from the transept to the east and west ends of the building. The average amount of glazing hitherto done by one man per day has been fifty-eight squares, or about 200 superficial feet, and the largest amount done by any one man in a working day has been one hundred and eight squares, or abont 370 superficial feet. The largest amount of work done in one week was by eighty men, whose time amounted to 309 days, and who put in 18,392 squares, containing 62,584 superficial feet. The machine for glazing the transept roof was also designed by Mr. Fox. It consists of a kind of long wooden box, with wheels running arainst the semicircular ridge. In each of theae boxes eight glaziers can stand at their work. The machine is lowered and raised by means of ropes attached to the purlins at the summit of the roof. A platform, with wheels also travelling upon the ridges, has been contrived for the performance of any repairs that may be necessary after the flat roofing is completed.

The Painting Machine (Fig. 46).-An ingenions machine has been adopted for painting the sash-bars. A trough being filled with liquid colour, the sash-bars are dipped into it, and when taken out are passed through a series of brushes set at such angles to each other as to entirely remove the superfluous paint, and to leave the sash-bar as neatly finished as it could have been by hand.

VALUE OF AN EXTENDED KNOWLEDGE OF MINEralogy and the processes of mining.

By Warbineton W. Smyth, M.A., F.G.S.
[Introductory Lecture to the Course of Mineralogy and Mining, at the Museum of Practical Geology.]

An bxtended enowledee of mineralogy and the procebses of atining abe bbgential to thoge intrebetid ob engaoed in minina.
In the commencement of an inquiry into the infinite variety of ohjects surrounding us in the natural world, presented, it would appear, for the parpose of inducing the most attractive and holy exercise of our observing and reasoning powers, it is obvious that three principal assemblages are to be discriminated. These divisions are the animal and vegetable kingdoms, charscterised by organic structure, and the wondrous phenomena of life; and the inorganic or mineral kingdom, cumprising that far greater proportion of the materials of the planet in which no traces of organic structure are observable. This last assemblage of objects has been generally understood to form the province of mineralogy, which thus in its most extended sense would include all the aëriform and gaseous bodies occurring in nature, and could hardly venture to exclude the multifarious aubstances produced under similar chemical laws by the agency of man.
But since, amid the daily increasing accumulation of new and unexpected combinations, the domain of the inorganic kingdom appears unlimited, and many of its phenomena must be investigated by special departments of science, it becomes necessary to draw a boundary line around that portion of it which is to be embraced in modern mineralogy; and where we can find no logical distinction between the actual products of similar bodies and similar laws, as seen in nature or in art, we must, for the sake of convenience and utility, rest our criterion of separation upon the different conditions of their origin.
Under this point of view mineralogy has for its object the consideration of the natural inorganic materials of our globe, fluid and solid; the physical phenomena which they present, their chemical constitution, their modes of occurrence, the methods by which they are distinguishable from each other, their classification, and the uses to which they may be made subservient.
Now it is evident that, as the charscters of minerals are dependent partly on their form, partly on their chemical, and partly on their physical properties, mineralogy must be based upon geometry, chemistry, and natural philosophy; and the history of the science affords the best proof that no branch of knowledge can rise towards perfection till the conterminous sciences have, after due cultivation, been brought forward to aid in its development.
It may at first sight appear trivial and unnecessary to insiat on the definition and objects of mineralogy; but, in addition to the importance of a clear understanding of the purport of any branch of education, there are in the present case special reasons for adopting such a course. This acience has in Britain, for many years past, been cultivated by so small a number of investigators, that by the public at large it has been almost lost sight of, and is not unfrequently confounded with chemistry, geology, or metallurgy. Nay, there are not wanting among scientific men those who assert, that as a mere department of chemistry it can hold no independent place, nor offer a foundation for a special course of etudy. The above definition, however, may aid in fixing its true position, and will show, that whilst we contend with such opinions on the one hand, we would oppose on the other the vain struggles of those who have endeavoured to disconnect the science from that chemical aid which has so much advanced its progress and heightened its interest.
The prime and grand interest attached to our atudies of the products of the earth is to be found in the fact that the mineral properties of different lands, in conjunction with their geographical features, have determined the distribution, the physical and social character, and the well-being of the various races of man. Whether we examine the ventiges left by the peoples of gray antiquity, or study the modifications produced in branches of the same race located in regions of different aspect, or inquire into the origin of the chief seats of modern civilisation, we shall be assuled that most of these phenomena are dependent immediately, or through the medium of vegetation, on mineral pro-
duce, and the particular conditions under which it can be made available to human convenience.

In the remains of ancient Egypt we learn how a stupendous architecture arose by the aid of the soft yet massive sandstones piled by nature on the banks of the Nile, and how monolith statues and obelisks were suggested by the presence of a ayenite capable of taking a high polish, and admitting of the sharpeat intaglio tooling. In Attica the marble of Pentelicus and the silver of Laurion combined to develope that high state of art which, exemplified in the Parthenon and the sculptures of Phidias, has never since been equalled; whilst the abrupt limeatone ravines of Lycia and Arabia Petrea gave rise to a description of architecture peculiar to itself.
As examples of the second point, call to mind the different occupation and character of the dwellers in the Spanish penin-sula,-the active mining and mercantile population of Gallicia, Asturia, and the Basques on one hand, the indolent Castilian and Portuguese on the other.* Or compare the torpid millions of the Slavic race in the plains of Rassia with their industrious relatives and co-religionists in Servia and Bulgaria. \dagger
Lastly, in furtherance of the third inquiry, we need only to examine the beautiful population map of the British Islands by Petermann, which shows at a glance that besides the conditions requisite for the purposes of shipping, it is coal and iron and lead and copper that mainly influence the increase of our towns. Nor can we omit to refer to the amazing process by which the discovery of gold is at this day pouring a new tide of population over parts of Siberia, to Western America, and to the Antipodes. \ddagger

Such general views are, however, somewhat foreign to my purpose, for the main question which lies before me is the importance of mineralogical knowledge to those engaged in technical avocations. Enormous as is the interest at stake in connection with this science, it is obvious that a more or less profound acquaintance with its facts must be productive of considerahle differences in the progressive development of the national wealth. It is surely patent to all that the miner ought to be thoroughly acquainted with the nature of those substances which it is his daily task to seek in the recesses of the earth, as well as with those which exert a favourable or a pernicious influence either on the abundance or quality of the sibjects of his search. No less should he be prepared to recognise those which, although unusual in the spot where he has commenced bis career, may be thrown in his way either in another part of the same vein, or in noighbouring veins of the same district, or even in other lands, to whicb, by the varying demands for mining skill, he may so probably at some time be transplanted.

Supposing even that our miner had perfected himself in a science requiring far more close application to books and indoor study; supposing that he were an expert chemist, I venture to assert, that although in many cases highly serviceable to him, this rare acquisition would not make amends for an ignorance of mineralogy. Were he, each time that he required to know the nature of a substance, obliged to enter upon its chemical analysis, his days and years would be passed in endless labours often repeated and sometimes fruitless. If we concede that after twice or thrice analysing the same ore, for example, he were to recognise it the fourth time by some less laborious test, we allow, in other words, that he has acquired a mineralogical knowledge of that single substance: and thus we arrive at the conclusion, that the methods of mineralogy are those which a man must employ, if, in relation to the natural inorganic bodies, he desire to reap the advantages offered him by previous investigations.
There exists, it is true, in practice a source of difficulty which has probably gone far to prevent the spread of our science. Whilst many of the more abundant and valuable productions of the mineral kingdom are met with in such a state of impurity from mechanical aggregation and admirtures, that the particular minerals of which they are composed are not separable by physical means, others occur only in an amorphous or irregularly shaped condition. Now scientific mineralogy bases its descriptions on the most perfect individuale, or crystale, of each species, bodies which are comparatively rare; and treats with but little respect tbose which are never crystallised, and of which the distinguishing characters are less definite. It stands

[^8]to remon that in an institution of a practical tendency the strictness of such rules must be relaxed, and that greater weight must be attached to those substances, chemically impure though they may be, which are abundantly yielded by our mines and quarriea, and yet scarcely constitute true mineralugical apecies.

We shall thus, for example, study the characters of the pure carbonate of iron in the crystals occasionally lining the cavities of our loden, in the masses which exert so powerful an influence on the industry of Nassau and the Austrian Alps, and again in those indefinite mixtures which as nodules and continuous beds have, from their geological position and abundance, contribnted in a high degree to ralse Great Britain to her present pinnacle of manufacturing power.
But the cause of such a preference in mineralogical works is at once evident, on comparison of the objects described with those of the other classificatory aciences.
In the animal and vegetable kingdoms the naturalist traces, in successive groups of animals and plants, a descending scale of lower and lower organisation, till at last, in the most rudimencary forms of life, individuality is loat in an assemblage; yet down to this point esch species presents none but forms complete in themselves, and almost unvarying. In the mineral kingdom, on the other hand, we are obliged to seek out for deacription the most perfect apecimen, becaune it is not a succeasion of species, but the same species which offers a never-ending diversity of aspect. The mineral species may indeed occur in every state of development, from the symmetrical crystal, composed of definite constituents, passing through every grade of incompleteness of form or admixture with foreign substances till we reach the lowest step of the scale, where the individual is so merged in the mass that form is destroyed, and the other characteristics are no longer discernable to the sense. How atriking is the parallel in human societies, where the development of mind and resources unmistakeably accompanies such arrangements as lead to the self-reliance and importance of the individual, whilst as surely the crippled freedom of action, oaused by merging individuality in the crowd, is attended by deterioration and destruction of all healthful prominences of aharacter!

But besides the miner, there are hundreds and thousands amongat us whose pursuits, bearing on the practical purposes of life, render a knowledge of mineralogy an element of aucuess. The geologist, the engineer, and the architect must have recourse to mineralogy to gain acquaintance with many of the materials which they employ; nor, even if they possessed unlimited time and means for the acquisition of chemical analyses, could they afford to overlook the physical properties which are often chiefly instrumental in fitting those substances to their several applicatious. The agriculturist, if he wish to modify and improve the condition of his soils, must become familiar with the appearance and qualities of the marls, limestone, gypsam, phospliorite, and other minerals, which are now beginning to exert a remarkable influence on his art. The antiquary, without a knowledge of the stones from which the ancient inhabitants of the earth aculptured their idols, reared their temples, or fashioned their rude implements, and of the ores from which they produced their metals and alloys, can draw no sound conclusions as to the comparative civilisation of distant epochs, nor guard himself from the blunders consequent on faulty observation or crude description. Who, ayain, that is not insensible to the varied beauties of the brilliant gem, would hesitate to prefer to determine its nature by the methods of mineralogy instead of intrusting it to the chemist, who, with ruthless hand and devouring acids, must destroy its substance ere he can pronounce upon its character?

Other and numerous mineral productions there are for a decision on whose value we are dependent on the aid of analysis. Among the irregularly mingled bodies to which I have before alluded are many which, like the iron ores lately discovered in the oolitic formation, can only be determined as to their importance by accurate assay. Few anong the crowds who at the late Industrial Exhibition swept by the series of iron ores brought together from all parts of Britain by Mr. Blackwell, could have prophesied that the collection of balf-a-dozen of those sombre stones would give rise within a few months to an active industry, which bids fair to develope a new phase in the gigantic phenomenon of the British iron trade. An example, this, of the mutual dependence and assistance of three sister sciences, where geological reasoning bad to point out the tract in which a given formation was to be found, mineralogical
observation to discover the actual deposit, and chemical analycis to determine the value of the ore.

The mining districts of Great Britain are so ntterly destitute of the means of mineralogical education, whether in achools or suitable collections, that it need be no gource of wonder to find the most intelligent miner acquainted only with some two or three of the substances which in the routine of his employment have been brought prominently before him, and often neglecting others from ignorance of their nature, or dangerously confounding things which are totally distinct from each other. It is matter of history that the copper ores of Cornwall were recognised as useful only at a comparatively late date, the miners having concentrated all their attention upon the tin with which that county was so plentifully supplied. More wonderful does it appear, that even at the commencement of the last century, when the yellow ore or pyrites had been long appreciated, the far more valuable redruthite, or sulphide of copper, was thrown as worthless rubbish over the cliffs of St. Just into the Atlantic; and Pryce informs us, that "many thousand pounds worth of the rich black ore, or oxide of copper, was washed into the rivers and discharged into the North Sea from the old Pool mine." ${ }^{-*}$

These might be considered as the errors of a past age, but we may recollect that they occurred at a time when the value of the same substances was understood in other countries; and by mere accidental rencontres similar cases are still not unfrequently brought to our notice.
During a visit, three or four years since, to a mine which was supported chiefly by raising blende, the sulphide of zinc, my attention was attracted by a lump of white mineral lying on the window-cill of the office, a single glance at which was sufficient for recognition; and I put to the agent a few questions regarding its nature and occurrence. He replied that it was nothing but "spar," and that in working a particular part of the lode they bad met with many tons of it, which, bowever, hed been all, except this accidentally preserved specimen, irretrieveably mixed with the rubbish heaps. The surprise of my informant was not small, when he learned that the so-called "spar," confounded by him with quartz, was calamine, an ore coutaining in its pure state above 60 per cent. of oxide of zinc. Not to leave the same metal and its ores, which put on a great variety of characters, I have known zinc blende taken for lead ore, and honoured with the erection of a smelting furnace, when, to the chagrin of the manager, the volatile metal flew away up the chimney, leaving only disappointment and loss behind. Again, from a faint resemblance which some of the varieties bear to certain iron ores, a resemblance which would at once disappear before accurate observation, a considerable quantity was hought, not long since, by one of the greatest iron-masters in this country. It was carried to the furnaces, duly mingled with fuel and flux, and after a strenuous effort had been made to get it to yield iron, it all, as the proprietor naively remarked, "went off in smoke."

Blunders of this kind are more excusable when made in regard to some of the minerals of comparatively rare occurrence. An active agent of my acquaintance, a man of high character, was requested by a couple of his friends, who gave themselves credit for uncommon sargacity, to join them in forming a company to work a deposit of an unusual ore which they bad lately found. Already they had referred it, for corroboration of their opinion, to a person at Birmingham styling himself a mineral chemist, whose report set fortis that the spacimen shown him was, as the others had suspected, an ore of molybdenum, and that it was worth 81. per ton. This was sufficient to induce the agent to join the discoverers in a journey to the place in question, and at the head of a remote valley, embosomed among the ruggid hills of Cambria, he was gratified with the view of such a mass of the same substance that it was evident that thousands of tons might be quarried at a mere nominal price. Specimens were broken, the party returned to consider the preliminuries of their adventure, and it was agreed that the mineral corresponded pretty nearly with the description of sulphuret of molybdenum in some book, which was at hand. Still, the more cautious manager feared that the prospect was too bright to be real, and without consulting the othera, expended a fee in sending for a good analysis to a scientific chemist in London. The result was, that the substance in question proved to be a shining, black, slate-clay, not applicable to any use, except perhaps to make bricks.

Within a gunshot of the place where the above-mentioned agent related this anecdote, the appearance of some rather ferruginous slate rock attracted the attention of a party of credulous speculators, who believing they had discovered a rich iron ore, actually built a blast-furnace, erected the necessary machinery, and continued for some time to carry out their vain attempt, deluded by the fraudulent practices of the workmen. As might, however, have been predicted, the andertaking soon ended in abandonment and ruin.

In other mining districts I have known persons, who although possessed of great general intelligence, have collected blue stones (generally ores of copper) for cobalt, ignorant of the fact that none of the natural combinations of this valuable metal possess a blue colour.

The sulphate of baryta has for a few years past borne a certain value for manufacturing purposes; and an instance was brought to my notice, where a ship-load of what was supposed to be this mineral was obtained by surreptitious meaus, and sent from a distant part of the country to London. But the biter was bit, for his observation was faulty, and his cargo, proving to be calcareous spar, was worthless. It would tire out your patience to enumerate the cases in which mica or iron pyrites have been mistaken for gold. From the anxious country gentleman in our own land, to the disappointed Californian gold seeker, and to the solemn Turkish Bey mysteriously unwrapping from many a folded rag the specimen of his expected wealth, such victims of mineralogical ignorance are frequently presented to those whose pursuits bring them into a position for advising on similar points.

But there is another and a wider field far more important than the correction of isolated mistakes, in which mineralogical research has yet to be largely employed, and in which the connection of this subject with mining is no less grave than intimate. The principles by which the accumulation of ore in lodes or metalliferous veins has been regulated are to this day so enveloped in mystery, that the prosecution of mining enterprises is almost as much a matter of chance as it was with our forefathers three centuries ago. Nor can we wonder that this should be the case, when we regard the peculiar difficulties by which the subject is beset. Not unly is the progress of the operations so slow that the observation of one set of phenomena may extend over many years, but the examination of some points, unless made at the time of first opening, is precluded by the discolourations of water and powder amoke, or by the means adopted to secure the works. Then, according to the conditions under which the lode is placed, s combination of problems, geological, physical, and chemical, are presented for solution, and the thoughtful mining agent, left to consider them only by the light of a partial experience and natural shrewdness, is commonly led to see them through a peculiar medium, and to fall into the numerous errors resulting from unsound premises. Copious stores of knowledge have, it is true, been acquired by many of the captains and tributers in Cornwall and elsewhere; but besides the difficulty, according to the various views of individuals, in collating them, they have generally, from want of early educational opportunity, been accumulated upon an unsafe basis; finally, the experiences perish with the men, leaving society no richer for their acquisition.

Nowhere is there more room than in the study of this subject for accurate mineralogical observation,-nowhere is the prize offered more inviting; for the resolution of some of these questions must tend to acquaint us with the probability of finding remunerative ores in certain directions, either in depth or on the course of the lodes, and must, therefore, be instrumental in discovering untold sources of wealth. Nor need we despair, when we remember the confused state of all the natural aciences a little more than a hundred years aince, that at some future day a more systematic cultivation, by rigorous induction, founded on close observation, will clear away the weeds, and cover with plenteous crops this hitherto barren field.

We are thus naturally led, by the contemplation of the objects to be sought for, to the second part of our subject-the Art of Mining: and here it will be necessary to dwell at greater length on the character of the studies which it is desired to embrace, inasmuch as no course of instruction in them has yet been attempted in this country; and, strange to say, not a single book exists in the English language in which they are comprehensively treated. Among the Germans many excellent works on mining have appeared from time to time during the last three centuries; and even in France, a country compara.
tively so poor in mineral productiong, treatises have been published, in which many of the divisions of the subject have been skilfully discussed, whilst the periodical literature of both those nations is rich in detailed descriptions of the natural phenomens and the working processes of mines in all parts of Europe. Nor are we unindebted to the Russians, whose well-educated officers of mining engineers, sent at the public expense to investigate various mineral regions of the continent, have carried back with them a treasure of valuable information, which has been in a great degree instrumental in advancing, to a high grade of perfection, the mining and metallurgical operation of the Ural and of Siberia. In Britain, however, we have little else than two or three treatises on the working of coal, and a few isolated papers on other parts of the subject; and hence it will be needful, in a series of Lectures, to depend in grest part on personal experience, and to indicate, in exceptional cases, the sources whence a knowledge of details may be obtained.

But it would be an injnstice to the many thinking and enterprising spirits among our British miners not to express our admiratiou for the skill and ingenuity which they have brought to bear on particular portions of their art. Surrounded by difficulties and dangers, they have won enduring triumphs; and in some of their applications have, by the force of persevering industry, advanced their experience with such rapid steps, that science has been glad to follow in their wake, and reap new facts to aid her further progress.

The first great feature which strikes the attention in approaching this subject is the enormous value of the mineral productions of Great Britain, amounting to the sum of $94,000,000 \%$. annually in the rough state. So bountifully, indeed, has our country been enriched by Providence with these sources of wealth, and in a degree so much higher than any other region in Europe, that it need excite no surprise if those natural gifts which even sroused the industry of the early Britons, and excited the cupidity of their Roman conquerors, yield at the present day an amount of riches far greater than those produced by any other nation. Let us, then, consider the great population suppurted directly by the extraction of these minerals, and indirectly by their application to the arts, -the maintenance of hundreds of thousands of men by these not inerhaustible stores, - and the entire dependence of our whole manufacturing and commercial system on the supply of fossil fuel; and we cannot fail to arrive at the conviction, that in exercising the stewardship of such gifts of heaven, the nation has a high and responsible duty to perform, that waste and improvidence are a national sin, and that it behoves all who are in any way connected with the working of our mines to lend their best endeavours to the perfecting of the most economical and efficacious means of rendering all the products of our mines available to the uses of mankind.

It is not pretended that by any plan of education it is possible to make a miner, or in other words, to prepare a man for taking charge of a mine as soon as he has left our walls: not more reasonably should we expect that a lad drilled in the classes of a naval college were at once metamorphosed into a sailor, fitted at once to take command of a ship. Yet surely no one will deny, that if in that school he has learnt to box the compass, to knot and splice, if he has worked out problems in navigation on sound mathematical principles, if he has been taught by deacriptions how to handle a vessel at anchor in a tiderray, or on a lee-shore, he will be infinitely more ready to take advantage of circumstances, and to make rapid progress, than if he had been sent on board unknowing of these things and their principles. No "royal road" to learning, no legerdemain of "cramming," can make amends for the want of time and pains bestowed on the acquisition of practice; and as with the seaman so should it be with the miner.
By description, by drawings, and by modele, it will be our endeavour to make the student familiar with the chief phases of the operations practised in various regions, and under different conditions. He will have, each year, the opportunity of closely inspecting the mineral features and particular mining processes of the districts under examination by the Geological Survey; and, when furnished with this preliminary knowledge, will, 1 doubt not, pass to his ophere of probation better qualified to observe and to compare; whilst the practical experience which he must afterwards acquire will be superadded to what he has already benefitted from the labours of others.

Before we proceed to examine farther into the general quen-
tion of the importance of endeavouring to establish in Britain, a system of technical education for this department, let us consider the definition and principal heads of the subject before us; and, whilst 80 engaged, let us take an instance from each division, illustrative of the gain to be derived from an extended acquaintance with the modes of treating it.

The art of mining comprehends all the processes whereby the useful minerals are obtained from their natural localities beneath the surface of the earth, and the subsequent operations by which many of them must be prepared for the purposes of the metallurgist.

In the first place, among these processes must be mentioned, the search for localities in which we may reasonably hope to meet with the minerals occurring either in beds or lodes. It is obvious that a combination of geological and mineralogical knowledge is requisite for success, and that a mere empirical tact obtained in a given district may lead to fatal mistakes in another. Amid the phenomena of the lodes, their frequent heaves and dislocations, and their different appearance when bounded by different rocks, call for close attention; and although from lack of sufficient and well recorded observation, the principles upon which a criterion should be founded are far from fixed, we often find that a superior degree of general experience has been rewarded by success, when mere unintelligent working had been completely foiled.

Among the methods of proving the existence of useful deposits, none has yielded greater results, or is more capable of extended application than the art of boring. For ascertaining the position of coal-seams, and for obtaining a supply of water, bore-holes are frequently sunk in many parts of the country. But we have yet, by a comparison of the practice of different countries, and the adoption of a more economical mode of sinking, where need be, to greater depths, to increase their sphere of utility. At Neusalzwerk, near Minden, a bore-hole has lately been pierced through the trias formations, to the depth of 2800 feet, for brine springs; and another, at Mondorf, in Luxembourg, to near 2400 feet, which, though unsuccesaful in discovering salt, has supplied a spring of ubove 21 cubic feet per minute. At these and various bore-holes of less depth in Germany and France, a variety of apparatus has been employed, a complete study in itself, much of which has been serviceable in greatly reducing the time and cost of such operations. We may instance the ingenious instruments of M. Degousée, the "free-falling" cutter of Herr Kind, and the hollow iron rods of Von Cynhausen, as a few of those which are well worthy of attention for the good service rendered in the execution of great works. Again, we know far too little of the routine of the Chinese well-borers, who have succeeded, according to the detailed statements of Father Imbert, in attaining the extraordinary depth of 3000 feet, by their simple and inexpensive apparatus of rope-boring, an example which has been succesfully imitated in the chalk districts of France.

The next division of importance embraces the tools used in mining. One of the grentest advantages which we enjog over our forefathers is the use of gunpowder in rending a path through the harder rocks, which they with enduring and patient labour were obliged to cut away with hammer and wedge. But the implements employed in various districts differ not only in form and weight, but in their material and useful effect. Let me only allude to one point: in acarcely any of our mines, whether in the north or south, has it been attempted to use borers of ateel; iron is almost universally, with us as in most parts of the continent, the material of which the shank of the borer is composed. Yet in Saxony, for many years past, as also in Derbyshire, and at Ecton, the work has been advantageously carried on with borers of steel alone. Accurate experiments made and recorded at Eschweiler, and at Mansfield in Pruesian Saxony, have been attended with favourable results; and Mr. Rogers of the Abercarn Collieries has succeeded in proving, whilst sinking a large shaft in hard rock, the value of steel zools, a set of samples of which were placed in the Great Exhibition, and afterwards presented to this Museum. Although the suitable tempering of cast-ateel is attended with some dificulty to the inexperienced, the following reasons for its preference to the ordinary material have been established-viz., the great eaving in wear and tear; the reduction of original outlay, since the stock of steel borers may be smaller than that of iron in a lower ratio than that borne by the price of iron to steel; the diminution of smith's costa for sharpening, and of time lost by boring with a blunted edge, and the greater convenience of
carriage in and out of the mine. Farther, the superior compactness of the material transmits the force of a blow more efficacioully to the required point, a fact corroborated by the observation that an iron borer will cut less ground with the same number of blows when new than after being for some time in use; and it need hardly to be added, that in the questions of time, material, and cost, connected with the breaking of ground, we touch on some of the most important elements of economy in mining.

I will not detain you with an enumeration of the points to be dwelt upon in the form of the excavations by which we enter into the earth, whether by the driving of levels or the sinking of shafte under different circumstances; nor, from among the modes of securing them by timbering, masonry, or ironwork, shall I do more than bring to your notice one ingenious application of physical science to these purposes. It is well-known that the sinking of a shaft through lonee sand or watery rock often besets with great and sometimes with insurmountable obstacles the approach to the useful minerals which lie in firm ground below. On the banks of the Loire repeated efforts to reach the coal measures through a thick bed of alluvial sand had failed, overcome by the great influx of water and loose material; when M. Triger bethought him that the simpleat mode of vanquinhing the difficulty was to dam back the water, to employ a constant resisting force which might be maintained at small expense, in place of a moving power of enormous cost. It was, in fact, to pump into the iron cylinder which formed his shaft such an amount of air that the pressure on the bottom from within should be equal to the pressure from without; and the water was thus prevented from rising above a given height. Placing a cover on the cylinder, through which two pipes are inserted, one conveying the compressed-air into it, the other dipping into the watery stratum, he found a stream of water and sand poured through the latter whenever it was unable to escape rapidly enough elsewhere. Then, in order that the men might enter upon or leave their working place without diaturbing the equilibrium of the forces, he applied the principle of the canal-lock, fitting an apper chamber in his shaft, where, when the upper door was closed and the lower one opened, all was filled with the compressed-air; when the lower one was closed and the upper opened, the air-lock was relieved from its superabundant air, and men or materials might be introduced. Pages would be filled with the details of the difficulties met and overcome, and of the successful adoption of the principle in the sinking of larger and deeper shafts; suffice it to say, that M. Triger succeeded, surrounded by water, in joining his cylinder to the solid rock at a depth of 82 feet from the surface, having proved that human life could be supported, and work done, for many houra together under a pressure of $3 \frac{1}{\frac{1}{2}}$ atmospheres. His procedure is marked by manffold advantages, and admits of various applications;-witness the removal of rocks in the harbour of Croisic, on dry ground, whatever the state of the tide, Verily, if Canute had possessed a Triger among his courtiers, he might, to better purpose, have defied the rising flood to touch his royal foot!
We shall be unable here to glance even rapidly over the many systems devised for working out the minerals attained by the foregoing operations: let us only scan an isolated case. The magnificent seam called the "thick coal" of Dudley has been worked throughout the entire field on a principle which by taking the whole height, 30 feet, at one time, has been attended with such danger as to cause almost weekly some frightful and fatal accident, and to exercise morally a pernicious influence on the character of the colliers; whilst it has necessitated the leaving of so large a proportion in "pillars" and "ribs," that only from 11,000 to 15,000 tons of coal have been obtained out of 40,000 contained in the acre. Here then is a loss to the national wealth of useful life, and of about twothirds of the finest fossil fuel in Britain, the money value of which would amount to many millions. Yet for twenty years past, in that very district, one group of pits has been worked on a system by which the coal is taken in two successive stages, where the men work in comparative safety, and where, instesd of 11,000 or $15,000,26,000$ tons are realised per acre, although the seam is there of less than its average thickness. Consider only for one moment the beneficial effects of improved means of extracting the coal from our mines: it is supposed that the total quantity annually brought into use amounts to above 30 millions of tons; and if an economy of but $3 d$. per ton were effected, by reducing friction, ineffective labour, or other sources
of wasted power, a sum of nearly 400,0001. per annum would be baved to the country.

We must omit to speak of the modes of transport along the underground roads, of raising the minerals to the surface, and of pumping the subterraneous water, accumplished by an amazing variety of apparatus and machines. Nor can we dwell upon that important subject of ventilation, to which our attention is $s 0$ often and forcibly called by the fearful catastrophes occurring in our mines from its absence or mismanagement. I would only call attention to the rude method of dispersing noxious gases figured by Agricols 300 years ago, and in some of our districts still adopted, under the term of 'brushing out the sulphur," as the only means of rendering a place safe for the men to work in. But although even at that early day more refined processes had been introduced, as evinced by his description of the ventilating fans, let us compare all those puny means, and the efficiency of ventilation in the great bulk of our collieries with the skilfully applied and fiercely blazing furnaces of some of the great northern mines, where a current of $1: 0,000$, or in one case near $\mathbf{2 0 0 , 0 0 0}$ cubic feet of air in one minute are circulated through the devious passage, and rush to the upcast shaft with the velocity of a hurricane.

Nearly related to this division, as regards the question of humanity, is the true construction and the preservation of mining plans. Take an instance in which the loss of 100 lives may ensue from the ignorance of a physical fact. Those familiar with the mining districts are well aware that the great majority of their mape are laid down without any reference to the phenomenon of magnetic variation. If, then, a colliery be in operation on the dip of old workings filled with water, the tapping of which would be death to all employed in the pit, and the maps had been constructed some years previously with reapect to the magnetic meridian alone, the variation may in the meanwhile have so far changed that the exploring drifts supposed by the manager to be going clear of the known danger may, in reality, lead him straight to destruction. The art of surveying is, however, too important and extensive to be included in the lectures on Mining, and will ultimately, we hope, form the subject of a separate course.

The last group of operations to be included is the dressing of ores, on the efficient conduct of which the success of many a mine may depend. Whilst the Schemnitz miner is able to work actual gold ores broken from great depths, which, besides a little lead, contain no more than one part of gold in 288,000 of stone, ${ }^{*}$ and whilst the Russians wash in their stream-works sands containing only one part in half-a-million, we learn from description that the Californian and Australian are employing processes more rude than what they might have copied from the miners of three or four centuries since, and that (inasmuch as the poorer can only be profitably worked in conjunction with the richer) they are actually losing for ever a large proportion of the riches showered by nature upon those lands.

Such are, in few words, the processes which will form the substance of a course of instruction in the art of mining; and it need scarcely to be observed that a preparatory acquaintance with physics, geology, and practical mechanics is indispenably necessary. For this reason it is proposed that the Lectures on Mining shall be given to the students of the second year, already provided with the preliminary studies, some of which have been commenced; but in order to obviate misconstruction, it is proposed during the present season to deliver a concise course, intended simply as an outline of the subject, leaving the more detailed treatment for the ensuing year.

Amid the entire circle of the sciences we can hardly mention one which the accomplished miner may not at some time call to his uid, from the science of numbers, on which all his other knowledge should be based, up to astronomy, which may assist in the construction of his maps. We cannot, indeed, expect that many will become, like Humboldt (who was educated, and for some time practised as a miner), + master in several sciences; but when we add to these the acquaintance with business routine and commercial queations which the manager of mining property ought to possess, is it not clear as the noon-day that

[^9]for those who desire to excel in this profescion a special educition ought to be superadded to the training of our schuols and colleges? And is it not equally clear that with so vast a field of investigation before him the intelligent inquirer must ever remain a student, whilst only the shallow pretender can affect to be the arbiter of the difficult problems which daily present themselves?

From the examples above adduced I trust that I shall be justified in asserting, that a communication of knowledge, whether of the principles or of the practices involved in mining, must be attended by great pecuuiary gain to the country at large. We shall be met, in the outset, by the argument more suited to the Cape Boer or the Chinese than to the progresaive Anglo-Saxon, that because our fathers have done very wall without it we may easily dispense with any such innovation; and that the immense mineral production of Britain is the beas proof that we need not to follow the example of nations unable, with all their schooling, to rival us in that respect. But let us not overlook the great natural advantages with which we have been favoured, nor forget, that although individual perseverance has done much, very nuch, among us, we must still depend for advancement in a great degree on the experience of others. In good truth "he that neglects the culture of ground naturally fertile is more shamefully culpable than he whose field would scarcely recompenee his hushandry: and it is as rational to live in caves till our own hands have erected a palace, as to reject all knowledge of architecture which our understandings will not supply.*
Taking even the present state of our knowledge as a standard, let us balance the argument on such crucial questions as the following. Do cases occur in which mineral substances are neglected from ignorance of their nature? Is it true or not, that others are wasted and lost to the nation by the character of the present operations? Do not crowds of well-meaning adventurers rue their introduction to the mining schemes of impostors? Are not hundreds of human lives sacrificed to a want of precaution and prudence? Is not the condition of machinery and apparatus in a great part of the country very inferior to certain now existing models? Are there not numerous sources of wealth lying unemployed from the uncertainty consequent on a want of former records or present knowledge? No one, I am confident, acquainted practically with our mineral districts, will hesitate in replying, that in all these points great and salutary changes may be made, and that enlarged opportunities of learning accorded to the mine agente must produce their fruits in due season.
As for the minerable plea of ignorance, that the country cannot fail to prosper, in whatever degree her sons may squander the stores of nature deemed inexhaustible,-it but leads the mind back, through many centuries, to an instance of similar reckless boasting, followed by a warning fate. In the palmy days of Athens, when the silver mines of Laurion were vivifying art, commerce, and luxury, Xenophon asserted, in a formal treatise on the revenues of the state, that "whatever number of men had been employed in those silver mines, no diminution had been practically effected in the quantity of the ores;-that there was no limit to the productiveness of the veins, either in depth or in extension, and that their riches, in fine, were inexhaustible." Let any one contrast such assurances with the beggared state of the land ever since.

I would be far from strictly comparing the conciions of Attica or its people with our own; but we must bear ihmand, that in all our mining districts the minerals are extractinget a fearful rate, and each year in an increasing ratio, and that a ar a certuin lapse of time scarcity and increase of price my necessarily follow. In the meanwhile, we have numerous rivat in other and less favoured lands, doing their utmost to make i) for natural disadvantagea by fustering education aud acquiriz: a sound knowledge of the principles on which they act. this race they have often been checked by political troubles ar peculiarities in their social relations; but, having so thorough secured each onward step as to be comparatively independent the fleeting skill of individuals, they nevertheless press forwa again in the same path; and when the day comes that our pieponderance in natural treasures is reduced to something ne per equality,-when deeper and thinner coal seams must be wrou tht when poorer ores of the metals must be more highly prized hand
when the products of our manufactures can only be brough inta when the products of our manufactures can only be brough
commerce at higher prices, -then must the star of E .

* Jubnion. Hambler, No. 164.
prosperity deoline, unless we keep our vantage ground by the saperior akill and knowledge to which technical education must greatly contribute.

Thus far we have directed our attention almost exclusively to the material advantages, or, in other words, the pecuniary returns to be expected from the cultivation of these subjects. I have dwelt so long on such topics because the main object of the foundation of this course of instruction has reference to that point of view.
But I should ill appreciste the character of this audience, and do violence to my own feelings, were I not, in conclusion, to protest aguint that debasing spirit which would decry all branches of knowledge except those which are at once commercially profitable, and which would. practically inculcate a belief that the aoquisition of money is intended to be the great ond and aim of human existence. Shall we, for their own sake, examine the works of the architect, the painter, or the poet, and analyo the rules upon which his art is founded, whilst we yet remain indifferent to any one department of the rich storehouse of nature, opened for man's inspection by the Author of all things?
Believe me, that the phenomena of mineralogy, and the principles which regulate them, are, though different in their kind, no les besutiful than those of animal and vegetable life; and they possess the additional source of interest, that they may guide us to the wider sphere of speculating rationally on the constitution of the orbs which roll with us through endless epace.
With reason has Nabi Effendi, a Turkish author said, "Conseerate, 0 my son, the aurora of thy reason to the study of the sciences; in the vicisaitudes of life they are an infinite resource, they form the mind, they polish the understanding, \&her instruct man in his duties, they delight and amuse us in proaperity, they become our consolation in adversity." Indeed, to the student in his cabinet, no less than to the traveller through Alpine passes, or over regions explored by the skill of the miner, the study of minerals offers at the same time an attractive recreation, and an efficient method of disciplining the faculty of observation. The closer we investigate the principles on which their constitution and their physical properties dopend, the more are we startled by new and convincing proofs that it is only the imperfection of our knowledge which as yet prevents us from seeing more than the glimmering outline of that harmony which pervades all the works of nature. The Eyetem of law, the romos o narruy BaciAcus of Pindar, working as surely in the particle which vanishes from our power of sight, as in the loftiest mountain mass, reveals itgelf with more distinctness the farther we advance; and although the difficulties of inquiry are heightened, so are its pleasures also increased by the ties of brotherhood, which springing hence anite our pursuits with the other natural sciences.
Nor let it be supposed that the details of mining are unproductive of advantage to any but the professional miner. Deep in the bowels of the earth the labour of generations has wrought out edifices no less worthy of admiration than those which the skill of the architect has reared upon her surface; and if, in the latter case, we esteem it desirable to learn so much of the principles of the art as may enable us to appreciate the design of the craftsman, so in the former shall we find in the magnitude of the operations, in the diversity of the natural appearances brought to light, and in the ingenuity of the processes adopted for the maintenance and extension of the works, a harvest of facts no less intereating than suggestive of farther inquiry.

Whatever may be the imperfection of the teacher of these wubjects, there is in themselves so much that is exact, so much that is vast, so much, in fine, that is most worthy of man's higheat powers, that we may hope, out of the number who will enter with us on the curriculum, to see some few, at least, who will not stop short at that point whence they may obtain their worldly ends, but will persevere towards that goal of higher knowledge which has been, and always will be, the object of the noblest of mankind.

The Board of Heallh.-It has been stated in the House of Commons that the total expense of the surveys made by the Boasd of Health, with respect to the supply of water to the metropulia, was 6744.198 .92 , and the Parliamentery expenses 6000I., besides the cost of certain chymical inquiriea.

THE MANCHESTER CORPORATION WATERWORKS AND RESERVOIRS.

[The following description of the reservoirs now in progress for the Manchester Corporation will, we are sure, be read with great interest by the profession, knowing the perilous position of the works during the late heavy rains. We are indebted to the Manchester Guardian for the information, which, be it observed, was collected on the spot within a day or two after the heavy fall of rain on Sunday the 8th February last.]

The reservoirs of the Manchester Corporation Waterworks in the valley of Longdendale, which stood admirably the great floods of Wedneeday and Thursday, th and 5th February, had a yet severer test in the continued heavy rains of the three following days, till on Sunday the 8th some of the reservoirs were within seven hours (supposiug the rain had continued to fall in equal quantity during the whole of that time) of being brim-full; and there was consequently considerable anxiety on the subject, especially amongst the millowners and other inhabitants of the valley within a little distance of and below the three great reservoirs of these works. This anxiety was of course greater than would otherwise have been the case, from the vivid remembrance of the recent horrors attending the bursting of the Bilberry Reservoir, near Holmfirth, in Yorkshire; though there is no analogy in the nature and character of the works to warrant any apprehension of the one, because the other had failed, as for years past all conversant with it had expected it to do. In order to enable our more distant readers to comprehend the general character and vast extent of the Manchester Corporation Waterworks, and the circumstances which led to their position on Sunday the 8th February, we must enter a little into detail.
Though in two instances perhaps (one in Scotland and one in Ireland) there are single reservoirs larger than any of those of the corporation waterworks, yet, taken as a connected series or chain of artificial lakes, constructed for the storage of water, those in the Longdendale valley have the largeat aggregate capacity of any artificial sheets of water in the world. The great Croton Waterworks, which supply the city of New York with water, give a daily supply of 35 million gallons. The Manchester Corporation Waterworks, including the 17 million gallons with which they are bound by their act to supply the millowners on the streams, hefore they can send a gallon to Manchester, yield a daily supply of 45 million gallons, or 10 million gallons daily more than the Croton Waterworks. This will give some idea of the extent of the corporation waterworks, which collect the rain from a drainage area of some 18,900 statute acres, or 29 h square miles of high ground, amidst the moors and mosses of the Pennine hills.
These works, which were commenced at the Woodhead reservoir in October 1848, though now rapidly approaching completion, are by no means finished. When completed they will comprise (besides weirs, lodges, watercourse, conduits, and tunnels) eight reservoirs, having an aggregate area of more than 420 acres, and an aggregate capacity of $611,878,607$ cubic feet. The three highest of these reservoirs, in the main valley of the Etherow, are also the largest storage basins of the whole works, and it is from these that any great disaster is to be looked for, if such should ever occur. The highest is the Woodhead, the second the Torside, and the third the Rhodes Wood reservoir; and the following will be, when completed, their respective dimensions and capacities:-

Rewervoir.	Embankment.		Reservoir.	
	Grentest Beight.	Contents.	Area. A. E. P.	Capactty. Cuble feet.
Woodhead	90	152,707	18122	187.949092
Toraide	100	890.124	168188	240,261,983
Rhodes Wood	60	263,240	54016	70,705,406

The present state of the works, especially the embankments, of these three reservoirs, may be generally stated as follows:The embankment of the Woodhead reservoir is completed to its full height of 90 feet; but operations are now in progreas to render some portions of it perfectly water-tight; and these operations are ly no means finished. Of the Torside embankment of 100 feet, about 60 feet in height is completed; but here also the operations in progress to secure the watertightness of every part, only allow of the water being impounded in this
reservoir to a depth of about 30 feet. Of the Rhodes Wood embankment of 80 feet, from 50 to 60 feet is completed; so that it only allows of impounding water to a depth of somewhat more than 40 feet. In the commencement and earlier period of the construction of any one of these embankments, it is necessary to make temporary provision for the pasaage of flood waters. Accordingly, temporary watercourses are constructed above the top-water level of the reservoirs, or otherwise gaps are left in the embankments themselves, until they reach a certain height, when these gaps are closed, and the floods must afterwards be either impounded in the reservoirs, or passed through the large discharge pipes. All the three large reservoirs we are now describing had, before the late floods, reached a point at which it became necessary to dispense with these temporary watercourses, and to place reliance solely on their powers of impounding and discharging any flood waters that could by possibility come down. In the various stages of the work, of course, every successive step has to be taken with direct reference to the amount of flood water which is expected to pass down the river Etherow; and these reservoirs have at all times been in a condition either to pass downward, or to impound, a quantity of water at least equal to a fall of rain of three inches on their collecting ground during the 24 hours. In this state, then, the floods of February found the reservoirs. But, in order rightly to appreciate the nature of these floods, we must look to the records of the fall of rain in the district, as registered by improved rain-gauges under the direction of Mr. J. F. Bateman, C.E., the engineer-in-chief of the Mancheater Corporation Waterworks.

Taking the rain-gauge placed at the foot of the hills in the Crowden Valley, which joins the main valley of the Etherow, below Woodhead, which is in the very centre of the drainage grounds, we shall give its registers of the fall of rain; premising, however, that it must indicate a much less quantity than that which actually fell, either on the summit of the hills, or over the whole district. In January, then, the rain which fell in the Crowden Valley was 5 inches. This, though considerable, is not a very unusual quantity for that district in that month; but the following will exhibit the daily quantities during the first nine days of February:-Sunday, 1 st, 0.5 in .; Monday, 2nd, 0.4 in .; Tuesday, 3rd, 0.5 in.; Wednesday, 4th, $1 \cdot 1$ in.; Thursday, 5 th, ${ }^{*} 1 \cdot 9$ in.; Friday, 6 th, 0.8 in.; Saturday, 7th, 0.9 in.; Sunday, 8 th, +1.3 in.; Monday, 9 th, $\ddagger 0.5$ in. Here, then, we have in the first nine days of February, no less than 6.5 in. of almost incessant rain; and although there have been heavier floods, nothing like so continuous and protracted a fall of heavy rains has been known within living memory in that district. As to the rain which produced the floods on Wednesday and Thursday, the 4th and sth February, the fall from $11 \mathrm{~s} . \mathrm{m}$. On the 4 th, to $11 \mathrm{a} . \mathrm{m}$. on the 5 th, was $9.1 \mathrm{in} . ;$ and in the same period, $2 \cdot 4 \mathrm{in}$. of water flowed off the ground and was impounded in the reservoirs, or was passed through the dis-charge-pipes. The quantity of water which still remained due to the fall of rain during that period, and which flowed off the ground before the streams were reduced to the same volume at which they were when the floods commenced, was about 0.3 in .; making the whole quantity coming off the ground in the twentyfour hours, 2.7 in . That must, therefore, have been the mean rain over the whole district, and the rain on the summit of the hills must consequently have been considerably upwards of 3 inches in the same twenty-four hours; and the rain that fell in the first nine days of February-viz., 6.5 in. rain, would probably upon the summit of the hills be not less than ten inches. Heferring to Mr. Bateman's paper on the measurement of rain, read in April 1848 to the Manchester Literary and Philosophical Society, and printed in the last volume of their memoirs, we observe that the fall of rain in the four wet months of the winter of 1846-7, as registered by the rain-gauge at Crow-den-hall, was as follows:-1846, November, q in.; December, $9 \cdot 8$ in.; 1847 , January, $9 \cdot 2$ in.; February, $4 \cdot 3$ in. So that the fall of rain in the first nine days of February 1852, equalled the entire aggregate fall of the two months (59 days), of January and February 1847.

The following table, which has not been published before, exhibits the quantity of rain that fell in each month of the three years 1849, 1850, and 1851; as registered by a rain-gauge

[^10]placed in a field at Crowden-hall, a fold of houses, situated at the junction of the Crowden and Longdendale Valleys:-

		$\begin{gathered} 1849 . \\ \text { Inches. } \end{gathered}$		$\begin{aligned} & 1850 . \\ & \text { Inches. } \end{aligned}$		$\begin{array}{r} 1851 . \\ \text { Incbet. } \end{array}$
January	-	$8 \cdot 2$		$3 \cdot 8$	****	2.5
Pebruary	-	$2 \cdot 4$		$4 \cdot 4$	-**..	$3 \cdot 0$
March	-	$1 \cdot 5$		$1 \cdot 1$		$4 \cdot 1$
April	\cdots	$3 \cdot 0$		$4 \cdot 0$		18
May	-	$2 \cdot 8$		$2 \cdot 0$		$3 \cdot 0$
June	.	$1 \cdot 7$	* . . *	$3 \cdot 4$	*....*	$6 \cdot 3$
July	.	$7 \cdot 8$		$4 \cdot 8$	$3 \cdot 8$
August	*	$5 \cdot 4$		$3 \cdot 2$		$4 \cdot 2$
Septeraber	-	$4 \cdot 7$		1.8	$3 \cdot 0$
October	*	$7 \cdot 0$		6.5		$4 \cdot 9$
November	. \cdot	$5 \cdot 1$		$7 \cdot 8$		$2 \cdot 7$
December	**	$5 \cdot 1$		$1 \cdot 3$	0.8
Total	r year	$54 \cdot 4$		44.1		$40 \cdot 1$

In January 1858, as we have stated, the fall was 5 inches; in the first nine days of Februsry it was 6.5 inches.

To return to the working of the waterworks reservoirs, under the pressure of floods such as have just been indicated,-we learn that on Wedneaday and Thursday, the 4th and 5th February, flood water to the extent of $2 \cdot 4 \mathrm{in}$. in the twenty-four hours was safely passed or impounded in the reservoirs, with a considerable space still remaining for storing additional water. But before the stored water could be discharged from the reservoirs, a succession of other floods, especially during Saturday night and Sunday, nearly exhausted the storage powers of the reservoirs, and on the evening of Sunday the 8th, there remained provision only for the safe passage of heavy rain (which had then been continuing for some time) for a further period of six or seven hours. With some amount of riak, though probably not very great, the continuance of rain for even twenty-four hours might have been provided for. Under these circumstances, however, the excitement of the millowners and residents in the valley below the reservoirs became very great during Sunday, stimulated of course by the recent catastrophe at Holmfirth, so that the whole valley was thronged by persons, many of whom came from some distance, notwithstanding the heavy, continuous, and beating rains, to see the reservoirs, examine into their state, and speculate as to the possibility of some of their embankments giving way. A little inn, which, from its usual quietness and loneliness, has for its sigu "The Quiet Shepherd," was thronged from morning till night with people seeking shelter and refreshment; its stable and outbuildings were filled with gueste, and the utmost excitement prevailed. On Sunday morning the rain continued to fall heavily from an early hour till about two o'clock p.m. without intermission. There was then a lull for nearly two hours, when it again commenced raining as heavily as ever, with a prospect of continuing during the night. Under these circumstances Mr. Bateman, who had been on the spot almost constantly from the morning of 'Thursday the 5 th, feeling the very great and solemn responsibility that would attach to him, in case of any accident, even of a trifling nature, occurring to an embankment, without any notice to the inhabitants below, thought it prudest, about half-past three o'clock on Sunday afternoon, to dispatch messengers to the parties immediately on the river, for some distance below the reservoirs,-stating that, should it continue to rain heavily all night, some danger might be apprehended after the lapse of six or seven hours, and that it would therefore be prudent for them to prepare for the possibility of such a contingency. Of course this intimation spread great alarm throughout the valley, and the most vigorous efforts were made by some of the millowners and others to remove valuable property without delay; the occupants of cottages and other dwellings along the stream, also hastily removed their furniture to the houses of relatives and friends at some distance from the course of the stream. Thoughout the little village of Valehouse the inhabitants were thrown into a state of the utmost excitement, for in the event of the bursting of the embankment, a large number of the houses must have been swopt away. Some houses at Bottoms Mill would also have been in imminent danger; as would others occupied by operatives employed by Messrs. Sidebottom, at Waterside Mill. All these removed their furniture. Mr. H. Lees, who resides between five and six miles below Torside, had several carts and wagons constantly engaged for several hours in removing his household and other property. At Glossop the alarm was very general, and much damage was done to furniture during its hasty removal.

Fortunately, however, for an concerned, in the course of rather more than an hour after this intimation had been given by Mr. Beteman, the weather cleared np, and as it promised well for the remainder of the night, and as the heavy flow of water during this interval had materially abated, he felt so confident of the perfect security of the works, that he dispatched other messengers, about half-past five, p.m., to reassure the inhabitants, and to prevent or allay all unnecessary apprehengion and alarm. The weather continued fine; the streams abated, and on Monday afternoon, the water within the reservoirs had been considerably diminished in quantity by the action of the discharge-pipes.
From what we have stated, we think it will be understood that an occasional flood of 3 inches or more in the twenty-four hours would be a matter of very little consequence, inasmuch as it could always be passed off in perfect safety. But a rapid succession of floods, one occurring before the effects of the previous one had ceased, must occasion such an accumulation of water in the reservoing, that after a certain period they would no longer be able to hold any additional water, without running some risk in the present unfinished state of the embankments and other works. The rains during the week and of Sunday were of this deacription, and the result was a constant succeasion of heavy floods, such as no previous calculation could have provided for. But the result has been satisfactory, as showing that even that quantity might have been passed with perfect mecurity. We have mentioned the discharge-pipes, and we may explain that each reservoir is provided with two of these pipes. Each pipe is 4 feet in diameter; and besides these, when the works are completed, the reservoirs will also be provided with waste-weirs of great capacity. These dischargepipes are closed by valves, which are opened for the passage of the water. The quantity discharged will of course vary with the amount of pressure, or, in other words, with the height of water in the reservoir above the pipes. The quantity of water Which can be discharged by one single pipe (the mouth of which is below the bottom of the reservoir), under full pressure, is from 500 to 600 cubic feet per second. The pressure varies from 80 to 100 feet. At the Rhodes Wood reservoir the lowest of the three, the pipes are closed by valves of three feet in diameter; in the two higher reservoirs the valves are each four feet in diameter;-it being the intention, when the works are completed, to pass off the flood waters of the two higher reservoirs by a waste-water course, above the level of the Rhodes Wood reservoir, and to use that reservoir as a store for pure water for the supply of the inhabitants of Manchester. In the proment unfimished state of the works, the water from the Woodhead reservoir flowe into the Torside reservoir, uniting with the waters of several large stresms, the whole of which waters must pass from the Torside into the Rhodes Wood reeervoir, from which they are discharged into the valley below, by the two pipes with their valves, already mentioned. With the pressure which can be brought to act upon these pipes, in the present state of the works they would discharge between 500 and 600 cubic feet of water per second. On Wednesday, the 4th, the flood water poured into the reservoirs averaged during the twenty-four hours, no less than 1730 feet per second, and deducting as discharged 500 feet per second, it follows that the remaining 1230 feet per second had to be stored in the remervoirs, to be gradually discharged thence on the subsidence of the flood. Fram eleven a.m. on Wedneaday the 4th, to nine p-m on Thuraday the 5 th, the water impounded in the Woodhead reservoir gradually increased from a height of 47 feet below top-water, to 19 ft .9 in . below top-water, or the level of the waste wair, over which the water will flow, or run to waste, when the reservoirs are completed. The water in the reservoir continued to rise with greater or less rapidity till about nine p.m. on the sth, when it atood at the high level already named - 19 ft .9 in . below the waste weir. From that time it gradually lowered, by the discharge of the water from the reservoir by the pipea till Sunday morning, when it stood about 9 feet below the higheat point it had attained on the 5th. On Sunday morning, the water again commenced rising as the rain fell heavily, and in the evening of that day, the water in the reservoir had attained a greater height than it had previously reached, by nearly 2 feet-standing at that time at a level of 17 ft .6 in . below what will he the top-water of the reservoir when it shall be finished. At the commencement of the flood on Wednesday, the th, the Torside and Rhodes Wood reservoirs were both quite empty; but during that flood, the water rose in each to
within a few feat of the full height to which water can st presant be impounded therein. This was drawn off again by the discharge pipes on the following days, till on the morning of Sunday, the 8th, the water stood, on the average of the two reservoirs (Torside and Rhodes Wood) about 5 feet lower than it did on Thursday, the 5 th. But during Sunday, the flood of that day raised the water within both these reservoirs to a level several feet higher than it had ever previously attained. The greatest height to which the flood attained at any one time, appears, from such observations as could be made, to have been from 3600 to 4000 cubic feet per second. The collecting ground from which this vast volume of water was derived is about 16,000 statute acres in extent: and, in ordinary times, when its river and streams are unswollen by rain, the volume of the stream that comes down is not more than from 15 feet to so feet per second. This will convey some idea of the enormous quantity of water which is suddenly collected and sent down the great natural conduit of the Etherow during heavy and continueus rains.

A further precautionary measure to provide additional means for the asfe discharge of the water in the reservoirs, in case it should rise to a greater level than those reservoirs would safely hold, must not be overlooked. Provision has been made for passing the water in such case, over the embankment of the Rhodes Wood reservoir-the loweat on the river-by a large wooden shoot or trough, whioh is of capacity sufficient to pass several hundred cubic feet per second. It was found, however, unnecessary to employ this shoot on the Sunday, as there atill remained abundant storage for six or seven hours; and only in case the rain had continued to fall with equal heaviness for a period exceeding that time, would it have been necessary to bring this shoot into action.

No damage whatever has been sustained, except some unavoidable injury to the unfinished masonry, and the giving way of some slopes above the level of the Hollingworth watercourse, which is for the conveyance of pure water to Manchester. On the completion of the works, when all the waste weirs, and other apparatus for discharging the water are finished, the most ample provision, we are assured, will be made for the passage of flowd waters; and it is only so long as the works remain in their present unfinished state, that any danger, even from excessive floods, can possibly arise. It is anticipated that in the course of the autumn of this year, or at all events before the close of 1852, the whole of the works will be completed. To show the extraordinary character of the recent floods, we may mention a computation carefully made, that the water which has flowed down the valley of the Etherow since the 1st of January last-a period of forty days-would have more than filled every one of the reservoirs of the corporation with water, had they been utterly empty on New Year's Day. The appearance of the Woodhead reservoir on Sunday the 8th, though only partially filled, was exceedingly beautiful; having all the appearance of a natural lake, a mile and a-half in length, winding around the foot of wild and steep hills, in the midat of acenery of a atrikingly romantic character.

The stability of the works has now been put to a moot severe and unusual test, while in an unfinished atate, and they have atood that test in a way that cannot fail to redound to the credit of Mr. Bateman, as an hydraulic engineer, and to the great satisfaction of all those (including the ratepayers of Manchester) who would suffer in person or próperty from any serious failure in these extensive works.

LOCOMOTIVE ENGINES, BOILERS, AND CARRIAGES.

(With Engravings, Plate X.)

Canbles Cowper, of Southampton-buildings, Chancery-lane, for improvements in locomotive engines, boilers, and carriages, part of which improvements are applicable to other similar purposes. (A communication.)-Patent dated July 31, 1851.

Claims.-1. For a mode of applying a lining of fire-bricks, or firestone, in the lower part of the fire-box, to defend that portion from the full action of the fire, thus rendering the combustion of the fuel more perfect, and preventing the sides of the firebox from cooling the fuel. By this means coal may be employed as fuel.
2. For constructing the ash-pans of a curved or dished form
by which means they are leas liable to warp, and spplying two or more dampers in the buttom of same. The ash-pans in present use are of a flat form. The inventor considers the new form will prevent their warping. Two sheet-iron valves, or dampers, are placed on the underside of the ash-pan, turning upon centres, each carrying an arm, to which is jointed a T-ended rod by which the dampers are closed or opened. By employing two dampers the risk of warping is diminished.
3. For a mode of constructing the fire-box and body of the boiler, when the body of the boiler is completely filled with tubes, Also, in applying two or more boiler bodies in connection with a single fire-bor. The interior fire-box is made of equal width with the steam-chamber and the body of the boiler, while the exterior casing of the fre-box is made wider than the other parts. The top of the interior fire-box is of the form of a quartersphere, united to a cylindrical portion, so as to admit of the whole of the body being filled with tubes. In another arrangement, the upper part of the interior fire-box is of the same width as the body of the boiler, and it is curved at the top to allow the whole of the body to be filled with tubes. The lower part of the interior fire-box is made narrower, and the exterior casing is made to follow it, so tbat the latter may be at that part of the same diameter as the body.
4. For a mode of applying a steam-channel of a suitable form on the top of the body of the boiler, for the exit of the steam. The channel communicates with the body by perforations, and the steam passes through the channel, one ond of which communicates with the steam-chamber, and the other with the pipe leading to the cylinders.
5. For modes of introducing the feed-water through several perforations at the end of the boiler furthest from the fire.
6. For a mode of applying partitions in the body of the boiler, so to cause a circulation and gradual heating of the feed-water; also the carrying of these partitions into the steam-channels, so as to stop the passage of the steam.
7. For a mode of applying an air-vessel to receive the water from the tender, and supplying the feed-pumps of locomotives. Fig. 1, Plate X., is a vertical transverse section of a portion of the body of the boiler, showing the feed-pump g, and pipes. The feed-pump draws the water from the chamber h, which is connected by a pipe to the tender. The chamber is placed under the smoke-box, and is closed at the top, so as to inclose a portion of sir; it thus serves as an air-vessel to regulate and render nearly uniform the flow of the water from the tender. Where there are two pumps they may each be provided with a separate air-vessel, or both may be connected to the same airvessel. The water is thrown by the pump g, through the pipe i, and stop-valve j, into the semi-annular pipe k, which is rivetted on the body, and communicates in a similar manner with the pump on the opposite side of the boiler. When two pumps are employed a series of perforations are made through the top of the boiler into the pipe k, so that the water may enter at several different places. The water injected by the pump being at a lower temperature than that in the boiler, descends among the tubes towards the bottom of the boiler; by this means the cooling effect of the water is distributed and divided among the tubes, and the risk of leakage is diminished. When the boiler is only partially filled with tubes, the feed-water may be distributed among the tubes by means of a perforated pipe pasaing from side to side above the top row of tubes of the boiler, and opening on each side into a small chamber or valvebox containing the stop-valve j, which communicates with the pamp by the pipe i. The underside of the pipe k, is perforated.
8. For placing beneath the boiler a mud-chamber divided into compartments. Each compartment is of an unequal siza, and furnished with a separate blow-off cock at the bottom, so that the smaller one can be blown off while the engine is at work; each communicate at the top with two of the boiler compartments, and contain a quantity of substances, for the purpose of facilitating the deposition and ready removal, through doors, of the sediment.
9. For applying two or more chimneys to the boilers, with a blast-pipe to each chimney.
10. For applying to the chimneys a disc-damper, turning on a spindle, and entering a slit or notch in the side of the chimney. 11. For constructing the chimneys of various forms, and the application of a lining to certain spark arresters.
12. For applying to the blast-pipes, a slide or other valve capable of closing them air-tight, and the adaptation of the same to open or close any one or more of the two or more blast-
pipes, and the making them of nnequal size. Fig 8 , is a traneverse section through the eduction-pipes b, b, leading from the cylinder; and fig 3 , is a plan of the lower part of the smoke-box. Fig 4, is a longitudinal section through the blast-pipes q, q, and the centre of the smoke-box. A, is a chamber which receives the steam from the two cylinders of the engine, and being of large capacity, serves to regulate and equalise the flow of the ateam up the blast-pipes. C, is a sliding plate or valve, having two apertures, in the positions shown by the black lines at u, u, in figs. $5,6,7$, and 8 , which are plans of the valve, moved by the rod u, and levers e and e^{\prime}; the two blast-pipes, q, q, are of a flattened form and of unequal size. When the valve is in the position shown in figs. 2 ,'s, and 4 , the larger blast-pipe q, is open, while the smaller one q, is closed by the valve. If the valve be drawn forward by means of the rod d, the hlast-pipe q^{\prime}, will also be opened, and the steam will escape at both blast-pipes. If the valve be drawn still further forward, it will close the larger blast-pipe q, the smaller oue q^{\prime}, remaining open; by reversing the operation the blast pipe q, will be and remain opened, while the further motion of the valve cluses the blast pipe q '; still further continuing the motion, the blast-pipe q, will be closed, arresting altogether the escape of the steam, and by placing the valve in the intermediate positions, any intermediate arc of opening may be obtained if required, and the blast-pipes may be closed altogether when necessary. The chsmber A, renders the blast much more regular; 0 , is a bafety-valve to prevent any danger of the chamber A, being burst, by the valve c, being completely closed while the engine is working; j, is a cock for drawing off any water which may condense in the chamber A. When the chamber is suddenly reversed while in motion, a vacuum is formed in the blant-pipe, which has a tendency to draw in dust and ashes from the smoke-box; closing the valve c entirely prevents this; k, is a door for cleaning out the chamber A. In figes $2,3,4$, the chamber A, is made of wroughtiron plates, rivetted together; and at h, in fig. 4 , is shown a portion of a wrought-iron air-vessel for the supply of the feedwater, as before described with reference to fig. 1 . The steamchamber may be made of cast-iron, and in one piece with the air-veasel h.
13. For the application of a steam-chamber on the escapesteam pipe, for the purpoae of regulating the blant, and eeparating the water, grease, and other impurities from the steam,
14. For application in the steam pipe leading from a boiler of a regulator or valve, which closes in proportion as the alidevalve opens, for the purpose of cutting the steam off more regularly.
15. For the application of a steam-chamber between the regulator and the cylinder, so as to render more uniform the flow of steam from the boiler, and to render the steam more free from water.
16. For the application, between the boiler and cylinder of any engine, of one or more regulating chambers, in entering each of which the pressure of steam is diminished, so as to regulate its flow from the boiler.
17. For a mode of applying superheating steam-engine chambers, or superheating and regulating chambers in the smoke-box or flue of a steam-boiler, and a mode of applying superheating chambers to tubular boilers.
18. For a mode of packing a spindle, by making a part thereof of a tapering or conical form, and causing it to be forced into a corresponding hole by the pressure of a spring, assisted by the pressure of the steam or other fluid to which it is exposed.
19. For a mode of applying, in lieu of an eccentric, a countercrank, adjustable in length and position, for the pnrpose of varying the stroke and lead of a slide-ralve, and reversing its motion.
20. For a mode of applying a counter-crank parallel with the main crank, but longer or shorter than it, and carrying another small moveable counter-crank, capable of being adjusted and secured in any required pusition, for the purpose of working the valve, and varying its stroke and reversing its motion.
21. For the application of a double counter-crank attached to the main crank-pin, for driving and reversing the slide-valve.
22. For the spplication of a counter-crank, fixed to the main crank-pin, and carrying small additional counter-cranks for working the slide and expansion valves. Some of these arrangements are intended to lessen the friction of the valve gear by reducing the diameter of the rubbing surfaces, which in the ordinary eccentrics is very considerable. Fig. 9, is a front view
of a main crank P, with a fixed connter-crank Q, for driving the slide-valve. Fig. 10, is a section of the same, together with a detached view of a portion of the main crank. The main crankpin O, is cylindrical in the centre, where the connecting-rod R, is fitted to it, and made conical at the two ends where it enters the main crank and counter-crank. It is fixed in the main crank by a key and a nut, which is let into the back of the crank; the other end of the pin O^{\prime}, is fixed in the countercrank by a key and a nut, over which is placed a set-nut to secure the first from becoming unscrewed. The pin O, is fixed in the end of the counter-crank by means of a nut and set-nut, and the rod D, for working the slide is fitted to it. The counter-crank Q, is bent so as to enable the rods D, and R, to clear the nuts and set-nuts. Fig. 11, is a front view, and fig. 19, an end view of a main-crank P, and counter-crank Q, carrying a double counter-crank S, U, which serves as a substitute for the eccentrics, and may be employed for driving a link, or other motion driven by eccentrics; rods are fitted to the pins a, b, in lieu of the eccentric-rods ordinarily employed. In this arrangement, the counter-cranks are all forged in one piece of iron with the main crank-pin O^{\prime}, which is turned conical at the end, and keyed into the main crank P; these countercranks may also be made of separate pieces of metal fixed together by screws or nuts, or otherwise. Fig. 13, shows an arrangement by which the velocity in the centre of the stroke is increased, and at the ends of the stroke diminished. A, B, is a lever turning on the centre or way shaft O, and working the slide-valve by a rod. D, is the eccentric-rod, or a rod attached to a crank or connter-crank, driven by or attached to the main ehaft of the engine; it is jointed to a pin on the end of the lever $\mathbf{E}_{\text {, }}$ which pin is capable of traversing in a slot in the arm B. When the lever E, is in a line with the slotted arm B, the effective length of the slotted lever B, is a minimum, and consequently the velocity of the slide-valve is a maximum; when on the contrary, the eccentric-rod D, is at either end of ite atroke, the lever E, is nearly at right angles to the slutted lever B, whose effective length is then a maximum; and as the motion of the eccentric-rod-end is nearly in the direction of the slot in the lever B, it follows, that the latter remains nearly stationary; by this means the variation of the velocity in the motion of the slide-valve is much increased-the difference between this motion and that of the common eccentric is obvious. Fig. 14, shows a modification of this arrangement, in which a fixed, curved slotted-frame F, is employed, in lieu of the lever $E ;$ pinc, st the end of the eccentric-rod D, works in this curved slot, and also in the straight slot in the lever B.
23. For a mode of working the slide-valve and expansionvalve by means of the same rod, driven by the link motion, and the making of the expansion-valve in two pieces, which are capable of being brought nearer together or removed further apart by means of a grooved plate, for the purpose of varying the expansion.
24. For a mode of increasing the variations of velocity in the motion of the slide-valves and expansion-valves. Fig. 15 , shows an expansion-valve, consisting of a plain slide B, with one passage working over a face A, with a single passage or port. Fig. 16 , thows another expansion-valve, in which several passages and ports are employed. By adopting this last arrangement the motion required for opening and shutting the passages may be reduced, as several narrow passages may he used in place of one wide one.
25. For a mode of regulating the supply of feed-water by working tbe feed-pumps by a variable lever, driven with a rednced motion from the cross-head.
96. For the construction of the variable lever last mentioned, with a flanged slot to receive a small sliding-block, carrying a pin on which is juinted the connecting-rod which drives it; and the making of this lever with a catch or catches for retaining the block in various positions. Also, the application of this arrangement to the slotted levers or links used for driving slidevalves. Fig. 17, is a side view of an arrangement of levers and other parts adapted for regulating the supply of water by varying the length of stroke of the feed-pump, or by arresting its motion altogether. P, is the feed-pump, mounted on the frame of the eagine, or on the vessel R, before described, and shown at h, in fig. 1 . A, is a connecting-rod, by which the pump is driven; the end of this rod is juinted to a pin x, on a block of metal sliding in the grooved lever B, which is fixed to the spindle O, on which is a lever C, the end of which is connected by a connecting-rod D , to the cross-head of the piston-rod of
the engine, which moves in the line H, as far as the point a; the motion of the cross-head thus gives motion to the lever C, and B, and through the rod A, to the pump P; a link F, connects the rod A, with a lever on the axis E, which carries another lever and a rod, by means of which it can be moved by hand. By raising the rod A, by means of these rods and levers, the pin x, may be brought into a position concentric with the spindle (), and the motion of the pump will then be altogether arrested; by lowering the rod A, into other positions intermediate hetween the centre O, and the end of the lever B, the length of stroke of the pump will be varied, and the quantity be thus regulated.
27. For constructing axle-guards with flexible plates, or with plates jointed and provided with springs, for the purpose of diminishing lateral concussions.
28. For constructing axle-boxes and bearings, 80 that they may bear on the collars at the ends of the axles as well as upon the ordinary bearing surface or journal. Also a mode of constructing the axle-boxes and bearings, so that they may bear against the end of the arle and the nave of the wheel.
99. For constructing the axle-box and cross-boss of the driving-wheels with exterual cranks, so that the axle-box may bear partly upon the boss of the crank. Also the combination of this arrangement with dished driving-wheels.

S0. For constructing the cranks and counter-cranks, by making the crank-pin of the main crank in one piece with the first counter-crank; the first counter-crank pin in one piece with the second counter-crank; and the second counter-crank pin in one piece with the third counter-crank, when three are used. Also the application of loose rings with apherical peripheries on the crank and counter-crank pins.
31. For a mode of fitting one wheel loose upon the axle, and securing it by a ring and shoulder, or by two rings, while the other is fixed upon the arle in the ordinary manner, as shown in fig. 18, which is a section of a portion of one of a pair of railway wheels mounted upon an axle. A, is the axle; B, is the nave, loose upon the axle, capable of turning independently of it; o, p are two rings, secured to the axle by the screws o, and p, which are screwed through the rings into cavities formed in the axle to receive them. Holes are formed in the nave, which are closed by screw stoppers g, for the introduction of oil or grease.
32. For packing stuffing-boxes with a collar or bush of hard or soft metal, capable of being compressed and squeezed up when worn. Also the application, for a similar purpose, of two or more metallic rings forced in opposite directions by springs, and confined by a plate pressed up by a spring.
33. For constructing springs so that the weight comes upon the plates successively, in lieu of simultaneously. Also the making of the lower plates progressively thicker than the upper ones.
34. For jointing a fore-carriage by means of two pins working in transverse and longitudinal slots at the front and back.
35. For constructing a break with a bluck or shoe without flanges, which is capable of being brought down quickly upon the rail by a grooved disc or cam, or a pinion and racks, and then forcibly pressed down by a screw, with the intervention of a spring to prevent concussion.
36. For constructing tender locomotives with the drivingwheels hehind the fire-box, and a bogy frame in front of the smoke-hox, aud without any wheels between the fire-box and smoke-box; by which means the centre of gravity may be brought very low, notwithstanding that large driving-wheals are employed. Also the application of two or more pairs of coupled driving-wheels behind the fire-box of a tender locomotive, or the placing of some of the driving-wheels before and some behind the fire-box, and coupling them together. The exterior cylinders are placed horizontally, or nearly so, by the side of the smoke-box.
37. For a mode of roofing over the tender and part of a locomotive, to protect the driver and coke from the weather.
38. For a mode of constructing the wheels with tyres of a conical form, having an inclination to the horizontal of not less than 1 in 4, and with or without flanges.
39. Fur the application of wheels with conical tyres, so that some of the wheels may have their tyres inclined in contrary directions to those of other wheels on the same engine or carriage.
40. For a mode of applying, on the driving-axle, a pair of wheels, one of which is loose upon the axle and the other fixed,
$s 0$ as to facilitate the passage of the engine round curves, Also spplying two or more such pairs of wheels to the same engine, and the coupling together of those wheels which act as drivingwheels.
41. For constructing the wheels with grooves in their tyres, of such form that the sloping sides of the grooves may bear upon the rail, while the deepest part of the groove is out of contact with the rail.
42. For causing a portion of the weight of a tender to rest upon a pulley or roller on each side of the framework of a locomotive, and the application of a stud or tooth entering a hollow, for preventing side oscillation between the engine and tender.
43. For applying steam jackets to the cylinders, cylinder covers, and valve-bores of steam-engines.
44. For a mode of constructing metallic pistons, more particalarly adapted for small engines, or those which run at high speeds.
4. For a mode of applying the governor to regulate the degree of expansion, by means of valve gear driven by countercranks.

glass flattening.

James Timmins Chance, of Birmingham, gentleman, for improvements in the manufucture of glass. (Partly invented and partly a communication.)- Patent dated July 28, 1851.

Claime.-1. The employment, in connection with the same flattening siln, of more than one flattening stone or bed, the same not being connected together by a common supporting framework or base, and in such manner that two flattening beds or stones can be interchanged without one having to pass directly over or under the other.
2. The combination of rollers with the implement used for transferring plates of glass. In the annexed engraving, d, and e, are rails on which the travelling beds a, b, c, run. A workman stands at the opening A, and when the sheet of glass on the bed a, has been sufficiently prepared, he removes the bed a, on to the rails d, in the kiln C, and traverses it towards the annealing chamber d, it taking the place of the bed c. The bed b, by levers is then traversed towards D, until it is opposite the rails e, when it is traversed on to them, and occupies the original position of the bed a. This system obviates a great number of defects that existed in the old plan.

The implement for removing the glass consists of a fork having two prongs ; on each of these prongs, on the underside, are affixed rollers on which the implement may run; these rollers project slightly above the prong on the upper side.

Glass furnaces.

Edwin Dreley, and Riceard Mountrord Deeley, of the Dial Glass-houses, Stourbridge, Worcestershire, for certain improtements in the construction of furnacts for tho manufacture of glass.-Patent dated August 6 , 1851 .

Claim. -The construction of furnaces (for the manufacture of glass) with grates having inclined bare or perforated plates, situate and arranged, as hereafter described, so that the fiame may play directly upon the pots.
The method heretofore practised in constructing furnaces used in glass-making has been to carry the grate, with horizontal bars, through the centre of the seige, or bed of the furnace, between the pots, or to carry the grate from each end of the furnace, part of the way through the seige, leaving a portion of the seige called a bridge, in the centre, the grates being constructed with bars placed in a horizontal position. The flame ascends in the first instance to the crown of the furnace, and then, being driven down upon the top of the pots, acts upon the metal contained therein. The engraving represents a sectional view of the improved furnace with the grates attached. a, is the floor of the glass-house, b, is the seige, or bed of the furnace, bevilled off next the grate. This bevil saves the wear and tear of that part of the seige next the grate, which abrupt or acute edges
vould have the effect of causing. c, is a pot in which the glass is melted; d, is the wall of the furuace, with the working holes d^{d}, over each pot; e, are the tunnels or chimneys for acquiring a better combustion, and drawing the flame around the bottoms of the pots; f, are the horizontal bars forming the bottom of the grate, which bars are sustained by cross-bars or sleepers f;

g, are the inclined bars forming the grate of the furnace. The upper parts of the bars may be made with a hook; they hang on a cross-bar i, in which may be either fixed into the wall on each side of the fireplace, or may be placed in sluts fixed at each side. Variour modes of suspending this bar may be adopted; and as it is moved higher or lower in the slots, a greater or less inclination of the bars g, would be the consequence. It is preferred to have the upper cross-bar fixed as first mentioned, taking care to have the bars g, placed at a proper inclination, and which is preferred to range from 35 degrees to 55 degrees. The lower parts of the inclined bars g, are sustained by, or rest upon, the cross-bar or sleeper i^{\prime}, each end of which cross-bar is also fixed into the side walls of the fireplace; or such lower cross-bar i', may, if desired, be made to work, or be placed in slots fixed at the sides of the fireplace in a similar manner to the above description of the upper cross-bar. The cross-bar i, may be made with grooves upon it, corresponding to the number of inclined bars used in constructing the grate; and such inclined bars, instead of being hooked at the upper end, may be straight, and rest in the grooves, such inclined bars being sustained either by having a hook to catch on the lower cross bar i; or if preferred, it might be made to clip the cross-bar or sleeper f, which supports the horizontal bars f, such clip being made to act upon the said cross-bar
f, between each of the sajd horizontal bars; h, is the bopper into which the slack or fuel is placed, and which slack or fuel deacends through the opening h, on the inclined bars, thus affording a regular supply of fuel to the grate. The hopper may be formed of brick or iron: j, is the cave or ash-pit, which pasges under the whole length of the furnace, and communicates with the open air outside, and by means of which cave sufficient draught is obtained for the due combustion of the fuel. The inclined as well as the horizontal bars hereinbefore deseribed, may be either of round, square, or other shaped iron, or mas be made of tat plates perforated with holes, so that such perforations be sufficiently numerous to admit sufficient dranght, and also the grate be constructed so as to admit of the cleansing of the grate from burrs or clinkers; or instead of the bars or perforated plates forming the bottom or lower part of the grate being placed horizontally, as above described, they may be placed at a slight inclination either way, so as to form an acute or ubtuse angle with the larger or upper inclined bars. The inventors do not confine themselves to the relative lengths which the lower (firstly deacribed as the horizontal) part of the grate bears to the upper or inclined part of the grate; but care should be taken to have the top part of the bars g, about a foot or 15 inches above the level of the seige or bed of the furnace, an this means the flame acts directly upon the pots. The proposed application of the incline bars of the grate places the fire in such a position (a portion of such fire being raised about a foot higher than the soige) as to cause the flame to play more directly upon the pots. The seige itself is not so destroyed by the action of the fire as it is in the furnaces of the old conefrnction, consequently, the furnace and pots stand longer. Small coal or slack can be consumed in these furnaces, but a considerably leas quantity of fuel is consumed. For a four-pot furnace, having a seige of about 11 ft .6 in . by 10 feet, the inventors recommend a grate about 5 feet wide, the inclined bars about g ft .6 in . long, the horizontal or lower bars about 18 inches long, and the seige about 18 inches deep. The invention may be applied to all forms and descriptions of furnaces which may be used in the melting or manufacture of glass.

INSTITUTION OF CIVIL ENGINEERS.

Peb. 3.-James Simpson, Esq., V.P., in the Chair.

Ir the renewed discusion on Mr. Jir's Paper "On the Cast-iron Fieduct erected at Moncheoter, forming part of the Joint Station of the London and North Weatern, and Manchest. r, Sheffield, and Lincolnshire Reihrogy," Mr. Hawkohaw described a nearly similar atructure which had been ereoted at Salford, in 1842, forming a junction between the Liver. pool and Mancheater, the Mancbester and Leeds, and Manchester and Bolton Railwayn. In this atructure the columns were placed in pairs, and, instead of planking between the transverse girders, flat brick arches, set in cement, were introduced. Some interesting experiments on the etrength of the sirders were given, and the ingenious steelgard lever sestiog machine was described.

The question thon turned apon the peculiar form of the wrought-iron ginder bridge over Store-streat, and on the manner in which the experimeats had boen made, for ascertaining its strength. From minate calculations which were given, it eppeared that this bridge was foot for foet as strong and stifi as wrought-iron, cellalar-top, tubular girdert of the ordinary form; and though, in this instance, the size of the cylinArioul top, which wat required to be large enough to admit a man for painting the inside, and for necestary repairt, might seem diaproportioned to the depth of the girder, yet this would not be the case if the span and depth of the girder was increased, as the cylindrical top might atill remain of the same size. By come speakers, bowever, it was contended, thet in applying wrought-iron to girders of comparatively small apan, there really was no necessity, nor was it advisable, either at regarded strength or convenience, to adopt tbe cellular form, bat that the girder should be of the ordinary, simple, double T nection, with the boitom gange, and the middle web of wrought-iron, and the upper fange either of wronght or of cant iron, the latter being the best suited for reaiating the compreanive strain to which that part of a girder was subjected; and it wat thought that both of these forms would be a more economical applleation of material for girders of limited extent than cellular topa. 4 modification of these different plans was described to consint in akind of tatteaed, triangular top, of which the base was opperenost, and the platea were thickest, representing the upper flange of the ordinary girder, the iwo sides being merely thin plates, to prevent the edges of the upper fiage from backling under the compreasive strain.

Doubts were alco raised, at to whether peintiag was the bett mode of protecting wrought-iron from oxidation; and it was angeonted, as an improvement, that the iron thould, in the firat instance, be thoroughly cleaned and planged at a low hest in common oil, and then dried. An alloy of cast-iron, containing a amall portion of tin, wat also said to prevent, effectually, the injurious effects of oxidation.

The method of combining wrought with cant-iron, by Stirlisg's proeen, wha also deseribed, and the great tenacity and atrength of the metal was fully admitted.
Feb. 10.-James Meadows Rendel, Beq., Preaident, in the Chair.
The Paper read this evening was "The Construction and Duration of the Permanent Way of Railoays in Europe, and the modifications most switable to Egypt, India, \&oc." By W. B. Adamg.

Thia paper was an hiatorical recard and critical examination of the various parts, together forming the "Permaneat Way," and of the numerous changes that it had nudergone. The requiremente that had been gradoally developed, at necessery for accomplishing this objoct, wero enumernted, and may be ooncisely atated to consist in a well-drained substructure, regulated, at regards atreagth, according to the weight of the engines and the amount of the trafie, firmly ceated in the ballant, the rails being stiff enough to reaist deflection, sufficiently hard not to laminate, and so broad ais not to crugh;-mooth, to at to ofier the lanat friction, and properly incllned, eapecinlly on curves, 80 ts to fit the wheels, and the jointe so arranged at to make the bart continuous, and yot to admit of contraction and expanaion.

The different kinds of rails, from the fint tyre-bar and edge-rail, used on colliery lines at the time of the introduction of railways-to the parallel and bridge-shape rails now generaliy adopted, were oxamined; and also the girder-rails, for doing away with the sleopern and other extraneous means of appport, in the hopet of effecting a saving in the cost of maintenance. Uf the girder-rails, the addle-back patters, introdaced by Mr. William H. Barlow, wit the one moat generaliy known; but it wat euggested, there would bo mome diffeuity in the packing of this rail, and if, as was asserted, it really was a rigid girder, though the dragght might be lesened, the tyre of the wheels would roll down the raila to a correaponcing angle with themselven. The mode of connectlon of this rail, by a piece of nearly similar section, to whicb it was firmly rivetted, was objected to, on the ground of there being no sllowance for expansion and contraction; the atrength of the joint depending entirely opon that of the rivets. Many modifieations in the form of the girder-rail was auggented; among them a T section, with a rail, or rib, on the apper aurface, and a vertical portion below, giving atifficss, and forming a solid web for ramming tbe ballast against.

Tbe supporta for the ralle were nert considered, and the reasone for abandoning stone blocks were attributed, in tome degree, to their hardneas and rigidity, which cansed much noies, but priacipally to the difficulty of packing and maintaining the way, owing to their depth, to the chairn cutting into the stone, and the aplike working loose. The adoption of timber sleopern, firat on newly-made ombankmenta, afterwards univer-sally-their aize and number to each length of rail, and the proportionate area to the length of bearing-to the necentity for their being anak into the ballant, and yet to have such an amount under them as to prevent their being depresed, in the ground, was also wreated of, and a comparison instituted between croan-leepera and longitadinal timbers, from which it appeared, that when thair bearing surfaces were equal the quantity of timber ased in each woald be the same, and, provided the quality was similar in both cases, which it ought to be, the cost of this portion of the way would also be the mane. The longitudian system certainly afforded great stiffinees to the rail, and offered greatar facilities for packiag; but, on the other hand, the timber was more cruched than in the cros-aleepert, the fasteningt were leas effectual, and were more difficult of access. Por the parpose of obtaining greater durability in this portion of way, and, at the same time to presarve the alsetioity afforded by the timber aubatructura, Mr. Roynolds had deaigned a combination of wood and iron, the wood, to which the raile were attached, being placed in a cest-iron trough, triangular in section, with the apex downwards. This aystem, however, did not meet with much favour, and more recently various contrivancer had been suggested, and in some instances tried succesafully, for doing away entirely with the timber work in the substructure. In the "dish-cover" cast-iron sloeper, invented by Mr. Greaves, of Meachester, ead now, it was said, about to be used in the Bgyptian Railway, the packing wat accomplished from tbe surface, through two small holes ; and in the syatem introduced by Mr. P. W. Barlow, the rail was held in two cent-iron vices, which formed so rigid a road, that there was not the alighteat elasticity in it. A modification of thin plan by Mr. W. H. Barlow, in which the sleeper was cast in one piece, with a chair-bead on it , and into which the rail was secured by a wooden key, was a slight improvement on the previous method. Mr. Samuel had proposed that the rail should be held in a compressed wooden cuabion, or vice, set in a cast-iron sleeper, or trough, but not contingous; and Mr. Hoby, that the sleeper should consist of an eloagated chair of the ordinary form, the rail being fattesed in it by means of a pair of folding wedges. Prom what had been done, it might safely be concluded

THE CIVIL ENGINEER AND ARCHITECT'S JOURNAL.

that cast-iron might be advantageonsly employed, provided it was in large masses, and formed a continuous support; unless, indeed, the rails were so atrong in themselves as to be non-deflecting.

The different modes of fatening the raile in the chaire at the joint, so important to prevent derailloment, were then alluded to, and the failore of the wooden keys, at fint vaed, was attributed to their being ridiculously small ; iron spikes were anbitituted for them, but they aleo were obliged to be abandoned, when larger wooden keys were again adopted; in come instances they were corapressed, like the treenaila, by the procest of Mestrs. Rantome and May, who likewise had introduced a chair to be nsed with them.

The last point to be noticed in the formation of permanent way, was the eatablisbment of a firm connection between the rails, so as to form them into one contiouous har, and to remove all the evila attending bad joints. On the Blackwall Rallway the ends of the raile were originally scarfed-that wat previous to the use of locomotives on this line-but this weakened the onds, and reduced the available length of each rail. Subsequently the addition of fishes on both sides of the rails was proposed; varions modes of accomplishing the same object were given; at first of cant, afterwards of wrought iron, and then only to toneb at the top and bottom; thete fishee were laid in the channel of the riil, and, in the tirat place, were supported at the ends by chairn ; but at fresh castings had to be made to receive ihem, it was thought better to have holes in the rails and fishes, and to pass a bolt through all, the boles in the rails being rade larger than thoee in the fisbes, to as to allow of expansion and contraction. To meet the objection to the incresaed cont of this plan, Mr. Samuel, in 1849, proposed that a chair should be cast with only one jaw to fll one channel of the rail, the other being occopied by the fish.

In Egypt the dry heat of the atmosphere was fatal to timber, and the soil along which the line would be carried, would vary from the extrome molatnre of irrigated land to parched dust. Therefore the deeper the foundations of a diecontinuous sloeper-road could be pinced, the better chance there was of their remaining firm. In the fat parts of India two evila bad to be gaarded againat ; the one, the floating up of a line during rainy seasons, if much timber was nsed; the other, the ravages of the white ant, which might poanibly be prevented by creosoted timber; but this, in dry weather, would be limble to be fired either by hot coke or the hurning sun. And in both these countries, as well as in the Australian colonies, where fonces and police could not weli be maintained, an abeence of anything which could he easily pilfored, wat a great deaideratum; there should be few parts, and easily put together, so as to require little akilled labour, where such labour would be dear.

Under all these circomatanoes, it was submitted that an iron girderrail, of simple construction, bollow, so as to preserve as nearly a uniform temperature as posaible, ander the extreme variations of temperature between day and night, would be the most efficacious, the simplest, and eventually the cheapeat.
Fed. 17 and 24.-Robert Stepannson, Eaq., M.P., V.P., in the Chair.
The discussion on Mr. W. B. Adams's paper, "On the Permanent Wsy of Railways," occopied the whole of these evening.

The importance of diminishing the cont of maintenance of way was admitted by all the apeakers, and numerous improvements introduced for that porpose were mentioned. Those which appeared to bave obtained the most general approval, were Mr. Fowler's long chair; Messrs. Adams' and Bichardson's fithed joints; Mr. Samuel's fished chairs; Mr. P. V. Barlow's cast-iron sleepers; and Mr. W. H. Barlow's self-supporting, broad-fanged, wrought-iron rails. Each of these aystems were shown to possess peculiar qualities, bot it appeared to be admitted, that the latter combined the greater number of advantagen, now that the more powerful machinery of the iron works enabled beavy rails to be rolled with greater facility, and at a leas cont. The asoerted rigidity of the iron lines, without timber sleepern, was combated; and it was stated that, from the evennest of the joints, the wear and tear of the rolling stock would be diminisbed, the cost of maintenance of the permanent way would be materially reduced, and that proviaion against the effecte of the contraction and expansion of a long length of rails rivetted together, need not be made, as in practice the anticipated effects were not experienced.

It was stated, that the aystem of Aabing the joints bed been practised in Germany for some time, and that as far back as 1838, raile with a hole at each end had been exported from this country ; it appeared, however, to be the general opinion, that these holes were not intended for fishes, but for traveraing pins to bold down the ends of the raile in the joint chairs; however, within the lat fow years the syatem of finhed joints had beea introduced with great advantage in Germany.
The numerous varieties of form proposed by Mr. Adams, for inflexible girder-raila, for hollow iron aleeepers, for a combination of timber and stone bearingt, \&c., were discoased; the system of accumulating all kinds of ascumed forms, was ceusured as baving a tendency to retard the introduction of improvements by practical engineers; and the compound rails were objected to as being lest subatantial at firat, and more expensive to renew than Barlow's rail, which, when exfoliated on the surface could be again rolled, at a cost of leas than $2 l$. per ton; the ather modi-
flentions wero not considered to be required, as with the present experience in railway affart, with good matariala, care in putting them together, and keeping the whole io order, a good travelling road might be made and maintained on any of the naual aystems. Up to the present time, a strong bridge-rail, firmly secured to astrong longitudinal balk of timber, soundly packed with dry gravel bellast, and well drained, had been admitted to be, if not the best, to be one of the bent kinds of permanent way. It remained to be demonatrated by timo, what amount of improvement was introduced by the continuous broad-fanged rail, which It was admitted did appear to be well adapted for forcigu lines, but with respect to them it was contended, that in almost all the tropical climates there ware some kinds of timber which resisted the mite ant, and those would necessarily be used; but it was probable that the use of iron might be found ultimately more economical, oven if it were more coetly at the outset.

On the question of atone block railways, it was urged, that on ceveral lines so constructed, where the traffic was considerable, but the velocity did not exceed ten or twolve miles per hour, the rails lasted woll, and the cost of maintenance of way was light; but that where the velocity was great the rigidity was objectionable, and caused too much wear and toar of the rolling stock.

In the various atatements of the cost of maintenance of way, it was essential to specify what items were included in each, in order to arrive at any comparison. When iron was chesp, and timber comparatively dear, the proposed ayatem of cant-irod sleepera and of very beavy continuous rails might be advantageoualy adopted; lut ln conntries whers timber was abundant and iron most be imported, the aytam of longitudinal sleepern and light rails would of necessity be adopted.

With reapect to the cast-iron sleepers on the South Eastern Railway, it was atated, in reply to queations, that there was not a greater amonnt of breakage than with ordinary cast-iron chairt, although the aystem had been principally tried on a part of the line where the tratio was very beavy and the ballast was very bad, and that the offer of Mr. Taylor, the contractor, to malatain and renew those parts of the line laid with cestiron aleepers, for twenty-one yeara for 100 L per annum, sufficiently proted the fuct.

It was urged also, that it wat imposible to draw any accurate deductions from the expenditure in maintalning wood-sleoper line for aix months, at it might appear in the next half-year that an apparent eaving had been made at the expense of increased deterioration.

It wat urged, that the duration of rails must depend on the quality of the iron, the proportion of its weight to the traffic, and the velocity and amount of that trafic. That the question of the cost of maintenance of way was, up to the present timo, almost an insoluble problen, the elements being inconstant, no absolutely parallel cases being in oxistence, and unless all the condition were distinctly given, no comparison be, tween different systems could be establisbed.

The paper announced to be read at the Meeting of Tuesday, March 2ad, was "On tbe Electric Telegraph, and the principal improvementi in ith construction," by Mr. F. R. Wiadow, Aseoc. Inst. C.E.

ROYAL SCOTTISH SOCIETY OF ARTE,

> Feb. 9.-Dr. Lers, LL.D., President, in the Chair.
"On the theoriet of Galileo and Leibnita, touching the sitrats and Sirength of Material, on the positson of the Neutral Axit in Beame, and their actual atrenyth in reference to the resisting forcee of Compreanion and Ertension on opposite sides of thir dine."-By G. LeEs, LL.D., Pretident.

Dr. Leen, after adverting to the several ways in which a beam may be atrained, proceeded to say that neither the theory of Galiieo nor that of. Leibnitz, were coaniatent with the real condition of the material when under transverue atrain, to which alone be now proposed to call the attention of the Society. It required but little reflection to see thatwhen beam is atrained transversely, its fibres wero compressed on one side and atretched on the other, and that therefore, there mast he some line witbin the beam where the compression ends and the extencion bogins. Here the material will neither be compressed nor eatended; thia lines takes, accordiagly, the name of the mewtral axis. Althongh the. existence of this axia was long maintained, its real existence was frit approximatively determined by Barlow: From his experiments, it appeared that in wood, to which they referred, the nentral axis dividee the depth of the beam, 20 that the square of its depth, reekoning through the ares of tention, was equal to three timea the square of its depth, reckoning throngh the area of compression. Ou this principle, it caaily followed that the position of the axis was 6 and - 4 of the depth nearly. The real position of the anis might be deterained, provided wo knew the tensile and compressive force of material. These being understood to be given, be then proceeded to the mathematical codsideration of the question, deducing formulse, not only for the position of the neutral axis, bot also for the atrength of beam of ang given mateial. In applying these to cast-iron, which has a compressive strength of 49 tons per square inch, and a teasile atrength of 9 tons, it appeared that the neatral axin was
at -7 of the depth, reckoning through the area of tenolon; and $\mathbf{3}$ of the depth, through that of compreasion; that a beam of the same material, 12 inchea deep, 8 inches thick, and 10 feet long, would bear a weight of 28 tons at it extremity, or, taking its own weight into account, a weight of 26 tons.
"Dacription of a Cantiron Swing Bridge, comelructed for Peferiead Farbour by Mesers. Blaihie, Panmare Foundry, from designs by Mevers. Sfevencon, Civil Engineers." By J. Lawlenson Kzere, C.B.,

The swiag bridge, erected in 1850 , over the canal, which was cut throngh the isthmus seperating the north and couth harbourt of Peterhaad, is of cant-iron, and consists of two compartments or leaves. The spen is $41 \mathrm{ft} .6 \mathrm{io} . ;$ rise, 5 ft .6 in .; breadth over all, 20 ft .5 in .; and total length, 99 ft .6 in . The depth of the exterior girders at the crown in 154 inches, and of that of the interior 111 inches. The weight of each leaf it 91 tons, of which 13 tonk are ballant. A man with one hand can easily work the gearing which causes the leaf to revolve; and, considering this great weight (91\% tons), it teatifes the quality both of the denign and execution. The work reflects great credit on the Mesars. Blaikie, of the Panmare Poundry, who were the contractort. The adrantages which have rewulted from the commanication between the two harbourt were atated to be great, at veasels can now enter or leave cither harboor in every state of the wind.

Architectural Conversasione.-A step in the right direction was taken when it was determined to hold a conversazione in the gallery of the Architectural Exhibition. At this converascione, on Wednesday the 18th, the Earl de Grey gave in his adhesion to the Institution, and inaugurated its permanent eatablighment in a speech which came home to his hearers, and was well calculated to enliot the sympathies of the profession.

The Builders' Ball.-It is one instance of advancement, that organisation is advancing among the members of the engineering and architectural professions, and of those classes closely connected with them. It is in this light that we look with gratification on the annual celebration of the Builders' Benevolent Institution Ball, which passed off most successfully, on the 19th ult., at Willis's Rooms; and the more particularly, as a benevolent purpose was associated with it. Upwards of six bundred persons were present.

Apliation of Lilerary and Scientific Inotitutions.-The council of the Society of Arts has under its consideration a very important proposition made to it by Mr. Harry Chester, and which contemplates the affiliation of the literary and scientific institutions, the mechanics institutes, and other similar bodies throaghout the country. Since the close of the Great Exhibition the society, which contributed so largely to the realisation of that display, hat greatly strengthened its popularity and means of usefulneas. Every week large accessions are made to the number of its members, while the series of lectures delivered on the suggeation of H. R. H. Prince Albert have proved eminently successful. These are still in progress overy Wednesday evening, and draw crowded audiences. The extensive range of mbjects treated unfits them for being made the materials for a newspaper report, but the council has undertaken the publication of them in a separate form; and as the lecturers are men of the highest eminence in their respective departments, there cannot be a doubt that their treatises will receive a wide circulation, and be highly appreciated. From those which have already been delivered, we are disposed to think that thin course of lectures will be found in no respect inferior, either in interest or value, to the long-promised and long-delayed jury reports, the formal character of which, combined with other circumstances, places them at a disadvantage in many reapects when compared with productions the anthors of which were in a freer and less embarrassed position to write as they thought. The names of Dr. Whewell, Sir H. De la Beche, Professor Owen, Mr. Jacob Bell, Dr. Playfair, Dr. Lindley, Professor Solly, Professor Willis, Mr. Glashier, Mr. Hensman, and Dr. Ruyle, are sufficient guarantees of themselves for the manner in which their respective tasks have been performed; and the subjects atill to be treated before all the rections of the Great Exhibition have lieen reviewed, will no doubt be confided to equally competent and able hands. Under such circumstances, and seeing the usefulness of the society and its vigour daily extended, it occurred to Mr. Chester to lay before the council his proposition. He points ont in bia letter, that the literary and scientific institutions which now exist in almost every town throughout the country are at present
for the most part in a languishing condition, that they are isculated and possess no means of co-operation for the common good, and that they have no connection with the great central associations which pursue under national auspices the objects of literature, science, und art. To infuse new life into these local bodies, and to found a well-organised system, whereby industrial knowledge may be cheaply and conveniently diffused, are the ends which Mr. Chester aims at. He points out the many social questions apart from politics which might with such a machinery at command be thoroughly ventilated, and he gives examples in which the principle of association recommended by him partially developed has been attend with beneficial results. The council of the society seems disposed to act upon his suggestion, and there cannot he a doubt, that if by the measures adopted, a character of greater practical utility is imparted to the local institutious, a public good of no small importance will have been achieved. While the fate of the Crystal Palace remains doubtful, and the Royal Commission shows no sign of returning energy, the Society of Arts, by carefully sustaining the organisation of the Exhibition, and by fostering the impulse which it gave to industrial knowledge, may quietly take possession of a field of usefulness, for which its popular constitution and its independence of government control admirably adapt it. In all that relates to the progress of the arts, facilities of communication between kindred institutions must be extremely degirable, and the benefits to be derived by following up the scheme now contemplated, will be better understood when it is remembered how little information on industrial subjects had been popularised, even in England, before the great display in Hyde Park, and how vast an extenaion it received from that remarkable event.-Times.

Patent Law Amendment,-Lord Brougham's new bill on the Patent Laws, has just been printed. It contains fifty-eight sections. Empowers Her Majesty to grant letters patent for inventions. Certain commissioners are to be deemed commissioners, and they are to appoint examiners, make rules and regulations, and to report annually to Parliament. Inventions provisionally registered are to be protected under the new act. An appeal is given to a law officer, and from him to the Lord Chancellor. By one of the provisions the courts of common law may grant injanctions in cases of infringement of patent. The stamp duties payable under the act are given in the schedule annexed. Her Majenty it is proposed to empower by an Order in Council, so as to authorise letters patent to be granted for the colonies. The bill is waiting in the House of Lords for further consideration.

Rochester New Bridge.-Messrs. Fox, Henderson, and Co., invited the wardens of Rochester Bridge, and a number of enyineers and other gentlemen, on the g6th ult., to witness the arrangements for sinking, by means of the newly invented pneumatic process, the last of the cast-iron cylinders employed in the construction of the foundation of the new bridge over the river Medway. After an easmination of the finished portions of the work, the company witnessed with great interest the operations for expelling the water from the cylinder by means of atmospheric pressure, and of passing the workmen and materials in and out of the cylinder under pressure, by means of the air-locks, several of the gentlemen present entering and remaining some time in the cylinder. The party consisted of Lord Darnley, Col. Sandham, R.E., Capt. Simmons, R.E., Mr. T. Brassey, Mr. J. Martin, M.P., Mr. C. May, Dr. Fox, Dr. Black, and Mr. C. H. Wild, C.E., with Sir Charles Fox, one of the contractors of the bridge, Mr. John Hughes, superintendent of works, and Mr. John Wright, resident engineer, acting under Sir W. Cubitt.

The Marionette Theatre.-This little house continues to attract public attention, and deserves a slight notice from our hands, for the ingenuity displayed in working the little puppets who contrive to amuse so many people. The action of walking and moving the arms caused some difficulty at first; but the figures are now much improved, and could the appearance of the line that suspends them be made less promisent, would approach much nearer to reality. The scenery is pretty, and the balletdancing well contrived. The theatre has been formed out of the late Adelaide Gallery, and contains a neat little stage, orchestra, and pit; also reserved seats, which are placed behind the pit, a few private boxes across the end, and two tiers of balconies ranged on each side, which render on the whole accummodation for about 400 persons.

LIETT OF MEW PATEETE

grantedin england from Jamuagy 22, to Pibbuaky 14, 1852.

Sis Houthe allowed for Elmolment malest otherwive espressed.

Thomas Ikchardmon, of Newrealle-apon-Tyne, for Improvementa In the manufacture of magnesia and some of tia malte.-Januart 23.
Gearge Stacey, of Urboidge, Middieser, mechindet, for cerriln Ipprovements In mohlaery for reaplag, mowinh, and dellverins dry or green crops.-January 24 .
Wiluiam Piddlog, of the 8trand, Middienez, gentieman, for Improvements in the mannfacture, preparation, and comblantion of matefials or aubetaces for the preduction of fucl, and kor other tanfol proposes to which natural cond can be applied.

- Janvary 24 .
 purifing the saree,-January 24 .
Joseph Jones, of Bliston, Stafford, Armace bullder, for an improvement or improvementa in farnaces used in the manufactare of Irou.-Janoary 24.
Biehard Pord Sturges, of Biraingham, Warwick, manafacturer, for an Improvad method or Improved methode of ormamenting metallie surfaces.-Jantuary 24 .
John Hinke, of Birmingham, manafacturer, and Eugena Nicolle, of the aame place, elvil ongiperr, for certala janproved machloery to be ased in the manafacture of nelle, Arete, bolta, or pias, and acrew-blanks-Jamnary 24.
Peter Armand Le Comte de Pontafnemorean, of South. atreet, Mnahary, for certaln mprovement in Mibographic, tpographic, and other printing preses; which im-
 oleaginons, and other mattert, and to comprestins in general. (A communlcation.) - January 24.

Jamee Gethercole, of Eltham, Kent, envelope manufecturer, for Improvementr in the manuficture and ormarmenting of enrelopes; parta of which lapprovements are applicable to other descriptions of atationery; and in the machinerf, spparatis, or means to be used thereln.-January 24.
Arad Woodworth 8rd, and sampel Mower, of Masachucete, United States of North Americe, for certaln new and neful improvements in machinery for manuracturing bricks, thes, or other articles of a simitar character.-January 24.
Alfred Richard Corpe, of Eemaington, Middleeex, Gentlemen, for improvementa In rowser-atrap fartenere.-Janvary 24.
George Kent, of the Slrand, Middleser, patente of the rotary Enifeceleaner, for certain improvemente in apparitus for sifuing cindere, and in apparatise for clestaibs knivet.-Japuary 24.
Jomph Maudslay, of the Brm of Maudalis, Son, and Pield, of Lambeth, Surrey, englosert, for froprovesente in ateam-engibes, Which are atso applicable, Fholly, or in part, to pumpa, and olher motive machline. -January 22 .
Edward Bimona, of Birmingham, tallow-chandlar, fur certaln Improrementa in Hghtfeg.-Jsnuery 27 .
Wulim Brindley, of Queenhlike, for Improvements in the mannfactare of Aocked fabrtes, and in the manufactore of bationa-Jenuary 87 .
Willian Drey, of Swas-isue, Upper Thamen-atreet, City, London, agticultural mplement malrer, for Improvements th reaphy mentines. (A comanuicakion.)Janoary 27.
George Bnacan, of the New North. road, Hoxton, and Arthur Hintion, of Herbertstreet, Yew North-Road, Hoxton, for improvemente in the manufectere of ceskeJanuery 27.
Neton Smith, of New Yort, Tinited States of Americe, gentjeman, for faprovementa to the conatruction of Fiolina and other almilar stringed mumeal instruments. (A commanication.)-Janmary 27 .
Jean Benjamln Coqnatrix, of Lyona, in the Bepublic of France, merchant, for Improved apparatus for lobricelling machinery.- Jenuary 27.
Jamee Jowph Branet, of the Canal Iron-Wurlti, Poplar, Middlesex, ongineer, for certain lapproved combinations of matertale in sblpbulding. (A commaniention.)Jannary 27.
Alerander Milli DHz, of Balford, brewer, for etrtaln Improvemente in the method of ventliatar apartmente or bulidings, and ta the apparatas conpected therewith, \rightarrow January 27.
Thomas Lambert, of Hampstend-rond, Midilesex, plano-forte manafectarer, for certain improvements in plano-fortel.-Jinuary \mathscr{D}.
Julian Bernard, of Gaildford- atreet, Russell-square, Middiesex, Bentieman, for improtements in the manufacture or production of boots and ahoes, and In materfats, machinery, and apparatus convected there with.- Jenvary 27.
Joeph Vincent Melchior Reymond, of Parla, Prance, mac
Joepph Vlacent Melchior Rejmonds, of Parla, Prance, machiniat, for certala Ime proved statistic and deacriptive maps,-January 27.
Itanc Lewis Pulvermacher, of Heane,
Itanc Lewhe Pulvermacher, of Vieans, engneer, for impropemente in gelvanoelectric, magneto-electici, and electro-magnelic apparatua, and in the application herenf to Itghting, telegraphic, and motive purponet. -January 29.
Francois Jules fancesux, of Pario, France, gun-manufacturer, fur improvements In ire-arma, and in fagtrumenta and apparatus need in consection theremith. January 29.
Joseph Maximilian Rliter Von Winlwater, of Surrey-atreet, Strand, Middeatx, Ductor of Law, for certatn fmprovements in the locke of tre-arme and eannon; and In gun-ratches, or in the mode of traiting gunpowder need in gons; and in ma. hinery for maoufacturing the eame.-January 29.
Whllam Smith, of Kettering, Northempton, agricutitural implement maker, for improvements in apparatue for cutting or breaking lomp-sugap and other vegeinble mbitapees,-Januay 20 .
Alfred Vincent Newton, of 66. Chancery-lane, Mddiesex, mechanleal dragghteman, for Improvements ti the manafactare of plgment or paints. (A commpatcation.)amany 29.
Edward Bighton, of Clarence Vilit, Regent's-park, Middleser, cill engineer, for Improvements in electrlc telegraphs.-Janoary 29.
Isham Baggs, of Liverpool.atreet, Middleuex, electical engheer, for Improvenents In croshing gold quarts and metallic oret.- Jenuary 29.
Witliam Longmadd, of Beamoni-aquare, Middienex, sentleman, for improveneets in obtainfigg gold.- Jannary 80 .
Owren Willtam, of Stritford, Essex, engineer, for Improvemente in preparing compondtions to be used in raliway and other atructares, in enbetitution of iron, wood, and stone. (A comoruaication.)-Jangery 81.
Martyo John Roberta, of Woodbank, Gerrard'b-crose, Bucke, Eaq., for Improvements in agricaltural lantroments.- January 81.
Atezander Rediard, of 25, Rue Tait Bont, Puris, France, geotleman, for Improvemeata in propelling and navigating thipe, boets, and reacele by atoan and ocher notive power.- Jancery 31 .
Joeph Haythorne Reed, Iste of the 17 th Lancers, Harrow-rond, Middlesex, genthapon, for improvemente in propelling roteim. January 31.
Richard Archlbald Broomen, of Fiert-etreet, London, for Improvements in the parification and decoloration of olli, and in the apparatus emplored therein. (a ommunication.)-Janoitr 81.
Willam 8quire, of Blgh-Eolbarn, late of George-ithet, Fetoa-Equare, beth in Middlemes, plano-forte maker, for tmproveroentioln the eonitruction of plano-forten.

Charlet Comper, of Gouthampton-bolidingt, Chancery lase, Madient. for 4 provementa in multiplyiog motion applicable to steam-engloes, waw-mille, and ouber mechinery In which an increace of velocity is required. (A communiction.)Javuary 31 .
Alfred Vincent Newton, of Chancory-lane, Middleex, mechanicai draughaman, for improvements in machinery for weaving conch lace, Brassele tapestry, and velvet carpeting, and other plled fabrics. (A communlention.) -Jenuary 81 .
Predetick Philtp Thompeon, of Weterworkw-chambers, Orange-atreet, Traherarequarr, enginetr and murveyor, for improvements in filtering and presering watexFebruary 2.

George Spencer, of Lacery-termee, Ialington, engineer, for fmprovemante da the epringe of rallway-cerriagen, trncks, and wagoni.-Febriary 2.
Sambel Cuallfe Lster, and James Ambler, Doth of Manainghem, Bradiond, Tary, manufacturers, for improvemements in praparing and comblas wool and othes thbrons materiale.- Pebruary 2.
Emanuel Charles Theodore Croutelle, manufactarer, of Rheims, for certain Improvements in machinery or apparatus for preparing woollen threads and other plaments.-Febrrary 8.
Bobert Beaketh, of Wimpole-atreet, 8t. Maryleboee, Mjddleene, for improvergente in apparatas for reflecting light into roome and other parts of buildipte and pleces. - Febranty 3.

Peter Clanseen, of Greshamatiret, Loadon, Bentlemen, for fmprovements in the meter Clansen, of Greshan-atrent, London, Eonthermen, ter
George Torr, of the Chemical-worte, Pifmley's-Lane, Hotherhithe, anlmal charcoalhurner, for inprovemente in re-barning animal charooal. - February 8.
John Fenther, of Ketshley, York, worsted-npfaner asd manufacturer, and Jers-
 cerewh.-Febrosry 9.
Auguste Neuberger, of Rue Vivienne, Paris, Prance, lamp manuftecturer, tor certals improvemento in inmpi.-Febriary 9.
Whltam Becket Jobneon, of Mancheater, Lancenter, manager for Mruant. Ormerod and Son, engineers and Ironfoundern, for Improvements in rellway, and In apparato for generating steam.- Pebruary 9.
Senders Trotman, ef Clarendon-read, Middlenex, edfl englneer, for Improverneata
in fountalne.-February 9.
John Denolton, of the Arm of John Dennison and Son, of Falliax, Fork, and David Peel, of the sare plece, menafacturert, for an fepprored inbrientiay compound, February 0.
Belph Errington Bldley, of Eexham, Northamberland, Lanner, for Improverents In cutllog and reaping machinea.- Februmry 9 .
Mertyn John Roberts, of Gerrard's-crom, Bucke, Eaq., for Ioprovemente in elvanic betteries, and in obtalaing chemical products therefrom. Pebraary 10
John Smlth Hution, of Bolion-le. Moort, Lancester, bleacher, and Joeeph Malgrave, of the same place, enslaeer, for a certaln improveraent or improvementa ad apparatua need in the bleaching of jarna and goods. - February 12.
Chrfatian Schtele, of Oldhum, Lancaster, machiniat, for certatn improvementa is obtsining end applying motive power.-Rebruary 12.
Willam Edward Newton, of Chancery-lape, Middienax, civl engineer, for breprovementa in the heddles or harneas of looms for weandog, and in the machinery for prodnelog the same. (A communication.)-February 12.
John Stephens, of Kenniogton, Surrer, Esq., for Improvements In obtaladiat and eppiying motive power. - February 12.
John Mollady, Jun., of Denton, Lancanter, hat manuficturer, for certaln improve ments in machinery or apparatus for manufiacturigg hats or eaps--Yebreary 12.
Charies Louts Earbe, of Mulbouer, Prasoe, for improverents In the re-produchas of drawings, and in the mode of obtaining dedgns, to be prinelpelly ued in the engraving aurfaces for priating fabiles.- Pebruary 12.
Annet Gervoy, of Lyons, Prance, director of the Lyona Rallwey, far mean to poolong the durability of the rails on railwaye. - Pebrasy 13.
Edmend Morewood, of Enfiold, Middresex, and Georse Bogert, of the anme place, for improrementi in the manufacture, shaplort, and eosting of metain, and in the means of applylog heat.-- Pebruary 13 .
Hermann Turck, of Brond-street building, London, merehant, for improverneats
In the manufacture of rouin-oil. (A communication.)-February 14 .
Arthur Vellington Callen, of Pecirham, Surrey, gentieman, and John Onions, of Sontharary, Sorrey, engincer and Ironfounder, for fmprovements in the manafacture of certaln parta of machfaery raed in paper-making; and certaln parte of ralimest, railwey and other carringee.- February 14

Ax Axamzun anke "whether a hiddge, built of atone or brikz, woold be seeure, mpponing it to be bullt at an angle of 40°, and to have a polnted Tudor arch spring: ing from the abriments;" and states: "This belog what in commonly callad an ankew bridge, is there no error in principle?-wonid it not have to be grolped? Arneer.-An askew bridge of swome hat been bull at Bratol, over the Flont, to carry the Great Western Rallway, at angle of 60°, or chareabouts. And another Tudor brdge, askew, hat been brilt on the Chenter and Holyhend Radiray at ComWay; but this Iatcer has been brallt by acrtes of ribe. We can mee no dilisulty. in huildiag a brick arch ankew at un angle of 40°, If there be lotroduced at the inter section of the point of the arch a continuoun key-stone, merriterl on each side, to recelve the abuimente or enda of the briclan ; or the bricter might be cut at the interuectiag point and aet in cement.
A Corazepoy deart requires eorse information for calculating the time for emptying a reservoir having four alulcen.
Antwer.-Soppoalig the water Is stopped from runotag to, the followint formala wil give the remplt:-Muldply the square root of half the hefght above the coutere of the sluices to the aurface of the waker in the reservotr by 8 , which will give the mean veloclty in feet per second; tben, if this velocity be wuiliplied by the irem of all the elutces, it will give the theorelic quantity in cubic feet por mand that will be dhacbarged throngh the dinlces. In practice, it has been tound that oniy two thirde of this quaritty will give a correct reanit, on account of the friction of the water pasitng through the opening of the alatees, ind the ema comiracta. A short rule will be, to moltiply the square soot of half the height by $\mathbf{8 2 0}$, which will give the velocity pet minute; and thla, toultiplied by the total ares of the slutces, whll give the quandty discharged per tinimite in cubic feet: then, If the cobtc contents of the reservolr be difided ty the above reault, it will give the number of minutes that will be regulred for emptying the reservolr.
Fwoops.-Tbla whater has been ingalised by most destrucuve foods, which have in many casea swept away important works. Eogloeert will, from the evidence in come capes, see the neceasity of paying particular care to the facingo, ta well as the inalde of the dems and weirs they aet up, becanse, as will be observed, the deatruction took place in consegnesce of the whter phasing over the binm of the reservoir and Washing away the external face of the embeniment. The ingide held well enough to allow the waler to rite 30 h gh ; but the onter worke, it too oltep happens, are leas cartully inlabed. With regard to the Bolmitith catagtrophe, it is a semal disgrect on the legialation and legal adminiatration of the conntry, that an imporiant rori should be allowed
dontifal metalog.
\square

NEW MECHANICS' INSTITUTE, BURNLEY.

Jamge Green, Eeq., Architect.

(With an Engraving, Plate XI.)
Tres aite selected for this building is at the junction of two streeta, Market-street and Yorke-street, to both of which the principal fronts will be presented. The nature of the site admits of two stories below the level of Market-street, the lover of which will be used as store vaults, and will be built fireproof, with brick arches on iron beams; the entrance to the vanlts will be from a back street. The second basement story will be occupied by large class rooms and porter's living and lodging rooms. The ground or principal story will be approached from Yorke-street by twelve steps, and will have a portico with four coupled, disengaged Corinthian columns, supporting entablature and balustrade. The hall and principal staircase will be spacious and well lighted; and opening from it, right and left, are-news room, 36 feet by 28 feet; reading room, 28 feet by 28 feet; library, 30 feet by 19 feet; committee room, 30 feet by 28 feet; and two shops or offices fronting Mar-ket-street, each 28 feet by 18 feet. The first story above ground flowr will be occupied entirely by the assembly and lecture room, 72 feet by 52 feet, inclusive of ladies and gentlemen's ante and retiring rooms, over which will be a gallery for orchestral and other purposes, and which will be separated from the main room by twelve coupled Corinthian columns supporting entablature, \&c. The walls of assembly room will be decorated with coupled Corinthian pilasters supporting entablature, with modillion cornice, from which aprings a coved-and-panelled enriched ceiling, with large circular dome of stained glans in the centre, over which on flat of roof will be a lantern light. It is intended to have a circular chandelier of gaslights in the roof above glase dome, which, besidea lighting the room, will also assist in the ventilation. The total height of this room will be 96 feet clear. The building will be heated throughont with hot water, and provision made in every room for ventilation.

The style of the exterior is Italian, and, as will be seen from the engraving, the windows of the first flowr are enriched with Corinthian columns and entablature, with alternately segmental and triangular pediments; all the windows will have projecting balconiea. The two principal fronts are finished by a bold, Italian trussed cornice and frieze, which is to contain an inscription. The whole will be built of polished ashlar, of very good quality, from the Catlow Quarry, in the neighbourhood. The contractors are-for the masons' work, Mr. R. Smith; for the carpenter and joiners' work, Mr. W. Parker; for the plastering and internal decoration, Messrs. Beevers, all of Burnley.

The total cost of the building will be about 45001 ., which it is proposed to raise entirely by subscription, and of which about soonl. is at present subscribed. The first stone was laid on the 25th of November, 1851, by the President of the Institute, Charles Towneley, Esq., of Towneley, and in the presence of the Earl of Carligle, Earl Sefton, Sir J. P. Kay Shuttleworth, Sir Charles Barry, the Hon. Colonel J. Yurise Scarlett, the members of the county, and a large concourse of people.

NOTES OF A TOUR IN BRITTANY AND NORMANDY.

By Jorn P. Seddon, Architect.
Evreux. - The cathedral of the city of Evreax is an important and highly interesting building comprising several different styles of architecture. Its general outline is exceedingly irregular, far more so than any which I had met with in this portion of France; although the excess of the height of the choir above that of the nave may he often noticed in other parts of that and neighbouring countries, and sometimes it produces an exceedinply striking and picturesque effect, though it must be considered as detrimental to the unity and beauty of a building. The weatern towers and central spire are abominably ugly. The northern tower is Renaisance and very massive; the others are capped by ugly wooden eppiren. The nave is Norman in the lower part, with a clerestory of Early Gothic ; its proportions are narrow and lofty, while the choir, which is of ricb Flamboyant workmanahip, is wider than it on plan, so that the arches next to the crax are set obliquely to meet the width of the nave. This choir is very elegant, and has a fine, luminous triforium, with narrow gallery, the inner screen to which is filled with flowing tracery, and the outer one glazed with stained
glass. The transepts are most elaborate and beautiful specimens of the Flamboyant, literally covered with fuliage of the thistle type, and this hoth internally and externally; the facade to the north transept is perhape the richeot portion, and exceedingly imposing. The veils of detached tracery which cover these Flamboyant buildings of France have not the wiry, castiron effect of the German cathedrals, such as Strasburg, but there is so much of breadth and fullness retained in the other parta which gives to them their due relief. The details and treasures of the cathedral contain a mine of elaborate ornament, buth in stone and metal. Adjoining the cathedral is the episcopal palace, of the same style of architecture, and interesting as showing its application to civil buildings; it has an external polygonal staircase tower and lofty dormer windows, with pediments crocketted and filled with flowing tracery.

Louviers.-In the centre of the city of Louviers, and with ite southern aisle fronting the main street, stands its principal church, an irregular, fantastic, but imposing and picturesque pile; the road being divided by it at this point, pasees on either side of it with rather a rapid turn. This peculiar position of the site has, as it will be explained, considerably influenced its architecture. It atands, however, a melancholy inatance of the ravage of modern restorers, who have in their stupidity done that which scripture tells us no man (i.e. in his right senses) would do, namely, "patched an old garment with new pieces," and rather scraped the old to match their clumsy new work, than tempered the new to match the old; and thus all the fine colour and the stamp of antiquity which ages had wrought upon its surface has been obliterated. This, indeed, is no slight loss, not only in an antiquarian point of view, but also in actual beauty; but yet, to be candid, as far as may be gathered from its present appearance, the operation has been conducted with more care than at Lisieux, where I myself watched closely the fearful mischief of the masons. The old work here has generally been left (I know not how scraped or if yet to be restored) where not much decayed, and the spirit of the ornament has been somewhat followed, for it is of a far coarser description than that of Lisieux, being almost Italianised in detail, and lumpy in comparison with the pure Gothic. It can be followed, and time will reatore the colour, and no great damage will have been done: wheress that at Lisieux it is out of man's power to copy or of time to redeem. The south aisles and porch are marvellously rich and fantastic; the energy, vigour, and life in the Flamboyant, even where the detail is coarse and purity had vanished, is very otriking. The south-west corner of the aisle is rounded off to allow the road to pass round it, and the end flying buttress to the clerestory, after spanning the first aisle, is swept round the corner, as if it had been driven by the blast of a tempest abruptly through all the niches and tracery that are clustered torether at that point, in very luxury of confusion; while of these, some of the smaller canopies to the niches are set within and at right angles to the larger ones, in place of a statue; the finials piercing the canopies above, and the whole of the pediments pushing forward the foliated cusps of their tracery into the light, the leaves bending back upon them as if they would shield them from a rude touch. To the northern aisle there is a doorway, luckily not restored, the pinnacles to the buttresses of which actnally impale the grinning demon gargoyles of the aisle roof. These gargoyles themselves are very fanciful, though hardly equal to those at Evreux, among which is to be seen a bissing serpent coiled aronnd the atump of a tree, whose roots plant themselves firmly into the buttress behind; and others are grisly dragons, whose scaly folds are writhing all along the parapet on either side. The whole architecture of this period resembles some geologic strata, laid at first, indeed in ordered level, but raised with sudden fault, and, while still pliant, tossed in wild confusion amid the convulmions of the world. But little like this can be seen in the empty, frittered work of our cotemporary Perpendicular style. We need not, however, fear a comparison with their modern taste, for in this church the east window has been knorked out to admit a plastered semi-dome, which pushes through:the carved window-head like the hood of a bathing-machine, the upper part of which is glazed with a deal skylight. Inside, it contains some gewgawed relics, and an altar fanked by two marbled Doric pillars supporting nothing.
From Louviers the route pasees by the modern buried-ground outside the town, and, Roman catholic though it be, it might put to the blush many of our protestant cemeteries, seeing that therein it is the croes, though in but lowly form, which is pre-
eminent, gleaming white in the sunshine on the broad hill-aide, -and not a row of empty jars, and pompous pagan monumenta, such as those which disfigure and desecrate our own. Such thoughts suggested themselves to me as I passed around the base of this modeat cemetery and through a lovely and varied country, at that time glowing in all the radiance of an antumnal sun, which, although it was late in the season, otill fonnd a glad company of golden leafiets, fluttering on the slender birch-trees which fringed the road, for it to burnish with its beams; until the blackened air warned us that we were approaching the busy manufacturing city of Elbosuf. In that place is nothing of interest to delay one to whom stocking -looms and pale faces are no attraction; and as the ponting steamboat and the memory of the Rouen towers were inviting me onwards, I seized the opportunity offered. It was then evening: the scarped hills, past which we glided swiftly, rose, like the bleached aliffe of England's ahores, as a wall on the one side, their bases being all fringed by the graceful willow, as were also the numerous inlands that alept on the broad bosom of the Seine. And these, again, were reflected sweetly on the calm surface of the water, Which-mave where, being ploughed by the paddles of the boat, the waves caught the gold of the setting mun-was opread like a purple mirror beneath us; nor did the varying eplendour cease until we reached the broad quays of Rouen.

Rouen.-The cathedral, although it hat been ereoted at different periods, is a noble building, both as a whole and in its geveral portions and details. It is so built againat and hemmed in by houses and narrow streets, that it is dimenalt to obtain any general view of the exterior from below. From S. Ouen tower, however, or the heigths to the east of the town, the general plan and outline may be well seen, and hence ite form is almust unequalled. The plan is the Latin crosa, with each arm well developed and equal in height; the picturesque facade, with its western towers, alone being somewhat irregular. The transept ends are each flanked by equare towers with lofty, open windows; and these, though equalling in dignity moest west fronts of eathedrals, are yet properly subordinated, as their position requires. The choir, terminated by a polygonal apse surrounded by a clustering crown of chapols aud flying buttreases, completes the building, ainoe the horible modern iron apire, for ever oug-
geating the ides of a huge gasworks, may not be concidered a part of it. The interior and the choir, and the subatratum an it were of the west front, are of the Early Gothic, massive and grand in proportion and simple in detail. The transept ends are noble, and perhaps unequalled, specimens of complete Gothic. The Tour de Beurre is atill later, and coarser in detail though fine in mass; while the magnificent western portal and the overlaying acreen of decoration of the west front is a chef doouere of the Flamboyent, although in parts somewhat Italianised. The series of art is further continued by the rich Renaissance tomb of the Cardinal d'Amboise, within the choir; but this, compared with the earlier work of the building, appoars so false and degraded in feeling, as scarcely to attract attention or deserve notice.
The nave has eleven arches in length and four divisiuns in height, an arcade being open to the alales, which are very lofty. Over the main arches abore is a shallow triforium, forming almost one feature with the clereatory, and typifying the luminous triforia the pride of the Flamboyant churches, as S. Onen, Rouen, and Evreux cathedrals. The effect of the aisles, from their height, is fine, but injured by the curious cage-like projections round the upper part of the vaulting shafts; the appearance, however, of the two arcades being open to the aisles is disagreasble when viewed from the side of the nave.

The clustering of the shafts to the nave piers is simple and bold: five shafte, diminishing in gradation from the centre, rise to the vaulting (usually only three); the same number support the arch mouldings, but are divided by slenderer shafts whuse capitals neatle under the larger; this arrangement (fig. 1) is particularly effective and harmonions, but is confined to the nave. The mouldings of crux pier (fig. \&) are not equally simple, and far inferior to those of Coutances crux. In the transepts (fig. 3) five rise to the vaulting, and three only, divided by square fillets, to the arches. In fig. 1 , it is the contral vaulting shaft which predominates, as it ought, being the mont important; but in fig. 3, it is the central arah shaft-mand far too much so in relation to the rest. In the choir, the piera are massive, circular columns, with lofty, foliated capitals, from which the three vaulting shafts rise. This arrangement is bold, and the choir has a grand simplicity produced by reverving the means by which the extreme elegance of Coutances choir is gained: for there the aiale piers are low, massive, and circular, those of the ohoir lofty and shafted, their elegance enhanced by the oontrast; here, the slender-abafted aisle piers and the gparkling tracery of the lady chapel seen through the giant choir apee, gives to its sweep of massive columns a noble grandeur. The transepts have a chapel at the angle of junction with the choir, which is not usual. The choir has only two polygonal chapels and the lady chapel, roofed with a canopy over each window,-a beautiful method, and far superior to that used at S. Ouen, where each chapel has an ugly, pyramidal, sugarloaf roof, mach to be regretted, as otherwise its cirolot of apse chapels would have been strikingly beautifnl.
The tracery throughout the cathedral is varied and beautiful, particalarly in the transept rose windows, which are continaed down with a sort of luminous triforia with screens of tracery before them. There is much excellent atained glass, but the carving of the interior is not remarkable.

The stde portals of the went front ave simple and graad Early Gothia, with great richnews of bold soulptured follage and animaly, full of feeling-but the feeling of a truly Doric mind, in sympathy with which the very stone seems to have turned Into iron. 1 may refer to the charecter of this foliage, an bearing upon the diacuasion which has lately taken place upon Gothic ornament. The contour of the ornament is similar to and not distinct from the contour of the mouldings beneath.

The central portal, with ite soaring arch and fretted buttress Amaking piers, encruated over with delicate carving, cannot fail to impreme every spectator with awe at the transcendant power and infinity of design displayed in them; yet the lose of the true apirit of Gothic art in bat too evident in the foelish Bonaissance conerits of naked children and the statues of kenights and dames in the quaint contume of the period, which have cupplanted the angel hoet, the more fitting occupants of the cappies of a christian church.

The transepts are by far the parest and mont beautiful portiona of the cathedral. They are of the complete Gothic, simple in detign, each feature being well marked and possessing all pequiaite enrichments, yet properly relieved by plain broad eurfacen between; the mouldings are bold, ss those of the cardier Gothic, but rendered delicate as well, by small fillete and beade between the principal members, and this, tugether with their exquisite proportion, forms their peculiar excellence. The sealptured bea-reliefis which cover the sides-to much height anj as they can be well seen-are of good composition and erecetion, and wonderful from their fanciful variety.

The Abbey Church of S. Ouen, from its completeness and maifurnity, being finiehed in the same style throughout, and there belog nothing to obstruct the view externally or intermelly; from ite lofty proportions, the fine colour of the stone the heminous triforium, and the quantity (not quality) of stained ghen, is certainly an elegant and striking building. But this penernl effect is too muperficial: the details show neither the andy, feeling for proportion, nor variety of the earlier Gothic: no pert, when examined, can be pronounced first-rate, or seems to be endued with any feeling; it looks like the work of a system (ce which some would now reduce Gothic, if they could), and not that of a man; and the whole is infinitely inferior to the better pertions of the Cathedral. Ito very elegance becomes wearisome, for the same monotonous, lengthened, tapering form pervades every pinnacle or projection of the church, down to che modern extinguinher-like towers of the west ead. The
plan is a Latin cross, the nave having nine arches and aiales of great width, without chapels; the traneepts, two compartmenta and ainle to either side; the choir, three arches only, with an apaidal end, five narrower ones, an aisle all round, and a range of polygonal chapels beyond; the crux is vaulted over level with the rest of the church. The great height of the interiorthree and a-half to one of its width-and the luminous triforium continued round the whole of the building, form ita peculiar beauty. The trecery of the choir and transepts is of one pattern (Geometrical) and of marvellons lightness; that of the nave is Flamboyent, and poor. The rove windows are fanciful and varied, but inferior to thoee of the Cathedral; their glase is crude and ugly in colour; some of. the other glass is pretty, but not first-rate. The mouldinge of the piers consist of circular shafts set in curved hollows, and do not mow a gradation like those of the Early Gothic. The nave vanlting shaft preponderates too much over the rest, and produces a clumsy appearance; while two pilasters break into the mouldinga on the side of the aisles and pierce their vaulting withont any capitals, in the uglient manner conceivable; and in the shafts of main pier to crux, in addition to the above errors in proportion, the small shaft which bears the crux vaulting is pushed before the others and has its capital lower than the reat, producing great confusion: all breadth is thus destroyed, as it is also in the pier bases, where each minor shaft has its mouldings at different heights. There is no carved work upon thin church which is tolerable. The south porch, much vaunted by the local antiquaries and others, though intended to be exceedingly rich, is aimply detestable; its details are copied from the Cathedral transepte, but their refinement and proportion have been omit-ted,- the crockets and cusps having the same form, but stupidly magnified to four times the size of the original, and thus rendered coarse in the extreme; the bas-reliefs have neither merit of conception or execution. The crown of the lantern over erux is elegant, but the buttress is useless and too heary in effect, rising to such a height that the crown seems pushed down among them. In power it is not to be compared to the crown of the Tour de Beurre of the Cathedral.

The Church of S. Maclou, the third in order of importance, though, in parts, euperior to S . Ouen in merit, is of the complete Flamboyant style, compact and pyramidising in outline. It is almost a Greek crose in plan, the nave having only three compartments, the transept two, and the choir two, with an apse of five arches. There is an aisle and row of chapela all round; the flying buttressen which span these, and which are set closely together, have a peculiar and good effect. The porch, with its five arches and their lofty pediments, united by a rich traceried screen, is a chef d"cuore of this style-it serves as a frame to the magnificent sculpture of the Last Judgment, which I have deacribed at length, from a minute examination, in a former paper (p. 121, Vol. XIV.) It is almost impossihle to obtain a view of this front, from the narrowness of the street. The money now being sctually wasted in spoiling the church would have been far better spent in clearing a space in front of it. In the interior the mouldings are somewhat liny and effectleas, being continuous. The basee to the piers are interpenetrating and confused.

It may thus be seen, from what has been said above, that in Ronen, while the remants of its fine domeatic architecture are fast disappearing, to make room for more comfortable modern monotony, there are still congregated characteristic and fine examples of the several periods of Gothic ecclesiastical architecture, which-uatil the blight of restoration, which has already fautened on them (as it has fastened likewise upon many, while it threstens others, of our own priceleas mediseval heirlooms), ahall have proceeded too far - afford an admirablo opportunity for the study of the comparative merits of the several styles. It is also nearly upon the extreme limit of the locality where are to be found the buildings of the Norman-French Gothic, combining, as has been explained, the featuren of the English and Continental styles-uniting the unity and completeness of the former with the vigour and feeling in detuil of the latter; and bere, therefore, for the present, I take leave of the cathedrals and churches of France, hoping, however, at some future period, to renew my researches among them.

Joan P. Seddon.

WESTERN FRONT, BAYEUX CATHEDRAL.

Tan western front of Bayoux Cathedral, (deacribed page 877, Vol. XIV.), of which the accompanying engraving shows the two rorthern arches, is an exceedingly noble conception. There are five arches in all. The central one has been at some time deatroyed by lightning, and tastelessly restored. Those on the couthern side correspond generblly with those shown in the engraving, having the same lofiy pediments, with their pecuLiarly bold and effective perforations. The outer arch in each cese has its tympanum filled with blank tracery, those next the central one have groups of sculpture and rows of saints and angels under canopies in the mouldings. The piers throughout are clustered with shafts alternately of slenderer dimensions, their capitals being united into bands of flowing foliage; the whole is executed with remarkable freedom. The lines of the modiding bend and wave, as may be seen in the engraving, the original sketch for which was taken with scrupulous exactness. Some of the arches which oorrespond in position vary considerably in their span, while the pediments are of the same dimension, so that the aper of the gable is not in each case over that of the arch beneath, nor are the perforations at all arranged in exact order; yet the effect produced is by no means unsatisfactory, for, as I have before stated, a certain amount of life and vigour appears to be even gained by these irregularities. In the design for the frunt of a cathedral, which was exhibited at the late Arcbitectural Exhibition, the general arrangement of that at Bayeux was followed; to the central arch, however, a dimilar gable as to the others was given, whereas that of Bayeux has a horisontal gallery above it, while the depth of its recess was greatly increased. Lsncet arches also were placed, with statues on pedeatals, on either side of the arches shown in the engraving, in order to extend the facade, and give a greater variety, while most of the details, for which I did not possess the authority, were my own design, together with the idea of the introduction of mosaics and colouring.

Jobn P. Seddon.

THE POETRY OF GOTHIC ART.

By Davm. Duthoit, Jun.
[Paper read at the Arclitectural Association, Jan. 30th.]
ALL who have studied architectare, even in the most superficial manner, must have observed that a building displays something more than mere constructive ability; that in its advanced state is possessed what has been termed expressiveness; and that the kind of expression exhibited is of a different charscter in different styles and in different conntries. In the present paper I have thrown together a few remarks upon the Lind of feeling whioh we perceive in the Gothic, and this expreasion or feeling manifested I shall term, in the course of this peper, its Poetry.

No one will for s moment contend that architecture is merely a nseful art: it is something beyond it, and possesses a higher character than can belong to anything of mere utility. So long es architecture was confined to the erection of wooden huts or mud-walled houser, its olassification with the useful arts would undoubtedly be correct; but when the ideas of:man began to expand, and besides improving his own dwellings, he began to erect temples for his gods, the art of building assumed a very different aspect. It then required for its practice a previous amount of study, and the attention of the architect was neoesgrily turned to the adaption of scientific principles in the 3onstruction. Tbis was one step forward, and it was quickly followed by mother. The architect began to see the necessity for come kind of decoration; and as his idens enlarged, the pecoration which he introduced would partake of a higher ebaracter. Still advancing, he would at length see of what architecture was capable; and as his experience increased, be vould throw into his composition an amount of feeling, and bring to bear upon it a fertility of imagination, which would at eace raise it from the position of a mere useful auxiliary to the confort and convenience of man, to the rank of a fine art. It vas at this point that the poetry of the art was developed; and it will be here proper to expluin what we intend when we speak of the poetry of architecture.

The term poetry, as usually applied, belongs to metrical componition, though it does, in reality, possess a much more extended gignification; and the term poetical may. very properly be
applied to the thoughts and feelings, ace well at to the expreasions of the poet. It does not at all follow that because a piece of composition is written in verse that it is therefore poetry, whilst on the other hand there is much poetry that is expressed in prose. If this be admitted, it will be easily seen that the term poetic will as properly apply to the fealings of a painter or a sculptor as to the author of an epic. The sculptor, for instance, so long as he confines himself to copying the objects exactly as they are placed before him, must be a skilful artist, but nothing more; but so soon as he abandons the idea of being a copyist, and attempts to depict in stone some form or expresaion which his own mind has created, that moment he becomes a poet. The same will, of course, apply to the painter. Rafaelle and Rubens were poets of the highest order; in fact, the feelings whicb give rise to what is popularly termed poetry to sculpture and painting, are in all cases precisely the ame-they merely. develope themselves in different directions.

We must not, therefore, limit tbe application of the term poetry to what is only one form of expression of a similar alass of feelings; and if we examine the claims which architecture has upon our attention in this respect, we shall find that it is, the result of the same species of feeling which we see exnibited in verse, painting, and sculpture. It will be a part of our task to see where and how this poetical feeling is developed in Gothic architecture.

Let any one for a few moments contemplate some one of those ancient churches or cathedrals which adorn our country.. The longer he gazes upon its lofty tower or spire, its many turrets, pinnacles, and buttresses, as they all point upward to the sky, the more he becomes convinced that he is not looking upon a dead pile of stones, heaped.together for some merely useful purpose. The impression which they at once convey to his own mind convinces him to the contrary. He feels that he is gazing upon something in which thought and feeling are everywhere visible; the minutest object upon which his eyes rest embodies some element of the poetic and the beautiful. The building before him is the product of the imagination of its designer-it embodies his feelings, and expresses his sentiments; it tells at once, by the aspiring tendency of the whole, that it was created in homage of the Creator, and raises in his mind idess as grand and as sublime as any which have been excited by the highest flights of poetical genius. Does. a poem display imagination and beauty, sentiment and feeling? Not less does a Gothic cathedrul; nor can we suppose that the most successful poem which was ever. written ever suggested more sublime or more heavenly thoughts than the simple expressiveness of an early English cothedral.

Let us for a moment enter its precincts. We pass in at the western entrance, and the whole beauty of the nave, with the retiring splendour of the distant choir, are at once before us. The deep and still solemnity of the place, as it steals over the oenses, at once tells us that we have entered the temple of the Deity, while the beautiful hermony of the several parts which catch the eye, together with the appearance of firmness and: indestructibility of the whole, present to the mind a fit emblem. of the temple not made with hands. The long vista of receding arches, and the continuous vaulting above gradually diminishing to the eye till it is almost lost in the distance, is a picture 80 enchanting, and at the same time so grand and elevating, that We feel it at once to embody the true principles, the real feeling, of the highest species of poetry. And when we call to mind that the vast building before us has been placed there especially for the worship of God-that it stands a mighty offering in acknowledgment of the goodness. of the Creator-that is has been hallowed by the worship of succeeding generations-and that it has seen kneeling upon its pavement a throng who have passed from the scene for ever, the effect is overpowering. How can we say that any composition of man ever awakened such holy emotions or such a noble enthusiasm?

The great charm of a Gothic building is its religions uharacter. It is a sacred paem. Its peculiar style of architecture was invented and developed in the sarvice of the church; it was carried out upon Christian principles, by profeseodly Christian men: and the aid which it lends to religious worship has never been questioned. It is this sacred character of Gothic architecture that breathes over it a hallowed charm, which we may look in vain for elsewhere. No poem, perhaps, ever suggested more sublime ideas of the heavenly regions than the Paradise Lost; but does not the interior of a Gothio cathedral produce a precisely similar effect? It may be that it is less defined, but
it is all the mone intense. Miiton himealf-chough living in an age when aceleniestical architecture was least of all valued, and though belongiag to a party the mont profensedly hostile to anything like tacte or beanty in religious worship-wes not ashamed to arow his attachment to the ancient architecture of England, or to bear the following temtimony to ite suggeetiveness of the glories of heaven:-
${ }^{*}$ But let rey due foet nover fal
$\begin{aligned} & \text { To walt the otudioas eloditiof's palo, } \\ & \text { And love the bloh emboser'd roof }\end{aligned}$
And love the blgh emborer'd rool
And atoried windomen nehir dight,
Casting a dim, religious light.
Cantiag a dim, reljogous light.
$\begin{aligned} & \text { Thare let the pealing organ biow } \\ & \text { To the tall roloed cutr belom. }\end{aligned}$
In earvice higb mod anthem clear,
In arrice aigh aud anthem cloar,
Dt molve we lito ecatacies,

It is this suggestiveness of Gothic architeoture to which the poet thus beautifully alludes that forms one of ite chief characteristica, and places beyond dispute its poetical spirit.
And here we notice the difference between the power of exprestion in architecture and in that of the other fine arts. In verse or painting the idess conveyed are in general of a definite character-everything is minutely deacribed, and the picture brought before the eye should be in every reapect complete. In architecture, on the contrary, we see nothing defined-the ideas it expresses are not particularised. It rather produces feeling than displays it; and while poetry and painting may be said to feed the imagination, architecture excites it. In this respect it is akin to music, the great charm of which lies in the effect which it produces upon the senses without presenting to the mind any abstract idess. Yet is its effect no leas enchant-ing-no less intense. Every one has experienced the thrilling emotions whiah it excites, and the state of feeling into which it throws us. It has brought up before us scenes which have long passed away; it has carried us to the remotest corners of space, and has opened to our astonished gave the glories of heaven itself. Nor is it unworthy of notice that architecture alone, of all the arts, has the power to collect within itself every element of poetry in existence. The other fine arts (which we must consider as the forms of expression which poetry assumes) stand more or less by themselven, excepting in the cese of eong, in which music and verse are combined. But during service time, in a Gothic cathedral, we find all the olements of poetry collected together, and exerting their influence at the same moment. The mind, when we enter the sacred pile, is at once under the combined influence of the architecture of the building, the painting of the glass, and of the aculpture of the various figures. But this is not all, and when the solemn tones of the organ are heard, and the "service of song floats along the vaulted edifice, every avenue of the senses is assailed at unce, and how overpowering is the effect: fired with the enthusiaem which the whole scene creates, our thoughts wander from earth to heaven, till we think we hear the song of the heavenly choir above; and when the muaic ceases, and the chaunt dies away, the mind reverts to its usual channel as if awoke from some delicious dream.

From all this it fullows, that a Gothic architect to be succesoful, and to exercise his calling in anything of an efficient manner, must necesearily be, in a certain sense, a poet. This may be demurred to; but, if there is anything of poetry in Gothic, it must be the case. How in it possible for an architect to exhibit feeling or imagination in his productions, if he does nut possess them himself? The inspiration of genius is as neceasary to an architect as to a poet or a painter, and those who do not possess it cennot expect to succeed.

Here, I think, we discover the cause of those abortive attempts at church architecture which we have so often to deplore. Men have attempted to build churches with no other idea of Gothic than that it consisted of the pointed arch, and holding the somewhat curious opinion that any building, so long as it contained doors and windows with the pointed addition, muat therefore be Gothic. But many even of those who have been pretty well acquainted with Gothic detail, have been utterly destitute of its spirit, and have but put together a fixed set of forms upon a fired set of principles. As weil might some foolish achoolboy, who, becanse he had become acquainted with dactyles and spondees, imagine that he was then competent to commence writing poetry, and would be able to produce something analogous to the authors he hed been roading Yet such has undoubtedly been the case; and all the failures that have
of late been made may be traced to this one fact, that the architect has forgotten that he ought to be a poet, and that a building is deatitute of the first principlea of Gothic art that does not embody the highest species of thought and feeling.

Let us compare for a moment the architecte of the present time with those of the middle ages, with whom Gothic originated. The comparison (with respect to the poetry of art at least) is manifestly to our own disadvantage: for, however much our architects may study ancient examples, however well they may become acquainted with them-however able they may be, had they the means, to produce a work equal in point of execution to any old one that exista, we must reoollect that the great charm, the great value of a work of art-its novelty, and ite originality-is gone. At the very best, our modern worka in this atyle are little better than copies. The medimval architecta, on the contrary, iuvented and developed their own architecture, and its history is one continued eeries of progression. There was no otanding still, no copying of what had gone before; each new church that was built had in it something different to the last, and their works therefore exhibit that great easential of true art and true poetry-originality. This Is what the architeet of the present day cannot, or rather does not, posesss. He may not certainly descend to dead copyinghe may show a certain amount of originality in adsptation, or introduce novelties of design in the more minute parts of the edifice-but the general features remain the same, the essential characteristics are all borrowed. Thus, though a modern architect might show himself imbued with the poetic spirit of art, yet, so long an he will continue to adbere in every important feature to the old models, he can never arrive at perfection. He is, in fact, in a similar position to some poet who takes eome author who has gone before him, and does everything in exact accordance with the tutor he has selected. It is obvious, that whatever natural genius such a person might possess, that he would never rise to eminence, and could never produce anything worthy of preservation. Poetry, if it would be poetry, must be original. What should we think of a man who produced an exact parody of the Paradise Lost?-or one who should take book after book, and, appropriating every incident, put it all into his own words? The man might be clever, and his book might be admired as a literary curiosity, but it would want that which is the life and soul of Milton, it would want the one quality which has placed him upon his pedestal of fame-his rioh and copious imagination. Our modern architect is exactly in this position; he does not copy we will say each part separately (though oven this is done to a great extent), but he appropriates the leading featuree of those works which have come down to him: and unless he will throw off the trammels in which he has thus voluntarily placed himself, and will attempt to develope a style for himself and for his age, I do not see how he can ever expect to be placed alongside with the great architects of antiquity, as being equally a poet with them.

Assuming for a moment that the cultivation of Gothic art is both desirable and possible at present, we must recollect that circumstances have greatly altered since it was first introduced; and, with respect to architecture, have altered very much to our present disadvantage. The medimval architects were placed in a position peculiarly favourable to the growth of their art, and very different from that in which our modern architects find themselves. No doubt a considerable portion of those who designed our ancient churches, berides being members of the society of freemasons, were also ecclesiastics; and their position with reapect to the church they served, in a double sense would be very different from that of our present secular architects, who in general pursue their calling as a matter of business. This fact is obviously against the development of the poetry of architecture; and it can hardly be expected that a man sitting in his office, and designing as many churches as he can obtain orders for, with the comfortable prospect before him of being handsomely paid for each, can exhibit the true feeling of art, and that art especially of a Christian character. Poetry resulta from inspiration, and cannot be made to order "on the shortest notice." I do not certainly profess to be acquainted with the secrets of an architect's uffice, but if I might reason from analogy, I should any that he cannot be less ready than others to accommodate himself to his customers; and I can easily imagine an architect who wishes to increase his connexion, taking into account when getting out his design whether the clergyman in queation is puseyite, low church, or anything else, and designing the building accordingly.

Allow me again to expreas my regret that a country like oars, co pre-eminent for its rapid advancement in the arts of civilised liff, should not at the present moment possese a style of architecture peculiarly its own, and developed from its own recources. The architecture of a people ghould always be the reffection of their habite and fealings; and this is of course itapoesible with those who borrow from others This is the grand searet of the suocess of the medieval architects: their architecture embodied their own feelinge, and was the effect of the peculiar spirit of their age-s spirit which we mee to pervade alno their pootry, their literature, their painting, and their religion.

This tells us why it is not to be expeeted that we should succeed in rivalling our ancestors in the walk of Gothic art. We live in a different age; we do not possess thoee ideas and feelinge from which Gothic took its rise; we do not breathe the same atmospbere; we do not live for the same purpose: and it in but folly to attempt to exprees feelinge to which we are strangerg, and which are incompatable with the genius of the present age. It matters not how akilled in design an architect may be; if he doen not possens the feelings of the ancient designer, it is imposaible he can succeed in the same walk with him. Nor do I think it desirable that he should. The spirit which we see in a Gothic building belongs to a past era, to one which I trust we have exchanged for a botter; and the present rage for the revival of ancient art, thongh very alluring, does yet appear upon closer examination to be founded upon false teste and upon false principles.

There is, however, one exception to this rule. There are some people, possibly some architects, who appear so absorbed in the study of the medieval period, and to be so often poring over the dusty volumes of ancient lore, that they seem at last to have imbibed the spirit and ideas of the age which they study, and to be all but unconscious that they are living in the nineteenth century. These are the men who will probably succeed with the Gothic: but the exception proves the rule, and shows how absurd is the attempt for men mixing in everyday life, and joining in the prevailing sentiments of their age, to hope to sacceed in producing similar works of art to those which a precoding generation have left us.

No other proof, I think, is needed, of the inconsistency of Gothic art with the present advanced state of society, than the incongruous effect which is produced when modern sculpture or decoration is introduced into a Gothic church. We see at once that it is out of place; for while painting and aculpture have gradually advanced, till they have almoet arrived at perfection, architecture has long since come to a stand-still. The consequence naturally is, that a statue by Chantrey, or a painting by Weat, however excellent they both may be in themselves, and however superior they undoubtedly are as works of art, they yet produce a jarring sensation in a mediseval building. We feel that they apeak a different language, display a different and even opposite spirit, and produce a similar effect upon the ege to that which discordant notes produce upon the ear; while, on the other hand, the painting of the patron saint, with his stiff neck and aprained ancle, or the crosa-legged effigy of the crusader,

*With ble malled hove, And bls doges at bin coes,"

however imperfect they may be when judged upon anatomical principles, are atill felt to be quite in harmony with the reat of the edifice: and it is one of the great evils attendant apon the revival of medisval architecture, that it necessitaten our going back to a stage in art when it was (with respect to geulpture and painting) really in ita infancy, and compels us, in order that the accessories of the church may be in keeping with the whole, to adopt the wry faces and uncomfurtable positions of the thirteenth and fourteenth centuries!

Still we are placed in a somewhat peculiar position-we do not possess a style of our own, nor can we invent one at a few moments ${ }^{*}$ notice. We have, therefore, no alternative left-we must choose womething from what is already in existence; and this is the only excuse which me can plead for the adoption of Gothic. This state of things is nevertheless unnatural, and the sooner is is altered the better it will be for the success of the art; but we must make the best of our present position, and select that description of architecture which is nost suited to our wante. I the legs regret the alternative, because 1 feel how well suited is a Gothic building for Christian worahip; but I cannot at the mame time forget, that had not the devalopment
of our own style been cheoked by the unfortanate introduction of Classic in the sixteenth century, that we should probsbly have developed a kind of architecture which might have been as well adapted for worship, while at the same time it would have had the advantage of being stamped with characteristics of the existing period, and might have been even more suited for the requiremente of modern wurship.
It is not yet toolate to amend; and it should be our endeavour, by being more origial, by throwing off those conventionalities which at present 80 fetter design, to strike out a path for ourselvea. Until this is accomplished, we never can expect to see the true poetry of art developed. And if the present aystem of borrowing and copying is continued, the art will siak lower and lower in the publlo eatimation.

ON SOMR PRINCIPLRS TO BE OBSERVED IN ORNAMENTING CHURCRES.

By Rev. T. Cenmberlain.

[Paper read before the Oxford Architectural Society, Fco. 4th.]
Ter paper commenced with disclaiming sary intention of vindicating the practice of ornamenting churches, and assumed that there being certain parts of a churoh, walle and windows, roofs and foors, which admit of decoration, it must necessarily be an object of consideration with every one who deaires to promote God's glory, how he may beat adorn them. The modes of ornamenting in common ase were raid to be-1, illuminated lettering; 8 , ,ymbolical devices; 3, colouring for its own sake; 4, pictorial representation of persons and events. Of these, Mr. Chamberlain objected to the one first marned in every place, save that where it is ordered by the canon-that is, for exhibiting the decalogue over the chancel arch, where, he observed, it is really used symbolicully, as suggenting the thought of the general Judgrent, which used of old to be represented there in a picture-a custom which was probably ordered to be discontinued, mainly on account of the gruss manner in which in a corrupt age it had come to be caricatured. The present indiscriminate use of the sacred monogram, the evangelintic and other emblems, the writer aloo very strongly deprecated, reeommending in all cases where it can be reaorted to-as in windows, frontals of altars, and walls-designs of figares; and whers this is beyond the reach of the artist, or the meana of the ehurch builder or restorer, the employment of colour for its own sake, in diaper or arabesque, or even the nee of hangings of cloth. These principles he then applied to the several parte of a charch which are most commonly destined to receive ornament. For an east window he recommended the Crucifixion an the beot design; for side windows figures of sainte or ofher subordinate aubjects; for an altar-cloth, Agnus Dei; for a dorsal bohind the altar, a slab of slate to be painted in rich colours. Of this kind one had been recently put into the chareh of Kidlington, which, though with some fault of detail, was spoken of very effective. Commendation was aleo bestowed on a large triplyeh, or frame of oak, recently erected in Merton College Chapel for the reception of an ancient altar-piece representing the Crucifixion. The use of plates of sinc here, as in all other parts of a church, was strongly protested against; as also of nicisen and arcades containing nothing. Attention was also drawn to the very poor effect produced by delicatahy-ohiselled stons (as in St. Giles's Church, sad Garsington), or by encauatie tiles (as in the new church of St. George), in all of which, at a very little distance, the pattern is lost in a general indissinctaess. In tiles for the floor, as well as carpets, kneelers, and other common ladies work, the sacred emblems nhould be used, it was suggested, very sparingly.
At the conclusion of the paper, Mr. Parker rose to auggest the employment of the revived art of mosaic-work for providing dorsals to ultars. He also noticed that in parts of Framee grest use was made of different coloured stones-a practice in which, it was observed by some one present, that Mr. Parker's recommendation had been anticipated by the diotingrished architect of All Saints', Marylebone.
It was announced that several communications had been received by the secretaries, among which a letter from the Rev. T. Woodruoffe was read, announcing that the desecration of one of the chapels of Winchester Cathedral, which has obtained some noturiety, was about to be in part, at lemst, if not wholly removed by the Chapter.

APARTMENT HOUSES.

A House, to be let out in Apartinkts por Faminge, Hotel non Garnib, 一at Vienna.
Professor C. F. L. Förster, Architect.
(With an Engraving, Plate XII.)
Tas abolition of the window-duties has, as we have already pointed out, opened to architects the opportunity of raising large structures in the streets of our great towns, similar to the hotels of Paris and Vienna. Formerly such structures were impossible, as the increase pro ratd of the window duties gave a premiam to the construction of single, or, as they are called in Scotland, self-contained dwellings. Thus, even in Edinburgh, with the example of the old large houses before them, the modern town is chiefly constructed on what may be called the English plan. A change is, however, at hand, more particularly in London, where ground-rent in the beat situations being very high, and ahop-frontage valuable, it will become desirable to raise large houses of several stories, having a common ataircase and approaches, by which space may be economised.

The towns of middle and north Germany possesa many remarkable examples of domestic architecture in various styles; but it is otherwise in Vienna, one of the oldest and principal German towns, where the Romanesque and Gothic styles are so well represented by St. Stephen's Cathodral, the Maria Steigen Church, and monuments in the neighbourhood at Klosterneaburgh, Tuln, Wiener Neustadt, and Petronell (Carnuntum). Vienna, however, has no domestic example of the several styles till the end of the seventeenth century: even from that time till the middle of the eighteenth century, the architecture of Vienna is chiefly represented by its palaces. Continual war, and other political events, frequent conflagrations, and even earthquakes, but principally the condition of Vienna as a fortified town, were the chief causes of this state of affairs. In 1814, Francis I. relieved Vienna from what may be called the state of siege.

It must, however, be borne in mind, that formerly dwellinghouses, unless favoured by a good situation and fitted like barracke, did not give a good and safe return on the capital; that the circumstances of the citizens, which formerly were very narrow, did now allow of considerable emterprises; and that the architects of the day did not extend their studies much beyond a little mathematics, and learning by heart the rules of Vignola, -and with such practice as they got, their utmost achievement was a massive palace covered with incongruous stucco ornament.

A chief cause of improvement was a new building law for Vienna, defining the requirements for fire-police and ganitary purposes, and, like our building acts, giving directions as to the several parts of the structure. It resulted, however, in a very favourable effect on house property as an investment, and greatly improved the town. The fire assurance is provided for, rent is payable half-yearly in advance, or in some suburbs quarterly, with the right of the landlord to levy a distress on the goods of defaulters. Other circumstances were likewise favourable to improvement, as the increasing weslth of the citizens, the establishment of large brick manufactures in the neighbourhood of Vienna, whence 130 millions of bricks are yearly produced, ready access to materials of all sorts, and the introduction of a better taste in architecture and greater constructive knowledge. These latter branchee of education were much behind in Vienna, when in 1818, Peter Nobile introduced in the Academy a profound study of the clasaic antique, and of the period of the Rensissance, and contributed essentially to the encouragement of the plastic arts. The Viennese too having a ausceptibility for art, the result has been a very great progress in architecture, and a material improvement in the aspect of the town, which greatly impresses the beholder. Much has been likewise done for widening narrow streets, for extending the drainage, laying down pavements, and supplying the town with water and gas.

Notwithstanding this progress, there was still wanting a conaistency of treatment, and a solidity of charscter, for, except the Gothic churches, which show the material throughout, the buildings are in a mixture of styles with stucco ornamentation. It is not, however, to be denied that there is some charscter in the mass of the istructures, and that the interiors present some excellent arrangements, while great constructive skill is displayed and the colidity of the edifice secured.

Of late a desire has arisen for higher artistic treatment and a more monumental character, and a decided improvement is to be noticed. The work we present to our readers is remarkable for simplicity and breadth, with a degree of ornament which greatly contributes to its graceful appearance. It shows the elevation of a house at Vienna, constructed by Messrs. Förster and Hansen, the ground-floor to be occupied as shops, and the other floors as private dwellings. We purpose next month presenting our readers with the plans, which will better display the extent and arrangement of the building.

GREAT GRIMSBY DOCKS.

Aftrbe six years of arduous labour these works are nearly brought to a completion. No fewer than 140 ecres of land have thus been added to the occupation of man; and there, by the happy union of science, capital, and labour, bas been founded the finest harbour of the eastern const of England. Our readers will be able, by means of the annexed engraving, to form an eatimate of the immensity and importance of the undertaking.

1, entrance basin, of an area of 19 acres
2, 2 , are piers which protect it, and on which vessels, which do not require to enter the docks, may at any time land passengers. This entrance basin will be accessible at all times of the tide, for the largest vessels, and will afford the most complete security.
3, is a great lock, 300 feet long and 70 feet wide, made purposely to allow the largest war steamers to enter the dock. This lock was made by special stipulation with the Admiralty.

4, is the smaller lock, 200 feet long and 45 feet wide, which will admit into the duck all ordinary vessels.
5 , is the great dock, 2000 feet long by 580 feet wide. Its area is 89 acres. The depth of water at its gates is such, that the largest steamers employed in the coasting trade may enter or leave it in any state of the tide. The largest war steamers may go in and out during twelve hours out of the twenty-four, and may here obtain ample supplies of the purest fresh water, which rises in the utmost abundance from the chalk formation. This is a consideration of the highest importance to all steam vessels. In this dock steamers will be two hours nearer the sea than at Hull, and merchant ships of the largest burden may come in with the firat of the flood tide, and leave at high water with the ebb tide, which will carry them well out to sea. In contrary winds the contiguity of the docks to the sea will economise the cost of steam tugs. The docks, as a railway station, are more valuable than any inland station can possibly be, for by mearda of them, all Europe as it were is made a part of the terminuts of the railway.

6, is the west wharf, 900 feet wide, with rails laid down to its extremity. The area of this wharf is 12 acres.

7 , indicates the east wharf, 2000 feet long, and 670 wide; on this wharf, also, rails are laid. This wharf has an arem of 48 acres. It is occupied by warehouses and a goods ntation.

8, the one-third of the ares inclosed reserved by the Crown is on this side, which the company now proposes to buy.
9, represents the eastern wharfage and embankment against the sea.
10 , is the line of access to the old docks.
Sheds are close to the quays 750 feet in length, and 50 feet in breadth, affording a covered area of 4000 feet; and a vaulted warehouse 150 feet square, for free and bonded goods. The arrangements for the passenger traffic and light or perishable merchandise are on the most complete scale, the railway extending to the edge of a low-water landing-stage in the outer tidal basin, where a station is built, provided with accommodstion for passengers, who, without leaving the cover of the station, may be carried by trains in attendance, as goods also may, to any part of England or Scotland. For the transit of passengers, a pier, 1500 feet in length, to the end of which the trains run, extends into the river; passengers can descend on a covered platform, and passing through two iron tubes to a floating iron pontoon, go on board steamboats fitted, after the American fashion, with decked saloons, which lie alongside.

The most complete arrangements are made for the convenience of business at the wharfs. A striking feature is a tower called the Lighthouse tower, the principal purpose of which is to furnish a column of water for the hydraulic machinery, to work the dock gates, cranes, \&c., and to display lights for the benefit of the seafaring man. It is a square, red brick tower, to be raised to a height of 900 feet; at a height of 830 feet a tank is placed, holding 49,000 gallons of water. The walls of the tower are $4 \frac{1}{4}$ bricks thick.

So little now remains to be done, that the piles of the cofferdam, which interpose between the lock-gates and the sea, only require to be removed to give access to the dock. While this is being performed, the dock will be filling with fresh water from the springs in the chalk, and the purity of this source of supply will be found to be an immense advantage in keeping the dock free from mud.

The Great Grimsby roads afford the only refuge betwreen the Thames and the Frith of Forth. The old dock was purchased by the Manchester, Sheffield, and Lincolnshire Company, when they decided on their "water terminus." It has an entrancelock of 150 feet in length and 37 feet in width, with 18 feet on its aill at high tide. In 1845 they obtained an act for the new dock, and the first stone was laid by Prince Albert on the 18th of April, 1849. The undertaking has been carried out from the beginning by Mr. Rendel, engineer-in-chief; Mr. Adam Smith, the resident engineer; and, for the last three years, by Mesars. Hutchings, Brown, and Wright, the contractors. The principal portion of the stone used has been brought from the Auston quarries. The total cost of the docks will be 750,000l.

THE NEW NORTH DOCKS, LIVERPOOL.

Tre works attending the construction of the Huskisson and other docks on a large scale are, the Liverpool Albion states, fast approaching to a state of completion. The Huskisson Dock, which is one of the largest in the world, is constructed for the accommodation of ocean steam-ships. The locks at the south end are finished. The dock itself is ready to receive vessels, water having been let in at the last spring tides; and workmen are bury paving the pier and parts of the quay, and constructing the locks at the north end. Large as are the Bramley Moor, Nelson, and other of the north docks finished in 1848, they are outrivalled by this new evidence of what the genius and enterprise of Liverpool can effect. The width of the east lock-gates is 80 feet- 10 feet wider than the lock-gates of any dock hitherto constructed at this port; the west lock-gates, 46 feet. The water area of the dock, 14 acres 3451 yards, with quay space to the extent of 1182 yards. The water area of the east lock, 4682 yards, with quay space of 342 yards; and water area of the west lock, 3650 yards, with quay space of 330 yards. No sheds have at present been erected on the dock quay, which is still in an anfinished state; but sheds have been constructed on the lock quay, where arrangements have been made for unloading vessels, and for the reception of cargoes. A large space of the west end of the lock quay is set apart for a timber-yard, and the remaining portion, by the side of the lock, will be used as the sites for sheds for the reception of dry goods.
The total water ares of the wet docke, along the margin of
the Mersey, belonging to the corporation of Liverpool, is now 177 acres 3684 yards, with a quay space of 12 miles and 1418 yards; and of dry basins, an area of 20 acres 892 yards, with quay space of 1 mile 712 yards; making a total of 197 acres 4576 yards of water area, and 14 miles 712 yards of quay space; with a length of 5 miles and 80 yards of river-wall. The extent of these docks, the gigantic mature of the works, and the approved principle of their construction, have obtained a worldwide fame, and our transatlantic neighbours deem it no dighonour to apply for a plan of our dockyards, of the principle and construction of which they express their unqualified admiration. But dock building here has not ceased; others are yet to be formed. The appearance of a considerable extent of land, north of the Huskisson Dock, and stretchigg some distance beyond the Bootle landmarks, is to be changed, not by the mutations of time, but by the scientific energy and laborious application of man. Dock after dock will be constructed, until the unrivalled line is completed. The piece of land to which the next dock to be built is to give "a local habitation and a name ${ }^{m}$ is already distinguishable by an extensive excavation.

The walls surrourding the Huskisson Dock, as well as the other north docks which have recently been constructed, and the Norman-like towers, to serve as officer for the gate-keepera, are built of granite, and combine considerable beauty and neatness with extraordinary durability and strength.

On the large tract of land in the neighbourhood of the new docks, buildings of vartous description are rapidly springing up, and excellent shops, private dwellings, and public-houses, in a half-finished state, may be seen in progress in almost every direction. Not the least interesting feature of that locality will be the new fort, in the course of erection.

AEVIEWOS.

FIREARMS AND PROJECTILES.

1. Observations on the Past and Present state of Firearms, and on the Probnble Effects in War of the New Musket. By Colonel Cebrafy, D.C.L., F.R.S., Royal Artillery. London: Longmans. 1859.
2. Projectile Weapons of War and Explasive Compounds. By J. Scoffern, M.B., F.S.A. Second Edition. London: Cooke and Whiteley. 1852.
Events of recent occurrence, bat which we are not called upon to discuss, have caused the earnest attention of all classes of this empire to be directed to the efficiency-or rather nonefficiency, we should say-of tbe weapons with which we arm the defenders of our liberty and nationality. The full light of public scrutiny which has thus been brought to bear upon what may be termed the mechanical engineering of military boards, has demonstrated, most conclusively and painfully, that in spite of the immense, sums annually expended-directly under the head of Ordnance, and indirectly in numerous other channelothe arms of our troops are worse, in every important respect, than those of any civilised nation;-that while France has been carefully testing her Minié rifle and adopting it among her soldiery, Prussia her Zündnadelgewehr, America her revolvers, Austria her rockets, and even little Norway her Jäger rifle, the three kingdoms, or rather those who are entrusted with and paid for their defence, have remained stationary amid the general progress of other nations; or, if any slight improvements have been adopted, they have been with evident distaste, and so dilatorily that before they have become general they are superseded by fresh ones: so that a British soldier in face of any one of his continental rivals, during the last thirty years, would find himself as inferior in the means of attack and defence as were his ancestors before the warriors of Louis XIV. armed with the invention of Marshal Catinat-fixing the bayonet as at present instead of in the muzzle of the musket.

To account for the dislike to improvements and the apathetic indifference to the fatal consequences of neglecting them which pervade the councils of our military authorities, is a psychological problem beyond our powers to solve-unless, indeed, it springs from an exaggerated feeling of esprit de corps, which, in moderation, is to be encouraged and commended. Whatever may be the origin of the sentiments which induced the shameful neglect of the security of England, we shall not pause to determine. It is sufficient to record the fact, which doubtless many of our readers can corroborate from personal experience. But,
conscious as we have long been of the indifference with which military gentlemen have invariably treated suggested improvements of civilians, we were certainly not prepared to hear that they exercised as great indifference and contemptuous disregard for improvements submitted by brother officers. The suthor of the work that heads this notice-Colonel Chesney-whose previous writings upon the subject, and exertions in the Euphrates expedition, entitle him to a patient hearing, and his opinions to reapectful attention, was summoned before a House of Commons' committee in 1849, and, as in duty bound, stated what alterations he deemed needful in the regiment of Artillery. That no improvements might be effected, and the evidence of an able and atudious officer deprived of whatever weight it other wise would have, Sir H. D. Ross, K.C.B., did not hesitate to say that "he [Col. Chesney] has had no experience in the field, and therefore, I presume, is not very competent to give his opinion against those who have." As if the mere act of amelling gunpowder, fired in earnest, made a man competent to decide in matters purely within the domain of physical and administrative sciences. Hear this, inventors; waiters on the decisions of military boards of examiners!
So patent to all people have now become the supineness of our authorities, and the inefficiency of the arms of our soldiery, that the press is teeming with publications suggenting the reorganisation of our military system and the improvement of our arms, 80 at least as to put us upon an equality-not numerically, but in every other respect-with whomeoever may presume to disturb the peace of Europe. From the numerous works on this subject we have selected for review the "Observations," by Col. Chesney, and the brochure by Dr. Scoffern; not only because they treat more fully than the others of matters that come more immediately within our province-the mechanical construction and nature of firearmo-but also because they bear unmistakeable evidence of being written in an earnest spirit, and display a thorough knowledge of the aubject.
Into the antiquarian portions of both works, which are well written and contain a variety of interesting and carefully collected details, we do not propose to enter, but will content ourselves with taking, as a point de depart, that state of efficiency to which the British musket (and its ounce ball ranging to 150 yards) has bean brought after thirty years' peace, and contrasting it with the more recently improved "projectile weapons" of our neighbours - the Minié rifle-musket and the Zundnadelgewehr.

The Minie Rift-Mueket.
The construction of this weapon presente no essential difference from the ordinary rifle, with the exception of the sights, which are calculated for distances of 800 yards, and even beyond up to 1000. This enormous range is attained by the peculiar construction of the ball, which Col. Chesney thus describes.
"The ball is rather omaller than the bere, and conainta of a cylinder having three channele cut round the surfice near the extremits, the other end of the miscile being like a fir-cona. A. cylindrical hollow orifice is cat into the centre of the ball, which extende from its bace almont to the apex. Before placing the ball into the piece, a small capaule or thimble of sheet-iron in pleced in the aporture level with the base of the ball, and paper being rolled over it, this end of the cartridge, with the ball in it, is dipped in greane about hak-an-ineth. When londing, the soldier bites off the end of the cartridge, blakes the powder into the berrol, reverwet the oariridge, and puta the ball with the thimbie-end downwarde into the muczle as far as the upper channel; teans off the papar, throws it away, and theu rama the bell (with the greeny part of the paper on it and the iron thimble inside) down on the powder, which is as easily done as with the common manket. In fring the explonion, at a matter of course, forces the iros thimble up into the corical hollow in the ball, before the inertia of the ball itself has been overcome, and thos, by increasing ith diameter, forces the lead into the grooves of the bore so completely that the whole bave of the bullet is exposed to the action of the powder withoat allowing the slighteat windage, or any diminution of the explotive force of the powder, by which so much of the impetus is loat in common riten.
"Paizhana, in his 'Constitation Militaire de la France,' gives the following at the reanlt of extentive experimenta with the new rified carbine, which only requires 41 graina inatend of 9 of powder to propal a bali nearly double the weight formerly ased.
"At a diatance of $218 \frac{1}{20}$ yards, it was fonnd that a target of rather more than 2 yarde aquare wha atrack one handred times in anceestion with the new musket, and only forty-four timen by the oid weapon, out of the same number of shots.
"Again, at 655_{1} y yard, which the common manket did not reach, the came target was struck twosty-ive out of one handred ibote by the per
moaket; whilat a teld-pieco firing the same aumber ouly atruek it six times.
"And at 1093 yarde, when a fiold-piece uanally diverged 6 or 8 yards from the target, the new musket atruck it aix times out of one huadred shots; and even af this enormone dintance, it was found in the case of an experiencod markeman that three of his ahots out of fous took effoct on a moderate-sized target, 50 that in thin case art did more than nature, for at 1000 garde nono but a good alght could distinguish the object Which the masket hit to aceurately."

The Zündnadelgewehr.
"The progrens of the Züadnadelgevehr, or needle-igniting muaket, wa, however, alow at Arat, but the fuilier being so armed, it gradually became general; and it will probably be ased ere long throughout the Pranian army. It combines the nse of percuasion with that of a particular kind of ball, which being conical at the point, cylindrical in the centre, and round at the larger end, is, at in the cace of the French projectile, a good deal heavier than a sphere of the same calibre. It becomes rifed as it pases through the barrel, and is propelied with mach greater force than the ordinary rife-ball, owing to two causer-viz., a suitable centre of gravity, and the more perfect ignition of the powder, which taket place in front, inateed of being an formerly at the otber end of the charge. Thin advantage, one of the greatest belonging to the change, is zecomplished by meana of a metal needle and a apiral apring. The spring serves the parpose of a lock, and by forcing the needle througb the charge, the fulminating powder exploden it in a way which will be better undertood from the following details.
"The barrel of the ZündnadeIgewehr is 34 inches long, and is rifted with four grooves, taking it tarn in the length, and hati a high beckaight; it is acrewed into the ond of a strong open gudder or wocket; the chamber properly so-celled ia bored ont in a sligbt degree conically from behind, so that when the cartridge is pleced in it the sboulder of the bell (which is of a particular shape) ihall moet, and be atopped by the projections of the ribe of the rifing, the body of the ball being of sufficieat diameter to fill the fall depth of the grooves. Incide the gaider aliden an iron tube, with a atrong helve or handle attached, and havips a apece at the front end sext the barrel of abont $1+$ inch in length ; in the middle of this spece is the needle-condactor, which is pieroed with a small hole in ite entire length, through which pasces the needie that in to ignite the charge. Thia needie-conductor is acrewed from behind into a solid plate of iron lef in the tabe; and this plate it it which (like the breechpino plece of the ordinary masket) reccives the whole resctonary foree of the charge. Behind this plate, again, there in a second tube of iron, having a apring with doabloweatch atteched, and carrying within it an haser amali tabe, which has two projecting-ringa on one moiety of ita leagth, and a apiral apring on the other; and through this tube pences the menedte, which is a thin steel wire pointed at the end deutined to ignite the charge, the other end being acrewed into a bram-heed, which again aerews into the interior tnbe that carries the spiral apring. The trigger in of peculiar form, with a straight apring having two knacklo-movemente seting apon a bull; the first movement fires the gan, and the socond edmita of the whole mechaniem being taken ont behind, when the parta ean be takem to pieces, clouned, and put together by a moldier in two minutea, there being no pina whatever, and no terew except that by which the needlo in connected with the inner tabe, and this in nevar dinturbed axcept when the needle has to be repliceed by a new one
"The cartridge is made of one thickness, of thin but atrong paper. The ball has a paper bottom, with the indentation in ita lower end for the priming composition, below which is the powder. The end of tbe cartridge is formed also of a aingle thickneas of paper; throagh this the priming-needie is forced by the spiral spring. The needle passes through the whole length of the charge of powder, and penetrates the primer, which it ignites, and consequently the charge is lighted in front, instend of the other extremity an usual; and behind the charge there in an empay apece in the aliding-tabe of $1 \frac{1}{2}$ inch long. To thene two ciroumntances the Promians attribute the additional range and the alightpeas of recoil.
"Beaides celerity in fring, which without over-exertion extende to abont six rounde in a-minnte, and entire freedom from windage, by which a range of 800 , or, sccording to come, even 1200 yards is obrained, there are zeveral advanteges attending the nee of this weapon.
"As alreedy mentioned, a ball, for the eame bore, is much larger than that of an ordinary monket, and being formed by presuare, it in more colid, and has, at the rame time, a more correct position of the centre of gravity. Havios the advantage of being riffed also, it is truer in ita tight than the round builet, eupecially ma the powder in not crusbed, as is frequentiy tbe case in ramming down an ordinary matket or rifie. Added to these advantages, it receiven a greater impulice; and the parteboardwadding, which it a part of the cartridge, axaista in clearing the barrel from the effects of the previona dischargo ; and an the soldier can load almout as easily in a recambent at in an upright position, he need not, when once behind cover, allow any part of his body to be exposed to the enemy's fire. In addition to the preceding considerationa, the recoll is lete violent, and owing to the simpler and more delicate motion of the trigger, there in much lese to prevent a correct aim, so that a very aceurate fire is the consequence.
"The ebjeations which berve hitherto been hargined are-the liablity α the epring to get ont of order, the divergeoce to the right or lett to which the stoel noedle may be linble in pasing through the powder, and the probability of minaing tre when the needie gets dirty; likewise the cecape of ges througb the aperture after aring has been continued for any length of time, and faclly, the wear and tear of the barral from the mooke and bornt powder ismaling through the aperturen at the place of the junction of the cylinder with the barrel.
"The diminished power of the apriag by conatant use, and the divergeacy which may be cansed to the needle, are serions, bat it is boped not irremediable evile, cince both epring and needle may be.ranewed at a svifing expence. By having a few apare needles and apringa, as one of each for eight or ted musketa, or in any other proportion that may ultimately appear deurable, the defects in question would probably be remedied, and efficiency secured; for the lisbility of the piece to miss fire, and the more serions defect of the eacape of gat, only take place (extennively, at leat, in the latter case) after nome ufty or eighty dischargen, to that a geueral action might be fought before the piece even requires to be eleaned. It in true that the gas eacaped with sufficient force to remove a triting weight placed on the apertare, but this should not be a fatal objection to an instrament of undonbted power and precision of range Even with a piece from a fiot-lock, the encape through the vent in conmiderable, and as any rate the evil may be leasened if not entirely rewoved; for nince American and other pieces have close fighting breechea, at wis ghown Lately in the Great Bxhibition, it cannot be donbted that the akill of our workmen will overcome the diffculty in the case of the Prusian musket."

We have been led to quote the above passage in eartenco, not only from a deaire to afford our readers an opportunity of judging for themselves of the very fair and impartial spirit of Col. Chessey's criticisms and the perfect mastery that he has of the subject, but also because we believe that when the objections to the ase of the Zündnadelgewehr, as at present constructed, are fully known, the inventive genius and mechanical aptitude of Baglishmen will enable them to overoome or reduce to their minimum effect the difficulties which have prevented the adoption of this otherwise efficient weapon. And we certainly do think that the public are entitled to have submitted to them the reasons which indnced the Ordnance to give the preference to the Minié rifle. As regards the latter, we believe it would be materially improved by adopting an invention patented some four yeara since by Mr. Needham, the gunmaker, which condsts in a self-priming apparatus, capable of being adapted to any description whatever of percussion-gon. A water-tight tube-chamber is fitted into the underpart of the stock, in which are contained a hundred or even more percussion-caps. The lock is fitted with self-acting mechanism and a primer, comething like the hammer, only that it has a hollow head and interior groove communicating with the tobe-chamber. The setion is extremely simple. After loading the gun, all that is required is to elevate the muzzle, which causes one of the caps to fall down under the hollow of the primer, which is next brought down apon the nipple (by half-cocking the piece), whereby the cap in projected up the hollow of the primer and deposited upon the nipple, in which position the cap is protected from damp and from accidental explosion. Full-cocking the piece draws the primer back out of the way, and leaves the cap ready to receive the blow of the hammer. By the adoption of this improvement, the objections to percussion-caps would be entirely removed. They would not be liable to corrode from wet or perspiration of the body, bs was the case in the Guards Intely; nor would soldiers when their fingers are benumbed and insensible to touch, find any difficulty in priming, as at present is often the case.

There is one point-the ubefulness of horse artillery-in which we differ from Col. Chesney. We believe this branch of the service to be very cortly, and, in case of future ware, incapable of prodncing any important effect when opposed to infantry armed with the Minié rifle or the needle-gun; and this belief in borne out by the contradictory evidence of the author himself, for be concurs in the opinion (p. 191) that "recent experience has shown that the requlsite speed cannot be maintained with heavier guns than 6 -pounders. This is also the opinion of a diatinguished officer, Sir Robert Gardiner, who has set this question at rest by saying 'that the necessary quick movements of the horse artilery could not be attained by 9 -pounders; the telling effect of 9 -pounders could not be expected from horse artillery;" and at page 905 states "that feld artillery should montly consist of 9 -poundera, with a proportion of 12 -pounder bowitzar batterien and some rockets, in order to produce a decided effect on the enemy when still at a distance."

The portions of Dr. Scoffern's treatise which will prove most interesting are those in which he discusses the nature of explosive compounds, and the probability of discovering some new composition which will project a ball further than gunpowder. This he does not deem possible, and ably confutes many of the erroneous opinions respecting the applicability of gun-cotton and fulminating silver, by showing that there is a point where the resistance of the atmosphere will equal the projectile force of the ball; and that, to attain the enormous range of which we have heard some six years since-the long range-it will be necessary to obtain not only gunpowder of the requisite degree of force, but "cannon strong enough to withstand this projectile effort-ball strong enough to resist the shock without breaking." In this respect we conceive the Doctor has done good service, by directing public attention to those points in which improvements can be effected, and which are purely of a mechanical nature-the diminution of windage by the adoption of the expansive ball, as in the Minié rife-musket; and burning the whole of the charge of powder by igniting it at the top, as in the Zündnadelgewehr, instead of at the bottom, as in other guns, so as to obtain successive increments of force in driving the ball from the gun. We are at a loss to conceive why these two desiderata were not combined in the new army musket, unless it be from the dislike to improvement and progress to which we have before adverted, but which the exbecretary at war, Mr. Fox Maule, approved in terms which sbowed his contempt for inventive genius, by designating its productions new fangled!*

- See debece in the Houme of Commons on the Ordanace eadmate, March 28th.

A Theory of the Negative Slgn. By Hexry B. Beowning, St. John's College, Cambridge. London: Simpkin and Marshall. 1852.

In this case, as a new system is propounded, we shall throw on the author the reaponsibility of explaining it. He says:-
"The mual method of teachiag algebra is firut to ley down definitions, parely arithmetical, of the aymbols and operations to be employed; iymbolical rules founded on theee defnitions are then dednced and exhibited in their most general form, but the excoptions to their arithmetical application, arioing from the limited character of the principles involved, are either concealed or insufficiently explained : thun, in procestes having a show of demonstration, the student ia led unconsciouly to violate the rales of resconlng ; and when with notions paroly arithmetical he lookn for intelligible resulte, or seaks to verify reaults obtained, megative quastitier appear, and be learna, for the first time perhapa, that addition doen not necenarily imply lacreme, that anbtraction does not neceasarily imply diminution, and that other quantities besides numbern are to be treated by arithmetical rule. Some rongh lden of the meaning of isolated negative quantilies is theo given, and perhapt particular examples to teach the general mode of interpreting negative resulta, and he is told, and required by experiment to convince himself, that the unconacious use of negetive quantitien in procesces supposed and intended to be arthmetical, does not vitiste the results. He in thus led to regard algebra as a science in which, by some imparfecthy anderstood propertien of tha aymbolical rales, contradictions produce condistencies, and errora it reasoning prodace troe remulta; and thus conviction ariting from logical deduction in roplaced by faltb. The object of thin work is to lay down defnitions at once aimple and general, which will not be contradicted by processes afterwards emplojed, and so plece algebra, as far at positive and negative quantitien are concerned, on the sume logical footing an goometry, or eny other science in whlch no ides or procesa in admisaible which the firat principien do not include."

The Art of Figure Drawing, containing Practical Inatructions for ${ }^{4}$ Course of Study in this branch of Art. By Cienales H. Wrigalis Member of the New Society of Water-Colour Painters. London: Winsor and Newton. 1852.
The great fault with most of the authors of elementary works is that they take for granted that the student knows something of the subject they treat of; but this cannot be said of Mr. Weigall. The little work before us is what it professes to bea book for the beginner, and as such is very valuable, for the lessons it gives, unlike those found in most books of this class, are not rendered useless nor superseded by advanced study and increased knowledge. We can canfidently recommend Mr. Weigall's treatise: he has completely aucceeded in his objectnot that of giving all the instruction necessary to form a figure painter, but of producing a cound and excellent elementary work.

Railhoay Maokinery, a Treatise on the Mechanical Engineering of Railways; embracing the Principles and Construction of Rolling and Fired Plant in all Departments; illustrated by a series of plates on a large scale, and by numerous ongravings on wood. By Daniel Kinnear Clary, Engineer. London: Blackie and Son.-Parts 7 \& 8.
We have already epoken of the meritorious design of this work, and are glad to report its satisfactory progress. It takes a very practical character, and none the loss oo in discusaing some very important points in the theoretical working of the locomotive, in which experience is ably brought to bear. The engravings in these numbers chiefly relate to Crampton's locomotive and Adams's composite carriages, and the text to What is called the Physiology of Locomutives. In this the actual working of several locomotives is resorted to, to afford information; and not merely varied results are given, and tabulated observations, but numerous curves and diagrams showing the operntion of each several part of the engine under various conditions. This mode of treatment is entitled to the more respect on account of the evident desire of the author to insure eccuracy, so that some slight errer having found ite way into a portion, the whole of the text in question has been reprinted and aupplied to the mubseribers.

The Machinery of the Nineteenth Century; illustrated from original drawings, and including the best examples shown at the Exhibition of the Works of Industry of All Nations. By G. D. Dempsey, C.E. London: Atchley and Co. 1852.
With the progress of engineering science and its application to many branches of industry, an increased demand has sprung np among the public and profersional men fur drawings and illustrations of varied machinery. Works on particular departments, as railways, have supplied a great extent of information, but still mach ground is unoccupied, and Mr. Dempsey has come forward usefully to meet a great public requirement. The aature of the work will be well enough seen by a reference to its contents. Thus, one of the parts includes Fowler's Patent Drain Plough, Samuel's Patent Locomotive Feed Engine, sandford and Owen's Double Wheel Lathe, Hopkinson and Copés Two-Horse Table Engine, and Speller's Artesian WellBoring Tools. All these are fully illustrated, so that the constructions and working of each part may be well understood; and it wlll be seen how well this work is calculated to serve the practical man, while it supplies the student of mechanical ongineering with copious materials. It is likely to be advantageous to this work that it will meet with purchasers among many of the public interested in special machinery.

Lecture on Electro-Metallurgy, delivered before the Bank of England Library and Literary Association. By Alfaed Smee, F.R.S., Surgeon to the Bank of England, London: Horne, Thornthwaite, and Wood. 1858.
We feel that we cannot do better than recommend this book to those of our readers who take an interest in the subject of whioh it treate. It will afford them the fullent infurmation, together with a considerable amount of annusement. Its literary, apart from its scientific merits, are of a high order, and the illustrations, of which there are many, are of a superior kind.

A Guide to Photography. By W. H. Thonnthwaits. Twelfth Edition. London: Horne, Thornthwaite, and Wood. 1858.
Tha atove is the title of a work which has lately appeared, and which is likely to prove very valuable both to those commencing the study and practice of the art aud to those who are more advanced. It contains an introductory chapter on optics in its relation to the cience of photography, is copionsly illustrated with diagrams, and is, moreover, deficient in those technicalties which so often disfigure and render uselese works of an elementary nature.

The British Journal. London: Aylott and Jones. 1858.
This is a new magazine, brought out with great spirit, and contributed to by first-rate writers. It will prove a great boon to numbers among the reading community who cannot afford the orthodox price of half-a-crown. It well deserves success, and we venture to predict it will obtain it.

MACHINES AND TOOLS FOR WORKING IN METAL,

 WOOD, AND OTHER MATERIALS.By Rev. Rorsex Wiwha, M.A., F.R.s.

[Exchibition Lecture delivered at the Society of Arts, Jan. 28th.]
Tarre are two very desirable objects which I shall proceed to develope, and which, if we take advantage of the intereat excited on the subject of manufacturing science and art by the Great Exhibition, we may possibly succeed in bringing to bear.

The first object is to effect a more intimate union and greatar confidence between acientific and practical men, by teaching them reciprocally their wants and requirements, their methods and powers, so that the peculiar properties and advantages of each may be made to assist in the perfection of the other.

The second object is to promote a more universal knowlodge amongst mechanics and artizans of the methods and tools employed in other trades than their own, as well as of those employed in other countries in their own and other trades.
With respect to the first object, it is no secret that there has always existed an unfortunate boundary wall or separation between practical and acientific men, a mutual distrust or misunderstanding of their relative values, which has deprived them of many great benefits that they might have mutually derived from each other's pursuits. It is true that in muny branches of science, as in chemistry, geology, and botany, this barrier has to a great extent been broken through; the practical man haa found the benefit of scientific generalisations, and the theorist has been compelled to seek the facts upon which his theories are to be based in the mines and manufuctories; thus compelling the two classes to work together and learn to understand each other. Still there remains too much of the ancient contempt for "theory," and of an overweening and couceited value for "facts" and "practice."

In no department of science is this carried to a greater extent than between the mathematical and practical mechanics; and yet the mental process by which the parts of a complex machine are contrived and arranged in the brain of the inventor requires the geometrical faculty, as it is called, to a very high extentthat is to say, the power of conceiving mentally the relations of the parts of complex figures in space. So that, in truth, a man gifted by nature as a mechanist is also qualified as a geometrician; and the untaught inventor, struggling to give form and reality to his conceptions of a new machine, is, in reality practising imperfectly and unknowingly the very geometrical science he despises, and which, if he had acquired ite elements, would at once have shown him how to systematise and arrange his ideas.

Fur the system of mathematics, as it now exists, is the acenmulated result of many centuries work of men thus naturally gifted with the geometrical faculty; and the man who now, directing this mental power to the perfection of machines, professes to exercise it "self-taught," is acting on the presumption that he alune can begin frum the beginning, and dispense with the labours of those men of mighty intellect who worker so long to prepare a system for those who were to come after them. To ignore such labours is a piece of mighty presumption and a pure waste of intellect, which usually brings its own punishment in the loss of time and imperfection of the result. "Self-teaching," in this sense of determined rejection of the previous labours of others, so far from being a source of pride and gratification, is a piece of folly, to use the mildest term, if it might have been avoided; and a lamentable misfortune, if the sufferer has had no opportunity of knowing what had been already previously effected and prepared by others in the aame line.

Of a piece with this is the case of persons who pride themselves upon executing very difficult works with implements not intended for the purpose, such as elaborate carving, which, we are told, was all done "with a common penknife." The experience of carvers of all ages having shown that there are certain forms of chisels and gouges that are proper for this work, a sensible man would certainly not waste his time by using the worst furm of a cutting instrument that he could choose for this particular service. So far from admiring, we should pity the vanity and folly of such a display; and the more, if the merit of the work should show a natural aptitude in the workman: for it is certain, that if he has made good work with a bad tool, he would make better with a good one.

To perfect and reduce to practice the idea of a new machine
is as light efeat of the intallect, and in proportion to the edocation of the inventer, m will his staps be rendered sures, moze direct, and more rapid. An far as the relative motions of the perts of his machine are conserned his natural faculties may aerry him, and probably suggest a variety of constructive methods and cunning devioes by which these may be effected; but, in the nert place, it beeomen neeessary to saloot from these the most appropriate to suatain the forces and resistances,-to eatimate the strength to be given to the different parth, their proper qualities of weight, of lightness, and stifnens, the amount of friction, and a variety of other compler conditions which can only be determined by atatical or dynamical knowledge, but which are necessary to incure the durability, easy and economical working, and practical value of the contrivance.

In the absence of the proper technical knowledge of theoretical mechanics, the proposed machine, if it possess any value, vill only arrive at its perfect and permanent form througla carien of abortive attempts, which, by a succession of failures and repairs, may perhaps lead to the removal of the weak pointe of the contrivance. Those parts which by chance were made nonecesoarily mtroug and heavy, will probably vetain their erigionl errors.

The representations of machines and angines in the collections published in the sixteenth and seventeenth centuries, furaish abundant illustration of theme remarks. In all that belongs to the mere motion of these contrivances, the greateat possible ingenuity and fertility of invention is displayed. But in all that concerns construction, framing and adaptation of form and dimensions to resistances, straing, and the nature of the work, a tatal abeence of principle and experience is manifented; so that it in apparent that these machines would act vary well in the form of modela, but that, if actually set to work, the mont of them would knock themselves to pieces in a very short time.

A profound knowledge of theoretical mechanics is not necessary for all pernons concerned about machines, any more than an elaborate acquaintance with the entire subject of astronomy is needed by every sailor. Yet sailors have no horror of mathemantice, and know very well how to make une of the parts that are prepared for them. And all men who are engaged in the contrivance of meahinery, whether in reducing to practice their omn inrentions, or those of others, should be competently instrueted in the elements of the subject, as well as in the history of machinery; and the artizana themeelves would find their lebours greally facilitated by a knowledge of geometry and mechanics to a limited extent, proportioned to their requirements.

We may hope that one of the permanent results of the Exhibition may be, that men's minds being more forcibly led to the consideration of the subject, a syatem of profesaional education for practical men may be organised, so as to enable every one to obtain just so much as may be necessary for him in his own peaition.

The preparation of such a system of education is difficult, and requires great eare to avoid the error of teaching much that is unnecemaary, and that, in fact, cannot be comprehended, unless by a student who intends to devote much more time, and to onter much more profoundly into thowe branches of atudy than is contemplated for the purposes we are now considering. But we know that difficulties of this kind have been already encountered, and, as it appears, succesfully overcome in France, after failures had teught experience.
I have already said, at the outset of these remarks, that not only do practical men require theoretical knowledge, but that, abo, theoretical men require practical knowledge, a better acquaintance with the difficulties that prectice requires them to lead a hand in developing, explaining, and overcoming. To form a ayatem of education, strictly limited to the requirements of practical men, we must know what these requirements are, and must in imagination place ourselves in the position of these men, to understand the difficulties arising from their occupations, which theory may dispel. We must, in short, select the axamples and illustrations of our applied mathematics from the familier cases of actual machine-work, and endeavour to solve them with the least pomible amount of geometry. It may be worth while to consider a little how this may be attempted.

Every machine is constructed to perform a certain apecific operation, and accordingly contains parts especially applied to the work in question; which working parts are connected by the mechanism in such a manner that each shall move socording to the law required by the nature of the work. One,
perhapa, constantly revolving dowly; another rapidly; and a third, back-and-forwarde, and so on. But the conneeting mechanim by which theee different motioas are tied together may be varied in many ways, and each is comman to all machines that happen to requiry similar co-exintent motions in their working parta.

The nature and principlen of traina of mechanim, by which dissimilar motioas may be then produced, the one from the other, can be taught without any reference to the work or purpoee of machinory, and is, indeed, beat so taught. But to illuatrate and fix the teacher's meaning, it is well to show examples of the application of each motion to some real machine.
Now it must always be recollected, that the merit of a plece of meehanimn may be exceodiggly greet, if conaidered as an example of perre meokaniem-that in, of the ingenuity of profound knewledge displayed in the conversion of one motion into another, although the purpose of the mechine to which it happene to be applied masy be very trivial. But this is not the way in which the warld would judge of machinery; and yet combinations of pure mechanimen that form the eseentisl parte of the most useful and valuable machines in the manufacturing saries, were originally invented for purposes of the most trivial and uselese charaeter.
The differential-box of the bebbin-and-fy-frame was firct contrived for an equation clock-that ia, to enable the hand of a clock to move round the dial in such a way as to point to the true time as shown on a gur-dial. The dide-rest, as we shall presently see, was contrived towards the end of the last contury, to enable the amateur turners of the coust of Frasce to ornament their snuff-boxe with more precise patterns of guil-loche-work. The motions of a mouse-trep may be found in a steam-angine.
Now, in uhowing the practioal application of any given combination of pure mechanism, one machine will do as well at another; but it is better to seleot one whoes purpose and functions are likely to be readily appreciated by the student, that his attention may not be too much distracted from the meoharism. Thug, if I were teaching a mathematical madent the differential mution, I whould meleot the equation clock as the example, because ite purpese depends upon an astronomical principle which forms part of his. proper studies. But if 1 were teaching a mechanist, I should rather take the bobbin-and-fiyframe for my example.
In forming a system of instruction for preotical men, therefore, we may, by a more practical seleotion of examples, be enobled to teach the principlee of mechanica, without greatly altering our present methods. It is true that our theoretical writers are rapidly introducing examples of the actual machinery of our own time into their systems, still theoe bookn are necessarily rather intended to teach machinery to mathemeticiens than to teach mathematies to mechaniats.
It may be remarked that, at least in one branch of mechanice, the "strength of materialy", the value of theoretioal and experimental science has been fully reoognised by prectioal engineers, and the Britannia-bridge may be quoted as a triumphant example of the advantages that arise when theory and practice go hand-in-hand.

The object of machines for working in metal, wood, and other materials, is to work rough material into shape, which may be done in three different ways: (1.) By abrading or cutting of the superfluous portions in the form of chips or large pieces; (2.) If it possess ductility, we knead it, or prese it into form in variuus ways, as by hammering, rolling, drawing, \&ec; (3.) If it be fusible, we melt it, and pour it into a mould. I forbemr to include the producing a given form by joining together pieoes, because each piece must be shaped in one or other of the above ways. The most interesting series of machinee is that which belongs to the first group; and to this 1 must, for the present, confine my attention. It may be interesting to aketch the history of their introduction. Machines of this kind are either general, like the lathe or the planing-machines, which are used for a great variety of purposes, or are especially adapted to the production of a single object of manufacture; in which case they are often contrived in a series, as the block-machinery, the machines for making cedar pencils, and the like, and the introduction of such eapecial machines is of great importance, and has certainly not yet reached its limits. As the maohine of this latter kind are commonly modifications of one or other of the first, the history of the two must be considered together.

The origin of the turning-lathe is loot in the shades of antiquity, and the saw-mill, with a complete self-action, turned by a water-wheel, is represented in a manuscript of the 13th centing at Paria, and is probably of much earlier contrivance. The lathe was, in process of time, adapted to the production of oval figures, twisted and swash-work, as it is called; and lastly, of rose-engine work. The swash, or raking mouldings, were employed in the balusters of etaircases and other ornaments at the period of the Renaissance in architecture, about the end of the airteenth century, and therefore the swash-lathe assumes somewhat of the character of a manufacturing machine. But the simple lathe was mach employed in screen and stall work during the middle ages. The first real treatise on turning is Moxon' (1680), which gives us a valuable picture of the state of the art at that period; and he has preserved to us the name of the engine-manufacturer of that day, Mr. Thomas Oldield, at the sign of the Flower-de-Luce, near the Savoy, in the Strand, as an excellent maker of oval-engines, swash-engines, and all other engines, which shows that such machines were in demand. A few drawings of such machines occur in earlier works, beginning with Besson, in 1569. From the treatise of Plumier, published at Lyons in 1701, we learn that turning had long been a favourite parsuit in France with amateurs of all ranks, who spared no expense in the perfection and contrivance of elaborate machinery for the production of complex figurea. This taste continued, at least, up to the French revolution, and contributed in a very high degree to the advancement of the class of machinery that forms the subject of our present lecture. In our own country the literature of the subject is n defective that it is very difficult to discover what progress we were making during the seventeenth and elghteenth centuries, A few scattered hints only can be collected, whereas in France the great 'Encyclopedie and other works, abundantly illustrated, give the most precise and accurate knowledge of the state of this and other mechanical arts.

Smeaton has recorded that, in 1741, Hindley the clockmaker of York showed him a acrew-cutting lathe, with change-wheela, by which he could, from the one screw of the lathe, cut screws of every necessary degree of finenesa, and either right or left handed. It seems to be implied that this was a novelty, and that Hindley had invented it; and it was soon imitated by Ramsden, and is now universal. At all events, such a machine is not alluded to in the French works already mentioned, and serves to show the advance we were then making in the practical improvement of the lathe.
But the clockmakers, to which body Hindley belonged, were the first who employed special machines for their manufactures. Their wheel-cutting engine has bees ascribed to Dr. Hooke, about 1655, and its use rapidly spread over the continent. The gradual improvement of this machine, and the successive forms which it assumed as the art of construction was matured, forms a very instructive lesson. But herein our own countrymen have largely contributed to its perfection. Henry Sully, an English clockmaker, who removed to Paris about 1718, carried with him, amongst other excellent tools, a cutting-engine, which excited great admiration there. The form of the present French engine is, however, derived from Hulot's machine (about 1763). But our English engines, in which the dividing-plate is superseded by a train of change-wheels, so contrived as to require an entire turn of a latch-handle for each shift, and thus secure against error, is derived from Hindley's engine, which he showed to Smeaton in 1741, and which finally passed into the hands of Mr. Reid of Edinburgh.
The fusee-engine, which is another special clockmaker's machine, must have greatly contributed to the perfection of machines for working in metal.
But the next great step towards the perfection of machine tools was the slide-rest. The slow and gradual way in which this invaluable device acquired the distinct and individual form in which it now exists, is a very curious example of the history of machinery, the development of which at length would occupy too much space on the present occasion, even if it could be made intelligible without drawings. Sufice to say, that although as early as 1648 Maignan published at Rome ${ }^{\text {* }}$ drawings of two curious lathes for turning the eurfaces of metallic mirrors for optical purposes, in which the tool is clamped to frames, so disposed that when put in motion it is compelled to move so as to form true hyperbolical, spherical, or plane surfaces, accord-

[^11]ing to the adjustment, and, that althaugh the fuceo-engines, screw-cutting lathes, and other contrivances already alluded to, employed tools guided by mochanimm, yot the real alide-reets does not make its appearance until 177\%, whea in the plates of the French 'Encyclopédie'* we find complete drawinge and details of an excellent slide-rest, as nearly as poesible identioal with that usually supplied by Mescms. Holtzapfel and other makers of lathes for amateurs. It must have been contrived as little while before this publication; but the mangre deacriptions that accompany the plates leave us completely in the darly with respect to its history. Bramah's alide-rest of $1794+$ is so different and so inferior in convenience that the two could not have had a comnon origin; and we must auppove that the French slide-rest was unknown to that ingenious meohanist, although it is scarcely possible that copies of the 'Enoyciopedie' ahonla not have found their way into our librarian.

But the improvements of the ateam-engine, its applioation to giving motion to the wheels of mills and other machises, the increasing employment of iron, and other edvanoes in the construction of mechanism which ware nom. devoleping themselven, gave men courage to devise and carny ont large and extenive Bchemes for the application of machinery to manufacturea. In our especial department we may record, as an early example, Bramah, who in 1784 obtained the patant for his admirable lock, and immediately set about the coantruction of a series of original machine tools, for shaping with tha required precision the barrelg, keys, and other parts of the contrivance, which; indeed, would have utterly failed unloes they bed boeu formed with the accuracy that machinery alone can give. In Brameh's workshop was educsted the celebrated Heary Maudslay, wha, as I am informed, worked with him from the year 1789 to 1799 ; and was amployed in constructing the principal tools for the locks.

Foremost among the ingenious persons who carried on this great movement must be recorded Brigadier-Geparal SIr Samnel Bentham. \ddagger From his own account it appears, that in 1791 steam-engines in this country ware axtensively employed for pumping mines, and for giving motion to meohinery for working cotton, and to rolling-mills, and some other works in metal; but that in regard to working in wood steamranginee had not been applied, for no machinery other than turning-lathes had been introduced, excepting that mome circular and reciprocatiag saws and working tools had been applied to the purpoee of block-making by the contractors who then supplied the blocke to the navy; even saw-mills for alitting timber, though in extensive use abroad, were not to be found in thin country.

General Bentham had at this time made great progreas in contriving machinery for shaping wood, as is guficiently shown by his remarkable specifications of 1791 and 1793; and he informs us that, rejecting the common classification of works according to the trades or handicrafte for whioh they are used, he classed the several operations that have place in the soorking of materials of every description according to the nature of the operations themselves, and, in regard to wood particularly, contrived macbines for performing most of those operations whereby the need of skill and dexterity in the workman was dispensed with, and the machines were also capable of being worked by a steam-engine or other power. Beaides the general operations of planing, rebating, morticing, sawing in curved, winding, and transverse directions, he completed, by way of erampla, mes chines for preparing all the parts of a samb-window and of a carriage-wheel, and actually showed these and other machines in a working state in 1794 in London.
This led to his appointment as Inspector-General of Naval Works, for the purpose of introducing these and varions other machines into the royal dockyards, which he immediately set about effecting. From this time (1797) the introdaction of machinery for the preparation of blocks and other works in wood at Portsmouth, Plymouth, and other government eatablishments, takes its origin. In 1808 the Ceneral received a most powerful and efficient auxiliary in the person of Mr. Bra4 nel, who in that year presented his plans for the block-making machinery. His services being immediately aecured, and Mr. Heary Maudalay engaged for the construction of the mechanism, the admirable series of machine tools were finished and eet

Trom, x. pls. 37, 88, 84, 85, 86.

+ Weakel edition of 'Buchanan's Mill-work.'

 dreertigg' Fol. A.
to work in 1807, by which every part of the block and its sheavea are prepared.
The completencen and ingenuity of this system, the beauty of ita action, and the novelty of the forms and construction of the whole of the mechanism, excited so much admiration that the whole of the machinery in Portamouth dockyard has usually bean popularly aseribed to Mr. Brunel alone. It must not be forgotten, however, that much machinery for the performance of isolated operations had been previously employed, as well by Mr. Taylor of Southampton, the contractor for the blooks for the navy previously to 1807, as by General Bentham himself in the dockyards.
At this distance of thme it would be impossible to diseover the earact shares of merit and invention that belong to Brunel, Bentham, and Maudalay, in this great work. To the firat we may, however, assign the merit of completing and organising a sytem of machine coola, so connected in serien that each in curce should take up the work from a previous one and carry it on another step to wards completion, so that the atteadant should mavely carry awny the work delivered from one machine and plece it in the next, finally receiving it complete from the last.
Some of the individual meohines in the series had, it is true, been previously contrived and employed. Thus, the self-acting merticing-machine is diotinctly deacribed in Bentham's apecifieation of 1793, so completely to to entitle him to the full credit of the invention of morkleing-meohines, whether by the process of boring a hole firat and then elongating it by a chisel travelling up and down vertically, or by the process of causing the hole to be elongated by the rotation of the boring-bit during the travelling of the work. The same specification describes boringmachiaes, some of which are similar in their arrangements to thoee of the block serfer; aloo the tubular gouge which is omployed in the shaping-machine, and the formation of recemea, by a revelving and travelling tool, for the inlaying of the coaks.

One of the most useful mechine tools that made its appearanoe st the end of the eighteenth century was the circular saw. This had been applied to cotting metal on a small scale, as in the catting-engine, ever since the time of Dr. Hooke; if, indeed, theo early examplea were not more like circular-files than saws. Where or by whem the wood-cutter's saw was put into the form of E revolving diec has not been recorded. It found its way Into this country about 1780, some say from Holland, and was employed at Southampton and elsewhere in wood-mills. Bentham greatly contributed to the practical arrangementa neceocary to give it a convanient form. He decribes and claims the bench now univerally used, with the alit, parallel guide, and aliding bevil-guide, and other contrivances.* Brunel introduced a variety of ingenious and novel arrangements, as well as the mode of making large circular-anws of many pieces. $\dagger \mathrm{Mr}$. Greart almo contrived series of eawing-machines for making canteans, cutting tenons, \&sc.

After the completion of the block machinery it becomes very difficult to trace the subequent improvements. The art of machine-making for working in metal was gradually advancing, but is not recorded in patenta, and very little described in booke. The slide-rest principle was extended, large self-acting lathes constructed, and boring-machines of great precision and improving atructure were called into existence by the necesaity for extreme accuracy in the cylinders of steam-engines. The beat engravings of the machines of this period are in 'Reer' Cyclopmadis; sand in the volumes of the 'Transactions' of the Society of Arts.
No greater proof of the obecurity which hangs over the history of machine tool-making, in the first half of this century, can be given than the unknown origin of the planing-machine for metal. The machine which Nicolas Foeq contrived in 1751, which has been called a planing-machine, has no title to the name, or any recemblance to the modern engine. It is nothing but a heary seraping tool, which is dragged along the bar upon which it is to operate, and rests upon it, pressed into hard contect with it by etrong epringe. It will, therefore, emooth the cerface, and remove small irregularities, as a carpenter's plane does with a board, but it will not produce a correct plane surface, or even make successive cuts. It is a mere plane, and not a plano-creating engine. Neither could the machines patented by Bentham in 1791, and Bramah in 1802, for planing wood, although real planing-onfines, have suggested the engine in queation, for their properties and arrangemente are wholy dif-
ferent. The eagineers planing-machine made its way into the engineering world silently and unnoticed ; and some years afterwards, when its utility became recognised and men began to inquire into its history, various claimants to the honour of its invention were put forward. We can only learn that, somewhere about 1820, or 1821, a machine of this kind was made by several engineers. Messra. Fox of Derby, and Roberts of Manchester, appear amongst the number, and the forms which they gave to the engine have remained permanent. Mr. Clement has also been mentioned, as well as others. It is clear that the inventors were not at all aware of the immense importance of their work, but experience has proved the utility of this machine to be so great that it may be pronounced the greatest boon to conotructive mechanism since the invention of the lathe. Nevertheless, no drawing or deacription of the planing-engine is to be fonnd in any English book until 1833, when the Society of Arts published beautiful engravings of Mr. Clement's machine; the complexity of this, and the unfortunate arrangement of the bed, which he mounted on wheels, has prevented it from being adopted. The French and other continental mechanical journala, much earlier began to give engravings and descriptions of the English planing-machine. In 1899 the "Industriel" has one of the simplest, and the Bulletin of the "Société d'Encouragement," the collections of Le Blanc, Armengaud, and others, contain engravings not only of the planing-machines, but of the other machine tools of all our best English makers, generally accompanied by admirable descriptions and minute details that may well serve as models to our own writers on auch subjects, and at the same time show how much good service is rendered by the superior mathematical and theoretical education of French engineers. Be it remembered, too, that, not content with describing and analysing our machine tools, which they do in a most liberal and admiring spirit, tbey also employ their generalising powers in the endeavour to construct improved forma, and with such great promise of success, that unlese we also begin to spply science to this subject we run considerable risk of falling behind our ingenious neighbours.

The mortising-engine of the block machinery was applied by Mr. Roberte, of Manchester, to the formation of the key-ways of cast-iron wheels, and also to the paring, or planing by short strokes, of the sides of amall curvilinear pieces of metal, such as cams, short levers, and other pieces that do not admit of being finished in the lathe. Thus, under the name of siotting and paring machine, a new and generally useful machine tool sprang ap; and subsequently another, derived from it, has been produced, and apparently with equal success, under the title of a ahaping-machine. It is, in fact, a planing-machine, in which the tool is attached to the end of a horizontal bar, which is moved to and fro, so as to plane, with short transverse strokes, a piece of work fixed on a complex adjusting-bed, or on a revolving mandrel, so as to recaive the action of the tool.

The existence of suoh principles lead us to the hope that machines much more comprehensive, and yet simpler in form, will be devised for the same purposes, by means of which the construction of machinery in general will attain to greater perfection, and machine-tools be introduced into workshops of a smaller character than at present, in the same manner as the lathe.

In America, a variety of contrivances are employed in workshops to facilitate and give precision to ordinary operations; as, for example, the foot-mortising machine for wood. The earliest contrivance of this aseful tool (the offspring of Bentham's mor-tising-engine), appears to be in a Pennsylvanian patent by John M'Clintic, in 1827,* since which the machine has got into general use in America, and has consequently been the subject of numerous patents for minor arrangements. One of these, by Page, was engraved in the 'Mechanica' Magazine' (1836, vol. xxvi., p. 385), and thus introduoed to English workmen; and in the last year Mr. Furness, of Liverpool, has patented some improvements in England, and endeavoured to introduce the machine. It formed a very intereating object in the Exhibition, together with other American contrivances fur boring, tenoning, and such like operations, which the peculiar conditions of that country have called into existence, by creating a market for them.

In reviewing the comparatively slow progress of machine tool making, it will appear that in this, as in other branches, steps in invention that, when once made, appear exceedingly simple

THE CIVIL ENGINEER AND ARCHITECT'S JOURNAL.
and obvious, are often the mont difficult to take. The chance that auch stepa will be made is inereased by bringing to bear upon them the greateat number of heads; for the peculiar faculties or acquireraents of one man, or set of men, may serve to casry on an invention to a certain point at which it is prepared for, and requires those of anuther set of men who may carry it further. In the old time, the exceeding secrecy and jealous oare with which every new contrivance was guarded and watched, retarded the advance of machinery to an extent that we can hardly believe. Each man was working in ignorance of his neighbours' improvements, and every art was indeed a mystery. And not only did these difficulties obstruct the progress of machinery, but led to the enormous expense of constructing new machines. We know that the art of construction has undergone a complete revolution since the block machinery was made, but we can scarcely eatimate the prodigious amount of labour and thought that was required to give existence to that machinery, which, indeed, could never have been effected without the resources of the nation in the then imperfect state of the art. To these retarding causes must be added the jealousies of workmen and their dislike of new methods.
I have already alluded to the advantage of promoting a more universal knowledge of each other's methods amongst the mechanists of different branohes and countries. A very interesting part of the Great Exhibition was the collection of strangelooking tools from France, Germany, and elsewhere, differing in their forms and handles and mode of operation from those employed for the same purposes by our own workmen. Without doubt some of them might afford useful hints; for example, the universal employment of the narrow frame-saw on the continent for work that we perform with broad-bladed saws, stiffened with brass or iron backs, might lead our workmen to consider whether, after all, our practice is not carried too far in this respeot.

But the facilities for working in metal, and its general introduction into all kinds of frame-work where wood was exclusively employed, as well as the substitution of cast-iron for brass, has made it imperative upon persons of all trades which are affected by these changes, to learn the management of these new materials, if they desire to profit by the advantages consequent upon their employment. Thus, the philusophical instru-ment-makers formerly employed brass for their metal-work, and constructed their machines, even the largest astronomical instruments, in a great number of pieces screwed together. We have now learnt that stability is best insured by employing fewer pieces, and that cast-iron is on all grounds a better material than hrass. But the tools and methods of working in castiron are wholly different, and therefore the philosophical instru-ment-makers must turn engineers, and employ planing-machines and the like. The making of large clocks, and various other articles of common use, must undergo the same change. It is useless to say that thene men can go to an engineer's shop to get jobs done for them as required. Buch a method can only lead to a partial and imperfect employment of the new resources and advantages which are to be developed. For instead of a full and complete adoption of these novelties, the use of them will be necessarily evaded in every case where they can be diapensed with, unless the master-workman can employ them freely as his own.
In machinery we have to deal with every kind of material, and to avail ourselves of the peculiar properties of all in their sppropriate places; and thus a skilful engineer should be familiar with every kind of mechanical manipulation and material, from a sheet of card-paper to an iron-bar, and ought to know as well how to hem a pocket-handkerchief as to rivet a boiler. It is of no use for him to employ workmen of any trade in carrying out new combinations, unless he himself know how to instruct them. A musician who is ahout to compose a symphony need not be able to play on the violin like Paganini, or on the piano like Thalberg; but he must be well acquainted with the powers and manipulation of these and every other instrument before he can write passages that will bring out their effects and be adapted to performance. And, in the same way, a man who intends to devise and carry out a new machine muat be conversant with the peculiar properties and mode of manipulating every kind of material, that thus he may aelect and avail himself of them to the best advantage.

ORVIETO CATHEDRAL. (Fith an Engraving, Plato XIII.)

Op the many hundred travellers who pass annually on the two high roads between Florence and Rome, very few take the trouble to turn even a few miles out of the main route to visit the many interesting cities which lie a little off the roads. Such are Volterra, San Gemignano, Toscanella, Citta della Pieva, Chiusi, Gubbio, Todi, and Orvieto. The cathedral of the latter town shares with that of Siena the reputation of being, after Milan, the finest Gothic edifice in Italy. Btilt by the same architect, Lorenzo Maitani, these two structures present a great similarity of style. Both are remarkable for the richness of their façade, for the use of semicircular arches in the interior, and for the employment of striped bands of black and white marble. The façade of the cathedral of Orvieto is perhaps, at first sight, the most gorgeous thing in Italy. Its yellow, white, and red marbles, its glowing mosaic pictures, its bronze doors and ornaments, as 1 first saw them in the rays of an August sun, present a perfect blaze of vivid colours most harmoniously combined, which in a northern atmosphere would only look gaudy. But if the eye is delighted at first sight with the colour, it soon becomes disgusted with the forms. The cathedral presents in section the usual nave, aisles, clerestory, and low-pitched roof; this is masked in front by three sham high-pitched gables, filled with mosaics, and ornamented with orockets, finials, and ugly square turrets between. These are avowedly shams, and are worked fair at the backs. These sham gables are the curse of Italian Gothic. They were evidently brought from the north, and the Italians not requiring a high-pitched roof, had recourse to the bungling expedient of a false gable: these are common throughout. All the churched in Assisi (which are avowedly of German origin), have them; as also Siena and the churches at Lucca, including Mr. Ruskin's favourite front, which is entirely a sham gable-rather a curious illustration of the Lamp of Truth.

Immediately below the centre gable is a rich wheel-window, inclosed in a square, in a very picture-frame manner; and below, three large doorways, much disfigured with the deeplycut spirals of the columno-another curse of Italian Gothic. All the details of this front are very rich, and generally extremely elegant. The most remarkable things in this front are the really wonderful bas-reliefs of the scholars of Nicholas of Pisa, with which the pilasters separating the doorways are covered. These represent the genealogy of Our Lord, the Last Judgment, together with a Paradiso and Inferno.

The flanks are extremely beautiful, the chapels are formed into a series of small apsides, with a single traceried window between each-a most elegant arrangement; the clerestory consists of single lancets. The beautiful cornices, figs. 1, and 2 , which we have engraved, run round the aisles and clerestory. The interior is extremely grand. We have engraved the piers and arches of the interior, with the small gallery round. Fig. 3 represents a section of this gallery, and fig. 4 the base. The general effect is perhaps too gloomy-that is to say, it is all dark, with no blaze of light at the east end, as in our cathedrals. The mode of glazing is worthy of observation. The windows are partly filled fith stained glass, and partly with semitransparent alabaster, producing a beautifully subdued golden light.
It is not our province to treat of painting and sculpture, we can therefore only allude to the frescoes of Luca Signorelli, and Fra Angelico, and the statues of the Apostles placed against each pillar, by the scholars of Michael Angelo.

Alfred Bailefy.
Liverpool Water Supply.-The first contract for putting in the main-pipes for conveying water from Rivington is now being proceeded with, on the line of road from the vicinity of Liverpool towards Stanley. The contract has been entered into by a Mr. Crump, from Derhyshire, the distance taken being a mile and a-half. The necessary cutting has been made, and the ponderous tubes, which average 2 tons each, are raised and lowered to their beds by means of a powerful crane, running upon a railway placed longitudinally above the cutting. They are afterwards soldered at the joinings, and rendered completely water-tight. The pipes are 4 yards in length, and 3 feet in diameter inside.

> Cornice of Aisle.

Nave Piers and Arches

Section of Gallery and Cornce

.

IMPORTANCE OF SPECIAL SCIENTIFIC KNOWLEDGE TO THE PRACTICAL METALLURGIST.

By Jomer Prect, M.D., F.R.S.
Introductory Lecture to the Course of Metallurgy, delivered at the Government School of Mines and of Science applied to the Arts.
Mernhumay, as at present understood, is the art of extracting mekals from their orea, and adapting them to various purposes of manufacture. This definition, however, is not rigidly axset, nor can I frame one in few words that is so. The etymology of the word "metallurgy" would seem to imply a more cxtended meaning, and include all the arts in which metals are wrought into objecte of utility or ornament; but this is not the meaning now attached to the word. The metallurgist receives the ore from the miner freed as perfectly as posaible by mechanical proceses from foreign matter.
The knowledge of the principles of metallurgy is the science of metallurgy. But ae the phenomens observed in metallurgical procesees relate to physics and chemistry, and as mechanical appliances of various kinds are employed in these processes, it follows that chemistry, physics, and mechanics must be the foundation of the science of metallurgy.

The history of metallurgy dates from remote antiquity; and, as the French author Le Play currectly observes, "most of the fundamental phenomena of metallurgy were discovered and regularly applied to the wants of man before physical sciences properly so called existed." Metallurgy may, indeed, be said to have given birth to chemistry.
As the word "science," in relation to a manufacturing art, is often used by persons who seem to have no precise idea of it, I shall first adduce a simple illustration of its meaning. There is an ore of copper, composed of copper, iron, sulphur, and silica. When such an ore is subjected to a series of processes consisting of heating it with the access of air, melting, \&c., copper is separated in the metallic state. The sum of these procesees is termed the smelting of copper. Now, in this operation of smelting, various chemical changes take place; the culphur combines with the oxygen of the air, and is evolved in a geseous state; the iron also combines with the oxygen of the air to produce oxide of iron, which combines with the silica to form a alag, while the copper is separated in a metallic state. We have thus several facts, which are proved by chemical evidence. These facte may, when properly arranged, be said to conatitute the acientific knowledge of copper smelting; and that knowledge implies necessarily a knowledge of the chemical relations of copper, iron, sulphur, oxygen, and silica to each other. There are also many other facts connected with coppercmelting; but thowe which I have selected are sufficient for the present purpose of illustration. Now, the man who conducts the process of copper-smelting in ignorance of these facts has simply an empirical knowledge, in contradistinction to a scientific knowledge, of the process.

That a scientific knowledge of the procesa may be important to the man who directs copper-smelting works would hardly seem to require an argument. It may, however, be objected, that the process is often satisfactorily conducted by men whose knowledge is purely empirical. Now the objection would have nome weight if it were admitted either that the process is incapable of further improvement, or that the ores upon which such men are accustomed to operate were not liable to vary in composition. But auch an admission would be a purely gratuitous atumption; and the ores do occasionally contain unexpected ingredients, which, in the event of precisely the same process of smelting being pursued, would tend in a very sensible degree to deteriorate the quality of the copper produced. Hence, ignorance of the presence of such ingredients on the part of the amelter may occasion pecuniary loss; and, in iguorance both of the causes which thus may injure the copper and of the scientific knowledge of the process of smelting, he is certainly not in the most favourable condition for devising an appropriate remedy. It is true that by a series of blind trials a suitable modification of the process might be stumbled upon; but it is equally true that with the aid of special scientific knowledge there is much more probability of arriving at a solution of the dificalty with far greater economy of time and money.

In support of the general proposition, that special scientific knowledge is important to those who direct metallurgical proceses, 1 shall now present to your notice several cases, most of which I can myself substantiate.

A party purchased a large quantity of a particular ore, at the cost of many thousand pounds. Another party purchased at the same time a much larger quantity of the same ore, at the same price. To treat this ore profitably, special scientific knowledge was essential. The former party possessed that knowlodge, and gained thousands by hin purchase; bat the latter had it not, and lost money.

A manufacturer purchased some metallurgical works, and for certain miscellaneous articles on the premises, including a heap of waste product, gave only a very inconsiderable sum. Out of that heap, which in ignorance had been thrown aside as worthless, he realised sufficient to pay for the works, the price of which amounted to several thousand pounds.

An eminent copper-amelter informed me that his ancestor, in purchasing some old copper-works, obtained in value more copper from the furnace bottoms than the purchase-money. In this instance, perhaps, negligence might be ascribed to the seller, but in that last mentioned the error was the result of sheer ignorance.

In May 1841 a patent was granted to William Turner Green and James Gregory, of West Bromwich, Staffordshire, for "certain improvements in the manufacture of iron and steal." The invention mainly consisted in soaking the pige of iron in cold water previously to their introduction into the puddling furnace.

Again, a short time ago a patent was obtained for plating certain metals and alloys with a particular metal, and a manufactory was erected at a considerable outlay to carry out the invention. It was alleged that the importance of the application consisted not only in the whiteness of the metal employed, but in the economy of the process. Now the metal in question was at that time at least thirty times dearer than tin, and was produced only in small quantity. But the inventor was asnguine, and considered that an ore containing forty per cent. of it existed in abundance, whereas the fact in, that only a few ounces of such an ore have ever been discovered, of which specimens are rare even in mineralogical cabinets; and the ores which contain it and occur abundantly in nature do not yield more than two or three per cent. of it. This case, it is true, may be regarded rather as indicative of ignorance of mineralogy than of metallurgy; still it may be appropriately introduced under the present head, as an argument for the necessity of the diffusion of accurate scientific knowledge amongat metallurgists. The inventor speculated on the probability of a demand creating an adequate supply of the metal at a comparatively small cost; but special scientific knowledge would at least have prevented the precipitate investment of capital on such a speculation.

These facts should be a warning to the numerous clase of inventors in this country, whose naturally sanguine temperament is liable to disturb the exercise of their judgment. The published records of patented inventions, indeed, furnish a striking commentary on the proposition before us. The diffusion of the scientific knowledge relating to metallurgy woulr' often prevent the reckless expenditure of money on worthless patents.

Very striking instances in support of the same proposition may be derived from the important branch of metallurgy termed "assaying," or the art of determining the quantity of metal contained in its ores, alloys, or certain other compounds. Without a correct assay, it is ohvious there can be no certain knowledge of the value of an ore; and without that knowledge, the purchase of an ore by the smelter is merely a speculation. Now by great practice upon some particular class of ores, the merely practical assayer may arrive at accurate resulta, and yet be entirely ignorant of the science of his art, or, in other words, of the chemical properties and relations of the elements upon which he operates. But if, as I have already mentioned in the case of the copper-smelter, he should meet with an ore containing foreign and unexpected ingredients, which interfere with the accuracy of the method he had been accustomed to practise, he would not, from his want of scientific knowledge, be able to surmount the difficulty, and would, consequently, from his necessarily erroneous result, seriously mislead the smelter respecting the value of an ore. Or he might equally mislead the geller who relies upun his judgment, either by underestimating the quantity of the particular constituent which be seeks to determine by his assay, or, by overlooking another constituent, it may be of great value.
An ore of cobalt from North America was assayed, and
alleged to contain twenty por cent. of oxide of cobalt, which at the time was worth about 30%, a-pound. The assayer, however, had made an important mistake; for what he had estimated as oxide of cobalt consisted of oxide of cobalt and oxide of manganese, in the proportion of two parts of the former to three of the latter, the oxide of manganese being in this instance not only utterly valueless, but positively injurious.

An experienced copper-assayer, on asabying a particular ore, obtained what he bolieved to be nickel-speise-that is a compound of nickel and arsenic. Now nickel is a valuable metal, being worth at the present time 8a. a-pound. But the supposed speisa contained not a trace of nickel, and was proved to be only a compound of iron and arsenic, a comparatively worthlesa product. On the ground of this assay, I believe a quantity of ore had been dressed for the market.
The following is a curious and remarkable instance of the importance of nccurate chemical knowledge to the metallurgist. The Upper Hungarian Mining Company emelted, during several years, a species of copper-ore termed fahlera, in ignorance of the fact that it contained mercury, which was ultimately discovered by the accidental observation of a workman. Means were then adopted to collect the mercury, of which the present annual produce amounts to 30,0001 . in value.
Not long ago I visited a tin-plate manufactory. In the first part of the process of tinning there is constantly formed a black powder, which from time to time is removed from the surface of the melted tin. On interrogating the manager, who conducted us over the establishment, it appeared that he was ignorant of the nature of that powder, which, on subsequent axamination, was found to contain sirty-two per cent. of tin in a finely divided atate. He suspected that it contained silver; but his knowledge was limited to the fact that, whereas it was formerly thrown into the adjoining river, it was afterwards sold for a few pounds a-ton, but now realised ten times as much.

Occasionally a large sum of money may depend upon an asmyer posessing a profound knowledge of certain departmenta of analytical chemistry. Thus, not long ago there was a dispute between the Bank of England and the Mint reapecting the re-coinage of a million of sovereigns. On melting the gold at the Mint several pounds weight of a metal were obtained which had not previously been detected by the aseajer. That metal was chiefly iridium, which had been simply mechanically diffused through the gold, and which, in the etate in which it was separated, was comparatively valueless. The question then arose whether the Bank or the Mint should be responsible for the loss; and it was some time before a satisfactory conclusion was arrived at."

It would be impossible to insist too strongly upon the importance of assayers generally receiving sound instruction in the specific department of analytical chemistry which relates to assaying.
Scientific, apart from practical knowledge may in metallurgical establishments lead to most erroneous and occasionally ruinous results. Metallurgy is an art, and, like every other art, can only be acquired by experience. In many processes success depende upon the discrimination of appearances so slight that the eye, in order to detect them, requires to be educated by cione and constantly repeated observation. No description, however accurate and minute, would enable a man, though a shrewd observer, to recognise at first such appearances, and consequently to conduct processes in which success essentially depends upon their detection.
The descriptive expressions occasionally used by the practical man may appear to be vague, and he may not be able to define them in language very intelligible to us; yet we may generally be sure that they express correctly the result of his observation, and have a meaning well understood by himself. For instance, on inspecting a blust-furnace in Staffordshire, I perceived that "tap-cinder" (slag from the puddling-furnace, rich in iron) was introduced into the furnace with a mixture of iron ores, not then a very nnusual and now conmon practice. I accosted the foreman of the works, and asked him his opinion concerning the effect which he supposed the use of "tap-cinder" would produce upon the iron. His reply was, that "cinder has no nature in it." Now the term "nature" expressed his experience of the quality of the iron when "cinder" and ore were smelted together; and, as I knew what that quality was, I knew exsetly what was meant by the term in question.

[^12]The knowledge of the science of a matallargical procems would of itself be a very insufficient qualification for the man who directs the manufactory. Let a chemint, for example, who may perfectly understand the theory of copper-smelting, but who is entirely ignorant of the practice of the art, attempt to take the management of copper-smelting works, and he would find himself embarrassed at the outset: he would not be able to form a correct judganent in a single step of the proceas, Without experience he could not decide whether the requisite degree. of heat was produced in any of the furnace, or whether any of the various operations of smelting had been properly effected. Again, let the chemist who has received his education oxclosively in the laboratory, and who, consequently, has only been. accustomed to deal with small quantities, be simply required to diseolve a ton of copper in sulphuric acid, and at firat he. would not be a little perplexed: he would find how different the manipulation of the laboratory is from that of the manufectory; he would have to consider of what material he ahould constrect the vessels in which to effect the solution,-of what form and size they should be,-and in what manner heat could be beot applied; only the chemist who is himself practically scquainted. with the manufactory will well undergtand the force of these remarks. I have frequently conversed with chemists whe have supposed that their chemical educatiou alone rendered them at once fully qualified to conduct operations on the large scale; and who have expressed themselves desparagingly of the preotical man. Let such men attempt to conduct the manafactory and, in all probability, it would soon be seen that the price of their obtaining the requisite practical skill would be heary low to the proprietors.

We are thus led to the conclusion, that while soientific knowrledge alone will not qualifiy a man to take the management of metallurgical works, so neither is empirical knowledge the only qualification desirable in such onses; it is clearly the combination of scientific with practical knowledge that will render the managers of such works in the highest degree competent for their responsible positions. And, accordingly, we find that our manufacturers have bogan to appreciate the importance of this combination of knowledge in their mangeers. I could mention several establishments in which the sid of science has been sought with no inconsiderable advantage. I. know that men who have received a metallurgical education en the continent are now employed in metallurgical eatablishments in this country; and I know many instances of English studente soeking that instruction in mining and metallargy sbroad. which had not been provided for them at home. It is from the combination of scientific with practical knowledge, eqpecially. in metallurgical establishmenta, that we may remsonably expect improvements in metallurgy. The seientific man, without practical knowledge, is likely to project schemes which, however plausihle thes may appear in theory, could not be profitably carried out in practice. Without experience of the working ofprocesses on the large scale it would be impossible to form eves an approximate notion of the cost of production; and the ignorance of financial considerations which the scientific rasn has not unfrequently displayed has, I doubt not, in many casee caused the practical man to undervalue, or even deny the advantage of the applications of science to manufacturing ert. On the other hand, the practical man has often elicited the contempt of the scientific msn, by propounding unphilosophioal and sometimes absurd explanations of the procesees which he conducts; and it must not be forgotten that the practical man, in spite of his purely practical pretensions, will generally, and, according to my experience, always be found ready with an explanation of any phenomena he may chserve: indeed, the practical man, paradoxical as it may seem, abounds in theories, often in the highest degree wild and visionary. From theee considerations, the importance of the combination of acientific with practical knowledge will more clearly appear.

Although the argumente which I have already advanced may be regarded in some measure as a reply to the objection which, in a former part of this discourse, I anticipated might be urged against the utility of providing public instruction in metallurgy in this country, fet, from its prima facie plausibility, it requires a more specific examination. The objection, it will be remembered, is that as in Great Britain the practice of metallorgy has attained an unparalleled degree of development, and as this development has been effected in the absence of public instruction in metallurgy, such instruction must now be unnecessary.

By development I mean magnitude of production; but magnitude of prodaction is no certain proof of correspondingly great still. Let us consider first the special natural conditions under which the development in question has occurred. The largest and most important item of the metallurgical produce of Great Britain is iron; and it is precisely that item which, on comparing the amount of the metallurgical produce of Great Britsin with that of other countries, makes the balance so great In favour of the formar. Now, the ores of iron exist in extraordinary abundance throughout various districts of this country; and, what is very important in the consideration, the fuel necesary to the emelting of iron exists also in equal abundance, and, for the most part, in close proximity to the ores of iron. Wo have thus two conditions specially favourable to the production of cheap iron-abundant ore and fuel occurring together; and to these may be added the third condition of densenea of population, and, as a consequence, cheap labour. In ne other country, except perhaps Belgium, do we find an equally favourable combination of circumstances for the prodection of ahoap iron, not even in North Americe, where rich coal-fields extend over a vast area, and the ores of iron exist in great profnsion; for, generally, as the two do not occar together, the expence of carriage must necessarily be considerable. Moreover, an the country is as yet but comparatively thinly inhabited, the expense of labour is greater than in Great Britain. In respect, then, to the capability of the production af beap iron, our own country is at present unrivalled.

But the mere smelting of iron, as compared with eome other metallurgical operationg, is a simple process. After the introduction of the proper admixture of ores, limestone, and fuel into the bhat-furnace, the only eatisfactory indication of the working condition of the furusce is presented by the character of the slag en it flown out at the bottom. The quality of the motal produced from the same furnace, comparatively under the mene conditione, varies from time to time, even in two succeeave tappings; and oven in the same tapping there may be aeveral dintinct varieties of metal. Hence, as in the process of irom-melting there in but comparatively little opportunity for observation and interference on the part of the manager, and as under apparent identity of condition the product may vary mansibly in quality, the operation itself cannot, in respect to the oppertonity for the exercise of akill, compare with many otber metalhurgical processes.

But it must not be amsumed that because this branch of industry has been generally carried on in this country by men who have not a scientific knowledge of the process, it would not with the aid of euch knowledge have advanced to a much higher degree of perfection, whether as relates to economy of production or excellence of quality. Nor must it be assumed that becanse the production of iron (and in speaking of iron at the prement time I mean pig-iron) appears to be a simple procens, and becanse the men who conduct that process have frequently mo scientific knowledge of it, science has done nothing towards the development of the smelting of iron in this country. Although we may not be able accurately to trace the history of jmprovement in many inatances, yet we may be assured that the improvements which have from time to time been effected in the melting of iron have not been altogether the result of accident or blind trial. The observation which I have just made respeoting the production of pig-iron will also apply to the manafacture of bar or wrought iron, with the exception that in the latter case there is apparently much greater scope for the exarcise of skill on the part of the workman and manager.
There are many problems of the highest interest in relation to the manufactore of iron and other metals, at the solution of which we ahall, most probably, only arrive by the aid of science. I have already alluded to the production of a slag termed "tap-cinder" in the conversion of pig or cast into bar or wrought iron. Of this slag thousands of tons have, until quite recently, been thrown away every year, notwithatanding it contains a larger quantity of iron than exists in the common argilleceous or most abundant ores of iron; and when it is introduced into the blast-furnace with the ores of iron it tends in a special manner to deteriorate the quality of the iron produced. By the aid of analytical chemistry we are, I believe, ensbled to determine why the use of this slag injures the quality of the iron; and thus, having a correct knowledge of the canse, we are in a better condition for devising means to counteract the defect than we should be if that cause were unknown to ua.

We import annaally a large quantity of foreign iron, eapecially for the manafacture of cteel. In 1850 the importation amounted to 34,066 tons the value of which may at least be estimated at $500,000 \mathrm{l}$. Yet, I presume, if a method should be discovered by which British iron could be satisfactorily subatituted for that amount of foreign iron, auch a discovery would be regarded as advantageous to this country. Many attempte have been made to effect this substitution, but hitherto with only partial, though, I may add, incressing success. Particular varieties of iron are required for the production of particular qualities of steel; and we are still, in great measure, ignorant of the precise chemical differences between these varieties of iron. But without a knowledge of these differences, the determination of which will require the highest analytical akill of the chemist, we can only make blind attempts to solve the problem in question.
In the smelting of copper there are many points of considerable practical importance which are still very obacure, and which will certainly never be elucidated without the aid of science. Notwithstanding that copper-smelting has been conducted in this country, during a long period, on a scale of unexampled magnitude, there is one point in the last part of the process-the operation of "poleing"-which is even not yet clearly understood: 1 allade to the effect of "over-poleing." Researches have, it is true, been made on this subject, but stilh, as it appears to me, without a decisive result. Again the quality of the copper produced, not only in different smelting eatablishments, but in the eame establishment, at different times, has been found very sensibly to vary in certain respects, especially of late, in spite of the efforts of the smelter to produce a metal of uniform quality. 1 know , indeed, that in some instances even smelters of great experience have taken apecisl precautions to attain this end, but still not with constant success. Now it is clear, I think, that in such cases chemistry alone will enable us to determine the causes of this variation in quality, and without a knowledge of these causes the smelter can merely grope in the dark after means to obviate the defect. Already, I know that in some inatances chemistry has rendered essential service of this kind. The variations in quality to which I have alluded are frequently not in the slightest degree indicated by the appearances of the metal, and ouly beoome manifest in the different proceses of manufacture to which copper is subjected; as, for example, in rolling, hammering, and stamping, in dipping, and in the peculiar and sometimes very striking defects which it occasions in alloys. In illustration of the variations in the quality of copper, I may mention the fact of the very different degree of corrosion by sea-water, observed eapecially during the last few years in the copper sheathing of the vessels of the navy.
The smelting of lead would also appear to present a promising field for the exercise of special scientific knowledge. In this country two methods of smelting are practised, and in both the loss of lead from volatilisation is very considerable, amounting to ten per cent. or more. Accordingly, flues of great length, sometimes exceeding a mile, are constructed in order to effect as completely as possible the condensation of the lead smoke or fume. Other contrivances with the same view have been adopted; the smoke has been caused to pass through water by means of powerful exhausting-pumps, or water has been projected in a finely divided state, like rain, into chambers through which the smoke has been made to circulate; and other methods have also been tried with greater or less success, but all attended with no inconsiderable outlay. Attention should rather be directed to the improvement of the smelting process itself, by effecting, if practicable, the separation of the lead at a temperature sufficiently low to prevent volatilisation. But such an improvement, admitting its practicability, is far more likely to be made by the smelter, who, with a practical knowledge of the process, combines the special scientific knowledge relating to lead-smelting, tban by the man who possesses only the former.
In tin-smelting, also, we moet with some interesting and important problems, which would seem to require the aid of chemistry for their solution. For example, in the manufacture of the best tin-plates, the tin required is of the best quality, and has, therefore, the highest price. Tin of inferior quality, and of leas value by some pounds per ton, is unfit for that purpose. Chemistry will alone explain why one kind of tin is suitable and another not; and when the causes of the difference between one quality of tin and another are known, it is not improbable that a method may be devised for converting tin of
inferior into tin of superior quality, the difference of price between theee qualities allowing a considerable margin as manufacturers term it, for the expense of a procese by which that conversion might be effected.

I might also, with equal propriety, allude to the manufacture of sinc, which, it is to be hoped, is not incspable of further improvement. There is at present a greater difference between the value of the ores of sinc and the ginc itself than in the case of any other metal.

Another very promising field for the exercise of science in relation to metallurgy is presented by the various metals which have not yet received any extengive practical application. Tungsten, for example, is in this category; it exista in nature in considerable abundance, and is frequently found associated with tin ore, from which it is separated as completely as practicable, and thrown aside as worthless. It is true that attempts have recently been made to employ certain compounds of the metal in dyeing, as had previously been done thirty years ago; but these attempts have not, I believe, as yet been attended with any great success, or a demand for tungsten would have been created in consequence, which is not the case. Failures, however, should only have the effect of stimulating to further efforts in respect to the application of this metal, which, I confidently predict, will not much longer continue comparatively worthleas substance. Very substantial pecuniary emolument will, certainly, be the reward of the man who shall discover the mode of rendering tungsten extensively subservient to the arts. It is only a few years ago that, in respect to commercial value, nickel occupied much the same position as tungsten at the present time; but now it is worth 8s. a-pound, or about ten times more than copper. It is the whitening constituent of the alloy known as German silver. The silver-platers who practise the old method of plating by soldering, as well as those who deposit the silver by the agency of voltaic electricity, employ this alloy extensively, the advantage being that when the silver is worn from any part of an article, the alloy beneath sufficiently approximates to silver in whiteness as to deceive the eye respecting the wear. Some years ago, a compound of nickel, termed pottery nickel, was obtained in the manufacture of compounds of cobalt for the use of the potters, which was sold as low as three-halfpence a-pound, whereas now it would fetch 38. 6 d .

Titanium is another metal which, like tungsten, evidently existe in large quantity in nature, but which has hitherto only been applied to a very trifling extent in the arts, especially as a colouring ingredient in the manufacture of artificial teeth. I confess I am no believer in useless metals, and, therefore, with equal confidence repest the prediction which I uttered in respect to the application of tungsten. Then, again, I may mention molyhdenum, the only practical application of which is in analytical chemistry; and cerium and vanadium, which, if required, there is reason to believe might be obtained in some quantity. We must not disregard a metal on account of its rarity; for some of the rarest metals have of late been applied with great advantage. I may mention, for instance, the native alloy of osmium and iridium, which only a very short time ago was confined to the laboratory of the ecientific chemist. The alloy occurs in amall grains, so intencely hard that the hardest file will not make an impression upon them. The tips of the so-called gold pens are made of these grains; but for this purpose only the larger grains can be employed. The demand for these grains in the pen-manufacture is now considerable, and the price ranges between six and eight pounds an ounce. Iridium has also been applied as a black pigment in painting on porcelain. In intensity of blackness it is said to exceed all other black porcelain colours, which by the side of the iridium-black sppear more or less grey. It is only within the last few years that uranium has been employed to produce the delicate canary yellow colour in glass with which we are all familiar; but the demand for that metal is at present so considerable that there is a difficulty in supplying it. Another similar instance of successful recent application is afforded by cadmium, which occurs in small proportion in certain ores of zinc. This metal in combination with sulphur constitutes the finest and most durable opaque gellow colour with which the artist is acquainted. The metal itself has also been used in conjunction with mercury and tin for filling teeth; but certain disadvantages arising from its use have caused it to be abandoned for that parpose. I have expressly been somewhat minute in detailing the preceding instances of the successful application of metals not long since regarded as valueless to the arts, in order to excite and stimu-

Lete efforts to promote the application of the other metals which I have mentioned as still without useful application; and moreover, to encourage the hope of success by showing how extensive a field for application is presented in the various arts.

It will doubtless be remarked, that I have considered the subject of instruction in metallurgy almost exclusively in ralstion to practise, or in other words, to speak plainly, in a pounds-shillings-and-pence point of view. I have done 80 for special reasons. This Institution professen to be a School of Mines, the chief object of which should be to render science subservient to manufacturing art; or, what is equivalent, dieguise it by words as we may, to make science remunerative. Our practical metallurgists may be men of large hearts and philanthropic views respecting the application of science to the benefit of man; but if we wigh to urge upon them the importance of combining scientific with practical knowledge, we must demonatrate that that combination will be of pecuniary advantage to themselves. What care they, if doficient of a taste for ecience, about any novel and ingenious application, if it cannot be made productive of pecuniary emolument to themselves? What Inducement can they liave for investing ospital to carry into practice an invention, however beantiful and attractive in a scientific point of view, apart from the consideration of gain? If we address men of business on the applications of science, we must take the business view of the matter; and, as from the very nature of my subject, I must be supposed to be speaking to men who either are or may become interested in metallurgical establishments, I have falt it incumbent upon me to speak as I have done.

But let it not be imagined that the atudy of metallurgy has no attractions for the man of science: so far from that being true, it is a study abounding in problems of great scientifo interest, and affurding ample scope for the exercise of the highest powers of research; and while the lover of abstract: science will discover in it much to reward his attention, to the man who delights in the applicstion of science to the useful pnrposes of life it presents peculiar charms. To the sntiquarian also it will often be found to render good service; for, the the working of metals dstes from the earliest period of man's history, the remains of ancient furnaces and the products of ancient metallurgical skill not unfrequently become the subjects of archsological inquiry. It is interesting, moreover, to trace the history of metallurgic art, and to note how the rude and laborious processes of former times have gradually acquired the marvellous development which we observe in Europe at the present day. In order to form a vivid conception of thit progrese, we have only to witness the Hindoos toiling laborioundy at their bellows made of skin, to extract a few pounds of iron from their little furnace, scarcely larger than a chimney-pot, and then to direct our attention to the gigantic blast-furnace of modern times, urged by a blast-eugine, requiring for its movement the equivalent in steam-power of a hundred hornes, and yielding upwards of two hundred tons of iron a-week.

I should wish to guard myself from the imputation of undervaluing knowledge, whether literary or scientific, which appears to have no direct practical bearing. It would be furthest from my intention to utter a word in disparagement either of polite literature or abstract acience. In this utilitarian age there is a danger of forgetting that the human mind is destined for a higher purpose than that of being wholly absorbed in the matorial realities of life. There is no incompatibilty between the pursuits which elevate, refine, and delight our taste, and thoee which we are called upon to follow, as well for our personal advautage as for the benefit of our race. In contemplating the marvellous triumphs of homan ingenuity at the present epoch of unexampled progress, we should be careful not to depreciate unjustly the character of the education which we received in youth; and we should bear in mind that, although that oducation may not have made us acquainted with natural objects and phenomenu to the ertent we might desire it has yet been the means of subjecting the various faculties of our minds to a most salutary and invigorating discipline.

Stephenson.-The managers of the subscription for the Btephenson statue have determined on London for a site; but his admirers in Newcastle claiming a closer share in his glory, wish to have in their own town some special commemoration of their countryman, and are now raising subscriptions for that purpoee.

ON THE PRESENT STATE OF METEOROLOGICAL SCIENCE IN ENGLAND.

By Jobir Drew, Ph. D., F.R.A.S., Member of the Council of the British Meteorological Society.
Several causes have of late years combined to direct attenelon, in this country, to the difference of climate, the amount of rain, and other atmospheric phenomena on which information can be supplied only by the unasouming labours of practical moteorologista. The presence of cholera in England during the year 1849, led many scientific men, especially the members of the medical profesaion, to inquire whether, during that unhealthy season, eny deleterious changes were traceable in the conditions of the atmosphere. The removal of protective laws from the produce of native agriculture has compelled the farmer to call in the aid of ecience to increase the quantity and improve the quality of his crope, the confined limits of our amall ialand opposing his oxtending his operations; hence he has anxiously sought information as to the mean temperature of his locality, in order that he might commit to the soil those productions only to which the climate may be considered favourable. It has followed that the science of meteorology, before confined to the studente of natural philosophy, has been favourably viewed by the agricultural clase of the community, and the pagee of their journale are open to communications on that subject.

It has not been shown, es far as I am aware, that eny connection existed between the development of disease during the prevalence of cholers, and the state of the atmosphere as regards temperature, humidity, or pressure. At the close of 1849, I reduced my meteorological observations for the three months of its duration in the town of Bouthampton, and projected in curves the mean daily height of the barometer, the mean daily temperature, the degree of humidity of the atmoephere, and the daily attacks of and deaths from cholera. I was under the impression that a resemblance between these curves might be found, indicative of a connection between some of these atmospheric phenomena and the ravages of the disease. No resemblance, however, could be traced; the small number of deathe, amounting only to 289, might not have been sufticient to enable us to deduce either a direct or an adverse conclusion.

Though we may have failed hitherto in tracing a connection between any peculiarity in the air and the visitation of the cholera, the investigation of the local causes, which increased the aumber of its viotims, has led to the most important results. The ganitary measures adopted by the local authorities, most beneficially, in the large towns of England-the inquiries which have been instituted into the condition of the poorer classes of the community, and the necessity of improving it, by an abundant and unintermittent supply of pure water, have led to an inventigation of the sources of such supply; and this, again, to the determination of the amount of rain received by a given area: hence the labours of those who have been engaged in this research have, at length, become more generally appreciated.

At the commencement of the year 1850, a small number of practical meteorologiste, whose attention to the science was not of sudden growth, were induced to take into consideration the poasibility of enlarging their sphere of operation-of collecting facts and observations in such number as to form the groundwork for generalisation.
The noble mansion of Hartwell is not devoid of interest from its historical zssociations. Here, in seclusion, lived the exiled Louis XVIII.; bere visited, occasionally, the Count d'Artois, afterwards C'harlen X.: the "Jardin à la Hartwell" at Versailles, bears testimony to the agreeable recollections of this temporary retreat which accompanied the recluse when the sequence of events had placed a crown on his head. In the spacious and elegant library, Louis XVIII. attached his aignature to the document which rentored him to the throne of his ancestors. With objects far other than political, a few lovers of acience had assembled in this room at the invitation of the present proprietor, Dr. Lee, on the sth of April, 1850, for the purpose of taking into consideration the present state of meteorological science, and of adopting such measures as might conduce to its udvancement. Their deliberations reaulted in the formation of a society, to be called "The British Meteorological Society," of which Dr. Lee was appointed treasurer, and Jamea Glaisher, Esq., F.R.S., F.R.A.S. (of the Royal Ob-
servatory, Greenwich), secretary; and a council was appointed which, on the 7 th of May, elected S. C. Whitbread, Esq., F.R.A.S., president of the society, and the following gentlemen vice-presidents:-Lord Robert Grosvenor, M.P., Hastings Russell, Esq., M.P., Gen. Sir Thomas Brisbane, K.C.B., F.R.S., and Luke Howard, Eaq., F.R.S. At this present time the society numbers 150 members, all of them men of a certain scientific tanding.

I feel confident that this movement has given an impulee to the study of atmospheric phenomena; and, as a member of the council, and one of those summoned to the original conference, It has since been my endeavour to draw public attention to that science which calls upon all who imbibe the vital air - the "lumen spirabile cooli"-to co-operate in ascertaining the laws which regulate its powers, as the medium of conveying the deadly peatilence, or the health-inspiring antidote.

For the purpose of making known the efforts of this society in furtherance of its design, and of affording a record of the state of meteorological ecience in England at the commencement of the year 1852, which may hereafter be of some historical value, I have entered upon my present undertaking. In it I shall include a description of the mode of instrumental selfregistration now in operation at the Royal Observatory, Greenwich, under the anspices of the Astronomer Royal; and of certain valuable observations and experiments in progrees at the Kew Obeervatory, under the superintendence of Mr. Ronald, at the expense of the British Associstion for the Promotion of Science.

For some years past the Registrar-General has subjoined to the published weekly returns of births and deaths the resulte, for the week, of meteurological observations taken at Greenwich. These include the mean daily readings of the barometer, thermometer, and hygrometer; the difference in temperature of each day from the mean of the preceding ton years, the force and direction of the wind, the amount of rain, notices of the electric state of the atmosphere, remarks on the amount of cloud, on sudden changes in temperature, on the strength of the wind, or any other phenomena deserving of notice; the indications of a thermometer exposed to the full rays of the sun; the reading of another sunk q feet below the surface of the river Thames. As these papers have an immediate and extensive circulation, and as they classify the causes of death by referring each to its peculiar class of disease, they supply the means of comparing the prevalence of any one in partioular with any peculiarity in the atate of the air. At the end of the year a digest of the whole is regularly published on a single sheet, for facility of reference.
The weekly returns from the observatory at Greenwich are incorporated, every three months, with a digeast of all the returns of births, marriages, and deaths, which have been received during that time. The meteorological portion of this Quarterly Report embraces, beside, returns from about fifty places scattered all over the country; and such has been Mr. Glaisher's care in the comparison of instruments and systematic training of all the observers, that the utmost confidence may be placed in the results. As this is the most valuable combination of observers in the science of which this country can boast, it may be proper to explain the grounds of that confidence which they may fairly claim.

The individuals who have undertalen the observations are, with few exceptions, either graduates of one of the universities, or are fellows of some learned society; it may therefore be presumed not ouly that they are competent to record phenomena, but that their character would impress the returns with a stamp of trustworthiness and authority. Their instruments have been constructed by the beat makers, and have been compared with standards, either directly or intermediateiy. The scalea of the barometers used by them are of brass, leading from the cistern throughout the whole length of the tube. The indices read to -008 of an inch by means of the vernier, and by extimation to 001 . The barometer recommended by Mr. Glaisher has an adjustment by which the surface of the mercury in the cistern is brought, before reading-off, to touch an ivory index pointing downward, the extremity of which is the zero of the scale; after comparison with the Greenwich standard, it is found necessary to apply a small correction, including index error and capiliary action, leaving only the correction for tempersture, which element is ascertained from the reading of a thermometer whose bulb dips in the cistern of mercury. Before the results are forwarded to Mr. Glaisher, the barometric
readings are all redaced to one standard temperature - vis 38° of Fahrenheit, the freezing point of water. The wet-bulb and dry-bulb thermometers have also been compared with standards, and, from simultaneous observations with them, are deduced the dew point, the tension of aqueous vapour, the degree of humidity, the weight of vapour in a cubic foot of air, the weight of vepour requisite to complete the saturation of a cubic foot of air, and the weight of a cubic foot of air of the mean temperature and density of the month. The requisite tables for this purpose have been published by Mr. Glaisher, who has derived the greater portion of them from actual experiments and obvervations, and not from tbeoretical calculations.*

The thermometers indicating the greatest and least temperature occurring in the preceding twenty-four hours, are registered at $9 \mathrm{a} . \mathrm{m}$. They are for the most part of Rutherford's construction. They are placed horizontally; the tube of the minimum thermometer contains spirit which, on contraction, draws back an index, which, being left behind when the increasing heat again expands the liquid, shows the least degree of heat. The maximum thermometer is of mercury, which urgea before it a steel index till the greatest heat is reached, at which point it is left, on the contraction of the metal, by a decrease of temperature.

The rain is measured at $9 \mathrm{a} . \mathrm{m}$., and the quantity recorded is the produce of the preceding twenty-four hours. The force of the wind is estimated, by some observers, from the indications of Dr. Lind's anemometer, described by me in this Journal, (ante p. 226, Vol. XIII., 1850). All concur in recording, as nearly as posaible, the approximate value to be given to the amount, by reckoning a gale as 6 , a calm as 0 . The nomenclature of the clouds is that first proposed by luke Howard. Esa., in the year 1803, and lately re-published by him in a small volume, which is presumed to be in the hands of every observer. A clouded sky is represented by 10 , and a clear sky by 0 ; the interpolations are arrived at by estimation.

Though some parts of England are still without a representative, the positions of observers are tolerably well distributed. Thus then we may conclude, I apprehend, fairly, that the utmost reliance may be placed in the monthly reports of those gentlemen whose names are appended to them on every ground, whether we regard their position in society, the valuable instruments in which they have invested no small outlay, or the unison of action which characterises their proceedings.

The results of three months' observation are forwarded to Mr. Glaisher, with every particular requisite to reduce them to what they might be supposed to have been, had they been taken at the level of the sea. They are then arranged in groups by him, according to the latitude, and from them are deduced certain results regarding the climate of the various parts of England, coincidences or irregularities of atmospheric phenomena, and of natural occurrences, such as the arrival and departure of migratory birds, the time of flowering of plants, the progress and prospects of agriculture, falls of snow, thunder storms, appearance of meteors and aurorm, on all which subjects the observers are expected to report for their own localities.

The British Meteorological Society have published blank forms for observations for each month. A full explanation of the instruments, registration, mode of observation, and the principles on which the deductions are made, will be found in my papers on the subject in this Journal for July, October, and November, 1850, Vol. XIII.

Mr. Glaisher's Quarterly Reports, diffused throughout the community by means of the newspapers and the scientific periodicals, have been the means not only of spreading information valuable to the man of science, the physician, the agriculturalist, and the engineer, but of exciting and keeping alive an interest in the study of stmospheric phenomena. The labour of comparison and reduction is very great, and that gentleman has received, as he has well deserved, the thanks of all those who desire the advance of science for his indefatigable labours in the cause.

About fourteen months since Mr. Glaisher originated a movement to which the government, the proprietors of a daily journal (the Daily News), and the principal railway companies became co-operating parties. His object was to obtain, by means of the electric telegraph, the direction and force of the wind and the state of the weather, at 9 a.m. every day in the

[^13]year, with the exception of Sundays; theae weather-tables are published the next morning in the Daily News, and have done much to forward our knowledge of the laws of atmospheria currents. Mr. Glaisher inserts daily the returns on a map of the British Isles, and thus he has before him, graphically the direction of the wind at a given instant in every part of the country. Should this example be followed by the continental nations, and Belgium has already nnited in these daily reports, more will, by this means, be effected in arriving at the law of otorms than by anything which has yet been undertaken. As this is entirely a noval arrangement, and an important step in advance, I have introduced a wind-map, derived from the daily reports for November $200 \mathrm{hh}, 1880$. Mr. Glaisher's commenta thereupon will serve clearly to illustrate the value of what hat been accomplished, and the benefit whick we may expect to derive from a more extensive application of the principle.
"On November 19th, the direction of the wind over lreland, England, and Belgium, was south-west; it was deflected to the south and south-east among the mountains north of England. A strong wind was blowing st most places south of 53°, more particularly in Belgium, on the south-east coast of England, at Holyhead, Conway, and over Ireland; there was a very high tide in the Shannon; on the sonthern and western coast of Ireland, a gale had been blowing all the previous night (see the Express of November 26th for secounts of wrecks, \&c); the change in the reading of the barometer was great, there being one-thirtieth part less air over the northern parts of the country than there was the day before; and it was unequally distribated at places situated north of latitude 55°; the barometer reading there was $28 \cdot 88$, and south of that parallel was $29-23$, the dif. ference of temperature was 6°; that at Durham was 48°; and at Jersey was 54°. On November soth there was a hoavy gale blowing over Ireland, and the counties of Cornwall and Dovonehire, from the north-west; at Guernsey and Jersey it was from west-south-west; over the south and senth-eastern counties of England, and over Belgium, it was from the south-west.
"It is remarkable that at Lancarter, Whitby, Darlington, Shap, Sunderland, and Carlisle, a gentle brease was only reedrded with different directions; whilst north of these placen atrong brease and hard wind was noted from the north-east: this day is worthy of special notice, as it is very evident that the sir was moving in a circle, the direction in Ireland being north-weet; north of France, west; south-east coast of England and Belgium, south-west; and the south of Scotland, north-east; whilst places within this circle were distinguished by weather of a moderate character. The pressure of the atmosphere was different in different places, being the least about Wakefiedd; its sverage value south of 51°, was 29.36; and north of this parallel, was 88.83 . The temperature of the air at Durham was 45°, and at Truro was 58°. On November the 21 st the direction of the wind over Ireland was variable, but was passing from the land towards the sea; on all sides over England and Belgium its direction was uniform, and from the northwest; the air was mostly in gentle motion; the air was almost evenly distributed over the country, and the reduced reading of the barometer was 99.69 : the temperature of the air at Durham was 494°, and at Jersey and Guernsey was $50 \frac{1}{2}{ }^{\circ}$."

Through the kindness of Mr. Glaisher I have been supplied with all the returns which he received, indicating the direction and force of the wind for the 20th of November; those givint the direction of the wind I have inserted in a wind-map, and they afford a graphic illustration of the movement of the air for that day at 9 a.m. It would be easy to multiply the number of such illustrations, but the results of one day are sufficient to indicate how the direction of the movement of the air, at any instant, may be ascertained, and, by transference to the map, may be presented to the eye at a glance; they tend to show how much we may probably learn of the laws which regulate the movements of the air, when observations of this kind are taken extensively over the earth's surface. I trust that, as soon as this thorough practical method is understood, the example thus sot will be followed, and the records transmitted to the British Meteorological Society for discussion and comparison.

Having thus described the part taken by private observers in extra-observatorial work, and the progress we have lately made in systematic, united, and continuous effort, it devolves on me to point out the nature of the observations taken at Green wich; and, by explanations in full, to indicate the extreme value they derive from the beauty of the instruments, and the minute accuracy with which they are recorded by the observers.
(To be continued.)

PRESENT CONDITION OF THE ROYAL TOMBS IN WESTMINSTER ABBEY.

By Prof. T. L. Domaldeon.

[Paper read at the Royal Institute of Britioh Archilects, Feb. sird.] Ir is now about thirty-five years ago that I first went to Paris. Among the public buildings which I then visited, none intereeted me more than the Abbey church of 8t. Denis, the crypts of which contain the aahes of most of the kings of Frasee, from Clovis downwards. Nothing could be more touching than the contemplation of the rifled tombe of such a line of powerful monarcha, arranged in decent onder, but without any affected attempt at restoration, or incongruous endeavour to form an arbitrary aystem of perfect and uninterrupted clasaifiention.

In Augnat last I again went to St. Denis with some friends, and then I asw that, withont reference to periods, chronological acragement, atyleg, or any of the proprieties of art, a vain and pedantic effort had been at work to complete the series of the dynasties of the Valois and the Bourbong, by the introduction of modern recumbent figures, stone coffing, and other mepulchral reeeptacles, devoid of taste and feeling. I felt how ill the naligio loci had been attended to, and I left with the melancholy coaviction, thet all the charm of truthfulnees which had omee given veneration to these vaults, had irrevocably paseed amer.

It was under impresaions such these that I whortly after aceompanied a forelgn friend to Weatminster Abbey, anxious to show him the raemorials of our olden times and of our greatnews in paot periods, and that we poseessed treasures which reuld form a favourable contrant to those of St. Denis.

Weatminster Abbey is emphatically the public building in Rngiand which most attracts the regand of the foreigner, filling him with respect, and producing the most lasting impression upon his imagination. I must own that I felt ashamed, as I drew the attention of my friend to monument after monument of onr sovereigns, princes, and nobles, and more particularly to the Shrine of the Confemor. I endeevoured to palliate the state of ruin in which the precious memorials of the history of oar country, its arth, and its greatneem, were allowed to remain. From want of timely care they are gradually falling into decay ${ }_{3}$ and threatening, in eume cases, absolute dentruction. "What, ${ }^{\text {, }}$ said my companion, "can it be true that your government so negiocts these speaking monuments of past achievements, that It will not reseue them from utter ruin? What! is the father, is the son of the Black Prince so disregarded by you that you will not preserve, even as works of art, and ere it be too late, the marble that incases their remaing, and the bronzes which hasd down their lineamenta? Have your Edwards and Henrys bled for this? Have they for this perpetuated England's glory in the 194 h , 14 th, and 15 th centaries, and you allow them to be forgotten? Have these queens been in vain distinguished for their public and domestic virtues-in vain ranowned for their piety, that you permit their sacred deposits to be despoiled, degreded, trampled apon?
I could not diaregard these too just reproeches. The full consciousaess at once came home to me, that this interesting series of monuments had been ahamefully neglected; that we were too ignorant of their value. Impresed, gentlemen, by a contiment, which I feel meared that you all partake, I mean by an earnest attachment to the monarchial, yet free inatitutions of our country, and an attechment to the throne, rendered still more ardent by the political convulsions which we have witaesed, I determined to bring the subjeot under the notice of this Instituta, trusting, that however feeble would be the voice which should be heard pleading the cause of England's past worth, and of the dust of her honoured line of kings, a reaponse would be found in the sympathy of those who would hear me. This spreading far and wide might eventually, perhapa, reach thoue who have the power, if they only have the will, to rescue from entire annihilation these speaking mementoes of monarche who once ruled the destinies of this mighty people.

I venture to claim your attention as I take a rapid survey of the Banctuary or Chapal of Edward the Confossor, and briefly notice the noble tombs by which the Shrine is surrounded.
In purauing the description of the Cbapel of Edward the Confemer, it will be well to follow the chronological order of the detes of the tombs. I mast, therefore, remind you that

Edward the Confessor, the last but one of the Baxon kingi, after an eventful life, and a reign of twenty-four years, died in 1055-6. He had previously rebailt the dilapidated old church of $8 t$. Peter, but being seized with sickness, he was prevented attending the consecration, and deceased a few days after it. Various miracles had been attributed to him during his lifetime, so that he was venerated as a saint long before he was canosised. A first application to the Pope to have him placed on the Roman calendar had been unsuccessful, but a second appeal to the papal throne was more fortunate; and Alexander III. enjoined "that the body of the glorious king should be honoured here on earth as he himself was glorified in heaven." On the return of the messengers the remains of the sainted monarch were, in 1163, solemnly tranalated by Archbishop Becket into a new and precious feretory, which had been prepared by Henry II., about ninety-nine years after the death of the sainted Edward. When the choir and eastern division of the Abbey church, which was then re-building, had been completed by Henry III., so as to admit of the celebration of divine service, "that govereign resolved," says W ykex, "that so great a luminary should not lie buried, but be placed on high, as on a candleatick, to enlighten the church." In 1269 the body of the Confessor was removed, about 200 years after his decease, into the new Shrine, the form and decorations of which wo shall consider after we have described the other royal tombs.
The king and monks of Westminster were anxious to give pecaliar and elaborate magnificence to this Shrine, and conseguently it was executed with glass mossic decorations, and the floor was also laid in a geometric marble-mosaic pattern; the tomb of the royal restorer, Henry III., shines with the like brilliant work. Another fine specimen of a different etyle, in marble tesselated work, is the magnificent pavement in front of the Abbey altar, to which 1 shall hereafter revert. Here, theh, we have illustrations of a atyle of art of rare occurrence out of Italy; in Paris none such exists. The monument of Henry III., if met with in Italy, the Holy Land, or Constantinople, would be quoted for its deaign and enrichments. From the pavement of the north aisle of the choir rises an elevated basement, on which rests the lower division of the royal tomb. Its face has three square compartments; the centre one was once filled-in with a circular porphyry panel, circumscribed with interlacing bands of gass mosaic, and the spandrils oceupied with smaller circles of the like work. The outer panels are square, placed lozenge-wise, and of serpentine, inclosed by mossic bands with circular smaller panels in the spandrils. At the ends are pilasters with a twisted column at each sigle. The upper compartments of the tomb, on which lies the bronze effigy of the king, have two spiral columns at the angles, the futings filled-up with glass mosaics. The centre forms one large panel with a noble slab of porphyry, surrounded by a border of glass mosaics, and held in its place by four bronze pins, the ornamental heads of which project beyond the face of the porphyry. The elevation towards the shrine is different in design, but presents, with some variation of details, the like general divisions. Most of the slabs of precions marble have been abstracted or split, the mosaica picked out, and the columns are deficient. The recumbent statue of the king, now covered with dirt and rust, is of brass, the first, according to Walpoie, that was cast in this kingdom; it was once gilt, and probably parts of it were enamelled, and the very plate on which it lies is covered (seme) with the English devioe of the lion. But the canopy above the royal head is gone-the couchant animals are gone-the side pillars or battresses are gone-the kingly staff and sceptre are gone-and the wooden canopy above, to keep off the dust is a bare fragment.

In the intercolumnar space to the west of Henry III. lies his son Edward I., the English Justinian, who was, to use the words of the accurate Brayley, at the same time a gallant warrior, an able statesman, a wise legislator, in domestic life a faithful and affectionate husband to his excelient queen Eleanor of Castile, and a good father to his children. His tomb is a large plain one, composed of five slabs of grey marble, without any pretensions to decoration, and as unostentatious as the beautiful memorials which he erected to his excellent queen are rich in all the embellishments of Gothic art. The tomb of his beloved Eleanor lies in the intercolumnar space east of her father-in-law, Henry III. She it was who accompanied her warrior husband, Edward I., in all his journeys and expeditions, having in Palestine, as it is recorded, sucked the poison from
the wound inflicted in his arm by the dagger of an assassin. She was his partner for six-and-thirty years, and died in 1890 , seventeen fears before her husband, who was then in his fiftyfirat year. So tenderly was he attached to the memory of her conjugal virtues and affection for him, that he orderad the erection of the celebrated crosses between Lincoln and London, some of which still remsin at Edmonton, Waltham, Northampton, and Geddington, the refinement and variety of whose design and execution are admirable. The last reating-place of this best of England's queens is no way inferior to the other memorials of her virtues; but the same melancholy story must be told of the tomb of the lovely Eleanor of Castile as of that of Henry III. The exquisite beauty of her features realise the Greak type of loveliness; and, in fact, so sweet is the expreesion, 80 harmonious are the features, so perfect the profile, that it is said later sculptors adopted her likeness for their figurea of the Virgin. And it is curious to remark, that although she must have died at an advanced age-above fifty, for she had been married six-and-thirty years, and had been the mother of fifteen children-yet she is represented young and beautiful as when Edward first wedded her. But all her beanty and grace and virtues have not secured the marble of her tomb from decay, nor the bronzes from abstraction; the very wand or sceptre has been stolen from between her graceful fingers, and the jewels from the crown which incircles her head. The statue and its accompaniments are of brass, once partially enamelled and profusely covered with the devicen of Castile and England, but now obscured by the crust of dirt which covers them. May the present century, thou beauteous, noblebearted daughter of Castile, render thee the justice and respect which were shown thee by thy well-beloved husband! It appears from the contract, which still exists, that Richard de Coverdale undertook the marble-work of this tomb, and William Torrell, the goldsmith, the statue, which was completed in 1292. It wonld be important for the history of English art to ascertain, if possible, whether Torrell, if not himself an Italian (as supposed by some, who, by an easy modification of the name, make it Torrelli, not merely Torrell), may not have employed, as is done now-a-days, some distinguished English or foreign artiat, most probably an Italian, to model and execute the bronze-work; for we need not necessarily conclude, that hecause the contract was taken by goldsmith, he was himself competent to design the figure, although he may have bad all the conveniences for the mere mechanical operation of casting it. Edward I. endowed the Abbey with lands, then valued at cood. per annum, for maintaining the worship and religious rites connected with the tomb; but these possessions were confiscated at the time of the Reformation, 250 years after.

It is unnecessary for me to make more than passing allusion to the alabaster* tomb of Queen Philippa. The appeals that have been made to the public to raise funds for its restoration, and the exquisite specimen of the work, which was one of the attractions of the Great Exhibition, will have made you familiar with the value of this monument as a work of art.

We.next come to the monument of the heroic Edward III.. which is on the pouth side, immediately opposite to tbat of Henry III. This is a magnificent memoria, consisting of a lower pedestal, 4 feet high, next the aisle, divided into four quartre-foiled panels with highly-elaborated tracery, having central metal shields exquisitely enamelled and emblazoned with the arms of England and France. This pedestal is surmounted by the altar or pedestal tomb, which has on each side six canopied niches; to these are still attached the bronze figures, 18 inches high, richly enamelled on the surface. The tomb is of Petworth marble, and though the architectural enrichments are generally decayed, enough remains to supply authorities for every portion. The venerable figure is of brass, of noble features, with a flowing beard; the ensigns of royalty, which the hands once held, have been destroyed. It is surrounded by a recumbent bronze tabernacle of elaborate tracery, with numerous figures beautifully cast and wrought; and although many portions are deficient, yet they exist in other parts, and might with little expense be replaced. There is above the tomb a richly-worked oak canopy, almost entire, and wanting little to restore it to its original splendour. Yet, scanty as the sum would be to render this tomb as perfect as when it

[^14]was first put up, the apirit is wanting to render this tribate to the Conqueror of Cressy, the father of the Black Prince, to him Who won the field of Poictiers, who founded the Order of the Garter, and erected Windeor Castle. On the margin of the table the aged monarch is described as "the glory of England, the fower of past kings, the type for future ones-a clement king, the peace giver to his people."
The interspace between the next pillars is occupied by the tomb of the unfortnnate Richard II. and of his queen, Anne of Bohemia. It is of like design with that of Edward III., of the same materials, and was possibly executed by the same artist. The surface of the marble is frightfully perighed, all the elaborate tracery, tabernacle-work, buttreses, and finials, present a time-worn surface, in many parts wholly defaced, and all the sixteen metal statuettes are gone! The recumbent brass statices of Richard and his queen lie side by side, once gilt and covered with worked devices. The arms and hands of both, with the sceptres, ball and cross, which they held, are wanting, as alvo the lions, the leopard and the eagle, which once lay couchant at their feet. The masses of the recumbent tabernacles alone exist, despoiled of their enrichments, nide pillars or buttreses, and angels. The bare arch of the oak canopy, without the carved work which embellished the summit the cornice, and the upper range of battlements remain. The colours with which they once glowed, which gave expression and relief, are now tarnished or defaced, but still the soffit of the canopy displays unmistakeable evidences or traces of pictures with rellgious or historical subjects of considerable size.

The tomb of the gallant Henry V., the hero of Agincoort, occupies the east end of the sanctuary, under a stone canopy, which forms the chantry. As we know that oak chantries werse not unusual (witness that at St. Albans), and as it was customary to have one in sanctuaries which contained the tombs or shrines of saints, I am led to think, tbat powsibly there might have been an old oak chantry in this part, and that Henry V., finding all the spaces between the piers occupied by the tombs of royal personages, and desiring to be placed in the regal circle around the shrine, may have assumed this place to himself, and replaced the wood chantry with a stone one; yet, so arranged as to form at the same time a superb canopy to his own tomb. The architecture of this monument is not so much damaged as that of many others. This, 1 think, arises from ite being inclosed by the substructions of the chantry and the ceiling, which protect it from the damp. But the sculptured groups, whether of stone or metal, which once filled the deep recesses of the sides, have been stolen. The wood block of the figure and frame, on which it rests, were once covered with a more precious metal, tradition says silver; the carving ahows the parts and drapery very completely, but the head, which it is said was of pure silver, is gone. The open iron railing and gates, inclosing the west end of the mausoleum, are most carious specimens of elaborately-wrought metal-work. They were once removed, but they have since been most judicionsly replaced by the Dean and Chapter.
Two modest marble caskets, once enriched with bronsee, contained the infant remains of daughters of Edward IV., and of Henry VII., -"Quam longa una dies, mtas tam longa rosarum" -with simple moulded plinth, die and cornice. But one is almust fallen to pieces; and the slabs, which a few shilling: might secure, are dilapidated and falling to ruin.
The sword and shield which were borne before the heroic Edward III. in France on those battle-fields whose names are "familiar in our mouths as household words," are here exhibited. The helmet, the shield, and the saddle of Henry V. are still attached to the pillars ahove his tomb. Dusty, dirty, torn and distorted, these memorials of Cressy and Agincourt seem only worthy (apart from their mighty traditions) of an old metal shop.

The throne on which our present august sovereign was crowned, as were also most of her predecessors, shares the same neglect, and has alike been despoiled of its finials, ite crockets, and carvings. A thin coating of plaster shows where the painter's art once shone in all its glory. The other tbrone is of doubtful origin, and patched up in a bastard taste with panela of Italian design. Proh pudor!

Having thus briefly noticed the tombs around the shrine, we will now proceed to consider the present atate, and the poasible restoration of the tomb of the Confessor himself; not that I would seek to revive a worship which every Proteatant must hold to be superstitious, but 1 know not why we should deny to
the tomb of a holy and pione man that reapect which hat never bean withbeld from bygone worth. And surely, apart from religions considerations, and on historical grounds, wo may detire the restoration of 80 ancient a monnment of art, and the premervation of a memorial of a moch tried and devont moparch.

The Shrine of Edward the Confessor.

Thin tomb of the moat eminently pious of our kings is as molnncholy a fragment of royalty as can be well imagined. Plsoed in the centre of this sanctuary, it rises the most promiment object of the whole of the royal and sacred shrines, and is at the same tirae the most humbling witmeas to our shame. A more august, yet pitiable memento of the transitory nature of all earthly greatnees, cannot be conceived. A cumbrous, shapeIsen mags, stripped of its sparkling mosaics, despoiled of its elabarately enriched columns, its summit guperseded by a eubeequent incongrous architectural termination, itself in rains, now contains the relics of the holiest of our line of monarchs, round which kings and nobles, the various states of the realm and the city of London in its palmiest days, were wont to come to pray and tender their choicest offerings. I mant quote this as a solitary instance remaining in this kingdom, and one of only a few still extant in Christian Europe, whioh retains somewhat of the form and subatance even of a binky shrine. Where is now that glory of England, the shrine of her protomartyr, 8t. Alban? of St. Cuthbert at Durham? of the imperious A'Becket at Canterbury? and of many others that I might quote, once the religious pride of our country?

This comb is oblong in plan, with a twisted column at each angle, and the spiral flutings were filled with mosaics. The eapitals were of early lancet character, painted and gilt. On each side are three recessed trefoil-headed niches, and one at the east end, in which were probably expoeed the other sacred relics presented to the Shrine. The whole surface was covered with elaborate geometric figures, sunk in the stone, and filledin with exquisite mosaic of the Byrantine character, glistening with gold, red, green, and blue, many sparkling fragments of which have still been spared. One capital alone remains in situ. Fragmental portiong of two large shafts still exist, and suppurt a large slab, 5 ft . $4 \frac{1}{2} \mathrm{in}$. long by 3 ft . $4 \frac{1}{2} \mathrm{in}$. high, filled with mosaics, interleced in geometric forms, and probably placed Fhere it now is upon the suppression of shrine-worship at the Reformation. The panels consist of porphyry and green marble. Up to the cornice we may consider that the feretory presente the main mase of the original design of the time of Henry III. (1989). But it appeare, that at the period of James II., an epper division in wainscot was sdded, consisting of two stories of arches, with pilasters and entablatures of Italian or Palladian architecture, parts of which were inlaid with marqueterioFeri, in imitation of the momaice of the lower division. And th this period, probably, it was endeavoured to repair the dilapidated state of the antique work, by filling-up the parts - hence the mosaics had been abatracted with plaster, and painting the surface in imitation of mosaic-work. On examining the flour at the west end of the Shrine, there are evidences of the space occupied by the altar, where daily massen were said. And 1 am led to presume, that the large tablet now upraised on the truncated columns formed the front of the alear.

In order to enable us to appreciste the original design of the Ehrine, I would venture to offer a suggestion as to the appearence of this remarkable monument in ite pristine form and arangement. I would call to your mind the numberless reliquaries of ailver gilt which remains to us of the mediaval times, like that, for instance, of St. Albin at Cologne, or the gorgeous one at Aix la Chapelle; their sides divided into spaces by columne and arches, surmounted by gable-ended roofs, formed into panels with eculptures, and brilliant with jewels. Theee reliquaries are but imitations of the larger shrines of the mints of the Roman Catholic calendar. I conceive, therefore. thet this of the Confescor, with its spiral columns restored at ench angle, monaics complote, niches filled with precious relice, gable-ends flanked with pinnacles, and sloping roof enriched with panels, its eltar in front, and mosaic floor, must have premated an imponing apectacle sufficient to arraken and exalt the fervonr of the pious pilgrim. The floor of the chapel consists of a teaselated mosaic of interlacing circles, of meagre general efect from the ingignificance of the parts, which are not
arraged in grand diviaions; the inditidual potternt, however, are greceful and full of fancy.

But my eubject irresistibly leads me not to conclude theoe descriptions without calling your attention to the magnificent mosaic on the west side of the altar-screen, of the clam that Mr. Digby Wyatt calls opus Alexandrinum. It is as fne any example existing in Italy. It was originally 25 feet equare, but a modern arrangement of the eteps in front of the commanion table, has reduced the margin on the eat side. It is traced, on - very minute scale, in Neale's plan to Brayley's work. The arrangement of the tessere is precisely like that of the example from the choir of Ban Marco at Rome, and something in the style of the mosaic in San Lorenso fuofi le Mura. From the recorded inscription, part of which still remains in braw letters, it appears to have been laid down in 1968, in the time of Henry III. The tesserse consist of red and green porphyry, lapis lazuli, jasper, alabaster, and white marble. 17he ineeription, consisting of ten lines, occupied the bands round the circles and inclusing the great square. If this pavement were but alightly restored and polished, it would be one of the finest specimens of the class in Europe.

A serious question, from the consideration of which we mute not shrink, next arises. Can these masterly relice of ancient art be restored without compromising their authenticity, and without permitting the fancy to supersede sober judgment; and can we thus preserve them as nnquestionable and unimpeachable memorials of our art history in England, and of the epochs they now illustrate? Let me ask what is necessary to accomplish this beyond a doubt, beyond a surmise of corruption? A thorough knowledge of the different phases which medimval art assumed not only in this, but in other countries during five centuries; a scrupulous and submissive respect for the taste, the skill, and genius of the men of that period, and for the art which they enriched by their talents; an absence of self-love. If such be the qualification, I boldly declare my conviction, that in no period of this country, not even in the ages just quoted, existed there men more competent, more faithrul, more zealous to accompliah this great work. In the middle ages the artists disregarded the tastes of the preceding periods, and engrafted on an incomplete work the style of their own epoch. But now the very essence of our school is synchronism, and an almost slavish adherence, as it were, to precedenta laborious search for examples and authority;-not a monument unvisited-not a book unread-not a MS. unexamined,that contain aught to illustrate and explain the arts of thoee times.

We have architects, too, whose own works may side by side contest the palm with the buildings of the olden style. And this work might be entered upon with the more confidence under the sound judgment and discretion of the actual professional adviser of the Dean and Chapter, for his taste and skill are proved in the numberless churches which he has erected; his knowledge in Gothic art cannot be excelled; bis feeling for it is most intense; in the face of Europe he carried of the palm for the new Gothic church at Hamburg: and he posseases the unreserved confidence of the profession. The name of Scott is a sufficient guarantee, that if the work of restoration be done to these royal tombs, it will be carried out Iearnedly, truthfully, and artistically.

I seek to avert a vast, a lamentable, a dishonouring destruction, ere it be irrevocable-a calamity, the possibility of which I feel none here present can contemplate unmoved. I ask for no rash nor extravagant re-construction, but merely a replacing of what is evidently known as having once been there-a repetition of what in other parts of the same monument may already have survived the wantonness of wilful dilapidation, or the waste arising from neglect. And never were coincidences more favourable-never was the work more called for, which it has been, perhaps, reserved for the honour of the present times to realise. What would more excite the loyal feelings of the numerous visitors to the Abbey than to see the tombe of England's glorious monarchs treated with respect by thooe in power, and restored to comparative completeness? And what moral and historical lesson to teach them how much we owe of the reputation of the English name in medisval times to their heroism, and mnah of our present liberties and greatness to their wisdom! The visitors also would see the progreasive history of medimval art during three centuries, and learn to appreciate the beanties of each succemive development. Is it wise of onr government to let the people see the tombe of our
mont glorions king dishonoured, and infer that a feeling of loyalty and affection to past dynasties is of no consequence? Is there not something august and venerable in the kingly atate, and shall we allow the record of a dead monarch to be deapieed and neglected? Is it wise at such moments as these, when all that can possibly be done should be accomplished, to gather round the throne and its antocedents the sympathies and affections of the people, to allow the dust of the dead kings to be as no value? Let us hope, then, that the government will amaken to ite duties. It is the common custom of the land, that a family is answerable for the maintenance of the tomb of a deceased relative. Is there no tie of affection and reverence between the crown of to-day and of past times? The Abbey authorities have of late yeara done mach; but they have not the means to effect all that is required: and there is, beaiden, no pretence to call upon them to restore the tombs deposited within these raored walls. Their funds are little edequate to uphold the fabric. And the endowments, granted by royal munificence, have been since confiscated. Let us hopa, then, that the high-minded advisers of the Sovereign will appreciate this duty, and show their loyalty to the throne and preatige of the crown of England, by causing the restoration of these dilapidated memorials of ancient sovereignty.
In the discussion which took place on this subject, on March 8th, Mr. Donsldson expressed his obligation to the Chairman for enabling him to put the members in possession of some additional information which he had received since the last meeting, in a letter from Mr. C. H. Smith, explaining that the green stones in the mosaic pavement before the altar were not, as he had supposed, serpentine, but, in fact, pure green porphyry. He had, in the next place, been favoured by Mr. Britton with a report on the National Monuments and Works of Art in Westminster Abbey and other Public Edifices, printed in 1841 by order of the House of Commons. He also begged to submit for inspection the following interesting objects:-Some beautiful aketches of the monuments referred to (with other antiquities at home and abroad), by Mr. Burgess; a specimen of the marble floor of Conrad's Choir in Canterbury Cathedral, with a coloured rubbing of about a quarter of the pavement of Becket's Shrine, both contributed by Mr. Austin of Canterbury; and a fragment of the thick coating of paint. \&c., with which the Purbeck marble statues in the Temple Church were formerly encrusted, exhibited by Mr. Edward Richardson, sculptor. Mr. Donaldson next referred to a rubbing of a monumental brasa in the floor of Edward the Confessor's Chapel, and stated that, at the coronation of her present majesty, a portion of the lower part of the brass was entirely removed by one of the workmen omploged, solely because it interfered with the erection of a gallery, raised to enable some of the distinguished visitors to witness the caremony. By examining the marble slab in which this brass was inserted, he had been able to trace the whole of the original design, and of this he exhibited a drawing, which, by its contrast with the rubbing showing its present state, would enable the meeting to judge of the desecration and abstractions to which the monuments in Westminster Abbey were liable. Mr. Donaldson next referred to a drawing of a suggeated restoration of the Shrine of Edward the Confessor, differing in the character and arrangement of the upper part from that which he submitted at the last meeting. He, however, utterly disclaimed the slightest wish, in these suggestions, to encroach in any way upon the province of Mr. G. G. Scott, who was so well qualified to conduct the restoration of the monument. His only object was to remove the impression of the incongruous addition to the Shrine made in the time of James II., and to show the different modes of restoration which might be adopted. Probably the drawing now produced was more in accordance with a manuecript in the possession of the Dean and Chapter than the former.

Mr. G. G. Soort, the architect to the Dean and Chapter, said, with regard to the monuments themselves, he would mention firet, that extraordinary group of which the Shrine of the Confeasor was the principal, executed as they were by Italian artists in the time of Henry III. These comprised the two mosaic pavements, the Shrine of the Confessor, the tomb of Henry III. himself, those of his children and grandchildren in the ambulatory round the choir, and a little monument, not generally known, to the con of William de Valence. The Patter monument exhibited a small piece of glass mosaic-work and brame, and was laid in the foor immediately under the atep
of the monument of Henry V. He hed found that Abbot Ware; or De Ware, was appointed in 1283, immediately after which he went to Rome, and probably there saw mosaic monnmente; which led him to wish to introduce that Etyle iato England: He was at Rome in 1987, and on his return, brought with him the varions stones, porphyry, and glase mosaic, and men capabte of executing works in both materials. The names of two of the principal of these had been preserved; the mosaic pavier was Odoricus, and the man who executed the glass mosalces was called Peter, a Roman citizen, his surname not being known: The date of the [altar] pavement was 1988, and of the shrine, 1269. Mr. Scott next quoted the following passage from Professor Willis's 'History of Canterbury Cathedral':-

 atunde, uke Becket'o In a chapel, and ceparated from the choir and bigh litar by a reredoen but yet not a deteched butldiay, at the ledy chapels to cosmanaly were. Architecturali; apealdng, the chapele of becket and Edward are within the cbotr an its east end; the parement in both cues is ruased above the level of the chotr, and ouch shrine fo a parallelogram on the plan, and stande east and weal. The altar is
 rotro altart ; and reiprocally, the alter is at 'the head of the salot,' aloce the hend of a corpse whan aiwnya lide to the weat. These phraces have already occurred in our quntationt from the monktish ehroniclers; for example, to the gaxon cathedral, the matistinal altar wes placed as che head of Dumatan, mod Anectm, Odo, Willd, axd othert, were depooited behind alcars. On the other hand, to chantry chapele, the comb of the uncesooniaed founder is commonly of the woit of the altar, to thet the prient stands at the fool of the tomb. The deceription of the shifee of 8 st . Cocthbert At Durham, will also serve to llumbrate the two already mentioned. Thle, iog, wee pinced behind the great reredon of the high altar upon a rained platform incloeed, and forming what was called a 'feretory,' or chapel for the reception of the feretrum: This platform may atlll be eeen extending party lato the preet cactert traneept, or 'Nine Alters', te fe is called. In the midit of it 'his secred shrive was exalted wish most curloua workmanehip of Ine mad contly green marble, all Hoed and stli whin gold, having four seate or places convenleat undernetth the ahriet for the phyrita or lame man sotidng on their knees to lena sod reat on, in the thane of thetr devoet offerngaind ferrent prayers to God, and holy Sl. Cababert, for his miraculous reiler and cuccour, "' (Under the shrtne of Edward the Confower there are archee, three on eteb slde, which probebly served for a eimilar parpopy.) "At the wowt end of the shrise es St. Cuthbert was a little altar adjoyned to it, for meae to be mald only on the great ind holy fentet of St. Cuthbert's day in Lent..... And at this feant, and certaln other featiral daym in tine of Divine nervice, they were seenstomed to draw ap the cover of 8t. Cubbert's shrine, baling of walnscot, and a stropg rope was patenad thereto, and did rua op and down in a pulley under the rault for the drawing up of

 of ane walnecot for relics." \rightarrow Ritto of Dwrham.
The peculiarity thus mentioned in the shrine of St. Cuthbert at Durham, applied exactly to this at Westmingter. All the historians he had met with enid that the seven niches in $8 t$. Edward's Shrine were made for the patients to kneel in, to receive miraculous cures; and it would be found they were exactly of the proper height to receive persons kneeling. Probably, too, in the Westminster Shrine, there was a cover, to be drawn up as at Canterbury. Seeking also for pronfs of its eristence, Mr. Scott had found three holes immediately over in the vaulting of the roof, through which he had no doubt the cords passed by which the cover of the shrine was raiced. In Keepes History (1680), the upper part of the feretory of St. Edward was described' as having been covered with plates of the purest gold, set about with precious stones. Dart described it as of gold and precious stones, sdding that the workmanship exceeded the materiale. In the library of Westminster Abbey there was an old Service Book, of the time of Richard II., and an initial letter of the gervice for St. Edward's day contained a rude representation of the monument, as a stone erection, with a very rich golden or gilt shrine above, set with precinus stones. The form of this Shrine was represented in the drawing as something like the roof of a cathedral without the lower walle. It had the aisle roof, the clerestory, and the principal roof; and on the inclined surface corresponding with the aisle roof, was a representation of the king in his robea, probably in enamel. There was one great dissimilarity between the existing remains and this drawing: the latter showed the whole of the seven niches in a row on one side; but that mode of representing them would probably quite accord with the artist's notions of accurecy; and although the representation could not be trusted for a minute detail, this error could not be taken as a proof that the upper part wes entirely dissimilar to the original; especially as the illuminators of those days would think more of the gold part than of the atone. No one could doubt that there was an altar at the head of this monument; and he could not help thinking it was standing till the time of the Great Robellion. He found that it had certainly not been standing gince, and there was proof that a certain amount of rain took place in the Abbey at that time. At the end where the altar stood, a hole appeared to have been made by some accident, and this had been
patched ap with a common panel taken from some monument of the eeventeenth century. This looked, therefore, as if the imjury had taken plece at that-time. The altar was certainly not standing in the time of Dart, whose words were-"An altar stood there, which, even vince the Reformation, has been casually orected at our coronations; particularly at that of Charles II." Seadford, in his account of the coronation of Jamen II., spoke everal times of "the altar of St. Edward," apon which, he said, the regalis were placed. Looking, however, to the drawing given in the same work, this altar appeared to be only a very little table; and that it was not permanent was also proved by the author referring to "one Turkey carpet, to be placed under the altar of St. Edward." Whether the old praotice of placing the regalia on "the altar of St. Edward" had been continued till the last coronation, Mr. Seott was unable to eay. He thought Mr. Donaldson's idea that there were several pillars upon the Shrine, to carry lights, was probsbly correct. Many docaments proved that lights were used around the Shrine. On the north and south of the Shrine were the tombs of Edith, wife of the Confessor, and Maude, wife of Henry I.; and a manuseript reforred to by Dart stated, that on certain days a lamp was burnt at the sides of the altar, near those tombs; a large lasp before the altar, and three others before that. There was a great practical difficulty in deciding what was the original design of the altar end. At present a large slah stone, inlaid with mosaic, was supported very rudely by two spiral columns, similar in form, but larger than those formerly at the east end, being $7 \frac{1}{\text {. }}$ inches in diameter, whilst the latter were only 4 inches. Theae western columns had neither capitals nor bases; but by creavating under one of them, he had found that it ran into the ground to just the length of the column whose capital only remained in its place at the sonth-east angle of the monument. As to the slab thus supported, he did not quite concur with Mr. Donaldson that it had been the front of the altar; partly on acconnt of its height, which in that position must have been 3 ft .10 jn :-an unusually great height.* At all events, this large alab was not very far out of its original place. It projected 7 or 8 inches beyond the width of the Shrine, and on that projection, st elsewhere, the mosaic pattern appeared, and that pattern corresponded with those on the narrow slips above the piohes; the different patterng of the two sides being each comected with a correaponding portion of the large end gleb. Judging from the remains of the ancient inscription roend the monnment, it must have extended round the west and; therefore, the large slab could not then have been placed quite so high as at present. His theory was, that it formed the upper part of the reredos of the altar; and that being thus wider than the lower part, the latter was equally widened, by narrow slips, down to the floor. The axtreme edges of the long slab being destitute of ornament (except some modern imitation of mosaic), he imagined those surfaces were hidden by the columns at the two western angles, thus increasing the width of the altar front still more. To suit thas position of the columns, the entablature at those points must have projected over them in a manner not unusual in works of that period and style. The whole of the cornice was modern, and the original entablature must have been injured when the metallic ahrive was removed after the Reformation. Remaining thun dilapidated for a time, it was probably repaired in the time of Queen Mary, to which era might perhaps be ascribed the peeudo-ehrine now surmounting the monument. Judging only frow the atyle of that addition, he should have considered it a work of the reign of James II.; but Dart spoke of it as being ∞ old that he thought it was coeval with the lower part; an opinion he would acarcely have held if it had been made when be was a boy. Afterwards, at the time of the Great Rebellion, Mr. Scott supposed that the altar was thrown down, and that the large slab above-mentioned, with the architrave above it, fell down, ruining the whole of the west end; and when it was repaired, the fragment of the seventeenth century was used, as before referred to-the present disponition of this part dating frem the time of Charles II. With respect to the monument of Henry III., Mr. Scott stated that the canopy existed about 150 yeers ago. He might leave the members to their own commasts on the other tumbs. The great question was that of rettoration. What Mr. Donaldson had said of the present

[^15] ane
dreadful state of these monumento was perfectly true; but the queation was-what they were to do with them. There were two views to be taken of the case: on the one hand, if these monuments were renewed, would they be the monuments that were erected to these illustrious individuals? Supposing they were to introduce some of the beautiful glass mosaic of Mr. Stephens into the Shrine of the Confessor, it would cease to be the work which Peter, the Roman citizen, carried into execution. If they renewed the marble of Queen Eleanor's tomb, it would not be the monument which Edward erected to his Queen. Moreover, it might be fairly waid that the very identity of these things was proved to the public mind by their dilapidation. If they had come down to the present time without a speck upon them, the public would not believe they were what they professed to be. The very wound they had received were the proofs of their identity; and though it was grievous to witness their decay, he could not help feeling that possibly, if thooe wounds were repaired, we might cease to love the place as we did now. The case on the other side appeared to be equally strong. In one word, were the monuments of the victors of Cressy and Agincourt, and of the sainted Edward, to depend for their duration on miserable English marble, and perishable Keigate stone? He would not in any way appear to attempt a decision between these two views of the quention; neither of which he had stated as indicative of his individual opinion, but on the contrary, he should be glad to hear the opinions of others on so interesting a subject. As one step towards restoration, however, instantly, by the aid of government if it could be procured, or by other means, perfect drawings should be made of every medimval monument in the Abbey, as now existing; with every detail shown with such perfect minuteness, that, in the event of their perishing, it might be easy to re-construct them. In addition to their present state, another set of drawings might give a complete restoration of them, according to the judgment. of those who undertook it-probably a committee of architecta and antiquaries-with models of such things as could not be well shown by drawings. Such a series would serve as the authority for reatoration now or hereafter; and even if not so used, they would he of the utmost value.

Mr. E. Richardson said objections to restoring the monuments had been raised by many learned and respected antiquaries, from a jealous fear that all originality might thereby be lost; but, on the other hand, many valuable relica had been destroyed from a honest belief in their utter worthlessness, and a consequent neglect of timely repair. He could wish to see the existence more frequently of the feeling displayed by Lady Dudley, who, in her will, dated in 1673, adverted in strong language to the fact, that the tombs of her noble ancestors, in the Beauchamp Chapel, Warwick, had become much blemished by consuming time, and were in danger of utter ruin; and abe accordingly bequeathed a certain sum for their perpetual repair. With regard to the Westminster tombs, his motto would be, to cleanse but to destroy not; to add as little as possible, and not even that little without the best authority. Accurate and careful drawings, casts, \&c. should be taken during the progress of restoration. An immense number of valuable historical monuments had entirely disappeared within the last twenty or thirty zears. Indeed, a recent letter from the present histurian of Leicester to Mr. Richardson stated that he had recently discovered, in a field near Nottingham, a fine effigy of a crusadar, standing as a rubbing-post for cattle.

It was suggested, at the close of the proceedings, by Mr. Donaldson, that a party should be formed to visit the monuments at Westminster; and accordingly, on the 15 th, the members, to the number of one hundred and fifty, assembled and, accompanied by Messrs. Donaldson and Scott, minutely examined not only the royal tombs, but every object of interentconnected with the Abbey.

The discussion was renewed at the Institute on the 82 nd, at the conclusion of which a proposition was moved by Mr. T. L. Donaldson, and seconded by Mr. Papworth, "That the Council of the Institute be requested to draw up a humble address to be presented to the Queen, praying that her Majeaty will be pleased to appoint a Commission for the purpose of taking into consideration the dilapidated condition of the Royal Tombs in Westminster Abbey, with a view to the adoption of auch measures as may be proper for the preservation and perpetuation of these important national monuments; and that the seal of the Institute be affixed thereto." The proposition was put from the chair, and carried unanimonaly.

THE ABSORBENT POWER OF CHALK, AND ITS WATER CONTENTS.

By Prof. David Thomas Angtrd, F.R.8.
[Paper read at the Institution of Civil Engineers.]
Tmy wide extent and uniform character of the chalk formation of Eagland, and the vast population more or less directly concerned with ite presence at or near the nurface, impart great ipterest and importance to every fact connected with its physical condition. The author having been lately eagaged in some investigations with reference to the absorbent power and capacity for water of different parts of the chalk, and having obtained some results which are not, it is believed, generally known, an account of the investigation is now laid befure the Institution of Civil Engineers, as having distinct and immediate reference to the practice of engineering. The account of the experiments is prefaced with short statement of the geological character of the rock referred to.

The upper cretaceous formations of the British Islands include the chalk, commonly so-called, reposing first, and only partially, on impure and variable deposits of mixed calcareous, siliceous, and argillaceuvs rock, called cometimea the upper greensand; and then on a bed of tough clay, generally known as the gault, very impermeable to water, and very persistent wherever the bese of the chalk series has been reached. The upper greensand receives its name from the frequent presence of minute particles of silicate of iron, and often passes insensibly into impure and dirty chalk. The gault, the thickness of which is moderate, generally preserves its essential character and appearance, and is very important in keeping up the water contained in the chalk, and preventing it from passing down into the widerlying sandy beds of the lower cretaceous series.

The range of the upper cretaceous deposits of England is Itmited absolutaly by the snuth and east coast line, extending from near Bridpurt, in Dorsetshire, round by Beachy Head and Dover, along the Essex, Suffolk, and Norfolk coasts, to Hunatanton, near Lynn; while a straight line drawn on the map from Bridport to Hunstanton pasges not far from the line of outcrop of the lower cretaceous deposita, or lower greensand. There is also a considerable outlier of chalk further to the north, in Lincolnshire and Yorkshire. Within these lines is contained a total area of about 20,000 square miles of country, from about 9000 square miles of which the chalk has been removed, by denudation, in the weald of Kent, and Sussex, leaving about 18,000 square miles, of which perhaps about 8000 square miles are so completely covered by thick tertiary deposits of clay and other impervious matter as to conceal the chalk, and to remove it entirely from observation. There still remain, however, about 10,000 square miles of country occupied by the chalk, or covered with less considerable though often very important beds of gravel. This district generally presente a range of smooth hills, or downs, for the most part much above the ses level, and often scooped out into hollow combes.

The chalk lies generally in nearly horizontal beds, or with a very small dip, although in certain parts it is much tilted and broken. With the exception of the North and South Downe, which dip, the former to the north, and the latter to the south, the general end very moderate inclination of the whole mass is towards the south-east, so that there is formed an irregular, triangular trough, or basin, between the North Downs and the range of chalk hills in the counties of Buckingham and Hertford. The chalk which forms this basin is covered by the older tertiary formations of the London and plastic clay series.
The subdivisions of the chalk are not very strongly marked, but are aufficiently distinct to be worthy of some notice. They are most conveniently designated as the upper, middle, and lower portions reapectively, since by the use of these terms their relative position is merely indicated. The lower portion is, however, very generally known as the chalk marl, or clunch, terms not always applicable. The beds of the upper chalk alternate with layers of flint, not uniform over extensive areas, but on the whole sufficiently regular, and marking with much precision, though not invariably, the stratification of the ruck. Occasionally there are transverse crevices, also occupied by flints, but they are nowhere so nearly adjacent as to offer any effectual barrier to internal drainage, and the passage of water through the whole mass. There is no marked limit to the upper beds beyond the mere absence of flint bands; and the position of the lowest band of flints is a local accident. The
bottom beds of the chalk are asually of somewhat lower specifo gravity than the upper, the cubic foot of the latter reck weighing on an average nearly 159 lb ., whilat the same quantity of the former weighe barely 154 lb . The colour of thie portion is generally of a darker and dirtier tint, approaching to greys, and is often affected by the presence of green particles of wilicate of iron. The texture is apparently rather closer and harder, so that the clunch has been used in the ornamental internal worke of some eccleviastical buildings. This pert of the chalk comtains no flint bands, but a considerable quantity of siliceous, and some argillaceous matter is dissominated throuph the mmen. In the place of flint there may often be recognised distinct partings of soft and almost rotten chalk. The whole character of these lower beds somewhat approsohes that of the hardere and more compact limestones, quarried for building puxposen in various parts of the country; but it appears from experiment, that the whole rook is highly absorbent of water. The beds of doubtful character, intermediate between the white chalk with flints and the grey chalk with siliceous graina, many be convoniently designated as the middle portion of the whole series. The chalk here is tolerably compact, of a whitish-grey colome, and of a specific gravity intermediate between the two other kinds. Detached flints eometimes oceur in it, but pever in bands.
The thickness of the chalk varies much in different parta of the country, but may cortainly be considered to reach 1000 feet where it has not suffered denudation. The thickneas of the different divisions is indeterminate.
The general aspect of chalk, from all parts of the formation, varies with its condition, moisture, and the degree of exposure it has undergone. The effect of long axposure sear the surface seems to be to harden it, whiten it, and render it both more dense and more abmorbent. This, at least, is the result of the experiments recently made. The chemical condition of all chalk is very similar. It consists of a very large per centage of carbonate of lime, with mall admixtures of the calta of magnesia and sode, beaides other gubstances found in the seewater.
Having now briefly aketched the chief physical peculiarfitios of the chalk, the condition of this rock with reapect to water must be described. The observations are based on experiments reeently made on slabs of chalk, carefully selected, and the whole of the resulte were obtained in the King's College laboratory, under the immediate superintendence of Dr. Miller, the professur of chemistry in that college. The object of the experiments was to ascertain the poaitive and relative absorbent powers of different kinds of chalk, when exposed in varions ways to water. The details of the experiments are appended in a tabular form, but their meaning may be rendered more clear by a little illustration.
Of the upper chalk two specimens were experimented oa; one from Boxmoor, taken from near the surface in a dry etate, and preserved for six months in a dry atmosphere before the oxperiments were tried. The other was from Erith, talken wet, and sent at once to the laboratory. These, as well as the other specimens, were cut square, and as nearly of the same nive as possible, each weighing from 3 to 4 oz., which was as large as could be conveniently experimented on with eccuraey. The specimen from Boxmoor (No. 1, in Table) was hard, rather brittle, and 2.55 specific, gravity. It contained, when first weighed (after sir months exposure to a dry atmosphere), about 27 parts in 10,000 , by weight, of water. On exposure to a perfectly dry atmosphere for twenty-four hours, it lost about threefourths of this quantity, but did not part with the remainder of its water until it was dried in eacuo; but no heat was used in the experiments. It may be concluded from this, that the upper chalk, when it is to all appearance perfectly dry, contains one-third of a pint of water in each cubic foot, and that this quantity is never parted with under any heat, or in any dryaeme of the atmosphere. On exposure to a saturated atmosphere, this specimen was found to absorb, in forty-eight hours, 421 parts, by weight, out of 10,000 , or above 15 parts in 10,000 beyond the quantity contained in the ordinary dry state; and although it is possible that a larger quantity might have been absorbed in a longer time, it is clear, that for all practical purposes, the result obtained is sufficient. The absorption from a moint atmosphere in the case of an exposed surface of the rock, must be very small and unimportant.

Although, however, the quantity of water taken up by chalk from moist air is mall, the case is very different when the water

Takh of Ekrertmento.

Croiosteal Podition and Loeality of the ippetmen.	8peibe Grarity.	$\begin{aligned} & \text { Wedete of } \\ & \text { the Chalt } \\ & \text { prer } \\ & \text { Cube Foot. } \end{aligned}$	Abeolate Weight of the epectmen io ith ordianty atate whea sin-dried.	Wefsht at intervile of tweatyfour hourn, whlle expooed in a perieethy dry Etmouphere, and afmernas da绝 vaco.	$\begin{gathered} \text { Weigist } \\ \text { mben } \\ \text { abolurely } \\ \text { Dry } \\ \text { in ociono. } \end{gathered}$	Wdght at Intervala of twenty-foar hourt, white expowed in a entarated atmosphere.	Werght when fully matr raled.	$\begin{aligned} & \text { Wrefght } \\ & \text { of Wheter } \\ & \text { in each } \\ & \text { Cube Foot } \\ & \text { of } \\ & \text { Sator } \\ & \text { Chatled } \end{aligned}$	Bult of Water la Satarated Cbalk, (l cube foot $=1$.)
1. Upper chalim Leytill, meer Boxmoor . .	$2 \cdot 35$	$\begin{array}{ll}\text { Ib, } & 06 \\ 158 \\ 158\end{array}$	Gratoer 132000	$\left\{\begin{array}{l}\text { Oratas } \\ 1317 \cdot 4 \\ 1317 \cdot 4 \\ 1318 \cdot 0 \\ 1316.7\end{array}\right\}$	Cralne.	(Gratas. $\left.{ }^{1321 \cdot 9} \begin{array}{l}1322 \cdot 0 \\ 1322\end{array}\right\}$	Oralas.	Ibe. arotr. 24.987	-40
2. Uppar chalk. Erth	-	-	\cdots	1158.0	\cdots	-	1481	-	- 54
$\left.\begin{array}{l}\text { 3. Mhdle ebnft. Cow-rosat Wen, } 80 \text { feet } \\ \text { froen the surfiee }\end{array}\right\}$	$2 \cdot 55$	15814	1212.6	$\left\{\begin{array}{l}1211.5 \\ 1211.3 \\ 1212 \cdot 0 \\ 1210 \cdot 5\end{array}\right\}$	$1210 \cdot 2$	$\left\{\begin{array}{l}1214 \cdot 0 \\ 1213 \cdot 6\end{array}\right\}$	1415	22-731	-35
$\left.\begin{array}{l}\text { 4. Midile shalk. Cow-romet Well, } 64 \text { feet } \\ \text { from the surfece }\end{array}\right\}$	$2 \cdot 40$	1499	1659.0	$\left\{\begin{array}{l}1656 \cdot 2 \\ 1656 \cdot 2 \\ 1656 \cdot 8 \\ 1655 \cdot 4\end{array}\right\}$	1653 2	$\left\{\begin{array}{l}1639 \cdot 8 \\ 1659 \cdot 8\end{array}\right\}$	1920	20.628	-33
	$2 \cdot 47$	15315	14730	$\left\{\begin{array}{l}1464 \cdot 5 \\ 1462 \cdot 2 \\ 1462 \cdot 4 \\ 1458 \cdot 8\end{array}\right\}$	$1458 \cdot 2$	$\left\{\begin{array}{l}1477 \cdot 4 \\ 1481 \cdot 0\end{array}\right\}$	1693	21-849	$\cdot 34$
6. Upper greenaand, or lower chalk marl. Marnworth, at ste junction of the Grand Junction with the Wendover beracts Cand J	-	-	1657.6	$\left\{\begin{array}{l}1639 \cdot 0 \\ 1631 \cdot 0 \\ 1629 \cdot 6 \\ 1622 \cdot 4\end{array}\right\}$	1620.4	$\left\{\begin{array}{l}1660 \cdot 8 \\ 1674 \cdot 0\end{array}\right\}$	aramb- led to pieces.	..	-•

is preaented in a liquid form. The apecimen from Boxmoor, when eaturated, was found to have taken up more than $18 \frac{1}{8}$ per cent. of ite wainht (equivalent to two-fifthe of its balle) of weter; but as it seemed possible that the condition of the rock might have been affected by long exposure to dryness and aubsequent saturation in vacuo, the experiment wets again trisd with a specimen (No. 2) of chalk from the wet upper beds at Frith, taken from below the usual level of the water in the wells in the neighbourhood. The result in this case wre yet more startling, as it showed an absorption of nearly 98 per cent. of water by weight, or more then one-half the bulk of the mass of chalk experimented on.

It seems clear from these experiments, in which the ordinary condition of the bed is very fairly represented, that the upper chalk is capable of receiving into its mase a quantity of water amounting to more than two gallons for every cubic foot of rock beyond the quantity usually contained in dry chalk under ordinary exposure.

It would be desirable, if posible, to ascertain the rate of percolation of the water when the upper gurface of dry chalk receives rain, and becomes fully saturnted to a certain depth. The experiments hitherto performed are only eufficient to ghow that the rock is porous, in the common sense of the word, and transmits water downwards very rapidly.* No one, indeed, can have lived in, or even visited a chalk district, without being aware of the extremely short time required for the sarface to beoome dry after the heaviest showers, and the total absence of foods wherever the chalk is exposed without a thick capping of impermeable graval. When it is considered, also, that 1 inch of rain falling (which suppoees a very heavy and long-continued chower) is equivalent only to about half a gallon of water on each square foot of surface, and would not therefore fully saturate the rock to the depth of 3 inchea, and when, moreover, the effect of the innumerable small cracks, always seen near the urisace, is taken into account, it must be admitted as highly probable, if not certain, that a much larger proportion of the rain falling on exposed chalk is absorbed than has hitherto been assumed. It will be understood that these remarks apply to the upper chalk; but as a large part of the exposed chalk throughout the country belonge to this part of the series, it has

[^16]important reference to the condition of the rock with regard to water.

The upper chalk may be regarded as most usually the conducting, and the lower chalk as the contaiuing part of the formation, so far as water is concerned. The condition of the middle and luwer chalk is, as has been shown, better adapted to retain than to conduct water; and this is especially the case with regard to the lower beds. This part of the seriea acts as a resarvoir, giving off its water supplies with grest stesdiness, but with some degree of slowness. Iwo specimens of this part of the series, both obtained from the solid rock in the sinking of a well near the Tring-station of the London and NorthWestern Railway, were submitted to experiment. One specimen (No. 3) was obtained near the junction of a remarkable chalk district with the true chalk, at a depth of about 30 feet from the surface, but probably very near the top of the denuded chalk deposit, and affected by the presence of a thin argillaceous band at no great distance. The other specimen (No. 4) was taken from the same sinking, 34 feet vertically below (No. 3); and it is believed to be a fair average sample of the middle part of the chalk series. It presents a specific gravity of $8 \cdot 40$, the cnbic foot weighing $149 \frac{1}{2} \mathrm{lb}$. This rock was found to contain, when thoroughly air-dried by an exposure of six months' duration, about 23 parts of water in 10,000. Abont three-fourths of this quantity was readily given off by subsequent exposure to a perfectly dry atmosphere, and very littla more than the original quantity (in all 28 parts) was re-abeorbed on exposure to a saturated atmosphere; showing that the sbsorbent power in this respect was small, and oven less than in the case of upper chalk. On full saturation, the specimen absorbed about 16 per cent. of water by weight, or exactly onethird of its bulk, the quantity of water contained in the cubic foot of saturated chalk being, therefore, sumething more then two gallons.

A specimen was then obtained from the lower chalk, from the beds intersected by the Tring outting, selecting a portion from near the $79 \frac{1}{8}$ mile-stone from Birmingham. This specimen (No. 5) being air-dried, like the others, and for the same time, showed a specific gravity of $\mathbf{2 \cdot 4 7}$, weighing therefore about 154 lb . the cubic foot. It then contsined more than 10 parts in 1000 of water, about three-fourths of which were rapidly parted with on exposure to a perfectly dry atmosphere; but the rest, amounting to more than the quantity of water contained in the upper chalk in its ordinary state, was not parted with by any
exposure thort of a vacuum. On subsequent exponure to a eaturated atmosphere, more than 151 parts of water in 1000 were absorbed; and when the specimen was aaturated, it was found to contain something more than 16 per cent. of water, which will be found to exceed one-third of the bulk of the chalk, showing the water contents to exceed $8 \frac{1}{8}$ gallons per cubic foot.

The differences between the quantity of water contained in the various apecimens in their natural state, when dry, and in their saturated state, will be thus seen to be not only actually greater, but greater in proportion in those in the upper parts of the chalk series, amounting in the Boxmoor specimen to 183 parts in 1000 , and in the last specimen to 148 parts; and it may be concluded, generally, that wet cbalk contains upwards of $18 \frac{1}{2}$ per cent. more water than the same rock when dry, the measurement still being by weight.

Below the beds of grey chalk, and quite at the foot of the chalk escarpment near the Tring-station, there exists a bed of freenish colour, which it was thought might either be the loweat chalk marl, or the representative of the upper greensand. A specimen, which on examination was found to contain 22t per cent. of earthy matter, was selected, and was subjected, as far as possible, to the same experiments as the others already decribed. In its ordinary state, after six months' exposure, this specimen (No. 6) was found to hold nearly 93 parts of water in 1000, about half of which was parted with after twenty-four hours' exposure in a perfectly dry atmosphere; but the rest evaporated very alowly. On being afterwards exposed in a saturated atmosphere, about 334 parts of water were absorbed in 1000 , equivalent to more than a gallon of water in the cubic foot; but on being placed in water, the absorption was so rapid and considerable that the specinen fell to pieces, and the experiment could not be proceeded with. There can be little doubt that a wet rock of this kind, when exposed in a cutting, must in time be removed by the draining of water through it on its upper side, and if not protected will cause a slip of the whole overlying mass.

The conclusions to be drawn from the experiments referred to are of very considerable interest, for the uniformity of the chalk as a rock formation is one of its most remarkable characteristics; and in deciding a point concerning any of its physical propertios, similar properties may be attributed to the whole mass. It is clear that the chalk must be regarded as a rock which every where admits of the percolation of water, receiving into itself and conveying to its lower bed the water that falls on or is brought to its surface; and this readily explains the uniformly dry appearance it presents, and the absence of any otreams arising from mere surface drainage where exterior exposure of the rock itself occurs. The streams arising in chalk districts are either the produce of springs oozing out of the chalk, or are obtained from those places where the rock is covered with an impermeable mass of clay; but springs can only rise out of chalk where the mase is permanently wet, and thus there must be a surface of permanent wetneas, and below this a surface of full saturation, since the quantity of water received from rain cannot fail to sink down until it reaches oome part where the rock is already fully charged with water. The uniform experience of all persons employed in well-sinking, and in other excavations in chalk, proves also that water is generally to be obtained at moderate depths in the rock, but that in order to obtain a large and steady supply, it is often necessary to descend to a great depth.

It is also clear that particular bands of rock contain much more water than others, some indeed being apparently though not really dry when below the surface of permanent wetness, while others give off water readily, and to a great extent. When, however, the actual quantity of water present in a given apace of solid chalk is calculated, the result is very striking. Thus, from the data already given, it is easy to find, that each square mile of dry upper chalk, one yard in thickness, always contains nearly $3,500,000$ gallons of water; but that the same quantity of rock is capable of absorbing, and would contain, if saturated, upwards of $200,000,000$ gallons. The water contents of the same mass of lower chalk, when dry, would be nearly $18,000,000$ gallons; and when saturated, about $180,000,000 \mathrm{gal}-$ lons.

Although, perhaps, the extent of surface of exposed chalk, into which the rain would immediately descend without interruption from gravel or vegetable covering, is small in proportion to the whole range of the rock, yet it may be worth while
to consider the probsble effect of the rain-fall undar anch oircumstances. The mean annual rain-fall in the east of Pogland may be estimated at 96 inches, of which at least 18 inches cannot fail to he received into the mass of the rock: now, the descent of this to the surface of permanent wetness, at arate which, though comparatively rapid, must be really extremely slow, will end in limiting that surface to a position having a general and rude parallelism with the surface of the ground. Where, however, the ground is covered with impermeable aluys, the wetness would not rise to the same level as where it is uncovered; 80 that an additional cause of variation is thus produced, and in thoee parts where the rock is permanently covered with thick and widely-spread imparmeable material, as over the London basin, the lateral percolation being the only kind arailable, the position of this surface would be still mare seriously affected.

On the other hand, the surface of full taturation being dopendent chiefly on the quantity of wates intreduced ifto and percolated through the rock, in times loas anterior to the present, would probably be more uniform and permanent. That a portion of the chalk exists in this state of full satnration is almost certain, jndging from the nature and constitation of the mass itself; and that it depende to some extent on the prease levels and general poaition of the chalk surface, rather thap on the geolugical position of these beds, and the place of their outcrop is equally probable.

It may also be considered, that wherever the ganlt extende, underlying the chalk and keeping up the watar, there mugt be at and below a certain depth from the surface, s aupply of mater to the extent of $180,000,000$ gallons for each square mile of one yard in thickness; and that the surface of permenent befmens, dependent chiefy on the present rain-fall, is so far above this lower surface of saturation as to insure a supply, it least equal to one-half of the rain falling on the whote of the immediately surrounding district.

In conclusion, Professor Ansted said his experifitents had been conducted with great oare-and accurncy, the quantities given were absolute, and the experimente, as far as they went; must be considered valuable, because they reprasented poottive facts. Indeed, his object in laying the communication bafore the Institution was to bring forward facts, and not to offer opinions. In those experiments it was found that chalk whe capable of containing on an average at least two gallons of water to the cubic foot, a result that could not be anticipated by any one looking at the condition of other rocks. The similarity between sandstone and chalk was so slight as hardly to require nutice. New red eandstone, which was a soft variety of the rock, was not capable of contrining one-fourth part of the water held in the chalk, and could not therefore be compared with it. Whatever was the case with one part of the chalk might safely be applied to the whole mass of rock; and he had therefore alluded to wbat he called "the surface of permanent' moisture" as the probable actual condition of the chalk in the lower part of its mass. Sandstone, more than any other rock, was divided into distinct portions, with scarcely any communication between the different parts. He quite agreed that it was more important to consider the rate of percolation than the absorbent power; but the latter was easily ascertained by experiment, whereas the first required large operations, and it was even then difficult to arrive at satisfactory conclusions. The question with regard to the actual quantity of water in the chalk, and the use of the chalk as a bed to supply water, was surrounded by many peculiar difficulties, and any information which could be depended on with regard to the condition of the chalk itself, was of value. The facts he was aware of, with regard to the depth at which water could be obtained in the London basin, led him to form a conclusion as to "the snrface of permanent wetness" beneath that deposit. Water was generally found in the chalk up to its contact with the London clay; but the surface of contact of the two rocks was very irregular. He believed "the surface of permanent wetness" to be generally below the beds which were called plastic clay, and which, for the most part, contained a considerable thickness of aand and gravel. What had been determined with regard to percolation Was sufficient to show, that no one well would supply the immense quantity of water required for the consumption of a large city, although sufficient might thus be obtained for the supply of a large brewery, or other establishment. In his opinion, the supply of water for even a large town, much leas that for such a city as London, should never be dependent on
well sank into the chial. He did not winh, however, to enter upen that subject, his objeet boing rather to bring forward tivete relative to the quertion of the absorbent power of rocks.

In the discussion. which followed the reading of the paper, Mr. F. Braitmwarti described some experimenta made by him, Which were so similar to those of Professor Ansted, that he begged to hand in a tabular statement of the resulta; they were made on chalk taken from a well at a depth of 204 feet from the surface of the ground.

Zocality of the apedmene of Chall.	Before Dertar.	Anser Dryint 43 honfa - 212°		Lome.
$\left.\begin{array}{r} \text { Tukon hamedintely above } \\ \text { \& tamre, yioldiog water } \\ \text { at } 89 \text { foet in the obalk. } \end{array}\right\}$	lb. os. $915 \frac{9}{4}$	lb. os. 90	lb. on. 00	lb. os. 0 15
$\left.\begin{array}{l} \text { Trken immediately below } \\ \text { the fasere } \end{array}\right\}$	1010	981	99	11
$\left.\begin{array}{l} \text { Tiken above a fissure, at } \\ .55 \text { feet in the chalk } \end{array}\right\}$	89	215	214	011
Taken below the fasare.	415	3141	314	101
$\left.\begin{array}{r} \text { Takem ebove a tusare, at } \\ .68 \text { foet in the chalt } \end{array}\right\}$	128	101	100	23
Tabea lelow the traxe.	109	812	810	115

genacyust OP mave patemate

COMPUSITION FOR PREBERVING FROM DRCAY.

A. V. Nswrow, of Chancery-lane, for an improved compasition, oppticuble to the coating of wood, metale, plaster, and other substmater which are required to be preserved from docay; which comparilion may be also employed as a pigment or paint. (A communi-aation.)-Patent dated November 19, 1850. [Reported in Nowson's London Journal.]

Clesms.-1, the manufacture of the composition described, under any and all its modifications, and its application as a pigment, or as a coating to preserve wood, metaly, plaster, and other subetances from decay; \& the use, in such composition, of silices or silicic acid, or of silica in some one or more of ite comblnationa,-the presence of which subatance is an essential clement in the improved composition; 3_{2} the nse of protocolphuret of antimony, in the manner and for the purpone bereafter explained.

For the above purposes a mixture, containing the following materials, may be prepared either by the employment of natural products, or or of suiteble metallurgical refuse:-

Ketalic slmet..............	14 parte by wedint.	
Metallte Iron .	1	
Oxide of mace.	88	"
Oride of lrom	278	s
Hilke ack	70	4
	8	*
	47	*
Carboante of dineve....................	225	"
	1000	

Theee arbatances are firet reduced to a very fine powder, and are efterwards ground up with raw fixed oil (poppy and linseed eil, by preference, in the proportions of two parts of linseed-oil to ase of poppy-oil). The composition, thus prepared, is used in the amme manner as ordinary oil-paint,-it being, however, fint ciluted with a mixture of two parts of raw fixed oil, and ooe part of emence of tarpentine, or more if required. It is mid that two conte of this componition (over which any other paint may be afterwarda laid) will be sufficient to protect the burface of damp walla from the effecte of the weather; and it will not be liable to arack or ecale off. The composition is equally applicable to stone, plater, wood, metals, \&c.; and may, therefore, be advantageously employed for buildings of all kinds, chipa, stockades, piers, jetties, sloepers for railway, turnpike and other getees, bridgen, and other large worke of public usility.

When stone walls, plaster, or cement, are to be operated upon, they must first be well scraped, and freed from all provious paint, and well soaked with a minture of one part of sulpharic acid, at 66°, to five parts of water. This liquor must be applied until effervescence ceases. The murface is then left to dry, and three coate of. the comporition are to be laid on, care being taken to let ench coat dry before applying the next cont. In cases where the surface is very damp, or impregnated with saltpetre, it will be found advantageous to add to the composition, above-mentioned, from eight to ten per cent. of protosulphoret of antimony.

The patentee gives five formulso (which are modifications of the improved composition) as the best resulte of numerous experimenta.
In certain cases, it may be advisable to employ the following coating or mastic, in order to fill up jointa, holea, or \&aws, \&c.; or it may be used to coat the entire aurface to a thickness of from doth to $\frac{1}{3}$ of an inch in depth:-

These subutances are to be reduced to a fine powder, wall mixed, and ground to a suitable consistence in a mirture of three parts of linseed-oil and one part of hempeeed-oil.

PRESERVING AND CURING SOLUTION.

P. A. Lecomte de Fontannmomeav, of South-street, Finsbury, and 39, Rue de I'Echiquier, Paria, patent agent, for ceptain improvements in preserving animal substances from docay, by means of a composition applicable to the cure of certain diseaser. (A com-munication.)-Patent dated September 4, 1861.

Claims.-1, the application of metallic malta, but principally of sulphate of zing, at the degrees of heat laid down or thereabouts, for the preservation of corpsee or anatomic parts, and animal subetancea in general, from decay; q, the application of the said solution, combined with emollient substances, for the cure of wounda or other similar external diseases of the haman body.

The salts of zinc as they are found in commerce may be used, but the metal itself is preferred on account of its superior state of purity. A portion of zinc, previounly granulated, is dissolved in a solution of sulphuric acid and water, of the strength of 30° or 40° of Beaume's aérometer. The solution is filtered and left at rest several days to allow it to deposit all the heterogeneous particles it holds in suspension; when the deposit is formed, the liquid part is decanted with care, and is employed for injections, it being introduced through one of the arteries of the corpse. If the subject is to be exposed to the open sir during the operation, an addition is made to the colution of one-third of its weight of oil of turpentine. Any desired odour is given by an essence. To preserve anatomical parts by immersion, the solution is employed in a pure state, and concentrated only to 20° or 25°. For the cure of gangreous wounds and other similar external diseases, the inventor employs the liquid in the highest concentrated condition, and weakeus it in a decoction of linseed, marshmallow, or other emollient planta, and reduces it to the strength of 4° to 10°; it is made use of by imbibing lint or compress, with which it is applied on the wound, care being taken to change it each time. To disinfect places, the liquid is dissolved in water, and reduced to the strength of 10°. For washing the hande or other parts, the solution is reduced to $\$^{\circ}$ or 3°.

APPARATUS FOR DELINEATING OBJECTS. (With Engravings, Plate XIV.)

James Palmke, of 4, Porteus-road, Paddingtion, for improvements in delineating objects, and in apparatus and materiale for that purpose.- Patent dated August $23,1851$.

The purpose of this invention is to furnish the means of producing drawings of all descriptions of objects in a much simpler and more perfect manner than is effected by the camera lucida, camara obscura, graphic telescope, and other instruments hitherto proposed for that purpose.

Clainu.-1, the modee of construoting apparatus for delinenting; 2 , the mode of delinesting objects in the apparatue, and with the pencils described; $\mathbf{3}$, the mode of delineating objeote apon gelatine with the etching-needle, and printing the delineations so made; 4, the mode of enlarging the delineations made as deacribed; δ, the apparatus for enlarging the delinestions; 6, the mode or modes of manufactaring incoluble gelatine.

A plate of glags, about two feet square, is mounted in a framework (which is also a perfect easel), of which a front view is shown by fig. 8 , a side view by fig. 3 ; I, being a support for the canvag, for the purpose of using the delineator as an easel. It is furniahed with edjustments A, for supperting the glass in a vertical position at any convenient height. On one side of the plate of glass, and at a distance of several inches from it, is fixed the frume B, representing a pair of spectacles, aleo capable of adjustment in position. One of the apertures of the spectacleframe is closed by a plate or shutter C. The operator applies his nose to the spectacle-frame, and looks with one eye through the glass at the object which he wighes to delineate, and he then traces over the outline of the object on the glass with a pencil, formed of a mixture of wax, soap, ahellac, and lamp-black, which is capable of marking very distinctly on the smooth surfuce of the glass. In this way an exact drawing of the object, in true perspeotive, is obtained with great facility. The spectacle-frame preserves the position of the eye, without interfering with freedom of vision. The instrument is very convenient, and its use is readily acquired, which can scarcely be affirmed of any of the instruments hitherto proposed for the purpose, as is shown by the very slight use which is made of such instruments. The drawing on the glase is transferred to paper by tracing it, or by pressing a moistened sheet of papar upon it. Fig. 4 is a front view, and fig. 6 a side view of a delineator capable of being attached to the table.

The same apparatus is used in a similar manner for drawing with an etchink-needle on a sheet of gelatine supported by the glass, or on a sheet of glass costed with gelatine. The drawings thus made may be printed from the gelatine as from a copperplate. To enable the gelatine to be used for printing on moistened paper without adhering to it, the patentee render it insoluble by immeraion in chemical solutions. Gelatine so prepared doea not adhere to the paper, and may be immersed in cold or warm water without injury. The prints from the gelatine may be transferred to stone or zinc, and printed in the ordinary manner of lithographic printing, the engraving which illustrates this invention being a specimen.

The invention is applicable to making drawings and engravings of buildings, machinery, landscapes, flowers, or any other stationary objects. For taking portraste a rest is provided, to keep the head of the person in a atationary porition, as in fig, 1 .

These drawings or delineations are necessarily smaller than the real objects, but their size may be varied by varying the relative distances of the glass and the object from the eye of the operator. When it is required to increase the size of the drawings, a drawing on glass or gelatine H, is placed in an instrument momewhat similar to a oxyhydrogen microscope, by which n magnified image is thrown on a disc of glass, ground on both sides, which is supported by the delineator. The interior of the instrument is shown by fig. 5 , and the exterior by fig. 7; D, in a door through which a solar lamp is introduced and placed on a pedeatal C; the light from the lamp passes through the condensors F, which has the effect of causing the image H, to be reffected, the proportions of which are regulated by condensort at E, an adjusting screw G, regulating the necessary focus. K, represents a door for the purpose of allowing heat to escape, to prevent injury being done to the gelatine upon which the image to be reflected is drawn. A sheet of gelatine is fixed on the back of the glass disc, and the magnified image traced upon with the etching-needle, or with the pencils above mentioned.

WATERPROOF BRICKS AND TILES.
 (With Engravings, Plate XV.)

John Worman, of Stamford-hill, Middlesex, furnace builder and fumist, for improvements in the manufacture of bricks, tiles, and other articles of like materiale.-Patent dated July 31, 1851.

This invention consists in making bricks, tiles, and other porous articles of like materials, non-absorbent or waterproof. The bricks, \&c., are first conducted into the hot-air chamber

A, which in beated by beated atmonphere in a furnact and apparatus to a very high temperature, as $500^{\circ} \mathrm{Fah}$. and upwarde; thea through the solution B, into the second chamber C, where the solution is baked or burnt in; after which they are peseed from the endless chain on to the inclined plane, ready for stecking. The chain works over a canted driving-wheel D; on the name ghaft is a worm-wheel E, driven by the endleas acrew F, on the shaft G, which shaft is worked by the bevil-wheel and pinion H, I. The pinion I, is fixed on the fly-wheel ahaft of a portable steam-engine, which gives motion to the whole of the apparatin. The shaft G, is prolonged to the laying-on end in front of the chamber \mathbf{A}, to drive the canted wheel or drum J , by the corew and spur-wheel, as before, to draw up the return chain read y to reload and pass into chamber A. There is also fixed on the mame shaft a light spur-wheel K, driving the pinion L. On the epindle M , is Eeyed the rigger N , driving the pulley O , by a leathern strsp, which works the fan P, the air from which pasees up the pipe Q, into the horse-shoe pipes, forwards and backwards through the furnace to pipe \mathbf{R}, returning over the horeoshoe pipes into the bottom of air-chamber A, at S. The flame and heat, after enveloping the bent pipe \mathbf{R}, passes againgt the water-heater T; then under, behind, and through the tue U, against and over the front and through the centre flue V, to the chimney. The water-heater and brickwork at back keep the intense heat from evaporising the solution in the chamber W. The chains work on rollers turning on bearings fixed to platea of chambers, which are lined with fire-brick throughout. The top and bottom is formed of fire-tile, covered with a layer of sand from end to end, to retain the hest. The chamber C, has a lining of sheet iron underneath at X, also covered with sand to prevent radiation of heat. The ohaine return under the chambers on rollers turning in carriages fixed to the columns, which also are stay-bars to keep them to their proper distance, and they pass under the stoking-fioor \mathbf{Y}, to the front; the columns are fixed to the plates with two bolts each. The chambers are carried off by a pipe a. b, is the damper. The cistern c, contains the solution, the supply of which is regulated by a valve and the float d. e, passage for solution to chamber W. The bricks, \&c. are kept on the chains by pins fixed in the creeepieces of the links, which are kept firm by stay-bars f, f, and work on the thimbles g, secured by the nuts h. i, is the thermometer to ascertain the temperature in the chamber A. j, the ash-pan, to prevent ashes falling on the chains. k, a bar with a slot and acrew-bolt, to regulate the angle of the inclined plane to give a self-acting motion to the bricks, \&re. towards the stack. The spindle M, works in brackets fixed on plates of chamber A, the same as long shaft G. The whole of the machine is made portable, for convenience of transit from place to place. The engine and boiler are easily disconnected, and, when the machine is not in use, can be employed for pumping or other purposes deemed necessary.
Those bricks, \&c., that are intended for building dock walls, stores, cellars, warehouses, tunnels, baths, tanks, and basement stories of buildings, to keep them dry and waterproof, are placed on the chain from the outside of the machine, and moved at a given speed through the chamber A, into a solution consisting of whale or meal oil and sugar of lead, in the proportion of 1 oz. to 1 gallon of oil; the sugar of lead is to be well pounded and mixed previous to being put inte the tank, and the passing of the chains through the solution will keep it continually moving. The speed given will regulate the necessary time for the materials passing through the solution, after which they rise up an inclined plane and drain themselves; they then enter the second hot-air chamber, where they undergo the process of baking and hardening; from thence they are propelled on to an inclined plane outside, and are then stacked, hollow, so as to allow the atmosphere to take effect on them as much as possible. It is necessary for them to remain in this position at leant fourteen days before being used for building, but the longer time they are in the atmosphere the more they will axide with it. Bricks that are intended for facing and building housen \&c. that are exposed to the damp, undergo the same process, but linseed-oil is used instead of whale or geal oll; and for tiles the same.

Bricks, tiles, and other like materials, waterproofed by this process, will be found to keep their colour and have a clean appearance after they have been washed by rain, and will keep the house dxy and consequently much warmer and healthier. From 95,000 to $\mathbf{3 0 , 0 0 0}$ bricke per day can be made non-absorbent by this proces.

PALMERS PATENTED APPARATUS FOR DELINEATING AND ENLARGING OBJECTS.
.

drake's paddle wheel.

GAS BURNERS.

(With Engravings, Plate XV.)
P. A. Lecomite de Fontainemoreat, of South-atreet, Fins-bury-equare, Middlesex, for certain improvements in apparatus for gor-lighting. (A communication.)-Patent dated August 88, 1851.

Claim.-The combination of an apparatus for regulating the supply and action of air on the fiame of gas-burners, whereby the illuminating power of the gas is increased-i.e. with a given volume of flame a considerable economy in the consumption of gas is effected, a stronger, more steady and calm light is produced; likewise, a more complete decomposition of the gases and carbon is effected.

The apparatus is composed of two parts: first, a perforated wire-cloth, or metal diaphragm, which is placed at the bottom of the chimney, around the burner; this prevents the air entering the glass chimney before it has travelled through it. By this means the air necessary for the combustion of the gas is made to reach the centre of the flame, and act on its interior surface in a diffused state, of great and minute divisions, and its molecules correspond to the molecules of gas. The resistance that the air meets at its egress, by the disc next described, highly favours the action of the flame, which, instead of being blue and unsteady, acquires a fixity and density which gives it a great analogy to that produced by the carcel-lamp. The engraving represents the second part of the apparatus: n, is the upper portion of the glass chimney of an argand burner, which is fitted at the top to an eartbenware ring m; this is fixed to a circular metal disc a, placed one-sixth of an inch above it, in order to cause a current of air between the glass and the apparatus. The disc has an opening in the centre; d, is the cover to the opening in the centre of the disc, with a hinge e, which connects it to it, and serves for the purpose of passing a light through it to ignite the gas; f, is a handle for raising it. The cover has an opening g, in its centre, provided with a valve, perforated with holes h; this, when it ia necessary to increase the area for the egress of air, can be raised by means of a screw i, which is fixed in the said valve h, between the head of the screw j, and the nut k, and is supported on a cross-piece, with a screw-hole in the centre, shown by the dotted line l, fixed at its two extremities to the periphery of the cover d; the height of the screw, from its extremity to the nut k, should be about two-thirds of an inch.

PADDLE WHEELS.

(With Engravings, Plate XV.)

J. P. Drake, of 8t. Austell, Cornwall, for improvements in constructing ships and other vessels, and in propelling ships and other cessels.-Patent dated Septembar 4, 1851.

The patentee considers that there are certain fixed relations between the engine, number of strokes, diameter of wheel, and dip of paddle, which will bring out the whole power of the engine and maximum effect. Having once obtained these relations, by calculation or experiment, the object of the invention is to retain their propulsion; and the accompanying engraving and explanations will show how this is proposed to be effected.

Fig. 1 represents a longitudinal view of an ocean steamer, with wheels on the raising and lowering principle. A, load immersion line; B, light immersion line; \mathbf{C}, paddle-wheel in its fixed position, according to present practice, the dotted lines showing to what extent the wheels may be elevated or depressed to regulate the dip of the paddles, as required to bring out the full power of the engine under every variation of the immersion line from A to B.

Fig. \boldsymbol{z} abows a midship section of an ocean steamer on this principle, for regulating the wheels, as explained by fig. 1. A, B, light and load water-lines. C, paddle-wheels, one with outer bearings, the other without, the latter greatly diminishing the overbanging weight. D, shaft or axle in the usual fixed pogition, the horizontal dotted lines showing the extent to which it may be raised and lowered, as explained also by fig. 1. E, screws for rassing and lowering the wheels, these screws being of sufficient power to raise three times the weight of the wheels and axle. F, esrew for adjusting the axle at the outer bearings, if the old plan wheel be retained. G, iron framing, with plummer-blocks for the axle to revolve in; these blocks to raise and lower with the shaft, and to rest on shifting iran plates. In this framing
screws may be introduced, as shown at G, for the purpose of adjusting the shaft, instead of those marked E, if desired. H_{2} supporters of engine-framing G, to be made of wood, and tied to the sleepers by an iron tie-bolt passing through the axles of the pillars H, with screw points to screw into plates fixed in the sleepers, as indicated by the dotted lines. This frame to be constructed by the builder, and will be found more compact, stronger, and lighter on the whole, than the usual iron frame, and may be more readily removed in case of repair, \&c.; at the same time, an iron engine-frame throughout may be introduced, if wished, or the old engine-framing altered to the purpose required. I, a self-acting iron slide at the side to keep the water from entering the vessel, the axle passing through it at D. J, plummer-block at the side-bearings, and shaft, with a key to keep it from turning during the process of raising or lowering the wheels. K, resting plates for the plummer-blocks, to be in thickness equal to one day's displacement between A and B, so as to admit of the wheels beipg adjusted daily if necessary. L, plan of screw-bed as above. M, crossheads for crank-rods, which are fixed when adjusted by nuts above and below, as explained. N, centre part of beam, with a plan for working the valves instead of eccentrics attached to the shaft. O, rod connecting with the valve-levers. This will simplify the process, and leave the crank-rods only to be adjusted as shown at M, and which, if the engine be on the direct-acting principle, may be regulated at the crank end of the rod with equal facility.

When the vessel at starting is brought down to tbe immersion line A, the wheels are to be raised so as to give the paddles the best determined dip, and as ahe lightens they are to be lowered to retain that dip; this can be done at such intervals as may be deemed expedient. The men are to be stationed ready to act as directed, the engine stopped at command, and the shaft locked or keyed at the side-bearings J, and the beams also locked. The crank-rods are then to be released at the crossheads M, by raising the upper nut to the distance required; the small screws above the plummer-blocks also turned up; the weight of the shaft may then be relieved from the resting plates K , by one turn of the icrews E , or F , and one or more of these plates withdrawn and placed above the plummer-block. The shaft is then to be lowered into its place by means of the screws \mathbf{E}, F; the lower nut at the crose-head M , is turned up to secure the connecting-rod, and the small screws turned down to make all rigid. The shaft and beams being then unlocked, the engine may resume its working, and the vessel proceed on her way after a detention of not more than five minutes.

The inventor considers, first, that the increased oblique action which has been the great obstacle to the common wheel is entirely obviated; secondly, the immersion of the vessel not being restricted by the wheel, she could carry more cargo than would be at present consistent with speed, safety, or economy; thirdly, the centre of gravity is kept lower in light immersions, by which stability and mafety are increased; fourthly, the appropriate dip of the wheel is ungltered under all circomstances, thus maintaining the perfect proportion between power and speed.

SUSPENDING AND LOWERING SHIPS BOATS.

W. S. Lacon, of Great Yarmouth, for improvements in the means of suspending ships' boats, and of lowering the same into the water.-Patent dated February $23,1859$.
The object of the invention is to suspend ships' boats in such a manner that, in the case of any sudden emergency, they may be lowered and put to sea, withuut the risk of the tackles which connect the boats to the ship retarding the operations of lowering and floating them clear of the ship; likewise, preventing the possibility of the ship, in its onward progress through a rough sea, dragging forward a lowered boat, and capsizing or swamping it.

Claims.-1, the suspending of ships' boats by chains or ropes, which are capable of disengaging themselves, by their own weight, from the ship when once the lowering of the boat is accomplished; q, the employment of a friction-pulley and fric-tion-strap, or other amalogous contrivance, for regulating the descent of ships boats into the water; 3 , the means described for running-out the suspending chains, cords, or bands of boats uniformaly, whereby the dauger consequent on lowering ane ead of a boat quicker than the other is avoided.

The boas is raised by the une of the ordinary tackle, and when elevated, it is permanently retained in the desired position (see

P4. 1.
fig. 2), by pasaing around it, near the head and the stern of the boat, two broad belte or straps, composed of metal or platted rope, and having a ring attached at either end, the inner ring being for the purpose of forming a permanent attachmont with the suspendiug-chains, and the outer ring for allowing of a temporary connection, by means of a splicingrope, to a ring of the suspending-chaing.

The engraving, fig. 3 , represente an inside view of a boat suspended according to the patented improvements ; the chaing or ropes for supporting the boat pass over friction-pulleys or sheaves fired to the davits or iron brackets which are secured to the bulwarks of the ship. The ropes or chains pass down from the davits to convave barrels, and are connected thereto by the last link in each chain catching into a curved pin projecting from the periphery of its barral. These barrels are mounted on s shatt, turning in bearings in the bracket-pieces. When the ends of the slings have been connected by the splicing-ropes, the barrels are caused to revolve, by means hereafter described, for the purpose of tightening the suspend-ing-chains, and csusing them to sustain the weight of the boat. The raising tackles are then removed. About the middle the shaft carries a large frictionpulley, to which a ratchet-wheel is affired; around this pulley a friction-strap is placed, and the ends of the atrap are jointed to a lover (seo fig. 1), which works on a fulcrum-pin. Into the teeth of the rat-chot-wheels a catch takes, projecting from a lever which works on a pin, for the purpose of preventing the running-down of the chains by the rotation of the barrels. Each lever is to be brought forward and set fast by means of a pin, which is readily withdrawn when the apparatus is to be brought into operation. It will be seen that in all these cases the lovers of the friction-strap and pall are retained in their places by mesns of a bolt. If this bolt were locked, by means of a master-key fitted to all the boats alike, and if one of these master-keys were at all times worn, suspended by a ribbon or lanyard, by the captain, officers, and petty officers of the ship, no bost could be lowrered without authority, and the danger of a rugh to the boate by the crew and passengers would thus be avoided.

Fs. 2.

Fig. 4.
When it is required to lower the boat, a man inboard withdraws the pin pressing forward the lever of the friction-strap, which casues the strap to retain its hold of the friction-pulleg, and thus prevents the premsture revolution of the shaft. If
then thrusts back the second lever into a retaining or selfecting catch, and lifts the pall from the teeth of the ratchetwhoel. On loosening the gripe of the friction-strap, the boat will deecend gradually by its own gravity, and quickly, irrespective of any weight that may be in her; by the men in the boat letting slip the lashing of the straps, the boat will be clear, and the straps and chains may be hove back into the ship by means of the winch, shown in fg. 3 , which also may be used to raise the boat instead of ordinary tackle. But in cases of emergency, when, either from the rapidity with which the ship may be going through the water, from a heavy sea, through want of time, or from people rusbing into the boats, it may be dangerous to cast off the lashings of the alings, or if in attempting to let go the lashings of the straps, either of them should foul, then, if the friction strap be slackened when the boat resches the water, the weight of the chains and the resistance of the boat will pull round the barrels, and the ends of the chains not being fast, will slip from off the projecting pins of their reapective barrele, and will be lowered into the water, being prevented from going down by the run by means of two amall lines, the loop or eye at the end of each slipping frum off the pin when the turns of the lines have run of the barrele, and the boat, as before, will be free of its connection with the chip, and will ride along in aefety by means of the painter, and the elings and chains may be hauled into the boat, or if the lashinge of the strape be let go the straps and chains will sink into the water clear of the boat.

When it is neceseary that the bosts should be swung inboard, the inventor proposes to carry the straps from the chain which passes over one swinging davit to the chain which passes over the other, making them cross under the bottom of the boat, as shown in fig. 4; by this means, when the davits are turned to bring the boat over the deck of the ship, the arrangement of the cradle will not be disturbed, as it would be if formed as above deacribed.

METEOROLOGICAL QUARTERLY REPORT.

On the Meteorology of England during the Quarter ending Deember 31, 1851. By James Graisher, Eeq., F.R.S., Secrotary to the British Meteorological Society.
Tisl Oetober 28, with the exception of a very fow days, the mema delly Lemperatures of the air were above their average valuet, at times to the amount of 8° to 10°; the average daily excens for the period wat $3^{\circ} 7$. On October 29, a period of exceeding cold weather met in, and for 37 days the daily temperatore was below it average value, frequently amounting to $8^{\circ}, 9^{\circ}$, and 10°, less frequently to 11° and 12°, and in one cace, exceeded 13°; tbe average defect for the period was $6^{\circ} \cdot 2$. So cold a November has not been aince the yeur 1786 .
The period from December 5, to December 24, was mostly warm, though at times it wat cold; the average daily temperature was $2^{\circ} \cdot 5$ in excens ; and to the end of the joar, from the 25 th, it was $2^{\circ} \cdot 5$ in defect.
The reading of the barometer was in excess in each month, and greatly $s 0$ in December.
The fall of rain oniy amoanted to two-ffthe of its average fall for the quarter; and this deficiency of rain has been general over Bugland, Seothand, and Ireland, excepting onily the county of Norfolk. There ham been mach lese water mixed with the air, and the degree of bumidity of the air has bean unusually low, particularly in December.

The mean temperafure of the air at Greenwich, for the quarter ending November, conatitating the three antumn montha, wem 49․1, being $0^{0} .2$ below the average of 80 years. Por the month of October was $52^{\circ} \cdot 6$, exceeding the average of 80 jeara by $3^{\circ} \cdot 3$; for the month of November, wa $37^{\circ} \cdot 9$, being below the average by $4^{\circ} \cdot 5$; and that for Deoember wat $40^{\circ} \cdot 5$, being above the average by $1^{\circ}{ }^{\circ} 7$.

The mean temperature of the dew potst was $46^{\circ} 4$ in October; $32^{\circ} .2$ in Novembar ; and $29^{\circ} .9$ in December; these quantition are, $1^{\circ} 0$ in exceas, $9^{\circ} \cdot 2$ and $y^{\circ} \cdot 1$ in defect, of their avorage velues.

The meen degree of humeidity for the quarter was 0.773 , its average is $0-887$; this implies great dryness.
The mens reading of the darometer in October was 29.726 ; in November, was 29.781; and in December, was 30.135. The high reading in December was remarkable.

The foll of rain in October was 1.8 inch; in November was 0.6 inch; and in Decerober was 0.6 inch. The sverages for theve months are $3 \cdot 2$ inches, $2 \cdot 7$ inches, and 1.5 inch respectively.
Snow fell on the 29th of October at Stonyburat, and aleet at Darhem; 3rd of November at Stone, Derby, Hawerden, Liverpool, and Maneheater ; 4th at Uekfield, Srona, Hartwall Rectory, Aylesbary, Lindade, Cerdington, Bedford, and Nottingham; 14th at Norwich; 15th at Norvich, Nottiaghem, Manchester, and Stonybant ; 16th at Thame,

Holkbam, Durham, and North Shielde; 17th at Falmouth, Thame; Linalade, Holkhem, and North Shielda; 18th at Uckifeld, Cardington, Gainaborongh, Durham, and North Shielda; 19th at Linslade, Nottingham, Liverpool, Manchester, Wakefield (Whitehaven a little), Durham, and Dunino ; 20th at Oxford, Thame, Stone, Hartwell Horese, Hartwoll Rectory, Aylobbary, and Bedford ; 21st at Aylesbury; 22ad at Hartwell House ; 24th at Stongharat ; 26th at Gainsborough ; 27th at Stone, Hertwell House, Hartwell Rectory; 29th at Hartwell House.
Hail fell on October 2nd at Heloton and Maidentone-hill; Srd at Jerrey ; 4th at Jersey and Guernsey; 5th at Uckfield and Stonyburti; 6th at Nottinghem; 15th at Liverpool and Whiteharen ; 1 Och at Thame ; 18th at Guerney ; 24th and 25th at Jersey; 29th at Guerniey, Falmoath, Torquay, and North Shielda; 30th at Guernsey and North Shielda-laf November, at Palmoath, Liverpool, and Whitehsvan; 2nd at Falmoath, Torqoay, Maidenstono-hill, Thame, Hartwell Hoase, Hartwell Rectory, Nottingham, Hawarden, and Liverpool: 3 rd at Guernaey, Helaton, Topquay, and Hawarden ; 4th at Guernsey and Hawarden ; 10th at Guerneey, Helaton, and Palmoath; 11 th at North Shields; 16th at Helaton; 17th at Falmoath and Torquay; 20th at North Shlelda; 24th at Gaerncey, Falmoath, Hawarden, and Liverpool; 25th at Gaerasey, Helaton, Palmoath, Torquay, and North Shialde; 26th at North Shields ; 28th at Grarncey.
Aurore were seen, on October the 2nd at Meidenstone-hill, Oxford, Redeliffe Observatory, Cardingtom, Norwich, Nottingham, Stonyharit, Whitohaven, Durbam, North Shields, and Danino; 3rd at Cardingtion and Nottingham; 4th at Nottingham and Darham ; 14th and 15th at Stonyharit; 18th at Durhsm ; 28th at Wakefield, Stonyhurat, Durham, Whitoharen, and North Shielda; 29th at Hartwell Rectory, Nottingham, Wakefeld, and Danino.-4th of November at Ayleshary and Nottingham; 3th at Stonyhart; 19th st Stonyhurat; 20th end 21at at Aylesbary; 24th at Danino; 26th at Stonghurat.-6th of December at Hewarden, Liverpool, Wakefeld, Durhem, and North Shields; 8th at Hawarden; 22od at Nottiaghem, Hawardea, Stonyhurat, Whitehaven, Darbam, North Shielda, and Danino; 23rd at Whitehaven and Danino; 28th at Grantham and Danino ; 29th at Granthem, Stongharat, North Shielda, and Dunino.
At Aeton Clinton, six miles east of Stone, on Oct. 29, an anrora was seen. The seme surora was seen at Edinburgh and at Cambridge.
At Durham, on Nov. 29, at 7h. 3m. p.m., many meteors were soen noar Adebaran : as many an afteen were counted in a quarter of an hour.

Awrore Borealis, as wen at Nottingham by E. J. Lowo, Esq.
Oct. 29, 3 h . a.m., aplendid surora.
Nov. 4, 6 h . 30 m ., 脌 arch; 6 h . 48m., a streamer vertically apwarda between ζ Urse Majoris and β Bootir.
Dec, 22, 6 h . aurorel glave.- 10 h .50 m . bright atrenmers.-11h. atreamera half way to zenith, great intonaity in north; brightent streamer through a Cephei, which atreamer oscillated laterally about 20° back warda and forwards in 30 a. periods. The aurors extended in the weat to β Pegsai, and in east to θ Urse Majoris.- 11 h .6 m . nearly gone,- 11 h 8 m . three atream. ers in north; the mont easterly paceed ander η Urse Majorin, and anothar ander θ.- 11 h . 11 m . Ane streamers, which if continued would pus 1° eant of β Urue Minoris, diameter $30^{\prime} .-11 \mathrm{~h}$. 12 m . the atreamer moring west ; if conrinued would pasa through γ Urse Minoris.- 11 h . 13 m . it is now midway between γ and η Urue Minoris; In altitade it estoada to elevation of θ Draconis.-11h. 14m., between β end γ Draconis.-11h. 16 m ., west of γ Draconia. $-11 \mathrm{~b} .16 \mathrm{~m} .30 \mathrm{~m}, 1^{\circ}$ west of $\gamma,-11 \mathrm{~h} .17 \mathrm{~m} .30 \mathrm{~m} .2^{\circ}$ weat of γ. -Soon cloaded over.

Meteors, as reen at Nottingham by E. J. Love; Eog.

Oct. 1, 8 h .20 m ., meteor equal to a atar of 2 nd mag., moved downwards at an angle of 45° towarda the north from 1° above Cor. Caroli, and which paned 15^{\prime} north of that atar.
Oct. 7, 7 h .35 m ., spark-meteor, equal to atar of 2 nd mag., blae in colour, fell from onder Caniopeixe horizontally to 2^{2} east of β Urue Majoria, duration 3 sec.- 8 h ., a blae meteor, equal to a atar of lat mag., pussed downwarda from conth at an angle of 40°, pasting 2° ander the moon.

Oct. 19, 12h. 9m., liarge meteor from between a Pegati and a Andromeds, fell dowawards, learing a tralo of light.

Oct. $\mathbf{3 0}, 8 \mathrm{~h} .25 \mathrm{~m}_{0}$, afine meteor, equal in sixe to Satarn, bat macb brighter, of a decided orange colour, having a loug tail of aparka, foll from 8 Draconis to about 76 Urso Majoris; daration 2 sec.; ponition when firat seen, right ascepaion 12 h .53 m. . N.P.D. 31°; position when lant seen, right ascention 9 h .32 m. . N.P.D. $26^{\circ} 20^{\circ}$. -8 bh .50 m ., another, in siza equal to a atar of 2ad mag., fell rapidly from §Apdromeda to 8 Piscium ; of yellow colour; continuous atreak of light left; ith brightneas only equal to a star of 3rd mag.; duration $1 \mathrm{sec} .-9 \mathrm{~h}$. 4 m ., another, equal to a star of 3rd mag., but not so bright, and beling not one body but composed of many separate spark, moved aiowly from aboat 72 to o Piscinm ; ita duration 2 sec .
Nov. 3, 5h. 32m., \& large meteor, pale ornage colour, which Inereased from a point to four times that of Saturn bofore it started from a position 13° south of Alphaca; it mored alowly, pasiag 30° sonth of Arciorat to near horizon; after moving 15° it increabend maber anddenly to six timen that of Satura, and tarned bluish; ranished suddenly ; daration 12 sec. ; kite shaped.

Nov. 12, 104 10 mor a metecr, orange-ted coleos, vith eparke, in sim anul 2nd mag. ter, but brighter, moved foom β Pereci threuglat the Plei. adet; duretion 1 sea

Nor. 14, 10h. 45 m, a meteor, equal to a ster of 2nd magr, fell from Polaria perpenaxicularly downwarde; train of light; mesed repidly; descended to the Dragen's head.

Nov. $15,6 \mathrm{~h}, 18 \mathrm{~m}$, a manall metear foll perpeodienlenly downwards fron η Uruse Majoris ; colour yellow ; elight tail ; duration abanoct insetate neow.-6b. 20 ma , a amalt meteor foll perpendieularty dowarards from B Bootio.

Nov. 16, 6h. $58 \mathrm{~m}_{4}$ a meteor equal in size to Jupiter, with taid, fell freen 1 above Satorn, and meved 40° morizentelly to warda sotath; duration 2 ece.-7h. 4 m ., a amell meteor foll rapidly from abore a Andno aseda towards
 rapidly from a Avietic to 2° east of Sacorm-7h. 36 m ., a mall metoer, parpendiculerly downward midway between a and β Aurigoe. -7 h .45 m ., a meteor equal in sine to Satorn, red, with lage aparlt, and left . eonkinuons train, passed upwards tbreugh θ, n, and 3 Dreconis ; duration 3 see.

Nov. 17, 10h. 50an. meteor, in colont, size, and bsilliancy equal to Rigel, fell perpendicoterly down werde from γ Pagasi.

Nov. 18, 10 h .8 m. a meteor, red, no tail, fell from 4° north of a Cygai perpendiculerly dowawarde to sooth of Vega.

Nov. 20, 11 h .10 m. , a meteor equal a star of 3rd mag., ornvge colour, fell perpendioularly downwerde frem midway between it Urta Mejorio mod λ Bootin, duration 1 sec. - 11 h . 13 m ., another, of the same aize and colour, fell perpendicularly downwards from γ Urase Majoris; daration 1 sec.

Dec. $1,8 \mathrm{~h} .23 \mathrm{~m} .45 \mathrm{~s}, \mathrm{a}$ meteor increasing from a point to twice the nize of Saturn, of an oreage-red colorr, fell from a Ceti, Faded near $\boldsymbol{\zeta}$ Bridani; duration 4 sec. -10 h , a meteor in north.
Dec. 24, 11 h .4 m. , small meteor, equal to a char of 3rd mag., of an orange colour, with tail, foll from 5° south and 5° lower than Mars, downwards at an anglo of 43°.

Meteorological Table for the Quarter ending December 31, 1851.

Names ov ter Planes.							
Jersey ${ }^{\text {. }}$	$\xrightarrow{\text { fn. }}$	780	$2{ }^{2} \cdot 0$	$1 \cdot 8$	46	${ }_{90}^{10}$	${ }_{76}{ }_{3}$
	29.78	653	830	$1 \cdot 3$	60	9.90	123
Helston	29.78	$66^{\circ} 0$	31.0	$1 \cdot 8$	34	$10 \cdot 30$	1108
Faimonth		71.0	300	$1 \cdot 2$	31	9.72	120
Traro ..	29-803	67.0	24.0	0.4	47	$10 \cdot 44$	BS_{5}
Torquay		67.0	H2.0	24	82	$5 \cdot 84$	160
Exeter.	29.834	680	23.0	1.5	33	6.13	140
Clifton Hoase, Inle of Wight	29.850	69.0	24.6	0.1	84	$5 \cdot 95$	110
Chichenter		650	25.0		\because	4.70	23
Southampton	29.763	67.0	25.9	0.2	40	$5 \cdot 24$	60
Uericld ...	29.787	09.0	$19 \cdot 0$	$0 \cdot 6$	28	$5 \cdot 42$	180
Lewisham	29790	689	22.0	05	84	3.3y	82
Boyal Obserratory	29-306	701	24.8	.	28	$3 \cdot 00$	159
Maidenatone Bill	24.815	67.8	242	.	27	$2 \cdot 80$	107
Chimwell-treot Brewe	29:428	$69 \cdot 5$	81.0		29	$2 \cdot 93$	96
St. John't Wood ...	29-770	68.0	$22 \cdot 0$	1.0	94	$8 \cdot 15$	150
Rome Hill (near Oxford)	29.789	67.0	$21 \cdot 8$	$1 \cdot 7$	29	$4 \cdot 41$	270
Thame (Oxon)	29.784	690	21.0	0.6	41	$4 \cdot 10$	230
Radclife Obervatory	29.791	$69 \cdot 8$	$20 \cdot 5$	$1 \cdot 8$	32	$4 \cdot 17$	210
8tope Obervatory	29.757	68.0	23.0	0.5	42	$4 \cdot 35$	820
Hartwell House.	29.771	70.0	21.0	$0 \cdot 6$	88		250
Hartwell Rectory	29.757	67.6	21.5	06	48	$4 \cdot 02$	290
Ayleabury	29.788	68.0	22.0	$0 \cdot 4$	80	$4 \cdot 4$	284
Linalade	29.787	70.0	$19 \cdot 0$	-	37	$4 \cdot 32$	318
Cardington (near Bedford).....	29.766	67•8	21.0	0.7	87	$4 \cdot 82$	100
Bedford	29.760	68.5	23.5	0.7	27	8.92	100
Norwleh	29.723	65.0	280	0.8	47	9.75	89
Derby	29.757	68.0	31.0		41	$4 \cdot 93$	100
Holkham....................	29.743	67.3	250	$1 \cdot 0$	46	$7 \cdot 70$	39
Highbeld Houre	29.727	$70 \cdot 0$	$19 \cdot 2$	0.3	47	$5 \cdot 16$	103
Hawarden	29.761	66.0	240	1.6	35	340	280
Galnaborough	29:755	.88.0	26.0	0.8	39	$3 \cdot 40$	80
Liverponl Observatory.	29.747	63.4	297	0.8	43	$6 \cdot 66$	37
Manchester.	29.787	68.0	21.0		38	$7 \cdot 16$	137
Waketreld Primon	$29 \cdot 754$	693	24.0	1.9	46	$2 \cdot 78$	115
8tonyhurst...................	29.761	63.3	$2 v^{2} 7$	1.4	47	3.76	381
York.	29.777	$66^{\circ} 0$	23.0		32	888	50
Whitebeven	29.681	$63 \cdot 0$	$2 \cdot 5$	$2 \cdot 0$	52	6.62	90
Durham	29704	61.8	28.0	12	30	1-28	340
Newamale Lit. and Phil. Soc.	$29 \cdot 701$	64.0	23.5		26	$3 \cdot 24$	127
North 8hiolds	29.785	65.0	28.0	22	40	214	124
Claspow	2969	632	25.9	\cdots	43	$5 \cdot 32$	121
Dunino	$29 \cdot 653$	64.0	220	\cdots	23	$1 \cdot 84$	250

 pere of eir: the remaining portion, or that doe to the preatese of matar; is 0.262 inch; the sup of theas two purbers is 80.029 inehae, and it reprevenfis the mean reading of the baronoter for the cuuster at the level of the seet.

The higbest readings of the themometer in in were 71° ax Eelmonth, $70^{\circ} \cdot 1$ at the Royal Obnervatory, 70° at Jersey, Hartwell Houso, Linsiade, and Highfield Honer and the Ioweas readings were 19° at Uckfield and Linslade, $19^{\circ} .2$ at Highfield House, $20^{\circ} .5$ at Radcliffo Observatory, $20^{\circ} .7$ at Stonyhurat, and 21° at Thame, Hartwell Hoase ${ }_{2}$ Cardington, Derby, and Manchester.
Rain fell on the least namber of days at Dunino, Newcastle, Bedford, Maidenstone-bill, and the Royal Obervatory; and on the greafeat anmber of daya at Helaton, Fimouth, and Fhitehaven. The placest where the lemot feth toolz place were Darharn, North Shields, and Durino, and the meas memeant as thow places was 1.74 ineb; the lergest fafls ocenorred at Gearnoey, Heloton, Truo, Falmorth, and fomich, and their mear velue was 10.02 inches.

At Derby the fall of rain in the year 1851 was 23^{-5} incher; the averge fath from the preeeding seven yeart is 28.9 inchet.

At Cardington the fall of raia in the year 1851 who 18 inebea, being 6 inches below the average of the last five yoars.

At Rosehill, near Orford, the great droaght of the pest season, m everywhere elec, was very resankable. At this apot the sprimg hwo never failed; bat the river has been lower than ever remembered, sone of the smaller branchen having become completely dity, and almont stagnant.

At Glasgow the fall of rain in November was 1.1 inch only, being. 4.9 inches leas than the average of the preceding five yeara.

At Dunino the springs and lakes were nearly dried up.

INSTITUTION OF CIVIL ENGINEERS.

March 2.-Jakss M. Rendel, Beq., Protident, in the Chair.
The firat paper read was "On the Electric Telegraph, and the principal Improvements in ifs Construction." By F. R. Window, Auoc. Inat. C.E.
After a briof notica of some of the early sytums of telegraphs ems ployed by the ancients, such as beacon fires, and the encape of water from perforated vessels, as described by Polybius, and also a few of those of modern conatruction, such at Amonton and Chappe's semaphores, and the Univerad Telegraph invented by Sir Charles Parley; a description wat given of some experiments made in the lat and present centuries on the posoibility of transmitting electricity to comsiderable diatances, with the view of adapting this power to telegraphic purposes. Among these were mentioned the experiments of Du Fay, who in France, in the year 1733 , discherged a Leyden jar through upwards of four miles of wire; of Winckler, who at Leipsic, in 1746, diacharged a Leyden jar through a long wire, a portion of the river Pleiss being included in the circuit; snd of Dr. Watson, who in 1747 suspended a length of two mile of wire on posta at Shooter's-hill, and sent electrical currents throngh it, the circuit being completed by the earth. This was particularly noted, becanse in ell the earlier inventiona of the present century a separate wire was reserved for this parpose.

The general existing system of electric telegraphs was then examined, and divided by the author into three distinct departments:-1st, the Battery, or the motive-power; 2ad, the Wires and their insalation, or the means of conveging the power to the place of its action; and 3rd, the Instruments, or the means of using the power. Of the two formor there was little to be related, inasmuch as they had received scarcely any attention from inventors, which the author regretted, as he thought thene departments offered the widest field for substantial improvement.

The ordiaary voltaic hatteries were then deacribed, together with the method of obtaining electricity from the permanent magnet, as employed hy Cooke and by Henley, and the manner in which it was adapted to the use of the telegraph. The means of insulation were mentioned as specially needing reform, the above-groand aystem being uncertain and imperfect in its aetion, and the andergroand systems too expensive in their construction. It was explained that the object of Mr. Clarte's metallic capped insulators was to prevent dew from being deposited upon the porcelain cups, as wes always the case from the good radiating qualities of all don-conductors. The invention consiated in surrounding the inanlatort with a metallic substance, by which, from the bad absorbing properties of metals, the radiation from the porcelain whe greatly checked, and it was thus prevented from cooling down below the dew point. A short description was then given of the principal existing instruments; mongst which were Cooke's five-needle, Cooke and Whestatone's double and single needle, Wheatstone's indicating, Bain's chemical decomposition, Henley's magnetic, Brett's printing, and Bakewell's copying telegraphs.

The paper eoncioded by ebeerting that the preweat ryitemid of electrio
 recomanended to then thair mitantion to the improvement of the buts ceries, and tho nemat of imalaing the wirce, rather then to the produetiom of men facramente, in which divicios it wem stated that perfoction opald be auried litho farthor, antil some important ohsagen were effocted in she echer two Ceparmacater

The second peppor read was "The Hitory, Theory, and Practice of the Freetrie Telegnaph." By C. C. Adley.

The firat portion of the paper contained a deacription of the various shoden of tranmittiog signala proposed and adopted prior to the electric tolegraph. The plang of Cardinal Bembo, the Marquis of Worceater, Bobert Hooke, Amonton, Marcel, Linguet, and Chappe were noticed.

The various forms of telegraphs, in which eleotricity was the exciting canse, were then deseribed. These were divided into two eras, the Elecfroatatic and Elootrodynamic. The Electrostatic era comprised all telegraphs in which atatical or frictional electricity was the ecting princlpie, such as the plans of Odier, Lesage, Lomond, Betancourt, Reiser, Cavallo, Salva, and Ronalds. The Electrodynamic era included all telegraphs in which voltaic or dynamic electricity was the prime mover, as were the telegraph of Sxammerring, Schweiger, Wedgewood, Coze, Ampere, Dyar, Schilliog, Geuss, Alexander, Wheatatone, \&c. This brought the chronology of the electric telegraph to the year 1837, and the history wes then conclided to the year 1851, by a classified list of the various patents.
The second part of the paper wiss devoted to the theory and practice of the electric telegraph; and the anbject whe enlarged apon under the following heads :-1at, the principles adapted; 2nd, the materials employed; 3rd, practical difficulties, and reriarkahle deranging eauses, with investigations as to their origin; 4th, the laws which govern the action of the telegraph; 5th, theories of the mode of tranamission of the electric fluid, and of the earth-cironit ; and 6 6 h , practical applications and concinding remarks. These heads were again aubdivided, and the Farious portions of the telegraph were treatod of separately. The modes of connecting the instramente at the atations were given in detail, together with eoveral procticad rales for detocting fanlts, sod the general ctanipuletion of lise. Various defect whieh oecurred in practice were poisced ont, and the convideration of remediea was invited. The action of the aurora boreatis, the demagnetination of the needles by lightaier, ead their freqaent derengement by other diaturbances, were noticed. A beagthened and elabornto investigetion was entered into, with a view of arivise at the origin of the periodie dinaffections of the magnetic peedlet, which the anthor attribnted chiety to the electric variations of the atmorphere, magaetic storms, earth ourrents, thermo-electric currents and alorie. An original lew which governed the defiections of the magperic acedlea was inkroduced by the anthor. The lawi of Professors Wheatatone and Ohm were almo given, as well at the theories of Dr. Freaday, Megrini, Ganss, and other philonophers.

The various applioations of the electric telegraph were then described, each as for printiog, for working a serie of clocks isochrononaly together, for the comparison of the pendulama, for registering meteorologicas observations, for prodacing explosions for blasting, for comperative satro. nomical observations, chronoscopes for measuring the flight of cannon balla, \&ec. After citing proofi of the commercial value and public service of the electric telegraph, the paper concluded with a few observations as to the altimate deating and world-wide atility of so woaderful an invengon.

March 9.-In the disenasion on the above Papers, the various instrnments introduced by Cooke and Wheatatone, Henley, Brett, Bain, Batewell, and Siement, were exhibited and detcribed, their several peculiar merits being fully explained.

The ssitem of underground Firel, conted with gutte-percha and lead, - introduced in Prussia by Mr. Siemens in 1848, was stated to be perfeety socceasful, mo difficaity existing in discovering leaks or injuries to the wires; when sny ocearred, which was very seldom, they were easily ropaired. The rystem now extended over bearly four thousand milea, in Proate and Rusia.

It was objected that the romenelature was incorrect, and that, instead of the " Blectrle," it shonld be ealled the "Gaivanic," or the "Voltaic" Telegraph, as the coanection between electricity and galraniam wat not a yet clearly eatebliched.

The oie of a series of wires was suggested for tracing the canses of magnetic disturbancen, and teries of observations at atations along lines were proposed, as likely to indace beneficial reanlta; and they would be easily performed siace the introduction of the photographic self-regivcering instrument.

The important results likely to be rendered by the connection of the telegraphic wires with the Royal Observatory at Greenwich, were atated to be, among othern, aimultaneous astronomical observations; the determination of difference of longitade ; isochronous action of clocks, 10 an to exbibit Greenwich, or any other time agreed on, imultaneously at any anmber of clocks in the metropolis, or any other towns throughout the kingdom.

The practical difficulty of the perfect insulation of the wires, in the
over-groond yytem, and the provisiona necemary againat wertot depre: diation, and the atmonpheric infonences, were fully discosed; and it wat generally ecknowledged that, with all the known imperfection, the over-ground aystem bad hitherto proved the best mod moat economical in Bugland; at the eame time, the great merit of gutte-perohis at means of insulation, wes fuily admitted.
It was shown, that galvanic action was being extensively used in Berlin, for commuoicating between the varions government officen and the fire and police stations ; and at Boston, for a complete net-work of fire alarms to the different stations of the engines.

The origin of the idea of the submarine telegraph mas give'n, aud the constraction of the wire laid down between England and France was described. It appeared, that on that station the common needle initrument had hitherto been generally used, but that occasionally measages were recorded by meens of Brett's Printing Telegraph, which might eventually be made very usefnl.

March 16. -The discussion torned chlefly on the comparative advantages of the under-ground system of connecting wires, as practined in Prussia, and the suspended aystem, in use in this country. On the first introduction of the electric telegraph, it was not known to what extent it would be employed; and on that account the suspension system was preferred, at enabling additional wires to be fixed with but listle extra expense. At present, a aingle line of telegraph wire in Prusia, insulated by gutte-percha covered with lead, laid at a depth of two feet underground, cost $\mathbf{3 0 l}$. per mlle, inclusive of the instruments. The suspended syotem was shown to be not nearly so expensive, and when aecideuts occurred, they were more rapidly and easily repaired. The recent great improvements in Bain's printing telegraph Fere dencribed; and it was bhown, that by it three hundred words per minute bad been eent through this instrument; that fify-sir thonsand messages per month had been tranomitted on the Eastern Counties Railway, for railway purpones alone; and that sach was its extended use for mercantile purpones, that the content of a closely-printed 8vo. volume was sent out in messages, per day, from the Central Telegraph Office alone. Such was the facility afforded by the inntruments now in nse, that they were chiefly worked by boys taken from the Orphan Asylum, who fully underatood bow to work them after a fortnight's practice.
Several very ingenions applications of the instraments were described, and upecimens of the submarine telegraph wire, intended to be laid down between Dover and Oatend, were exhibited. The general advantagen of the introduction of the electric telegraph were pointed out, and it was stated that attention should be directed chiefy to improvements in the mode of insulation of the wires, in both the underground and the suspension syitems, as the imstroments were now comparatively perfect.

March 23.-The first paper read wet "On the Recults of the ure of Tubuler Boilers, or of Flue Boilers of Inadequate Surface, or Imperfect Absorption of Heat." By Admiral Eanl Dundonald.

Thia paper advocated the general introduction of what were termed, "economical heat-trap boilers," or boilers having vertical water-tubes, instead of oblique fire-tubea, contataed within a chamber, into the upper of which the hot products of combustion were introduced, and allowed to circulate until, by the abstraction of heat, they descended to the bottom, and paaned into the chimney at a temperature little excoeding that of boiling water. From some triale which had been made at Woolwich and Chatbam in 1844, as well as from the experience which had been gained by their actual application to some of the North Araerican transatlantic steam-packets, and some in the service of the Emperor of Russia, it was contended that tbese boilers possessed greater evaporative powert, and were more economical than those ordinarily in use; and, moreover, that their safety was much greater, owing to the products of combution pacaing into the chimney at a very low temperatare, instead of the unal high temperature, from which it was apprehended mach danger had been, and might atill be, incurred.

The second paper read wat, "On certain points in the Construction of Marine Boilers." By J. Scott Russell, M. Inst. C.E.
The author haviag arrived at cortain theoretical resalts relative to the conatraction of marine boilers, pat them into practice about ten jeare back, in designing the boilers for the Royal Mail steam-packets Chyde, Tay, Tweed, and Teviot; and as they had been in constant work ever since, ranaing from 42,000 miles to 48,000 miles per annum, withont material repairs, he believed their darebility, combined with effective combustion and economy of fuel, had been fully eatablished. The prin. ciples apon which these boilers were constructed differed from those generally recognised. In the first place it was considered that a jodicious distribution of the most iutensely heated surfaces would be conducive to durability; and for this purpose, instead of returning the flues over the furasces, the top of the furnaces and the botteat flues were brought to the surface of the water, and the cooler, or return fines were taken to the bottom of the water. The water was admited at the bottom and was gradually warmed as it rose, the grestest heat being imparted at the last moment, by which means the bubbles of ateam were prevented from secumulating in contact with intensely-hested metal. In the next plece, the capacity of the furnacen, or fire-bozes, wat unusually large, and their height above the incandescent fuel much greater than usual. The evapo-
rating mofice in these boilers wat also much more than customary, there being no leat than three feet of evaporating anface for every foot of furnace bers. The process of blowing-off was provided for by arranging under the fues and furnaces large water spaces, an reservoirs for the collection and blowing off of brine and cther deposit.
The last paper was " A deseription of a Diaphragm Steam Gemerator." By M. Boutigny (d'Evreux).

The principle upon which this team-generator was based, was that " bodies evaporate only from their surfaces." This being received as an axiom, it muat necestarily follow that in the construction of ateam. boilers, either the evaporating ourface of metal ahould be extended to ite ntmost limit, or the water should be 20 divided, and ite evaporating surfaces be to multipled, as to arrive at the same end, of obtaining the greatest amount of steam by the oxpenditure of the least smount of fuel. The ateam-generator was described to consist of a vertical cylinder of wrought-iron, 25 inches high by 123 inches diameter; the bese terminating in a hemispherical end, and the opper part cloted by a curved lid, upon which was attached the usual steam and arfety-valves, feed, stam, and other pipen, \&e. The interior contained a meries of diaphragma of تrought-iron, pierced with a number of fine holes, and having alternately convez and concave surfaces. They were auspended by three iron rods, at given distances apart, in anch a manner as not to be in contect with the beated exterior, or ahell of the boiler. When any water was admitted throngh the feed-pipe it fell npon the opper (convex) disc, which had a tendency to spresd it to the periphery, the largest quantity falling throngh the perforations in the shape of globules; the second diaphragm being concave, tended to direet the fluid from the circom. ference to the centre, and so on, uatil if any fluid reached the bottom of the cylinder, it mingled with a thin film of water, in a high atate of ebullition, that being the hotteat part of the boiler. It appeared, however, that in its transit tbrough tbese diaphragme, the water was so divided, that exposing a very large surface to the caloric, it wis transformed into steam with great rapidity, and with great economy of fuel. The boiler deacribed had been worked for a long time at Paris with great auccess, giving motion to a steam-engine of 2-horse power. Tbe consumption of coal was atated to be very amall, 789 lb . of water having been converted into steam by 182 lb . of coal in nine hours, under a presaure of ten atmonpheres. The chemical part of the queation was carefully examined, and it was shown, that at that temperature the iron was exactly in the best condition to bear atrain. The practical application on a large acale was submitted, to the ongineert, the suthor having only proposed the system for mall boileri, and nader circumstances of wanting to obtain a motive power in situations of reatricted apace, and where firat ent wea great object.

ROYAL SCOTTISH SOCIETY OF ARTS.

> Peb. 23.-Dr. LeEs, LL.D., President, in the Chair.
" Description of an impproved Inflrwment for Drawing Ellipoes." By
The instrument is somewhat inmilar to a pair of compasses, with the less formed of round steci rods, on oither of which a pencil fixed to a tube is fitted to slide and revolve freely. When tbe rod wbich carries the pencilis inclined to the paper or other surface to be drawn upon, and the pencil made to revolve, touching the paper throughout its conree, it describes on it an oblique section of a cylinder, and therefore a correct ollipse; the obliquity of the section, or the length of the ellipae varying with the inclination of the rod. The improremente consiat in method of moving the pencil mearer. to or farther from the rod for different sizet of ellipatet, so at to preserve ite paralleliam to the rod; and in making both legs round and of difterent length, with the means of lengthening or shortening the longer leg, to facilitate ite adaptation to longer or shorter cllipate.

March 8.- "An accound-in continwation of thove formerly read before the Society-of the progress made in the Drainage of Haarlem Meer during the last year." By T. Gpainger, C.E.

This short paper, in continuation of Mr. Grainger's description of the drainge of Haerlem Meer, in North Holland, wist read by the Secretary. After deecribing the diffienlties to be encountered in the prosecntion of this great andertating, from the size of the lake, and principally from the circumatance that its level, even at tbe aurface, was contiderably below that of the sea, so that the whole of the water had to be raised to such a height as would enable it to reach the ees by its own gravity, Mr. Grainger slladed, in general terms, to the various worka nadertaiken to effect the object in view, anch as the canal, 33 miles long, 124 to 147 feet in width, and 10 feet in depth, with which the lake had been surrounded to convey the pumped.np water to the sen-to receive the drainage of the diatriet-and to maintain the interal water communich. tion previously afforded by the lake itself-and also to the three gigantic ateam-enginet, 360 -horse power each, erected at different points of the lake, gliving motion to 27 pumpa, which raise 186 tons of water at each troke. The anal and all the other preliminary work having been
completed, the pomping wat commenced in May, 1848, from which date to 30 th April, 1851 , the lake had been lowered 7 ft 3 in ., which wat the state of matters when the eubject wat last brought before the Soclety. During the months of May, June, July, Augast, September, and October, very satisfactory progrent wes made, botwithatanding that a coasidernble quantity of rain fell in Angant and September, tbe level resched at the ead of October being $9 \mathrm{ft} .7 \cdot 74$ in, below the origival surface, or at an averese rate of $4 \cdot 79$ inches per month. In Novamber a great quantity of rain and snow fell, raising the level about 4 inches; and in December the weather wes atill unfavourable, so that at the end of that month the lerel stood at 9 ft .5 .58 in . below the origiual surface, or a total gain since April 30 ch of 2 ft .2 .58 in., or 3.32 in . per month. This progress may appear to be inconsiderable ; but, when it is recollected that the lowering of the lake one inch involves the reising of upwards of four millions of tons of water, and allowing for the rain and snow falling during these oight months, that there could not have been leas than 186 million tons of water pamped up during that period, the performance will appear great indeed. To give a better idea of this, it was stated that 186 millions of tons it equal to a mass of tolid rock one mile square and 100 feet high, allowing 15 cubic feet to a ton. The average progrese has been leal lat year than What it was in the preceding one; but this is readily accounted for by the increased lift of the pormpt, and by the difficulty of forming the cheanely which lead the water to them. At the commencement of these opera. tions, the average depth of the lake was $13 \mathrm{ft} .1 \cdot 44 \mathrm{in}$; and as 9 ft 5.58 in . have been pumped out, there only remained at the end of $D e r$ cember last an average depth of 3 ft .7 .786 in . It it therefore trueted that the drainage will be completed, if not in the autumn of this gear, at least in the summer of 1853. A paragraph has been going the round of the newapapers abont dinatrons aecidente to the boilers, which will delay the completion of the works for two or three years. It wat stated that there were no grounds for such rumourn, as the official report for January, which Mr. Grainger had received, mentioned that the boilers of only one of the engines (the Lynden) were out of repair, and that it was expected that these would be repaired by February; so that, by thia time it is hoped that the whole of the engines are again at wort.
"Description of a Safo Lock." By J. Wuyrz, Raedale.
This may be considered as a modification of the ancient Bgyptina loek. The main bolt has six or eight notchet on each side, and there are $=$ many spring bolts playing with these. Along the tope of these apring bolts eslide works (which, in fact, is the key), which it cut on oae of ite edgee in the form of weren, and when it if fally pushed home, thees wave lines are so formed ta to press down the whole of ahe apring balts to the level line, $s 0$ as to free the palu bolt, which then bat liberty to open or shut. On the other hand, while the alide orkejia withdrawn, the spring bolts lastantly eater the notches in the main bolt, and prevent it from moving. The advantages are stated to be the difficulty of pickint this lock, or of making a slide or key to fit it ; for even the thicknees of writing paper introduced betwixt the alide and the apring bolts, will press some of them down into the notches of the main bolt, and provent it from opening. Beaides, the key-hole io very small in proportion to the wize of the lock.

2TOMAR OF cyit wowny.

Architects' Benevolent Society,-The second annual general meeting of this society was held at the Freemasons' Tavern on the 9th ult., David Mocatta, Esq, in the chair. Mr. John Turner, the secretary, read the report, from which it appeared that the amount in the hands of the treasurer, at the commencement of the present year, was 493l. 98. ld., out of which 400l. had been invested in the funds of the society, and $58,108$. applied in furtherance of its objects; leaving a balance of 34. 198. Id. in the treasurer's hands. It congratulated the society on the position it held in the estimation of the profession, and regretted that its operation was limited by the smallness of its funds. It also called the attention of the meeting to the kindness of the committee of the Institute of British Architects, in permitting the use of their committee-room for the meetings of the council, the benefit of which was, besides the pecuniary one, that of its existence being recognised by the parent body. The chairman observed, that at present they had the support of only 400 members of the profession, but confident hopes were entertained of an increase. Votes of thanks were passed to the council and officers of the society for their services during the past year, and they were re-elected for the one ensuing, with the exception of Messrs. W. Grellier, and G. Gutch, deceased; and with the addition of Messrs. H. Baker, and G. Bailey, as members of the council. Mr. Kendall proposed a rote of thanka to the chairman, which was carried unanimously, and briefly acknowledged by him, after which the meeting separated,

Artictr' Converoasioni-The third of these interenting meetings was held at the Freemasons' Tavern on the atth ultimo. Portfolios of drawings were exhibited by Messrs. Goodall, Woodman, Wood, W. C. Smith, Miller, Whymper, and others. The conclnding meeting of the meries will take place on the ghth ingt., when the members are expected to furnish a selection of works, which may inolude the choicest of those previonaly exhibited.

Belgian Patents.-The new law project relative to Belgian patents is under examination of a parilamentary committee, and there is every probability that this project will be nhortly adopted by a large majority of the Chambre des Representanta on the following simple basis. All patenta, both home and foreign, are to pay the same tax, viz., 10 france the first year, 50 france the second year, 30 francs the third year, and 50 on, angmenting 10 francs each year, during twenty years, at which period patents will expire. Theee paymente must be made before the end of each year, or the brevet becomes public property. Great care will be required in translating and revising apecifications and drawings, in order to obtain grants for patents of importation.

Protection of Inventions,-Lord Colchester's Bill to Extend the Provisional Registration of Inventions under the Protection of Inventions Act of last year has just been printed by order of the Rouse of Lords, The time in to be extended until the 1st of Pebruary, 1853.

Coal Traffic at a Halfpenny per Ton per Mile-We underatand the Great Western are making arrangements with partiee in South Wales to bring large quantities of Welsh coal to London at do per ton per mile. The great Weatern, as well as the Great Northern-and we might amy the Berwick and other railway companies-know full well the advantage of carrying coals long distances and in large quantities.- Herapath.

Submarine Operations on the Rocks at the Gate, near New York. -The long-continued and severe cold weather compelled M. Maillefert to suspend operations on the rocks at the Gate from the 12th of December until Monday, the and of Pebruary, When he ro-eommenced firing on Pot Rock, and since that time has continued his submarine operations every day that the weather was favourable for blasting. The severity of the cold may bote be illustrated by the brief rtatement of the fact that Long Inland Sound was frozen over, the icy bridge extending from the ialand to the mainland, and reaching to within leas than a mile of Pot Rock. Of 1488 hours, comprising the entire months of December and January, there were 1155 hours during Which the temperature was below the freezing point, and of the remsining 333 hours the greater portion of the time storms or high wind prevailed to such an extent as to wholly suspend sobmarine operations. The firing on Pot Rock can only be effected during the continuance of slack-water, which in the commencement of operations lasted only from eight to sixteen minutes. Between the 7 th of November and the 18 th of De camber most of the charges fired on Pot Rock were in water of greater depth than 20 feet, with a view to the removal of the rock to the depth of 24 feet. At present the charges are being fired on isolated points of the rock, between 19 and 80 feet; the sounding for which, during the short period allowed by alackwater, necessarily makes the operstions slow. The dificultien with which the operations at the Gate are surrounded are far from abating the energy and good courage of M. Maillefert. He recommenced operations on the first favourable day, and confidently trusts that ere long he will be able to complete this great useful work, which has become an object of general interest and in the execution of which, so far, he has been eminently and most wonderfully successful. When M. Maillefert commenced operations at the Gate in August last (late in the cesson), but few persons had confidence in his success. The plan of blasting under water, by placing the charge on the murface of the rock (without drilling), using the water as a fulcrum or resisting medium, was by most persons considered unphilosophical; but complete success has attended this great experiment, which he has been enabled to make, and the efficiency of this new method of submarine blasting has been so thoroughly demonstrated as to convince the most sceptical. Daring the period we have been making efforts to remove the recks at the Gate five lives have been sacrificed on Pot Rock, four persons by the upsetting of a boat in passing over it, and one man by a blow on the breast from the tiller of a vessel in consequence of the tadder striking the top of the rock while
the veasel was paesing over it. The discovery of this new mode of blasting rooks under water without drilling, the value of which has been demonstrated by the removal of one of the mont dangerous rocks in the world from the very borders of a whirlpool, is worth millions to the commerce of the world. Pot Rock is no longer a terror to asvigatore-no longer an obatruction to the navigation of the Gate by any vessel that has used that thoroughfare for the last twenty years. The whirlpool hat ceased its roar, for it no longer exista, and the great chasm in which it has had its home for centuries of time has been filled up by the debris of the submarine explosions on the rock which created it.-New York Journal of Commerce.

The Panama Raihoay.-This line is rapidly progreasing, and strong rainforcements of labourers have been sent to Navy Bay from Carthagena and from the United States, It is expected that the line will be opened to Gorgona in June or July next, by which time a cast-iron bridge to cross the Chagres, which is in course of construction at New York, will be completed and fixed. It is the intention of the railway company to push on the works between Gorgona and Panama with all possible dispatch.

Tafalgar Hall.-We lately visited this highly popular place of amusement. It comprises a spacions and elegant saion and gallery, decorsted in the mont tanteful manner; and is moreover embellished by a number of chandeliers, of the most chaste description, and of magnificent looking glacses on an extensive scale. These attractions, together with the noveltiee of an invisible orchestra, and a talegraph that silently announces the respective dancos, prevent an ensemble that will woll repay a visit. The proprietor seems doing his best to deserve success, and we have no doubt but that he will obtain it.

COMPETITIONS.

Sus-The authoritien of county towns almost universally assume architects and engineers to be the most amiable class of individuals under the sun. They want something done-a bridge, for instance. They advertise for competition drawings, and promise a premium for the best design, which just about pays for paper, \&c., and expect them to travel to the spot, make levels, surveys, and be at all manner of axpense for the chance of getting the said premium. Witness the following magnificent offer for Upton-upon-Severn Bridge:-
" Ri Urroi Bainga_-Purticulare for Areliteate
"The propoed bridse munt have not las than three archet the plart to be ether of stone or Lron;-the arches of iron;-one arch, on the Uplon or Wemtern side of the bridje, wuit be made to open, and of oot lese than 45 feet span. The bridje must be erected on the Une recommended by Mr. Walker, C.E., when be made a nurrey of the old bride in 1840, belof abont 85 feet below the old bridge. Tha width of the river at high or good water, at that Hne, In sbout 980 feet; but it it considered that 200 feet whter why In the clear will be eumelens. The bridge must not be leas than 18 feet wide in the clear. The roedway munt pot be ralsed above it pretent lerel; and the eatimate munt loclude the cont of making food the approachen at each end. The materfalt of the old bridge will be dren to the contrictor. 80 mo portions of the tons are suppoaed to be rery sonnd and good. There in no good stone in the neighbouriood, bot it may be had from the Forett of Dean, and from 8 hmp ahire, by rallway or mater convegance.

Inasmuch te It te expected that the Commationone of the Severn Improvement Will be Fillipt to coutribate mach portion of the coat of the sew bridge when will be incurred (extra) In contequebee of the opening arch, or in the piers, of other works alteodant thercen, and molely readered necesary on that account; the eatimates and precibcations munt rpecitcally mate what proportion of the cont of the bridge wil be dut on that acocout ; and lino what the bridet will eont withoas an opening arch and works attendant thereon
a premplem of $2 \pi \%$. Will be diven to the archlteet whee plan may be selected to be carried oal
whe drawipg of Mr. Walkep, before alloded to, shouner the atte of the old bridere and the fine for the new one, Hes at my ofict, Collage.yard, Worcmeter, for ing pedion.
 muef bo obtalned by then epon the opod.
"No further particulare than the abow ene be given.
"Coileg Fard, Worcenter, March L6ak, 1852."
"No further particulars than the above can be given." Now, as these particnlars amonnt to nothing, it follows that all must be callected on the spot, which would cost in money out of pocket at lenst 10L. There will be a number of designs sent in, there is no doubt of it, and the competitors will be the amiable persons the Deputy C.P. considers them. I think, Sir, it would have been as well just to have given with the particulars a crose-section of the river and approaches, if competition designs were really wanted, which I beg leave to doubt; and if engineers and architects generally were of my way of thinking, they would not compete without proper information being furnished.

One who is not a Competiton.

بIBT OP \＆ᄑW PATENTS

Gmanted in enoland thon Prbguaby 14， 20 Mabce 25， 1852,

 Six Mouth allowed for Empolinent anlen oflerwoto apposed．Wlillam Edward Newton，of 66，Chancery－jane，Middleaex，ciनl eogineer，for im propmenta in the manofacture of colte，and in the application of the gereons pro ducts arialnt therefrom to useful porpopes．（A communication．）－Reproary 28.
Jean Theodare Coupler and Marie Amedee Charles Mollar，of Maldatone，Kent gendemen，for certina lmprovemente in the manafacture of paper．－Febragry 20.
Charles Cowper of Soutbanpton－balldinga，Chancery－lane，Middlesex，for Improre ments in machtory for comblng and preparing wool and other sbrous sabatancen． （A communication．）－Pebruary 23.
Bamuel Banes，of Bethnal－green，Middlesex，matter maniner for certain improve inente in apparatur to be applied to，or conviected with，the cables of thips or other veanels when riding at anchor．－Februery 23.
WVillam Stirlint Lacon，of Great Yarmouth，Norfolk，gentieman，for Improve． mente in the means of auspending ships＇boats，and of lowering the game into the ments in the means of
Fiter，February $2 s$ ．
Jamea Pulma，of Rochdale，Iancomer，eploper and manuficturer，for certala ho provement in looms for weaviag．－Pebruary 23.
William Walker，of Plymouth，Deran，commender in the Roynl Navt，for a method or metan of ascertaining and fodlcating the deviations or errort of the mariners＇compass．－February 23.
Ricbard Archibald Brooman，of Fleet－street，Clty of London，for improvemate in andmila．（A commanication．）－Febratery 23.
Thomas Young Hall，of Newcabtle－upon－Type，coal owner and colliery－viewer，for improvemente in screen for screening coal，and other subetadeas requiniog to be screned．－Pebruary 23
Bamuel Boalton，of Mancheatar，ageat，for Improvements io the treatment of metallic orea，and certaln calt and realduery matters，and to obtalolog product therefrom，－Yebruery 23.
Thomas Walker，of Blrmingham，for lmprovetments in atean－enginen．－Mebruary 23. Alfred Charles Hobbe，of New Yorly，United States of Americh，engineer，for cer． talmprovements in the constraction of locks and other fastenings．－February 23.
Peter Armand Lecomte de Fontainemorean，of South－street，Finsbury，Londen， or certain improvementa in gas－burders．（A communicetion．）－February ${ }^{23}$ ．
Eenry Beasemer，of Baxter－bouge，Old 8t．Pancratrod，Middiesex，for Improve－ menta in expreaing eaccharine Iulds，and in the manafacture，redning，ard treading ugar．－Februars 24.
Buceell Stargea，of 8，Bishopagete－itreet，City，London，merchant，for Improve－ mente in weeving－loome．－February 25.
Cherles Reares，jua．，of Birmingham，Warwick，mannfectarer，for cartaln improve－ ments in the mapufecture of bayomets，suarde，and othor cutting instramente，－ Pebruary 27.
Cbartet John Mare，of Bhackwall，Middlesez，for improvementa in constructing fron ships or vemets，and steacm－bollers．－Pebruary $2 \mathscr{Z}$ ．
James Pilbrow，of Tofteaham，Middemax，dvil engineer，for certain improvenente in apparatu for tupplying the tinhmbltants of towns and other plecen with water．
George Leopold Ludwig Euhah，of Chrlatopher－etreet，Finbury，London，engineer， for tmprovements in fre－mrmit．－March 8.
George Willingon，of Streatham－terrace，8hedwall，onglaeer，for fmprovernents in hape and other venselo．－March 4.
Alfred Trueman，of Swancen，manager of copper－mmelting works，and Jobn Cameron，of Longhor，chemist，for improvemente fo ohtaining copper froig ores．－ March 4.
Alexander Parkes，of Birmingham，for Improvementa in separatiog allver from
other metal．March 8 ．
Fdward Moseley Perkdes，of Mark－lape，Iondon，for improrecpente in the mann－ facture of cant－metal plpes，retarts，or other holiow cantingi，－Mirch 8.
James Grabem，of Camden－grove，Peckham，Surrey，for Improvemente In treathag oret contalalig alnc，and the producte obtaloed thorefrom．－March 8 ．
James Wambrough，of Albert－road，Mile－end，manufacturer，and Willism Allen Turner，of Fish－itreet－hill，London，merchant，for Improvementi in the manufacture of locked fabites．－March 8 ．

Frederick George Underhey，of Wellestreet，Grey＇s－Inn－roed，engiveer，for lm－ provements in apparatus for regulating the supply of water to watercloset and other estels，and in tapi or cocle for drawing－off isquds．－March 8.
Enrico Angela Ladovico Negretti，and Joneph Warren Zambra，both of Hatton－ garden，Loudon，meteorological Inetrument makern，for improvaments in thermo－ meters，barometers，gauget，and other intiryments for mecrtalning and registering he temperature，preanure，denalty，and specific gravity of aeriform inuld and Hquidis， or solld bodles－Mareb 8 ．
Alfred Vlacent Newton，of Chancery－lane，Middleaex，mecbancal draughtaman， for improvamente in machlnery for comblat wool and other Abrous aubstances．（A communication．）－March 8 ．
George Wrigbt，of Shefteld，and aleo of Rotherham，York，artist，for lmprove－ ments In stoven，grates，or ire－places．—March 8.
Wlllam Edward Newton，of Chancery－lape，Middlesex，cipl engloeer，for lm－ provements in propeling veasels．（A communication．）－March 8.
Joshua Crockford，of Southampron－place，Middleeex，gonteman，for lmprove－ meate in brewiog，and In hrewing apparafus．－March 8.
Augustus Turk Forder，of Leanington Prion，Warwick，notheitor，for mimproved fender．- Mareb 8_{0}
Richard Archlbaid Brooman，of Flept＿street，Londan，for Improvenente in presees and to pretatag．（A communication．）－March 8 ．
Charles Augustus Preller，of Abchurch－lane，London，merchant，for improvements in the preparation and presertition of alins，and antmal and vegetable substances． A communicallon．）－March 8 ．
Uriah 8cott，of Grove－itret，Cemden－town，Middlesex，engloeer，for improve－ ment in wheels and tn springs，and in apring－bearings for cartiages．－March 8 ．
Joho Heary Johnson，of Lincoln＇s－ion－fields，MIddlesex，and of Glaggow，for la－ provement in wenvig carpete and other fabrics，and in the machinery or apparatu： employed iberela．（A communtcatlon．）－March＇ 8 ．
Walter Young，of Spriagield Ironworks，Salford，Lencaster，millwight and en－ diveer，for an improvement or improvement in themengines，－March 8 ．
Alezander Coningbam，of Glaggow，Lanark，ironmaster，for improrementa in the ireatment and appllcallon of slag；or the refuse matter of blast furnaces．－March 8 ．
 If miniag opernllons，and ip the machluery or apparatio connected therewith，－ march 8.
Peter Van Kempen，of Weat Ean，Eseex，secountant，for an improved rentyerstor
 （on．）－March 8.
Whlliam Willcocly Sleigh，phypician and margan，of 耳ondop，for copntaraptions retcion modre－power engine．一March $\dot{8}$ ．
 rotary steam－engines：－Mareh 8 ．
Paul Bppsey Hodge，of Adam－atrect，Adelphi，Mldilewer，ctvil and mechanical englaeer，for certalin mprovements in the construction of raliway and rallway car－
 tion．－March 9.
Thomas Ellison，of Queen＇t－road，Fentoarille，Middieser，palater，plamber，and slaxier，for certain improvements in the manufcture of laitation morles，gra． slazier，for certain improvementer in 8 ．
 nufacture of carpet，velveth，and other fabrics．－March 8
Willam Smith，of Park－streth，Grovrenor－mquare，Middleses，drll engineer，and Archibald Bmith，of Princea－Etreet，Lelceiter－equare，Middleses，engineer and mop chinials for certaln improvemente in electric and elecwormaspetie teletraph apptern twe，and ta the machinery for and method of maidng and laying down tathanting， anbmerged，and other much lines．－March 8.
Colln Mather，of Salford，Inocester，machinematrer，and Srand Rokin，of Cologne， Pruada，gentleman，for certalo improvementa in printing，damplog，metioning，opes－ ing，and apreading woven fibrics．－March 11.
Benjamin Goodfellow，of Byde，Chamter，engneer，for Impravements in bollery for geperating steam，－March 11 ．
 or apparatus for mandecturing looped，terr，or other ainilar fabries，March 12 － This patent being oppowed at the Gretet Beal，wan not senied till the 12 th March，but beary date the 23 rd February lest，the day It mould hawe been mealed had mo oppod－ ton been entered．
John Mercer，of Crenshaw，Clepton－le－Moors，ehamiat，and John Gmenmrod，of Irwell 8pring，Bacup，Turkey－red dyer，for certinn improvemeatial in proparing coteon and other fabrios for draing and printing－March ill．
 omnibus．一March 18.
Wliltan Fruggatt，of Manchester，house and decorative palnfer，for a certatn imp provement or improwementi in the procese of decorattve palatige，whleh loproves ment or improvemente are applicable to rooms，halls，cerrlages，furnitare，apd oche purposes to which decorative palvilig has or may be applied．－Merch 20.
John M＇Dowall，of Walkinsbaw Fonndry，Johnetone，Renfrow，North Britaln，en－ gtaser，for improvemepts in cuttint mood and other sabstancen and in the machinery or apparatus employed thereln，and in the appllaslop of power to the eame，parta of which improvemente are applicable for the trangmialon of power generally， March 20.
 ments In Are－arms，and in the means uned for diacherging the mane；tivo mprover ments in projectlles．－Merch 20
William 8ymington，of Traralger－place，Went Haclrney－roed，Middemex，centle－ man，Cherien Findaye0n，of Mancheater，engtaeor，and John Budd，of the mape place gentioman，for improvements in twet，and in hatitng atr，and in evaporating combit tuids by beated air，－March 22.
John Dramgoole Brady，of Cambridge－terrece，Middleopx，Eaq，for Improvementi In belmen，cartidge－bores，and other milltary，accoutromepis－if aroh 27 ．

Edward Morewood and Gporge Bogwt，both of Enfild，Midilesem，centlemen，top
 Improveme
March 24.

John Mactntosh，of Berser＇a－greet，Middienex，civil endneer，for tmprovemento in ordnance and fire－arms，and in balls sod abelle－March 24 ．
Antoine Maurice Tardy do Mootrovel，of Peria，Premee，genillenen，for certatr tow provement in obtalalng motive power，and the machinery employed theretn．－ warch 24.
Isaac Brookes，of Birmingham，manufacturar，and Wiltan Lutwrebe Jones，of Birmingham，manufacturer，for eerthin improvementa binforen，and ofher apparate for heetug．－Mareh 24 ．
Whllam Whitaker Collins，of Buckingham－mareet，Adelph，dell engineer，for cep hin improvements in the manufacture of steel．－Harch 24 ．
Whliam Cole，of Blrkenhead，Cheater，arebltoct，and ilfrod Bolt，of Ifverpool， Lancanter，civil enginerr，for an improved methed of proventing and removing the deposit of sand，mud，or silt，In tdal rivers in eertain caper，and alco in herbour docks，beafas，gute，or other chappels communicating whth the teet through tidal Hivers or otberwise，the game belof applicable to ceptata cesea to other fivere or moving waters．－March 24 ．
John White and Bobert White，of Cowes，Iale of Wight，thip buildern，for too provementa in ahlp bullding．－March 24.
Wilitam Heory Hulabert，of Mile－end，Middlesex，for certale fmprovements to the treatment of wool，hair，feachers，fur，and other fibrout subatancen，and in machlmery or apparatus for the ance．－March 24

Whliam Areher，of Eampton－Court，ZIddiesex，gentirnan，for an Improved mede or modes of preventing acctdents on railmage．－Ifarch 24．

Thomas Bell，of Don Alyald Worke，South Shields，for Lopprorements In the manu－ facture of sulphuric acd．－March 24 ．
 or mpparatus for cutting and shaping cork，－Mareh 24 ．
Willim Pidding，of the Strand，gentloman，for improvemonte in the conntraction of vehicies used on rall waym，or on ordinary roads．－Harch 24 ．
Edward Hemmond Bentall，of Heybrides，Feees，tron fonder，for mprowneenta In the conitriction of ploughe－March 25.
John Smith，of Bliston，Staford，brate－founder，for certalim Improrementi in laco motive and other steam－engines．－March 25.

Errata．－－In the Discumion on＂Polychromatte Embehishmenta fo Greak Arehb tecture，＂ants p，46，col．2，line 29，for＂there whe evidence，＂read＂there wat no evidence：＂p ． 47, col． 1 ，यne 17 from bottom，for＂laterior＂read＂exterior；＂$p .47$ ， col．2，Itas 2，for＂t the colouring woald only rememble the decoration of a thetert ${ }^{*}$ reed＂the houses so coloured would onj resemale the ecene of a thentre；＂line 17 ， for＂Beauty and the Graces．＂reas＂Beanty and Grece．＂

STEWART'S HOSPITAL EDINBURCH.
DAVID RHIMD ARCHITECT.EDIRBURCH.

-. -
$!$
i

STEWART'S HOSPITAL EDINBURCH. dayid rhind architect edinburch.

J. R Jobhow

121 Jobing 3 Warmek C?

and Architect

STEWART'S HOSPITAL, EDINBURGH.

David Ruind, Esq., Architect.
(With Twoo Engravings, Plates XVI. and XVII.)
Tars building, which is now far advanced towards completion, and the dimensions of which are shown in the plans published in our present number, stands on the rising ground south from the Queensferry-road, and immediately adjoining Watson's and the Orphans Hospital. The architecture of the edifice is Elizabethan, with the corbelled turrets and other features which were incorporated with that style on its adoption in Scotland, as in Heriot's Hospital and other buildings of that period. It occupies three sides of an oblong square, and the projecting wings are connected in front hy an open screen, having a central gate and lodges of a highly ornate character. The main body is surmounted hy two square towers with ogivel terminals. These are grouped with lesser turrets at the corners some rising from the ground and others from richly moulded corbels, investing the entire mass with a picturesque effect. The fenestration is also peculiarly well proportioned, the play of light and shadow being at once hroad and varied; and when the extensive terraces in front are completed, which will add mach to the breadth and elevation of the structure, it will take its place among the attractive specimens of architectural skill for which Edinburgh is remarkable, and some of which are also the productions of Mr. Rhind.

The entrance-hall is light and elegant, the staircases and passages are wide and lofty, and the first feeling on entering the building is a cunsciousness of the presence of light and cleanliness, and a total absence of cloistered darkness and seclusion.

The two plans engraved will explain the interior arrangements. On the ground-floor are the class-rooms, hoys' dininghall; apartments for matron and masters, visitors'-room, trustees'room, together with servants'-hall, butler's-room, storerooms, kitchen, \&c.; over the west end of this floor there is a mezzanine containing baths, wardrobes, napery closets, house servants' bed-rooms, \&c.; and between the dining-hall and the kitchen there is also a mezzanine with bed-room accommodation for the kitchen servants.

The first-floor consists entirely of bed-rooms, excepting the chapel, which has been placed there for convenience, being only intended to be used for morning and evening prayers, as the boys, like those in similar institutions, will attend public service in one of the Edinburgh churches. I'he rooms at the west end of this floor are reserved for the sick, and there is a chamber in the floor above for those afflicted with contagious disease.

There is a sunk floor at the west end of the building containing laundry, washing-house, drying-rooms, heating-chambers, \&c., and also a covered play-ground for the boys in wet weather; while, in an upper floor extending over a part of the bedroom floor, there are also washing-rooms, play-rooms, \&cc. The chapel has an open timber roof of pine, stained and varnished; the screen, the pews, and all the timber fittings are being made of the same material. The windows will be filled with stained glase of elaborate design, containing medallions illustrating the leading incidents in the life of Christ, with appropriate inscriptions, emblems, \&cc. The blazon of the founder and his wife, together with that of the city of Edinhurgh and the Merchant Company, the permanent trustees of the charity, are aleo introduced. Two handsome mural monuments of Caen stone and marble are to be placed here, in memory of the donor and of the late Mr. Longmore, of the Exchequer, whose invaluable cervices the trastees have determined in this way to commemorate. The floor is to he laid with encaustic tiles, and altogether the chapel promises to be complete and consistent in its character and decorations.

The building of the hospital was begun in 1849, and is expected to be ready for occupation next spring. It is intended for the maintenance and education of poor boys in the neighbourhood of Edinburgh, giving preference to those having the mame of the founder, "Stewart," and his wife, "McFarlane;" and there is ample accommodation for nearly one hundred children.

The funds for building and endoring the hospital were left by Mr. Daniel Stewart, of the Exchequer, who died in 1814, and in consequence of the judicious manner in which these funds have been invested by the trustees to whom they were confided, the bequest has been attended with a result which could not have been anticipated by the donor.

Reference to Plan of Groumd Floor.

A, A, A, Clans Room	R, Serranta' Hall
B, Panage to Playground for Boy	8, Hombekeaper'a Btom
C, Strangers' Rurctption Room	T, Houskeeper's Bed Room
D, D, Great Staircasee	U, Housetreper's Parlour
E., Masters* Dialng Paplour	V. V, Gute Houret
F, Trustees' Ruom	W, w, W, Open Court
G, Diuing Hall	X, X, X, Terrace
H, Butler'z Pantry	Y, Y, Stast up to Mezsantbe Foor, and
1. Pantry	down to funtr Floor
J. Crockery	
K, Xitchon	Diaing Eat, exc.
L, for Ath Curt	1. Wanhing Piace for Roy while at Play
M, Larder	2, defo
N, Scallery	3, Flue for Heatur Upper Corridor and
$\mathrm{P}, \mathrm{P}, \mathrm{Corrid}$ ant	Chapel 4, Whae and Beer Cellar
Q, Eutrance Hall	8, Conal Depot
References to Plan of Pirof Floor.	
A, Truatees' Committee Room	1, Stalrcesen to Attics
B, Bod Rooms for Boys	J_{1} Nurmet Room
C, Head Manter's Parlour and Bed	K, SIct Room
Roon	L, Boy Watercloset to be ueed durlnt
D, Meatern' Bed Rooms	'he Night
F, Grent 8taircase	M, Braters' Waterclowet
G, Chapel	N, Housemalde' Waterclovet 0, Warders' Beda
H, Convalesent Bed Room	P, Inapeetion Openliga

RETROSPECTIVE CRITICISM.

Srr-Criticism appears to be deprecated for buildings, on the one side, and carefully or else indolently eschewed on the other. Now, I cannot help thinking that it wonld be infinitely better, if, ingtead of being eachewed, it were fairly chewed, swallowed, and digested. No doubt the chewing and swallowing it would sometimes prove not a little disagreeable; still, highly salutary also. I admit that there are very fow who are capable of fairly criticising either buildings or designs for them; what I call fair criticism being based upon deliberate examination and also consideration of both merits and defecte.

That there is considerable merit in the design for the Mechsnics' Institute at Burnley, which forms the subject of one of the plates in the last number of your Journal, I do not deny; still, it would have been better had a little revision beon beatowed upon it by its author. Careful revision is, in fact, essentially requisite for all productions of architecture, because being once erected, a building cannot be corrected-at least, not without very great trouble and expense, and under very peculiar circum. stances.
Whether the architect himself can plausibly justify it by any speciousness of argument, I know not; but the inclination which he has given to the area-balustrade before the entrance front is, in my eyes, no better than a violation of architectural grammar, and an arrant distortion of the most unpleasing kind. What, ever slope or other inequality there may be in the level of the ground itself, surely perfect horizontality ought to be observed for the lowermost urchitectural line in a building, as well as all the rest; or, if the lines nearest to the ground are to be made parallel to the ground, why then all the other lines ought suraly to deviate equally from horizontality, in order to preeerve parallelism to those below,-an absurdity never yet perpetrated, perhaps merely because it happens to be an impracticable one. Had the ground inclined in both directions from the centre of the front, the case would have been totally different, because then there would have been two sloping lines opposed to and balancing each other, just as the raking cornices of a pediment, or those of two lateral ascents leading up to a portico.

Not understanding the necessity for it, I am ill-disposed to excume the inequality of the fenestration,-not so much because it is inequality, as because it is misplaced or reversed, there being mors apertures on the ground floor than on the upper one; whereas, had there, on the contrary, been fower below than above, the very desirable expression of solidity would, instead of being as now forfeited, have been attained in a striking degree. Further, according to the engraving, the aide elevetion has not only, as well as the principal one, more windows below than on its upper floor, but a central aodid or pier below instead of an aperture! In other respects, I greatly prefer the design of the ground-foor there, to that of the corresponding portion of the front. The frant itself, too, in my opinion, would have been very much better had the columing of the portioo been placed on the level of the top of the area-balustrade; for they are at present raised so much above it, as ta appear insignificant in comparimon with the lofty blacks on which they are hoisted.

THE ECCLESIOLOGY OF THE LAKE DISTRICT.
By Rev. Owen W. Daryb, B.A. St. John's College.
[Paper read before the Cambridger Architectural Society, Feb. 26th.]
Op the various pointe of interent which yearly attract the travelling portion of our countrymen to the Lake district, that which forms the subject of these remarks is perhaps the very last. What lover of charch architecture would or could prefer the lowly edifices of the north, hardly discernible in their picturesque retreats, to the noble tuwers and spires whioh alone give dignity to the otherwise dismal fens through which the Great Northern express hurries its passengers from London to York? Yet I should not introduce the subject to your notiee were there not a cause. There is, as I last summer found, a peculiar intereat attmohed to the churches of Cumberland and of that district whose religious wants were for a long time supplied by the oare and by the messengers of the lordly Abbot of Furness.

Local difficulties lay in the path of those who would construct "Sach plain roofis es piety could rave"
in the Lake district. The primary strata whose uplifted rocks gave to the country all its natural grandeur, could not be modelled by any human chisel; the red sandstone had to be fetched from a distance, and, when all the difficulties of its carriage had been overcome, it was found too fragile to bear for long the images of the beautiful details of Gothic architecture, -the wintry blast, the driving sleet of the late autnmn, the rainy delnges of summer, soon obliterated what the patient hand of the artificer had designed. Again, however pious the wishes of churoh founders, however liberal the sums they consecrated to church building, they soon found that no magnificence of art could vie with the neighbouring beauties of nature. What tower could symbolise the stability of the faithful with half the silent eloquence of Skiddaw or Helvellyn?-what spire conald point to heaven with half the sublimity of the pike of Scawfell?

What, then, did the Lake architects do? They acted like wise men ; they emploved all their care to construct edifices which should answer all the practical ends of houses of God, that in these comparntively humble buildings men might learn to serve that Providence whose wonderful works they could without behold. I speak here of the parish churches; but no sooner did the granite rocks give place to more level country, as the momntaine sloped towards the sea, than the stately Abbey of Furness, the Priory of Calder, the collegiate Church of St . Bees, and the Cathedral of Carlisle, raised their heads to show that it was the absence of the way, not the want of the will, which preventel the architects of the north from building fine churchea among the mountains. The same cause which made the inhebitants meuntain shepherds made their places of worsbip little more than ecelesiastical buts.

It is my purpose now, and I will carry it out ceasing further intreduction, to bring briefly before your attention one or two of the moentain churches which I visited, with the simple remark that if you have geen one you have geen a hundred; they only vary in size and in the use of details, which are rare indeed, being generally cenfined to a singto window or door in each edifioe, as at Patterdale and Ennerdale; except in a church whick in its position mast be considered large and fine-Crosgthwaite, the parish chureh of the town of Keswick. I shall then pass on to a glance at each of the finer buildinge which I just mentioned, and which, though not among the mountains, may fairly be included smong the architectural specimens of the Lake district.

The church at Patterdale is familiar to all tourists who have viaited the finer end of what is justly considered the mont lovely Eughish lake. This humble edifice is, in fact, a long barn of granite, with a rough tower at its west end; the only attempt at style being found in a rude window on the south side, bearing the distinguishing featores of a square-headed Perpendicular window, carved in red sandstone.

The chapel st Ennerdale had, 1 believe, its duties originally supplied by the chapter at Calder Priory, who, when huilding their own very beautiful church, in all likelihood constructed this humble edifice. The eastern triplet may thus be accounted for, with ite eolitary casping in the central light, a peculiar and intereating phenomenon in architectural detail. This humble building is not often eeen, the neighbouring most romantic lake lying out of the ordinary line of touriste; but both in their
respective ways may form an attraction to the pedectrian who is fortunate enough to find himself on a clear day prepared to walk over the mountains from Scale Hill to Calder Abbey. This church is whitewashed inside and out, the latter being the common course pursued by the moantaineers for giving to their houses as well as their churches an appearance of cleanliaess.

I pass on to a large church on the same plan as Patterdalo, but much more deserving of examination, the mother chureh of an extensive district - Crossthwaite. This ohurch has been erected nt different periods, and has of late been most beautifully and judiciously restored and reaeated by the piety and care of a neighbouring layman. The wall of the north alsle is the oldest part of this edifice; it is Norman, and has a door of the period remaining, blocked up and quite plain; the windows are insertions, of Decorated and Perpendicular character, all square-headed. The east window is alone Pointed; it is artfuly contrived so as to preserve the few cusps which the design-Decorated-includes; the material, as usual, being the soft red gandstone. On the south side there is a square-trefoiled prientis door, a new porch, and at the weat end a low massive tower. This church is deserving of study as containing a general type of the peculiarities of Lake architecture. The font is very beautiful and most richly ornamented-in fact, the only portion of the edifice which is so, the piers and arches being as plain as possible. My object being here to speak of aatiquarian curionities, I pass over without particular notice the much-famed monument of Southey in the south aisle of the chancel, and the beautiful windows of modern stained glass, which add so materially to the effect of the newly-arranged interior.
The abbey remains of the Lakes are n host in themselves, and Furness is a noble representative of them. The impression which hasty view of the remnant of this great Cistercian eetablishment left on my nind was, that out of Ely I had nevar seen so splendid a collection of architectural atudiea. The shell of the church is a rare example of Tranaition-Norman. The chapter-house, who can contemplate its exquisite Early English details without wonder? -what Geometrical work can vie with the educational buildings which lie more to the south? If we seek for later work, the western tower shows that Perpendicular architects knew how to imitate the maseiveness of the peighbouring walla, while their skilful oarvers inserted on the sonth side of the presbytery a series of sedilia calculated to prove, by comparison with the older work around, the advence which three centuries bad made in art.
Furness is beyond praise as well as description: Calder, however, is more within compass and lese known. This priery, which is situated some few miles from the coast, between Furness and St. Bees, was dependent upon the former, and in its church several of the peculiarities of the larger edifice may be found. The dates of the remains at Calder, which consiat of a large part of the church and some of the conventual buildings, ure various; the earliest portion seems to be the weat end, which has a Transition-Norman door remaining. The piers of neve, which are perfect on the north side, have a singular section, which is seen again in those of the transept. The transept and central tower are Early English, the trifurium of the former very good, the piers of the latter various and peculiar. The choir is very short, but has a most richly ornamented earies of sedilia. The east wall is gone, as is the greater part of the central tower. To the south of the transept is a building which appears to have been the chapter-house; it is a rich and rare specimen of Geometrical deaign, but nearly sll gooe. The east window has been most simple and elegant, and well arranged for the soft material in which it is worked. The remaina at Calder are well deserving of the careful examination of those tourime who have an opportunity of visiting the picturesque glen in which they are situated.

We must pass St. Bees over with the hasty remark that it is a cross church, with a masaive tower at the intersection. It bas some fine Early English work about it, and is used-that is, part of it-as a chapel for the college which exists there.

Carlisle, though little thought of as a cathedral on account of its grievously decaged state, is nevertheless a most intereating editice for antiquarian research. This cathedral was originally of the usual plan; its nave, however, with the exception of two compartments, was deatroyed by the parliamentary forces at the liebellion. The veatige of what must have been once a very fine structure is used as a parochial church; the material of which this is built is blue limestone, which matches but indiffer. ently with the red colour of the other parts of the chareh, not
to mention that it has itself been patched in divers places with andstone and brick. The south transept is of the same date and atone with the fragment of the nave, and, like it, wears a moet dodeful appearance. The north transept is of Geometrical date, and has a dilapidated window, which once muit have been a fine apecimen of the style. The central tower is the work of almost every conceivable period: its original piers are Norman; theas have been elongated in after times by piers rising from the old sbaci, and carrying Pointed arches; an architect, when the Perpendicular style was prevalent, seems to have had the glory of finishing the composition.

It is really a solace to enter the choir of the cathedral after a viow of the incongruous jumble of architectare of which the remainder of the edifice is composed. This is truly worth seeing, and is in something like repair, much having been done to it of late rears, though much remains to be done. It is made ep of Early English and Decorated work, and contains many peonliarities. The earlier architects do not seem to have done more than the pier-arch stage with the aisles, and this they did not finish, the cape of the piers having been wrought afterwards from the blocks the original arohitects left. The Early Engliah arcades, and in fact the whole of the work in the aisles, are mont traly beautiful. The Decorated architects carried up the choir to its present imposing height, and finished it towards the east with that most glorivus front which contains, amidst other beautiea, the window which is justly considered the finest apecimen of the finest period of Tracery in England. This window is 20 beautifully delineated in Mr. Sharpe's series of Decorated windows, that I need only refer you to that valuable work for a correct likenese of it. The stall work, the rood, and eome other screens in a side chapel, for which this choir is famous, are perhaps as fine studies of medieval carving in wood as can anyWhere be found. I never remember to have seen anything more elnborate than the screen in the chapel I have just alluded to.

Carliale, then, though poor as a cathedral, nevertheless pre-cente-as my hasty glance at it has, I think, shown-a very valuable series of architectural stadies; and though we could have winhed that the Comminsioners of Henry VIII. had spared us Furness as the cathedral of the Lake district, it is clear that Carliala, if ite restoration, as lately prophesied in a county peper, can be brogght about, would be no unvorthy mother church of the several interesting buildings there, some repremantatives of which we have endeavoured hastily to describe.

And that description has not, 1 trust, been wholly without interess, for it cmpoot have been so if it has in any way borne witnest to the fact, that whatever difficulties had to be overcome, there were not wanting mong our forefathers men of energy and piety aufficient to raise in the wildest part of EngInd edifices meat for the high solemnities of Divine worship.

CHURCH OF ST. SEPULCHRE, NORTHAMPTON, WTTE Haticlal meprrenice to the regtoration of the round. By Rev. G. A. Poole, M.A.
[Paper read bafore the Architectural Society of the Archdeaconry of Northampton, April 14th.]
Previous to the reading of the paper, Mr. Soott gave the following summary of his report on this charch, which he had propared for the information of the Reatoration committee:8t. Eepulchre's is one of four Round churches in England, all of which were built either by the Templars or the Crusaders. That at Cambridge and this at St. Sepulchre are a little anterior to the institution of the order of the Templars. Round and octagonal churches were originally intended to overshadow some particular and sacred object. There are two such at Jerusalem, the Mosque of Omar, built by the Mahommedans, overshadowing a very carious rock in which is a cave into which it is supposed the blood from the sacrifices was drained. A very sinilar building was constructed by the Christians over the tomb of our Lord, so that in the same city there were two such buildings, both overahadowing a rock with a cave. Two of the Beand churche in England were built at the time of the preaent Church of the Holy Sepulchre at Jerusalem, so that they may be anjd to be contemporsries of the church of which in eane reapect they are copies. The English churches, however, are vastly inferior in scale to their original prototype. Like the Church of the Holy Sepulchre, the Cambridge Church had a triforium and clerestory. The Temple Church, too, had
\&roined aisles, a triforinm, and clerestory. In the Northampton Church the circle of pillars is surmounted by pointed arches; and at a first inspection there seemed to have been neither groined aisles nor triforium. On a closer examination it was manifeat that there had boen a triforium and groining to the aisles, for he found marks of the original groining all round the walla. Britton had treated the pointed arches as contemporary with the pillars from which they epring. Mr. Poole believed them to be absolutely modern, and it was clear they never could be contemporary with the pillars. Before the arches were built the pillars mast have been lengthened by taking off the capitals and interposing an addition to the shafts. The destruction of the triforium probably took place some time in the 14 th eentury, when the walls were thrust outwards so as to lead to the removai of the groining: the wall was aaved only by building the huge buttresees, and the tower was probably added at the same time. The original chancel probably terminated with an apso. With respect to the reatoration, Mr. Bcott asw no dificulty as to the external walls of the Round, and it might be possible to restore the groining shafts. But when they came to the triforium all must be purely conjectural. Upon the sulject of the proposed reatoration he felt bound as an architect to regret that such a step was necessary, but as a churchman he also felt that it was a regrat which he ought not to entertain. If it were merely a question of taste he should neither enlarge nor add to; but one being necessary, he preferred addition. The present tower, round, and chancel were, in fact, three distinct buildings, yroducing a picturesque effect; how the additions which he proposed to suggest would look he confessed he could not speak about with anything like confidence. However, his plan was to add a chancel in such a way as to make it as obviously an addition as pousible. The style to be Early Decorated.

The Rev. G. A. Poole then read the following paper:-
I have a good hope that, if I trespass on your time and attention with rather a longer and drier paper than usual on St. Sepulchre's Church, it will not be without your good-will and indulgence. In a former paper I treated it rather as connected with the history and description of the fabric; I shall now discuss questions relating to its proposed restoration, and to the intricscies which it presents to the architectural atudent. I shall, however, preface what I have to say with a few notes of its probable history, which is, indeed, an important part of the case which I hope to make out for its restoration.

The Church of St. Bepulchre, like the church of the same dedication in Cambridge, is popularly, but untruly, attributed to the Templars. If antiquity be an element of interest (and We of this Bociety shull not deny that it is), it has a still higher interest than it woald have if it were founded by that muchenduring, mach-performing, much-maligned, and much-injured order, for St. Sepulchre's Church was erected before the Templars had any existence. At the same time, the kind of interest which it would have, if built by them, it does not lose, inasmuch as it is clearly associated with the Crusades, or at least with the pilgrimages to the Holy Land, out of which the Crusades took their rise. The most tangible memorials of our pilgrim or crusading fathers are the Round churches, one of which, the second in antiquity, is the subject of the present paper. I will not repeat how the Christians who had reached Jerusalem, and worshipped there at the churches of the Resurrection and of the Martyrdom, desired to erect on their return, some church dedicated to the same service, which might remind them, at least in form, of those venerated places. There they had found the Sepuichre surrounded by a circular church, and joined to it the Martyrdom, or the place of our Blessed Lord's crucifixion, forming what might very well be represented by a chancel eastward of the Round. Such in general form are all the Round churches still existing. There is a Round answering to the church of the Resurrection, or of the Sepulchre (for in our glorieus faith the tomb and the place of the Resurrection are one), and there is the chancel answering to the Martyrdom, which was built over the spot on which our Lord's cross had been raised. Among the jitgrim warriors was one with whom we have especial concern. This was Simon de S. Lia, a Norman, a friend of the Conqueror's, a man of preat possessions and high titles, a devout man, and a man of energy and activity; for he was twice a visitor to the Holy Sepulchre, though the second time he did not ratarn farther than a cunvent dedicated by himself to our Lady of Pity on the banks of the Loire, where he stopped on his homeward road to die. Unfortunately fur the ecalesiologitat of the rineteonth ceatury, the chusch builders of
the twelfth and two following centurien seldom loft on their works any record of the hand which erected them. It is only, therefore, by inference that we assign to Simon de S. Liz the erection of the Church of St. Sepulchre; but this inference is 00 strong that it may be considered as point determined at fairly as such points usually are.

We often hear at our meetings of the interest which attaches to the study of a church with reference to its history and its original charmcter. I will now illustrate this interest from the church before us, connining myself, however, to the Round, the only portion which is attributed to Simon de S. Lis. In the interior we have a circle of eight cylindrical columns, supporting pointed arches. The columns are decidedly Norman, and the arches, though pointed, ure 50 exceedingly simple, being only of one order, with efat soffit, that if it were possible to conceive that any Norman archee could be pointed, we might certainly suppowe that thees were of the same date with the columns. Yet it was à priori very unlikely that if this church was really of the date assigned it, it would have had pointed arches. In consequence it has given rise to various opiniuns. Mr. Parker, of Oxford, declares it an example of pointed arches of a pure Norman period, accounted for by the foreign infuence Which might under these circumstances be fairly expected. Mr. Sharpe has included this among examples of the Transition period, which commences, according to his dates, sbout 1145. 1 had myself, in a work published some four years ago, attributed these arches to Simon de $\mathbf{8}$. Lis, who died in 1127, but in my last paper on this church, I ventured, after a more careful survey, with express reference to the restoration, to state that the arches, which had been so variously interpreted, were in fact $n 0$ recent as to be separated in their history from the columns, it might be 400 years or more. Since that Mr. Scott has discovered, beyoud all posible doubt, that not the arches only, but also part of the columns themselves were recent, the capitals having been taken off and the shafts lengthened about \mathcal{Q} feet. Thus one very interesting question is set at rest, and the arches neither cast any doubt upon the original date of the church as they would on Mr. Sharpe's statement, nor need, as Mr. Parker suggeats, foreign interference to account for them. The lengthening of the pillars, by insertion in the shaft, without altering the bases or capitals, is a commoner course than is usually imugined, and, in its results, one of the most puzzling of all changes in the fabric. It is done at St. Georges, Stamford, in a very unceremonious way, the inserted portion being octagonal, while those above and below remained cylindrical; this, however, makes it less puzzling than usual. At Spalding, several feet have been thus inserted, and the whole design of the church seemed hopelessly obscured until this was discovered, and then all fell easily enough into its right place. Here I will show you how many difficulties were occasioned by this single fact. At the north-west of the outer round, in the interior, is an original groining shaft. Nothing would seem more clear than its use, and yet nothing so difficult as to conceive how it could serve its purpose with the present piers, which are not now of the same height as this shaft. Again, there are two tiers of Norman windows in the outer round. The upper tier ought to belong to a triforium, but with the present tiers there was no room for it. Now these points also are cleared. There is room for a triforium, and the groining shaft is ready to perfurm its office. The groining ulso gived rise to several questions of by no means easy solution; but these are rather constructive than ecclesiological. They are most admirably treated in Mr. Scott's report, which is now before the Society. On these I will only observe that the dificulties are increased just threefold, by the after addition of aisles to the chancel. It is most probable that the original church had a simple chancel without aisles; and, moreover, that even after there were aisles, the entrance to the chancel only was at first open from the Round, the sisles being approached from the chancel.

The first question before us is purely mechanical. Are the walls of the Round in a ctate in which they can be loft with safety; and, if not, can they be restored to such a state without rebuilding? If the architect eays yrs to either of these queetions, they will, of course, remsin. If he eays no to both of them, another question occurs. Shall they be rebuilt, or suffered to tumble down and remain in ruins? -a question which would hardly occur to one of common senee, and which is therefore most worthily argued in the terms of one of uncommon genius. "Do not," Bays Mr. Buakin, "let us talk of reatoration. The
thing is a bi from beginning to end. You may make a model of a building, as you may of a corpse, and your model may have the shell of the old walls within it, ns your cast might have the skaleton, and with what advantage I neither gee nor care: but the old building is destroyed, and that more totally and mercileasly than if it had sunk into a heap of dust, or melted into a man of clay: more has been gleaned out of desolated Nineveh than ever will be out of rebuilt Milan. But it is gaid that there may come a nececssity fur restoration! Granted. Look the neceurity full in the face and understand it on its own terma, It is e necessity for destruction. Accept it as such, pull the building duwn, throw its atones into neglected corners, or make balleet of them, or mortar, if you will; but do it honeatly, and do not set up u Lie in their place. And look that necensity in the face before it comes, and you may prevent it............. Take proper care of your monuments, and you will not need to restore them. A few sheets of lead put in time upon the roof, a fow dead leaves and sticks swept in time out of a watercourse will save both roof and walls from ruin. Watch an old building with an anxious care, guard it as bent you may, and as any cost, from every influence of dilapidation. Count its etones as you would jewels of a crown; set watches about it as if at the gates of a besieged city; bind it together with iron where is loosens; stay it with timber where it declines; do not care about the unsightliness of the aid; a crutch is better than a lost limb; and do this tenderly, and reverently, and continually, and many a generation will still be born and pass away beneath its shadow. Its evil day must come at last; but let it come declaredly and openly, and lat no dishonouring and false substitute deprive it of the funeral offices of memory:" For my own part, it seems to me that Mr. Ruskin's exposition of his own views precludes the necessity of an answer. It is in short e reductio ad abourdum of his own principles-that is if they are hia principles, for I suspect that, like most impassioned declaimera, he has really gone beyond what he himself at all believes and feels. His words have run away with him; or perhaps hie characteristic aveabeca has impelled him to lay ubont him eo vigourously that he has broken his own knuckles aguinst our hard heads.

Let it be granted, then, that the outer walls are not to become a ruin, but are either to be kept up, or, if that be imposesibles, to be rebuilt stone by stone. And nuw what do they consint off They comprise the exterior of an aisle, and of a triforium. If, therefore, tbey remain, you have a triforium where none really exists. 'To perpetuate this mendacious deformity would surely be more like a lie, and an ugly one too, than a careful reatoration in the interior of that triforium of which the interior etill exists.

But it is assumed that the mutilation too, has its history, and so should be respected. So, also, have half-a-dozen other destructive changes in the fabric their history, und some of them an older history, in all probability, than the destruction of the triforium; as, for instance, the insertion of a semi-Norman door at the north of the Round. But I deny that, in any proper sense, these have their history. They are old, and that is all. They tell of nothing, and nothing tells of them. Besidea, history, in the sense in which we are using the term, has its degrees of comparison. If we are dealing with a building without any associations but those of age, everything which npproaches it in antiquity spproaches it slso in historic interest und value; and even the last feature or the last patch it has received, or the last amputation it has suffered, forms part of a vacuely-defined stream of antiquarian intereat, and is equally worthy of respect. But when the main fubric is of very singular interest-when it has s history of histories, and all the rest have but a history of blank pares-can we compare the changes with the fabric in interest, and plead that they shall be respected ou any large conservative principles? If they ure in themalves beautiful, or even goud, as is the cuse with the tuwer and spire of St. Sepulchre, and as was the case, as we judge from two exquisite bracketa, with the Early English and Geometrical udditions, it is snother matter; then, for their own sakes, we retain them, and also for the sake of their own history, and of the history which they serve to enrich; for what is a beautiful addition to a building, full of high associations, but a note of the admiration in which it was held, and the reverenca with which it was treated by some whose own work is worthy to be held in honour? Such additions are like the glosses of gifted men on the half-ingpired epic of one yet more gifted. I'he changea in the Round of St. Sepulchre are no better than
the blurred notes and the dog's-ears ln a schoolboy's Homer. Nay, they are not so good, for they do not oven toll of clumay pains, and of a wish, however valn, and of a labour, however coallees, to reach the spirit of the text.

This is hard measure; but come with me into the interior, and you will find yet more proofis that it is just. From the time of the completion of the Round to the present day, there is not one change which is not bad in itself, and not one which does not show that the church was treated as if it had no history at all, and no benuty. Indeed, the only touch of tenderness or reverence in on the exterior, where two good massive buttresses, coberly and honestly without affectiag anything more, support the tottering walls. These are Decorated in date; and I mention them especially, because I think their very different charaeter affords strong presumptive ovidence that the changes within wero very much more recent, as they certainly are very much lese judicious; in other words, these buttresses supported, in all probability, not the church an it is at present, but the triforinm and the original clereatory. And now what are the changes which, after this date, were subatitnted for more buttremees, which would have been the right course, and for conservative repairs? They were these. The removal of the groining of the aisles, and the destruction of the triforium, while its exterior was left, telling of what does not exist, a sort of es poot facto lie, a criminal not morally, but by the tyranny of after circumstanoes. Bealdea this, there was the stilting of the piers, the cubatitation of Pointed for Norman arches, and of a ponet moagre octagonal clerestory for a round triforium, and all thet formerly intervened between it and the roof. Of the roof itealf I say nothing, for I beliove all are agreed that it ought to be replaced by a better. And yet, even of the roof, I will eay that it is not, simply because it cannot be, worse than the reot of the alterations, and for aught that appears, it is of the came date with the mont important of them, so that I know no claim which the reat have on our respect which the roof has not aleo. But I cannot thus dismisa the clerestory. It is not even circular. That one condition of ite existence where it was, that outer form and veature of the soul which was within, was denied to the clereatory at ite rebuilding. Certainly, the architect who conducted these changes knew that he had nothing to fear from conservative critice, or frum any who had too tender a reoollection of pilgrims or cruseders.

I will now venture to enumerate three kinds of church restoration, which are 80 far from a lie that they are absolutely and distinctly truthful; so far from reckless that they are essentially "tender and reverential."

First, there is that never-ending, still beginning reatoration, for which there is room in a large fabric almout from its completion, and which may be so careful and extensive as to admit of no signs of far-spread decay, a course which is now being pursued at Lincoln, where no single stone is allowed to be replaced except by its facaimile. This course cannot be otherwise than satisfactory, if it has been carried on from the beginning, and where it is not so it is the penalty of past neglect; and, as for ite being untruthful, since it is the condltion of all sublunary things to need repair of some kind, this conrse is really to enter into the truth of things; to accept it, and to follow it out to its just conclusions. It is simply absurd to talk of expreasing eithor our admiration or our reverence for anything of use and beauty, and our thankfulness to our forefathers for their bequest to us, by letting it tumble to pieces, and become of lower, less graceful, or inferior use. This course of restoration, however, must be followed to the very letter. At York, where constant attention is given to the works, bat, perhapt, with less strict surveillance of authority, one of the capitals in the Early English arcade in the north transept is replaced with a bust of the Duke of Wellington! This warning, however, is unhappily not needed here, for for this kind of reatoration there is no place at present in St. Sepulchre. I hope it may be left, ere long, worthy of such jealous custody as to require it bat seldom, and that when and as it does require restoration, such as this may be given to it.

Secondly, when a church has fallen into general decay by long neglect, but has not suffered material changes in the fabric, it masy surely be restored by the insertion of musonry where it is abolutely needed, at the same time leaving every fragment which will still perform its proper office untouched. Here the courne pursued reveals itself; and the effect, if in any degree had (as it is not an compared with a more aweeping reparation), ti only so much so as to be a fuir penalty for the neglect which
has caused such a restoration to be needed. This kind and degree of restoration may be followed in the outer Round of St. Sepulchre.

Thirdly, and finally, there is the restoration of an integral portion of the fabric which has perished by neglect or violence, or accident, or which has been replaced with something worse than ruin-an incongruous substitute without any virtue of its otn. Aad this is decirable in proportion to the interest or other merit of the building; safe in proportion to the assurance we have of the character of what is destroyed; necessary in proportion to the use, and graceful in proportion to the useleasnesm in a hard dry sense, of that which has perished. Under thia head would come the greater part of the reatoration, such as I have advocated, of the Round of St. Sepulchre. Interesting unquestionably it is in its history and associations far beyond ordinary churches. It is certain that the several featurea I have mentioned did exist: it is equally certain that they had a well-defined character, of the very details of which we may discover traces, of the broad lineaments of which we cannot doubt. Its use is not, perhaps, greatly lessened by its present incongruities, but all the more graceful the attempt to remove them; nor do I believe that 1 have to contend with those who would really argue the matter as a cui bono question, in the Harriett Martineau sense.

Parallel cases are not wanting. St. Peter's Church, in thin city, suggests a very close parallel. It appeared, during the course of the restoration, that one bay of the chancel had been destroyed. The curtailed east end had been built up in the fourteenth century, and had been bungled afterwards, perhaps in the seventeenth. The plan and the style of the original chancel were certain: the details many of them came to light, and-with a skill and patience which I trust to see often exercised in like ease-the present east end was designed by Mr. Scott. Is it a lie? It would be, if it pretended to be the old east end bodily, or even its facsimile; but pretending only to be a thoughtful, patient, ungrudging attempt to replace what others had recklessly destruyed-(and even in the careful search for vestiges of the ancient fabric, and in the scrupulous recordings of them, confessing that, in the nature of things, it could only be an attempt and an approximation)-I hope we shall never have cause to blush for it as a delinquency, or to regret it as a mistake.

Adother parallel atill closer I find, in perhaps the very higheat reatoration, all things considered, which has yet been effected in England; and this also by the professional help and care of Mr. Bcott. At the east side of the south wing of the western transept of Ely Cathedral, was a chapel dedicated to St. Catharine, to which it is on record that the brethren of the monastery retired for their services while the central tower was expected daily to fall; and in which they had just finished veapers on the eve of the festival of St. Ermenilda, 1329, when the tower did actually fall with a noise like an earthquake. The addition of an octagon to the western tower, soon after this event, caused lamentable breaches in the whole of the west transept; the north wing actually fell, and the south wing was wrenched and shaken throughout, and so remains to the present day. There was a time at which its beuty and its interest pleaded alike in vain for the Chapel of St. Catharine; and it was of no use, so it was pulled down, and the materials were used in a questionable attempt at propping the adjacent walls. The design, the execution, the expediency were not lower or worse than they were in the changes made in St. Sepulchre; but a day came when use meant a different thing, and histury had a voice to the heart as well as to the ear, and everything did nut seem barbarous which was old; and cost, and energy, and courage of purpose (for such repairs required courage) were not spared, und the foundations were discovered, and the details were sought and found, to such an extent as to secure a restoration generally correct. And there again is the Chapel of St. Catharine. Not so useful, indeed, as the space which had to he cleared out to restore it, for that was used as a lumber room; and those who gravely ask the queation of use, are not likely to suggest or to accept any better use for the restored oratory. But in what sense the restoration can be called a lie, in what sense it is not a high tribute to the fubric as it was, I cannot conceive.

Mr. Brors proposed, and Mr. Soort seconded, a vote of thank: to Mr. Poole for his able advocacy of the thorough restoration view of the question, Mr. Scott guarding himself, however, against being supposed to go quite with him in mome of his opinions.

ON MEDIEVVAL ART AND ARTISTS.

By M. Diaby Wyatr.

[Paper read at the Royal Institute of British Architects, March \$2.]
Ar a meeting of the Institute on March gznd, the discussion on the Restoration of the Royal Tombs in Westminster Abbey was renowed. Mr. Wyatt considered the subject might be examined under four aspects especially: firat, in reference to the actual monuments tbemselves, and their particular forms at different epochs in their history; secondly, the peculiar processes which some of them exhibited-processes which distingaished them from all other monuments in this conntry, and the majority of which, he migbt observe, were not English; thirdly, as landmarks in the history of national art, for (exbibiting foreign infuences in many of their details) they affected the question of the sources whence the elements of more esentially Einglish art had been derived; and lastly, which was the most important point of all, these monuments were to be considered in reference to the question, whether their restitution could be successfully carried out or not.
In regard to the peculiar form of the Confessor's Shrine. It would he remembered that, in the earliest ages of the church, the bodies of the saints who suffered martydom were deposited in the catacombs; and the different religivus rites of the church were celebrated upon the stone which covered the altar in the chapels in which the remains were interred. After the persecutions of the early Christians ceased, the bodies of these saints were removed from their tombs in the catacombs, and placed under the altars of the churches, so that the same ceremonies might be performed over them as before. Hence the bodies of saints were put into stone coffins, or receptacles of that kind, and deposited beneath the various altars. After a time, the curiosity of the faithful became excited, and in some instances doubts were expressed whether the relics which they reverenced were actually in these receptacles; and it therefore became desirsble that the faithful should actually see them at different times. Shrines were accordingly made, which admitted of being opened, so that on certain feasts the congregation might be permitted to inspect the sacred relics; and on those occasions, pilgrims came from all parts of the country in order to confess, and to obtain the usual indulgences. That was known to have been the case in many of the churches of Italy, more particularly at St. Peter's, where the body of the apostle was preserved. Up to the tenth century pilgrims went to Rome from all quarters to view the relics of the caint; and a fall account was given by Ansetatius of the form of the tomb, and the way in which the pilgrims approached it-putting their heads in a certain fixed place, very much as it appeared they did beneath the Shrine of Edward the Confessor. In order to preserve even the shrines which held these relics from the vulgar geze, the church introduced antependia devants a'Autel, or altar frontals, completely covering the shrines, which were only taken down at certain of the principal festas. As the church increased in power, the different popes sent presents of holy relics to various sovereigns of Europe, who in turn formed altars for their reception, similar to those of Italy. He believed, therefore, that on the canonisation of St. Edward, his body was deposited probably beneath the altar, in the feretory described as having been prepared by Henry II.; because, in an account given of the subsequent elevation of the body of the saint into a shrine, Henry III. was described as having desired to raise it up as a candlestick to illuminate the church, so that the faithful might behold it from all parts of the earth. In that way the shrine was gradually lifted up; and so, in italy particularly, many of the bodies of saints were known to have been taken from underneath the altar-their original pusition-and placed on high, above it, in large metal shrines. In France, the habit of elevating shrines containing relics grew into very great popularity, particularly in the district of Limuges. According to the observations of the Abbé Texier, there were at the present time many hundred "coffrets" for relics in the small district surrounding Limoges; and although none of the larger ones which were recorded to have existed were preserved, the form of the smaller ones atill remaining gave a good idea of them. The French shrines were placed above the altara, and sometimes in a detached position, similar to that of the Confessor at Westminster. The principal relics being regarded as of the utmont importance, their envelopes were frequently enriched with enamels and other decorations. In this manner the shrines
of mints became objects of national pride, and great cources of revenue to the churches which contained them; and thus in England the bodies of St. Cuthbert at Durham, St. Hugh at Lincoln, St. Thomas at Canterbary, St. Joseph at Glastonbury, and other saints, were raised in splendid shrines, and became centres of attraction to the people, and the offerings made at them created vast incomes for the ecclesiastics. The different arrangements employed for displaying theas ralics were very interesting.

Monaics.-The mosaics of Westminster Abbey were of two kinds, "Opus Grecanioam," and "Opus Alazandrinam," the former being the glass-musaic employed in the tomb of Henry Ill., and the latter the marble and porphyry work of the two pavements. The first stage of mosaic, it should be remembered, was when the practice was entirely Groek; the Greek artists, on their expulsion from Byzantium, uader the Iconoclastic Emperor, having formed a scbool at the church of Santa Maria in Cosmedino at Rome. That school existed till about the year 800 , when the troubled state of the churoh prevented the further development of the art and there onsued a complete lapme for sorne centuries in Italy. About the year 1150 Desiderius, one of the "Abbati" of the great Benedictine establishment at Monte Casino, sent for workmen from Greece, in order "that the art might not be lost in Italy, and that the young men of that country might learn the mode of manipulation. ${ }^{.}$Shortly afterwards the Greek work began to be imitated in Italy and Sicily, though more partioularly at Rome and Florence. Andrea Tafi, Gaddo Gaddi, and Pietro Cavalini became skilful workmen in Italy during the thirteenth century, when the second series of great mosaico-those of Santa Maria Maggiore, San Giovanni in Laterapo, \&c.-were carried out. This series differed materially from the former; and it was in this latter style of mosaic that all the examples in W estminater Abbey were executed. These specimens were peculiarly intoresting, because, independently of the inscriptions upon then -which proved their date beyond any doubt whatever-the evidence afforded by their style showed that they were works of the manner and period referred to, and displayed the English sympathy of the thirteenth century with Italian art. The pavement of Becket's crown in Canterbury Cathedral, in addition to portions of "Opus Alexandrinum," comprised a very perfect specimen of the old Florentine mosaic, or "lavoro di Commesso," which was quite a different kind of work, the best specimens of it being preserved in the Baptistery at Florence, and the church of San Miniato on the hill above the same city. The latter description of mosaic was formed by drawing the desired pattern on the surface of the marble, and chasing it completely out, and then cutting out of another piece of marble of a different kind the pattern necessary to fill up the cavitios of the former. This kind of mosaic was carried still further at Sienna by Beccafumi, who attempted to produce effects of light and shade by the use of different tints of marble; and it ultimately led to the regular Florentine mosaic, in which, in addition to attempts to realise chisro-scuro, colour was introduced by the employment of different stones, and aren jewels. In the earlier specimens of Florentine moseic, the only colours were red, black, green, and white.
Enamels.-The tombs at Westminster exhibited some very curious specimens of Limoges eunmel. At Constantinople there existed originally a peculiar style of filagree enamel on thin sheets of gold, to which gold threads being attached formed little chambern, into which ponnded glass of different colours was put; and the whole being placed in a "muffe" furnace, the glass wrs fueed so as to hold the threads permanently in their proper places, and to convert the surface into a beautiful minute glass-musaic picture. Specimens of this kind of enamol were exported from Constantinople to different countriee of Europe; and examples of it might be eeen in England, in the famous Alfred Jewel, a brooch in the Hamilton collection of gems in the British Museum, \&rc. This style of enamel getting into France, was imitated by the workmen there, who however retained the old Gaulish practice, which was of a kind aimilar to that which might be seen on harneas, and other ornamenta discovered in barrows. The above kind of enamel was formed by the following procem:-a copper ground was taken, and lines incised in it; powdered glass was then put into the cavities, and the whole being fused and poliahed, and the metal afterwards gilded, the different lines and parts cut out glowed with enamal coloura, in a manner aimilar to that which iad before existed in Byzantine work. The peouliar connection which existed be-
sween Byantium and Limoges, through the Venetians having mployed Byzantine workmen to execnte moenic and filagree comels, wae pointed ont. In this last style their most important commision was the well-known Palla d'Uro, or Paliotto of 8t. Mark's, ordered about the year 900, by the Doge Orseolo, which was supposed to have been executed in imitation of the altar frontal of St. Sophis at Constantinople. At the end of the twelfth century the Venetians had comsiderable intercourse with France, and establiehed at Limoges a depod for the merehandise they sent from Veaice, such as embroidery, spices, and other rich object. from Greece and the east, which reached Limoges by way of Marseilies. There still existed at Limoges the streete of the Venetian merchants; and it was a remarkable fact that the very IDoge Orseolo, who ordered the altar frontal at Venice, came afterwards and lived at limoges. Thus, the Prench of Limoges produced, from a combination of the old Gandiah enamel and that of Byzantium, the peculiar material known as Limoges enamel. The prinoipal application of emamel, illantrated by the tombs at Weatminster, was that of forming the effigy of the decersed in rood, and overlaying it with plates of metal having ircieed lines, in which the enamel patteans were inserted. The tomb of William de Valence, earl of Pembroke, was perhaps one of the most interesting examples in this country. The figure of $8 t$. Edward, on the side of his feretory, was prebably carried oat in Limoges enamel, for it was not to be imagined that the tomb of William de Valence wes a singular case; -there wata a complete effigy of Walter de Marton, bishop of Rochester, executed in enamel by workmen who came over expresaly from Limoger and set it up in the cathedral. The beantiful altar froatal in the south ambulatory is completely Florentine in itg character and in the details of itse fabricatien. Other interesting processes might be referred to as illastrated in Westminster Abbey, the monuments in that edifice furniahing a complete history of decoration, as applied to textile fabrice and enobroidery in thir country.

Nationadity of Workmen.-With regard to the nationality of the different workmen employed upon these monuments-remembering what Mr. Cockerell had written on the subject-it might be observed that Henry III. was, to a certain extent, Ideatified as to time with Nicoln di Pisa, who was regarded as the great reformer of art in Italy. Before the time of that great artist, however, many important werks had been executed If the old Lombard school of art, particularly in the districts of Milan, Pavia, and Lucca. Of this school were the Comaschi, the freemasons of that district, who, as Mr. Hope stated, and as it was generally believed, connected themeelves with other bodies in Europe, and dispersed themselves in various directions, carrying out important works wherever they went. If it were not for the passing action of some such body, it would be fifficult to account for the singular appearance in France of a trange sort of Early English style; agreeing with that of buildings executed by Nicola di Pisa, by the Cusmati at Rome, by Mansuccio at Naples, and other artists anterior and immedistely posterior to the jear 1300. The examples of this peouliar atyle were few, and were found in adjacent locafities, oxnetly as if mome passing body had visited them, and left its inopreea and moved oo. It might be supposed that they had vinted England, and brought with them a cartain amount of Parly English. Indeed, he could not otherwise aceount for the peculier appearance of the ornamental sculpture of that period. Heary 111. moended the throne in 1216; and, during his boyhood, was for nome time involved in trouble and warfare. At a hater pariod, however, he appeared to have engaged in the production of worke of art. Now, in considering the question by whem these works were carried out, it should be remembered that the king was continually quarrelling with his basons about the number of forigner (Poetivias and Italians especially) he luenght into the counsry. The popes of that time insisted on their right to institute to all the churahes in England; and the monamic orders in this coumtry were placed in the closest relathon with Rome, ernbaseles and other communications with that city eomatantly taking place. In the last three years of the pontificate of Gregory 1X., three hundred different Italian priests were nominated to English benefices, theme being ragular clergy, owirely todependent of the monastic orders. Each pope, during Heary III.'s reign, exercised the mame right, and muet have mat over a large number of Italians. In looking for actual reapeds to support this view, it appeared that in 1953 William of Florenee wat an artiut employed by the king, and in 1260, by en erder printed in the Close Rolle, the king directed a sum
of money to be paid to him, "for making an altar frontal as we have directed him." Again, in the year after the elevation of the relics of St. Edward (1269), the king appointed William of Florence master of his works at Guildford, and paid him axpence a-day, which was at that time very good pay; though in Edward I.'s time workmen received considerably more. Among the first artists employed by Edward I. was "Master Torrell," who worked upon the tomb of queen Eleanor; there was aleo Andrea Giletto, and n "Master Walter." Mr. Hunter had shown that nine English sculptors were engaged upon the Eleanor Croses, but that was at a somewhat later period, quite thre end of the century; whereas the earlier artists appeared to be principally Italians. It was curious, also, that when Edward I. wanted to carry out his principal works at St. Stephen's Chapel, he had to aend out and impress men, who no longer hung about the court as in Henry III.'s time. Judging from these circumatances, it would appear that the prestige of the Italian artists had departed from them, and many had probably quitted the country, or given up their artistic purauits. The new order of men probably learned their art from these Italians. William Barnaby and Hugh of St. Albans were unquestiousbly English; but from that time the same excellence was no longer found: a different spirit pervaded the latter works, the style of which was rather actual and dramatic; whilst the former were reftective and mesthetic. It would not be forgotten that Odorieus and Pietra, the artista of the mosaics at Westminster, were very great men.

Restoration.-Of the remains at Wentminster Abbey, if resterations could be reconciled to the conscience, their necemiag must be undonbted. But, setting aside the artistic view of the question, it was to be remembered that every Enghishman had an historical duty in the matter. . It would be vary injadicious te lay down any general rule, or to say dogmatically that these tombs should or should not be restored. Much would depend on the state of the particular monamenta, and every case had its peculiar circumstances. It might be possible to restore the form of a monument, so as to give symmetry to the objeot, or preserve its solidity; and at the same time enable every one to know what part was old and what new. That plan had bean actually carried out in the restoration of the Arch of Titan at Rome, where the restorers, instead of attempting to bnitate all the fine carving of the old marble work, had restored, in Travertine stone, the general form, so that at a distance it appeared a perfect and beautiful arch; whilat on a neares inspection the new work was found to be only sketched, and the old preserved in all its purity. Thus, there was a complete solid reatoration of form and effect, yet the work was perfect ao an historical monnment. With regard to the crumbling ruins of the decaying monuments at Westminater, it should be remembered, that "out of dead bones life cometh," and in theis very decadence and mutilation was recorded a history of thow Reformers who overthrew what they considered superatitions monuments, and a kind of tradition of the state of feeling in their time. It was right to respect the ancient suvereigns of England, and if their memorials perished, a spirit of loyalty should indnce us to erect others to commemorate their virtues, if we respected them; but the testimony of those Reformers should be likewise respected. If these monuments were to be restored, at least a brass inscription should record their precise state immediately prior to the commencement of the work of repair. Where objects were peculiar for their beauty, and where, by any ingenious process, they could be brought hack to their original condition-without addition or subtraction-or where they could be improved hy washing off dirt, or by otherwise cleaning and varnishing, the employment of any auchprocess (which was only uncovering veiled beauty) was perfectly legitimate: but even that had its limits. Only the other night it was agreed that there was no colourist like Time, and that all the polychromy of art was scarcely harmonious till its tones were blended by age. Why, therefore, ahould what time had done be undone? If these monuments were to be restored, all must agree that great care would be required. He should be very sorry to see any rash hand applied to them; he should be, indeed, as grieved to see them "restored," in the common acoeptation of the term, as he should be to notice the rust rubbed off a heautiful green bronze of the Etruscan period.

ON THE PRESENT STATE OF METEOROLOGICAL SCIENCE IN ENGLAND.

By Joun Drew, Ph. D., F.R.A.S., Member of the Council of the British Metoorological Society.

The Royal Oberbvatory, Greention. (With Engravings, Plate XVIII.)
For a period of not less than 160 years, aystematic observations of the places of the sun, moon, planets, and fixed stars, have been recorded at the Royal Observatory with an accuracy not surpassed, if indeed equalled, elsewhere. The government of this country have evinced a sound discretion in the appointment of the most eminent mathematicians to the office of "Astronomer Royd"-an office now held by Mr. Airy, whoee mind is ever actively engaged, not only in sustaining the character of the Observatory for accuracy of observation by the introduction of instruments superior to any hitherto employed (witness the new 14-feet transit-circle, and the altitude and azimuth circle), but in adding to its efficiency in every collateral branch of science. Under his auspices the magnetical and meteorologicnl observatory was originally established; and, of late, the new system of automatic registration of the magnetical and meteorological instruments by means of photography (invented and brought to perfection by Charles Brooke, Esq., M.B., F.R.S.), has been introduced, and now forms a most atriking feature in that department of obwervation. Successive governments have shown a liberality in promoting the objects for which the Observatory was originally foundedviz., to afford assistance to the navigator in traveraing the pathless ocean, by the formation of tables founded on the data there recorded; these are printed yearly in the 'Nautical Almanac,' which exhibits results in a systematic form, and is of inestimable value both to the astronomer and navigator: it is supplied to the public at almost a nominal price. The volumes of magnetical and meteorological observations, as well as the astronomical, are readily and gratuitously hestowed upon individuals who are labouring in those departments of science. Of the great utility of those laborious quartos I can myself speak experimentally, having at the representation of the Council of the Ruyal Astronomical Society, received a grant of the entire series: they have supplied me with valuable directions, and have solved many difficulties which would have obstructer my progress.

In the year 1837, it was determined to erect a magnetic observatory, for the purpose of investigating the laws of magnetism, on the full understanding of which the mariner's compass depends for improvement, and the chart by which the navigator is guided for its accuracy; conjointly with these investigations an elaborate system of meteorological observation was commenced, in the expectation of discovering some of those causes which produce the variations in the conditions of the atmosphere-a kind of knowledge auxiliary to navigation, in which so much depends upon that variable element, the wind. Greenwich, moreover, was understood to be well appointed in a trained corps of observers, renowned for the accuracy and care which they had employed in the most exact science; and the published Reports, which originated in 1840 and have extended to 1850 , have proved the wisdom of the choice of that locality for the magnetical and meteorological instruments.

The magnetic observatory is a small detached building, its neareat angle being 230 feet from the nearest part of the astronomical observatory, and 170 feet from the nearest out-building; the material is wood, and iron has been carefully excluded from its construction; the form is that of a cross, with four equal arms nearly in the direction of the cardinal magnetic points; its extreme length and breadth are each 40 feet, and the breadth of each arm, which is 10 feet high, is 18 feet. The only iron to be found throughout the whole building is in the fire-grate in the anteroom, the mean-time clock, the sidereal clock, and the cbeck-clock. In the Greenwich volumes, before alluded to, will be found a series of elaborate observations, tending to the determination of the degree of influence on the magnets exerted by this small portion of iron; and the results, as declared in the volume for 1847 , ahow that the influence is insensible, or so minute tbat it may fairly be neglected in practice.

The declination magnet is 2 feet long, $1 \frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch in thickness; it is supported by a braced wooden tripod-
stand, reating on the ground, unconnected with the floor. The centre of the magnet rests within a stirrup of gun-metal, whies has been found to diminish the extent of vibration, and bring the magnet to rest with less agitation; fibres of untwisted silk wuspend it, and allow it to move freely, horizontally, a small quamtity on either side of the magnetic meridian. Upon the magnet alide two brass frames; one of these carries a crose of delicate cobwebs, thre other a lens, in one of whose foci is the cross; through this lens the cross can be well observed by the telescope of a theodolite, and the vibrations of the magnet on either nide of the magnetic meridian may be read off on the divided horizontal circle of that instrument. Until the introduction of photographic registration, the observations of the three magnete were taken and recorded every two hours of the day and night, and the check-clock was contrived to indicate any irregularity in the observer, who was expected to depress a pin at his appointed time; as the clock-case was locked, the number of pins depressed, and the time when, indicated whether or not an observation had been neglected. At the present time the magnets are read off instrumentally only three times daily, as a check to the photographic registers, and as a means of forming a photographic base-line of measurements, as will be more fully explained hereafter.
The mode of taking the observations instrumentally is the following:-The mean-time clock, with the application of a correction determined astronomically for the day, shows Giottingen mean-time for the day, which is +39 min .46 sec . on Greenwich time. It was determined by a conference of philosophers of all nations, that simultaneous magnetic and meteorological observations throughout Europe should be regulated by that longitude.
In the field of viem of the theodolite is a fine vertical wire, moved right and left by a micrometer-screw. On looking into the telescope the cross of the magnetometer is seen to pase, during a vibration, alternately right and left. The observation is made by turning the micrometer till its wire bisects the mag-net-cross at 45 sec , and at 15 sec . before the pre-arranged time; and again, at 15 sec . and 45 sec . after: the mean of these observations will be the position of the magnet for the proponed time. It was found, experimentally, that the magnet vibrated in 30 sec.; and hence this interval is allowed between the observations. If the magnet be at rest, which occurs only a few times in the course of a year, one reading of the theodolite only will give its position.
The adopted result, in runs of the micrometer-screw, is then converted into degrees, minutea, and seconds, their value having been previously determined. The difference between this and the reading of the circle of the theodolite corresponding to the astronomical meridian, which has been previously determined most accurately, is registered as the magnetic declination. The mean declination of the magnet, or, as it is more popularly termed, the variation of the compass, at Greenwich for the year 1847, was $22^{\circ} 51^{\prime} 18^{n}$ west of the astronomical north. The reductions for 1850 are now complete: for that year I find that the mean declination differs but little from $88^{\circ} 30^{\prime}$ weat.

The horisontal-force magnet is the same size as the declination magnet; it, with its suspension-frame, is supported by two halves of a skein of untwisted silk: this is the hi-filar magnetometer invented by Professor Gauss, in 1837, for the purpose of determining the horizontal intensity separately. The two lines of suspension pras over two pulleys, and hang parallel to each other when the needle reats in the magnetic meridian. Then, on turning the whole apparatus horizontally, so as to make the needle deviate from the magnetic meridian, its tendency to return to its former position causes the threads to assume directions oblique to each other; and there is some position of the needle in which its directive force is equal to the force by which the threads resist being made to cross each other's direotions. It is easy to adjust the instrument so that when this equilibrium takes place the needle shall lie in a direction at right angles to the plane of the magnetic meridian; the torsion of the threads by which the needle is made to assume that position indicates the horizontal component of the magnetic force, and every change in the intensity of the latter effects in a direct manner the position of the needle. The force of torsion is computed, and, being known, the deviations of the magnet on either side of its mean place will give the value of the horizontal force. The details of the determinstion of this element may be found in the 'Greenwich Obeervations.' 'To the cell which carriea the magnet is attached a mirror; this mirror

-
refiecta the image of a scale fixed to the opposite wall towards a telescope, at which aits the observer noting the number of divisions passed over during a vibration, the mean of which is the deviation of the position of the magnet from it mean place due to the time when the observation is taken.

The vertical-force magnet is of the same dimensions as the other two; it is crossed at the centre by a short axle, which is sharpened to a knife-edge, and rests or vibrates on agate bearings. The bar is made to assume a horizontal position by means of a moveable weight. It is provided with a mirror cituated over its centre of motion, with its plane oblique to the magnetic axis of the bar; a scale is affixed to the opposite wall, and the mirror reflects its divisions to the eye of the observer, who, looking through a telescope, reads the division of the scale which appears in coincidence with a horizontal wire in the field.

By an accurate determination of the vertical and horizontal components of the magnetic force, we are enabled to deduce the inclination of the magnetic needle, and the intensity of the magnetic force for any given locality. Greenwich, in combination with foreign observatories, has done its part in supplying data for determining-1, the irregular variations of the earth's magnetic furce, which apparently observe no law; 2 , the periodical variations, whose amount is a function of the hour-angle of the sun or of his longitude; 3 , the secular variations, which are either slowly progressive, or else return to their former values in periods of very great and unknown magnitude.
A dipping-needle in a small detached building is read every two or three days. It is 9 inches in length, and the circle which measures the dip is 11 inches in diameter. The mean dip for the year 1848 was $68^{\circ} 54^{\prime} 45^{\prime \prime}$; for 1850 the reductions have just been completed; for that gear the dip differs but little from $68^{\circ} 40^{\prime}$.
Though the instruments just described do not form a part of the meteorolugical establishment of the Observatory, strictly speaking, yet, as their movements are registered photographically, and in combination with those devoted to atmospheric changes, and as, moreover, for the last ten years, the whole arrangements have been superintended by the same person (Mr. Glaisher), I considered it necessary to say thus much respecting them. I now proceed to those which record more particularly atmospheric variations.

On Photographic Registration of Meteorological Phenomena.

On this subject I shall endeavour to be sufficiently explicit to convey a clear notion of the ingenious contrivances by which sutomatic registration is attained; but it in not my intention to deacribe them 80 minutely as would be requisite were 1 about to give directions for their construction. Those who may wish to construct a similar apparatus may consult, advantageously, the 'Philosophical Transactions,' Part I., 1847, and Part I., 1850; and the Greenwich 'Magnetical and Meteorological Observations' 1847.

On the first introduction of photographic registration by Mr. Brooke, that gentleman adopted the light of a camphine lamp, as producing the most powerful photographic effect. For this bas now been substituted a mixture of common coal-gas and naphtha, which is found to be quite equal in brilliancy, and far more manageable. The gas, on admisaion into the magnetic observatory, is received into a tin-box divided horizontally into two compartments, the lower of which contains water, and half of the other is filled with naphtha. This upper half is partitioned off into eighteen cells by vertical divisions, each attached alternately to different sidea of the box.

Fig. 1 is a section, and fig. 2 a plan of this box or receiver; c, is the portion partially filled with water, which is heated by the jet of gas $f ; \boldsymbol{d}$, is the naphtha compartment, half-filled with that substance; as the water heats the naphtha, tbe upper part of the compartment at e, becomes filled with vapour, and the gas, entering at a, traverses the compartment in the direction of the arrows, as shown in fig. 2 , unites with this vapaur, and the two gases in chemical combination issue at b, and the combined gases are distributed throughout the building.

The paper on which the photographic trace is received is a strong woven paper, of equal texture throughout; in manufacturing it, all foreign substancea which might combine injuriously with the chemical substances used in its future preparations have been carefully excluded.

A sufficient quantity of paper for the consumption of three or four weeks is treated in the following manner:-"To a fil-
tered solution of 4 grains of isinglasa in 1 fuid ounce of boiling distilled water are added 12 grains of bromide of potassium, and 8 grains of iodide of potassium. The solntion, either when hot or cold, is evenly laid upon the paper with a camel's-hair brosh, in such quantity as to thoroughly wet its surface, but not to run off; the paper is then dried quickly before the fire. The paper thus treated is preserved by keeping it in a dry place and in a drawer.
"When a cylinder is to be charged with photographic paper, the room is darkened and illuminated only by a candle, whose flame is surrounded by a cylinder of yellow glass. The paper is laid flat in an earthenware dish, and is washed with an aqueous solution of nitrate of silver, made by diseolving 50 grains of crystallised nitrate of silver in one fluid ounce of distilled water, which is laid on in quantity not sufficient to run. The paper is then in a state fit to be placed upon the cylinder.
"When the paper is to be taken nff the cylinder, the room is illuminated in the same way, the cylinder is detached from ite mounting, the external cylinder is drawn off, and the paper is unfolded and laid flat in a dish. In this state it exhibits no trace of the action of the light. It is then washed with a solution of gallic acid, to which a few drops of acetic acid are added, till it is moderately wet all over; the impression beging soon to appear, and in a few minutes acquires its full strength. The paper is then repeatedly washed with water till the water runs off quite clear. Solution of hyposulphite of soda (formed by dissolving 1 drachm of the hyposulphite in 6 oz . of distilled water) is then poured upon it, and water is added in considerable quantity; after this has remained about five minutea, the paper is washed repeatedly with water. The trace is then securely fixed, and light may be admitted into the room. The sheets are then usually preserved for gradual drying within the folds of linen towels.'

The cylinders alluded to in the above extract are those around which the paper is wrapped to receive the photographic trace. They are, in fact, French glasg-shades (guch as are used to protect works of art), $11 \frac{1}{\frac{1}{2}}$ inches in length, and $14 \frac{1}{2}$ inches in circumference. The shade, after having been blackened in the inside, is cemented into a cap 1 inch deep, having a brass pin projecting from the centre. A second shade, a little larger than the former, is placed over the paper when it has been attached in a moist state to the first; this latter cylinder is kept in its place by a few turns of tape round the collar pari, which is moistened with water; damp list is also placed between the hemisphericul parts of the shades. This provision is necessary to prevent the paper from becoming dry during the time it is subject to the photogenic action, for dryness would very materially destroy its sensibility. When the axis of the cylinder is required to be horizontal, as in the registration of horizontal movements, the pin which is in the line of the axis and the cylinders themselves rest on friction-rollers; a ben vire on the axis is caught by a fork attached to the hour-hand of a time-piece, which is about the size of a ahip's chronometer, and thus the cylinder is carried round once in twelve hours, or any other period which may be determined, with such smoothness and ease as not to alter the rate of the time-piece in the slightest degree. One-twelfth of the circumference of the cylinder will evidently measure one hour, and abont $\frac{1}{1}$-inch will be the measure of five minutes of time.

Fig 3. a, vertical cylinders charged with photographic paper; b, wooden cap; c, central pin.

Fig. 4. d, the paper unwound and divided into twelve parts, marking the hours; e, f, the truce of the movement of the mercury in the barometer during that time; $g!g$ g', photographic base-line.

The time-piece, in moving the vertical cylinder, lies flat underneath it. In the case of a horizontal cylinder it is placed with its face vertical, and facing the cap (bee fig. $5, B$).

For the sake of convenience each cylinder is made to perform double duty. The barometer and vertical-force magnetometer are registered on the same cylinder, and their traces are allowed to cross each other in apposite directions, which, with a careful adjustment, can easily be effected without interference. The declination and horizontal force magnetometers are registered in the same way, on a cylinder whuse axis is horizontal; and the wet and dry bulb thermometers share a cylinder between them.

To deacribe now the manner in whioh the photographic trace is left, commencing with the deolination maynet. The light by which the trace is made is placed slightly out of the direction

- a atraight line joining the suapension-akein of the magnet and the centre of the photographic sheet. The chimney which covers the light (a jet of gas united with the vapour of naphtha) ta porforated by a slit f-inch long and rof-inch hroad (see fig. b, 4); the light from this alit falls on a metallic concave mirror, Which is carried by the suspension apparatus of the magnet, and meven with it; by it the light is made to converge about the centre of the cylinder of photographic paper, at a distance of mearly 18 feet. To reduce the image of the alit to a neat upot of light, a cylindrical lens of glass is interposed. Now, sathe magnet and with it the mirror, turns in aximuth, the iange of the alit runs along this lens; and, at whatever part it falla, it is concentrated intor definite and brilliant spot of white light, which leaves a photographic trace on the prepared paper; and an this in constantly carried round by the time-piece, the effect produced will be a continuous line around the cylinder, with deviations to the right or left indicating the horisontal movemant of the magnet.

As in practice it is found that the length of the paper is not alwaya the amme, it is therefure necessary to have a time-scale fue each portion after it has been detached from the cylinder; this is effected by uhutting-off the light for an instant, which cansee a break or light space in the photographic trace. The time in noted accurately, and the same thing is repeated, we will mappone, one or two hours afterwards; the distance between theee brenks supplies data for a time-scale for that empecial register.

To measure the ardinates from this time-ecale, which may be considered as a line of abecisesp, the actual deviation of the magnet af particular instante, four times daily, is read off by the theodolite (in the manner mentioned above) in degrees, minutea, and seconds of arc; theee readings, compared with the length of the ordinates at those times, supply the means of reducing atl the others to the anme dimensions.

As it ean never be expeoted to obtain glase cylinders with perfectly cylindrical surfaces, or perfect surfaces of revolution, there in a probability that the line of intersection of a plane perpendicular to the axis of the cylinder, with the paper on the surface, will not be a perfectly ntraight line when the paper is opened out. To obtain a base-line on each sheet the following plan is adopted:-An indepeadent ray of light, impinging perpendiculariy 20 the axis of the cylinder from a light 6 inches distant, is received by the cylindrical lens, and marks a strong line all round the cylinder, Which, when the paper is unrolled, beoomes the line of abscimese on which the times are set off; while perpendicular ordinates from it will be proportional to the movement which is the subject of measure (see $g^{\prime} g^{\prime}$, in Eq. 4).

The arrangements for the horizontal-force magnet are precieely the same as those described for the declination-magnet. Every part of the cylinder apparatus, except that on which the light falla is covered with a double case of blackened zinc, having a alit on each aide on the the aame horizontal plane as the axis of the oylinder; and every part of the path of the photographic light is protected, by blackened zinc tubes, from the admixture of extraneous light.

The vertionl-force magpet traces its line of movement by refected light on a cylinder charged with paper, whose axis is vertical; the other portions of the apparatus resemble so nearly that already described that a further account in unnecessary. On the east side, the same cylinder receivea the trace of the barometer. At the distance of 30 inches is a large syphonbarometer, the bore of the upper and lower extremities of its arms being about 1 fo inch; a glans float in the quicksilver of the lower extremity is partially supported by a counterpoise acting on a light lever (which turna on delicate pivots), 50 that the quicksilver constantly supports a definite part of the weight of the lever. This lever is lengthened (soe fig. 6), to carry a vertical plate of opaque mica with a small aperture, whose distance from the fulcrum is 80 regulated with regard to the distance of the point of action of the float-wire that its movement is four times the movement of the column of the cisternbarometer. Through this hole the light of a gas-jet, collected by a cylindrical leng, shines upon the photographic paper. Another pencil of light from the same jet shines through a fixed aperture, with a small cylindrical lens, for tracing a photographic base-line upon the cylinder of paper, similar to that for che cylinder of the declination-magnet.

Such parts of the apparatus adapted to photographic registration of the declination-magnet and barometer only are
chown in the engraving as are requisite to explain the mode of its action.

In fig. 5, A, in the cylinder covered with photographic paper, the axis of which is horimontal; B, in the time-piece which givee it a rotary motion; b, is a cylindrical lena, bringing to a point the light from the jet α, which has been reflected by the mirror o; f, is the magnet suspended by the silk thresd g; as this turam in aximuth, the mirror © turns with it, and the reflected image of the slit in the chimney covering the jet of light runs along the cylindrical leng, by which it is brought to a point on the paper, on which it leaves a trace as shown at c. In the courae of one rotation of the oylinder this trace will have gone all round it, with deviations to the right or left indicating the movement of the magnet in aximuth during the time occupied by the rotation.
Fig 6 shows the arrangement of the barometric apparatua Q,, is a lever whome fulcrum is o, the counterpoise f nearly supporting it; s, is an opaque plate of mica, with a small aperture at p, through which the light passea, having before been refracted by a cylindrical lens into a long ray, the portion only of which opposite the aperture p, impinging on the paper; α is a wire supported by a loat on the surface of the mercury; G, H, is the barometer; P, the vertical cylinder charged with photographic paper; r, the photographic trace; I, the timepiece, oarying round the cylinder by the projecting-arm t.

It is ovident that the respective distances of the float and the aperture p, from the fulcrum may be regulated so that the rine and fall of the float may be multiplied to any extent required. At Greenwich, the extent of the photographic record is four times the actual rise and fall of the mercury in the cistern. Theee contrivances were shown in the Great Exhibition of 1851, Mr. Brooke having supplied his apparatus.
The wet and dry bulb thermometers are registered by the asme means as the instrumeute already described. They are very large, for thermumeters of the usual size would not sufficiently whut-off the light. The fluid employed is quicksilver, and the bore of the tube is theinch; the tube is cylindrical? and 8 inches long. The bulb of the wet-bulb thermometer is covered, in the usual way, with mualin, to which moisture is communicated by the capillary pasagge of water through lampwicks: they are capable of elevation by meane of a coarse screw, so that the mean temperature for the time of observetion may be brought near the centre of the cylinder; but the bulbs are so adjusted as to stand about 4 feet from the ground the small variation in height being simply for the purpose of having the trnce recorded upon a convenient part of the paper. Plates cover the thermometer-frames, with apertures 80 narrow that the column of mercury shuts out the light. Acroms theme plates a fine wire is placed at every degrea, and a coarser wire at every 10°, and also at $32^{\circ}, 52^{\circ}$, and 78°, so that there may be no chance of mistaking the reading of the degrees of temperature. The light of a jet of gas is condensed, by a cylindrical lens whose axis is vertical, into a mell-defined line of light, which ahines through the thermometer-stalk upon the cylinder of paper, which is close to it. As the cylinder of paper revolves under this light, it leaves a broad uheet of photographic trace, the breadth of which varies with the varying beight of the quiaksilver in the thermometer-tube; but, inasmuch as the light is intercepted by the wires placed across the tube at every degree, there are spaces traced by the wires in which there is no photographic ection. These appear on the paper in the form of light lines on a dark ground, and serve the purpose of reading-off the thermometers, whioh is facilitated by the broader line marking the decades of degrees; nor is any photographic base-line needed, for the wires form the only register required. The cylinder receives the trace of the wet bulb on one side, and of the dry on the other. Its axis is of course vertical, and it is made to revolve once in forty-eight hours; the paper, when removed, will therefore show the variation of both thermometera during the last twenty-four hours, one half of the photographic trace being due to the dry-bulb, the other to the wet-bulb thermometer. The circumference of this cylinder is 19 inches.
Such, then, are the arrangements for the sutomatic regiatration of meteorological and magnetioal instrumente now introduced into the Greenwich Observatory, and their value, as indicating the minutest movements, is very great; while the labour of watching each instrument and recording its variations every tro hours is entirely dispensed with. The consequence of the introduction of self-registration has been, that two observers are more efficient than four under the old aystem. We

We not awart, an yet, of the effect of time on the photographic trace; to insure permanency, therefore, the variations of the instruments are inked-in by a definite line along the edge. The papers are kept carefully arranged in the daily order, snd ready for immediate reference with the other records of the eotablismment.

Of the radiation-thermometers, which measure the amount of bont radiabed from the earth's surface, of thowe sunk beneath in she soil, of the thermoneter 2 feet below the surface of the river Thames, and of the sctinometer, which measures the clirect heat of the solar rays, little need be and; I therefore peat on te the

Anemometers.

To have the means of registering the amount and direction of the wind for every hour of the day had long been a desiderscom with scientific men, and much ingenuity has been shown in the mechanical contrivances which have been entered upon for that purpose. The instrument which has met with the greatest approbation in England is Osler's anemometer, one of which has been erected lately at the new Royal Exchange, and another han been in use at Greenwich for many years; its indications are constantly recorded, and are considered by competent judges to be very trustworthy, the instrament having undergone various changes and improvements since its first erection. The instrument traces on a sheet of paper the direction and preseare of the wind, and the amount of rain which may have fallen In 24 hours. A copy of this register is shown in fig. 8. The anemometer itself consists of a vane V, fig. 7 , turned by the wind, attached to a hollow vertical spindle W, X : the paper is divided longitudinally by lines, the central showing the direction of the wind marked S., W., N., E., 8.; the upper part receiven the trace which indicates the amount of rair; the lower part thows the amount of pressure of the wind on a square foot of surface exposed to its full force. The register paper is placed on a board M (fig. 7), and accurately fixed every day at 10 a.m. This board is carried along by the clock shown at C, at the rate of about an inch per hour. The engraving shows the original contrivance to effect this object, but in consequence of the continual failure of this chain-apparatus, another construction has been adopted: the movement of the board has now been effected at Greenwich by rack-work connected with the pinion of a clock.

The pencil 1 , is the inder of direction; this pencil is operated upon by the vane V, tarning the hollow spindle; there is a pinion at r, which, as the vane turns in the direction of the wind, acts on the rack-work of a transverse bar e, f, and so causea it to move on the one side or the other. The centre of the board lies due north and soath; if, therefore, the wind blows from the north for twenty-four hours, it is evident that the trace will be along the centre of the board throughout its whole length; if the wind at a certain time veers to the east, the transverse board, and with it the tracing-pencil 1, will be turned aside by the action of the pinion in the cogs, and the line now deacribed will be parallel to the direction of the other, at a diatance from it equal to one-fourth of the number of cogs which would come into action at an entire revolution of the epindle; the trace in this direction will continue till the wind again shifts, and the number of horary divisions through which it extends will show the time daring which the wind was blowing from that quarter.

The first adjustment for azimuth was obtained by observing, from a certain point, the passage of a star behind the vane-shaft, and from that observation computing the aximuth; then, on a cahm day, the vane was drawn by a cord to that position, and the rack was mo adjusted that the pencil's position on the eheet correaponded to that azimnth.

For the pressure of the wind the shaft of the vane carries a plate 1 foot equare (T, in Gg. 7), which is supported by horizontal rods n, m, sliding in grooves; this plate is urged in opposition to the wind by three springs inclosed in the box t, so arraaged that only one comes into play when the wind is light; and the others necessarily act in conjunction wlth the first as the plate is urged more and more forcibly by the wind. A cord from this plate passes over a pulley and communicates with a copper wire ronning down the centre of the spindle, which is finally brought to pull upon the apring-lever 0 , and thus the pencil 2, which is attached to it, is drawn in a direction transverse to the motion of the board, the further from its zero-line in proportion to the force with which the plate is driven back by the wind. A meries of lines numbered $x, 4,6,8, \& c$, uhows
the amount of pressure on the square foot; the intervala of these lines are adjusted by applying weighte of $91 \mathrm{lb}, 4 \mathrm{lb}$, 6 lb , \&c, to move the pressure-plate in the same manner in if the wind pressed it. The pin 3, registers the amount of rala whilh is thus recorded. The water which has been collected by thit gauge passes into the funnel a, which is suspended by apiral springs b, b, b, b, which lengthen as the quantity increaseas; int the bottom of this vessel is fixed a tabe c, open at both ends in a vertical position, over the top of which is loosely pleoed a larger tube e, closed at the top; when the wator han risen to the level of the inner tube it begins to discharge itself gradsally into a tumbling bucket \dot{d}, which is inclosed in a glebe under the receiver; when full, the bucket falls over and dic charges its contents, which run through the wate-pipe f; and cause an imperfect vacuum in the globe, sufficient to produce a draught through the pipe a whioh thus acta as the longer leg of a syphon, and the water continues to flow from the receiver through the interval of the two pipes c, and a, thil the whole is drawn off, when the spiral apringg b, b, b, b, immediately elevate the receiver to its original position.

Now, if we suppose the quantity of water necessary to produce the action thus described to be equivalent to tinch of rain, the mode of registration will be easily uuderatood. The pin 3 , is connected by means of the cord g, g, with the receiver, which cord is kept tightened by the spring h; as the apparatus descends from the weight of water during the fall of rain, this pin advances further and further from the zero of the scale which is shown upon the registering paper, until 4 -inoh han fallen, when, as this is drawn out and the receiver ascends, the pin is drewn back to ite original position, and the same procent is repeated.

The register represented in fig. 8^{*} is suppoeed to record the phenomens of twenty-four hours. It will be soen that rain continued to fall for nearly four hours, when tinch haviag been received, the trace is brought back to the eero-line; five hours afterwards another $\frac{1}{4}$-inch had been collected; in two hours more about finch, when the rain ceased, and none fell for four houra, as is denoted by the line traced parallel to the zero-line; rain then fell for an hour; a cessation of three hours followed; two hours after another tinah was colleeted; and, for the remainder of the time, a gentle fall is indicated by the gradual departure of the trace from the zero-line; the amount of rain collected in the twenty-four houra will therefore in this case be $25+-25+-25+06=81$ inches. On the same paper the traces of the force and direction of the wind may be seen and readily understood. The point of the compase from which the wind blew at any hour is regintered along or near the centre of the paper, and the force at the lower part; the zero being the bottom line, and the increase of foree being indicated by the departure of the trace from this line towarde the inner portion of the paper.

These explanations serve to exhibit the general principles on which this beautiful apparatus is constructed, though the details may oceasionally differ. The anemometer and pluviometor have been many years in use at Greenwich, and their registrations are considered very satisfactory. The noble building of the Royal Exchange has been supplied with an anemometer on the same construction, except that the register is vertical; and the anxious merchant, by inspecting the register, can oasily matisfy himself whether the wind of the preceding night or day has been favourable to the arrival of some richly-laden veacel of which he may be in daily expectation.

Whewell's Anemometer.- Another anemometer, invented by the Rev. Dr. Whewell, Master of Trinity College, Cambridge, is likewise in constant action at Greenwich; it is also selfregistering, and indicates the rate of movement of the air and the directions in which that movement takes place. A horizontal brass plate is connected with a vertical spindle, which passes through the axis of a fixed cylinder, having a vertical bearing upon a plate at the bottom of it, and a collar bearing in a horizontal plate at the top of the cylinder. The vane turna the whole of tbe apparatus above the cylinder, which consists of a fly, and a system of wheels working into each other; as the fy turns round, with greater or less rapidity according to the motion of the air, these wheels are set in action, and communicate motion to a vertical screw fifteen inches in length; the revolution of this screw causes a pencil, which is connected with a nut, to descend. The cylinder is covered with

[^17]papar, on which are marked the points of the compacs, and on this the pencil leaves a trace, the length of which is proportioned to the force of the wind. The fly has eight sails, like those of 8 windmill, inclined at an angle of 45° to the direotion of the wind; upon the axis is an endless screw, which works a vertical wheel, of 100 teeth; another endless screw on its axis worka a horizontal wheel, of 100 teeth, which is atteohed to the grest vertical screw by which motion is given to the pencil; the deacent of this pencil is measured by a vertical soale, and a calculation is made, from accurate measurements of the different parts of the apparatus, of the amount of horisontal movement of the air which is due to an inch of the acrew's downward movement. The following are the measures of the principal parts of this anemometer:-

> Length of each sail from axis to end end 9.90 in.
> Length of the fiat part of each sail 1.98 in .
> Inclination of each sail to the wind
> artical e........ 45° correspond to. 9 in.
> Number of teeth in the vertical wheel..
> Number of teeth in the horizontal wheel $\begin{aligned} & 100 \\ & 100\end{aligned}$

Therefore, 10,000 revolations of the fly cause the pencil to descend through the distance of one thread of the vertical screv, or through a space equal to $\frac{15}{}$ inch $=0.044 \mathrm{in}$.

Assuming that the effective radins of the sail is 1.7 in .,
The circumference described is $1.7 \mathrm{in} . \times 8 \mathrm{~m}=10.68 \mathrm{in}$.
Therefore the motion of the wind in one revolution is 10.68 in .
 corresponding to 044 in . of the vertical screw, or to one revolution of the ecrew. From this it follows, that the motion of the wind corresponding to the descent of the pencil through 1 inch is 900,250 feet, or $37 \cdot 9$ miles.

The rosults of Osler's anemometer give the force and direction of the wind, and of Whewell's give the amount of horizontal movement in the air, for twenty-four hours; these are mongst the weekly published results of the Greenwich obeervations.

Another self-registering rain-gauge, besides that already described, is employed at the Observatory; it is on Crosley's construction. The collected wrter falls into a vibrating bucket; ss soon as one side is full, the bucket oversets and presents another compartment, which, having received its portion, discharges it in an oppesite direction. The bucket is thus, during the fall of rain, kept in a state of vibration. An anchor with pallets is attached to the axis on which it turns, which acts upon 8 toothed-wheel by a process exactly the reverse of that of a clook-escapement. This wheel communicates motion to a train of wheels, each of which carries a hand upon a dial-plate, and thus inches, tenthi, and hundredths are registered.

Kew Observatozy.

The Observatory at Kew is a building the property of the government, which has been lent to the "British Association for the Advancement of Science," for some years, for the purpose not mo much of carrying on an uniaterrupted series of observations on atmospheric phenomena, as for enabling the members to form a eound judgment on various instrumente submitted to trial and comparison in that place. It has been for many years under the superintendence of Mr. Ronalds, whose skill and ingenuity have dipiayed themselves in various contrivances connected with observation. The new dew-point instrument, by Regnault, is now undergoing a severe trial, and other inventions are frequently submitted to the test of his accurate discrimination. It is not consistent with my design to notice all that this gentleman has done for science, but I cannot forbear alluding to a very neat contrivance by which the variations of the magnet are daguerreotyped on a plate of prepared metal, which is moved by clock-work, and thus forms an accurate register of its oscillations. The whole apparatus is very compact, and the observatory at 'Toronto has just been supplied with one by the British government. The account may be found in full in the 'Philosophical Transsctions,' Part I., 1847.

Mr. Ronalds has invented a self-registering barumeter, in which the expansion of the mercury by heat is counteracted by bars of zinc, a metal which expands about one-sixth part of the expansion of mercury at the same temperature; as these expand they put in motion a system of compound levers, to which the barometer-tube is athached, and thus the surface of the mercury
is always kept at the eame diatance form: the sero of the sole as it would be were it not to be nubjeot to expansion with as increase of temperature.

The branch of atmonpheric inveetigation in which the merite of Mr. Ronalds are most extensively recognised, is electricity. In the year 1843 the Observatory was completely fitted with every requigite for judging of the electric state of the atmosphere, and the contrivances were found to answer their purpone so well, that those adopted at Greenwich and Toronto ware copied from them, and erected under Mr. Ronalds' suparintendence. A description, therefore, of those in use at Kow will be all that can be required to give a general view of what is doing in the beat observatories in England, in the registry of the electric state of the atmosphere.
Mr. Ronalda has lately completed a contrivance by which the state of the electrometer is registered by the daguerreotype. The prepared plate of metal is suspended vertioally, and in drawn up by clock-work, and the gold-leaf electrometer is interposed between it and the light. On the opening of the leaves a mark is left on the surface of the metal plate, exactly at that spot which corresponds to the time when the occurrence took place and the duration of the alectric action. This instrument is described in the paper just referred to; but of ite action from personal inveatigation I am not prepared to speak. The electric apparatus now about to be deacribed 1 have just inspected, and was much gratified by the state of efficiency it in in, as well as by the compactness and simplicity which mark all the arrangements. The dome in which it is located rises high above the rest of the Observatory, and there are no buildiage or trees to interfere with the full development of the electricity existing in the air. We may therefore conclude that the records deserve our full credence, both from the nature of the instruments and the character of the observer, and the favourable situation in which the observations are taken. The Reports of the British Association bear witness to their nature and value.

Mr. Ronalde' attention has for some time past been directed to experiments on "frequency" of atmospheric electricity-that is, the rate at which a new charge riben to its maximum after the former charge of an atmospheric insulated conductor has been destroyed. The observations are taken at such periods of the day as sunrisa, noon, and sunset.

For the record of the rapidly succoeding and varied electris phenomena during the passage of a storm, he has introduced what he terms a "gtorm-cloak," without which it would be impossible for one observer to register the observations. It consists of a time-piece, which carries an inder down a long sheet of paper laid on the desk; this it accomplishes in half-anhour, and the observer has simply to record the events as rapidiy as they occur opposite to the point of the index, which can evidently be done much more rapidly than by reading the chronometer and setting down the time at successive instanta. In the hurry of the moment mistakes are often made, and several phenomena are entirely lost; whereas one observer, by means of this contrivance, accomplishes as much work as two could effect in the usual method.
Fig. 9 represents the dome of the Observatory at Kew, with the electrical apparatus in situ; through the centre of the dome a circular aperture has been cut, in which is fitted a mahopany varnished cylinder a, a^{\prime}. G, G, G, G, is a strong cylindrical pedestal, which server as a closet for articles connected with the observations. It is surrounded by a stage $G^{\prime}, G^{\prime \prime}$, and $\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}$, are steps by which the observer ascends. $\mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{C}$, the safety-conductor, for conveying the electricity away from the building. The principal conductor D, D, is a conical tube of thin copper 16 feet high; E, is a brass tube into which it is firmly secured; F, is a hollow glass pillar, the lower end of which is trumpet-shaped and ground flat. A collar of thick leather is interposed between F, and the tabla, and such is the firmuess of the whole that the conductor has resisted gales which have uprooted trees in the neighbourhood. H, is a spherical ring carrying four arms at right angles to each other, three of which are shown in the engraving; I, I are two of these. k is a lamp for warming the glass tube F, in order to produce perfect insulation; K, is a chimney of copper, closed above, passing through the table, and entering but not touching F. By this arrangement the lower part of F, is generally warmed too much and the upper too little; but the pillar F, being conical, some zone always exists between the two ends, which is in the best posaible state for electrical insulation. L_{L}, is a set of finely-pointed platinum wires eoldered to D. M, is a Voltais
enall lanfern. N, is an inverted oopper-dish or parapluie, fitted by a collar and ataye on F, and of course ingulated by F; its leat distance from the mahogany oylinder is 3 inches. It will ba seen that, by this arrangement, the active parts of all the electrometers and the conductor ithelf are ingulated by the glasa pillar. O, Volts's elcotrometer No. 1; P, Volts electropeter No. Q; Q, Henley's electrometer; S, a gaivanometer by M. Gougon. No. 1 is the most eensitive, and comes into action first; No. 8 then exhibite symptoms of electric setion; when this has arrived at the maximum of its scala, Henley's is found to be affected, and the record of theee three will give the force of electricity of the air under all circumstances. R, is a disoharger; or, as it is termed in the Greenwich observations, a Ronalds epark-measurer. The length of the apark is measured by means of a long index, which exhibits the distance of the two balls s, and y, from each other on a multiplying scale, y being attached to a rod y, \approx, which is raised and lowered by means of a glase lever. Bach division of the scale represents one-twentieth of an inch in the length of a apark; the divisions, of course, are not equal, and they earve to estimate fortieths of an inch, or even leas.

The results of Mr. Ronalds' observations have been, from time to time, published in the Reporte of the British Association for the Adrancement of Science. An epitome of the electro-meteorological and magnetio observations and experigente down to the end of 1848 , has been printed by that gentloman for private dintribution.

Such, then, are the instrumental means and the organiastion with Fhich, in England, we are provided for the purpnse of recording, atmospheric phenomens; nor are these all, for at Oxford, Cambridge, and some other places few in number, very valuable and efficient observers have recorded and published registrations more extensive then can be expected from private obeervers, but far inferior to the elaborate system pursued at Greenvich. Private individusla in various localities record phenomens without publishing their results, or joining any enciety whioh has the cultivation of meteorological science in view. I apprehend their number is not great, or they would be more generally known.

From the view of what is accomplished by extra-observatorial efforts, we are compelled to arrive at the conclusion that much remaing to be done before we shall become acquainted with cimaltadeous movements in the sir, or variations in its thermohygrometric state, even within so narrow a district as our own conntry. We trust that the British Meteorological Society will be the means of establishing a constant communication with the scientific societies of other nations, and we are anxious to enlint on our side the officers of the royal navy and of the mercentile marine. The ships of Great Britain traverse the ocean in every direction, and at all periods of the year. They are commanded by men accustomed to watch natural phenomena, and the regularity of life at eea is favourable to the rystematic registration of the barometer and thermometer; but, to render the records valuable, the instruments must be of a ruperior character to those usually found on ship-board, calculated not only, as they are, to show differential, but absolute valuea.

Then, again, our ohservers, whose reports are published every three monthe at present, from want more of time than inclination, confine their observations within too narruw a range. In addition to the preasure, temperature, and hygrometric state of the air, it wonld be highly advantageous could we, for all localisies, ascertain in addition the rapidity of evaporation, the range and intensity of solar radiation, and the state of electric tension; all which, in their raried combinations, go to make up that general result which we call climate, and which, unitedly, prodece effecta npon the natural world and the human frame, varying according to the preponderance of one or the other element. A knowledge of all these would lead us, most probably, to conclusions approaching the truth as to the adaptation of one particular series of orops to certain parts of the kingdom, and of the fitvess of certain places for those who are sffering from peculiar diseases. We do not, moreover, at proeent, distinguish the rainy hours in a day, but simply record the daily fall; and this leaves us deficient in one important olement. Upon the whole, we may conclude that meteorological ecience is in a state of infancy; that it is, and must long continue to be only a science of observation; that recorded phonomena are at present too few, and those taken over only a
small pertion of the earth's surfece; nay, the two-thirfisi of that surface occupied by the ocean, thongh oxercising a moit important infuence on atmorpheric changes, may, as regards observation, be considerad a blank: too few are they and insifnificant to ensble us to draw conclusions or deductions which shall hold good over a large extent.

Meteorology is precisely in that pesition in which geology was found eighty years ago, or microncopic science at a stil later period; and yet, since that time, how many facts then obscure have been elucidated in the structure of the earth!-for how many sound principles has geology gained universal reception! How many secrets of nature has the microscope dis-closed!-how many wonderful transformations, then undreamt of, has it unveiled!

Happy shall I be, if this record of the present state of meteorological observation in England shall lead to a cooperation with scientific institutions on the continent of Europe. Till a combination of this kind has become universal, meteorology will have but little chance of taking its place with the other gciences, notwithstanding that it has claims on the attention of all mankind, and that ite laws, once developed, will assuredly benefit the entire humay race.

Winsor House, Southamplon.
Jorn Daew.

ON CLOCKS AND CHRONOMETERS.

By Professor E. Cowper.

[Paper read at the Society of Arts, London.]
Mr. Cowper ststed, at the commencement of his lecture, that his object was rather to illusirate what was known than to bring forward any decided novelty; to make the subject clear to those who were not familiar with it; and also to impress more deeply on the minds of those who were so the principles which perhaps they admitted, but to which they did not allow due importance. He then observed that time was an abstract idea; it could be neither seen, nor heard, nor tonched, and the only way of obtaining a measure of such sn intangible thing was by noticing what might be done during any interval: it is while the earth is turning once round that we call the interval a day. And he then showed a little instrument (fig. 1), consisting of a spiral pulley S, and a circular pulley C, on the same axis; to a cord over the spiral pulley was hung a funnel F, containing ssnd, and to a cord over the circular pulley was hung a weight W.

The pulleys were supported on a stand, and the stsind marked with inches, to which sn inder on the weight pointed; also an inder on the stand pointed to degrees marked on the circular pulley. The operation was as follows:-The funnal being filled with sand, raised the weight to the top of the stand, and while the sand ran out was a certain interval of time. As the sand ran out, the weight descended and marked inches of time; the circle turned and marked degrees of time; the sand being messured, gave pint of time; and the sand being weighed, gave ounces of time; so that the abstract ides of time was converted into lineal measure, angular messure, ospacity, and weight.

The motion of the pendulum and its application to clocks was explained thus:-As the pendulum performe its vibrations In equal time, it is employed to regulate the descent of a weight or the uncoiling of a spring, the weight or spring keeping the pendulam in motion. This is effected by connecting two hooks with the top of the pendulum (fig. 2). The hooks extend over a toothed-wheel, so that, as the pendulum vibrates, the righthand hook falls into the right-hand side of the wheel, and the left-hand hook falls into the left-hand side of the wheel. The welght has a constant tendency to pull the wheel round, but it cannot turn while the hook is between the teeth. Now, as the pendulom vibrates, the hook (suppose the right hook) which detains the wheel is lifted np, and the tooth escapes past the hook, and the wheel moves on-but only a little way, for now the left hook comes between the teeth, and the wheel is again stopped, and cannot move another step until the left hook, in its turn, is lifted up by the swinging of the pendulum, when anuther tooth escapes. The wheel moves one tooth at each two ribrations of the pendulum; therefore, if the pendulum measures seconds, and there are thirty teeth in the wheel, it moves once round in one minate. The hooks above described are technically called the escapement, and the wheel the escape-eohed; the ends of the escapement are called the pallets, and are shaped as inclined planes, against which the teeth of the wheel press and give impule to the pendulum, so that in all escapemente there are three motions-viz., locking the wheel, by the pallet coming against a tooth; unlocking the wheel, by the vibration of the pendulum lifting the pallet away from the tooth; impulse to the pendulum, by the tooth pressing agsinst the pallet as the tooth is escaping. By merely bearing these three operations in mind, it will be easy to understand any escapement. The vertical, horizontal, lever, duplex, and chronometer escapements were then described, and illastrated by large models two or three feet dismeter. It was shown that the old English vertical escapement required so much room that the watch was necessarily thick and clumsy; while the other escapementa allowed the watch to be made very thin.

Mr. Cowper then illustrated, by diagrams and models, the principles of the teeth of wheels kaid down by Camus, Professor Willis, and others, and particularly urged on manufacturers (many of whom were present) the importanoe of accuracy and correctness of form, and also the importance of making the greater part of the action of the teeth take place after passing the "Kne of centres" (i.e., a line from centre to centre of the wheels). It was sbown that when a toothed-wheel drives a pinwheel, the action is entirely behind the line of centres. Thus, in a common Dutch clock the pinions are made with wires, and the toothed-wheel drives these pinions with so little friction that they scarcely ever wear out. He then begged the manufacturer to consider the fact that the Dutch or Germans supplied the kitchen wooden clock; the Swiss supplied the ladies' pretty flat watch; the French supplied the drawing-room ormolu clock; and the Americans are beginning to supply the countinghouses; and he urged them to endeavour to meet their demands.

Discussion.-Some observations were made by Mr. G. F. Hall and Mr. Varley on the deterioration, in the course of time, in the strength of springs. It is well-known to clockmakers that the "blueing" is essential to the stiffness of a spring; and as, by oxidation or any other cause, the blue wears off, the elasticity of the apring becomes gradually less. Mr. Dent has made some experiments quite corroborative of this.

Mr. Bennett said that American clocks and Geneva watches had been mentioned in the course of the paper. It would be a great benefit in every way if we could rival these very cheap, and, on the whole, very good time-keepers. He had made many efforts to do so. To this end he had relinquished the use of the fusee, had reduced the number of wheels to three or four, and had atruck or punched the dial-plates in the manner of the American dials. Still he had been unable to produce his clocks at as low a price as theirs. The Americans sell a clock and case for less money than an English cabinet-maker can make the case alone. This and the expense of the mainspring were the difficulties which caused his failure. The Swiss watches are not the best, but still they are very good timekeepers, and they are made for about two-thinds the cost of ours. The cause of this is employment of labonr, subdivided and encouraged to the last degree. They never employ, as wo do, about a hundred men on the different parts of a watch; bat many of the parts are made by the women and children of the families. They also show themselves superior to ut in adopting
improvements, from whatever quarter they come, inatiad of reaisting them as the Raghish workmen do. He did not hedr tate to say that he was never above appropristing su illet or an improvement, provided it were Hkely to be of eorvice to hit work.

Mr. H. Cole said that this disoumion was one of great interem from other points of view thea the meehanical. It was etriking to have heard the last epeaker asy that he did not mind appropriating the ides of another inventor; and Mr. Hall, thet a valuable invention was kopt seoret lest it shoald be stolen. Now, ruch expressions as theme indicated the exiatence of very great confusion as to what were the rights of an inveator, min well as defects in the laws protecting thone rights. The haw should be such that an inventor could enaty and cbeaply tocare his right, and then be able to bring his invention into the market without risk of its belag pirated from him.
Mr. W. F. Coons said that one remeos for the grenter exw pense of our watches had been overlooked, and that was tha nstural preference felt by Englishmen for thoroughly woll made articles. But it was wrong to epeak es if there had been no reduction in the cost of clocks and watches; thore had beea a proportionate reduction daring late fears to that of ment other articles of manufaoture. He could corroborate from his own knowledge what had been said of the eabdivision of labear in Switzerland. He had seen the same men working on the farms in the morning, and in the evening with their wives and children employed in their cottages on wateh-work around ose central lamp.

Mr. Losksy thought that too much serem had boen laid by Professor Cowper on the exact epicyoloidal shape of the teot in watch-work. In such minute work it was all but impoesible to obtain a shape theoretically correct; and, indeed, wan the advantage so great? Watches in which the opicycloidal shape had not been attempted, kept time woll and had lusted long.
Mr. C. Fsodsham differed entirely from Mr. Loeeby. His experience had shown him that attention to the exact shepe of the teeth was of the greatent importance. For example, the deposit which is 00 often found about the centre-wheel of a chronometer is nothing but minute particles of motal worn off from the teeth, owing to their not being of the correct shape. Moreover, he had found that a mainspring applied to a chrojiometer in which the teeth were accurately cut, gave a much greater effect than it had in ose in which they were caralesely cut; and after twelve months' working the wear and depoent had been much less. He had frequently found the teeth both of watches and cloaks worn into an approximation to the true curve; and further, he knew of a cloci in which the teeth hed been properly cut which had been at work for fifty years without any perceptible wear. Lowden had fallen into the error, into which Mr. Loseby seemed inclined to follow him, of thinking that an isochronal adjustment of the balance-apring would be a cure for all the evils of bad workmanahip in a watuh. The isochronal adjustment was a highly ingeniwus thing and an admirable eafeguard, but it would be far better not to require it. He was so sure on this point that he had no doubt the maic reason why, in two chronometers of equal reputation, one gurpaseod the other, was that in that one the curves of the teech had been truly cut.

Mr. G. F. Maxi eaid that whatever thie eccapement or the form of teeth, a correct jndgment might be formed of different clucks by ascortaining the relation which the weight of tho pendulum bears to the weight or power required to keep the clock going. Thus, assuming that where these are equal the clock is of medium quality, we may make the rule that, as the weight or power is a higher fraction of the weight of the pendulum, so is the alock a more perfeot mensurer of time. In the most carefully-finished clocks of the present day, the relation is $y, 16$ representing the weight of the pendulum, that of the power. A comparison of this with the propertion ln the common clocks, or even in the best commercial French clooke, nhows at once the great difference botween them. The better sort of German or Dutch cloaks to go eight days are generally provided with a weight of 14 lb .; while the pendulum rarely exceeds 408 , in which case the fraction will be a4s. Nor are French clooks of commerce often of a higher quality. Reducing these fractions, we have for the beat astronomical clocke of the present day, 1; and for the common household clocks, 004465 nearly. If power could be transmitted through the train without variation, this difference between the weight of the pendulum and the weight of the power would be of little conse-
quence; but mathernation acouracy in trangmitting miform power through wheels and pinions cannot be obtained, and therefore it becomes of the bighest consequence. The available force to keep up the vibration of the pendulum in the bert astronomical clocks is, after deducting friction, about 1 gr . to each vibration. Taking, as before, the weight of the pendulum at 16 lb . we have $16 \times 7000=119,000 \mathrm{gr}$. kept vibrating by $1 \mathrm{gr} .=$ rituou It is not this mall fraction of the weight, however, which is of immediate importance, but the variation of it, arising from the imposeibility of making the wheeln and pinions mathematically true and concentric, whence each tooth is a lever of a different value from its neighbour. In pinlons, owing to their mall diameter and to the process of hardening, tempering, and straightening, this difference is considerable. Prom this and other causes, a train will always vary as much as 4 per cent., in which case the impulae will range from 1.02 gr . to 98 gr ., the extreme difference being roth of a grain. It Fill now be evident how the heavy pendulum and the light weight are better than the revarse, for in the former we have the variation $=$ irituon which in increased in the latter to rigo The variation is thus magnified two hundredfold, the clock mechanism remaining the same in all vther respects. But in common clocks the variation of the train is often more than 50 per cant., enough totally to destroy the synchronism of a light pendulum. Mr. Hall gave the following as a summary of the characterintice of a good clock:-The pendulum compensated and suspended by a spring of not more strength than sufficient to prevent the possibility of fracture; the angle of vibration never exceeding $1^{\circ} 30^{\prime}$; dead-beat escapement with the angle of eacape between 66^{\prime} and 75^{\prime}; and finally, the proporsions named above between the weight of the pendulum and the clock weight.

Mr. Fropsinam naid that the prinolple of small power and heary balance, which Mr. Hall had been advocating, was that of the old clockmakers; but he thought it erroneous, though he hed abandoned it reluctantly. The clock which would go with she leant power would be thereby shown to be mechanically correct, but that would not prove it to be wo horologically; for it was always the case in practice, that if the arc of vibration thorteng, the vibration is quickened, and therefore it becomes of importance to have more power than is abeolutely necessary at hand to overcome accidental impedimente, such an even the mare thickening of the oil by temperature.

Mr. Bennert wished to see our watchmakers in a condition to be able to supply the general trade with improvements that were boing made in watches for the most scientific purposes. The question to be solved was, how to produce a better-going watch, and at a lower price than heretofore; and he wished to speak not of chronometars, but of watches for the multitude. Our chronometers cannot be beaten; but it is of little consolation to know that fact, if our common watches are not improved thereby. Now, in lamenting at he had done in his former remarks the lack of intelligence in our workmen, he had certhinly spoken from his own experience. We have no systematic education for our workmen; while the Swiss are bound by law to give a certain competent education to their mons. Again, unfeas we subdivide labour to at least the same extent as they, we hall not compete with them. Thair principle is to make each operation so aimple and certain that it can be thoroughly wall performed by a work of only small power, or even by a boy; whilst his constantly ropeating the same thing gives him abmost unerring eccuracy. Again, many parts of the Swise watches are made by women, who are yet able to perform all their domestic duties; and in this it would be very well if we could imitate them, for men have to become half women before they can become thoroughly accustomed to a confining and edentary employment, which in unnatural and constitutionally burtfil to them; and there are many parta of a watch in which a Foman's delicate fingera are far fitter than a man's. He could pot forget the frightful dieclomures which had been made by Mr. Minew and Mr. Sidney Herbert as to the employment of females in departments of trade quite overstocked with them, nor how esential these disclosures had proved it to be that come other field thould be found for their labours. In What he had eaid, he was not epeaking without experience: he sold abont three foreign watches to one of English make, a proportion which is increasing: and though this is so, yet the duty on their import is decreasing, proving, what is no eecret, that a large number are umugglod over.

Ph. Fmoparan maid that, from facts which had come within
his knowledge, he was quite mure that, owtorit paribut, we can compete with the world in watch and clockmaking. The common Swise watches are but flimsy, and will last but a few youra; while they are extremely expensive to repair if damaged. He had been employed some time back to make some watches for the Sikhs; they weighed $9 \frac{1}{2}$ oz. each, and after they were made, he had shown them to a Geneve maker, who confeesed that they could not be made in Geneva for nearly the asme price as he (Mr. F.) had charged. Nor can they compete with us in Paria (the weight and workmanship being equal) within 100 per cent. It is surely no discredit to say that good watches cost more than those which contain leas of the precious metal, or are only gilt to the thinnest possible degree. The jewels in them are often false; and, indeed, scarcely any species of deception is left untried that will reduce the cost price and make them bear a higher rate of profit. It did not appear to him that subdivision of labour was wanted so much as accurate intelligent superintendence. We did not require workmen so much as horological architects. It is a well-known fact, that the best English ohronometers and watches were full 100 per cent. cheaper than those of comparative merit produced abroad. And 80 great is the value of the best English chronometers and watches in the foreign market, that it is utterly impossible to make way against them; and so great is the demand for them that merchants are content to allow their orders to stand for twelve months.

Sir J. P. Boileat observed that there was doubtless an increasing desire on the part of the people to buy cheap watches; and if so, they will be obtained from one market or another. It was therefore important that we should be able to make them. He could not speak with regard to watchmakers, but in other branches of mechanics he knew that intelligence was on the increase. As regarded compulsory education, alluded to by Mr. Bennett, he believed that it did not succeed. In the canton of Vaud the law fines every parent who does not send his child to achool, and yet far fewer are ment to school in that canton then in the canton of Geneva, in which there is no compulsory law.

ON A NEW SYBTEM OF ELECTRO-TELEGRAPHY.

By Geozez Litthe.

[Paper read at the Society of Arts, London.]
The chief novelty in this instrument is the way in which the needle is sugpended. In place of a needle on a central axis vibrating above and below the point of suspension, a common needle is used, hanging from a "reservoir of magnetism" above it; the vibrations being all below the point of suspension, as in a pendulum. By the use of this improved instrument, the inventor hopes to overcome the main dificulties which, during the fifteen years of its existence, have lain in the way of the perfectly successful and economical working of the electric telegraph, vix.:

1. Thase arising from imperfect insulation of the conducting wires.-This is eluded or overcome by the amount of power required to work the improved needle; being so small that the escape from a great length of wire is of little consequence, enough being always left for the efficient working of the instrument.
2. Vibration of the nesdles during working.-This occurs in the old needles from their having motion above as wall as below the axis; the improved needle, from its being suspended, is not liable to the same evil. One pole of the needle only is thus exposed to the influence of the magnetiom of the earth, which is counteracted by gravity.
3. Deflection of the magnets from local causes,-It is well known that the magnots are deflected from their vertioal position, owing to the passing of currente of electricity from the atmosphere to the earth, as well as probabiy by upward currents also. In suoh cases it is usual for the operator to move the stops against which the needles beat, until they are equidistant from the needles on either aide; but this is only an imperfect remedy, as the needle in its defected position must move with greater freedom on one side than on the other. In the improved instrument, should the indicator be from any caupe deflected, the whole of the indicating part may be moved onward in the same direction with the disturbing cause, which has the effect of bringing the coil of wire equidigtant with the needle, and therefore of causing it to move equally and freely to either side.
4. Demagnetioation of the needles.-The snnoyance caused by this under the old system is extreme. It takes place chiefly from alterations in the electrical state of the atmosphere (lightning), and from the constant jarring of the needles against the stops in the dial plate; and as the needle has on each occasion to be taken out and remagnetised, the impediment becomes a very serious one. This defect is obviated in the improved instrument by the needle being suspended from a powerful source or reservoir of magnetism, whence the lower or indicating part is kept in a highly magnetic state. The inclosing the needle in a tube of spirit effectually prevents its jarring.
5. Imperfection in the mode of suspending the needles.-The needles under the old system are often found to stick fast, from

Mg. 1.
HE. 2.

the friction caused by rust at the points of the azes; an evil which is done away with by the method of suspension from a Gixed magnet.

In fig. $1, E$ is the magnetic reservoir, held in the socket D; C, a glass tube filled with spirits of wine. The needle is seen suspended from the reservoir, having its north pole downwards. A, A, the coil of wire, secured to the tube by the strap B. The spirits, as before atated, are to prevent the jarring of the needle againsts the sides of the tube during manipulation. ${ }^{\circ}$ The socket D, is jointed, so that the whole apparatus can be moved on it to the right or left.

Fig 2 shows the apparatus complete, with the dial which Mr. Little employs. One of the indicators has on either side the figures 1 and 2; the other has the figures 3 and 4. The letters of the alphabet are represented by the alternate pointing of the indicators to these figures, and by the combination of such motions; and the key to these motions is shown on the table between the indicators.

Another method of dispensing with the axial method of suepension is to attach the needle or magnet to a float of cork or glass, which will then be drawn up and down in the tube instead of from side to side; the motion thus obtained being capable of interpretation in a similar manner to that just described.

Fig 3 shows, on an onlarged acale, a method of changing the
course of the electric current. A, A^{\prime}, two spring levers, fixed at $\mathrm{D}, \mathrm{D}^{\prime}$, which can be pressed down into contact with the studs $\mathbf{B}, \mathbf{B}^{\prime}$. f, and f, the connecting wires of the battery; f, leading from the positive end to the studs B, B, and thence, when A is depresed, to the pillar D, aud by the wire E to the earth. The current then returns by the line wire through the coil of the instrument, and by the wire E^{\prime} to the pillar \mathcal{D}^{\prime}, and thence by A^{\prime} to the stud C, and bv the wire $f f$ to the other end of the battery; thus completing the circuit, and causing the indicator to move into the reverse position.

The paper concluded with an eatimate of the commercial advantage likely to result from the use of the new method, and stated that "there are at present about 700 telegraphic instruments at work in Graat Britain, and it may be assumed that 1000 more will be required for perfect communication, making in all 1700. The average cost of these may be taken at 12%. each, or $20,400 l$. in all. Add to this an annual cost of 51 . per annum on each instrument for repairs and extra power consequent on imperfect insulation, and the amount for fourteen years will be $139,400 l$. The same number of my double-indicating instruments may be made for 1700la, while their annaal cost will not exceed q_{8}. each, being in fourteen years 4080l.; by which I calculate that a saving of more than 135,0001 . would be effected."

TOMB OF EDWARD II., GLOUCESTER CATHEDRAL.
Amono the many beautiful monuments in Gloucenter Cathedral, that represented in the accompanying engraving without doubt ranks highest for artistic merit. In describing this magnificent specimen of monumental architecture, we cannot do better than quote Brayley and Britton's work on the 'Beauties of England and Wales, in which they say,-"The Tomb of Edward the Second, erected by his son and successor, near the high altar, is probably the mott ancient piece of sculpture in England which exhibits such perfection of art. On the tomb, beneath a modern canopy consisting of three arches of two stories interlaced with minute tabernacle work, is a recumbent figure in alabaster of the deceased monarch, regally robed and crowned. The head is supported by two angels; the right hand beara a sceptre, and the left supports an orb or globe. On the side of the tomb are three arches in receas, and four amaller
ones, all of which have had statues; on the spandrils of the former are six shields. On the rails of the north side are the arms of England, with those of Oriel College, Oxfurd, and an inscription dictated by the Society of that foundation, who repaired this monument in 1737. The capitals of the two pillars between which the tomb is situated were then painted with a number of white atage on a red ground, a circumstance which has given rise to a vulgar report that the body of the murdered king was drawn from Berkeley Castle to Gloucester by those animals. Rysbrach, by whom this monument was visited, with professional admiration supposed it to have been executed by some sculptor who fourished in that age in the north of Italy." Messrs. Brayley and Britton, huwever, saggest that it may linve been executed by Peter Cavalini, an artist who was brought into England by Edward I.

NOTES ON CONSTRUCTION.

By Sanuel Clego, Jan.
[An Introductory Lecture, read at the Sallool of Construction. First Term: January, 1852.]
** These Notes, whon completed, will be problished in a apparate form, as A AandBook for the are of the 8tudedt at the 8chool of Construction.
I propose at present to lay before you an outline of the subjects which will be considered in the lectures of the first term, and to explain to you in a general way the value of the atudy of building as a science. Young architects, who may favour me with their presence, will understand I do not intend in any way to touch upon architecture as a fine art: I do not intend to talk about beauty, except only as correctness in any design may be considered as one element of it. Proportion and position are gained by calculation, and therefore come under the consideration of architecture as a science common to both the architect and engineer. Proper proportion constitutes beauty; and bad proportion, though bedecked with ornament, is ugliness. It may be likened to a very plain woman, inoffensive when with retiring manners sbe asks for no homage, but diagusting when by conceit and finery she seeks notice. I therefore start with this axiom: that there is no part of a structure, no matter where its situation or for what its purpose, that is not capable of having correct proportion assigned to it; but, as a matter of course, proportion will depend upon material. The nature and properties of materials used in building, and the methods of applying them in works, are essentially the first things to study; and Timber, as the most useful and general agent, may be taken firmt.

It is not only the different kinds of timber whose properties are reguired to be known, such as the "fir," the "oak," or the "teak, but it is the qualities of the different kinds of the same timber which is of the greatest importance. To specify that "fir," shall be used in any work, without defining the quality of that fir, would be utterly uselese as a safeguard, and the contractor would supply the chespest-the most important to his pocket-without any regard to its importance in the work. It is quite true that he must not supply a quality of timber that will fail or break at once, for then, by the law of contract, he would be made to suffer; but he may supply a description that will decay very soon, and thus the reputation of the designer would be perilled.

I shall explain to you, then, the different qualities of the fir timber that is imported from the ports of the Baltio-Memel, Dantzic, Riga, and Norway baulk, as the squared logs are called; also of the pine timber that is brought from America, such as the red, yellow, and pitch pines, all having different virtues and values according to the strains they may have to reast, or the gituations in which they may be placed, as to exposure to the vicissitudes of climate, weather, or in contact with other material that may act upon them.

Another furm of imported timber with which the builder has to become conversant is when the baulk is cut into deala, planks, and battens, at the places of shipment; and as these are used for smaller and more highly-wrought work, other considerations beyond mere strength and durability have to be attended to. For instance, the yellow deals from Christiana are durable and "mellow," which makes them work easily under the plane, and fit for the joiner; but those from Göttenberg, although durable, are totally unfit for the joiner, as they are stringy and incapable of being brought to a smooth surface. Again, the white deals of St. Petersburgh expand and contract with every change of weather, however well they may have been seasoned; so do the Swedish; but the Norway deals may be depended upon. The yellow pine deals must not be employed where strength is required, but the red pine are peculiarly strong. Besides these considerations, which I have merely instanced to show you the value of such knowledge, there are many others; some being capable of being explained in a lecture, but there are others which practice in the use of timber alone can render you conversant with. Oak, again, is not of one quality only. Old oak is fit for some things, young oak for others; and some qualities are fit for nothing. There are also different qualities of teak wood; indeed all kinds of timber require to be specified for with judgment based upon a knowledge of the peculiar properties of each.

These timbers I have noticed can be selected in the market, and are commercial commodities; some very good men can
select their timber with certainty when they see it upon a wharf, but they know nothing of its nature beyond its workable and useable nature. It may have grown with ite roots upwards for what they know, or it may have been a week or a hundred years in attaining its timber size for what they care. Place these men in situations where they have to select their timber in the forest, and they will be at sea although on dry land, and not know how to choose. The growth and felling of timber is a part of the science of construction, for we cannot always be sure of having to exercise our knowledge in England only. The colonies are powerful magneta, which are drawing many an engineer towards them, and there they will have to cut their own trees. They must know the age of the tree approximately, and mark the season in which to fell them.
Seasoning timber is another matter of great importance. I need not tell yuu that the expansion or contraction arises from the presence of vegetsble juices, or absorbed moisture between fibrea of the wood, and is the cause of warps, twists, and cracks. Some timbert absorb more readily than others, and are more liable to warp; seasoning prevents this.
The decay and the methods of preserving timber, I need not say, are essential studies; and I shall go into all these questions carefully for 1 assure you even the quantity of knowledge gained of them in lectures, will assist you greatly in practice. Lectures put thoughts and ideas into proper train, and aave a great amount of wandering.
After timber comes Stone, as a material for our consideration; and geology and mineralogy are sciences which should be studied, for they are of essential service to the engineer, and deserve his peculiar attention: they teach him where to search for stone, and permit him to know the quality of the stone he will find. I however cannot enter into either of these, they are studies of themselves; and I should atrongly advise you to read and learn them sufficiently, to avoid making blunders, which even a partial knowledge might prevent. I take stone as I take timberas a commercial commodity, and trent of it as to its fitness for the purpose required. It is not improbable that I may give you a lecture on quarrying stone; but I am not anxious to do so, for Sir J. Burgoyne's little work, published in Weale's cheap series, renders any further description almost superfluous. This book, and that of Mr. Stevenson on lighthouses, are the only useful books of the series relating to engineering. It is hardly needful that I should say anything to you of the value of the knowledge of tbe different qualities of the stones used in building. The qualities of the same stone vary like timber. Thus the Irish granite and that from Scotland are as distinct as possible. Cornish granite differs again from both, and some of it is only useful for the manufacture of china. Bandstones and limestones are equally variable. Then, again, we have the oolite and Purbeck stone, and others met with in the more recent formations, which require distinct notices. It is the idea of some that stone is stone all the world over: but some are fitted for sea work, are difficult to dress, or to be brought to a smooth face; others are fitted for the springers of arches, and the ordinary purposes of engineering, where great finish is not essential; and then again, some crumble or flake away on exposure to the atmosphere, and we constantly $\begin{aligned} & \text { eee a stone advertised as being agood }\end{aligned}$ weather stone, which is always a great recommendation; the position in which stone is set in work influences this quality very much. And I shall be able, I think, to explain these matters to you, so that they will be perfectly plain.

Having dismissed these, we shall come to a subject of the greateat moment, both to engineers and architects-I mean Lime, the material upon whose virtue depends the excellence or the reverse of our mortars, cements, and concrete, and through them of the durability of our buildings. Sume mortars will not set when exposed merely to the weather; others will become hard beneath water. Some lime requires much sand to make good mortar, other kinds but little. Then again, the mode of slaking is of importance very often; in short, care is required in every stage of the preparation of mortar.

Limestones and the limes they furnish, then, is an inquiry to which I must point your serivus attention. It is by no means a difficult or complicated subject, and simply requires the exercise of a little common-sense to master. The limestone chosen with reference to the nature of the work requires to be burnt; and although the art of burning lime is in the neighbourhood of large towns exercised as a separate trade, the engineer has frequently to construct his own kilns, and burn the lime upon the spot. It is, moreover, frequently essential for him to burn
his own lime, that he may be certain of its freshness. Limeborning will form part of a lecture; mixing mortar, and the mipor observances connected with this, will also be considered.

The limentones I have just alluded to, and the limes they furnish, are those whose properties are natural. But eminently hydraulic lime, or lime that will set under water, may be made artificially, and often with so much success as to be superior in its hydraulic property to that furnished by the natural rock; and in many localities it will almo have the advantage of price, a consideration always of importance in huilding: for engineers and arahitects must be commercial as well as scientific men, and he knows his business best who can produce the best work at the leart coot; indeed, the reputation of an engineer is frequently based upon the fact of his lahours having, by moderate expenditare, ensured to the undertaking a good return in money.

The next material which nature supplies us with that I shall mention, is Iron. Iron does not become serviceable to the engineer until it is reduced from the native ore to the state of cast-iron, wrought-iron, or steel; but as the student should not be unacquainted with the geological and geographical position, and the mineral characters, nor with the processes of reducing the ore, I shall give a general outline of them. Of iron, as a material of construction, 1 shall of course speak fully, and it will form part of the subject of the strength of materials. Cast-iron is employed to resist compression, and wrought-iron to resist extension, and the safe limits of their respective strengths it is of consequence to know.

This will conclude my notices of natural materials, and I shall then proceed to the question of Bricks and Brick-making; upon the latter subject I shall say but little, for the art is essentially practical, and, armed with the few hints I shall think necessary to give you, you will learn more by a visit to a brickfield than from a dozen lectures. On the qualities of bricks it may be necessary to occupy your attention; but it will be on the proper methods of applying bricks in work that it will be esoential that I sbould enlarge. The manner in which bricks are laid together to form a wall, the precautions to take in carrying up work, and the commercial maxims relating to brickwork, you cannot study too carefully. Walls, carried up to all outward appearance soundly and substantially, often "split," by which term is meant the separation of the front from the back; this arises from want of cross-bond, which cannot be detected when the work is completed: it is only in case of failure that the want of it is proved. Cracks in walls arise from the inaufficient over-lap of contiguous bricks on the face of the work, and is of less danger, for it can be detected. Agsingt these two mishaps, therefore, the attention must be directed. Besides settlement arising from unequal foundation, which is a distinct consideration. there are those resulting from improper and unequal thicknesses of joints, and from the employment of mortars in the same wall different in the quicknes of their set; or from some incompressible material, each as stone, occupying several courses, being used in contiguity with mortar joints. To avoid all these errors, a little case and consideration is all that is required; and the simplicity of the precautions makes it wonderful how so much bad brickwork can have been executed. But we constantly hear of chimney-breasts that have split, party-walls that have slipped or sunk, and honses that have doubled-up just as the roof was being put on; nor need any one be surprised at these occurrences whose attention is given to the proceedings of speculative bailders, in the suburbs of London especially. These failures cannot be called accidents, for accidents are explained as chances, cccidental as a quality non-essential; whereas, in truth, with many of the buildings to which I allude, that they stand is the mecident-instablity is a quality not separable from their constitotion. In many cases the bricks are bad, the work is bad, and the diaposition of the supports is bad; what keeps them together antil the work sets can scarcely be pointed out, and the fact that falls only occur occasionally (much oftener though than some think, because, unless life be lost, they seldom come before the public), serves to show what may be done with good materials properly placed. Of course there are many exceptions; and those builders who do their work well, and strive to produce houses not merely to sell, but to last, are the witnesses I could call to prove the extent to which rubbish such as I have pointed out is prepared for the market.

The removal of the brick duties has not yet produced that inprovement in the make of bricks which we ought to find; targe quantitien of the worst description are at this time being
sold at prices for which a good material ought to be provided. The Great Exhibition showed, what every one knew, that brick: of the most admirable quality, bricks far exceeding stone in hardness and durability, could be obtained in various parts of the kingdom; but as bad bricks can be bought for less than good bricks, so long as houses built of the former will sell as readily as if the better kind had been used, especially if bedizened with a little compo, the knowledge is of very little use, and builders for the market will continue in their present course. There is nothing that a good brick is not capable of and people when they term the best of fellows "a regular brick," show an appreciation of this fact. There are some bricks that will bear anything, and that too without a wince. Look, for example, at the lower courses of the towers of Hungerford bridge, -look at those of the Glasgow chimney-shaft, 100 feet higher than St. Paul's; while others yield unconditionally to a shower of rain, or decline a trial of strength with even a slight frost, and permit it to peel their faces as a cook would pare a potato. I have seen specimens tried that were being used in two neighbouring buildings,-one resisted uninjured fifty tons, the other was crushed by three.

It is a common practice with "cutting" builders to compound the mortar with the earth dug out of the foundations, in lieu of sand. The surveyor for the ground landlord, should he employ one, may beg that this be discontinued, may swear, may threaten that he will withhold his certificate for a lease,-often wholly in vain, the builder trusting to the good nature of the ground landlord, the desire of the golicitor of the estate to issue leases, or unwillingness on the part of the surveyor, when the house is up (and has not tumbled down), to punish him with what would in many cases be ruin.
The opinion meems to be general amunget the bricklayers employed on the class of houses to which I am alluding, that headers are quite unnecessary; that if the walls be built of whole bricks and bats, to look like headers and stretchers, any tie between the outer face of the wall and the inner is quite uncalled for. I have several houses in my mind at this moment, where the facing of the wally being a better sort of brick, is, from buttom to top, simply tied to the inner part of the wall by headers 4 incbes apart everyway! The men know better, spite of all that has been done to destroy the race of skilled bricklayers; they know perfectly well that the wall is unsound, but, if they are not building for themselves-in which case desire to save leads them to the evil-they are forced by the instructions of their employers to act as they do. Add to what I have been pointing out, imperfect foundations, sham arches, pockets in the chimney-breasts filled with rubble, the absence of even timber bond (bad in the long run, but useful in the first instance when hoop-iron and cement are not used as they should be), 一and my hearers will agree with me, that the accident happens when a house so built stands.

For much of this house-buyers are to blame. They look at the outside with eyes that see not, found their calculations on the rent which hy some means or other has been obtained for the frail tenement for which they are in treaty, and discover too late that they have bought a constant source of expense and annoyance. If, in all cases, an architect or other competent person were called in previously to the purchase, to examine the house, the buyer might be spared this loss, the honest and able builder would be protected, and those who have practised the "cuttiug" system would find it necessary to mend their ways and build better.*
Nor is it, frequently, much better with engineering works. The brickwork is let by contract at so much per cubic yard, for, as the work is usually in mass, it can be measured better by the cubic yard than by the superficial rod. The face of these masses is built well enough, but the inside is filled-in with bats. Young men, without experience, are frequently entrusted with the seeing that this work is carried out properly, and in accordance with the specification; but what chance has he against a contractor's foreman, "up to every dodge" to blind and deceive his opponent? Even an experienced overseer may be deceived, for the upper course is always covered with mortar and hidden from the view, so that unless the inspector stand over the work there is no chance for him, if the contractor be determined to cheat. Fortunately, this is not always the case, but I am sorry to believe it to be the exception and not the rule.

With Masonry there is less chance of deception, for the work proceeds more slowly, there are fewer joints, and the bond is
more bold. The only care necessary (but this care is very needful) is when ashlar facing and rubble or brick backing or hearting is used; then the joints in this hearting must be worked very close, that the settlement may be as equal as possible, for settlement is only in the joints; the front-work, therefore, occupying probably many, will settle much less than the back. But walls of ashlar masonry, dimension for dimension, are of less gtability than those of brick or coursed rubble, since this quality is not dependent upon the cementing matter between the stones, but upon the gravity of each mass. To give security to work of this nature, cramps and joggles have to be employed to unite the atones and courses, and it is this detail which renders masonry interesting.

With masonry I shall conclude the section relating to the simple application of materials to construction; and 1 shall commence the next with the Strength of Materials, a subject deserving careful and constant study. Economy and strength are both dependent upon the proper adjustment of the dimensions of the parts composing a structure. Work is paid for by the cubic foot, or some other measure of quantity, according to the nature of it. If a piece of timber, a bar of iron, or a wall, be made larger than the necessity of the case demands, the extra and needless quantity has to be paid for, so that the work costs more than it ought to do. All material not uniformly supported has to bear its own weight, in addition to that to be superimposed or suspended from it. Suppose, for instance, a beam was required to bear 1 ton equally distributed over it, and suppose the beam itself weighed 1 ton, it would have to be twice as strong as if the beam weighed nothing. Now, if the beam weighed $\frac{1}{8}$-ton, and was strong enough, the first beam would have to bear an extra don of its own weight, and would be weaker than the last. A beam might be made so huge as to break of its own weight; for instance, the extreme limits between bearings of a wrought-iron tubular girder similar to that erected over the Menai Straits, is 1400 feet-no dimension, either of height, breadth, or thickness of metal, would ensble it to support itself beyond this span. So you perceive the strength of materials, even in the two cases I have put, is of great moment. Many work by "rule of thumb," that is, they take their ideas of dimension from precedent, often without regarding the difference either of work or position of the new structure. Avoid this by all means: be able to give a reason for all you do; never take a dimension at hazard, unless it be some trifing part of a large mass of framing or other complicated assemblage of parts, the extra dimension of which would be of no moment. In large timber work, again, whole baulks are perhaps employed where a leas sized timber would serve; but the expense of cutting or "converting" this would probably be more than the value of the timber saved,-it is therefore practically more economical to use the whole baulk, although theoretically the system is erroneous.
For the calculations necessary to compute dimension, certain data are needed. Pieces of timber or iron, for instance, are broken, crushed, or pulled asunder by weights; these being reducible to units, are added as constants to the formulaic expression which serves for the same material in all cases. I wish particularly to explain to you the method of obtaining these constants; for in new countries, or with new materials, you cannot find what you want in books, and must consequently try your own experiments. The apparatus required, and the modus operandi for practical purposes, is extremely simple; and you need never be at a loss, or take the experiments of others for granted, unless you are lazily inclined, and care not about chancing a mistake.
[shall speak of Cranes, and the mechanical powers used in the erectiou of heavy structures, enabling men to perform what they could not accomplish without such aid. Deprived of mechanical power, a man's force is limited to his muscular strength, of which he has but little in proportion to his bulk and weight when compared with other animals; his disposable mechanical force, when daily exerted for ten hours, being only about one-tenth of his weight, but for short periods he can exert much more, but only for short periods: it therefore seems that nature intended him to use his brains more than brute force, and it is astonishing the weight of matter even one man can lift, and the economy (in money) with which he can do it, by most simple and primitive contrivances. When 1 say that I shall speak of cranes, I do not mean that I shall impose upon you all that can be said of the different aorts used for wharf or warehouse purposes, but confine myself to those used for more temporary purposes in the erection of engineering works, such
as traversers, derricks, and others; indeed, they may be considered as parts of scaffolding, and will be included in the same lecture. Scaffoldings and centerings are frames of timber put together for temporary purposea; roofs and timber bridgen are those erected for permanent use; and although the principle of constructing both is the same, there are many considerations not common. They differ most in the details of their several parts, in the methods of uniting these parts, aud in the amount of work put upon them. When the syatema upon which these framings are designed come to be investigated, they are resolved into exceedingly simple and beautiful elements; no extraordinary quantity of mathematical knowledge is required to understand them, but they must be studied properly - "the stick must be taken hold of at the right end"and then all is smooth and pleasant.
I will give you an instance of the value of the knowledge of the common principle of framing, or, I should rather say, the value such knowledge would have been. A gentleman in Dorsetshire, to whom I was on a visit, was carting hay from a large water meadow, and to get his wagons over a water channel he had placed two beams of timber, on which the wheels might run. The load was heavy and the bridge frail, and after a good deal of deflection and grumbling one of the beams broke. He exclaimed, "There, now I'm done! I have no more sticks; rain will come to night as certsin as taxes, and I shan't get my hay in!" I was standing by, and told him I would make his engineering all right for him, for I saw that it was only a few of the bottom fibres of the beam that had fielded, leaving the top as strong as ever. I sent for a saw, and much to his alarm I cut the other beam across, as deep down as the other had yielded; I made the ragged break of the other fair with the saw, making an aperture of about 1 inch perhaps; bent the beams till the samcut opened to about $1 \frac{1}{d}$ inch, and drove in a piece of elm, as a wedge, to keep the sides of the nutch from coming together again. This done, I turued the beams with the broken or wedged side upwards, and they were sufficiently stiff to allow the wagon to pass over. This method of stiffening beams is very old, and still very common; and gentlemen who have estates of their own, or estates to manage for others, should know a little of such plain contrivances.

Of timber bridges there are a vast variety of arrangements; but except for some particular purposes (though I do not at this moment recollect one), and under some circumstances rendering the execution difficult, those formed with bent beams are the simplest, cheapest, and best, and I shall not trouble you with many other forms.

We now come to the last section of the first term of lectures and we shall have to take for our studies brickwork and masonry in place, and ascertain, by the best known rules, the dimensions proper for different works built of them-as, for instance, retaining walls. Experience has shown that banks of different earths will "stand" at different slopes, and, presuming all to be of the same height, we may say that chalk and gravel will stand at 1 to 1 ; sand at $1 \frac{1}{2}$ to 1 ; clay, if perfectly clean, at about $1 \frac{3}{4}$ to 1 ; but if mixed with sand, thus possessing the power of absorbing and holding water, 3 , or even 4 to 1 will not be in many cases too much slope to give it. The greater the slope the greater the pressure on the back of the retaining wall, and the greater must be the thickness to witbstand it. The theory of the stability of walls to support earthwork is, of course, necessary to be understood; but the calculations to gain dimensions must not be based upon the data that mathematicians have assumed, for the varying circumstances under which such walls are placed render experimental data comparatively useless. 'The walle are not of that uniform character and stability' which they are taken to be in theory; moreover their aafety depends in a great measure upon their proper back drainage; and it is practice, aided by the knowledge of the statical lawi relating to such works, that ulone will enable us to get at sure dimensions.
The theory of the arch, also, is an extremely pretty piece of analysis, but perfectly useless to give us dimension, or even the best figure. The difficulty in the way of determining the best figure of an arch lies in our comparative ignorance of the manner in which pressure is actually communicated. The materials supposed in mechanical problems are usually perfectly rigid, those of nature are compressible; and though it is clear a very slight alteration of form might throw the pressure of one archstone almost entirely upon a very small part of the one adjoining, we do not know enough of the nature of materials even to
guest at the law of distribution. Again, if one part of an arch be overloaded, but prevented from falling by the friction and cement, a new form not contemplated in the preceding theory is is exerted upon the remainder, and again we are thrown out. Upon the proper thickness of the arch stones, for arches of different spans and forms, authors write with great caution, and no determined rule exists; but all who have attempted the solution differ in opinion as to the dimension. That some idea may be formed of the discrepancies which have arisen from calculations of this dimension, I may remark that Palladio makes the archstones one-seventeenth of the span, Gautier makes them onetwelfth, and Belidor gives one-twentyfourth of the span as proper. Peronnet makes his arch-stones at the springing much deeper than at the crown-say one-half deeper; and then he takes one-seventeenth of the span as the depth of the keystone. But these dimensions depend upon the nature of the masterial of which the arch is built, and upon the figure of the arch, for the flatter the arch the greater the pressure at the urown; and the softer the material the sooner will it crush, so that a greater area of surface, or, what is the same thing, a greater depth of voussoir, must be given to prevent such a catastrophe.

Palladio tells us that bridges ought to have the samequalities that are judged necessary in all other buildinge-viz., that they should be convenient, beautiful, and lasting. To be convenient, the slopes or grades of the approaches should be easy, and the width of the carriage-way ample. To be beantiful, it is necessary that they be in good proportion: i. e., all their parts being evidently sufficient to resiat the forces brought to bear upon them; and, as I remarked in the beginning, the word beautiful applied to engineering works, always means this, and we are not to understand by that term that the parts are decorated. And to be lasting, it is necessary that they be built of good material, and have their foundations, by being placed at a sufficient depth beneath the bed of the river (if it be a river-bridge, and the nature of the bottom demands it), secure from any scour that may arise from any cause whatever. Westminster and Blackfriars bridges are falling solely from non-attention to this: their fuandations are upon the bed of the river, not beneath it, and the scour produced by the removal of the old London bridge bas undermined the caissons, and left them without a leg to stand upon. To build a bridge and to design a bridge are different matters: nothing but practice can teach you the former; but understanding the latter, which jou can be made to do through lectures, you will be able to appreciate what you see put into practice more readily than if you went upon works ignorant of the general principles of the subject. To this end, therefore, lecturen are useful; but you must inveatigate the subjects at leisure, and be careful to understand one thing before you begin another; you will thus avoid confusion, and feel satisfied that you have not thrown away your time.

A considerable amount of prejudice exists, in the profession, against Engineering classes; and if the lecturer pretends to teach his students to be engineers, this prejudice is unquestionably well founded: but he may teach them how to study that they may become engineers, with less labour than those who go into the field ignorant of first principles. I therefore again say, that lectures confined to proper subjects are useful; and if l succeed in pointing out a tolerably direct system of study to my listeners, I shall be perfectly content to think myself a finger-post.

ON DRINKABLE WATERS IN GENERAL.

By M. Marchaed, of Fécamp.

[Translated from the 'Repertoire de Pharmacie' for the 'Chemist.']

1. The physical and chemical constitution of waters varies every day of the year, and every instant of the day.
2. When the temperature is the highest, the density of the water is also the most considerable. A sudden variation in the remperature causes likewise one in this density.
3. This physical property of water is also influenced by atmoepheric preasure, but in inverse ratio to that caused by the preceding influence. The greater the pressure, the weaker the inteasity. Nevertheless, when an augmentation of pressure corresponds to an elevation of temperature, the density is very often still farther augmented.
4. The variation of the proportion of the gaseous principles
dissolved by waters not only causes modifications in their density, for the saline and earthy principles which they hold in solution vary equally in their proportions under the infuences which I am about to mention.
5. The waters of the ocean contain chloride of lithium and 0.0092 gramme of iodide of sodium per quart; but they contain no trace of nitrate, although these salts are poured in abundance into the sea by the currents of fresh water which flow into it.
The cause of this singular phenomenon is due to two different actions which take place simultaneously:-lat, under the reductive action of aulphuretted hydrogen excreted by certain mollusca existing in the depths of the ocean, the nitric acid of these salts is transformed into ammonia and water; \&nd, under the influence of the respiratory act of the fish, an analogous phenomenon is manifested, likewise giving an ammoniacal product; the ammoniacal oxide, formed in these circumstances, eliminated in its turn from the water, under the form of ammo-niaco-magnesian phosphate, which is found again in the muddy deposits which accumulate at the bottom of the sea and on the sides of rivers.
6. Rain and snow waters generally contain appreciable traces of all the mineralising agents of the waters of the ocean. The former always retain indications of sulphuretted hydrogen
7. The waters of the antediluvian soils generally contain lithis, and probably also phosphates as well as fluorides proceeding from the decomposition of mica, more or less abundant traces of which will be found in all these soils.
8. The waters which arise among calcareous soils always contain appreciable traces of ferruginous carbonates often accompanied by carbonate of magnesia.
9. Iodine and bromine are found also, except in some peculiar circumstances which I am about to mention, in all natural coaters. We can easily and rapidly recognise their presence, even in rain and snow water.
10. These two principles may dimappear from water by passing in a saline state, under the influence of the vital forces, into the number of the mineral principles fixed by vegetables. Terrestrial plants, but particularly forest trees, as well as fresh water planta, contain iodine and bromine.
11. The origin of these two bodies in atmospheric and terrestrial waters should be attributed above all to the diffusion of these same principles, now condensed, in sea water, whence they are carried off, some in the saline state, by the vapours and aqueous particles whicb perpetually escape from it, as well as in the state of free hydrated acids with sulphuretted hydrogen which also exhale from it.
12. The endemicity of goïtre and cretinism should not be attributed to the use of calcareous, magnesian, or selenious drinks, but solely to the more or less complete disappearance of the iodine, originally dissolved in the water which the persons affected with goiltre and cretinism use for their alimentation, this principle having been absorbed by the numerous vegetables which these waters have bathed. The enlargement of the thyroid gland is not manifested as an endemic, excepting in very wooded countries, and particularly in those whose drinkable waters wash or have washed a great number of plants.
13. That in populous cities, the watering of streets and public places during times of choleraic epidemics should be severely prohibited, as well as the flowing of public or private fountains into rivulets or in open places.
14. That the waters of spriugs and rivers are purified by flowing on the surface of the soil, by the volatilisation of the carbonic acid, which allows the insoluble carbonates to separate; by the infueace of vegetative life; by the vivification, under the influence of the luminous rays, of the organised matters which they contain; finally, by the successive decomposition of these same matters, which decompositions then take place by causing also the reduction of the nitrates of the fresh waters, and their conversion into ammonia.
15. That in calcareous soils at least, but probably in all, the volume of the water from springs, contrary to the received opinion, is all the more abundant as the vegetation is more active, and that it decreases in amount in proportion as vegetable life becomes extinct, above all in countries where the superior soil is entirely devoted to agriculture. In our countries the springs attain their maximum in quantity about the 15th August, and they siak $t=$ their minimum about the end of January.
16. Then proceeding to the natural waters of the Arrondisse-
ments of Havre and Y vetot, I deduce from their analyses that all these waters which, without exception, arise in calcareous soils, contain especially carbonate of lime, the proportion of which varies between 0.153 gr . and 0.381 gr . per quart, salts of magnesia, sulphate of lime, but in variable proportion, and corresponding to the nature of the soils which produce them, 80 that the alimentary waters of the agglomeration of Havre are, with those of the wells of Fécamp, the most selenious in the country, which is, moreover, explained when we know that they issue from the Inferior eoils of the secondary formation; whereas all the other waters in the country bave their sonrces in the superior stage of the chalk, or at the verge of the cbalk glauconies.

All these waters contain likewise nitrate of lime, the proportions of which, varying between 0.00081 gr . and 0.22625 gr ., become more considerable in those which flow from the inferior soils of glauconious formation.

Finally, all these waters contain appreciable traces of salt and manganese, salts of potassa and lithium, iodine and bromine, phosphate of alumina, and perhaps, I believe, even indications of fiuoride of calcium.

MILLOWNERS' RIGHT TO UNDERGROUND SPRINGS.

In the cause of Dickineon v, the Grand Junction Canal Company, tried in the Rolls Court on the 2nd ult., the Master of the Rolls pronounced judgment, and said, it wet a motion for an injunction, which, by the consent of the plaintifis and the defendants, had been treated as the hearing of the cause, and upon which his decision was to bave the effect of a decree made apon the bearing of the cause upon the evidence produced. The object of the suit was to restrain the defendants, the Grand Janetion Canal Company, from further excarating and using the watera of a well sunk by them near Tring, in Buckinghambire, at a place called the Cow-ronst Lock, and to restrain them from pumping any water out of the name into the anmmit level of the canal, and from digging or ainking any other well whereby the sources and anpplies of the water of the rivers Bulbourne and Gade, or either of them, might be obstructed from flowing down to the mills of the plaintiff. The questions on the motion and in the cause were substantially the aame, and the arrangement mentioned had been come to, much, be considered, to the advantage of oither party. The plaintiff: contended that they were entitled to the full and unreatrained supply of water to their milla both by contract and by common law, and therefore entitled to the Injunction. On the other hand, the dofendants sabmitted that they were justified in what they had hitherto done, and therefore that no injunction ought to be inued; but there was not much diffleulty in arriving at what he considered a proper conclusion. The Bulbourne was a sream rising in the veighbourhood of Ting, and, proceeding by Berkhampstead to a place called Tro Waters, fell into the Gade, which itself afterwards fell into the Colne. The plaintifin were the owners of four mills called Apaley, Nash, Home Park, and Croxley, for the purpose of manufacturing paper, sitnate at King's Langley, Abbott's Langley, and Rickmansworth, which had cost about 95,000 ., Independent of various additions they had made to the baildings, and it wat not disputed that they were ancient mills, existing prior to the act of 1793. These mills were aupplied with water power through the aid of the rivers Bulbourne and Gade. In April, 1793, the first act, 33 rd George III., chap. 80, wat pased for the making of the canal, by sections 35 and 36 of which act it was provided that reservoirs should be made by the Canal Company for the parpose of gathering flood-water and supplying the rivers Balhourne and Gade, when required for the use of the millowners, with as much water at should be taken therefrom for the use of the canal. The canal was completed, bot the rexervoirs were never made, and in 1809 and 1811 the plaintiff Dickinaon became the purchaser and owner of the mills. After the plaintiff became the owner of these mills he brought three ectiona againat the defendanta in 1816 and 1817 for the withdrawal of water to an injurious extent upon the aupply of the rivers, in all of which be proved actual injury, and recovered damagen-in one of 2000l., in another of 2800l., and in the third of 3000 . A suit what also instituted in this court, in which Sir W'iliam Grant thought, as there had been unnecessary delay, the plaintifi was not entitled to the relief he sought; but this was not material to the present question. A fourth action was bronght in 1817, which was referred to arbitration, and, in order to put an end to auch a course of expensive litigation, a compromise wes come to, and articles of agreement of the 11th of September, 1817, were entered into by and between the canal company and the plaintiff and bis partner, Mr. Longman, by which the company covenanted to apply to Parliament for power to make a deviation of the canal, by which it should be united with the river shortly above the milla of the plaintiffs. The second clause contained a covenant that the company would not make any further alteration of the state of communication between the canal and the rivers Gade and Bulbourne, above the Nanh mill, bat should continue it as then oxisting, enbject to
the propoied alteration. This contract wam mobodied in an tet of Parliament, b8th George III., chap. 16, which was obtained in the part sasion, and which, after reciting that dispaien had arisen which it was deairable to settle, enacted by the third section that it should not be lawfol for the canal company, upon any pretence whateoever, to deviate more then thirty yards from the plan therein named, nor to make any alteration in the state of commanication between the canal and the rivers Gade and Bulhourne other than at authorised by that act, nor to divert any of the waters of the asid rivern, or any of them than at diverted at the time of pasaing the act.

No further dlapute or content arose between the partien until 1849, when the company, who hed hitherto been in the habit of parapiog water raised from the chalk stratum on the north side of the gummit level neas Tring into the canal, in ordor to avoid the large expense oceanloned by that practice, sunk a large woll 70 feet deop at a point near the Cow-roent Lock, to which they attached atesmengine, and proposed to pump water from the weli to the higheat level of the canal at the rate of a loek of water per hour for twelve hours por day. It wat contended by the plaintiffe that this praction emptied the water from the sonves of the Bulbourne to exactly the eame extent the water was pumped from the well. The defendants alleged that the water being ueed at the memomit level could not injuriously affect the plaintifs, and what they loat in the one they gained in another; but the plaintiffa, although they admitsed that the water was puorped into the canal at the summit level, deried thls for two reasons-that it did not remedy the evil, inamuch as onehalf of the water passed off to the north and the other half to the nouth; and oven if it all came down to the south it did so only whea a barge ascended or descended on that side, and, in consequence, the lock of water so liberated passed through all the ateps of the canal and found its way to the Thames without angmenting the supply to the plaintift mille, whereas if the water flowed through the Bolbourne, which it woold do by percolaling through the chalk if it were pot diverted, it would keop up a constant and adequate supply to the plaintiffs' milla. In confirmae tion of this It was slleged that the atratum being chalk no overflow of the river was over seen, and that the soil gave out gradually throagh the summer the water that foll during the reat of the year. It further appeared that the amount of water which had fallen during the precediats monthe could be ascertained by the rain gauge, and the supply of water thereby regulated, and, at was alleged, all this would be dearroyed by the continuance of the practice adopted by the defendants with relation to their well. In this state of thinge the bill way fled on the 21at of April, 1849, and on the 11 th of June following Lord Langdale made an order for certain experimenta to be tried, under the direction of Mr. Cobitt, for the parpose of observing the effect caused by the pumping of the water from the well upon the river Balbourne. Mr. Cabitt reported, on the 22nd of March, 1850, that the experiments be bad made showed the fact that, by pumping the water from the well, the atream of the Bulbourne was considerably diminished, and that it might by such meana, if continued, be completely dried up for a considerable distance. On this evidence the motion was renewed hefore Lord Langdale, and in Augant, 1850, he mado an order by which the company were restrained from pamplng water from the well except they conveyed one-half of it by pipen, and discharged it nes to the plaintifis milla, which condition the company considered as too expensive to be ontered upon as a temporary expedient before the righta of the partien were finally and conclusively ascertained by the proceedingt then pending, and that order had the effect of an injunction abolate from that time. In addition to that order Lord Langdale directed a case to be sent to the Coort of Exchequer for the opinion of that court upon six queationa; and, in anawer to the frat, the judges were of opinion that by the Laking of the water the company had violated the act of 58 th George ILI. as well as the agreement, and had rendered themselves lisble to actions irreapectively thereof. On the second question the court was of the same opinion, at to the diverniun of the water, which otherwise would have percolated and gone through the intervening chalk, and thus have fonad its way into the river and to the plaintifis' mills. The tbird queation was also decided in the plaintifit' favour; and the remaining three were only variations of the others intended to meet every point of law anggeated by the facts appearing on the report of Mr. Cubitt, and were not material.

After a full argament the Court was of opinion that the acta done by the defendants violated the act of Parliament and the agreoment; and that even if the act had never patsed, and the agreement bad never been entered into, the defendants would not have been justified at common law in the acta they had committed, but would have rendered themselve liable to actions for damages, occanioned by the lons of water anpply to the plaintiff' mills. In this state of thinge the motion was reanmed before bim (his Honour) to rentrain the defendants by injunction from using the well as complained of. On the part of the defendarta it was urged among other things that the case for the judges' opinion was itupperfectly stated, therofore no just couclasion could be drawn apon it adverne to the defendanta, and that no just conclasion could be drawn from Mr. Cubitt's experimente, becanse, althongh these tea dayn' inoesant pumping diverted the water, it did not follow that the woderate wes of the well would bave the effect complained of ; that in the one cage it was incestant, while the company pumped only during a portion of the
day, and, consequently, if the injabetion wore granted it bhould be confined to the excessive pumping complained of; and that an the fall between the Cow-roest Lock and the mills wes such as would prohably reader the diminution of water by pamping, wa practised by them, imperceptible, the injunction should he so limited as to stop only the pumpiog, s fina ar it hindered the beneficial working of the mills. It was also arged that, asouming there was a legal right in the plaintiff, mere legal right could not matain an application for an injunction; and that, sapposing the isoonvenienco on either aide could be balanced, it would be found that mach greater injury woald arise to the defeadants and to the peblic from the atoppage of the canal through the want of water, which rould be certain, than thet which would arise to the plaintiff, and which wat ancertain and prospective. After giving an attentive conaideration to the subject, and reading over an immense mass of documenta, he entertained no dooht that the plaintiffis were entitled to a deeree in their favoar on the contract entered into between them and the defesdants on the 11th of September 1817, that they (the said company) ahould not, nor would not at any time hereafter, make any alteration in the atate of commanication between the canal and the rivers Gade and Bajbourne, above Nash mill, or any diveraion of the waters of those rivers, but the anme shoold continae as then existing; and after this agreement followed the act 58th of George III. The first question that arose mas, whether this was such a contraot as the Conrt woold restrain parties thereto from violating, and apon this he had not the least danbt. The conaideration for it wat valuable, and the company obtained the value by the cemation of litigation. The sext question was, whether the act of the defendant were a violation of the terms of the contract we well as of the atatate. The report of Mr. Cuhitt showed conclusively that, by means of the pumping from the well, the waters were diverted from the rivers; and, independently of the decinion of the Court of Frehequar, he should apon that report have entertained no doubt that the company had violated the agreement, and also the provisions of the set, by pamping the water out of the well into the summit level; but We cuse sent by Lord Langdale, and the answer given thereto, wat conelanive apon the subject. It was a contract duly entered into by both parties, and when violated it was no answer hy the parties violating it to asy that no iojury was indicted by their acta apon the other party. If the plaintiffs had purchased trom the company a right to prevent the waters from being diverted in any other manner than as at the time of the passing of the act of 58th George III., it was for them to judge whether the agreement should be preserved, 10 far at they were concerned, Ia its iategrity, and not the defendants; and, therefore, in hia opiaion, it was not a matter of any moment in this case that the plaintiffi had not sivea any evidence of the damage done to tham by the acts complained of. Having established that those acta were a violation of the agreement and the act, the plaintiff were eatitled to call upon the court to protect them in the enjoyment of the right which they had so purchasod; and be wrat of opioion, therefore, a perpetual injunction muat be inoned to reatrain the company from further excavaling or sinking the well, or from pamping or removing any water from the well into the summit level of the eanal, or from digging any other well by which the supplies of the rivera Bulbourne and Gade would he prevented from flowing down to the mills of the plaintiff. It did not appear necesaary to him to order the company to fill up the well; it was only necessary to prevent them from s velng it an to create injury to the plaintiffi, and the defendants mant pay the coats of the anit as well at of the experiments made by Mr. Cubitt.

A discussion having taken pleos between connsel as to the terme of the ipjunction,

His Hoxota aid,-In hir opinion, as the well now atood, the water drawn from it was water that would find ite way by percolation through the chalk stratum to the rivera Bulboarae and Gade, and the company most, is its present state, be restrained from drawing any water from it. He did not restrain them from making a freah well, and drawing water, provided it did not divert the water from the Bulbourne or Gade; and his intention whalso of course, if the present well could, by further excaration, be carried to a lower level, so as to prevent any injory to the rivers, and thereby to the plaintiff, that they should not be prevented troas so duing. It was difficalt to exproat the order, but the partiea might eaily arrange it. If the well was to be further excavated, some water mast neceasmily be taken ont ; and, therefore, if it was determined to parave that coarse, altowance must be made for a reasouable quantity.

THE RECENT LAND-SLIP AT THE MANCHESTER WATERWORKS RESERVOIRS.

In the Journal for March we gave an account of the stupendous works in progreas for the reservoirs of the Manchester Waterworks, and the threatened damage by the heavy storma which took place at the ond of January and beginning of February. It has since been ascertained that the works suffered earioualy, and part of them, it is reported, are likely to be brought to a standstill in consequence of a serious land-slip
oocesioned by the floods. It appears by a report of the Waterworks committee to the Manchester Town Council that "the committee approved of a suggeation made by Mr. Bateman, that he should be authorised to confer with one or more of the most eminent engineera of the prement day, as to the course to be pursued in re-arranging the works, or otherwise modifying the scheme, in consequence of a recent land-slip near the Rhodes Wood reservoir; and also determined that the engineera who might be appointed should be requested at the same time to examine the works generally, and the whole scheme as proposed to be completed, and to report their opinion thereon. The committee have made the nocessary arrrangements with Mr. Robert Stephenson, M.P., and Mr. Isambard Brunel, to survey and report, and to confer with Mr. Bateman as to any re-arrangement or modification of the works which, in connection with the land-slips referred to, might be necessary or advisable. On Saturday the 27th March, Messrs. Stephenson and Brunel, accompanied by Mr. Bateman, Sir E. Armitage, Aldermen Pilling and Bancroft, and the town clerk, went over the whole of the works, and made such an examination and inspection as, with the plans and sections before them, and the explanations of the engineer, will enable them to perform the important duties which they have undertaken on behalf of the corporation. The whole of the works between the Godley reservoir and Ardwick, including such reservoir, the Mottram tunnel, the Denton reservoir, and the mains laid down between Godley and Ardwick, have been some time ago delivered up as complete by the engineer to the corporation, and are now under the charge and control of the committee, and have been placed under the immediate superintendence of Mr. Wilson, the out-door superintendent in the waterworks department."

Mr. Bateman, the engineer, also made the following report:"Manchester, March 30th, 1859.
"Gentlemen,-My last general report upon the state of the works was made in August, 1851. Since that time the works have been making steady progress. The 36 -inch and 40 -inch main-pipes from Godley and Denton to Mlanchester have heen now for many months completed aud in constant use. The Denton reservoirs are finighed as far as they can be until the banks are perfectly consolidated, when some of the brick lining now only temporarily laid on will be wet in mortar, and permanently faid. One of these reservoirs since August, and the other for sevaral months past, have been holding water for the supply of the town. The Godley reservoir is also finished, and in use for the supply of the town. The Rhodes Wood conduit, which completes the communication with the river Etherow, is also completed, and employed in conveying water to the reservoir for the use of the town, when the state of the river is such as will allow the abstraction of water without injury to the mills. At the Hollingworth and Arnfield reservoirs considerable progress has been made with the stoning of the inside slopes, and all masonry and the formation of the embankments is now resumed. A considerable quantity of water has been stored from time to time in the Arufield reservoir, for the use of Manchester, and the Hollingworth reservoir is now also ready to hold a large quantity. At the various works upon the river Etherow and in the valley of Longdendale, although much progress has been made, many operations have been retarded by uuavoidable circumstances. Everything at the Woodhead reservoir is completed except the upper part of the waste-weir and a branch puddle-trench on the northerly or Cheshire side of the valley, which is being sunk to the shale for the purpose of rendering the reservoir on that side perfectly watertight. This trench has required sinking to a greater depth than was anticipated, but it is now at the bottom, the shale or other watertight foundation haviag been reached throughout its whole length. It will now be re-filled with puddle as rapidly as possible. At Torside, the branch puddle alluded to in my last report has been put in, and the works at that embankment are proceeding. At the Rhodes Wood reservoir the embankment has made great progress, and is completed for between 40 and 50 feet in height. The works, however, at this reservoir are for the present suspended, in consequence of a land-slip which occurred towards the conclusion of the heavy rain with which this district was visited in the early part of the month of February, and which has materially shaken the masonry of the waste-weir which had just been completed. That land-slips had formerly taken place in the valley was easily discernible by
those accnstomed to make such observations; but with the exception of a narrow slip of ground about the centre of the Rhodes Wood reservoir which has always been elightly on the move, no movement had occurred within the memory of man in situations likely to be affected by our works. The ground over which the waste-weir was constructed had every appearance of being firm, the strata being apparently in situ, or at all events bearing no evidence of recent disturbance. The exceasively heavy rain, however, of January and February, amounting in six weeks to $11 \frac{1}{2}$ inches, appears to have penetrated the upper portion of the ground, consisting for the most part of rock and dry material, and to have so wetted or lubricated the surface of shale on which it rested as to set the hill-side in motion, which taking a sliding direction obliquely down the valley, disturbed and crushed the whole of the masonry of the wasteweir and watercourse. The extent of ground moved is about thirty acres, measuring about a third of a mile along the valley, and 300 or 400 feet in height. This mass was moved altogether, the extent of motion being apparently from 6 inches to 1 foot. An examination of the line of fracture clearly indicates the existence of an ancient slip upon the same site, which has, probably, some time occurred from the same cause which set the ground in motion now. The quantity of rain which fell upon its surface from the 3rd to the 9th of February was $6 \frac{1}{2}$ inches, to which must be added all the water which, penetrating the rocky escarpment at the summit of the slope, would break out as soon as it reached the shale beneath the moved material, and probably find its way, for the most part, between the original surface of the hill-side and the underside of that which had slipped over it from a higher elevation. The best measures for adoption under the circumstances are now under consideration, in connection with Mr. Stephenson and Mr. Brunel, whose advice the waterworks committee have allowed me to obtain. No other damage was sustained during the heavy floods, the whole water baving been passed with safety, although towards the conclusion of the rains I began to be apprehensive that our power of storage would be exhausted. The quantity of water which passed through the reservoir from the beginning of the year to the 13th of February was upwards of $800,000,000$ gallons. All the watercourses and the masonry in the valley of Longdendale in connection with the various reservoirs, are nearly completed. The reservoirs have been constantly used for supplying the mills, and as the works become further advanced, a still greater quantity can be delivered.

"J. F. Bateman."

An appendix by Mr. Shorland states that 100 miles and 583 yards of pipes have been laid within the borough up to February 28th, 1852; there have been fixed to new and old mains 3930 new hydrants; and 19,886 additional houses and huildings have been supplied with water.
The following is a summary of the expenditure incurred up to the present time:-

WROUGHT-IRON TUBES.

T. Kenrick, of Edgbaston, Warwick, ironfounder, for improvements in the manufacture of wrought-iron tubes.-Patent dated Sept. 4, 1851. [Reported in Newton's London Journal.]

The patentee states that the interior surfaces of cat-iron tubes have been heretofore enamelled and glazed by the application of two coatinge-one for the body, and the other for, the glaze. He claims the enamelling and glazing, in the manner hereafter mentioned, of the interior surfaces of wrougbt-iron tubes only. The exact proportions of the materials, below given, in the recipes for the two coatings, are not essential, but may be varied.
Two coatings are applied, the first being a composition to form the body of the enamel, and the second forming the glaze. When the inner surface of the tube has been cleaned, the firat composition (presently described) is poured through the tube, which is at the same time turned round, to insure an even conting upon every part; and the composition is allowed to set. The composition is prepared by mixing. 100 lb . of calcined fint, ground to a fine powder, with 75 lb . of borax, gronnd fine, and then futing the mixture; when it is cold, 40 lb . of the fused matters are ground in water with 5 lb . of potters elay, and brought to such a consistence that, when an article is dipped therein, a coating of about $\frac{1}{8}$ inch thick will be left upon it, forming the first coating or body, to support the glaze. After the first composition is set, the second composition or glazepowder is poured through the tube, which is turned round, so as to cause the powder to cover every part of the first composition. The second composition, or glaze-powder, is marle as follows :- 100 lb . of Cornish stone, ground to a powder, 117 lb . of borax, ground fine, 35 lb . of groda-ash, 35 lb . of saltpetre, 35 lb . of sifted slaked lime, 13 lb . of white sand, and 50 lb . of white glass, pounded fine, are mixed together and perfectly vitrified; when cool, the mixture is ground very fine in water, and afterwards dried, and then 45 lb . thereof and 1 lb . of sodaash are mixed together in hot water (being well stirred), and dried in a stove, by which means a fine glaze-powder is produced. The glaze-powder having then been poured through the tube, the latter is put into a stove, heated to about 919° Fabrenheit, to dry it; and, after this, the composition is fired, by placing the tube in a kiln or muffe, heated to a sufficient temperature to fuse the glaze. When the glaze is fused, the tube is withdrawn and examined; and, if the interior is not perfectly covered, a second coating of glaze-powder is applied (by pouring the powder through the tube whilst it is hot), and the tube is again replaced in the kiln until the glaze is fused.

GLASS, PORCELAIN, AND ARTIFICIAL STONE.

W. Hodoe, of St. Austell, Cornwall, for improvements in the manufacture of glass, porcelain, earthenvare, china, and artificial stone.-Patent dated Óctober $2,1851$.

For the purposes above specified, hornstone porphyry is adapted by the patentee as a material which has not been hitherto used.

Cham. -The application of this material, called elvan, to the manufacture of glass, porcelain, earthenware, china, sad artificial stone.

For the manufacture of glass, it is powdered, washed, and mixed with other pulverised materials in the melting-pot.

For the manufacture of porcelain, \&c., it may be used alone or in combination with other materials. It is powdered, brought to a plastic state, moulded, dried, and fired in the usual way. It can likewiee be employed for making glazes.

For the manufacture of artificial stone, it is used alone or combined with broken stone, and reduced to a plastic condition, moulded into blocks, dried, and fred in the usual manner.

HEATING AND VENTILATING.

D. Henderbon, of Glaggow, for an improved apparatus for generating gas, which apparatus may be used for heating and owher similar usefu 1 purposes; and other apparatus for healing and venti-lating.-Patent dated October $93,1851$.

Claims.-1, the combining aq apparatus with a kitchen-range, or heating or drying stove, for the manufacture of carburetted-
hydrogen gas, in such a manner that the first liquid products in the manufacture of gas are returned into the retorte for further distillation, whereby a greater quantity of gas is produced; $\boldsymbol{q}_{\text {, }}$ the placing a hydraulic valve on the tube that conveys the liquid products, to prevent the escape of gas; 3, the arranging the hydraulic main condenser, \&c., so as to cause the products to pase into the retorts by gravitation; 4, the application of a safety-valve described, to prevent too great a pressure of gas in the retorts; 5 , an apparatue for heating bathe; 6 , an apparatua for ventilating churches, \&c.

The apparatus for heating baths (shown in fig. 1) consists of a cylindrical tube E, communicating by the tubes G, and H, with the bath F. C, are gas-burners, which, being ignited, beat the water in the upper part of the cylindrical tube, and, being lighter than the water in the bath, it risea up the tube G, into the bath; the displaced water passing through the tube H, into the lower part of the cylindrical tube E. The heated air caused by the combustion of the gas, circulates in the portion of the framework A, and assista in heating the bath. B, is the portion of the framework supporting the bath.

Pig. 1.

Fig. 2.

The ventilating apparatus (shown in fig. 8) is placed at the apper part of the room roof, the lower portion open to the room and the upper to the atmosphere, and is formed of a circular inner casing of iron or earthenware A, and an outer casing of a conical shape F, both connected at the top and buttom; round the lower portion is placed a ring of gaslight jets C, which are ignited, and, being supplied with air through the openings D, heat the space B. The warm air issues through the boles \mathbf{E}, and causes a strong up-draught, which is assisted by the radiation from the circular casing A.

CASTING AND ANNEALING.

W. Ontors, of Southwark, Surrey, engineer, for improvements in the manufacture of nuts, mills and dies for engravers, lathe and other spindles; also of weft forks, shuttle tongues and tips for looms, by the application of materials not hitherto used for such purpases. -Patent dated October 16, 1851. [Reported in the Mechanics' Magazine.]

Chaim.-The manufacture of nuts, mills and dies for engravera, lathe and other spindles, and shuttle tongues and tips for looms, from metal of the kind to be described, by casting the same into the forms of the several articles, and then annealing these castings in the presence of uxide iron ore, or oxide of iron.
The improvements consist in manufacturing the several articlea above-mentioned in metal which is capable of being rendered malleable by annealing in the presence of oxide iron ore, or oxide of iron. The metal which the patentee uses is composed of two parts of hæmatite iron ore, four parts of steel of the ordinary make, and ninety-four parts by weight of iron, made from Cumberland or other similar ore. These several matters are melted together, and as it is found desirable to cast the articles to be made direct, instead of running the metal into ingots, and remelting it, the patentee prepares, from accurate metal patterns, sand moulds of the required shape, into which he casts the molten metal. The castings thus obtained are then annealed by placing them in an annealing kiln in boxes, in contact with powdered oxide iron ore, and ufterwards dressed and reduced to the exact required sizes and shapes of the several articles to be produced, by any of the means ordinarily employed for that purpone. The time required for the annealing will vary with the thickness of the articles under operation, as is well understood.

ON METALLIC CONSTRUCTIONS.

By W. Fatbairn, C.E., F.R.S

[Paper rend at the Mechanics' Institution, Manchester.]

It is nearly half a century since I first became acquainted with the engineering profession, and at that time the greater part of our mechanical operations were done by hand. On my first entrance into Manchester there were no self-acting tools; and the whole stock of an engineering or machine establishment might be summed up in a few ill-constructed lathen, a few drills and boring machines of rude construction. Now compare any of the present works with what they were in those days, and you will find a revolution of so extraordinary a character as to appear to those unacquainted with the subject scarcely entitled to credit. The change thus effected, and the improvements introduced into our constructive machinery are of the highest importance; and it gives me pleasure to add, that they chiefly belong to Manchester, are of Manchester growth, and from Manchester they have had their origin. It may be interesting to know something of the art of tool-making, and of the digcoveries and progress of machines, which have contributed so largely to multiply the manufactures, as well as the construction of other machines employed in practical mechanics. In Manchester the art of calico printing was in its infancy forty years ago; the flat presa, and one or at the most two coloured machines were all that were in use; the number of those machines is now greatly multiplied, and I believe some of them are capable of printing eight colours at once; and the art of bleaching, dyeing, and finishing, have undergone equal extension and improvement. In the manufacture of steam-engines there were only three or four eastablishments that could make them, and those were Boulton and Watt, of Soho; Fenton, Murray, and Wood, of Leeds; and Messrs. Sherratts, of this town. The engines of that day ranged from 3 up to 50 , or at most 70 horses' power; now they are made as high as 500, or in pairs from 1000 to 1800 horse. An order for a single engine at that time was considered a great work, and frequently took ten or twelve months to execute; now they are made by dozens, and that with a degree of dispatch as to render it no uncommon occurrence to see five or six engines of considerable power leave a single establishment in a month. In machine-making the same powers of production are apparent. In this department we find the same activity, the same certainty of action, and greatly increased production in the manufacture of the smaller machines than can possibly be attained in the larger and heavier description of work. The self-acting, turning, planing, grooving, and slotting machines have afforded so much accuracy and facility for construction as enable the mechanical practitioner to turn, bore, and shape with a degree of certainty almost amounting to mathematical precision. The mechanical operntions of the present day could not have been accomplisbed at any cost thirty years ago, and what was considered impossible at that time is now performed with a degree of intelligence and exactitude that never fail to accomplish the end in riew, and reduce the most obdurate mass to the required consistency, in all those forms so strikingly exemplified in the workshops of engineers and machinists. To the intelligent and observant stranger who visits these establishments, the first thing that strikes his attention is the mechanism of the self-acting tools; the ease with which they cut the hardest iron and steel, and the mathematical accuracy with which all the parts of a machine are brought into shape. When these implements are carefully examined, it ceases to be a wonder that our steam-engines and machines are so beautifully and correctly executed. We perceive the most curious and ingenious contrivances adapted to every purpose, and machinery which only required the attendance of a boy to supply the material and to apply the power, which is always at hand. This subject is an art-I would call it a science-which has occupied the attention of the greatest men from the days of Newton and Galileo, down to those of Watt and Smeaton, and it now receives attentive consideration from some of the ablest and most distinguished men of the present time. And of these I may instance Poncelet, Morni, Humboldt, Brewster, Babbage, Dr. Robison (of Armagh), Willis, and many others, to ahow the interest that is taken by these great men with the advancement of mechanical science. It must appear obvious to those who have studied and watched the unwearied invention and continued advancement which have aignalised the exertions of our eugineering and mechanical
induatry, that neithar difficulties nor danger, however formidable, can stand against the indomitahle spirit, skill, and perseverance of the English engineer; nor will it be denied that the ingenuity and nevar-failing rewonrces of our mechanical population are not only the inews of our manufacturea, railways, and ateam-boate, hut the pride and glory of our country. A great deal has been doae, but a grest deal more may yet be accomplished, if by auitable instruction we carefully etore the minds of our foremen and operatives with uaeful knowledge, and afford them those opportunities easential to its acquisition. We must try to unite theory with practice, and bring the philocopher into alose contact with the practical mechanic. We must try to remove prejudices, and to encourage a sounder cyetem of management in the manufactures, design, and projects of the useful arts. When this is accomplished, we shall no longer witnean abortions in construotion, but a aarefully, welldigented system of operations foanded on the unerring lawe of physical truth.
To the etudent in architeotura, enginearing, and building, there is ecarcely any acquirement more essential to profescional succean than a knowledge of the properties of materials which ase used in construction. It is more important than either akill in decign or correctnees of proportion, whatevar the character of the etructure-be it a house, a ship, a bridge, or a machine Before we enter upon its construction, and before we can attain a due and correct proportion of the parte, we must, as a preliminary inquiry, make ourselves acquainted with the material of which it 4 composed. We must itudy this material's powers of reaintance when expesed to the varied strains of tension, torion, and compremion. We must know something of ith elasticity cod its powers of reetoration under the strains and changes to which it may be subjected; and we must then apply that knowledge by distributing it in such form and quality as will beat meet the requiremonts of the case, and without incurring the charge of an unneceseary or wasteful expenditure. All this knowledge appears to me to be indirpeneable before we can attain anything like perfection in the art of construction, and po professor of the usaful arts, whether he be an architect, engineer, or builder, can ever lay claim to cound principles of construction, unless be is acquainted with the natural properties of the material with which he deals. I ghall, therefore, lay before you, in a tabulated forma short gummary of experimental facta, which you will, 1 think, find of some importance in their bearing apon the particular construction to which I allude.

Reristing Powers of Cast-Iron.- From a number of oarefully conducted experiments on cast-iron, I have seleoted the following remults. They are the highest in the order of their powers of reaistance to a transverse atrain, and as in each instance the bar if reduced to exactly 1 inch square, the results may fairly be eatimated as a criterion of the resisting powers of the different irons of Great Britain:-
Transoerse Strongth of Cent-Iron Bars, 1 inch oqwave, 4 ft. 6 in . betwoen the Supports.

From the above, it will be perceived that the average traneverse etrength of eleven epecimens of English, Welah, and 8 cotch iron is 471 lb . on 1 inch equare bars, 4 ft .6 in . between the supports. These again give a mean deflection of 1.675 inches, and a power to resist impect of 817. Similar irons will reaist a tenaile strain and a cruating force per aquare inch as follow:-

Emperimental rowlte to doternine the whimate Powert of Remistane to a Theeits and Crueking Strath: Specinars oceh 1 in in, high,

Dencription	lroa.	Tensile strongth per 89 in. of mection.	Crombling mrength per mq. th. of wetion.	Ratle of Tearion to Oompretion
Low Moor,	No. 2	6.901 ton	41-219 tons.	1:59978
Clyde,	No. 2	7.949	45-349	1:5.729
Blenarros,	No. 2	$7 \cdot 466$	45.717	$1: 6.188$
Brymbo,	No. 3	6.928	84.356	$1: 4.968$
Mean	- .	7-309	41.710	1: $5 \cdot 707$

In the foregoing experiments, the Clyde and Blenarvon indicate the greatest powern of resistance, elther as regarde a tenile or a crushing strain.

In addition to the irons given above, which are those in comemon use, Mr. Stirling's mixed or toughened iron exhibite anosiderably increased powers of resistance to every description of strain when compared with the unmixed irons. Mr. Stirling has patented a processs for mixing a certain portion of malleable with cast iron, and when carefully fused in the crucible the product is equal to resist a tensile strain of nearly 11 tons per aquare inch, and a compressive one of upwards of 60 tons, the specimens being $1 \frac{1}{\frac{1}{2}}$ inch long and 1 inch square. Tbis mixtura, when judiciously managed and duly proportioned, incressee the strength about one-third above that of ordinary cait-iron. As the etrength of wrought-iron is not only a subject of great interest at the prosent moment, but is likely to become more wo every year, I shall have to trespass longer upon your attention than may be agreeable. It is, however, imperative that I should do so, as I shall have occasion before the close of my remarks, to refer to facte, and to deduce therefrom conclusions for the elacidation and illustration of my subject. The importance of an inquiry into the art of ahipbuilding will be appreciatod by you al, and when you bring to mind the dreadful casualties of navigation-the hardships of shipwreck, and the hurrora of fire -you will admit the vast importance of selecting the strongest and safest materials for the construction of our shipa. It is chiefly for this reason that 1 have selected this nubject, and ventured to impoee upon your attention a few dry figures, in order that you might become acquainted first of all with the strength and natural properties of the materials of which ships are ordinarily composed, and attach due weight to their judicious application and distribution in the attainment of a powerful, buoyant, and durable structure. I would not have ventured upon this critical and difficult subject without some practical experience, but having taken an active part, as wall as a deep interest, in the earliest stages of the application of iron as a material for shipbuilding, and having until the last two years been extensively engaged as a practical builder, I am perhapa the better able to offer a few suggestions on the advantages and superiority of iron in our war as well as in our mercantile marine. It is well.known to the public that the naval department of the government abandoned, a few years back (I think improperly so), the construction of irou vesels as shipe of war. The Admiralty, in my opinion, arrived at a very hasty conclusion in condemning the use of iron, after the very limited number of experimenta which had been tried upon iron targets and old iron vessels as to the effects of shot. At several of these experimenta I was requested to he present, and although the results were certainly unexpected, and perhape disoouraging, yet they did not, in my opinion, justify the abandonment of a material not only the atrongest and lighteat for such a purpose, but offering infinite security under all ordinary and many eitrsordinary circumstances. Even in war-steamen when in action the chances are in favour of the iron whip, an it is not only secure from fire, but is much stronger, and will sustain more atrain when aseailed by storms and hurricanea. Steamers can back out of difficulties and dangers when sailing ressels must remain exposed; they can amail the enemy at a greet diatance, and take up any position they choose; and with their great guns and long range inflict severe punishment, andido great erecution without receiving a single shot. Speed biting thus admitted to be an important element in our war marine, the iron ship, from its lightness and buoyancy, has another evident advantage over the wooden one, as an equal amount of power will propel it faster through the water. In the event of awar, the atoam marine of this country should have great comphand of power, to enable the ship to mancouvre at gea with alnost the same geometrical precision as a squadron of horse on parade. They should have the power to advance and retreat as circurnstances may require, and the new system of tactics which eventually must come into operation, should inspire confidence in
the crew as well as the commander, that the iron steamer is not only formideble but safe, as embodying all the elements of chenaive and defensive warfare. In our mercantile marine we are progreaing with better prospects and greater certainty; but the decision of the Admiralty to limit the construction of iron vessele in the mail and pecket service is, eccording to my views, unealled for, and, to say the least of it, inconsiderate. I trust the lords commiesioners of the Admiralty will see the necessity, the absolute importance, of rescinding that order, and that we chall not only witness the introduction of iron for that service, but more particularly when steam-power is employed in all and in overy condition of an effective and a mafe marine.

The Effect of Shot on Iron Fessels.-Although at firat sight alarming, they are, on more mature consideration, such as might Be reasonably expected. A number of experiments were undertaken some years since at the arsonal, Woolwich, to determine the effect of shot apon the hull of an iron vessel, and also with the riew of providing means for stopping the passage of water through a shot-hole near or below the water-line. The gun used In the experiment was a 3 -pounder, at the distance of 50 yards from the targets, and was loaded with the full charge of 10 lb . of powder and a eharge of 8 lb . to produce the effect of distance, or a long shot. At these experiments 1 was present, and the results-some of which I may venture to mentionwere exceedingly curious and interesting. The initial velocity

of the ball, 6 inches diameter, with a full charge of 10 lb . of powder, is about 1800 feet per second, and with 2 lb . of powder about 1000 feet. In these experiments there were five or six targets, about 6 feet aquare, compused of different thicknesses

H_{g} 2. - Seethon of lron Twgeth showing the Effect produced by the Shot. of plates, and variounly arranged so as to represent in offect as well as appearance e portion of the alde of an iron ship. The
ongraving (figs, 1, 2) represent a side view arid secition of the plates and fastenings of the targets, and the effect produced by the shot as it passed thruugh the plates, and in three or four experiments through a lining of india-rubber and cort-duat; which was specially introduced to abeorb or receive the splinters.

Whilot laying before you such information an poseem on the mbject of iron ahipbuilding, it is not my intention to trench upon the province of the marine arohitect as respecta the linea, and other detail required in construction. This field is alreedy occupied by men of superior talent, and the one that laye more immediately open before me is that which refers to the proportion of the parts, the diatribution of the material, and the equalisation of the powers of resistance to strain in all parts of the structure. These are considerations which, to a greater or lens degree, affect almont every description of mecharical comstraction. If we study the laws of natare, we nhall find in the endless varieties of construction in the animal and vegotable hingdoms no waste of material; that every animal and every plant is adspted to its parpose; its organisation in perfect; overy joint, musole, and fibre, is suited to the work it has to porform, and the utmoet harmony, evonomy of material, and due proportion of the parts are thre prominent features of the great tescher of all arte-Nature. With such examplea before us, with such a wide and wonderful range of objects, why should we blunder and hesitate when we should analyne and investigate? There is no mechanism so intricate bnt what wo find its compeer in nature, where we may find a rule for our guidance. We have, therefore, only to study the great Architect of the universe, and we need never be at a loas for examples, and above all, close approximations to the laws which govern all constructions. As our prement object is, however, to inquire into the laws which guide the expertenced shipbuilder in the proeecution of his art, it will be proper, in the first instance, to ascertain the nature and strength of the material he may choose to employ, in order to show the way it should be disposed to produce at a minimum cost the greatent ponsible offoct. For these objects I am fortunate in having before me a long saries of experiments which 1 made for the same object more than ten years ago. They have elicited a great many facta, of which the following is a ohort abstract, and which I truat may bo equally beneficial in this as they as they have been in other constructions.

Resistance of Wrought-Iron Plates to a Tensilo Strain.-In these experiments, which were made on five different sorts of iron, the tensile strengths in tons per square inch are as fol-low:-

Or, as 22.5: 23, equal to about $\frac{1}{4}$ in favour of those torn acrose the fibre. In following up the same investigation on timber, I found, according to Profesoor Barlow, of Woolvich, that the cohesive strength of different kinds of hard wood were-

Box $20,000 \mathrm{lb}$.	Beech 11,500 lb.
Ash 17,000	Oak. 10,000
Teak 15,000	Pear 9,800
Fir 12,000	Mahogany .. 8,000

Assuming. Mr. Barlow to be correct, and taking the main strength of iron-plate, as given in the experiments, at $49,656 \mathrm{lb}$. to the square inch, or say $50,000 \mathrm{lb}_{\text {, }}$, we have this comparicon in pounds between wood and iron:-

Hence it appears that malleable-iron plates are five times stronger than oak; or, in uther words, their powers of resistance to a force applied to tear them asunder is as 5 to 1 , making an iron-plate $\frac{1}{d}$-inch thick equal to an oak plank $2 \frac{1}{2}$ inches thick. In marine constructions, where the material in iron, our knowledge of its resisting powers would be incomplete, if we did not consider it in its union and all its bearings as regards its appli-
cation to shipbotlding. Unike timiter, which has to bereantiked between the jointe, with a tendency to force them open, the iron ahip is a solid mase of plates, which, if well riveted, will resist foroes-such as the action of the seas-that no timberbuilt ship, however strong, would be able to withstiand. The iron-built ship, when constructed with butt-joints, with interior covering plates, and amooth exterior surface, is superior as regards strength, buoyancy, and lightness, to any other veasel, of whatever material it may be constructed. In all these combinations it is, however, a desideratum to have the parta, the joinings, and the connections, as near as poseible of equal streagths. This in practice cannot always be accompliahed; but with due regard to a correct systam of riveting and careful formation of the joints, a near approximation to uniform strength may be obtained. As a practical guide to these objects, I shall append a short summary of the experiment indicating the relative atrengths of different forms of riveting, and in what they differ from the strength of the plates, taking the whole as are continuous maes without joints. The results obtained from forty-seven experiments on double and single riveting are hare recorded, the first column showing the breaking weight of the plates, the second the strength of singleriveted jointa, and the third that of double-riveted jointa, both of equal section to the plates, taken through the line of the rivets:-

lbe. per ma, inch.		lbe. per me. fach.		1ba. per se. Inch
57,724	. \cdot. ${ }^{\text {a }}$	45,743	52,352
61,879	36,606		48,821
58,322	...'.'.	43,141	-•••••	58,286
50,983	-.....	43,515	54,594
51,130		40,249	53,879
49,281		44,715		53,879
43,805	*....'	37,161	-
47,062		-		-
Mean. . 52,486		41,590		53,635

The relative strengthe will therefore be-for the plate, 1000 ; double-riveted joint, 1021; single-riveted joint, 791; which shows that the single-riveted joints have lost one-fifth of the actual strength of the plates, whilst the double-riveted joints have retained their resisting powera unimpaired. These are convincing proofs of the superior value of the double-riveted joints; and in all cases whare strength is required this descrip-
tion of joint mould never be emittal te a previoun madrios the strengths were as 1000 : 933 and 731; but tandiag the meen, we have 1000: 977 and 761 for the double and siagle riveteed, joints respectively. From these we must, however, deduote 30 per cent. for the loes of metal actually punched outh farsthe: reception of the riveta; and the abeolute atreagth of the plates: will then be to that of the riveted joints as the numbert 100 , 68, and 46. In some cases, where the rivets are wider mpart the loss sustained is not so great; but in iren shipg, bojers, and other veseels which require to be watextight, and where the rivets are close to each other, the edges of the platea are meak. ened to that extent. Taking, however, into consideration the circumstances under which the renulte were obtained, as cely two or three rivete came within the reach of experiment, and taking into account the additional atrength whith might be obtained by an increased number of rivets in combliation, and. the adhesion of the two surfaces of the platea in contact, we may reasonably assume the following proportiona, which, after. making every allowance, may be faily considered as the relative: value of wrought-iron plates and thoir riveted jointa. Talcing. the atrength of plates at 100 , we have for the double-riveted. joint 70, and for the single-riveted joint 56 ; which proportionen may safely be taken as the atandard value of joints, such as ase. used in vessels required to be steam or watertight, and exposed to a pressure varying from 10 lb . to 100 lb . on the tquare ineh.

Having thus eatablished correct date as respecte the strenith of materials, either singly or in combination, we ahall have lem difficulty in their application to the construetion of vesmala exposed to eevere strains, such as boilern, bridges, or an iren ship; and notwithatanding the boosted dealaration that the "wooden walls of Old England" are our mureat defencea, we shall not, in my opinion, eeriously injure, but greatly benofit our position by pinning our faith to the "iron walls of the mengirt iale." This, I am satisfied, will be the case if we persevere in the uee of a material which mant eventually supernede every other in the construction of vessels calculated to maintain tho ascendency of the British marine.
Iron Shipbuilding. - In the construction of iron ehips three important considerations precent thomalvea Fint, atreagh .and form; second, security; lastly, durability. To the first of these considerations it will be necessary to ascertain for what purpose the vessel is to be used. Let us assume te to be one of the Atlantic, or other great ocean steamers, adid we have

FI. 4.
model both in form and tonnage, that would become equally formidable as a war-steamer, or useful and commodious as a packet calealated to shorten the distance between the extreme points of a lengthened voyage. We must consider this important part of the queation in all those varied forms and conditions to which vesmels are aubjected under etrais, whether
arising from e tempestuous sea, or from being stranded on a shore, under circumstances where they are not only seribusty damaged, but whero wooden vessels frequently go to piecen and are entirely lost. In the former case, that of a tempent, auch as a tornado under the tropicis, whore ships are not anfrequently much strained, we have in the iron ehip, if propedly comstruoted,
grantly tacround voonatiy, mid provided wo take the ressel in ita beat eonatruction, and regard it aimply as a hage hollow beama or ghrder, we shall then be sble to apply with approximate truth the simple formula used in computing the strengths of the Britannia, and Conway, and other tabular bridges. Let us, for example, suppose a vessel of similar dimensions to the Girsot Weatera (the first steamer that successfully crossed the Atlantic), 918 feet long between perpendiculars, 35 feet beam, and 93 feet from the surface of the main deck to the bottom of the whesting attached to the keel. Now, assuming a vessel of this maguitude, with its machinery and cargo, to weigh 3000 tons; inaluding hor own weight, and supposing, in the first ingtance, that she is suspended on two points, the bow and stern at a dirtance of 910 feet, as shown in fig. 3 , we should have to cadcalate from some formula yet to be ascertained by experiment the correct sectional area of the plates, to prevent the tearing asunder of the bottom, and the quantity of material necesmary to resist the crumhing force along the line of the uppar deck. These data have yet to be determined; but the iron shipbuilder cannot be far wrong if he assumes the breaking woight in the middle to be equal to two-thirds of the united weight of sbip and cargo. This, in the case before us, would give an ultimate power of resistance of 2000 tons in the middle, or 4000 tons equally distributed along the ship with her keel downwarde. Let us now reverse the atrains, and bring the vemed into a totally diferent position, having the same weight of cargo on board, and aupported by a wave upon a single point in the middle, ss shown in fig. 4. In this position we find the triki reverved, and in place of the lower part of the hull of the ship befag in a state of tension, the whole of the parts above the meutral axis are subjected to that strain; and that tension, as wall se the compressive strain below, will be found to vary in degree as the ratio of the distances from the centre. In this cuppeed position, if we calculate the strengthe-as I have been in the habit of doing, when the vessel is placed in trying
circumstances, whether contending with the reiling set of a hurricane, or the actual suspension of either portion whan. taking ground-we arrive at the conclusion that these calculations determine the strength, and that under any contingent circumatances we have given a wide margin, and fully determined the strength of the ship.

I am fully a ware that many thousand vessels are now affont that would not stand one-third of the tests I have taken an the minimum, but that is no reason why we should not endeavoter to effect a more judicions distribution of material, and produce a maximum result, where the lives and fortunes of the public are at stake. On the question of security, we have fewer difinculties to contend with, and, so far as regarde construction, I have endeavoured to show, that in order to build a ship on principles as near perfectly secure as circumstances will admilt, that she must be calculated to withstand the trials I have proposed her calculated to bear. Exclusive, however, of the simple strength of the hull, there are other considerations which require attention, such as the danger from fire, leakage, or total shipwreck.
In naval constructions we have three elemente to contered with-fire, air, and water; and although we may effect in iron constructions extraordinary powers of resistance as respects the two latter, we are neverthelegs subject to censiderable rink as regards the former. It is true the hall of an iron ship will not burn, but the interior fittings, which are mootly of wood, if once ignited, might deatroy everything on board, unless the necessary precautions are taken by iron bulkheeds to cut off the communication from one division to another. From my own experience as a builder of iron vessels, I have found these bulkheads of inestimable value. They not only strengthen the ship transversely, but in case of injury to any part of the hull, any one of the divisions or compartments might be filled with water, and perhaps even the contents of that part burnt, without endangering the ship. These divisions, in fact, should be so

arranged as to insure the vessel floating under circumstances of irreparable damage to any one of those parts of the ship. Again, in case of fire, under the lamentable position in which the Amazon was placed, it might be advisable to have the extreme stem and stern bulkheads made double, with an sir-space between them, and a valve in each to fill them with water up to the line of immersion, and thus prevent the division plates on that side clear of the fire from becoming red-hot, and igniting the timber fittings in that part which for the time might form a place of retreit. Mueb may be dore in this way to mitigate, if not to avert, the cabaimitous and fatal consequences which ensue on thowe occanions. Budkheads of this description, coming up to the andsraide of the upper deck, might obstruct to some extent the commanication between deckr from one compartment to anotber; bus I beliove a oufforent freedon of aceess from one
part to another might eesily be effected by well-constructed iron doors, easily closed in case of accident, when they would become effectual barriers to the spread of destruction. In carrying these objects into effect, we must recur to the use of iron in every case where packet-ships and staamers are employed. They apply with the same force to her Majesty's navy, and particularly to steam frigatea, and ships of war with auxiliary power. It is true that the experiments already referred to of the dangerous effects of shot on the iron hull are alarming, but the amount of risk and destruction is always one of degree. I doubt whether the effects of shot on wooden veseels are less terrible, and undonbtedly the security gained by bulkheads and such contrivnaces are more than the claim to security. Besides, we are not yet satisied that these effects are so dangerones as has been represented. On the contrary, I aun of opinion that
they have been greatly exaggerated, and that increased experience will ultimately show that the iron ship, under all circumstances, affords greater security, whether for war or commerce, than any other construction. As a proof of the advantagen peculiar to iron as a material for ahipbuilding, and the greatly increased security which it offers in comparison with wood, the ongreving fig. 5 , showe the condition of the steamer Vanguard, which ran foul of a reef of roeks on the weat coast of Irelend, and continued beating upon them for several days with comparatively little injury. Another instance is that of the Great Britain, which stood the action of heavy seas beating her upon the sande and rocks of Dundrum Bay for the whole winter, and that without any serious damage to the hull.

Durability of Iron.-On this part of the subject there is considerable difference of opinion, but a very cursory view of this important question will at once show the great mperiority which exists on the side of iron against timber. Although I proposed at starting to treat of metallic constructions alone, I have found it useful to add a few data showing the strengths of different timbers which are used in combination with the metallic frameworks; and have therefore given the comparative strength of iron and the best English osk, in which it in proved that iron as a material is five times atronger than oak. This is, however, not the question which entern into the subject of durability, as the juinting of the one is incomparably superior to that of the other. In the building of the ships of the line, or large merchant vensels, the keel, beams, and timbers, are generally of oak or teak, made of three pieces, ingeniously contrived, and united by scarphs to each other to insure strength. The ribe or frames, which are solid and close to each other, are scarphed and jointed in the same way, and the outer sheathing, which is copper-fastened, is also attached with great care, and by croasing the vertical joints of the frames great strength is obtained. The connection of the deok-beams to the frames by strong iron knees is snother source of atrength, but with all the care and ingenuity and skill bestowed upon this construction, it is far from perfect in point of strength, as the vessel, when pitching and rolling in a heavy sea, produces motion at every joint, and it not unfrequently happens that the seams open end close to an extent sufficiently obvious as to the nature of the structure and defective union of the parts. Now in the iron ship we may venture to state that when all the parts are moundly riveted together there are no joints. The whole may be considered as continuous, consequently there can be no gielding, except from the elasticity of the mass to the action of the nea. The platem are the same as the planking or sheathing of timber-buift ships, and these plates are riveted to strong iron ribs, varying from 12 to 15 inches asunder, and answering the same purpose as the solid framing of a teak or oak vessel. As respects the comparative merits of wood and iron vessels on the score of durability, I am of opinion that the public has entertained very erroneous views with reference especially to oxidation, which for the last twenty years has been the "rock shead" of every iron ship. The extent of this evil has been greatly exaggerated, for there are instances of several iron vessels built twenty years agn, which are still in existence, with no sensible appearance of corrosion or decay, and what is of equal importance, without having required repairs, if we except a few coats of oil-paint, or the application of some other anticorrosive rubstance, to neutralise the effects of the atmosphere upon the material. Nature, however, comee to nur assistance in this as in almost every other attempt in the constructive arts, and seems to confirm the proverb that a "bright sword never rusts;" for it is with iron ships as with iron rails when in constant use, there is little if any appearance of oxidation. Taking, therefore, the whole circumstances into consideration, we may reasonably conclude that much has yet to be done in this department of the useful arta, and make no doubt that the iron ship of British origin will yet ride triumphant on every sea, as the harbinger of peace, the supporter of commerce, and the great and only security of our national defence.

If, in my attempt to elucidate a subject of such vast extent, and of such national importance, 1 have been sucoessful in conveying to your minds in plain words that knowledge which it is important we all should know, 1 have attained the main object of my appearance in this place.

At the conclusion of the paper, a vote of thanks to Mr. Fairbsirn was proposed and seconded, which was very warmly accorded.

neviewn.

Manual of Geogrophical Science, Mathemationh Physioal, Mistorical and Descriptive. London: Jaar W. ParEEK, Went Strsnd. Part 1, 1858.
To thuse who remamber receiving their first instructions in geographical acience from perusal of the meagre descriptions of the different portiong of the earth, and from the brief noticea given therewith of the principal mountains, rivers, and cities of anch country, which were dignified by thair authors with the pretentious titles of 'Grammar of Geography,' 'System of Geographical Iastruction,' \&o.-although they contained little begides definitions of terms, a few remaris upon the elements of astronomy, together with a table of the relative distances of the most noticeable members of the starry firmament, and some acanty etatistical information as to the chief productions and population of the great subdivisions of the earth's surface-the publication of the first part of the work under consideration will afford the means of forming a curious and not uninstructive contrast between the educational systems and requirements then and those of to-day. Society is no longer "content" that ita junior members, hereafter to be called upon to take their share in governing the peoples of the earth and in developing the resources of its productive powers, should be left to pick up whatever amount of information they pleased, on the odd afternoon in the week, reapecting the characteristics of the first and the nature of the last.
Now, it is necessary to know and clearly understand the principal phenomens connected with the earth:-Its correlation with the heavenly bodies; the laws that govern its movements; the direction of its waters, and of its circumambient atmoepheric currents; the vegetable productions of its surface, and their grouping in a Floza, and the arrangement of the animals dwalling upon it into a Fauna; and, lastly, the history of its crean tion and of the successive stages of ith growth through prehistoric periods, even almost from the first, when

```
"Ante mare et tellus et, quod tegit omala, colam,
Uans erat toto natura vultus is orbe,
Quem dicere chaons ruais indignetrque moles,
Nec quicquan, nist pondun iners; coggentaqne; eodem
Non bene functurum discordis eemina rervm " \(3 \rightarrow\)
```

derived from study of geological remaing, and in some capes from casual marks in rock and stones, up to the rich and vigorous devalopment of its ripened age to-day. Very different this from the days when pedagogues deemed, it needful to supply their pupils with no more important information regarding the vast steppes of Russia and their boundaries, rich in mineral wealth, than the fact that "a portion of their inhabitants were incorporated with the imperial army-the officers being distinguished from the common soldiers by wearing red boots." Nor could they find anything more remarkable in Parma than "the manufacture of a peculiar kind of cheese called, after the name of the town, 'Parmesan.'"
From these mere hornbooks of schoolboys to the voluminous works of Malte Brun and others of like description, which wers too often overlosded with political, statistical, and topographical details, and consequently unfitted for a clase-book in our schools and colleges, there was no work of an interniediate character which could be conveniently placed in the hands of studenta. "Hitherto," says the Editor of the 'Manual,' "those treatises [on geography intended to be used in education have been rather compendious works of reference, than introductions to the etudy of a science." The present work is a very praiseworthy and successful endeavour to supply this deficiency, by setting forth clearly the general principles of the science-in previous works mont strangely omitted-and "so to classify and aystematise the information contained in it, that it may be immediately available both to the teacher and the scholar; and, by the omisaion of all non-essential details, whether political, statistical, or topographical, to confine the attention to the principal subject."

The information contained in an introduction to Geographical soience is necessarily of a varied and comprehensive character. The physical history of the world requires, in order to be correctly understood by its student, a knowledge of several sciencen, each more or less connected with the other; and this necesaity has contributed as much as anything to retard the more asaidnous and wide-epread cultivation of it as a study at once amasing and instructive,-mure so probably than "the barren outlines of astronomy and paradoxical problems in the use of the globen, which made this acience mo unpalatable in our youthful daja," to
which the Edicor, the Rev. C. G. Nicholay, potntedly adverts in the preface. Leat this complex nature of the moience should operate to deter unscientific persons from the atudy of Geography, it is stated that "although the Fregr Part may appear to be composed of distinct and separate treatisen, it is presumed chat, on consideration, they will be found to form a conadetent whola -each Part, notwithstanding, complete in iteelf."

From what has been eadd it will be seen that Geography it not a simple but a compound maience, requiring, in order to its thorough comprehension, a knowledge d priori of Aetrozomy, Geology, Phynical Philomophy, Meteorology, Hydrology, Optice, Ethnology, and Mathematica, besiden, incidentally, numerous others. Instead of being termed a ceience, it la doubtful whether it would not be more appropriately designated m the agoregate of phyaical wiences. Such, at least, appears to have been the idea of the projectors of the 'Manual; and we are gled to add, that not only has the idea been well conceived, but faithfully carried out in the Part before um, Starting from the just and reasonable position that the atudents to whom they addreas themselves have had their minds sufficiently disciplined to be able to follow a chain of reasoning and that they poseses, at least, such an amount of mathematical knowledge as will enable them to measure an angle and solve an equation, the other ciences are treated ab initio as if they were not known to the reader.

Again, we are glad to cee thet the compilation of the teachings of these different sciences has not been intrusted to one man, who, however varied may be his acquiremente, could scarcely be mid to be competent to the tank of expounding equally well the doctrines of each; nor to an sbetract or generalizing philosophical writer, who, however grest may be the cherm of his diction and the benuty of his ideas, in not always to be relied upon,-for oftentimen them very beeutien are employed to sereen igrorance, and to support the senumed charecter of a meientific Admirable Crichten, to which there is no right or title. How often is this the case? The eloquent aportle of science proves to be a blind guide after all, who gropes his way-thanks to the folly of his followers-to the position he aspired to, and leaves them to wander in eccentric and unprofitable directions, or alse to remain immoveable in their ignorance, and blinded by the one solitary ray of borrowed knowledge he flashed acrosis their mental vision.

Nor are sound scientific attainments all that is necessary in - writer to insure euccess to his explanations. He must be posesesed of that often slighted but most important faoultythe knowledge how to teach-how to convey to the mind the requisite smount of inatruction clearly, anccinctly, and vividly, without overburdening or confusing it.

Soch, then, are the requisites, it appeara to un, that all olomentary treatises of any of the phyrical aciences should possess, to fulfil the parposes for which it is but fair to suppoes they vere intended-the advancement of eductation and the general apread among all classes of students of a correot knowledge of thooe lawe to which all the constituents of the universe are erbjected, but which were, till lately, deemed capahle of being correctly understood only by a few of the higheat mental calibre -men removed from the disturbing influences of vulgar life; While to the ot roidac they remained fearful mysteries, of which - faint glimmering was occasionally revealed as "through a glase darthy."

Tho 'Manual of Geográphical Science' approaches nearer to our ideal standard of excellency of a clasg-book than any that has hitherto come nnder obwervation. It is the joint production of gentlemen who, from their professions, must of necessity have considerable facility in the art of teaching, and each of whom has undertaken that branch which has long been his particular province to atudy and explain. In the first Part of the 'Mansal' before us, the chapters on Mathematical Geography are the work of the learned Profeseor of Natural Philoeophy and Astronomy in King's College, London-the Rev. M. O'Brien; and well has he performed his allotted task. His explanation of phenomena, hif enunciation of theories and demonstrations of prohlems, and his descriptions of the constructions and uses of various astronomical and optical instruments, are clear, diatinct, concise, and eary of comprehension;-no pedantic dispiny of high mathematical attainmenta, no affectation of novel or elegant notation in the expression of vell-known formule, but implicity in all things, and the avoidance of technical terms as much as possible, so as to render the theories of movements of planets, their actions on each other, and the methods
of aocertaining their position in ppece, and the mode of employing ingtrumente for such purpose, all capable of being readily seized and worked ont by any one of very ordinary mathematical acquirements. While upon this rubject, we do not hesitate to express our opinion, that it is high time the scientific socioties at home and abroad matually consented to the revision of the terms employed in describlng certain motions of heavenly bodies, and explaining the resulting phenomena, in order to render them consonant with the theory universally recognised as correct; and aleo to make the study of astronomy less difficult and obscure to beginners than it is. Where is the necessity and wiedom of maintaining the fiction-fiction although it is admitted to be-of the motion of the sun, which only serves to confuse and perplex the student? So long as the Aristotelian eystem was the orthodox one, and the Inquisition had power to ban and atigmatise as pernicious heretics those who doubted its correctnees, it was permitted to spesk of the circumpolar motion of the sun; but nous avons chargex tout cola, and now the truth -faintly sidadowed forth in the teachings of Pythagoras, Philolaus, and Nicatas, and never wholly lost amidst the darkness and false teachings which overspread the earth till the dawn of letterg-in recognised and established, thanks to the unselish labours of Copernicus, Galileo, and our own glorious Newton. Every one now knowe that the sun is the centre of our system, and that the earth revolves round the sun; wherefore, then, tell the atudent in one page that round the earth revolves the sun, "whowe motion in the heavens is the cause of so many important changes to us; thone changes from light to darkness, and from heat to cold, which give rise to day and night, and bring about in order the various seasons of the year"-and that, "by the combination of thene motion, the sun appears to deacribe an oblique circle in the hesvens, moving backwards (that is, from weat to east); moving in this circle, he crosses the equator at the time of the equinoxes, at an inclination to the equator of sbout 281 $_{\frac{1}{2}}{ }^{\circ}$; the circle is called the ecliptic, because eclipses of the sun and moon occur only when the moon crosses or comes near the circle"-and then, when the acholar clearly understands this statement, tell him, in the next page, that this is all incorrect, that "the proper motion of the sun is only apparent, being caused by the earth's real motion about the sun"? And, as if these contradictory teachinge were not gufficient to bewilder a young beginner, we persist in speaking of the annual motion of the earth round the sun, and, in the same breath, of the passage of the aun over the equator. Surely it were bettor far, even at the risk of incompleteness of demonstration, to set the truth simply before young minds: to say that the sun in the centre round which our planet revolves; that the axis of the earth is inclined to a horizontal plane, passing through the centre of the sun, in which the earth takes its path round the sun annually; that the intersection of this pathway with the earth's surface is the ecliptic, so called, because when the moon comes in this plane, between the earth and mun, or has the earth between it and the sun, eclipses of the sun or moon occur; that from the inclined position of the earth with reference to the horizontal plane pasaing through the centre of the sun, it follows that the intersection of the pathway with the earth's surface is inclined to the equator, "that circle, every part of which is at equal distances (i. e., 90°) from each pole; and lastly, that the points of intersection of the ecliptic with the equator are the equinores. We do not offer the above for adoption, but simply as a suggestion, and as evidence that it is practicable to explain the theory of "celestial motions" without the employment of incorrect and absurd hypotheses.
The chapter on Chartography is written by Colonel Jackson, late Secretary to the Royal Geographical Society, and, if we remember rightly, one of the earlient and most earnest promoters of the late College for Civil Engineers. We have selected a portion from this division of the work for quotation, not only because it is most ably written, and evinces a thorough knowledge and perfect mastery of a subject not generally understood, and which we never remember to have seen so well treated of in any previous work, but also because it is sure to interest and likely to prove of no inconsiderable utility to some of our readers, from the fact that we believe sources of information have been made available in the present instance that before were scarcely accessible. After explaining the different modes of projecting and reducing maps, and the merits of each, Colonel Jackson proceeds to explain the nature and advantages of topographical maps in particular, and gives the following admirable apercu of the various methods of drawing and engraving them, $\mathbf{0 0}$ as
to represent the undulations of the earth's surface on the flat surface of the map.

Toponmaphical Maps.
Table of the different modet employed in Drawing and Engraving.

Besidea the above seven moden there are several others, but which mast bo all clasaed under the arbitrary, except oue, which is mechanical, and of wbich we ahall say a word presently. In some of these the effect is produced by equatinta abading, in others by stippling. In some maps the bills are represented in perspective; in some the shading is effected by etched lines, atraight and waved, and dots, and all other modes whieh the engraver can devise to prodace effect.

Of the several syatems above-mentioned, we may observe that, where picturesque effect is all that is wanted, the arbitrary modes are superior to the syatematic: indeed, some maps executed according to this arbitrary wethod, represent, th the most striking and satiafactory manner, every undulation of the roil, from the gentlest rise to the highest and most abrupt eminences. They accordingly give a very perfect idea of the country, but are of no wee for the exact purposes of the engineer, or for the operations of an army. This is easily conceived. The engineer who hat to conatruct a canal, a railway, or any other kind of road, to form reservoirs, to drain marsbes, \&e., can be satisfied with nothing leas than positive levels, and these the arbitrary modes of drawing hilla, however effective they may be, do not supply. In like manner, the general must be able to see upon bis map where artillery and other wheel carriages can pasi, where his covalry can act, and where none but his light infantry can advance; what beights command or are commanded, \&cc.; he tberefore, like the engineer, muat know the positive amount of the slopen, and must accordingly discard the more beantiful, though to hira useless topogra. phical mapa, for those where he sees the actual slope and elevation of every foot of the ground.

As an example of arbitrary shading, we may mention the Ordnance Map of England, which can be seen at any time. In this topographical mop the effect is produced by etched lines; the light is supposed to fall upon the ground under an angle of 45 degrees, and on the map to come from the left hand upper corner; the shading is regalated accordingly, the greatest depth being given to the loftier and steeper eminences. Another and very beautiful example of arbitrary shading may be seen in the semi-topographical map of Sardinia, lately executed by General Marmora. In both these examples the shading it by etched lines. A map of very excellent effect as regards the bills, and which I shall have occasion to mention for another reason, has lately been executed at Vienna; in it the hills are in imitation of atippling, and the effect is truly excellent.

Of the syatematic modes, we shall mention only numbers 4,5 , and 7 . of our table; and first, of the method by contour lines alone, or the repretentation of the elevations of the surface hy curven of equal altitude. This method, admitting of a very near approach to geometric accuracy, has for engineering parposes a decided advantage over every other, though in some respects it is not without its inconveniences. As it has been much talked about lately, and is again coming into use, its history, and some details respecting $i t$, may not be unacceptable to the reader.

The firat ides of the contour system is attributed by some to Philip Buacte, bat by La Croix to M. Ducarla, who, he says, considering that if a line were drawn joining all those points on a chart which are marked as beving the asme depths of water, the contour thus traced would be that of a section cut off by a horizontal plane everywhere diatant from
the surface of the water by so many fathome, or feet, at ase marked by the soundinge-conceived means equally ingenious and atiafactory of geometrically representing the elevation of the ground, or the roliaf of a country. We shall occasionally employ this term relief, because it is both laconic and appropriate, and because we have no other single word, as farat Iknow, that answers so well. Whether it be to Buache or Dacarla that we are indebted for the firat idea of the contour aystem, it was firat published by M. Dupin Triel, in 1784. It consista in projecting vertically upon the plane of the horizon, linet passing through points equally raised abore the level of the ses; lines, in fact, which would mark the limite of the ocean, if, by any cause, it should rise to the saveral heighta indicated, in the same way as the lines joining equal sonadinge would become its successive limits if it were to sink to the depths of those soundingt.

The imaginary horizontal planes whose intersection with the elevations of the ground form the carves projected on the map, rise one abore the other by equal quantities; the actual amount of the rise, however, depends upon both the nature of the ground and the acale of the map. It is indeed self-evident, upon a little contideration, that in the case of very gently sloping ground, if the altitude of the section be conaiderable, the curves must neceasarily be very far apart from each other, whereas in elevations nearly perpendicular, the projection of rections taken at the same height, one above the other, would almost touch : those of a vertical cliff will in all cases coincide and form but one curve. Accordingly it is found convenient to inorease the vertical height of the sections as the hills are more ateep, and to diminiab it as the ground is more gently undulating.

The neceasity of varying the heigbts according to the scale of the masp is evident for a similar reason. For, if while the height of the sections remained the tame, the horizontal scale were enlarged or contracted, the same inconvenience would be produced. The vertical distances of the borizontal sections depend also upon the particular parpone for which the map is intended. Thas, while on the plans intended for certain engineering works, the sections may be from two to four or five feet of vertical altitude, in topographical mapt they may be mach greater. The pare contour syatem may even be used in general mapa, but then the vertical beights are necessarily very considerable. In Dupln Triel's map of France, on a acale of about gणoboroth, the first mections, beginning witb the sea-level on the coast, rise by ten toises each, where the ground fa neariy flat; further inland, where it rises more rapidly, the curvea indicate sections taken at twenty toises, then at fifty, then at one haudred. The first are observed in the north-western portion of the country, and the latter in the southern and south-eastern, where the more rapid slopes of the Pyrences and Jura occur. It is evident that whatever be tbe scile of the map, contour lines alone cannot convey that expression of relief that results from shading, unless they be exceedingly namerous and close. On a tale of roforth, or about $6 \frac{y}{3}$ inches to a mile, the relief may be aatiafactorily figured by contour lines alone. We do not, however, recommend their adoption where effect is to be atudied; they should be reserved for those purposes that require exact levels, at for draining, canal and road making, the defilement of fortifications, \&c., and in theme cates the distances of the curves from each otber are much too considerable to picture relief. On the Ordnance Survey the contours lately introduced represent sections taken at the altitude of 25 feet.

When contour lines are drawn upon chorographical mapa, it is evident the sections have not been levelled, that is to say, the horizontal plaves of equal altitude have not been determined hy the usulal process employed for amall diatances. The curves are drawn through points whose altitade has been ascertained by barometrical or trigonometrical means, and the sections are not flat parallel planes, but portions of concentric spheres, whose surfaces are parallel with the convex surface of the ocean. It is much to be regretted that curves of equal eltitade, anch at those on Dupin Triel's map of Prance, are not more generally applied; they would throw great light on a vast number of some of the most interesting problems of physical geography. We have a map of Ireland, on the scale of ten milen to an iuch, on which flve successive curves are drawn at the beiglits of $250,500,1000$, and 2000 feet, and the belto between these carves being tinted, produce a very effective picture of the positive and relative elevationa of different parts of the country. A map of Hong-Kong bat also been contoured in a very anccessfal maner, the scale being four inches to mile, and the section 100 feet vertical. Indeed, the aystem we are considering is admirably appropriated for islands, particularly when they are small, for the whole coast-line forms a closed curve, giving the lowest horizontal plane, or starting point, in all directions; whereas in sectional maps, that is, maps of a portion of country, the rectangular edges of the map interiect many of the curves. This inconvenience is in part obviated by the addition of numbers to the carves; the same numbers dennting, of course, the same levels.

Closed curves may represent depressions, an well as elevations, and this is one of the disadvantages of the system; bat if the curves are nambered, a little attention will suffice for determining whether the closed curves belong to elevations or depressions. If the number on the innermost or smallest curve he greater than that of the curve next to i, the curves are those of an elevation; but lf, on the contrary, the number on the innermont curve be amaller than that of the carve next to ft , the
minver afe thof of a depreision. Ceptain Vetelb, of the lloyal Bogheert, Weproponed to sdd to the contour linee, short etehed lines on the side on whieh the ground falle, which efiectmally provant all ambigrity on the subjeet.

Cpon the whols, then, the syatom of contour lines slone is by no matpa to be recommended as a mean of representing pictorially the inequallien or the relief of the sarface on mape; but when positive fevils are regulred, wie know of no mode possensing equal adrantages. I does nof therefore belong to mapa constructed for general geographical farpotes, bat to mapa dealgned for spechal objects. Wo now pats on to tie conrideration of the filth system of on table.

The Prench, who atteeb much higher importance than we do to carrect tepresentalion of the inequalities of the surface in topographical mape, bare it verions times connidered the subjeet in committees called together by the government, and composed of the heads of all thowe sciotatio Ptpertments for those porposes good maps are esential, mech th the Ahhmajor, the corpe of angineers, civil and military, the mining dopartment, the woode and foreath, the department of bridge and highways, and the beade of the several great echoole, such an the Beole d'Application of the Geogrtphical Brgiveen, the School of the Bett-Major, that of the Thaing Corpe, that of St. Cyr, de. These committont bave on some eccumions ent for three or four yearn, goint mont mitately into every actail of tha maject, aod having tha mane portione of groand drewn aod angrayed apos a veriety of comien, asd meeordins to every marinty of mode.

We eannot, of eourse, encmerate all the opiaions that were emitted by thee mopt eompotent persones of the respective advantages and diead. rastages of the several syatems, and their numeroas modifications; suffice it is this place to say, that no syotem hat yet been devised that is Thally upobjectionable; thas, bowever, which was at leagth adopted by The majority, and which is at this moment sanctioned by the govornment, ts that which bears the number 5 of our list.

This system is oulcalated to offer, as far ats possible, the doable adrostage of geometrical aceuracy and pictaresque effect. It in a combination of the eougar lines with tho hechurer or otched linet, theoe latiter prosdedne the requinite tinis of chade, which convey to the eje the errect of achial, and that with so mueh truer effect, as this vory shedias is anbject to ralen and is dotamised in atriot relation to the contoar lines themcelreet These latter being determined and drawo upon the map, the eques between them is filled ap with etched linee, whose length is deterpised by the dietance between two contignons contonrs, while their directios is perpendicular to the contour lines; they are eccordiogly the projectiom of the llaes of greatent slope, of those, in fact, which water, ared epos by penty slope, woald follow in ravaing dows the amface, The thinkum of thee lines in not determaned by any rula in the aystam Te tre agw conaideriag; bet whetaver it may bo, it it apiforn throegheats the tint of the thading being wfocted by the greaver or lous diampos laft betwean tha atreken, and thin in (axcept in the oxtreen cagee we shall prominly molice) imeriably ore-fourth of the diatence of the two coptigmons eontoor lines between which they are drawn Whon the ver. tical heifbta of the horizontal sections whome projections form the con. cour liaes of the map are equal, it in evident that the contorr linee will approsimate so mach clower as the alope of the ground is the more rapid; and as the distance between the strokes is regalated by that of the contoor lines, it is clear that the Dearer the contour unes, the closer will be the hachara (etched lines, or atroke of shadiag) to each other, and coneequently the darker the tint or shade produced by their meanf. Therefore, the steeper the slope the darker the shading, and that withont any direet reference to the way, either alanting or vertical, in which the Bgtes in mpposed to fall. When the contour lines are diatant from each oster, the atroken of shading, being always cac-fourth of the dintamoe btween the coptorr lines, will also be far epert, which of coaros prodwen a rery fint tint, such at in required for the reprempintion of th mery coutlo riopes
We have stated that, in extreme cases, the role of ene-forith of the intanes of the contour lines is not obwerved, ased for obvious remons, So been st the contome ran to otreight, of nearly atraight lince, the trokes which are perpendicular to one of them will aleo be perpendicular t. the eontignons one, and the dimunce of one atroke from another will be overy where the same. Bat when the contur lines form carves, the dintano of one-fourth boing taken on the upper line, and the atrokes frann perpeodicalar to it, these stroket naturally diverge as they \$aneend, so that at their contact with the next eurve their distance is greater. If the distance between tbese curved contours be not great, the divargance of the atroket of shading is of littie consequence; but if the contoons are wido apart, and the stroken sherefore loogs, the diverfonce becomes an object worthy of attention; and accordingly, in auch enas the distance of one-fourth is taken, not upon the contonr lines thencelve, but on one drewa for the parpose midway between the two, What the atrokes are brought closer togetber, and the inconvenie日es of excescive diversence is remedied.
The other axyrome ane is the oppolite of the one just explained-

 the law of owe-farth gives place to an ingrased thicicnest in the stroice themalres, by which the vary deple tint receined far the shado of suoh mpid alopes ta the coatiguity of the contouss indianm in eqpall well cribeted.

Sach, then, in an liea of the Sfth ryatem oa oar list, and.which ia that geocrally adopted In Frasee, and aloo in the Uaficed 8talas, whore they have leant it from the Preneb; and some of the topotaphical arpe hately exeonted at Nev Yerk, aceording to this syatem, are oxtremeds beautifus The sixth oystem of our tahle, which is that edvoested by Golooel Bonne, was mactioned by the Preach goresoment, in 1828, fot the Dépet de la Guerre, mere eepecially for sech mape at were to be engrived. It diftern frose the fifth, but they both combine the two greet reguisites of geometrieal socuracy and pietaresque eftect. The coctonre boing preserved, ere eanily traesable by bratk in the continuity of the shading strokes or elched limen; overy gradation of leval in marked for engiocering and militery parpoea, whil the ahadiog ifture at once the andolations of the arrfice and pointe ont the sereral degrese of inclingtioi of all the slopes of the gronad. Let man pase on to the seventh symom of our lint

Is Germany and mome other comptrien the aode of reprementint the inequalities of the murfice in topographical eaps, differs eateatially from the Freach aytiom we have juat soticed. That gomerally adopted. though slighty modisiod in dicoreat pleces, is knewn as Labmana't, or the Sazen method. In it thare are no eontone lines; the olopen or
 soove, bat then the thinences of thone, and thoir dintances apart, asa regulated secordiat to sente, to thet a doternimed proportion is main. mined botrreen the rapidity of the slopen and the intensity of the abadine by which thery are mpresemad. The direction of the atrokem in that of the gremetat alupe; their thitcmon and distave apert in detormined as Sollowe :-

The light is conceived at filling vertionthy upoe the groand, aod, secordingh, the different parts of the surface will be more or leas illamised as they are more of lese inclined to the supposed vertical rays of the san. A horizontal warface reseiving tha fall effect of these rays, will, in meture, be the lighteas, and is therefore represented on the map withont any ohading; while a highly inclined eliff, recoiving fow of the vertionl raje. will be rery dart in mature, and is accordingly represented by a very dark shading on the map. To detormine a regular gradation, bowever, between the mont and the lemt illamined sarfaces, the following syitem Fta determined on.

The angle of 45° wat regarded ay the greatett natural stope of the ground, and thie wem anpposed noillumined. From thlo fachination dewt to the borizontal, all intermediate alopes were supposed to be Mlnmined inversely as the anglet of eleration, and hence the angle of any slope Ieve than 43°, and it sepplement, or what it waste of thes nomber, were conaldered as the proportional terms of lifht and hade on any declivty. Thus the proportion of light and abade os a declivity of 50 was said to be as 40 to 3 , or 8 to I tmon a decivity of 10° an 35 to 10 , or 34 to $1 ;-0$ a declivity of $15^{\circ}, a t 30$ to 15 , or 2 to 1, trot These soppositiens-ris, that a slope of 48° is the greatent nataral slope of the tround-What sech a dope reeeives no vertical lighl-apd that the qgantity of light received by all slopen of leat ipclination than 45° is in proportion to anch inclination, are perfectly gratuitons, the facts being1. That 60° is the greecent netural alope of the soil; -2 . That a slope of 45° receivea a very coasiderable quantity of vertical ligbt; and 3. That the amonnt of vertical light received by any slope whatever is exactly in proportion to the cosine of the angle of sach slope. Hence it is ciear, that thongh the Saxon method of representiog the rellef of the gronad be syatematic, it is by do means natural : is is, in fect, conventional syatem, whow practical execution is thas effected:-

All alopes of 45° and upwards are represented on the map by abeolate black. All slopes below this, down to the horizontal, are represented by gradonted tints of shade growing lighter as the deelivity is leen, till, it the horizontal, the paper is left perfectls white. As it would be impossible to represent every miante difference of inclination from 45° to horiconcality, or to pase from absolate black to perfect white, so that the aye ocald at owee detect the difference between contignons shades, the tint is effected by nine different grades of shading each indicating a difference of b° in the slopa. The mechavical means employed to prodoce these nine different tints is by hechuree diawn in the direction of the greateat slope, and the thicknets of theae hechwres, or etohod lises, bears the tame proportion to the white space left betweerr them that the angle of the slope to be represented beara to whit it wants of 45°. Thus-

Anglen Hor. $5^{\circ} 10^{\circ} 15^{\circ} 20^{\circ} 25^{\circ} 30^{\circ} 35^{\circ} 40^{\circ} 45^{\circ}$ Proportion of $\left\{\begin{array}{lccccccccc}\text { Bleck } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \text { White } & 9 & 8 & 7 & 6 & 3 & 4 & 3 & 2 & 1\end{array}\right)$
If tha slope to be represented be ose of 30°, ite complement, os whyt it wants of 45°, in 15°, which being the half of 30°, the bleck lines will be twice at thick as the white apaces left between them, and as 46° is represeated by perfect blackness, and from this to perfeet whiterems hatividel ime aine gredes of shades, it it clear, enct of sthese grades belomen

40° will have eight bleck and one whito- 35° will have coven bleck and two whito- 30° sir hlack and three white, and 00 on, as in the above teble; whonee it la seen that, while the shading for a slope of 50° is prodoced by hechares whose thickneen is to the apeee botween them at 6 to 3 , or 2 to 1 , that of a slope of 15° is produced hy hachares whone shickneas is to the white space betwees them as 3 to 6 , or as 1 to 2. The tinte thas become anccestively lighter as the rapidity of the alope diminahee, and although the progression is not a natural one, it is invariably determined hy a conventional teale, so that, if atrictiy adhered to in practice, not only the relative steepness of the bille is pieturesquely represented so as to produce the sentiment of relief, but the positire amount of the inclination la shown; and farther, as the length of the slopes on the mape is the horizontal projection of anch siopes, it is evideat that thle, the Sexon, or Lehmann, agatem, eapplies the means of ohtaining as correct a profile of the ground as the contour syatern of the Prench. Unfortunately, however, the practice of this method does not answer to the theory. In the firat piace, it is exceediagly difieult in execntion. No dranghtaman, whatever skill be may bave acquired, or however carefal be may be, can keep atrictiy to the thicknese of the strokes, and to the distance between them, required by the cale, and without the mont perfoct accursey in this respect, the-ayatem loses it chiof advantage. The labour of draming such myriads of small atrokes fatigues the eye, and diminishes its facuity of discriminating the thickneas of the stroken and the breadith of the spaces botween them; the hand becomea unateady, the pen wears thicker, the ink evaporates while you are working, and thun, insentibly, you are drawing a alope of $5^{\circ}, 10^{\circ}$, or 15° greater ateepneas than you should do; and even suppoaing the most favorrable case of very exact and cleper dranghtamen, there is celdom naiformity between the several parts of the name map when executed by different pertons ; the engraver may also falsify the whole; and if we add, that when the alopen are not taken in the feld with instrumenth, but merely by the eye, they canot be mathematically correct, and that, accordingly, a profle drawn from the map, may give heighte very different from what they are in natare-it will be evident that the German method, though ingenions, though aystematic and beantiful when carefuliy executed, is liabie to so many defects in practice, to atill to leave room for something more perfect, more asay of application, lean tediont, lesa expensive, and more readily naderstood by the pablic at large, for whom, efter all, mapt are made.

We must confess, we fear, that in addition to the intrinsic worth of the chapter, we have been led to select the preceding passage for quotation from the fact that it contains the truest estimate we have met with for a long time of the proper value, to practical engineers and surveyors, of the Ordnance Map, which has cost the nation so much money, and of which we have heard so much hoasting in cortain quarters. We certsinly knew that, eaccept for "pictorial purposes"-to show a projected line of railway in s district in which "no engineering difficulties existed, " and thereby dazzle a select committee of the House of Commons, and fascinste reliant shareholders, to the great benefit of the promoters-the Ordnance Map of England was of no utility; but we certainly were not prepared for the preceding frank avowal contained in the two passages we have printed in italics.

The other portions of the first Part of the 'Manual'-embracing "Physical Geography," by Profescor Ansted, whose excellent treatise on geology was noticed at the time of publication in this Journal, and "Theory of Deacription and Geographical Terminology," by the Editor-wa must defer noticing till the publication of the second Part.

Designe for Monuments and Tombr.-By D. A. Crazeron. 1859. Parts 1, 2, and 3.*
The professed object of the author of 'Designs for Monuments and Tombs is meritorious in a twofold point of view-to induce the more general adoption of artistic forms in the monuments themselves, and the due subordination of their acceasories, so that all things in a cemetery may be in keeping with the mournful purpose to which it is devoted.

Although not a subject likely to attract very conaiderable attention, nor to create any great amount of interest, there are few disinterested parties, we imagine, to be found who will venture to deny that some sort of authority-municipal by pre-ference-is needed, which, without adopting a course of action at once officious and offensive, shall yet command sufficient reapect, or, if necessary, power to effect a reform in those laws and customs which regulate the interment of the dead. We do not allude to the thrice-vered question of burial intra muraf, although that is most important, for within the walls of a busy
city candot be deemed fit resting-place for thowe who "fleep the last sleep." Our present purpose is to deal mith structuree ins memoriam, which, from their grosi violation of the simplest canons of art and laws of propriety, desecrate come of ous noblest devotional edifices, and even the poorest churchyards.

The indifference to these matters of those high in place and in authority, who should set an example-which is amply evidenced by the groteaque and outrageous productions in St. Paul's and elsewhere-has induced Mr. Clarkson to addreas himself directly to the public, in the belief, we fancy, that as it is with them the improvement will originate, it will be much facilitated by bringing under immediate observation apecimens of artistic and appropriate designs. The Parts already before us are very creditable samples of his good taste, both in deaign and trestment of the subject, and will serve as admirable textbooks and authority not only to those who heve the erection of epulchral monuments, but also to those who have the supervision of our churches and cemeteries. If carefully perused, as they deserve to be, we may hope to see workers in stone controlled by the principles of good tasto, and the writers of epitaphs subjected to the rules of common-sense. As an apt example and lesson to us, Mr. Clariceon quotes the practice of the Romans: "Faithful to the consistenoy of good taste" he eays, "they never conceived (as has been witnessed lately in some cemeteries) the revolting and ridiculous ides of enlivening them. They excluded from their eepulchral decorations the myrtle and rose, consecrated to love and banquets; and the hyacinth and hawthorn, which are appropriate to Hymen. Neither would they have introduced sculpture associated with heathen mythology-the butterfy, the circular serpent, the sepulchral lamp, and the reversed torch-in Gothic sepulchres."

Tables for Calculating Cullings and Embankments required in the construction of Raile, Railways, Canale, Dams, Sc.; applicable to every variety of ground, and extending for heights or depthe coery tenth of a foot, from one-tenth up to seventy feet, with Euplanations and Examples. By James Hennergon, C.E. and Architect. London: Weale. 1859.
The Practice of Embanking Lands from the Sea. By Jorm Wigains, F.G.S. Parts I, and II, London: Weale, 1852^{2}.
Since the publication, in 1847, of Mr. Beabforth's tebles for calculating earthworks, engineers and gurveyors heve beeas favoured with several productions of a like nature, all proferaing to have for their immediate object the diminution of the laboura of practical men, by the simplification of formula, the reduction of operations, and the construction of tables, which while compressed within an easy limit, are capable of being rendered very comprehensive. The fact of such publications appearing we look on as most satisfactory and cheering evidence that students of the abstract and transcendental sciences are becoming gradually more alive to the wisdom and duty of their rendering their studies useful and available to some practicable purpose. To Mr. Bashforth belongs the honour of the initistive; and we rejoice to see that his example has been also followed by gentlemen who have risen to eminence in their profession, and to have proof that they are desirous to place the results of their matured knuwledge and practical experience at the disposition of their humbler brethren. With this view Mr. Henderson has published his "Tables." They possess the merit of being concise and simple, for while in tables computed from the present formula for calculating the sides of cuttings or ambank-ments- $b\left(a^{2}+a b+b^{2}\right) L, a$ and b being tbe height and depth of the cutting or embankment at each end-it is necessary to give separate quantities for every variation of a and b, in tables compated from the new formula, the adoption of which is advocated by Mr. Henderson- $\left(H^{2}+\frac{1}{1 y} \mathbf{D}^{3}\right) L, H$ being themean height or depth, and D the difference of height or depth-only one quantity is required for all heights or depths having the same mean, and one for all heights and depths having the same difference.

Again, "to carry out a table for the pyramidal or side parta of cuttings and embankments, based on the old formula, for every tenth of a foot of height or depth, from one-tenth up to fifty feet, upwards of 195,000 different quantities are required; but by means of the new formula the whole can be comprised within 1000."

To our professional readers, the preceding sketch of the advantages which these tables promise to realise, by simplifying the salution of engineering probloms, will be aufficient to enable
them to appreciate the value of Mr. Henderson's proposed formula. For ourselves, we believe that it has only to be known to be adopted.

The great impetus which the development of railways has given to the theory and practice of constructing earthworks generally, cannot fail, we think, to oxercise a most beneficial Influence upon that branch of civil engineering which has for its object the reclamation, by means of embankments, of land from the ses. These great and national undertakings have gradually led the way to the scientific investigation of the best forms to be given to banks to enable them to support great weight and resist the pressure of large bodies of water, whether flowing from land springs or the sea. The result of the superior knowledge and practical skill thus acquired will tend to simplify and facilitate the construction and reduce the cost of all sea embankments as compared with those of former periods. At a time, too, when the completion of our system of railways will naturally compel engineering talent to look to other channels for useful and profitable employment, we know of none to be preferred to that which will augment the too narrow limits of our country and increase ith productive powers. The appearance, therefore, of Mr. Wiggins' admirahle trentise (Parts I. and 11. of Weale's Rudimentary Series) upon 'The Practice of Embanking Lands from the Sea,' we hail as peculiarly opportune, as likely to direct the attention of landowners and capitalists to the subject. With this view we subjoin the following extract:-

The best soil for an intake, therefore, is that clayey earth whereon suftcient marine berbage growz to afford sheep-feed of some value, and this will be above the level of ordinary tides.

The next beat in ailty earth, with sheep-feed like that already mentioned an found ou the Lincolnshire cosat.

The thind is mad-banks with samphire, over which the apriag-tiden always fow.

The fourth is mud, over which the tide always flows more or lew, and this ha eligible in proportion to its clayey, matter.

The fifth is what in called sheer sand, which is almost barren, except as to a few planta, such as the eringo, the sand.rush, \&c.; bat sometimes even this zand is reodered to a certain degree fertile by the calcareous matter of comminuted shells, or may be rendered fertile by raining on its marface the marly tubatance sometimes found beneath.

A firith clase be deaignated in those andy and shingly danes, which continue for agea bare of vegetation, and are not worth embanking on acconnt of local value; and these muat be deeply covered with mond to eable them to grow anything.

LAMBETH WATERWORKS.

Tace Lambeth Water Company, who have heretofore had their works on the banks of the Thames between Waterloo and Wentminster Bridges, have been compelled by force of circumstances to meet the public demand, to remove their works for the purpose of giving a purer and better supply of water. The new works are situated at Ditton, on the bouth bank of the Thames, and at a short distance above Kingston; they have been erected, at a great expense, under the advice of the Company's engineer, Mr. James Simpson. The works were opened for the first time on March 30th, the occasion being commemorated by the attendance of a numerous body of members of parliament, directors, scientific gentlemen, and others connected with the parish.

The new works are erected on a piece of ground which has been embanked for a considerable length by piling, and parallel thereto, at a distance of 20 or 30 feet, have been constructed the filterers; there are four, each having two longitudinal chambers with segmental ends, 45 feet wide by 75 feet long at the springing, and 00 feet long including the circular ends; they are 30 feet deep, bat the upper 13 feet is carried up for keeping out the flood water only. The water is taken in from the river through two vertical cast-iron gratings, with fine copper-wire screens placed inside; and thence through a 36 -inch culvert running between two filterers, and with a branch on each side furnished with 30 -inch sluice-valves for delivering the water into the filterers on either side, where it is received in a semicircular chamber carried up to the top of the filtering media. As the water flows into this chamber, it gradually rises and flows over on to the surface of the filtering media. The reservoirs are 31 ft .7 in . deep, including 1 foot foundation of concrete, 5 inches brick paving, 4 feet storage for filtered water, t-inch slate alabe with open joints, upon whioh is laid the filter-
ing media, consisting of 18 inches of coarse Thames ballast, then 18 inches of cockle shells, then a layer of coarse sand, and lastly fine Thames sand-in all 5 feet thick; over which there is a body of water, 5 feet deep. As the water percolates through the filtering media, it passen into the storage below, and thence through 30 -inch culverts furnished with 30 -inch valves to the well under the engine-house.

The superficial area of each filterer is about 7800 feet, and of the four 31,200 feet super; and if $\frac{1}{4}$ pint of water be allowed to each superficial foot per minute, it will give a total filtering power of about 294 million gallons per day of 84 hours, supposing all are in action. Of course, if a larger quantity be filtered per minute, then the quantity we have taken as the total filterage will be incressed.
The engine establishment consists of four steam-engines conatructed from the designs of Mr. James Simpson, the Company's engineer; they are of 600 -horse power collectively, and are capable of pumping $10,000,000$ gallons of water daily into the Company's reservoirs at Brixton, and they can be linked so that any two of them may be worked as one engine of so0-horse power. They are of the kind known as the double or compound cylinder (high and low pressure) expansive engine, with all the latest improvements, among which may be particularly mentioned the patented improvements of Messrs. Pole and Thomson. They are economical in fuel, and possess considerable advantages in all other respects, and they are excellently adapted for pumping purposes, and meet the peculiar requirements of the present case-one of considerable difficulty, owing to the great length of the pumping main. The engines have compound cylinders for working high and low preasure steam. The smaller cylinder is 24 inches diameter and 5 ft .6 in . stroke, which receives the steam at 30 lb . pressure; it then passes into the larger cylinder, 48 inches diameter and 8 feet stroke, and by expansion is reduced down to 5 lb . steam, when it passes into the condensers. The engine-beam is 88 feet long, connectingrod 24 feet, and cranks 4 feet radius, fixed on to a rotary ahaft, with a large fly-wheel for each pair of engines.
The pomps are double-acting, with bucket and plunger, requiring only two valves (instead of four valves, with side pipes, as in the ordinary double-acting pump). The outer cylinder is 29 inches diameter, and 7 ft . Bin . stroke, and the plunger $16 \frac{1}{2}$ inches diameter, inside measure. The pumps are connected to the engines in such a manner that when any two are worked together, a constant and regular flow of water is insured through the main pipe. The water passes through the barrels of those pumps, direct into the main, without the stoppages and concussions incident in the ordinary four-valved double-acting pump. The engines and pumpe, and the apparatus connected with them have realised all the expectations of the Company's engineer, particularly as regards steadiness and quietude of motion and the equable flow of water in the main, the oscillations of pressure when the pumps are at work being scarcely perceptible. The engines, boilers, nad pumping machinery, have been constructed and erected under the immediate superintendence of $\mathbf{M r}$. David Thomson, the manager of Messre. Simpsona' Workn, Pimlico.

The boilers are nine iu number, are cylindrioal, $31 \mathrm{ft} 6 in.$. long, and $5 \mathrm{ft} .6 . \mathrm{in}$. diametor, emch having an internal furnace tube running its whole length. The boiler fittings are so arranged that any one or more boilers can be shut off while the rest are at work. The engines and boilers are placed in fireproof buildings adjuining each other. The chimney-ahaft is 100 feet high, and is concealed in a square tower. The Company's engineer, by adopting this kind of ateam-engine and pump, has been enabled to design these buildings an as to give sufficient strength, and secure perfect ateadiness; and at the same time to avoid the expense of great masses of material and to obriate the necessity of resorting to the expediant of a costly atandpipe.

The aqueduct or main pipe by which the water is conveyed from the engines at Ditton to the Company's reservoirs at Brixton, is 104 uiles in length, and formed of cast-iron pipes, 30 inches in diameter. The main pipe was cast by the well-known firm of Cochrane and Co., of Woodside Iron Works, near Dudley; the weight of iron in it is about 8000 tons. It is provided at various intervals in the length, with stop-valves, for preventing the back flow of the water, and all necessary apparatus for emptying, draining, and allowing for the escape of air. It bas been luid by Mr. William Baker, of Bristol, under the superintendence of Mr. John Brough Palmer, the resident exgineer.

PIHBROW'S WATRR WABTE PREVENTER

Tyin ertiola, mamufictured by Guest and Ohrimes, of Rathenbans, in intredoced for the purpose of detecting and preventing wowe of watar mpphied to the inhabitante of sowns by watormork, mhother such weate be wilfal (as is too eftem the case amongat the inconsiderate occupiens of sottage property), negligent, or accilontal from leakage or burating of pipes, leaving epan tepps sro, and is eapeoisuly applioable, and maty be nid to be almoet indiapenaable, where mater in supplied on the "high-preasure" and "oonatant-nupply" nytem. When it is conddered that ander this cyetem, at a proesure of any 150 feet the amalleat tap in ordianary weevis. IVineh, wid, if left open for only one night of ten hours, wate from four to five thous and gullows of weter, it will be moot manifeat that may maticle which will provent a weato of moch corious magnitude io ome that must frinf olain immediate etteation, and inoure axtenlive adoption.
The Water Waste Preseater by colemlated and gramanteed not oaly to remove thic difficulty, bat aleo to obviate the neeeraiky of stop-cocke, as these will be no longer required for the prepese of ghtting of water whilet repairs are boing made to tapa and pipes in consequence of leacage, the removal, or repaire of broken tapa er service pipes, burnaing of pipen from froet, or any other ordinary oause.

Fig. 1 ahows "the Preventer" in section with the bell in two penitions, one at then the mupphy of water hat beon drewn, and the baid theroby brought to the top of the tuhe, cloaing the servion appetare, as at B; the other when all in shut off, as at A. Fig. 9 shows "the Preventer" with ferrale for comneoting to the main pipe, at at and to the service supply pipe, as at B. It consists of a tube of cast-iros, or other meterial, having Aanges at each end, ons to attech to the man muply pipe; the other to the eservice supply pipe; a badl of peculiar material and gravity is inserted in the tube. The sube when attached to the main supply plpa, laid at an elevation varying according to the presulure at which the water is supplied, the service and being the higheat; if there is no leakage or drew opon the pipes, the bell will be, and remain at the bottem of the tube, as phown at A; but when water is required to be drawn, and the tap is opened for that purpone, or chould the pipe be burst, or water running to waste from any oause, the ball immediately and gradually aceands until the quantity of water the machine is intended to deliver has taken place, when the ball will have moved to the top of the tabe (as at B), and closed the aperture of the servioe supply pipe, and the delivery will have ceased until the tap be clowed, or the defecta remedied, when the ball will returu again to the bottom of the tuba, and further deliverien in succeasion may be obtained. From thin it will be seen that waste of water from the taps being left open for a longer time than while the required and limited delivery is taking place, ne mposerals. After such delivery has taken place, and whilat the tap continues open, the ball will remain at the top of the tube, alosing the service pipe aperture so that the merent driblet can esospe. And this will be the case under all the cincumstanoes from which undue waste of water arisu-whether from wanton mischief done to the pipen or taps-from bursting or other leakage of pipeo-frome taps in housee, yards, or watercloset being left open, or any other cause, wilful or socidental.

ON FIREARMS AND PROJECTILES.

By G. Bucharan, C.E.

[Paper read at the Roynd Scottith Society of Arts, March 8th.]

This paper gave an account of mome experiments made on the Minie rifie at Dalmahoy Moss, by Mesern. J. Dickson and Son, gunmakers, Edinburgh, and was introduced with mome obeervations and experimants by Mr. Buchanan an the genaral aubjeot of gunnery, which, he observed, had engaged the attention of the most eminent philosophers and mathematicians of modern timem, but the history of which, more than that of any other science, read to us the sober leason of caution in scipatifie isquiries, and the neceasity of combining with our resoarchen s continual refereace to practical experiments, It was in the year 1638 , juat about the period of the dawn of knowledga in Europe, that the illustrious Galileo proved, from the doctrine of falling bodies then discovered by him, that every projectile must move in the curve of a parabola: a striking, and no doubt beantiful law of motion, and quite true in an unreasiating modiuma, but totally inapplicable, as it turned out in practice, from the neglect of one element-the resistance of the air-which in those days, though weighed for the firat time in a balance by Galileo bimself, was yet commonly commidered, if material it all, far too thin and marial to have any infuence in comparions with the explosive force of gunyowder. Half a century anter this, we find the celebrated Dr. Halley-no doubt from imperr fect experiments-atill maintaining before the Royal Society the parabolic theory as a safe guide. Some allowance might be made in small shot, but the rule wauld hold, he sayg, in "shoatr ing great and weighty bombe," as if "this impedimant (the sir's resistance) were absolutely removed." Pratice and axperienco mowed the fallecy of this opinion, and the profound remomeses published shortly afterwards in the 'Principig' of Newton, on bodies moviag in renisting medis, led to mare eorrect notions From the weight of the air, it was by these caloulated that the resistance to a loaden bullet $\frac{3}{4}$-inch diannater, and weight $1 \frac{1}{3}$ or, would not be lees than 4 ib . -an amount not to be overloolined being fifty times the weight of the ball itself. This reuistace is not surprising, when we consider the effects of a hurricane of wind, which never exceeds forty or fifty miles an hour, whill the ball, as it issues from the piece, genaratea agoinst itwalf something like a blast, exceeding a thousand miles an hour. Still the calculations of Newton, though true enougb in alow motions, came far short of the reality, by not considering the extraordinary swiftness of the projeotile; and it was not till the celebrated researehes and practical experiments of Benjamin Robins, at Woolwich, confirmed by those of Hatton, that the true law of projectiles was developed and eatabliahed on a cure banis. Robins showed that the resistance on a three-quartar inch bullet, instoed of 4 lb . exceeded 18 lb .--being 120 times ite weight. These discoveries changed the whale aspect of gunnery The Galiean theory, with the initial velocity, now acourately determined, would have given a range of fifteen or aixteen milen, but actual practice had never exceeded two milea, or three mileo at the utmost, in any case. But another unexpected and equally important discovery was mado-that the air not only retarded and circumscribed the range of the projeotile, but oreated, by its anequal resistance, the most extraordinary deviaxiuns from the line of aim to the right or left, and this oven to astill grester extent than the contraction of the range in the vertion plane. This is the true cause of the limited power and nacertain aim of ordinary musketry, in regard to which some caraful experiments were made with percuasion mukets at Chatham in 1846, which show this effect in a striking light. At a sange of 100 yards, the deviation from the mark amounted to 4 ft .8 i os at 900 yards it was 9 ft .9 in .; and at 900 yards no leas than 19 feet. Nor was thin owing to any innecurncy of aim. With the musket fixed on a stand, and pointed precisely on the object, still at $\mathbf{2 0 0}$ yards, not one ball in tas struak a target 11 f foet high and 6 feet wide. Hence it appears that, beyond 150 yorde the fire of a musket in quite uncertain; and at 500 yards the chance of striking any one man is se exceedingly small se to be naxt to imposaible. Theea irregularities are asoribed partly to a rolling motion acquired by the ball in the amooth barrel, and partly to the unequal effect of the air's reaistance on the different sides of the ball, whereby there arisea a whirling motion, which Robins discovered in every ball, of a very irragular charaeter, and cansing a mont devious in place of a direct course To correot these evil, the idea was conceived, but by whom is wo-
known, of luanching the ball from the piece with a determinate rotatory or whirling motion, oommunicated by means of a spiral groove cut within the emooth surface of the barrei. This constitutes the principle of the Rifle, by which the ball, instead of being allowed, a formerly, to whir at random, receives a sotatory motion on an axis parallel to the line of fire, and by which ite aberrations are confined within narrow limits. If the ball, for instanca, makes only half a turn in a barrel 24 feet long it will make s whole rotation every δ feet. Any deviation, thewefore, in this little interval, instesd of going on as formerly, cartanding and secumplating in proportion to the distanca in correated, and the ball brought baok to its true path. This priaciple, therefore, is extrenely impla, and one moro ingenious In ecarcaly to be found in the whole range of mechanical invenNon. It is diffeult, not in the field, to exhibit tbe effect Froctically; but Mr. Buctanan gave a striking illustration, by a Emple experiment of dropping from the ceiling dinks of this rood or card, on the principle of the parachute. These, when dropped simply, deviated from the rertical line, and fell on the foor greatly to the itght or left of the mark, in consequence of the diak having a lean to one side, whereby the airs resistnnce acting obiiqnely, turned the disks aside. The mame diskn, with the same lean to the side, being dropped with a whirling mution communicated by the fingers, fell right down on the centre of the mark. From the aingular effects of this principle of rotasion, it was suggented whether it might not have some part, on a great scalo, in preserving the regularity of the earth's and planotary motions, where wo see the principle of rotation poraling univermally-ordeined, no duubt, for other grand parposes, bst atill, poombly, contributing in this mannor, in caberdinetion with other lawh, to that wonderful hermony which provades the aystern. In regard te the riflo, the soundnems of the principis has been tested and.proved by the une and extension F thin weapon all over the world. Hitherto ite application in mititary grectice has been limited, owing to the lose of time and earoful adjnatment required in loading the piece. But improveanate bave been long going on, particularly on the Continont; mal the greatebject has been to introduce balle, such as have been long used in rifies, of an eloagated or cylindro-conical shape, and small enough to pens easily, like the muaket-ball, downe the barrel. This was tried many years ago by Delvigna In Prance, by dropping the balls into the chamber and then ealarging them by blows from the ramrod so as to fill the groovee. Another plap in the musket terraed "Carabine a gige" was to form a bollow in the after-ond of the long balla, asd drop them on a small stom ctanding ap though the breech, and this penctrating the bollom, and there acting as a wedge, calarged the sides, and preased them into the grooves. This plan was hiable to ebjections. Bat the laot and greateat improvement appears to be that of Captain Minie, of the Freneh service, by introducing a small iron cup to close the hollow in the after-end of the ball, and the explosion of the charge driving thia cap into the hollow and compressing the included air, the effect is to expand the whole body of the ball, and press it effectually into the grooves of the rifle. From these improvementa, and the great attention which has been paid to the subject on the Continent, particularly in France, Norway, and Prustia, and the remarkable accounts which have been given of the succemeful remults in actual warfare, it appears as if the general tntroduction of this improved firearm is not far distant; and no doubt, for good or for evil, it seems destined to bring on important changen in military tactica, and the formation of armies. On these accounts, and from the general interest now excited, Mr. Buchanan had requested Messrs. Dicknon, whose attention had been much turned to the subject, to give the Society an eccount of their views and most interesting experiments at Dalmanoy.
Mr. Dracsos then addremed the meeting. After adverting to the afficient use of the rifle in the hands of a steady marksman, te gave an interenting socount of the practice in Switzerland, wheot the rifto is ued as e pastime as well as a truly national tasament-the landholders as well as the peasants mingling in the competition for the prizes; and by the spirit of emulation thes excited, the nativea of thim mountain range have attained a perfection exceeding that of any other country, and forming a beod of efficient mon, ready, at a moment's notice, to turn out for the national defence. Rife companies, in this country, would mo doubt form a powerful auxiliary to the regular army. Ae to the beat sifle for convenience and quick loading, there were anary conflicting opinions. The subject had long engaged their
attention, and they would give shortly the realt of theit experience. Bince the days of Robins, all sorts and shapen of balls hare been tried; and, indeed, as far they know, out of the many brought forward, few can be called new. The reported succeas of the Chasseure de Vincennes in Africa and at the siege of Rome, and the accaracy of their ohootiag, het ratsed a spirit of deeper inguiry into the gubject than formierly: The desaription and principle of the rife they had jant heard from Mr. Buchanan. Oval balls had at one time many friontat; and were used in India for buffalo shooting, but are now out of repate. Four-groeved balls were also in great estoem-both conical and spherical; they did not answer for long distancen, owing to the increased friction in the barrel retarding their flight. Three-grooved balls had also their advocates a few years ago, but after repented trialh, they ware.rejected on. similar grounds Abont twelve years ago, after long and repeated tests, Mensra. Dickson had adopted the two-grooved riffe, and found, in regard to the degree of spiral, that a quarter turn in - barrel of 50 inches was prefersble to any other, that being rafficient to give the rotatory motion, with the least powible friotion, the ball enly turning on its axis onee in seven yards. A foll tarn shoots as correctly at a short distance, but at a long range raries mach more. The conical ball has a docided atvantage over all others for correct shooting at a long range, and to the sportsman is quite invaluable; but as a projectile in active warfare, it is totally useless, the lobes or projections on the aldes requiring correct fitting into the barrel, not attainable in the hurry of warfare, or under any excitement; and this has been borne out by the experience and bitter disappointment of our gallant Riffe Brigade in the hour of need. They would now advert to what had excited such a sansation, namely, the Minié ball and riflo-muaket which was shown, baing one of thoge intended to be introduced into the service; there was alao ghown drawings and models on a large scale of this and other forms of ball. The Minié ball has a hollow in the back part whichasive9 to throw the centre of gravity forward and asaist the ball in ite fiight. Ento this hollow is insorted an izon cup, which, on the ignition of the charge is forced up into the hollow, causing the ball to awell out and fill the rifte grooves. For the purpose of general warfare, this rife and ball is preferable to any pew in use, Chiefly from the great facility equal to that of an ondinary musket-with which it could be Lotided; and it was shown brow easily the bail on entering the muzzle could drop into its place in the chamber. Anxious to try the effects and ascertaln the truth of the many statements circulated about it, Messiss. Dickson and Son procured tbis musket (one of those about to be introduced into the British army), and, through the kindness of the Earl of Morton, they got permission to use his grounde at Dalmakoy Mose, where they had, in presence of Colonel Montgumerie of the Artillery, and other competent judges, a fair trial along with thoir two-grooved and other rifles The targat was five yards square, and the ahooking at 900 and 1100 yarda. The Miné rifle-musket and Minié balls shot with eurprising accaracy, the balls boing carried well forward, and at the end of the shooting the target wee fairly riddled. The ordinary twogrooved rifles shot as well, and with this advantage, that the balls went quieker to the objeot, taking as near as could be ealculated $2 \frac{1}{2}$ seconds for the 900 yards, while the Minié balle took from $3 \frac{1}{8}$ to 5 secords for the same distance. The result might be summed up thus:--The Minié rifle-musket as a weapon of general warfare, is a decided improvement on the old mustet; atili the Minie muaket shown to the meeting might be greatly' improved to insure its efficiency, as well as to render it a weapon easier to handle, without detracting from its powers; and if a body of men were plicked out of each regiment, properly trained to its use, and practised at the long range, they would be a great acquimtion to the regiment, besides pell fitted for the annoyance of artillery, and even cavairy, at a distance; and, for guarding a pass or defilo, powerful and effective auxiliaries. A good deal having been said lately on the Prussian needle-igniting musket, they showed one of these, and explained its propertion, and the earious defecte to which it was lisble.

Mr. Momrian at a subpequent meeting, of the Society, brought uader notice his improved mould for Minié bulleta, and commented upon the Minie and other balle, showing the edvantage of the formar, and their applicability to overy description of rifling. He stated that, by casting the Minic ball with a certain shape of ourity, he found no occacion to noe the iron capsules at ally because the ball: expanded quite as well
without it, and shot as truly. The onvity in the lead was not made so deep. He also mentioned that it was quite a common thing to find that the iron capsule falls out of the ball after it is fired off, and frequently also turns half round in the cavity of the ball. Upon the whole, then, Mr. Mortimer considered that the capsule may be advantageously dispensed with. Mr. Mortimer illustrated his subject by a diagram, showing various forms of bullats, and gave an account of various interesting experiments carried on by him during the last three months, at distances varying from 150 to 1000 yards-at which latter distance the target was atruck by his improved Minié ball nine times out of ten consecutive shots.

INSTITUTION OF CIVIL ENGINEERS,

March 30.-James M. Rendel, Beq., Pretident, in the Chair.

The Paper read was "An Aceownt of the Drainage of the Town of Richmond, Surrey, under the authority of the Jetropolitan Cowmissionete of Seroers, in 1851." By Geozge Donaldson, Ahoc. Inat. C.B.
The drainage of Richmond, extending over an area of about 320 acres, wen undertaken by the Board in the yeur 1849, on the application of come of the principal inhabitanta, when the author was appointed to report on its then state, and to propose some general plan for ita im. provement. At that period, all the towage was collected into ceaspool, the liquid contents of which were allowed to drain into the earth, canaing offensive exhalationa from ite aurface, and contaminating the water in the adjacent wella, from which a large portion of the bouse water-supply wha drawn, whilst the cesapoola tbemselves were seldom emptied. In many of the atreets, however, there were brick drains, which had been from time to time constructed, for carrying off the surface and storm waters; hat these were not deep enongb to receive the honse drainage, Which it wa determined to effect by means of tubular stoneware pipes, entirely independent of and separate from the hrick drains, thas practically carrying out a ayatem on which very different opiniona had been entertained. At present the outfall of the severage wais into the Thames, near the railway bridge; but eventoally a main outfall sewer wat to be constructed to connect Richmond with the general ayotem of sewerage of the metropolis. The pipe refert were aboat 50,000 feet in length executed at a cont of abont 75001, rather more than balf consiating of minor or hranch rewers. The branch pipes, at far as the kerb of the foot-perement, were laid down at the same time as the main pipes, eact junction being formed at an acole angle, and ao arranged at to receive the drainage of three boases. Before being laid in the trenches, the pipes were atted together and marked, and afterwardn packed solidly round with earth. In some of the wet aendbeds it was considered advisable to lay the pipes on 2 -inct deala, 4 inches deep, fartened to stakes. The joints were made with well-tempered clay and cement, and it wat very important that they should be watertight, for othervise one of the chief advantages of pipe sewers over brick drains would be lost. After their completion, the pipes were proved, by allowing a fuch of water to pass throagb each separately for about ffteen or tweaty minutes. All the inleta to the house drains were trapped with ayphons, or bell-traps ; and the works generally had been perfectly zaccessulu.
In the disenasion which easuen, the comparative merita of the ayotems of separating the storm water from the hoase sererage, and of combining them in large sewern, were argued at great leagth. It was admitted that the separate aystem had not yot been tried for a sufficient length of time to arrive at definite resulth; but, as far as experience had hitherto gone, there was a general impresion In favoar of the combined system in main sewers of brick, not less than 4 feet higb, in order, not only that men ahould pacs eacily ap them, but that they should be able to work in them. The pipe drains even of 21 to 24 inches diemeter ware liable to be choked by deposit, and their areas had been so reduced, even where the separate aystem had been employed, that stoppaget had contlaually occurred; thus proving that the excluaion of road-drift was not entirely efflcacious. It was shown, also, that whenever it was necesmary to cat into the pipe drains, there was great injury from hreakage, and they were oltimately more expensive than brick drains. Attention wan directed to the inaccaracy of the poblibbed experiments of the Board of Health, on the diacharge of water through pipes, very carefully conducted experimento having produced resnlu widely differeat from those inaned by the Board.

4pril 6.-The diacuasion on the above paper occapied the whole evening. The aystem of pipe sewert and honve drains, of amall area, at compared with that of main brick sewera of considerable area with pipe bouse drains an feedera, wat fully discussed; and it was shown that the latter agitem wai much to be preferred, inanmuch as the small ares of the newly-introduced pipe sewer rendered them incapable of carrying off the sewage; that they very frequently became stopped up by accumulated matter from the honses ; that when this occurred, as their dimensions prevented a man from passing through them, great expense was incurred is breakiog ap the atreets, the pipes ir -"ioken to a great
extent, and at hazard, in seoktry for the moppaye; asd that even the weight of the earth in sinking frequently deotroyed theme pipen. The sjutem of back drainge, through different private properties, was objected to, Brick drains above 15 inches in diameter, were shown to be lem expenaive than pipen of the same area, and thelr derability to be mach greater. It wai stated that, in epite of constant streame of water throughi the pipe drains, it wat not ponilble to keep them free from accumalations caused by greave, hair, and other extraneona matters, evea at Richmond, which was perbaps an favourable a locality for the erial an coold havi been found ; the removal of the stoppages frequenthy cout an much at the original laying of the pipe draint, in coasequence of the Mability to agsregntion in them, al already stated. The struet cowera should, it general, and eapecially where the dectivtty wat monll, and the depth anderground wat considerable, be of sufilicient dimensions to allow a man to pass up eanily, to discover and remove obatructions.
With respeet to the alleged advantarg of the diminished friotion from the smooth interior curface of the pipe draina, it was shown that comeidermble minepprehencion existed on that part of the sabject, for thes, to point of fact, fluid friction was not dependent apon the socallied amsothness of the surface, and wat practically the sume in a roagh cast-irom pipa, amooth-drawn lead pipe, a pot drain, and a briek cewer; bat protuberances might have the effoct of obstructing the motion of heery solid subatauces adventitiounly present. It wa aleo abown that the form of the transverse section of the rower had much lens infuesce on the action of the sewer than had been recently aserted by certain poblise tuthoritien.
The experimenta on the fow of water through pipea, as detrailed in a recent blae book of the Board of Health, with the expremed otjeet of demonatrating the ignorance of civil engineert on this subject, wart brought under review. Some of the experiments had been repoebed by Mr. Hawkaloy, with the utmont attention to minute accaracy. The results were fonnd to be to atterly contradictory of the atatements made and the doctrines tuaght by the General Board of Health, and so atrik. ingly in conformity with formule well known to engineers, and with dedactions from philosophic principles, an well as the determinations of practice, as to fally warrant all persons engaged in cewage and other bydraulic works, in continuing their adhenion to the eatablisbed dete. The experiments were shown, and the formula was given.
dpril 13. -The firt paper read wa " decowat of a Swing Bridoce ower the River Rother, at Rye, on the line of the Lenford and Haofinge Braxch of the South-Eatern Raihoay." By C. May, M. Inat. C.B.
This hridge, which was constructed from the denigns of Mr. P. We Barlow, by Mesirs. Ransome and May, of Ipawich, althoagh similar in principle to others previoualy erected, presented nome tifference th the conatruction-in the arrangement of the tie-bar, in the rollers, and in otber details. The girders were 112 feet long, 3 ft. 6 in. deep in the centre, and 2 ft .6 in . at the endo, made ap in four leagths, one joint being in the centre, immediately over the support, and the othere between the centre and the ends. These girders were secured together at their ends, by means of cross girders, the underide of which were plaved, and inclined, so as to he sligbtly lifted, when swung home to their places, on girders secured to the land piers. Provision was made on the nader:side of the main girders at three placet on ench side of the centre of the bridge, for receiving the tie-bart, which all tended to one point over the middle. Kach tie-har wat four inches by one inch in rection, and wat adjuitable for tenaion by a right-handed and left-handed screm, the nut of one end of which wat in the tie.bar, and the other between two plates of wrought-iron resting on the side atandards, or \mathbf{A} frames, which were connected together by a wrought-iron arch. The traraing of the bridge was effected by means of spur gearing, worked from a platform projecting from the face of each girder. Two men could with ease open the bridge in two minutes; the total weight of metal, in the moving part, exclusive of the rondway, was about 130 tons.
The next paper read was "A Description of the Lattice beam Viaduct to cerry the Waterford and Kilkenny, Railway across the River Nore, near Thomastown, county Kukemny." By Captain H. S. Moonson, M. Inst. C.E.

The apan of the bridge was extended to 200 feet, chiefly in order to avoid the interference of the Inspecting Officers of the Board of Works (Ireland), whose proceedinge had, in other cases, been so vexations as to canse great delay in the execntion of works; and, in one instance, of a small arch of twelve feet span, crosing a stream, with a bottom of firm limestone rock, they had insioted on the excavation of this rock to a depth of 6 feet below the bed of the atream, and caused the foundations to be brought up in masonry from that depth. The length of she girder enabled the piers to be conatructod on the banks without the aid of cofferdams. The foundation was strong loam and gravel, for an average of about 10 feet, at which depth the limestone rock was reached. The river Fas subject to floods, which, riting rapidly, spread acroas the valley for a breadth of 180 yards, and to a depth of abont 16 foet in midchannel. The progress of the atructure was delayed by the financial affairs of the railway company; and on the original contractors resigning the work, it was completed by several others, among whom wea Mr. \&

Mrinett, M. Inat. C.B., whow eble ravitance, in the execotion of the wort, wes deservedly ealogiced by the author.
Detaile were given of the limestone piers, the material for which wan qearried cootiguomily to the bridge ; an aloo of the lime, and the moden of werking. The timber mad for the lattice-beamb, or girdert, was Mesmel fir. The whole wha worked to templates and gaugen, and the buant were conatructed with a carve, or camber, regralated by clonta spiked to the staging on which the beams were built. The intersections of the diagonals were all sceurately Atted, and double aplked; the waling pieces were drawir close hy bolta, and the joints made water-Light; the diegrael flooring was then bolted and spiked down, and on the trial of the beann, it whi found that, on knocking away the clenta, the defection wa about 3 iaches, which gredually increaved to $3 t$ inchet; after pansing woural trains acrose, at apsede varyiag between tweaty mileu and thirty milea an bour, the ultimate deflection (without a lond) becume $5 t$ inches. The maximam lond had been 65 toas. The Goverament Inapector however teated it by a train of loeded wagona, extandiag the entire length of the arch (200 feet), and weishing 146 tons. The resuit of this was, that the beam defected $2 t$ inchee usder the beaviest load, and rose again $1+$ inch, thus leaving a permanent defection, after the trials were concluded, of about $6 t$ inches. The atriaking of the timber, and the regalar tralie, produced a further sinkigg, so that now the entire amonat wa $7 \frac{1}{1}$ inches; bat the engineor bed calculated and allowed for a subuidence of 9 ineber.

Detriis were given of the quantities of materials of all kinds noed in the bridge, the entire cont of which was about 8100l; that of the timber arch alone wat aboat 15L. per foot ren, and the cont of the whole mass, talen an a solid, averaged 3e. 341 , per cuble jard.
Aprtl 20. The paper read was "The Economy of Reinocys as a moens of trearit, compriting the elcomiffection of the trafte, in relation to the moth approprisfe speedo for the conoryance of passengere asd suerchass\&mo." By Bratrimatre Poole, Ahoc. Inat, C.B.

After refering to tbe lafloence which cheap and rapid commanications bed on the prosperity of a nation, the anthor alluded to the rise and fall of the railway aystem in this conntry, expreating the belief that It would have been economical and wiso if the legilature had, in the firat inmance, delerrained the lines on which the aystem of railwayz shoold have been cometructed throughoot the kingdom, so as to have avoided the present rainoma competition. The pascenger traffic now exceeded, annually, four times the entire poppolation of Great Britaid, and wes convoyed at three timen the apeod and one-thind the farm formerly charged by the old stare, or mail conches; whilat the eort of convejance of merchadise, chaerale, and agricaltaral produce had been reduced full 50 per cent., as compered with the rates charged on canala and turapike-roade fifteen years ago. The ordinary fares for pancengers ranged from 2 id. to id. per mile ; aod for merchandice, from ld. to $6 d$. per ton per mile.
The author then proceeded to consider the economy which might be introdeced into the working of railways, and divided the subject into sixteen different beads, each of which referred to some particular point where it was thougbta a reduction of expenses might be made. The prinelpal point advanced was the amalgamating or working of all the rail. ways in four great divisiona, and insuring unity of management in every department, la the maintenance of the permanent way, and of the rolling atock, as well as in their manafacture, several improvemente in the conatruetion of the wagoas being suggested. It a general clasaificaHon of traina were arranged throughout the kingdom, separating each clase, and ranning them at different apeeds whenever practicable, it wat thought that it would be conducive to the intereat of all partief, at it Wan arged to be a manifeat injautice towarde those who paid the bigheat fares to ind third-cimen pamongert arriving at the mame time with them. Pametrality and regularity required to be strictly attended to for the manintenance of a certain definite speed.
Namerous instances were addaced to show the vast adrantages and economy of the railway tyatem, without which the Penny Pontage conld wot have been achieved, or the Great Exhibltion rendered avalable to the multitude; the produce of the land and seen in regetablea, fruit, meat, finh, all proviniose and foel, would have remaised as limited in consampHioa an beretofore, and the poor man's fire-dide in the sural districta woald never have been warmed by conl.
April 27.-The paper read wal "Railhoay Aceidente; their comee and mecose of prevention; detaling particularly the various contrivances which are is wee, and have boen propoped; wifh the regulations of some of the princtpal lives." By Caplain Mari Huise, Asooc. Inst. C.E.
The anthor Arat connidered those pointe connected with the road, and the machinery employed upon it, from which loss of life, and injory to person and property most generally arose. Wlth regard to the road, or permasent way, from which fewer accidente occurred than from any other cause, ita completn effectiveneas was the basis of all mafety in railway travelling; and for keeping it up constant vigilance was necesary, eapecially when any great and sudden change of weather took place, as then the weak points were ware to show themselves. It was a very rare oecorrence for trains to run off the line; and when they did so, it was more generally due to obstructiona designedly placed on the line, than to any neglect of the superinteadents, or the platelayert. It was little ners-
pected how frequent, how ingenioan, and how varied the attempta had become, to inflict a fearful idjury by these means; and though, providentially, but comparatively triting damage bed realited from such cause, jet it was lamentable to tad, that in addition to all ordinary risks, so diabolical a mode of wreaking a petty vengennce, or gratifying a misehievora diaposition, bad to be gairded againat. Of inte the ponithment for sach offences had been made more severe; and it was to be boped that thin would have the effect of leseening their number. Owing to the rapid devalopment of the traffic, and particularly of the beavy gooda traffic, ou the main artarial lines of the conntry, ipereaned siding accomwoodation had become necessary; in the case of the London and NorthWestera Railway alone, upwards of fifty-three milee had been laid down withis the lat fow yeart, although by malliplyiag poiste and crominger this had, pro tanto, donhtlem increscod theilinbility of aceident; for it might be received as an axiom, that anything whies broke the continuity of a rail tended to develope deager. As, however, there were no means of avoiding these frequent "taras out", jadicious reguiations combined with effecilve signala muat be relied on, and now that facing points were reduced in number, the linbility to danger had been diminished. The une of celf-acting avitches was alleaded with erile of no triting magnitade, and masy accidents had occurred from reliance on them; indeed, at a general rule, machinery to supersede personal inapection and manipala. Hon war fraget with dager.
With reapect to the rolling stock, it appeared from a retarn of one thousand caves of engine sailares and defects, within two yeura, on the Loudon and North-Westera Railway, that burat and leaky tubet nearly doubled any other clan of failare, and that thene, with hroken aprings and broken valvet, amounted to one-third of the whole namber; and thoagh they caused no direct danger to the public, sot at producing a temporary, or permanent inability of the engine to carry on its train, they might be the remote cause of colliaion. The pasienger carriage, from its parfect manafactare, presented almost complete immanity from nccideat ; for daring the last four years out of the large atock of the London and North.Westera Railway only aix wheels had failed; and though at frot some annoynuce and alarm had been experienced from heated axles, yet by the recent introdoction of the patent axle-box, it had been mach reduoed. The same prise could not be beatowed on the merchandise magon, as in no portion of the syatem had so little improvement been made; the fracture of axles wha frequent, the mode of coupling very defective, and the want of apring boffers, or even of buffors of the same beight and width, rendered the detroction of property enormous. No low of life from Are, either from heated coke, or spontaneous combustion, had oceurred to a pesseager train, but there had been some narrow eacapes. These and other circamatances had led many persons to naggest rarious contrivances for communienting between the pasengery, the guard, snd the engine-driver, almont all of which were identical in principle, conaiting of a connecting wire or rope. This plan bad been tried and failed. A more fealibie and favoarite one wan that recommended by the Railway Comminaioners, which was to continue the footboarde so at to form a narrom platform from end to end of the train, bot a committee of railway offcials had subeequently expresced their unanimona condemantion of the measare. The plan now adopted on the London and North-Western Railway, was for the guard's van at the ead of the train to project about a foot beyond the other carriages, so tbat the goard lookiog through a window in this projection, might notice the waring of a hand or a bandkerchief; this wh, of course, useless at night.

Forts or meor monyre.

Harboure of Refuge.-A parliamentary document of 19 folio pages, issued on the 98th ult, gives a detailed statement relative to the harbours of refuge at Dover, Harwich, Alderney, Jersey, and Portland, with the quarterly reporta of the engineers for the year ending the 31 st of March last. At Dover 945,0001 . is the estimated cont of a pier of 800 feet. The works are contracted for, and will be completed in three years. The sum of 34,000l. a-year will be required. At Harwich the estimated expense is $110,000 \mathrm{l}$. The works are contracted for, and will be completed in about one year. At Alderney the estimated cost is 620,000 . The works are contracted for, and will be completed in seven years. 50,0001 . to 60,0001 . per annum will be required. At Jersey, 700,0001. is the estimate; 25,000 . to 30,0001. per annum will be required. At Portland the estimate is 588,9591 ., including 30,0001 for the purchase of 474 acres, \&cc. An expenditure of 54,8051 . is contemplated for the present year.

Mr. Thomas Allason.-The demise of this able architect took place suddenly, on the 9th ult., in the 62nd year of his age. He was brought up in Mr. Atkinson's office, and obtained the gold and vilver medala from the Academy. He laid out the gardena at Alton Towers, furnished the designs for the Alliance Aseurance Company, and was surveyor to the Stuck Exchange and many eatatea. He was aleo a Commistioner of Sewera.

Dranits at hamiketer-A drought of extreordinary cepatanasoce th axpentog the iohabitants of the maburban wactenter townalupe to greal tmeoprenicocet for what of water. The eorporatton grpply from the netw whica havise fulled to some mateph, the witerworlas cammittioe have had Lo purehame $20,000,000$ gallonas from the Men gheater, 8befald, and Uncolmahire Rallway Compapg, who sopply it from their Pak rorets canal remervoirs. The price for thle harge quant)ty 61 ond Alf the

 mopothen
4haronough Earbowr of Befuge.-The lorde of the Admirality have Jost reported to the Houes of Commona on the propowed construction, by the promotert, of this har-

 demp Quay Fithin 100 yards of the seat, and from which they are gal recparated by a bed of aspd and some beach, wbich lt is proposed to remove, and chua forma a har.
 of eploton that the worka proposed will apt affoct the oflectit latended, elther as rectended permanant improved narigation, or diajnage of the land; and that the miended propoal of impoing a coll on reterils pasaling in front of Aldborough is a
 be canctioned. The coet of the worle is asdmand at 60,0004 , whioh if in propoend to ralee enilraly by loan; mad there appeared to be no aubscriplion confrech. Thelecordsaipe, however, are of opialon that the rivers Ore and Alde poceves quallicationa by which their parigation mayy be limproved abd trade ralanble for comparce, ased in
 moce to a mell -devied acheme for a new and parmanent cotranoe to the river.
TMy Ahor Sevorn-The roport of Mr. J. Walker, the eogineor to the Admirnity, has jast been printed in a parimmentary paper. It is on the improvementa that can be effected in the anvigation of the river, to which subject life etrention bae been twon.
Earbowr of Refuge at Wiah.-Mr. Rendel, O.E., in on is vadt to Wich, for the purpow of garweying the loadity is order to opablo bim to repat on the proporal pubmitced to governagent on the conditraction of a breekwater actose tha Bay of extenalve berbour of rembe for eatpptog
Arterial Draimage in Ircland.-The total amount anoualy expended on theoa

 Foy over which these draloage opecatione are to be made is 288,258 atactute acres; but by the revised survey 214,579 seret.
Ondmarime Operationt on the Rocks, near Now Fork-We last soopth (mente p. H) geve an acconat of the succempol operetions of M. Mellofert on the Pet loct, agd
 In one of which were three men, and in the other himeelf and brother-in-law, whit taking edvantage of the elack water at bigh-Ude to mele soveral bleats. His aspalt
 doat happered, to explalo which we muat defall the procent of blasting. Eech charge iff large canhiner, contalaligg 126 lb . of powder. Several of theme canituert are then in a boat, and ove at a time that are hat down opon the roct. When ore
 fixd in the candeter, and rown offr, patiog out the wise as to groes. Thic otber bont aloo rowe off. When both bouts are 60 or 70 feet diatint from the plece where the powder whe annt, Mons. M. placen the end of the wire to the pole of a powerfut gownale battery wilch be fien pa in bis boet, end a dell, mary shoek is felt, the meter te thrown op 40 feet or more, and turge portlone of the rock are detached. In thle cance, by some unexplainned sceldent, Mon. M. received the wrong wire, and placing it to the bottery exploded a canater to the other bost tastend of the ote ander witur. Of the three men in the boet whith the powder, swo wore blown cons piraify to atomes, and of the chind it in not probeble that be can rocorer. The boat In wisch theme men were was shivered lato the smallest fragwents; not a ploce as large man walking cane could be found. It is thougbt that there wore three cminters of powder on board, but whether they were will exploded or not we can pot mevrteln. In the other boet were Mons. Mallefert and ble brother.ln-lam. Tha lattor had geveral teeth knocked ont, and was otherwise braleed. Mons. M. was bedly bat we bope not dangeroualy hurt."
Mr. Franh Forster.- We have the deep ragret to annouree the danth of this well.
 the memopolitan Comonimionerst of Sewers. He wey in the set of writing a letter when he wat struck with apoplexy, and almost Impmediately expired, on the 1sth ult, Ghea he wat struck wiun apoplery, and almost immediately expired, on the isth uif oadelal dutles, which were not liftetemed to him by she want of hermonjove wopport oaithin the boand. The foneral cook place on the 20th nit., sud the cortepe wat

Momment to the Eath of Pooth, K.O-Mr. E. Blchurdiove has completed, from a deedgy by Mr. Scons, this benutiful alabaterer memorial. It has been placed in ite arch of Cuen stete, enred by Philipa, io the north wall of the chancol of se. Mery's Church. Welchpool. The figure represente the Earl, recombont, In the Garter robes, reethge on a richly diapered cable, with shielde α atana, and rabed brice trecription,

STET OF NOT PATENTR

 Str Mouthe allowed for Bmeohnant males othmaite eqpresped.
 aulford aforventd spechino-saller, for Improvementa in machinery for apinoing, doubilig, and twiating cottwn, and other abrous aubataocea.-March 27 .
Jean Jecquas Boarcart, of Guefwiller; Franee, for inpprovements in prephring,
 marth \%\%.
Jerses Medrllib, of Rombank Works, Lechorianoch, Benfrem, North Britaln, callcoprinter, for improvemente in weaving and prialligg ahamis and other Ribrics. farct 29.
 provermeati in the mapofacture of glack (A commaniontion.)-March 29.
Charies Jeek, of Totteoban-court-new.roed, for hmprovements in mechloery for gripding pigmente, coloars, and other mattern. - March 29.
John Whatehead, of Holbeck, York, machine manufacturer, for improvementa in

 for loprovements is machidery for bloomlog iron-March 81 .
Mowe Poole, of Loodoc, sentomen, for lmprovementa in Aro-arcas (A comman-aicmion.)-Mareh 81 .

 or apparatas employed therelp.-Apill 2

 cien as are or may be made of clay or other plastle enbatmeen- 4 pril 6 .
 to umbreltion and paracole-Apall 8 .
 obeatet, for heprovemeats in the masutictare of obledese. - Aprit 6,

John Walter De Looguerllis Gifiord, of Serie-street, Uneolo's-ina, berristamente max, for lappovements in Arb-armis and profectilet-Apil 6.
 (A cocmmanteatton.)-April 18.

 and caps and stoppers for the tame, and in machinery for greating mod mouldios the and maternals.-April 13.

 Δ pril 15.
Altrad Voceat Newton, of Chapeory-lape, mechanicad drumgtuman. for Impporements for preventing the lacrustation of stene.boliers, which Inveation ts also appice. able to the preservation of metals and wood. (A cociamurictilon.)-April 15.
Charles Srely, of Lincoin, for improvemeate io the mapufactare of tour,-April te.

 evaporaturg. - April 15.
Simon Daver, of Roven, France, merchant, and Adolphe Ladoric Chano, of Purto, France, merctant, for Improversenta to emplodit compornde and fuene, enf imo wethods of Arlag the seme.-Aprll IS.
 in fre-erme, and in the mothods of diachargtigg the same; aloo lmprovementif in pron jectiles.-ApH1 17.

 mances. (A com mindiction.)-Aprll 17.
 menta in the method of and upparation for indicatlog and regulatiog the beat and the height und enpply of water in wheam. bollers, which alad topprovementic aro applic

Joha Gilhat, of Bralle, near Shipeton-upon-stocr, Wawick, yelcultaral baple ment maker, for certain improvements in plougha,-April 17.
 for improvemente in the manafactore of lemen. - A prill 17.

 purpocen of veatilition,-April 17 .
Clemens Auguten Kurts, of Manchenter, manufecturing cheriat, for an tmpronment is all prepurallons of evert deecription of madder roots and ground medofer, ta or from whiterer conntry the meme are produced; alior of munjeet in the root and item, foto whalurer country.-A Aril 17 .
 (4) corpm makertion)-April 17.
 aining and applyine motve power.-April 17.
John Knowiea, of Little Bolton, Lancuster, cothon apinner, for Improvemeata ba
 dfrection of motion in and regilating the speet of meetimen.-April 17 .
 4 Sril 20.
 haman hale.-4pril 20 .
Robert Rejbura, of Greenock, chemiat, for Improvemeats in prinelog an allk and ather fabices and yarna.-April 20.
Wiliam Maddlek, of Manchrater, manufacturiog chemiat, for the prodectiod of a Uquid extract from madder, and lits properatlons suituble for the porpooes of dyury or prinMon, and a uew treatinent of speut onadder, garancioe, or garacaux, or ofber preparatices of madder, to render them avalleble for the the purpoese.-April 29.
 proverneats in the method or procesen of ornamenting or decontiog artleles of piant chlna, earibeaware, and other ceramie manufactures.-April 20 .
Wlilimm Hiadman, of Manchenter, fentleman, and John Warbarst, of Newton-
 genermiting or producting ateum, and in the machlmery or apparatus convected theregentratidg or p ro
with. Aprli 22.
Edemed Bammond Bentall, of Hepbritge, Eusex, Iropforinder, and Jaman Hownis
 Δ pril 22.
Jamas Stercat, of Birminghavo, gieas manufuctarer, for lmprovemeats io tappo shaset.-April 22.
 Improvementis to the metiod of manufactaring, asd to machisery to be med in the menuficlure of wood serews, pars of which improvemente is applicable to the

 aseoring
Aprli 22 .

Alfred Vipeent Newton, of Chancery-fape, Middievex, meehaical dmaghememp,

-

-

SCHOOL ARCHITECTURE.*

(With Engravinge, Plater XIX. and XX.)
Ayong the most gratifying proofs of recent progress is the increase of public schools. Such building is now to be found in every considerable village, and an impulse has been given to general education which cannot fail to receiveits fulldevelopment. The operations of the Committee of Council on Education have had a material influence in producing this result, a stimulus having been given to private exertion by judicious contributions from the public funds. In the expenditure so created the architects have had a share; and although the class of buildings erected is not of an expensive character, yet the oppurtunity afforded for professional exertion has not been without value. Opportunities for large expenditure are to be desired, because they offer considerable emolument to the practitioner; but we queation whether, su far as the body of the profession are concerned at the present moment, the erection of a small schoolhouse be not of as much general benefit as that of a church. Every one thinks that in the construction of a church or great building competent professional assistance ought to be obtained, but it is not so fully admitted that minor constructions equally admit of professional supervision. It is very desirable the public should be impressed with this fact, because for each expenditure of Give thoussand pounds in a single building, there is as much as fifty thousand pounds spent in small edifices, for many of which it is too customary to dispense with professional aid. In the schoolhouses the advantage of this aid has been already acknowledged, and under peculiar circumstances. When the erection of schools on an extensive scale was determined upon, it was thought desirable by some parties to economise the architect's fees, under the plea that there would not be enough to pay him, though, in truth, with the view that he was not worth paying. It was therefore provided, for the convenience of local committees, that stereotyped plans should be furnished by the Committee of Council, such as might, without trouble or with very little exercise of wit, be copied everywhere.

This experiment presented many apparent advantages, for beaides that of economy, there was the prospect of having the very bent plans by the very beat men. It had, however, one disadrantage, which is unfortunstely attendant upon most of the centralising schemes of government officialo-it did not rest upon a practical basis. A lithograph of a schoulhouse is a very convenient thing, but when the local committee have got it, comes the question of where the schoolhouse should be placed; and as this can only be satisfactorily decided by the professional man, the lucal committee are no better off by this provision of plan, but rather in the position of the individual who possessed himself of the patent mouse-trap without knowing how to bait it. Practical men, who have watched the results of government scheming, will not be surprised to learn that the schoolhouses constructed on the series of model plans of the Committee of Council on Education have already proved to be a series of signal failures. Indeed, the competent authority whose book we now have before us designates these designs "as unsuitable in every way." Thus the very contrivance for superseding architects has ended in affirming, the necessity of employing them.

Hed the power of the government prevailed, their crotchet plaps would have been exclusively adopted; and had these even been good, we should have been shut out from the improvements introduced by the many men of talent who have been employed on these works. This, indeed, is one of those cases where the mpultitude of counsellors brings wisdom. One man can hardly construct a building worse than the general standard; but he can hardly fail, however mean his capacity, to introduce some improvement derived from his experience in other employments.

We look upon the schoulhouses as a very satisfactory test of architectural capacity, because, not withstanding it was thought that a sohool could not afford to employ an architect, nor an architect to give his time to a school, the end has been that schools have been artistically and economically built, such as will prove of permanent utility, and in many cases of ornament to the localities in which they have been erected. The inference to be fairly drawn by the public from this experience is, that if an architect can be usefully employed on a small school costing only 180l., he can be usefully employed on a small cot-

[^18]tage of like outlay. In the case of a schoolhouse, facts have shown that it is better and cheaper to call in the architect at once, to determine and arrange the site, and to deaign a suitable plan; for, notwithstanding the ingenuity of an encyalopsedia of government plans, yet such do not meet the minute shades of expenditure; and in many cases the architect will save his own commission by a judicious selection of materials, or by a modification of structure suited to special foundations.

One hundred and twenty pounds is to be spent on a village schoolhouse-a very little matter, and easily to be done: yet, how much is said in that word "schoolhouse" when we come to think about it! Site, proximity, aspect, drainage, arrangement, warming, ventilation, materials, have all to be considered, and to be carefully investigated and decided upon. Those architects who have had to design a plan for a schoolhouse, are aware of the labour which is involved in arriving at a satisfactory determination; and just as much in the case of a small building as of a large one. In the aggregate, the class of school architecture assumes importance from the fact, that the buildings erected and to be erected form part of a total of twenty thousand schoolhouses required for the wants of the lucal population in these islands. We have therefore seen with much pleasure the publication of a work on schools by an architect, Mr. Joseph Clarke, who, being employed by the diocesan boards of education of Canterbury, Rochester, and Oxford, has acquired great practical knowledge on the subject. Influenced by the impression of the utility of a work on schoolhouses, he has published a volume of views, plans, details, and descriptions, which give the architect all he requires for the comprehensive study of this branch of construction. Mr. Clarke's experience has been so far fortunate that it embraces every variety of edifice, from the humble village-school, costing 1201 ., to what he aptly calls the collegiate arrangement of the Schools at Leigh.

In a general resumee of the subject, Mr. Clarke has offered some practical suggestions which will be read with interest. He says:-"In erecting a school, the promoters should, after first meeting every local difficulty, see that the site is suitable for building on. It often lappens this is given; but sometimes the liberality intended becomes nugatory, from its position with regard to the population. It is either too uneven-perhaps a piece of common or waste land-or the fencing, drainage, foundations, roads, must be formed at a great expense-or it may be difficult to obtain water; so that it is found, when too late, it would have been cheaper to have purchased a site, with perhaps a choice of locality, than to have accepted the gift. In many cases this is different; still, whenever a schoul is to be built, it becomes of essential consequence to determine where it should be. The plan should always be formed to the site, and reference had to local materials; the design of the school, again, should conform to the materials. Brick and stone each reguire their separate uses, and so their several applicatious. Every point should be well considered separately. The best position for the achool-room is to the north and east; the desks should be placed to a north light, and, if possible, the classes formed to the east; at the same time, the entrances should always be to the south or south-east. The living-rooms of the schoolhouse should face the south, or a little to the east; but, if possible, the bed-rooms to the east or south. All close corners and projections should be avoided on the north side of the buildings, and great care taken to drain the walls, more particularly on this side, and the water carried to a distance. It is too common to place the necessary outbuilding and cesspools close to the school: if the site is very much cramped, this cannot, in some cases, be avoided; but, in the country, this is celdom the case, and it is impossible to tell the injury arising from this system. In selecting materials, where a choice can be had, it seems, as an invariable rule, that the best are always found in the oldest buildings; and the parish church will generally furnish this information. If stone is used, the dimensions usually adopted for brickwork must not be used, and vice versa. Where brick is used, sound and proper bond is necessary, and on no account must the walla be less than one brick and a-half thick; and even with this thickness it too often happens that the bricks or the mortar are so bad as to uffer no resistance to the wet; and in a short time the walls become rutten and decayed. In stone or flintwork the walls should be at least one-fourth thicker than in brick, but this must depend a great deal on the nature of the stone: no cement should be used to bond in the courses; and with these materialy it is necessary to use more
care, and to allow some time in bullding. All innet walls, particularly to the south or south-west, should be lined inside with brick, which is better than battening. In the construction of a building, by the proper arrangement and disposition of materials, a asving is often gained by those whose knowledge is the result of experience; and they are enahled, at the same cost, to erect more significent and extensive structure then would seem posible for the outlay. The fact is now happily established, that taste and real art go hand-ln-hand with true economy; it need not any longer be deemed a ruinous expense to attempt to give to our village schools that character and association which so naturally belongs to them. Everything should be plainly but suitably constructed.
"In woodwork, the gift of green timber should be avoided; rather let it be sold, and invested in sound Memel timber. If well-sessoned oak can be obtained, it is preferable to deal, but not where it is cut in the same spring, or less than three or five years old; but one year of English winter-felled oak, before the spring sap rises, is worth years of spring-cut oak, in which every fibre rives from the emptying of the sap arteries, and is so weakened in the grain as to twist, crack, and warp more than almost any other of our native timber. Let all timbers be large enough to be morticed, and not halved, or nailed side to side, depending on their own cohesion. Floors require vantilation under, but not through opposite walls: if possible, the openings should be on one side to the external atmosphere, and on the other inside the building. The floor-boards should be grooved, and tongued with oak tongues, but not with metal. A low skirting should always run round all the rooms. For the sake of ventilation-it need not be said for appearance-as well as sound, all roofs should be of a high pitch, and open. Boarding is better than plastering under the tiles or alates; but great care must be taken, if boarding cannot be afforded, in not plastering to the tile laths or battens. For the covering of foofs, much must depend on the locality. If tiles can be had, they make the most picturesque appearance. It often happens that old tiles are difficult to procure, and new tiles are so bright as to be unpleasing; but, by using a solution of manganese, into which the tiles should be dipped before placing in the kiln, this is quite obviated. Great care is necessary in securing the ridge and hip tiles; and the valley tiles require much care in laying. The joiners' work should be of the plainest deacription, but framed with care; the windows should have window-boards, and lined round when theme cannot be used; and whers angles occur, these should be protected by wood beads rather than plastered.
"Warming and ventilating are most important matters, and ought to be very carefully attended to. Nature must not be too much influenced by the theories of art. Schouls for country children require, perhaps, more in the way of pure ventilation than in the introduction of heat: in this respect they differ widely from the requirements necessary to be attended to in schools for the manufacturing districts; and therefore a pure and dry atmosphere should be kept up, and the school not too much heated in winter.
"It is desirable that good and separate playgrounds should be provided for the children, and, in some instances, gardens have been formed, and seem to answer very well, being let to the best children, to be cultivated by them, as a reward. The master should have as large a garden as can be spared; and, if possible, a patch round his house, which, if nicaly cultivated, adds cheerfulness to the whole structure."

Being deairons of laying before our readers some more efficient means of judging of the character of the work than any description of our's could afford, we have inserted two Plates referring to the Schools at Foxearth in Essax, and of which Mr. Clarke writes as follows:-
"Foxearth is a very pretty village in Essex, sbout four miles from Sudbury. Till within the last few years it had fallen into decay, but the present rector, on his succeeding to the living, st once restored the church in a costly and appropriate manner, and then proceeded to erect new schools; these great improvements have been the means of causing such a change in the village, that in its present neat and cheerful appearance it can scarcely be recognised as the same place.
"The schools uccupy the site of the village ale-house, which the rector purchased, with the double object of appropriating it to the beneficial purposes of education, as woll as removing the source of idleness and intemperance. They are constructed
in the most substantial and durable manner. The walls, from the nature of the site, are built on a thick bed of concrete, and are constructed of filint, lined with briak, the outer facing being of the pebble fint of the country, set whole-the jointe raked out, 00 as to show no pointing. This makes an oxcellent facs, but it is necessary to employ the workpeople of the locality, who are accustomed to the work. The dreasinge, externally, are of Bath stone, and inside of Caan, worked in a superior manner. The detail is richer, and the whole building partakes more of medieval character and compoaition than can be umally adopted. The roof over the school is taken from one of the few good examplea of domestic buildings which we have remaising of the fifteenth century; the timbers are exposed, and stained, and, as well as the other roofa, covered with old tiles, with a ridfe cresting. The school-room is panelled in oat round the walls, and has a fire-place of stone, projecting boldly into the room. Leading from the school-room to the claseroom is an open corridor, communicating with the house, which has more accommodation than usual, being intended for the occasional residence of the curate. The outer framing is of oak, filled in with parget. An oven is attached to the kitchen - desirable convenience in rural dietriots, and, in some osges, might advantageously be added, to combine industrial training with oducational teaching, which, to sorme axtent, is carried out in these sohools, the children being inatructed in the duties of everyday life, to fit them the better for the poaitione thay may be expected hereafter to fulfil.
"The cost of theee schooly, which were erected entirely at the expense of the rector, without any asistance from public granta, was considerable, the amount, axclusive of the purchase of the site, being more than $900 h^{\circ}$

THE ROYAL ACADEMY EXHIBITION.

Soliz of ont readers may have thought our remartes hareh and nnadvised in reference to the Royal Academy and ite architeotural exhibitions; but if any still think e0, we say let them go to 'Trafalgar-square. Thoee who have heretofose heaitated as to the course of events can suspend their judgment no longer. We have noticed for years, with anxicty, the policy of the Acedemy with regard to archiltecture, and we have therefore from time to time spoken out. We saw that justice was not done to architecture by the Academy, and that no hope of amendment existed in that quartar. We heve, therefore, leaned favourahly to an independent architectural exhibition, and the final separttion of architecture from the Academy.

In promoting these views, we wers influenced by no ill-will to the Academy, thongh we think architeots have juet right to complain. We have a high respect for the Academician, and for their character as artists; but we cannot blind eurwalvea to the fact, that nelther as a school nor as an exhibition of arohiteoture does the Academy do its daty to the profesaton. Bo far from doing any good, we consider the A cademy does herm by placing the profersion in a false position, diverting pulic attention from its true merits, and, by appropriating its resourcea, mands n the way of efficient organisation.

The representation of architecture by four Royal Acedemicians has long since ceased to be considered an advantage or a honour, and everyone fo now convinced that the Royal Inititute of Architects is the legitimate representive and oonstitaency of the profession. The Academy school and medads have lirewise ceased to have an independent value, now that prectical clasees organised on a better system are open at University and King s Colleges, and now that the sittinga of the Royal Institute and of the Architectural Society afford a courie of superior study for the junior members. The medals of the Ingtitute likewise afford an efficient mtimulus to the eesior at well as to the junior practitionera.

The Architectural Exhibition, we hope, we may now consider as permanently inaugurated by Farl de Grey, and we no longer entertain any doubt of its superiority, as an exhibition, compared with that of the Academy. It is true that in the beginning we missed eminent names at the former, and we folt almost inclined to make an apology for their absence; though, consideriog how little aid they afforded to the Academy, we know not why we should, or wherefore a comparison should not have been insti-- tuted. It is otherwise now: the two exhibitions are on a par as to names, and the junior has a superiority as to numbers, while the Academy has resolved that the superiority as to arrangement shall likewise be yielded.

If is for arohiteote to consider how long they will support a conneetion which the other party has abandoned. There are old smeenations connected with the Academy. It has a profesoor, and six lectures a-year; once in nine years it gives a scbolarship to Acedemic tudenta; and it has large funds for chariteble purpoees, if arehitects can hope to get the chance of profiting by them. The Academy, however, ham made for iteolf a vocetion. It is ementially the Academy of Oil Painters, and wo canaot blind ournolves to the fact. Setting architecture aside for the nonce, we may see that the water-colour artiste have been obliged to leave it and settle in other galleties, though the miniature painters still linger in a room which includes works ia ail. The plate engravers have not a single representative, the modallists but n name; the enamellers take shelter among the miniaturiats; the architectural modellers are extinct; gem engravers are not to be found. All the minor branches of art are virtually banished from the Academy. As to aculpture, its departure from the walls of the Academy cannot, we think, be long delayed. The den to which its productions are consigned is suffieient to create prejudice in the minds of the public, and certainly to foater it. In a dimly-lighted eepulchre are entombed ghastly effigies, and many spectators go away strongly opposed to a conventional system of representation, which they hardly believe is within the domain of art. If they give encouragement to sculpture it is for a posthumous bust or for a monumental tablet, and as a commemoration fitting rather for the dead than as a solace for the living in the onjoyment of divine conceptions of the sublime and beautiful.

Let us now turn to Architecture and the Academp. An Architectural Room no longer exists. The name has passed away, and the "North Room" inters whatever of architecture is ctill allowed to be exhibited. This, we firmly believe, must be part of a settled acheme; but what can those of our readers who go there say to the way in which the architectural drawings in the North Roum are treated? The line is taken from them and held by the overflowings of the other rooms, the top and bostom of the walla being almost ecrupulously reserved for the architectural drawings. Paintings and sketches of old buildings are brought near the line, and those architectural subjects which require the closest examination are put out of the line of sight. Want of room cannot have been the cause of these proceeding, for this is one of the least effective exhibitions we have seen for many years, and a most inadequate representation of the artiatio talent of the country. The arrangement of the architectural drarings muat be of settled design and aforethought, and we do hope professional men will take the hint. We trust that as so fou have exhibited of late years, the practice of exhibiting will not threagh these proceedinge of the Academy become extinct, bat that there will be a determination to maintain architecture before the problic in ite proper position as a high art.

The roeation of an architectural critic at the Academy in, at an events, at an end. We can give ao satisfactory acsount of the exhibition, inamuch as we have not been sble to see the works. Some very faw are an the line, and we are afraid to mention them as we must appear to do injustice by passing over other works of merit which are not within ken. As it is, we can oniy enumerate titles; and thone with the most promising tithes are precisely those of which we are least able to give an eocount. We have said there are no architectural models, and We mey etate for the edification of our readers that there is not, we bedieve, more than one plan; and as some of the drawings represent additions and restorations, it is impossible to arrive at any proper jadgment.
Mr. Hardwick, as a Royal Academician, is represented by Mr. P. C. Herdwick, the contributions being the "Coffee-Room of the Great Weatern Hotel, Paddington, ${ }^{5}$ the "Royal Freemanose' Behool" (1198), asd "St. Calumba College, Dublin" (1175). The sculpture for the pediment of the Hotel is likewise drawn by Mr. J. C. Thomas, and is of very good charncter. The Coffee-room is interenting fram the judicious use of yellow mieana in the columns and.consoles, and of white marble in the capituls and accessories.

Mr. Bydsey Smirke, an an Associate, supports the exbibition -ith a Weornetrical Elevation of the Iron Gates of the British Memeum." This shows the finish of the standards, and informs ss that the pedertals are to receive seated statues of Bacon and Nowton. We may take.this opportunity of observing that the gates are now in an advanced state, and give very good opportendy of accertajning the effect. We are confirmed in the opinion that the gatea are in themsalves artistic compositions,
and that they are calculated to do great good as an example in the promotion of embellished metal-work as an arehitectural accessory. So far as we have seen, we have every reason to be astisfied with the experiment of gilding, and we think it will stand as well here as in Paris; but it will need to be kept clean, as indeed all buildings in London should be. There is no reason why every public building in town should not be as clean as the Bank of England, and every statue as that of the Queen in the Royal Exchange area. With regard to the present effect of the railing on the front of the British Museum, we may observe that it is not in perfect keeping, and indeed it is questionable whether a railing should be there at all. On the other hand, it must be borne in mind that this railing in a compromise for a wall, and that the front of the building cannot be considered in a finiabed atate. The remarks which are now applied to the railing might have been lately applied to the great hall and the pediment. The great hall was a patch on the rest of the huilding, until the continuance of the internal decoration to the Bculpture Galleries made it part of a leading and prevalent system, to which the rest of the building will in time be brought. The colouring and gilding introduced in the pediment gave the sculptare a seemingly raw appearance; but this is now toned down, and the sculpture standing out rell is more effective. We look forward, however, to the period when the whole portico will be similarly treated, and when the railing will become a consistent part of one of the finest architectural features of the metropolis.

We must now enter upon our catalogue. For War Chandlers' Hall there are two designs, one by Mr. R. M. Phipson (1149), and the other by Messrs. Wadmore and Mason (1834), but neither being the design adopted, the site for which has lately been cleared. We do not think the authors of No. 1234 showed due regard to situation in their choice of style, whioh is mediæval, for an I talian street, abutting on Goldsmitha' Hall, and close to the Post Office. Such a choice, however meritorious the style, is in truth a violation of artistic propriety. Mr. G. G. Scott, on the other hand, shows how he proposes to carry out the mass of medieval buildings at Westminster, by an "Abbey Gateway and Houses in the Broad Sanctuary" (1174), by which we shall gain a medimval place, bounded by these new buildings, the Abbey, and Westminater Hospital.

Mr. Ambrose Poynter shows an "Interior of a new Entrance Hall at Pynes" (1153); and there are other interiors deserving of attention. No. 1160 is the "Palatine Club," by Mr. Aitchison, jun.; and No. 1196 "A Saluon," by Mr. J. Warwick.

Mr. N. J. Cottingham has a "South-East View of Theberton Hall (1156); and Messrs Ashpitel and Whichoord "A Grammar School" (1158).

Mr. T. Smith has drawings of the magnificent Chateau, or, truly speaking, Castle at Cannes, in France (1179, 1207).
"A Town House" (1181), by Mr. C. J. Richardson, has a conspicuous feature in a bow projection.
Mr. T. Meyer has a large group of a "Church and Schools at Westbourne Gruve" (1192), in which the spire is made a prominent feature, set off by the minor structures, which serve to give it an artistic base.
M. Hector Horeau has a drawing (1193) exhibiting several buildings of remarkable constructive character; but this is put out of sight, as are all those exhibiting new applications of architectural resources. Among these is No. 1202, "Model Buildings for Clerks," by Mr. C. Henman.

Mr. J. Whichcord, jun., F.S.A., shows some "Additions to Birling Manor House" (1209).

Mr. R. L. Roumieu exhibits a "Villa Residence at Esher," (1211).

The "Design for the Seat of D. Jones, Esq., Pantglas, Carmarthenshires (1213), by Mr. E. L. Blackburne, deserves attention for its application of open porticoes and arcades.

In the "Town Hall and Corn-Market, Hemel Hempstead" (1812), Mr. G. Low has endeavoured to produce a picturesque effect by a small outlay.

The "Cambridge Military Asylum" (1199) is a design by Mr. T. Allom, to which he has applied the Elizabethan atyle.

Mr. W. Drew has a Villa design (1899), which presents several points of merit in the arrangement of the windows.
The "Buildings now in Progress at Dover Court" (1232), by Mr. W. H. Lindsay, will, if completed, form a very remarkable group. They show two long ranges of terraces, united by a projecting creacent.

Mr. S. W. Daukes has only contributed one design, a small "Church at North Malvern" (1244).

PRRMANENT WAY OF RAILWAYS.

Almxander Doulh, C.E., of Greenwich, Kent, Patentoe.

Tasse improvements in railway construction relate, firstly, to the method of securing the wedges of cast-iron chairs in position by means of screws, bolts, and rivets; secondly, to a mode of combining malleable iron chairs with wooden sleepers, or with stone or other rigid sleepers; and, thirdly, to the employment of intermediate sleepers having chairs cast in one therewith, so as to obviate the necessity for bolts or keys.
Firstly-The invention consists in forming the cast-iron chair commonly used in the construction of railways, in the manner represented in elevation, fig. 1. The improvement, it will be seen, is for securing the wedge in position by means of a screwbolt or rivet, passing in the same direction as the wedge, and passing partly through the wedge and partly through the chair, the head of the bolt acting upon the back of the wedge, and the nut working against the side of the chair. The wedge is screwed into its position, and not damaged, as at present, by being driven home by successive blows of a maul; and it is also retained in its position by means of the screw-bolt, which obviates the necessity for the constant attendance of a plate-layer to examine and tighten the wedge. The liability to accident consequent upon loose wedges will thas be also done away with, and so both economy and safety to a great extent secured. However, it must be observed that this mode of securing the wedge is only applicable to chairs cast expressly for the purpose of this arrangement, and that, to adapt it to the ordinary castiron chair of any of the various forms at present in use, the following subsidiary appliances (or others equivalent thereto) must be had recourse to. A small casting must be prepared, similar to that shown in fig. ε, having a notch a, to embrace the cheek of the chair, and a longitudinal hole or slit b, for the bolt to pass through, the casting acting as a fulcrum to screw home the wedge, and the notch a, in the casting securing it to the chair. Fig. 3 shows the small casting A, in its position embracing the chair and securing the wedge.

Secondy-The invention consists in laying the rails on chnirs composed of malleable iron, and secured to sleepers of stone, wood, or metal, by bolts or rivets in the manner variously exemplified in figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, and 15. Fig. 5 is a transverse sectional elevation of a line of rails constructed on this plan; figa 4 and 6 are side elevations; A, is the rail; B, the
malleable iron chair; C, the bolts and nute by which the chairs are secured to the sleepers S , which in the figures are represented as of wood. When the sleeper employed is composed of stone, or any metallic or hard unyielding substance, a piece of wood of any convenient thickness, or a layer of gutta-percha or other elastic substance, is proposed to be placed between the chair and the sleeper, which will serve to neutralise the destructive effecta of vibration, and to obviate that rigidity which has been found objectionable in the case of the old atone sleepers, and in mont cases also of the recent application of cast-iron to the same purpose.

FIC. 8.

The inventor prefers having the malleable iron chair \mathbf{B}, composed of two parts, as shown, so as to admit of being rolled into shape and then cut off into the required lengthe, and the boltholes pierced; but it may also, if found equally convenient, be rolled in one piece, as shown in fig. 15. Joint-chairs should each be about 1 ft .6 in . or $\&$ feet long, and secured to a longitadinal gleeper by bolts as well as to the rails, the holes either in the rail or in the chair being elongated so as to admit of the necessary expansion and contraction. Intermediate chairs should be abont 4 or 5 inches long, and attached to the sleepers by bolts or rivets, and to the rail also if deemed necessary by bolts or nuts. It is probable, however, that sufficient stebility will be obtained by simply bolting or riveting the joint-chair to the rail. In applying the malleable iron chair to sleepers of wood, the patentee recommends the arrangement shown in the plan and section, fige. 7 and 8 , where two longitudinal and two cross sleepers are employed for every 15 feet of roadway.

The longitudinal sleeper under the joint of the rail should be about 9 feet long; and, in addition to the joint-chair, there should be placed upon it an intermediate chair on each side of the joint-chair. This arrangement would give great strength and stability to the joint of the rail, whilst the two cromssleepers to each 15 feet length of roadway would give a sufficient crose-tie to preserve the gauge. By making the sleepers 12 inches broad, the above arrangement would give a bearing of 30 superficial feet to every 15 feet length of roadway. In bolting the chairs to the wooden sleepers, nuts may be used, with the alternate corners turned up, for the purpose of being fixed into the wood, and so preventing them from being turned round when the bolts are being screwed tight (see figs, 4, 5 , and 6). Instead of nuts being used, as above, a short bar may be substituted for the nuts, into which the bolts could be screwed; or the bolts might be made to pass through a equare hole in the short bar, with the heads of the bolts resting against the bar,
and the nuts screwed down upon the malleable iron chair above the aleeper, as exemplified in fig. 15.

Figs. 9 , and 10 , show the modification which is to be made in this plan of railway construction when the malleable iron chair is Isid on to stone hlocks. The stone block under the joint of the rail, and which receives the joint-chair, is shown to be 2 ft .6 in . long by 1 ft .6 in . broad, and that under the intermediate chair 1 ft .6 in . long by 1 ft .6 in . broad; which gives a euperficial area or bearing surface of 25 ft .6 in . for every 15 feet length of roedway, and a thickness of 9 inches. The thickness of the stone might, however, have to be varied according to its quality and the facility of procuring a supply at any particular thickness from the quarry-bed; strung slate about 6 inches in thickness might probably answer the purpose. In attaching the malleable iron chair to stone blocks, the more convenjent mode would be to place the heads of the bolts at the underside of the stone blocks, and the nuts above on the chair, the bolts passing through a short plate of iron with square holes to receive the necks of the bolts and prevent them from tarning round whilst the screws are being ecrewed down upon the chair above.

Whether stone blocks or cast-iron sleepers are used, the gauge of the line is in either case preserved by bars of malleable iron, which may be secured in position by the same bolts which secure the chair to the block or sleeper. The number of these bars would be increased on curves; but on atraight portions of the line, one bar would be sufficient for every 15 feet length of roadway. A piece of sof wood, or other elastic substance, would be interposed between the stone block and the malleable iron chair, as already explained.

Figs. 11 and 12 show, in elevation and plan, the mode of applying the malleable iron chair to cast-iron aleepers. The joint aleeper S^{*}, will only have a joint-chair B^{*}, attached to it, an its great length will be sufficient to give the necessary bearing surface and stability to the joint of the rail. The intermediate sleepers S, S, will generally be of auch a form and size an to admit of two malleable iron chairs being placed on each sleeper; but. it may frequently be found more convenient so to proportion the form and size of the cast-iron sleeper as to admit but one malleable iron chair to be attached to each sleeper, according to the nature of the trafic and of the ground upon which the superstructure is laid.

In attaching the malleable iron chairs to the cast-iron sleepers, the heads of the bolts should be placed below, and a square projection cast upon the sleeper round the bolt-hole, into which the head of the bolt would fall, and by which it would be preserved from turning round when the nut was being screwed down. A piece of soft wood or other elastic substance would be interpused between the cast-iron sleeper and the malleable iron chair, as already explained in reference to stone blocks.

Thirdly-The invention consists of a method of railway construction, represented in side elevation at fig. 13 , and in plan at fig. 14, in which intermediate eloepers are employed with chairs cast in one piece therewith, so as to dispense with bolts and keys altogether as fastenings for the rails. Figs. 16 is a cross section of rails laid on this plan. The chairs are cast so that the cheeks do not come opposite each other, but they are at such a distance apart, that when the two castings are laid obliquely in contrary directions under the rail, the latter comes between the cheeks; after which the castings are pressed in opposite directions, until the notches at a, fit into each other; and when this is effected the cheeks of the chairs will be brought into close contact with the rail and the interlocking of the notches will prevent the cheeks of the chairs from relaxing the rail. The tie-bars b^{\prime}, b^{\prime}, which are necessary for the purpose of keeping the gauge, are placed at the junction of the two sleepers or castings, and bolted to each of them, as shown at $a^{\prime} a^{\prime} a^{\prime} a^{\prime}$, Gg. 14, and afford additional security that the notches will not be disengaged from each other by the action of the railway trains.

To prevent rigidity, as also the vibration of the trains from transmitting a destructive effect to the chairs and sleepers, piecee of wood (F, fig. 16,) are placed underneath the rails in rectangular cavities or receptacles about broad and long as the casting will admit of, so that a small margin may remain to confine it in its place while being pressed upon the rail. The wood should be about $\frac{3}{4}$-inch thick, and there should be a groove or slit leading from any convenient part of the concavity or receptacle, to prevent water or damp from accumulating to injure the wood.-[Patent dated November 6th, 1851.]

NON-METALLIC MINERAL MANUFACTURES.

By Prof. D. T. Angted, F.R.S.

[Exhibition Lecture delivered at the Society of Arta, May 19th.]
The subject was treated under the following subdivisions:1 , marble and stonework; 2 , cements, scagliols, and artificial stone; 3, bricks, terracottas, and other worky in clay. In speaking of the first division, Mr. Ansted compared our wealth in the best quality of the raw material with the discreditable examples that are to be found in the public monuments of our metropolitan and provincial towns, which he attributed to the prevalent rage for cheapneas. The Exhibition has, however, induced a greater demand for good stone, and in particular the Derbyshire marble (apecimens of which from the works of Messrs. Lomas, of Bakewell, were presented to the Society), is becoming much used for articles of domestic requirement.

An important branch of industry now exists in Derbyshire, in imitation of the method of inlaging known as Florentine mosaic-viz., in coloured marbles on a black ground; and here, again, Professor Ansted was able, even at this short periol, to point out a mont unquestionable improvement arising from the Exhibition, at the same time that he called attention to the comparative cheapness of this Derbyshire mosaic. Lastly, he noticed the manufactures of Devonshire marbles, and of fluor epar or "blue John."

In the marble manufactures of other countries, Italy claimed the first mention; and here interesting details were given of the method of executing, and the various merits of the different branches of alabanter, pietre dure, Florentine mosaic, \&c. The objects sent from Malta were indicative of great anxiety to take a high position, both in plain stonework and in mosaic. In France, Belgium, and the smaller countries, there was little to notice; the case of Russia, however, was far different. All our readers are familiar with the gorgeous works in malachite, the imitative fruits of other articlee from this empire, but it may not be as generally known that the cost of the former material is as much as 148 . per pound, $z \mathrm{lb}$. being wasted for every 1 lb . used; and that for the well-known doorg, no less than 3000 lb . of rough malachite were required, at a cost of no less than 2000l., exclusive of labour. Mr. Ansted's opinion on many of the Russian objects was, that the difficulties surmounted had been so rather by patience than genius.

In treating of the Cements, \&oc., Mr. Ansted gave a general account of the raw materials used, before noticing tbe exhibited specimens: this account must be read in its extended form. The principal cements shown were Roman, Parker's, Atkinson's, and Portland; and the general deduction from experiments instituted by the exhibitors was, that the Portland artificial cement was stronger than the natural Roman, as two to one. The artificial stones were divided into those of a silica base, and those containing sulphate of lime, as Keene's, Martin's, and Parian cement. These last were spoken of in terms of high praise. Sume tables of an elaborate plaster mosaic from Tuscany attracted much attention, but bore so high a price as to render their introduction unlikely.

The Clay goods of the third division included, besides Mr. Minton's tiles (which will be more particularly treated of on the 2nd June by Mr. Arnoux), various kinds of bricks of different shapes and sizes, hollow, \&g. The most important were those used in the building of His Royal Highness's model lodging houses. Terracotta differs from brick in being of the finest clay with crushed pottery and calcined flints, burnt at a heat little short of fusion. Many interesting examples of those from British clays were exhibited, and the French specimens attracted much attention and favourable judgment. Bricks were shown in Austria, from an establishment where 5000 persons are employed, and $100,000,000$ of bricks made annually, with great economy.

Mr. Ansted concluded by deacribing at some length his general impression of the whole of this department of the ExhiBition, which, with regard to England was, that the English as a nation are wanting in the good taste to select the right material for any required purpose of decoration, and are apt to forget that what is beautiful in one material or for one purpose becomes preposterous and offensive when executed in another ill adapted for it, or for a purpose altogether distinct; but that the improvement wanted does not depend on the manufacturer, but mainly on the public whom they supply, and by whose requirements they must be guided.

ENGINEERING WORKS IN NEW YORK.

Ter Now York Couries and Inquirer, in a sketch of the works in progreas at the principal establishments in that city, aseerts that there are no foondries in England that cast such massive pieces of machinery as those execated in New York; and, in proof of this, enumerates the operation of neveral of the firme, as follow:-
Messra. Mott and Ayres, of the Chelsea Ironworks, have juat cast twelve iron colomns for the Manhattan Gas Company, which are the largest ever cast by 10 ft .8 in ., measaring 50 ft .8 in . in length, 3 feet diameter at the base moulding, 2 feet at the cap moulding, and weighing $27,360 \mathrm{lb}$. each; they have been erected about the gasometer, and are surrounded by girders 45 feet in length. They are also preparing an iron steamer as a paseenger veasel on the Magdalene river. Her hull is of iron, riveted together, and the deck is composed of white pine; she measures 167 feet in length on deck, 30 feet beam, and 7 feet hold, and is calculated to carry 70 tons while drawing only 2 ft. 9 in. water, showing great buoyancy in a vessel of that description; when heavily laden she will carry nearly 350 tons.
Milligan, of the Warren-street Foundry, has invented what he entitles the 'Vertical Flue Boiler," which he has patented both in England and Americs. The construction of this boiler is such that double the quantity of fire and surface can be got in the same compass over the boilers now generally in use, and it is claimed to be more effective. All other boilers have horizontal flues and vertical tubes. One very great advantage is in the boiler being half the ordinary size, taking leas room, and, as a matter of course, requiring but half the quantity of water; the strength of the fire acting on the surface of the water has the effect of making steam with less fuel; and in making the steam at the top of the fue it escapes more rapidly into the chamber. He is completing a boiler of this description for the firm of T. Sarrell and Co., to be used in their moulding and planing mills, with an engine of 100 -horse power. The boiler is 13 feet long, 7 feet wide, and 9 feet in height.
Cunningham, Belknap, and Co., of the Pboenix Funndry, are fitting the boat General Taybor with a condensing engine, 70 inches diameter of cylinder and 14 feet stroke, and four bollers. This steambost was built, about two years ago, by G. Collver, and she is now being fitted up fot an opporition boat between New York and Albany.
W. Small is casting a number of large engines for steamera; and also a variety of very heary and peculiar pieces of machinery for the Naptha Company, at Brooklyn, to be used in manufacturing oil from resin. These castings are entirely original, and are called "stills."
Rodney, of the City Foundry, besides several large engines for steam-ships, has recently completed, and sent to their dentination, four engines and stamping mills for quarts crushing in California.
G. Birkbeck has finished the machinery for a harbour towing boat, called the Peter Crary. The engine is 92 inches diameter of cylinder, and 6 feet stroke. Also, the machinery for a barge, belonging to Griffith and Tillingbast. She takes a condensing engine, 26 inches diameter of cylinder, and 26 inches stroke. Also, two $7 \frac{1}{2}$-feet propellers, with boilers to match. Putting machinery in barges is a new experiment. Barges have always been towed by the steamboats and propellers in use for that purpose, but some of the transportation companies contemplate fitting their barges as the one above. By the adoption of this plan quicker passages will be made up and down the river, and freight will command a better price.
Hogg and Delamater are principally engaged in constructing "Ericsson's Caloric Engine," a mammoth combination of machinery. It has very heavy pieces of metal, the cylinders, four in number, being 14 feet in diameter, and about 8 feet in depth. Three of these massive tubes have been osst, and are quite a curiosity. The engine will have no boilers, and no water will be used to drive it, the propelling agent being heated sir, which (by the devices, substances, and arrangements of the machimery) is asaved. The piston is 8 feet atroke. The principle advantages claimed by the inventor over other engines are economy of fuel and safety. The regenerators are arranged in single vessels, and the metallic substances contained therein take up the caloric from the air that leaves the working cylinder or vessel, and return the same to the air that enters the working cylinder at each stroke. The regenerators will alternately taike up and give out ealoric, by which the cir-
culating medium will chiefly booome heated, independeothy of any comburtion, after the engiae ahall have been once put in motion.

Morgan, of the Morgan Ironworks, beaiden two beam-angive of 78 incbes diameter of oylinder and 12 feot atroke, for two boats on Lake Erie, is construoking a 44-in. 11 feet benmengine for an iron vessel, to be built in Vienne for the Daprabe Steamboat Company. He has also completed the repairs of the steam-ahips Philacdelphia and IDinois of the U.S. Steamalatp Companys line.

Lecor and Breasted, of the Allaive Worke, have on hand orders for a pair of marine bentr-angines 60 inches diacestar of oylinder and 10 feet atroke, for Vanderbilit's Nioaragua ronte, to run in connection with the Promethoun, Daniel Webeter, and Northern Light. They are also construofing a marine beara engine of 65 inches diameter of cylinder and 10 feet stroke, for the Californien trada, to run from Now York to Chagres.

BURNLEY MECHANICS' INSTITUTE - RETROSPECTIVE CRITICISM.

Sin-I must ask the indalgence of a small space in your pages, to notice an article in your last number, entitled "Rotrospective Criticism." As I do not quarrel with your correspondent "C," for having criticised my design for the Burnley Mechanics' Institute, neither with the terms in which his remarks are expressed, I trust my reply will be such as to convince him, I have swallowed his censures without any indigestible or bilious result.
Like a skilful general, it mast be confeseed, he commences his attack on the mowt vulnerable point. The raking balas trade was always, in my idea, such a disagreeable appendage to the design, that, in working out the building, I have dispensed with it altogether; and this summary mode of disposing of it is, I admit, a much more agreeable one than its defence would be by any "speciousness of argument."

Had the site been level, or nearly so, and had the building been required exclusively for the purposes of an Institute, that architectural uniformity so pleasing to the eye might doubtlese have been more matisfactorily attained; but, unfortunately, neither of these desiderata were practicable. The streets occupied by the two principal fronts have a considerable in-clination,-and it was moreover requisite, in carrying out the views of the promoters, that one-half of the side-front should be devoted to two shops, which, so far as I am aware, seldom add much to a good architectural composition.-By a alight orror of your engraver, the base line in this front is shown continuously through, thus making all the openings appear an windows, whereas the second and fifth are arched doorways; hence the apparent irregularity complained of in the arrangement of the windows.

I do not coincide with "C's" remark, that the eolidity, real or apparent, of the first story has been forfeited by the namber of openings, which are indispensable to the rooms. The character of strength is not so much preserved by the absence, or by a small number, of openinge, as by the way in which they are treated: a bold and decided arch has all the essential qualities, and conveys as much appearance of strength as a solid pier.
Still less am I disposed to agree with the suggestion, that the columns of portico ought to have been placed "on the level of the top of area balustrade:" this would have placed them beliono the base line of the building, \rightarrow perversion of good taste I should not like to see "perpetrated." When we consider that the portico itself is 25 feet high, and the stylobate on which it is "hoisted" only 6 feet, the disproportion is scarcely so great as to make the columns appear insignificant.
And now one word as to criticism. I am one of those who consider sound, impartial criticism, either in art or literature, to be not only beneficial and instructive in its tendency, bat wholesome in its effect; for whilst stern truth unrelentingly lays bare the faults and defects on the one hand, justice and candour as readily acknowledge merit on the other. Holding these sentiments, and having an earnest desire for the progress of the true principles of architecture, I will freely give to "C," and every other reasonable critic,

Withal, as large a charter as the wity
To blow on whom they pleace."
I sm, \&c.
May 17th, 1859.
J. Geken.

QCHINKEL AND THE CATHEDRAL OF COLOGNR.

By Herr Blomes, of Cologae.

Gmarive ablie ite hage proportions and deep-wrought artbeanty, the Cathedral of Cologne has, of late, become the comatre Othe architectural teadencies of Germany, and when complated, will be the grandeet medizval monument of Europe. since, hewover, the lest etrokes of the mason had rewounded here, et the beginning of the Reformation, this aplendid structure hed mot with the moet abeolute negleot. It was George Forster, whe, in his "Viewn on the Nether-Rhine' (published in 1790), first diatad on the merits of this work;-but in a strain of deep melanoboly, that this symbol of a great past reffected the mere iatemely the indraiticance of our own works. The great artphilosopher, Frederic Schlegel, next took up the aseered canso, and urged thin inveluable relic on the attention of the German metion. It was his writinge on this and similar subjecte which ettracted the notice of the subeequent minister of etate, Baron 8tein, who introdiced them to the notice of some membera of the conert of Preacia. Next came Sulpice Boiseerée. To him the Cathedral of Cologne became a life-scope, and all that has been unbequently eaid and done in this respeot is his own andoubted property. It was he, indeed, who led Goothe to a proper eatimation of this noble structure; because, when Goothe first maw the perspective groond-plan of the Cathedral, his opinion was, thet "it exhibited the idee of the unfeasibility of such a gigantie uniertaking, and recalled to one's mind the fable of the Town of Babel transplanted on the banks of the Rhine." In the year 1812, Goethe published his autobiography, and most whrmly recommended the patronage of the wast undertaking of Boimere. This recommendation fortunately ceincided with the Mightening proepect of the political affairs of Europe, and, in November 1813, the drawing and plans of Boiseorte were sent for by a measege from the head quartern of the allied army, then \& Frankfort, where they were viewed with deep interent by the warriors and etatemen then congregated, and more especially by the arown-pince of Prumia, now Frederic William IV. M. Boisserée statea that the king had vividly retained this first mopremion up to the year 1849, when the first practical ondearours townede its reatoration came into life. In the summer of 1815, Goethe visited the dome accompanied by the miniater Etein whioh ovent well described in hill journal, 'Rhenish Art and Antiquities."

But while all these endeavoure of statesmen and writers were etraggling on, the Cathedral of Cologne presented but a huge, hopelese roin, made so by the neglect of centuries; and the question, whether this work could be at all preserved, and how carried out, swalted still a practioal solution. Thus, the then bailding privy-councillor Schinkel, afterwards raised to the cupreme direction of the buildings of the state, being the first technical anthority in Prussia, obtained orders in 1816 to extmine perwomally the condition of the Cathedral, and to report thareon to the higher authorities. It was in August and the following menth of that year, that he devoted himself to the tack. The thing was done, or rather undone, if Schinkel had bat pronounced his veto againat the reatoration and completion of what, after all, could only be called the parts of a building, -if he had thought that the extraordinary expense and labour of the restoration was not in proportion to the real art-worth of the building. And surely sueh doubts would have been anything but unfounded and timid, as the following extracts of his report will amply prove. It will teach the architect and artiet a useful lesson, of how many of our present ancient buildings, -howe restoration is denpaired of, are also capable of the same procem, if undertaken with skill and energy.
"The deatruction of the timber-work of the roof has become vary dangereun, the greateat portion of the beams and rafters being decayed, and a genaral sinking and breakage of the timber works has taken place. The buttresses formerly erected zosinst the walls of the Cathedral for avoiding serivos sccident have only increased the damage, as the ultimate destruction of the lateral walle has become inevitable by the pressure of the supports exerted against single points. The experiments made to effect the flow of water from the drains in the planes of the roof proved that a complete destruction of the buttresses was inevitable, the fluid parcolating through every crevice as also the adjecent parts of the walla; the whole slate covering and the leaden tubes being oovered with thick mose, like the walls of natural humid grottoea. The peril of such a condition is clear to every one who can anderstand the system by which the
maseer of such a building are kept together. The daring of the plan consiste mainly in the acourate pelaing of opposing quatities and forces, whick in thair proper arrangement act appropriately; but any one of these quantities being taken away, destroys the whole system of equilibrium. The consequences can be guessed if the buttresses erected for the support of the lofty vault of the choir were to crumble to pieces. The great quantity of water collecting in the angles of the groining of the choir is mo great, that its effects are perceived even in the interior of the Cathedral. Each rainy day convinces me, how the water drips down through the vaults of the lateral naves, and, passing along the pillars of the high choir, overywhere decays the brickwork. The effects of the winter season are still more calamitoun, as the interstices, already filled with the water, are still further enlarged and disrupted by the expansion of the ice; and when the numberless channels and gutters have become filled with ice and nnow." M. Schinkel concluden by saying, that "although it cannot be stated with accuracy, when an irremediable disaster may befal the building, yet the canses for such an event are extant to a frightfol degree.

In the face of such circumstances, the talented architect did not hesitate to pronounce for the consorvation the continuing, and completion of the Cologne Cathedral. Ha tays: "Whatever we may think of the vocation of our age for the continuation of this building-laying aside the necessity of its preserva-tion-it still in undeniable, that the present age is deficient in amplitude of intellectual view with regard to art, by which alonp, however, art can be made to progrese. But even if such art-ecopes were at hand, we could only, in our present position, perform the part of good and intelligent imitators, and yet not thereby become poseessed of that creative genius which appertained to the Greeks and our own ancestors on the banks of the Rhine. In euch a penition, one of the most appropriate occupations of the architect is to preserve, with all care, that which the genius and power of previous agea have left us; as there will be consolation in thus passing over an apoch which affords so little opportunity for any other original exertions and actions."-In the came manner as Schinkel had oxerted himself for the preservation of the Cathedral of Cologne, he subsequently submitted to the minister Alteastein, in 1895, his plans for the completion of the building, and up to his death (1841) remined the chief supporter and adviser of this noble work.
Many of our readers will recollect the superior title-vignette which adorns the work of Sulpice Boisserée on the Cologne Cathedral. It will be interenting to know how much thought Schinkel bentowed on every one of his productions, as will appear from the following extract from one of his letters to Boisserée. "I intended to show the entire situation of Cologne along the benks of the Rhine, whereto belongs its connection with Deutz; to exhibit the view around and from the Cathedral, especially the Siebengeburge (the seven mountains). For that purpose the sight from the Cunibert's Church seemed the most appropriate. Hera, we perceive Deutz and the majeetic windings of the Rhine up to the Seven Mountains; to the right expands the town, in whose centre rises the Cathedral, and towers, ramparts, and gateways are rendered appropriate accessories thereto, while gurrounding gardens and foliage make the view pleasant and smiling."

We cannot conclude thin eketch better than by stating, that the exertions for the completion of the Cathedral are going on prosperously and promise the ultimate succese of this vast and laborious undertaking.
L.

The Sewers Commiesion.-It is with regret that we have to announce the death of Mr. Lawes, the Chairman of the Metropolitan Commission. This is the third death in this Commission within a very short period, and we regret to state that the harrasaing cabals that are constantly going on in this Commiseion have greatly aggravated if not hastened, the death of the lamented engineer, Mr. Forster, and Mr. Lawes, the Chairman. It is what we long since anticipated, and we feel assured that the two bodies of Military Engineers and Civil Engineers cannot act together; and we trust that Mr. Stephenson, in conjunction with his colleagues, Mr. Rendel and Sir Wm. Cubitt, will be firm in reaisting the pretensions of parties who are looking forward for appointments. We do contend that it is highly improper that any member of the Commission should be constantly putting forward his own schemes, instead of settling and judging thome whioh are brought forward by their own officers.

APARTMENT HOUSES.

A House, to be let out in Apartients for Families, Hotel non Garnig,-at Vienna.

Professor C. F. L. Förstrap, Architect.

(With an Engraving, Plate XXI.)
At page 88, we gave a Plate with the elevation of one of the large houses constructed at Vienna by Professor Förster, Architeet to the Imperial and Royal Government, the editor of the Bauseitung, and an eminent writer on architecture.

This building is situated in one of the most animated parts of the city, with a frontage to three streets-Wollzeile, Riemer, and Schuler streets. It was erected upon the site of an old house in the years 1848-9. Ground-rente being very high, and the former house producing a large rental, it was particularly required so to arrange the distribution of the plans that the capital bestowed upon the new building should pay interest, without lessening the rent which the old house produced. These conditions were answered by the execution of the annexed plans; and no expense was apared for the exterior and interior ornamentation.

Fl. 1.

Fig. 2.
It is matter of experience, that a house in the city of Vienna only pays when the ground-floor is arranged for shops, which pay as much rent as the other four floors. It was the endeavour, therefore, to get as much roum as pussible for shops, and to connect the cellar and mezzanine with them, and to bring the thickness of the walls to the minimum of the dimensions required by the Viennese building regulations. Figs. 1, and \&, show the distribution. Behind the shops are warehouses, which
are connected with the mezzanine and the callars. The rooms in the cellars are light and dry, because the pavement of the court-yards is on the same level with the floor of the cellars. Two small staircases a, and an iron winding staircase b, fig. 1, serve as means of communicstion between these thres storiea, The apartments c, are intended for dining-rooms, and are therefore in connection with the cellars (leval with the kitchen), and with the ice-wells underneath. Thus there are two stories under the level of the street. The ice-well in the first cellar is furnished with three pumps. The sewer, 2 feet wide and 2 ft .6 in . high, could not be laid lower, on account of the situation of the main sewer in the street. It takes up the rain-water from the yards and roofs, which passes first through the castiron pipes of the waterclosets. A decorated entrance-hall having several steps within, connects the principal staircase directly with the street. That principal staircase, 5 feet wide, is round, to economise space. A door e, leads through the corridor to another staircase, for the use of the servants of the tenants on the first and second floors, and to the inferior lodgings of the third and fourth floors. The first and second floors are divided into two sets of apartments; and the third and fourth into four separate lodginge for families. The corridor is formed of stone lags, supported by cast-iron columns and wrought-iron arches, between which there are wooden partitions with windows. The balconies, which project out from the corners, are planned because they must be cut off for the better communication with carriages, as the streets are very narrow. These windows assist much in the decoration of the outside. The balcony over the entrance was not only required by the Von Rieger family, to whom the building belongs, but it was also the desire of the architect to render the entrance more prominent, and to enable visitors to step dry-shod from their carriages into the house. All ornaments of the facade and the entrance-hall are of burnt clay, from the manufactory of Herr Brausewetter at Wagram. The building is constucted in the ordinary manner prevalent at Vienna; but no doubt, eventually, lighter constructions will take the place of the present too substantial ones.

The Engraving, Plate XXI. containg an enlarged view of the principal entrance door, window, and balcony over, showing the architectural dressings.

It will be seen that each suite of apartments on the principal floor has access to two staircases, and includes an office, anteroom, dining-room, parlour, and drawing-roum, of good dimensions; a kitchen, best bed-room, three servanta' rooms, a hall or study, cellar, and two waterclosets. One set has a secondary bed-room over the entrance. The rooms are well lighted and of lofty proportions. The drawing-room is high, 26 feet by 19 feat on the floor, lighted by three windows, and communicating with the sitting-room and pariour; and in case of need, one suite is formed from the secondary bed-room through the drawing-room, parlour, office, hall, and dining-room, to the best bed-room; the whole length of this suite is nearly 90 feet. The doors are so placed that, when the rooms are en suite, a person standing in the parlour has a vista of 50 feet through the drawing-room, and of nearly 70 feet through the dining-room. The lighting by chandeliers or gas contributes to this effect.

The distribution here adopted is not wholly suitable to English habits, but it affurds some hints as to a mode of construction which is likely to be extensively adopted in London, on which account we have considered it highly desirable to lay these examples before our readers.

Comerete Howars.-On a recent profeational viait to East Cowes, Iale of Whght, we were much plemed with the economy diaplayed in the construetion of two hoase wert much plensed wing bullt on this beautiful eatale near to Osborne Houme, noder the direction now being built on this beaulinul esiate near to
of Mr. Langley. On the spot in some excelient gravel, which han been rery adrantigeovily turned to account, by bullding a pair of cottage Filiss entirely of concrete, composed of one part of Francis' Medinis Cement mixed with ali parts of coarte composed of one part of Fracis aredina Cement mixed wiun air parts of coarne chlmneys, by fixing two or three boards vertienlly, and alling-in the conerete between, about 12 w 14 Inchea thick, by which method, in consequence of the entck setting of the cement, the walle are carried up and the board thifted within three or foar hourt after the wall is boilt. Even the arches are all turned with it, and no brick are used. This cement, wblch is manufactured on the taland by Mesorn. Frapels, ts well decerving the notice of the profeasion; it la largely used in the worke at Dover well dearving the notice of the profesion; it is largely used in the work at Dover harbour,
down Bay, in the Inle of Wight, a rea groyne, of 200 feet in length and abont 7 foet in height, has been bullt in the same material, at right angles with the shore, for the parpone of forming a broakwater in protection of the land, and that it has gehleved purpone of torming object to the mainfection of the owners of property, where everything elae bud been swept arra. The groyne has now stood trelve monthe exposed to all the folent gales we have had in the Channel, and it was hately Inspected by order of \&tr John Burgoyne, on the part of the government.

SECTION

TOWERS AND SPIRES OF THE CITY CHURCHES: THE WORKS OF SIR CHRISTOPHER WREN.

By Join Clatron, Architect.

[Extracts from a Paper read at the Royal Inetitute of Brition Architects, April 6th, and 26th.]
In bringing under your notice the Towers and Spires of the City Churches, it will be my object to give some of the results of the observations which I made while engaged in taking the measurements for the geometrical drawings and views now exhibited. It is hardly necemary to remind you under what circumstances these admirable specimens of architecture were designed and carried into execution. The catastrophe of the Great Fire as an historical event, and the name of Wren as the renovator of this metropolis, will probably outlive these enduring monuments of his fame. Well-known, however, as they have been, as the pride of this city for nearly two centuries, it is a remarkable fact that they have hitherto received very little practical attention, though frequently represented in works of a pictorial character, which do not convey those correct ideas of form and proportion that are so valuable to the architect. Had these edifices been situated farther from home, we should, in all probability, have had long ere this, most accurate measuremente of every portion of them; for, as Colin Campbell observes, "the general eateem that travellers have for things that are foreign is in nothing more conspicuous than with regard to building, though perhaps in most we are equal, and in some things surpass our neighbours." In confining ourselves to the fowers and spires, it must be borne in mind that the interiors of Wren's churches are not leas worthy of attention. The crowded and irregular forms of the different sites called forth the fertility of Wren's talents and ingenuity in overcoming numerous difficulties, ont of which he contrived to produce effects full of beauty and excellence as the happy results. Other atyles than those in which Jones and Wren designed have exclusively been termed ecclesiastical: but it may be safely amerted that the plans of the city churches designed by Wren are the best adapted to the protestant ritual, and that the instructions which he has left with regard to church building are well worthy the attention of all intrusted with the direction and control of such mattern. Of the exterior of these churches there is but little to notice, facing, as they do, narrow lanes and courts, which allow no space for architectural display. It was Wren's wish to keep each church detached by setting back the surrounding houses; he was, however, prevented from accomplishing his object, so that many of his churches have but one front, and that only visible at the distance of a few yards. The want of opportunity for the display of any architectural facade has been, however, in most inatances, compensated for by the importance given to the towers and spires, which are placed in the most favourable position, and rise fairly upwards from the solid ground, instead of being perched on the roof of the main building, or of the projecting portico, as is the case in too many later examples.

No church seems complete without a tower or spire. Wren, writing on this subject, observes: "Handsome spires or lanterna, rising in good proportion above the neighbouring houses (of which 1 have given several in the city, of different forms), may be of sufficient ornament to the tower, without great expense for enriching the outward walls of the churches, in which plainness and duration ought principally if not wholly to be studied. When a parish is divided, 1 suppose it may be thought sufficient if the Mother Church has a tower large enough for a good ring of bells, and the uther cburches smaller towers for two or three bells, because great towers and lofty steeples are sometimes more than half the charge of the church."

The distinction between a spire and a lantern may be said to depend on the form and outline, and more particularly on the proportion which each respectively bears to the supporting subatructure or tower. In a spire, this proportion is about that of equality; in a lantern, the superstructure is about one-half the height of the tower beneath. The towers, without the apire or lantern, will be found to vary from four to five times their breadth in height. It is hardly possible to conceive a greater variety than Wren has exhibited in the designs of his Towers and Spires, all of which are based on principles distinctly laid down in his writings. These buildings may be classified for consideration under the following heads:-Stone Spires; Stone

Lanterns; Lead Spires; Lead Lanterns; Towers; a tabular list of which, with their dates and dimentiong, is subjoined.

Stome Spiree.		Enight.	
1. 8t. Bride'r, Fleet-s	1700	230	30
2. St. Mary-le-Bow, Cbeap	1680	223	32
3. St. Vedast's, Poster-lane	1697	160	20
4. St. Antholina', Watling-s	1682	158	20
3. Christ Church, Newgatestreet	1704	160	$23 \cdot 3$
Stom Lanterne.			
1. 8t. Stephen', Walbrook	1672	130	20
2. St. Michaal Royal, College-	1694	135	20
3. 8t. James, Garlick-hill	1683	125	$20 \cdot 3$
4. St. Mary Magdalen, Old Fub-street	1685	86	16
5. St. Dunitan'tin-the-Eatt	1698	171	20
Lead Spires.			
1. St. Margaret Patten's, Rood-lane..	1687	200	22
2. St. Swithin'g, Cannon-strett	1679	150	20
Lead Lanterne.			
1. St. Magnar', London-bridge.	1705	185	30
2. St. Peter't, Cornbill	1681	141	20
3. St. Benet's, Grucechurch-itreet	1685	148	20
4. St. Benet's, Thames-atreet	1683	115	16
3. St. Bonet's Fiak	1673	100	189
6. St. Mary's, Abeharch	1686	150	20
7. St. Martin's, Ladgato bill	1684	170	22
8. St. Margaret's, Lothbary	1690	142	18
9. St. Mildred'b, Bread-atreet	1688	150	18
10. St. Jandes's, Weutmioster		155	24
11. St. Rdmund the King	1690	136	17
12. St. Michael's, Queenhithe	1677	140	18
13. St. Auntin's, Watling-street	1695	140	20
14. 8t. Nieholat', Colo Abhey	1677	120	19
15. St. Lavrence', Jewry	1677	160	25
16. St. Michal's, Bascishaw	1679	140	21
17. St. Anne and St. Agnes'	1673	95	14
18. St. Stephed', Coleman-otreet	1676	85	
19. St. Mary'a, Aldermanbary.	1677	90	
20. St. Michal'h, Woodentreet	1675	80	
Towers.			
1. St. Andrew't, Holborn	1704	140	23
2. St. Mery's, Somernet	1695	110	20
3. Allhallow's, Watling-street	1697	104	$17 \cdot 6$
4. St. George's, Bololph-lane	1674	72	16
5. 8t. Michmel's, Cornhill		135	27
6. St. Mary's, Aldermary	1711	135	24
7. St. Clement's, Basteheap	1686	88	16
8. Allhallow's, Lomberd-street	1694	105	21
9. St. Bartholomew's, by the Exchange	1679	90	
10. Allhallow', Thames-atreet	1683	88	22
11. St. Dionis' Back Chureb, Peachurch. atreet \qquad	1684	101	20
12. St. Andrew's, Blaclfriara	1692	80	18
13. St. Mattbew's, Pridaj-itreet	1685	74	16
14. St. Olaveis, Jowry	1673	83	-
15. St. Sepuichre's, Nemgate-ntreet. . . .		140	
16. 8t. Mildred', Poultry	1676	73	16
17. St. Mary-at-Hill	1672.	96	
18. St. Clement's, Strand, left a Tower by Wren \qquad	1682	116	

The diteraslose of helgte are atreen ap to the top of the nase, or Anial.
Of the above list, it may be observed that the Stone Spires and Stone Lanterns are the objects most worthy of consideration.

With reference to the skill displayed, both in the design and in the construction, it will be seen that St . Bride's is a composition of equalities in which there is a pleasant succession of vertical and horizontal lines, beauty being obtained by agreeable repetitions, and not, as in most other instances, by harmonious varieties. The spire, which is formed of a series of open arches rising in succession above each other, shows how well Wren could repeat forms without at the same time rendering them monotonous. The construction of this spire materially differs from any other-Italian, or Gothic. Tbe arches form vaulte or cells within, which are firmly bound together by the central spiral cord or staircase, and thus equally distribute the pressure over the surface below, imitating in a beautiful manner some of the strongest forma of nature. The provision made for carrying this spire is excellent. Within the belfry are angle corbels with flat surfacee which contract the square to the octangular form, which is reduced to a circle by a bold rounded moulding
level with the top of the external cornice. The circle meacures 17 feet in diameter, and above it rises a lofty conical dome, mescuring 14 ft .6 in . to the crown. The sides of this dome are momewhat of an ogee form, but nearly flat to within n very ahort distance of the apex; and it should be diatinctly observed that the joints of the masonry do not radiate, but are kept perfectly horizontal, each layer corbelling over, with a slightly bevilled surface, until within a few courses of the keystone. Had any other construction been adopted, even metal bands would not have long retained the whole together. The maconry of this part is extremely massive and carefully connected, the depth of the keystone being not lees than 4 ft .9 in . The spaces hotween the sides of the dome and the exterior measure nearly double this dimension, and it is probable that voids are left at intervals within, though there is now no opportunity of acertaining the fact.

The spire of Bow Church, on the other hand, is a composition of varieties-the solid and the open, the square and the circular, the vertical the horizontal, and the fowing. The solid equare tower and the light circular spire with its beantiful peristyle, where the columns are lost in succession, the fluwing lines of the open arches above, the return to columns on the next atory, and the finish. by repeating the flat forms of the tower, the play of light and shade, and the alegance of the outline, render it a masterpiece of ite kind, which will probably never be surpased. The walls of the tower are 7 feet thick as high as the belfry. The terminations in the form of scrolle placed at the corners of the tower, and surmounted by vases, have great beauty of form, and admirably prevent any abruptness in the transition from the equare tower to the circular spire. The spire, the centre of which is a cylinder of masoary 9 inches thick, is supported on a dome resting on massive moulded corbellings in the angles of the belfry. The dome is circular on plan, and 20 ft .8 in . diameter at the base. It is alightly curved in section, and rises to a height of 18 feet above the springing. The joints in the masonry of the dome are horizontal as may be observed in the entrance to the upper part, which passes through one of the sides.
St. Vedart's apira, too, is a charming composition of varieties; the square, the concava, the convex, and the equare repeated in the pyramidal termination, give hard and soft shadowe most agreasbly distributed.

Christ Church spire is a composition of light work contrasted with solid, on the aquare plan throughout.
St. Antholin's spire is an octagonal composition of a molid character, being a skilful adaptation of the ordinary Gothic apire to the Italian atyle.
The manner in which the towers supporting the spires are treated, has great influance on the effect of the whole composition, or steople. In the oxamples mentioned, it will be seen that the number of aperturea, their forms and proportions, the subdiviaion by bands and cornices, and eapecially the decoration of the belfry story, are so arranged as to form a suitable substructure to the upper portion or spire.

Among the Stone Lanterns, those of St. Stephen, Walbrook, St. Jumes, Garlick-hill, and St. Michael Royal, are fine specimens. The two first are square in plan, and present the peciliarity in their construction of being carried on domes springing from piers in the internal angles of the belfry, which piers are built independent of the walls, and tranemit the weight to the thicker work below.

The lantern of St. Michael Royal is octagonal in plan, and is supported on a dome resting on deep corbela in the angles of the belfry. In this instance, the assistance of atrong iron tierods is required, to reaist the outward thrust of the arches beneath the dome.

The lantern of St. Dungtan's-in-the-East is a remarkable production, both for construction and symmetry. No ancient example can compare with it in these respecta. Thut of St. Nicholes, Newcastle-upon-Tyne, almont the only sncient example remaining since the destruction of old St. Mary-le-Bow, would not be worthy of mention if placed by its aide. In St, Nicholas', the wide apan acrose the tower, and the low rise of the lantern and fying buttresses above the battlements, appear to overpower the resistance to their thrust. On the other hand, St. Dunstan's atands easy and graceful, every portion nppearing to be at reat, and conveying the full impression of enduring as ma undoubted masterpiece of ite kind. From each angle of the parapet, but fairly within the pinnaclea, rise the gracaful

Aying buttremeen which support the lantern. Theee measure 8 ft .8 in. by 1 ft .8 in ., and riee with the game dimensions to the curve immediately below the lantern, where they are gethered round a circular aperture 3 ft .6 in . diameter. The lantern oxternally, is not less than 6 foet scrose, and the distribution of the joints of the masonry at this point is the most dolicate part of the construction. The flying buttreases, the jointe of which alightly radiate in the upper part above the battlements, are carried on long flat corbels s8 foet deep, reaching to the botiom of the belfry and to the thicker walls of the story below.
St. Dunstan's is a remarkable edifice, though it cannot be praised for what is called good Gothic detail, for Gothic was a style little understood or cared about in Wren's time; it nevertheless possesses so many compensating qualities as to be well worthy the attention of the most refned medisoval critic. Wrea has been censured for building in a style of which he was not perfect master; it must, however, be recollected that he did not adopt Gothic but in cases of necesaity like the present, and that he gave a decided preference to what was considered a new and a better atyle.

Next to the atone apires of St. Bride's and St. Macy-le-Bow. the lead spire of St. Margaret Patten', Rood-lane, is the loftia ent attached to the city churabes. It presents a good outling, equal to some of the most approved Gothic examplea. The timber framing of which it is formed deserves notice, strength and security from torsion being obtained by the akiful diaposition rather than from the scantlings of the timbern.

St. Magnus', London-bridge, displays the loftiest and handsomest of the lead lanterns. The cupola, which is of masonry below, is of an octagonal shape, and like the tower, measure a foot more in one direction than the other; this irregularity in however so trested as to be imperceptible. it is relieved by large openings, and is finished with dome and upper lanterm of exceedingly graceful contour.

The lead lanterns of St. Peteri, Cornhill, and of St. Benet's, Thames-atreet, may be named as good examples, and have toweri constructed of red brickwork.

Of the towera many were doubtless designed to carry cupolag, which, indeed, in one or two instances, are said to have been removed. Of those intended to remain as towerm, the mont worthy of notice are-
St. Andrew's, Holborn, which is a fine example with deeply. sunk sad enriched belfry windows, a etrong cornice having coupled trusses at the angles and elegant scroll pinnscles over.

St. Mary's, Somerset, has eight lofty pinnacles, varying in height, which, though perhaps somewhat too rich for the tower, group well in perspective.

Allhallow's, Bread-street, has open tripled arches and lofty obelisk pinnacles at the angles, and is a very pictaresque composition.

Allhallow's, Lombard-street, St. Dionis' Beck Church, and Allhallow's, Thames-street, have bold ornamental parapeta, and the latter has a block cornice.

The Gothic Towers of St. Michael's, Cornhin, and St. Mary's, Aldermary, were nearly the last of Wren's works; but though last, certainly not least, either as to dimensions or importance. They have each octagonal pinnacles at the angles not lems than 7 feet acroms, but they have this resemblance only, their general appearance and treatment being very different. The outlines are extremely bold and effective, and the latter is by far the best Gothic example of the period.

With reference to the construction of these edificen, it will be hardly necessary to observe that Wren's towers and apires were built "in the most substantial and workmanlike manner," and to adapt the words of modern specifications still further "the materials used were the bent of their respective kinds; but here ends the similitude. Wren put a different construction on these words from that often given in the present day; with him none of the funds which should be expended in stability were wasted in decoration-a fault which is perhaps mainly attributable to the present defective state of competitions, with which Wren was not troubled. The walls of the towers vary from 5 foet to 7 feet in thicknesa, and are of solid masonry, cometimes backed up with brick, but generally with stone of a rougher description. The atone is Portland, the timber oak, and the lead must have weighed at least 10 lb . to the foot superficial. The floors in nearly all the towers are carried upon corbels, a preferable zmode to inserting the ends of the beame in the walle, as the floorn are more readily replaced when de-
cajed, and the walle are not too liable to be injured by fire or trains. The towers have in nearly every instance convenient scoess to the belfry or parapet by circular stone staircases; and It fi worthy of netice that the front line of the steps runs to the centre and not to the free of the newel, as is usual in Gothic staircases; this perhape occasions a little more work but givee a much better tread. The block cornices and enriched parapets, which are so frequently imitated in the more modern parts of the metropolis, were first used by Wren.

Wren obsorves that spires were of Gothic extraction, to which, however, his imitations have no further resemblance than their pyramidal outline. Those nearest approaching Wren's are the Lombardic and Italian campanili, and though Wren does not appear to have visited thoee countries, still he was doubtless well aware of their existence and forms; they are however quite a distinct apecies, are of vant dimenaions, and have different proportions. The earlier campanili date from more than 1000 years before Wren's time; their upper parts are divided into a number of equal stories, enriched with arches, and the apper stories were subsequently frequently broken into the octagonal form and covered with a spire; from these were derived the Norman, and afterwards the beautiful Gothic steeplea, as at Boston, Louth, and Balisbury. When the Gothic was exhausted, the Italian architects of the revival returned pretty closely, but with greater refinement to the forms of the oarly campanili, though but few if any of their works can be called espires, 80 that it remained for Wren to rival these Gothic edifices-but in the Roman otyle and detail. It will thus be seen, architecture being more a science of growth than of poeitive invention, that apires were first derived from Roman architecture about 1000 years ago, were continued and perfected in Gothic architecture during a space of 500 years, and were afterwards re-transplanted in their original style, in which the genius of Wren has made them flourish with equal auccess. In a paper read before the Institute, Mr. I'Anson observes with respect to campanili: "Perhaps there are no finer modern inatances to be met with than the beautiful compositions of our countryman Bir Chriatopher Wren," and having paid probably more attention to this subject than any one, 1 can most complotely concur in Mr. I'Anson's statement.

The great difference betwean Wren's spires and the revived Italian campanili is, that the former have a lofty pyramidal outline, are divided into three, four, or five stories, and are eariched with open stages of columne or pilasters. The columus used in this elevated position are differently treated than when placed near the ground, and the orders have a much bolder description of detail. To denign a spire in this style requires a good knowledge of perspective, for as Wren observes-"Everything that appears well in orthography, may not be good in model, and everything that is good in model, may not be so when bailt; but this will hold universally true, that whatsoever is good in perspective, will hold so in the principal views, if thic caution only be obeerved, that regard be had to the digtance of the eye in the principal stations."

With reference to their composition, Wren also gives some further valusble information. "Thinge seen near at hand may have small and many members, be well furnished with ornaments and lie flatter; on the contrary, all this care is ridiculous at great distances; there bulky members, and full projections cacting quick shadows are commendable; small ornaments at too great distance serve only to confuse the symmetry, and to take aray the luntre of the objeot by darkening it by many little hadows There are different reacons for objects whose chief riew is in front, and for those whose chlef view is sideways."

In this branch of design, it should be noticed that Wren has had many able followers, foremost among whom stand his pupils Gibbe and Hawksmoor, then Vanbrugh, Dance, Archer, James, and Fliteroft. Gibbs built St. Martin's-in-the-Fields, and St. Mary's in tbe Strand; Hawksmoor, Bt. George's, Bloomabury, and St. Mary's, Woolnoth; Dance built St. Leonard's, Shoreditch; Archer, St. Phillip's, Birmingham; James, St. George's, Hanover-square; and Flitcroft, St. Gilee-in-the-Fields. All theee are very beautiful examples, more especially the two first by Gibbe and Hawksmoor. Dance, in the spire at Shoreditch, has imitated the outline of \$t. Mary-le-Bow, but on a smaller malo, the circular peristyle of columns, which is perhaps the weakeet. part of the latter, being strengthened by arched walls returning from the columns to the cylinder within. The story above hat a domed covering instead of open flying buttresses, by which it gains in solid appearance, but losea in lightnese and
elegance. Thece examples havi all their relative orcellence, but taken as a whole, they cannot be compared to W ron's best examples, St. Mary-le-Bow, St. Bride's, and St. Vedast's.

Diseussion.-Mr. Fowler stated that he had examined clomely the spire of St. Dunstan's-in-the-East, and could confirm what Mr. Clayton had said as to the joints of the flying buttremet. These were not at right angles to a tangent of the curve an in ordinary archwork, but were continued horizontally up to very near the conjunction of the four flying buttresses, so that the higher or upper joint seemed to him to occasion some little weakness. It was, of course, a balance of consideration between the benefit to be gained by spreading the lateral thrust, and the danger incurred by the weakness of the stone at the acuite inner angle. No doubt it had been a matter of great study on the part of the architect, and his conclusion was perfectly judicious. It was remarkable in the churches of Wren, that there the tower stood against the street, it was always perfect from the base to the summit; not like Sc. Martin's in the Fields and others, growing out of a pediment or standing on a roof. Although Wren's details were all Roman, his outlines were strikingly Gothic. He appeared to have been imbued with the importance of retaining the ecelesinstical form of composition in Hothlo buildings, and to graft upon it the details of what he thwaght the more legitimate architecture of Italy.

Mr. Billingas was entirely at variance with Mr. Clayton as to the merit of the tower of St. Dunstan's-in-the-East; which ta not to be compared with those of St. Nicholas at Newcactle, 8 , Gilen's, Edinburgh, and King's College, Aberdeen. There was nothing wonderful in the construotion of St. Dunstan's, but in the others there was involved a series of nicely adjuated calculations of what a flying buttress would bear upon its point whilst at St. Dunstan's the pressure was almost vertical. The spirit, however, of Wren's Gothic was beautiful, but the detail was excessively bad. Although Wren did not like Gothic architecture, he did not hesitate to adopt its principles-a fact which was strikingly shown by the flying buttresses within the screen wall of St. Paul's. Though giving Sir C. Wren all the credit justly due to him, he would say, with all deference, that many of his spires were far from faultless. He did not speak of Bow, of St. Bride's, of St. Vedast's, or of St. Dunstan's. Many of Wren's churches were extremely beautiful; and those he referred to were merely not quite so beantiful as the rest. The fact was that Wren was an overworked man, and his genius was at last worn out. Indeed, Mr. Billings could hardly understand how the man who had produced the spires of Bow Church and St. Brido's, could have afterwards produced the spire of St. James's. While the detail of the towers of Westminster Abbey was wretched, the spirit of those towers was good, and undoubtedly Gothic. The grest ability shown by Wren in effecting the junction of his towers with their spires was a point of the highest merit, and a study for all architecta. Their variety showed, indeed, that as many variations could be made in the towers and spires as in the tracery of a Gothic panel. The oxtraordiuary manner in which the plans of Wren's charches were adapted to the streets they were placed in was remarkable. Professor Cockerell had pointed out an instance of this to him, in the church of 8t. Antholin, Watling-street, which was adapted to the previous bend of the street, the line of which had been altered.

Mr. Fowler mentioned as another instance of the same careful adaptation to local circumstances the church of St. Magnus, London-bridge. Originally the lower part of the tower was closed, but when public convenience rendered it necessary to carry a way through it for passengers, it was found that in the construction of the work, Wren had anticipated and provided for such a measure, by leaving a straight joint in the masonry.

Mr. Nerson drew attention to the campanili, or western towers of St. Paul's, which had not been mentioned, but which be had always regarded as extremely beautiful. By M. Quatremère de Quincy" they were quoted in disparagement of Wren, but as seen from Ludgate-hill (and he hoped they would some day be better seen, and the cathedral be thrown more open to view), he could not but regard them as highly effective. The mode of construction in the domed part of Wren's spiree, by the adoption of horizontal instead of radiating jointa, recalled a much more ancient employment of that syatem in the Treasury of Atrens at Mycena, in Greece, which he believed

Profemor Donaldeon was the first to elucidate．The staircases in the Spires of Bow and St．Bride＇s were very interesting；he believed the hint for the way in which the latter was carried， and the atrength afforded by it was derived from natural objecte －from a study of conchology．In conclusion he drem the attention of the meeting to the admirable manner in which Mr． Clayton had arranged and classified the towers and apires of Wren in his drawings．

Mr．Jenninge suggested that there had been an alteration in the spire of St．Bride＇s，which did not present the same appear－ ance as when originally designed by Wren．It was reported that a whole story had been removed．
Mr．Cunpron eaid it had been lowered 7 feet，chiefly in the obeliak．That dimension would not have admitted another story．
Mr．Garlina inquired whether Mr．Clayton，in his examina－ tion of the more lofty epires，had noticed what provision was made for protection from lightning．
Mr．Junnivas thought there would be no difficulty whatever in the employment of lightning conductora internally．
Mr．Bilungas aid that Wres＇s epires were as liable to be twisted as any others which had conductors at the top going through the centre of the spire．The spire of St．Martin ${ }^{\text {s was }}$ utruek about two－thirds of its height from the top．

Mr．Chayton said that church had no conductor．
Mr．Garuive sald the weathercock itself，which went some distance into the spire，would act as a conductor as far as it went．He thought t＇at conductors placed inside were liable to be mevered without attracting notice，which could not be the case if they were outside．
Mr．Heskrif said the present practice was to connect the lightning conductor as much as possible with all the metal－work of the building，and to carry it down into the earth；and this might be done by connecting it with a water－pipe．
Mr．Garinna said that was the case at St．Paul＇a，where the conductor was connected in numerous places with the rain－water pipes and the lead－work．

Mr．Fowler observed that damage by lightning only occurred where the electric current was resisted，and all that was necea－ sary was to provide the means of conveying it to the earth．
Mr．C．H．Smite stated as the result of his examination of the apire of St．Martin＇s Church，that the lightning appeared to have struck the vane，and run down the rod supporting it；and the mischief began where that rod terminated．The current went from that point to the stone－work in the spire，which was fixed together with very strong iron cramps run with lead；and in its passage through the stone from one of these cramps to another，the masonry was split in a spiral line all round，hardly one of the stones in that line remaining entire．It then made its way to the lead－work of the roof and down the metal pipes inside the pilasters．As to the principle of lightning conduc－ tora，it was well known that a bell－wire would serve to transmit the current；but the danger was that so much hest might be generated as would malt the wire；and therefore it was neces－ gary to make the conductor of sufficient substance to prevent ita leing fused．With respect to the masonry，he observed that Wren had used in some of his churchea，as in the porch of St． Bride＇s and the inside of St．Panl＇a，a soft and cheap description of stone which came，he believed，from Windrush，near Burford， in Oxfordahire．The Portland stone of Wren＇s churches，and others，to the year 1740 or 1750 ，was extremaly coarse and full of a species of small oyster－shell．This might be noticed in Hawkemoor＇s Church（St．Mary＇s Woolnoth），Lombard－street． This kind of stone had been brought from the eastern side of the Iale of Portland，where a large quantity of it atill remained． This was proved by the documents in the possession of the family whose ancestors supplied the stone for St．Paul＇s and Greenwich Hospital．It was then called＂best bed stone，＂being the best then known，and it still retained that name，although much better stone was now worked．The Portland stone now in use was introduced not long before the time of Sir W．Cham－ bers；and the north front of Somerset－house would be found to be of a very superior kind of stone to that of Wren＇s time．

Mr．Imvine explained，from his own observation in drawing it for the Royal Academy，about six months ago，the construc－ tion of the upper part of the spire of Bow Church，in the masonry of which（in the solid part of the drum）piecee or
dowels of English oalc were ingerted，apparently to dimiaish，the vibration．He felt bure they were placed there when the epire was first erected．From the want of a proper conductor，this spire wae very liable to injury from lightning．

Mr．Smita said it would be eary to hang a chain of wire $\frac{d}{g}$－inch or tinch thick from the spindle of the vane inside the spire and tower down to the ground．

Dimensione of Italian Campanili．
Eetigh in Froportion of Enylibh Foet．Hedgtr to Bem．

Englth Peet．		
Cremona Il Torrtzzo ．．．．．．．．．．	396	
Square part，量的 Whole beight．．	－	6
Venice 8．Mareo ．．．．．．．．．．．．．．．	350	
Square part，量 of whole height．．	－	6
Sienna，Torre del Mangia ．．．．．．	338	－
Modera，la Ghirlandina	315	－
Bologna，Torre Aninelli．	312	12
Florence．	273	6
Parima	256	8
Sienna，Cathedral	210	8
Pien，leaning tower（circular）	178	3
Lucen．．．．．．．．．．．．．．．．．．．．．．．．．．	177	－
Bologna，Torre Garisendi ．．．．．．．	161	
Rome，Se．Maria in Coamedin ．．．．	110	7
Pian，S．Nicola ．	109	5

Heighte of Weatern Towere and Sphree of some Cathourcil．

	Yeet	Ereoted．
Cologne	314	
Ulm（a．d．1500）	491	237
Strasbarg	452	
Pribourg（A．d．1122－1152）	415	
Antwerp（a．d．1420－1518）	403－7	－
	195	－
Sallibuary（a．d．1350）	404	－
Old St．Paul＇s	520	
Vienis	465	
Boston，Lincoln（Charch）	266	－
Norwich．	309	－
Cbichenter	300	－
Lehtidd．	252	
Lincoln	264	
Canterbury	230	－
Gloucester ．	223	

WATER．WHEEL REGULATOR．

James Finley，of Putnam County，New York，Patentoc．＊

Is the annexed engraving，fig． 1 is a side elevation of Fin－ ley＇s patent differential governor，as applied to Whitelaw and Stirratt＇s patent water－wheal；fig．q is a plan of the gearing on the top of the water－wheel，in connection with the gover－ nor；and fig． 3 is a front elevation of the governor，apart from the water－wheel；－in which figures the same letters refor to the same parts．
b, b ，is the water－wheel；d, d ，the jet apertures；a, a, the main pipe；e ，the water－wheel shaft；f, f ，the main gearing，by which the power is transmitted to the main shaft g ，and drum h ，and from thence by a band to any machinery on which it may be intended to act；i, i and j, j ，are parts of the framing；p ，is a revolving pendulum，mounted on a spindle q ，which in fig． 1 is situated beyond a second spindle r ，as seen in fig． 3 ，and is sup－ ported by a step on the upper edge of the lower frame at i ． This spindle is driveu from the water－wheel shaft by the cog－ wheels w ，w ，and carries two cog－wheels $m^{\prime} n^{\prime}$ ，of different sizes， which gear into two similar cog－wheels m ，n ，on the spindle r ． These wheels are reversed in position，so as to have the smaller on the one spindle，to gear into the larger on the other；n^{\prime} ，and n ，are keyed fast；m^{\prime} ，and m ，are loose，but are capable of being engaged by the clutch－boxes 0 ，and k ，the prongs of the latter being sufficiently long to engage m^{\prime} ，by extending down through betwixt the arms of n^{\prime} ．This clutch－box is connected by liniss to the arms of the revolving pendulum，so as to be drawn upwards or pushed dowuwards，in accordance with the centri－ fugal action of the balls consequent upon the variations of the motion；and it is also connected with the clutch－box o，by a double－forked lever，moveable on the centre v ，the result of this connection being to communicate to the clutch－box 0 ，the

[^19]upward and downward motion given to the clutch-bor k, by the erme of the revolving pendulum. The mution thus communigated will be seen to be in opposite directions; the one clutchbox moving upwarde, whilat the other is moving downwards, and vice verrd. x, is a cog-wheel, fitted loosely to a turned seat on the ahaft a, so as to be at liberty to revolve freely round,

independent of that shaft. It is connected through an intermediate atud-wheel x, x, with a wheel y, which is keyed fast on the bottom of the spindle r, and consequently must partake of any varistion of motion that may be given to that apindle; 8,8 , are cog-wheels, which gear also into x, below y, and x. These wheels are mounted on short spindles, which revolve in bearlage attached to the water-wheel, and have screws formed on the lower end, one of which is seen at g , fig. 1 . On this screw there is a nut with two projecting ears, which are embraced by the forked-end of the horizontal arm of the bell-crank 1, the vertical arm of which is connected by the link 4, with a movable adjugting-plate, which forms the inside of the jet aperture at a. It will now be obvious, that if the cog-wheel x, be made to revolve in either direction, the wheels $s, 8$, with their spindles, will revolve accordingly; and by the action of the screws, the nuts held by the forked-ends of the bell-cranks will either socend or descend, in accordance with the direction of the motion given to x, and will act on the adjuating-plates through the agency of the bell-cranks and links, so as either to push them outwards and diminish the width of the jet apertures, or draw them inwards and increase that width.
Such being the general arrangement of the parts of the governor, its action may be thus explained. Assuming thirtyceven revolutions per minute to be the proper speed of the water-wheel, and also the proper speed for the revolving pendulum, let it be supposed that the water-wheel, having been put in operation, is making thirty-seven revolutions per minute; it will transmit the same speed to the spindle of the revolving pendulum throngh the equal-sized cog-wheels w, w, and draw up the clutch-box k, and also the double-forked lever in connection with it, to the exact position at which they will stand under those circumstances. But by the same action the fork on the opposite end of the lever will push down the clutchbox a, on the spindle r, to a corresponding distance. In this atate of thinge the lever is supposed to stand in a level position, bolding both clutch-boxes out of gear with their respective loose wheels m^{\prime}, and m, as represented in fig. 3. It will be obvious that no motion can in this case be transmitted from the spindle q, to the spindle r, and consequently no motion can be transmitted to the wheel x. So long, therefore, as this state of things continue, no change can take place in the widths of the jet apertures.

Suppose now a part of the resistance to be thrown off the water-wheel, the speed will then begin to increase; but the moment that this takes place, the balls of the revolving pendu-
lum will, by their increased centrifugal action, recede further from the centre of motion, and raising up the clutch-box k, will push down the clutch-box 0 , so as to engage the wheel m. The consequence will be, a speed transmitted through the spindle r, to the wheel x, as much greater than the speed of the water-wheel as the wheel n^{\prime}, is larger than the wheel m. But the wheel x being free to move, independent of the water-wheel shaft, and being driven in the same direction, will have a relative motion round that shaft precisely equal to this difference of speed. For instance, should this difference be five revolutions per minute, the wheels s, s, will each make five revolutions per minute, which, acting through the arrangement of parts already explained on the adjusting-plates d, d, will communicate to them an outward motion, tending to increase the width of the jet apertures; and this action will continne until the water-wheel resumes its proper speed, when the lever and clutch-boxes will return to their former position, until another change of resistance calls for a renewed action of the governor.
Let it now be supposed that the resistance taken off has been again put upon the water-wheel, and it will be seen that an action precisely similar to what has been already described will take place, but in a contrary direction. The wheel x, will then have a relative motion in a contrary direction to the motion of the water-wheel, and an action will consequently be transmitted to the adjusting-plates, to draw them inwards and increase the width of the jet aperture.

MARINE-ENGINE BOILERS.

By Andeew Lakg, of Southampton.

[Paper read at the Intitution of Mechanioal Engineers.]
 (With Engravings, Plate XXII.)

Tan Peninsular and Oriental steam-ship Ripon is an iron vessel, of 1650 tons burthen, and has two oscillating engines of 450 nominal horse-power. She was built by Mesers. Wigram, in 1846, and was supplied with her machinery by Miller, Ravenhill, and Co., of London, since which time she has been almost constantly running for the conveyance of the Indian Mail from Southampton to Alexandria. Her average speed for the whole of this time has been $9 \cdot 1$ knots per hour. The boilers fitted to her by Mesars. Miller were of the ordinary tubular construction. They were in six pieces, had twelve furnaces, and 744 iron tubes, $9 \frac{1}{4}$ inches outside diameter, 6 ft .6 in . long. The total fire-bar surface was 818 square feet, and the heating surface in tubes 3798 square feet, reckoning the whole of the inkide surface of the tubes as effective.
The sectional area through tubes equals $36 \frac{1}{\frac{2}{2}}$ square feet; ditto through ferules, 28 square feet. These boilers were loaded to 10 lb . on the square inch, but in consequence of being deficient in steam, the actual pressure attained at sea very seldom exceeded 4 lb . to 6 lb . When full steam was admitted to the cylinders; of course the engineers found it to their advantage to keep it up to its full pressare by working the expansion apparatus. This deficiency of steam was found to be an increasing evil, the cause for which may be satisfactorily explained by a little consideration of the modus operandi of the sea-going tubular-boiler. When commencing running with the boilers new, for a short period, dependent on the species of coal consumed, the tubular-boiler offers its greatest advantape, and is in fact (when properly constructed) as good an apparatus for evaporating water as can be imagined applicable to marine purposes. The tubes give an immense amount of heating surface, and in small compass, and from their form are capable of resisting great pressure; but after three or four days' steaming these advantages diminish. The tubes have an accumulation of soot and light ashes inside them which, by reducing their sectional area, sometimes from 50 to 75 per cent., diminishes the draught through the furnaces in the same proportion, and also reduces the effective heating surface to the same serious extent. This accumulation depends in quantity very much upon the coal. On one occasion the anthor was present in a vessel with tubular-boilers, burning Scotch coal, and they actually came to a dead stand, after only sixty hours steaming, the tubes being nearly choked up, and requiring to be swept. When tubular-boilers have made a few voyages at sea, the outside of the tubes become incrusted with saline matter, which gradually accumulates upon them, chiefly upon their bottom sides, and which, hitherto, it has been found impossible to remove by any
other means than scaling them mechanically. The situation of the tubes (row after row) prevents this being accomplished, excepting upon the uppar tiers, and the consequencea are that the tubes become coated with a crust t-inch or ${ }^{\text {g }}$-inch thick, and the tube-plates also, which, from its non-conducting natura, greatly retards the transmiasion of the heat through it, and the tube-plates becoming hot, crack and blister, and deteriorate very rapidly.

The boiler to be described in the present paper, invented and patented by the author in conjunction with Mr. Summers, has, It in atated, the following advantages over its tubular com-petitor:-

1st.-That, while it possesses an equal amount of heating surface in the same space as tubular-boilers, it is free from the evil of choking with inside depasits of soot and ashes, because the fluea being in one sheet for their whole depth, the deposit $f_{a l l}$ into the bottom of the flues, and is awept fy the draught through into the uptake, and thence into the chimney.

This improved boiler, as adopted in the Ripon, is shown in the engravings, figs. 1,2 , and 3, Plate XXII. Fig. 1 is a transverse section, fig. 2 a longitudinal section, and fig. 3 a plan, all taken through the flues. AA, are the improved flues, which are fixed in the same position as the tubes in an ordinary tubular-boiler, forming the return-passage from the back of the fire-grate at C, to the uptake at D. E E, are the smoke-box doons, and F, the fire-doors. The flues $A A$, are flat rectangular chambers, 6 ft .9 in . long, and 3 ft .3 in . high, open at each end where they are fired to the boiler. There are seven of these flues to each fire-grate; the smoke-spaces are $1 \frac{1}{4}$ inch wide, and the water-spaces ${ }^{3} \frac{1}{s}$ inches. The sides of the flues are finch thick, and they are supported by the stays B B, fixed inside the flues. From this circumstance of there being no stays or other projections in the water-spaces, an important advantage is gained-that no nucleus is offered round which the scale can collect, and no impediment to interfere with the complete and rapid cleansing of the water-spacee from scale by means of the ordinary scrapers.
In another arrangement of these boilera, adapted for large screw steamers, and also for war steamers, the flues are placed alongside the furnaces and at the same level, instead of over the furnaces as in the engravings, which arrangement protects the boilers from shot, by Leeping them below the water-line.

In these improved boilers, the same amount of heating surface can be obtained in the same capacity of boiler as with tubes; the only difference is, that if the tubes are $\frac{\pi}{10}$-inch thick they will of course be rather lighter than tinch plates; but this difference, as compared with the gross weight, is so small as to be unimportant. In the event of any acaident to any of the fluen they may be taken ont, separatoly or collectively, to be repaired or replaced with new ones; but from the facility with which they can be kept clean, they ought, as in the old-fashioned flue-boilers, to wear out the shell, the length of time being remarkable that a thin plate will last, if kept clean and never overheated.
The last boilers of this construction examined by the author were those of the Tagus, 880 -horse power, and in those boilers, after six days' steaming, the deposit was only 3 inches deep in the bottom of each flue; and the total depth of the flues being 3 ft .8 in ., it followa that she had only thus lort abont 6 per cent. of gectional arem.
End.-That the improved flues, from having no projection cither of rivet-heads or stays in the water-spaces, offer no obstructions whatever to the scaling tool, and are as easily kept clean as any part of a boiler can possibly be, thereby entirely removing the evil of a loss of heat through non-conducting deposits, and very much increasing the durability of the boiler.
3rd.-Tbat the water-spaces between the flues being comparatively large, and the sides of the flues perfectly vertical, the circulation of water in the boiler must necessarily be much more perfect than amongst a number of tubes (amounting sometimes to thousands), where the water has to wend its way in and out in curved lines. This greater perfection of circulation, the author thinks, must add greatly to the effectiveness of the heating surface in the improved fues.

It must be here mentioned that these advantages do not now reat upon theory only, and that they have been fully realised by experience. The first boilers fitted with these flues were those in the Pacha, in October 1849, similar to those shown in the engravings, and up to the time of her unfortunate lows these
boilers gave entire matisfaction. Then followed a small boat, ith January 1850, and the Tagus, in August 18s0, since which their suocess has been rapid; as a proof of which, nomerous vessels of different companies are being and have been fitted with them. The Tagus has now the oldest of the boilers, and there is in ne part of them any signs of deterioration whatever; in fact, they are in every way perfect. There has never bean any leakage, and the consumption of fuel is leas than with her former tubular-boilers.

The improved boilers now fitted to the Ripon were manufactured by Messra. Summers, Dey, and Baldock, of Southampton, and are in four parts; the boilers being placed in the winge, two forward of the engines and two aft, the stokeholes are thus in midships. The space occupied by these new boilers is the same as the old ones, the arrangement mentioned having economiced as much room as the increased size of boilers required, so that the same quantity of coal is carried in the same space as before. The new boilers have sisteen furnaces and 246 square feet of fire-bar surface; 112 flues, 3 ft .9 in . deep $\times 6 \mathrm{ft} .3 \mathrm{in}$. long, being 5440 square feet of beating surface, reckoning the whole inside surface (as in tubes); the sectional area through the flues, deducting the stays $=54$ square feet. This large seotional area can be diminished at pleasure by a grating damper, which is hung at the frout end of the flues, and extende about 10 or 12 inches down them, and which is worked by handlee placed outside the boiler and between the hinges of the smoke-bor doors. The engineer can thus regulate the intengity of his draught at pleasure, according to the variety of coal in use, \&ce. The new boilers of the Ripon are loaded to 13 lb . per square inch; the flues, being strongly stayed inside, would of course resist a far higher pressure with perfect safety; in fact, if required, they might easily be sufficsently stayed to resist steam of any pressure. The Ripon, at the same time that the boilers were altered, had her common radial paddle-wheels replaced by feathering ones, which consequently added much to the speed of the vessel. The beat speed of the engines of the Ripon with the old arrangement was about 15 revolutions per minnte, and that of the vessel about 10 knots per hour when quite light. On the trial at the measured mile, Deoember 1851, the vesisel was drawing 16 ft .3 in . forward, and 16 ft .7 in . aft; she had nf her coal (498 tons) on board, her water, and some cargo, and consequently was pretty deep loaded. The speed of the engines was $19 \frac{1}{2}$ revolntions per minate, and of the vessel 11.3 knots per hour. Had she been light, as in the former trial, she would have probably gone over 12 knots. It appears, therefore, that the improvement in speed may be fairly stated as 2 knots per hour. The cylinders of the engines are 76 inches diameter $\times 7$ feet stroke. Their nominal horse-power, formerly at 15 revolutiona, would be 404, and at $19 \frac{1}{2}$ revolutions, 526 -horse power, so that the new boilers have given 129-horse power more steam, of an increased pressure of $\$ \mathrm{lb}$. per square inch, than the old ones. As the Ripon is now making her first voyage with the new boilers, the author cannot apeak with any certainty about her consumption, but will give some details of the Peninsular and Oriental steam-ahip Bentinck, which has made one voyage to Alexandria and back with these improved boilers and feathering wheels.

The Bentinck is a wooden vessel, built by Wilson, of Livetpool, in 1844; and has side lever engines, by Fawcett and Preoton. She is 2080 tons burthen, and her engines are 520 nominal horse-power; her original boilers were of the old flue construction, and were loaded to 6 lb . per inch pressure; her average speed at sea was 9 knots per hour, and her engines about 14 revolutions per minute. The speed of the Bentinck is now over 11 knots per hour. The former consumption was about 37 cwt . per hour; the present consumption averages about 38 cwt . per hour.

It must be noticed that the Peninsular and Oriental Company had tubular-boilers, with brass tubes, made for this veseel by Messrs. Bury, Curtis, and Kennedy, and that they were brought to Southampton, and placed in the Pottinger, a sister ship of the Ripon, and of 450 nominal horse-power, with common paddle-wheels. These boilers are of exactly the same sise as the patent boilera made for the Bentinck, and they are both loaded to the same pressure-viz., 12 lb . per square inch; they have each made a passage to Alexandria and back, and, contrary to all expectation, the Bentinck, although her engines are 70 horse power nominal more than the Pollinger, and are working up to 103 -horse power more, has consumed 188 tons less com than the Pottinger, and performed the same distance in 684
worn lem time This repult of diminished consumption is andeniahly a fair triumph for the lmproved boiler; as for tho improved apeed of the reesol, it mat share the honours with the fentherias paddle-wheel-the Beatinck has made the fanteat zemage on record between the porta mentioned.

In conclusion, the author can only may that he believes the lmpreved boiler deseribed in the present paper will become the marine boilor generally sdopted, as ite merita are evident, and Ita coat is not greater than tubular boilers; while its durability Fill, he thinke, be very much greater. He will be happy to chow these boilert to any of the members of the Institution Who may have an opportunity of seeing those that may be in port, or at Mr. Summeri' Works at Southampton, where there are now five sets in coume of construction. It may be added aleo that the cerem ateam-ahip Glangos, by Mesmes. Todd and McGregur, which has made the fasteat run across the Atlantic of any screw steamer, is fitted with these improved boilers; Mesers. Todd and McGregor have made a conaiderable number of them, and they are also being manufactured by several others. It is intended also to adopt these boilera in the Himalayah, now buileing for the Peainsular and Oriental Company, of upwarda of 3000 tons barthen, to be propelled by orcillating engines of 1800-hore power.

Nole-The detaile of construation of the fues are shown in figh 4, 5, and 6, Plate XXII, Gig. 4 is a traneverse section, fig. 5 a plan, and fig. 6 a longitudinal section of a portion of the sues AA, shown on an enlarged scale. They are conatructed of two fat side-plates GG, tinch thick, flanged outwards at each end to moet the plates of the adjoining flues; the top and bottom of each flue is formed by the curved connecting-piece H H, which in riveted to each side-plate, and flanged outwards at the ends. The atays or atuda B B, are $1 \frac{1}{d i n c h}$ diameter, and are riveted at each ond through the side-plates. The rivets connecting the plates together, and the stay, are all put into their holes simultaneounly, and riveted cold by machinery. These rivets have countersank heads and pointe, and when placed in their holes in the platea a steel bar is inserted, which fills up the space between the heads of the two rows of riveta, and acts as a bolster to the riveting tool. By this means one stroke of the machine dones two rivets at once, and in the most efficient manner. The trea are afterward riveted together with covering strips I It at their ends, and they are inserted into the boiler in sets of seven or eight, according to the size of the furnace. Any one of the flues can be readily extracted frum the others if neeepary, by cutting away the two rows of riveta at ench end, and draming it out through the front smoke-box doors E . The eqperience which thoy have had of the durability of the flues hat, however, matisfied those who have employed them, that unless groes nogligence of the engineer should (through want of water) allow them to get red hot, the flues will in all cases ontlive the shells in which they are inserted.

CONTINUOUS EXPANBION STEAM-ENGINE.

By James Baxuer, C.E.
[Paper road at the Institution of Meohanical Engineere.]
(What Engravinge, Plate XXII.)
Tas economy of working steam axpansively is wall known, but the application of the expansion principle is practicable only to a limited extent in most forms of engine, from practical dificulties in their mode of working which prevent the attainment of the full economy of which the expansive principle is capable. The grestest useful effect is obtained from the steam, chen it is allowed to expand in the cylinder until its pressure upon the piston just balances all the useless resistances of the friction of the engine itself, and the resisting pressure on the beek of the piston (whether the presaure of the atmosphere in a high-pressure eagine, or of the uncondensed vapour in a con-densiag-engine), the surplus power beyond these useless renibtances being alone available for the purposes to which the eagine is applied. But in driving machinery, 00 great a uniformity of motion is essential that any great variation in the moving power thrroughout the stroke of the engine is inadmimibla, as the fy-wheel would not be able to absorb onough of she exces of powor to equelise the velocity sufficiently, by giving it out again at the deficient part of the stroke; consequenty, though two engines are often employed working at night angles to each other, for the purpose of diminishing the
variation in total moving power, the expansion priaciple an only be carried to a portion of the extent to whioh it is theoretically applicable. Only in such engines as the large Cornish pumping enginea can the expansion be carried practically to ite foll theoretical limit, as the variation in the velocity of the load moved in of much lese importnace in thowe engines, and the very unequal amounts of moving power that are developed in equal times, by the full carrying out of the expansive principle, which would prodnce the most prejadicial and inadmiscible variations of velocity in the engtae, are controlled within proscribed limita by the great weight of material to be moved by the engine in the pump-reds and balancing machinery, forming as it were a distributing rewervoir for the moving fore developed.

In the Locomotive Engine there are practical diffleultien in carrying out the expansion principle efficiently, boyond a moderate extent, in a single cylinder, from the shortness of atroke and rapidity of reciprocation, and the construction of the valve motion; but the ultimate extent to which it could be carried would be limited by the maintenance of the blast, which requires that the jets of steam discharged from the cylinder into the blast-pipe should not be reduced below a certain preagure at the moment of diacharge. Otherwiee, the limit to which expansion might be carried would be the reaistance of the atmoaphere to the discharge of the ateam, added to the friction of the engine, say about 10 lb . per inch above the atmoaphare. The steam is cut off usually by the link-motion at from onethird to two-thirds of the atroke, and the steam is coneoquently diacharged into the blast-pipe at about from 30 lb . to 60 lb . pressure above the atmosphere, supposing it be supplied to the cylinders at 100 lb . per inch above the atmosphere. It appears that the lower of these pressures is sufficient, or more than sufflient for the purposes of the blast, to maintain fully the evaporative power of the boiler under general circamatances, and that a portion of the steam discharged can be spared from the blast to be subjected to a greater extent of expansion.
But in the Continnous Expansion Engine, the subject of this paper, the steam from the boiler is supplied only to one cylinder; a portion of it is expanded into the second cylinder, which is of proportionately larger area, so as to equalise the total moving porer of the two cylinders; and it is there further expanded down to the fullest useful extent, and then discharged into the atmosphere, the portion of ateam remaining in the first cylinder being discharged as a blant at nearly the name pressure an the ordinary engines. The economy, therefore, consists in obtaining from such portion of the steam us can be spared from the blast the additional power of expanaion remaining in it, which is thrown away in the ordinary engine:

Fige. 7 and 8, Plate XXII., show the continuars expansion engine as applied to a locomotive. A, is the fret cylinder into which the steam is admitted from the steam-pipe C, by the valve D, in the same manner as in the ordinary engines. The steam is cut off at half-stroke, and a communication is then
 and \mathbf{F}, by the opening of the slide-valve G. The second cylinner B, is about double the area of the first cylinder, and the same length of stroke, but the cranks are set at right angles, in ordinary locomotive engines; consequently, at the moment of the steam being passed into the second cylinder from the first, the piston of the second cylinder is at the commencement of its stroke. The steam continues expanding in the two cylinders until the first piston \mathbf{A}, has nearly completed its stroke, when the valve G, shuts off the communication between the two oylinders, and the valve D, opens the exhaust-port, and communicates with the blast-pipe L, discharging the steam remaining in the cylinder A, to form the blast in the ordinary manner. The second piston B, has then arrived nearly at half-atroke, and contains nearly one-half of the total quantity of steam originally admitted to the first cylinder; this steam is further expanded to the end of the stroke, and then discharged into the blast-pipe $\mathrm{I}_{\text {, }}$ by the valve E, opening the exhaust-port. The return-stroke of both pistons is exactly similar to the foregoing, so that about half-cylinder full of high-pressure ateam (or such other portion as may be desired) is supplied to the first cylinder at cach stroke, and between half and two-thirds of that steam is discharged at the pressure required to produce the blast, and the remainder of the steam is expanded down in the second cylinder, so as to give out all the available power remaining in ii. Fur the purpone of enabling the engine to exert an increased
power, if required, at the time of starting a train or otherwise, the slide-valve I, is inserted in the centro passage F, to close the communication between the two cylinders for a short time when required; and the steam from the boiler is then admitted by a pipe and cock into the ateam-chest of the second cylinder B, which is then worked independently of the other cylinder, like an ordinary engine.

The comparative quantity of steam or of coke required to perform the same work in the several engines, under the circumstances stated above, is given by calculation as follows:-

Continuous Expansion Engine
............ 100

				120
Ditto	ditto	ditto	-stroke	54
Ditto	ditto	ditto	-stroke	18
Ditto	ditto	ditto	-stroke	220

These figures represent the relative economy in the employment of the steam in the sereral engines; consequently, the ordinary engine, with the best degree of expansion, or cutting off the stoam at one-third of the stroke, consumes 20 per cent. more coke than the continuous expansion engine, to do the same work, and from 54 to 85 per cent. more coke with the more usual degrees of expansion; again, an engine cutting off the steam at only one-eighth of the stroke from the termination, as many enginea were formerly made, would consume 120 per cent. more coke to do the same work. This plan has been tried upon two locomotives with satisfactory results, and the blast was found to be quite sufficient; but the trial has not been sufficiently complete to afford a definite comparison of consumption.
In the application of the expansion principle to stationary engines, it is requisite to consider the amount of variation in the moving power or labouring force of the engine, and the limits within which it is necessary, practically, to confine this variation. The annexed engravings, figs. 9, 10 , and 11, Plate XXII., show the variation in the moving power that takea place between the commencement and the end of the stroke in each of the several engines, all drawn to the same scale and on the same prinoiple, so that the comparison of the diagrams will show the relative effect of the steam in the several engines, the same total power being represented in each case.

Fig. 9 shows the variation of power in the Cornish engine when the steam is expanded down to the limit of useful effect; this is shown by the curved line A G C. The vertical height of the first division A D, represents the relative total moving force developed by the engine, in the direction of the revolution of the crank-pin, during the first 15° of revolution from the commencement of the stroke. The heights of the succeeding divisions in fig. 9 represent the corzesponding amounts of force developed by the engine during each successive motion of the crank, through equal angles of 15° each to the end of the atroke C , and the half-revolution of 180°, the force shown being in all cases the amount that would be produced in the circular direction of the revolution of the crank-pin, not in the rectilinear direction of the piston. If the amounts of force in these several divisions were all exactly equal to one another (and the engine, having attained its state of uniform velocity, were employed to overcome a constant resistance to circular motion, such as driving a corn-mill or spinning-mill, \&c.), then the crank-arm would have a perfectly unvarying velocity, and no fly-wheel would be required. And the approach to constancy of velocity, in any engine applied to overcome resistances to circular motion, will depend on the approsch to equality which these amounts of work produced through equal angles make to one another. The average line D E, shows this average equal height of all these divisions, consequently the rectangle ACED, represents the equivalent uniform development of power that would produce an unvarying velocity of rotation, and therefore the area of the shaded space being the deficiency in filling up this rectangle of uniform power by the actual working of the engine (also equal to the portion H, of the curved figure that is above the average line $D E$), will represent the total amount of variation from the average in the moving force of the engine throughout the stroke. The area of the shaded portion in this diagram is 43 per cent. of the total area; consequently the total variation from the average in the moving power of the Cornish engine is 43 per cent., and the greatest variation at the extreme point G, amounts to 189 per cent. of the mean puwer.

Fig. 10 shows in a corresponding manner the variation of moving power throughout the stroke in the continuous expan-
sion engine, where the steam is cut off at half-atroke in the first cylinder, and expanded in the larger cylinder down to the limit of nseful effect. The total variation from the avernge power is only 13 per cent., and the extreme rariation 85 per cent.; consequently the total variation in the moving power in the Cornish engine is 3 times as great as that in the continuous expansion engine, and the extreme variation is $3 \frac{1}{2}$ times as great.

The dotted line B B, in fig. 9 , shows the effect of conpling together two Cornish engines, exactly similar to that shown by the full line in fig. 3 , but of half the total power each. The total variation from the average power is 20 per cent., and the extrome variation 58 per cent.; the total variation in the moving power being $1 \frac{1}{4}$ times as great as in the continuous expansion engine, and the extreme variation about equal. This arrangement would of course be much more expensive than the continuous expansion engine, as it involves two complete engines.

Fig. 11 shows the variation of moring power in a Woolfs double-cylinder engine, where the two pistons work simultsnoously in the two cylinders, commencing each stroke together, and the steam is cut off at half stroke in the first cylinder, and afterwards expanded in the larger cylinder down to the limit of useful effect, as in the foregoing Cornish engine. The total variation from the average power is 27 per cent., and the extreme variation 90 per cent.; consequently the total variation in the moving power is twice as great as in the continuous expansion engine, and the extreme variation $1 \frac{1}{4}$ times as great.

The dotted line FF, on fig. 10, shows the effect of coupling together two of the continuous expansion engines at right angles to each other; and the result of this arrangement is a remarkably near approach to perfect uniformity of moving power. The total variation from the average power is only $\$ 3$ per cent., and the extreme variation 8 per cent.

The dotted line FF, on fig. 9, shows in a similar manner the effect of coupling together three of the Cornish engines with cranks at 180° to each other. The total variation from the average power is 9 per cent., and the extreme variation 92 per cent.; both being about 3 times as great as in the continuous expansion engiue.

Fig. 11 shows also, by the dotted line FF, the effect of coupling together two of the Woolfs engines at right angles to each other. The total variation from the average power is 5 per cent., and the extreme variation 13 per cent.; both being about $1 \frac{1}{4}$ times as great as in the continuous expansion engine.

The comparative amount of work performed by the several engines, with the same quantity of steam or of coal in each case, under the circumstances stated above, and taking the pressure of the steam admitted to the first cylinder at 50 lb . per inch above the atmosphere, is given by calculation as fol-lows:-

$$
\begin{aligned}
& \text { Continuous Expansion Engine } 100 \\
& \text { Woolfs Engine } \\
& 109 \\
& \text { Cornish Engine } \\
& 111
\end{aligned}
$$

The general result of the above comparieons is, that the Cornish engine is 11 per cent., and Woolfs engine is 9 per cent. more economical in expenditure of fuel than the continuous expansion engine, when the expansion of the steam is carried to the extreme limit in each case; but that this economy cannot be obtained practically in those two engines, on account of the great irregularity in their moving power, the average irregularity being, in the Cornish engine 30 per cent., and in Woolf sengine 14 per cent. greater than in the continuous expansion engine; and the extreme irregularity being 134 and 35 per cent. respectively greater. Consequently it appears that, although the expansion of the ateam cannot be theoretically carried to so great an extent in the continuous expansion engine as in the other engines, yet, from the moving power being so much more uniform throughout the stroke, the expansion can be carried practically to a considerably greater extent; and a greater amount of economy may be practically obtained within the same limit of uniformity in the moving power.

A working model, one-third size, of the engine as applied to a locomotive, was exhibited to the meeting. At the conclusion of the paper a desire was expressed to know the particulars of the trials that had been made, but the diacussion was adjourned to the next meeting, to afford an opportunity for the attendance of Mr . Samuel, who was unavoidably absent.

Fig. 1
Transrerse Section

MARINE BOILER.

Fig. 2 Iongitudinal Section

PHILOSOPHICAL INSTRUMENTS AND PROCESSES.

 By James Glatibiza, F.R.S., F.R.A.S.[Exhibition Lecture delivered at the Society of Arts."]
In proportion as it is necessary to the interests of science, that theory, observation, and experiment should march hand-inhand, so is it equally essential that theoretical and practical men of science should come into contact with each other, and both into contact with men to whom must be intrusted the construction of instruments necessary to the completion of their views. A scheme more conducive to thie end could scarcely have been designed than the collection both from this and foreign countries of instruments and their makers, to receive the criticism and judgment of individuals aelected from among those in whose hands could the instruments exhibited prove chiefly serviceable; thus securing competent and impartial judges of their merits. The effect of this concentration of mind, both English and Foreign, has been, and will still more be, to give direction to physical inquiry and mechanical skill, point out existing deficiences and their remedies, and cause the conversion of heretofore suggestive into real practical improvements; thus creating an inrerchange of information between nations, and so contributing to the advantage and wealth of all.

Astronomical Instruments.

That large astronomical instruments should be much represented in the Exhibition was not to be expected, and particularly from distant lands; their removal is at all times hazardous; and equally injurious, probably, would have been their exposure for any length of time; hence, we find that, with the exception of the large equatorial by Ross there was not one; and in this case, the divided circles, or delicate portions, were not large. This instrument was principally remarkable for its solidity, good distribution of gtrength, and fewness of parts. It was furnished with clock motion, and was a fine specimen of engineering casting.

As regards the instruments exhibited by Simms, they were diatinguished, not only by excellent workmanship, but also for new contrivances, greatly facilitating observation; and, when it is considered how many men of a high order of mind have deroted themselves to the construction of astronomical instrumente, any decided improvement indicates a very bigh order of merit: some of these improvements I will enumerate.

To two equatorials extibited by Mr. Simms, he has adapted their equatorial axes for the application of a level. and thus greatly simplified their adjustments, besides making them more useful instruments. To one of them was applied a clock-work motion, by means of which the motion of the telescope was made to counteract that of the earth, thus enabling the observer to look upon a moving object as though it were not moving.

To an altitude-and-azimuth instrument, a telescope forniabed with spider lines was placed in the centre of its azimuth axis, for the purpose of acting as a central collimator and constant referring point.

Another novelty was the conversion of the axis of a transit instrument into a telescope, thus affording a ready means of examining the form of its pivots, as well as readily adapting it to the observation of stars, both in the meridian and in the prime vertical.

To a small transit circle, furnished with one lamp, was shown a mode of illuminating the divisions on the micrometer head, on the limb and the field of view, in such way that the observer should bave complete power, either over the illumination of the entire field or of the wires alone, the field itself being in darknewe. The observer is thus enabled to record the position of a star whose light is no feeble that the amount of light merely sufficient to illumine the field is more than enough to drown that of the star. 1t is, in fact, an arrangement by which our optical power is increased by our present optical means.

It would be well to dwell for a few moments on the different modes of illumination. As you all know, the field of view in the telescope of an astronomical instrument is furnished with a syatem of one or two horizontal, and of five or seven vertical wires, as shown in the annexed diagram, which exhibits the appearance of the field of view when under full illumination, and when the wires only are illuminated.

[^20]An "observation" by an instrument placed in the plane of the meridian consists in directing the telescope so that the star is bisected by the horizontal wire (to determine its north polar distance), and by noting the times at which it passes the saveral vertical wires (to determine its right ascension), these times

being determined by mentally dividing into ten parts the space traversed by the star in one second, and deciding that tenth of the second when it crossed the wire, as shown in the example subjoined to the above diagrams.
As there are but few object-glasses large enough to show many gtara during the day, it is necessary that the field of view be illuminated in order that the wires be distinctly seen at night. This was done formerly by placing a small oval reflector in front of the object-glass of the telescope-a plan not only objectionable on account of some part of the aperture being cut off, but becnuse, on change of altitude, it was necessary to rearrange the distant lamp or candle, so that the light should fall properly upon the reflector for convergence to the wire-plate of the telescope, as shown at c, in fig. 1 of the annexed diagram.

The introduction of a diagonal reflector, placed within the axis of an astronomical telescope at an angle of 46°, was a very great improvement upon the preceding method; the light in this case passes from a lantern k, placed near one of the pivots of the axis upon which the telescope turns, perforated to receive a convex lens: by this arrangement, the rays of light, after crossing, diverge upon and are spread over the surface of the reflector g, h, by which they are turned at right angles, and are thus made to illuminate the field of view. The degree of illumination necessary is dependent upon the brightness of the object, and hence the necessity for a meana of varying the amount of light; this has been effected in various ways-such as by turning the lantern out of the direct line of the axia, by introducing an adjustable aperture between the lantern and the perforated end of the pivot, or by placing an expanding diaphragm between the eye-piece and the diagonal reflector. But Mr. Simms has effected all this much more simply and effectually by giving motion to the refector itself, which is made to turn upon pivots (as shown in fig. 3), by means of a rod m, proceeding from it and terminating beyond the tube of the telescope, at or uear the eye-piece, and consequently near the observer's hand. By this means, the maximum illumination is given when the reflector is situated at an angle of 45° from the
axis of rotation and the optical aris of the tolecocope, the whole of the light being reflected perpendicularly upon the diaphragm; but if the refleotor be turned to that ponition which ir paralial to the aris, no light whatever is refiected from it. It in therefore evident, that between these two positions all degrees of illumination can be obtained. But there are some objects, such as comets, nebule, mall planets, and stars, which are visible only when all light is excluded from the geld. To ascertain the position of ruch objects was one of great difficulty; the means usually adopted were-the insertion of very thick bars of metal in the wire-plate or diaphragm, instead of fine wires, and in obeervation to hide the star behind the horizontal bar to determine its north polar distance, the times of its disappearance behind the several vertical bars being noted to determine its right asconaion: but such observations were little better than guese-work, and were very unsatiafactory. Another method, eertainly much better, has been employed, the object of which was to illomine the wires, only leaving the field in darknesa. This was done by opening a channel in the tube, nearly in the plane of the diaphrapm, through which light was admitted from a lantern generally attached to the eye-end of the telescope. This arrangement, though certainly much better than the preceding, was open to grave objections, and leads me to the last improvement exhibited, which answers admirably, inasmuch as it places the degree of illumination under the command of the obeerver, who can instantaneously alter it in such manner as the case may require.

This very great improvement is effected by the attachment of one or more prisms to the adjustable reflector in such way, that when the reflector is in the position to reflect the largest quantity of light in the direotion of the optical axis of the telescope, and consequently to fill the field of view with light, the priam is out of action; but that as the intensity gradually diminishes as the reflector approeches to thas position parallal to the axis where no light is refiected, at that instant the prism takes up the middle pencil of rays proceeding from the lamp, and reflects it to another prism situated in the plane of the wire plate, by which it is finally reflected, and illuminates the wires only, leaving the field in darkness, so that the observations of an extremely faint object can be as easily obtained as those of a bright one. This arrangement is explained in the following diagram.

Let $f d$, and $f c$, represent the (axis of moveable reflector in its two extreme positions-viz. that in which it reflecte the maximum quantity of light, and that in which it refects no light whatever; h the diaphragm upon which the crose-wires are fixed in the focus of the eje-piece; g, a prism so placed as to refect upon and diffuse over the diaphragm such rays of light as enter it in the direction $c g$; and $b e b a, b j$, rays of light proceeding from the lantern $a b$. When the reflector is in the position $f d$, the rays $b e, b j$, are reflected in the direction of the optical axis of the telescope, and consequently fill the field of view with light, and give the appearance shown in the first diagram. As the reflector approaches the position $f c$, the intensity of the light gradually diminishes, and when the position $f c$, is attained no light whatever is reflected; st this instant the prism d, which has dropped from d, to o, takes up the middle ray $b a$, and reflectes it to g, causing the field of view to assume the appearance ahown in fig. 2 of the diagram.

Mr. Simms exhibited a diagonal transit ingtrament of the same form as that so much used on the continent; in this construction the cone of rays which pass from the object-glese do not proceed directly to a focus, as in the ordinary telesoope, but are refiected by a priam or speculum placed within the aris, and form an image in onc of the pivots, in which aleo the wireframe and eye-piece are placed. The advantage over that ordinarily in use is, that the observer is meated with all ease at his instrument, and has no change of porition to make whatever may be the altitude of the object under observation; the serions objection to its use has hitherto been the defective means obtained for illuminating the field of view, as was to be seen in the inetrument shown by Ertal in the Exhibition, where the old mathod was atill adhered to-riz., placing a small diagonal reffector in front of the object-glase, as abown in diagram 8-a plan to which there are many objections:-lat, the diniculty of throwing light at all upon the reflector; gnd, the trouble of ro-adjusting it for every change of position; and 3rd, part of the objoct-gless is out off. In the instrument exhibited by Mr. Simms, he has most ingeniously overcome these difficulties by introducing in the other pivot a convex lens, and at the back of the prism a second convex lens, the diameter of thelatter being such that three segments of it project beyond the sides of the prism. In this arrangement the rays of light from the lantern, first converged by the small lens, after crossing, again diverge and fall upon the larger lens, by the refractive power of which they again suffor convergence and are diffused over the field of view.

It is remarkable that not a single astronomical instrument was furnished by France.

I must be permitted a digression in order to complete my description of the novelties exhibited in this eection. In the year 1800 Volta discovered that voltsic electricity was generated by the immersion of two metals in an acid which acted on one of them: in 1880, Oersted linked together the sciences of eloctricity and magnetimm, and proved that the one acts upon the other, not in straight lines, as other forces do, but in a direction at right angles: so that, if bodies be inverted with electricity, they possegs a tendency to place magnots in a poeition at right angles to themselves, whilst, on the contrary, magnets have the effect of placing bodies conducting electricity at right angles to themselves, and, consequently, an electric current exercises a magnetic action at right angles to its own direction; if, then, a wire be coiled in a apiral form, and eleotrified, it becomes a magnet; and if within this coil be placed a core of soft iron, which has the effect of concentrating its power, it becomes a very powerful magnet, and by making and breaking its connection with a galvanic battery, thus alternately making and destroying the action of magnetism, we can instantly unmake this magnet and obtain a moving power, which it is evident, when once produced, is capaple of application to many purposes by suitable mechanism.

The Americans, with their characteristic energy, have extensively used these phyaical laws in their electric telegraphs, and have also applied thern to astronomical purposes, and to the determination of the difference of longitude. In the American department Bond exhibited an apparatus for obeerving transite by means of a galvanic circuit. It consists of a break-circuitclock, battery, wires, and a cylinder around which paper is wrapped. This cylinder is mounted on a delicate aris, furnished with friction-rollers, and revolves once in a minute; the circuit is broken and restored by the seconds pendulum, so that 60 seo. are recorded on one line: there are sixty lines on each sheet of paper. The armature of the electro-magnet carries a glass pen supplied with ink from a small reservoir, and the recorda are made as the paper revolves under this pen.

In ordinary transit observations the observer takes a second from the clock-face, counts the beats whilst the object parses the wires, records these times by the clock to the tenth part of a second, writes them in a book, still counting the beats of the clock, and after the transit of the last wire, continues counting on till he can look at the clock-face; but, in the new method, the coincidence of the wire and the object in noted, at which instant a key is touched with the finger, this touch causing an impresaion to be made on the recording apparatus, of a dot if the touch be momentary, of a series of dots separated by equal spaces if the intervals of time between successive touches be equal, as shown in fig. 1 of the annexed diagram, of lines of different lengths if the times of pressing the key be variable, as ahown in figs. ε and δ; of equal lengths if the times be of
equal duration, or at equal intervals, as shown in figs. 3, 4, and 6. In this manner may be generated a seriee of dote, lines, and blanks of all varieties of lengthe.

Lines of equal length, or spots equi-distant, may be registered by the movement of a clock alternately making and breaking the circuit, as well as by the finger of the operator, and lines as in fir. 3, or apaces in igg. 4, may be made, corresponding to intervals of one eocond, and thue the clock be made to mark seconds of time. If, then, an operator ahould make contact at the inatant of the ocourrence of any phenomenon, as that of a star paming a wire, one of these epaces would be broken, as is shown in fig. 7; and it is enoy to estimate the tonth of a second at which the conteot was made, and hundredths of a second may be estimated by the use of a transparent scale, as in fig. 9, whose length, just equal to that of one second on the paper, being divided into ten parts, and made to cover the whole second, as in fig. 9, where the registar appears between four seconds and five seconds, it is seen at a glance that the occurreace happesed between $4 \frac{1^{1}}{10^{\prime \prime}}$ and $4 \frac{10}{10}^{\prime \prime}$. The apparatus exhibited registered an unbroken line, as shown in lig. 8, but the principle of operation is the same. There may be many different meden of recording. In prectice, the recording apparatus may be either near to the observer or at a great distance; either at a few yards or at a thousand miles. In the former method, the eye and ear are brought into play; and in the latter, the eye and hand. The question is, whether there be a closer conpection between the nerves of the eye and ear, or between those of the eye and the finger. The latter operation eeoms to be the more simpla, insamuch as the observer has not to listen to a clock, and to write down one time whilst he is counting another. The practicability of thus recording observations is pleced beyond a doubt, by such having really been recorded in Ameriea, at Waahington, and other places, and apparently with greater accuracy than by the old method.

As before remarked, the recording surface may be at a great dintance from the obeerver, so that the galvanic telegraph is obriously applicable to the determination of differences of terrestrial longitudes by connecting one station to another far eeparated by means of a wire; but it becomes imperatively necescary to ascertain whether the time occupied by an electric corrent treveraing the wire be appreciable or not, and whether It really passes from station to atation in leas time than human means can detect. Experiments to determine this have been made on the long linea in America; and the last results I have men show that the electric current passes through a copper wire at the rate of about 12,000 miles in one mecond; and, consequently, that the time occupied in its progrese is an element to be taken into account in determining longitude.

Nautical Astronomical Instruments.

Of nantical astronomical instruments the Exhibition did not furniah many illustrations. Of ordinary nautical instruments, the American department furnimbed a fine collection by Ericseon, montly of a new construction; also a very ingenious compasa by 8t. John. The peculiarity of this instrument congjats in the eddition of two mmall magnets, moving freely upon fine points attached to the compaso-card, near its east and west extremitien

To the centre of each small magnet, and at right angles to it, is placed a brass indicator, which points to the centre of the card when not under the infuence of disturbance, as in fig. 1;
and from the centre at other times, as in figs. 9 and 3. The deviation from the centre indicatem the amonnt of dirturbance which, if local, is shown by the one of these indicators pointing farther from the centre than the other, as in fig. S. The amount of these deflections is measured by semicircular scales fixed over the centre of the card.

Levelling and Surveying Instruments.

Instruments for levelling and surveying were farnished from England, France, and Belgium: generally well made, but not exhibiting any novelties or excellencies. Germany furnighed several, all well made, in which Breithanpt's nseful method of covering the divisions with a thin plate of brams, for the purpose of protecting them from dirt, oxidation, and mechanical injury was generally adopted. Breithaupt himself axhibited a level with a contrivance for greatly facilitating its adjustmenta, and of great importance; while surveyors continue to assume that the circular collars of a level are equal.

The Imperial Polytechnic Institution of Vienna exhibited some beautiful surveying instruments constructed under the direction of Professor Stampfer. The greatest improvement was the means afforded for measuring a vertical angle of 8°, by which the difference of altitude between two stationa, when greatly exceeding the length of the measuring staff, conld be determined-an improvement of great value for work in a hilly country.

America (Burt) furnished an instrument wall adapted for surveying new countriea, particularly in magnetic districts. It is applicable to the determination of time, latitude, and magnetic declination.
Mr. Yeates exhibited a prismatic compasa, of simple construction, adapted for taking both horizontal and vertical angles, and so arranged that the former may be taken, the instrument being held in the hand,- the object, the hair in the vain, and the magnetic bearing being seen at once; it is adapted for fixing on a tripod, and a means is afforded of repeating the observation. It is also adapted for taking vertical angles. It is independent of the magnetic needle, and can be used in districts abounding in iron.

The Austrian levels and theodolites give a surveyor great sdvantage in increased accuracy, great saving of time, and of one assistant in the use of the chain; in colonies where labour is scarce, in places whare the ground is difficult and intersected by hedges and ditches, their advantagea are inestimable. In marine surveying, much time would be saved by the use of Ertel's universal instrument instead of the clumsy transite provided by the Admiralty. Time in such cases must be measured by the cost of maintaining a ship's crew. One instrument and one observer can with it determine time and latitude, and make any triangulites for surveying with more facility, on account of the direction in which the observer lookg, than with any other instrument or instruments.

Elliott's altitude-and-azimuth instrument reprements the form of the instrument used in the triangulation of the English surveys; Ertel's is the exact instrument nsed by Struve in the arc that is to extend from the North Cape to Crete.

Optical Instruments.

Let us now turn our attention to optical instruments. Respecting telescopes, though few in number, they were found to be for the most part good. France (Buron) furniched one whose object-glass was of rock crystal, the performance of which, notwithstanding its property of double refraction, was found to be very satiefactory.

A new kind of glase was exhibited by Maes (France), ita bese composed of the oxide of ainc and borax: it was extremely clear and free from colour, and promises to be of considerable use in producing achromatic object-glases of a very perfect description.

The Exhibition also made known a very fair attempt by Wray, United Kingdom, to substitute a solid substance instead of flint glass, which, as a step out of the beaten path and towards the poseible revival of fluid object-glseses, is meritorious.
As you all know, crystalline bodies affect light according to their structure, and the transparency of such bodies seems to depend upon their molecular arrangement. Thus, if atrite occur in a disc of glase or lens through which an object is viewed, it is distorted if these strie be numerous, and the dibtortion is so great that the form of the object is not recognis-
able; but if pery numerous, it in not visible at all; the glase ceasing to be transparent, becoming opaque, though still romaining translucent.

To ascertain the different molecular states of the varions discs of glase and object-glasses exhibited wa, therefore, a part of the duty of the jury. The modes adopted are detailed in the Report; and, therefore, I will here but briefly refer to the resulte.
The olject-glasses of Simms, which were chiofly of English glass, were found to be good, the definition of the object becoming improved with the increace of power. Thowe of Buron were good; but some exhibited by this gentleman vere not tried, the tubes being wanting. A small object-glasa, by Roes, was very good; but in his large equatorial there was none. The discs of glass furnished by Maes (France), and Daguet (8witserland), were very good; as upon the whole was the noble piece of glese exhibited by Chance, which is no lem than 99 inches in diameter, and weighs 200 lb .; and I do hope that the same success will attend the obtaining its achromatic companion, and that the two lenses may be worked into an objectglass.
These are some of the first fruits of the removal of the tar on glass, that great obstacle to the improvement of telescopes in this country, which prevented all attempta to produce glasa adapted to the construction of large achromatic glasees, and compelled us to purchase from abroad those we needed at an enormous price. The Exhibition satisfactorily proves that, at all events, we soon shall equal both the far-famed works of Munich and Paris; and let us hope in fair rivalry to excel them.
The microncope, by the rapid advance in microncopic investigations within the last few yeara, has been ensbled to vie in importance almost with the telescope. Since the introduction of achromatic combinations, physiological investigations have proceeded so rapidly, and our knowledge has increased so greatly upon animal and minute anatomy, that it was most gratifying to find so many superior instruments in the Exhibition. The British microscopes were distinguished by the great amount of light obtained, the large angle of aperture, and consequent fine definition; also by the large, fint, and perfectly defined field.
There were two lighthouses exhibited, both entirely of glase; both were furnished with large Argand lamps, lenses, and reflecting prisms. As the object of lighthouses is to transmit all the rays proceeding from the light in an horizontal direction, the reffecting prisms above and below the light were so placed that the incident raje on their second surface fell so obliquely, that they were totally reflected horizontally; thus those raya which would have illumined the aky and the waters of the ocean were made available to increase the equatorial belt of light: the substitution of reflecting prisms will, doubtless, supersede the use of metallic reflectors in lighthouses generally.
Of instruments connected with physical optics there were very few, indeed philosophical instrumente of this class were quite wanting in the British portion; France furnished a beautiful series, including stereoscopes, polarimeters, saccharometers, haloscopes, \&c., as exhibited by soliel. Perhaps the most useful of theme instrumente was the saccharometer. Light, as you are aware, when polarised appears to be transmitted by undulations in planes, and not at ulf in planes aituated at right angles to them. In some bodies, each of the coloura composing white light is not polarised in the same plane as in ordinary polarisstion, but the plane for each is alightly turned round, so that the whole is spread ont; this circular polarisation has been beautifully applied to chemistry, and made a teat in the case of saccharine fermentation of the point to which it has reached and of the quantity of sugar formed. Hence this change of direction of the polarising plane is of great practical value, and it ought to supersede the old method by the use of the ordinary saccharometer. That exhibited by Soliel was the only one, though many of the ordinary kind were exhibited in the British section.

Metoorological Instruments.

Thece were a large number of barometers, thermometera, and other instruments intended for meteorological observations, but the greater part ware of a very ordinary kind, and unsuited to the work intended.
Reapecting thermometers (for the purpose of forming a cor-
rect entimate of thowe axhibited), let me impreas apoa you that a good and efficient instrument muat be eíther identical in ite readings with an acknowledged standard, or its amount of deviation correctly ascertained, and applied in its nea; this involves a necessity for the possession of a standard of undoubted accuracy, the neareat appromeh to which were the thermometers made by the Rev. R. Sheepshanka, two of which, oxhibited by Simmg, may be considered as the most accurate in this country. That kind of thermometer most eaeily rendered identical in its readings, and most amenable to correction, is of alender bore, with small bulb, and graduated on the etems itself; by such a construction the amount of orror arising from want of evenness in the bore of the tube, in the outting of the divisions, or from a want of accuracy in the determination of the sero points, may be determined, and when applied will render the instrument perfectly useful and trustworthy. Thene corrections, when once determined for such instruments, will remain constant; but no system of correction can restore accuracy to the readings of thermometers whose scales are of ivoryThose of box-wood, a material in general use for maximum thermometers, require correotions which can be determined only by frequent comparisons with a thermometer whose errore are known, the inder errors of auch instruments being found to vary from day to day.

In maximum and minimum thermometars there was nothing new exhibited, although great need has long existed for an effective maximum thermometer.
Newman exhibited his well-known barometerg, the tubes of which were filled and boiled under a diminished atmospharic preseure. Mr. Newman remarks that he han always found that mercury highly heatod in gless tubes becomes oxidised; and, also, that all tubes boiled under atmospheric preasure are foul (I may obeorve that my experience has not led me to the same conclusion.)

Orchard exhibited a barometer very similar indeed to Newman's, but with the addition of a thermometer placed in front of the instrument, whose bulb was of the same dimensions as that of the tube.

Griffiths exhibited a barometer furnished with a crook on the top to trap any air which might be above the mercury, for the purpose of insuring a vacuum. Negretti and Zambra aleo exhibited a barometer with an air-trap glaes cintern, with the intention of preventing the entrance of the air; the meroury in neither of these instramente was boiled, an operation that I consider abmolutely necessary.
Harris and Son exhibited several eelf-compensating barometers for the approximate determination of the atmospheric pressure. They are about 1 foot in length, and consist of two reservoirs connected by a bent tube, the one filled with mercury, and the other with gas, the adjecent portion of the tube being also filled with mercury and gas. There is also an arrangement for the approximate correction for the expansion of the gea from heat. An instrument apon this prinaple, made by Ronchetti, was tried by me some years since, and was found to give tolerably approximate readinge for a time-that is, to within $0 \cdot 1$-inch either way, but ultimately failed entirely. Instruments of this lind are of little or no value. Brown axhibited two barometers, at the price of 10 s .6 d . each; one such, upon trial, I found to act well; undoubtedly they were the cheapeat in the Exhibition, and were better than any of the ordinary barometers exhibited.
Bourdon (France) exhibited barometers of an original construction, based upon the tendency possessed by a coibed and exhausted tube of thin metal to contract and elongate when subjected to variations of preseure. A desoription of the method of constructing one of these little instruments may not be uninteresting. The form of tube adopted by M. Bourdon is not circular, but a little flattened and curved inwards, as ahown in the annexed cut. The tube in use is quite exhausted of air and hermetically sealed at both ends, and coiled in the form shown in the second figure. As the pressure from without increases upon the tube it exhibita a tendency to exchange its original form for that chown in the third figure. If the tube be sufficiently elantic, it resumes it former figure as so0n as the pressure is withdrawn, and the variations of curvature attondant upon the increased or diminished preasure, communicated to an index moring over a dial-face, give the readinge of the barometer. According to M. Bourdon's observations it would appear that the amount of contraction or expansion is proportionate to the suatained prensure; thus if the two extre-
mities of the tuba become separated by the epsace of 1 inch for a pressure of 20 lb . upon the square inch, they will separate by a epace equal to 2 inches for one of 10 lb . pressure, and mo on; cenmequently the graduations on the dial-plate are equal throughout the scale. Mr. Bourdon considers that the mame action which bringe together each of the ends of an arc, when the chord is bent either in pulling, as fig. 1 , or in pressing towards the arc, as in fig. 2 , is the same action as that which causen in the metal tube the variations of figure consequent

upon different degrees of pressure; and he observes, that by diminishing the pressure upon the chord at A, it will gradually relax, and both arc and chord assume the form of fig. 3, an ection corresponding in its effecte with that produced by the wthdrawal of the atmospheric pressure, which suffers the tube to reassume the figure in which it was originally coiled. In reference to its amount, M. Bourdon obsorves, that if the praneare on the chord at A, fig. \&, be increased until it touch the are of the circle at D , fig. 4 , the angle at n , is rendered more acnte, and the two ends of the arc necessarily convergent, the amount of convergence boing at all times in proportion to the angle formed by the two chords of the arc, the curve of the aro being modified in the same proportion. An effect of the same kind is produced by pressing the chord simultaneously on many pointe towarde the arc as in fig. 4, the withdrawal of pressure being accompanied by the same return to the original figure; and M. Bourdon considers that the same action is induced by the external air, which maintains a simultaneous pressure on every part of the curve. These observations of M. Bourdon, in connection with the principles which he has succesafully epplied, seem to me deserving of some consideration. The greduations of the instrament are determined by subjecting it to artificial variatlons of pressure in connection with a standard mercurial barometer, by which means the points of coincidence are correctly ascertained and laid down. I have not had any experience of the working of these barometers, and do not expect that they are applicable to meteorological observations; but I have no doubt that their action as steam-preasure gaugea is admirable. Many of these last were exhibited by M. Bourdon, in some of which the converse of the action you have just perceived was obtained by filling the tube with a gas or liquid, in which ease external pressure caused an expansion or elongation in opposition to the contraction you have now witnessed.

The collection of meteorological instrumenta in the Exhibition would lead us to the conclusion that the conditions of good instrumente are better underatood and fulfilled by makars abroad than at home. That this will speedily cease to be the case, I feel asarured. The opportunity offered to the members of the jury of expressing their disapprobntion to the makers, added to che increasing demand for good instruments, and to the fact of the publie becoming aequainted with the deficiencies of those usally furniched to them, will inforce a demand for instrumente better worthy the investment of their time and money; and when we consider how worse than uselens is the labour of the meteorologist when based upon bad or insufficient instrumenes, and how by these means he becomes instrumental to the propagation of error, this circumstance alone demands increased care in the selection of those used. That the want of good inatrumenta in experienced I can myeelf testify.

Photography.

The collection of photographs in the Exhibition was well calculated to show the active and experimental nature of the attempta being made to improve its processes-an activity less observable throughout the foreign inde of the collection, which established fewer claims to excellence, on the ground of the novelty of the processes adopted, than were established on the British side. This activity was ahown in part (to confine ourselves at first to daguerreotypes) in the works of Claudet, who exhibited applications of his focimeter; illustrations of the effects of the apectrum on the daguerreotype-plate, as prepared by him; and pictures which, notwithstanding the loss of light necessary for the operation, were rendered non-inverting; in those of Mayall, who exhibited the crayon daguerreotype, produced by a process of his own; Beard, who exhibited enamelled daguerreotypes, in which the permanence of the picture was secured by a lacquer; in the pictures of Tyree, who claimed the adoption of a peculiar process of his own; and various others which it would be tedious to enumerate.

The daguerreotypes exhibited by America, though not ditinguiahed by experimental attempts at improvement of processes, were remarkable as illustrations of the excellence of those which had beon employed.

The almost endless variety and modification of daguerreotypes and tallotypes exhibited rendered it most dificult to obtain, in each case, the nature of the process adopted; and excellence of execution, combined with adherence to the rules of art laid down for the representation of natural objects, became the safest and only criterion of merit.
The nearest approach to this standard of excellence was made by Martens, in all of whose works the elements essential to the process of the art, and to his own method, were so combined and applied that the spectator, losing sight of the means in the end, beheld in them representations of the most perfect beauty, void of artificial effect or technical display; and the mind, impressed with the beauty of nature's own tracings, was not for a moment reminded of the human appliances which had directed the work.
Following Marten's stepa, and inferior to him alone, were Bayard and Flacheron; and following after, many exhibitors of talbotypes and calotypes, among whose worka were to be percoived apecimens of M. Blanquart's process for the production of two and three hundred impressions from the same negative proof; their blotty and heavy appearance was, however, destructive to a great amount of the guccese of the results obtained; their price was designed to vary from 5 to 15 centimes, according to their size.
In the British colleotion of aun pictures, some very beantiful results were obtained by Ross and Thomson, of Edinburgh, upon albumenised glass. Mr. Owen contributed a series of calotype pictures upon paper so prepared by him that, by its use, he has been ensbled to execute in a single day, in a journey of three hundred miles, ten large-rized talhotypes.
It is no less true than to be lamented, that this collection, the largest that has yet been brought together, and highly illustrative of the art, in by no means indicative of the existing state of photography in England-a defect the cause of which is equally lamentable with its effect. When writing the report, I ascribed, and I think justly, much of the rapid and successful progress of photography to the comparative absence of patents in connection with it. Since then I have beoome better acquainted with the restrictive influence exercised over the exhibition of photographa, how distinctly soever allied to Mr. Talbot's process, by that gentleman's patent in connection with it, and which secures to that distinguished photographist the discovery of the fact of a latent impression being made on prepared paper, and the possibility of its development by fresh applications of washes. This patent has been attended with great injury, though less, perhaps, than might have been expected; for having almost, if not entirely, prevented this branch of photography receiving accessions from those to whom profit must hold out the inducement to its pursuit, it has left it almost solely in the hands of gentlemen, the results of whose experiments and investigations are constantly before the public, and who, while rapidly developing this beautiful and important discovery in its various ramifications, consider, and justly too, that new principles, when received as truth, become the common property of mankind.
It may be observed of patents in general, that they frequently
cause many attempta to be made for the attainment of the same end by different meang, and that of Mr. Talbot proves to be no exception to this rule; the chief claim upon which it is founded is the development of the latent picture by the application of liquids. A pictere, therefore, impreseed in the camera, to be developed withont subsequent appllcations, became a thing highly desirable to obtain. Accordingly, Dr. Woods discovered a process known as the catalisotype, by which the picture impreased in the camers reveals itself when set aside in the dark, without any asaistance from the photographer. This procese has been used by Mr. Mayall with very succeesful results; but the great objection to its use is the dificulty of obtaining paper suited to the process. Very recently Mr. Robert Elis has obtained a new process, by the use of the proto-nitrate of iron, by which the same recult is obtained; the paper being very sensitive, the picture appears in a minute or two after it has been exposed in the camera, but though both these procesees (one of which was called into axistence by the necessity of a process different from that of Mr. Talbot's, for the purpoes of geological investigations), and various others are due to the inforcement of Mr. Talbot's patent, it is believed that the reason the French photographers in the Exhibition excelled our own was chiefly because this patent right does not restrict them. These restrictions congist in the requirement of a large sum for a liconse to use Mr. Talbot's procees for practical purposes, or prosecution for the infringement of the patent. Under these restrictions, M. Martens' beautiful photograph are excluded from the mariet in this country, and the specimens axhibited by that gentleman were withdrawn again to France, the sale of them in London being at once checked by a threat that procoedings would be instituted against him for the infringement of Mr. Talhot's patent.

Let us now be content to take a more general view of the subject, which affords a striking illustration of the germination of new principles, by showing how the groundwork of a science originated in France has been received among nations, which ever since have been silentiy promoting its advance and contributing to its improvement, each in a manner suited to its peculiar genius-a germination arising out of the fact, that ever at hand are to be found talent and industry ready to receive new diraction and fresh impetus in the acquisition of knowledge, which, when gathered, has rarely been garnered for the beneft of the few, but has been widely scattered for the use of all capable of and willing to appreciate the gift, by which means the bulk of information collected frem the date of the Daguerrian invention has been dispersed, to collect again with interest subservient still to its advancement. A great step towards the same end was the collection of photographs in the Exhibition, which afforded to the photologist a larger field of observation than he could have before enjoyed; many of the producing processes have long been common property, but not so their seversl results. The Exhibition supplied this deficiency as far as existing causes permitted, and placed the inquirer at once in possession of a class of informstion which before could only have been obtained through the trouble and inconvenience of personal introductions and mutual interchange of specimens; at the same time placing him in possesaion, not only of a means of estimating their relative merits, but also of emulating any one style it might seem desirable to him to adopt or improve, either of his own or other countries, the characteristics of which were severally attended with some peculiar merit or excellence. A means of studying cause and effect, such as this collection afforded to the practised photographiat, can scarcely be unattended with important reaults; and the public, many of whom have for the first time eeen a really good daguerreotype, will be better informed of the power of the art as applied to the purposes of representation. The imperfect application of photography is well represented in the Exhibition, and showed plainly that to please the eye, and administer to personal feelings, is the chief purpose to which a power capable of higher and more useful applications is at present applied. In my report, I have enlarged upon its utility as applied to the purposes of art, science, and literature; but time only permits me to mention that there were no specimens of ancient inscriptions, no delineations of tropical or remote scenery (excepting Claudet's), no specimens of the actinic spectrum on chemical preparations, no magnified representations of the microscopic products of nature, no copies of ancient manuscripts, no miniatures of printed books, no specimens of scotography, or the art of copying engravings by simple juxtaposition in the dark by
obecure interradintion, and many other applications to which it is well adapted.

Mr. Whipple, however (U.S.), by exhibiting a photogtaphic lmage of the moon, has broken gronnd for ite appliaation to astronomy. No photographic image of a star has as yet, as fat as I know, been obtained, but great would be the advantagen secured, if by merely using prepared paper, the ralative poaition of the objects in the field of a telescope could be made alfregistering. I can, indeed, well concelve, that with s good working system of photography, stars, invisible to the eye, may be made to register their position with the same telescope, oven looking with a black field, becaute, with a well-adjusted clockmotion, the same object may be made to occupy the same position on the plate, or paper, for any length of time. By auch a system much distressing work in searching for now objects migbt be avoided, and I think it is a subject which cannot be too strongly insisted upon.

Mr. Brooke exhibited his admirable eyetem for the photographic self-registration of natural phenomena, including appnratus for ascertaining all those elementa in magnetism at present considered important to investigate, and also a means of regis tering some of the elements necessary for meteorological inventigations. Thus every change of position in the magoet is recorded, and not only is the change noted, but the peculiarities of its motion also registered. The intimate connection existing between the aurora borealis and magnetism is ocularly shown, and also many particulars which, in the ordinary mode of observing, would necessarily escape detection."

Acoustics.

In acoustics, the syrene of Cayniard de La Tour, exhiblted by Watkins and Hill, was the only instrument of the kind axhibited. This beantiful instrument, in the early part of the present century, was invented by tho Baron de La Tour, who, atruck with the belief that musical sounds were produced by a succession of impulses striking the air and producing vibrations, determined to ascertain whether a piece of mechanism so constructed as to strike the air with the same rapidity and rexularity would also produce gounds. The instrument now in my hand was the result of this determination; its construction, which is at once simple and elegant, I will briefly explain. The air set in motion, by blowing through this small tube, communicates motion to the circular plate, which turns upon the cylindrical brass chamber beneath. The plate within its circumference is pierced with a series of oblique and equidistant holes, and immediately beneath, on the upper surface of the brase chamber, is a corresponding seriea. The obliquity of the two series of perforstions are similar, but reversed for the purpose of enabling the current to communicate a rotatory movement to the plate; the obliquity of the holes is in itsalf not necessary to production of sound, but is a conventional arrangement to produce motion without the employment of an additional agent. The diac is thus made to revolve with a rapidity in exact proportion to the force with which the air is impelled through the tube and by its rapid and regular movement gives to the external air a series of shocks, which produce a sound analogous to the human voice more or leas sharp, according as the current turns the plate with more or less rapidity. The moveable diec is carefully centered in the surface of the air-chamber, by means of a slender axis working in a small orifice left for ity reception, and is connected with the indioes above by a delicate cylindrical tube, terminated by an endless screw, which gives motion to a wheel furnished with 100 teeth, and bearing on its axle an index. A cog on this wheel acte upon another, whose axle likewise carries an index. For every hundred divisions traversed by the index of the wheel with 100 teeth, which correaponds with the same number of rotations performed by the plate beneath, one division is registered by the other of the two indices-an arrangement which affords great facility for reading off the multitudinous vibrations of which each sound is composed. If water be passed into the syrene instead of air, the same sounds are produced, even should the instrument be totally immersed, the same number of vibrations producing the same sound, and hence the name of the instrument.

This instrument in use, as applied to a continuous stream of air, is a means for determining the absolute number of vibrations in a second necessary to the pitch of a note, and may be wet in motion by the flow of air or gas from a gasometer, or by

- Mr. Brooke's syatem of photographic regiatration is fully illuastrited and dosertbed in an ariciele by Mr. Drew, given to our latit number, omiep p. 129.
a farean of whter, as already mentioned; and is a beautiful and practional adaptation of a theory which it at once confirms, affording at the game time a key to much that is unknown in the raletions exirting between cound and its producing causes.

Balances.-Next in order of arrangement, balances claim our attention. It may not be out of place here to mention that the Exhibition made known an application of voltaic action of great value, by T. H. Henry, Esq., by coating with perfect success the beams of two of the balances exhibited by Oertling, the one with palladium, and the other with platina. By this applieation a derivative from the electrotype, the inferior metals are conted with the superior-a process applicable to thermometer scales, to the limbs of astronomical and geodetical instruments, and, in fact, to graduated scales of all kinds; nor are its applications confined to these alone, it is useful in the coating of weights, instances of which are now brought before you for the first timeg as well as the scale of a thermometer similarly conted. Mr. Henry assures me these great advantages will not involve much additional expense. A want of many years is thus supplied, for I have been long endeavouring to bring into use some substitute to avoid silvering the scales of thermo-meters-a want which has long been experienced by all who have used metallic scales and know how soon the divisions are obliterated, and who will not fail fully to appreciate this useful application.

Calculating Machines-Of calculating machines there ware several (more or leas perfect), by which the hand is made to do the work of the mind, and calculations requiring much etraimed labour are performed by merely turning a handle. The beat was furnished from Russia, by Staffel, and was found to perform accurately and readily the simple calculations of the first four rules of arithmetic as well as the extraction of the equare root, though leas readily. The next best, from France, by Thomas de Colmar, was also capable of performing the same calculations.

Electric Tolegrapho.-The Exhibition was rich in eleotric telegraphs, and for the first time the public had an opportunity of inspecting their arrangements. Beyond the spreading of general information I do not 800 that the collection of telegraphs will bo followed by any particular advantage ariaing from it, because the earnestnens of all gentlemen at present connected with them needs no stimulus to further exertions.

Electrical Machines.-Of electrical machines there was one only requiring particular mention-that of Westmoreland, for generating electricity from gatta-percha bands, and which gives promise of producing electricity to any amount; this, the introduction of a new motive power, opens a new field of philosophical inqairy well worth exploring.

Standard Measures of Length.-A beautiful machins of this kind was exbibited by Mr. Whitworth, for the purpose of measuring to one millionth of an inch. Another delicate and beautiful apparatus for the same parpose was furnished from Germany by Bauman. Simms exhibited standard bars and gcales. The Conservatoire des Arts et Métiers at Paris, furnished a beautifully divided metre and various standard measures.

Dividing. Machines_Ackland exhibited a dividing machine very ingeniously contrived for the division of hydrometar scales. Perreana (France) furnished a beautiful straight line-divider.

THde-Gauges.-Of tide-gauges there were two both selfregistering, by Hewiteon and Newman; that of Hewitson was the better; it showed both time and tide, was elegant in appearance, and seemed perfect in action.

Iridescent Fiums.-Mr. De la Rue exhibited various applications of iridescent films, to the purposes of decoration generally. This is a beautiful illustration of the production of colour on a thin transparent surface by the agency of light, the colours bding as bright as those seen transciently in the ordinary coap-babble. The process is performed by dropping a very cuall quantity of spirit-varnish upon the surface of water when tranquil, which, spreading in all directions, becomes exceedingly sttenuated, and refiects the colours of the spectrum. The object immersed (paper-hangings, card-casen, \&cc.) is then raised lowly, in such manner that the film adheres to its surface. It is applicable to very many ornamental purposes.

SHEPHERDS STRIKING ELECTRO-MAGNETIC

 CLOCK.
By Dr. G. Wuson, F.R.S.E.

[Paper read at the Royal Scottish Society of Arts, April 19th.]

Da. Wilson commenced by stating that his attention had been directed to this clock, by the interest which it had excited in Lendon, where it had been shown to the Society of Arts, and a prominent place had been asaigned it in the Great Erhibition. Professor Brande had also brought it befure the notice of the Royal Institution of Great Britain, and Mr. Charles V. Walker had it already in action at the Tonbridge Station of the SouthEastern Railway; whilst, with Mr. Airys approval, it was being erected at the Greenwich Observatory, with a view to gend time signals to Paris, and to places in our own island, situated on the telegraph lines. Mr. Shepherd having kindly acceded to the request that he should send one of his clocks for exhibition to the Royal Scottish Society of Arts, and Mr. Alexander Bryson having willingly taken charge of the clock-work, Dr. Wilson undertook to describe the instrument. After a preliminary reference to previous electric clocks, especially Mr . Bain's, which was charactorised as simple and ingenious, but which, from the mode in which electricity was employed in it as a moving power, could not but vary in its rata,-Dr. Wilson proceeded to explain the peculiarities of Mr. Shepherd's instrument, which aimed at being a perfect time-keeper. It involved three eeparate arrangemento-namely, one apparatus to move the pendulum; a second to move the works and wheels; and a third to strike the hours. Each of these pieces of apparatus had a battery (or batteries) and electro-magnets for itself. The pendulum arrangement was independent of the other two, so that the pendulum moves though the wheels may be motionless. The wheels are controlled by the pendulum, though moved by their own battery. The bell-stroke is controlled by both the pendulum and the wheels, but is effected by an independent battery. The special peculiarity of Shepherd's clock may be said to lie in the fact, that the pendulum is neither directly moved by the wheela, as in ordinary clocks, nor communicates motion to the works, as in Mr. Bain's electric clock. Mr. Shepherd's pendulum may be quite detached from the rest of the clock, and a single pendulum will suffice for many clocks.
The Pendulum.-It is kept in motion by four forces, two of which act directly-vis., elasticity and gravity; and two indirectly -viz., electricity and magnetism. The action of the direct forces is as follows:-A bent spring let loose in one direction, throws the pendulum to one side, and the pendulum returns by its own gravity. Whilst it is returning, the spring is re-bent, and held back by a detent, or catch, which the pendulum itaelf raises when near the limit of the oscillation which gravity determines, so as to receive from the spring a second impulse to the opposite side. It will thus be understood that some arrangement must be provided for re-bending and holding back the spring till the pendulum again acquires an impulse from it. This rebending of the impulme-spring is determined by an electromagnet, to which a current of olectricity is alternately allowed to pass and then cut off, as the pendulum moves to one side or the other. The pendulum is In permanent connection with one pole of a battery. A wire from the other pole is touched by the pendulum-rod as it moves to the one side (so that the current passes), and is separated from it, when it swings to the opposite side, so as to cut off the current. When the current in on, it throws the electro-magnet into action, so that it pulls down an armature or keeper, which, acting on a compound lever, locks back, or re-bends the impulse-ppring, so that it is caught by the catch or detent. When the current is off, the electro-magnet becomes inactive, and a counterbalancing weight and spring raise the armature from the electro-magnet, so as to be ready to act again, and re-bend the spring when the current is restored. The electro-magnetic arrangement is thus solely employed to re-bend the spring; and it does not matter how much the electricity, or the magnetism which it induces, may vary in intensity, provided that it is sufficient to ro-bend the spring at every alternate oscillation. The release of the spring is effected by the direct mechanical contact of a small arm or point projecting from the pendulum-rod.

The Clock Arrangement.-To move the clock-wheele, two palleta acting upon the teeth of the escape-wheel are fixed upon an axis, at right angles, to which are attached two or more
permanent bar-magnets. Beneath each pole of the bar-magnets is placed an electro-magnet. A wire proceeding from a double battery coils round the electro-magnets from the top to the bottom on the one side, and from the bottom on the other, 80 that when a current pasees, the upper ends on the one side are north joles, and those on the other aide south poles, and vice verst. Two batteries are employed to actuate the electromagnets. A wire from the negative pole of the one battery and the positive pole of the other battery are coldered into one wire, which, after passing round the eleotro-magnets in the way just described, terminates in the pendulum. The free pooitive wire of the one battery terminates in a point of platins on the one side of the pendulum-rod, and the free negatioe wire of the other battery terminates in the same way on the opponite side of the rod, the arrangement being euch, that when the pendulum hangs vertically, neither battery is in action; but when it swings to the one side it touches the free positive wire and lets the current from one battery pass, and when it swings to the other side it tonches the end of the free negrative wire and lets the current of the other battery pase. In this way the poles of the electromagnets are alternately reversed, the ends which were north poles when the one battery was in action, being south poles when the opposite battory transmits its current. The barmagnets are thus alternately acted on in reverse direotions by an mettractive force at one end, and a repulsive force at the other, and by thoir oscillationg work the pallets and move the wheels. The rate, however, at which the wheels are moved, is entirely determined by the pendulam which regalates the intervals at which tbe alternate opposite currents reach and actuate the electro-magnets.

The Striking Arrangement.-This includes a special battery which actuates two electro-magnets, one of which drives the wheel which determines the number of strokes given to the hour-bell, whilst the other moves the hammer which effects the strokes. It is impossible, without diagramg, to describe the very ingenious apparatos employed for this purpose. It may be stated, however, that a lever pushed back by a pin on the minute-hand, is depressed once an hour by a pin ou the secondshand, which completes the circuit of a battery, and calls into action the hour-wheel and the bell-hammer. For the working of these the current must be alternately cut off and let on the elec-tro-magnets; and this is effected by making a break in the circuit be filled up every alternate second by the ascent of a thin plate of metal, moved by one of the oscillating bar-magnets. The bell is thus struck every two seconde, the number of strokes being determined by the distance between notches on the circumference of the hour-wheel. The current flows so long as one end of a lever is out of a notch; when it falls into one the current is cut off, and the striking ceases. The lever is not again raised till another hour comes round.

REVIFWrs.

Naval Architecture: a Treatise on Shipbuilding, and the Rig of Clippers; with suggestions for a now method of Laying Down Vessels. By Lord Robert Montagu, A.M. London: Colburn and Co. 1858.
Although possessing the largest military and mercantile marine in the world, which has rendered the bosst of Eng-lishmen-that unto them belongs the dominion of the seasnot a vain nor empty one, it must be confessed that the theory of naval construction has been but imperfectly developed among us. The science of building shipomo thoroughly studied in France, and so successfully practised in America-has been singularly disregarded in England. Empiricists have travestied it, and "rule-of-thumb men" bave voted it all moonshine. The result has been that, until very lately, English ships were built, according to traditional forms, by the mile, and cut off into lengths as wanted.

It is not for us to say how far the absurd aystem of admeasurement adopted by the Custom-house, and till recently in force, operated to induce builders of merchant ships to neglect all the more essential elements of construction. With the exception of capacity for cargo, the others were entirely ignored: it seemed a matter of perfect indifference to ship-builders and ship-owners, so long as a vessel could carry goods, keep afloat, and, with a fair-very fair-wind, "drag its slow length along," whether she made the voyage quickly or not; whether she was easily hand-
led, or required a numerous and eothy erow.to worl hor; and, lastly, whether she was so built as to enable a akilful comamander to meather the storm, and diminish the chances of ahipwrear. Bo long as the one condition was fulfilled, the others were saldom or ever heeded; and it would seem never to have occurred to English speculators- -0 shrewd and far-seeing in other reepecta -that a ship which combined all these desiderata in the greateat degree, would amply repay, in the first voyage posaibly, the additional first cost of construction which might have been incurred by engaging scientific men to lay down her lines, and superintend her building and rigging. In the royal navy the system on which British men-of-war were constructed was even worse, because the dockyard authorities could not plead the veratione restrictions of Custom-house regulations as axcuse for yearly lannching shipg by the dozen, which ecarcely ever fulflled the purposes for which they were intended,-which could neither sail nor fight, nor carry the requisite complement of men and stores. Sometimes, indeed, when terrible disater occumed, and public inquiry was aroused, the Admiralty awoke from fie pesceful slumbers to a consciousnems that after all it would be as well, perhaps, if British ships could sail a little faoter, 0 as to enable them to overhaul an enemy that had been ruthlealy devastating our commercial establishments, burning our merchant craft, or may be, insulting our shores, as was the case in the Indian seas when Hughes and Suffrein maintained the honour of their respective fiags;-that it would not be amis when a British frigate was oppoeed by an overpowering force of the line, to be able to show the foe a light pair of heelis;-that gune ahould not draw their ring-bolts at the first broadside, like the Java;-and, lastly, that 12 gan brigs should not have a tendenoy to founder, all standing, in a moderate gale of wind, like the "Forty Thieves."

When the Admiralty resolved to do something to provide against the recurrence of similar disasters, they looked for precedeuta, and proceeded to move in the same vicious circle as their predeceseors. They iseued ingtractions to the shipwrights in each dockyard to lay down the lines of new shipe after the model of some fast-ailing prive recently captured from the enemy-our masters in naval architecture. Of late years the Canoput has been the favourite, and ship after ehip. has been built after her, but never with succes. The causes of failure are easily understood. When the master ehipwrights met about their work, in one dockyard it was ungeated to increase her length to give more room between the gung, in another to increase the height between deck for the convenience of the crew. Sometimes the ship, it is discovered just before being launched, would be improved by being lengthened at the stern, now at the stem, then by her being cut down and lengthened amidships; at other times she is to be ahortened. But in no case is the copy built and rigged precisely after the model. The partial rigs, and the bows, bottoms, and aterng of different models are, for aught we know to the contrary, often combined in one specimen. Instead of investigating the canses of auccess of French naval architects, our builders ignoranty copy their works. 'I'hey appear incapable of thinking or acting for themselves. If the Admiralty does adopt an original course of action, it is only to order the immediate construction of ships after the crotchet of the first lord (who has great parlimmentary influence), before one of the clase has ever been seen, much less tried. A notable instance of this kind will be foand in the history of the "Forty Thieves," not one of which that escaped foundering being worth anything except to break up.
Within the last few years a sensible and marked improvement has been made in England in naval architecture- 00 far, at least, as merchant ships are concerned. The recent-alas! only very recent-crack productions of one or two of our first shipwrighte will bear comparison with American clippers. Aberdeen shares the palm with Baltimore. But, atill, English clippers are the exception, and the reat are the veriest tube that ever floated. These improvements, however, although so marked, are far from enabling us to recover lost ground.

In the royal navy-if one may judge from the lengthening, sawing down amidships, razeeing, and conversion that are conatantly going on in the dockyards-the art of shipbuilding appears to be in statu guo. We have new ships that won't berth their crews or carry more than three months provisions instead of six; frigates that won't sail on any tack, and have to be converted into screw guard-ships at great additional cost; warsteamers that break down at the first and every succeeding trip; and troop-ahips that won't carry their proper complement,
:Hor can, undor any circumatancen, make thoir voyages under lem than donble the time that one of our ordinary-even our merehant-mipe would take under like conditions.

Why rach incompetency and blundering should atill exist in out national yards it would be impomable to justify or explain, we fanoy, except on the ground of syatematic disregard-almost contempt-which our authorities have always evinced towards science and her followers. Whether it was for the same cause that the echool was suppreseed at Portamouth, or because our naval authorities determined that a naval architect, like the poet,

$$
\text { " * * * naectur pon } 85, "
$$

we leave our readers to determine for themselves.
Although we have not hesitated to express our opinions freely upon the beckwardness of naval architecture in England, we are not insensible to the merits nor the researches of Beaufoy, Fincham, and White of Cowes, nor diaposed to withhold the commendation which their labourn desarve. Neither are we inclined to forget entirely the claims that Symonds and Seppinge have on our gratitude for their adoption into the royal navy of diagenal bracing, round sterns, and other practical impruremente of details. We have now another name to add to this honourable list, that of the anthor of the wort under comideration. Lord Robert Montagu was led, by observation that "the generality of shipbuilders have not acquired a knowledge of the higher mathematics and of the motion of fluids," to inquire what authority they had for their proceedings,-if the principles, on which they asserted their system of construction was based, were sound and scientifically correct,-and if there was some one principle which, being faithfully adhered to in every variety of build, would explain the hitherto incomprehensible fact to the bewildered shipbuilder, that "among the swiftect ressela he seen some with full, and some with sharp bows; some with great beam, othera narrow; some with a great dragight of water, others ahallow; some with much rise in the fluor, othery comparatively flat; some with little gripe, or the forefoot almoet entirely cut away, while others have been improved by the addition of a greater gripe, and a bow lengthened below the vater" (p. 10). Last winter he got upon the track of the frvention which it is the object of the present work to exphin, and which we ahall allow him to deacribe in his own wordes
"Briiders form their vesuele by the water-linea, ribboo-and-buttockIines; and consider that the cortes of these lines are of paramonnt importance Bat they have not anked themselves why they shoald be © ; whether any of them can have moch to do with tbe pausge of the water along the vessel'a body; whether the water divides, in fact, in the direction of any of these linea. Why have they not inquired tato the real direction which the water takes when it dividet, and beatowed all their care npon the improvement of these lines? And then they might tate the models of famous ressels, and find what shape it was proper to give to the dividing-line, and extract a prinefple from chaon and con. fosion; and perceive the noity in a mate of apparently antagonistic facts and conflicting reaplta.

And how then does the water divide? It may be expected, at prori, that a flat film of water, from the cutwater, will pasa along the body of a ship in the anme direction as that which anjother fiat thing would maturally take-a a thin plank, for instance." This is not a concluaire argment, but natural sopponition. Bat there is a fact which materially atrengthen thia atamption: I allude to the fact that elinker-bofit reseals have a decided superiority over carvel-built vessels of the same form. Now, If the water does not divide in the direction of the planke, the land of every plank must offer considerable, very considerable reaistance to the progrem of the reasel. Bnt, on the other band, if the water does really escape, secording to onr a priori notion, in the natural direction of a plank, then thete lands will offer no renistance. And at the zore cllnker-building gives a decided auperiority, it is clear that the lands do not offer reaistance, and that the water naturally dividet along the planks. Now, over timbers which are vertical-as in the run of the atern, for instance-she water, or a narrow plank, will pasi in a horfzontal direction; and over timbers which are quite horizontal, the water or narrow plank would take a line lying in a vertical plane parallel to the line of reacel's metion. In each of these cases, the line described by the plank or by the water in it motion is at right angles to the timbers. And if a timber be forced out a little from the vertical position, 50 at to make a amall angle with the vertical, the line deacribed by the water or plank will take a alightly downward direction. And the the angle of inclination of the timber increases, tho water or plank will take a more and more downward direction; bat it will alway cut the timbers at right anglet.

[^21](I am of conrse unpposing the timbers to be in vertical planes perpes. diculir to the direction of the vescel's motion; and I am not at present anppodigs the aurface of the water an anthing but a perfeotly plane anface.)

The reaton why the water pasees along the body of the ship in lines which cut the vertical sections at right amgles in, that the ship's aides at overy point (when the ship is in motion) give an impulee to the water, which impolee is normal to the surface of the oide at that point. And therefore the plane, in which the directions of the impuites from two adjecent points must be contained, must of necenity cut, at right amplen, the sarfece of the thip's side which lies between.

View thit moreover In anotber light. It is a philonophical principle that anture performs everything with the least effort; and daide in motion between two points on any aurface will take the shortest line on that aurface. Now, the dividing-line is the shortest line which can be drawn on the surfuce of a vessel from any given point on the stem-post to the atern. This will be manifent if the line in queation be projected on a plane parallel to the planes of the timbers (i.e., in the body plan, if the sections are perpendicular to the surface of the water).

Let $\mathrm{B} l, \mathrm{~A} k$, fig. 1 , be two adjecent sections; and let $\mathrm{D} d_{1}$ be a dividing-line. Then the line $D d_{1}$ is the uhortent line that can be drawn from the point D, in the circumference of the section B t, to the circumference of the section A k; for, if not, let D t, be aborter. Draw D 0 perpendicular to the planes of the sections, and let it meot the section $\mathbf{A} k$, in O. Join Od, Ot. Then, th the distance between the sections is anpposed to be small, and the dividing-iines are supposed to hare an eavy corrature, we may auppoce the aren $\mathrm{D} d_{1} \mathrm{D}$ f, to be arce of circlea. Now, as the diriding-lines cut the circumforences of all tho sections at right anglet, and a DO is perpendicular to the plane of $\mathrm{A} h$, therefore the plane DdO , is perpendicular to the plane of $\mathbf{A} t$, and at right angles to the cirenmference $A d$; and therefore $0 d_{1}$ is at right anglea to the circamfarence $A k$; and $O d$, is the shorteat line which can be drawn from the point O, to the eircumference $A \$$.

Similarly, D d in leas then any other are drawn from the point D to the circumference $\mathrm{A} k$.

The same may be proved with reference to that part of a dividing.line which in intercepted by any other two sections. And hence the whole of any dividing-line is the shorteat line which can be drawn from the ame point in the stem-post, over the surfice of the vesel to the sters.

FIE. 1.
FIs. 2.

This consideration will aftord withe readient way of deseribing a dividing-lige in the body plan of a ventel. Instead of the established syatem of laying down the plans of reseels by the water-linet, and applylag to the water-lines the shapes indicated by experiment to be the best for the dividing-linea, I mould propose the following method, deduced from the principles advanced above:-

1. For the sheer-plan, draw the keel, the atem and the atern-post, and mark in the line of dotation, or load-water-line. Then erect the tections at right angles to the load-water-line."
2. Nest determine the abape of the midahip section, and lay it down in the body pinn. Draw a struight line acrons it for the lond-water line. \dagger From a point in the stem-post, somewhere abont the haight of the lead. water mark, or a litale above it, draw a corved line to a point in the midship section, to represent the direction in which the particles of water, from the aurfice at the stem, are to be made to divide along the body. This in the priscipal dividing-line: I I have said "a curoed line,"

[^22]because, if the lise were atraight, the circumferences of the section at their pointe of intersection with this lipe would be parallel to each other, because any dividing-line cote them all at right anglea. This is the cate with some veasels, but it need not be so. To determine the nature of the carve thin must be done:
3. In the sheer plan lay off the poivta in the stem-post midabip section and stern-post through which this line is to pass. Through these asomed points draw a fair curve by meaps of the batten. Then,
4. In the body plan lay off the heights at which this curve cats all the other sections, and draw through these several points lines parallel to the water-line. (The intersections of these lines with the dividing-line will, of course, be the points of intersection of the sections with the dividingline). The form of the curve in the body plan comes now to be detertermined.
5. Thia is done by laying off, in the half-hreadth plan, the three pointe already mentioned, through which the line must pass, and drawing through these pointe the curve which masy be given to the betten. This gives the breadths to be messured, in the body plan, along the linee Which we have drawn at certain heights parallel to the water-line; and the curve may then be deacribed.
That dividing-line which commences at the load-water mark on the stem-post is now laid down-the greatent dividing-line, most probahly, which the proposed veasel will have. In fig. 2, let OAD, be this curve, as determined by the sheer and half-breadth plans; a, b, c, d, its interwections with the lines drawn parallel to the water-line.
6. To sketch in thene sections is our present object. Por this purpose, take for centre the point \mathbf{O} (the point on the otem-post from whence the dividing-line ia taken), and draw the arc of a circle through the point a. Next take a, for centre, and draw an arc through b. Then take b, for centre, and drew an are through A; if this arc should eat the circamforence of the midship section instead of tonching it at A, then the point A, mast be moved so that the arc should only tonch. This operation must be continued for the after-body by takiog aucceseively for centres the points A, c, d. The circumference of each of the sections must be tangential to each of the arca respectively at their intersections with the dividing-line. The remaining part of each section in, at first, sketched in by oya, and then proved by other dividing-lines at various elevations. In aketching the sections, a pliable steel spring is of great we. It makea all the sections of a fair and simiar curve, and so saves mach trouble afterwards in correcting. The whole hat now to be proved by waterlines, ribbon-lines, and buttock-lines (according to the eatablished method), and corrected where any inequalities in the surface may appear.

This is the principle which I would propose for guidance in the conatraction of vessels. This principle explains the success of vessels of soch varions forms. Vessels with full bowa, for instance, have a dividingline ranning in such a direction that its projection on the sheer plan chowt \& greater curvature than that in the balf-breadth plan; while the dividing-line of abarp bows shows a greater curvature when projected in the half-breadth plan than in the oheer plan. In each of these casen, however, the curvature, taking all in all, may be the amme."

Into Lord Robert Montagu's investigations of the best form to be given to the "Midship Section and Stern," and "Sheerplan, we do not propose to enter, but prefer quoting his remarks upon "Reaistance against a Veasel's Progress," because not only do they display great originality together with utmost freedom from conventionalisms, and high mathematical attainmente which are indeed distinctly visible throughout the whole work, but because he takes exception to Mr. John Scott Ruscell's theory of the wave line, which has lately attracted considerable notice from the earnestness with which it has been advocated.
"Lat O B, fig. 3, be an infinitely amall part of a dividing-line of the bow (which may be supposed atraight). O, the origin of co-ordinatet, of which the axis of as in a line with the keel, and the axis of y transvernely to it. A particle of water impinging on the veacel at 0 , mast, in aecordance with onr definition of a dividing-line, have no tendency to Leave the line $O B$; but it will travel along the surface of the vessel in the direction OB. Every succeeding particle striking the veasel at O, will do the aame. We talk of the particles of water being in motion and meeting the vensel, for this will cleariy lead to the same result as the contrary, but will cause leas confuaion in the conaideration. Sncceasive particles of water, then, meat the vessel at 0 , with a certain velocity, and exert a cortain premare. This preanure conaints of two parts :(1.) The atatical preasure, or that which is exerted equally all over the surfece when the vessol in at reat (Which altogether equals the weight of the veacel, and the reaultant of which acte vertically through the centre of eravity) ; and (2), a preasure due to the velocity with which the par. ticie meet the vessel, and verying with the inclination OB, to the direction of the motion (i.e., the inclination of OB, to the axis of c). The direction of this preseure is perpendicular to the plane in whioh OB, lies, and which in a tengent-plane to the aurface of the veneal.

If there were no friction, the velocity along 0 B , would ${ }^{\prime}$,
have really no indind motion, there is no momenture to be condidend); bat the friction, which is generated by the preasare, retards the motion; add to this, that other particles Impinge on the Hno OB, at differeat points beadea O, and hence the partiolen of water get piled and haddised upon the line OB. The whole andface of the reasel may be onpposed to conaiat of dividing-line infinitely near esch other; and the mame telces plece on each of them. What, thon, is the effoot, tar far the bows ars conaidered, of the motion of the veasal ? The watar at the aters-post is gradunlly incressed in denaity up to a certain poipt. But as the water in an elatic fuid, the density is inalantly communicated to the water, on all sides, in front of the ship; and also forces up, at the stem-post, namerous particles of water above the surface. The consequence of the former wlli be, to give the water all about in front of the vessel a certaln velocity in the seme direction athat in which the veasel moven. The effect of the latter will be wave, which will rise up at the stem-pott and travel with the vescel. Bat the dividing-linet, at they approsech nearer to the middle of the vessel, become iess inclined to the direction of the motion, until at latt that inclination becomes a minimum. At this place, then, there is no increased deasity, for the pressure becomes zero (that is to any, the additional pressure, not the statical prescure), and the water flows away much more rapidiy. This causes the snrface of the water to sink; and the wator from the neareat part of that which hu an increased donaity rashes in, with a certain valocity in a direction contrary to that of the resel, to anpply the vacency.

P4. 8.
Pr. 4.

In a dlviding-line at the atern there in no friction. Nay more, the statieal pressure is diminished, so that there fa not exerted oven the whole of the friction which is dne to that. For the particlen of water, moving along the eurvet of the dividing-lines at the atern, tend to leave the line, and fy off at a tangent. Aad thas the denaity of the fioid abaft the veasel in decrensed. The water immediately behind the midehip section rushes in, and thos canses an additional depression of the surface of the weter amidships, and givea the water nuder the starn a certais velocity contrary to that of the vessel. This carrent meets another current from bohind the vesel, which also ruahes in to ill the vecrumb, and a wave is caused, which follows the veasel at the atern-pont.

In these diagrams, I have attempted to ahow the form of the surfice. The object of Mr. Ruasell, is his wave principle (if I undertand aright), was to make the water, for some distance, divide in adrection parillel to the keel; and then to let the increment of inclination be very gradual at firat, so that the wave should not be before, but immediately behiad the stem-post, and so sapport the veasel. He increased the atern wave, by making the vesel of auch a form that the dividing-linet sbould clase with leas taper, anpposing that this wave would help the vessel onwards. Bot, as hls mathematics are not always quite correct, it is hard to approciate the reault. And moreover, this object could be obtained by any curve at firtit parallel to the keel, and gradually leaving that direction, so that I do not quite comprehend why be should fix upon the curve of daes for the soater-lines. But it seems that an inflected line must offer more reaintance than a simplecurve. He any, that the wave at the bow in of the form of a curve of sines-that is, the section by a vertical plane presents that curre. Assuming that this be troo, why does he apply this curre to the horizontal plane of the water-line? There in no regular publication on the subject from his own pen (except in a periodical in the year 1838), so that, very likely, ha is not rigbtly underitood, and an injustice has been done to him in making him stand godfather to a prisciple which is not his own.

Would it not, however, be better, perhaps, to apply a cycloldal are to the dividing-lines of the bows (if such a principle an the above must be adopted), and have the dividing-lines aft mach more tapered, and an nearly straight an possible, so that the particlee at the atern may not ofy off at a tangent; or, in other words, that thare be caused an littic anction an ponible to the atern, and that the statical pressure at the stern should not be decreased. (The reason for mentioning the cycloidal arc an a subititute for the carve of alnes in the bow we ahall presently investigate).
Mr. Griffths adopts the wave theory, and attempts to axplaia it : wille he laughs at the principle upon which it is founded. He sueers at Mr. Ruacell's 'ignorance' for not knowiug that ateamers have been boilt in America which are $s 0$ sharp at to bave no wave. The weve may be so lengthened as not to bo remarkable; but there muat be some wave. However, he amea any one the trouble of contradicting him, for, with a noble generosity, he takes the unpleasant duty on his own shoaldert: he Eiph it carions thing that these vescele should ran aground when

paming awlfly ovar ahullowt on which there is quite enmeiont water to hoat them when at reat. It not this the reinlt of the wave at the bow and stann, and the hollow in the water amidohips? Let any one watel the Claper eight oart at Cambridze or Oxford. They are longer and marromer ia proportion than any stoamer; yet the two waves are quite diecernibla"
The last prssage of the treatise which we shall quote is on Sails-a subject which has raised conaiderable discussion since the inglorious defent, in English waters, of English clippers by the Amerion.
"The aaile of the Americe were made of cotton duck, for they are lighter, easier worked, and hold the wind better than common capras. The ooly advantage of heavy canvas is that it lies flatter; for this reason the Bermadians use it for the mainails of their boatt. Bat I am told that in the America they moaped or greased their sail for the race, to make them hold the wind, and kept them fat with battena.

But the mile in thit conntry are not so cot an to lie flat; and this is the reason for the practice. If M, Ag. 4, be the mant, and M B, the boom, thea the gaff will be in some direction MG. Now, if the angle MG, be the beat angle for the nil to form with the wind, then the lower part of the sail near the boom would be nearly aback, or at laust forming a very bad angle; but if M B, be at the beat angle, the sail up aloft would be lifting; and for this reason they rake the mil with a great belly, and bring the boom to too mall an angle with the wind, so that the belly may be at the right angle. This evil may be obviated by haviag the gaff much more peaked up, and baving the mainabeat nearer to the math. For, as the vertical height of the boom from the deck is the eame (to all inteats), bat the length of the sheet in incressed the further it is placed from the matt, therefore the power of the sheet to keep the cail fat bears a greater proportion to its power in keeping the boom in when the sheet is placed nearer the mast than when it in further aff. The advantage of a horse is that it keeps the gail flatter; the diadvantage is a want of play. Thit plan would attain the adrantage of each kiad. There are two other adrantagea in having the gaff mach peaked : one in that the play of the gaff is upwards, inatead of tending to drive the ressel's bead into overy sea; and the other is that the head of the eail is smaller, and so the sail is more reduced in size, with lens trouble, when reefing. When the sail is very flat, you can afford to hoe the foot of the sail to the boom, as the Americans do; if the sail is not very fiat, but the gaff goes of at a different angle to the keel from the boom, then this lacing would canse a backsail. In a achooner, if the ails are not fat, the wind from the jib acts against the foresail, and the eddy from the foresail against the main, which in each case tende to retird the veseal's progreqs.

There might he made some improvements in the rig of our cotter. The mast should be more aft (the beam also, of course, in a correaponding poaition), and there ahould be less head sail. The mainesil should be the sail of a cotter; and the foot should be mucb longer iu comparison so the head. Aso, the present heavy gaff and boom, being nearly horisontal, do not switch up and down when the vessel pitches; they drive ber bodily into the teal. They should be peaked up more, and the boom Kept much lower; the jaws of the boom shonld be down almont in the cabin. The gaff should form an angle of 45° with the mast. Tbe bowiprit shoald be shorter, stouter, and without a bobstay. There should be no foresail (which is a very pressing sail), hat oply a large jib. And it will be aecescary, therefore, in order to work with ease in going aboat, that the matithould be staged forward by two foreatay to catbeads out of the bowt, instead of one stay to the atem-liead. Sbe should beve no topmat; but har gaftopsail should be run up with a yard, which shonid stand ap and down the mast, as in Aroerican schooners. It is not, I am aware, quite a new thing to omit the foresail ; bat I do not think my plan of the forestays out to cat-heade has ever been tried.

It would be a good plan, in schooners, to have a boom for the foretryail, with a jigger and snotter round the mast, instead of jaws, so that it could be bronght in when the vessel is in stays, and bowsed ont again as soon as abe if on the other tack. It would give more play to that aij, and make it stand better. The America had a boom (with jaws) which exteaded only to the manmast.

No racing veasel should bave a guavale of more than a few inches, for it only serves so catch the wind and send ber to leeward. Neither phould there be any cabins or bulk-heads below. A piece of painted canvas stretched across the vessel amidships would be quite sufficient."

In taking our leave of the Treatise on Naval Architectare, we cannot but congratulste its author on the success he has achieved. He has produced a work which deserves to be carefully read and digested by every shipbuilder - to serve, in short, as a text-book and standard authurity bereafter. He has entered most fully into a calm and able investigation of all the elements that must be combined to produce a fast-sailing and weatherly craft-building, masting, rigging, and ballasting; and has advanced no proposition without proving its truth by elegant yet unpretending mathepatical demonstrations, and confurming theae by the apt quotation of practical examplea.

The Soul in Nature, with Supplementary Contributions. By Haws Cerisfinan Oersted. Translated from the German by Leonora and Joanna B. Hornes. (Bohn's Scientific Library.) London: H. G. Bohn. 1859.
In the spring of last year a hright star passed from the firmament of science, and faded from our sight for ever. Hans Christian Oersted died in the zenith of his intellectual glory, amid the mourning of his countrymen and the universal regret of the ecientific world. The eldest of two brothers, whose ardent spirits, deeply stored minds, unremitting industry, and practical application which they sought to give the direction of their atudies, have won a world-wide reputation for them, and who were not the least remarkable and worthy of all honour among that band of intellectual heroes-- Oehlenschlager, Thorwaldsen, Berzelius, Steffens, Rask, and Sibbern-who, hy their splendid genius, indomitable will, and singleness of purpose, proved themselves worthy descendants of the vikings of old, and won the admiration of the world for their common country. Bleak and inhospitable Scandinavia, who was wont to send forth from her icy depths and iron-bound shores, men, like herself, ruthless and inflexible, to desolate the fairer and more favoured regions of the south, produced, towards the close of the last century, a group of philosophers and artists who, by the humanising influences they have exercised upon society, have in some sort compensated for the injury to the arts and sciences which their fierce forefathers committed during the middle ages. But the one to whom the gratitude of the world is more especially due is, without doubt, Oersted, for to his studies and diecoveries are we indebted for the invention of the electric telegraph. At the close of the meeting of the British Association at Southampton in 1836, where the illustrious philosopher was present, Sir John Herschel spoke truly when he said, "In science there was but one direction which the needle would take, when pointed towards the European continent, and that was towards his eateemed friend Professor Oersted. He knew not how to speak of him in his presence, without violating sume of that sanctity by which, as an individual, he was surrounded. To look at his calm manner, who could think that he wielded such an intense power, capable of altering the whole state of science, and almost convulsing the knowledge of the world! He had at this meeting developed to them some of those recondite and remarkable powers which he had been himself the first to discover, and which went almost to the extent of obliging them to alter their views on the most ordinary lawe of force and of motion. He elaborated his ideas with slowness and certainty, bringing them forward only after a long lapse of time. How often did he (Sir J. Herschel) wish to heaven that he could trample down, and strike for ever to the earth, the hasty generalisation which marked the present age, and bring up another and a more safe system of investigation, such as that which marked the inquiries of his friend. It was in the deep recesses, as it were of a cell, that in the midst of his atudy, a far idea first struck upon the mind of Oersted. He waited calmly and long for the dawn which at length opened upon him, altering the whole relations of science and, he might say, of life, until they knew not where he would lead them to. The electric telegraph, and other wonders of modern science, were but mere effervescences from the surface of this deep recondite discovery, which Oersted had liberated, and which was yet to burst with all its mighty force. upon the world. If we were to characterise by any figure the advantage of Oersted to science, he would regard him as a fertilising shower decending from heaven, which brought forth a new crop, delightful to the eye and pleasing to the heart."

The life of Oersted bears a resemblance to that of Humboldt, distinguished by the same pure love of natural science, the same zealous service in the diffusion of a true knowledge of her laws and harmonious beauties, and the same modesty and simplicity. Born in humble life, in 1777, the son of an apothecary in the little town of Rudkjoking, in the island of Langeland, Oersted was indebted for his education more to his own application and eager search after knowledge than to any efforts of his father, who claimed the assistance of his son, when only twelve years old, in the discharge of his profession. Five years afterwards the two brothers, who through their boyish days had invariably communicated to one another the knowledge that each had respectively acquired, entered into the University of Copenhagen. Denmark, to her honour be it spoken, though the least able is yet the most zealous and efficient instructress of her children of all the states. The painstaking habits of study and modent dempanour of the young Oersteds, moon attracted the attention
of the government anthorities, which led to the arrard of some pecuniary asaintance. With this gum, and what they earned by giving leasons, they were enabled to complete their ncademical career, and take their degrees. About 1800 , the older brother, who had just atet up as apothecary and lecturer, recoived information of Volta's discoveries. Into the study of this new and wonder-working science, Oersted plunged with all the eagerness and enthusiagn of his nature. The result was his discoveries "with respect to the powerful action of acids during the production of galvanic electricity, and of the relation of the opposite effects devaloped through the conductor of the battery to both poles; whilst he proved that both acids and alkalies ara produced in proportion as they mutually neutralise asch other." Two journeys to Germany and France, the advancement to the professorship of Physice in the Copenhagen Univertity, and numerous publications-among the most remarkable of which are: 'The Series of Acids and Bases,' 'Obaervations on the History of Chemistry;' 'Manual of Mechanical Phytice;' 'Viewn of the Chemical Laws of Nature;' a theory of national (German) scientific terminology;-together with the invention of a gralvanic copper-cell apparatus and a new blasting proceas, and a geological examination of the island of Bornholm, were the principal features of his ever-active life, up to the Jear 1820, "from which may be dated Oorsted's great fame, and called by himaelf the happiest year of his life. In this year he discovered electro magnetism, or the "law of reciprocity between electrified bodies and the magnet." After the theory had been developed in a course of private lectures, and proved to be correct by repeated experiments, a short account of it, in Latin, was sent to all the European ecientific societies, the majority of whom honoured themselves by giving him their euffrages Our Royal Society ent him the Copley Medal, and the Institute of France, as an extraordinary acknowledgment, a mathematical class prize worth 3000 francs. In 1825 and 1836 he visited England, among other countries, and was everywhere received with the reapect and admiration due to his genius.

After a life full of homour, and spent in the unselfiah prosecution of the studies of science and the revelation of the lawn of anture, and within four months after the jubilee held in honour of the fiftieth anniversary of his long and eminent servicen at the University of Copenhagen, Hans Christian Oersted dled, after a short illness- 80 short, in fact, that he may be said to have died in the fulfilment of his duties, to have fallen like a coldier at his poot-on the field of victory.

In this necessarily brief retroepective glance at the life and labours of Dersted, we have had scarcely epace to do justice to hin literary abilities, and yet they were of the highest order. But his phiiosophical resesches and discoveries ware so important that they absorbed public attention entirely. The appearance, therefore, in Bohn's valuable series, of 'The Soul in Netura, is exceedingly opportune and acceptable, as calculated to induce the public generally to regard Oersted in a new point of view, and render him justice for those literary talents which his discoveries in natural science, like Aaron's rod, had swallowed up. As a sample of his style and mode of reasoning, wo quote the following from his essay on the Natural Philosophy of the Beautiful; the most likely to interest onr readern, although probably not the best we could have eelected.

The Natural Prilosopay of the Beautiful,
"1. When we make mathematical Agures and formulte for the ase of seience, we produce something which bears at acknowledged etamp of beanty. The aame, thougt in a mach bigher degree, occurn in our experiments for the diccovery of the lawn of batare. These facts, concerning two different brancben of science, might appear at a baty glance to have bot a slight connection in common, but upon a ciowar investigation, we perceive that they are on the contrary very intimately conaected, and that the explanation of this mitter must be reckosed among the tasks of natural science. In an attempt to colve thin problem, the importance of netural ecieace for geveral education, which is becoming more and more acknowledged, will appear in a still stronger light; and though the first experimeot may be far from satiafactory, it will, novertheleas, have painted out an importent tank to be performed for the anke of higher calture, which can no longer be delayed.
2. Our inquiry doen not commence with determining the attare of beanty; but, puranant to the proceeding of experimental akill, we must aearch and inveatigate the laws by which something is produced which tatistes the sease of beanty. It is ovident that wo must begin with those objecte which ean be motit easily penetrated-ammely, mathematical figoren; but beanty la these is so simple, to little developed, 60 elementery, if we may venture to ase thia espresion; that to many we - might seem to be mearching for beanty where it does aot eaint. The
method In which we proceed with exr contlumed Inguiry mand justity en from auch a contradiction. We muat limit oursolva bere to anewar perevidonally, that, in daily apeech, the mont dimple forme which surea with good tase are not called beautifil, znlout they are placed in direct eppoditios oith sometting ugty; juit as the mont tiopla and generilly received truthi are not dietinguibhod as being reasonebio, if no coutrant demands it.
3. Every one must feel that lines and Agures which expreas thought the atraight line, the circle, and tgarea formed of atralght linet of equal size, are pleasing to the eye; but this is felt mont otrongly and decidedy when they are compared with carolem seribhled strokes.
4. We need only obeorve with secursery thit mental experience, to bo convinoed that the greater atiofection we derive from the contemplation of thure which expreen thoughts is not grodeced by thinkiog, but is connected with the direct apprebeasion of the thing. It is an inwer scmational apprehension, a montal perception. We not sutomisbed to find this hermony botween remeon and eonee, as they both apring froen the mane high origin.
5. Every appareat object, howover simple, containe a variety (wo may
 separation, notion, and arraggenents, before it can grop it in its omenene. Parception, on the other hand, receives an froproeion from it as omemen, and therefore complete, itrong, and elear ; bat not with the peoctratins conncionances of the iamerd natare of the thing, eforiar 80 whet in produced by thougbt.
6. When we repreant a mathematical line or igare, whethor it is only for inward perception, of also for the outer teace, wo let oursolven be determined by a thought, without at the moment faraiag oar atteation to iti development ; but that which is reprosented, nerertbolem, centilise the expremion of all the thoughte which have been elicited during the development. While we reprosent the mitright live, owr thooght it zerely turned to the oneness of the direction. But if, on the contray, we submit that which is represonted to reflection, It is manifoet thes there is a simiharity of cach part, even the emalleat, whth the whole; the capability of an infinite prolongtion ; sitaple, uneorenected motion; the shortent dintance between two pointe; the fundamental measare for all extencion. But it is sufficient to have pointed oat the inward varicty of the stralght Kine. Sibce hrevity, which must be our lew hore, will get allow wi more than owe circomstantial explanation of chis kied, we will salect an object which offiart a simple and ahnodant careo for the development of thought.
7. All know that the circle msy be deecribed as line whter is everywhere equally diatant from a given point. It in also well knewn, whet a varioty of propertien have been diccovered in this fifare by geoonetry. To whichever part of the circumference we may tum our alvelion, perfoctly correaponding part may bo presented eanetly opponito ; every line which pasees through the centre of the circle divides it into $\mathbf{t w o}$ perfectly equal parts; two diameters divide it into two correaponding portions; nowhere can a line be drawn withont the poesibility of drawo ing another in exact correspondence in an opporite poeftion. We farther see that the erch is the measure for the inclinetion of the radli; that the eirenmference in infnitoly divided, but at every point in a simiter manner; and that it incloves a greater surfioc than tay other lise. This eaneros retion, incomplete at it in, will be spfficient to lead oar attention to tho copious thonghte which are expressed in the chrolo-
8. Geometry, es is known, proves that these properties ars not aeok dentally coilected into the circle, but are the necemary reault of in fundamental determination; that the distances of the edromimerence from the centre mast be every where equally greath. This neceseary connection Till not, however, be deduced from the fundamental thonght withons the atd of perception, 20 that we cannot exactily asy that the other thoughts le in the fundamental thoaght, bat rather that they belomg to it. Were we to begin with any one of the properties of the theta, wo might from th, though frequeatly with the greatent dificulty, arive at all the reat. It is therefore hardly ponuible to find an expreation which would repreaent a thought of which we conld any that all thoee thoughte were coatained in it; hut wo have a perfect knowledge that the efrele, which is apprehended by intuitive perception, conatitutes asenen of thought. When the apprehension of reseon appropriaties this onenesy of thonght which in expretsed in the perception, we have the ldee of the thing. And in general terms we may ay, the idee of a thing is the oasnees of thought expressed in it, when apprehemded by reaton, thoogh as a perception. We therefore chnaot, of course, pomen the fitue withont properatory thought, nor withont the comprebemaion of the theaght in the perception. The imponibility of expreaiag the idea by a airaple exprestion, does not provent our having a clear apprehension; but it requirsa a higher mental erercise thas the approhension of nanal siestific conceptions.
9. Now although we cannot apprehend ideas, as idess, without the exercise of reseon, yet the presence of ideat is felt in peresption, which is underatood by the common origin of rational and perceptire aature (4). This mode of understanding it is, however, only a general approbensian of the case. We must ghow how it is in what foilows.
10. The beautiful, consequently, is the idea expreseed in the thingo in proportion as it in exhibited to the perception.
 dandel, bat has ito beivg in the peocliar davelopment of tha idee. Wo equew the mat thing, only in other worde, when we cell this a celfdevelopreast and whep ve see in is a celf-legislation, in which, consoquently, freedom and doterroisation are united, therufora charator.
12. Symmetry alopa, whiah raprewents no ather thought but aymmetry, is sumbient to matify the senic of beauty. The figare 3 by no means catintien the oge, whereas the figure $\boldsymbol{z} 3$ produces a pleaning imprestion. One part of the figuro in not a mare repotition of the otber, but ita entitype, in it were; the object, and its reffection. The one half is the same an the other, but in the form of opposites. Wo here see the name oppostion as between the thought of the thinking being and thought fieved as somesting that is thought. Opposites, and anion of opposteres. Thas the fandmental form of thought meets our peroeption in Mymetry*
13. The symmetry we bere apeak of fo of the moot nimple kind. BoHien thbs first order of aymmetry, there are many hisbor and more involved oymmetriea. Aroong these may be reckoned the poultion of the macous of many plates. In the leaven whioh are placed opponite to one ametber, we see iymmetry of the first order; thoee growing altornatily, Thene atalks preverve neady the meme perpendiculer plane, beloar already to a mere composite order; the alternations, bowever, frequonaly do not ceear in the marge plane, but the positions of the leaves must have socpaplished a circular peth before an opposition is comploted. Wo How that the a armber of the leavea which belong to suct circalar paths in in many cemen very detarrinod, and that it only deponds on our want of perfect knowledge if we do not always detect it
14. In overy figure which otherwise expresces an entire thought, the gymmetry in subordinate to the whole; or, more correctly speakiog, is so interworen with it that it does not indeed appear at if it wero indepen dent bat it doem not on that account lose its great signification; it repenls to as the inward harmony of the idea, which ittale representa the harmony of reason.
15. It will now be eeully understood, that a Agare which certninly repreveats a thoorght, but with an urbitrary addition, doen not antiffy our copoe of bencty; the inward harrony is distarbed by it, at, for inslepee, In the completely inequileteral tringle; on the other band, another Eboaght which still admits of aymmetry, may be inoculatod into the fandemental thought, which may be seen, among other instancese, in the maneetes triangle.
16. After this glance into the iden of the beantiful, $\infty 0$ far an it can be ancioped by the coatemplation of the mont aimple forms, it will be mocumary to retara onoe more to the circle, and to represent ita propers the is expmasions which most nearly point to the idea of the meme ; in thin menner we carry our oxample as neur ss it is in our power to that which censel be expremod. If we firt procesd from the centre, wo obtera the most perfect representation, on a plane, of an expreation of eetivity temding towards all niden, and checked in no direction. If wo parsea a poist which pases along the circumference, we see an infinite esement in an infinite change. If we view the relation between its inward and oetwand condition, we find that its contents are greater that, whith machagged extent of boundary, could poseibly axiat in aky other form. If we regard the dovelopment of the thought, we have an inward symmetry with the modt entire abvence of all oppositer. It appeare in mech onenese, so defined, with such completencue and inward harmony, that it represente to as a lithe deflaite world, an image of the world, so for ast thin can be given on a plese, and with anch simple measa; we might eny that it if the moot elecrentary imege of the wortd. The secienta jnotiy called it the mont perfect of all figares (on a plane aurface, 4 comers).
if we cempare the circle, an it eppeers amidat the nnion of the force: α the world, with the hisher developed forme of beanty, then it remsins thint; bat if, as is requirito, we koep thought apart from all thit variety, and permit the circle to dwell in the region of thought which we have emperated for the beseat of our firt contempletion, our viewt will find moent.
17. Nature frequently prodnces the same forme as those which have been frumed by our thoughta. In cryutalt, nature exbibits those forma miat are boanded by lipen and plames; the circle is diaplayed in maves; the presbole in the fomotain ; the hyperbola in Chledai's scoustic figures, and wo on. In this manner we gelin moet, in nature, with what wat meated by our own thooght; what were thoughte within us, are, without me, inwi of astare. Wo become woat perfectly convinced of thin, hy a cofreseal contemplation of the whole of natural science. It is there ubown that the iame of nature are the laws of reason, that indeed the whole of nature is the revelation of eternal living reanon. \dagger

[^23]18. Natare, however, down not confise bernalf to tha production of mere mathematical former sbe adda far maore. How this happeas, and how this acth, wo will consider in some of the inctances which appear to us nost eany of comprebension.
19. If we throw a atone into atill water, and follow with our eye the circle of waves which is produced, the impreasion at once teaches nas that we have not alone to do with mere cireles, but that these are exbibited to us in a concentric progreas of elovations and depresiona. We have not pasaive but moving forms bafore us. A clover investigation shows as that the portions move in their own circular path, or in vibratione, so that what meeta the oye is the result of innamerable inwerd movementa. The mame investigation alse shown that all these happen accordiag to univeral lawis of nature.
20. But to thin we mant add the eo-operation of the rest of nature with those effectery which are merely the consequesce of the expausion of movementa. It in a light, at it were, beaming in from the reat of nature. The brightnese in the expanse of water, the variety of light and shadow in the partions of the waves, the play of colour produced by the motion, give a life and completencas to the whole, which wan wanting in methematical figares. This variety, added to the original effect, mast not be compared with that with which an object is often arbitrarily adorned. It belonga to the connection of reason peouliar to nature, that there in a higher unity in an these effeets which vatare than comblaes.

The queation why all natare in not beautiful obtrades itself here, bat its answer must be postponed to the contiauation of the researches.
21. A atill greater variety arises from the mutanl cromings of the circles of the waves; where elevated circles of waves oross each other, a greater alovation in produced; and where depressed circlem mest, a greater depreasion ensuen; but where depreasion enconntery elovation, a belance is perceived. These may often plesce us by a great variety, When, neverthelew, the arrangement is imperceptible. W. Webber bias given an experiment in which a remarkable variety springe from one thought. An elliptical bowl is flled with quickeidver, and a anoceution of drope of quickiliver are allowed to fall into one of the foei, by which 2 succenaiou of circular waves are formed. Where these hit the sides, they are ropelled is such a masaer that each wave-rediun, after the repaltion, reocives a direction towards the other foons. Thut by the repalsion a new centre in produced in the warea, so that now the aurface is filled up with two perfectly aimilarly constituted ayatema of waves. By the intersection of these waven sow curven are formed, roplote with differencen, yet with the clear stamp of one lew. In this variety the anavoideble altoration of light and abadow bringa with it a new variety, no leat accordant with this law, and bearing the stamp of thought at strongif as the curven. A delineation certuinly gives an inatructive idea of this variety, bat get the sight of the ectivity iteolf is infinitely moro beantifal; for the motion, and the conrequent teshes of light, cannot be given by any delineation."

In noticing 'The Soul in Nature,' it would be unjust to withbold our full meed of commendation from its translators into English-the Misses Horner. With them it has been a labour of love-a homage to the memory of the philosopher "whose youthful freshness, and his almost childlike external demeapour," left an ineffaceable and grateful impression upon their minds. It was Oersted's "earnest wish that a true representation of his views of Nature should be presented to the English public;" and we doubt if he could have found any where a more fitting channel for the coaveyance of his views than the translation by the Mistea Horner.

The Theory, Formation, and Construction of British and Foreign Harbours. By Sir Joun Rennie, C.E. London: Weale.
The important national work of Sir John Rennie continues its astisfactory progress towards completion, and gives assurance that it will be one of the most valuable productions on this subject, and a permanent standard of reference by professional mea. This is one of that class of works which gives dignity and ornament to the professional library, and which is an indispensable and constant guide in studying important designs. It is something to enlist the practical experience of a man like Sir John Rennie, who has himself done so much in hydraulic engineering; but after all, it would more properly be said that this work brings before us the practical experience of all the great men who have distinguished themselver by promoting this branch of their art. The numbers now before us, which continue the detail of Ramegate Harbour, may be considered as much the authorship of Smeaton and of the elder Rennie as of Sir John; and it is a very valuable circumstance in a volume of
nal for 1822, rol 80, p. 488. One of the chice potata in proot of the above ts, thet we are able, by thoaght, to deduet from known ham of nature, others which are actually afin found by experiepet; and that if thil does not oecur, we geperally discover in

this nature that it is besed upon the reports emanatiag from the great men who have had the direction of the worke. In many cases we are left to conjecture, or to judge from natred results; and we do not ascertain the reasons on which particular operstions were based, the difficulties which had to be encountered, or the means which overcame them. Not so with these harbour worke, for we have laid before us the best and most authentic evidence, and thereby the volume acquires a peculiarly practical character, not necessarily to be found even in profeosional publications. We have been none the less impressed with this view in perusing the letter-press and examining the plates of the numbers now before us; and we are happy to add our testimony to that which is, we prerume, the common opinion of most of our readers, who are, no doubt, subscribers to the work.

1. Comptee et Dtpenose de la Construction du Chateau de Gailion, publite daprès les registres manuscrits des Trerories du Cardinal d'Amboise. Par A. Devilue. Paris. 1850. 4to. pp. 589.
2. Auszüge aus den Baurechnungen der St. Dictorskivche zu Xanten. Von Dr. A. C. Scholien. Berlin: Groplus. 1859. 8vo. pp. 95.
The intense interest which the medimval buildings have excited of late, has also started the momentous question, how it came that such huge edifices have sprung up, forest-like, over the whole of civilised Europe-edifices, whose number, extent, colossal proportions, technical execution and rich oruamentation, surpass anything we can produce now-a-days? It is marvellous to think what had been built, sculptured, and painted, from the twelfth to the sixteenth centuries, within the vast limits of European civilisation; so much so, that present time is not even capable of effecting its proper conservation or renovation. If we add to this forest of cathedrals, the other ecclegiastic buildings, huge convents, palaces of princes, and halls of the people, a host of castles (Ritter-Burgen), crowning almost every fine site in Europe; if we consider how complete and artistic most of the structures are; and if we take into account, on the other hand, how far inferior mechanical contrivances and means were then, compared with those of the present time: we must needs arrive at the conclusion, that there then existed applications of human power on a large scale, now superseded by the achievements of machinery.

These questions have been partially answered in the above works, which relate to the accounts of the construction of the Château of Gaillon, and the St. Victor's Church of Xanten on the Rhine. Such ancient documents clear up not only architecture and art, but also the whole social life of a period. The Comité Historique des Arts et Monuments, at Paria, has published at different periods several bulletins very rich in this respect, and the work of M. Deville, in particular, is issued with great typographical taste.

In Germany, the work of Dr. Scholten is the first of the kind, and it contains copious extrects from the archives of the Church of Xanten, comprising the building-accounts from the year 1356 down to 1555 , mostly in Latin. The work exhibits a moving panorama, as it were, of the progress of this splendid building during a period of two centuries; and we can follow with our mind all the greater or lesser accidents which now fostered, now impeded, the undertaking. We may follow here the blocks of stone from their native place near the Drachenfels, where the lord of the castle levied a tax on each corner-atone (Oirsteen); others, we perceive, were quarried on the LaachenSee, or in the mountains of the Ruhr.

A whole series of masters of the different arts and trades are here mentioned, amongst whom several masons (magister lapicida, archi-lapicida) from Cologne, of whom the last, Johannes Langenberg (1589), saw the Xanten Church brought to its completion. The annual stipend of this master consisted of eighteen gold guilders and one coat, besidea which he had in summer six, in winter four, stivers wages. Dr. Scholten makes some lengthened observations in alluding to the daring and confidence of the men of that period, who, with the most trifling means, ventured on such gigantic undertakings. It is certainly curious to see how scanty and precarious were the resources for carrying on these buildings. Estimates they made none, because, if they had done so, and compared them with their capital at command, not one of these many structurea of the middle ages would even now be completed. They went on building and constructing with such means as they could best
muatar at any time, and in many cacea bequeached to ponterity the duty of completing their works. Thes, generation aftergeneration gave its mite, and each and every one helped acoording to his means. One presents the workmater with a bed, $a \cdot$ coat, or some wheat; some journeymen contributed the thekee of a game of skittles (de ludi Kegelorum); and what is curioun, even the poorest did not exclude themselvee-" "de quadom pamporcula xilij den." In fact, the workmen themselves refunded with one hand part of that which they had just received with the other. It has hitherto also boen thought that much of the Labour at these medimeval structures was gratuitous. Of this wo find no trace in the erection of the Xanten Church; on the contrary, even the most trifling aid seems to have been requited -as, for instance, by refreshments given to the schoolboys for carrying alate out of a ahip moored in the Beck river. Other gratifications alao (probibialibus), as well as garments, were given at other times. As in these ages there were neither committees nor other official aurveyors, \& \% , the good people of Xanten. resorted to the expedient of calling a noted master mason from Cologne, to inspect the works. ("Item, dictus magister Gerardus binies deacendit de Colonia......ad visitandum opus et regendum, iij flor. curr. etc.") At avother time a master from Wesel wes called, who received one florin for his trouble. It need scarcely be observed that such notea, if compared with those of other countries at the same periods, would afford interesting data for statistics of art and social life. But a confusion in the currency obstructs, to a very great extent, any investigation; and even in the Xanten records, several sorts of coin are to be met with. The accounts, as we have stated, were kept mostly in Latin, but there occur, likewise, a number of German technical expreasions, many of them now obsolete, but interesting to the archaologist.

A Treatise on the Slide-Rule; with deseription of Lalanne's Glase Slide-Rule. By Rev. W. Erulotr, M.A. Loadon: Elliott and Sons, Strand. 1852.
This pamphlet is intended to give a more complete account of the general theory of the slide-rule, and a full explanation of the glass aliding-rute invented by M. Leon Lalanne, and manufactured by Elliott and Sons; with rules and examples to its practical spplication. The rule contains a vast number of scalen, and a great many "constant multipliers" or gaugepointe," which will greatly facilitate calculations when a knowledge of the use of this little instrument has once been thoroughly obtained.

The Machinery of the Nineteenth Century. Parts III. and IV. By G. D. Dempary, C.E. London: Atchlog and Co. 1858.
Tue four parts which are now in our hands give us the opportunity of ascertaining the extent to which Mr. Dempsey has redeemed his promise of giving a comprehenslve view of modern machinery. These parts include four steam-engines of various size and construction, a marine-engine, a locomotive-engine, a double-wheel lathe, a forge, a radial drilling-machine, a blastengine, a tubular crane, a a ash-bar machine, a brick and tile machine, a paper-cutting machine, two printing machines, s draining plough, a haymaking-machine, and well-boring tools.

This enumeration shows sufficient variety, and when it is considered the plates are of large size and full of details the utility of the work to the mechanical engineer can be sufficiently estimated.

Reymolds' Traveling Map of England, with all the Railwoys and Stations accurately laid down. Constructod from the Surveys of the Board of Ordnance, Railvay Companies, and other Authorities. London: Simpkin, Marshall, \& Co., and J. Reynolds. 1852.

In this age of almost universal locomotion, any help to solve the mysteries of Bradshaw will prove acceptable to the traveller who, profugus fato, is obliged to wander north, east, south, and west, upon devious railroads, before he can reach the place of destination. It was therefore, we conceive, a happy idea of the projectors of the 'Travelling Atlas,' to pubiish in a convenient form for the pocket, a companion to those blind railway guides which the public have hitherto had recourse to only. The new Railway Map of England is divided into thirty-one pertions, bound up together, and preceded by a general key map of the

Adngdom. In this form it is much superior for facillity of refereace to thoe broadsiden which Guide bookmakers will persist in edopting. It has aloo another peculinr advantage: the stathons on all the lines are indicated by marks which render the general appearance clear and simple.

The mape are drawn and engraved by Mr. Einslie in a very creditable manner,-distinct and bold. Not only are the railways constructed and in course of construction, and the main reade, easily discernible, but also the cross roads, county bounderies, poet end market towns.

EXPANSIVE ACTION OF STEAM.

Ar page 117 of Mr. Clark's interesting and useful work on 'Railway Machinery,' appears a table comparing the actual relative efficiency of steam working expansively in locomotive engines, with the possible maximum relative efficiency supposing the beck pressure and the clearance to be nothing, the latter quantity being calculated on the assumption that the steam expands according to Boyle's law-that is, that during the expansion the pressure varies inversely as the volume; and from this table it would appear that the actual relative efficiency of steam in locomotive engines, at high rates of expansion, falls very far short of the possible maximum.

Now this table exhibits the practical working of the locomotive in too unfavourable a light, as compared with a theoretieally perfect engine; for it is known, that neither steam nor any other gaseous substance can expand according to Boyle's law, unless it be supplied during the expansion with a sufficieut quansity of heat to maintain it at its original temperature. Should the steam or other gaeous body receive no supply of heat from without during its expansion, which is nearly the case when the expansion is rapid, a portion of its heat will disappear, bearing a certain known proportion to the work done by the expansion; and the pressure will diminish more rapidly than the density, according to a law which is approximately known. On these principles, I calculated a table which appeared in the 'Transactions of the Royal Society of Edinburgh,' Vol. XX. Part I, and from which 1 have extracted the values of the possible maximum relative efficiency corresponding to the rates of expansion in Mr. Clark's table.

The following table-in which the first column gives the period of admisaion in fractions of the stroke; the second, the actual relative efficiency of a given weight of steam, as calculated by Mr. Clark; the third, the true maximum poesible efficiency, with no back pressure or clearance; and the fourth, the erroneous value of that quantity computed by Boyle's law, ahows that the actual efficiency of ateam worked expansively in locomotives does not fall so far short of its maximum and theoretical amount as the assamption of Boyle's law of expansion would make it appear.

Perlod of Admistion, is Prectione of 8trolet.	Actual Belative Efteinncy of steam.	Mardmam poaible Reiative Emetracy, compated by	
		The actual lem of Expanaloz.	Boylen mam.
0.10	2.22	$2 \cdot 91$	3.80
0.125	$2 \cdot 15$	$2 \cdot 76$	$3 \cdot 08$
0.15	2.08	$2 \cdot 63$	$2 \cdot 90$
$0 \cdot 175$	$2 \cdot 02$	$2 \cdot 51$	$2 \cdot 73$
$0-20$	1.96	$2 \cdot 41$	$2 \cdot 60$
$0-25$	$1 \cdot 85$	$2 \cdot 24$	$2 \cdot 39$
0-30	$1 \cdot 75$	$2 \cdot 09$	$2 \cdot 20$
0.35	$1 \cdot 66$	1.96	2.05
0.40	$1 \cdot 58$	$1 \cdot 85$	1.92
$0 \cdot 45$	$1 \cdot 50$	$1 \cdot 73$	1.80
0.50	$1 \cdot 4$	$1 \cdot 65$	$1 \cdot 69$
0.35	$1 \cdot 38$	1.57	$1 \cdot 60$
$0 \cdot 60$	1-32	$1 \cdot 49$	$1 \cdot 51$
0.65	1-27	$1 \cdot 42$	$1 \cdot 43$
0.70	$1 \cdot 23$	$1 \cdot 35$	$1 \cdot 35$
0.75	$1 \cdot 18$	$1 \cdot 28$	$1 \cdot 28$
$1 \cdot 00$	1.00	1.00	1.00

W. J. Macevorn Rankine.

39, Newo Fincent-atrect, Glasgow, May $89 n d, 1862$.

AN ACCOUNT OF THE BILBERRY RESERVOIR, HOLMFIRTH, YORKSHIRE.

By James Larelis, C.E.
[Paper raud at the Royal Scottich Society of Arts, April 26th.]
It appears from the report of Captain Moodie, R.E., who, on the part of government, made the necessary inquiries into the cause of the bursting of this reservoir, and from the other evidence before the coroner's inqueat, that the embankment was originally 96 feet in height above the centre of the valley, 340 feet in length, 18 feet broad at the top, with an inner alope of 3 to 1 , and outer slope of 9 to 1 , having a puddle wall in the centre 16 feet thick at bottom, and 8 feet at top, and founded 9 feet below the natural surface, with an outlet sluice 67 feet below the top of the embankment, and placed at this level to supply Bilberry Mills, thus leaving about 25 feet of dead water in the reservoir. Embankments having such alopes and dimensions ought, if well constructed, and mubject to no unfair play, to be beyond doubt secure. The valley in which the reservoir atood consists of bods of millstone grit alternating with shale, and seems to be of a very pervious nature. There was a considerable spring under the puddle which had never been atopped or carried past, and on that acconnt the puddle was not well put in, being more alush than puddle; there were also several leaks in the bottom, and when the water rose above 44 feet there was a very heavy one, as thick as a man's arm. The escape of water by these leaks was sufficient for the supply of the mills, and it was found unnecessary to draw the sluices after the water had attained the height of 30 feet in the reservoir. A circular shaft, 12 feet diameter, called a waste-pit, placed in the inner face of the embankment, and about 60 feet from the top, brought up from the solid ground, with a tunnel leading from it through the embankment, was intended to carry off the waste water. A shuttle, or sluice was likewise placed at the bottom of the shaft, with an open cut leading into it, for the ordinary discharge. This shaft, which is similar to the wastepipe of a common cistern, although it affords $37 \frac{1}{t}$ feet of wasteweir is not much to be admired. Its area is reduced and divided into two by a gangway across it for access to the sluice, and it is thus liable to be stopped up by trees, \&c. being floated on to the top of it. Besidea, the fall of a body of water from a height of 59 feet, might damage the bottom of the shaft and sluice. It does not appenr, however, that this waste-pit ever had been of any nse, owing to the embankment having sunk 10 feet in the centre shortly after its completion, or 2 feet below the level of the waste-pit, thus rendering it quite inoperative.
Mr. Leeslie attributes the cause of burating to the water in the reservoir overtopping the embankment, and then running down the back slope in a great and constantly augmenting volume, carrying everything before it, when at length the puddle was left exposed, and eventually gave way. This supposition is borne out by the fact that the south end of the embankment-a portion of which is very much sunk-and where there were two large leaks, and the north end, where there was one leak, have both stood perfectly sound. The reservoir, as stated by Captain Moodie, had a drainage area of 1820 acres, and that he computes might yield, in the heavy fall of rain which occurred immediately before the burating of the embankment, 500 cubic feet a second. This is a large quantity, and may be correct; but Mr. Leslie never knew of more than half that amount run off a similar extent of surface in the same time in the neighbourhood of Edinburgh. The reservoir has been variously stated to cover from 7 to 11 acres, and to contain from $10,000,000$ to $11,000,000$ cubic feet, so that, even had it been empty, it would not contain more than six hours of such a flood as that spoken of.

The bursting of the reservoir has caused great fears of reservoir embankments in general, but it ought rather to give increased confidence in their etability, if properly constructed, and having sufficiently extensive waste-weirs, so as to make sure that the water shall never rise to a height at all approsching to the top. The embankment which was leaky had slipped, and was not by any means in good repute, yet had stood much more than it had been calculated ever to do by its originators, in having been twice actually orertopped before it gave way.

MODELS OF SHIPS AND BOATS IN THE GREAT EXHIBITION.

By Rev. C. G. Nrooway, Librarian to King's College.
[Abetract of is Paper read at the Society of Arts, April 20th.]
Ma. Nrconay's chief object in this "attempt to combine the peculiar characteristics of the most remarkable models of vessels in the Great Exhibition," waa to edvocate the importance of laying down the lines of vensels on scientific principles, and therefore with safe reaulta, instead of on the empiric and uncertain method at present almost universally pursued. On this point he observes, "no one can have apent hours, not to say days, in our shipbuilders' yards, in our docks and wateringpleces, or about our harbours, without having boen struck with the variety of conformations in the vessels which were around him; a little further inquiry would have satisfied him that not only every nation and every country, but every principal port of our own-might he not say, every builder of eminence-is distinguished by some pecoliarity; and that these peculiarities are not the result of abstract principles rigidly adhered to, but of nome inference from experience it would not perhaps be difficult to show." This he illustrated by a description of the method pursued by the American shipbuilders, who design their veseels from small models which are cut and carved until they accord with the notion of the builders; the model, made up of thin layers or strata, is then taken to pieces and the lines can be laid down on paper to a acale. These models are carefully preserved by the owners and builderg, and are from time to time, as experience suggests, improved upon and modified. The spare are propertioned according to no rule of universal eoceptance.

Mr. Nicolay's proposition was gtill further illustrated by a refereace to the extreordinary diversity of opinion that had prevailed as to the causes of the nuecess of the American Yacht, and to the curious resulte that had followed from that succoss, "so that a yacht at that time building by a leading firm, had, apparently without reference to her other lines, her bown altered to those of the Amerioc; or that when an experimental vessel did not quite answer, she was cut and lengthened, in either case altering completely the character and relation of the various curves forming the vessel's mould-a procese most atrongly commemorative of an amusement popular in our boyhood, and possibly, even yet, in which bizarre forms were formed by putting the nose of one face to the eyes of a second and the chin of a third."

Proceeding to the more immediate subject of his paper, Mr. Nicolay divided the models of the Great Exhibition into three classes:-1, those of the Indian seas; 2, the yacht models; 3, merchant and fishing vessels. Excluding those belonging to the navy and those of bosts, "a great similarity is observable among those of the first clase, constracted for swiftnees." Models of the Batille, the Cutch Categat, a pirate Prabu, a Bombay dinghee, and the Sincapore Sampan were shown as examples of this class. As illustrating the yachts, models were shown of the Nancy Dawsom, the Avenger, the Folante, and the Cynthia, but with regard to their merits a prudent silence was observed. In the third clase remarkable models were noticed by Sanderson, and Saunders, a Zetland fishing-boat, and a lugger by Twyman of Ramggate.
"The deduction from a cloee examination of the foregoing is that the peculiar characteristics of the eastern modes ig, breadth; of our yachta, depth; of our steamera, length; and that all want capacity. In our best modele, wherever they are to be found, the wave-line predominates; the points to be obtained are the combination of capacity and speed; and the success of our northern builders in their endeavours after this, have lately been so great as to ratify the conclusion that we have yet much to learn." With regard to the sails, Mr. Nicolay spoke as follows:-"That the relation of the sails of a vesoel to the wind has not been properly understood in this country, has been satisfactorily shown in the case of the Amerioa yaoht, in which two things were in this respect remarkable: 1 , that her sails were so apread that the passage of the wind over their surfaces when on a wind, was in a direction opposite to her course at a slight angle with the deck-i, e, rising towards the stern; and o, that when going free, from the rake of her masta, and specially the size and position of her fore stay-sail, if it is

[^24]so to be termed, all her sails were lifting sails, and thers the forward position of her foremast, which would otherewies be fatal to so fine a built vessel, was compensated for.".

Mr. Nicolay then detailed the result of his own attempt to combine the characteristics of the three divisions into which be had olnenified the modele of the Exhibition-namely, to take "from the eastern models their breadth of beam; from our own yachts their depth in the watar; from both their hollow fioor and clean entrance; from the schooner alluded to, the Margate bost, and the Batille a principal breadth, if not abaft, at leent amidships; from the eastern models the triangular form of the sails, affording a sharp entry to the wind, spreading well to the stern, and to obtain easy motion every way to reduce the number of curves on which the model was formed to the lowest possible limit-viz, two." These were shown in a diagram on a large scale giving longitudinal and crons sections of the veseel deaigned by Mr. Nicolay, as also a working model which had shown remarkably good qualities, having in fact fulfilled every thing that he had hoped from her.

THE MUSICAL INSTRUMENTS IN THE GREAT EXHIBITION.

By Rev. W. W. Cazalet, Saperintendent of the Royal Academy of Music.
 [Abstract of a Paper read at the Society of Arte, May 6th.]

Mr. Caraliger introduced the first part of his subjeot by a history of the Organ, as far as it may be gathered from the writings of the later homan, and the medisval authors. The first mention of an organ in England is in the tenth contury. This instrument wes, however, of a clamsy description; althongh it had only 400 pipes, it required twenty-aix bellows, which were worked by 76 men; the leys were 6 inches broed and the touch so hard that the performer was obliged to uno his fista. Separate keyboards appear to have bean introduced in the thirteenth century; while the pedale, the great characteristic of this instrument, were invented by a German nemed Bernhard in 1470. Reed stops first appear in the a000nat, in 1596, of an organ at Brealau, and the instrument was brought into the atate in which it is now commonly known by the invention of the awell in the early part of the last century, by an Englishman named Craig.

In the organs of the Exhibition the chief novelties were some new stops and mechanical methods of overcoming the preseure of the wind in instruments of large size.
Mesarn, Gray and Davison received a Council Medal for a new method of coupling, and for a stop between a flute ther and a reed, called the keraulophon.
Besides their Tuba mirabilis stop, Mescrs. Hill introduced a mode of ahifting the stops by means of keys, and a new valve for lightening the touch, as well as a method of conveying the air through the main framing of the instrument.
Mr. Willis, while adopting the pneumatic lever of Barker and of Ducroquet, has further improved on it by the invention of an exhausting valve, and by other modifications, by which means the touch of the organ, whatever its size, may be made almost as delicate as that of the pianoforte.

Certain novelties in a small organ in the Florentine department, by Messrs. Ducci, were spoken of as likely to lead to great improvemente and modifications in the ingtrument. These are the production of a complete ohromatic scale from one pipe, and a method of making a atop pipe produce the sound of one four times its length.
The pianoforte, the saccessor of the harpischord, appears to have been invented about the beginning of the eighteenth century, and to have been introduced into Engiand shortly after.
In speaking of the finger wind instrumenta, Mr. Cazalot gave at some length a highly interesting account of the early fute, and of the difficulties in its construction which caused it to be an instrument almost under ban. That it is so no longer is due to the perseverance and talent of M. Boehm of Munich, who, by the application of acoustical ecience to the form of the flute, and the position and shapes of the holea, has produced an instrument in which, says Mr. Cazalet, "perfoct equality of tone is for the first time combined with correct intonation."
We are so accustomed to think of music as a fine art only, as to neglect the very important relations which it bears to commerce and manufactures. To call attontion to these relstions
trat Mr: Casalet's object in the second division of his paper, and the following are some of the interesting statistics which his pesearehes have enabled him to present:-

The organ builders of England may be taken at 400 in number, and patting thair grose returns at 500l. per annum eacb, we have 900,000 . a-year in this branch alone. The materials used by them are pine, mahogany, tin, and lead.

The materials employed by the pianoforte-maker are oak, deal, pine, mahogany, and beech, besides fancy woods; bsize, felt, cloth, and leather, brass, steel, and iron. Of the two leading houses in this branch, the Mesars. Collard sell annually 1600 inatrumente, and the Messers. Broadwood 2300; which, at she very low average of 60 guineas, gives as the annual businees of these two firms only, about 950,000 . If the whole number of pianoforte-makers of London, about 200 , is talsen Into accounk, the annual return in this trade cannot be less than $1,000,000$. Violins, and instruments of that class are almost entirely imported, the prejudice being in favour of the foreign makera. The annual import duty on them is probably not less than 45,000l.

The cost of the wind instruments required for a regimental band, exclusive of drums and fifes, was said to be 2441 .; and as there are in all about 400 regimenta, the capital represented by tbese is nearly 100,000 .

The number of workmen employed by Messrs. Broadwood ond Messrs. Collard respectively, is 575 and 400; these are all more or Less skilled workmen, some of them to a very high degree. It is probable that the wages of the artisans employed in this trade do not amount to less than 500,0001 . per annum.

PERMANENT WAY OF RAILWAYS.

C. De Bezoue, of Arthur-street, Weat, engineer, for improvements in, and in the construction of, the permanent woay of railroays. -Patent dated February 7, 1851. [Reported in Newton's Lorndon Journal.]
This invention consists, firstly, in a mode or modes of constructing iron longitudinal bearers or sleepers, for more effectually supporting the rails of permanent ways. For this purpose, the longitudinal bearers are constructed according to the principles that commionly govern the construction of iron girders (in order to obtain as much strength as is practicable, without unnecessarily increasing the quantity of metal), by so cdisposing the metal, or disposing and combining the metals of which they are composed as best to resist the struins to which they are subjected, by reason of the inequalities of the ground or ballast-being chiefly tension at the lower portion or base, and compression at the upper portion. In accordance with this object, the bearers are made of such forms that the bases or hottoms shall be considerably stronger or (if wholly of castiron) have a greater transverse sectional area than the upper portions; in every case, the upper parts heing made of suitable forms to receive and support the descriptions of rails to be placed upon them.
Secondly the invention consists in the employment, with longitudinal bearers or sleepers, of transverse iron ties or bearera, in crose-section presenting an appearance like the letter T inverted-thus 1 ; no that the ends of any longitudinal pearers or sleepers, having flat bottoms, may rest upon the tie, which will assist in keeping the longitudinal sleepers steady, and prevent them from canting.
Thirdly, this invention consists in certain forms of railsmamely, an angular rail, made so as to fit against one side and on the top of the longitudinal bearers or sleepers constructed ecoording to the first part of the invention; and also a saddlerail, so formed that the interior or underside of the tread or working surface of the rail shall rest upon the upper part of a longitudinal bearer or sleeper, the sides or flaps of the rail being bent, either to a right angle with the bearing surface of the rail, or to such other angle as may be requisite to make the rail fit upon and be held more securely by the top of the bearer or aleeper on which it is placed; or, for this purpose, instead of bending each of the sides or flaps to the same angle, one side may be bent to one angle, and the other side to another or different angle.

Fig. 1 exhibits a trangverse section of the angular rall a, sup.
ported by the longitudinal bearer or aloeper b, to which it is connected by screw-bolts c, and nuts d. Fig. 2 is a trangverse section of one form of saddle-rail, secured upon a longitudinal sleeper b, by screw-bolts and nuts. Figs. 3 and 4 exhibit transverse sections of a saddle-rail of another shape, one side of which is formed suitably for fitting close to the inclined side of the aleeper; and, in the other side of the rail, at suitable intervals, are inserted set-screws e, the points of which bear against the opposite side of the sleeper. The sleepers shown at figs. 1 , and 2, which are wholly of cast-iron, consist of a single vertical web, terminating in a horizontal base-plate, and strengthened laterally by ribs f, g. The aleeper at fig, 3 is also made entirely of cast-iron, and is composed of two inclined webs b^{2}, united together at the top and terminating at the bottom in a horizontal base-plate. The sleeper represented in fig. 4, resembles, in transverse section, the letter \mathbf{y}, inverted; it is made of castiron, and is connected at the bottom by bolts or rivets to a plate h, of wrought-iron; and it is strengthened laterally by ribs f, g. If preferred, the sleeper shown at fig. S, may be cast without the horizontal portion between the joints i, j, and bolted or riveted to a plate of wrought-iron, like the sleeper at fig. 4. The transverse sectional form of the sleepers may be either as represented at figs. 1, 2, 3, and 4, or any other form which may be deemed best for the purpose, provided that they are constructed upon the principle before-mentioned-i.e., with the base stronger than the upper part.

The improved transverse tie or bearer is shown in side view at fig. 1, with a longitudinal sleeper resting upon it. In shape, transversely, it resembles an inverted T, and is cither made of wrought-iron by rolling, or else the ordinary T-iron is used for the purpose. In laying down the longitudinal bearers or sleepers, their ends are so placed as to rest upon the horizontal flanges of the transverse tie, and they are bulted together, provision being made for expansion and contraction by an enlargement in the proper direction of the holes through which the bolts pass.

The side and top of a longitudinal besrer, against which an angular rail fits, should be planed true to roceive it; and so, likewise, the upper surface of the webs, on which the saddlerails rest, should be planed, or otherwise made sufficiently true, to receive them; or a strip of lead or other metal, or other suitable material, may be intruduced between the web and the rail. The raile shown at figs. 1 , and 2 , are firmly connected to their bearers by bolts, which may be either gquare or round; but, in either case, the holes in which they are inserted should be a trifie wider than the bolts, in order to allow for expansion and contraction. Fig. 5 exhibits a saddle-rail applied to a wroughtiiron bearer made from an old worn-out rail of the ordinary shape. The original form of the upper portion of the old rail is as repremented by the dotted lines; and, when considerably worn avay, it is converted into a bearer for the saddle-rail, by planing or cutting, or rolling and planing or cutting, to the form shown by the full lines.

In laying down the improred permanent way, the longitudinal bearers and rails are so disposed, relatively to each other, that the junction of any two lengths of the latter may be midway, or at some intermediate distance, between the junctions of the former. If ordinary transverse wooden sleepers are preferred to be used instead of the transverse ties gbove described, the ends of the longitudinal bearers may be made to abut, either aquare or obliquely, against each other: the latter
method will tead to prevent the treanverse sleepers from tocking. In either case, the ends of the longitudinal bearern or sleepers are connected to the trannverse sleepers by bolts, with a washer above, and a triangular nut below, as practised on the Great Western Railway.

RAILWAY ENGINES, CARRIAGES, AND MACHINERY.

J. Buatris, of Lawn-place, South Lambeth, angineer, for im provements in the construction of railwayt, in loomotioc-engines and ather oarriages to be used thereon, and in the maohinery by which some of the imppouemente are effected-Patent dated October 9a, 1851.

Clatms.-1. A compound longitudinal bearer, and compound and other rails.
9. The construction of rails in parts, and the arrangementa of these parts in various modes specified.
3. A rail formed of three or more elementary parts.
4. An improved construction of chair.
5. A peculiar combination of longitudinal bearings with ordinary rails.
6. A mode of constructing and applying polnts and switchea.
7. The application and use of friction driving-wheols in loco-motive-engines. [The object of these wheels is to increase the speed of the locomotive: a fly-wheal being placed upon the axle of the first wheel, which turning an additional wheel in the same manner as two friction-wheels, the desired end is attained. The benefit to be derived from this improvement, in addition to the above, is a saving in the wear and tear of the engine.]
8. Certain additions to engines for promoting combustion. [An opening under the funnal of the engine is provided, and which runs through the length of the engine, communicating with a bell-shaped cavity under the fire-box, and through which the air passes.]
9. An apparatus for receiving and condenging part of the exhaust stenm, and for catching sparks.
10. An apparatus for intercepting and condensing steam from the exhanst-pipes.
11. The application of certain pneumatic apparatus to loco-motive-engines.
19. The use of additional fire-boxes. [Two fire-boxes, one on each side of the ordinary fire-box, are connected by a pipe paesing through the boiler.]
13. An apparatus for admitting air to the fire-bor and aghpan.
14. An improved piston. [Round the piston a leather packing is placed, and round which packing rings of india-rubber, or other suitable material, are coiled; and these, again, are bound with a fiexible band of steel.]
15. An improved slide-valve. [This improvement consists of a combination of steel and fibrous matter, the object of which is to regulate the pressure upon the slide-valve.]
16. A mode of constructing axles or journals.
17. An apparatus for lubricating the journals of axles.
18. Several improvements in wheels. [The principle directing these improvements is that of the combimation of several pieces of metal welded together.]
19. A mode of uniting and coupling carriages. [This is effected by means of a box being placed over the buffers of the reapective carrisges, and which prevents their separation on the breaking of the coupling-chains.]
20. An improved manufacture of wheel tyres. [This consists in two or more bands of metal placed concentrically, and, after being subjected to a white heat, welded together by means of steam-hammers.]
91. An improved arrangement of steam-hammers. [This consists in their being made to work either horizontally or vertically, and in the blow being directed npon a circular table, capable of being moved by means of a lever.]
22. An arrangement of sawing-machinery.

ORNAMENTAL SLRFACES.

W. A. Beddeli, of St. John'g-square, founder, and T. Gruen, of Trafalgar-square, for certain improvements in noulding, casting, grnamenting, and finishing surfaces.-Patent dated October 89 , 1851.

These improvements consist in coating, or covering, or overlaying, the surface or part of the surface of a metal frame ur
skeleton with glaeg porcelain, earthanvare, or metal, in ordar to produce a veined appearance, and in finishing the eatac by enamelling, or enamelling and glasing, so to produce m ornamental surface thereto.

Claim.-The several combinations of processes for moulding, casting, ornamenting, and finishing articles and surfaces.

The illustrations given by the patentees of their invention are as follows:-They recommend that on a metal plate, perforated with holes, should be laid a covering of porcelain, clay, or glass (either plain or coloured), when in a plastic state. The matorial employed always cracking when drying, the interstices should be filled up with coloured clay. This should be placed in a kiln to biscuit, and when taken out should be glased and left to dry (the edges of the metal having been previously scraped mooth). When dry it shonld be again inserted in the kiln and fused. The appearance of the plate on removal from the kiln will be that of earthenvare or porcelain inlaid with metal. The patentees racommend, that in order to unite the materials, s mixture of 8 parts of calcined flints, 6 parts of borax, 10 parts of calcined lead, and 4 parts of calcined glass, should be employed These, combined by means of gum and turpentine, may be laid on Fith a brugh, or the material employed in the invention may be immersed therein.

The method employed in the manufacture of tiles for floors and other ornaments is as follows:-The porcelain or glass being heated, is rolled out to the required thickness; and it may be stamped with the letters or ornaments required, by means of dockers prepared suitably for the purpose, and which may be either plain of representing designs, with their eurfaces either raised or lowered. The interstices being filled up with coloured clay, the whole is placed upon a wire-gauze or net, or metal plate, which is then backed up by inferior clay. The mase is then placed in the kiln to biscuit, and on its removal is glased. A very superior effect may be produced by gilding or colouring the several materials. When glass is employed it should always be in a soft or heated state.

This invention may be applied in the manufacture of shop fronts, gates, railings, and stataes, the last of which objects may be mede of the natural colour, with glass eyes, to cury out the ides.

Ornamental bricks may be made by laying ornaments made from glass or porcelain on the surface of a brick, and then filling the interstices of the surface with clay of a different colour from that employed in the ornamentation. Wrought-iron may be coated with cast-iron, or cast-iron may be coated with brase, and these objects may be thus attained. In the former case the metal must be heated to a white heat, and then placed in a solation of bismuth, antimony, and muriatic acid, after which it is turned into the mould, such mould being in a hested state. In the latter instance the surface of the metal to be coated is to be inserted in dilute acid, and then immersed while in a white heat in a solution of tin; biamuth, and acid, after Fhich the coating metal is poured on. This method may be applied to the manufacture of cannon.

PUNCHING AND RIVETING MACHINERY.

M. Bootr, of John-street, Adelphi, civil engineer, for tmprovements in punching, riveting, bonding, and shearing metals, and in building and constructing ship and vessels.-Patent dated October 30, 1851.

Claims.-1. Certain improvements in machinery for panching, riveting, bending, and shearing metals; 9 . A method of constructing ships or vessels with two speces of metals distant from each other; S. A mode of fixing wood sheathing to iron ships or vessels; 4. A mode of connecting platen in building bosts, thipe, and other articles; 5. A mode of constructing masts for ships and vessels; 6. A mode of constructing shipe and ressals to carry cargo in bulk, such as coals.

The epecification, in the first place, relates to machine on the principle of the hydrostatic press, employed for the purpose of punching metals. This machine is furnished with spring, to which the punch is attached, and which eervea to restore it to its origina position after a mtroke has been made, and at the same time to force out the water employed in producing the stroke. For the purpose of carrying ofr waste water a slide is employed, pierced through its width to allow the rush of water, by which the stroke is accelerated, towards the die; and also pierced throughout its length, and curved at the end,
in order to meet the pasasge from the cylinder. To prevent the alide being forced out of its place, which would be the ease if worked by hand, the waste watar is employed, and for this purpose the alide is fursished with a packing band in two plecee, which is forced to act an a piston by the water alternately entering and leaving the intermediate spaces, and which it is made to do by means of two pipes regulated by a etopcock. This machine may be applied in riveting and shearing metala, by furnishing it with appropriate instruments. The presture employed should alwaye be 1000 lb . to the square inch. The epecification also contains an arrangement for increasing the effect produced by a moderate fall of water. This is accomplished by piacing an upright pillar or tank of water, and connecting with it a cylinder or cylinders by means of a pipe. The water flowing from the tank into the cylinders causes their pistons (which are all connected by one shaft) to act simultaneously, the power from which is transferred to a ram working in another cylinder, which cylinder is filled with water, by -hich meana a pressure is acquired that may be applied in the working of machinery above described. Also a method of bendling and corrugating iron and other metals into any required chape A metal plate ia provided, which is placed upon a die in a cylinder upon a metal floor, and a mould of the required form, pierced occasionally with small holes to allow of the eacape of the air, is placed over this, and the whole is bound together with strong bolts. The water is then pumped in from below, which forces the metal into the desired shape.

Scoond.-A mode of constructing ships or vessels with two thicknenses of metal at a distance from each other. Two sheets of metal, the one straight, the other bent, are fastened together by means of bolta; they are then pressed into the required whape. To preserve the metal from oxidation and consequent loss owing to the damage of so large a space, it should be saturated with bitumen, and the immediate spaces filled with cocosmut fibre steeped in bitumen, to render it water-tight.

Third-The fixing wood sheathing to iron ships or vessele. When the ship is composed of two sheets of metal, a hollow rivet is employed as a connection. The sheathing is then attached by means of bolts or nails driven into a plug of wood inserted in the hollow of the rivet. The same method of sheathing is employed when the sides of the vessels are single, but, instead of hollow rivets, tubes are inserted, and plugs of wood driven therein.
Fourth-The joining plates employed in building ships and other articles. The edges of the plates are bent backwards from each other, and a gutter-shaped piece of matal is then threaded over their edges; the whole is then compressed with great force between two friction rollers rotating in similar firections, and by these means a secure joint is produced.
Fifth.-The construction of masts for ships and vessels by means of two concentric tubes composed of metal plates fastened together by rivets. The interstices between these tubes are then filled up with cocos-nut fibre saturated with bitumen or asphalte.

Sirth.-The construction of veseols carrying cargo in bulk, as coals with two wells, the one forward, the other aft, connected by a tunnel, such tunnel being furnished with a tramway, and doors at the sides and above, for the purpose of facilitating the removal of the cargo. On each side of the tunnel is a raised or false floor, the space between which and the bottom of the vessel may be filled with water for ballast. The benefits to be derived from this interior arrangement are, first, the false floor being riveted to the vessel in the manner hereinbefore deacribed, a greater degree of atrength is attained; and secondly, the labour employed in raising the cargo will be diminibed owing to the height being lessened.

BRICKS, TILES, AND KILNS.

R. Beswics, of Tunstall, Stafford, builder, for certain improvements in the making or manufacturing bricke and tiles, or guarries, and in constructing ovens or kilns for burning or firing bricks, tiles, and quarries, and other articlos of pottery and earthen-wars.-Patent dated November 4, 1851.

The first object is the manufacture of bricks, tiles, and quarries with certain materials; the second object, the constructing kilns or ovens in such a manner as to diffuse the heat, and also to prevent the passage of heat and flame from it.

Claim.-A peculiar combination of materials for the making of bricks and tiles, or quarries; also certain peculiarly-shaped
bricka, called capa, and solid-angled bricks, and the nae of them in constructing ovens or kilns for burning or firing bricks, tiles, quarries, and other articles of pottery and earthenware. Purther, constructing the walls of the fues and compartments of ovens or kilns for burning or firing bricke, tiles, quarries, and other articles of pottery and earthenware.
Equal parts, by weight, of pounded seggars, ${ }^{*}$ red marl, and fire-marl, are mixed together with water, and reduced to the required consistency for manufacturing the bricks and tiles, or quarries, the latter being fired to a greater degree of heat than they will be ever subjected to.
In constracting the walls of the flues and compartments of ovens or kilns for burning or firing articles of pottery and earthenware, the bricks, it inches in width and 8 inches in thicknees, are set on end and rabbeted at their edges. A groove is rade in the side of the brick, running the whole length. The cement in which they are bodded is prensed into theee grooves, which prevents as much as possible the passage of flame or heat through the walls. The wall being of alight construction are strengthened by bridging bricks, 18 inches apart. "Cap" bricks are used for the upper course, so as to prevent the cracking and wearing away of the bricks; at the corners of the flues ${ }^{\text {a }}$ solid-angled ${ }^{4}$ bricke are used. The bottom of the floors in covered with two layers of quarries, $1 \frac{1}{2}$ inch in thickness each; these are laid upon fire-bricks placed 18 inches above the ground, and at certain distances apart. The cement is composed of equal parta, by weight, of, lst, common sand, or pounded grit that is used for placing groenware in the kilna, -2nd, eand that has been used for placing green-ware, -and Srd, red and fire marl, mixed with water to the consistency required for building.
*The cyllodrieal cese of firmeley in whlch foe atowewre is beloeed while belac balced in the itia.

STEAM-BOILERS AND PROPBLLING.

W. Thomas, of Exeter, engineer, for cortain improvements in the construction of apparatus for economising fuel and in the generation of steam, and in machinery for propelling on land or roater.-Patent dated November 6, 1851.

The invention consists, firstly, of a steam-boiler of peculiar eonstruction, having tubes of a gyphon-like shape in the interior, which are employed to effect the deaired object. The air being admitted into the boiler by means of a pipe at the side, and heated by contact with the fire-box, passes through the bent tubes towards the funnel, the damper of which being closed the air is prevented passing out, and is forced by a draft proceeding from a pipe parallel with the funnel into a tube leading to the fire-box: the principle involved in this invention being the increase of heat in the boiler, by means of the heated air pasaing through the tubes, and the increase in the supply of air to the fire-box. As regards the economy in the generation of steam, this is effected by a pipe leading from the cylinder of the steamengine to the cistern of feed-water; through this pipe the wante steam passes into the cistern, and by this means the temperature of the water therein is considerably heightened.

Secondly, the application of fly-wheels to the wheels of locomotives, to paddle-wheels, and screw-propeller shafts, in order to increase their accelerating force, by taking advantage of the oentrifugal force generated by the revolution of the said wheels. The novelty of these fly-wheels consists in their being rather heavily weighted, and attached to the driving and other wheels or locomotives, either inside or outside of the framing, and to paddle-wheels either inside or outside of the wheel, or at the centre of the wheel when divided floats are used, and in a cuntrol being afforded over these weights whereby the power may be regulated. The meane by which this is to be effected is by removing the weight nearer to the boss of the wheel, the consequence of which will be the limitation of the accalerating force.

STEAM-BOILERS AND PROPELLING.

G. Mrles, of Southampton, engineer, for improvemente in steam-engine boilers, and in steam-propelling machinery.-Patent dated November 28, 1851.
Claims.-1. The employment in steam-boilers of flat-sided flues, having indentations or corrugations running therdin, touching and abutting against one another on the protuberant sides, and forming water spaces in the hollow sides, \&n An
improved arrangement of acrew-propelling machinery, being a peculiar arrangement of certain known machinery. 3. The application of ahambers to phetons.

Firstly. The invention consists in obtaining a greater amount of beating gurface in marine boilers, with increased atrength and durability. Indentations or corrugations are made in the tube of boilers in such a manner that the indentation on one side shall touch or abut the one on the other side, as at B. Two advantages are thereby gained, the abutting of the sides forms astay, and gives thereby increased atrength to the tubes; and by the indentations being arranged side by side, water spaces are formed, which running in a reverse direction to the tubes, increase the evaporation. The tubes are overlapped at the top, and riveted as shown at A, or a circular piece is introduced at the top and riveted at the sides as at C, or common angle-iron may be used.

Secondly. The invention consists in arranging the cylinders of engines horizontally, and, to secure uniformity of motion, etting them at right angles to each other. The motion is transmitted by a vertical crank-shaft with a single crank, through a bevil or pinion to the ecrew-propeller shaft, causing great apeed with comparatively a disproportionate loss of power. This portion of the invention is adapted for war steamers.

THE MANUFACTURE OF RED OR AMORPHOUS PHOSPHORUS.

By Dr. Grorge Wilson, F.R.S.E.

[Paper read at the Royal Seottish Society of Arts, April 26th.]
Dr. Wilson commenced by stating that phosphorus had been manufactured in Europe for at leant two centuries, but only on the small scale and as an object of curiosity, till within the last twenty-five or thirty years, when tbe introduction of the lucifer-match led to a prodigious increase in tbe quantity of phosphorus manufactured, as it entered into the composition of almost sll the varieties of instantaneous lights; and in illustration of this it was mentioned, that a single English lucifer-match maker employed nearly five hundred persons, and manufactured more than two thousand millions of matches yearly. The simplest lucifer-match consists of a splinter of wood dipped into melted phosphorus, and then covered with gum or glue. More frequently phosphorus is associated with chlorste or nitrate of potass, and with sulphur or sulphuret of antimony. The employment of such materials necessarily renders the manufacture a very hazardous one, from the risk of fire, and in certain of the Continental states the preparation of lncifer-matches has been absolutely prohibited. Another and guite unexpeoted hazard was soon found to attend their manufacture. The workpeople were attacked by a very painful and often fatal disease of the jawhones, which became carious, occasioning in many cases death, in several loss of the upper or under jaw, or other severe mutilation and disfigurement, and always much suffering. The German surgeons, who have paid great attention to this distressing disease, refer it to the absorption of the vapour of phosphorus, given off chiefly during the drying of the matches, but likewise at otber stages of the manufacture. Phosphorus, also, is well known to act as i poison when swallowed in the solid form, and as it occurs in this condition in lucifer-matches, fatal accidents have more than once occurred from children sucking them.

The red or amorphous phosphorus is much less combustible than ordinary phosphorus, and not at all poisonous. To prepare the new substance, ordinary phosphorus is melted in a peculiarly constructed retort, and kept for some hours at a temperature of about $500^{\circ} \mathrm{Fah}$. A very singular change is the result of this heating, during which the phosphorus combines with caloric, and renders it latent, but does not otherwise undergo any chemical alteration. The original phosphorus is a pale yellow or white transparent body, so combustible that it must be kept under cold water, and when brought into the air grows luminous even at the freezing point, and enters into full Blace at a temperature of about 150° Fah. By the prolonged
heating it becomes a soft opaque mase, which is easily pulverimed, and then forms an uncrystalline powder of a scarlet, crimson, purple-brown, or brown-black colour, so incombustible that it may be exposed in summer in the open air, and handled with impunity; nor does it grow laminous till it is about to enter into full combustion at the temperature of 492° Fah. It is further so harmless to living creatures, that more than a hundred grains have been given to dogs without doing tbem any injary. Although, in its free state, it is sparingly combustible, yot, when it is mixed with the ordinary ingredients of lacifermatches, such as sulphur or sulphuret of antimony and chlorate of potass, it kindles readily. In proof of this, matches made Fith amorphous pbosphorus were shown to ignite as easily an those made with ordinary phosphorus; and it was stated that they would soon be manufactured on the large scale, and sold, it was believed, as cheaply as the common matches.

Dr. Wilson then stated that he thought the community were indebted to the Mesgrs. J. and E. Sturge, of Birmingham, for the attempt which they were now making on a large scale to introduce the new phosphorus, which had the following advantages over the old:-1. It involved much less risk of destruction of life and property by fire; \&. It was more suitable for matches intended for warm climates; 3. It was not poisonous in the solid form, so that matches made with it would be comparatively harmleas if sucked or chewed; 4. It gave off no vapour at ordinary temperatures, so that it could not occasion disease in the match-makers. It therefore seemed alike the interest and the duty of the public to encourage, by purchasing them, the manufacture of lucifer-matches made with the new phosphoras. Drawings of the retorts employed by the Mesers. Sturge, and apecimens of the red or amorphous phosphoras, were exhibited to the meeting.

Dr. Wilson added that, considering how large an amount of phosphorus entered into the composition of our bodien, and those of other animals, he thought it probable that the amorphous phosphorus would prove a valuable medicine; and he had already ascertained that it would be of great use to scientific chemists in preparing compounds-such, for example, as phoephorus acid, hydrobromic and hydriodic acids, and the like.

ON COPPER ORES, AND THE RECOVERY OF SULPHUR FROM ALKALI WASTE. By Mr. Lonaxaid.

[Paper read at the Society of Artr, April 29th.]
Ma. Longmard stated that in a former paper he had briefly described the circumstances which led to the discovery, that when common salt and minerals containing silver, copper, iron, and sulphur are mixed together, and exposed to the combined action of heat and atmospheric air, mutual decomposition ensues, with formation of sulphate of soda and chloride of silver and copper, soluble in the alkaline solution thereof. In the present paper, he showed that every description of ore containing silver and copper might be treated with great advantage by various modifications of these processes, and the silver and copper economically obtained. The waste of sulphur destroyed in the copper works of Great Britain alone, at an enormous cost of labour and coal, was stated to be from 60,000 to 70,000 tous annuslly. From this, the original idea was to manufacture sulphate and carbonate of soda. Taking the metals as incidental products in the original process, objections had arisen to its application to ores rich in copper. These were now obviated; and the period was confidently looked forward to when it would be applicable to copper ores generally. The chief points adduced by Mr: Longmaid were, the complete separation of silver and copper, and aleo lead, when these metals exist in the ore; and the great economy of the process whereby the sulphur is rendered available for the manufacture of alkali. His late patent refers to the application of the process to ores rich in copper and silver; ores containing about 25 yer cent. of sulphur, and from 5 to 10 per cent of copper, are mixed in such proportion that 39 parts of sulphur by weight are added to 100 parts of common salt. The mixture is ground sufficiently fine to pass through a ten-hole sieve, the material is then calcined in a furnace of four or five beds, commencing at that farthest from the fire, and gradually being advanced by atagea to a greater heat; the oharge is finished at tbe bed nearest the fire; the calcined mass, which in called sulphate ash, is con-
vojed to multable vata, in which the soluble portions are ditcolved, and consist of sulphate of sode and chlorides of silver and copper.

In the rude proces of smelting copper ores as at present pactised, the sulphur of the ore is not only wasted, but a conaderable degree of fuel and labour is employed to destroy this valuable product. The great objection which has hitherto retarded the introduction of these processes into the copperemelting works arose from a variety of causes. It could only be used practically on a very large scale; the copper-smelters were vedded to a practice by which they had realised such enormous profits, they regarded with distrust schemes which they did not underntand, and they had a foolish prejudice against becoming alkali manufacturers: neither could the ordianry copper-works be roadily converted into furnacea and apparatus for the patent processes; but the astounding fact that the eavelters are deatroying property to an extent of 50 per cent. on the value of the ore in their present operations, must nooner or later force theee improvements into general use.

PREVENTION OF ACCIDENTS IN COAL MINES.

Sre-Public attention having been fearfully directed, lately, to the want of means for protecting the lives of coal miners, probably some effective measures will shortly be adopted for their security. So long, however, as the "goafs" are permitted to be filled with carburetted hydrogen gas, no available system of ventilation can insure safety; for a sudden fall of the barometer will quickly fill the passagea of the best ventilated mines with an explosive mixture of the carburetted hydrogen and atnoospheric air. It occurs to me that a very easy and effectual means of, at least, diminishing the present danger would be to explode simultaneously, by voltaic electricity, small cartridges of gunpowdor in the fiery parts of a mine, before the men go to work. A single wire, laid down from the pit's mouth to the wortings, and a small voltaic battery, would be adequate for the purpose, and the cartridges might be placed ready over night. This would, at all evente, prevent the danger that is so freguently fatal arising from the mine passages being filled with firedamp during the night, which explodes when the first candle is exposed.
Even the reservoirs of gas in the goafs might be dispersed by similar means, if a plan were adopted for introducing atmospheric air till the hydrogen attained the explosive point.

I am, \&cc.
Hamprtead, May 17ih, 1859.
F.C. Bageterin

STATE OF TRADE.

Tes demand for iron has slightly increased, and prices of mome desariptions have proportionately advanced. In the rail department the quotations are now 10s. advanced, and contracts hare been concluded on those terms. Further heavy orders are also in the market, and more it is known will shortly be forthcoming; indeed, there appears every probability of a full and teady employment for our rail mills for a considerable period, from the requirements of proposed railways in India, in Americh, and upin the continent, with the few that remain to be carried out at home, some of them already in construction, and others engaging much public attention. In general descriptions of iron ordera have been coming in more freely, and at some works they have accumulated to the extent of full six monthe work on hand. Quotations are in consequence creeping up a listle towards the nominal prices, and some parties are so sanguine as to hope that there may be grounds for a move in the night direction before the end of the quarter. From Walen and Glagow the accounts are more satisfactory. In pigs there is little doing, and these, according to make, exhibit the same raiation in price which they did at quarter-day. Whatever may have been said respecting the depressed condition of the iron trade in South Staffordshire-and that it has been under a ctood daring the winter months no one gainsays-it appears to be suficiently prosperous to allure masters to the erection of new works. Generally the workpeople of the iron diatricts are employed, while fresh furnaces are about to be put in blast.
Another advantage is promised by the iron trade of South Beaffordshize. Now the manufacture is in a condition so low as to require the exercise of economy in every direction, it is annonnced that the woll-known limestone raised by the Minera

Company in Waleg, in about to be introduced on a very large scale. That such a mineral can be conveyed 70 milea by rifiway, and sold in South Stafordshire at prices which, independently of quality, enable it to compete with that produced on the spot, speaks well for the enterprise of $\mathbf{M r}$. Owen, of Bilston. Formerly this gentleman was in the habit of bringing into the district large quantities of the Derbyshire limestone; but in consequence of differences which have sprung up with the MidIand and South Staffordahire Railway Companiee in the matter of "long weight" the district of South Staffordshire is likely to be provided with a better article than that with which it has hitherto been supplied.

The orders received from North and South America by the last packeta are encouraging. Those from the United Stater more particularly exhibit an interesting demand for Birmingham manufactures, and remittances continue to be highly satiofactory. There is an unusual demand for brass bedsteadsnow a most important branch of Birmingham manufacture-for South America and the West India colonies. New and extengive works, devoted to the make of this description of articles, have recently been erected in Birmingham, and they, together with the old ones, are now in active operation. The increase in the exportation of brass bedsteads within the last two years has, indeed, surprised the most sanguine of their inventors and manufacturers.

Some of our factors continue to complain of the dullness of the home trade-and this they do in the best of times-but, taking the entire trades of the town together, their condition may be described as prosperous. Those most depressed are those most subjected to the fickleness'of fashion, and the fancy businese; but for the heavier descriptions of useful goods the demand for the home market, leaving the foreign trade out of consideration, is extremely good. Every day, if old makes are going out, new and improved inventions are succeeding them, and designers and manufacturers kept thus actively at work. It is not so, however, with the gilt button trade, which appears to be hopelessly depressed. Every attempt to resuscitate this once flourishing manufacture has failed, and, were it not for the foreign demand, it would be almost extinct. The pearl button trade is also drooping, and there does not appear much probsbility of its revival.

But, if these old branches of Birmingham manufacture are apon the wane, there are others of more importance to the community upon the advance. Those manufactures the prosperity of which denote with the greatent force the activity of an infinity of other businesses are at the present time well employed. In the Soho works, several steam-engines are in course of construction, and the works of Messre. Fox and Henderson, at Smethwick, are in foll operation. The Crown and Plate Glass Works, at Spon-lane and Smethwick, are unusually busy, denoting, as these eatablishnaents do, great activity in the building trade, not in this town and neighbourhood only, but of the country generally.

The Recently-discovered Iron Dietrict of Cleoeland, Yorkekire.In a paper recently read at the Royal Scottish Society of Arta, Mr. Campbell presented some remarkable epecimens of the ironstone which he had got in the north of England, while engaged in the improvements of the River Tees. The beds lie nearly level in this mountain of ironstone, varying in thicknese from 12 feet to no less than 20 feet. The most remarkable feature is, that the ore is got by open quarrying; and it is eatimated that $10,000,000$ tons may yet be got with the same facility. T'wo furnaces were in blast when Mr. Campbell left the district, and more are in progress. There is no limestone or coal got in the district, though geologists consider that these may yet be reached. The operations were commenced in April 1851, and the traffic of ironatone, up the Stockton Darlington Railway, has since been at the rate of $\$ 00,000$ tons per annum. Ironstone has been found in Northamptonshire; and, as the future supply of iron ore is at present attracting much attention, the paper concluded with a geological account of the district where this curious ironstone has been so unexpectedly found, which was illustrated by geological and other maps, The Chairman requested Mr. Campbell, as he has busineas in the district, to communicate to the Society the results of farther experience in the smelting process of this ore, and also an analysis of it, and more minute details of the geology of the Cleveland Hills, where this ore is found.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

> May 3.-C. R. Coomenemin, V.P., in the Chair.

At the Annual General Meeting, held on the above date, the report of the Conncil to the annual general meeting was read and adopted, with the innertion of the following memorial to her Majesty, npon the state of the royal tombs in Weatminater Abbey :-

To the Quezn's Most Bxomllent Majegtt.

The Humble Memorial of the Royal Inatitute of British Architecte.

* May it plens your Majeaty-The Royal Inatitnte of British Architects, who are honoured by the patronage of your Mojesty and of H. R. Highneas Prince Albert, having had their attention called to the dilapidated and perishing condition of several of the Tombs of your Majesty royal predecestors in Westminater Abbey, have, with the special permission of the Subdean and Chapter, examined carefally theae memorials of an iftuatrions line of monarchs, and have found many of them in a state of mutilation and decay, threatening deatruction within a few yeara, and derogatory to the memory of sovereigns whose names and deeds are, juatly dear to the English nation.
"A Seleot Committee of the Honse of Commons on National Mone. ments in a Report, dated the 16th of June, 1841, expromed their opinion that increased attention ahould be paid to the preservation of thoue Royal Monuments ; and the Mombers of the Royal Inatitute of British Arehitecte are atrongly impressed with the conviction that anleas means be immediately taken, some of these precious and most valuable records of the pant history of the kinge and queens, and of the arts of this country at perioda now imperfectly known, will ere long be irrecoverably lout.
${ }^{46}$ The Institute, therofore, hambly and earnestly pray that your Majenty will be gracionsly pleased to direct inquiry to be made into the condition of the Royal Monuments in Westminster Abbey, and to order soch steps to bo taken as, in your Majeaty's judgment, may be beat calcainted to preserve and wortbily perpetuate these venerable and deeply interesting memorials of past sovereigna."
A letter was read, addreased to Karl de Grey, President, from the Hon, Col. Phipps, conveying to his Lordship, by commind of the Queen, the catire approbation of her Majeaty and H.R.H. the Prince, of the award of the Royal Gold Medai to the Chevalier Leo von Kleaze. A letter was also read from the Chevalier Leo von Klenze, acknowledging the honour which had been conferred on him by the award of the Royal Gold Medal.

Special Votes of Thanks were then pased for the services of the President, Vice-Prenidents, Members of Council, and the otber Office-bearorn, daring the past year; and the following Office-bearers were olected for the onaning year:-

President: Barl de Grey_-Fice-Prenidente: T. L. Donaldson, W. S. Inmen, D. Mocatta-Honcrary Secreterien: J. J. Scolea, C. C. Nelson.Honorary Socretary for Foreign Correppondence: T. L. Dosaldion.Homorary Solicilor: W. L. Dobaldeon_Ordinary Mambers of Cowncil: J. B. Buaning, T. T. Bary, G. Godwin, R. Hasketh, J. Jenninga, J. T. Knowles, B. W. Mylne, J, W. Papworth, H. Roberth E. Woodtborpe.Troasurer: Sir W. B. Farquhar, Bart.-Auditors: J. H. Good, jna., James Fergusson.

INSTITUTION OF CIVIL ENGINEERS.

May 4.-Jazes M. Rexpen, Eaq., Preadent, in the Chair.
The conclinsion of Capt. Huisa's paper on "Rallway \&ecidents" wat rond. The author stated that the electric telograph had greatly facilitated working under variable circumstancea, and so beneficial had itt effecte been, that during the year 1851 , out of $7,900,000$ pawengera, or nearly one-third of the population of England, who had travelled over the Loadon and North-Weatern Railway, only one individual bad met with hia death (from which casualty the author aloo suffored), and this was the effect of the graveat disobedience of ordors. In the aix month during which the Exhibition was open, 775,000 pertons were conveyed by excuraion traina alone, in 24,000 extra carriages, all centering in a single focus, arriving at irregalar honrt, and in almost unlimited numbers, from more than thirty railways, withont the most trifing casualty, or even interruption to the ordinery extenaive basiness of that line.

The anthor thought andue importance had been attacbed to tbe question of irregularity in the timee of the trains, as an easentinl element of anfety, for with perfect signaln, and a well-disciplined staff, no amount of irregularity sbould lead to danger; bat, on the contrary, it sbould, to a certain extent, by its very uncertainty, induce increased vigilance, and therefore greater afety. Accidente very rarely bappened from foreseen circumetances, but generally from a imultaneous conjunction of several cansen, and each of these was prosided for as it arose. The atatistics of rallwaya, and the periodical pablication of the goverament retard, drew pablic attention; very pointedly, to the aggregate of accidenta; bat it was believed, that if due regerd was had to comparative, renults, if the accidesta to stoamers, or in mines, to omnibus panseggert, or even to
padentriars, wert at carefully recorded, that then, whother an rugriad the oaso and celerity of tranit, or the facility of conveyiag unombers, the railway syatem, aven in its present atate, would be foond to be isoeme parably gafer than any other aytem in the previon or preaent himeny of locomotion.

A discustion then arose on the above paper, and on that by Mri; Braithwaito Poole, on the "Economy of Railocys," and was contioved throughout the evening. The priocipal point in the working of milw traffic were carefully discused, and the modifcations, which bed been ty degrees introduced, were noticed. The aecesuity for a certain amorant of uaiformity of construction of the rolling stock, as far as secorderact besween the centres of the buffers of all earriages litely to be brougt togeher to make up the traina, was admitted; hat ay attempt to enfores. complete nuiformity wat atrongly deprecaled. The proponition feve dixiding the railway kiggdom foto four parts, asd sangamating the rolling ileok for each diviaion, was contended to bo imprectioable ay impolitia.

The question an to the prodence of railway companiet beeomine mapufacturert of anginet and carriages, and even as was ones contrinplated by the London and North-Western Railway, rolling their own raile. was aloo strongly argued; and it was contended that anch ap applicetios of the fonds of a railmay company was not prudent or advantegeona a a repeated instances had been shown that companien could aot comperes with individuals in economy of manufacture. Still, bowever, there wert many good authoritien who contended that as long as a railway company did execute ite own repairs it woold be found economical to fill mp the time of the men and employ the tools in making a few engines, and oaly purchasing the stook required for the new hises or branches.

The greater care exercised in the purchase of materials, and in the manufacture of certioin parts, such as axles and wheels, was shown have produced excellent resulte; only four iron wheele and two wrodes Wheels had broken ander pansenger carriages in foer years on the Londors and Nortb-Wentern Railway, where the wooden were rapidly supersedias the iron wheels. Some curions rasulte of manufacturing locomotive engines were given, and it was shown, that one great firm, the goodness of whose praductions was generally admitted, had actually incurred a heary loss in building engives siace 1848; having, however, previondy ta that time manufactured with profit. How much more likely would a railway company be to make heavy losses than a manafacturer who could devote his whole attention and energy to the economical conducting of his estahlishment.

It whe admitted that the maintenance of way, making ges for the atationa and shops, and a fen other matters, might bo legitimately retained in the handa of the railway companies; but it wes contended Ohat the main objecte to be attained would oventually be the leasiag the working, as woll at the maintenance of stock, of all lines by individual contractors; and then, that capital nccounta woold be closed, and the shareholdera would ascertain tbeir actnal position.

The discussion, which had taken a commercial turn isatesd of enterios into the queation of railway economy, or of railway accidenta, ocenpted the whole time of the meeting, to the entire axclusion of any other subject.

Mr. Ebenezer Goddard, Astoc. Inst. C.E. (of Ipawich) exhibited in the library a amall portable asbestos gas stove, for heating apartmente, of great simplicity and portability, the epperatus boing eotsained in E boz 12 inches by 9 inchen, and $3 \frac{1}{\frac{1}{2}}$ inches deep; also a protected gas barner of novel constraction, for gas cookiog stoves, in which the holea were not liable to be choked ap by any means.

May 18.-The paper read was "Obnervations on Artificial Hydrawlic; or Porthand Cement; with an account of the teating of the Brick Beaw ereeted at the Great Exhibition." By G. P. Waite, Anoc. Inst. C.B.

After detailing the experiments made by the late Sir Isembard Branel, the peper noticed the pecuiiarities in the practice of the English and foreign engineert in tbe use of cements and limes. It was stated, that in Bugland, the natural cemonts wero plentiful, and the mode of cone struction being generally in brickwork, quick setting cements were preforred; whereas abroad, the natural cement-stonea were, comparatively apaaking, rare, and the nae of bricke rather the exception than the ralen In some ceses it was fonnd, that oven the boat natural hydraulic limen did not set with anfficient rapidity, in salt water, to do away with the necemity for usiag pozzalanot, and nome of the attempts made, at vartars periods, to subatitute artificial pozzalanos for the very expensive natural product of that nature, were then deecribed. The unfavourable reaulty of these attempta, and the manner in which M. Vicat explained them, were detailed. A sketch was then given of the course of investigation followed in England by Mr. Froat and General Sir C. Pasley, from which it appeared, that antil the introduction of the Portland cements, no artincial compoand had been discovered which possessed the ame-or greater, powers of resistance than those of the nataral cements. The edvantagee of the Porthand cement were stated to be, that it had nearly all the qualities of rapid setting presented by the natural materiah of the same class; and in addition, that as it was capable of aupporting variable proportions of sand, it could be used as a mortar, the rate of setting of which might be modified at will, and the porers of resiatance
of Which were stoted to be mwoh greater than thowe of elther the cemonte er the limee thas repteoed.

A general description of the manner in which the Portiund cemont was mow mannfactored, and of the methode of tenting the article, were then eiven: and it appeered, that after aven days, the cohenive etrougth of The nast cement was equal to about 100 lb . on the equare inch; and that efer ix monthe, this beceme equal to not leas then 414 lb . per equire goch. M. Fient had atated, in 1851, in a commanication to the Anuale dee Porta et Chanmeen, that by the wo of Portland cement alone, or mint be termed "overharnt lime," it would be posaible co form immense artificial blocke, capable of reaintisg the action of the waves and of the antagle apon the sea shore, an sction which it was well known rapidly destroyed the nataral cements, and the poreminnic mixturet, whother of entural or artitain porsalenon.

The wroral appliontions of the Porthand coment an a concrete, an a mortar, and as a stroce, wrere then alluded to, and reference wat mede to the aarly failaren in formiog large artificial blocks, and an acconnt wat give of the mode nom adopted in constructing them at Dover and Alderney harbonars of refuge, and likewise of those umployed to protect the extremities of the breakwater of Charbourg. At Dover the hearting © the piens, betow high-water mark, was executed in blooks of concrite, conposed of cement and shingle in the proportions of $1: 10$, and cocnpring about three-fourthe of the volume of the cepurate materisle measared in the dry state. Bech block contedned from 30 cabic feet to 190 cabte feat, and weighed from 2 tona to 7 tons. At Alderney a spedes of concrete, compoeed of cement, mand, and shingle, was placed in a monld, with rebble atone bedded irregularly in the man, the proportiona being abont one part of cement to ten parta of foreign materials. At Clerbours the ayatem adopted wits to build immense blocks of rabble zemeary of not lew than 712 cubic foet, and waighing aboat 52 tons. These hlociss were loated ont from the places where they wre coustracted, and mal as "plerre perdue;" but tbis had not on all occanions been she to seaist the tranaporting power of the waves. The manner of uaing the cement was in the form of mortar, composed of one part of cement to three parts of and.
It had been atated by M. Fioat, that the powers of resintance to compreaien aboolately required, in subatancet exponed to the sotion of the cet, mont bo at least equal to 40 lb . per squere inch, and of that to tonsion at least equal to 9 lb . on the equare inch. Nom, the resiatance of the ertitcial stowe blocte, after an interval of nine monthu, was not lese than 1700 lb . per equare inch, when the effort was one of compreasion, or than 900 Hb . per aquare inch, when it beceme an effort of tenaion, or little infoior to that of Portland stome Itself.

Atteation wat called to the fact, that the Portiand cement adbered mare amergetieally to the Portiand stone than to any other material. This degreo of adtesion did not seem to depend 10 much upon the shorbent powers of the subatances connected together by the cement, at epon tome coincidence in the manner of their cryataliantion. The applicationa of Portland cement to the purposes of atucco for external worke were noticed. Ite advanteges were stated to consiot in its agroe. che colour, without the intervention of paiat or limewhite, ite power of reaisting froat, and ite froedom from vegatation; all which ware attriboted to the close contact of its conatitnent parts, and to the aurface being perfecty now-abeorbent. For the same resson, it was ascerted that the Poctinad cement was eminently adapted for the conatruction of ciaterns and baths, and for the varions descriptions of stalnes and fountaina, sco. mow made of articicial stone.

The paper concladed by a desoription of the Briok Beam experimented cen at the Great Exhibition of 1851, an account of which has already appeared in the Jowrnal (Vol. XIV. p. 510), and from which it was dadreed that the atrongth of Portland cement, at compared with Roman cement, was in the ratio of $2 \mathrm{t}: 1$. Attention was called to the eeveral sebles and dingrame which were exbibited; illuntrative of the variona pewert of resintance of the cement ander efforts of comprestion, extansion, and tearing anundar.

May 25.-The Parsidentr's Contermaziongs

The Session of the Institution was appropriately terminated on Tuatdsy evening by a Converaziona, which whe attended by the members ead a numerons and brilliant assemblage of dintinguished visitors, who iere received by Mr. J. M. Rendel (the President), attended by Mr. Charles Manby (the Secretary), upon. whom devolved the daty of colleeting and arranging the works of art, models of machinery, and specimeas of manufacture with which the rooms were profusely and elegantly decortited. It would exceed our limits to notice more than a faw of the Fincipll points of attraction.

It the reception saloons, which were hang with Aubusson tupestry, by Jackeon and Graham, and decorated with a profncion of fiowera, were gir Bdwin Landeeer's "Random Shot," and Ward's picture of "Jamem IL. reading the Despatch," both from the collection of Mr. Jacob Bell; Irvera "Blas Lighta," with an extraordinary fae-simile in coloured Hiblegraphy. Around theae were placed picturea by Stanfeld, Haghe, Eet, Herring, Aasdell, Pbillip, Wehnert, Lance, Wood, Crowley, Roth. eill, Kiemann, Kannedy, Winterhalter, Wilson, and Carmichael.

Sir Emerson Tempent hid contributed some bemtifol specimens of Ceylonese and Chinese carvings; Mr. Montague a remarkable iliver platean of Malteve filagree work; Mr. Hancock a neb silver vaso, mide for Lord Ward ; Mears. Rlkington a large assortment of beantifal pieces of gold and ailver plate, rases, \&ec, $;$ Mowns Copeland and Mesart. Aleock, fine collection of Parian figurea and groupa, china, \&ca, eeveral of them dealgred by Alfred Crowquill, who exhibted a new atetuette of * The Iron Dake " from life.

Mr. Bailey sent a romarkable life-like bast of Robert Stephensom, M.P., and the modelled deaign for the atatue of the late George 8tephenash; and specimen of scalpture by Lough, Thomas, Loft, and others, with bronra by Collos and F. Bramah, were also grouped aronad.

Mr. Apeley Pellatt sent a large collection of glase, and amidat it was placed a benutiful banket of dowarn end insocts electrotyped in gold and tilver, by Ceptain Ibbetson.

Mr. Gould contribated some brillinnt specimens of his beantiful Hamming Birds, which contrasted well with three scenea of "Falconty;" by Mr. Hancock (of Newcastle).

The principal room contained a numerous collection of models, many of which were shown at work. Among these may be particularly noticed the amastatic process of printing, exbibited by Mesans. Glynn and Appeh, Who had recently introdaced a method of proparing paper by the addition to it, while still in a state of pulp, of an insolnble andt of copper, and a peculine proparation of palm oil, $t 0$ that when an attempt was made to reproduce any document, it became fired to the plate, and no trante: could be made. Mesars. Napier and Son exhibited an Aatomiton Sovereign Weighing Machine, whioh diffored from those now in use at the Bank, by its separating the coin into three classes, the too light-uthone between cortain limita, which might be variable-and the too heary, instead of simply into the light and the full. They also axhi. bited a Captain's Registering Compan, whioh ehowed at a glance the erect course the thlp had taken, and the moment when any deriation from the true course had bean made.

Mr. W. S. Incon also explained a very beandifal model illostrative of his ideas as to the management of shipe' boata, how they should be steared, and anspended, and lowered in case of emergency-an impor. tant deaideratum.

Mr. S. Highloy's Achromatic Gas Mieroscope Lamp, a contrivance for combining, or rather modifying, the glaring light common to ordinary gat microscopic barnert when making researchen, seemed to be an object of great interent.
There were aleo many models in verions branchen of eagineering; Mesmrs. Mandslay and Mesars, Penn contributing modoly of almost overy kind of mariae engine, and to Captaln Henderson was due the collection of a vast number of different kiads of vesela, for the purpose of showing the great discrepanoy that existed in different countriea in the liaes of shipe.

In Rallwaya, permanent way seemed to be the point to whlch inventort chiefy devoted their thoughta, and the various modifiontions of Mr. W. H. Bariow for a road ontirely of wrought-iron, of Mr. Henson for a aimilar rail supported by longitudinal timbers, and of Meart. P. W. Barlow, Greaves, Doull, asd Reed, for chairs and supporta of cast-iron, so as to make the road partly of cant and partly of wrought, but still ontirely of iron, were shown. Mr. Henton aleo contribated a beantiful model of bis covered railway goods wagon, by which it was said a seving of at leat ifty per cents in repairs alone over the old wagona with aheets would be effected.

The centre table was devoted to an ascortment of every description of fire-mrms, from the oid Indian and Chisese matchlocks, some of which even were revolvara, down to the Mini6 rife, the Colt revolver, and the Lancaster smooth-bored riffe. Thero were also numerons applications of Mr. Hodges' camulators, a now mechanical power obtained by the sooumnlation of elatio force; as well as Mr. Appold's arrangement for showint whter below 20° without freezing.

In the ante-room, Mr. Goddard (of Iprwioh) explained a per coolingstove, and an asbestos fire, in lien of that formeriy produced by platinum, and there was also a combined gas stove, by Mr. N. Defries. On the mantelpioce was one of Mr. Bain's clectric olocks, with the mont recent modifications, all the power being contained in reses.

An elegant mantalpiose of Liangollen slate atone, showed the capability of that material for receiving the bighest polish, and by the new process of imitating marble, the very beautiful workmanghip which might be hed for a small cont.

The guests romainod until a late hour, engaged in the examination of the works of art, lintening to the explanation given of the different modelt, and in enjoging the hoopitality of the Preaident in the refrenhment room.

On Wednenday the roome wort again thrown open in the middle of the day, for the purpose of enabling the ladias to aramine the collection at their leisure, and many noble and diatinguishod person, inclading the Duchest of Sutherland, Ladien Rosee, Donglas, Arabell King, \&ece \&ec.p availed themselves of the opportanity. They wert attended by Mr C. Manby (Secretary), and by Mr. Jamea Forreat, who explained to them the peceliarities of the various models.

sooviny of Axtipuarion,-At the meeting on the 27th all., Vhecoont Mabon, M.P.4 President, la the chair, the propooltion of the treasurer and coundl for reduclins the entrance fee to five gulneta, and the annual aubecripton to two galineas, wat carried by a majorlty of 15 . 4 yem; $\Delta 5_{1}$ Nosi, 41 .
Royel. Geogrophiol goolety.-The anairerasy meetng of this mociety wha held on
 con annonacing the sward of the Pounder's gold medal to Dr. John Rae, in the emar ploy of the Hudeon's Bay Company, for his survey of Boothla, and for his explormtors of the comats of Wollantion and Vitoria Lends.
Gonernmant Schoot of Mince. - The frat examination for the seholarthipe is this Ipetitudon, recently founded by his Royal Highnees Prince Albert on behalf of the Prince of Wulet, nad called "the Duke of Cornwall'e scholarshipu," was brougtt to a concluston on the 23nd alt, arter a ment aevere examination. Mr. Heary Fruneis Blanford, belng at the head of the llat, obtained the scholarmilp (80i. per anaum for (wo jeara); snd Mr. Robert Hont the second scholarship for one year.
Moeting of the sooloty of Arts at Hamplon Cowrt. - It in Intended that the prosent
 Hampion Court, on 8aturdey the 3rd of July. A commiltee has been appoloted by the council to mal
Water Colours.-We feel we ahall be dolipg a serdice 10 our young profemional frieads by callugg thelr attention to the sociory of Arta' prize water-colourn. The bon, which only costs one shilitigg, includen ultramarine, infie, and a complete aseortof coloura and brambes. Another prakemorthy result of their exertiona, nad no less maefol, is the prise boz of drawiag lachumenti, whleh tis to be had at two pricen-half-e-crown and five shilling.
Chemome.-A private rew of the gardeas took place on the 2lat ult, when a seloct party of gentlemen met for the purpore of aurreytige the groande, and of eajoning an excelleat dianer provided for them by the aplitited proprictor, Mr. Blompeon, who has here spared no expease in catering for the smuperoent of the public, baving made conalderable additions to the stiractions of the gardeal. Several statues, rases, and fountains are distriboted all over the grounds; a new gateway has been erected next che Fulham.roed, and many other buliding: for the purposen of the sereral exhith. Hons. Part of the gerdens have been Lald out with great thate ; and the Chineve Temple, in the centre of the danclag piatform, han an arcelleat effect from the bril. tiapcy of the gilding and colonra, which weil mecords with the atyle of amusement for which thete gardens are famen. We coald have wished that the aume feeling had perrnded thronghout, but the Clasalc character of some of the additions doee not harmonime with the general appearance of the other buildiagt, and there ia efldenily atrent leck of profenalonal knowledge in many of these worky, which causes much rogret that so mach money thotid be lild out withoat the saperialion of one whone poniseme it is to be "a man of turte."
Portsea Churod Compotition, - The compolttee have melected the detgen of Mr. Remen Brown and Mepers. Barty ead Murray, of Liverpool. Twenty-three denigns were ment in.
Moreaniso Bay.-The reclalalag of thle bay, which wha Arat surveyed edxteen years tho by Mr. Hyde Clarke, and which bis been o Men brooght forward in this Jowrnal, Admiraft by Matera carried iato effeet. The right has beep parcaned rrom tha Admiralty by yemer. Brogden and Co, and the undertaning will be carried oot con joinuly with the fortmation of the Ulverstone and Lapcaster Rallwhy. The rivert Crite and leven will be conifined to a tared channel, and the bay will no doubt be left in a greal meanare to silit ap, Thia vast tract, whicb extende from Tridleapoint (Dear to the Ulrerstone cabal foot) to Grvenodd, compriees an ares of about 14b,000 acres. The great obetacle bitherto hate been the confleting cialme of the Crown and Dachy
 Weat Bromotch, tor the prevention of ateam.boiler exploitons: The apparatus is Ferf almple, conajatiog of a valve, which la acrewed to the top of the boiter, over Which stands a bollow futed columa about 8 feet bigh, forming a box to contain the Felighte on the valve, and a pllinar for a whetl, over which works atiat chaln connected with the bugy in the boller, hariat at equad distances two long linkr, one on bach side of the pllar. Two levera, connected ith the valve, and axed on centres, pans between the long link, $s 0$ that the water in the boller, Hiligg or falling beyond a given level, depressen the lover, openk the valve, and pertolts the steam to ewcape Aa iadex in fired on the wheel whicb givee the height of the water in the boiler; the gteam in also welghed fithout the addilion of levern, and the weljate are securely bocked In the pillar to provent alleration.

LIET OF MEW PATENTS

amanted in england from Apeil 22, to Mat 22, 1832.
Sis Mouthe allowed for Envolment walese otherwise esppresecd.
Bamuel Heaclife the jounger, of Barwich, Eneer, seatleman, for improvements in engines to be worked by in or gams.-A pill 24 .
William Choreh, civil engineer, and Bamuel Aiplomll Goddard, merchant and manufacturer, and Edward Middicion, manofacturer, all of Birmipgham, Warwick, for improvements in ara-arms, in ordamnet, and to projectiles to be ured with uuch or the like weepons; and aiso improvemente to machinery or apparatus for the tmanufacture of part or parta of such Are-arma, ordnance, and projecties. (A com-tanutealion.)-April 24.
Armand Jean Baptiste Looin Marcemebean, of Rue de Moncou, Parts, Prance, gedtleman, for improvemepte in the mode of conveying letters, letter-hags, and other Hghe parcels and articlet, -April 24 .

- Bichard Caristopher Mansell, of AeDford, Keat, for improvements in the construction of rallways, in railway rolling stock, and in the mechinery for manufactaring the same- - April 24.
Wilian Exall, of Reading, Berks, engineer, for Improvementa in the process, compoaition, or comblation of materiale, machiner, and apparitus for makiog broad and btecoita, part of whet machinery is applicable to the mixing and kopeding of plantic eubatmaces in general. (A communication.) Apill 27.
Alfred Taylor, of Waywick-lane, Londou, and Henry George Frasl, of Eerbertatreet, North-roed, Middiepex, for imprurementa in heating and mupplifig water for haths and other uses, in the conctrucdion of waterciosers, and in supplying them whith water, and la cocks for drawiug of liquidi.-April 27 .
Willian Newton, of Cbaveery-isne, Middlenex, civil engloevr, for improvementa in machinery for wearing, colouring, and marking fabrics, (A communication.) \rightarrow April 28.

Thomas Richardicon, of Newcaste-upon.Tyne, for improvementa in treating matters contuining lead, tin, apdmony, slinc, or allver, aud la obtainlog auch metale or prodncts thereof.-Apris 28.
James Pletcher, of Leylend, Lancaster, bleacher, for improvementa lo machloery or apparatus for atrotchling ahd djelang worea fabrict-April 29.

 therewith.-April 20 .
John Lintorn Arabia 81 mmors, of Oxford-ternet, Hyde-park, Middienex, Oaptato in the Rogni Engtaeers, and Thomas Walker, of the Branswlet Ironworth, Wedien hury, 8tatilord, Eseq; for Improvemente in the mapafacture of ordnance, wod in thit conalruction and manufacture of carriages and traveralng apperatan for masetervis the wame.-Aprlil 29.
Peter Braff, of Ipawich, 8 ufiolk, civil endineer, for faprovemonta in the comatroe: tion of the permanent why of rall, tram, or other romdt, and is the rollung stoct of upparatus oped therufor.-April 29 .
Joha Blaks, of Blirulighana, manufecturer, and Eqgene Nholia, of Birmiopham,
 and machinory, for presuing or mouldiog the same, which machinery in adso applicein for moulding or presalag other sabetences.-April 29.
Georise Coodman, jun., of Birmiogbam, Wervick, manafictarer, for an traproved method, or improved methods, of ornamenting japanned metal and papler-mach wres.-April 29.
8tewart M'Glashen, of Edinburgh, Beolinod, sealptor, for the appliestion of oets. tala mechanioal powers for indog, remotile, aod prowerving trees, boomen, and ofle bodies,-April 29.
John Robinson, of Rochdele, Lancaster, tmber merchant, for Improvementa tin machinery or apparatais for ahaplag wood ioto mouldingt and other forme.-ApHis 2 . John Camoing, of Palaley, Eienfrew, North Britaln, patiend dedgmer, for lanproue menta In the production of surficest for printing or ornamenting tabrica.-Apri 20.
Aleriander Parken, of Pembrey, Carmarthen, chemist, for improvementa in obtah
ing and separatug cettalo metalt.- May 1 .
Hough Lee Pattinon, of 8cot'n-houce, near Newcesthenpon-Type, manuficturtas chemint, for improvementa in smelling certaln subatances contaniog lead.-May L. John Moore, of Arthur's Town, Wexford, for maprovements in navical inutromenta spplicable for acertaining and ladieatiog the tree epherical coarm mod thtunce belween port and port-1/ay 1 .
 certaln Improvements in the manufacture of hits. - May 1 .
Thomer Mosdell Smith, of Eumnernmith, Eentleman, for Lemprovementa in the manof ceture of war candies.-May. 1 .
Williem Wood, of Pontefrect
Willem Wood, of Pontefract, Fork, carpet mavufacturer, for lmprovewentio in the manufactare of carpstas and other fabrics, and in apparatus or anchipery coamete therewith.-May 1 .
Charles Thoma, of Brlatol, moap manuficturar, for Improvemente in the masabeture of conp.-May 1 .
Edward Gee, of Liverpool, merchant, for Improvementa in apparaton for roention coflee and cocoa. - May 1 .
Henry Bridson, of Boiton, Lanesater, bieecher, for improvemeata in meckivery tor utretchlag, ariog, and finiahlog woven kabrics. May 1.
 In mischinery for manuficturiog paper. (A commupleation.) - May 1 .
Alfod Vincent Newton, of Chancery-line, Midilesex, meehmileal dragightamea, for improvemenss in the manuficture of printing furfices. (A commanicetbonMay 1.
Alichard Archibald Brooman, of Flieti-atroel, Middleaer, patent agent, for lmprovements in paddie wheelt. (A communlations)-May 4
Richand Jordan Getiling, New York, for certaln improveswents in meehtoery tor coedlog graln.-May 4.
George Robins Booth, of the Wandeworth-rond, Burrey, for improvementa in tix manufecture of gac.- May 8 ,
George Froderick Mupts, Jun., of Birwlugham, for Improvements to the mazafien tare of metal tuben.- May 8 .
Joseph Jepwon Oddy Taylor, of Gractchurch.street, London, naral engineer, for
 May 8.
Willim Lictell Thard, of Aldgate, High-itreet, London, brewers' ongineer, for loprovementa la machinery, appuratus, and proceates for the prepartilon of graln, and for ite converalon lato math, seccharine, Vinous, alcobolle, and acetoun ilquors.May. 8.
 provements in the manufacture of artclet of drets.-May $8 . ~$
John Campbell of Bowield, Renfrow, N. B., bleacher, for improvementa sa ase manofecture and treatiment, or ingshiag of textile fabrict and materiate, and in the

Wilian Gilleaple, of Forbane-hlli, Linilthgow, Beotland, gentleman, for an fa: proved apparstas, inatrument, or meanm for acertalaleg or metting of the alope of Cevel of drains, banka, inclipes, or works of any description, whetber natoral or arth aclal, or under land or wruler. - May 8 .
Winiem Armilase, of Mancheater, for an toproved asfety envelope, and certala. improvements in the machlacry to be used in the manofineture of the mame.- May 8: Peter Fairbairn, of Leeds, York, machiniat, and Peler 8wres Horrmana, of Lede aforetald, tax-spinner, for certain lmprovemente in the proceat of prepantag ang and
hemp for the purpoee of beckling, and also machtnery for hectiong dax, hemp, China hemp for the purpose of beckling, and also machinery for heciling dax, hemp, China graia, and other vegetable Abrous anbetapcen.-May 8.
 construculon of cocks, taps, or vilres.- My 17.

George Frederick Purratt, of Plicadilly, for luprovements in llfe.rafte.- Mas 17.
Willime Edward Newton, of Chancery-lang, Middiesex, civil enfineer, for hmprownmeate in the construction of docka, batios, rallwaye, aed apparatue consected thereFith for raiulpg or remorlag renela or ablps out of the water, or on to dry land, the the purpoee of preaering or proparing the eame. (A communication.)-May 17 .
Whilism Watt, of Glangow, Lanark, North Bifinin, manufactaring chemiat, for lar
 the application of some of the products to certaly purpoeat, May 22.
Davld Dick, of Palaley, Renfrew, North Britn
Darld Dick, of Palnley, Renfrew, North Britala, machioematrer, for taprove
 May 27.
Richard Roberts, of Manchenter, engineer, for certaln Improrements in and appiseable to shlps, boath, and other vemela.-May 22.

ANSWERS TO CORRESPONDENTS.
Bis-How do ancreyors generiliy compute the aren of tand when it is moantais. ous? Por Instance, rupponing the property measure 30 serves on the level pleane, bat If menared up bill and down dale fi amonnta to 100 secreh, which in conadered the. true meanarement? And if put up for alle, whleh measaremont fill bind the pere: chaver by the law of the land? WIIt the level sarface or the hill grow the gnoet

 grown wll be so the horisontal plane.]- BD.
Books Received. 'Complet Course of Practical Geometry' by C. W. Paile; Weat. Col. R.E. Parker abd Co.-'Eandbook of Organle Crocelacty' by w. Gretory, M.D. Typlor and Co.-' Rellway Machioery' by D. G. Cjert. Putt I.

1

-
-

BLACKHILL CANAL INCLINED PLANE.

By James Lealie, C.E, Edinburgh.
(With Three Engraving, Plates XXIII. XXIV. and XXV.)
The application of the inclined plane to the purpose of conveying veseels from one line of a canal to another, is by no means new. It was, I believe, first made use of practically by Mr. William Reynolde, on the Ketly Canal in Shropshire, about the year 1789; it was afterwards adopted on the Shropshire Canal, and on the Duke of Bridgewater's Canal, on which lant however, it has since been laid aside. On the Shropshire canal incline, the weight of the boat, carriage, and load, is about 11 tons. More recently, it has been succesafully employed, and on a larger scale, on the Morris Canal, United States. A description of the Morris Canal inclines, of which there are a great number, is given in Mr. D. Stevenson's book on the 'Engineering Works of North America,' and in Volume V. of the Civil Engineer and Architect's Journal (1842); but various modifications and improvements have been effected since these descriptions were given, -on at least one of these planes, particularly in running the carriage and vessel over a summit, and then down into the water of the upper reach, or in hauling them up out of the water of the upper reach over the summit, so as to be able to dispense with a lock at the top of the incline. On the Great Western Canal, boats are raised and lowered by meaus of a perpendicular lift, as deacribed by the late Mr. Green C.E., in 1838, in the Transactions of the Institution of Civil Engineers.
The inclined plane was first recommended for adoption on the Monkland Canal, for the purpone of taking up empty boats, in a report, dated January 1839, by the late Mr. Andrew Thomson, C.E., of Glasgom, who was then engaged in superintending the construction of new locks at Blackhill. The Monkland Canal has a depth of 5 feet, and is adapted for the passage of boats 70 feet in extreme length, including the rudder, $13 \frac{1}{2}$ feet in width, drawing, when light, from 18 inches to 81 inches, when loaded, $4 \frac{1}{2}$ feet, and carrying a load of 60 tons. It is about 12 miles in length, and connects the rich mineral district of Monklands, abounding in valuable seams of coal and ironstone, with the Forth and Clyde Canal at Glaggow. As originally constructed in 1779 , it extended from the Townhead Basin at St. Rollox, near Glasgow, a mile and-a-half to the foot of a steep ascent at Blackhill, where the first reach terminated; and from the top of that ascent it extended eastward to Sheepford, a distance of 8 miles, where it was stopped by another ascent. An inclined plane for railway wagons at Blackhill connected the two reaches of the canal. The coals were unloaded from the boats in the upper reach into the wagons, run down the inclined plane, and again loaded into boats in the lower reach, which was a tedious operation, and hurtful to the coals.

At one time, the canal was in such an unprosperous state that it was seriously contemplated to fill it up; and it is understood that the chief, if not the only reazon why that intention was not carried out, was the want of pecuniary means. As matters have turned out, it is very fortunate that the company could not spare funde to fill up the canal, for the original 100l. shares, which were at one time down to 51. or 72., afterwards rose to be worth about 32001 . This remarkable rise in the value of the canal stock may afford some encouragement to the shareholders in some of the many unremunerative undertakings of the present time. This prosperity was brought about mainly by the gradual development of the mineral riches of the district, aided materially, however, by the farther extension of the canal, and by other new works and improvements.

About the year 1788, a set of locks was constructed at Blackhill, enabling boats to pass from the one reach to the other. Two locks were constructed at Sheepford, and the canal was extended thence eastward two miles, to Woodhall, near Airdrie; and in 1790 the Forth and Clyde Canal Company formed the connection called the Cut of Junction, about one mile long, between the Monkland Basin at St. Rollox and the Forth and Clyde Canal Basin at Port Dundas, so that cargoes can now be conveyed from the further extremity of the Monkland Canal to Glasgow, or to the Forth and Clyde Ship Canal, without breaking bulk. The set of locks at Blackhill consists of four double locks 75 feet by 14 feet, having each two lifts of 12 feet, the whole height from reach to reach being generally 96 feet, but varying a few inches according to the supply of water and to the state of the winds.

In the year 1837 the two uppermost locks were so very much out of repair that it became necessary either to rebuild them or to construct two new ones. On being consulted then by the Monkland Canal Company as to what was beat to be done, I recommended, in order to save stopping the trade during the time that the work was in progress, to build two new locks by. the side of the old ones; and I advised, in order to save water, that, if sufficient space could be found for three chambers, emch lock should be divided into three lifts of 8 feet each, instead of into two of 12 feet, assuming that the two lowermost locks should be rebuilt on that plan at some future time, or that two new ones should be constructed, and keeping in view that, ultimately, it might be necessary to have two sets of locks, which might allow the ascending trade to pass by the one, and the deacending by the other. From the want of room, and from the additional expense that would have been incurred, the last recommendation was not adopted, but it was resolved to proceed immediately with the construction of two new double locks by the side of the old ones, which was done from plans furnished by me in 1838. By the time that the two new locks were finished, it had become evident, from the great increase in the trade, that either an entire second set of locks must be constructed, or some other means must be devised for passing a greater number of boats than could be accommodated by one set of locks. The trade in the canal, to the extent of about seveneighths of the whole, is downward towards Glasgow, consisting almust entirely of coals and iron; the other eighth, pasaing upward, consista chiefy of ironstone, limestone, and manure; consequently nearly all the boats descend the locks loaded, and three-fourths of them return empty.

The plan proposed by Mr. Thomeon for taking up the empty boats by means of an inclined plane seemed suitable for such a trade, and it was remitted to me by the committee of management to report on it. In that plan there was only one line of rails proposed for the boats, which were to be taken up afoat in a caisson placed on a carriage. The other line was to be occupied entirely by water-vessels, which were to form the counterbalance and the moving power, water being filled into them from the upper reach of the canal, and emptied out into the lower reach. A chain, having the one end attached to the carriage and caisson and the other to the water-vessels, was to pass over the upper rim of a large horizontal drum or pulley, at the top of the inclined plane, placed between the two lines of rails. According to this plan one pulley was quite sufficient, as no bite or friction was necessary, the load being at one end of the chain and the moving power being attached to the other. Mr. 'Thomson, however, suggested, in a postscript to his report, that it might be expedient to employ a steam-engine instead of the water-vessels as a moving power.

In a report, dated October 1839, I recommended that the plan of the inclined plane should be adopted with modifications; the first of which was, that there should be two lines of rails for the boats instead of one, so that the descending carriage should act as a counterbalance, but nothing more, to the ascending one, and that the motive-power should be a steamengine acting on two vertical drums, each having a chaiu of its own, instead of there being only one chain passing over the upper rim of a horizontal pulley. I proposed two plans: first, one by which the vessels were to be brought up dry on a cradle, and launched over the summit of the incline into the upper reach of the canal, thereby not only losing no water at all in the upper reach, but actually gaining a quantity for every boat that was brought up equivalent to the displacement by the boat when immersed; and second, one having the boats taken up afloat in a water -tight cajsson like that suggested by Mr. Thumson, having a gate or sluice at each end, and set level on a moving carriage. One caisson was to be ruu down full of water into the lower reach, its lower gate opened, the boat floated into it, the gate again shut, and the caisson and boat hauled up to the top of the incline, while the other caisson was descending on the opposite line of rails. When the caisson reached the top it was to be pressed hard, by means of a couple of screws, against the frame of the gate of the upper reach, so as to make a water-tight joint, by which means the caisson might be made to serve the purpose of a shallow lock, and no water would be wasted except the very small quantity contained between the gates of the canal and the upper gate of the caisson, which does not amount to 50 cubic feet. This plan admits of empty boats being sent down as well as taken up; but the cases of empty bouts passing dorn, although they do occur occasionally,
are but rare. The owners of bosts objected to their being grounded on and launched from the cradle, from fear of injurIng them; and so that plan was lald aside, but the other was cansidered feasible.

In 1840 , Sir John Macneill was called on to report on the inclined plane. He also recommended its adoption, and proposed taking up the vessel lying dry on a carriage or criadle provided with mall wheels running on leval rails fixed on the principal carriago. The carriage was to be first run down into the lower reach, and the vessel floated on to it. When the carriage was hauled up to the top of the incline, the amaller carriage or cradle was to be moved forward of the main carriage into a shallow lock of masonry with ralls in the bottom, the outer gates shut on it, and the water admitted from the canal, by which means the boat would be floated of the cradle and into the canal, after which the water in the lock was to be run down, and the upper carriage moved back to its place on the principal carriage. Sir John proposed that there should, in the first place, be only one boat-carriage and one lock, leaving the second ones until the increase in the trade required them. On another line of rails there was to be a counterbalance equal to one-half of the weight of the boat and carriage. The motivepower was recommended to be a high-pressure steam-engine, though one of the drawinge which accompany the report shows a water-wheel. The engine, when not taking up boats, was to be employed in pumping back into the upper reach the water that had been run down out of the shallow lock, and which otherwise would have been wasted.
However, it was ultimately resolved, instead of carrying out any of the plans of the inclined planes, to rebuild the two old upper locks, and to build two new lower oneg, 90 as to give an entire double set, which was done in 1841. The intermediate basins were enlarged; a graving-dock, entering from the lower reach, was removed, to make room for the new locks; a new graving-dock was built in the upper reach, and other improvements were effected. After this the trade was amply accommodated until July 1849, when the mpply of water ran short, notwithetanding that storage is provided exceeding $300,000,000$ cubic feet, and the canal was shut in consequence for six weeks. It then lecame evident that some effectual means must be adopted for preventing any such interruption in future.

The Monkland Canal had by this time become the property of the Forth and Clyde Canal Company, and in September 1849, I was called on to report, along with Mr. Bateman, that company's consulting engineer, as to the best means to be devised for securing the uninterrupted use of the canal, by providing an additional supply of vater for locksae or otherwise. We considered the plan of providing an additional supply of water, by enlarging the store-recervoirs, or forming now ones, and by pumping water from the lower to the upper reach; and, finally, we turned our attention to the old scheme of the inclined plane, the designs for which had lain aside for ten or eleven years. After due consideration, we found that there was great difficulty in increasing the supply of water by additional storage, seeing that the exlating reservoirs were already sufficiently capacious for the extent of gathering-ground, as sometimes they were not Alled once in a year; and also, that there would be very great oxpense and loes of power in pumping up water from the lower to the upper reach, at there would be required, with the best of management, at least 12,600 cubic feet, or 350 tong, to be pumped up 96 feet for every boat pasaing the locks. Aftar having considered and weighed all the diffculties and objections on both sides, we finally agreed in recommending the application of the inclined plane, having the boats taken up waterborne in a caisson, as being the most expeditious, the most economical, and, under all circumstances, the most eligible mode of passing the empty bosts.

The conimittee of management adopted this recommendation, and resolved to proceed immediately with the construction of the inclined plane. About the end of October 1849, they instructed me to prepare the working plang and specifications, authorising me, at the same time, to communicate with Mr. Bateman, which [did occasionally, and had the benefit of his advice and suggestions. The earthwork was contracted for by the middle of November, and the buildings and machinery were contracted for in the middle of January 1850. The whole work was to have been completed by the middle of May 1850, but owing to various delays it was not ready for action until the end of July. The general arrangement is much the aame as that proposed in 1899; but the caimotis and carriages, instead of
being furmed of timber, as then proposed, are made of mallesble iron; wire ropes have been subetituted for the chains formerly intended, and various other improvements and modifications have been adopted. In arranging the details and working drawinga, and also in superintending the execution of the wort, I have had the benefit of the valuable agsistance and 00 -operimtion of my friend Mr. Stirling, C.E.4 and I beg to acknowledga my graat obligation to him.

I shall now proceed to describe the plan, as It has been actually carried into execution, and which is illustrated by the engravings, Plates XXIII. XXIV. and XXV.

The two caissons are constructed of boiler-plates g-inch and F-inch thick, riveted together. They are eaoh etrengthened by thirty ribs of T-iron, and are set on a malleahle iron oarriage etrongly framed and braced, and raised up at the lower end, to as to keep the caisson level. The caissons are 70 feet long; or just the extreme length of the boata, including. the rudder, 13 ft .4 in . wide, and 2 ft .9 in . deep, exclusive of walh-boards to keep the water from splashing over.

The water is only meant, however, to be 9 feet deep, that being sufficient to float the deepest empty bost. The croeseection of the caisson is, as nearly as may be, taken from the mould of the hoats, with a hollow space for the keel, 00 as to contain as little superfluous water as poseible. Bach caiseon has ten pairs of wrought-iron Hanged-wheels, similar to thoee of an ordinary railway-carriage, whereof eight pair are 3 feet diameter, one pair 9 ft .3 in . diameter, and, in order to keep the cajsson as low as pussible above the rails, the uppermast pair in only 18 inches diameter. There are upright timber fonders at the sides of the caissons, for guiding the boats, and for fixing the sluice-gearing, framed and bound across the top, so as to give greater strength. The sluices are counterbalanced, and are worked each by two racks and pinions. The weight of the carriage, caisson, and water, or water and boat, varies from 70 to .80 tons.

The gauge of the railway is 7 feet, and the distance between the centres of the two lines of rails is 18 ft .3 in . The gradient is 1 in 10 ; and the height from surface to surface of water being, as before stated, 96 feet, and the length of the carriage 70 feet, the whole length of the incline requires to be 1030 feet; but an additional length of 10 feet has been allowed as a provision for the case of the water being very low in the lower reach, and consequently the whole length of the incline is 1040 feet. The rails are 65 lb . to the yard, with fiat soles, and are corewed down to longitudinal sleepers. These are of half-log where the ground is solid, laid on continuous stane blocks with croesties 15 feet apart; but are of whole timbers, with crosp-bearery, reating on piles 18 feet apart, where the ground is made up and soft. There is a cast-iron ratchet-plate along the outside of each rail, also screwed down to the longitudinal aleeper; and sa a means of affety, in the event of any accident befalling the ropes or machinery, there are palls attached to the carriages, working constantily into the teeth of the ratchets while the caisson is ascending, and ready to drop into them when deacending the instant the tension is taken off the rope.

The motion is given by two coupled high-presare stemenengines, of 25 -horse power each, with horisontal cylinderm. This is a much greater power than is needed during the greater part of the transit; but it is nearly all required at the time when the descending caisson is entering the water, sad, so losing its gravity, ceases to sct as a counterpoise, in consequence of which the engines have for a short distance to pull up nearly the whole weight of the ascending caisoon, water, and boat. There is a double-friction drag on the fly-wheal, soted on by the piston-rod of a small steam-cylinder, by means of which the machinery may be speedily stopped and held on. A pinion on the crank-shaft outside of the engine-house, $\boldsymbol{\&} \mathrm{ft}$. 41 in. in diameter, drives a apur-wheel on the lying-ahaft, of $7 \mathrm{ft}_{\mathrm{g}} \mathbf{9}$ in. diameter, having a friction-wheel in its interior, which, for the sake of aafety and of preventing shocks, is made to slip when any unusual reaistance ls met with. The introduction of thin friction-wheel, which is similar to that commonly used in dreds-ing-machines, was suggested by Messrs. Yule and Wilkic, the contractors for the machinery, and is a decided improvement. A pinion, $\& \mathrm{ft} .10 \frac{1}{8} \mathrm{in}$., on the lying-shaft, drives spur-wheel of 10 ft .7 in . on the drum-shaft which in farthest down the incline, being on the left-hand line of rails in looking down, or the further side from the engine-house. This apur-wheel driven another similar wheal on the drum-shaf which in uppermost,
and on the right-hand line of rails looking down, or the aide nearent the engine-house. These shafte are all of malleable iron.
It is necesary to have the two drums on separate shafth, $\mathbf{~} 0$ as to move in opposite directions, in order that the one may coil and the other uncoil the rope at the same time, both by the upper side; otherwise anotber drum or pulley would have been required to bring up the rope from the lower side of one of the drums. The drums or rope-rolls are 16 feet in diameter, 4 feet broed, and make one turn nearly for every twelve atrokee of the ongines, so that while the engines are going at their usual speed of forty strokes (though they often go considerably facter), the caisoons are travelling at the rate of about 1 miles an hour, and the time occupied in ascending or deacending is between five and six minutes.
The rope-rolle are formed of wrought-iron arma, ringe, and braeing, with a cleading of boiler-plate $\frac{1}{8}$-inch thick. The ropes, which wert manufactured at the ${ }^{\text {P Patent Wire Rope }}$ Works, Gatenbead, are 2 inches in diameter. They are puided on to the d:ums by a screw and moving pulley apparatus and are attacined to the carriages by strong draught-apringa placed in the frame under the caisson. The springs serve the purpone of reving jerks, and also are made the means of letting down the palle in the descending carriage, in the event of any accident befalling the rope or machinery, and thereby taking the tension of the spring. As originally constructed, when the caiseon got to the top of the incline, two palle fell into clams formed on a lying-ahaft extending across the top of both rails, and acted on by meana of a lever and screw worked by hand, which turned round the ahaft, and so pressed the caisson hard to the gates. This acted well enough, except that it gave too short a range for stopping the carriage in-vix., only about 4 inchen, and consequently the caissons were sometimen brought with too much impetus against the gates, which tended to shake the building, and to strain unnecesarily the ropen, springe, and machinery.
Mr. Crichton, the manager of the Canal Company, devised as india-rubber buffer-joint, which is useful both for more perfect tightness and for lessening the jork; but as a still more effectual precaution, a hydraulic apparatus has now been provided in addition, which, while the engines are working, slowly raisen a heary weight, and when the caiseon is at the top of the incline, this weight is made, by turning a cock, to met by meana of rams or pistons on two sliding ratchets, into which the palls drop as before, but which have a range of 3 feet; and as the ongines can be stopped with ease quite within that range, the risk of striking the building in now altogether avoided. This apparatus, which was made by Mesers. A. More and Son, of Glasgow, ls placed in the spur-wheel pit, between the two lines of rails, and is directed by a man stationed in the pier between the two gates, where he also opens and shuts the gntes. The original screw apparatus is still, however, retained, and can be used in the event of anything being wrong with the hydraulic tpparatua. A self-acting trigger has also been applied, by means of which the steam is first partially and then wholly shut of when the carriage gets to the proper place.

After the canal-gate has been shut. the caisson is slackened of from the framing, and the joint opened, so as to allow the water contained between the two gates, amounting, as before etated, to about 50 cubic feet, to escape by means of a transverse wrought-iron trough and a line of pipes into the uppermont basin of the canal-locks. Any water in the caiseon which is above the ordinary or proper level, in consequence of the upper reach being over full, is also run-off in this way, so as not to overload the carriage; or, if required, the caisson may be entirely emptied. It will probably be found advisable, except in special cases, to bring up the boats not quite afloat, but slightly bearing on the bottom of the caisson, in which case the descending caison would also require to be partly emptied, 0 as to give less strain on the ropes and machinery.
The original spur-wheels on the drum-shafts had either been made too alight, or there munt have been a flaw in one of them, for shortly after the machinery had been set to work last August, one of the wheels broke in pieces. Luckily it was the econd wheel that gave way, or that on the upper drum-shaft, which is driven by the one on the lower drum-shaft. Had it been the driving-wheel or that on the lower drum-shaft which gave way, both must have been stopped. As it was, instead of stopping the incline entirely, and no losing the benefit of it during the dry season, one of the carriages was worked all the
rest of the autumn, until there was enough of water stored to insure the locks being kept going for the reat of the year. Of course the work was carried on at a very great disadvantage in this way, as the engines had a very great deal more work to do than they otherwise ought to have had, owing to the want of connterbalance, and at the same time were doing only half the effective work; but even with these drawbacks, there were taken up generally about 30 boats a-day, and in all 1124 , including a few ompty boate descending, were passed over tbe incline, up to the beginning of November, when it was stopped for the winter. This is equal to a saving of nine entire days' water in the ordinary working of the canal, which is reckoned at fully 60 boate down and as many up in one day.

The time taken by a boat to pess all the locks is from half-an-hour to forty minutes; but an there may be one boat in each of the four locks, that would admit of four pasaing during that time by emch set of lucks, or from 12 to 16 by both sets of locke in one hour, supposing no interraption to occur from boats going in opposite directions stopping each other, which, however, very frequently takea place, and on an average not more than nine boata can be reckoned on as pasaing up or down in an hour.

The whole time taken to ascend the inclined plane, allowing two minute to enter the caigen, and two minutes to leave it, does not exceed ten minutes; but an one boat is entering white another is leaving, there is' a boat paseed upwards every eight minutes. Were there always empty boats both ascending and descending, one would be passed up and one down, both in ten minutes; but, as it has been before stated, casen of empty boats descending, although they do occur sometimes, are very rare.
Putting out of consideration the aggragate amount of traffic that can be passed, the time saved by the incline to each boat, considered by iteelf, is from two-thirds to three-fourtha, as each take only nine or ten minutea instead of thirty or forty, to ascend; and there is alco a very great economy in the wear and tear of the boats and gates, and in labour of men and horsea, by uaing the incline inctead of the locks. This seems now to be so well nnderstood that there is a great feeling in fayour of having the inclined plane worked conytantly, inatead of only during summer, as was originally intended; and there is little doubt that soon it will be found necescary to keep it going all the gear round.

The working of the inclined plane, after it had been muepended for above four mantiss during the winter, was resumed on glat March, and it has been acting auccasafully and satiafiotorily since then up to the present time, taking up generally about 13 boats in two hours.

From goth March till c3rd Auguast 1851, there were pased over the incline 5997 boaks up, and 895 down, making atotal of 8438. The longest day's work was ten hourg and the greatent number of boats passed in a day wan 55. Rather a singular effect, and one which it may be worth noticing, is produced, in the frequently-oceurring cases of the boats being taken up, for the sake of lightening the load, with rather lean than the full depth of water in the caiseon, which is due to the level of the canal, or when the upper reach of the canal is over-full. On the opening of the two gates or sluices, after the caisson has been pressed clowe to the mouth of the canal, a rush of water takem place from the canal into the caisson to level the surface, and this water baing stopped by the after-end of the caiseon, recoils, and forms a wave in the oppoalte direction, which, striking the stern of the boat,-drives it with a considerable impetus out of the caiseon into the canal, without any help being required from the horse. This result, which was quite unlocked for, considerably expedites the working of the incline.

The total cost of the inoline, including land, amounted so about 13,500

In conclasion, I have to express my eense of very great obligation to Mr. Crichton, the superintendent of the Forth and Clyde Canal Company; Mr. N'Call, the overseer of masons; Mr. Wilson, the overseer of mechanics; and Mr. Thomson, the overseer of the Monkland Canal, for their zealous and efficient co-operation in their respective departments, in carrying into execution the plan of the works, and in devising means for giving increased facility and efficiency to the working of the inclined plane.
$J_{\text {Axes }}$ Leante, C.E.
Edinburgh, February 98th, 1858.
[For Reforemed is Engrovinge we memp page.

Reference to Engravinge of Blackhin Canal Inciined Plane, Plates XXIII. XXIV. and XXV.
a a, Lines of raile and ratchets haid on longitudioal timbera : gaoge of raile 7 feet.
bb, Caison and carriage of wrought-iron. Caison 70 feet long. 13 ft .4 in . wide, and 2 ft .9 in . deep, with wooden framing to serve as fenders for guiding host, which is shown in the caisoon.
ce, Drums or rope-rolla, 16 feet diameter, and making about one tara for twelve strokes of the engine.
d d, Spur-wheels for driving rope-rolls.
ee, Pinion for driving spur-wheels.
$f f$, Verical sluices at ends of clisson.
og. Bevel gear for lifting sluicen, with balance-welght.
hi., Vertical olaices at ontrance to upper reach of canal.
$i i_{\text {i }}$. Gearing and portenllis for lifting slalees.
$k \dot{k}$, Gearing for hajing ropes on the rolla.
ll. Hydraulic apparatus and weight of 8 tons, lifted $4 \ddagger$ foet, for prening caisson with a power of 12 tons, and a range of 3 feet, close up to the masoary of the canal, so as to tighten the joine.
man, Trongh for carryiug the apilled water into the uppermont bain of the canal.
$n n$, Springs for taking jerks off the rope and for working the afety palle.
00 , Palle almeys morking in the ratchets when the caisson is ascending, and sliso arranged so as to work when the crisson is descending, should anything go wrong with the rupe.
p p, Rope sheare.
$9 g$, Stair down to rope-roll chamber.
if, The upper reach ; $n^{\prime} n^{\prime}$, the canal boant; α, bottom of canal; $p^{\prime} p^{\prime}$, pinion on end of crank-shaft, driving wheel with frictioncentre, and lying-shaft carrying pinion; e, motive-power, two coupled engines of 25 -horse power each. Average helght from surface to surface of water, 96 feet; leagth of rails, 1040 foet; gredient, 1 is 10.
Waight of carriage, caisson, water, and boat, from 70 to 80 tons; weight of empty beat, ebont 22 tons.

ADMISSION OF DAYLIGHT INTO BUILDINGS.

By Hobert Hebeetr, Architect.

[Paper read at the Royal Institute of British Architects, May 17th.]
Liger has been reckoned by philosophers as by no means amongst the least neceasary of the substances or influences which nature has provided for the proper development of the functions of animals, especially of those endued with rational faculties. Every rudimentary treatise on chemistry, physiology, or other branoh of natural philosophy which touches upon the subjects of light or of organic matter, whether in the animal or the vegetable kingdom, connects the perfect development of the one with the full indluence of the other. Lavoisier, writing in the last century, stateo-"Thus much is certain; that plants which grow in darkness are altogether white, languid, and unhealthy, and that to make them acquire vigour, and recover their natural colours, the direct infuence of light is absolutely necessary. Something similar takes place even in animals. Mankind degenerate to a certain degree when employed in sedentary manufactures, or living in crowded houses, or in the narrow lanes of large cities; whereas they improve in their nature and constitution in mont of the country labours which are carried on in tbe open air." It is remarkable that this philosupher has placed light as an agent of health even before pure air, and the other sanitary requirements which are receiving most attention at the present day. But upon rational and moral belngs there is doubtless a beneficial influence on the mind, greater and move direct than that upon the body, so that it may be safely allaged that habitual existence with deficiency of light, whilet it cannot improve the intellectual faculties, is unfavourable to oheerfulness of mind, high atandard of morals, and health of body.

This preface, short as it is, 1 almost feel to be unnecesary, before offering to your attention some remarks and suggestions as to some of the means by which architects may carry into practice in their buildings, eapecially in narrow and confined parts of towns where most difficulties on this subject occur, a sure syatem of obtalning a sufficiency of daylight. The objects to which this paper is limited aro-firet, to demonstrate the methods by which light, admitted through openinga, may be estimated proportionably as to quantity and effect; secondly, by reference to existing buildings, to endeavour to settle the numerical proportions obtained by such entimate into definite
offects; and, thirdly, to suggent means, where the definite effect so ascertained is too little, of increasing that effect, and of ascertaining the increase.

Scarcely any rules on this important subject have been laid down by writers on architecture. Such as they are, they will be in most instances deceptive, and it will even be safor to trast to one's general ides of sufficiency than to such rules. Palladia, for instance, has said that the openings of windows should not exceed a fourth, nor be lese than a fifth of the length of a side of a room, and should be in height two and one-sixth times the width. Mr. Gwilt has given the neareat approach to a definite rule that I have met with, which is to allow 1 foot of gleses to 100 cubic feet of room. The subject, evidently, requirea a more exact system of computation; and 1 trust, that whateres may be your opinion of the system now proposed, you will, at least, pardon the attempt. Some matters which come into a full consideration of the subject (it will be seen) are not ascertained with that precision which will result, "think, from experiment, conducted, except in one instance, on ihe basis of the system now to be defined. They do not, howevor, prevent a practical use being at once made of the system. One of them in of importance, and requires careful inventigation-riz., the proportion of light which is absorbed in its passage thi vagh different kinds of glase at different angles of incidence. Crown sheet, and polished pinte glass, allow almost all the light to pass. Rough plate and ground glaes, including rough plate ground either on the rough side or that which is fire-glazed, are as transparent in their substance as the others, and the only additional absorption of light which takes place is owing to irregularity in the refraction of rays at the surfaces, many of them being so refracted into the substance of the glass as. to be partially or wholly absorbed. If, therefore, the respective action of the three surfaces - viz., rough, fire-glaced, and ground, on rays of light at different angles of incldence were determined, a very approximate proportion may be found, showing the relative obstruction by all these different kinds of giasa Fluted and embossed glass of various kinds may be added to the list, though, if the flutings and embosments are fist, probably they do not intercept the light more than the glaee first above-mentioned.

In forming any estimate of the light to be derived in any place, variableness in the sources of light must not be taken into account, but provision must be made, eapecially in our climate, for sufficiency under ordinarily unfavourable circumstances. For this reason, a southern* aspect must be treated as a northern, and the zenith as a horizon, though in towns the former is often by far the purer wource. The hemisphere of sky will therefore he considered as an equable source of light.

Methods of estimating the Proportions of Light pasting through one or more Openings.

When a plane is exposed to a hemisphere of light, the incident light is equal in every part of it, and therefore every figure on that plane receives light in proportion to its area. We shall consider the case of rectangles, and from them (inclading squares) we shall obtain the proportion on the inscribed circles, ellipses, and other figures by direct proportion.

As we must examine the subject with reference to the obstructions to the incident light which ordinarily occur, we must therefore find a measure which will give us the quantity derived from every portion of that hemisphere. Now, to every point in a rectangle (so exposed to a hemisphere of light) a ray falla from every point in the hemisphere. Systematising those rays according to their parallel direction, they would form an infinite number of prisms of which the rectangle is the common base The light, however, falling on the rectangle may be measured proportionably by eatimating the proportion of rays falling on the vertical planes, passing through the middle of its length and width respectively. Mr. Hesketh then explained, by diagrams, how the proportional quantity of light may be determined when falling upon a rectangle exposed to a hemisphere of light, or when passing through a similar opening in an opaque plane without thickness-the formula being the same. He noticed also that, inasmuch as a horizontal skylight in exposed to a hemisphere, but an upright window to only a quadrisphere of light, the value of the former is exsctly double that of the latter.

[^25]Mr. Heaketh next considered the proportionate diminution of light occasioned by the various obutructions which oocur in prectice, and first, that owing to the thickness of the wall or inclosure in which is the rectangular opening. This wat demonstrated, first, with regard to openingn with square sidet; tocondly, where part of the sides is splayed off; and thirdly where the sides are altogether irregular. The same method wat applied to all kinds of openinge in succession, such as wellboles through several floors under a skylight, secondary or borrowed lighte, and to shafts for admitting light. In the case of a muecesaion of well-holen, it would be necessary to deduct from the light which passes through the firat that which pasees through the second, in ascertaining the available light between the reapective floors. The method proposed can only be properly deacribed when illustrated by the diagrams, It may be atated that the basis of the method is the consideration of the parallelograme of rays which would paes through an opening in that plane (through emch of the middle lines of its length and breadth respectively) which is perpendicular to the plane of the window opening; commencing with one of the extreme rays which can pass through (where the width of the parallelogram in nil), and proceeding with the parallelograms in either such plane derived from the successive portions of the source of light; which parallelograms at first continuously increase in Fidth, and then continuously decrease till they vanish again in the line of the other extreme ray. These would be measured at exceemive amall Interval, say degrees, by the chords of the succemive arce of the semicircle, described on the line of one of the extreme rays between the angles limiting the successive parallelogramin ln width, and therefore by the sines of the halfarce, which arce correepond with the angle made with the aide of the opening by the line (diagonal) of the extreme ray. The sams of the sines of all thewe arce, multiplied by the radins (or half-diagonal), would give a proportional mensure of the rays paeeing through the opening in the planes, both of ite length or breadth; which reanlts being multiplied together, would give a number measuring proportionably the whole light passing through the opening. A table of the sums of sines of angles from 0° to 90° is all that is required to make the eatimate mimple and short. Though circular, elliptical, and other openinge do not always atrictly follow the proportion of the circumsoribing equare or rectangle, yet they do so sufficiently for practical purposes. Examples of the application of the rules were given in the following cases of windowa 6 feet by 3 feet: first, in an opeque plane without thickness; secondly, in an 18-inch wall, with square jambs and cill; and thirdly, in the eame wall, with the inner 9 inches of the jambs splayed off to an angle of 45°, and with a receused window-back 9 inches thick. The proportionate numerical values deduced were, in the first, 30,161 ; in the second, 16,324 ; and in the third 19,647 ; thoee numbers by comparison, showing the loss by thickness of walh, and, on the contrary, the gain by splaying the jambs and recessing the window-back.

The next class of obstructions to daylight consists of external objecte. These are so various in their forms and characters, and often practicall 80 difficult to measure that no very precise rules can be laid down. In town thoy are chiefly buildings which may be generally classed as either parallel or perpendicular to the wall of the window, or nearly so. If the buildings are opposite to a window, and nearly parallel to the wall of the window, the angalar height of the buildings, taken from the middle of the window, would give the proportion of obstructed light, and then the aums of the sines must be taken only to the angle made with the perpendicular by the line from the middle of the window to the top of the opposite buildinge. This will give the direct light. The refected light from the buildings would be found by applying the formula to the remaining anguler height of the buildinge, multiplied into auch a fraction as would represent the ratio of the reflected light to that of the sky.
But in all cases of objects which are distant, it would be easy to form a judgment of the upper line of that which may be considered as the intercepted lune of light, two-thirds of the side obstructions, measured spherically, being allowed to onethird of the opposite ones in forming the average. In practice, I think this method will be found very easy of application. When the buildinge are near and come within the acope of the architect's measurements, then the light will be accurately ascertained by reckoning the lines which form the outline of the unobecured portion of aky as the outside of the opening which
admits light. Where there is a roof, as of a portico or verandah over the window, the outside lines of the soffit must be considered to be the outside of the opening. Generall, it may be remarked on this head that accessible obstructions may be extimated by supposing them as parts of the sides of the openings - inaccessible ones being more distant, it is of less importance to eatimate accurately.

Method of wimating Effoctive Light passing into a Room.

We have as jet considered the proportions of light passing through openings; it remains to inquire into the effect of the light in a room. The diatance to which light passes into a room after admiseion, though it makes no difference as to quantity (because exactly as the intensity of light diminishes, so the area of surface lighted increasev-viz., as the square of the distances from the opening to the parts where it falls), yet, in practice, a room is found to be much better ligbted when the light passes far into a room than when only to a short distance. This effect la caused perhaps, first by the eyes adapting themselves to particular lights by a alight alteration in their form; and thum, if a room be partially lighted, they adapt themselves to the stronger partial light, and the otber parts appear more gloomy. The converse of this is shown by the effect of sunlight produced at dioramas, \&c., by the direct light from the sky contrasted with the darkneas of the remainder of the room. The second cause is, perhaps, the better adaptation of the whole room to use when all in sufficiently lighted than when part is lighter than necessary, and part too dark for comfort. There are probably no means of forming an exact estimate of the value of the distance traversed by light after admission before it falls on the surfaces of the room. The value certainly varies where the distance varies, but it also does not vary so rapidly as the distance. From this (and consideration of facts), 1 think the effect (though not the quantity) of light may be deemed to vary as the equare root of the average distance through which it traverses a room. For ascertaining, then, the effective light, the numerical value of the proportionate quantity should be multiplied by the square root of the distance.

Little has been yet alid with regard to the light reflected from external objects. These vary exceedingly, not only in the light or dark colours of the surfeces, but also in the quantity of light falling on the surfaces, both which circumstances greatly affect the quantity of light reflected from them. Where oppogite buildings are very near to one another, they will be shadowed by one another; and therefore much less reflected light will result in such cases. Much may doubtless be done by having white or light-coloured surfaces, but perhaps no surface obtainable for a wall exposed to the open air can permanently reflect more than one-tenth of the light received upon it.

Method of ascertaining Definite Effects of Light.

A surer mode of lighting rooms in such places will be proposed below, and I will now pass to my second object, of endeavouring to settle the numerical proportions obtained by the above-mentioned processes into definite effecta. Now the only means of coming to a result on this head is to show the numerical proportions which, on the basis of the forms of estimate before given, are found in different existing buildings. From our knowledge of the effect which we can perceive in such buildings, we may determine the number which should be assigned to rooms of different kinds for, say, every 100 cubic feet in the room. At a future time, 1 hope to collect more examples than I have as yet been able to do; and till then I shall not attempt to settle those numbers for fear of misleading, but will only give the results in a few buildings where the estimates have been made-viz.:-

Pautheon at Rome. \dagger	
Cubic coatents	1,889,873 feet without side
Numerical value of light	9,003,507 [chapels.
Numerical value per 100 cubie feet ..	476
Rotumda, Bank of Englasd.	
Cubic contents	126,477 feet.
Numerical ralue of light	1,933,023
Numerical value per 100 cubic feet ..	1,500

[^26] in England.

New Drowing Offer, Bewl of England.	
Cubic conterta	201,240 foet.
Numerical value of light	3,879,250
Numerical value per 100 cubic feet ..	2,982
Freemamon' Hell, Great Qweme	Street.
Cubic contenta	98,192
Numerical value of light	2,136,922
Numerieal value per 100 enbic feet ..	2,170
Oreal Hall, Exaton Tarminma.	
Cabie contanta	483,730
Numerical vilue of light	8,275,452
Numerical value per 100 eubic feet.	1,090

Meant of obiaining Addittonal Light whore the Definite Elfeot is too little, and of ascertatning the Additional Eaflet.
This object, the third proposed, may be obtained by the use 'of rellectors. Very littie use has hitherto been made of this expedient, and this is probably owing to the dificulty (often impossibility) of placing a reflector so that it will be, at the same time, in a proper position for reflecting the light to particular parts, and yet neither obstructive nor unsightly; and to the difficulty of regulating any such reflector, and of obtaining reflectors which will not be injured by the mun, the weather and the atmosphere of towns.

A single refector may generally be placed on either the outside or inside of a window or skylight, 80 as to throw the light from the (perhaps small) portion of sky which remains unobecured over head to any part in which more light is required. But besides the objections already mentioned to a single rellector, there is also a considerable loss of side-light either by the refector, if within the window, being partly obscured by the window-jambs, or, if without, by its reflecting part of the sidelight against the outaide of the wall, and not into the room. All these dificulties may be overcome in almost every case by, as it were, cutting up the single reflector into stripe and arranging them one above the other, either in the reveal of the window, or in some other part where it will not interfere with ventilation or the action of the eashen. These combinations may be arranged horizontally, vertically, or obliquely, accordto the positions of the centre of the unobscured portion of sky, and of the part into which the light is to be thrown, and accord? ing to the shape of the opening in which the combination is to be placed.
Mr. Hesketh then exhibited models of diferent methods of applying the principle. First, a model of a combination adapted for fixing in the reveals of windows. The refectors would measure each 4 inches or 5 inches wide by the width of the opening, and be regulated instantaneously by a lever bar moveble from the inside of the window. They rould be simllar to the specimens exhibited, of glass coated in a brilliant manner with real silver chemically doposited, and therefore protected from the oxidiaing effects of the atmosphere. He stated that a combination had been fitted to a vault (at the Depôt Wharf in the Borough) 96 feet in depth from front to back. The area into which the window opens is a semicircle on plan, 2 ft .4 in. projection by 4 ft .10 in . wide, with a hesvy iron grating over it, and the result is that small print can be easily read at the far end of the vault. The second model was a combination formed with glass tubes (manufactured by Mesarg. Powell, of Blackfriars) of an equilateral triangular section silvered on the inside, and fixed in a light frame one above the other to form a dwarf window-blind, and the light from the exterior falling on the upper surfaces of the tubes is reffected into the room. The third was a combination, to be fixed as on the surface of a wall, under a skylight or within a window, from which combination the light is reflected in any desired direction.

In answer to Mr. Donaldson, Mr. Hesketh raid that no streakiness whatever appeared in the light reflected because of the divergence of the reflected rays which therefore intermingle at a very short distance from the combination, and that in practice the effect was very uniform. The reflectors may be combined with ventilating glase louvres; or they may be made with wrought-iron backs, and thus form fireproof shutters closed at a moment's notice, which, inasmuch as their reflective use would be mostly required in case where opposite buildings are near to a window, would be an important conoideration. He then showed how an estimate may be easily made of the quantity and effect of the reflected light on the principles he had before defined, by considering that the light reflected from a reflecting surface is equal to that which would have passed
through an opening equal to that turfaee, end in the place of the reflector, allowance being mada for the light abeorbed by the reflector. As an examplo, he oupposed the cave of aroora 16 feet by 14 feet and 11 feet high, having a window 7 feet by 9 ft .6 in., opening into an alley 10 feet Fide, with the oppeelto houses 88 foet high. The direct light he eatimated et 4000 nomerical value, which would give 166 per 100 cubic feet. If three refectors 4 inches wide were plaeed in the reveal, the sep one would give 1409 of effective light; the second and third, 998 each; total 3893. Theee reficetors wonld acarcely intercepts any rayi but thoee which would have fallen on the window-ail and jambe, 0 that together the total fective light would be about 7488, or 308 per 100 cubic feet. Every additional refee tor would give 40 additional per 100 cubio feet. In this ert mate, an allowance has been made for the abeorption of light by the reflectors; but this should not be made in ordinary open, where the ceiling againgt which the refleoted light is thrown, boing far lighter than the floor, fully countervaif that aboorption.

Mr. Heaketh, in conclusion, stated thent it was his intention to offer the Institute some suggentions on the admistion of daylight into particular buildings, 80 as to obtain certain qualities as well as quantities of effeot, including two olseres which deserve much study-viz., picture galleries, and warehoumes for the male of Mancheater fabrics, and uther such goods.

Mr. Chapuis, the agent for Mr. Troupean, exhibited and explained specimens of his Diurnal Reffeators, which were of copper, fluted and silvered, and proteoted, in some caees, by e sheet of transparent glass.

Mr. T. L. Donampon, the Chairman, expremed his opinion, which he was sure was also that of the members generally, that the subject introduced by Mr. Hesketh was one of very great interest; and as that gentleman had promised to extend his observations on it at a future period, he thought it was deairable, in the meantime, that the members should take some opportunity of viaiting the ylaces where the invention deacribed, well as that of Mr. Troupeau, might be seen in actal use, 20 as to be enabled to enter upon a discussion of the subject more eatiafactorily than they could on the present aceation.

NOTES ON CONSTRUCTION.

By Sanuel Clego, Jun., M. Inst. C.E., F.G.S.
4. Thewe Notes, whon completed, wll be pabliabed in a aeparate form, as a BradBook for the ute of the students as the Sethool of Conskruction.

Belose and Brioxmogy.

Is any country or district of a country where stone fo for building purposes is not found, bricks sre subetltuted, which are made from certain argillaceons earthe, propared by varions processes suited to the original nature of the material, moulded into convenient shapes, and then burned. Mr. E. Dobson'e woik on the 'Art of Making Bricks and Tiles,'t may be conenlted by those students desirous of becuming acquainted with it, and a fow visits to brickfields after having perused the book will afiord such an insight into the varions processes as will be euficicient for their general guidance in practice.

By reason of a tax which was imposed upon bricks at the close of the last century, they have been made in a mould 10 inches long, s inches wide, and 3 inches deep; 150 cubical inches being the contents of a brick mould fixed by act of parliament. The duty upon bricks was last year happily repealed, still custom has hitherto provented much change being made in their size; but there is evidently a feeling with many of our architects that a change in form is desirable, and aleo that for the construction of honse walls hollow bricks are praferable to the ordinary solid ones. Hollow bricks will cartainly poesens one very great advantago-viz., that of proventing the penetretion of moisture through the wall, an object of vast importance in houses whose basements are perhaps beneath the surface of undrained ground. The best kind of bollow brickwork is that adopted by the Society for Improving the Condition of the Labouring Classes, from the design of Mr. Henry Roberts, F.S.A., honorary architect to the Society.

The dimensions of ordinary briciss produced from this monld (10 inches long, 5 inche屯 wide, and 3 inches deep) vary acconding to the amount of contraction tbat takes place during the diging

[^27] for other reasone is is dealrable to ane stom. + Weale's Rudimentary derios.
and buining. The average rive may be taken at oit to 0 incher long, 44 to 4 inches wide, and 24 inches deep. The depth of a brick need not bear any definite proportion to its length and breadth, but the length must exceed twive the breadth by the thickness of a mortar joint-viz about 4 -inch.

The necemeary qualities of good bricks ara, that they should bo true in their shape, and ring when atruck together; because the absence of the first prevents the poesibility of good work being executed with them, and of the last that they have not been sufficiently burned. The colour of a brick is no index of ite quality. Bricks of an uniform colour add to the good effecf of work, and therefore should be choeen; but thin uniformity may be of any shade. Truly-abaped and sound stocks are the mont generally serviceablo for engineering work; place bricks are those. Which have not been thoronghly burned, and are varthlema.

When bricks are placed together, and nuited by mortar or cement, so se to form walle, piers, or any other erection, it is called bricksoork. The strength of a mase of brickwork, in any form or situation, depends move upon the proper arrangement of the materials forming it than apon the etrength of the materials themselves, if they are at all fit for the purpose of building-that is, if they will not cruch with the weight of the mass above them, and will reaist weather.

Fis. 1.
When two contiguous bricks have a third lying over or against them, so as to cover the joint between them, they form a certain dimension of overlap, and unite their strength, one brick being difficult to remove without the others; this is called bond, and the amount of overlap is the amount of bond; thus from a to b (fig. 1) is half-bond, the overlap being $4 \frac{1}{2}$ inches, or half the length of a brick; from o to d is quarter-bond, the overlap being one-quarter the length of a brick, or 94 inches. Strecthing bond is when tbe longitudinal direction of the bricks fin prallel to the face of the wall, and consequently presents the Thole length of the bricks on the outside. Thus the course f In a atretching course, and the bricks of that row are called atratchers. Heading bond is when the longitudinal direction of the brick makes a right angle with the face of the wall, and presents the ende of the bricks on the outaide, as the course g and the bricks in that course are called headers. The divisional lines of mortar betwean the bricks are called jointe, and the rows of bricks between sach horizontal joint are called courses; thus the apper and lower coursee in fig. 1 are atretching courses, and the middle course is a heading course. The thickness of all brictwork, that is its depth from face to back, is regulated by the dimensions of bricks; thus we have a half-brick wall, or one of $4 \frac{1}{2}$ inches; a one-briok wall, or one of 9 inches; a brick-and--half rall, or one of $13 \frac{1}{2}$ inchen; and so on, advancing by halfbricks. The front of a wall is called the face, and the other ide the book.
The helght of a wall ia also regulated by brick dimensiong, and is often computed by the number of courses. One way of regulating the thicknems of the jointa (a matter of great importance) is to apeaify the number of inches that every four courses shall occupy; thus, supposing every brick to be exactly $9 \frac{1}{2}$ inches deep, and every joint to be $\frac{1}{2}$-inch thick, four coursea would be contained in 11 inches; but unless the bricks be carefully picked, cr rubbed to an uniform size, this nicety cannot be attained in ordinary erections,-but where it is, the work is called gauged work, because all the bricks are worked to a gauge of a certain dimension. In the ordnance works, and the fronts of good houses, four coursen oceupy $11 \frac{1}{4}$ inches in height; and in engtneering work generally, except in mome particular instancen,
four courses usually occupy 19 inches in height, which height thoy ought never to emceed; this is allowing $8 \frac{5}{\text { a }}$ inches for each bricit, and 多-inch for each joint-dimensions amply sufficient to compencate for all defects, either in material or workmanship. In arranging any openings in brickwork, or when proposing to lasert stone, the dimensiong, particularly as to height, must be regulated by that of the courseg, otherwiso bricks will have to be cut.

There are two methods of bonding brickwork-viz., the English and the Flemish; but the latter method is so objectionsble, that it ought never to be employed, for the reasons to be given presently.

English bond in the continuation of one kind of boad throughout the same course or horizontal layer, the courses being alternately all headers and all stretchers, as in fig. 1 . The stretching courses bind the parts of the wall together in the direction of its length, and the heading courses bind them together in the direction of ita thickness, or transversely. In plan, the bricks are seen in half-bond, and in elevation in quarter-bond. It is chiefly on this account that old English bond does not separate at the joints, but when a fracture occurs by the foundation yielding unequally, or from any other cause, it runs indiscriminately through bricks and jointe, or breaks like any other solid body, such as stone of one piece would do. A wall constructed in this manner has, therefore, considerable strength, for the parts of a wall are less liable to neparate the longer the bonde are. The bonds are greatest in the direction of the length of the bricks, for one brick overlapa its neighbour 4 incher, which is the length that must be removed before they can separate without breaking.

Mg. 2.
What is called Flemioh bond condsta in having alternately a header and a stretcher in the same course, as in fig. \&. This mode was introduced, together with other Dutch fashions, by King William III., as may be ascertained by observing brickworI prior and subsequent to that period, 1688. Strength was then sacrificed to a minute difference in the outside appearance, and bricks of two qualities were made for the purpose-a fine brick, often to be rubbed and laid in what is called a close putty Joint, for the exterior, and an inferior coarse brick for interior substance of the wall. Architects of the present day very frequently specify for walls to be faced with malme or other fine brick, the backing to be of inferior kind, that they may obtain a good outaide appearance: but this is obtained at the expense of atrength in the wall. Malm bricks contract leas in drying and burning than do common atock bricka, made from clay without the admixture of chalk; the consequence being, when these two qualities of bricks are thus used in the same wall, a thicker joint at the back than at the face. Mortar joints sbrink by the presaure of the work upon them, eapecially if it be a alow-setting mortar, and the thicker the joint the more eettlement: therefore, a wall with unequal joints at the frunt and back will be in danger of settling out of plumb.

Various achemes have been projected for obviating the defects in working with Flemiah bond, which defects are-first, one or both facea bulging away from the interior substance; secondly, the separation of the wall into two thicknesses along the middie, called spitting, which is the great terror of bricklayers, and occurs more eapecially if the wall is very high or has to anpport great weights. To prevent these evils then: courses are at intervals in the height of the wall set in cement, or iron hooping is laid in the jointa; or diagonal cournes of bricks at certain heights are introduced-but this is a very doubtful cure, because
the diagonal course is not continued to the outside, and the bricks are much mangled where strength is wanted. Others, again, lay all heading courses within tbe outside Flemish bond, as shown in fig. 3; and this is a practice in great repute, making the facework alternately of brick and half-brick in thickness. This, as far as relates to the splitting of the wall, is an effectual preventive; but in curing one evil another is increased, for there is no stretching bond to bind the work together longitudinally; the little that occuru in Flemish bond being too trifing to avail much.

Fle. 8.
There is yet another practical reason why Flemish bond is objectionable. When the Flemish facings occur on both sides of the wall, they furnish no indication of the interior arrangement, they supply no guide to the workman as to the disposition of the vertical joints, for every couree is similar on the outside. The interior of the top course is not seen, on account of being covered with mortar for the bed of the next course above it; and to recollect how every brick was laid beneath, is more than can be expected from men who are dispatching work. The work will, by inadvertance produce continued joints that divide the wall into several thicknesses, when the separation or splitting usually takes place. In the old English bond, a workman cannot lose his way, for the outside of the last course shows him how the next is to be laid. It may be observed, that in the same course there cannot be both heading and stretching bond with complete effect throughout the line of wall, for wherever the atretching bond is crossed by the heading bond, the continuity and effect of stretching bond is destroyed; therefore the mized position of the bricks will not answer, and it often produces a perpendicular joint in the middle of the thickness, dividing the length effectually into two or more walls. The outeide appearance is all that the most strenuous advocates for Flemish bond can advance in its favour: of this, however, opinions are far from being in accord. Thus much has been said about Flemish bond that it may be avoided.

The directions for laying English bond to be given in specifications are-each course to be alternately all headers and all stretchers; every brick in the same course is to be laid in the same paralled direction, and in no case is a brick to be placed with its whole length alongside of another, but to be so situated that the end of one may reach to the middle of the others that lie contiguous to it, except in the outside of the heading courses, when closer bricks necessarily occur at the ends to prevent a continued upright joint in the face-work; quoins, or walls that cross at right angles, will have all the bricks of the same level course in the same parallel direction, which completely bonds the angles. These directions answer for walls of all thicknesses, all that is necessary being to repeat the courses until the proper thickness is attained.

Pig. 4.
Bricks on the same course have half-bond with one another, while the bricks of the upper and lower courses have only quarter-bond with those above or below them; this is obtained by inserting closer bricks at the ends of each heading course, and these may be quarter bricks or threequarter bricks; the first are termed gueen, and the second king, closers. Upon the nicety with which these closers are adjusted depends the bond of the entire work; and to make sure of the closers being thus properly adjusted, the best workmen only should be employed
to raise the quoins, which consist of a certain number of courses racked back above the intermediate portion, as in fig. 4. The quoins give also line to the work. The closers a, b, c, d, are the bricks that give the longitudinal bond, by causing the second header of the conrse to lie half-way over the joint between the first and second stretcher, which it would not do if no closer were inserted. The angle or quoin of tbe wall is made perfectly vertical (or plumb) by a plumb-rule, and the courses are worked by a guage-rod, which is a rod marked into courses occupying the space specified-viz., 4 to $11,11 \frac{1}{6}$, or 19 inches. These quoins are elevated at each ond of the wall, or, if the wall be very long, at distances apart varying from 30 feet to 40 feet; a line is then stretched on the first horizontal joint between the two quoins, to which the bricklayers work, and make the line of each course perfectly horizontal.

The vertical range of closer bricks are technically called perpends, and in specifications it is frequently thought advisable to direct that "the perpends are to be truly kept;" for When they are not, the longitudinal bond cannot be perfeet. With every care, it is always requisite to be watohful, for bricks are not exactly of the same length - they may overrun, or underron their position in bond; the vertical joints may alco vary a little in thickness, therefore a three-quarter or a cut brick has often to be inserted to gain anything that has been lost or to keep back joints that have overrun. If the face and flank of a wall be not at right angles, the quoin becomes externally a "equint," and internally a "bird"s mouth" or "splay," for both of which bricks have to be cut.

In building what is termed "compass" work-that is, work circular in plan, raised quoins would be useless, as the line would form a chord to the arc of the wall, and could not be worked to; therefore the workman has to use his gauge-rod constantly to get his courseg, and a trammel or template for the sweep of the wall. For circular work of small radius, "comb pass" bricke, moulded to the curve, are used.
The mortar joints for the beds, ends, and sides of brick: should be laid on with the trowal carefully; to ase technical language, "the work must be fushed-up solid with mortar." The general way of laying mortar is to spread the bed, scrape off with the trowel that which exudes from the face-joint when the brick is pressed into its place, and then wipe the trowel against the face-edge of the brick, leaving the remaining joints to be filled-in with the mortar that is spread for the next bed, or with grout, which is mortar made so thin as to run into the joints. I believe grouting to be utterly worthless, and that there is no substitute for flushing-up. When carrying up work, do not allow one portion to be raised above another more than 3 feet or 4 feet, as the weight upon the joints of any portion so raised will condense them more than those in the lower parta, which should be avoided;-not that the compression amounts to much in moderate work, but the principle should be carried out. If high chimney-shafts have to be built alongside of ordinary walls, they must not be bonded with the wall, but left to settle independently. If high buildings are bonded with lower ones, it is prudent to allow the work to settle for some days at one uniform height before carrying up the rest.
It is a common practice to leave toothings in the ends of walls, if it is the intention at any future time to erect walls in continuation of them, as will be observed in unfinished rows of houses. This is a bad practice, for the settlement of the greed work will almost always break the bricks placed in the toothings of the old work. Junctions by indent should be subatituted, which is a half-brick groove left in the end of the wall from top to bottom; the new work projected into this groove will settle without damage.
"Voids must be over voids"-that is, all openings in walls must be over one another, so that the piers which separate them may be carried up of an uniform width from the fonndation; if this were not the case, the bases of the upper piers would be over voids, or partially so, causing certain inequality in the settlement of the work.
Beneath voids, or beneath thinner work between piars, inverted arches, or "invertg" should be turned, as in fig. 5 , so that the pressure may be distributed equally over the foundation, and wlso that the wettlement of the piers may be identical with that of the thinner work. It is a good custom to build these inverts in cement. The radius of curvature is usually equal to the width of the opening-i.e., the chord and two radif forming an isosceles triangle, at in the figure.

In turning an arch between two piers, or over an opening
shove which weight is imponed，the skew－backs，or apringing $a b$ ，fig．s ，should be formed by corbelling out the courses of brickwork from the line $c d$ ，so that the back of the arch may be disengaged from the internal upright of the wall．This is a cuntom not much followed，but it would be well if it were． The usual method is to spring the arch from d ；but the pier above it has then a wedge－shaped base，which is not calculated to resist all the pressure due to the area of the work．When any stone，as at d ，is bedded in a wall，the courses at the back ahould be set in cement，to prevent unequal settlement．

Pig． 6.
To give the bottom of a wall grenter spread or surface in contact with its foundation，footings are provided，as at ef fige． 5 and 6 ．The necessary projection of theme footings will be given in the notes on＂Foundations；＂here it is simply neces－ sary to state that each course should not project more than quarter－brick beyond that above it．The bases of all walls must be at right angles with their faces and the joints carried up parallel to them．In＂battering＂walls，or those whose faces lean from the vertical，this must be carefully followed，to pre－ vent any tendency in the joints to slide．The amount of batter in fig． 6 is one in ten，which means 1 font horizontal to 10 feet vertical；but this ratio may vary according to circumstances． The strength of a wall to resiat horizontal or inclined pres－ sure depends upon its base，other dimensions being constant； if，therefore，counterforts or buttresses are built at intervals against a wall，as in fig．6，great additional stability may be attained with comparatively little additional material．In the notes on＂Retaining Walls，＂a practical rule will be given for the dimensions of battering walls and counterforts．

When a timber plate has to be bedded，it must never be placed within the substance of a wall，as by decaying it will cause the superincumbent brickwork to settle；but they should be laid on＂salient courses，＂corbelled out to the proper projec－ tion，as ingh，fig． 5 ；these courses should be all headers in cement，the remaining thickness of the wall being also in cement．Two courses of bricks in cement，corbelled out $4 \frac{1}{8}$ inches，as in the aketch，will give way under a load of 94 cwt ．per foot run；safe load stated to be 12 cwt．per foot run．＂To give bond to work beyond that possible to be got by the mere overlapping of the bricks，hoop－iron along three or four courses
 ahould be laid in at intervals of from 10 feet to 15 feet in height；and if，in addition，these courses are set in cement，the＂string＂bond will be more perfect．
To span openings which require to have a straight soffit，as in house huilding，the flat arch is employed，as in fig．7，which is a beam of brickwork formed with bricks radiating to a cen－ tre，so that it may contain an arch of 9 －inch work．It is too often the practice to build false arches for this purpose，as in
fig．8，which，having no key，do not possess any of the proper－ ties of the arch，and are worthless；if they stand，their sta－ bility is due to the adhesion of the mortar．

The pressure that good bricke will reaist is very considerable； well－burnt stocks may be safely intrusted with 80 tons per foot super．，but they must be perfect bricks．Place bricks will not stand probably mure than 8 tons per foot super．I have remarked in a previous chapter that bricks should be weet when they are laid，otherwise they will absorb the moisture from the mortar，and prevent its proper induration．

As to the quantity of material and labour required for any brickwork．Brickwork of considerable superficial area，and of comparatively little thickness，as in house walls，is messured by the rod of $16 \frac{1}{2}$ feet square，making 972 feet super，the thickness being reduced to $1 \frac{1}{1}$ brick as a standard．The rod therefore contains 306 cubic feet．Find the area of wall in feet，multiply this by the factor of the thickness；the result，divided by 872 ， will be the number of rods．The factors are the constant ratios which the number of bricks in the thickness of a wall bear to $1 \frac{1}{2}$ brick，and are obtained by dividing that thickness in bricks by 1⿳亠丷厂犬．Thus，suppose a wall to be 4 bricks thick， $4 \div 1 \frac{1}{4}=9 \cdot 66$ ，which is the factor by which the area of the wail is multiplied to reduce it to the standard thickness．

Brickwork in mass，as in bridges，retaining walls，\＆cc．，is measured by the cubic yard．The heights，lengths，nnd thick－ nesses are taken in feet and inches；these dimensions multiplied together，and divided by 97 ，will give the contents in cubic yards．A rod of reduced brick work is equal to $11 \frac{1}{\mathrm{~g}}$ cubic yards． A rod of brickwork laid to a 18 －inch gauge－i．e．，four courses to 12 inchee high，requires 4850 stock bricks．To a gauge of $11 \frac{1}{4}$ inches， 4550 stocks are required．But in buildings con－ taining flues and bond timbers，which are not deducted in mea－ suring， 4300 stocks are sufficient for 1 rod．

One rod of brickwork requires 71 cubic feet of mortar，or $1 \frac{1}{2}$ cube yard of chalk lime and 3 loads of sand；or 1 cubic yard of stone lime and $3 \frac{1}{2}$ luads of sand；or 36 bushels of cement and an equal quantity of sand． 27 cuhic feet of mortar requires 9 bushels of lime and 1 load or 97 cubic feet of sand．One rod of brickwork weighs on an average 15 tons．These quantities divided by $11 \frac{1}{s}$ will give the quantities of material required for 1 cubic yard．A bricklayer，with the asgistance of his labourer， will lay 1000 bricks in ten hours，in straightforward work．

EXPANSIVE ACTION OF STEAM．

Sle－With regard to Mr．Rankine＇s remarks in your last number，page 191，I am aware，with him，that steam does not expand according to Boyle＇s law unless it be maintained at a uniform temperature during expansion．This consideration， however，does not affect the comparison I had in view in the table quoted by him；for，eo far as my experience of the action of steam in well－heated locomotive－cylinders goes， 1 have found it to expand sensibly according to the law of Boyle，which shows that，in fact，the steam really is in the favourable posi－ tion required by him；and bears out substantially what I wanted to show－that in well－placed and well－cunditioned locomotive－ cylinders，the steam would work to much greater advantage than it now does，if every drawback were removed．
29，Buceleuch－place，Edinburgh，
D．K．Clare．

RULES FOR SOLID MENSURATION.*

By Eluwood Morris, C.E., Pittsburg, U. 8.

The leading rules of solid mensuration laid down in the books, separate rules being given for each solid, are the following, every one of which may be superseded by the "prismoidal formula":-To find the solldity of, 1 , a cube; 8 , a parallelopipedon; 3 cylinders and prisms; 4, cones and pyramids; 5, a frustum of cone; 6, a frustum of pyramid; 7, a wedge; 8, a prismoid; 9, a sphere.
A number of ether special rules are given for the solidity of spheroids, paraboloids, and other solids of revolution, their spindles and segments, to many of which our formula is also applicable; but for the purposes of this communication, it may be sufficient to show, by actual figures, working out examples of the most unpromising cases, the applicability of the "prismoidal formula to compute the solidity of a cone, a wedge, a sphere, and a hemisphere. I may here mention that its accurate application to spheres and spheroids (solids of curved surface) has excited the surprise of many mathematicians, who were prepared to admit its fitness for the mensuration of right-lined or plane-bouuded solids.

By Breclaz Roless.

To finat the Solditity of a Cone:-
Robs-Multply the area of the base by the belght. and one-third of the product will be the eolidity.

Given-A cone having diameter at the base of 2 , und st height of 6. Query The colidity?
$2 \times 2 \times 7864=8 \cdot 1416$
Mid. Diam.
$=1$.
Solldity $=6.2837$

To fand the Solidity of a Wadge:-
Row. - To the length of the edge ard Aow.- To the length of the edge ard this sum by the helsht of the wedge, and thic sum by the helpht of the wedge, and then by the breadth of the bacr: one isth of the product will be the solidity Gown-A wedge; length of edge 60 helght 100 . Query: The eolldity? Length of edge : \quad : $\times 2=00$ Twiee back * $\quad \$ 0 \times 2=40^{\circ}$

By Prismoidal Formura.
To find the Solidity of a Cone:-
Add into one sum the arras of the two onds, and fone times the middle section parallel to them; then this sum multiplied by one-dixth of the helotht will air the colldity he molidity
dlameter of the bace bolot $?$ and of the mold-eection 1 we heve, by primoide formals, Bace $\quad \begin{array}{r}2 \times 2 \times 784 \\ =3.1416\end{array}$ 4 tlmen mid-sec. $1 \times 1 \times 7854 \times 4=3.1410$ ${ }_{6}^{6}=\frac{1}{6} \mathrm{ht} .=1 \cdot \times 6.2282$

Solldty $=0.2682$
To find tho Solldity of a Fedge:-
Ares of base . . $20 \times 10=200$

Top
$\frac{100}{6}=10,7 \times \overline{1,014}$
Solldity $=16,6664$

For the sake of illutration, it is not necemary to go may further. I think it will, on examination, be admitted that the "prismoidal formula" possesses some curious and useful pruperties; and that its adoption in the echools in teaching solid mensuration would alleviate very materially the task of the scholar.

A NEW MODE OF MEASURING HIGE TEMPERATURES.

By John Wilson, of Bridgewater Works, St. Helen's

[Paper read at the Institution of Mechanical Engineers.]
Seyrbal methods have been proposed for the measurement of temperatures beyond the range of the Mercurial Thermometer.

Wedgroood's Pyrometer was founded on the property which clay possesses of contracting at high temperatures. This effect, which in the first instance is due to the dissipation of the water, but afterwards to the partial vitrification occurring, which tends to bring the particles of clay into nearer proximity, may in some measure be regarded as an indication of the temperature which occasioned the contraction. The apparatus consisted of a metallic groove, 24 inches long, the sides of which converged, being $\frac{1}{2}$-inch wide above and finch below. The clay was made up into little cylinders or truncated cones, which fitted the commencement of the groove after having been heated to redness; and their subsequent contraction by heat was determined by allowing them to alide from the top of the groove downwards till they arrived at a part of it through which they could not pass. Wedgwood divided the whole length of the groove into 240 degreeß, each of which he supposed equal to 130° of Fahrenheit, and he fixed the sero of fis gcale at the 1077th degree of Fahrenheit's thermometer.
"Wedgwood's pyrometer is no longer employed by scientific men, because its indications cannot be relied on. Every observation requires a separate piece of clay, and the experimenter is never sure that the contraction of the second piece from the same heat will be exactly similar to that of the first, especially as it is difficult to procure specimens of the earth the composition of which is in every respect the same. Hence also the different results ubtained by different observers; Guyton de Morveau making each degree to correspond to $62 \frac{10}{2}$ of Fahrenheit, instead of 130° as stated by Wedgwood."-Turner's Che mistry.

Daniell's Pyrometer.-In the pyrometer invented by the late Professor Daniell, the temperature is measured by the expansion of an iron bar inclosed in a case. This case consists of a bar of blacklead earthenware, in which is drilled a bole, frinch in diameter, and $7 \frac{1}{8}$ inches deep. Into this hole a cylindrical bar of platinum or soft iron, of nearly the same diameter, and $6 \frac{1}{d}$ inches long, is introduced 80 as to rest against the solid end of the hole; and upon the outer or free end of the metallic bar rests a cylindrical piece of porcelain called the index, $1 \frac{1}{4}$ inch long, which is kept firmly fired in its place by a strap of platinum and a little wedge of earthenware. The object of thia arrangement is, that when the instrument is heated, the metal, expanding at each temperature more than the earthenware case, presses forward the index, which, in consequence of the strap and wedge, remains in the place to which it had been forced when the instrument is removed from the fire and cooled. There is a scale, afterwards attached, for measuring the precise extent to which the inder has been pushed forward by the metallic bar; and it thus indicates the apparent elongation of the bar, -that is, the difference between its elongation and that of the blacklead case which contains it.
"For its indications to be correct (namely, that equal dile tations should indicate equal increments of heat)-it is neceasary that the bar and the case ahould expand uniformly, or both vary at the same rate. But as regards the blacklead case, its total expansion is so very small that any want of uniformity at the intermediate points cannot be detected. As for the expansions of the metallic bar, thene are not exactly uniform, bat still they afford a good practical index of the relative intensity of different fires, and would prove an exact measure if the precise rate of expansion could be determined."-Turnof's Chemistry.
Air Pyrometer.-In some cases the measurement of high temperatures has been attempted by means of a hollow sphere of platinum, fitted with an escape-tube; then the hotter the fire to

$$
\begin{aligned}
& \text { By Prismoidal fozyoza. } \\
& \text { To find the Soildily of a Aphere:- } \\
& \text { Toy } \quad=0 \\
& 4 \text { times mid pec. } \\
& \text { Base } . \quad \times 12 \times 7354 \times 4=452 \cdot 3804 \\
& \begin{array}{lr}
\overline{1} \mathrm{ht.}=\frac{19}{6} & \begin{array}{r}
452 \cdot 3974 \\
=2
\end{array} \\
\hline
\end{array} \\
& \text { Bolldity }=9044 ; 808 \\
& \text { To gad the solldity of a Hooniophers:- } \\
& \text { Diameter of mild.section .. } 10392
\end{aligned}
$$

> Area of base
> 4 timen mild-pec.
> Top $10.892 \times 10.891 \times 785.4 \times 4=839-272$
> Top • . . $\quad=0$
> $\frac{1}{\mathrm{hl}}=\mathrm{c}^{452 \cdot 31: 9} \mathrm{u}$
> Solidity 452-369
> The diference in the last dectmals it owing to too few dectmal placis haring bern used in the compatation.

To find the Solldity of a Eomalophore:-
Take the onme dimensione as in the sphere above, and we have-
2)904.78

Solldity $=\mathbf{4 5 2 \cdot 8 9}$
which the platinum vessel is exposed the greater is the quantity of air driven ont of it; and this is received over water and measured. In cases where this instrument can be conveniently applied, it is capable of yielding very accurate results. (See experiments of Pouillet, tome 1, p. 351, in Elemens de Physique at de Mettorologie.)

New Pyrometer.-The following is the method employed by the anthor of the present paper to measure high temperatures. Take a given weight of platinum, and expose it for a few minutee to the fire, the temperature of which is to be measured, and then plunge it into a vessel containing water of a determined weight and temperature, and after the heat has been communicated to the water by heated platinum, mark the temperature which the water has attained: and from this is eatimated the temperature to which the platinum had been subjected. Thus, if the piece of platinum employed be 1000 grains, and the water into which it is plunged be 2000 grains, and its temperature 60°, should the heated platinum when dropped into the water raise its temperature to 90°, then $90^{\circ}-60^{\circ}=30^{\circ}$; which, multiplied by g (because the water is twice the weight of the platinum), gives 60°, that an equal weight of water would have been raised. Again, should the water in another case gain 40°, then $40^{\circ} \times 2=80^{\circ}$, denotes the temperature as measured by the pyrometer. To convert the degrees of this instrument into degrees of Fahrenheit, we must multiply by $31-25$, or $31 \frac{1}{4}$. Thus, $80^{\circ} \times 31 \frac{1}{4}$, would give 2500° of Fahrenheit. And $60^{\circ} \times 31 \frac{1}{4}=1875^{\circ}$. The multiplier 31.25 is the number expressing the specific heat of water as compared with that of platinum, the latter being regarded as 1.

In order to obtain very accurate results by this method, precautions similar to those required in determining the specific heat of bodies must be taken-that is, it is necessary to guard against the dissipation of heat by conduction and radiation. The apparatus used by the author is shown in the engravings, and consists of a polished tinned-iron vessel, of a cylindrical form, 3 inches deep and 2 inches in diameter; this is placed within a concentric cylinder, separated from the inclosed vessel about $\frac{1}{4}$-inch. By this means thers is but little heat lost during the experiment, either by radiation or conduction. At the commencement of the experiments, the author imagined it would be necessary to employ a considerable proportion of water, and therefore took twenty-five times the weight of the platinam; but he found that the temperature gained by the water, even in cases of very high heats, did not exceed 4° or 5°, and an error of 1°, when converted into degrees of Fahrenheit, amounted to 400°. To obtain results within much narrower limits of error, it became obvious a much smaller proportion of water should be employed; and ultimately it was found that double the weight of water in proportion to the platinum was in all cases sufficient.
There is no appreciable loss of heat from the evaporation of steam when the hot platinum is plunged into water;-there is probably no actual contact with the water until the platinum is tairly at the bottom of the water. It is in fact the converse of dropping water on a plate of platinum or iron atrongly heated, in which case the water, instead of being suddenly dissipated as steam, assumes the spheroidal form, and runs about over the plate witbout coming in contact with the heated surface. It is only when the temperature of the metal becomes much reduced that the water is rapidly converted into vapour. But whatever may be thought of this theory of contact, the fact is certain, that there is no neceesity to increase the depth of the vessel of

Water to guard against the loss of hast by evaporation, or the escape of any bubbles of steam.

In ascertaining temperatures by this pyrometer, a correction has to be made for the portion of the total heat that is absorbed by-lst, the mercury of the thermometer in the water; ind; the glass bulb and stem of the thermometer; 3rd, the iron vessel containing the water; 4th, the heat retained by the piece of platinum. The portion of the total heat that is absorbed by these several bodies, compared to the portion received by the water, will be in proportion to their several weights, and the specific heat of each compared with water.

Mercury	200 graine \times Equth specific beat $=7$			
Glast. .	35 n	x fth		6
Iron	658 "	\times dth		73
Platinum	1000 "	$x \frac{1}{85} \mathrm{nd}$	+	31
Total				

Therefore the effect of these bodies is equivalent to the addition of 117 grains to the 2000 grains of water, or $\frac{1}{17}$ th has to be added as a correction to all the temperatures obtained by this instrument; or in other words, the multiplier must be increased from 314 to 38 in this instrument, and in all similar ones where the weights of the mercury and glass of the thermometer, and of the iron vessel, are the same as atated above.
The following are some of the results obtained by this new pyrometer. In the experiments to which they refer, the melting points were ascertained by placing about 2 oz. of the metal in a cupel placed by the side of another cupel containing the piece of platinum;-the moment that the metal became fuid, the platinum was withdrawn, and the temperature meagured as before described. It is necessary to avoid contact between the platinum and the melted body, for in some cases an alloy would be formed, and in others a portion of the melted substance would adhere to the platinum and affect the results; the closest proximity is requisite, but contact must be avoided. In lifting the piece of platinum, a pair of tongs is employed, heated to redness, to prevent any abstraction of heat during the momentary contact.

As the piece of platinum is the most expensive part of the apparatus, it is proposed that for practical purposes generally, a small piece of baked Stourbridge clay be substituted for the platinum; and the author has found by experiment, that a piece of Stourbridge clay, 200 grains in weight, when heated to the melting point of silver, and then plunged into the tinned vessel containing 8000 grains of water, raises the temperature of the water 41°. Now if 1890° Fahrenheit (the melting point of silver found before) be divided by 41, we obtain 46° as the number corresponding to 1° of this pyrometer; and 46 will therefore be the correct multiplier, and no corrections are required for any heat abstracted by the thermometer, the tinned vessel, or the piece of clay. The temperature of all sorts of furnaces and flues of steam-engines, \&c., may be readily ascertained by means of the piece of Stourbridge clay. He had not had an opportunity at present of making experiments on the temperature of furnaces, $\& c$., but hoped to do so shortly. He proposed to employ the pieces of Stourbridge clay for this purpose, and to carry the piece of clay in a small bowl or hollow at the end of an iron rod, which could be readily introduced into the flue through a small hole in the side, and after being left there as long as required to insure the full temperature being attained, the iron rod could be withdrawn and the piece of clay dropped instantly into the vessel of water, without being touched by any other body. He had not found any diftculty in using the pieces of clay, and had used the same piece as many as eight times without any change, and he expected it would do for a hundred times. It was only requisite to obtain ordinary pure clay, and to have the pieces well fired. The pieces should not exceed $\frac{1}{2}$-inch in thickness, to insure the clay
being uniformly heated throughout, as it was so slow a conductor of heat.

The results obtained by this pyrometer conld not be regarded as absolutely correct, the specific heat of platinum being assumed constant at all temperatures, which is not strictly true. Nevertheless, these results are quite as near approximation to perfect accuracy as those given by the mercurial thermometer, and all other instrumenta founded on the principle of expansion.

ON THE ADJUSTMENT OF THE TRANSIT CIRCLE AND EQUATORIAL.

By John Drew, F.R.A.S., Ph. D. University of Bale.

[Read before the Royal Astronomical Society, December 10th, 1851, and published with the sanction of the Council.]
The following paper, on tbe Adjustment of the Transit Circle and Equatorial, has been published under the impression that a succinct explanation of the methods adopted might not be without its use to those who have no immediate opportunities of consulting others skilled in practical aatronomy, or who have not at hand the "Greenwich Observations" or the volumes of the "Memoirs" of the Royal Astronomical Society; to which, in combination with the valuable papers of the Rev. R. Sheepshanks, and his readiness in obliging me with answers to my inquiries from time to time, I have been much indebted.

The transit circle in use at my observatory is a very fine one, by Jones, late of Charing-cross. The teleacope has an objectglass of $3 \frac{1}{2}$ inches aperture, with a focal length of $3 \frac{1}{2}$ feet, which will show the companion of Polaris on the unillumined field. As the weight of the instrument is very great, and the transit room small, and as, moreover, the mounting of the micrometer microscropes interferes, I have not been able to reverse it, but have adopted such methods in its rectification as have, 1 apprehend, answered every purpose of that cumbrous process. The pivots of the axis (which is 30 inches across) rest on agate bearings carefully protected from dust; their supports are based on gtone piera, and the three micrometer microscopes are attached to the weatern pier on a triangle of stone, the base of which is hown out of the solid block which forms the pier, and the two sides from another. Though the circle had been made fifteen years before it came into my possession, it had never been unpacked, and some contrivance was necessary before I could conveniently put the parts together. I apprehend, however, that this method of mounting the microscopes is superior to metal arms, which are subject to varying expansion from change of temperature. Two small circles, 3 inches in diameter, at the eye-ond of the telescope serve for finding the object by its zenith distance. In the focus of the object-glass are one fired horizontal wire and five vertical wires; parallel to the fixed wire another is carried by a micrometer-screw with a divided head. I have found the instrument preserve its adjustments steadily, and discharge its duties most faithfully, as the observations will show.

As, from the inclosed position of my observatory, I could not avail myself of any distant object of reference, I substituted a collimating telescope of 90 inches focal length, with an object glass of $1 \cdot 6$ inch in diameter, which I have mounted on a solid pier of brickwork, 2 ft .3 in . by 1 ft .3 in ., laid in cement. It is built outside of the observatory to the north, and is carried down to the gravel four feet below the surface; being of such a height that, when the collimating telescope and that of the transit circle are both horizontal, their axes shall be in a straight line. It is protected from the weather by a moveable covering, in which are two small shutters opening north and south; when the south shutter is down, and the north (which opens downward) is depressed so as to form an angle of 45° with the horizou, the inside of it, being whitened, reflects sufficient light from the sky to render the crose wires of the collimator distinctly visible: at night they are easily illuminated.

I cannot say that the horizontal point ascertained by this collimator is trustworthy, although determined with a good level, 16 inches in length, to the amount of several seconds: the value of the collimator, however, as a point of reference is very great. The first use to which it was applied was in adjusting the central transit-wire to the vertical plane. To facilitate this adjustment the whole aystem of wires, including the eyepiece, has a small movement regulated by two antagonist screws on the exterior of the instrument. By making the central wire
coincide with the cross of the collimator throughout the whole field of view, after the axis had been carefully levelled, this adjustment was completed.

To determine the value of the ron of the micrometer-acrew carrying the moveable horizontal wire in the focus, the wire wis brought on the cross of the collimator, and the arc of the circle read off by the three micrometer miaroscopes; the wire whe then moved through 90 revolutions, and again brought upon the crosg-wires by the slow movement of the transit circle, and tbe reading again recorded. Consistent reaults were obtained on eeveral occasions.

To determine the distances of the wires, I make use of the wire-micrometer, atf ${ }^{-1}$ to a 5 -feet telescope. By bringint the axis of the tel- 4 ch for that purpose mast be div-mounted-in a
distinct view of the wiree when the two object-glasees are directed towards each other: the value of the run of the micrometer being known, the dintances are measured with case and certainty. Thus: Oct. 1, 1851, calling the wires $1,8,3,4,5$, advancing towards the illuminated end of the aris, or from west to east looking north, the following measures were taken-each revolution of the micrometer-acrew being equal to $\mathbf{S 8}^{\prime \prime}$:-

$$
\begin{aligned}
& \text { From } 1 \text { to } 3=578^{n \cdot} \cdot 366=380 \cdot 8 \\
& \text { From } 8 \text { to } 3=989^{n+41}=19 \cdot \cdot 29 \\
& \text { From } 3 \text { to } 4=989^{n \cdot 41}=19 \cdot \cdot 99 \\
& \text { From } 3 \text { to } 5=578^{n} .82=38 \cdot .58
\end{aligned}
$$

By nine complete transits, and five incomplete, of 8 Urse Minoris, the times of passing across the wires were,
1 to $2=324 \operatorname{sen}^{-6} ; 2$ to $3=325^{\circ} \cdot 7 ; 9$ to $4=326^{n} 6 ; 4$ to $5=926^{\circ} \cdot 5$, Which, multiplied by the cosine of the atar's declination, give for the equatorial intervals of the wires,
1 to $\mathrm{g}=190 \cdot 95 ; 2$ to $3=10 \cdot 91 ; 3$ to $4=190 \cdot 37$; 4 to $\delta=19 \cdot 37$.
To ascertain the reduction to the central wire of the mean derived from the transits over the five wires, -

As in neither case the difference amounts to a second of space, and as I put moat confidence in the distances measured micrometrically, I have applied no correction to reduce the mean of all the wires to the central wire.

The telescope of the transit circle is provided with an eyepiece formed of a single lens; immediately underneath the lens is a perforated mirror, moving on an axis adjustable outside; an aperture at the aide of the tube admits the light, which, being reflected down the axis of the telescope when in a vertical position, is again reflected from the surface of mercury: by this contrivance we see the direct image of the wires chrough the aperture in the mirror, and their reflected image In the mercury at the aame time. A mirror outside of the tube is 80 edjusted as to reflect the light of the sky, which I much prefer to the lamp which the maker provided for the purpose of illumination. Now, on the gupposition that the crose-level will indicate any deviation of the axis from horizontality, I have here the means of determining my collimation error without reversion. I first leval carefully, so as to insure no deviation. I find, now that the foundation of the piers which were erected three years since is settled, that when once the axis is horizontal, it is not liable to derangement: thus, August 15th, 1851, the following level readings were taken:-

Weat raedinger 19	Eat readlag. 34 direct
35	18 reversed
19	34 direct
88	19 reversed
19	33 direct
83	19 reversed
158	157

Now, $188-157 \div 12$, the number of readings, $=$ in of a division $=0^{\prime \prime}$ a.
August ${ }^{2} \mathrm{Fi}$ d, the readinga showed no deviation:

95	81 direot
81	35 reversed

Nor did thoee of September 18th :

$\mathbf{3 2 - 9}$	98 direct
28	$32 \cdot 2$ reversed

Preauming now that the axis is horizontal, I have recourse to obeervation by reflection; and if the image of the central vertical wire does not eoincide with the wire seen by direct vision, I move the wire by the collimating-acrew, and bring the wire, seen directly, over its image seen by reflection: thus, I apprehend, the error of collimation is corrected. This was done Auguat 23rd, 1851, and sabeequent observations ahowed the correctness of the result.
I bave endeavoured to determine the collimation error with
two collimating telescopes, placed horisontally, one north and the other south of the trangit telescope, in the following manner. If the circle could be raised (after having bisected the cross of one collimator) so as for the cromes of the two collimators to intersect each other, we should have two points exactly 180° distant from each other, meanured on the plane of the horizon. On restoring the instrument to the Y's, there would be no error of collimation should the central wire bisect the northern cross, and almo, when the instrument was turned half-way round, the southern. As I cannot conveniontly displace my circle, I removed the object-glass and eye-piece, after producing coincidence with the vertical wire and the croes of the northern collimator; I then brought the crosses of the two collimators together, by adjusting the southern to the northern through the axis. Restoring the object-glase and eye-piece to their places, and bringing the central wire on the northern cross, I turned the instrument on the southern, and concluded that if it covered the bisection of the crose-wires, there would be no collimation orror; and that if it did not 1 must repeat the operation till this end was attained. In theory I believe I am right; but I apprehend my failure must have arisen from the sonthern collimator having moved in the interval, as it was insecurely mounted: the plan I believe to be worth a trial with both collimators mounted on stone piers.

Now, on the supposition that the collimation error has been eliminated (and the collimation adjustment is not liable to derangement), I can always rectify my level error by reflection, am is practised at Greenwich; for if the direct and reflected images of the central wire do not on any uccasion coincide, they may be made to do to by the inclination-ecrew.

As, however, it is of consequence to be able to ascertain the inclination of the axis, for the application of the correction for that error should any be discovered after the completion of a series of observations, I have ascertained the value of the divisions of the crose-level, which, though professing to be seconds of arc, are not so in reality. For this purpose the level was strapped to the transit-circle, and the bubble moved through about forty divimions; the arc through which the circle had moved (noted by the crome-wires of the collimator) having been read off, supplied the proportion between thome divisions and seconds of arc. Observations at various times have been consistent. The following were taken September 30th, 1851; tempersture 56°.

$$
\begin{aligned}
& 38 \text { divisions }=88^{\prime \prime} \cdot 66 \quad \therefore 1 \text { division }=\mathbf{q}^{r \prime q} \\
& 37 \text { divisions }=80^{\prime \prime} \cdot \mathbf{8 7} \quad \because 1 \text { division }=\mathbf{q}^{\prime \prime} \cdot 17 \\
& 42 \text { divisions }=90^{\prime \prime} \cdot 71 \quad \because \quad 1 \text { division }=\boldsymbol{q}^{\prime} \cdot 16
\end{aligned}
$$

Now, suppose the level readings to be as they were June sth, 1851-viz.:

$\begin{aligned} & \text { Weat. } \\ & 45 \end{aligned}$	$\stackrel{\text { Eest. }}{18}$
17	48
40	28
20	48
188	128
	128
$\begin{aligned} & \text { Diffe } \\ & \text { No } \end{aligned}$	$\frac{6}{8}$

they would indicate that the east end was higher than the weat by $1^{\prime \prime} \cdot 65$, and all the transits of that day must be corrected by multiplying the factor of inclination by $1^{\prime \prime} \cdot 65$, and applying the product with the sign - above the pole, + below, to the times of observation. The factor of inclination is found by the formula-

cor. senith distance of star
 15 oin. north polar distance

which, multiplied by the seconds of arc of inclination, will give the time at which the transit occurred over the true meridian, cupposing the errors of collimation and azimuth to have been corrected.

The factors for collimation, inclination, and azimuth for the Greenwich stars, given in the "Greenwich Ohservations," are calculated for the latitude $51^{\circ} 98^{\prime}$ north, but will serve for any latitude not difforing greatly from that. In the correction for collimation, the error is supposed to be east; for level, the weat end of the axis is considered the higher, therefors the deviation is east; and the acimnthal deviation is assumed to be east looking eouth: if either of these errors is in the con-
trary direction, the sign must be changed. To nse the table: haring found the deviation in seconds of arc, multiply the tabular factor by it, and apply the result to the observed time of transit with ite proper sign. A full explanation of the principles on which these corrections are based will be found in my 'Manual of Astronomy,' of which a mecond edition will shortly appear.

The only correction at this stage of proceeding, on which no matisfactory determination has been arrived at, is the relstive sizes of the pivots of the axis; the agreement of the obeervations will show whether an inequality exists to such an extent as to affect the results. It is true that this element may be determined, in the case of amall instruments, by reversion; but 1 apprehend it admits of a question whether, after reversing an instrument weighing $1 \frac{1}{4}$ cwt., it can be lowered into Its place no gently as not to affect the inclination of the axis; yet, anless this important end can be complately insured, the eame uncertainty vill still exist.
The determination of the aximuthal variation now remains to be ascertained. If the clock has a fair rate, the transit of Polaris above, and again below the pole, will supply the requisite data.
On June 4th? 1851, at 8 $8^{14} \mathbf{~}^{\mathrm{m}}$ a.m., and in the evening of that day, the following trangits were talren:-

Now, the right ascension of Polaris had increased 0×37 in the interval; the time, therefore, between the first and second transit should have been $18^{\circ} 0^{m} 0^{\circ} \cdot 37$; and the gain of the clock was $0 \cdot 0.5$. The last transit, corrected for clock error, will therefore be-

Error doe to azimuthal deviation $=0 \begin{array}{lll}0 & 1.47\end{array}$
From this we obeerve that the western portion of the star's diurnal arc was too small, or that the supposed meridian was west of the true (louking north). Let $a=$ the amount in seconds of arc of the horizontal deviation; find the factors for azimuth of Polaris above and below the pole by the formula sin. zenith distance

$$
\overline{15} \sin . \text { north polar distance' }
$$

which, for Southampton, will be 1.564 and 1.668 ; then

$$
a\left(1.56+1^{\cdot} 67\right)=1 \cdot 47, \text { or } a=0^{n} \cdot 45
$$

As Polaris, however, is not always to be thus conveniently taken, we must have recourse to other stars, such as δ Urseo Minoris. Having eliminated the collimation error and levelled with care, on August 15th, 1851, the following trangit of that star was taken with β Draconis and Capella sub polo.

In this case the clock error is found from β Draconis. The azimuthal factor, from the above formula, for of Urso Minoris is equal to 656 . Putting a for azimuthal deviation in meconds of $\operatorname{arc}\left(656 a=5 \cdot 9\right.$, or $a=7^{\prime \prime} \cdot 9$): the aximuthal factor for Capella is -095 , and its transit corrected for this error brings out a tolerably fair and consistent result.

The sureat method, however, of detecting the azimuthal error is to take the transit of 8 Urse Minoris, and of 51 Cephei, one above and the other below the pole, which I am able to acoomplish over all the wires by passing from one star to the otherd The following observations of September \$2nd, 1851, show that the instrument, as a transit simply, is not far from correet adjustment, and reward me for hours of lebour extending through many months:-

Wise.	7 Dreconle. h. m. \quad.	8 Uraw Mlowis h. m. B^{2}	Whre.	51 Cephed a, p. h. m. \quad.
1	13	1033	5	1633
2	44	1557	4	2339
3	$15 \cdot 1$	2123	3	3023
4	46	2646	2	372
5	172	8218	1	4346
Mean..	175415.06	182123.4		183020.6
True plece..	$17 \quad 53 \quad 9 \cdot 35$	182019		62913
Clock error.	+1 5.71	+14.4		+176

Taking the clock error from γ Draconis, which is in the zenith, it appears that 8 Ursm Minoris came too soon by $1^{1-3} 3$, and 51 Cephei too late by $1^{-9} 9$; in either case an azimuthal deviation of $8^{\prime \prime}$ east of north is indicated. Applying this correction to the other transits taken the same evening, we have the following results:-

Dividing the stars into two groups, one near the zenith and the other near the equator, we find the mean of the clock arror from γ Draconis and β Lyrm $=1^{m} 5^{\circ} \cdot 76$; from the Aquiline start $=1{ }^{(1)} 5^{\prime \prime} 67$, which differs so little from the other as to show that the adjustments of the instrument are not far from abeolute correctness. Mean clock error of the whole series due to 19 hours sidereal time + lm $^{\circ} 5^{\circ \cdot} 71$; clock's rate $+9^{4}$ daily, or $1^{10.6}$ in 19 hours; hence, clook error at $0^{\mathrm{b}} 0^{m} 0^{0}$ sidereal time $=+1^{\mathrm{m}} \mathrm{m}^{2} 11$.
For the adjustment of the micrometer microscopes, two things are necessary at first setting out-1, that they be at equal distances from the centre of the axis; is, that they be at the three angles of an equilateral triangle inscribed in a circle concentric with the axis, whose circumference shall pass through the intersection of the cross-wires of each when at zero. To insure the first, I made a mark on a certain part of the are at right angles to one of the divisions, and adjusted the crowwires of each microscope to its intersection with the division; for the second, I brought the microscope marked A on 0 , and made B read 180°; moving 0 to \mathbf{B}, I made C read 180°; transferring 0 to C, I found 120° to extend beyond the zero $18^{\prime \prime}$: this quantity, divided by 3 , will give the difference between the distances of any two microscopes and that between 0° and 120°; and they were so adjusted that each microscope should be at $119^{\circ} 59^{\prime} 56^{\prime \prime}$ from the next on each side of it.

The nadir point of the circle was determined by producing coincidence between the direct and reflected images of the horizontal wire by daylight; and so accurately can this be done that several independent observations will give invariably the same result. The reading of the nadir point - 180° gives the zenith point from which to reckon the series of zenith distances immediately following. I have so regulated the foci of the three microscopes that the mean of 5 revolutions of the micro-meter-screw of each measures exactly one division on the are, or 5^{\prime}; and I find this to be one of the mont permanent adjumtmente.

September 18th, 1851, on that part of the arc numbered 999°, the spaces passed over by 10 revolutions mere-
At $929^{\circ} \quad \mathrm{A}=9^{\prime} 58^{\prime \prime} \quad \mathrm{B}=10^{\prime} 7^{\prime \prime} \quad \mathrm{C}=9^{\prime} 54^{\prime \prime} \quad$ Mean $=9^{\prime} 59^{\circ \prime}$ g
At $168^{\circ} \mathrm{A}=10^{\circ} 8^{\prime \prime} \quad \mathrm{B}=10^{\prime} 0^{\prime \prime} \quad \mathrm{C}=9^{\prime} 54^{\prime \prime} \quad$ Mean $=9^{\prime} 59^{\prime \prime} \mathrm{S}$

Ongenvatzons to Determine the Latitude of Dn. Dezw's Obseroatory, by Stary North and South of the Zewith, the Nadir Potwh having been Determined by Refiection, and the Zenith Point by Subtracting 180° from it, taben on two consecutive eventags.

Drete.	Object.	Degree.	Mleroecopes.			Additional Readlug of Eye-plece Micrometer.	Concloded Circle Reading.	Zero, or Z. D. Point.	Baro meber.	Thermos meter.	Refraction.	Wt.	Deditude						
			A.	B.	C.														
1881.	β Draconis7 Draconit	${ }_{14}^{0}$	111 80 59	17 6989	${ }_{60} 11$	$\begin{gathered} " \\ +7 \times 46.8 \text { or } 82 \cdot 7 \end{gathered}$	$\bigcirc{ }^{\circ}$	$\begin{array}{ccc} 0 \\ 14929 & 51.8 \end{array}$	80040			10	- "						
		147	8952	5959	6934		$\begin{array}{llll}148 & 0 & 21 \\ 148 & 68 & 29.7\end{array}$				$1 \cdot 5$		508458.7						
\cdots		148	8389	6342	638						${ }_{18}^{0}$	4	$505481 \cdot 9$						
*							$\begin{array}{lll}16712 & 12-8 \\ 107 & 40\end{array}$			$65 \cdot 5$	88	10	50 5185						
8epers 20																	486	10	5054348
								$80-118$	67-8	52	10	$508486 \cdot 2$							
*										487	10	5054888							
*										878 18.4	10	80 64 84-8							
\cdots																			
								e by	Hgon	of the trical	Ter	$\begin{array}{lll} 50 & 54 & 34 \cdot 4 \\ 50 & 54 & 34 \end{array}$							

These observations are given not because they are considered sufficient to give an independent determination of the latitude, bat to show the accuracy with which the nadir point, and from that the zenith point, may be determined by reflection. Their number could have been increased, and it might have been
shown that the mean of ten or more observations gives the latitude $50^{\circ} 54^{\prime} 34^{\prime \prime}$ within a small fraction of a second, which is that of my observatory, as determined from the latitude of the Ordnance Map Office, Southampton.

Tha Adjustment of the Equatorial.

The declination circle of the equatorial is read off by two verniers to minutes of space, and the hour circle by two verniers to 8 seconds of time. I am compelled, therefore, to consider the instrument in adjustment when the errors of observation fall within these limits. The instrument was established in its present position about four years ago. The following obeervations were lately taken to ascertain how much it hed deviated by the settlement of the piers and the foundation, or from other causes, during that interval.

1. For the Collimation Error.-To ascertain the errors with procivion, I insert the position-wire micrometer, and bring the Efred wire to correspond with the plane of a circle of declination, which is readily accomplished by bringing it on a star not far from the equator, and causing it to be bisected daring the time of its transit across the field of view near the meridian. One of the moveable vertical wires is now brought as nearly as can be judged to tbe centre of the field. With the face of the declination circle cast, I note by the clock the time a star (not far dietant eilher from the equator or meridian) crosses the wire, and I read off the hour angle from the hour circle; turning the instrument half-way round, with the face of the declination circle west, I do the same. This star will be only affected by the error of collimation, and if the difference of the hour anglea, read off from the hour circle, be equal to the difference of the times of observation, there is no collimation error; but if these be not equal an errar exists, which must be corrected before other obearvations can be taken.

As the difference between these is 5 seconds, the collimation error $=\Phi^{2 \cdot 5}$, which, if great accuracy is required, must be maltiplied by the cosine of the star's declination; as this, however, would only alter $\mathbf{q}^{10} 5$ to $\$^{\circ \cdot} \cdot \mathbf{3}$, it may be neglected.

$$
9.8 \times 18^{n}=37^{n .5}
$$

Knowing the value of the run of the micrometer-screw, I advanced the wire through $37^{\prime \prime}: 5$ in such a direction that the tramit (circle east) should occur sooner, and consequently the tranit (circle weat) later, and then took the following observa-thon:-

$$
\begin{aligned}
& +1532 \text { hoor angle ctrcle east } \\
& +175 \text { hour angle circle weat } \\
& 133
\end{aligned}
$$

Thece differences, falling within the limits of the readings of the hour circle, I now consider the collimation error compenmet.

This obecrvation enables me to ascertain whether or not
the hour circle reads $0^{\mathrm{b}} 0^{\mathrm{m}} 0^{+}$when a star is in the moridian.

Clock times	h. m. 19 59 1	$\begin{array}{ccc} h_{.} & \text {m. } & \\ 20 & 1 \\ \hline \end{array}$
Correction for clock error. .	-39	-39
True sidereal time.	195914	20046
Right ascention of a Aquila	194332	194332
True hour angle.	1542	1714
Instrumental hoor angle ..	1532	175
Difference	-10	-9

The star is west of the meridian, and its hour angle is less than the true by 9 or 10 reconds; hence the zero of the hour circle is west of the true meridian by that amount, which deviation was forthwith corrected.
2. For the Latitude.-To ascertain whether the angle formed by the polar axis with the horizon is equal to the Intitude of the place, measure the polar distance of a star on the meridian with the declination circle east, and again with the circle west; the mean of these, corrected for refraction, should equal the polar distance of the star taken from the 'Nautical Almanack.' If a star in the zenith be employed, no correction for refraction is requisite.

8eptember 28, 1861. Declination vernier \mathbf{A}	β Dreconis. $52^{\circ} 27^{\prime}$ circle eant	γ Druconals. $51^{\circ} 32^{\prime}$
n B....	5228	5136
\% A	5215 circle weat	5120
\cdots B....	5215	5120
Mean declination	$522115^{\prime \prime}$	3127
Instrumental polar diatance	373845	3833
True polar diatance	373450	38298
Difference......	+355	+352

As the instrumental polar distance is greater than the true, the pole of the instrument is too low, or the inclination is too small by $\mathbf{3}^{\prime} 54^{\prime \prime}$. Having elevated the pole, the following observations were subsequently taken:-

These differences, falling within the limits of the divisions of the declination circle, indicate that the instrument is adjusted to the nearest minute of latitude.
3. To ascertain whether the Declination Axis is at Right Angles to the Polar Axis.-Heving previously corrected the collimation error, take the hour angle of one of the Greenwich stars, whose declination is considerable, near the meridian, and compare it with its true hour angle, the error of the clock being known. Or its transit with the face of the declination circle east, and again with the circle west, being noted by the clock, may be compared with the hour angles read off from the hour circle. The offect of this error somewhat resembles that of the level error of the transit instrument, which is 0 at the horizon, and reaches its maximum at the zenith; so the effect of the inclination error in question is 0 at the equator, and reaches its maximum at the pole; varying, indeed, as the tangent of declination. And since tan. $45^{\circ}=$ rad. or 1 , it will be most convenient to select a star whoee declination differs but little from 45°.

October 1tth, 1851, the following observations of a Cygni were taken, the declination of the star being $44^{\circ} 45^{\prime} 87^{\prime \prime}$ north.

By the Firat Method.

	D. m. a. 201813 circle west
Correctn, for cl. error . -39	-39
Sidereal time 201624	201734
R. A. of a Cygni .. . 203622	203622
True hoar angle -0 1958	-0 1848
Instrumental hour $\angle-02020$	-0 1830
Difference +0 0 22	-0 018
By the Second Method.	
	- $\quad 2020$ circle east
201813	1830 circle weat
Difference 0110	150

An error of 40° is here indicated, which is double that due to the inclination of the declination axis. With the declination circle east, the star arrived at the wire too late; and with the circle west, to0 800n. Now, $80^{\circ} \times \tan .45^{\circ}$ (or 1$) \times 15^{\prime \prime}=300^{\prime \prime}=5^{\prime}$, the diference between the inclination of the declination axis to the polar axis and 90°. Having elevated the western extremity of the declination axis one revolntion of the adjustingscrew (the circle being east), I took the following observa-tion:-

	b. m. s.	m.
Clock times	203010	lnst. hour $\angle-640$ circle east
	203130	-3 55 circle mest
	0120	045

The error now appears to be 35° in the opposite direction. Having turned the screw back half a turn, the two following observations showed that the error was corrected; and, combined with the others, indicate that the value of one revolution of the adjusting-screw $=10^{\prime}$.

By the First Method.

As the differences fall within the limits of the divisions of the hour circle, the inclination adjustment may now be considered completed.
4. To asoertain the Azimuthal Deviation of the Polar Axis; the effoct of which is to cause the Pole of the Equatorial to point Eart or Weat of the Pole of the Heavens.-Measure the polar distance of a $\operatorname{star} 6$ hours from the meridian, and compare it with the polar distance ascertained from the 'Nautical Almanack.' The difference, if any, will be the amount of devistion, east or west, after the observation has been corrected for the effect of refraction: east if the polar distance of a star weat of the meridian be too great, west if it be too little.

Oct. 25, 1851.- β Urte Minoriv, $5^{5} 20=$ from the meridian.

As the star is west of the meridian, and the polar distance measured is too great, I advanced the north pole of the ingtrument towards the west by setting the verniers g^{\prime} nearer the pole, and bringing the star on the wire by moving the adjustingacrew.
The following observations (October 27th) on β Urse Minoris 6 hours weat of the meridian, and a Persei 6 hours east, show that the azimuthal error has been reduced within 1'-the extent to which the divisions of the declination circle are read:-

To Investigate the Effect of Refraction in North Polar Distance, and the Hour Angle.

In the "projection of the sphere on the plane of the horizon" \mathbf{Z} is the zenith; \mathbf{P} the pole; $\mathbf{W} \mathbf{P o}$ the six-hour circle; the true place of a star, s its apparent place; then $P s$ is the true polar distance, $P \theta^{\prime}$ the apparent; of T the true hour angle, $e^{\prime} \mathrm{P} T$ the apparent; $8^{\prime} \mathrm{Z}=$ apparent zenith distance; $\mathrm{P} Z=00^{-}$ latitude; and $88^{\prime}=$ refraction in altitude; let fall $8 t$ perpendicular to $P e^{\prime}$. Now the angle $s s^{\prime} t$ may be considered equal to $P_{f^{\prime}} Z$, which may be found in the spheric triangle $P g^{\prime} Z$ by the proportion sin. zenith dist. : cos. lat. : : sin. hour angle : sin. $P:^{\prime} \mathbb{Z}$. Hence $8 s^{\prime} \times$ cos. $8 s^{\prime} t$ (or $\mathrm{P}_{\prime^{\prime}} \mathrm{Z}$) $=s^{\prime} t=$ correction in polar distance, and $88^{\prime} \times$ sin. $88^{\prime} t=8 t$; which, divided by 15 sin . polar distance, will give the seconds of correction to be applied to the hour angle with the positive sign. The hour angle, anyWhere out of the meridian, where the effect of refraction is 0 , will always be lessened by refraction, reckoning from T (the point where the equator cuts the meridian) 12 hours east or west; hence the sign of the correction will be positive. Whether the correction in polar distance is positive or negative, may be determined by the following conaiderations:-

1. When the star is on the meridian, refraction will lessen polar distance by the whole amount between the south point of the horizon and the zenith; also between the north point and the pole; but will increase the polar distance between the pole and the zenith: hence, in the former positions, to the correction must be applied the sign + , and in the latter -.
2. Any star which culminates south of the zenith, or whome polar distance is greater than the co-latitude, will have its
polar distance diminished in every position; hence, for such atars, the correction will always have the positive sign.
3. Any etar, whoee pular distance is lese than the co-latitude, will have its polar distance differently affected according to its position.

 Hew.
Let $Z q n$ be a vertical circle touching the parallel of declinasion of such star at the point q; at this point the correction for refraction in north polar distance will be 0 . To find this point we have, in the apheric triangle, $P_{q} Z$; the angle $P_{q} Z=90^{\circ}$, $\mathbf{P}_{q}=$ polar distance, and $\mathbf{P} \mathbf{Z}$ the co-latitude; whence may be found the hour angle Z Pq. Anywhere between q and m, and af far the other side of the meridian, the correction in polar distance will be negative; at the other portions of the diurnal arc it will be positive. 'This hour angle will be less as the polar distance is greater; thus $Z P q^{\prime}$ is less than $Z P q$. It will never, however, be so great as 90°; hence, for 6 hours of distance from the meridian, the correction will always be positive.

From the same triangle, $Z q P$, may be found $Z q$, which is the zenith distance of the star; also, in any other part of the heaveng, the zenith distance may be ascertained without an additional observation. Thus, in the spheric triangle $P{ }^{\prime} Z$, we have $\mathbf{P Z}=$ co-latitude, $\mathbf{P}_{\boldsymbol{s}^{\prime}}=$ observed polar distance, $Z \mathbf{P}_{\boldsymbol{s}^{\prime}}=$ the obeerved hour angle; whence may be found Z_{8}, the zenith distance of the star for which the refraction must be taken from the table.

PORTABLE LIFTING MACHINE.

Tes object of this machine, which is the invention of Mr Long, hydrometer maker, London, is to obtain, in a portable and simple form, the means of multiplying the power of a man to a very great extent, for the purpose of lifting weights, \&c., without the drawback of heavy friction and wear to which some lifting machines are lisble, such as those in which an endless screw works into a toothed wheel. The construction is shown in the annexed engravinge, figs 1 and 2 . A, is a wheel on which eleven pins B H I, are fixed in the form of teeth, with a friction roller fitted upon each pin. The circular plate C C is fixed at right angles to this wheel, upon the shaft of the winch D, to Which the manual power is applied. On this plate is cast the epiral projecting piece EFG, which makes rather more than one turn upon the plate. This spiral is engaged with the pins B H, on the first wheel, and the difference in the amonnt of eccentricity of the two ends of the spiral is equal to the pitch or distance between the pins; so that when the plate C, and spiral are turned round one revolution by the handle, the wheel A, is driven round the distance of one pin or tooth.
The driving face of the spiral has a varying bevil, adjusted so as to bear fairly and uniformly upon each pin in succession throughont the entire revolution, as the pin varies its inclination from B to H; the next pin above, 1 , being then brought
down into the position B. The thickness of the spiral, as shown at G, nearly fills the space between the two pins at all times, preventing any elip, and the upper pin is engaged a short diatance before the lower one is released. The friction roller upon the pin turns round daring the motion, rolling, with little friction, along the inner surface of the spiral, which forms an inclined plane, with an inclination of about 1 in 7.

Fig. 1.

Fig. 2.

A pinion fixed on the wheel A, is geared into one of three times the diameter on the third shaft, K, upon which is fixed the drum L, for winding up the rope or chain attached to the weight to be lifted. The leverage of the spiral and first wheel being 11 to 1 , and that of the spur gearing 3 to 11 , makes a power of 33 to 1 , and the radius of the winch-handle and of the drum being 6 to 1 , the total increase of power obtained by the machine is 200 to 1 nearly; or one man exerting a power of $\frac{1}{4} \mathrm{cwt}$. at the winch could lift five tons, including the friction.
This machine has the advantage of reducing the friction, in consequence of the rubbing action being confined to the revolving of the friction rollers upon their axles, instead of the inclined plane rubbing upon the pins, or the thread of an endless screw rubbing upon the teeth of a worm-wheel, which has only contact at little more than a line. This has a scraping action, tending constantly to remove the oil from the surface, but in the friction rollers there is a much larger surface in contact to bear the pressure, and this surface being always in contact never has the oil scraped off the surface, and can retain the oil for a much longer time.

Improvements in the London Docks.-Workmen are busily engaged in making extensive excavations near Old Gravel-lanebridge of the London Docks, for the purpose of erecting several lofty warehouses and store-rooms for merchandise from foreign parts, and also to construct a new swing-bridge.

Leeds and Yorkshive Assurance Buildings Competition.-The premiums have been awarded as follows:-The first, of 50%, to Mr. W. B. Gingell, of Bristol; the second, of $25 l$., to Mr. Martineau; the third, of 251 ., to Mr. Dobson, of Leeds. Fifty-four designs were sent in.

ON THE USE OF METALS, ESPECIALLY OF COPPER AND IRON, BY THE ANCIENTS.

By Robert Ritchie, Ascoc. Inst. C.E., Edinburgl.

[Read at a Meeting of the Architectural Institute of Scotland.]
The way in which metallurgy, or the art of working metals, first became known to mankind is involved in obscurity. It is more than probable that the processes of manufacturing the softer metals, as the ore of lead, led the way to the fusion and manufacture of the harder. Lead was much used in early times; in the era of the Roman Empire it was so much in use that even the cities were supplied with water by leaden pipes. The art of working in gold, silver, copper, and even iron, seems to have been known at a very early period of human history. Iron may have been accidentally discovered, it bas been supposed, by the fusion of the ore in the making of charcoal, or by specimens of pure iron ore having been fashioned by fire into purposes of utility, for meteoric fron exists in a malleable state. Rude smelting-furnaces have been found even amongst tribes-as the Africans-among whom civilisation has made but little progress. Copper, and the alloys of tin, by which it became hardened, seem to have been very early known to the ancients.

Brass, so frequently mentioned in sacred and profane history, used for coins and other purposes, was synonymous with copper and bronze. The ancients well knew the process of casting bronze statues, and of mixing copper with tin to harden it. Some of the most valuable works of antiquity were made of mixed metal,-as the Colossus of Rhodes, of which no remains now exist, the weight of which has been eatimated at $700,000 \mathrm{lb}$. of bronze.
Metallurgy, according to historians, had made great advancement 700 years before Christ. During the reign of Alexander the Great, 356 B.o., the celebrated sculptor Lysippus, originally a worker in brass, laboured so assiduously in moulding and melting metals and multiplying casts as to have left, it is said, 1500 groups of statuary, which Pliny the elder called the mob of Alexander. Amongst the best of his works were his statues of that monarch. It has been recorded by the Roman consul and historian Mucianus, who was the Premier of Vespasian and who, as mentioned by his contemporary Pliny, in Hist. Nat., b. 39, c. 17, had been thrice consul, in A.D. 59 , 70 , and 75 , that there existed in his time 3000 bronze atatues at Rhodes, and that there were believed to be as many at Athens, Olympia, and Delphi.
That the art of working in iron and ateel had made great progress in early times, it is the purport of this paper to show. It is known that the sword blades made in Damascus, a city of great antiquity, and mentioned in sacred writ as coevval with Babel and Nineveh, have had a far-spread reputation for their excellence of quality and workmanship and beautiful wave or water-mark. It is probable that long before the Christian era the Orientals, both in Hindostan and China, had also achieved great perfection in the manufacturing both of steel and iron, and in the inlaying of gold and silver. Of this there is very little doubt, from the specimens which have been preserved to modern times. The excellent sword blades of toledo were early famed, the manufacture of which was introduced by the Moors into Spain, but is now nearly extinct. Although the ancients may not have acquired the same degree of skill in casting metals for general purposes in the mechanical arts as the moderns, they had attained great excellence in the working of malleable iron, copper, and bronze.

The importance of metals in coinage,* and especially the advantages of using iron for weapons of warfare, and in the construction of agricultural implements and various utensils, must have atimulated the faculties of the early tribes of mankind to their improvement. But the many useful properties which iron possessed could not have been at once discovered, and the knowledge of iron-making, and the application of iron to purposes of utility, must have been acquired by slow degrees. Although iron was known long before the Christian era, it has been doubted if it was in general use in the early nges of the world; but it is evident that mankind understood the art of
-The coina chlefy used by the Jewi, Greeks, and Romans, were of allver and bras, and a few of gold. Amongt the Romans the denarlus victoriatus, sesterthas, and sonetimes the ees, were of sllver, and the rest of bronze, The lomath goly coln was the nureas, in Faive, al stated by Pliay, 2id. 3 dd . The Romsins had colagige, except copper or hromee, thil B.o. 269 .
working both iron and copper before the deluge, from the pac sage in Genesis,-"Tubal-Cain, an instructor of every artifioer in brass and iron." It has been held that copper or bronxe is the proper translation of the word rendered brass. The numerous notices of brass in early passages in the Bible must be inferred, in some instances, as meaning copper, and in othen bronze. The same word is used in Hebrew for brass copper, and bronze. In Latin, the word ces, which means braes or bronze, means also copper. In Greek, likewise, the word xaceor, which means brass or bronze, means also copper.* In the passage (b.c. 14.51), Deut. viii. 9, it is obvious that copper is meant, not brass-"A land whose, stones are iron, and out of whoen hills thou mayest dig brass."

One early commentator considera that the calamity of the deluge deprived the greater part of mankind of the knowledgo of these as well as other arts, and that the use of iron was only revived at a much later period of the world's history. It has been recorded that the Egyptians gave the honour of the discovery of metals to their first soverign Menes, who, according to Josephus, ascended the throne (2320 в.c.), and who reigned after the fabulous gods.

From sacred writ it is ascertained that metals were common in Egypt and in several countries in Asia. Egypt was distinguished in the very earliest records of the world not only for the richness of its soil, but for its valuable gold and silver mines, the annual produce of which is early mentioned in Egyptian history, and which were worked by captives taken in war. These mines have been ascertained by Benomi and Linant to lie in the Bisháree Desert, seventeen days' journey south-weatward of Derow. The gold is found in quartz, and the excavations are 180 feet deep. Diodorus the Sicilian (Diodorua Siculus) lived 44 b.c.; but as he derived his information, sometinies without sufficient discrimination, from the writers who had preceded him, his statements are not always to be relied on. Still there is evidence that he visited many of the countries he describes. He mentions, in the first chapter of his Historical Library, "that in the confines of Egypt and neighbouring countries of Arabia and Ethiopia there is a place full of rich gold mines, out of which, with much art and pains of many labourers, gold is dug. The soil here naturally is black, but in the body of the earth run many white veins, shining with white marble, and glistening with all sorts of other bright metala, out of which laborious mines those appointel overseers cause the gold to be dug up by the labour of a vast multitude of people.......The earth which is hardest and full of gold they soften by putting fire under it, and then work it out with their hands." After the gold is washed the workmen take it away by weight and measure and then put it into earthen urns, "and according to the quantity of guld in every urn, they mix it with some lead, grains of salt, a little tin, and barley bran. Then covering every pot close, and carefully daubing them over with clay, they put them into a furnace, where they abide fiva days and nights." After they have atood some days to cool, "nothing is to be found in the pots but only pure refined gold a little diminished in weight." The whole description of Diodorus of the manner in which gold is obtained on the borders of Egypt is very interesting. He makes the remark, "that as gold is got with labour and toil, so it is kept with dificalty; creates everywhere the greatest cares; and the use of it is mixed with pleasure and sorrow." But he gives a very different description of the mines in Arabia, in which is found "pure fold, called gold without fire, for it is not extracted out of little pieces of drossy metal by melting in the fire, as in other places, but it is pure and refined at the first digging it out of the earth, every piece about the bigness of a chesnut, and so bright and glorious a colour that this gold adds an exceeding beauty and lustre to the most precious stones that are sent in it." The same author, in his description of Egypt in early time, shows the resources of Egypt, which posessed valuable mines of copper, lead, iron, emeralds, and sulphur, which are eaid still to exist in the deserts of the Red Sea. His description of the abundance of gold and silver amongst early nations is corrobo rated by many passages in the Bible. One pasage chowa that the art of casting was early introduced, when Anron, in tho absence of Moses, made the golden calf. Ex, xxxii. 3 and 4,"And all the people brake off the golden earrings which were in their ears, and brought them unto Aaron, and he received
-(K appear to have been two kinds of brass known-one copper, or what wa re brass, alsa bronze or brass money, or money fn generat, and the word id a sword, spear, or ase-the other termed moputala brans.
them at their hand, and fashioned it with a graving tool, after he had made it a molten calf." In the building of Solomon's Temple gold and silver were much used.

It has been supposed that in those ages the working only of a fow metals, such as gold, silver, and copper, was understood, and that iron, afterwards so common, was, if then known, little used. From the testimony of ancient authors it appears that long after the delnge, copper was, for many. ages, employed for mowt of those purposes for which iron is now used, such as arms, tools of husbandry, and in the mechanical arts.

In the heathen mythology we find ascribed to Vulcan, the god of artificers, the making of the famous impenetrable armour of Achilles, whose shield is described by Homer, in the Iliad, Book xviii. 551 (b.c. 907). At the time of the Trojan war iron Beems to have been little used, and copper supplied its place both for arms and all kinds of tools and utensils.

The Romans succeeding, and borrowing many of their customs from the Greeks, no doubt adopted in this respect their practices. It is somewhat singular that almost all the ancient arms and tools now extant are made of copper-a most convincing proof that the use of copper preceded that of iron, and that the ancients used brass in most of their religious ceremonies. This appears to have been a practice common not to the Greeks or Romans alone, but to all the nations of antiquity. According to Diodorus, the arms of the Egyptians* were commonly made of brass. Herodotus mentions that the Massagetae had their axes, pikes, quivers, hatchets, and horse trappings of brass.

In several passages of sacred writ the word translated brass occurs. The art of working in brass is distinctly mentioned in Ex. xrvii. 2,-"Overlay it with brass." The trade of a copperemith is also mentioned in Scripture, Tim. iv. 14. In all the passages it may be inferred that copper or bronze was meant, and not brass as now used.

According to one writer, who has investigated the subject, it zppears that in England, Switzerland, Germany, and in northern kiogdoms, arms, rings, and other articles of brass or bronze are often found in tombs. In America also arms and tools have been found made of copper. Hatchets of this metal have been found in the ancient tombs of the Peruvians. It is said that in Japan, in modern times, articles which, in other countries, are commonly made of iron, are made of copper or brass. Indeed, every investigation seems to prove that no metal was so much used in ancient times as copper. It has been supposed that its general use arose from the circumstance that copper was found in great quantities in ancient times, and was easily wrought; and the ancients, as has been noticed, early found out the means of making it more useful by alloying it with tin, by which it was tempered and rendered so hard as to acquire in some measure the qualities which iron possessed; besides which, its non-liability to rust must have made it valued.

Although the metal, called brass both in sacred and profane history, was probably chiefly copper, there is undoubted evidence that the ancients-at least the Egyptians, Greeks, and Romans-understood the art of making various alloys with copper and tin. Bronze, so well known to the ancients, is merely a compound of copper with tin; and the brass of the anclents, there is little doubt, was an alloy of copper and tinnot copper and zinc. It has been supposed by some that although the practice of fusing copper into compounds, and

[^28]sinc itself, were unknown in very ancient periodg, yet the practice existed at a later period of forming the brass used for coins and other purposes, by combining the metals, brass being need before zinc was known in its metallic form, and the ainc may have been cemented with sheets of copper by charcoal, the zinc uniting with the copper without being visible. It is much more probable, however, that the compounds of the ancients were chiefly confined to the mixing of copper with gold, silver, and tin, and that sinc was not used, or unknown. It is improbable that the ancients knew the alloy of copper and zine. Zine is only found in the form of calamine, which consists of zinc, carbonic acid, and silica; and of blende, which is composed of zinc and sulphur. Both of these substances require sublimation to extract the metal; whereas by smelting or fusion they would pass away volatilised,- -the former of these processes not very likely to be known by the anciente, although they may have been acquainted with that of cementation. The process of sublimation or distillation may have therefore been unknown to the ancients, while the process of smelting ores was familiar to them; bence they made use of the alloy of tin instead of cinc. The famed Corinthian brass shows clearly that the Greeks and Romans understood well the various alloys of copper. This brass was a mixture of gold, silver, and copper. At the destruction and burning of Corinth, 146 B.c., this metal was said to had been formed in quantities melted by the heat. This statement was made by the Roman writer J. Florus, and it is mentioned by Pliny, in Hist. Nat., b. 34, c. 3, only to be refuted as an anachronism, because the phrase "Corinthian brass" must have been familiar to and used by the ancients long before the destruction of Corinth by Mummius. AB\& Corinthium denotes the alloy generally made use of at Corinth, and corresponds to res Deliacum or ces Aginaticum, the bronzes and alloys most nsed at Delos and Agina. The Corinthian alloys, according to Pliny, were mixed with the precious metals, and were of different coluurs. It bas been held by some writers that the bronze called Corinthisn, and sometimes Siracusan hrass, was made of stannum (Agricola de re Metallica), the admixture of the precious metals with copper and tin, as the ancients gave the name of electrum to the mirture of gold and silver. It is mentioned by Suetonius that the Emperor Vitellus took away all the gold and silver from the temples, and substituted orichalcum and stannum.-Sue. Vit., vi., p. 192. As the term orichalcum was applied by the Romans to brass of great price, it may be supposed that the metal here used by Vitellus was Corinthian brass. The Romans applied the term stannum as well as cassiteron." to tin; but in the sense in which the former word is here used, a mixed metal is implied.

That the Egyptians early knew the mode of compounding metals has been fully proved by the many articles which have been found in Egypt, especially at Thebes. The early history of the Phoenicians or Sidonians has thrown some light upon this subject. This country was in early times a great emporium of trade for the world. The purple of Tyre and glass of sidon were early famed. The great progress these people had made in metallurgy is shown from their being employed by Solomon to decorate the Temple of Jerusalem under Hiram, king of Tyre. The advancement they had made in shipbuilding and navigation in early times would call for the application of metals for that purpose; and metals are mentioned by Diodorus as having been used for the prows of vessels and anchors. Even the plan of sheathing with metals is supposed to be of great antiquity. The same author, in his description of Britain, mentions that the Phoenicians undertook frequent voyages by sea in the way of trafic as merchants, and found out the coasts beyond the Pillars of Hercules, and that, driven by a storm, they arrived at Britain. This island he describes as very populous, and says that tin was dug and obtained there "with a great deal of care and labour. They dig it out of the earth, then melt and refine the metal, and beat it into four-square pieces like a die. The merchants transport the tin they buy into France, to the mouth of the river Rhone." Tin was largely exported by the Phonicians from Britain into their own country, where it was used as the alloy of copper in the making of bronze. Speaking of the wealth of the lhenicians, Diodorus remarks, they planted many culonies both in Africa and in the western parts of Europe. The lberians sunk many large mines, whence they dug an infinite quantity of pure silver.

[^29]He gives a desoription of the rich mines of gold wa well an of nilver and brass in Iberia. He mentions that in many places of Spain, and in other places of the world then known, tin is found. From this abundance of metals known to the ancients long before the Chriatian era, one can be at no loes to know that they must have well understood the procese of mixing copper and tin, and even silver.*
It has been held by some writers that the Romans were acquainted with the art of tinning or silvering copper vessels, but that vessels of tin have never been found, and wilvered ones very rarely. The art of tinning plate-iron may be conaidered as a modern invention; while that of tinning copper was an ancient one. In corroboration of this, the vessels found at Herculaneum were chiefly of copper, or bronze, fow of which were silvered, and none tinned; it has therefore been supposed that the art of tinning vessels was not practised. The art of soldering must have been known to the Romans, as Pliny mentions that lead cannot be soldered without tin, or tin without lesd. In soldering, a mixture of both metals is required, either two parts or one of tin, and three parts or one of lead, respectively. As they do not appesr to have been acquainted with the union of zinc and copper, it is unlikely that they used hard solder, which is a compound of these metals, zinc being in excess. Many of the bronzes of antiquity are found to be made of pieces of metal joined together. Several coins which bear a resemblance to brass have been found to be composed of copper and the precious metals. It has been held by eome writers that there is no direct proof of the brass of the moderns -the union of copper and zinc, in the proportion of about four parts of copper and one part of zinc-being known to the ancients. Sometimes in the ancient bronzea a little silver has been found; but the proportions are almoat nniform of 12 parta of tin to 100 parts of copper. It has been held by other writers, from a passage in Strabo, xiii., p. 619, that the ancients knew the common zinc ore calamine, although, perhaps, from the reasons previously assigned of the simpler application of tin as an alloy by fusion, they used it instead of sinc; at all ovente, few apecimens of the mirture of copper and zinc have been discovered in the works of antiquity. It has been stated that an antique sword was found, which, from the analyais, showed the presence of a small portion of zinc.

Although copper was thus so generally used in very ancient times, it is not to be supposed from what has been stated that iron was not in use. A passage in Is. xlv. 1 , shows the usage of both metals: "I wilf break in pieces the gates of brass, and cut asunder the bars of iron." That iron was known at an early period there in no reason to donbt; but, as it appears not to have been generally used, it has been conmidered that its common use is indicative of a more advanced state of civilisetion than even that of gold and silver, although wo much lesa intrinsically valuable.

Amongst ancient traditions there was one with the Egyptains that Vulcan taugbt them to forge arms of iron. The Pheenicians had also discovered iron, and the manner of working it. The Cretans, as Diodorus relates, placed the discovery of iron and the art of working it in the most remote period of their history. Iron is frequently noticed in his history of nations. Descrihing the Spaniarde, he says: "They, the Celtiberians, make swords, warlike weapons, and darta in an admirabie manner, for they bury plates of iron so long under ground till the rust has consumed the weaker part, so the rest becomes strong and firm. Of this they make their awords and other warlike weapons, and with these arms, thus tempered, they so cut through everything in their way, that neither shield, helmet, nor bone can withstand them." Plutarch also mentions this practice of making steel, which, it is said, still exists in Japan, \dagger where the sword blades are famed. Describing the Arabians, Diodorus says that they exchanged gold with the merchants for the like weight in brass and iron.

Some anthors ascribe the art of working iron to the Cyclops, and some to the Chalybes, described by Aristotle, a very ancient people, who inhabited part of Pontus, in Asia Minor, abounding in iron mines. Clemens Alexandrinus ascribes the art of rendering iron malleable to the Norches, a nation on the banks of

[^30]the Danube. Theme traditions are hypothetion, and naed not be inventigated.

From the book of Deuteronomy it is plain that the une of Iron was well known many generations sfter the flood (3.0. 1451); but no direct mention is made of iron tools or weepons until after the departure of the Israelites from Egypt. Beveral paseages show that iron was known in Palestine; parhaps the mossic prohibitions may have had an influence in the general use of copper instead of iron both in Egypt and in Paleotina. The Jews appear to have been well acquainted, however, with two kinds of iron previous to the captivity in Babylon-the barzel iron, noticed In Genesis iv. 29, which was in common use, and the northern iron and steel. The difficulty which has been urged of the ancients knowing the practice of smelting the iron ore, and making it malleable, seems to have been eerrly overcome. As it is rarely found of a perfect form ready for use, its application to the arts shows the ingenuity of early nationg, and their possession of knowledge which we are often inclined to doubt. As early as the days of Moses an iron furnace is mentioned. It appears from the book of Job, which some commentators suppose to have been writien by Moses, that the art of working in iron was known in some countries in the ages referred to.

Iron does not appear to have been made nee of in the Tabernacle (8.c. 1490), and very little notice is taken of it in the construction of the Temple of Solomon five centuries later ($\mathrm{B}, \mathrm{O}_{3}$ 1012). That it was abundant, however, in the time of Solomon, and even used in the Temple, there is ample evidence, although copper is the metal chiefly referred to. In the First Book of Chronicles it is mentioned that, when David was preparing for the construction of the Temple (s.c. 1017), he "prepared iron in abundance for the naile for the doors of the gates, and for the joinings, \&re," and that he prepared "brase and iron without weight, for it is in abundance."
It appears, from the way iron is spoken of, that that matal must have been in use in Egypt long before the time of Moset Its great hardneas is alluded to in the words "I will make your hesven as iron, and your earth as brase." "A land whoee stomes are iron, and ont of whoee hills thou mayeat dig brame" (Deme. vili. 9) \rightarrow pasaage from which may be clearly inferred the knowledge which in those days existed of the use of the ares both of iron and copper. We also read that "the bedatead of Og, the king of Bashan, was of iron.". Mention is also mede of an iron furuace, and of swords. knives, axea, and tools made of iron." The art of working in iron is distinctly shown in Ieaiah.
According to the Arundelian marbles,* it has been held iron was known 1370 в.c.; but Hesiod, Plutarch, and others, limit its discovery to a much later period. Homer distinctly mentions its use. By the word "sideros," from a simile used in the Odysey, derived from the quenching of metal in water it may be supposed iron is mesnt. In the Homeric poems, and oldeat writings, the word xainos is restricted to copper and its compounds. Although both in the Iliad and Odyssey of Homer more frequent reference is made to brass than iron, yet it is quite certain that in his age the use of iron was understood. That it was used, perhaps sparingly, for various purposes, such as swords, javelins, and spear-pointa, may be inferred from several passages.
Thus it is ascertained that the discovery of iron was very ancient, and that the art of working it, converting it into steel, and tempering it, was known at a very early period, probably first in Egypt, Palestine, and other parts of Asia; but it does not appear that its use was either general or much diffused.
Iron in very ancient times must have been regarded of much value, as it was presented in the temples of Greece amongst the most valuabie offerings; and rings of iron, which had been worn as ornaments, have been found in the tombs of Egypt, showing the value of the metal. It has been justly suppoeed that one of the reasons why this metal came so slowly into use amongat the nations of antiquity, and why it was 80 rare in early times, was the difficulty of smelting it. It was this fact, it has been remarked, which made it to Job such a proof of the wisdom of man that he had invented the process of making iron, and separating it from the earthy particles in which it is found. It is more than probable that the liability of this metal to decay from its oxidation may be the reason why so few specimens of the iron workmanship of antiquity have been handed down to

[^31]Uhe moderns in comparicon with thooe of bronse and copper. Although it has beon well established that at a later period of anejent history the use of iron became more common to the Greeks and Romana, it is probable that, from the facility with which it could be worked, they preferred to nee copper.

In corroboration of the antiquity of the uee of iron, a very intereeting discovery was made some years ago by the traveller Belvoni, which throws eome light upon this point. He found monder a statue at Karnac, in Egypt, the blade of an iron sickle, 11 inchen in diamoter, not unlike a modern reaping-hook. It is preserved in the Britinh Mueeum. It is fractured in three places, and completely oxidised throughont. Traces of the wooden handle into which it has been fitted are visible upon the end. Belconi states that this aickle proves that iron was known to the Egyptians hefore the conqueet of Egypt by the Persians under Cambyses, m.c. 525. The name of Darius appears on an insoription on the columna of the Tample of Oniris, and the names of Xerxes and Artazerzes likewise appear in inseriptions in Egypt. The Peraian empire fell by the conguest of Alexander, B.o. 352, and Egypt was reduced to a Roman province under Augustug, b.o. 31. The discovery of this sickle proves beyond doubt not only that iron was early used, but that the practice of reaping with it was of great entiquity. The elder Pliny says little regarding the manner in -which the Romans discovered and prepared metals. He however mentions iron in his work." In Grecian history the wellknown fact is recorded, that Lycurgus, who lived a.c. 884, made the use of gold and silver of no value by ordering the Spartan coinage of iron, that there might be no temptation to covetoueneas, or perhape its rarity at the period may have led to greater value being pot upon it. In the British Mnseum are preserved eeveral ancient homan articles made of iron, 3 the stylus, strigiles, iron fetters, \&c.

The Roman writers upon husbandry throw much light by their description of implements upon the progrese the manufacture of metals had made about the commencement of the Chrietian era; but there is exceeding difficulty in aecertaining whether iron was chiefly used for their farm implemente, or whether many of these were not made of the alloy of copper and tin. It is morto than probable, however, from the construction of many of these implements, that they were made of iron. Virgil, who lived s.c. 19, has minutely desoribed the aratrum or plough, of which there were several kinds. Cato mentions two -Romanicum and Campanicum. The first had probably an Iron share, and the latter a piece of timber with a ahare or sock driven upon it. It may be supposed that the plough with Which the Israelites fought against the Philistines (1 Sam. xiii. 19) was of metal, probably iron,-"The Israelitas went down to the Philistines, to sharpen every man his share, and his coulter, and his axe, and his mattock." The Romans had ploughs with coulters and without them-ploughe with shares luth broad and narrow pointed, ploughs with or without mould hoards, and ploughs with or without wheels. Many other implements used in huubendry, in all probability made of iron, are meationed by the Roman writers on husbandry, ahowing the goneral application and appreciation of metala. The following implemente are mentioned beside the plough,-the irper, crates, rastrum, bidena, capreolus, securis, ligo, pala, sarculum, marra. These were chiefly used, it in supposed, for digging, hoeing, or smoothing the surface of the ground. Beside those there were many others for reaping, beating out, and clearing the corn. The irpex, termed urpix by Cato, was a plank with several harrow-teeth, to pull roots out of the earth, drawn by oxen as a carriage. The rastrum was a rake used in manual labour like a common garden-rake. The earculum was a common hand-hoe. The bidens was an instrument employed by the ancients in gardens and vineyards; it had two teeth, and was used like a hoe to open up hard and strong ground. The ligo was an instrument like a common spade. The pala is supposed to be a different name for the same instrument, and seems to have been made of timber, pointed with iron, and was probably used as a shovel. The securis and dolabra were sometimes joined in one-the securis on the one side, and the dolabra on the other-and they seem to have been toois like the common axe and adre. The marra is supposed to have been a kind of scraping instrument like a hand-hoe. The cratea was an improvement upon the irper; it was in the form

[^32]of a harrow, and was drawn by oxen, as the irpex. One of the Roman writers on husbandry mentions that the crates* was used for smoothing the surface of the land, and breaking clode, and was drawn by cattle, as the harrow is now need.
Beside theee implements, constructed wholly or partially of metal by the Romang, mention is made by their rural writers of the sickle, the scythe, the pecten, \&cc. In the reaping of grain much attention and care seem to have been manifested by the Romana. One may casily suppose that in barbarous ages, from the want of proper instruments, the practice must have been very rude. The Israelites, to whom manure was an object, cut the straw near the ground, and burned the stubble, while the Egyptians plucked off the ears or pulled up the corn by the roots. This is shown by the passage in Exodus, relative to the Israelites, from which it appears to have been the practice of the reapers to cut off the ears of corn with hooks, and to leave the stubble standing-a practice which the Romans, in some inatances, seem to have followed. The sickle must be an implement of great antiquity, probably suggested by the idea of cutting several ears of corn at once. One commentator mentions that the sickle of Baturn is said to have taught the people to cultivate the earth. It is true that this supposes the working of metala, which, in those very ages, was known to very few nations. Various tribes of mankind might supply this want by different contrivences, but there is no doubt that in eastern countriea, from very early agee, the ordinary way of cutting down curn was with hooks or sicklea. The sickles used in ancient times were probably very much the same as those now in use. The sickle is mentioned in sacred writ-in Deat. xvi. 9 (B.c. 1451)-" Λs thou beginnest to put the sickle to the corn;" and in Joel iiii. 13 (b.o. 800), "Put re in the sickle, for the harveat is ripe." These passages corroborste the discovery of Belzoni as to the sickle found in Egypt. The Romans probably made use of the same kind of sickle as the Israelites and Egyptians. Beaides cutting down the corn with the sickle they used a soythe, and sometimes they stripped off the eara of corn by means of an ingtrument called batillum or staff-hook, supposed to be a kind of iron saw, and the straw was afterwardy cut down. Some commentators think the batillum was like a common scythe, or it may have resembled a pair of hedgeshears. Varro, in one passage, notices the batillum. He states -"They reap after another manner in Picenum, where they have a curved wooden batillum, upon the end of which there is a little iron saw; this, when it embraces a bunch of eara, cuts them, and leaves the straw standing in the field. There is another way, as in Umbris, where they cut the straw close to the ground with a hook." This was more probably a scythe.

Columella also mentions different instruments for cutting down grain. "Many," says he, "cut the stalks by the middle with vericulates, drag-hooks either beaked or toothed. Many gather the ears with merges, and others with combs." The merga is supposed to be like the pecten, a comb or a kind of rake, with a short handle, by which the ears were pulled from the stalk. The instrument first mentioned in this passage is called falx vericulata, from falx, a hook, and vericulum, a dragnet. A scythe of this kind may thus be called falx vericulata. This instrument was different from the batillum mentioned hy Varro, for the batillum cut off only the earg, while the falx vericalata cut off part of the straw and ear. The antiquity of these different methods of cutting grain with instruments is placed beyond all manner of doubt, and clearly evinces the early application of metals to the purposes of the useful arts. Besides the methods noticed, the Romans likewise made use of machines for reaping and thrashing grain, evincing a still farther development of the same principles. Pliny (Hist. Nat. lib. xviii. cap. 30) gives an account of a kind of reaping machine used in the extensive plains of Gaul, from which we infer the great antiquity of this machine, Large hollow machines, with teeth fixed on the fore part, are pushed forward on two wheels, through the standing corn, by an ox yoked to the hinder part; the ears cut off fall into the hollow part of the machine. In other places we are informed the otalks are cut in the middle with hooks, and the ears are cut of between two mergites (ripples). There was a difference in the manner of reaping, according to circumstances. When long straw was

[^33]wanted, they cut high to keep the straw long; where there was a scarcity of hay, they cut low, that the straw might be added to the palea or chaff, or short straw. The Roman writers, in their description of these modes of beating out corn, notice the use of iron. Varro, describing the tribulim, says, "It is made of a board rough with stones or iron."-Lib. i., c. 58.

From these quotations and descriptions we see the great progress which mechanical inventions had made in ancient timea, and the great extent to which iron was used amongst the Romans, especially in the later periods of the Empire.

All the descriptions here given are fully corroborated by the diacoveries made in Herculaneum and Pompeii, as also by the remains of Roman antiquities which have boen found in Europe. Iron cramps were found which had been used by the Romans in Britain for the fixing of their bricks in constructing their furnaces. Brazen vessels were in cummon use in the time of Vitruvius. Metal pipes were also in as common use in the time of Senecs. Whether the pipes referred to by the Roman writers (Trans. Arch. Inst. 1850-51, p. 829) were of copper or iron, it is not easy to ascertain. It is more than probable they were made of copper; but the vessel in which they were placed is distinctly described as made of lead, with a brazen bottom to resist the fire, proving begond a doubt the advancement the Romans had made in the art of working in metals. The discoveries which have been made in Pompeii demonstrate the truth of the ancient Roman writers regarding the advancement they had made in applying metals to many purposes to which we now apply them. Lead seems to have been in common use as at present for conveying water in pipes, and was applied for distributing water from their aqueducts through their cities-for supplying fountains and jets d'eau. The description given by some of the Roman writers of the use of copper for supporting roofs and lattices of windows also proves that the Romans employed metals in the construction of their buildings.

It might be expected that the discoveries made in the ruins of Herculaneum and Pompeii would have thrown much light upon the use of metals amongst the ancients; but both these cities, being of the second order, were not likely to indicate the same progress in the arts as the capital. Herculaneum in Campania is supposed to have been founded about 1840 s.o., and was destroyed by the eruption of Vesuvius, 79 A.D. It thus partook, during the many centuries of its existence, of the character of the ancient Roman art. The ruins of Herculaneum are about 24 feet below the curface, and the ashes and lava which buried it now form a mass of dark grey stone, which is easily broken, and does not adhere, but rather incases the substance within, so that marbles and bronzes have been well preserved. The important relica excavated since its discovery in 1713 are highly interesting, as respects metals, coins, rings, and bronzes; tripods, lamps, looking-glasses of highly-polished metal; kitchen utensils, as copper pans lined with silver, kettles, cisterns for heating water, and other articles.

Pompeii was also destroyed by the eruption of Vesuvius, 23rd August 79 a.v. Its early history is but little known, although supposed of great antiquity. It was about s-mile in length, and $\frac{1}{2}$ mile in breadth. The ruins are about from 12 to 14 feet below the surface. Its excavation commenced in 1775, although its ruins were known to exist in 1689. The ruins are so perfect that they convey an accurate idea of the huildings as they existed; hence they throw a clear light upon the state of the arts of the ancients. The streets are generally very narrow, and the houses low; but some of them are several stories in height. Others of them are insulated. In Pompeii fine specimens of metals have been found, showing beyond the possibility of mistake the progress which the art of metallurgy had made eighteen centuries ago. Bronze statues have been excavated in high preservation-as a bronze statue of Fame; many gold, silver, and copper coins; a great many utensils of all kinds-as chisels, saws, bells, springs, hinges, buckles, locks, inkstands; and articles in gold and silver-as earrings and spoons. The numerous lamps (1000 found in the baths), a candelabrum, an oval cauldron or boiler, cooking and kitchen utensils, scales, and steelyard, all indicate the progress of civilisation and of luxury. Numerous pieces of armour have also been found-as helmets in bronze, and greaves. Lead pipes, as well as other conduits, appear to have been employed for the conveyance and distribution of water; and iron and copper were then used for many of those purposes for which the moderns now employ them*-even to the making of shackles, within which human hones were found in the prison.

The frequent use of the arch in Romen architecture, isstead of beams and joists as now practised, and the frequens uee of bricks, may serve to explain why metal was not more required in their building and great engineering works, such as the calebrated stone hridge over the Rhone, built in the reign of the Emperor Trajan, cunsisting of twenty arches, and other graat works. That timber, however, must have entered largely into the construction of their buildings is ghown from the conflegretions of their cities. Casar's bridge over the Rhine, cunstructed when the Romans first invaded Germany, was made of timber; also the Pons Publicius at Romat

Although it is not easily ascertained from history to what extent iron was used in the construction of buildinge by the Romans, and although, from its perishable nature, it conld not be expected that many of its applications would reach theee times, yet there is ample evidence, from what has been shown, that its utility was appreciated, and ita use common. It has been said that the large stones of the aqueduct bridge at Nimes have been joined together without cement by ligaments of iron. In domestic buildings iron was ueor, according to the Reman authors, for many purposes similar to those to which it is now applied, such as the making of nails, bolte, locks, hinges, hooke, pillars, gates. For the last of these probably bronge was more frequently used, as the two gates of the Temple of Janns, which were opened in war and shut in peace, consisted, acoording to Livy, of braes. The brasen gate of the Pantheon is described to have been of great magnitude, and of fine workmanship. The progress made in the casting of statues in bronze has already been noticed, and when historians have recorded that there were 420 temples at Rome crowded with statues, one may easily conceive that bronze casts would he extensively used. Even brazen columns or pillars were constructed at Rome, as the Columna Ena. At the Columna Mrenit, named after C. Manins (4.0. 417) were placed the brasen beake of capturenl ships.

The great skill displayed by the Romans in the manufacture of their brazen lamps is well known. These have been found in every variety of form and size. Many of those fonnd at Herculaneum are preserved at the museum of Portici. Their braziers also displayed equal taste. In the construction of their carriages metals were employed, as with us, at least to the extent of the wheels, which were surrounded with iron or bras rings. Iron scythes were attached to their war-carriages. Regarding their weapons of warfare, we have the testimony of Diodorus, who lived at the period when the Temple of Janus was shut, when Cwsar had conquered the then known world. He was himself a native of Sicily, had opportunities of knowing the facts, and has stated of the celebrated mathematician Archimedes, also a native of Sicily, who fourishod about 250 BaO, that euch was his mechanical skill that by means of ropes and pulleys he drew towards him a galley which lay on the sbore manned and loaded, and that by means of grappling-hooks placed at the extremity of levers he hoisted up vessels in the air and dashed them to pieces upon the rocke. His power in setting fire to the Roman ships at the siege of Syracuse with reflecting mirrors was long deemed fabulous, but modern die00veries have made this less doubtful. His knowledge of the power of the lever was great. It has reached posterity an one of his sayinga_"Give me where I may stand, and I will move the world." Diodorus mentions that Egypt was indebted to him for the invention of the screw-pump, for drawing off water, \ddagger and of other useful machines; and Vitruvius mentions that he knew the doctrine of specific gravity. That he was well soquainted with the uses of iron and of other metals, and applied these, there is no doubt, from the fact of the powerful warengines he cuntrived. The Roman battering-ram consisted of a beam 100 feet long, suspended by chains, and armed at one end with iron, in the form of a ram's head. Iron was also need in the later periods of the Roman history for many purposes of attack and defence, and for implements of warfare. There ann be no doubt that, as their conquests extended throughout Eu-

[^34]sope, Africa, and Asia, they would participate in the knowledge of the minerals and metallurgy of the conquered countries.

In machinery there is little evidence that the Romans had made mach progress; but it is not to be supposed that Hero of Alexandria (8.0 .180), to whom the invention of the steamongine has been ascribed, did not well understand and appreoiate the ase of metals. His work on pneumatics, written in Greek, treated of his own inventions and of those who had preceded him.

In naval warfare the use of metals munt likewise have gradually progressed with the ancients. The corvi, or crows, or iron hooks, and ferrexe manus, drags or grappling-irons, were used, and the nails and fastenings of the planks of their vessels were also made of metal.

It has thus been seen to what a variety of purposes the ancients applied metals at a period in history when it is often crroneously supposed the world was in an uncivilised state. Ore strikiug fact, proving the abundance of the precious metals, is recorded by Diodorus, who, when describing the Phoenician merchants in early timen, says "that such was their covetousnees, that when they had fully loaded their ships, and had much more silver to bring on board, they cut off the lead from their anchors, and made use of silver instesd of lead." The ancient anchors were made of wond filled with lead, but the Romans atterwards used iron and bronze for anchors. Another striking proof of the progress of luxary is recorded by the Roman hisEorians, who tell us that at the battle of Cannw, in the second Ponic war, when Hannibal defeated the Romans he sent to Carthage three bushels of gold rings, taken from the fingers of the knights.

In a paper of this kind it is hardly possible to give more than a mere condensed view of a subject of such magnitude as that -hich I have considered; but enough has been said to show the great knowledge which mankind possessed from very early times of the use of metals. The very limited information which has been handed down to posterity of the mines of the ancients, does not serve to throw much light upon the subject. The historian Diodorns has given a few notices regarding these; and from his intereating work a few brief passages have been given, thowing the vast resources of the ancients in gold, silver, and other minerals. With respect to iron, in his description of the Mediterranean Sea, he mentions an island, Athalia, distant from Lipira nearly one hundred furlongs, which abounds with ironotone, which the nativea dug and cut out of the ground to melt, in onder to make iron. Strabo (b.c. 85), who visited many countries, and upon whome geographical work much reliance is placed mentions the abundance of gold, silver, copper, and iron, found et Turdetanis, part of Spain.

According to some writers, such as Quintus Curtius, so plentifnl was gold and silver, that even the soldiers of Alexander the Great made their armour of it. The Greeks and Athenians had mines, which they wrought, of gilver, lead, zinc, copper, but not gold; but the gold mines of Thrace were knowa to the Phomicians, who also knew and worked the copper mines at Cyprus. When they conquered Spain, they found immense capplies of gold, silver, and quicksilver. The value of the tin mines in Britain was early known to the ancients-a fact which serves to show that the natives of Britain, when the Phonicians traded for tin with them, must have been farther advanced in civilisation than is supposed. At the Roman invasion of Britain, the minerals must have been great attraction to them to maintain their hold of the country. There is no doubt that the lead mines in Derbyshire were wrought by the Romans, as blocks with Roman inscriptions have been found, and preserved in the Britiah Museum. As zinc has not been met with in a metallic state, although existing in other forms in several lead mines, it is improbable that it was used, as already noticed, though it may have been known to the Romans. It has been fully ascertained that gold mlnes were worked by the Roman soldiery in North Wales; and also that iron works were established by the Romans in the Forest of Dean, Gloucestershire. And it is more than probable that coal and other mines were worked by them in Britain. Various lead, copper, and iron mines situated in Germany, France, Spain, and other countries, there is no reason to doubt, wers known to them. The rich iron mine of pecular ore at Elba was known and wrought by the Romsns in carly times, proving beyond question that the art of making iron and its uses were well known. The metals used by the ancients appear to have been gold, silver, copper, tin, iron, lead, eadmia, antimony, and quicksilver.

Enough has been said to show the knowlege which the ancients had of minerals, and the grest progress they had made in the art of metallurgy. It has been seen that in all ages and in all climes the power of reason has been given by Divine intelligence to mankind, and has enabled them to make even the crust of the earth to contribute to human benefit; while, by the gift of indugtry, the art of metallurgy has given employment to the people, and atimulated ingenuity, and advanced refinement. But when bringing an array of facts before this Institution bearing upon the knowledge of the ancients, we would fail in our object were there not something more to be deduced from them than what is fitted to gratify curiosity,-if the reflection were not awakened in the mind that all human things are perishable-that even the hardest metals will, like the rocks, decay,-and that the wonderful Providence which rules and governs the world, by whose decree kingdoms rise and fall, has so ordained, for the wisest and best of purposes, though these are inscrutable to us. When we look over the page of history we find nations pass before us in rapid succession. Many of them, "like the baseless fabric of a vision," have passed away and left "not a rack behind." And while we thus see the knowledge, genius, learning, and skill which many of the ancient nations possessed, and which it took centuries in their history to attain, now almost buried in the tomb of oblivion, they will not have lived in vain if we, profiting by what they have left behind, avoid the rocks upon which they were destroyed. Should not a spirit of thankfulness be inspired, that our lot is cast in better times, when opportunities of instruction, open almost to all, spread before us the wide fields of human knowledge.

MINING SCHOOLS.*

It ls now some years ago since we had occasion to review the system of professional education, and the various schemes which were then proposed for its advancement. Among these was a College for Civil Engineers, and a School of Mining. To the former we objected that it proposed to substitute theoretical for practical instruction, the schoolroom for works and the workshop; the latter we advocated as promising to supply the mining engineer with the means of obtaining supplamentary instruction. The College for Civil Engineers, as originally constituted, we looked upon as equally fatal to the educstion of the student and his professional advancement, by subverting unnecessarily the existing professional organisation. We foresaw that the parents and the students must be both disappointed, because the arrangements were constituted on an erroneous basis. Under the ordinary system the student becomes the articled pupil of a professional man, who not only affords him opportunities for practical instruction, but becomes a surety or voucher for his actual attainments, and has natural opportunities of affording employment. To a certain extent an undue advantage is hereby given to one man, simply on the ground of his employment, and not of his capacity; but that is incidental and inevitable. At all events the father, who puts his son with an unemployed engineer, has no one to blame but himself if opportunities for employment are found wanting. Between the engineer and his pupil a kind of relationship springs up, a social tie is formed; and if employment cannut be given by the former on hia own works, his recommendation has some weight with other engineers.
The College, professing to give greater advantagea, in reality gave less. It might be that the stadent went through a regular and systematic course of instruction, but not necessarily so, for the pupil of an engineer in London can attend the supplementary and theoretical classes at University and King's Colleges, and in other schools; and so in most of our great towns. Experience has proved that the students at Putney had not those opportunities for practical proficiency to be obtained in private establishments; and the examination and certificate, on which so much reliance was placed, did not produce sny effect with the public. Even after great reforms and improvement had been made in the institution, and able practical men had been invested with the professorships, the original vices could not be overcome. By the nature of their avocations, the profensors were precluded from full professional employment, and thereby from adequate opportunities of promuting the interesta of the students. It must, further, be borne in mind, that though

[^35]a feeling of regard springs up between teacher and pupil yet, there being several teachers for each pupil, and many pupils for each master, there was not the same intimate connection of interest as between the practitioner and his pupils.

All that ability could do to maintain the College for Civil Engineers was done, and many liberal individuals largely contributed to promote its objects; but although professional hoetility had ceased, experience pronounced against it, and after lingering some time its labours were brought to a close.

The attempts to establish Mining Schools did not meet with the same measure of encouragement, although they have ultimately been brought to a successful issue; and, it is to be presumed, have obtained in the School of Mines a permanent foundation. It must always be regretted that the munificent effort of Sir Charles Lemon, to form a mining school in Cornwall, was not attended by correspondent exertion on the part of the mining interests, for thereby the opportunity was lost of giving an important exsmple of the value of such institutions. The proper, and it may be said natural origin of mining schools is in the formation of establishments in mining districts, from which practical men may be obtained as teachers and students, who, without disturbance of their usual pursuits, may devote themselves to supplementary instruction. With a proper development of such local schools, a central, and perhaps, in preference, a metropolitan school acquires its true significance. In such central school the highest branches of instruction may be communicated, the local details of scientific and practical research be concentrated and compared, and a standard of emulation be created for the observance of the whole body of instructors and pupils. We are glad to see that Sir Henry De la Beche has directed his attention to the organisation of local institutions, extending even to the instruction of the common workmen in mines.

We think it right, too, to call the attention of our readers to the novel endeavour of the managers of the School of Mines, to open evening courses for the instruction of working men in the metropolis. Such arrangements are very much wanted, for though we ought scrupulously to avoid the technical schools of the continental commonwealths, as promoting theory in preference to practice, yet we do want for our workmen those opportunities of instruction in the accessory and higher branches of science which are liberally afforded to our competitors by foreign governments. Something has been done for education In design; but we want schools for mathematics, natural philosophy, mechanical drawing, and, above all, chemistry. To some extent the School of Mines will supply this deficiency, and the directors deserve great credit for making a beginning. We question, however, the propriety of making any charge to working men; for however inconsiderable it may be deemed by wealthier men, it constitutes a burthen which is strongly felt by those who pay it. A pound a-year, for instance, may be considered a small contribution for a mechanic; but the charge does not end here. There are books to be bought, and other expenses; and then, a young man has to save money to meet periods of distress and to provide for his marriage and establishment, while he has always benefit and club expenses. It is a mistaken notion of the middle classes that knowledge is only valued when it is paid for, and it may very safely be assumed that the student who only applies for instruction becsuse he has to pay for it, cannot be worth much. In the organisation of schools of design, the mistake was made of levying large fees on the scholars, which had to be reduced; while we believe there are few schools which would not be filled, oven if no charge whatever were to be levied. Not to speak of other institutions, the Royal Academy and British Museum are in no want of students, though not a halfpenuy is paid by those resorting for instruction. We therefore advocate free instruction for mechanics, as on the continent.

Another measure wanted, to put us on a par with foreigners, is in the delivery of gratuitous public lectures on the higher branches of science and new discoveries, not coming within the ordinary curriculum of instruction. The lectures at the Roval Institution are, to a certain extent, of the requisite scientific standard, but do not possess the public character required. We are convinced that the delivery of a few such lectures by the professors, in the course of each year, would materially contribute to the reputation of the Institution.

The School of Mines and of Science applied to the Arts, now established in the Museum of Practical Geology, ores its rise, in a great degree, to Sir Henry De la Beche; and, as it presents
no temptations to usurp the functions of practicel men, promises to confer great public benefit. The volume of Inangural dincources, already published, is necessarily directed to the inculcation of the value of abstract science to practical mes, because that is, as it were, the case to be made out at present; but it must not be thence assumed the nature of the instruction is wanting in a practical character. The volume before as is une we strongly recommend to our readers, because it well makes out the case for the establishment, and shows by apt illustration the real nature of the service to be obtained from the proper application of ecience in practical pursuits.

Many of these lectures have been already noticed in ear pagen, and they include the contributions of 8ir Henry De is Beche, Dr. Forbes, Robert Hunt, Mr. Ramsay, Mr. Warrington 8myth, and Dr. Percy. We do not think it neceasary to particularise these contributions, or to speak of thair merits more than generally, because we feel that the book must have extended popularity.

HYDRAULIC ENGINEERING.*

We have often urged the importance of laying a sound basis for hydraulic engineering, by the publication of copious socounts of the history and examples of hydraulic works. The description of existing works alone is utterly useless for the instruction of the practical man, for no work, however complete it may seem to be, can be held satisfactory until it has etood the teat of long experience; and even the value of euch example is limited, becauge what will do for one locality is not suited for another, -although engineers think that a plan of a harbour, like that of a steam-engine, can be worked out anywhere, and thas little is to be done beyond setting up well-built stone wally providing backwater, and trusting to dredging-machines.
The great work of Sir John Rennie has, on these grounds, always geemed to us to require the greatest encouragement on the part of the profession, as the most important step towards the establishment of a great branch of engineering on a scientific and practical basis. Whether by the publication of Sir John Rennie's work, or urged to it by our observations in yeare past, the Harbour Department of the Admiralty bave determined on contributing towards the accomplishment of the same object; and in the 'History of the Harbours of the United Kingdom' they promise a valuable eeries of professional memorials. Although the government has begun its task, Sir John Rennie's work loses none of its value or significance. It is, as yet, the most copious and the most practical, and is likely to be the first brought to a state of completion; not only on account of the extent of the scheme contemplated by the Harbour Department, but because government designs want the vigour and energy of private undertakings. Nevertheless, great credit is due to the present conductors of the Harbour Department for an enterprise which comes strictly within their duties, and will greatly promote the public interests. We look upon the expenditure, indeed, as a measure of economy, for by improving the state of hydraulic engineering, very large sums must be saved to the governments on works which are now, for a great part, unprofitably and ineffectively constructed.

We have so often had occasion to complain of the want of a sound basis for hydraulic engineering, that we might have been esteemed inveterate grumblers, had it not been that notorious examples of failure too truly vindicate the justice of our animadversions. The harbour engineer, besides the resources of physicnl science, requires the aid of the geologist, the sesman, and the merchant. He must have great local knowledgy and long experience of the site to be operated upon, and wide acquaiutance with the condition and history of harbours generally. We need scarcely say how fow of the engineers employed, however high in otber departments, possess these requirements. The hydraulic engineer has not, like the railway engineer, to operate on ineri matter, but he has to contend with tides, currents, and winds, and the results of the great organic laws of nature, and the wondrous mechanism by which this globe of earth is maintained is action, or, it may almost be said, life.

The engineer coolly proposes to scoop out so much shingle, or to dredge so much sift, without bearing in mind that he is putting himself in antagonism with the great tides of the

[^36]world, or it may be with an offrhoot ourrent of the gigantic gulfstream, possessed of eternal action, and ready to resume the course of operations which the vain labours of a few days have suspended. Experience has the lese effect in this branch of engineering, inasmuch as the results of experience are little known or attended to; and it is a sufficient indication of the present state of this branch of engineering that the practitioner rarely succeeds in gaining public confidence for his plans. The seaman, the pilot, or probably an old inhabitant, commonly criticises the design of the works, points out their practical deficiencies, and has too commonly the satisfaction of proving himself right by the course of events. There is, indeed, no branch of practical knowledge in such an unsound condition as thig, where men are content to repeat the blunders of their predecessors, and to commit themselves to general propositions the fallacy of which has long since been demonstrated. The following remarks of Sir Henry De la Beche are very severe, and too true, ss our readers know. Speaking of the value of the Geological surveys, Sir Heary says, "Our everyday's experience along coasts shows us how needful it is that the engineer should, as well as the geologist, study them. Let us, for example, consider thia cove-there are hundreds such as it to be found on our cossts. The mode in which it is silted up is apparent to you; and yet many an artificial cove has been constructed, at great cost and loss, which was as certain to be filled up by silt and sand as this has been and must be." This is perfectly true; and "an artificial cove" or "shingle trap" is the true designation of many works styled by their constructors, and supposed to be, harbours and harbours of refuge-the right gense in which they are harbours being that of harbouring silt and sand.
Sir Henry goes on to say, "No doubt there are conditions where the silting up may be so small as to be comparatively unimportant; but the probability of these conditions requires the study pointed out. While on this subject let me also briefly call your attention to the silting up of estuaries. Those who are engaged on the Geological survey have often to consider it, both with reference to the mode of deposit of certain rocks, and to the changes effected by it at the present day. The plan before you shows an estuary, with the boundaries of high and low water; a spit of shingles, running in front of part of the eatuary, separating it from the sea and the comparatively narrow entrance for the ingress and egress of the tide. The whole is the result of the balance of certain conditions by which the channel from the sea to the estuary is kept clear, and vessels of a certain class can enter and depart. The body of water entering and passing out is important; and yet, what do we often find done, and done too by act of parliament? The body of water entering, and consequently passing out, is diminished for the parpose of reclaiming, as it is termed, certain mud-banks, often extensive; thousands of tons of water are thus sometimes cut off from performing the work by which they aided in keeping the channel to the sea clear; the bottom of the channel rises and the port is damaged. No doult the mud-bank may be converted into fertile land, but at what loss! The natural causes for deteriorating estuary harbours are often bad enough, but why artificially try to injure them?"
The volume of the 'History of Harbours' now before us, relating to Belfast, is one highly useful, because it has a copious collection of the various plans and reports, bringing down the history of the harbour and the views of eminent men with regard to it to the latest time. The book does not, however, like Sir John Rennie's, contain drawings of the works, though these are of great importance, because unfortunately even the structure of walls and piers remains unsettled; and it is very desirable to get good examples of the forms of walls which under given conditions have proved effective. The book is very well drawn up , is cheap, and includes a number of details which will be found very useful. We hope to see the design fully carried out by the publication of complete records of the numerous and interesting harbour works around our coast.

Bibton.-Messrs. Ashpitel and Whichcord's design for the Bathy and Washhouses, and Mr. Bidlake's, of Wolverhampton, for the Town Hall and Literary and Scientific Institution, have been accepted. The cost of each building will be about 2000 . and both are to be erected in the Italian style of architecture.

ESVIEWE.

The Building erected in Hyde-Park for the Great Exlibition of the Works of Industry of all Nations, 1851. Plans, Elevations, and Details, by C. Downes, Architect; and Scientific Description by C. Cowper, C.E. London: Weale. 1859.
We have had brought before our notice a great many works on the Exhibition Building, but this is the one of most practical character-a necessary consequence of the advantages possessed by its editors in the access to the original working drawings. We believe nothing is omitted which is essential to a proper understanding of the whole structure, and the engravings are as numerous and as full of details as the most exacting could require. It must therefore be considered an acceasion to professional literature.

First Report of the Commissioners for the Exhibition of 1851. Presented to Parliament by command of Her Majestr.
This is called the first report of the Commissioners for the Great Exhibition, but it is a detailed account of the preliminary organisation and of the working of the Exhibition. It does not, however, take up the early history of the origination, beginning at a later date and showing very fully what the Executive Committee did.

Supplement to the Theory, Practice, and Architecture of Bridges.
Part IV. 'Suppension Bridge across the River Danube.' By W.
Tierney Clabe, F.R.S., C.E. London: Weale. 1858.
The additions made to Mr. Weale's work on Bridges are, we are glad to see, of a valuable character. The present part is devoted to the Peoth Bridge over the Danube-an example truly valuable, because referring to a work not only of great magnitude, but placed in a situation of natural difficulty, and requiring much ability and the exertion of great professional resources for its successful accomplishment. The engravings are an essential portion of a book of thls class, and fully carry out its objects.

Elementary Practicul Geometry for Schoole and Workmen. London: Groombridge. 1852.

Ths author states that his objeet has heen to provide a work of instruction for young workmen, and for the older pupils in schools where theoretical geometry is not taught. He seems to have carried out his plan and produced a very useful little book.

The Gold Seeker's Manual. By D. T. Anstzd, M.A., F.R.S. London: J. Van Voorst. 1849.
Alfiovge this work-written in 1849, at the time when California occupied so considerable a share of the public attentionhas no reference to the recent Australian discoveries, it will be found to be no disparagement. Its valuable information as to the general distribution of gold, as to its mineral characteristics, and the simple tests for ascertaining its specific gravity -tests of the highest practical importance-render it a useful book to the miner, while the chapters on the influence of California on the commercial value of gold render it worthy the attention of the economist. Mr. Ansted states that a remarkable mixture of native gold with silver, occasionally found in Siberia, and known under the name of electrum, is likewise to be found in California.

On Peruvian Guano; its History, Compasition, and Fertilising Qualities; with the best mode of its application to the Soil. By J. C. Nesbit, F.G.S., F.C.S. London: Longman and Co. 1852.

This is the tenth edition of a small book in which Mr. Nesbit, the principal of an agricultural school, has very fully and practically illustrated the history and treatment of guano, so as to enable the agriculturist to buy it safely and apply it properly.

BOILERS OF THE U.S. STEAMSEIP "FULTON."*
By B. F. Inarrwoon, Chief Engineer.
The following is an account of the performance of the boilers of the Fulton on her trial trip under the ordinary circumstances of sea steaming, burning the fuel with natural draft, and without forcing the fires. The fuel used was soft anthracita, a mean between the Cumberland coal and the anthracite proper. The date is the average of 11 hours' continuous steaming.

Boilers.

Twe donble return drop fue Iron boilers, clrcolar trom and to end, placed alde by alde	
Length of each bodier	22
Dlameter -	10 nc 法.
Contente of elreumscribing parallelopipedon of each bofler, excludve of steam eblmaet	
Area of heating auriace in the two boikern	2600.00 square ft.
Ares of grate turface In the two boilert	112.00
Crosa area of apper and middle row of Auen, each, in the	18.75
Cromet area of lower row of flues, In the two ballers	17.40
Crose area of chimney	21.65
Helght of chlmaey above grate	48.00 feet.
Eretrure of ateam sbore almosphers is bofler per eq. lneh	2400 lb .
Inidal ateam preasure above atmosphere in cyinder	$22 \cdot 80 \mathrm{lb}$.
Catting off at, from commencement of atrole	800 fret.
Number of double strokes of piston per minate	16.
Conpumption of anthrecte coal per hour wich natural draft	1849-00 Ib
Capacity of steam room in boller and alam-pipe -	1210.00 crable ft.
Proportions.	
Propertion of heating to grate surface	23.214 to 1000
Proportion of grate aurfice to crons aree of upper and midddle row of lues, each	$6 \cdot 687$
Proportion of ginte sarface to lower row of gues	$6 \cdot 437$
Proportion of grate surface to chlmney	$6 \cdot 178$
Proportion of healing ourfuce to croses area of apper and middla row of lues, each	155-224
Proportion of heating surface to lower row of flues	149-425
Proportion of beating rurface to chimney	120.092

Proportion of healing aurfice per euble foct of spice disproportion of beating
Froportion of beating aurface per cuble foot per doable propore of plation per minate
Proportion of srals
Proportion of trate per cuble foot of ipsace diap. of platen Cabic feet of tieam room per cuble fook of apace dimplace. conent of platen
Conampton of anthracite coal with matural draft per equare conenmptiten of herice, per botur
Sem meter eraporated by 1 lb. of pathracite coal per bour
 Weaght of bollers, exclusive of chimner and srates $111,858 \mathrm{lb}$. Weight of boilers, exclusive of chimner and trale! $111,068 \mathrm{ib}$. Wedght of grates : : 5,289 Ib.
Weight of aes mater in botlent . . . \quad 82,800 ib.

Total weight of bollert and water
In the ahove calculation of the amount of sea water evaporated per pound of coal, there is nothing allowed for blowingoff, as the density of the water is recorded from $\frac{1}{1 / 2}$ to $\frac{1 j 8}{1 / 2}$ progressively. There being evaporated per hour 71 l ²:67 Ib . of gea water, there would be required over 11 hours' steaming to make the density ${ }^{\text {fh}}$, supposing the density at starting to be st. There has, however, been included in the calculation the quantity of steam (3.094 cubic feet) required to fill the spaces between valves, in nozzles, and in clearance of cylinder.

By driving the blowars, the boilers can be made to fill the cylinder to half-stroke with steam of 30 lb . per equare inch cylinder pressure above the atmosphere, giving the piston a proportionally increased number of strokes. When this is done, however, foaming or priming takes place.

It may be of advantage to compare the results obtained from the Fulton's boilers with those obtained from the experimental boiler at the Washington Navy Yard, of nearly the same proportions, used by Professor Walter R. Johnson, in his investigations on coals. The proportions compare as followe-vir.:-

Jonmeor's Boilne. FoLtor's Botlme.		
Proportion of heating to grate murfice	28-000 to 1-000	28-214 to $1 \cdot 000$
Proportion of grate anrface to leat calort. meter	6449 so 1000	6487 to 1.000
Heicht of chimpey above grite	58.000 feet.	40000 feet.
Pound of antbractite coal burned per aq. foot of grate per hour with quaturl dralt	6-480	12.050
Pousde of freab water eviporated per bour per ponnd of anthractie, from a temperttare of 109° Pahrenhels	80800	$8 \cdot 718$
Poonds of freah wrater evaporated per hour per square foot of heallos surface, from a Lemperture of 100° Fafireahelt	2.060	7-980

The above figures show pretty conclasively the advantages to be derived from a slow combustion, in giving time not only for
the atmospheric air to beoome so well mixed with the conctituents of the fuel as to completely oxidise them, but alvo in giving time for the caloric to enter the water, or be taken up by it.

In the above two boilers, we find that with nearly equal proportions of heating to grate surface, nearly double the quantity of fual is barned per square foot of grate per hour in the Fulton's boiler, while the guantity of water evaporated per square foot of heating surface per hour is only $45 \cdot \%$ per cent. more; while the economical evaporation is 35.8 less. Now, inasmuch as in one case there is burned double the quantity of fuel per unit of grate per unit of time than in the other, it is obvious that if the two combustions were equally completo, donble the amount of caloric would then be evolved in the one case over the other, and if it were proportionally absorbed by the heating surface, double the quantity of water per unit of heating surface per unit of time would be evaporated in the one case over the other; but we find this difference to be praotically only 49.7 per cent. more, coneequently the caloric, If evolved, could not have been taken up by the heating surface, but must have paseed off up the chimney, and by this very pessing off up the chimney, produced the increased draft neceseary to burn a double amount of fuel.
The potential evaporation of the two boilera per same unite may be compared as (6.49×8.9) $57-297$ to (5.713×18) 68.556, or as 1000 to $1 \cdot 198$; consequently if the grate and heating surfaces of the Fulton's boilers bad been one-fifth greater, or 134.4 and 3180 square feet, instead of 112 and 8600 square feet, and half the quantity of fuel burned per unit of grate per unit of time, the same steam-power could have been obtained with $35 \cdot 8$ per cent. less fuel; making the chimneys of course of equal heights, the draft due to the greater height in Johnson's chimney being one-sixth more than in the Fullon's. It is not, however, always practicable in a steamship to obtain space for a larger boiler, and economy of fael must frequently be sacrificed to other considerations. The economical evaporation of the Fulton's boilers is about equal to that of the general average of marine-boilers.
In making the comparison aboolutely, it must be borne in mind that in the Fulton's boilers there were wastes by leakage of steam through the valvea, and by foaming, not inchuded in the calculation of their evaporation; while the caloulation of the evaporation in Johnson's boilers was made from measurement of the actual amount of water put in them: of course, the calculation was indurive of all losses.

THE LATE JAMES SAVAGE, ARCHITECT.

Ma. James Savage was born at Hackney, Middlesex, April the 10th, 1779. After receiving his education at a private school, he was articled to Mr. Alexander, the architect of the London Dooks, under whom he acted for several yeare as clerk of the works.
In 1798 he was admitted a student of the Royal Acedemy, and became gubsequently a very constant contributor to their annual exhibition.
In the year 1800 his denign for improving the city of Aberdeen obtained the second premium of 1501 ., he being then under twenty-two years of age.
In 1805 he was the sucoessful competitor among the numerons architects who submitted designs for rebailding Ormond Bridge over the Liffer, Dublin; and in 1808 he furnished the deadgn for Richmond Bridge, over the mame river, which was carried into effect.
In 1806 he presented to the London Architectural Society, of Which he wai a mamber, an Essay on Bridge Building, which they published in the second volume of their 'Transactions.'
In $181 s$ his design sent in competition for a stone bridge of three arches over the Ouse at Temsford, in Bedfordshire, with the adjacent road and flood bridges, was eelected by the magiotrates of the county.
In 1819 his plans for building St. Luke's Cburch, Chelees, were chosen from among above forty designs. This church in, in respect to construction and componition, an imitation of the Gothic churches of the fourteenth and fifteenth centuries, and is remarkable for the ceiling of the nave, which consists of a groined vault of solid stone, whose lateral pressure is resisted by fying buttresses, also of solid stone. In the original design for this church, the tower was terminated with ap open apire,
cimilar in principle to that of Sir Christopher Wren's charah, 8t. Dunstan's-in-the-Ehat; but the Board of Works considered it their duty not to sanction the construction of euch a apire, and put their veto upon it accordingly.

In 1823 his deaign for the now London Bridge was submitted to a committee of the House of Commong when, with the view of showing that his plan, although noval, was neither crude, hastily conceived, nor wholly without practical exemplification, he instanced, among other mattern, that: "In proportioning the parts of the arches of Chelsea Church and their buttressea, and determining their lines, he had used the same meana as in erranging the plan for the arches and piere of his design for rebuilding London Bridge. At Chelsea they had been employed with complete success, there not being the slightest settlement in any part of the building, nor even a thread opening in any of the jointe of the courses to indicate any etrain or inequality of pressure." His design for the bridge was highly approved, but the committee, by the casting vote of their chairman, decided in favour of the deagn of the late Mr. Rennio.

Aznong several others, he was one who made a plan (in 1895) for improving the river Thamea, but while they selected the morth bank for their operations, he chose the south; this scbeme he named the Surrey Quas, which he proposed should extend from Loondon-bridge to Bishop's-walk, Lambeth.

Much of his practice consisted in arbitration cases, and the investigation of architectural and engineering queations bronght before the courts of lam. Among these was the long protracted Custom House case of the Crown v. Peto, in which the defendant attributed his succesa mainly to the able and irrebuttable evidence of Mr. Savage.

In 1890 he succeeded the late Mr. Hakewell, as Architect to the Society of the Middle Temple. He erected the clock tower to their Hall, also Plowden-buildings in Middle Temple-lane, and other works.
About the year 1892 he was one of the active promoters of restoring and opening to public viem that beautiful structure the Lady Chapel, St. Saviour's, Southwark, which, but for their timely interference, would have been shut out from view by the proposed new line of street forming the approach to new Lon-don-bridge.
In 1836 he published 'Observations on Style in Architecture, with suggestions on the best mode of procuring Designs for Public Buildinge and promoting the improvement of Architecture; eapecially in reference to a recommendation in the Report of the Commissioners on the Designs for the Now Houses of Parliament." This pamphlet obtained extensive circulation.
In 1840 he was commissioned by the Societies of the Inner and Middle Temple to prepare designs for the restoration of the Temple Church; and the works were fast progressing, apparantly to the eatisfaction of all partiee concerned, when, as it would appear, the difficulty of pleasing in every particular the divided interests of both societies occasioned some trifling disagreement between them and Mr. Savage, which induced the Benchera to apply to other architects to carry on the works, which, after some delay, were, however, completed according to the original intentions of Mr. Savage, a few unimportant alterations having been introduced.

Among other buildings and works which he designed and executed, the following mas be mentioned:-Trinity Church, Sloane-street; St. Jame' Church, Bermondsey; Trinity Church, Tottenham-green; St. Mary's Church, Llford, Essex; St. Michael's Church, Burleigh-street, Btrand; St. Thoman' the Martyr Church, Brentwood, Essex; St. Mary's Church, SpeedhamInnd, near Newbury, Berks; St. Mary's Church, Addlestone, Cherteey, Surrey; two bridges on the road made through the Crown Lands at Reading, Berks; the new flour and bell-frame, and repairs to the Broad Tower of Lincoln Cathedral to receive "Great Tom," recast by Mr. Mears, of London, in 1836; repairs to the belfry-floor and bell-frame of St. Mary-le-Bow, Cheapside, London, so as to enable the peal of twelve bells therein to be rung with safety, which had not been rung out for very many years prior to the alteration; the Baptists College, Stepney; Bromley and Tenterden Union Workhouses, \&c. One of the last works upon which he was engaged till within a few months of his death, was altering and beautifying the Church of St. Mary-at-Hill, London; he had previoully executed great alterstions and repaira to this church in 1827-8, when it was in fact nearly rebuilt.

Mr. Savage was one of the oldest membera of the Surveyors' Club, and, for a long period of hif life, member and chairman
of the Committee of Fine Arts, of the Society for the Promotion of Arts, Manufactures, and Commerce, in the Adelphi, London. He was a member of the Graphic Society from the time of its formation, a member of the Institution of Civil Engineers, a member of the A rchitectural Society, and, for a short time, a fellow of the Institute of British Architects, from which, difference of view upon some mattera of regulation induced his early withdrawal.

With the exception of attacks of gout and rheumatism he enjoyed perfect health, till within six months of his death, which took place, after a fortnight's illness, on the 7th of May, in the seventy-fourth year of his age. His remains were interred on the 19th of the same month, at St. Luke's Church, Chelsea.

THE LATE JOHN HAVILAND, ARCHITECT.

We have to record the decease, on March 28th, at Philadelphia, of John Haviland, Esq., architect and engineer, M.R.I.B.A., aged 59 . He was descended from the ancient Norman family of De Havilland, of Guernsey, one of whom, James De Havilland, settled in Dorsetshire early in the reign of Henry VII., in which county and in Somersetshire his descendants have ever since been among the landed gentry. The father of the deceased was James Haviland, Esq., of Taunton, the son of John Haviland, Esq.2 of Gundenham Manor, Somerset. He married Anne, the daughter of the Rev. Benjamin Cobley, Rector of Dodbrook Devon. Mr. Haviland was consequently first cousin of Haydon, the celebrated historical painter. He studied his profession with Mr. Elmes, the wellknown writer upon architecture and biographer of Sir Christopher Wren, who, appreciating the genius of his young pupil, confided to his care during a severe illness the erection of an important building-one of the new churches at Chicheaterwhich displayed when completed such talent as to call forth not only the eulogy of his master, but the thanks of the corporation, in the substantial form of an extra pecuniary grant. In 1815 he went to Russia to enter the Imperial Corps of Engineers, by invitation from his uncle, Count Mordwinoff, then the Minister of Marine to the Emperor Alexander. Here, however, he met with the American Admiral and General Von Sonntag, then in the service of Russia, from whose representations he was induced in the following year to go to America. He went provided by Mr. Adams, then American minister at the imperial court, with every necessary introduction to the Americsn government.

He was the first to introduce the radiating form in the construction of prisons, and he built the Pitteburgh Penitentiary upon this plan. Subsequently he built the Eastern Penitentiary at Cherry-hill, which is now the standard for all edifices of similar purposes. To Mr. Haviland is due the entire merit of having introduced this novel and complete style of prison architecture, which soon attracted the attention of all the civilised world; and the prisons built by Mr. Haviland were examined by commissioners sent for the purpose by the governments of England, France, Russia, and Pruseia, and by all was his beautiful and original design extolled and adopted. In England we have the Model Prison at Pentonville.

Besides many others of lesser note, we may enumerate amongst his principal works the Hall of Juatice at New York, which is considered "an honour not only to the city, but the American nation, being a perfectly original apecimen, in its style, such as all Europe cannot produce;" the United States "Naval Asylum" at Norfolk; the New Jersey State Penitentiary; Missouri and Rhode Island State Penitentiary; the Alleghany, Lancaster, Berks, and many other jails; the Deaf and Dumb Asylum, Philadelphia; the State Inssne Hospital, Harrisburgh; the United States Mint, Philadelphia; the county halls of Newark and York; and numerous churches and private mansions.
He married, July 2, 1819, Mary, only daughter of the late William Louis Von Sonntag, Captain in the French Army of Louis XVI., and sister of the Admiral and General Sir George Von Sonntag. He has left two sons, who are members of the bar. His body was interred on the Ist April in the family vault of St. Andrew's Church, Philadelphia, and was followed to the grave by the various societies of which he was a member.

CONCRETE HOUSES.

In our last Number we noticed a vinit which we had made to East Cowes-park, in the Isle of Wight, adjoining Osborne, her Majesty's murine residence, and we expressed ourselves much pleased with the economy and stability displayed in the construction of two houses then huilding by Mr. Langley on that beautiful estate. We represented that on the eatate most excellent gravel had been advantageously turned to account, by building a pair of cottage villas entirely of concrete, composed of one part of Francis Medina Cemont mixed with six parts of coarse gravel and two of hoggin or coarse sand. We further detailed the process adopted in the erection of the houses, which very forcibly struck us as being not only extremely economical, but having the great desideratum of having houses built by this process rendered perfectly free from damp, although the walls are not so thick as the ordinary method of building by bricks or stone, neither of those materials being used.

We have since been informed that we were in error in stating that the concrete was composed of one part of Francis Medina Cement mixed with six parts of coarse gravel and two of hoggin or coarse sand, and now find that no hoggin or coarse sand was used in the composition, the whole being composed of one part of Francis' Cement and coarse gravel and grit, the gravel having been first carefully sifted clean and rendered perfectly free from sand and dirt; and if such had not been the case, the walls would not have been made so strong, nor have answered the intended purpose, as it is obvious that every particle of sand engages a proportion of cement, or, in other words, deprives the gravel of so much strength, and materially deteriorates the work; and we therefore feel ourselves much indebted to our correspondents for thus giving us an opportunity of more fully explaining and testing the works of Mr. Langley, which, although but little known, will no doubt be more generally adopted, as we have been well informed that many medical and scientific men witnessed the progress of the works, and expressed unanimous opinions that buildings so constructed would be more durable and impervious to wet than ordinary buildings. And we find that a building society is about to be formed, for the purpose of building many houses on this beautiful estate with similar materials; and feeling that extensive works at Dover, Alderney, Sandown Bay in the Isle of Wight, and many other important works, have been successfully carried out with similar materials, we cannot but anticipate satisfactory results from such a society.

THE STREET PAVING OF THE METROPOLIS.

By Wilinan Taylor, Absoc. Inst. C.E.

[Paper read at the Institution of Civil Engineera.]

The paving of the streets is next in importance to the sewage of the metropolis, and it is only by a good combination of the two that true sanitary measures can be rendered complete and permanent. The immense sums of money yearly expended in repairing paving prove that the subject has hitherto been much neglected; and the following observations, giving (it is true) only the practical results of hitherto limited operations, are made with the view of directing attention to the subject, and in the hope that the discussion may induce a more extended application of the system, if it be approved, and lend assistance to the consideration of a subject of such increasing magnitude.

The street paving of the metropolis has been for many years carried on under oue general system. The method is to employ granite, in blocks of from 8 inches to 14 inches long, 6 inches to 9 inches wide, and 9 inches deep; these are merely laid in regular rows upon the subsoil, and after the usial process of grouting and ramming, the street is thrown open for the traffic which is expected to perform the last duty of the pavior, and to settle each stone upon its bed; for the large wooden rammer is altogether insufficient for this purpose, as may be observed from the irregular settlement of the blocks, caused by the rapid concussions from the carriage-wheels immediately after the trafic has been restored. The results produced are great noise as the carriages pass over, imperfect foot-hold for the horses, and risk to the axletrees and springs from the jolting.

The long continuation of this system of paving arises from two causes. First, the general opinion that great strength in
the material employed is the only deslderatum; consequently any attempt towards the improvement of the surface of pavements has been prevented, under the impression that depth or weight of stone alone constitutes strength. Secondly, the process of laying large blocks of stone has been found so easy, requiring so little care and anxiety for its resulta, that the pavior has felt satisfied to follow in the beaten track, mo long as public opinion proved indifferent to a change. It will acarcely be credited that an act of parliament for Tottenham-courtroad is in existence, which states that it shall only be paved with stones of not less than 9 inches in depth.
The "Macadamised" road is not only an advance upon the old system of gravelling roads, but it is also found to offer the most perfect surface for quietness and safety in travelling. The grinding action, however, of the carriage-wheels upon a material composed of small particles, reduces them rapidly to powder, and the expense of an annual supply of new stone to keep up the surface is such as to render it objectionable for the car-riage-ways of streets where there is much traffic. The consideration of this difficulty caused an experiment to be made about twelve years ago, with paving-stones 4 inches in depth, adopting, in one particular, the principle which Macadam carried out-namely, a foundation possessing a certain amount of elasticity, but of sufficient strength to support the surface material, the difference being one stratum of solid granite, in lieu of broken ring-stone. The experiment was first tried at Birmingham, in the year 1838, at the crossing of a street where heavy wagon-loads were constantly passing over it; this pavement may now be seen in as perfect a condition as when it was first laid.
The success of this trial led to another of the same sort of pavement, about seven years ago, at the departure side of the Euston Station of the London and North-Western Hailway, which has been found as perfect as that laid at Birmingham; and has been called the "Euston pavement," to distinguish it from others.
The manner in which this paving is laid may be simply thus described. The ground is first removed to the depth of 16 inches below the intended level of the pavement, the foundation being shaped to the convexity of the intended surface of the road; a layer of strong gravel, 4 inches thick, is then spread over the surface, and compressed, by being rammed equally throughout; after which, another layer of 4 inches of gravel, mixed with a small quantity of chalk, or hoggin, is laid on, for the purpose of giving elasticity to the bed, the ramming being continued as before. This is followed by the last layer, also 4 inches thick, of the same material, but of a finer quality, when the whole mass is compressed by the rammer into the smallest possible space. Thus the surface of the foundation is perfect, both in shape and solidity, in all its parts, and is ready to receive the pavement. The stones used are of Mount Sorrel granite, from 3 inches to 4 inches deep, 3 inches wide, and averaging 4 inches in length, neatly dressed and squared. These stoues are laid in a bed of fine sand, 1 inch in depth, spread over the surface, and are carefully and closely jointed in the laying, so as not to allow any single stone to rock in its bed. The rammer is then applied over the whole, each stone receiving its blow in rotation; and this is repeated again and again, until no further impression can possibly be made upon it. It is by observing the action of the rammer at this stage of the work that the system is fully elucidated. The wooden rammer weighs 55 lb ., and has an iron ring at its foot. It can only be nsed with effect by practised workmen; and such is the force of the blow that were it not for the resiliency from below, in the elastic quality of the foundation, the stone would necessarily break, or its edges be destroyed. It should, however, be remembered, that the same blow, if given to a stone of 9 inches, or of 12 inches deep, would produce but little effect, even though it were laid on a soft bed, the force of the blow being expended in the mass of stone, so that it would only be pressed to the bottom, in course of time, by the weight and action of the traffic; but such is the power exercised by this rammer on a small stone, that when the paving is finished, a weight of 10 tong, upon a pair of wheels, would be found to make no impression upon the surface. The operation of ramning having been completed, a small quantity of screened gravel is sprinkled over the surface, and the street is opened. The action of the first water upon it fills in the interstices at the corner joints of the stones, leaving the foundation impervious to weth and thereby securing perfect cohesion.

The greatest care is required in fixing the levels for the workmen, so that a perfect line in the longitudinal inclination of the road may be insured, with thorough uniformity in the convexity of the carriage-way, the inclination from the centre to the side channels being only sufficient to drain off the surface water. The "Euston pavement" is distinguished by the extreme quiet it affords under busy traffic, by the numerous joints affording a very perfect foot-hold for the horse, and by the traction being less than on the best macadamised road; and from the nature of the Mount Sorrel stone, and the absence of those glassy qualities so observable in almost every other paving chere is none of that slipperiness so prevalent in the streets of London, whilst the appearance is admitted to be better than that of any other pavement now in use.
The cleansing of this pavement is also another important consideration. The arch of the road abutting upon the kerbutone, on each side, enables "Whitworth's" sweeping-machines to brush off, effectually, every particle of dirt from kerb to kerb, thus insuring the cleanliness of the road at all seasons of the year; whereas in almost all the streets of the metropolis, the eide channels are eo constructed that this valuable machine is found comparatively useless beyond the centre part of the ramd.
With the view of proving the strength and durability of this pavement by the severest test that could be applied, an offer was made in 1844 to the Commissioners of Sewers at Guildhall, to pave any street in the City of London, and only to be paid fur it, subject to their approval, at the end of twelve months. The offer was accepted, on condition of a small specimen being allowed to be laid by way of trial, in Watling-street, at the crossing of Bow-lane, it being the opinion of the board that this situation would afford the best trial for its merita. The pavement presenting the same surface at the end of twelve months, the amount stipulated was paid without any application for it, the testimony of the inhabitants at this particular spot being of the most flattering nature, from the quiet and comfort that marked the change from the former large pavement, and also from the safety it afforded to the horses, no accident having occurred since it had been laid down. The pavement, however, became mutilated from time to time by being opened for laying water and gas pipes; and the necessary repairs were so carelessly conducted that the city surveyor requested the whole to be again relaid in September, 1848, when it was found that such portion of the pavement as had remained undisturbed, was as perfect in surface as when it had been completed three-and-ahalf years previously. It was at this period that an opportunity was afforded for comparing the relative advantages of the Mount Sorrel granite with those of the Aberdeen stone.
When this pavement was first laid in Watling-street, the channels consisted, in part, of large Aberdeen granite; and upon lifting this stone in September 1848, it was found to have loat fully 1 inch by wear within the previous three years and-ahalf, although no perceptible wear could be observed in the Mount Sorrel stone-the impressions of the hammer, in the original dressing of the stone, being distinctly observed on the urface.
This stone is found to be perhaps the best that has hitherto been tried for paving, both on account of the toughness of its texture, and the dead surface it maintains under heavy wear. With a view to meet the predilection for large stones, a suggeation has been made to increase the depth of the Euston pavement to δ inches; but when it is considered that every addition to the weight of the stone must necessarily increase the cont per superficial yard, and as the stability of this pavement depends chiefly upon the nature of the foundation, and the full complement of manual lahour being bestowed upon it, s inches should be the maximum depth of the stones for streets having the heaviest traffic. It is frequently observed, in the streets of the metropolis, that when an old pavement is lifted, the etones are piled in heaps in the carriage-way for the purpose of being re-dreseed, to restore again a flat surface to each stone. This expense and inconvenience would be obviated by the use of the arnall pavement, inasmuch as the joints or interstices are $s 0$ numerous and insignificant that there is no possibility of the stone wearing round upon the surface; and after the lapse of yearm, this paving-stone would atill be found available, without any redresing, for the numerous retired streets of small trafic. Thin arrangement would prove its own recommendation, both in economy of cost, and the quiet, comfort, and cleanliness that would mark the change; for it may be observed, when driving
through these retired streeta, the concussions are more violent than in the main thoroughfares, on account of the rounded and worn-out stones having been transferred to the second and third class streets.

An approach towards the improved system has been made in several streets in Marylebone parish, within the last three years, by the adoption of small stones of Mount Sorrel granite, 6 inches in depth; but the principle of the partially elastic foundation baving been overlooked, and the workmanship being of so different a character to what is required for this description of pavement, it is evident that the trial could not be successful, and the consequences are manifest failures.

In making a comparison of the cost of the two systems of peving, the balance will be found to be in favour of the "Euston pavement." The usual practice in the old system has been for the contractor, in repaving a street, merely to lift the existing surface, and to substitute new stone in place of the old. The minimum cost of this replacing is 158 . per superficial yard, to which must be added 3s. per yard for the value of the old stone, claimed by the contractor, and which will make the clear cost of the large pavement 188. per superficial yard. The maximum cost of the Euston pavement is 128 . per superficial yard, including the foundation; and after deducting 38 . per yard, the value of the old stone nut claimed by the contractor, the nett cost will be 9a. per superficial yard, or about half the minimum cost of the large pavement.
It is difficult to find precise data, upon which a true estimate of the comparative expense of the annual repairs may be framed, on account of the very unequal duration of the pavement of the different metropolitan districts, much care being apparently bestowed on some streets, whilst in others the very opposite extreme, of neglect and indifference, is exhibited. The diversity of the nature of the traffic in the different quarters of the city, and in the different kinds of vehicles prevalent in certain thoroughfarea, still further augment the difficulty.

It has been observed that a leading street in the city has been twice paved within one year; and many others, having a similar amount of traffic, have been also paved within the second ur third year. Although it is possible these instance may be exceptions to the general rule, in first-class thoroughfares, yet they are the streets to be selected for comparison.

The average expense of the Euston pavement, including the first cost, would certainly not amount to more than 18.6 d . per superficial yard per annum for ten years; indeed, arguing from examples in existence, it would be less, for the pavement in Watling-street was perfect in surface (where no disturbance had taken place for laying pipes, \&c) after having been in wear for three years and-a-half, the surface of the stone at the same time remaining uninjured, so that it is fair to presume that a good travelling condition would have been maintained to the end of seven or ten years, without the necessity of repair.

These obsorvations are not adduced from mere theoretical viewa, but are based on long practical experience. The principle of a partially elastic foundation belongs to Macadam; and the reault of the author's experience, of more than twenty years, in the management of turnpike-roads and street paving, induces the conviction, that in any improvement yet to be made in carriage pavement this principle cannot be duparted from.

The "Telford" system of paving, with deep blocks of stune Imbedded in mortar, upon a concrete foundation, must be regarded only as so much masonry; and in practice it is found that the surface of the stone is coon destroyed under the action of the carriage-wheels, and the noise of the traffic is increased tenfold. Now, in order to provide for the constant action of the wheels upon a perishable material, it would appear selfevident that some partial elasticity must be permitted, and is, in fact, necessary, to protect the material of which the surface may be composed; it is on this principle that the railway-sleeper is laid on a bed of aand, and in the wood pavement the same principle is present, with this difference-that in the latter case the elasticity exists in the surface material, instead of in the foundation.

As a first etep towards a general improvement, it is desirable that the different Paving Boards throughout the metropolis should make a trial, by experiment, in the retired streets of small traffic, by lifting the large stones, and "chopping" them into cubea, or rectangular pieces of 3 inches in depth, for the future pavement. The result would prove of the greatest comfort to the householders, by causing a cessation of the noise of the passing vehicles.

An experiment of this kind must, however, be conducted upon a system undeviating in its operations, both in the selection of proper materials for the subitratum, and in the employment of a full complement of labour upon it. These quiet streets offer a good field for the practice of the paviors, to qualify them for the task of extending the system of the more important thoroughfares. The expense being for labour only will prove its own recommendation in point of economy, and when it is considered that stones of 9 inches in depth are cut down to 8 inches, a large surplus of stone will be accumulated for paving purposes, and the refuse will be valuable for "macadamising the rosds in the outskirts of the metropolis.

In conclusion, it is not intended to point out the Euston pavement as an example of an absolute remedy for all the evils attending the imperfect state of the thoroughfares; the object is widely different, being rather to invite attention to the magnitude of the question, which must be acknowledged by all to be a subject beset with serious difficulties. Its importance is continually felt in the metropolis and in all large towns; and amidst all the improvements and inventions by which the present era is distinguished, in the application of science and art to every known subject, the mode of paving the thoroughfares of towns has scarcely made any advance during the last century. The improvements in sub-drainage and the invention of cleans-ing-machines, can be regarded only as subsidiary to any general sanitary movement; the completion of the whole, in the production of a level and durable road surface, remainestill a desideratum.

Discussion.-Mr. Haywoon said the question of an elastic or a non-elastic foundation had been, he thought, finally determined many years ago, by Mr. Telford, and since then no further inveatigation had been made, or had been considered necessary. It had been stated that the usual mode of paving in the metropolis was to lay the stones apon the subsoil without preparation; such, however, was, he believed, not now the geveral practice, but rather the contrary, for it was the custom to make a good substratum of broken stone, varying from 9 inches to 12 inches in depth; and in some instances, in the principal streets of the city of London, he had laid a substratum full 15 inches in thicknens. He thought there was an error in supposing Ludgate-hill to have been paved twice in one year; he believed the portion between the Old Bailey and Fleet-street had not been paved for six years; nor had the leading streets in the metropolis been so frequently paved as had been stated in the paper; at all events, such was not the case in those streets which were under his care. Fleet-street was paved three years and-a-half ago, and notwithstanding the enormous traffic it was subjected to, he thought the pavement would last for three years longer; the Poultry had not been paved for four years; Newgate-8treet, for three years and-a-half; nor Ludgate-street, between Old Bailey and St. Paul's, for two years and-a-half; Skinner-street was paved five years ago; and London-bridge eight years ago. Considering the large and the small streets together, the average duration of the pavement within the city of London, without being relajd, might be taken at eight years; this remark referred only to the streets of the city of London. A specimen of Euston paving was laid in Watling-street in 1845, and was relaid in 1848. It had been atated that there was no perceptible wear on that pavement, but that the channel atones, which were of Aberdeen granite, had lost 1 inch in thickness. Now, he had examined those stones very carefully, in order to see whether they had suffered any loss during the three years they had rested upon what was called an elastic foundation, and he found that they had suffered no more abrasion than the Monnt Sorrel stone which formed the carriageway. He thought it also very improbable that the channel stones had loat an inch in the three years, from the fact that two or three months after the Euston pavement was relaid in Watling-street, he had raised and examined very carefully an adjoining pavement formed of large stones of Aberdeen granite, 6 inches wide, which had lain for seventeen years in the same public thoroughfare, and he found they had only lost $1^{\prime \prime}$ in inch in that time, or theinch per annum; he thought, therefore, there was sume error in the statement of the wearing away of the Aberdeen stone. In Great Tower-street he had found stones which, after having been down for nine years, had lost $1 \frac{1}{4}$ inch; in Fleet-street they had lost 2 inches in fourteen years; in $8 t$. Paul's Churchyard, after having been down sixteen years, they had also lost 2 inches; and in Bishopsgate Without, they had lost ${ }_{\text {dis }}$ inches in twenty years. Mr. Haywood had examined
the "Euston pavement" when it was taken up in Walingatreet, and he found the stones had been originally so irregular in their depth when they were put down, that though he had gauged about eeventy of them, he had not been able to arrive at any positive resulta; they did appear, however, to have anffered a certain amount of abrasion. He was of opinion that the more solid the substratum of the pavement was made, the longer the atone would last; and he considered Londonbridge was a good illustration of that position, for nothing could be more solid than the substratum of its pavement, and yet it had not been relaid for eight years.
In answer to a question from Mr. C. May, as to whother paving-stones were capable of being meacured with such scenracy as to determine the losa of rin-inch, Mr. Haywood stated the stones were so irregular, even when they were first pat down, that they could not be gauged with accuracy, although his own measurements generally were within trinch. The more accurate measurements of abrasion ware arrived at by averaging the loss in depth of a large number of atonem, and distributing that loss over a number of years.
Mr. Bruner eaid that the method adopted for obtaining acouracy in the measurement of the loas by abraaion, wea that which would be taken by all practical men, as an oxact eatimate could only be obtained by averaging a number of rough reculta; and although each of 10,000 paving-stonea might be incapable of being measured within an inch, the average would atill furnish sufficient accuracy for practical results.

Mr. Radpord said Mr. Walker attached so much importance to obtaining a solid subatratum, that Blackfriare-bridge wa closed for gome weeks, in order that the concrate fonadation might have time to set and harden before the pavement was laid down; the narrow granite stones were laid with great accuracy, and the whole mass was bedded as if it was composed of brioke and not in the ordinary rough way of laying pavement in the streets of London; the stones were bedded in, and the joints were well filled with good mortar; and in consequence of the careful workmansbip and the narrow stones, the whole ramained a good piece of work up to the present time. It was difficult to ascertain the wear of the stones, inasmuch as the eteepneas of the hill rendered the use of the skid necessary in deecending, so that on the down-side of the bridge there was considerable wear, which was not observable on the up-side.

Mr. Holland thought the paper had ecarcely been fiirly treated in this discussion. It was no answer to the assertion, that the streets of the metropolis generally had pavements very inferior to that which was recommended, to instance in reply the good condition of the roadways of the city, and of the bridges, when the fact was, that those pavements were laid on a principle in many respects identical with that which was advocated in the paper, only that the latter was executed in what was considered a more perfect manner. In order to have a good substantial road, it was essential to give it a steady, firm, and sufficiently rigid foundation; great attention was paid to that point in the main streets of the city, and hence that great durability mentioned by Mr. Haywood. The excellence of the Euston pavement depended in a great measure upon the same circumstance; not as the paper stated, because the foundation was partially elastic, but because it was less elastic than the ordinary substratum. The perfection of a pavement consisted in its being sufficiently rigid, for if it yielded perceptibly, the effect would be as if the carriages were constantly travelling up-hill; the surface must be regular, bo that there might be but little friction, and that the concussions should be as gentle at possible, and it must be as smooth as was compatible with affording a secure foothold for the horses. These conditions were fulfilled, to an unusual degree, by the Euston pavement; the small face of the atones was very advantageous, giving great additional security to the horses, though he thought it would be preferable to allow a greater depth, for the gake both of durability and steadiness. The careful laying greatly diminished the draught, by preventing the violent concusaiona always experienced in passing over an nneven pavement; these concuseions were both dangerous and diaagreeable, and also cauaed so unnecessary increase of toil for the horses. In considering the relative economy of roads, it was necessary to calculate the cont of repairs, and to assume it to be of far higher importance than the mere cheapness of first construction. But there was another point of equal importance-the economy in the use of paving; for instance, over many of the thoroughfares in London, upwarde of five thousand vehicles passed per day; and it would be easily
perceived, that if, in consequence of imperfect roadways, any perceptible increase was occasioned to the draught of each of that enormons number of carriages, the loss to the public must far exceed any possible cost of keeping the roads in the best condition. This view was frequently overlooked, and yet, that road must be acknowledged to be the cheapest, whatever its cost might be, which remained during the longest time in good repair, and which could be kept in the cleanest condition, 80 as to offer the I enst opponition to traction, and be the easiest and safest to traval on. It would, however, be vain to expect the beet kind of management of the rtreets of London, so long as they remained nader the control of such a number of different authorities. For inmance, from Great George-street. Weatminster, to Templebar, there were no lem than five different districts, heving five different authorities; and in the parish of 8t. Pancras there Frere fourteen or mixteen eeparate Paving Boards. If each large ilitriot were placed under one authority, that anthority would reoogniee the necessity, and would deem it prodent, to appoint - competent and educated superimtending engineer, who would be 60 peid to to enable him to devote to the subjeot all the time and attention required for a matter of such importance.

Profenar Amerim ald, he had seen the Mount Sorrel stone in tes, and in the quarry, and from its constitution, he looked upon it asere of the most valuable of the mineral products of the conntry for roads; it was of a tough nature, and yet, having meny natural joints, it could be dreseed easily into cubes of the required niso. He had aspecimen in the Kings College Museum, ahowing theaenatural joints, which added so much to the facility of working it. It was also very little liable to decomposition, nor did it easily suffer injury from abrasion by heavy traffic. It was a better material than either Aberdeen or Cornish granite, and tra quite an tough as the basalt from some of the midland counties, meh as that from near Nuneaton, where it was found in soch great sbundance, that a million of tons would not be missed. He dia not feel competent to give any opinion as to the beat mode of making the roads, but he would venture to say, that he thought no meterial would be found to answer well unless it was Lid on m sound, solid, and eomewhat rigid foundation.

Mr. P. W. Bamiow ald, shat from a somewhat extended series of observations and experiments he had made on the laying and the wear of railvay sleapers, he had arrived at the conviction, that a ricid foumdetion was indispensable on railwsy, and for the mane reasoas he was inclined to believe that a substratum poesendis a considerable amount of rigidity, would be sdvaniageons for atreet pavisg.

Mr. Deoreat said that in 1887, or 1838, when the Birmingham Station wate about to be opened for traffic, the pevement of the area in front of the booking-ofice, which was executed in the orlinary manner, with stones from 6 inchen to 8 inches in depth, required to be extended, and Mr. Taylor then brought ender his notice the pavement which had been described in the paper. His opinion however was, that the stones were too ahalLow, that they would turn on their axes, that the corners would project and form a surface like a very rough macadamised road, and that the system would not succeed. His attention was directed to several specimens in the town of Birmingham, which had been laid according to the proposed plan, and, finding that they remained firm, and that no movement did take place, he determined to give the pavement a trial. The remainder of the yard wat accordingly $e 0$ paved, and, up to the present time, It hod never been disturbed. The traffic passing over it was not of a hesvy deacription, consinting of omnibuses and other passenger vehicles, but the stones wore subjected to a severe trial from all the carriages having to turn round upon it. After a trial of twelve years, no perceptible abrasion had taken place an the anglea of the stonea, nor did the surface prement any eppearance of wear; these were facts of the greatest importance, and beattributed them, in the first place, to the small tise of the stones, and noxt, to the modified elasticity which was given to the foundation. At the Euston Station, where the pavement was originally erecuted in the most substantial mannet, sccording to the old system, with stones 8 inches in depth, Fell grouted, and laid upon a substratum of concrete, the stones beemes so much roanded on the upper surface that, when it was necosary to remove the pavement, in consequence of the reerrangement of the station in 1847, the directors, after mature conaideration, and bearing in mind the excellent duration of the new kind of pavement in the Birmingham Station, resolved to pave the whole of their yarde and roads, at the Eugton Station, weoording to Mr. Taylor's plan. Thia work had been axecuted,
and he had no doubt that it would prove an economical and useful pavement. It had a very handsome appearance, and attracted much attention, and, from the truth and uniformity of its earface, eot off the surrounding buildinge to great advantage. He attributed the succese of this pavement to the partial elasticity which wes given to it by the foundation, although this elanticity was confined within narrow limits. The foundation consiated of a number of thin layers of gravel and chalk, or cinders, each layer being well rammed down until a firm basis was obtained, great care being taken that the foundation, at ita last course, should assume the exaot form of the eurface of the pavement when finished; upon the foundation a thin costing of sand was laid, in which the bases of the stones were burled. The stones were laid to a line stretched acrose the yard or road, being previously selected so that in each course they should be exactly of the same width. The ramming was then commenced; this was a peculiar operation, inasmuch as, ingtead of using a rammer of the ordinary description, as in London, which was a heavy implement which a man could scarcely lift, and was simply dropped upon the etones, acting only by its own weight, the new rammer was comparatively light, but was shod with an iron shoe of sufficient weight to bring the centre of gravity of the implement very low down, and thut the workmen were enabled, with comparatively little labour, to give a large amount of percusaive force to the blow. In carrying on the work the men were arranged in a row across the pavement, paening regularly over the purface of the work, keeping extct time with their blows, and striking each stone in its turn. The first set of men was followed by another met, who continued exactly the same operation, and this was repeated over and over again, until the stones would not yield any further under the blowa. The surface was then covered over with fine gravel-ecreenings, which was woriced into the joints by the carriage-wheels, and so entirely fitted them, that when the surface was swept clean, it presented a very beautiful appearance, like a coarse mosaic. Any yielding in the foundation of this pavement simply caused a long crack in the surface, which, owing to the emall sise of the stones, did not oocacion those violent ahocks which were 0 painfully experienced in all the large-sised pavernente. For the mame reacon (the smallnem of the stones) they nover became rounded on the upper surface by wear, as was the caes in all the ordinary pavements, and which rendered it neceseary to take the whole up after few yeare' wear, to re-dress the indjvidual atones. Another very important advantage arising from the use of this new pavement was, the facility with which any repair could be executed; and thus the laying of maing, and the repair or construction of eawers or culverts, was not a matter of much importance, -always presuming that the repairs were properly executed. From these romariss it would be evident, that it was on the perfection of the labour that no small amount of the usefulnees and the beauty of this pavement depended. The foundation must be most carefully prepared, and particular attention must be paid to the form of its upper surface, which must, in all cases, be parallel with the intended surface of the finished pavement. He had seen several instances where, from want of attention to these matters, and from the amployment of incompetent workmen, a rapid fracture has been the consequence, although, so far as the stones themgelven were concerned, they were in all renpects similar to thoee used by Mr. Taylor, and, in fact, supplied from the aame quarries.

Mesprs. Trelawnoy Saunders, Tennant, Haywood, and Legg, having made some observations,

Mr. TAvLOR observed, that notwithetanding the remarks which had fallen from the various epeakers, he must still maintain his opinion, that the atreets of London generally were paved in - Fery rough and careleas manner; for however good the pavement of London and Blackfriara bridges might be, and that of those streets in the city of London which had been lately laid with blocks of stone 3 inches by 9 inches on the face, it must be remembered that these were only solitary instances, and formed but the very smallest fractional part of the total quantity. Moreover, in estimsting the duration of the pavemente at eight years for each relay, the quention of their condition should not bo altogether overlooked. He must repeat his assertion, that the pavement of London generally was not laid upon concrete, or on any other rigid foundation; indeed, the substratum was almost invariably formed of common material, such as sand, or hoggin. The concrete foundation, partially adopted many years ago, was now generally abandoned, owing to the difficulty of repairing the frequent openings made by the Water and Gaa

Companies. As the term "partially elastic foundation" appeared to have been somewhat misunderstood, he must explain, that he did not mean a foundation that would rise and fall, but a firm, unyielding one, with a certain degree of elasticity imparted to the upper part of the substratum, by the admixture of a finer material, and which should be just sufficient to prevent any abrasion of the surface of the pavement, as would be the case if laid upon an arch of brickwork, or a mass of concrete. Mr. Taylor believed he might assume, that "macadamised roads". were now admitted to be unsuited for great thoroughfares in cities. He had arrived at that conclusion many years since, when he made a series of experiments, with a view to ascertain whether it was not possible to combine the advantages possessed both by the stone pavement and the macadamised road, and afford even a better foothold for the horses. For this purpose he had designed the pavement described in the paper, which be thought would be found to possess in itself the firmness of a stone pavement, with the elasticity of a macadamised road. It must also not be forgotten that economy both in first cost and in the subsequent repairs had been considered, and though in the paper, twelve shillings per superficial yard had been given as the maximum cost, this would doubtless be reduced to ten shillings, or even to eight shillings per superficial yard, if the system was extensively employed. The ornamental appearance of this pavement, resembling, in fact, a kind of mosnic, and especially when executed in large areas, was also another advantage, and rendered it peculiarly adapted for large court-yards, stablefloorings, \&c. With regard to the specimen which had been laid down in Watling-street, he would observe, that at the time of its execution there was great difficulty in getting the stones dressed to a regular size, so that it was not possible to give to the substratum the evenness and regularity which was essential. It had been referred to, chiefly as proving the strength of the system, because as Watling-street was intersected at this point by Bow-lane, in turning round the corner, there was a constant strain of the carriage-wheels of the most trying nature for any pavement; and yet it had withstood that action without any perceptible effect. The appearance of the surface had been disfigured by the constant flow of water from the houses into the side channels, and by great neglect in the cleansing.-The proposed lifting of the old pavements in the retired streeta, and reducing the stones to about 3 inches in depth, would be a vast improvement, as it would greatly diminish, if not altogether remove the noise of passing traffic; and the outlay for this would most probably be more than repaid by the accumulation of surplus stone. It must be evident, that however perfect any system of pavement might be, its permanent condition could never be secured until the Paving Boards were invested with some controlling power over the Gas and W ater Companies, to prevent that carelessness with which the repairs were conducted, after the breaking up of the streets, an operation which required the very greatest possible care and attention. In connection with the subject of paving, it might not be nut of place to direct attention to a stone which had been recently much used for flagging streets, and in other situations, and which he believed was the best material that could be employed. This material was brought from the quarries at Llangollen, North Wales; it could be procured in slabs of any dimensions, however large, and the quantity was unlimited. The stone partook somewhat of the nature of slate, but did not laminate in the same manner, although there was a natural cleavage, leaving the faces very free from nodules of pyrites. It was very easily planed, grooved, and polished, by machinery; and at the works at Llangollen, the finest qualities were worked up into baths, urinals, mangers, \&c., whilst immense quantities were shipped with only one face planed for flagging streets, railways stations, kitchens, \&c. The stone was stronger and cheaper than York paving, and was much more durahle, inasmuch as all sandstones, when abraded, furnished a powder which served like particles of emery to rub further into the stones, whilst on even cutting into these slate flage, a fine powder was produced, which, whether wet or dry, rather protected the surface of the stone on which it was strewed. As good flagging was almost as essential as good paving, Mr. Taylor directed attention to the specimens of the stone which were exhibited.-In conclusion, he trusted that his observations might induce the scientific men of the present day to give their attention to the subject, and to use their power in the introduotion of the best systems of paving and flagging, which would be of mestimable advantage to the atreets of the metropolis.

ROYAL FREEMASONS' SCHOOL FOR FEMALE CHILDREN.

P. C. Hardwiof, Esq., Architect.

 (With an Engraving, Plate XXVI.)This new building is erected on the Common at Wandsworth, close to the Clapham station of the Suuth-Western Railway, and is intended to replace the old school situated in the Weet-minster-bridge-road, which is no longer fit for the purposes of so large an establishment. It was founded in the year 1788, by the Chevalier Ruspini, for the boarding, clothing, and educating sixty-five children, daughters of freemasons who have been in prosperous circumstances, but who have become no reduced as to require the aid of this charity.

As a site for a bchool, Wandsworth Common is, perhaps, the best position in the immediate neighbourhood of London; and the committee have taken care to secure a plot of ground large enough for all the purposes of the building, as well as playground for the children and a garden. The new building consists of an entrance hall in the centre, which is carried ip above the other parts of the building so as to form a clock-tower. On one side of the entrance is the secretary's and board room, and on the other side rooms occupied by the porter. A large corridor, extending the whole length of the centre building, communicates at one extremity with the school-room, which is 38 feet long by 82 feet wide, out of which opens a class-room 28 feot long by 15 feet wide. At the other extremity of the corridor in the dining-hall, 38 feet long by 22 feet wide, and in the rear of this room are placed the offces, which include kitahen, acullery; laundry, washhouse, and all the usual requisites of a large eotablishment. The dormitories are over the hall and schoolroom, and some roums for elder ohildren over the centre part of the building. There is also an infirmary. Rooms for the matron and her assistant are provided in such positions that they are able to inspect the various parts of the establishment.

A large covered shed, attached to the building, will form a playground for the children in wet weather. The number of children in the school at present is about sixty, but the building is calculated to hold one bundred.

The material of the building is red brick and stone, from Prudholme on the Tyne, and is used here for the first time in a building of any importance in London. Travellers in the north will remember it, from the many beautiful buildinga erected with stone of the sand formation in the country between Carlisle and Durham. The introduction of this stone into London will, it is hoped, afford facilities for a more extensive use of stone in preference to cement-a most desirable object with all those who are interested in the domestic architecture of London.
The contractors for the building are the Messers. Piper, of Bishopagate-street; the contract is about 7000l.

ON CERAMIC MANUFACTURES, PORCELAIN, AND POTTERY.
 By L. Arnoux.

[Abstract of an Exhibition Lecture delivered at the Society of Arto.]
The art of pottery affords numerous resources for the gratification of our wants and taste. The progress of the ceramic art is intimately connected with that of the arts and aciences in general. From the decline of Greek art tbe ceramic art had laid dormant for twenty centuries, and it was only in the 15th and 16 th centuries that attention was again directed towards the subject. England had been amongst the most backward of the nations in promoting the revival and advance of the art till 1760, when Wedgwood founded his first establishment, eince which period she had outstripped all others in productions of this nature. In the present day the annual production of English pottery could not be estimated at less than $2,000,0004$, no fewer than 185 factories being engaged in this important branch of national industry. Fifty-two were scattered over the country at Leeds, Stockton, Sunderland, Glasgow, Bristol, Swansea, and 183 in Staffordshire, where 60,000 persons were now employed in the manufacture of pottery. English pottery formed an important branch of her exporta, no fewer than $88,000,000$ pieces having been exported in the last year, the value of which was 1,122,0001. Nature provided England abundantly with clay, flint, felspar, and mineral fuel, which were

-
necessary for the production of pottery. In France the cost of firing the same quantity of ware was not less than 30l. which in England only cost 8l. In machinery and the fring process, however, there was room for much improvement in England. Some epecimens of bricks of great smoothnees and angularity had been exbibited by Mr. Minton. There was a feeling against the use of enamelled bricks and terracotta for building purposes in England, but he thought they might be used with advantage for such a purpose in this country. Terracotta was uged extensively in Vienna and Berlin, where the winters were certainly as rigorous as in London. Having glanced at the manufacture of tesserm and encaustic tiles, and the various purposes of ornamentation to which they might be epplied, Mr. Arnoux passed on to the most important article of English ceramic manufacture-namely, "earthenware"-which had arrived at such a point of perfection that this country had nothing to fear from foreign compatition. 'They had only to follow the line traced by Wedgwood. The value of the English earthenware exported was $1,062,0001$; and so highly was it esteemed on the continent that many foreign manufacturers thought the beat recommendation they could give their wares was to stamp them with the name of Wedgwood. France had only five or dix first-rate establishments for the manufacture of earthenware, and that they might be benefitted, the whole French nation was prevented, by high protective dutios, from getting English earthenware at a cheap rate. There were 3000 persons employed in the manufacture of earthenware in Prussia, and she exported 5000 tons. Austris was much behind both France and Prussia; but so superior was England to all these countries that purchasers frequently preferred her earthenware to hard porcelain. Mr. Arnoux then passed from the unvitrified to the vitrified manufactures, commencing with Parian or statuaryware, as it was sometimes called. Parian-ware had been introduced only six or seven years, and the perfection to which it had been brought did great credit to our manufacturers. In the making of Parian figures the limbs were cut separately, and they were afterwards joined together. The figures contracted to the extent of one-fourth of the model, and great care was reqnired that they were not spoiled in consequence. The firing, too, required great attention. These Parian figures took more transparency than the old French biscuit. They were manufactured with great skill by Messrs. Minton, Wedgwood, Copeland, Rose, and others, and they excited a great deal of admiration on the part of the foreign exhibitors. The manufacture of porcelain was known at a very early period. It was certainly known to the Egyptians. In the year 1518 the Portuguese introduced some specimens from Chins into Europe, and it was not till 900 years after this that the manufacture of soft porcelain was founded in France. There were 185 factories of soft porcelain in England, which employed 94,000 persons. The greatest part of the manufactured articles were purchased in the home market, the exports amounting to only 64,0001. Soft porcelain was not so good as the hard porcelain, and it only maintained its place by the artiatic value which it was capable of receiving. The manufacture of hard porcelain had greatly extended in France of late years. The exports from France in 1846 amounted to 390,0001 .; in 1850 they amounted to 670,0001 .; and they were probably not less than $800,000 l$. last year. She exported these manufactures chiefly to America and the continental states, and having arrived at great perfection, she was more liberal in admitting other countries to compete with her in respect to those articles. But the specimens exhibited by Mr. Minton were superior to any produced on the continent. The Zollverein states had 40 factories of hard porcelain, in which 5000 men were employed, and they exported to the extent of 400 tons. Both earthenware and porcelain were derived from the east; they passed successively through Italy and France, and though England was the latest in receiving them, it was on her soil that they reached their greatest perfection. She wouid not lose the advantage she had acquired by her industry, her capital, and her skill, if she did not repose in her success; she had not improved so much for ten previous years in the ceramic art as she had since the year 1851. But ske must advance in ornamentation and design, and for this parpose schools of design should be established as soon as possible, where the pupils might recaive a special education in those branches of industry on which they were to be employed. Too much attention was paid in England to painting in flowers. Design in flowers was taught to the exclusion of almost everything else. This was not the case in the best pariod of art.

They could not expect a tribnnal such as existed in Greece for deciding upon the best ceramic prodactions; but he hoped it would not be destroyed by the mercantile spirit being carried to an extreme. They should cultivate art and tante, and they would find both profit and honour in so doing.

EXPLOSIONS IN COAL MINES.

Rexport from the Select Committee of the Howe of Commons, appointed to inquire into the Causes of the frequenoy of Explasions in Coal Mines. (Ordered, by the House of Commons, to be printed June \&ind, 1852.)*
The Committee, considering the pressing emergency of the matter committed to their charge, how deeply the interests of humanity were involved (the deaths from explosions having latterly increased to the fearful number of abont 1000 per annum), determined only to examine witnesses of the highest and most experienced character, in the hope that they might be able to derive sound information on which to recommend additional means for the prevention of such wide-spread calamities during the present session. The Committee are therefore of opinion-

That any system of ventilation depending on complicate machinery is unadvisable, since under any disarrangement or fracture of its parts, the ventilation is stopped or becomes less efficient.

That the two systems which alone can be considered as rival powers are the furnace and the steam-jet.

The furnace system, under favourable circumstances-i. e., of area of the shafts being large and deep, the air-conrses sufficient, the goaves (or old workings) Well insulated, and the mine not very fiery, appears to be capable, with strict attention, of producing a current of air that will afford reasonable security from explosion; but when the workings are fiery and numerous, as well as remote, and the intensity of the furnace or furnaces requires to be raised in order to increase, on any particular emergency, the amount of ventilation, then the furnace not only refuses to answer the spur and to increase ventilation, but from a natural law (discovered by Mr. Gurney, and scientifically and practically confirmed before the Committee), there arises a dangerons stoppage to ventilation going on throughout the mine.

The quantity of heat generated by the furnace is directly as the quantity of fuel that can be consumed in a given time. The amount of rarefaction or power of the upcast will always be directly as the temperature of the column of air passing up in a given time, which temperature will vary in proportion to the quantity. The amount of hest of the furnace is a constant quantity, which will be spread over a more or less quantity of air. The power of the upcast rising in an arithmetical ratio; the friction or drag of a current of air through the workings of a coal mine, offering a resistance, equal to the squares of its velocity. Now it is manifest there will soon be a point where the resistance overtakes the power. The power being as an arithmetical ratio; while the resistance increases in a geometrical ratio, the "furnace limit" will be the point where these two powers balance each other. This limit commences in practice much earlier than would appear on calculation from these data, because there is another element to be taken into calculation that seems never to have been noticed. This element is the resistance offered to the air going through a mine by the vena contracta. It amounts to a serious quantity in the workings of an ordinary coal mine. This amount of extra resistance, added to the friction arising from the rate of current, adds considerably to the rate of increase of the drag. This important fact has never hitherto been noticed; nor was it referred to by any of the witnesses in the Committee of 1835, or that of the Lords in 1849.

The resistance, or drag of a current of air passing through the working of 8 coal mine is, as stated above, as the squares of its velocity. When this resistance is so great that the proper quantity of air cannot come through the galleries of a mine to fill the exhaustion produced at the bottom of the upcast-shaft, it will come down through the shaft itself, as the easiest channel. It will come down on one side, leaving room on the other for the hot air to ascend, the stationary particles of air bo-

* We have thought it oecesany at prevent to glve only the lending featuret of this Report, bat shall probebly return to the subject when the Minatee of Eindence given before the Commatiee are mede pablic.- ED.
tween the two moving currents forming an imaginary aerial plate. The plate has been called the "natural brattice.

The amount of resistance of currents of air coming through the workings increase as the squares of their velocity; the power of exhaustion by the upcast-shaft is directly as its temperature. If the quantity of air passing through a mine be reduced by increased friction or obstruction, that smaller quantity of air will be raised to a higher temperature by the farnace in the up-shaft, and the exhaustion arising from its increased temperature will produce a greater amount of force. The watergrage is a measure of this force of exhaustion or power of the furnace. Under the above circumstances the water-gauge will rise and indicate a greater power, while the amount of ventilation is reduced. This is a seeming fallacy: it is not a fallacy; therefore, in called the "furnace paradox."

To the powers of the steam jet, on the other hand, there appears to be no practical limit; for although it acts, when placed (where recommended) at the bottom of the upcast as 8 rarefier to the extent of the steam used, and fire under the hoiler, its principal or direct efficiency depends upon its power of propulsion. The heated air not only rises from rarefaction, but any amount of cold air can be bodily pushed up the upcast, the amount merely depending on the number and size of jets employed, and the pressure of steam. The Committee are unanimously of opinion that the steam jet is the most powerful, and at the same time, least expensive method for the ventilasion of mines.

Previous to 1848, when Mr. Forster introduced the steam jet into the Seaton Delaval mine, the fire-damp was constantly seen playing around the face and edges of the goaves and other parts of the workings; since that period the mine is swept so clean that it is never observed, and all danger of explosion seems removed in a very fiery mine. The increase of ventilation is from 53,000 cubic feet per minute under the furnace system to 84,000 under the steam jet: and to double that quantity, which Mr. Forster considers sufficient, would, he says, only require the application of some extra jets. Mr. Forster states the original outlay for the steam jet to be less than for the furnace by 396.15 f. 6 d .; and the annual cost to be less by 50l. 12e. 1d.: while the power of ventilation is increased to nearly double.

Notwithstanding the increase of ventilation which Mr. N. Wood states he has obtained in one of his collieries, where the areas of the shafts are very large, and by the aid of three furnaces, it appeared in evidence that the explosion at the Killing worth Colliery last autumn, under Mr. N. Wood's management, took place under the furnace system of ventilation.

Although a few of the witnesses (two of the most intelligent of the government inspectors among the number, seemed to have misunderstood the mode in which the steam jet operated as a ventilator, and professed themselves so far unacquainted with it as to be unable to form an accurate judgment on its merits, all the witnesses, with scarce an exception, coincided in the opinion that in a fiery mine, even where the furnace system was thought sufficient under ordinary circumstances, it would be a prudent and almost necessary precaution to have a steam jet spparatus at the top of the downcast connected with the boiler of the engine which worked the mine, in case a sudden and great increase of power was required, under pressing emergency.

It was stated in evidence that 70 per cent. of the deaths from explosions were occasioned not by the explosion of fire-damp, but by the "after-damp" which succeeds it. If the latter be inhaled in its pure state by the miner, it causes immediate death. But since, from the miners being subsequently discovered in various stages of prostration, it is apparently inhaled in various degrees of dilution, it seems clear that a power like the steam jet placed at the top of the downcast, out of reach (which the furnace at the bottum of the upcast occasionally is not) of the effects of the explosion, and capable of aweeping the galleries of the mine with an almost irresistible force immediately after the explosion, might be the means of saving a large proportion of the lives now lost for want of such a power. The furnace under such pressing emergency is inapplicable, and incapable of being used for the purpose.

The Committea, however, are unanimously of opinion that the primary object should be to prevent the explosions themeelves; and that if human means (as far as known) can avail to prevent them, it is by the steam jet system as applied by Mr. Forster: although even in such case it might be prudent in a mine especially fery to add an inexpensive steam jet apparatus
at the top of the downcast, as a means in reaerve in case of explosion from neglect or otherwise.

The proper conditiou of a mine, as regards its ventilatinn, the Committee consider is when the current of air through all the air courses, more particularly in the extreme workings, is from four to six feet per second in rate through an ordinary sized air-way, of (say) 50 feet sectionsl ares; this, in the extreme workings, would command a rate of current to a much greater ertent (and which would be necessary) through the lees remote workings of the mine. Without a current of air at the rate of at least four feet per second, equal to sbout three miles per hour, in every part of a mine at all fiery, the miner cannot be considered safe from explosion. Such current would be the truest indication of the actual mount of freah air circulating through the general workings of the mine. It seems immsterial by what mode this rete of current is produced, so that it be certainly produced, and a means be furnished to the inspector at each visit to ascertain that such rate of current has constantly existed during his absence.

The attention of the Committee has been directed to seientific and practical means of decompoaing or neutralising the explosive gaser as they exude from the coal and goaves; but it does not appear that science has diecovered any practical means for producing this desirable effect. Mr. Blakemore, M.P., has offered, through the Royal College of Chemistry, a premium of 1000l. for the discovery of some simple practical means for the attainment of this important object.

The Committee would now refer to some more incidental means of security agrainst explosion; first, stating their concurrence in the opinion expreased, directly or indirectly, by the Committees of 1836 and 1849, and also with that 90 strougly expressed by the South Shields Committee, that where a proper degree of ventilation does not exist in n mine, the Davy-lamp, or any modification of it, must be considered rather as a lure to danger than as a perfect security. Practically secure in a etill atmosphere, it may be considered; and in the hande of a cautione over-man, an admirable instrument for exploring, or as an indicator of danger; but in a current, as admitted by its illugtrious inventor himself, it is not a security; and in the hands of an ordinary workman, under circumstances of excitement, when danger is threatened, it is not improbably, far oftener than imagined, the very cause of the explowion which it is intended to prevent. The experiments of Dr. Bachhoffner, at the Polytechnic Institution, before the Committee, were very interesting on this point. Nevertheless, in a mine that is at fiery, if it will be a prudent precaution to work with a lamp, untillt can be proved that by means of ventilation a mine can be so far cleared of all explosive gases as to prevent any accumulation of them in the workings, goaves, or elgewhere. Some of the witnesses point to such a poesibility; and if it were for the sake of the health of the miners alone, a current of freah air passing through the mine which could produce this effect would reader such a power one of the most valuable contributions of the age. One of the principal objections to the Davy-lamp, on the part of the workmen, has been the insufficient light which it affords. A lamp of greater reflecting power, which wonld, at the aame time, admit of a double gauze proteotion, has been suggested. It is made of polished wire gauze, instead of black iron wire, The latter has an absorbing surface, the former has a reflecting one; the latter intercepts and obstructe more than half the lights given out by the fiame; the refecting lamp refects the light which falls on the meshes of the wire gauze, and sends the rays out on the opposite side, in a profitable direction.

In the furnace system of ventilation, the power depends on the difference of the temperature of the air going down the downcast shaft and that coming up the upcast; and when the temperature of the outer air is high, the power of the furnace is reduced. When the thermometer, therefure, exhibits a high rate of tempersture, the ventilation is lessened. This may account for sccidents being generally more frequent in spring and summer.

Under the ordinary pressure of the stmosphere, its weight operates in a fiery mine to keep back the escape of gag from the recesses of the mine. When the pressure is less, the explosive gases have greater power of escape. Whenever, therefore, there is a fall in the barometer, showing a diminished pressure of the atmosphere, danger is indicated, and an increased amount of ventilation required. In every mine, therefore, it should be imperative for a barometer to be kept. It should be placed near the ventilating power, properly connected with the external air,
through the downcast, 80 an to take the pressure of the atmosphere. A "Differential Barometer" is much more sensitive than a common one, and should be used; and since it costs only \& fow shillings, there would be no excuse for not having one. The differential barometer, so called, is more delicate in ita movement than an ordinary barometer: it may be made almost to any ratio of delicacy. It would show a change taking place In the weight of the atmosphere long before it conld be geen in the ordinary barometer, and therefore be highly valuable in a coal pit. Un the fall of the barometer fire-damp isues out of the goavea and receases of the coal in larger quantities than usua, so that ventilation requires to be increased under such circumstances, and the fall in the barometer points it out before it can be otherwise seen. The barometer is said to be more nseful in a coal-pit than in a ship. It indicater impending storms, or change of weather, and the more delicate it is the better. The index of the differential barometer can be made to range frum 50 to 100 times through a greater apace than the ordinary mercurial level; and therefure slight changes in the wright of the atmonphere can be read off by this instrument, which are invisible or insppreciable in the common barometer.

A Water Gauge should be placed at the bottom of the upcast, to indicate the power of the drag of the mine, where the furnace is used, so as to indioate the proximation of the furnace limit. The water gauge is a tnbe of glass bent in the form of the letter U, one end of which communicates with the upcast and the other with the downcast shafts by a pipe; it cuntaing a little water at the bottom of the bend, and is an indicator of the cmount of power; its extent of break of level in the two legs is a measure of the actnal force which is necessary to overcome the "drag of a mine." When this force is known, its rise or fall indicates whether proper ventilation is going on in the extreme wo kings or not; thus if the air comes througb the workings by e shorter passage than it ought to do, the water gauge will immetiately fall. In a late explosion, occasioned by leaving a doot open between the downcast and upcast shafts, the water gauge would have pointed it out. If the water gauge rises sbove its working point, it shows obstruction existing somewhere in the workinge. If it stands at its working point, it thows that ventilation is going right. It is a most useful instrument; it is a measure of the actusl power required for ventilation, and in the posession of a practical man, will tell him Where and how ventilation is going on by simple inspection In connection with the anemometer, this gauge is most valuable.

But an instrument of even greater importance than the above, especially in reference to the periodical visits of inspectors, is a celf-registering Anemometer, by which the inspector would know at each visit the rate at which the current of air had been passing through the mine in his absence. The best instrument of this kind at present known, perhaps, is that of Mr. Biram. Three, at least of these should be cept in every mine; one at the intake (bottom of downcast shaft), one at the return (bottom of upeast), and, especially, one or more in the extreme workings. By the anemometer the actual quantity of air passing may be known; and, at the aame time, by the water gauge, the aboolute force or pouor required to move or pass that quantity may be known; so that, by these two instruments the amount, power, and probable state of ventilation may be ascertained.

The goaves (old workings) in extensive mines are a principal source of danger. It has been suggested, if the water would permit, that the goaves might be as it were drained of the exploaive gas by a bore-hole from the surface, acted on by a steam jet; that gras, being lighter than common air, would thus be drawn through the bore to the outer air.

For a similar purpose, a system of gas drifte along the rise of the coal deponit, intersecting its cleanages, banks, and interstices, and taken to the upcast shaft, might be, and in some cases has proved to be, a practical and scientific means for removing the light carburretted hydrogen gas from the coal, without permitting it to descend into the workings.

It was suggested by Mr. Gurney, also, that refuge stalls might be eatablished at small expense, in places familiar to the miners, thruughout the workings, to which, upon an explosion, they could at once fy from the fatal effects of the after-damp. At the ingoing end of the ordinary stalls, bays, or cul-de-sac recesses of the workings in a coalpit, boarding must be placed, 80 as to ingulate it from the main air-courses, sufficiently strong to withstand the force of a moderate explosion at the spot; or of a violent one at a distance. In this stopping two openings are cut, one at the bighest level, and the other as low as possible,
so an to offect self-acting ventilation; by which means the bay will always be filled with good air. They also relieve the stopping from the force of explosion. On the inside two valves are suspended, so as to be always ready, in case of need, to close the openings from within. The upper opening is small, about four to six inches diameter; the under opening is sufficiently large for a man to pass through. In case of explosion, instead of the men running, se they now do, into the main air-courser, and consequently into the after-damp, they may go into these refuge stalls; close the openings, and remain there till the after-damp is removed. Taking into consideration the quantity of air required to support life for a given time, and the ordinary size of the stalls, it is clear that men may remain in them in safety for 24 hours, or longer, when properly constructed. During this period the after-damp ought to be withdrawn from the workings. These stalls are inexpensive, require no attendance, and may be made and left, or removed, at short distances, as the ordinary vorkings of a coal-mine proceed. They should be within a hundred yards of each other, so that one may be always at hand. A few pitmen only would be there and have occasion to go into the same refuge. The well-known laws of pneumatic diaturbances show that, properly constructed, it would practically be sufficient to insulate and preserve the atmosphere of the refuge from danger of interchange with the after-damp for a long time together. In the midst, or close to, a violent explosion, the stoppings might be blown down; but not at a short distance. A violent explosion would produce death, by its force, in its immediate neighbourhood; but in such case the refuge stalls would under any circumstance be useless. They are intended only as a protection against loss of life from after-damp. It has been proposed to place large safety flaps or valvee in tbe stoppings, to guard against the force of explosion, but this seems unnecessary.

It has been stated in the evidence, that boys are employed in mines to perform duties, the neglect of which in a single instance might be productive of great loss of life. They are employed, in particular, to attend to the opening and shutting of the doors or traps necessary to regulate the courses of air in every system of ventilation. It has further been stated, that even in the best disciplined pits, where the men are rarely, if ever, guilty of serious acts of neglect or carelessness, it has yet been found impossible to guard against similar negligence on the part of the boys; and accordingly it appears that in various instances fatal accidents have been traced to such negligence in the performance of the duties allotted to them. The Committee therefore are of opinion, that no responsible duties, the neglect of which would involve serious risk of life, ought in any mine to be intrusted to boys, or to any other class of inerperienced persons, bat solely to persons in whose judgment and diecretion full roliance can be placed.

Education is a point insisted on as a precautionary manns both among the working colliers and their managers, as also that the qualification of inspectors should be rigidly teated previous to their appointment. In these views the Committee entirely concur. They not only trust to see education more rapidly spreading than heretofore among the working colliers, but schools of mines established, without certificates from which no overman, underlooker, or manager, shall be legally appuinted to his office.

The qualification of inspectors for their office is a point of the first importance, and should be efficiently tested before a competent board, analogously with the tests exacted in various professions where the interests of life and health are involved. They should be acquainted generally with natural philosophy (especially pneumatics), chemistry, mechanics, also a competent knowledge of geology and mineralogy; and should also have had practical experience of colliery working.
Almost every witness, however, bore testimony to the total inadequacy of the present system of inspection. The numbers were too small, its powers too limited. Each of the inspectors summoned before the Committee had something like 400 mines In his district; the whole of which he would be unable to go through in less than four years. Many mines they had never visited. The Committee cannot therefore hesitate to recommend that the number of inspectors should be increased. They at present amount to six. That number probably should, at least, be doubled and two sub-inspectors to each chief inspector be added. In a letter of Sir H. de la Beche to the Committee it is indicated, and it appeared also in evidence, that the preeent salary of an inspector was too small, at least to induce a person really fitted for the office of inspector to remain in his situstion.

The Committee, for their own part, feel disposed rather to trust to the appointment of an efficient and vigilant Board; to an increased number of well-qualified inspectors and subinspectors, who should practically have the power of enforcing such a rate of current of air through the various parts of the mine as, in their judgment, the safety of the miners required, together with the adoption in each mine of such acientific instruments as both preserved a register of the rentilation, and gave warning of danger; that these powers should extend to inflicting penalties for the non-poseession of such instruments, and non-attention to the precautions recommended, and to stoppage of the mine until the right measures were taken. Such measures, together with the better education of the miners, and the establishment of schools of mines, and the circulation among the colliers of such rules and regulations as are adopted in the pits of Mr. Forster and Mr. Derlington, the Committee consider would go far to diminish, and altimately almost entirely to prevent the dreadful explosions to which their atteution has been called.

VEN'ILLATION OF COAL MINES.

Nagarytr's "Direct-Action Steam Suction-Fan, for the better Ventilation of Coal-pits" was fully described at the last year's scientific meeting at Ipswich, and is now in most successful operation in one of Earl Fitewilliam's mines. Its object and effect are to do away the cause of explosion, by withdrawing foul nir from a mine more rapidly than it can be evolved. One grand feature of this apparatus is, that it is pleced on the surface of the ground, and in full daylight, whereby its action and proper working condition are open to sight at all times, and the rate of vontilation in the mine is ascertainable at every moment by simply observing the rate at which the fan is working. A great point this, since facility of inspection is the only good security for a constant attention of persons charged with the management of preservative expedients. It is in this respect that the Davy lamp has failed to prevent the numerous dreadful explosions that have so frequently and fatally occurred in coal-pits; these lamps are necessarily intrusted to all minersthe reckless or the careful-too many of whom, from habit, are regardless of danger, and, epite of the mont stringent orders, open their lamps in a vitiated atmosphere, thus hurling themeelves with all around them into inevitable destruction.

Motion is given to Nasmyth's direct-action steam suotionfan by a steam-engine, which is in direct connection with the fan-spindle, the crank of the engine being fixed to the end of the fan-axle; by this, all intermediate agents for the transmission of the power of the engine to the fan are dispensed with, and thus the whole is rendered simple, compact, and highly efficient. The foul air is conveyed from the upcast-shaft to the fan by a tunnel, which divides into two side pasaages, one on each side of the fan, they terminating in a circular aperture equal in diameter to half that of the fan-wheel, or track of its blades. This action is so simple and self-evident as not to require further deecription. When the fan is set in motionsay 300 to 400 revolutions per minute, as may be required-it induces centrifugal action on the air within the fan-case, and causes this air to flow forth in nearly radial lines, while a partial vacuum is established about the central part of the fan. To supply this vacuum foul air from the mine rushes up by the side passages of the apparatus, in volume equal to that which the centrifugal action of the fan flings forth. The immense volume of air which may be thus drawn from a mine is almost incredible, amounting, when necessary, to a brisk gale within the pit; but at the same time, the apparatus is 80 completely under control, that the ventilation is at all times capable of instant regulation as to amount.

The security against explosion afforded by this fan seems to render superfluous any mention of a farther advantage of it consequent on its being above ground; yet, notwithstanding the little chance that, where it is employed, fire-damp should accumulate within the mine, it may be observed that were an explosion to occur, the fan affords means of an immediate renewal of ventilation throughout the mine, whereby, on the event of such a sad disaster, succour without delay could be afforded to the sufferers below, without danger to those disposed to give assistance.
M.S.B.

PREPARING WOOD.

C. F. Tacket, of Paris, mathematical instrument maker, for improvements in preparing wood to prevent its warping or shrinking. Patent dated November 15, 1851.

Claims.-1. The application of an adheaive aubstance in a state of powder between the murfaces of sheets or pieces of wood to be united, and the softening and fusing the same by the application of transmitted heat through the thickness of the wood, for preserving the same from warping and shrinking. 2. The application of the apparatus for effecting the sprinkling and fusion of the adhesive matter. 3. The apparatua for filling the boxes or drawers with heated sand.
The ordinary method of preparing wood to prevent its warping or abrinking is to employ two or more thin pieces, which are united together by means of glue or liquid cement; but this mode only partially answers its intended purpose, as glue or cement applied in a liquid state is always liable to be affected by a moist atmosphere, and the expanaion produced thereby, and the subsequent unequal contraction in drying, causes a certain amount of warping. The object of the patentee is so to unite pieces of wood together as to render them independent of any atmospheric influence, and the means he employs for this purpose are as follows:-A table having two surfacea formed by two iron boxes, connected by side-screws; betwean these surfaces the wood is placed, of as many thicknesses as are required. The different thicknesses, after having been respectively sprinkled with the cement employed, are then clamped together, including also the iron boxes, which are then filled with sand heated to about 300° centigrade; by these means the wood and the cement are both heated to the same degree of temperature and the cement fused. The mand is then removed from the iron boxes and the air admitted into them, for the purpose of cooling the wood and setting the cement. When quite cold the prepared wood is removed from the press, and may be applied to its intended purpose. The cement employed should be gum lac, either in combination with other materials or alone.

PADDLE-WHEELS.

J. L. Stevens, of Kennington, Surrey, gentleman, for cortain improvements in propelling vessels on water.-Patent dated November 27, 1851.

Claim.-The construction of paddle-wheela with diagonal flost-boards, so fixed and arranged that the alternate float-boards overlap or project beyond the ends of the next float-boards on either side of the wheel, leaving spaces between the succeeding float-boards at either end thereof.
These improvements are effected by the construction of paddlewheels in which the float-boards are placed diagonally in such manner that the ends of the float-boards on each side of the wheel shall alternately project beyond and overlap the ends of the next succeeding float-boards, leaving. however, spaces between the nearest adjoining ends of the float-boards. The

annexed diagram will explain this more fully. a, a, represents the frame of the wheel; b, b, are the float-boards, the ends of which overlap each other at their respective commencements c, c. The effect of this arrangement is the production of a double force by the paddle-wheel. The intention of the narrow spaces between the respective float-boards is the prevention of depression on the water entering, and of elevation on its leaving the wheal, and of any oscillating movement. The patentee prefers that the angle of divergence from parallelism with the axle of the wheel made by the float-boards, should be from 23° to 30°, and that the distance between the float-boards should be so regulated that the greater interval between the ends of the float-boards should be on one side of the wheel from three to four times as much as the lesser interval between the ends of the float-boards on the opposite side of the wheel.

BRICK-MAKING MACHINERY.

T. Buratalu, of Lee-aremcent, Edgbaston, civil engineer, for certain improved machinery for manufacturing bricks and other articles from clay, alone or mised woith other materials.-Patent dated December 1, 1851.

Claime.-1. The application of the direct action of steam-presmare for compreaning clay, alone or mixed with other materiala into bricks, tiles, and other articles. 2. The direct action of staam in combination with the mechanical movement called a "toggle joint"" 3. The direct action of steam in combination with a lever or levers, as may be auitable to produce the required effect.

The material or materials from which the bricke are intended to be formed are placed in the hoppers of a machine worked by steam power. This machine consists of a piston, working right and left. The hoppers boing placed at the extremity of each planger, and the material, falling from them into a cavity the Intended size of the brick, is comproseed by a stroke of the planger into the required size. This being effected, the plunger on the other side of the piston, by its backward motion, operates in the ame manner. The bricks are, by means of a slide, taken from the machine in a fit state for burning. The materials employed in their manufacture are clay, chalk, breeze, sand, and coal-duat, reduced to powder in a machine containing an internal roller acting on its surface. The machine has also gratings, through which the material passes when pulverised.

STRAM-ENGINES AND PROPELLING.

J. Macnstose, of Bernera-street, Middlesex, civil engineer, for improvements in steam-engines, in rigging and propelling vessels, and facilitaling their progress through water.-Patent dated December 4, 1851.

Claims.-1. The improvements in steam-engines described. 2. The improvements in rigging vensels. 3. The compositions described, and the applicntion of the eame to ships bottoms.

1. The patentee describes an improved construction of rotary engine. The engine consists of a cylinder and a drum (furnished with two sliding plates, which act as pistons), placed eccentrically within it. In this particular it resembles others of the same class, with the exception that it has the end plates attached to and revolving with the internal drum. Between the end plates and the sides of the external drum a packing is introduced, in order to render the point where they come in contact steam tight. In order to produce a simultaneous motion of the sliding pigtons in the internal drum, they are connected with each other by rods, to which springs are attached, which acting upon the packings of the pistons, serve to keep them constantly pressed outwards against the internal periphery of the external cylinder.
2. It is proposed by the patentee to construct the masts of vessels in such a manner that they may be inclined sideways, and thas to render the sails on them capable of lifting as well as propelling vessels. For this purpose the heel of the mast is furnished with a joint, allowing the mast to be inclined to an angle of 45°. A rope is fastened to the mast, and piaced round a wheel, which, on being turned, takes in the rope on one side, and pays it out on the other, which bringe the mast to the required degree of inclination. He also proposes to provide a yard for the foresail, and jib-shaped sails, to onable the sail to be brought to the wind without inclining the mast. For this purpose the block for the haulyards is furnished with a ring, which slides on a guiding iron attached to the yard.
3. In order to facilitate the progress of vessels through water, the patentee proposes to cover them with a composition produced by decomposing india-rubber in sweet oil by the application of heat-a composition found to adhere better, and from its glutinous nature allowing of an easier passage through the water. For sea-going vessels castor oil and copperas, or arsenic, or other poisonous materials, are added to the composition, to prevent the adherence of barnacles. The patentee is aware of poisonous materials having been previously ased for a similar purpose, but asserts that they have always been of no effect, on account of their having dried or washed off. The present com. position, however, never dries, but slways continues glatinous as at the time of its application. Gutta-percha may be also added if desired, and is recommended by the patantee, both on account of its soluble and of ite edhesive nature. The composition is to be applied in a warm state.

STEAM-GNGINES AND BOILERS.

J. Hararbon, of Philndelphia, now of Orford-qquare, Hyde-park-gardens, engineer, for certain improvements in steam-engines and boilers.-Patent dated December 8, 1851.

Chaim.-The improvements claimed under this patent are capable of application to marine, locomotive, and atationary boilers.
First, as to marine boilers. The patentee proposes to advance the fire-boy further into the boiler than is generally done, and also to surround the fire-box with a water-space. The boiler is traversed by pipes similar to those ordinarily used, but in addition to which are pipes open at the end leading to the steamchamber only. The heated air generated in these additional pipes coming in contact with a series of vertical pipes passing through the steam-chamber, and connected with the steam-pipes, increases the temperature of the steam before it passes into the cylinder; and retiring through the ordinary pipes into the smoketube, in its passage heats the water in the boiler.
Second, as to locomotive engines. The same principle involved in the construction of the last mentioned engine directs that of the locomotive, with the addition of tubes passing across the fire-bor and connecting the boiler with the water-space surrounding it.

Third, as to stationary engines. The patentee recommends that they should be erected of a circular upright form; he doea not however confine himself to this shape, but simply recommends it on account of its greater strength, and also on account of its dispensing with the high chimney generally in use. The object of this arrangement is the consumption of the gases generated in the fire-box. This is effected by the ascension of the gases through a tube in the centre of the boiler to a space at the top, where they are mixed with pare air admitted through a smali opening, and pass through another tube downwards to the firebox, where they are consumed, after having assisted in increasing the temperature of the water in the boiler upon the principle before mentioned. The object desired hy these arrangements heing the obtaining of the largest possible amount of heating surface within a given space.

STEAM PROPULSION ON CANALS.

J. Laxs, of Apsley, Herto, civil engineer, for improtemento in propelling on canals and rivers.-Patent dated December 8, 1851.

Claims.-1. The employment in canal and river navigation of trackways between or on which boats can travel without the aid of steersmen, and be propelled by means of ateam or other elementary power. [Upon trackways formed by a double row of piles, of the distance of 16 feet from each other, and placed upright iu the canal, a top-rail is placed. Upon this toprail is an iron rail, extending throughout its entire length; and on the inner side of the top-rail is another iron rail, having its upper surface racked. Between this double row of piles (and between which is a space of 9 feet) the barge is placed, the barge containing a steam-engine of the ordinary construction of steamboats, the axles of which are furnished with two drivingwheels on each side, the inner one being toothed, The outer wheels working on the first-mentioned raii, and the inner toothed wheels gearing into the rack rail, impal the boat through the water. To this barge may be attaohed any number of bargee the engine will sustain, and those at present in use may be altered to the necessary form at a very triting expense.]
9. A mode of obtaining a sufficient "bite" or adhesion for the driving-wheels, by making use of a part of the weight of the boat and cargo in which the engine is placed for that purpose. [In the bottom of the boat is inserted a screw, and on to which a lever capable of being moved up and down, is fastened. This lever is sttached to the axletree of the engine, and by being elevated or depressed at the screw end the required pressure upon the driving-wheels is obtained.]
3. A method of sustaining the weight of a boat and cargo while in the course of transit, partly on the rails of a trackway laid down as aforesaid, and partly by the water of the canal or river, as usual.
4. The employment in canal and river navigation of inclined planes for the passage of trains of boats from one level of the canal or river to another, constructed as deacribed, and the working of the said planes by means of racks and pinions,
actuated by the same englne as is used for propelling on the level. [The object of this part of the patent is the doing away with the necessity for locks in canals. For this purpose the trackway is elevated, and the piles sustaining it are furnished with pinionwheels at the level of the bottom of the barge. Up this inclined plane the boats pass, their ascent being rendered easier by means of their passing over the pinion-wheels. The patentee prefers the inclination of the plane heing about 25°. In the case of the nature of the ground requiring a series of locks, he recommends that the inclined plane should be lengthened to the required extent.]

PIPES, SHAFTB, AND RAILWAY WHEELS.

P. G. Gardiner, of New York, civil engineer and machinist, for improeements in the manufacture of malleable metals into pipes, hollow shafte, raitway wheels, or other analogous forms, which are oapable of being dreseed, turned down, or polished in a lathe.-Patent dated December 8, 1851 .

Claims.-1. The manufacturing of malleable metals into pipes, hollow shafts, railway wheels, or other analogous forms, by the employment of a pair of suitably-ahaped dies or swages, one or both of such dies or swages being made to revolve, and being gradually brought into closer proximity, whereby the mass of metal which is placed between them to be acted on is caused to aseume the form of the article required to be made. \&. The arrangement and construction of machinery described for carrying out the principle upon which the invention is based.
In the manufacture of articles of a circular form, such as railway wheels, by means of pressure between dies, the metal is found not to possers a smooth surface, and in many parts to be defective. The object of the patentee is to remedy these defecta; and this he effects by giving to each of the dies a rotary motion on its axis, the consequence of which is, that the metal becomes laid in concentric rings or in spirals, increasing the strength of the wheel, and producing also a smoothness and polish on its surface. For this purpose two bars are inserted in standards, each bar being furnished with a die, the one fitting into the other. These dies are capable of being shifted, in order that their places may be occupied by those of different forma as may be required. The heated metal is then placed in the hollow die, and the other die is then moved up to it by means of a screw in the interior of the bar; the two dies are then made to revolve swiftly in opposite directions, hy means of drums attached to the bara, and turned by hand or otherwise. The metal, after being subjected to this prosess for some time, will be found to be of the shape required. It ahould be observed, that the swifter the dies are made to revolve the sooner will the desired effect be obtained; if the dies are moved slowly, the metal may probably require another heating.

Also in the manufacturing lead pipes by the hydraulic press, the grain of the metal being laid in a longitndinal direction, the pipes are consequently more liable to split under internal pressure or when bent. This is obviated by the patentee giving a revolving motion to the outer die, which causes the grain of the metal to be laid transversely, and produces a greater degree of strength than the ordinary method. The machine by which this is effected is upon the same principle as the one last mentioned; there is, however, a slight difference in its construction, which difference consists in one of the dies being furnished with a bore throughout the bar, and the other with a spindle. The metal being placed in a fused state in the hollow of one die, the spindle is pressed into the tube of the other a part of its length; further pressure being applied, the metal is exuded in a tubular form, and may be wound on to a coil provided for the purpose at the extremity of the machine.

ORNAMENTAL BRICKS AND TILES.

W. Pidding, of the Strand, London, gentleman, for improvements in the treatment, manufacture, and application of materials or substances for building purposes.- Patent dated Deoember 8, 1851.

Claim.-The combination of certain materials for the manufacture of bricks, tiles, slabs, pipes, and other articles.

The invention consists, firstly, in a combination of broken stone, scoria, acetate and muriate of alumina, mineral earths, fluxes, rood, sawdust, papier-maché, coal, coke, naphtha, vegetsble fibres, pitch, glue, and gutta-percha, which, in conjunction with
a cortain coment, is used for building purposes, and for purpown for which bricks have not been hitherto used.

Secondly, in veneering the brick formed of the above on one or more of its edgen, with stone, marble, slate, or other material a cement described being used for producing adhesion. Thit gives a handsome appearance to the bricks, and rendera thera more durable. The inventor also prepares a composition of pipeclay or porcelain clay, mixed with 90 per cent. of sulphate of soda or soda ash, and applies it to the bricks before or after burning, giving the bricks the appearance of porcelain blocke. Another method is also adopted for giving a. Sine appearance The inventor taken sulphate of alumina, and deprives it of its water of crystallisation when in a semi-Huid etate, produced by heat; this, with the combination of materiala, is pressed into a mould. A solution of silicate of potasse is spreed over it, and it is then submitted to a considerable heat. The inventor usea a composition of finely-ground or palverised siliom misod with one-fourth in quantity of potash or soda, for rendering the blocks or bricks impervious to water. The bricks, after baing burnt, are coated with varnish, and then covered with a coating of the composition and re-burnt. Any colour may be given to the bricks by mixing minerals which produce the required colours with the potash or soda. To produce a slight glating or colouring the sulphate of alumina before-mentioned is mixed with resin or other bituminous material; powdered glase, plain or coloured, is thrown into a tub; the brick heing put into this, becomes covered with the particles of glase which adhere to the bituminous material or to the varnished surface; the brick in tben baked, a fine glazed surface being produced. Coal reduced to coke, in combination with cinders, silica, or anthracite, mixed with pieces of coal the size of a pea, and united with eny of the materials, such as vegetable fibre, mentioned in the fires part of the invention, may be used to form light bricks, mantelpiecea, \&c.

CUTTING AND SHAPING METAL.

J. Frearson, of Birmingham, for improvements in outting, shaping, and pressing metal and other materials.-Patent dated December 10, 1851.

Claime-1. A mode of combining parts into machine for cutting out, and for shaping several discs or blanks of aheet metal and other materials for the making of buttons and other articles. 8. Certain improvements in combining parts into machines for shaping and pressing metals and other materiala in the processes of manufacturing them into various articles.
The first branch of the invention relates to a machine having two motions, one for feeding the material to the punchers for cutting, shaping, and pressing it, and the other for giving a reciprocating motion to the punchers, which are affired to a vertical slide connected with an eccentric rod, turning on a vertical shaft, having the driving-pulleys and fly-wheel attached. The connecting-rod can be lengthened or shortened as the wear of the punchers require. The material is always kept between two pairs of rollers, revolving at the same spieed, and kept clom together at the nipping points hy a spring. A bevel on the vertical shaft gears into a toothed wheel connected by gearing with the rollers. After the punchers have descended and ascended, the bevel moven the wheel one tooth forward, bringing a new surface of the material ready for punching.

The second branch of the invention relates to three arrangements of machinery: the firgt is arranged to feed, by pneamatic or other apparatus, sheet metal or hlanks to cortain machinery (punchers), for cutting, pressing, and shaping it; the second is intended for punching sheaves from short tubes of metal, which are supplied by a mechanical feeding action; the third is for punching tubes of metal out of discs or hlanks of metal by machinery, for manufacturing eyelets for healds, and other unen. The patentee claims for the combination of known parts.

STEAM BOILER INDICATOR.

SYDNET SMITE, of Notingham, for improvements in indicating the height of water in stoam-boilers.-Patent dated December 8S, 1861.

Claim.-The application of a magnet, single or compound, combined with suitable apparatus, to give motion to a pointer of indicator in such a manner as to indicate the height of water in a steam-boiler.

A brass rod is ingerted in s steam-tight tube passing into the boiler, on the outside end of which is placed a magnet. This brase rod is moved by a flost in the boiler, operating upon - pulley at its extremity, which moves round the magnet, the poles of which, by their action upon a brass plate, cause a pointer or indicator to revolve round a dial, and thus effect the desired object. The ame machine may be made to work perpendicularly by the employment of an upright arrangement of the magnet.

GOLD FIELDS OF AUBTRALIA.

By Mr. Sminhina.

[Abetract of a Paper read at the Society of Arts, June 16h.]
Arrase referring to the similarity in the geological formation of the Australian cordillera to that of the Sierra Nevada of C'alifornia and Ural mountains of Russia, Mr. Shilling proceeded to demeribe the ahief New South Wales diggings, and the geologioll charactor of each. He noticed eapecially Oakey Creek and the Braidwood diggings in the county of St. Vincent; Narrow Creek, in the county of Wellington; and the celebrated Louiss Creek. Having apoken of the Alexander diggings, near Bathurst, the lecturer gianced at the latest discoveries in Victoris, which, however, he hed not personally inspected, and observed that there was no foundation for asouming that gold might anywhere be found concentrated in large quantitien, and that it was almont hopaless to search after matrix gold. There were two kinds of diggings-river and dry diggings. The dry diggings had the advantage of never being fooded, but there was panch more uncertainty in them than in those of the creek and river beds, where experience soon enabled a man to choose a place with come degree of certainty. The rocks about these creeks ware schist and quartz. Where exposed to the weather, the achist was of a grey and red colour; but in the bed of the creek it was often blue and green, and had a polished appearance. The gold was generally found in surface earth, in bleck and red gravel; and under the gravel, in blue clay, which ras the most promising, as it rotained the gold; whereas the gravel, 30 easily disintegrated, allowed the heavy metal to fall through it; but the clay gave a great deal of trouble in the washing, being axceedingly difficult to get thoroughly away from the stones and pebbles that it clings to so tenaciously. The gold was deposited in certain places more plentifully than in others. Banks with a gentle slope from ridges covered with the detritus of the auriferous rocks, short sharp turns in the stresm, and rocks in its ber lying with upturnod edges, and crevices forming pockets for deposits, were pretty sure indications that gold in abundance was to be got there, and the greatest deposits were likely to be found at the turn of the atream on and near the projecting points; but, in the dry diggings, there was little to guide the digger; he hed no idea what his fortune was likely to be until he had actually tried and dug a hole of the depth of from 5 to 90 feet to the underlying rock, which was composed for the most part of schistose, and reached after great labour. After working through to this bed rock the digger might be handsomely rewarded; and he might, on the other hand, have thrown all his labour away. Some such holes yield baraly $4-0 z$. a-day during washing, while others not half the depth may yiald from δ to 100 oz . It might at first excite surprise that gold had not been discovered before, but it must be remembered that it is so sparingly and minutely disseminated throughout the soil that it is only in the process of washing that it reveals itself. There is scarcely more appearance of it on the eurface than on that of an ordinary field.

In noticing the locality where the celebrated hundredweight of gold was found, Mr. Shilling remarked on the great advantages of system, instancing a company who had thirty men working a half-acre claim there with great auccess.

At the clowe of the lecture several questions were put to Mr. Bhilling, and a discussion arose, the general effect of which was1st, that the class of emigrants wanted in Australia were strong able-bodied men, who could stand the fatigue of digging, and were accustomed to manual labour; Endly, that people who had in this conutry formed habits of life which unfitted them for employment as diggers or shepherds were not wanted, and would in all probability meat with little success; Srdly, that the less emigrante took out with them beyond strong arms, a stout heart, and as much hard cash as they conld collect for their enterprise, the better; 4thly, that concerted action in companies had been, and was likely to continne, on the whole, the mont profitable at
the mines; lastly, that as a preliminary training for the emigrant, who intended to try his fortune as a gold-seeker, he ought before starting to go down to Cornwall or Derbyshire, or any other of our mining districts, and acquire some insight there into the cort of life he would have to lead, and the knowledge he would acquire, by working for a few weeks as a common miner.

Mr. P. L. N. Foster moved, and Professor Tennant seconded, a vote of thanks to Mr. Shilling for his lecture, and in doing so the latter drew attention to the importance of the last mentioned point. He stated that a great variety of other mineral treasures, such as diamonds, emeralds, and topazes were always found associated with gold; and he drew the attention of the meeting to specimens illustrative of this fact, which were arranged on the table of the lecture-room, and will remain there for aday or two, to be inspected by members and ther friends.

The vote of thanks having been unanimouly passed, Mr. Wink worth announced the close of the session, and congratulated the Society on its unprecedented succees.

The Metropalitan Commission of Sewers,-At length this commiegion has been brought to a crisis, by the resignation of Bir William Cubitt, Mr. Robert Stephenson, Mr. Rendel, and Mr. Peto, thus leaving the responsibility upon the shoulders of the military engineers. We do not see how they could have done otherwise to avoid the bickerings that were constantly going on, besiden the difficulties occasioned by the yearly postponement of an efficient act of parliament by which funds might be raised for carryits out the proposal of the late Mr. Forster, for effectually relieving the river Thames from the sewage of the metropolis.

The Metropoliten Water Bill.-After a battle of upwards of eighty days in committee in the House of Commons (fifty this session), an act of parliament has been obtained, by which the present water companies will, at the explration of five years, be prevented from taking their supplies from the river Thames below Teddington Lock; that all reeervoirs within five miles of St. Paul's are to be covered; that the water, if taken from any river, is to be effectually filtered; and that constant supply is to be given under certain conditions,-but the conditions are such, we fear, as will provent a constant supply being given throughout the metropolis until competition comes to its aid. The old water companies commenced taking their supplies from the river Thames at London-bridge; they then travelled up the Thames, first to Southwark, then Lambeth, then Vauxhall, then Chelese, then Hammersmith, then Brentford, and lastly, Thames Ditton-snd there, after expending another balf-million sterling, will remsin until public taste will drive them from the Thames altogether. Some bold and decided measure ought to be adopted regardless of existing interests, whether that of millowners or water companies, so that a pure supply could be obtained. We feel convinced that, sooner or later, the public will compel the companies to take their supply from the deep springs, not only in the metropolis, but also in the provinces; care being taken that the situstion is not too near the sea, or within the chance of the spring being polluted by the percolation of town sewage.

Provisional Committoc-men.-The House of Lords, the judges in attendance, decided, on the $98 t h$ ult.o, in the case of Hutton v. Bright, that a provisional committee-man, who has had shares allotted to him and paid the deposits, but never authorised the incurring of any expenses, not having been present at any meetings, nor in any manner whatever become a party to any contract under which any expenses were incurred, was not liable beyond the amount of his deposita; at the samo time reversing the order of the Master, which called upon the committee-man to contribute beyond the smount of his deposits.

Submorine Telegraph to Folland.-M. Ruyssenaers has obtained the concession from the Dutch government for laying down a telegraph between this country and Holland. This line will extend to Belgium, Prussia, and the north of Europe.

The Adriatio.-According to recent observations the alluvial soil on the Austrian coast of the Adriatic is increasing exceedingly, and it has been remarked that, since the beginning of this year, there has been a change oll the shore of the west coast. Malghera, whioh at the time of the French invasion was an inland, in now completely joined to the continent on one side.

Stepitens' Propoiling Panolls.-Nearty the whole length of the interior of theve pencils contain leed, which is propelled to the polat by turning the cap at the upper end; thet are thas saperior to the common hisd of "ever-pointed" pecci, by hantig a grealer length of lead in rewerte, and do not require fach frequent alling. They are made in woed or metal, of rarious lengthas eritable for the pocket or deal. The Yarifo Arch-The following expenses were incarred in moving to and re6 bulding the arch upon its present mite, Cumberland. gate:-Taking down the areh,
 podita in the Green-park, 2π. 141 .; converting ralling of the amall archwaye into Oolding gates, s89, coaverting the roome of the arch into IIFing roome, 150,; Menars. Burton and Neabeld for commloion in reppect of works dadgaed by thom, but Which were not executed, (24 per cent.), 4822.24 .j remoring and rebullding lodese gite entrances, building drink, ste, at Cumberiand
Brotingham Pracios.-The following are the lionn of expense incarted in the
Brakingham Pridoo.-The following are the Itemn of erpense incarred in the

 miling and gates, 12901 ; providing and Axing ron ralling and gatea, inciuding candelabra and anterng 1864.; Other works, 440. 64.; Joint comminelion of Mewne. Burton and Netbeld (5 pert cent.), 294d, 9s. a gettog back raling of Green-park and ornamental Inclocure, 1010 N .; levelling and forming approaches to fort-court and
 lion at Brighton and the Grounds thereof, and to apply the Money ardaring from lion at Brighton asd the Graonds thereof, apd to apply the Money arding from ment of Bretinghem Palect; brt no eatimatele fot made of the experen of the promoned of additions.
Orwat Wartern, and London and North Frethern Rainaayt- It appears from a comparison of the apeed and fares of the exprese tralng npon thece rall way that the speed of the fatest tralas between London and Bristol on the Great Wentern is 45 miles per hour, and on the London and North. Weatern, between London and Birmiagham, 40 miles per hour; the difference in favour of the former company beling s miles per hour. The rpend of all the mixed trains between London and Piymonth, and Iondon and Liverpool, is 85 mlles por hour on the Great Western, and 364 milet on the London and North. Weatern-belng 1 mille per hour In fivour of the latter. The nrerage faret per mile on the Great Wetern are-for frst-ciass, 8068d, and for cecond-clime, 9.502 d. Whalle on the Lopdon and North-Wentern the sivernge is for
 pastenger travelling by the London and North. Weatern Eailvay of $0.392 d$. for frstclase, and $0.824 d$. for second-clasi. A comparison of the time occupled and fre charged on a jourpey of 240 milles on both linet, show a difinence in tume In furour of the London and North. Wentern of 84 mlouter by a frnt-cian trahn, and of 12 minutes by a mixed train; and aleo at the eame tme sanvis of 85. Id. for that dis Lance by the firthelass, ind of 68. 8d. by the socond-class, the fares on the Grat Wentern Ratl wat for firclans beligg 684., and for second-clays $500.6 d$; whlle on the London and North.Western the fare for the firtt-cland is 84. Ild., and for the aecond-clam 485, 10d. By the mall eralns the averase speed per hour is 26 miles on the Grest Western, and 28 milles per hour on the London and North-Wentirn, the difference in farour of the latter being ${ }^{3}$ millen per hour. The average fares per mile on the former rallway amount to $2.724 d$. for frete elace, and $1.867 d$. for cecond-cines; Whille on the latter raliway they amount to $2 \cdot 4198$ for firte cian, and $1.775 d$. for second-cleme, thowing a difterence In farour of the latter of $0.815 d$. for firnt-cines, and 0 oged. for second-clams. 4 comparison of the tyme and farea calculated on a fournet of 246 milles shows a saving in frvour of the London and North-Western of 88 minntes, and of 64, 8d. In first-clases faret, mod 1 s . 10 d . In eecond-class fares. By the ordlary tralns the svertage speed per hour on the Grest Western is 25 wiles, and on
 aviog in firsthclats fares being $0.688 d_{n}$, and In second-clasa mares $0.201 d$, per mile alno In firvour of the latter compeny. A comparison of the thme occapled on a forney of 2463 miles thown a difference in favour of the London and North. Weatern of 21 minuten, the time oceupled by the Great Wettern tralma betag 9 h . B9m. ${ }^{\text {br }}$ by the London and North-Western, 9h. gm. The savig in the fint-cingat.

LIET OF DTHV PATEETY

GRanted in england thox May 22, to Jume 24, 1852. Sis Monthe allowed for Burolment malese ofkerwion eapresed.

John Harcourt Brown, of Aberdeen, Beothand, and John Machntoah, of the mame place, for improvementa in the manafictare of paper and articles of paper.-May 22. Louls Vletor Rast, manufacturer, of Gallon, Prace, for certain Improvements io the mannfacture of hat-plush and other mimilir silk cloths-May 22.
John James Ruscell, of Wedmesbury, Stafford, putent tobe manubectares, for improvemente ln coatiog metal tabet,-May 82
Edward Thomas Balabridge, of St. Paul's Churchyard, for improvements in obtalnlug power when fulde sre need.-May 22.
Samuel Cunliffe Lister, of Manolagham, York, machise wool comber, for Improremente in treating and preparing-before belog spun-mool, cotion, and other abrous meterale-May 22.
John 8warbick, of Bleckborn, Lanceater, fre-briek manathetarer, for certala ime provementa in the method of manufacturing retorta nod for gas and other purponea, provement in the metwod of manameturing retorta,
Alfred Vincent Newton, of Chedcery-line, MIddlewn, mechanical dragibtaman,
 Thomea Krott Parker, of London-wall, Clty, carpenter, for Improvementa in whdow subes.-May 22 .
Johann Stierba, of the Armo of Menara. Elinbrick and Co., of Prague, Bohomia, gen. tleman, for Improvemente in farnaces, and in treatiog and ntilalof certalo prodictio of combuation.-May 25 .
John Mason, of Rochdale, Lancanter, machina-maker, and George Collier, of Halifix, York, manager, for certaln improvements in preppering, splaning, twioting, doobling, and weaving cotton, wool, and ocher fibrous maverlala, aiso in cooln or apperatus for constructing parts of machides ased la such manofuctures.- $\mathbf{M a y} 22$.
Joeeph Walker, Jon., of Wolverhampton, Staford, merchapt, for certaln Improvemente in vicuam- pans for the eviporation and cryatallimition of saccharide or other molutlons. (A commanication.) $-\mathbf{y y} 25$.
Henry Webeler, of Manthorpe, Lancoln, wheelwright, for Improvementa in reguinting the dran in chimpere or inen.-May 26 .
Adolphas Charles Von Bers, of Cecil-atreel, Middlewax, Eeq, for lmprovements in trenang, preparing, and proserring roots and planis, in extracting seccharine and other Joicee from rools and plants, to the treatment of rach julees, and in the procenses, macblinery, and apparitus eraployed theraln.-May 29.
Frederick Muler, of Penchurch-street, London, geneliepan, for improvements in epperatue for hetching magh-Mey 20.

Joweph Leea, the youngor, of Mapcheater, celico printer, for an Improved eyntent of preparing, culting and engrating rollert to be aned for priating woren and other
 Alexander Baln, of Beevor-Lodge, Bamrsermalth, geatleman, for improvemeots ho cloctrie tolographs and in
sected therewith.-May 29.
Frillam Septlmus Looh,
Frillam Septlmus Loah, of Wreay Syken, pear Carlicie, sentleman, tor improvements in the purfication of coal gan,inay 28.
Rlchard Pord Starget, of Birmingham, manafneturw, for cortala pew or tmpreved orpamental fabrics.-Miy 29.
Whllam Armand Gubee, of South-itroet, Manbury, Middiesex, for certain improvements in mechinery for cutting corke.-Jane 1 .
Alfred Vlacent Newton, of Cbancery.hne, Middiemer, mechanicel dragehtinana, for improvementa in machinery for propelling reagein,
condection there with. (A commanication.) Jane 1 .
Whlliam Henry Philisp, of Camberwell New-roed, Surrey, endicetr, for improw ments in decorative illamination, and in applying light for othor parpowen.-June 1.
Thowas Wille, of Manchenter, machine makor, for certaln improvereenta in mae chipery or apparatan for winding yarne or throede, and also improwermenta in locess for weavigg.-Jude 1.
Gamuel Morrin, of Stockport, for certala improvements in itcam-bollers,-Juxe a WIIliam Earghton, of Xunchenter, for improvemente in machloery for apinating eotron and othar fibronn subntancea.-Jome δ.
Robert Bardman, of Bolton, for Improvemonta in loome tor werving.-Jape 6 .
Lamarent Machabee, of ArIgnon, for an froproved compodition appllictble to the conting of wood, metale, and other mabutances to be preserved from decay, Jume 8.
Edme Angratin Chameroy, of Paria, manafecturer, for certaln improvenente to ateam-engines.-Jupe 8 .
Enoch Townend, of Kelghley, for certala lmprovements in the manafucture of tertla fubrles.-Jane 8 .
Willimen Gratrix, of Salford, for certala improvementa in the production of detans apon cotton and other fubrics.-June 8 .
Whllam Rotife, of Abordeen, for certaln improvements in lampas and burbers, tm epparatue for reptlating apartments, and la the mode of worting sifgal lamper June 8.
Herry Hoaldeworth, of Mancheoter, for Improvemente in mbiroldefipg-mecitioen, and in apparatua need in connection therewith.-Juoe 10 .
Thomas Wiks Lord, of Leeds, for improremecta in mechboery for splaning, propartan, and heckiliag of fing, tow, hemp, cotton, and other fibrous subetinces, and for the lubrication of the meme and other mechinery.-June 10.
Wuliam Beealey, of Kingewinford, for certain Improvements in the manofuctare of metal tubpes and solld forme, and in eppartion and machisery to be employed therets. -Juse 10 .
Micheel Joweph John Donlan, of Rugely, Staffordablre, for Improvemente in treasIng the needs of flax and bemp, ard alto in the treetment and preparation of lins ind hemp for drematrg.

Edvin John Jelery Dizon, of the Royal Slate Quarrian, Bapgor, and Arther John Dodeon, of the cty of Bangor, gentlemnn, for Improvemmata in mambant and apperatua used in quarrying slate and atone, and in cutting, dresalog, pleniog, frumiog, and otherwise working and treating alate asd stone, mod in apperatua and wayons nsed for moring and converng alate and stone,
Wullam Reld, of Uoiveraty-abreet, electrie telegraph eaghoer, and Thomen Wral
 telegrapho.-June 12.
Jean Eraeat Beauvalat, of Pari, gertleman, for Improvenents in the manuenctare of tron and nteel. (4 commonlcation.) Juae 12
Jopeph Bradela, of Great Tower-itreet, Middlesex, for Improvements in the mannfucture of rew and rellined sugar.- June 12 .
George Pate Cooper, of Suffolk. atreet, Pall. Mall Eats, tallor, for certata improwementin in fasteningi for garmenta.-June 12 .
Thoman Reatell, of Kenulngton, Surrey, watch manuficturer, for certalo tmprovements ta the contitruction of hampe and barders.一Juce 17.
James Norton, of Ludgate-hill, merchant, for improvementa in apparatua for meertalning and meacuring the milieage ran by pablic vebicien during appiven pertod; alo the anmber of pertonim who have eutered in or apon, or are travelling in public rethclem; part of which improvemanta is applicable to pablle boildingi and otber plecee whare tolls are taken.-June 17.
Whiliam Cardwell M 'Bride, of Alistragh, Armagh, furmer, for certein Improverseats
 rhale-June 18.
Edchurd Archibald Brooman, of Fheet-atreet, Loodon, patent agent, for Improvemente to the manufacture of whecth, tyres, and hoopa. (A commanteation.)June 18 .
Willism Edward Newton, of Chancery-lane, cirll engineer, for improvementa to the constructlon of fences. (A communlcation.) Jone 19.
Whilimp Burgene, of Newgate-atreet, gutits-percha merchent, for improvements th the manufactore of gutta-perctis tublog.-June 21.
Jean Baptiare Georges Landes, of Paris, civl engtoeer, for cerpein improvaenente In locomotive-engines, part of whlch improvements are aloo upplicable to other en-sldes-Jupe 24.
Clande Armonx, of Parte, gentleman, for certain Improvements in the conatruetion of rillway.chrriages.-June 24.
Alerander Johniton Warden, of Dundee, mannfectarer, for improvements in the manufactare of certain descriptions of carpets.-Jnne 24 .
James Eigetn of Manchester, manufuctaring chemint, for certain improvementa is bleachlof and Econing woven and textile fabrice and yarne-Juns 24

Joeeph Sman, of Glactow, North Britain, eaglneer, for Improvementr in the production of figured aurfaces, and in printing, and in the machioery or apparators oned herein-June 24.
George Pearion Reoshaw, of the Parls, Notdngham, divl engineer, for improve mento in criting and shaplog.-June 24.
Jamea Bdward M"Connell, of Wolverton, Bucks, efil enginew, for improveramena In steam-enginet, In boilers, and other vestele for contilnins fulds, in rallmaja, aed In matertals and spperatns employed therels or connected tharewith.一June 2f. Joaph Dart Mortimer, of Bju-ntreet, Pechhom, for Improvements in lampen
Jupe 24.

ST. HELEN'S CHURCH, PADDINGTON.
Thomas Meyer, Eeq, Architect. (With an Engraving, Plate XXVII.)
Tas Engraving shows a perspective view of St. Helen's church, free achools, and priest's house, in course of erection at Westbourne-grove North, Paddington, under the superintondence of Mr. Meyer, the architect, on two adjoining plots of freehold ground purchased at a coat of 9500%. A portion of the schools were commenced in May 1851, and were opened as a temporary chapel on the \&nd of December following, by Cardinal Wiseman. This portion of the schools has been erected apon the sole responsibility of Dr. Magee, at a cost of 1500l., including boundary walls, gatea, belfry, and necessary fittings, and accommodates about 800 persons. The principal front is faced with bricks from Beaulieu, Hampshire, and the stone for the dressings is the Box-ground Bath. The roof is open and stained, and the belfry constructed in timber, and covered with lead; the crockete to spire, gableta, and pinnacles are also in lead. The builders were Messrs. Smith and Appleford.

A second contract of 81816. has also been entered into by the above-named builders for erecting the carcase of the church, the tower to be carried op to the underside of belfry, the sacristies finished, and the boundary inclosures. The walls are built to the height of the aisle parapeta, and about 40001. on the contract has already been expended. The external facings to the church and sacristies are in Kentish rag, with Box-ground Bath atone dressings. The steps are of Cragleith stone, und the nave pillars Portland stone. The floor of the church atands about 4 feet above the level of the road. There are three entrances at the west end of the church, and une at the east end for the acolytes; an organ gallery over the west end; two confessionals leading out of the north aisle, and one from between the south aisle and sub-sacristy. It is intended to have a side altar at the east end of each aisle. There is not to be any rood to the chancel. The whole of the church is to be groined, and will afford accommodation for 800 persons seated.

ON A REVIVED MANUFACTURE OF COLOURED GLASS LSED IN ANCIENT WINDOWS.

By Cabrles Wington.

[Paper read at the Royal Institute of British Architecto, June 14th.]
The point to which I have to direct your attention is, "a revived manufacture of glass used in ancient windows;" but, in order that the importance of the subject may not be underrated, I wish to make some remarks, in the first place, on the harmony observable between the design and execution of glass paintings and the quality of the material of which they are composed - harmony which, though more remarkable at some periods than at others, may yet be observed, in a greater or less degree, in all works having any pretension to originality. It is only when the perception of the artint has hecome blunted, and his invention paralysed by a habit of servile, unreflecting imitation, that all trace of this harmony is lost. I cannot better illustrate my meaning than by contrasting the glass paintings of the middle of the sixteenth century with those of the twelfth and thirteenth.

At this early period, when the richest, the most beautiful, and the deepent colouring in glass that we are acquainted with was employed, we always find that the picture was both designed and executed in the simpleat manner. There are no complicated groupo-no atmospheric effects-hardly any effect of light and shade,-and no high finish. If a group is represented, the figures all appear to be in the same plane, and to be cut out by a atiff background of deep hlue, or red. A landscape is rarely attempted; when this is the case, it is symbolised rather
than represented by trees, buildings or other accessories, of most medieval cut and conventional character, which always appear, by the positiveness of their colouring, to be in the same plane as the figurea, and like them, are cut out by the aforesaid stiff background. The whole expression of the drawing is conveyed by means of strong black outlines, the effect of which is usually heightened by a simple wash of shadow in half-tint, the edges of which are left hard. In ahort, the artists of this early time seem to have aimed at producing little else than a rich mosaic, of the mont vivid and harmonious hues. I say they seem to have done so,-for 1 am morally certain that they were really as ambitious of pictorial effect as any of their successors, and that their not having achieved it resulted rather from circumstances and want of skill than from any lack of intention. Had thewe men really adopted a fiat style, on principle, they could hardly have failed to avoid those inconsistencies which are so obvious in their works. Such as representing a landscape at all-under such conditions-shading the figure and giving it greater relief than the canopy under which it is aupposed to be placed, and regulating the depth of the shading rather hy the size of the figure than the intended pusition of the painting in the church. Had they acted on a well-understood principle, we might have expected to find some attempt made to lessen, if not obviate, the indistinctness resulting from a flat treatment, by means of a proper arrangement of the colouring; but the instances where the entire culouring of a group is strongly contrasted with the hue of the background are so rare as to justify the supposition that they were accidental. I am, I confess, led by these and similar considerations irresistiby to the conclusion that the glass painters of the twelfth and thirteenth centuries, though great colourists, were not in other respects great artists; and that whatever we find good in their works is the rich legacy of antiquity. That as we undoubtedly owe to Pagan times the art of imparting these magnificent colours to glass," so do we owe to the influence of Pagan art that style of low relief which, corrupted by the Byzantines, and misunderstood in "ye ages of feythe," is, nevertheless, so far as it is developed in the windows of the twelfth and thirteenth centuries, so truly admirable, because so excellently well adapted to the stiff and intense coluure of the period-colours 80 intense and unvarying in depth as to preclude the pomsibility of their being made subservient to those pictorial effects which are indispensable to the satisfactory representation of a subject whose composition would rank above that of a bas-relief.

The contrast afforded by turning to a gless painting of the middle of the sisteenth century is very striking. We no longer behold a stiff mosaic depending for success almost exclusively on the richness of its colouring; but, on the contrary, \& picture, brilliant it is true, but resting its clajms quite as much on its composition and general treatment as on the vivacity of its hues. Here complicated foreground groups, as well as important architectural accessories are introduced; they are delineated correctly, and highly finished. The relative distances of the various objects are preserved by means of light and shade, and the landscape background, monotonous as it may appear in comparison with that of an oil or fresco painting, recedes and disengages itself from the figures and architecture, imparting to the picture an effect of atmosphere. The glass itself differs widely from that used in the twelfth and thirteenth centuries. In general it is thinner in substance-it is always weaker in tint,-and on that account, if regarded simply as a vehicle for culour, would be far inferior to the older material. Yet for the purpose to which it is applied it could not be more suitable. Its pelluciduess and lightness of tint are admirably calculated to display the high finish of the painting-to favour atmospheric effect, and vivid contrasts of light and shade. Nor dues the employment of a material comparatively so flimsy and weak impart a correaponding flimsineas or weakness to the picture. A good specimen of Cinque-cento work will be found as imposing in effect as a window of the twelfth or thirteenth century. Let any one endeavour to call to mind the glase at Chartres, and that filling the four windows of the Chapel of the Miraculous Sacrament, in Brussela Cathedral. I am sure

[^37]he will feel an impression that he has seen something at both places equally striling-something equally removed from flimsiness or poverty. The paradox is easily explained when we consider that in the mosaice of the twelfth and thirteenth centuries the effect of the glass is but little aided by contrast of colour, or by shading; whereas in the pictures of the Cinque-cento period, not only is the colour arranged in broader masses, which is of itself a great assiatance to a poor material, but the strongest contrasts of colour and of light and shade are employed.

I have now compared the best exponent I have been able to find of a tat style of glass painting with what l believe to be a perfect exponent of the rotund or pictorial style of glase paint-ing-and I have endeavoured to point out, that in each apecimen the quality of the glass and mode of painting it are alike different-and further, that each kind of glass, and each mode of using it, are severally calculated to act and react upon one another, so an to set both off to the greateat advantage.

It will be useful to pursue the subject further, and show that during the whole interval which elapsed between the abandonment of the fat or mossic etyle, at the end of the thirteenth or middle of the fourteenth century, and the adoption of the rotund or pictorial style, which it touk two centuries to perfect in the Cinque-cento, certain harmony existed between the quality of the material and the mode of working it. It would be rather a matter of curiosity than of practical advantage to speculate on the causes which led to these changes in the quality of the material and the mode of working it. If I might hazard a conjecture, I should be inclined to say that it was a change in the manufacture which induced or necessitated a change in the painting, and not the reverse; because we know that from Pliny's time, downwards, the effort has always been to improve on the manufacture of glass-that is, to render the material more pure and pellucid, and better fitted for domestic purposes, without reference to its employment in painted windows. But however this may be, each change in the manufacture, and each change in the mode of painting were, in general, contemporaneous.

There was but little change in the quality of the glass between the end of the thirteenth century and the middle of the fourteenth, if perhaps we except the deterioration of some of the colours-the deep blue appears to have lost its sapphirelike hue, with the decline of Byzantine influences, soon after the middle of the thirteenth century. And, during the same period, the principles of the fiat style were subjected to scarcely any greater violation than they had already if not always sustained. But in the second half of the fourteenth century, and as it would appear, in this country at least, about 1380, an important change in the manufacture of the material took place. The white glass became purer, and all the coloured glass lighter in tint. Simultaneously an equally important change in the mode of painting was effected. It is true that the colouring had become broader and less mosaic, and the designs somewhat more pictorial, previously to the change in the material in 1980; and this is particularly remarkable in the glass paintings of Germany, in which country I am strongly inclined to think that the ulteration in the glass manufacture originated. But the change to which I would now partlcularly advert is in the execution of the painting.

Wykeham's glass, at New College Chapel, Oxford, which is one of the earliest specimens, may be referred to in illustration of it. The outlines became thinner, the shadows broader and softer, the painting altogether higher wrought and finished, and the treatment generally more pictorial. By the end of the fourteenth century, the new style of execution was established, as we see it in the east window of York Minster; but though rotund and pictorial in principle, it was not rotund or pictorial in effect till the end of the first quarter of the sixteenth century, when the bolder practice of the Cinque-cento artists broke out in all its vigour. Still, though we must regard the works of this long intermediate period as inferior alike to the painted glass of the thirteenth century and the Cinque-cento time, having neither the depth of colour of the one, nor the pictorial power of the other, it is impossible to examine them without perceiving that their authors must have felt that the more delicate material with which they were furnished, invited, if not demanded, a more delicate mode of execution.

Again, we may trace in all works executed since the middle of the sixteenth century down to the present time, except, indeed, the recent imitations of mediæval glass paintings, a certain degree of harmony between the quality of the material
and the mode of working it. 1 do not intend to enter npon the comparative merits of the mode of execution edopted by the Cinque-cento artists, who ueed an enamel colour only for the purposes of shading; and of the mode of execution adopted jubsequently, according to which enamel colouts were used more or less in substitutiou of glase colonred in its mannfacture; though I admit I entertain a strong opinion in favour of the former, beeause I know that the quention is axtensive enough, if gone into, to form the subject of a separate inquiry. But, apart from this consideration, we see in all the works of the Van Linges, the Prices, the Gervaises, and lastly in the modern Munich glass, a very delicate and finished style of painting, combined with the use of a material so delicate and pellucid as to sppear extremely flimsy, were it thinnes not disguised by the mode of painting it. In all glass paintinga, therefore, of whatever period, with the single exception I have named, do we find the erecution and deaign of the painting very with the quality of the glaso-being simple when the glases was rich in colour, and not over transparent; and proportionably more and more delicate and complicated as the glass became weaker in colour, more pellucid, and more thin in effect. And if any proof was wanting, either that these correaponding changes were intentional, or dictated by good teste and sound eense, it in smply afforded us by the modern copies of medinval glam, and even by the devices resorted to in order to tnsure as much as poesible the fidelity of the imitation; and, I am sorry to add, the enormous mendacity not unfrequently relied upon in aupport of a bad case. The works to which I allude are copies of glass paintings of the twelfth, thirteenth, fourteenth, and giteenth centuries. Some persons roundiy assert that there oxints a positive identity of effect between these copies and the originals: others seek to excuse any apparent difference by the remark that age alone is wanting to complete the identity. In dealing with these assertions, I ahall assume the possibility of making exact copies of the design and manipulation of ancient glass paintings, for though I have never met with an instance of such exactness in English work, I certainly have mot with it repeatedly in French. I ahall therefore found whatever I have to urge in disproof of this alleged identity, or would-be-identity, upon an examination of the nature and quality of the material of which these copies are composed.

I have diacovered a simple mode of testing whether, on the one hand, glass is sufficiently opaque 80 as not to appear flimsy or watery when put up in a window, unassisted by shading, according to the practice of the fat atyle of glass painting; on the other, whether it is sufficiently clear to produce as brilliant an effect as the old does. As follows: If the glass when held at arm's length from the eye, and at the distance of more than a yard from an object, does not permit of that object being distinctly seen through it, the glass will be sufficiently opaque. And, if when held at the same distance from the eye, and at the distance of not more than a yard from the objoct, permite of its being distinctly seen through the glass, it will be sufficlear and transparent. I have found this to be the case with great many pieces of glass of the twelfth, thirteenth, and fourteenth centuries, which had been rendered clear by polishing the surface, or which were already quite clear; for it is a preat mistake to suppose that all old gases has been rendered dull on the surface by exposure to the atmosphere. I have seen a good deal of glass of the twelfth and thirteenth centuries that is as clear now as when it was first made, its surface not having been corroded in the least. But the glass of which these imitative works are made is either smooth on the surface and so pellucid or watery as, when held at arm's longth, to permit of any object being perfectly seen through it which is at the distance of 100 or even 1000 yards, or more; or else is artificially roughened on the surface, a practice which reduces the condition of the glase nearly to that of ground glass, for when held at arm's length, it wifl not permit of any object being seen distinctly through it whioh is distant more than an inch from the glass.

The practice, not unfrequently resorted to by the imitators of old glass, of antiquating smooth-surfaced glass-that is, dulling it with the enamel colour used for painting the outlines, render it, when held at arm's length, nearly if not quite as opaque as rough-surfaced glass; indoed, almost the only perceptible difference, in this respect, between rough-surfaced glass and amoothsurfaced glass that has been antiquated, is, that the former is free from the tint necessarily imparted to the latter by the enamel colour with which it is antiquated. Thus we find that imitations of glass of the twelfth, thirteenth, or fourteenth can-
*ury, if areented in mooth-murfaced glase that has not been antiquated, are very poor and watery in comparison with original work of the period. And that if executed in glace that has been antiquated, or rough-surfaced glaes, they are much too epaque. In the one case, to opeak popularly, the vision pasees too uninterruptedly through the glaes; in the other, it is stopped at the surface of the glase, instead of passing about a yard throagh it, as in the case of ancient work.

I might show the non-identity of modern glass with ancient, even by a reference to the difference of its colouring. The old boing invariably harmonious and rich, the modern almont - invariably raw, crude, and poor in tone-a circumstance arising partly from the use of colouring materials different from those formerly employed, partly from a diference in the make of the glames. But I am content to leave the case as it atands. I candot, however, forbear the remark that it is most amusing to find many earnest admirers of medieval imitations, who, thongh apparently ignorant of the prectice of roughing the curface of glase, are aware of the pernicious effect of "smadging" or "antiquating" that which is mooothly surfaced, attributing to windows on which neither of these practices has been employed the effect of ancient ones, because, as they assert, "the giass then remains alear and pure as in ancient times." Was there ever eo entire a misconception! Is fimsiness or wateriness a oharacteristio of ancient glass? Do we ever find the glaes even of the sixteenth century, as flimay and watery as that used in the works to which they wllude, as exact imitations of glame paintinge of the thirteenth? Of course we do not. I may of coures, becmuse recent analysis has discovered the preeance of at least one constituent of old glass, which does not exist in the modern, and which, on being purposely introduced, produces the self-eame effect of colidity and richness which we perceive and admire in the old.

It is now time to advert to the revived manufacture of glasg -hich constitutes the text of this paper. And in doing so, 1 must disclaim any merit which may attach to the discovery beyond having started the inquiry which led to it, and sometimes having given an opinion on the quality of the colours produced. The merit of the discovery is to be ascribed to the chemical science of my friend Mr. Medlock, of the Royal College of Chemistry, and the practical skill of Mr. Edward Green, of Messrs. Powell's glaseworks in Whitefriars.

I was anxious in the autumn of 1849 , to procure some blue glane like that of the twelfth century-that is to say, not a raw positive blue, such as we seet in modern windows, but a soft, Gright intense blue, or rather a sort of neutralised purple. And for this purpose 1 submitted some twelfth century blue glass to Mr. Medloek for analysis. He completed his analysis in Easter week, 1850 , and thereby determined that the colouring matter was cobalt; thus putting an end to many ingenious apeculations that had been previously formed on the subject: some, 1 am afraid, without mach reffection. The lapis lazuli theory, which has been embraced by Mr. Hendrie in his tranalation of Theophilus, and Mrs. Merrifield in her 'Ancient Practice of Painting, is indeed opposed to the testimony of Dr. Merret in the eventeenth century, in a note hy him on the Treatise of Neri, where he declares that be had ascertained by experiment the imposaibility of colouring glass blue with lapis lazuli, about which there can be no doubt. Mr. Modlock intends, 1 know, to prosecnte inquiries on the subject of blue glass, and to analyse varions specimens from the twelfth to the sixteenth century, when re know that cobalt was employed, so as to form a series Which, when connected with the analyses of Roman and Greek glass made ly Sir Heary De la Beche and others, will form a mont valuable chain in the history of the manufacture. It would therefore be unbecoming in me to anticipate Mr. Medlock's Memoir, by giving a more detailed statement of this analysis. I may, however, add, that the discovery of the true colouring matter was but one of the heneficial results of this analysis, for in working it out practically, in which due attention was paid to the ancient recipes, the ancient art of making white and coloured glass was in effect revived. I say revived. for between the glase that has been already made and the old, \dot{I} can discover no perceptible difference, though I have teated it in every way that I can conceive ehort of actually having a window made of it. I had hoped that it would have been subjected to this teet ere now; but it will at all events be very shortly submitted to it, and as the blue in question, and indeed the rest of the new glass already made, is destined for some windors in the round part of the Temple Church, in which my
friend the Rev. J. L. Petit and myself are interested, I need not say that you will all have an opportunity of judging for yourselves, whether or not the experiment is succesaful. It is, of course, never wise to halloo till you are out of the wood; and had 1 foreseen the unavoidable delays that have retarded the manufacture, I should have declined addressing you at present. However, as my name was actually put down, I did not think it right to cause fresh arrangemente to be made, more particularly as I have reasonable grounds for believing in the success of the experiment.
I have to appeal to you, the professors of the noblest of arts, in favour of this unhappy art of glass painting. I call it an art, because it is impossible to look at the glass at Chartrea, Angers, or Brussels, without feeling that glass painting was ouce practised by artists I will aak you hy whom it is now practised in this country? for abroad it is still artistical, -and further, whose fault is it that it contunues in such bad hands? It cannot be for lack of pecuniary encouragement, for I doubt not but that if all the money that has been expended on painted windows, within the last twenty years, were added together, it would equal, if not exceed, the sums paid to Raphael or Michsel Angelo. The fault lies in thoee who have imbibed the exaggerated and rather sentimental eatimate of the middle ages which is so fashionable, who persist in regarding those ages at a distance, which, softening down deformities, keeps mean and debasing objects out of sight, and leaves only the more noble and lofty ones conspicuous, -who suffer their feelings to be so captivated by the pleasing phantom of their imagination as to admit neither beauty nor propriety in anything that does not remind them of the middle ages; snd therefore prefer copies of mediaval work to anything the art of the nineteenth century can invent. To such persons I have long, ceased to uddress myaelf; it is no use arguing against a man's feelings, however conclusive may be the facts adduced. I therefore appeal to you, who possess collectively so great an influence in these matters, whether it is enough to have improved in the manufacture of coloured glasa? And here I would especially address myself to the Greeks, with whom I am connected by all my early associations, by my Pagan education. Is there any reason why painted glass should be banighed from buildings in the classical style? For Palladian churches you have the Cinque-cento style made to your hands-a style susceptible of high artistical development, and which neither in its treatment, nor in its ornaments, is more severe than the architecture of the building. I advert to this circumstance, becanse in a neighbouring church (St. James's, Piccadilly) mediæval influences have so far triumphed as to cause the introduction of painted glass more severe in style than the church itself-glase which I have often heard made the theme of extravagant admiration. And for churches in the Greek style, surely it would not be difficult to form an artistically flat style; l way flat, because a flat style may be made more severe than a rotund style could be in painted glass, using the powerful and beantiful colours whose resuscitation I have proclaimed, and resorting to the pure models of antiquity for the forms. The researches of Mr. Penrose and uthers have exploded the idea that weak colours only are appropriate for the decoration of Greek architecture; why not then use deep colours in the windows, and shame the medimvals into some sort of improvement, by associating beautiful colouring with exquisite drawing.
In the course of the discussion which followed the paper, Mr. W yatt wished to know if subjecting the paintings of ancient windows to any alkaline wash had the effect of cleaning them without readering the coloura crade, by removing the softening down of tone which time had produced. Mr. Winston replied that he had washed a good number of pieces, and found that it had the effect of making the colours purer. Some of the glass to which he had applied the teat was as clean as it was the day it was put up, and the only reason he could assign for it was that it contained a greater quantity of silex than usual, in proportion to the alkali, and was therefore not so easily attacked by the atmosphere. It was capable of being toned down; and then certainly some of the colvur must be lost. The glass in King's College Chapel, Cambridge, was of the same date and as light as that used in the Cathedral at Brussels, and he had cleaned some of it and found the same result, that old glass cleaned had a better effect than uncleaned glass of the same date; but compared with modern glass, old glass, cleaned or uncleaned, will always be found superior in tone and effect.

ST. PAUL'S CATHEDRAL, AND ITS APPROPRIATE DECORATIONS.

By Franois Cranmrr Penrobr, Architect.

[Paper reed at the Royal Inotitute of Britioh Architects.]
Sr. Paul's Cathedral at present, and for the last twenty years or so, has suffered some deprecistion; but it must always maintain its dignity as it deserves, and whatever atyles or forms of architecture may be in rogue, 1 feel satisfied that it will maintain its magnificent supremacy above all the buildings of its own are, and I believe of any later one. There are many things in St. Paul's which we cannot altogether admire, and which deeerve even blame; bat taking it on the main idea, I think we must admit that there is no building to be compared with it, excepting the magnificent Vatican. It has, however, always retained many admirers; and hera, at any rate, where we meet to give an impartial consideration to matters of art it mast always have them, even among those who study Gothic architecture chiefly. I feel certain there is not one here who denies the magnificence of St. Paul's. It may be the fashion of some, who do not take the trouble to investigate the whole subject, to turn away their eyes from its beauties; but all who do properly study architecture, mast be satisfied of its magnificence. The pleasure given by the contemplation of such a bailding is the surest test of its great excellence; and there can be no doubt that the combination of such magnificent science, both theoretical and constructive, in its architect, and his very great love of the beautiful, and (considering the time) his great freedom from the errors which were then fashionable, are most remarkable; because, if we compare his vagaries with those of Borromini, who was almost his contemporary, we shall find that he is perfect purity itself. He was indeed most lovely in his life; during which, as in his death, he was acarcely divided from his building. He lived to the age of 91 gears, for fifty of which he was the Surveyor-General, not being dismissed from that office till late in life, in the beginning of the reign of George 1. About the year 1660, Wren seems to have bestowed very great attention on architecture. He huilt several buildings at Oxford and Cambridge, and appears, in fact, to have spent altogether upwarde of sixty years in the practice of architecture, with such energy and activity as prebally has never been paralleled. We should look with affection at the memorials that such a man has left; and what could be a more delightful object than to see completed, according to his ideas, the magnificeat building which gives the greatest lustre to his name!

The exterior of St. Paul's is tolerably well completed. There are some points which Sir C. Wren intended, and it would be well if they had been completed; but it is not attention to the exterior that is so much wanted,--it is to the interior, which is in a lamentably deficient state, not only from the greater part of the decorations that were intended by him having been left undone, but because there has never been, since the building was concluded, a proper feeling of public apirit to maintain it in the state in which it should be kept. The Dean and Chapter have done a great deal; they have kept the building, in all essentials, in a sound and firm condition; the estates belonging to such a building are not large, indeed they are only sufficient just to keep the fabric in ordinary repair. That has been done, and the question now is one of decoration, which does not properly fall to them to manage, nor can they be expected to do so.

There has never, for the last 140 years, been so hopeful a time for bringing this subject forward as the present. The anthorities, generally, of St. Paul's, have hitherto discouraged any attempt at moving in the matter; but now they are very desirous-most, if not all of them-that something should be done to put the building in a more satisfactory state as regards decoration: the Dean, especially, appears to have the well-being of the church more at heart than any of his predecessors since the time of Sancroft, who was Dean in Wren's time. The present Dean of St. Paul's has kindly encouraged this attempt to bring the present subject before your notice. The main object to consider is, what decorations are suitable to the building; and, in determining this, the views of Wren, so far as they are known, should be considered first, and should carry more weight than any others. I will therefore read several extracts which I have made from the 'Parentalia,' and I shall be obliged to appeal to your indulgence if they are longer than they should be in an original paper; but the 'Parentalia' is a work, composed mainly by Wren's sou, from his own documents, and
finally published by his grandson; and therefore, thoogh it is written of Wren, it is almost always Wren's own words that are used. In page 269, Wren writes a letter from France, Which shows how much be felt concerned in the interests of the arts and manufactures: "I shall bring you almost all France on paper, which I found by some or other ready designed to my hand, in which I have spent both labour and some money. Berninis derign of the Louvre I would have given my skin for, but the old reserved Italian gave me but a fow minutes view; it was five little deaigus on paper, for which he hath received as many thousand pistolea; I had only time to copy it in my fancy and memory; I shall be able, hy discourse, and a crayon, to give you a tolerable account of it. I have purchased a great deal of Taille-douce, that I might give our countrymen examples of ornaments and grotenks, in which the Italians themselves confess the French to excel. 1 hope 1 shall give you a very good account of all the beat artints of France; my buainess now is to pry into trades and arts. I put myself into all shapes to humour them; 'tis a comedy to me, and chough sometimes expenceful, 1 am loth yet to leave it." This was in 1665, before the Great Fire of London. As soon as he returned, the subject of repairing Old St. Paul's, which had been long in an unsatisfactory state, was mooted. Inigo Jones had made some repairs to the building, which (excepting the portico) were not very good it seems, even so far as construction was concerned; and they had come to ruin in Wren's time-that is, in 1665.
Wren proposed, in his repairs to Old St. Paul's, to build a cupola round the old tower, using the latter for fixing the scaffolding, so that he might first finish his dome and then take away the tower. Then he says, with a good deal of knowledge of what people would like, and what would encourage them to proceed: "As the portico built by Inigo Jones, being an ontire and excellent piece, gave great reputation to the work in the first repairs, and occasioned fair contributions, 50 to begin now with the dome may probably prove the beat advice, being an absolute piece of itself, and what will mont likely be finished in our time; will make by far the most splendid appearance; may be of present use for the auditory, will make up all the outward repairs perfect, and become an ornament to his Majesty's mont excellent reign, to the Church of England, and to this great city, which it is a pity, in the opinion of our neighbours, should longer continue the most uaadorned of her bignees in the world." With regard to his wishing mo much for a dome, it is plain that he had that in his mind for a very long time. I have here two or three instances of the motives which seem to have led him to the dome of St. Paul's. There (referring to the ground plans) is, I suppose, the earliest example-Sienna Cathedral; and that is Ely, drawn to the samo scale; that is Florence; and there is a model of the plan of St. Paul's. Of all these it would appear that Ely must have given him the most complete hints for the result which he arrived at in the present St. Paul's. The main feature at Ely is the extraordinary and happy arrangement of the vistas through the aiales, and through the great arches of the cupola, uninterruptedly. That he did not hint at in the model first proposed, but that is one of the great beauties of St. Paul's. Wren's uncle was Bishop of Ely, and it is very likely that Wren was called there very often, and picked up many hints from that cathedral. He seems to have thought that a cupola was a great feature in a Protestant church, and he always had in view the advantage of it to an auditory; and, unless 1 am mistaken, some attempt will be made to make his ideas useful in the present day.
After the fire, it became necessary to proceed to some real and thorough repair, if not re-edification of St. Paul's. The Dean and Chapter had endeavoured to patch up the old building, but had met with nothing but mishaps, and it was falling into a state of utter ruin. Wren had advised them from the beginning that it must be pulled down, but they thought they could avoid that alternative. At last, however, Dean Bancroft was desired to write to Wren, and invite him to help them in making a new design. He had offered to make a design just suitahle for a temporary purpose; but the Dean very happily thought something more might be done, and, in fact, he helped Wren in every way to forward the complete work as it is. The Desn thus wrote to him: "I am therefore commanded to give you an invitation hither, in his Grace's (i. e., of Canterbury) name, and the rest of the commissioners with all speed. The only part of your letter we demur to, is the method you propound of declaring first what money we would bestow, and then designing something just of that expense; for quite other-
wise, the way their lordehips resolve upon, is to frame a design handsome and noble, and suitable to all the ends of it, and to the reputation of the city and the nation, and to take it for granted that the money will be had to accomplish it."

A little further on in the 'Parentalia' we find a kind of apology for the use of coupled columns. The magnificent effect of coupled columns in the Louvre, and their equally fine effect in the entrance to St. Paul's, render such an apology unneceseary; but Wren's words are always worth hearing: "As the anciente shifted the columns of the portico for the better approsch to one door, bo at St. Paul's for the same reason, where there are three doors (the two side doors for daily use, and the middle for solemnities) the columns are widened to make a more open and commodious access to each. Those who daly examine by measure the best remains of the Greek or Roman structures, whether temples, pillars, arches, or theatres, will coon discern that even among these there is no certain general agreement; for it is manifegt the ancient architects took great liberties in their capitals and members of cornices to show their own inventions, even where the design did not oblige them; but Where it did oblige them to a rational variation, still keeping a good symmetry, they are surely to be commended, and in like cases to be followed." He proceeded zealously to make the present structure as magnificent as the design permitted. And he makes the following observations upon it:-"The surveyor followed the Templum Pacis, as near as our measures would admit, having but three arcades in each of the bodies eaat and weat, as there; but where there are no arcades, and next the dome, he has continued the whole entablature.

Again-"This temple, being an example of a three-aisled fabric, is certainly the best and most authentic pattern of a Cathedral Church, which must have three aisles, according to custom, and be vaulted: though it may not be always necessary to vault with diagonal cross-vaulte, as the Templum Pacis, and halls of the Roman baths are. The Romans used hemispherical vaultings also in some places; the surveyor chose those as being demonstrably much lighter than the other [two-thirds]. So the vault of St. Paul's consists of twenty-four cupolas cut off semicircular with segments to join to the great arches one way, and which are cut cross the other way with elliptical cylinders to let in the upper lights of the nave. But in the aisles the lesser cupolas are both ways cut in semicircular gections, and alrogether make a graceful geometrical form, distinguished by circular wreaths, which is the horizontal section of the cupola, for the hemisphere may be cut all manner of ways into circular sections; and the arches and wreaths being of stone carved, the epandrels between are of soand brick invested with stucco of cockle-shell lime, which becomes hard as Portland stone, and which, having large planes between the stone ribs, are capable of further ornaments of painting if required. Besides these twenty-four cupolas, there is a half-cupola at the east, and the great cupola of 118 feet diameter in the middle of the crossing of the great aisles. In this the surveyor has imitated the Pantheon, or Rotondo in Rome...... The Pantheon is no higher within than its diameter; St. Peter's is two diameters. This shows too high, the other too low. The sur veyor at St. Paul's took a mean proportion [1.414:1], which shows its concave every way; and is very lightsome by the windows of the upper order, which strike down the light through the great colonnade which incircles the dome without, and serves for the butment of the dome, which is brick of two bricks thick. but as it rises every 5 feet high, has a course of excellent brick of 18 inches long, banding through the whole thickness. The concave was turned upon a centre, which was judged necessary to keep the work oven and true, though a cupola might be built without a centre; but this is observable that the centre was laid without any standards from below to support it; and as it was both centering and scaffolding, it remained for the use of the painter. Every story of this scafolding being circular, and the ends of all the ledgers meeting as so many rings, and truly wrought, it supported itself. This machine was an original of its kind, and will be a useful project for the like work hereafter.......It was necessary to give a greater height than the cupola would gracefully allow within, though it is considerably above the roof of the church; yet the old church having had before a very lofty spire of timber and lead, the world expected that the new work should not in this respect fall short of the old (though that was but a spit and this a mountain). He was therefore obliged to comply with the humour of the age, and to raise another structure over the first cupola, and this was a
cone of brick, so built as to support a stone lantern of an elegant figure, and ending in ornaments of copper gilt: the cone being covered and hid out of sight with another cupola of oak timber and lead, and between this and the cone are easy stairs that ascend to the lantern."
"He took no care to make little luthern windows in the leaden cupola, as are done out of St. Peter's, because he had otherwise provided for light euough to the stairs from the lantern above, and around the pedestal of the same, which are not seen below. So he only ribbed the outward cupola, which he thought less Gothic than to stick it full of such little lights in three stories one above the other (as is executed in the cupolpof St. Peter's at Rome), which could not without difficulty be mended, and if neglected would soon damage the timbers. The inside of the whole cupola is painted and richly decorated by an eminent English artist, Sir James Thornhill, containining in eight compartments, the Histories of St. Paul. In the crown of the vault, as in the Pantheon, is a circular opening, by which not only the lantern transmits light, but the inside ornaments of the painted and gidded cone display a new and agreeable scene." ${ }^{*}$

The first stone was laid in the year 1675. The walls of the choir and side aisles were finished, 1685 . The highest stone on the top of the lantern was laid in 1710, by the hands of Chriatopher Wren, the son of the surveyor, by him deputed to it; Sir Christopher being in his 78th year.-So much for the extracts from the 'Parentalia.'
It is well known that Wren was averse to a balustrade above the main curnice; and in Elmes's 'Life of Wren,' there is an amusing letter from him, deprecating its introduction, dated October 1717, just before his dismisgal, which occurred in 1718. In certain points of view, as from some of the narrow streets adjoining, the pierced work of the balustrade was a happy effect; but Wren always looked at St. Paul's as a work that might be seen from suitable points of view, and the cornice, with the magnificent line of trusses which he provided for its support, required no balustrade. Another point shown by these designs is, that two statues were to have been placed at this point [exterior, west front], and no doubt they were required and intended; they are shown in all the old engravings, and would be of great advantage. Of course, we should not think of now putting statues on the outaide, because they could not be made to conform in appearance with the rest of the exterior. Interior decoration is a different matter, because the whole may have an uniform tone given to it if required.
The church was carried on with every attempt to make it as rich and perfect as the funds would possibly allow, in the time of the Stuarts. At the accession of William III, both he and queen Mary were well disposed to carry on the building; but they seemed to wish to get over it quickly; they did not, like the Stuarts, treat it as a work of love, but as a piece of business. Still they were great friends to Wren; and the queen, herself a Stuart, was his great patron after the deposition of James II. After her death, in 1695, his enemies began to get the better of him; and in 1696, in an act of the 9th William III., "for completing and adorning the Cathedral Church of St . Paul, London, ${ }^{\text {a }}$ a clause was inserted to suspend a moiety of the surveyor's salary till the church should be finished, "thereby the better to encourage him to finish it." When we consider that his salary was only 200l. a-year, and that he received no other advantage besides that, we see that he was rather in bad case towards the end of William's reign. The king was not inimical to Wren, and seems to have been pleased with what he did at Hampton Court; but he was immersed in politics to an extent beyond that which other kings have been before or since. In queen Anne's reign the church was still carried on, but more or less with the same wish to get it over, and to that fact we may ascribe what is said in the 'Parentalia' as to the mosaics. 'Ihese Wren certainly intended, and they were no doubt prac-

[^38]ticable. In this relgn, however, Sir Jamee Thornhill obtained the commission to decorate the church, and there can be little doubt, from these prints (and from the model), that Wren intended a coffered ceiling, and, generally, a thoroughly architectural deeign. There is still a good deal of architectural device in the present cupola, and we eannot much hlame that. So that, for the first years of Str James Thornhill's comminaion (till about the year 1718), they must have worked pretty well together; but afterwards-if any faith be placed in this print by Wale and Gwyn-the paintings were to be sprawled about over the architectrore, much ss they are in the late Borrominesque churches. Therefore, it must be sapposed that as Wrea's hold relsxed Thornhill's became firmer, and the painter got the start of the architect; so that it is in some degree fortunate that these lower parts of Thornhill's design were not executed. They would have interfered with the architectural charaoter of the building; but if we can eliminate from them the ideas of Wren, we may do much to form a consistent scheme of decoration. In a print engraved by Wren's permission and authority, figures are shown in the spandrels of the dome, somewhat as in the pendentives of St. Peter's, but much smaller; in the small cupolas of the nave there are coffers, with figures in the spandrels, in due subordination to the architecture. Here is a pasgags in which Wren complains of the painting being taken out of his hands. He had applied for the moiety of his salary, but was told the huilding was not done. He replies:-"Nothing can be said to be unperfected but the iron fence round the church, and painting the cupola, the directing of which has been taken out of my hands; and therefore I hope I am neither answerable for them, nor that the said suspending clause can, or ought to, affect me any further on that account.". This was undoubtedly very different treatment from that which such a man deserved. Moreover, we have seen that the gurveyor's salary was only 9001 . per annum.

By the accession of George I., all the old intention of carrying on the building as it should be wan lost sight of. The puritanic zeal of the time seems to have entirely put a stop to the decoration of the church; and the same feeling was strongly developed in the case of the window of St. Margaret's Church, which was objected to as superstitious, although it is simply a very heautiful picture of the Crucifixion. That discussion led to the production of an exceedingly valuable publication, by Dr. Wilson, which was published in 1761 . I will read a few extracts from that work, which 1 think furnish an excellent apology for the introduction of historical figures into St. Paul's, or any other church; of course, always observing that nothing should be introduced which could in any way offend persons who might conscientiously take offence. Dr. Wilson says:-
"It If imposible for any one who has made the least obeervation on mankiad not to have discovered the valt inflinence whicia grandeur and magnificence have on our minds. The aplendoar of the palace begets the moat respectful Ideas of the prince Who Inhabitelt $;$ and the courti of justice would lowe a grest alise of their dignity Were the fudget dirested of their roben.
"It may, perhaps, be said that objecta of this natuse affoct only the wolger, whitat mon of anne look farther, and bestow their reverence on those real and internal qualitias whlch alone deatrye It. If thin be true, is in, I belleve, certaln that all manInd are the valgar in thls respect, alnce there does not, probubly, in broman creature adat who is not in some degree induenced by appearancy
concominnt of meanceat-and referance of splendour.
I have somedimes thought that men may heve considered this as a Kind of mechanical method of exciting devotion, and have, perhaps, objected to it as If it deropated from the dignity of trae reltrion. It would, in my opinion, be equally reemonable to object to the use of a lever, becanse the application of it wat a reproach to our natural streagth.
Ood, that mandoubtedif with the relldoun hope of doing something acceptable to Ood, that man were led to adorn his temples, and not from any refections, a priori, that ornaments were capable of raising devotion. But siace experience continces us which we pey our sdorntion to the God of all."

With regard to the subjects that may be proposed for decorations of churches, he cites the following highly important passage from Archbishop Wake (then reputed of the Low Church party), in his 'Exposition of the Doctrine of the Church of England:-
" When the ptctures of God the Father and of the Holy Ghost-a directly contrapy to the Second Commandment, and to St. Panl' doctrine-Ahull be taken amay, and thome of our gaviour and the blemed aainta be by all oecemary cautions readered truly the books not soarme of the fenorant, then will we reapect the lmages of our Saviour and of the blemsed Virgio. And tas some of ua now bow down towarde the altar, and all of un are enfolned to do so at the name of the Lord Jesur, 00 whll we not fall to teatify all due reapect to hia reprusentation."
"As ormanent and instruction are all we contend tor, I should prefer large hlatortcal palatinge to dingle fgures; and this the more readily, bocaute adoration has at no time nor in any place been pald to them. Indeed, it in acarcely poasble tu concelve, when a namber of objecta are placed before the eye in one pleture, that a particular one can be selected for thle purpose; and yet it muat be done, unlegs we man suppose men fidiculoni onough to adore the thlevet shit were erncticed with

Now, we find in St. Paul's some magnificent spsoes adaptel for paintings. The various cupolas of the nave and sialios, the spandrels of the roof, and part of the drum of the dome, are all open to the painter; and if no decorated, of course under due reatrictions, and in accordance with the Protemtant authorities of those times, I think St. Paul's Cathedral might be made worthy of its position, as the head church of this country. Bat before that is done there is one very important consideration. The paintinge by Thornhill in the cupola are in a very deplorable atate. They are painted in oil, and are now aboat 180 or 140 years old; and, owing in all probability to the settlement of damp in the church, a great part of them has perished. Means have been taken which will render the settlement of damp lees likely in future, so that if there were any chance of restoring those paintings, they would be more permanent than they have been. Such opportunities and chances have been brought before us. Here we have a model of the cupola of Bt. Padl's prepared by Mr. Parris, whose most able and courageous plan for reatoring these works has before been mentioned; at any rate, bis proposition should be mentioned now, as one of the noblent offers that have ever been made, more especially as I belisve i am justified in announcing that Mr. Parris is now as willing as he was thirty years ago to undertake the reatoration of the cupolan [Mr. Penrose described the action of Mr. Parris's ecaffold in the model, and observed that if the work were now to be undertaken, some improvement upon it would probsbly be introduced.]
Mr. Penrose then read the following extracts from Mr. Cockerell's address, in 1849, to the Archbishop of Canterbury, the Bishop of London, and the Lord Mayor, and said that they would fitly follow up the views of Sir Christopher Wren, an no one could have so thoroughly embued himself with the spirit of St. Paul's as one who himself fully competent to lead, had yet for thirty years so modestly followed the footsteps of that great architect:-
"I beg permisaion, as an old and attached servant to thin glorions fabric, to addreas your lordsbips upon the propriety of coanidering sach menna as may posaibly be devised of carrying ont thome edornmente of the interior which were originally designed by the Rev, and Honble the Commisuioners of the Pabric; and which are so important to the dignity of public morship, and to the character of the Metropolitan Cethedral Charch of the wealthieat and most powerful city of the world.
" In the fabric of St. Paul's Cathedral, ranking third amoaget tho Buropean Cbristian Templea, as respects magnilude and architeetaral magnificence, it was clearly intended, but fur the political tronbles of the time, that 'beauty as well as atrength should be found in the canctuary of the Lord.' The shortcomings in this respect, arising from political and other causes, have ever been with foreigners, as well as our own people, a subject of national reproach and estrangement, as unworthy of a religious and wealthy people, and of an endowed clergy; and bave been the fertile occasion of those alunost daily attacks, and scandel iesued by the press, againat the administration of the Cathedral Chureb and its pious ministers. Meanwhile, the Very Rev. the Dean and Cbapter have annually expended money in adornments to the extent of their means; eapecially in 1821, when a very large sum was defrayed by them in the choir and communion end, as well as other parts of the charch, ander my superintendeace; and I think it would not be difficnit to show that more has been done in these reapects within the laat thiry years, by that ramerable body, than bad been previously accomplished aince the completion of the fabric.
"The intentions of the Right Rev. and Honble the Comminaioners of the Pabric, and of their arehitect, Sir C. Wren, reapecting the deeorttione of this noble pile, are recorded,* and portiona, as of the commanion end and the ornaments of the dome, are still before us; the latter, at presnaz and for some years past, has been in a ruinous and discreditahle state. It in aloo plain, from the very mean quality of the glaziogt, that it was the intention subsequently to havo uned painsed or other

[^39]fladugh, ralfed to the difuity and myle of the more mbetantinal decorttieas of the buildiag.
${ }^{\omega}$ The necomplinhment of thene becoming objects may not be wholly within the power of the present age, bot the sabject shoold not be loat dight of, and I hambly preanas that the extensive intuence of your lord. chiph, seconded by the spirit of the actual times, would effect a commencement of this good work, which would silence complaint, and tend manifestly to the glory of our woribip, and promote no lese the growing attachment to our charch.
"It is very remarkable that recently, while the clergy of this country, by its pione efrorts, has found the means of erecting and ondowing the unprecedented numer of 1400 new churches within the laut thirty yearn -viz, up to $4 . D .1849$, and while the public has reaponded with promptneas and liberality to extraordinary demands for the enpply of the epiritual necereities of the people, that demands for the rentoration of the old Cathedral and other churches have been no less liberaliy met by the pablic, the Dioceann, and the Dean and Chaptern, noder circumatancen of diminiabed revences from the Chureh, not only have those aubstantial sepairs and completions (whicb will secure their endarance so fatare contorioa) been effected durigg these thirty yeare, but also very axteasive decorations in the atyle and opirit of the original deaign. Witneas Canterbary, York, Weatminster Abbey, Ely, Winchester, Welle, Temple Chareh (ia which seven churches not leas than $175,000 \mathrm{~L}$ mast have been axpended) and many othert-to which almost aloae the Metropolitan Cethedral Church of St. Paul, situate in the greateat capital of the Christian morld, sad singalarly blessed by Almighty God daring a long neries of yearn, with proaperity, commerce, power, wealth, and dominion, beyoud any ation of the earth, formi a rare exception.
${ }^{14}$ It is remariable that elmewhere the spirit of real and devotion on this subject has grown with its exercise, and that a better underntanding of seligions daty in aimilar good works han happily been eatablighed of late, in this as well as other countriea. The literary taste, and archseological tendencies of the day, diaplay abundantly the reflection of these better sentimento, which both wisdom and duty enjoin, by every means in our power; and it is certain that propositions anch as I now preaume to submit to the notice of your lordabipa, formeriy treated, to say the least, with neglect, are now met with respect, and often with ready zoal, eapocially when recommended on high authority.
${ }^{4}$ In all part! of the continent great efforts have been made in this direction; in Paris alone, within the latt thirty years, there cannot have been lans than 100,0001 . expended in the restoration of decoration of the anciont charehes alone, with solidity, and with unerampled splendour; and thoogh the number of their new churches bears no comparicon with our 0 wn, the atyle and dignity of those whict have been raised by the piety of the monarch of Prance daring this period, very far esceed anything attempted in Bugland. In Gormany the same apirit prevaile, and not leas than $70,000 \mathrm{~L}$ bave been expended, it is aid, alone in the Cathedral Charch of Cologne, the windown of which, presented by the king of Bavaria, cost about 1300 L , each.
"On these groundm-namely, the nniverality of pablic opinion in fevour of these landable andertakinga, and in the midat of those atrena. ose exertions so weil known to employ the zeal and means of your lordshipe, the clergy generally, and the pablic, to supply the spiritual necesdifies of our capital, it is presumed that a well-devised scheme for the proper and becoming decoration of the Cathedral Church of St. Paul woold rot only be reapected, but hailed by the good wishen and subscripthonit of a large portion of a public, so manifeatly favoured by Providence daring a long coorse of years.
"The actual state of the Fine Arta in no lete propitions to the nadertening, the extrsordinary sumptuounsess of the Hovses of Parliament and of our royal and other pelaces, and the liberal views and oncouragement \& gorernment at regards the higher walks of historical and monumental painting and decoration, have already diaciplined a achool abounding in meant and capacity for anch operations. The profeasort of Pine Art have sever been backward in real towards snch noble objects, and in the proffer of their services to carry out the well known scheme of Sir C. Wren and the Commisionern of the Fabric.
${ }^{*}$ Sir J. Thornhill painted the dome, now 00 decayed by time, for 21. per equare yard (about the year 1720), a price acarcely defraying bia disborsements; Sir J. Reynoids and the Academicians, in 1773, made a gratuitous offer of their services for the decoration of the interior; and very recently the eminent painter, Mr. Parris, proposed to restore the palatings of the dome by a very bold and ceonomical proceas. Nor are car actual profensors leas animated now than formerly with the ability, seal, and plety, necesaary to such eaterprises.

* The practical mode in which, as your eurveyor, I sbould venture to reeommend the application of such fands as could be raised, would be:Fiow. To reatore the painting and gidding of the dome, and parts adjaeant thereto, as part and parcel of that magnificence, denigned and disected by 8 ir C. Wren bimeelf; at, however different in style from that at present approved, it is highly decorative and appropriate to the archiecture, and is too far removed from the eye to challenge minate criticism. geondy. To carry ont the gilding and painting of the symbois and or. manem of the choir, as already cummenced at the commonion end,
together with all the becoming ormaments to the gates, the pripit, the stalle, the organ, the commpaion rail and table, dec Thindly. To ros glaze the whole of the twenty-three lower windows oa the loor of the Cathedral with Seripture aubject in eoloured glanm-offering, as this occasion would, the firit grand opportunity, since the Reformation, of illosfrating the condulterated word of God in opirit and in trath, and uncontaminated by the apocryphal and superatitione representations which occupied this noble art under the Paplatic doctrines and direction.
"Such a mode of decoration in at once the most conformable to Christian and ancient assocfations, and the most economical that could be devised, at the same time that it is the most aplendid; since, as the vehicle of light, it transmita all that effeet and luatre to the interior which maral decoration faile to effect in the same degree, and which in fect it supersedea."

After reading this report, Mr. Penrose said there was one circumstance which required to be dwelt on particularly, and in which he was sure they would all agree, that it was of the very greatest importance to the subject under contemplation that it ghould have the active concurrence of Mr. Cockerell. For not only had he (Mr. C.) most judiciously condusted the repairs of the fabric for about thirty yeara, during which the hand of decay had been arrested, and even turned hackwards, 80 that the building is now in a far more satisfactory state than it was at the beginning of the century; but he had been, at the same time, no scrupulously observant of the intentions of Sir Christopher Wren, that everything in the slightest degree out of harmony with the general plan had always met with his decided opposition. We might then feel great courage in proceeding under such a leader. It was very little that he had to advance on the subject-for he came there rather to solicit the views of the gentlemen he saw around him than to state his own, which he was free to confess were not yet formed into the detailed state, for which much time and consideration would be necessary; but if we could interest many in the pursuit of this important question, we should have all the better chance of falling on the right scent. But the first thing which he had to inform them was, that the restoration of Sir James Thornhill's cupola had taken a very definite shape. He was authorised to state that it was become a practical question with the Dean and Chapter, and no pains would be spared on their part to get the whole of the cupola and the drum effectually restored. Mr. Penrose stated, in continuation, that the restoration of the cupola in chiaro-scuro, with a very large amount of gilding must be taken as the starting point for other decorations of the cathedral. He thought, therefore, that surface painting in colours would be out of place, with the exception of the windows, which should be of stained glass. Where the walls of a building and the windows were alike highly coloured, there was a want of harmony. In the mont highly coloured Italian buildings not much light was admitted, and that almost always through comparatively pure glass. Where colourod glass was employed, natural colours, or natural materials were used on the walls, so that they never had the glaring or prominent effect of surface colouring. Mr. Penrose referred to a rough sketch of the cboir of St. Paul's, in illustration of his views of the mode of decorating it. The apee was already ornamented with a sufficient or satisfactory amonnt of gilding; but a certain amount of chiaro-scuro decoration was wanted (as in the cupola) to bear out that gilding. He pointed out the architectural features of the vanlting, consisting of three small cupola with their spandrels, separsted by a magnificent guilloche. If the depths of the latter were increased by a little chiaro-ecuro, and a great deal of gilding, that, he thought, would be sufficient for it. The spandrels were evidently intended by Wren for some coloured decorations, and they furnished admirable situations for the introduction of single figures or small groups. In the small cupulas, however, figures would be objectionable, and therefore those surfaces would be better ornamented architecturally with painted coffers, slightly differing in shape from the actual coffers to the eastward, but brougbt into harmony with them. The spandrels of the main arches of the choir were admirably adapted for painting in monochrome. It might be fitting to insert coloured porphyries or marbles into the panels beneath the windows, or even to paint them, as the pilasters in the apse were already most effectively printed in imitation of lapis lazuli. He had not yet considered the decoration of the hisles, his object being merely, by these observations, to elicit the opinions of members.

Discussion.-Mr. Cockerehl said it had been his own peculiar happineas to have the care of St. Paul's Cathedral for very many
years, and the contemplation of that building had been a constant source of delight and refection to him. The whole scheme of the work-the structure, the beanty of proportion, and the admirable contrivance of every part-were perfect. It was like a work of nature, - every exigency of the building, and everything belonging to climate and circumstances had been so carefully and skilfully considered, that it was the very exemplar of all that Vitruvius had said of the great elements of archi-tecture-economy, structure, proportion, and beauty of detail. He dissented from one expression employed by Mr. Penrosenamely, that some parts of St. Paul's were even blameable. He would challenge any gentleman present to point out anything that could be truly called blameable in that building; and he would challenge a comparison of St. Paul's with any other building in Europe, of any age, in respect to all the essential qualities of architecture. It was remarkable that the plan of St. Paul's would be found to agree with the three masonic rules, with respect to its length, width, and columuar distribution; and also in the section, which was formed upon the lines of an equilateral triangle. For a long time he had been at a loss to conceive what principle had determined the height of the nave of St. Paul's; but at length he dincovered that it had been determined by the masonic rule. . This was the more interesting as Wren was the Grand Master of the Antique Masonic Lodge, which was not dissolved till 1717, since which time freemasonry bad been only a mask for political societies. Wren, in fact, lectured to the masons, and it was to be deplored that so great a philosopher had left so few of his writings to posterity; he would have revealed many things that could now only be gathered incidentally from his works. In his two or three admirable papers in the 'Parentalia,' Wren spoke like a great master, and those papers could not be too attentively studied. With regard to St. Paul's, they must all admire that "irritable genius" which seized, as he had done, the beauties of Sienna, and afterof Ely, with its wonderful octagonal lantern; and the skill with which he had avoided that constant intersection of nave and transept which limited the perspective in so painful a manner, but which had been so eternally adopted, even from the Roman times. After seeing a great number of cathedrals, that monotony of plan became really shocking, and led to the idea that men were merely imitative animals. The quickness and capacity which led Wren to seize and introduce in St. Paul's the beautiful contrivance of Adam Walsingham at Ely deserved the highest admiration. The plan of St. Paul's was unfortunately influenced by James II., who desired to restore the Roman Catholic worship; and above all things, to retain the old cathedral fashion, and to preserve the aisles as well as the nave, to the injury of the novelty and beautiful of the original, or "coloss" plan of Sir C. Wren, which could never be sufficiently commended. That plan, as the model of it showed, was adapted to the Anglican form of worship, and for a large congregation. Its beautiful perspectives had been well described by Mr. Penrose, and he could not but consider it as the earliest and the most truly Protestant cathedral church that had ever been designed. He hoped the day would come when Wren, and the siyle he adopted, would be duly estimated. As architects they were all more or less the victims of fashion, ephemeral education, and early prejudices - their notions were cramped before they knew how to think or originate. At one time they were told that Greek was the only architecture to be practised; at another time Italian or Palladian; and at another time Gothic. It was deplorable that they should imbibe prejudices of this kind for particular styles; but it appeared to be a necessity of their birth, education, and porition. Great things might be accomplished if they could lift themselves above such prejudices; and he looked to an institution like this for such fruits; and they could not be more effectually produced than by discussing, in connection with a subject like the present, the great principles of the art. The principle of economy was most admirably displayed in St. Paul's. Mighty as it is, it was executed in thirty years, and at a cost of only $750,0001$. (A.D. 1710), whereas Waterloo Bridge cost $1,100,0001$. (A.D. 1816). It was raised by a very small tax upon coals, which caused no inconvenience to the public; and he was quite sure a competent jury of Europe would pronounce it to be the most perfect of all the family of domes; and in its general design, and all its parts, the most admirable building in Europe. Wren, like every one else who followed his time, adapted the Gothic as the principle of his structure. St. Paul's was Gothic in plan, in section, and in construction; but he clothed the skeleton with a coat of the
style which was most admired in his day. Bernini was then triumphant, and gave the fashion to Europe. Wren visited hims at Paria, but his own works were much less exaggerated; be was, in fact, Bernini, purified in the fire of reason and logical judgment. The western towers of St. Paul's were copies on a smaller scale of those designed by Bernini for St. Peter's at Rome; but the latter (inasmuch as the Italian architects were rather painters and sculptors) soon began to fail, and were taken down, and no attempt was made to rebuild them. Although, as stated in his Report, 1400 -(now 1500)-churches had been erected in England since the year 1818, the reatoration of St. Paul's Cathedral had been neglected; nnd whilst the most lavish expenditure was bestowed on Houses of Parliament, Museums, and upon all temporal objects, he regretted to say that what had been done to the honour of God had been nig.gardly and paltry beyond measure. This was derogatory to the honour of the country, and contrasted most unfavourably with the liberality displayed on such objects in France. At Westminster Abbey a great deal had been done, with the very. best effect, in restoring and improving the fabric, and chiefly through the zeal and taste of the Rev. Mr. Milman, now Dean of St. Paul's, from whom similar results might be expected for the metropolitan cathedral. The Venerable Archdescon Hale, who was present, had displayed the greatest interest in the subject under discussion, and with the aid and influence of the Institute, he had no doubt the object might be accomplished. He knew many individuals who were willing to subecribe, se soon as operations were commenced. He had, in his enthisiastic admiration of St. Paul's, thrnwn out a challenge to msintain its beauties against all questions or objections; but the subject was so extensive that he should desire further time for the purpose; and on a future occasion he should hope to have the honour of offering some remarks on the wisdom, the beauty the delicacy, and the sentiment of the design and execution of the masterpiece of that great architect-Sir C. Wron.

Mr. Billings could not acquiesce in all that had fallen from Mr. Cockerell. What was useless, could not be very good. Sir C. Wren might have shown greater talent if he had made a feature of his flying buttresses. As a matter of construction, the upper order of St. Paul's, on the exterior, thomph magnificent in its effect, was altogether useless internally. Again, though not a fault of form or of desigu, but a fault of fact, the outer dome was a perishable one, which it should not be in such a building. For the funds for restoring the Cathedral they need not look again to a tax on cools, but rather to a circumstance which must eventually happen. The future revenues of the bishopric, which had increased, and were still enormously increasing, had been so apportioned that, on the next election to the see, there would be from 40,000 . to 50,0001 . a-year applicable to some purpose; and it would therefore be as well to petition the Ecclesiastical Commissioners to apply that sum to putting St. Paul's in order. As to Mr. Parris's ingenious scaffolding a much more simple contrivance might be seen in daily use in Durham Cathedral, which he believed had been employed. ever since the cathedral had been built. He should much like. to see St. Paul's decorated, but not painted; for he regarded it more as a building of form than of colour. Sculpture, of course, would be admissible, but not painting; for it was clear that Wren was opposed to the painting adopted by Sir James Thornhill.
Mr. Parbis said that his proposal fur renovating the dome of St. Paul's had been occasioned by a statement that the paintings could not be restored on account of the expense of raising a scaffolding from the floor of the Cathedral. He accordingly, in the year 1828, contrived the scaffolding or apparatus which had been referred to, and made a model, which had received the approbation of Professor Cockerell, Mr. Brunel, Mr. Clarke, and others. From want of funds, however, the matter dropped. Without going further into details, he might state that in 1885, he had used his contrivance in painting the interior of the dome of the Colosseum in the Regent's-park, where most convincing proofs had been given of the safety attending the use of it .

Mr. Jennings called attention to the position of the organ screen of St. Paul's, as diminishing the importance of the chuir; he would be glad to know if Wren had not intended it to be placed further westward.

Mr. Penrobe said that, with reference to the position of the organ screen, the econonly and arrangement of the ritual required a direct passage wcross the choir, west of the organ
sareen; and a much greater distance must be traversed from aisle to aisle, if the screen were removed further westward.

Mr. D. Moostra, suggested that the discussion should be confined to the interior decoration of the cathedral; and it struck him, as a guiding point in that discussion, that it was most important to remember that the decoration of the dome was now for the first time stated to he a positively settled point; and, as artists, they were bound to bear that in mind, in considering the other directions, 80 as to bring them into harmony with it. No doubt many of the gentlemen present had considered the subject, and formed different views as to the decoration of the cathedral by sculpture, by polychromy, or in other ways; but be felt bound to direct their attention to the settled point which he had mentioned, as being of the greatest importance.

Mr. Jennines was disposed to object to the ase of stained glage at all in St. Paul's Cathedral. As a general principle, colour had a tendency to decrease the effect of size in a building. Possibly, however, by the introduction of paintings in the panels, which, by the distance at which they were seen, would give an apparent increase of size, the decreased effect of size necessarily caused by the use of colour might be remedied. If colour were at all introduced, stained glass could not be effectively employed. As he had before observed, he thought the removal of the organ and organ screen further westward was essential. He objected to the dark colour of the pilasters at the east end of the choir. Perhaps the effect of size would be greater if all the pilasters throughont were to be of white or veined marble.

Archdeacon Hale said his own connection with St. Paul's Cathedral had existed nearly as long as that of Professor Cockerell, and they had each in that period risen in their respective professions. In no respect however had their course of life been more parallel than in the continual affection they had both shown towards the cathedral church of the metropolis. Confining himself to the internal decoration of the church, he would commence with the dome, the restoration of which there was now every prospect of being accomplished. He believed, antil that should be done, no person would be thoroughly able to judge what ought to be done to the rest of the building. Many years ago Mr. Cockerell had lent him an old book, in which that dome, now so dirty and dingy, was described as so splendid in appearance, from the quantity of gold that shone upon its walls, that it was compared with the aurors borealis in splendour and brilliancy. When, therefore, the restoration of the dome had taken place, those who undertook the remainder of the edifice, instead of having to contend with a dark and gloomy recess, would find that part of the building come forward with the greatest brilliancy, and it would be necessary to decorate the rest of the edifice very highly to accord with it. He was sorry to say he differed, toto calo, from Mr. Cockerell and Mr. Penrose on the question of painted glass. On that subject he had had some experience, having worked with Mr. Winston, and devoted much consideration to the effects produced by that branch of art, and to its present condition. One of his objections to that mode of decoration was, that he believed we had yet to see the art of staining glass fall into hands much higher in the scale of art than any that had yet exercised it. When the pigment which the ancients possessed should be discovered, and when the artist could work his colours on glase with the same facility as oil and water colours now flowed from his pencil, so that the highest artists would not consider it beneath them to practice it,-then, and not till then, would be the time to introduce stained glass in the windows of such a cathedral as St. Paul's. Moreover, he was of opinion that when stained glass was employed, it became the whole and absorhing point, and attracted people from picture to picture in the winddows, to the disregard of the architectural beauties and the form and majesty of the building. From a set of four designs by Sir James Thornhill, preserved in the Cathedral (representing the four Evangelists), it was evident that he had intended the building to be adorned with figures. The whole of the church was panelled, and spparently expressly for paintingg. He had no doubt it was Wren's intention that every part of the church should be painted; some parts, at a distance, with pictures which might exercise the skill of a subordinate class of artists, and others, close to the eye, with besutiful cabinet pictures, the minute beauty and perfection of which might be contemplated at leisure. He had long desired, and expressed a desire to have that denign carried out; and he had been laughed at for the notion. To the late Bishop of Llandaff and the Rev.

Canon Tyler he had expressed the conviction that he should live to see St. Paul's painted from one end to the other; but they had laughed him to scorn. He had even sketched the general design of such an undertaking. He was thankful that the project of Sir Joshus Reynolds and his friends had not been accepted, for he believed it contemplated a series of paintings of more incidents in the life of St. Paul; and, much as he venerated that apostle, he did not desire to see more representations of his acts and labours than there were already on the inside and outside of the cathedral. He had even gone so far as to define the principle on which the paintings he contemplated should be introduced. He would have in every panel a picture of the highest class of art which could be produced, and so trented as to give no offence to the feelings of those who feared lest superstition should creep into the church by the mere use of pictures. He had thought that the Cathedral might, in fact, be made a great pictorial bible. Near the entrance should be delineated the early parts of Scripture history; at the transepts the middle portion; and in the choir and aisles subjects from the New Testament. Before the admission fee had been got rid of he had eaid, "Paint the Cathedral so, and Joseph Hume shall have his way, and people shall come in from morning till night, to read and stady these beautiful pictures." He would fill the church with pure historical Scripture subjects, with the texts they illustrated in letters of gold beneath them. The beantiful cupola at the west end of the nave was admirably adapted for a painting of the Deluge; typifying the church itself as the ark in which God inclosed his flock, and the prophetic types of the events shown in pictures in the choir might be represented in corresponding pictures from the Old Testament in the nave. With the effect of the Cathedral painted in this way, he thought the light transmitted through painted glase would seriously interfere. The decorstion of the architectural members and details of the building he must leave to the artist. Descending to the floor, he expreseed what might be thought a heterodox opinion-namely, that the floor could never be rightly decorated till the monuments of sculpture now placed in the Cathedral were removed. He admired them as works of art, but heroes and heathen subjects (with thanks to man for conquest, without in one instance any acknowledgment to God for victory) were unsuited to a Christian temple. They well suited the taste of the last century, but he hoped the day would come when they might be removed to a Walhalla, where the country might more appropriately do honour to lts heroes, He wes not very fond of the Rev. the Cardinal Wiseman; but there was one part of the writings of that individual-his criticism on the heathenism of the statues in St. Paul'o-which ought to be written in letters of gold, as a lesson to us in the decoration of our Cathedral. In the boldness of his views on this subject, he (Arcbdeacon Hale) had asserted that for 20,000 . down, the whole decoration of St. Paul's, in the manner he had proposed, might be sccomplished. It would be remembered that there were eighteen compartments to decorste, which, to be done with due care and consideration, 80 as not to involve subsequent regret, would occupy something more than eighteen years. At the time he made that assertion, $20,000 \%$. consols would have produced 600l. a-year. For 600l. the scaffolding to enable an artist to paint one compartment could be made. Artists should be solicited to submit cartoons and suggestions for the decorations of the parts, and if $600 l$. Were given to them in prizes, that 600l, might be received again, and remain in hand, from the exhibition of those cartoons. Having that 600l., he conceived there were many artists who would be willing to draw lote for the commission to paint the first compartment for that sum. The first successful effort would excite the public zeal; subscriptions would flow in; a duke, or a distinguished lady, or the Dean and Chapter would defray the cost of other compartments, and they would soon be so minch pressed with the means of carrying out the work, that the only care requisite would be not to go on with it too rapidly or carelessly.

Mr. G. Foge rejoiced to hear the great difficulty overcome of illustrating our great Protestant Cathedral by pictorial representations. The plan suggested by Archdeacon Hale was both rational, religious, and practical. He (Mr. Foggo) was glad that Mr. Parris had been consulted, and was likely to be considered in this great work, for which his profound knowledge of perspective especially fitted him. If the magnificent idea of Archdencon Hale were carried out, it would be easential that the monuments in the Cathedral should be removed; but he feared it might take some time to reconcile the public mind to
such a measure. Mr. Foggo concluded by some remarks intended to correct an error in the atatement that Wren had derived his architectural knowledge, in some degree, from the ancient Freemasons, and that that body continued in existence in his time. He stated that, even so early as the reign of Henry VI., an ineffectual effort had been made by that monarch to trace the origin and history of the craft, which, of course, must have been still more obscure in the days of Wren.

Mr. Gabline, jun., thought the curved surface of the dome was not well adapted for historical paintings, especially at such a distance from the eye, where the figures must be of such a size (if they were to be visible at all) as very much to reduce the apparent size of the building. The human figure was the scale by which the size of other objects was most readily estimated, and nothing tended more to diminish them than any exaggeration in the proportions of the human form. Nothing could be more beautiful, more artistic, or more poetical, than the idea thrown out by the Archdeacon; but it was essential to consider the varied surfaces to which the paintings were to be upplied. From what Mr. Penrose had said, it appeared that he considered the small domes should be painted in coffers in chiaro-scuro; but he considered that a very inappropriate mode of decoration, if only because it was a deception.

Mr. Twinine thought nothing could be more beautiful or appropriate than the effect of stained glass, which need not detract from the effect of the painted decorations, if the latter were judiciously applied. He highly eulogised the idea thrown out by Archdeacon Hale. Unless the whole of the Cathedral were decorated aimultaneously, he thought the choir should be done first, and separately from the other parts.

Mr. J.W. Papworth considered that the first duty of an artist, when such an immense mass of building came under his hands for decoration, was to decide what was the general effect to be produced; and he therefore wished to ask whether anything had yet suggested itself to Mr. Penrose as to the general effect, or the general key of colour, in this instance. The effect might be either aplendour, immensity, or majesty; and this would depend upon the general key of colour to be adopted; which in its turn would at once regulate all the minor details of the decoration.

Mr. Prnzoge said that the general key of colour would unquestionably be given by the cupola.

Mr. Papworti hoped he might further be allowed to ask What that key would be. Was it to be chiaro-scuro? [Mr. Penrose.-Yes, chiaro-scuro.] Then, in that case, he (Mr. Papworth) thought there was nothing to prevent the building being as gloomy and miserable as at present. No amount of gilding could possibly relieve the general brown tints so produced. In settling the general key of colour it was necessary to decide whether the idea of vastness, or grandeur, or majesty, should predominate, those being the only three sentiments to be considered in such a building; and in following the question out, it should be considered whether historical pictures (not decorative painting) and stained glass would accord with those ideas. Many gentlemen would probably agree with him that a temple, such as St. Puul's Cathedral, should not be a mere exhibition gallery of pictures. He thought the whole question turned upon whether the decoration of the dome really was a fixed matter, because if so the opinion of the members of the Institute was quite unnecessary, that point involving both the key of colour and the question of the introduction of historical decorative pictures.

Archdeacon Hale said it was in reference to the effect of the dome as governing the other decorations that he had referred to the historical evidence of an old writer. He believed that that effect would realls be one of the utmost radiance and splendour; and then, the whole of the cornices and capitals, and every horizontal, carved, or moulded line, being also richly gilt he thought (with much deference) that in the lower part of the building the decorstions might gradually assume a greater amount of colour, even to the extent of the historical pictures he had suggested. These would be subordinate to the arcbitectural forms, distinctly marked as the latter would be by gilding.
Mr. E. T. Parris agreed with Mr. Papworth that a monotonous tone of colour throughout would produce a very melancholy and dismal effect; but as in a piece of music, though set in a given key, a discord was ucasionally allowed, so it might be in painting. He thought Wren's idea must have been white and gold; and that the general ides in his mind was that of
form and line-outline combining form thronghout-not internally alone, but externally. There was not a line in the building, internally or externally, which was not artistically beautiful. Everything was strongly marked by a bold outline. Of course, there could be no idea of converting St. Paul's into a picture gallery, even if it were filled with pictures and stained glass. In cousidering the restoration of the dome, it was necessary to bave regard to the views of Sir James Thornhill, and to his other works. The ceiling of Whitehall Chapel was executed about the year 1630 , and was imitated by French artists at the Louvre, Versaillea, \&c. Le Brun and his pupils became immensely popular, and Verrio. Laguerre, and Delaforse, executed many painted ceilings in England. Wren, who was familiar with these works, might possibly have been so far biassed by the prevailing fashion as to have even contemplated the small cupolss at St. Paul's being painted in that style. Thornhill imitated Delafosse and Verrio in all his other works, and in the dome of St. Paul's he was probably only restrained by the architect. The chiaro-scuro there employed was not a mere imitation of bas-relief, but was far more effective. A great deal of it might be called architectural ornamentation. intended to assist the architecture by a cheap painted imitation. This part of the work was admirably executed. Because Thornhill was restricted from the use of colours in the dome, it did not fullow that they were equally to be excluded in other parts. Many pasages in the 'Parentalia' showed that Wren intended to employ colour, but of course he would not use it in the dome, where it could nut be seen to advantage. Thornhill's predilectious would have led him to use colour in imitation of the domes abroad. With reapect to stained glass, he (Mr. Parris) thought Sir C. Wren fully intended to have stained glass in the windows-not painted glass, but pot-metal-the effect of which in the dome would be exceedingly beautiful. Whilst it would not obstruct the light it would obscure it a little, and lower the cutting rays which now strike acruss the dome, and interfere with the effect of the paintings. In the lower part of the building colour was certainly contemplated originally. A musaic pavement was propused, and no architect would use such a pavement without stained glass in the windows. The art of painting on glass he thought would not succeed in this or any uther country-not for want of talent, or of peculiar pigments (for our knowledge of the effecte of jaxtaposition of colours was most complete), but from the mistakea notion of producing a picture as on canvas. The works of West and Jarvis were total failures; but in the ancient stained glass the effect was produced by figures in the most brilliant and positive colours, cut out with a hard outline in lead, on the same principle as the paintings on the Etruscan vases. He thonght an excellent effect might be produced by the use of pot-metals. Alluding to the offer by Sir Joshua Keynolds and other artists to decorate St. Paul's gratuitously, Mr. Parris explained that that was not (as was often supposed) an offer to paint out the work of Sir James Thornhill-which had only been executed about thirty-five yearg-but to introduce pictures in other parts of the building. Considering, however, that Cipriani and Angelica Kaufman were among the artista proposing it, he agreed with Archdeacon Hale that it was fortunate the offer had been declined. The Dean of that day, however, rejected it because, as he said, "he would never give way to popery." Thus taken out of the hands of the painters, St . Paul's fell into those of the sculptors; and he (Mr. Parris) remembered the first statues-those of Huward and Dr. John-son-being placed in the building. These were less open to the Archdeacon's objection; but the monuments of the heros rapidly followed, and upwards of 100,000 . had been expended upon them. It was time now that the painters should have their turn. He thought the general key of colour should be that of the stone, with a quantity of gold; because gilding never interfered with colour. There was no fear now of paintings being injured by damp. Archdeacon Hale and Professor Cockerell had jointly effected an immense improvement in that respect. When he (Mr. Parris) first propused to restore the dome, the only thing he feared was the cold and damp to which he should be exposed; but that danger was now entirely removed. Mr. Parris went into some details of the state of art in the time of Wren and Thornhill, and the prices "per yard" paid to Kubens, Delafosse, Verriv, and Thornhill; and stated that an attempt was actually made by the Commissioners for St. Paul's to supersede 'lhornhill and employ Laguerre. Ho noticed, in conclusion, the existing prejudice against painting
in charches, especially if assuming a mediaval character-a prejudice which it would take fifty years more to obliterate. His own ambition led him only to a comparatively insignificant portion of the decoration of St. Paul's-namely, the mere restoration of the dome as an antiquary; the remainder of the works he wished to see accomplished by the very best artists in the kingdom.

Mr. D. Mocatta baid, that as the leading question in his mind was still as to the general tone of the building, he would venture to ask Mr. Parris whether, supposing he were left free to carry out his own view of that general key being white and gold, he would allow chiaro-scurv to pervade the whole building as in the dome, or whether he would introduce colour?

Mr. Parbis said he would carry out every part of the building at all remote from the eye structurally and architecturally, and only in form, and light and shade; but in the panels nearer the ground, and wherever the parts approached nearer the eye, he would have colour, because those parts could be looked at separately; and he would also have stained glass.

Mr. Mocatta further inquired whether, in Mr. Parris's opinion, it was desirable that the dome should remsin in chiaroscuro, or partake of colour?

Mr. Parbis thought if colour were admitted in the dome it would entirely destroy its effect. St. Paul's was totally different from St. Peter's. The latter was prepared to be cut up into a number of splendid parts, which, notwithstanding their real magnitude, appeared actually small; and in that building there was a balance of colour and enrichment throughout. The large and pouderous masses of St. Paul's were not prepared for colour, and if it were to be employed in the dome, it would render it an isolated canopy, and the harmony of the whole building would be destroyed.

Mr. G. G. Scorr observed that a question seemed to be raised aa to whether coloured decorations and stained glass should be admitted in the same building; and he was strongly impressed with the fact that they did not militate against each other, even when richly painted glass was used. He had found in practice that richly decurated interiors, without stained glass windows, were crude and almost offensive to the eye; and as by degrees the light was toned down by filling the windows with stained glass, the decorations on the wall became first sufferable, then Jleawing, and, when the last window was filled in, delightful. He was inclined to think the case would not be very different where the decorations consisted of pictures. The chapel of Giotto at Padua now appeared crude in its colouring, the windows being of plain glass; but it was evident on examining the cuspings at the top that there had been originally stained glass of a very rich description. In the church of Sta. Cruce at Florence, every part of the wall was covered with the finest frescoes of the school of Giotto's followers; all the windows were filled with stained glass, of the richest and deepest colours; but he had not the slifhtest recollection of any one of the subjects of the frescoes being obscured in any degree, from their being so lighted. The great artists of those works could not therefure have supposed that coloured glase would spoil the effect of them. The greater intensity of light in Italy would be met by larger and more numerous windows in this country. In objecting to painted glass, he presumed Mr. Parris and Archdeacon Hale to mean enamelled painted glass. He did not think glass was at all a material on which an artist should desire to paint an freely or in tbe same manner as he could on canvas. Enamel glase painting, therefore, however adapted to a drawing-room, would be quite out of place in a church or other large building, where it would probably injure the effect of frescoes or pictures; but the ordinary system of glass painting, as practised from the $t w e l f t h$ to the sixteenth centuries (pot-metal glass with a moderate amount of black shading), would not be at all open to that objection. In Mr. Winston's recent paper on culoured glass the windows of the Church of St. Gudule at Brussels had been meutioned. They were certainly wonderfully beautiful, but the windows of St. Paul's should be founded upon the earlier specimens of the art. He should not think of introducing a direct imitation of medieval glass into a Palladian building, but it was not necessary to resort to an inferior principle because it happened to be coincident with the period of the structure. What he should like to see would be stained glass of the best principle (that of the earlier or middle period of the range he had referred to), with the very tinest art, and the best drawing in the figures, and with such ornaments as should coincide with the general character of the building. In
saying that the finest art should be displayed in the windows of St. Paul's, he did not mean that our best painters should execute them as if they were working on an easel picture, because the first principle in such works was that of outline with very little shading. Conceding that the restoration of the dome was the point from which to work, it did not follow that all the decorations should be in monochrome, as that was. The result in that case would be dull and heavy. On the other hand, the rich colours of the late Italian works would neither suit the feelings nor the climate of this country; but a considerable amount of colour might be fairly introduced. He thought the practice of representing by colour forms which might have been produced in masonry, was highly objectionable, and therefore differed from Mr. Penrose as to the propriety of painting the small domes in coffers. If Wren had wished them coffered he would have coffered them;' and to paint them so now would be an attempt to supply a deficiency in his architecture. In painting the different surfaces, the modes adopted should vary according to the duties each part had to perform constructively; as the lower panels, the vaulted ceilings, and the pendentives. In the cupolas any representation of figures sbould be almost entirely in line, so as not to disturb the natural form of the dome, as was the case in St. Mark's at Venice. If the money could be obtained for it, mosaic was certainly the proper material both for the domes and pendentives. [Mr. Penrose.-Certainly. No question of it.] Wren meant to have mosaics; and it should be done now if possible. The conception of Archdeacon Hale was the finest that could be imagined, and ought to be the key note of everything that was done; but it did not militate against the use of stained glass, with which, on the contrary, it might be brought in perfect unison.

The Chairman (Mr. Mocatta), in conclusion, said it was not surprising that they might not be able to come to a satisfactory conclusion at once. Probably Mr. Cockerell would kindly bring the Cathedral under their notice on a future occasion, when, after further consideration, they would be better prepared to do so. For himself, he had merely wished, by his questions to Mr. Parris, to elicit his views on what Mr. Papworth had happily called the general key of colour, as the most important point; and he entirely concurred in the opinion of Mr. Parris as to the dome, that no injury would be done by following in the steps of Sir James 'Thornhill, and that, at so great a distance from the eye, the dulness of the monochrome painting there would be sufficiently relieved by the gilding.

TOPOGRAPHY OF THE HOMAN FORUM AND THE CLIVUS CAPITOLINUS.

By the Rev. Richard Buraebs, B.D.
[Paper read at the Royal Institute of British Architects, June 28.] At a meeting of this Institute on the 31st May last, ponse extracts were read from a letter* addressed to one of the VicePresidents, in which it was stated that a good deal was going on at Rome to interest the architect and the archæologist. The author of that letter, Mr. Tite, has been surveying with the

- Entracte from a Lefter from Mr. W. Tite to T. L. Donaldson, V.P.
"At Romn there is a good deal going on to intereat the architect and the archzologiat. Your introduction, and that of other frieada, to our distinguished foreign asmociate, the Comandante Canina, gave me the best opportunities of informing myaelf of these researches and discoveries, and his great tindneas, afforded we facilities not enjoyed by othern. The excavations in the Forum at Rome still continue, though alowly. The Republic pulled down some bouses that stuod much in the way both of the antiquities and the view, but unluckily they cut down the trees which used to mark the line of the Vis Sacra, and thus they spoiled one of the most picturesque features of that intereating site. The foundations of the Basilica Julia are cleared out; the ancent of the Via Sacra to the Capitol is quite diatinct ; the Arch of Titus is thoroughly repaired; and they are now excavating in and around the Besilica of Constantine-that great ruin, formetly familiar to us under another neme. The result of all these excavations certainly tends to confirm the suggentions of Chevalier Bunsen, and the German archseologista; and the Porum of the Emperors is now cleared of difficulty and confusion; and the verata questiomes connected with it are at an end. It is not possible in the compass of a letter to give you much account of this; but, if bealth he spared me, on some futare occasion I hope to occopy our friends at the Institute, and yourself, with the results of these investigations. At the Coliseum much is doing in the way of necestary reparis, and certainly jast in time, for if
eye of a man of taste that interesting "field in which a thousand years of silenced factions sleep-The Roman Forum; he has given us a sketch of the indiscriminate slaughter made by the Republic of 1848, on that sacred ground, which equally exerted its short-lived energy in pulling down the houses which obstructed the view, and uprooting the trees which graced the clasaical landscape. The only satiafaction we have is that, as on the Boulevards of Paris, $s o$ along the margin of the Via Sacra, the trees may grow again before the next revolution, while the houses which obstructed the view and concealed the ancient topography are gone for ever. Upon the whole, therefore, the future student and antiquary may be indebted to the Republic for a better view of the Palatine Hill, where despotism had its seat, and clearer conceptions of the limits of the Forum, where liberty luxuristed into license. Our learned-friend observes that the foundations of the Busilica Julia sre cleared out, and the ascent of the Via Sacra to the Capitol is quite distinct. He adds, that the result of all these excavations certainly tends to clear away all doubts and difficulties as to the Forum of the Emperors-the Forum as it was from the time of Julius Casar. These observations of our learned colleague have induced me to take up a subject which mome may consider to be worn out, "The Topography of the Roman Forum," but I flatter myself that at an Institute of Architects, anything that tends to illustrate that classical ground, and the models of architecture which once stood upon it, and whose remains still exist, can never be unacceptable. The object I have in view in this paper, is to assign to what Mr. Tite calls the Forum of the Emperurs its proper limits aud dimensions, which have so long been a matter of antiquarian controversy-not that I presume to set that controversy at rest, but I mean to offer such proofs, from the present state of the ground and ancient authorities and other monuments, as appear to me to assign the proper limits: you will still have to judge for yourselves whether those
they had been delayed mach longer, the upper atory muat have fallen. These works are really very extenaive; and when complete, they will not only rescue this magnilicent rain from destruction, but in part will show what the interior once was. I mean that the intention is to place the frasmenta of the apper ragge of internal columas in their places, to reatore the divisions, and to reingtate some of the reats, so as to give an ides of what the whole of thie mighty edifice might have been. The same care is now extended to mont of the priacipal ruina, and the excavations formerly made are well preserved. I perceive in the papers some notice of the excavations and researches on the old Appian way. That scoonat is is the main correct; but, perhaps, a somewhat more extensive notice may be acceptable. You will recollect that the old Appian way descended the.hill from Albano, and went atraight acroas the Campagaa to the gate of S. Sebastian, formerly the Porta Appia, immediately witbin which is the Arch of Drusus. Of this ancient way, the Nuova Appia only really oecapied to mach as served to descend the bill at Albano ; it then turned anide to the east, and by a good but somewhat crooked road entered Rome by the Porta San Giovadni, aud the Great Bacilica of St. John Lateran. The old road was tberefore abandoned, except about three milet at the fortheot ond. At the Roman extremity, bowever, it was otill kept up by the rond paning the anciens Banilica of S. Sebastima, and up the bill to the tomb of Cecilia Metella: woon after this it entered the Campagna, firnt as a rond, then an a track, and finally it was eatirely loat in the turf. Its course, however, was to be seen by the ruina of a line of tombn, in some cases of enormons dimenuions. Canina suggested the excavating round these suins, and though not intending to re-astablish the ancient road, still to trace ont ita course, and to roake It carriagenble throughout ita whole lengtb. He obliged me by allowing me to accompany him on one of his visite of inspection, and by giving me, at the various points of interent, his views and opinions. At that time, the lat day in Marcb, be had 220 men at work under a most intelligent ataff. The men were paid 24 panls per diem, almost a shilling Euglish, and they aeemed to work with great spirit and care. Soon after pasing the tomb of Cecilia Metella there excavations had began, and the reanlt, in many cases, wha a complete street of tombs, almost a close as houset, with here and there tome remarkable monument. The coarse directed by Canina is this-firt, to excarate in and round each mana, whether large or small; every fragment is numbered, and left in silt, the earth only being removed into she adjoining fieldo. These fragmente are then carefully examined and matched, and so far ac possible bailt up into the ancient forma; and the inscriptions, ben-reliefs, or scalptare, are replaced and secured by subntanatial walla. In this way many tombs, of rery curious workmansbip, and a bost of carious inscriptions, have been developed; and in some parts the restorations are so perfect as to give the road a good deal the character of the street of tombs at Pompeii. The materinl is very often marble, and there is mucb exquisite detail at times; but the sculpture at present found is not very
proofs be satisfactory or not. For the sake of perspicuity and rendering the eubject more accessible to your attention, 1 lay down the order in which I propose to trest this queation: I shall first glance at the various opinions of antiquaries, and the commonly received opinions up to the period of the modern excavations as to the limits of the Forum; but, inaumech as the question of limits is materially affected by the adjacent places, and especially by the Clivus Capitolinus, I shall have to examine the names and positions of the three temples whose remains still exist upon it, and then bring the argument to bear upon the limits of the Forum with special reference to the discovered basement of the Basilica Julia.

I do not mean, by referring you to the varions opinjons of antiquaries, to bring up those opinions for the sake of refuting them, but simply to state what they are for the purpone of showing the few points in which they agree, for this will be 80 much gained towards the object 1 have in view. They all agree, for instance, from Camucci in 1500 to Professors Fea and Nibby in 1840, that one angle of the Roman Forum was at the Mamertine Prison, which now existe beneath the Church of St. Joneph near the Arch of Septimus Severus. Merliano, one of the earliest of antiquarian writers who deserves attention, considered the Forum to be 100 paces in length, extending from the Arch of Severus to the Temple of Antoninus and Faustina, and he took the width of 50 paces across to the north angle of the Palatine Hill, including the three celebrated columns now gtanding; he even prolonged it, but by another name, as far as the Arch of Titus; Donatus the Jesuit showed this to be an error from the authorities of Dionysius and Livy, who describe the Forum as occupying the space between the Palatine and Capitoline Hills, and so completely has this portion of the argument prevailed, that a second angle of the Forum, with the consent of all, has been fixed near the Temple of Antoninus, in a line with the Arch of Septimus Severus, and where
remarkable, though three or four itataea of good worikmanchip have been sent to the Vatican. At a distance of about four miles from Rome, Canine bat restored two or three of those curious tombe which coandes in a circular podium, or retaining wall, with a conical mound of earth, planted witb cypresses. Strabo thus dencribes the aocient appearnnce of the mausoleum of Augustus, in the Campus Martion; and hare this character of restoration is dot oaly vraisemblable, bat most agreenble in the landscape. Just beyond that great mase of ruins in the Campagane called Roma Vecchia, is that immense circaler building, known familiarly as the Cast Rotonda. It wen an cuormous mand of brickwork and tofa; on the top is a moderate-cized farm-house, and an olive garden, to which a way had been made from the ground raised by the roias, at the back through the monament. On clearing out the earth roand this roin. nearly all the marble casing has been discovered, and the Comandante means to restore is. There is a rich marble bete moulding; the face was cased with marble to some heigbt, probably rusticated ; then carse a magnificent marble entablature, decorated with shields in the frieso, with a bighly-decorated cornice of immense blocks of marble, reating on modillions; above this was an attic of amall Corinthian pilasters. There was an inscription, and it is somewhat curious that the only frafment remaining gives the name of the founder of the tomb ' corra, on a harge block of marble, beautifully cut, with the letters at loast 18 inches hight. The general features of this tomb therefore resemble thoee of Cecilia Metelle, but greatly increased in dimensions and magnificence, perticnlarly of material, a ber tomb is caned with travertino, thin with marble. Soon after leaving this tomb, all trace of the road is lout, and the ruins atood ' mid the deep silence of the pathless wild.' By excavating, however, it is easily followed, the enormous kerby of the footpathy generally remain, though the paving is usually broken up and carried away. The excavations are carried on to the eigbth mile-stone from Rome, and bere the ltineraries apeak of a temple to Hercules; and in the tarf some shafts of amall dimenaions were seen atill erect. This ruin wes somewhat cleared out when we were there, and it diaclosed six ancient columns, and part of the wall of the cell insild. They are not very large, perhaps 2 ft .6 in . in diameter, but in a very good Greek atyle and Dorie. They are of peperino, and mach wasted. The capitals had been found, bat no traces of the entablature; perhapt the architrave had been wood, for Canina was quite of opinion that this temple was of the earliest time of the Republic I could not trace any necting, nor did there appear to have been any very evident entean as in the colnanat at Pastam. Bejond this poiat all at present is the turf of the Campagna, though in the distance the lise of the road climbing the hill to Albano is distinctly seen. The works, 1 beliave, are now anapasied, because the labourers are wanted for the operationa of the fermers; bet they will be resuroed in the winter. Canina will give the reanlte of the most important of theac excavations in a work he is about to publish, to be entilled 'Gli Edifizj di Roma antice e di sue Campagne.'"

the Arch of Fabins, who conquered the Allobroges, once stood; the question of limits was then reduced to this-whether did these two angular points, upon which all were agreed, define the length or the width of the Forum. Until Nardini came, all unanimously said the length; since the time of Nardini, by far the majority of antiquaries have said the width; but within the last quarter of a century, the German antiquaries and architects, led on by the great name of Niebuhr, and followed up by the learned diligence of Bunsen, have unanimously returned to the opinion of the old antiquaries.
Vitruvius informs us that the Greeks made their fors square, with wide and double porticoes; but in the cities of Italy, he adda they were of a different form, on account of the gladiatorial shows which custom had introduced into them. They ought not to be made, he says, too large, so that a crowd would appear lost in them, nor too small for the population; and the length should be in proportion to the width as three to two;* this proportion, however, was not always observed, for the Forum of Pompeii is only one-third of its length in width, but etill we may infer that if the Roman Forum had differed from thome proportions laid down by Vitruvins, he would at least have remarked the circumstance; it is therefore fair to conclude that the Roman Forum was a rectangular space in the Vitruvian proportions. Now, to apply them to the ground, it should be observed that between the Arch of Severus and the supposed site of that of Fabian, is a distance of about 400 feet; if this be taken for the length of the Forum, then 270 feet acrose for the width will bring us near the large brick fabric supposed to be the Curia, and the rectangle completed will join the Clivus Capitolinus just behind the Temple of the eight columns. If on the other hand 400 feet be the width, then the Forum will be laid out according to the doctrine of Nardini-that is to aay, it will be a rectangular space about a diagonal drawn from the Arch of Septimus Severus to the Church of St. Teodoro. I have already said that the first is now the favourite theory of the Germans. The Italian antiquaries have not yet relinquished the second; but Canina (whose plan is now before you), an architect but not an archmologist, appears to agree mainly with the Germans. The numerous passages cited by all parties from ancient anthors have of course been applied according to every one's theory; it is not my intention to trouble you with many of these, but rather to see how the modern excavations may be cited to bear evidence upon the subject. The important discovery of the Basilica Julia will throw, great light upon the limits of the Foram, but this object must be taken in connection with the adjacent Clivas Capitulinus; and therefore 1 proposed, as the next step in our argument, to call your attention to the three temples whose remains will be familiar to every one who has visited Rome. Those temples are marked A, B, C.

[^40]C, is the Temple of Concord, about which there is no longer any dispute. There were found in 1817 several inscriptions amongst its ruins with the word Concordia, and happy it is that the temple of such a goddess should afford no matter of discord, even "where her altars are no more divine." The other two have, however, frequently changed their appellations, and are yet deatined to undergo more changes. Λ, with the eight granite columns, still standing, had usurped the name of Concord ever since the year 1431, when Poggio Bracciolini saw it nearly perfect in the last days of Pope Eugenius. That learned Florentine ascended tbe Capitoline Hill with a friend, and sitting down on the ruins of the Tarpeian Citadel, he moralised on the vicissitudes of all human things, and has left his reflections in a book entitled 'De Varietate Fortunce.' "The Forum of the Roman People," he says, "where they assembled to enact their laws and elect their magistrates, is now inclosed for the cultivation of pot herbs, or thrown open for the reception of swine and buffaloes. The public and private edifices that were founded for eternity lie prostrate, naked, and broken, like the limbs of a mighty giant; and the ruin is the more visible from the stupendous relics that have survived the injuries of time and fortune." The deacription which the learaed Tuscan then gives of the ruins shows that a moralist and an antiquary are not always combined in the same person, and among other rash conjectures upon the names of the ruins he saw, he fixed that of Concord upon the eight columns on the Clivus, the site of the Temple of Concord being however discovered as I have already intimated. His own goddess, Fortune, succeeded to the honourn by common consent of the Roman Ciceroni. Fortune however has her day, and what could this goddess expect but vicissitudes, who had herself brought vicissitudes on so many of her votaries. She has of late years been obliged to yield up her bonours again to Vespasian; but Veupasian must yield again, according the German theory, if Canina is right, to a god no less venerable than old Saturn himself. The three columns which remain of the Temple marked B, have long been invested with the title of Jupiter Tonans.

The origin of the thundering Jove is this. Augustus, during his expedition in Spain, was travelling one stormy night, when the litter in which he was conveyed was struck by lightning, and the slave carrying the torch before him was killed on the spot. The Emperor, grateful for his narrow eacape, vowed a temple to the master of the thunderbolt; it was built, according to the expression of Suetonius, on the Capitol, in Capitolio. Dion Cassius describes it as occurring in the ascent to the Capitol. Pliny, who often mentions it, says it was on the Capitol. Publius Victor, in the fifth century, says it was on the Clivus. It is exhibited on a medal extant with six columns in front, and the statue of the god, which was a chef d'cuore of Leocras, is represented standing in the midst. As soon as the temple wat erected, the worship of Jupiter Tonans, out of compliment to
the Emperor, became very popular, so much so as to cause inconvenience about the passage; it was considered desirable to turn the tide in another direction. For this purpose Augustus had a dream, Jupiter Capitolinus appeared to the Emperor asleep, and complained that he had taken away all his worshippers by setting up a rival Jupiter; the Emperor consoled the Optimus Marimus Jove, by assuring him that be intended 'Tonans to be nothing more than a porter's lodge to his Capitoline Majesty, and shortly after he put bells upon the pediment to show that it was a mere entrance. Now all this would appear to take Jupiter 'Tonans higher up the hill than the three angular culumns, and I conceive we are at liberty to make some changes among these imperial deities. I shall this evening have to remove the Thunderer from the place he has usurped, and put Vespasian in possession of his honours. You will now very naturally require that I should produce my reasons. It is the custom among the Roman antiquaries, before they proceed to deliver their own opinions, and give their proofs and reasons for them, to summon up one by one the opinions of antagonists, and dispose of them as mere dreams, or as the baseless fabric of a vision. I should not have time, nor you patience, to allow of proceeding after that manner, but I shall be content with stating why 1 think the three columns called Jupiter Tonans, ought to be called the Temple of Vepasian, and the eight columns commonly called the Temple of Fortune, should belong to tbe Temple of Saturn.

Mabillon found a MS. in the Convent of Einsiedlen in Switzerland, which has turned out to be one of the most valuable documents to the Roman antiquary of any that time has spared. It bears no name, but appears to have been the faithful record of the pilgrimage of a pious German or Swiss who visited Rome in the eighth century. To perform his devotions according to the prescribed canons of those days, he visited all the seven Basilicas, and in going from one to the other registered every building and inscription that came in his way. This curious document is published by Mabillon, in the fourth volume of his Analecta Vetera; but Niebuhr made a journey to Einsiedlen on purpose to seek out the MS. again. He found it, and I was permitted by his successor at Rome to copy from the fac-simile the portion l now design to use. The anonymous pilgrim arriving at the Capitoline Hill, copies the inscriptions which he read on three temples, but all those inscriptions are written in the MS. without any more marked divisions of the words and lines than that which the context points out. They read thus: "Senatus Populusque Romanus incendio consumptum restituit. Divo Vespasiano Augusto S. P. Q. R., Impp. Cess. Severus et Antoninus pii. felic. aug. restituerunt." I need not insert the rest, which relates to the Temple of Concord. Now upon the entablature which rests upon the eight granite columns we still read the words which 'Anonymous' read in the eighth century"Senatus populusque romenus incendio consumptum restituit;" and we read nothing more. The German antiquaries asy we ought to go on, and add the three following words of Anonymous.' "Divo Vespasiano Augusto," and then the portico of the eight columns would be the Temple of Vespasian. But it is triumphantly asked, where is the space for the additional words; the frieze is filled up, and whoever saw an inscription upon an architrave or a cornice? Oh, but they say, "Divo upon an architrave or a cornice? Oh, but they say, "Divo
Vespasiano" was inscribed on the other elevation which is now demolished, and so we should have to send 'A nonymous' to the other end of the temple to discover the three additional words before he pruceeded with the other inscriptions which were before his eyes; besides, whoever saw the name of an Emperor to whom a temple was dedicated inscribed on the back elevation? or if it be alleged that the demolished part was the front elevation, then it may still be asked, whoever saw the Senate and the Roman people, the auful S.P.Q. R. put behind a temple? We therefore take the three words for the beginning of the second inscription, and then it reads, "Divo Vespasiano Augusto S. P. Q. R., Impp. Cæss. Severus et Antoninus pii felic. ang. restituerunt." This inscription belongs to the three angular columns supporting a beautiful piece of entablature, on which is read "estitver," being part of the word "restituerunt"; from all which it appears that Septimus Severus and his son Caracalla repaired that temple to the honour of Vespasian the Emperor. I think this a sufficient proof, but I shall have occasion to add another when I take you down into the Forum. To return now to the portico of eight columns. It is true we learn neither from 'A nonymous,' nor from the inscription as it exists, to what divinity this temple belonged, for that inscription never
eaid any more than it now says, that the Senate and Roman people repaired the temple after it had been destroyed by firewe must therefore have recourse to some other mode of proof. I could cite passages from various ancient writers to show that the 'Temple of Saturn was situated at the entrance of the Clivus, or, as Varro's expression is, "in faucibus Clivi." Servins describes it as being "ante Clivum juxta Concordie templam." It was also very near the Milliarnm Aureum. There was a difficulty in applying these descriptive passages to the eight columns before the excavations were made, because the portico appeared to be standing on a basement considerably elevated above the level of the Forum, and consequently some way up the Clivus, but now that the ground has been cleared, we see that basement magnificently constructed of peperine and travertine stone, rising from the very buttom of the Clivus, where the ascent began, and there is now no longer any difficulty in saying that the temple marked in the plan A stands in "faucibus Clivi," or "infimo Clivo; nor is there any where space to be found where another temple could have stood. I am therefore inclined to believe that the temple which has so long been called the Temple of Fortune is really the Temple of Saturn, and that commonly called Jupiter Tonans is the Temple of Vespasian. I may not conceal the fact that I am here in conflict with all the German school of antiqnaries, who insist upon the temple B as being the Temple of Saturn, and they rely upon the words, "juxta medem Concordiz; " and upon a votive altar, found in the narrow space between the temples B and C, on which were the words, " $\mathbf{A B}$. AER. SA'P." This celebrated fane of Saturn, wherever it was, contained the public treasure of the Romans, and a prefect was appointed to the care of it. Ancient rescripte or registers of contracts were also preserved in the Temple of Saturn, and the reason why all these valuable articles were placed under his care was because, in the golden age of that old god, there was no such crime as theft, and in those primitive timas avarice and bad faith were unknown; but besides this treasury, which was considered as the public exchequer, there was also attached to Saturn's Temple a "sanctius ararium," and the wealth stowed up here was not to be touched except in the greatest emergency. The Germans say they can discover vestiges of a door or opening which led from their Temple of Saturn into this reserve treassury. I recollect using every faculty of sight I could command, but never could I find the traces spoken of ; and, for reasons I shall shortly give, I must turn Saturn in another direction. However important and decisive may be thought the discoveries made by excavations, they must be adjusted with the passages descriptive of buildings and places which we find in the ancient writers. The poet Statius, contemporary with Domitian, has given us a general view of the Forum as it was in his time. When he describes the famous equestrian statue of Domitian, he names five monuments, which respectively stood in front, in the rear, and on the fanks of this colossal statue, and he turns the horse's head towards the Palatium. The T'emple of Julius Casar in front he thus describes:

> Qui, fesaun bellito, muecite nunere protin,
> Primualier cositis ostends in rethera divis."

The two Basilicas on each flank, and the two temples of Concord and Vespasian behind the horse, are comprised in the three following veraes:

> At laterim greenua Mac Julla tecta tnentur.
> Illime bellgeri eubliaia regia Pull.
> Terge Puter, blandoque videt Comoordia vultu.

The rest of the passage describes the objects which the Emperor was supposed to see from his seat on the horse, and anongst those objects the nova Palatia, which Domitian himself had made, and the 'Temple of Vesta, are mentioned. In the present state of the Roman Forum this has become one of the most valuable passages which the records of antiquity have preserved; we have nothing to do but place Domitian's horse in some central place between the Palatine and Capitoline Hills, and then take our general survey. The Temple of Julius Cesar is gone; no one pretends to exhibit a vestige of it-no, not even, a Roman architect; but the two temples which saw the horse's tail are remaining on the Clivus Capitolinus. Of the one, Concord, there is no dispute; the temple whose ruin consists in the three angular columns, Jupiter Tonans, has alone the same aspect. The expression "terga Pster" (Vespasianus) and Concordia videt" alludes to the statues luoking out of their respective cellas upon the horse's tail; but unless the cellas had been
turned in that direction, this description would not merely have been unpoetical, but false. Now the temple with the portico of eight columns has its flank behind the statue, and therefore cannot answer to the words "Terga Pater videt;" but the temple called Jupiter Tonans does answer, and I take this autbority to be enough to complete the proof that the temple marked B is rightly named the Temple of Vespasian. It may however be still asked where is the equestrian statue to be placed. This queation is answered by the excavations, and is shown thus: On each side of the equestrian statue of Domitian was a Basilica. In laying the foundation of the church of S. Adriano, in 1665, a mutilated inscription on a marble pedestal was discovered, in which mention was made of a Basilica, and this is generally allowed to point out the site of the "regia Pauli," mentioned by Statiug, synonymous with the Basilica Emilia. Taking Statius for our guide, we look at once in the opposite side of the Forum for the Julia tecta; and just in the direction where we ought to look, the steps leading into the supposed Basilica Julia have been discovered in the late excavations; the ground which has been the most effectually laid open is about the Column of Phocas. The spectator of the ruins of the Forum, when standing on its present level, is elevated sbout 80 feet from the base of that honorary column, and he descends by the Clivus and passes under an archway (now made for convenience) to arrive at the ancient level of the Forum. At the width of about 15 feet from the enclosure of Phocas' Column have been discovered the steps just described; sad although it might be shown from the authority of classical writers that the Basilica Julis was at least on this side of the Forum now in question, yot there is one atronger proof than all the rest to be adduced. In the Spring of 1835 , when the first step of the supposed Basilica Julia was brought to ligbt, a fragment of an honorary basement just appeared, and as if it would refuse to give any evidence on a disputed point, fell into the "cloaca" which runs under the steps, and so disappeared. Professor Emeliano Sarti, who kept a constant watch over those excavations, was the only person who observed the fragment with the ege of an antiguary. He communicated the secret to Kellermann, an intelligent antiquary, who immediately aroused the Cavaliere Bunsen to go with diplomatic suthority and fetch up the precious relic from the closea. It was taken up and acraped and wasbed, for, like a piece of buttered bread, it had fallen with the inscription side downwards, and when it was set to the light Kellermann read these letters:-

Abilica
 ER. reparatar
 set. ADIECIT.

Any one but a determined antiquary might have asked, and what then? But in the Corpus Inscriptionum of Gruter there had been read, for more than two centuries, the following copy of an inscription said to have been found or seen in the Forum; it runs thus-"Gabinius Vettius Probianus. V.C. Prex. urb. statuam que Basilicm Juliee a se noviter reparatm ornamento esset adjecit;" and by comparing the odd letters with the full Gruterian inscription, there was no doubt remaining of the proper way to fill up the lacunm of the cloaca fragment; this was either the inscription which Gruter had seen and copied in its entire form, or it was a duplicate, for being on a bamement, and making mention of a Prafect, who in the year 307 restored the Basilica Julia, it is most probable it would be more than once repeated; however that may be, the inscription, from the position in which it was found, leaves no rational doubt that the Basilica Julia is found, and it speaks much for the ingenuity of Canina that he marked the place, as in No. XVIII, of his plan, before the inscription, which confirmed his conjecture, was brought to light. The Basilica Julia being tben found, and the Basilica Emilia being acknowledged to be near the Church of S. Adriano, on the east side of the Forum, the equeatrian statue of Domitian must be placed between them. But having found those vestiges of the steps, and nothing else, it will very naturally be asked how is the plan of the whole Basilica known? To answer this question we muat have recourse to the fragments of a marble plan of Rome, made in the time of Severus and Caracalla, and found in the sisteenth century broken to pieces, in the Church of B. S. Damiano e Cosma. It is now encrusted into the wall of the staircase leading to the Capitoline Museum, and must be well known to all architects who have been to Rome, and to all who have not it will be familiar by the illustrations of Piranesi, under the title of Pisnta Capitolina. One of those fragments,
although broken, exhibits a ground plan of a building of immense proportions, on which we read "Julia," and on a corresponding piece the letter "B." I need not presume to describe to you the form, parta, and uses of an ancient Basilica, but I may remark upon the Basilica Julia, that according to the ichnography of the Pianta Capitolina it had five naves, divided by four rows of pilasters; the wall which inclosed it was also decorated externally with pilasters, and between them were windows; in other words, it may be described as formed of three peristyles one within the other; the outward one had twelve pilasters in front, and twenty-three on the flanks; the middle one eight in front, and fifteen on the side; the innermost six in front, and eleven on the sides; it must have been a most splendid edifice, for according to Pliny the younger it afforded accommodation for four tribunals of forty-five judges each. Caligula made his bridge to pass over it, to go from his Palatine residence to the Temple of J. O. M, and when he got on the top, "fastigium Basilices," he used tu throw pieces of money down among the people. When, therefore, we have made sufficient space for the Basilica, according to tbe ichnography and the site which these arguments now alleged will assign, it takes us about 350 feet from the column of Phocas in the direction of the Velabrum.

But we have yet to deal with another fragment of the Pianta Capitolina, showing the ichnography of this north-west angle of the Forum. It is usually adjusted with that fragment we have already considered as marking the three peristyles of the Basilica Julia; it exhibits an open space with the letters "cran," which no one doubts is the left limb of "saturni:" an open space of this description was called an area, and such areas before the porticoes of temples were not unusual. If the Basilics Julia has its length from north to south, and consequently its flank along the west side of the Forum, this fragment comes in to fill up the space through which the Vicus Jugarius ran, and actually brings us up to the eight columns. This may be taken as a kind of reflective evidence of the eight columns belonging to the Temple of Saturn; and I must asy, that, putting aside all envy and jealousy, I shall be glad to learn from our learned traveller, Mr. Tite, when he comes to give us the result of his observations, whether this said Basilica had its elevation towards the Forum or its flank; if the former, then our fragmant "ubni" will fail us, and we must still rest the claims of Saturn upon the other arguments. But we have another remarkable paseage of the 'Munumentum Ancyranum,' which saya, "Furum Julium et Basilicam quas fuit inter mdem Castoris et mdem Saturni." The Temple of Castor and Pollux, and the Temple of Satura were, according to this monumental inscription, divided by the Basilica; now the Temple of Castor was that which Caligula turned into a portico for his Augustan House, which all agree overlooked the south side of the Forum, and which must have been very near, if not identified, with the large square brick building usually called the Curia. A line drawn across the Forum would come to the eight columns, and cut the Basilica Julia longitudinally, and answer exactly to the Ancyra inscription; and thus we should obtain a third fixed angle of the Forum beneath the Tarpeian rock, and behind the present Church of Madonna della Consolazione, and gain another particle of evidence for driving Fortune away, and bringing back Saturn to his own again. Now if we adhere to the Vitruvian precepts, which teach that Basilicas are to be placed near, that is, on the sides of the open area of the Forum, we may now walk round the Campo Vaccino (the name applied to the sacred ground ever since Poggio's buffaloes), aud adjust the limits. On the east side, measuring from the arch of Septimus Severus to the site of the Fabian arch, there are $\mathbf{4 0 0}$ feet. The Busilioa Emilia, and another Basilica of the same name, used by the Roman municipia as a guard-house, have long had peaceable possession of the east side of the Forum, and we are here denied the pleasure of diaputing. Proceeding from the south-east angle we pass along the south side, under the Palatine Hill, until we have measured from the supposed site of the Fabian arch 500 feet, which will bring us to the west side of the square brick building called the Domus Caligulw; fixing our south-west angle there, and completing the parallelogram, we are brought to the Madonna della Consulazione, where 1 should very much like to leave you all, as some sort of recompence for our weary cbase.

Perhaps there is no portion of gruund in the world whicb has been put to such ingenious torture by the akill of restoring architects as the space I have gone over. I believe it will be allowed that architects in all countries build more castles in the air than on solid ground; but in Rome, since the Apostolic cof-
fers have been emptied by a variety of vicissitudes, and the Popes who patronised the arts have ceased to exist, the architects have nowhere to build but in the air; and hence the pleasure they take in putting inflexible and tasteless antiquaries to the torture by filling up a space, which anthors say was clear, and driving into a corner a most classical monument because it was not of the right dimensions for completing a general plan. I may just add that I agree with the direction Canina has given to the three viee which led into the Forum from the Velabrumthe Via Nova under the Palatine Hill, the Vicus Jugarius under the Capitol, and the Vicus Tuscus in the middle.

I may not proceed to make any further experiments upon your patience, by passing to any other objects in and around the Forum than those I have already treated of. Every inch of that classic ground must ever be interesting to the Institute of British Architects; but every inch must be contended for by the topographer and the antiquary: such discussions are for the most part tedious to all but antiquaries. The architect has the pleasing task of laying out his plan from the discovered angle of a wall, and rearing his edifice in due proportion; from the section of a column he can erect his portico, and fill up his tympanum with Niobe and her children, and crown the angles of his pediment with statues of gods and heroes, for which a medal will give him authority. The poor office of the antiquary is to put the inscription on the frieze, which few will care to read when enraptured with the indescribable harmony which reigns in architectural proportion. I cannot, however, omit this opportunity, as a humble labourer in that field, to solicit your votes and interest in favour of Vespasian and old Saturn, against the next general election of those temples on the Clivus, to serve in a representation of the ruins of Rome; and in doing this, 1 am running the risk of being charged with deserting $m y$ former constituents, for in my 'Antiquities of Rome,' although I had the prudence to leave the question somewhat open, I did incline for Jupiter Tonans and Fortune. Nay more, by a reference to my chapter on the Roman Forum, it will be seen that I split my vote between Vespasian and Jupiter, and showed the greatest anxiety to find space for Saturn; but antiquaries, like all other responsible advisers, must be allowed to alter their opinions when fresh proofs are excavated, new diggings opened, and circumstances are changed. Some of the Italian professors, whose theories will never be able to stand against the evidence of the discovered Basilica, have not yet brought themselves to acknowledge that it is the Basilica; and they wait in hopes it may lead to some building of the middle ages, and so maintain the theory of Nardini's Forum. I confess, although the discovery interferes somewhat with my preconceived, and what is worse, my published notions, I think it prudent to yield in time. It is long before we give up conservative principles; and an old opinion is often retained for the sake of consistency long after we have ceased to think it infallible. It is an admirable provision in our moral constitution, that men should be attached to the traditions of their fathers, for this often prevents rash innovations, not only in the names of temples, but of churchea and constitutions; at the same time, we have long learned to reject the maxim that what is is best, for by this we might go on sanctioning error wbich had become hoary by time; and looking upon all reform and improvements as elements of destruction, we might have refused to entertain the notion of a Crystal Palace because Vitruvius spoke of nothing but peperine stone and marble; and if, as professors of civil architecture, we had kept to the narrow streets and gable ends of olden time, we might still have had a six-bedded room and a back kitchen for a model lodging house. It is evident that both in the material and intellectual departments we are to innovate,-but innovate with all the advantsges of what has gone before; to know well the discoveries and works of genius which others have produced before us, and starting from the platform which others have erected, rear our Pantheon in air, which was before on the ground.

I am aware that this paper is more of a topographical than an architectural description, but the very names of the Forum and the Capitol are always a passport; for whether it be the Temple of Jupiter or of Saturn, whether it be the Basilica Julia or the Temple of Concord, it is still Vitruvius-that perpetual President of an Architectural Society. Whatever may be the diversity of tastes and pursuits, if they be refined they must all meet in the Roman Forum: there the painter loves to use his pencil, under the deep blue sky by which the time-worn ruins are arched; there the sculptor loves to linger over the exquisite
fragments which time has spared to excite his admiration and his envy; there the disciple of Palladio, and the ardent admirer of Michael Angelo's bold genius, grows into the proportions of the things around him; whilst the classical gicholar, whose youthful imagination has led him to form ideas of the Forum as coloesal as the deeds with which its fame is emblazoned, stands astonished at the narrow limits within which such scenes were acted; and what neither painter, nor sculptor, nor architect supplies to his fancy, the poet sings to the balmy breeze standing on the Capitol-

Mr. Tite said he was most happy that his hasty letter had produced such an elaborate and valuable paper from Mr. Burgess. He was further glad to find that that gentleman's heresies were all abandoned, and that they were now entirely agreed upon every point which he had referred to. The only one matter of discussion now between the Italians and the Germans, was as to the identity of the temples of Vespasian and Saturn; and he entirely agreed with his friend that Vespasian had the best claim to the ruins generally known as the Temple of Jupiter Tonans. Canina was of the same opinion, and therefore it did seem to him that all question was at an end, and that Mr. Burgess, the learned commentator on the antiquities of Rome, having recanted his errors, there were no more to be recanted; and there could be no more discussion on the subject. He had certainly thought of trying to trace the history of the Roman Forum at an earlier period; but as far as regarded the Forum of the Emperors, the conclusions to which Mr. Burgess had arrived must be those to which every man's mind must be brought on a full consideration of the subject. He had forwarded in illustration of Mr. Burgess's paper, a series of photographs of the remains in the Forum as they at present exist; and to these he called the particular attention of the meeting. Referring to the plan exhibited by Mr. Burgess, he explained the certainty now arrived at, that the length of the Forum was in the direction of north and south, instead of east to west; and observed that the original pavement of the time of the Emperors, along which the processions passed from the Arch of Titus through the Forum and up the steep ascent of the Clivus Capitolinus to the Temple of the Capitoline Jove, might still be traced throughout the greater part of its length. The only question, he repeated, was which of the two temples referred to was that of Vespasian, and which that of Saturn. He agreed with Mr. Burgess on that point ; and very much for the same reasons. The base of the great statue of Domitian in the centre of the Forum had also been discovered, clearly proving the accuracy of the position assigned to it by Mr. Burgess. As to the Basilica Julia, his impression was that its face was towards the Forum, but Canina was of opinion that that edifice had been completely cleared out and stripped, and that scarcely a fragment of it remained. The ruins commonly called the Baths of Diocletian were now being cleared out, under the superintendence of Canina, whose intention it was to clear out the bases of everything that could be found; and after that, not to fill them up again, but to wall them round, so that the whole might be traced. In a learned assembly like tbat, there could be no need of an apology for the discussion of where and what the "Forum Romanum" was. Some trifling points might still remain unsettled for archæologists and antiquaries to lecture about; but all the main points were set at rest; and therefore he should be spared the necessity of dealing with a subject which Mr. Burgess had now explained with so much more ability and elegance than he could have devoted to it.

Mansion House.-The citizens of London are about to patronise the introduction of sculpture. The Common Council have it in contemplation to fill the sisteen niches of the Egyptian Hall, at the Mansion House, with sculptured groups or figures. Mr. Bunning, the City Architect, reports that the cost will be about 700l. per niche; and recommends, in order that all the niches may be at once filled, that sculptors should be invited to send in plaster casts, and that they should be annually replaced by one or more statues, to be executed in marble by the sculptor who may have contributed the cast.

GORDON'S CAST-IRON LIGHTHOUSE TOWER, GIBB'S HILL, BERMUDA.

By Peter Patrrbon, C.E.

[Paper read at tho Inotitution of Civil Engineors.] (With Engravings, Plate XXVIII.)
Sinoz the discovery of these islands by Juan Bermuda, in 1628, the want of a good sea light has been severely felt, the approach being both difficult and dangerous, and although the expeditions under Sir George Somers, in 1609 and in 1613, suffered from shipwreck, and the islands have been in the possession of the British for 830 years, yet, until lately, nothing was done to remedy so serious a defect. To other nations the Bermudas would be of little or no value; but to Great Britain they are important as a naval depôt, and as affording a stronghold and efficient place of refit and rendezvous for the fleets cruising in those latitudes, for the protection of our possessions on the continent of North America and in the West Indies.

A few years since the home government decided upon erecting a lighthouse, and in the expectation that the tower might be built of stone found on the islands, a lantern, and one of Fresnel's dioptric apparatus of the first order, were prepared by the Trinity Corporation; but after some progress had been made in quarrying and dressing the stone for a lofty tower on which to place the light, it was ascertained to be of too friable a character for the purpose; therefore, in 1842, the home government directed Mr. Alexander Gordon, M. Inst. C.E., to design a cast-iron tower, of a similar construction to that which he had previously erected at Morant Point, Jamaica, in the year 1841, and which had proved so successful. The site chosen by the naval and colonial authorities was the top of Gibb's Hill, on the sonthern part of the Bermudas, in latitude $38^{\circ} 14^{\prime} \mathrm{N}$., and longitude $64^{\circ} 50^{\prime} \mathrm{W}$. of Greenwich. 'This site was determined on, because Bermuda is always approached with the greatest safety from the southward.

The form of the lighthouse, the base of which is 245 feet above the level of the sea, is that of a strong conoidal figure 105 ft .9 in . in height, terminated at the top by an inverted conoidal figure 4 feet high, instead of a capital. The external shell of the tower is constructed of 135 concentric cast-iron plates, including those for the doorway. These plates vary in thickness, from 1 inch at the base to about $\frac{9}{4}$-inch at the top; they have cast-iron flanges on the inside, 4 inches broad (including the thickness of the plate), and are further strengthened, at intervals of 18 inches, by angular feathera $\frac{1}{2}$-inch thick; holes are drilled in all the vertical and horizontal flanges, 6 inches apart, and the plates are united to form the tower, by square-headed screw-bults $\frac{3}{4}$-inch in diameter, with nuts aud washers.

In the centre of the tower there is a column of cast-iron 18 inches in diameter in the inside, the thickness of the metal being sinch, for supporting the optical arrangement of Mr . Fresnel, and in which the weight of the revolving apparatus descends. This column was cast in nine lengths, each terminating with circular flanges, to which the floor-plates are bolted. At a height of 2 feet above each floor there is a man-hole, or opening into this hollow column, 26 inches high and 15 inches wide, to which wooden doors are fitted; it is thus enabled to be used during the daytime for passing stores up and down, and it likewise contains the waste-water pipe.

About 90 feet of the lower part of the tower is filled in with concrete, leaving a well in the middle, about 8 feet in diameter, faced with brickwork. There are seven floors, exclusive of the lantern floor, or gallery, each 12 feet in height. The first and second floors are cased with brickwork, and serve as oil and store rooms; the five upper floors are lined with sheet-iron, No. 16 gage, disposed in panels, with oak pilasters, cornices, and akirtinge. On the first-floor there is a cast-iron kerb, 10 inches wide and 1 inch thick, on which a cast-iron floor-plate \mathbf{g}^{-}-inch thick, is fixed by bolts 8 -inch in diameter. The inner edges of this, and of all the other floor-plates in the tower, are bolted between the flanges of the corresponding parts of the hollow column, by $\frac{3}{4}$-inch bolts, nuts, and washers. The second-floor consists of ten radiating cast-iron plates, 各-inch thick, extending from the brickwork to the hollow column: these plates
 bolts, at intervals of 6 inches. The third, fourth, fifth, sixth, and seventh floors, are similarly constructed; but the outer
edges rest on the upper flanges of the carcase, corresponding with the position of the floors, being bolted to it by the same bolts which connect togetber the flanges of the carcase. The eighth-floor, and also the floorway, consist of sirteen radiating cast-iron plates, 早-inch thick, connected together in the same manner as the above, but with $\frac{d}{d}$-inch bolts. All these plates are so arranged as to leave the necessary headway for the staircase on each floor. There are five windows on each floor, one in the centre of every alternate plate in the circle: these windows are 18 inches square, and are fitted with strong wooden ports, opening outwards, in which a plate of polished plate-glass, $9 \frac{1}{1}$ inches square, is fixed, for giving light when the port is shut. There is also a window of the same dimensions in the circular well, for admitting light to the staircase; making thirty-six windows in all.
The staircase consists of two wrought-iron stringings, $1 \frac{5}{8}$ inch square, the risers and supports being $\frac{5}{8}$-inch thick, with oak treads $1 \frac{d}{q}$ inch thick. To each step there is an iron balluster, $\frac{7}{7}$-inch in diameter, on the top of which is fitted a wrought-iron hand-rail, $1 \frac{g}{g}$ inch wide and $\frac{8}{8}$-inch thick. From the level of the bottom of the doorway, to the landing on the first-floor, the staircase rises spirally round the hollow column, the ballusters and rail being on the outer edge of the steps, whilst from the first-floor to the eighth-floor the staircase runs spirally round the respective rooms, the ballusters and rail being on the inner edge of the steps. There are standards and rails round the headways of all the floors; the standards are of wrought-iron, 3 ft .6 in . in height, and z inches in diameter at the bottom, tapering to $1 \frac{1}{d}$ inch at the top; there are five of these standards on the first-floor, and three on each of the other floors.
A wrought-iron ring, in four pieces, 5 inches wide and $\frac{5}{8}$-inch thick, is attached to the underside of the eighth-Hoor, by screwbolts, $\frac{1}{6}$ inch in diameter, to which the lantern and light room are bolted. The gallery railing consists of wrought-iron ballasters, $1 \frac{1}{4}$ inch in diameter, fixed at intervals of 6 inches, and fitted with a rail at the top, $2 \frac{1}{4}$ inches wide by $\frac{s}{4}$ inch thick. The height from the gallery to the centre of the light is 11 feet, and from the centre of the light to the top of the vane is 17 feet, making the total height of the lighthouse 378 ft .9 in . above the level of high water.
It has been calculated that the light could be seen from the deck of a vessel at the distance of 26 or 27 miles, though, under certain conditions of the atmosphere, it would be visible at a atill greater distance, and this at all points of the compass, excepting where obscured by the high land to the north and east, between Gibb's Hill and Castle Harbour.
Much unnecessary delay was occasioned in the erection of this lighthouse, in consequence of the Board of Ordnance appointing a new commanding officer of Royal Engineers stationed at Bermuda, and as the work had to be erected under his directions, and he had to come from head-quarters to his post, to approve of the site selected and of the work as it progressed, under the immediate superintendence of Mr. Grove (Mr. Gordon's assistant), such delays occurred from this government system, that three years were required to do work that might have been accomplished in twelve months. The first parts of the lighthouse were landed in Bermuda about the end of November 1844, and no time being then lost, the first plate was erected on Gibb's Hill on the 19th of December, 1844, and the last plate of the tower on the 9th of October, 1845.
By a parliamentary return, the following is shown to have been the cost of this lofty lighthouse, constructed in so short a time, and in so tempestuous a locality:-

> Mesirs. Wulkins for the lantern, end to Menars. Cotam and Hallen for the iron-work of the tower in Eagland (where the whole wis first erected), including all cools, materiale, and frelght
> gineer, \&c. ..
> $26,43616 \quad 8$
> 2,252 510
> 27,689 26

The annual expense of maintaining this lighthouse is estimated to be about 450l.; the consumption of oil is 18 pinte per night.
Besides the immediate benefits conferred by this lighthouse on all shipping approaching the Bermudas, it has also been the means of effecting a beneficial change in the habits and morals of the inhabitants. Owing to the numerous and very dangerous rocks and shoals with which the Bermadas are surrounded, shipwrecks were so frequent, previous to the erection of the lighthouse, that the inhabitants gained their livelihood almost
entirely by wrecking; whilst agriculture was wholly neglected, although the moil is naturally very rich and fertile. Since the light has been exhibited, there has not been a single shipwreck, and consequently the inhabitants, finding their former occupation at an end, have been compelled to return to the cultivation of the land, as a means of subsistence; so that the islands now produce oranges and other fruits of the finest description, and in great abundance, as well as contributing oome of the best productions for the Pharmacopeia.

Discuseion.-Mr. Alexander Gordon said, that owing to the difficulties of the situation, the frequent recurrence of storms in the Bermudas, and the scantiness of the pecuniary means, it was necessary that the lighthouse should be expeditiously executed, and at a small cost; but yet that it should be capable of resisting the destructive force of the hurricanes. Though the lighthouse in question was one of the loftièst which had ever been constructed, and exhibited a light of the most powerful kind, its entire cost, including the trial erection in England, the freight to Bermuda, and the re-erection on Gibb's Hilf, was lest than 80001 . This amount was very small; indeed, he was not aware of any great sea-light having been erected in any part of the world at so moderate a cost. Cast-iron lighthouses were, he believed, first proposed by Captain Sir Samuel Brown, R.N.; but the small light tower on the town pier at Gravesend, constructed by Mr. Tierney Clark, was the first absolutely erected, though Mr. Walker had previously introduced iron lanterns for lighthouses. The first great sea-light, on an iron tower, was that erected by Mr. Gordon, on Morant Point, Jamaica, at the extremity of the low swamps which formed the eastern end of that island; this position was very difficult of access, and was also extremely unhealthy for European workmen. The frequent shocks of earthquakes, in that island, having hitherto prevented the erection of any structure exceeding two stories in height, it occurred to him, that a lighthouse for such a site should be self-supporting, and should therefore be treated is a very large lamp-post; and that the engineer, instead of attempting to build a monument for himself, shoald design and execute the work with an especial view to economy. It had been recorded in the 'Jamaica Almanack' for 1844, that this lighthouse had several times withstood the shocks of earthquakee and violent storms of lightning, which were, of course, rendered perfectly harmless by the conducting power of so large a surface of metal. He had employed this system of building lighthouses, with a core of masonry or concrete, in the inside, for some height upwards from the base, in several other instances, notwithstanding the objections of Mr. Alan Steveuson, who thought that there would be an expansion and contraction of the metal, and a change going on at the base of the structure which would destroy its stability. Mr. Gordon, however, considered that opinion erroneous, because the metallic shell, or case, insured a perfect bond, which, with the weight of the core, would securely retain the lighthouse on its site. He was 90 convinced of the correctness of this principle, that he had recommended it for the consideration of the home government, for a lighthouse on a half-tide rock at Simon's Bay, in South Africa. He objected to building a lighthouse in such a situation on piles, or on an open frame-work, similar to those at Fleetwood and on the Maplin Sands, because if the piles or open frame-work were of wood, the worm, or the rot would be liable to cause the destruction of the erection; and if the piles were of cast-iron, they would be exposed to the effect of the chemical action of the salt water, as well as to the heavy blows of the waves, which being given to the respective supports at different times, would cause great irregularity in their vibrations. It was, in his opinion, to this cause that the destruction of the beautiful structure erected on the Bishop Rock, at the entrance of the British Channel, must be attributed. One of its cast-iron limbs had, doubtless, been struck by a heavy sea, thereby putting it into a state of vibration, differing in amplitude and intensity from that in the other limbs, which would just bring it into the most favourable condition for breaking cast-iron. In answer to observations from Mr. Saunders as to the advantages of the use of wrought-iron in the columnar supports of lighthouses, such as the Maplin Sand, Mr. Gordon said there was no necessity for giving any opinion on the subject of Mitchell's screw-piles, nor did that excellent system require him to do so. It, as well as Dr. Potts's system of sinking a foundation, had both been tried to a considerahle extent by the Corporation of the Trinity House; but as neither of
thiose syatems were referred to in the paper before the meeting, he had merely intended his observations to allude to the dificulty of founding a metallic lighthouse of wrought or cast iron, or gun-metal, upon rocks above or under water, and exposed to the action of the sea. Although he had erected several iron lighthouses, they had hitherto been founded on granite, coral, hard sandstone, or slate rocks, and he would not build with cast-iron under high-water mark, unless the core was of such a hard and durable character as to stand alone, in case of the exterior shell being changed into carburet of iron. He hoped soon to be able to communicate to the Institution the resultie of founding a lighthouse, several feet under water, upon compact limestone; at present he had not determined whether the external shell of the base of the tower should be formed of galmetal plates, or of lead slabs; but in either case he wiehed to obtain great inertia, as well as a strong and tight outer bond to resiat the action of the ses. He knew little on the subject of the preservation or expenditure of stores in any of these lighthouses. In one lighthouse constructed under his directions the stores and attendance cost as much as 1600 . a-year, whilat in that referred to in the paper, it was only about 400l. per annum, although the latter consumed more oil; yet he supposed them both to be managed according to his own recommendations. These, and many similar discrepancies, showed that the whole subject of the erection and maintenance of the colonial lights required great and prompt attention from the home government; for although Great Britain had 147 colonial lighthouses there was, he believed, no regular system of management, and no collection of statistical facts connected with them, nor was there any department of the public service where such necessary information was colleoted, tabulated, and registered, and from whence any person might obtaln information with respect to such lighthouses.

Sir John Rennie believed that a cast-iron structure had been originally proposed by Captain Brodie for the Bell Rock Light house, and it had been favourably reported on by Mr. R. Etovenson.

Mr. Borthwices said Sir S. Brown proposed the firat tower entirely of cast-iron; the lighthouse designed by Captain Brodie and Mr. Stevenion was intended to havo been an open structure on piles. The pamphlet published by Sir S. Brown, describing his proposed lighthouse, contained a valuable opinion by Dr. Faraday as to the chemical action of salt water on castiron.

Mr. Gondon said it was to be regretted that so little was now known of Rudyerd's lighthouse built on the Edystone Rock in the year 1708, which was about 48 jears before Smeaton commenced building the present lighthouse: it was constructed entirely of wood, loaded for some height upwards from the base with stone, and fastened down by atrong iron dovetailties leaded into the rock: it stood well for 47 yeara subject to the action of the sea in that exposed situstion, and was ultimately destroyed by fire.
Mr. Walker eaid, that before replying to Mr. Gordon's observations on the columns for the intended lighthouse upon the Bishop Rock, he would direct attention to a remarkable woodea lighthuuse, erected in 1778, and now standing on the Small's Rock, off St. David's Head, and which was in a more exponed position than even the Edystone. The height was 56 feet from the top of the rock, and it consisted of nine onk piles, secured to the rock in a nearly vertical position with four raking shores against the easterly pillars, forming the main support of the building during the westerly storms. Although it was exposed to the whole force of the Allantic, it had atood for upwards of 60 years, and indeed the wooden standards were affected so little, that the erection was now quite as secure as it had been for sume years past. Considering the violence of the sas, it was a wonder the building had stood so well, an from the dee of the piles, and their closeness to each other, the resistance to the sea is considerable. During a violent storm in the apring of 1831 , a great part of the flooring of the dwelling was forced up, nnd the stove in the living-room squeezed flat, between which and the side of the dwelling one of the keepers, named Lewis, was jammed, and so much injured that he had to be superannusted, but he died two years afterwards. Two aides of the octagon living-room were also forced in, so that the victuals had to be cooked by the fiame of the lamps for eight duys, which was the period that elapsed between the commencement of the storm and the time when a landing could be effected on the rock. With regard to the Bishop Hock Lighthouse, it
must be remembered that the structure was in a very incomplete state when the workmen left it to stand through a winter, ©o that it was not at all prepared to resist so violent a storm as that of the 5th and 6th of February, 1850, by which it had been deatroyed. At prement there was no correct account of the state in which the storm had left it, as no one had since been able to land on the rock; there was, however, no doubt that, at least, the upper part of the columns had been carried away. He wished Mr. Gordon had exercised a little more patience, and had not brougbt the subject forward in Mr. WalFer's absence, nor until it had been possible to ascertain its actual condition, in order that the Institution might have been more accurately informed of the extent and nature of damage the structure bad received. Immediately after the accident had been announced, the Trinity House, at Mr. Walker's request, had sent down Mr. Douglas, who erected the building; but no communication had yet been received from him." Mr. Walker would, however, be happy to give any information in his power to the Institution, because he thought it was perhaps more important that the profession should be acquainted with those attempts which had failed, rather than with those which were successful. With respect to the resistance of the action of the sea, it was proper to observe that in consequence of the approach of bad weather, the central column, which was 3 ft .6 in . in diameter, had not been filled up, as had been intended. The first operation in the ensuing spring would have been to have inserted tbe inner pipe, which was to form a tank for water, and slso to atrengthen tbe lower part of the building. The space between the inner and the outer pipe was also intended to have been filled up with concrete, so as to form a solid mass for 20 feet ahove the surface of the rock; if these and some other alterations had been effected, it was not improbable that the building would have been enabled to withstand the storm, even in its unfinished state, and tbe experiment would bave terminated more satisfactorily. Economy had been one of the main objects of tbe Trinity Board, for the cost would not have been more than from one-sixth to one-tenth part of that of a stone building. As Engineer to the Trinity Board, he proposed a building entirely of granite or of stone up to a heigbt of 80 feet or 30 feet above high-water mark, with a superstructure of cast-iron; but the corporation preferred one entirely of castiron, and determined to try the experiment. The arrangement was to allow the cast-iron columns to stand during the winter, in order to test their strength; and it was to be lamented that there was not time to complete the centre column, for even in jts unfinished state it had resisted the storms up to the 6th of February. A few weeks before that period, the rock had been visited, at his desire, when the piles were found standing as perfect as when they were left at the end of the previous sum-mer-a proof that nothing less than a very severe storm could damage the columns, even in their unfinished state. The work had been well put together by Messrs. Robinson and Son, of Pimlico. Inside each column there was a wrought-iron bolt, 4 inchen in diameter, with it dovetailed end sunk into the rock, to a depth of 15 inches below the bottom of the columns; this bolt gradually diminished to 3 inches at the top, where it terminated with a nut and screw, and the space between the bolt and the column was filled in solid with iron cement, so that each was firmly tied down to the rock. Although he thought any discussion was premature, in the present state of information, as to the actual condition of the structure, he was desirous of imparting to the Inetitution even the imperfect information he had been enabled to collect. The original drawing of the building had been altered and strengthened when it was sent to Mr. Walker by the Trinity House; and although he did not design the structure, and should have preferred a atone building, still he would nut have been connected with it at all, unleas he had expected the iron lighthouse would have succeeded. The Maplin and the Point of Ayr lighthouses were both columnar structures. The former was erected in the year 18s8-9, on a sand-bank, and was supported on Mitchell's screwpiles, with wrought-iron standards, which formed the best foundation in such localities. The Point of Ayr lighthouse was a modification of that system, which had been adopted because an agreement could not be effected with the then proprietor of the patent; both lighthouses had stood perfectly well, and

[^41]under similar circumstances be should always adopt the system of screw-piles.

Mr. Scott Russell inquired whether the great danger to a construction on submerged rocks was not so much from the force or pressure of the waves as from the chance of a wreck being driven against it. The destruction of the temporary barrack on the Skerryvore Rock was attributed by Mr. Alan Stevenson to such an occurrence; and it could be well imagined how formidable a blow would be given by the hull of a ship, cast with the impulse of the waves against the base of such a structure, as had been described. He suggested the propriety of considering the possibility of guarding against such an accident, which would be fatal to any kind of structure of considerable height, standing on a base of limited dimenaions.

Mr. Walker said there was not any account of a wreck having struck the building; in fact, nothing was as yet known respecting it. He did not think any iron building would be so suitable to the site as the columnar kind of erection, which had been attempted. A mere casing of iron filled in with concrete, unless it had been so fixed as to form a portion of the rock, as at the Edystone, would have been upset by the waves of the Atlantic. It would certainly have been very deairable to have had a larger base, but the size of the rock would not admit of a greater extension for the bace than 30 feet between the columns.

Genrabl Pabley observed that the external surface of caatiron, continually immersed for a considerable length of time in salt water, became soft, and the metal would in time give way; but that no perceptible action could be perceived either on lead, brass, or copper, under similar circumstances.

ON THE MANUFACTURE OF MALLEABLE IRON, AND RAILWAY AXLES.
 By George Benjamin Thorneycroft, Absoc. Indt. C.E.

 [Paper read at the Institution of Civil Engineers.]Malleable iron may be divided into two distinct claseet-"Red-short" and "Cold-short," the former being generally produced from the rich ores, and the latter from the poorer, or leaner ores.

The pig-iron made from the rich ores (under the cold blant process only) is not so fluid as that from the lean ores; when, however, it has been converted into malleable iron, it in tough and fibrous when cold, but is troublesome and difficult to be worked by the smiths at less than a white heat; this want of ductility has caused it to be denominated "Red-short."
The pig-iron produced from the lean ores possesses, on the contrary, more fluidity, and it is thence well adapted for small castings; but when it is manufactured into malleable iron, although in the hands of the smith it is ductile and is easily worked, even at a dark red heat, it becomes, when cold, weak and unfitted to support sudden shocks, or continued strains, and is hence called "Cold-short."
It is obvious, that to obtain qualities of iron suitable for the various purposes to which it is now applied, a judicious mixture of these two kinds must be made; but even this will not suffice, unless the pig-iron, forming the basis, be of a proper quality. It may be received as an axiom, that good malleable iron can only be made from good dark, and bright grey pig-iron, smelted from iron ore alone, or with a very small admixture of any extraneous substance. Iron made from white pig-iron alone is never ductile, although it may be cold-short, whilat it differs materially from the red-short iron, made from rich ores; in fact, it possesses no good quality either hot or cold, and may be termed "Rotten-short."
The quality of the fuel used in the smelting-furnace and in the subsequent processes is very important, for the produce of the best ores may be rendered utterly worthless by the use of inferiur fuel; on the other hand, iron made from rich ores, and having great strength when cold, but which cracks in working at a red heat, if smelted with very pure cual, or charcoal, retains all its strength; whilst it becomes much more ductile than if an inferior quality of fuel had been used. Hence, when a strong ductile iron is required, the best fuel must be employed in its manufacture.

The introduction of hot-blast for smelting iron rendered necessary a careful investigation into the comparative use of hot and of cold blast pig-iron in the manufacture of bars; the
sesult of this would appear to indicate that if the same quality of materials be used in both cases, equally good bar-iron will be produced; but it is more difficult to convert the hot-blest pig-iron into "number one" barg, and the waste is greater, than when cold-blast iron is used.

It is certain, that whilst good grey pig-iron can only be produced, by cold-blast, from the best materials iron of apparently excellent quality can be produced, by hot-blast, from the most sulphureous ore and fuel; indeed, to this alone must be attributed the bad reputation of hot-blast iron for certain purposes. Castings for the forge and mill, such as rolls, housinga, hammers, anvils, \&c., which require great atrength, as being subjected to considerable strain, or to sudden concussion, sbould not be made of hot-blast iron. Wherever strength and durability are required, a mixture of qualities of iron is essential, in order to produce metal having a bright grey fracture, slightly mottled, which is the best quality. Any nearer approach to grey renders the casting weaker, as the more highly carbonised cast-iron becomes (whether hot-blast, or cold-blast), the softer and weaker it becomea, and it can only have strength imparted to it by a due admixture in re-melting. This mixture is generally the result of the experience of the workman, as no definite system has been laid down, nor have a sufficient number of experiments been made to establish any certainty on the subject.

The same kind of distinction takes place in the texture as in the character of malleable iron-that is, the red-short quality is most inclined to possess a fibrous texture, and the cold-bhort to present a cryatalline or granular fracture, though these characteristics can be materially modified, or altogether changed, by judicious mirture and by re-working, and eveu fibrous iron can be made very ductile; this quality, however, will become granular when a number of bara, all of the best quality, are bound together, and subjected, in the process of faggotting, to a sufficient degree of heat to weld them into a homogeneour mass; but if that mass be worked down again with a moderate heat into bars of the same size as those from which it was originally made, the fibrous texture will have been recovered. Such iron, whilst in the granular atate, will bear impact better than if it had been made of bara whose texture was originally granular.
Malleable iron becomes granular from two causes: first, in consequence of being made from naturally cold-ghort pig-iron; and secondly, from a peculiar manipulation during the process of "puddling." If the iron be made up into balls as soon as the granulated particles will stick together, or as the workmen term it "put together young, before it has got into nature," the texture will be fine, and close-grained, and the fracture will present a bright granular appearance; such iron will not, however, bear sudden impact, nor will it become fibrous in texture by working until it is reduced into very small bars, or into plate-iron. All granular iron is much harder when cold, and will endure longer than fibrous iron, although it is not so well adapted for general purposes.
It is easy to give a fibrous fracture to iron, by welding the "pile" or "faggot" at a low heat, so that the interior does not become thoroughly solid; but if a pile be subjected to a sufficient degree of heat to make it perfectly sound, and the iron presents a fibrous fracture throughout, when reduced to $1 \frac{1}{2}$ inch square or round bara, the quality must be very good.

It has often been asserted that the peculiar quality of some of the Yorksbire iron ores caused the fine granular texture by which the malleable iron of that country is distinguished; the author has, however, uniformly dissented from this opinion, and in order to test the fact, some pig-iron was converted into bars in Yorkshire, and a portion of the same metal was sent to the Shrubbery Ironworks, Wolverhampton, where it was worked up into bars of the same size; the result of this experiment completely verified the author's opinion, as bars of the finest granular fracture, and of the strongest fibrous texture, were produced from the same quality of Yorkshire pig-iron.

Identical results were obtained from Staffordshire pig-iron when subjected to different kinds of manipulation.

Swedish iron often presents, in the same bar, both a fibrous and granular appearance. This arises from the method of manufacture, which is very simple:-One end of a long pig of iron is placed in a charcoal refinery, and as much metal is melted off as will make a bloom; but the workman commences working it as soon as it begins to melt, and continues to do so until the quantity required for the bloom is melted off into the
fire; and when the mass will adhere together, the bloom is brought out and hammered into a bar. It must be evident that by such a process the first portion will have been subjected to a much greater amount of manipulation than the latter, and thus two qualities of iron, or degrees of malleability, are produced in the same bar.

Independently of the alterations of cexture which arise from peculiarities in the process of manufacturing iron, great changes are induced by certain actions upon it when cold. Compreasion, or impact upon the end of a bar of iron, will alter its texture from a fibrous to a granular character. This is well exemplified by two tools used by forgemen. The first is the "gag," which is a short bar of iron, of about 2 inches diameter, employed for holding up the end of the large helve during the intervals of working; it is subjected to impect endwaya whenover the lower end is placed on the anvil, and the other receives a vertical blow from the helve falling about an inch upon it. However fibrous may be the quality of iron used for making the "gag," it soon becomes brittle, and literally falls to piesea, as if it were made of cast-iron.

The second instance is that of the tool employed in puddling, one end of which is constantly subject to blows from a smail hammer, in order to detach the metal which adheres to the other extremity; after being some time in use, it frequently breaks at a alight blow, exhibiting a perfectly granular freoture.
If a bar of fibrous iron be bent down at a short angle, the fibres of one side are compressed, and those of the other side elongated; and after being bent back again, the fracture on the compressed side will exkibit a granular appearance, having evidently lost the fibre and been broken off ahort.

A bar of iron reduced in the contre and used as the con-necting-rod of a steam-engine, by being subjected to conatant vibration, or bending, will soon break at the middle, and the fracture will be perfectly granular, although it may have been originally made of the best quality of iron. The connectingrod for working the large shears in rolling-mills, and the rods of deep pumps, when they are so small as to bead or vibrate at each stroke, are further examples of this action.

Iron-shafting in mills working horizontally being generally too strong to bend, or to vibrate, apparantly retains ite fibrous quality, even when twisted asunder by a sudden action; but if it be so deficient in strength as to bend and vibrate whilst at work, it soon loses its fibrous nature and is destroyed.

Railway-axles should be made parallel from journal to journal, and of sufficient atrength to prevent any vibration in rotating. If this general rule were adopted there would not be any change in texture, and conmequently a lese number of fraotures would occur. If it be considered necessary to reduce the substance of the middle of an axle, it would be safer to use good granular iron at first, as it is naturally much atiffer and less liable to bend and vibrate than fibrous irom, and would probably not change its form so soon, or receive injury whilst working under ordinary circumstances. It is, however, the author's opinion that axles should be perfectly rigid, 80 as not to bend or vibrate, even if that should have to be accomplished by making them somewhat larger in the centra, like the con-necting-rod of an engine.
Many other causes of change could be adduced, but enough has been stated to prove that the compreasion of iron, when cold, is certain to change fibrous into granular iron, and that vibration or bending, even to a slight extent, if contipued for any leagth of time, has the effect of compressing all the particles consecutively.
A series of experiments was carefully made for the parpose of ascertaining, practically, the best form for railway-axles, 0 as to obtain the greatest strength with a given weight of material. From these experiments it would appear that the forme generally adopted are vary erroneons, especially in reducing the substance of the middle of the axles, and in turning reotangular shoulders near to the journals; and they proved, that by simply moving the face of the wheel back from the neak of the journal, the atrength to resiat impact was incrensed in the ratio of 100 to 30; that the relative strengtha to reaint impact whare there is no shoulder, and where there is one, is in the ratio of 155 to 55 ; that the strength of a parallel axle compared with one which has been reduced in the middle, is in the proportion of 5 inches to $1 \frac{1}{4}$ inch. Again, it is well known that the strength of round bars to resist transverse atrain is as the cubes of their diameters, which would give the parallel axle an advantage over the reduced axle in the proportion of
85.74 to 58.18 ; and as the same law obtains in reference to torsion, if the velocity is the same, the strength to resist torsion will be in a like proportion.

Mr. Thorneycroft said, that though many discussions had eniren place, at different times, on the aubject of the crystalliation or granulation of axle-bars, no decision had yet been arrived at on the subject. He was prepared to concur with Mr. Stepheneon in the opinion that if the iron was fibrous when worked into an asle, no subsequent jarring motion would alter its character. The granulation of iron might arise from various eanses, but nothing so surely affected it as when a bar of iron was gradually bent, 80 that the fibres on the inner side would bo compressed, whilst those on the outer side were extended; and as this process was continued, so the granulation progressed. He did not think that nicking the fron would materially influence the appearance of its fracture, nor would a blow, which merely cansed a jar, destroy the fibrous character of the iron. This was well exemplified by two pieces of iron exhibited, which had been used as liners for a tilt hammer. That portion of each which had been compressed by blows, was granular in jis fracture, whilst that which had been subjected to constant vibration remained very fibrous.

With regard to the forms of railway-axles, it appeared to him, from the experimenta, that the nave of the wheel should not be placed close to, but at some little distance (say $\frac{s}{4}$ inch) from the neck of the journal; also, that the shoulder behind the wheel should be entirely done away with; and instead of redacing the diameter of the axle in the middle, it would be advisable rather to increase its bulk at that point, like the con-necting-rod of an engine. He had never heard of a single case in which the toxture of a fractured parallel axle had been changed from a fibrous to a granular character, although a certain amount of granulation had been repeatedly observed with axles which had been reduced in the middle, and had then been broken in course of regular working. It appeared in all auch cases as if there had been a progressive and alternate action of compression and extension of the outer fibres, from the bending of the axle whilst it was rotating; and that thus the granular fracture had been produced.

Discuasion,-Mr. Greson said he did not consider it a fair test of the strength and utility of an axle to subject it to hammering, but that it would be preferable to deduce results only from practice. He had found that those axles which were parallel throughout did not bend in the centre, but at a distance of from 7 inches to 94 inches from the nave of the wheel; whereas axles which were reduced in dimmeter in the middle, almost invariably bent in the centre. He thought the shoulder behind the wheel was advantageous when of a curved form, but not when it was square to the body of the axle. The shoulder merely served as a gauge for keying the wheels accurately on to the axle.

Mr. Brefrie thought the quality of the iron used in the manufacture of railway-axles was so important, that he had alwaye advocated the use of the very best material; and to that precaution might in a great measure be attributed the comparative freedom from broken axles on the South-Western Railway. With regard to the form of arles, he preferred those without shoulders, and which were uniform in section between the wheels, because any vibration produced by sudden or violent blows, from the flange of the wheels coming in contact with the rails, or passing through points, or crossings, would then be more equally distributed; whereas, if tbe axle was diminished in the centre, the vibration and strain would terminate there, so that the texture and cohesive quality of the iron would, in time, be completely destroyed. It was certainly very disadvantegeous to place the nave of the wheel close to the neck of the journal, and shoulders were injurious both to the strength and durability of the arle; and in fact were, in many instances, the cause of their breaking; if, however, it was thought desirable to have shoulders, as gauges for keying the wheels up, they should certainly never exceed $\frac{1}{10}$ inch in projection.
Mr. Joesph Frerman said, as a proof of the importance of the best material and of good workmanship being united in the manofacture of railway-axles, he might mention that there was not an ingtance of an axle made by the Low Moor Iron Company having ever been broken in work; this must be attributed to theme combined causes. Much had been argued as to the particular form of the axle, and so far the Low Moor Iron Company agreed with Mr. Thorneycroft that the parallel axlewas
the preferable form; but he must contend that good material and sound workmanship were the main points.

Mr. Thorneycroft baid that the whole series of experiments he had tried strongly confirmed his previous opinions. He had lately examined fifteen engines in iron-works in Stsffordshire, including ten engines in his own works, and had found in all of them that the crank-pin was placed in a line with the neck of the journal, thereby receiving the strain in the weakest place, and causing constant accidents; now, if the crank-pin had baen made $\$$ inch, or even 1 inch longer beyond the face of the crank, leaving a space between it and the spear-rod, the lisbility of accident would have been much reduced, by the atrain being thrown on a part of the pin less liable to commence fracture. If a shoulder was left on an axle, it should be curved, for, if it was left square, it would induce fracture at that part. It would appear that there was a constant progressive tendency to fracture wherever opportunity was afforded for commencing. Now a parallel axle did not afford any spot for the commencement of fracture; on the contrary, the fibres extended unbroken throughout the length of the bar; and, unless from the undue weakness of the axle, a constantly recurring bending action occurred, by which the whole external fibres were compressed scriatim as the arle rotated, there could be no tendency to break it; it was therefore important not to weaken an axle by diminishing the centre of it. In conclusion, though an axle reduced in diameter in the centre might never have been broken, yet it was much more liable to be bent than a parallel axle, and as bending could not take place without compression, which he had shown completely destroyed the fibres of the iron and subjected the parts to sudden fracture, care should be taken to avoid bending in the least degree.

NETHERLANDS LAND INCLOSURE.

TaE interest which this remarkable work excites has induced us to bring together a few facts relative to it for the benefit of our readers. The kingdom of Holland, as well as a large proportion of the Lowlands adjacent to it, is undoubtedly formed by the depositions of alluvial matter which are brought down from the upper countries of Germany and France by the Rhine, Meuse, and Scheldt rivers, and which, being repelled back by the presaure of the winds and tides from the German ocean, have formed the numerous sandbanks at their embouchures. The immenae deposit of the Dogger Bank, exceeding 1100 square miles in extent, is supposed to have been formed by the meeting or confluence of the tides from the German and Atlantic Oceans in that vicinity. These gandbanks are gradually elevated by the deposition of argillaceous and vegetable matter, until being covered with grass they are embanked from the sea, and are then termed schorres or polders in Holland and Belgium. These polders are generally bounded by sandy plains or glight elevations of land, beyond which the tide rarely risen, and there the first embankments are generally suppused to have been commenced. The poldert, therefore, are lands which have been acquired from the sea or rivers by embankments sufficiently high to keep out the bighest tides. Previous to the embankment the Lowlands were intersected by creeks and inlets, some of them of great extent and depth, and which formed the ports of Ostend, Nieuport, and Damme, which were formerly of greater depth than at present. To these different causes of natural destruction the hand of man has contributed not a little. The period when the first inclosures were made is uncertain. The earliest embankments are attributed to the Danes and Normans in 836, during their invasion of Zealand. The ancient chronicles of Zealand affirm that the Islands of Walcheren and Schowen were not only recovered from the ses previous to 833, but were covered by numerous villages and houses. But the islands of Duveland, North and South Beveland, Wolfersdyke, and Tholen were not completely recovered until after 850 . But the embankments were not always successful, and the disastrous inundations which have occurred at different periods, over the lands which border the lower Scheldt, from the year 880 would form a painful history of destruction as well by the hand of man as of nature.

The alluvial lands which are now proposed to be embanked are situated in the channel which communicates between the East and West Scheldt, and which separates the eastern ond of the island of South Beveland from the western of North Brabant. The whole extent of alluvium exposed at low water of
spring tides is not less than 40,000 English acres, so that at this period of the tide the depth of water in the channel is scarcely two feet, and it will very shortly be entirely silted up at low water. This vast deposition of alluvium is gradually rising on both siden of the channel, and it only requires to close the communication between, by means of a dam, to occasion the whole to be rapidly silted up.

In the year 1846 a project was brought forward, and a concession obtained, by an enterprising gentleman of Middleburgh, in the Island of Walcheren, M. Dick Dronken, for making a canal and railway from Flushing, through Middleburgh, across the channel of the Sloe, which separates the island of Walcheren from North and South Beveland, by means of an embankment across the Sloe of nearly one and a half mile in length, 40 feet in width, and 13 feet above high water. The line of railway was to have been carried through the whole length of the island of South Beveland, and thence across the East Scheldt channel, by means of a similar embankment five miles in length, and thus join the main land near the village of Woendrecht, leaving an opening in the line of the channel for the passage of vessels. It was in 1846 that Mr. G. Rennie was called upon to report his opinion, when, having surveyed the whole line, he reported the project was not only feasible but that it presented besides the advantages of the direct communication of the railway and canal between the continent and England; it would "oause vast accumnlations of alluvial land in the estuaries of the Sloe and Scheldt, passages which, if stopped up as he proposed, would not only benefit the Western Scheldt, and assist in clearing away many of the sandbanks which now obtrude the entrance to its mouth, but be the means of calling into existence large tracts of valuable land equal in extent (to 40,000 or 50,000 English acres) to pay the whole cost of the railway." He further proposed to continue the Middleburgh Canal across the Slue and passages, so as to open a more direct communication between Flushing and Rotterdam, by which the intricacies and dangers of the present communication between Rotterdam and the sea would be avoided. These projects were checked for the time by the disasters which befel the railway market; hut the advantages which they presented were not lost sight of, and they were brought before the King of Holland and his government, and the favourable report of M. Greve, a Dutch engineer of eminence, of the Waterstadt, in confirmation of the report of M. Theimmens, the engineer who made the surveys in addition to those of M. Greve and Mr. Rennie, led to the formation of the present scheme, which is part of the original, by an Anglo-Dutch and Belgian Company.
The object of the present concession is to inclose 14,000 French hectares of alluvium, or 34,580 English acres, from the intermediate channel of the West and East Scheldt by means of an embankment thrown across it upwards of 4 milesin length and 4 mètres (13.16 feet) above high-water spring tide, with a width at the top of 6 mètres, or $19 \frac{9}{4}$ feet, with slopes on either side of three horizontal to one perpendicular. The situation of the embankment will be between and near the Fort Bath on the Island of South Beveland, and the village of Woensduct on the main land. But it is enacted, by the terms of the concession, that the embankment shall not be made until a canal of large dimensions be made across the Island of South Beveland, with sluices of suitable dimensions, capable of passing the largest vessels which now pass the old navigation. The site chosen for the canal commences at a small hanilet and creek, called Hanswert, which is directed in nearly a straight line by the villages of Schorre-de-Vlake and Wemeldinge to the cbannel of the East Scheldt, for a distance of 10,000 mètres, or about 6 English miles. The width of the canal will be 10 mètres, or 32.47 feet wide at the bottom, with slopes on both sides of $2 \frac{1}{2}$ to 1 , while the depth will be 8 mètres, or $25 \frac{1}{2}$ feet deep at high water. There will also be provided at each end locks of large dimensions, and harbours of entrance outside the locks, well protected by jetty heads.

Three years are allowed for the completion of the canal, and six years for the embankment across the East Scbeldt branch. It being considered essential by the government that the old passage should be kept open until the completion of the canal, permission, however, is given to inclose a portion of the conceded lands, amounting to 5568 hectares, or 13,752 English acres, without interfering with the navigation of tbe channel of the East Scheldt; and it is upon these works that the engineers, Sir John Rennie and M. Muller are engaged. The land now being embanked is higher by 6 feet than the land in the interior of the

Island of South Beveland, and opposite the present embankments the land near the shore is $18 \frac{7}{7}$ feet above low water; and so rich is the deposits that it is calculated that it may be mown and cropped for upwards of twenty-two years without manure; and the crops in coleseed, barley, wheat, beans, flax \& $c_{\text {, }}$ are worth from at least 600 to 1000 francs per acre; and these examples are confirmed by the produce of other lands in the neighbourhood. The crops on the neighbouring lands are most extraurdinary; and M. Greve, an eminent Dutch engineer of the first class, states, that 5568 hectares, or 13752 English acres, are ready for embankment at present; that 10,000 hectares, or 24,777 acres, in three years, and the remainder in nine years, and taking the land at $50 l$. per acre, which we are assured is too little, the total value of the land which will be derived from the present concession will be not far short of $9,000,0001$. sterling; and if we deduct 201 . per acre as the cost of reclaiming the land, there will remain to the shareholders a disposable fund of nearly one million of money.

HYDRAULIC MACHINERY.

(With Engravings, Plates XXIX and XXX.)
Richard Roberts, of Manchester, engineer, for improvements in machinery or apparatus for regulating and measuring the flow of fluids; also for pumping, forcing, agitating, and cuaporating fluids, and for obtaining motive power from fluids.-Patent dated October 17, 1851.

These inventions consist-

1. In rendering the force of the fluid to be regulated arailable as a power for opening and closing the valve or other apparatus used for that purpose.
2. In constructing rotary meters for mesaring the flow of fluids, with spiral passages in the external casing to impart rotary motion to the fluid to be measured.
3. In constructing the measuring wheel of rotary meters with straight, instead of spiral or curved, vanes.
4. In tapering the vanes of rotary meters at their lower edges so as to cause them to describe the frustrum of an inverted cone, revolving in a corresponding cone at the delivering end of the spiral passages herein secondly before-mentioned.
5. In making the delivering end of the casing of rotary meters slightly conical, and the extremities of the vanes of the wheel taper to correspond with it; the object of which provision is to allow foreign matters to pass, without, as nearly as practicable, impeding the action of the meter.
6. In the application of an oscillating cylinder or chamber, furnished with a piston or plate, to meters for measuring the flow of fluids, and in certain machinery or apparatus connected therewith.
7. In certain improved applications of yielding substances to meters for measuring the flow of fluids, whereby the pressure on the outgoing fluid during the reversal of the ports is maintained nearly equal to that on the incoming fluid.
8. In the application of avitable apparstus for allowing the escape of air from fluid meters.
9. In constructing pumps having spiral or curve vaned wheels in such wise that the wheel and its shaft shall act as a connterbalance to the rising column of fluid; also in the application of a floater in the upper end of the delivering pipe, in connection with a valve, to prevent the return of the fluid.
10. In certain improvements in machinery for forcing fluids, whereby motion may be given to vessels with greater economy of power than can be given by the forcing machinery now in use.
11. In a new combination of machinery for agitating flaide, more particularly applicable to churning.
12. In suspending the drums of centrifugal-action machines from their vertical driving-shaft by means of cords, chains, or links.
13. In incressing the evaporation of fluids by inclosing or partly inclosing the same, and conducting the vapour arising therefrum to a flue or chimney in which rarefaction is produced by the heat employed to evaporate the fluid.
14. In evaporating the moisture contained in warps or piece goods by causing the same to pass through an inclused heated chamber connected with a flue or chimney in which rarefaction is produced by the heat from the chamber.

15. In employing a current or s jet of steam to increase the dranght for carrying of the vapour in chimneys used in connection with apparstus for evaporating fluids.
16. In evaporating fluids by causing the rarefaction of the air in the chimney connected with the pan to produce a current of air through tubes having their inner and immersed in the fluid in the said pan.
17. In obtaining motive power from fluids in their passage from a higher to a lower level, by conveying the finid down what is called the longer leg of an inverted syphon, and up the shorter leg, which is furnished with curved or inclined divisions to give the requisite direction to the water, in order that it may act crectively upon a spiral wheel or a turbine through which the motive power is transmitted.
18. In employing two spiral wheels or turbines placed one sbeve the other over the short leg of the syphon, which in this case may be furnished with curved, inclined, or straight diviaions.
19. In applying the power of a column of water acting upon - piston to the opening and closing of lock and dock gates, awing bridges, and other machinery of the like nature.
20. In the direct application of the pressure of steam or water for compreasing or packing goods, for hooping barrels and casks, and for the like purposes.

Regulation of the Flow of Fluids.

Fig. 1 is a sectional elevation of one of the improvements in machinery for regulating the flow of fluids, to which is connected an improved rotary meter. a, is the supply-pipe from which rises the branch a^{1}; to the flange of this branch is bolted the cylinder b, with a piston fixed on a rod, the upper end of which passes through astuffing-box in the cover of the cylinder, for the convenience of closing the valve when the pressure in the pipe a, is insufficient; the lower end of the rod is guided by a croes-piece. a^{2} is a two-wsy oock connected by the branch pipe a^{5} to the main-pipe a, and by the pipes a^{4} and a^{5} to the cylinder $b ; a^{\circ}$ is a lever attached to the plug of the tap a^{9}; a^{7} is another double-way cock connected to the cylinder by the pipes a^{8} and a^{0}; the levers a^{6} and a^{10} on the plugs of the cocks are connected together by the link a^{10} : the object of these will be explained hereafter. To the rod is fixed a plug or valve c, which is inclosed by the enlarged pipe d, the ares of the space between the greatest diameter of the plug or valve c, and the greatest diameter of the pipe d, being equal to the area of the supply-pipe a. The ring c^{1} serves as the seating for the valvec. c is a bent pipe connecting the pipe d, of the regulating apparatus to the pipe f, of the meter, in the upper end of which is shown one of the improved apparstus for measuring the flow of the fluid before it enters the delivery pipe g. The measuring apparatus consiste of the pipe f, with the spiral or curved divicions f, and of the revolving wheel f, the vanes of which are straight on their faces to allow sir to pass without giving motion to the index. The lower edge of the vanes in the wheel are bevilled to suit the bevil of the upper edge of the stationary divisions f_{1}, the object of which being to allow foreign matters to paes through the meter without injury to it. The arbor or epindle, on which the vane-wheel $f s$ is fixed, is made free in its bearings, so that the increased pressure caused by foreign matters contracting the paseage may cause the vane-wheel to rise a little and allow the obstructing matter to pass. The registering apparatus shown in the chamber g^{1} consists of the arbor or epindle, on which is a worm that works in a wheel fixed to a pinion gearing into a wheal the axis of which passes through the side of the chamber, and gives motion to the inder on the outside, which index may be of the ordinary kind.
The engraving represents the various parts of the regulating apparatus in the potitions they occupy when the valve c, is fully open, and the fufl quantity of water is supposed to be passing through the pipes. On the attendant wishing to reduce the flow in the main pipe, he turns the handle a^{10} in the direction of the arrow, until the plug a^{\prime} assumes the position to direct the flaid to the underside of the piston instead of to the upper as before, and at the same time causes the plug a^{7} to close the pasage a° and open the pasaage a^{s}, to allow the fluid in the upper part of the eglinder b, to pass off. As the conical valve a is raised by the ascent of the piston, it contracts the annular pamage in the eeating c^{1}, and thereby reduces the flow of the fuid. The principal advantage derived from this arrangement of machinery is that the pressure of the water in the main pipe a is made to raise or lower the regulating valve c, by the atten-
dant exerting only the power required for reversing the cocks a^{2} and a^{7}, as before described.

Fig. 2 represents an elevation, partly in section, of snother of the improvements in regulating the flow of fluids. To the underside of the delivery pipe g, is cast a branch g^{2}, to which is bolted the double-elbow pipe h, upon the longer leg of which and the blind branch g^{s} the air-chamber i, is bolted; i^{1} is a floater attached to a rod which passes through a stuffing-box at the bottom of the air-chamber. To this rod are fixed set collars, which act upon the lever j, to open and close the cocks a^{2} and a^{7} in the manner hereinafter explained. In order that the fluid may rise into the air-chamber i, a small orifice is made at in which allows the air to excape until the fluid raises the small floater i^{9} sufficiently high to cause the short arm of the elbowlever i^{*} to close the orifice. When the fluid in the delivery pipe is at its usual pressure, the floater is maintained near the upper end of the air-chamber, and the lever j, has its right-hand end supported by the set-collar, in which position of the lever the $\operatorname{tap} a^{2}$ admits the fluid into the cylinder b, above the piston, so as to cause it to keep the valve c, open. When, from the bursting of a pipe or other cause, the fluid in the delivery pipe g falls much below the usual pressure, the floater deacends, and the set-collar, by depressing the right-hand end of the lever j, causes the opposite end, through the links j^{1} and a^{10}, to reverse the positions of the plugs a^{2} and a^{7}, in which latter positions the fluid enters the cylinder b, below the piston, which then elevates the valve c, into the position indicated by dotted lines, and closes the passage for the fluid.

The peculiar shape given to the branch pipe g^{2}, which is open on its upper side to the main pipe g, will allow any greatly increased velocity of the current in the discharge pipe g, to reduce, by friction, the pressure in the air-chamber i, below the pressure in the discharge pipe, and consequently the valve to be speedily closed.

Measurement of the Flow of Fhuids.

Fig. 3 represents a transverse sectional elevation of an improved oscillating meter for measuring the flow of fluids; fig. 4 is a longitudinal, and fig. 5 a plan view of the same, also in section. m, is the outer casing, furnished with the lids $m^{2}, m^{2} ; n$, is the inner cylinder, which oscillates on the trunnions \boldsymbol{n}^{1}, supported in bearings attached to the outer casing m. The lids n^{2}, n^{3}, close the ends of the oscillating cylinder, which is provided with a piston n^{4}, made tight in any approved manner. The fluid enters the outer casing m, through the pipe m^{2}, screwed into the lid m^{2}, and into the oscillating cylinder n, when in the position shown in the engraving; through the port n^{5} in the lid n, and urges the piston n^{4} in the direction of the arrow in fig. 4 , forcing the fluid between the piston and the lid n^{3} (whenever fluid is being drawn off); through the port n^{6} in the lid n^{3}, and the port m^{6} in the partition m^{7}; through the passage m^{4} and pipe m^{10}. When the piston n^{4} arrives nearly close to the lid n^{3}, the set-screw in the piston acts against the pin 0 , in the lid n^{3}; and the head of the pin o, by pressing against the spring-catch o^{1}, liberates its upper end from the retaining catch σ^{2} attached to the casing, and thereby sets the right-hand end of the cylinder at liberty to deacend by the gravity of the piaton, and to elevate the left-hand end of the oacillating cylinder, which is, after the change has been made, retained in that position by the catches o^{4}, o^{5}, during which retention the ports n^{6} and m^{6} coincide, and the port n° has dropped below the port m°, as shown by dotted lines in fig. 4; consequently the fluid from the outer casing enters the oscillating cylinder through the port $n{ }^{6}$, and forces the piston towards the left-hand end of the cylinder. The fluid between the piston and the end n^{2} then makes its escape into the passage m^{4} by the ports n^{5}, m^{s}. The spring. m^{v}, placed between the trunnion and the end of the bearing, is to hold the faces of the ports in contact; the same object may aleo be attained by placing the meter in a slightly-inclined position. In the partition m^{7}, are openings m^{8}, shown by dotted lines in fig. 4; these openings are covered by metallic lids p, which are made fluid-tight by packings of vulcanised india-rubber or other suitable elastic substance, the yielding of which when the ports are changed will maintain the pressure on the outgoing fluid without perceptible check to the flow.
The registering apparatus is set in motion by the tappet p^{4}, fired to the cylinder n; this tappet acts upon the lever p^{1}, to which is attached the spring catch p^{3}, that takes into the ratchet wheel p^{3}, which gives motion to the index-wheels outside the casing in the ordinary manner. The floater q (seen best in fig. 3)

Is attached to an elbow-lever q^{1}, the ahort arm of which acts as a valve to the opening $q^{\text {; }}$; the object of this apparatus is to sllow the escape of sir from the casings. The oncillating cylinder n, is also provided at each end with a small opening covered with a valve or lid n^{7}, for the like purpose.

Pumping Machines.

The improvement in machinery or apparatus for pumping are reprosented in fig. 6, as applicable to pumping or forcing water or other fluid from ships holds, and for other purposes. A, is the pump-wheel, which in this example is shaped like the frustrum of a cone, and furnished with curved or inclined vanes, attached at their inner edge to the conical boss A^{4}, which is keyed to the vertical shaft A^{1}, and at their outer edge to the conical shell A^{3}; the breadth of the vanes is greater at the upper than at the lower edge, but the area of the conical space in which they are fixed is nearly the amme at top and bottom. On the shaft A^{1}, which may be driven in any convenient manner, is keyed the fly-wheel A^{3}, which, together with the shaft and vane-wheel A^{4}, is rather more than equal in weight to the column of fluid which the pumping wheel has to sustain. C, is a circular grate bolted upon the chamber C^{1}, and made conical that the vane-wheel may readily be put into its place when immersed in water. C^{2}, is a sheet-metal cover resting on a ahoulder of the grate C, the use of which is to prevent foreign matters entering the pump. At the upper end of the diachargepipe E, is a valve D, fixed on the rod D^{1}, to which is also fixed a Aoater D^{2}. When the requisite velocity is given to the vanewheel A, the water acted upon is forced through the chamber C^{1}, up the pipe E, and under the valve D, which, when the water is sufficiently high to pass off copiously through the dischargepipe E^{1}, is held open by the floater D^{2}. As the valve D, is suppused to be less than 30 feet above the vane-wheel, it will follow that when the pump is stopped, the valve D, will close and thus retain the column of water in the pipe E.

Screw Propulsion.

The improvements in machinery or apparatus for forcing fluids are represented in fig. 7 , as applied to the propulaion of vessels on water, and consist in making the boss of screw propellers much larger than usual in order that the vanes may act more effectively on the water, and in extending the bosses backwards far enough to admit of their being tapered or otherwise formed so as to allow the water to close upon them without a counter-current being produced. F, is the stern of a vessel, and F^{1} the stern-post, on each side of which is a boss F^{1}, made the same diameter as the bosses of the propellers \mathbf{G}; the bosses F^{2} are softened off into the body of the vessel, as shown The propellers G, may each have six or more vanes, which in the reapective propellers are set at opposite angles, and the propellers made to sevolve in contrary directions, so as to impart a steady motion to the vessel. The bosses of the propellers terminate in a cycloidal or other suitably-shaped projections G^{1}. The diameter of the boss should be equal to at least one-third that of the propeller-wheel, and the width of the vanes about equal to one-sixth the diameter of the propeller.

Machinery for Agitating Fluids.

The improvements in machinery or apparatus for agitating fluids are represented in figs. 8 and 9 and consist of a new cumbination of parts forming a churn. H, is a framing or stand w. which is fixed the upright stud H^{1}. I, is a circular chamber or v seel attached to a bevil pinion ${ }^{1}$, gearing into the driving:ri,, J , fixed on the driving-shaft' ${ }^{2}$. Near the top of the : 1,411 , is a cross-piece H^{2}, from which depend four studs for supporting the splashers K; these splashers are also partly sup$\mathbf{p}^{w r i t e d}$ by the diagonal stays K^{1}. When motion is given to the shaft J, it iuparts motion to the vessel I, the fuid in which is elevated by centrifugal action up the curved sides of the vessel I, until it is caught by the splashers, down which the fluid flows in thin sheets into the vessel, to be elevated as before. By the agitation of fluids in the manner just described, every portion of the fluid is speedily brought in contact with the atmosphere, which in the process of churning is particularly desirable.

In figs. 10 and 11 is shown another of the improvements in machinery for agitating fluids, applicable to the machines known by the name of "Hydro-extractors" and to centrifugal force apparatus used in treating snccharine fluids; the object being to prevent the vibration caused by centrifugal apparatus of the ordinary construction. Fig. 10 is a sectional elevation of an
apparatus for separating the fluid from the crystalline particles of sugar, and fig. 11 is a plan of the same. L, is a perforated sheet-metal or wire drum of the usual construction, suspended by the cords, chains, or links L^{\prime}, from the double crose-levers L^{2}, fixed to the upright shaft L^{3}. The drum L, is attached to ${ }^{4}$ heavy metal clock L^{4}, through which is made a conical hole of sufficient size to allow the drum L, to move sideways until the centre of gravity of the mass is in the centre of rotation, without coming in contact with the shaft L^{3}. The necessary rotery motion is given to this shaft in any convenient manner, and is communicated to the drum L, by means of the crose-levers I^{2}, and the cords, chains, or links L^{\prime}, before mentioned.

Machinery for Evaporating Flvids.

The improvements in machinery or apparatus for evaporating fluids are represented in figs 12 and 13 . These improvements are applicable to evaporating the moisture contained in warpg, yarns, and piece goods. Fig. 18 is part of a machine for drying warps to which the apparatus is applied, the other parts of this machine are omitted, as they are not required for illustrating the application of the present improvements. The yarns or warps to be dried are conducted under the two rollers M and M^{1}, and carried upwards in two separate parts, as shown by the dotted lines; theythen pass over the rollers 0 , and are conveyed to the beaming roller, after passing under the rollers P. N is a moveable casing, and ${ }^{2}$ 2 is a chimney, the upper part of which is funnel uhaped and has a bevilled flange to prevent the wind from breaking down the vapours rising from the chimney. The lower part of the machine is heated by the steam-pipes N, or by other suitable means. When the machine is at work the moveable casing is in the position shown by dotted lines, inclosing the whole apparatus, consequently the heat employed for evaporating the moisture in the warps produces rarefaction in the chimney N^{2}, and a strong current of air to carry off the vapour is the result. Fig 18 represents a mode of applying the same invention to the drying of piece goods in any of ordinary stretching machines; \mathbf{P} is the fabric passing through the trunk or chamber P^{1}, heated by steam in pipes under the fabric, by a current of warm air admitted at P^{2}, or in any approved manner; P^{4} and P^{s} are rollers between which the fabric passes; P^{3} is the chimney for carrying off the vapour; the upper part of the trunk P^{1}, is made to open for the convenience of working the machine. The patentee remarks here, that the amount of draught in machines for evaporating fluids may if necessary be increased by the admission of a current or a jet of steam into the chimneys in connection with them, the application of which requires no explanation as it is well known to all conversant with locomotive engines.

Another of the improvements in evaporating fluids consints in introducing a number of bent tubes into the fluid to be evaporated, the outer ends of which are open to the atmosphere. The vessel containing the fluid to be evaporated is covered by a chimuey or flue, and the heat evolved by the liquid rarefies the air in the chimney, which causes a current of air to flow through the perforated tubes in the liquid, and by carrying off the vapour to accelerate the process of evaporation.

Motive Power from Fluids.

Fig. 14 shows the improvements in apparatus for obtaining motive power from \&uids. R is a pipe forming the longer leg of an inverted syphon through which the water descends; \mathbf{R}^{1} is a bent pipe, to which is bolted the chamber R^{2} containing the stationary curved divisions, \mathbf{h}^{3}, for directing the current of water. The interior of the chamber R^{2} is formed in the shape of an inverted cone, in the upper end of which is a bearing for the foot of the shaft S ; near the lower end of this shaft is tixed the vane-wheel or turbine S^{1}, and above it a fly-wheel and bevilwheel gearing is fixed which communicates motion to the machinery. From the foregoing description it will be seen, that the water in passing tbrough the chamber R^{2}, receives from the divisions R^{3}, such a direction as makes it act with great propulsive effect on the vane-wheel or turbine \mathbb{S}^{1}.

Another modification shows two vane-wheels or turbines placed immediately one above the other. The upper vanewheel or turbine is fixed on a hollow shaft, through which the shaft S passes.

Dock Gutes-Swing Bridges-Hooping Casks-Hydraulic Press.
Another of the improvements in obtaining motive power from fluids consists in the application of the power from a column of

water acting on a piston for opening and closing lock and dock gates, swing bridges, and other machinery of the like nature, as shown and described with reference to fig. 1.

The next improvement in obtaining motive power from fluids consists in the application of a column of water to the forcing of hoops on casks, and barrels, and to raising the rams of hydraulic presses used for baling goods.

In working hydraulic presses it is customary to employ at first a large pump to raise the ram rapidly, whilst there is little resistance to overcome, and afterwards a smaller pump to complete the operation.

In the improved mode of applying the force of fluidg, the larger pump is dispensed with, by employing instead thereof the direct action of the loftiest column of water at command; and when that has ceased to be effective it is shut off and the small pump is employed in the usual way.
lnstead of the small the differential hydraulic ram, shown in fig. 15 , may be employed; the larger part of this ram is marked X, and the smaller X^{1}.

When water is admitted into the chamber X^{4}, through the opening X^{s}, the ram X is raised, and the chamber X^{2} is filled with water through the pipe X^{6}. After the ram X has been raised, the opening X^{8} is closed, and the pipe X^{8} is opened to let off the water. After which, water is admitted into the chamber X^{3}, through the opening X^{7}, which, by forcing down the ram X, causes the water from the chamber X^{2} to act with a force as much greater than tbe column of water employed as the two rams X and X^{1} differ in area. It will be apparent that almost any amount of power may be applied to hydraulic presses by this arrangement of differential rams, and that the operations may be repeated as often as is necessary to obtain the pressure required. When a column of water is not available for these purposes, high-pressure steam may be made to act on a piston in direct connection with a press, or on an ordinary hydraulic press, by means of a piston similar to that marked X, in connection with a ram X^{1}, acting in the manner above described.

Claime.

First, for regulating the flow of fluids by the application of power derived from the fluid to be regulated, as shown and described in reference to figs. 1 and \mathscr{F}.

Secondly, the application of curved or spiral divisions to rotary meters, for measuring the flow of fluids in the manner and for tbe purpose described.

Thirdly, constructing the wheels of rotary meters with straight vanes, as shown.

Fourthly, tapering the lower edges of the vanes of rotary meters.
$F i / h h y$, making the outer circumference of the vanes of rotary meters slightly conical, and the casings in which they revolve to correspond.

Sirthly, the application of an oscillating cylinder or chamber to meters for measuring the flow of fluids, ss shown and described in reference to figs. 3,4 , and 5.

Secenthly, the peculiar application of yielding substances to maintain the flow in the exit-pipe uniform, or nearly.

Eighthly, the application of self-acting apparatus, for allowing air to escape from fluid-meters.

Ninthly, the modes of constructing the apparatus for the ingress and egress of the fluid to be measured, as shown and described in reference to figs. 3,4 , and 5.

Tenthly, the combination and arrangement of parts for pumping, as represented and described with reference to fig. 6.

Eleventhly, the application of cycloidal or other suitablyshaped bosses to machinery or apparatus used in forcing fluids, as shown and described in reference to fig. 7.

Twelfthly, the peculiar combination of machinery for agitating or evaporating fluids, represented in figs. 8 and 9 .

Thirteenthly, suspending the drums of centrifugal action machines when used for agitating or evaporating fluids in the manner described in reference to Ggs. 10 and 11.

Fousteenthly, the mode hereinbefore described, in reference to figs. 12 and 13 , of increasing the draught in chimneys or flues used in cumbination with machinery or apparatus for evaporatiog fluids.

Fifteenthly, the mode hereinbefore described of producing rarefaction, by admitting a current or a jet of steum into chimneys or flues used in connection with machinery or apparatus for evepurating fluids.

Siateenthly, the mode hereinbefore described for accelerating
evaporation, by the introduction of tubes into the fluid to be evaporated, and by connecting the vessel containing the fluids with a chimney or fue.

Seventeenthly, the peculiar combination of machinery and apparatus for obtaining motive power from fluids, as shown and described in reference to fig. 14.

Eighteenthly, the application of the power of a column of water to opening or closing lock or dock gates, and swivel bridges, and other machinery of the like nature, as hereinbefore described; and,

Lastly, the direct application of the pressure of steam, or of water, for compressing and packing goods, hooping barrels and casks, and for the like purposes, as shown in fig. 15, and as described.

BENDING AND ANNEALING GLASS.

Frederick Hale Thomson, of Berners-street, Middlesex, gentleman, and Georoe Foord, of Wardour-street, chemist, for improvements in bending and annealing glass.- Patent dated September 25, 1851. [Reported in Newton's London Journal.]

Claim.-The combination of means and apparatus for bending and annealing glass.

This invention consists in combining means and apparatus for bending and annealing sheets of glass, so as to obtain the same in concave forms, suitable for reflectors and other uses, according to the shape of the moulds employed. The moulds are made, by preference, of cast-iron, with a small hole or air-passage through the centre of each; and, on the under side, they are suitably formed to admit of being fixed upon an upright axis within the muffe or oven in which the glass to be bent is heated. The muffle or oven has a fire on each side externally, the heat and flame from which ascend and enter at the upper part of the muffle, by a long opening, extending from front to back, on either side thereof; so that the flame and heated products from the opposite fire-places meet in the middle of the arch or roof over the muffe, and pass off through openings in the arch or roof; and, by this means, the greatest heat will be at the upper part of the muffle. The door of the muffle has an opening or sight-hole in it, through which the workman can see when the glass is sufficiently heated. Through a hole in the bottom of the muffe projects an upright axis, which is capable of rising and falling, and has a rotary motion given to it by suitable gearing.

The workman places on the upright axis, within the muffle, a mould of the proper shape and size for the circular sheet of glass to be bent; so soon as the mould has become heated to such an extent as would cause it to present a slightly -red appearance in the dark, he removes it from the muffe, and places the circular sheet of glass just within the upper part of the monld; and then he replaces the mould upon the upright axis, which is at this time to be at its lowest position, in order that the sheet of glass may be subjected at first to the lowest degree of heat. The axis is kept constantly rotating, and is raised by degrees, so as to bring the upper part of the mould and the sheet of glass nearer the top of the muffe; and, when the workman sees that the glass has arrived at the bending heat, he presses upon it a convex surface or piece of cork or soft wood (previously dipped into water), fixed at the end of a handle; whereby, as the axis rotates, the glass is pressed into and caused to assume the form of the interior of the mould. 'The mould and glass are now removed from the muffle, and another mould introduced to be heated, in order that a fresh sheet of glass may be operated upon. The hot mould, containing the bent sheet of glase, is to be covered, when taken from the muffe, with a cover of sheetmetal; and the bent glass is to be allowed to cool down with the mould; whereby it will be partially annealed. The annealing is completed by placing a number of such bent sheets of glass in an annealing muffle, wherein the glass is heated and cooled down in a suitable manner for effecting that object.

IRON MANUFACTURE.

Josepa Stenson, of Northampten, engineer and iron manufacturer, for improvements in the munufacture of iron, and in the steam apparatus used therein; part or purts of which are ulso applicable to evaporative and motive purpases generally.-Yatent dated December 27, 1851 .

Claims.-1. The treating and mixing of the materials so as to produce certain combinations described, as an improvement in
the manufacture of iron. [These improvements are applicable to that class of metal derived from the iron-atone found in Zealand, and from the Indian stone called "Woost." In the manufacture of iron from these materials the following process should be puraued. After burning limestone in the ordinary way, in order to expel the carbonic gas, the lime should be mixed with clay (that of a ferruginous kind being preferred by the patentee). This should be mixed with the iron-stone in the proportion of one-twelfth to one-seventh of a ton of the iron, if of the Zealand kind, and one-sixth to one-eighth of a ton of iron of the "Woost" sort. The mass is then broken into lumps for the purpose of charging the furnace, charcoal being previously mixed to promote porosity. Chalk, sand or shale would answer the intended purpose equally well, but clay is preferred by the patentee. These materials may be deprived of their moisture, by being placed in an ordinary furnace.]
2. The employment and adsptation of double-jet tuyeres to blast furnaces. Also the employment and adaptation of hoppers to the blast-pipes of furnaces for applying carbonaceous matter. [In order to promote the more equal distribution of the blast and to induce a greater amount of combustion than is obtained under the means at present employed, the patentee gives to the blast-pipe a double opening, upon the principle of the "swallowtail gas burner. In order to promote combustion, the patentee employs a pipe in connection with the blast-pipe, one end of which is fastened by a cap to prevent the exit of air under pressure, but capable of being removed when required. At the bottom of this pipe are placed fluted or other rollers (turned by the motive power peculiar to furnaces), which grind the carbonaceous materials supplied from above. These materials, when reduced to powder, are carried by the blast into the interior of the furnace.
3. The construction of a pile by a combination of a series of narrow bars, arranged and disposed in the peculiar manner described. Also the constructing piles according to the several arrangements described. [This arrangement consists in placing the bars across one another, at an angle of 45°, with a hollow space in the middle, to promote a more equal distribution of the heat.]
4. The welding snch piles, by hammering them immediately on leaving the mill furuace, and previous to being rolled into the finished bar.
5. Certain steam generators and boilers constructed in a peculiar manner described, when used as auxiliary boilers in connection with reverberatory furnaces. Also, certain other steam generators and boilers, whether used for supplying steam to the engine or engines, by which the motive machinery of ironworks is or can be worked, or whether used for evaporative and motive purposes generally.

COATING AND ORNAMENTING ZINC.

Franols Habtinas Greenstreet, of 39 , Southampton-street, Strand, for improvements in coating and ornamenting zinc.Patent dated December 31, 1851.

Chaim.-The mode of coating and ornamenting zinc and zinced surfaces by compounds acting chemically on the surface. It is to be understood that there is no claim to the use of a solution of nitrate or sulphate of copper, such as is now employed for writing on pieces of zinc used as labels.
These improvements consist in coating and ornamenting zinc or zinced surfaces hy menns of acids, alone or combined with other matters capable of acting chemically on the surfaces. The solutions used may be applied by sprinkling, dabbing, marhling, or spreading; and the surfaces coated are capable of further ornamentation by painting, which may be done with common oil colvurs.
The Sprinkling process is always followed in cases where a very thick coating to to be given to the zinc; it is done by shaking the preparations out of pieces of sponge fastened to the ends of suitable sticks, and the process is repeated a number of times, until the surface of the zinc is perfectly coated.

Dabbing is done by striking the surface of the zinc with sponge or hemp, moistened with the preparations, and produces a dappled, marble-like appearance on the zinc, but not a very strong coating.
Spreading is only adopted in a comparatively few cases; it consists in painting the surface of the zinc with the preparations laid on with a fine hair pencil, or a roll of soft leather or cloth.

Marbing is a method of giving the sinc the appearance of veined marble, follows:-Lay over the clean surface of the zinc a piece of thin bletting-paper, or any kind of thin ungized paper, and then apply the preparation over the paper with a sponge or soft brush, in such a manner that the liquid may soak through to the zinc beneath; or apply the preparation underneath the paper directly upon the nurface of the zinc; the latter method is generally to be preferred when pigments are used for the purpose of producing a coloured marbling. The gas formed by the action of the preparation upon the zinc will raise the paper into irregular bladders, and the paper should be left untouched upon the zinc until the action has ceased, which will generally be the case in two or three hours; it may then be lifted off, and the surface of the zinc underneath will have the appearance of veined marble.
Among the preparations which the patenter recommends for coating and ornamenting zinc gurfaces, are the following:-

1. Muriatic acid diluted with water to a strength of about $1 \cdot 114$. The coating produced by this solution is of a light aeh colour.
2. Chrome yellow, ground fine with soft wator, and mired with preparation 1 to a liquid consistency. This gives a yellowish grey colour.
3. The pigment known as "mountain or Saxony green," mixed gradually with preparation 1 to a thin paste, and atirred till effervescence ceases. This produces an iron grey colour tinged with green.
4. White lead, ground fine with soft water, and mixed with preparation 1, produces a grey coating. Where expense is not an object, Kremnitz white may be used instead of the white lead.
5. Flour of sulphur ground fine with water and mixed with preparation 1. This mixture gives a yellowish white coating.
6. Butter of antimony may be mixed with the before-meationed preparations. When used alone it produces a black colour, but when mixed does not affect the colour of the preparation with which it is used. It produces a good ground for subsequent painting or other application.
7. Butter of antimony diluted with distilled water. This produces a fine coating, resembling in colour indian-ink.
8. Butter of antimony mixed with spirits of turpentine. This preparation, when applied alone, produces a black colour; it may have pigments of different kinds mixed with it, and the effect will then vary according to the nature of the colour employed.

The surfaces after having been coated by the means abovementioned, and further ornamented if thought desirable, should be protected by a coating of varnish. Copal varnish may be used for this purpose; but the patentee recommends the use of wax, or mirtures containing wax, as this subatance is an effectual preservative against oxidation, and easily renewed or kept in good condition.

ROTARY ENGINES.

David Napien, of Millwail, engineer, for improcemente is team-engines. Patent dated December 31, 1851.

The improvements in this patent relate to that class of rotary engines in which the power is obtained by a drum of a cylindrical shape, revolving eccentrically within a cylinder, the steam abutment being formed by a slide moving in and out through a alot formed in the outer cylinders.
The novelties of which the patent consist are as follows:Firstly, in reducing the pressure from the slide by means of a parallel motion and radius rods, or by rollers between the sidea of the slide and other smooth metallic surfaces. Secondly, in working the slide by means of eccentrics fired on the main shaft, the throw of the eccentrics being exactly equal to the diameter of the internal cylinder. Thirdly, in fitting a moveable joint to the foot of the slide, so as to keep it constantly in steam-tight contact with the internal cylinder at all points of its revolution. Fourthly, in a mode of packing the ends of the internal cylinder, by means of split rings of steel, one of which is compressed into an angular groove formed in each end of the cylinder, the elasticity of the steel ring giving it a constant tendency to press outwards, and thus forming a steam-tight joint between the meeting surfaces. Fifthly, in fixing the internal cylinder on to the main shaft to form a portion of the periphery of such cylinder, instead of fixing the shaft wholly inside of such cylinder.

In addition to these improvements, the patentee proposes the use of hollow fire-bars, bent to an angle at one end, and provided with a cock for clearing out the tubes when required, and the other end being connected with the boiler. He also proposes the placing a fan in the engine-room of steamers, to be worked by the machinery; by this means not only increasing the supply of air to the fires, but keeping the engine-room cool. He also describes an arrangement wherehy, by means of a valve, both the engines of a steamer (there being generally two on board) may be atopped, sent a-head, or reversed by a single movement.

The patentee observes, in conclusion-"In case there may have been some of these things, unknown to me, done already, I therefore propose claiming not only for the parts separately, but the combination."

STEAM-ENGINE VALVES.

Wilmax Coox, of Kingeton-upon-Hull, working coppersmith, for certain improvements in the construction of steam-engines, consisting of a rotary circular valve for the regular admission of steam from the boiler alternately into the chambers of the two cylinders of double-acting engines.- Patent dated January 12, 1852.

Claim.-For a rotary valve divided and arranged as described. The position occupied by the valve is between the two cylinders of the engine, and is driven by a cog-wheel at the top of the piston-rod, gearing on to the engine crank-shaft. The advantage to be derived from the use of this patent is the diminution of friction and consequent economy in the use of fuel, grease, \&cc. It is capable of application both to locomotive and marine engines, and may be used with single or double cylinders.

STEERING APPARATUS.

Robret Joun Smith, of Islington, gentleman, for ertain improvements in machinery or apparatus for steering ships and other vessels.-Patent dated January 13, 1858.

Claims.-1. A grooved, concentric tiller-head or disc, fixed or keyed upon the cap or upper portion of the rudder-shaft which the patentee terms a "drum-head." [Connected with the sterage wheel by means of chains, and placed horizontally with the deck is a screw-bar, the grooves of which are alightly inclined. This screw-bar is capable of being turned in either direction by a movement of the steering wheel, which also causes the chains to move and thus drag round the screw-bar. The grooves of the screw-bar gear upon the top of the rudder shaft, and cause it to move round in whatever direction the wheel may be urged.]
2. The intervention of a yoke or lever for increasing or multiplying the speed of the said drum-head.
3. The application of a grooved spiral screw and socket-shaft motion, of whatever length of rake or size of thread employed, for obtaining a transmitting power direct from the steersman to the rudder, by which the half turn of the steering-wheel is effected.
4. The application of a yoke or segment-beam for transmitting increased motion from the tiller direct to the rudder.
5. The application of auxiliary power (derived from steam or other convenient source) to steering machines or apparatus generally, so that the operations of the helmsman may be greatly assisted thereby. [In connection with the steerage machinery is placed a small cylinder, the slide of which is moved backwards or forwards, by means of a driving-wheel in connection with the steerage-wheel, which driving-wheel is worked by a cord passing round its circumference and round the axis of the steeragewheel; the piston-rod of this cylinder is connected by a crank with the rudder-shaft, and its movement materially assists the steering of the vessel by taking a large portion of the labour of the steerage-wheel.

BRICKS AND TJLES.

Arad Woodforth, 3rd, and Samuel Mower, of Boston, United States, for improvements in machinery for manufacturing bricks, tiles, or other articles of similar character. Patent dated January 24, 1858.

The present improvements have relation to machinery for the manufacture of bricks, tiles, \&c., in which percusaion is used to consolidate the plastic materials in the moulds.

Claims.-1. The combination of a percussion ram and its piston or pistons (whether in connection or separately) with a mould or moulds, and a lower expulsion piston or pistons, made to operate so as to compress the clay or plastic material in, and after wards expel it from the mould or moulds. And auxiliary thereto, or in combination therewith, machinery for elevnting the lower piston or pistons in the mould or moulds, in order to produce direct compression on the lower face of the brick or other article in the mould.
2. The construction and use of a sliding mould-charger in connection with the ram and piston or pistong, in such manner as to render it a part of the mould during and for some time after a percuseion of the ram.
3. The construction of the moulds with flaring or inclined sides, and the combination therewith of mechanim for lifting the moulded article a short distance before the second percaseion, so as to free the moulded article of its adhesiveness to the mould, and permit the compressed air to escape, thus depriving the material of a large amount of friction.
4. The combination with the percussion ram and its auxiliary contrivances of additional machinery, to produce compression of the top surface of the brick.
b. The construction of the orifices of the mould-charger with sides inclining inwards towards each other as they descend.
6. The combination of an adjustable striker with the mouldcharger and hopper, for striking of at any required point the top surface of the clay deposited in the noould-charger.
7. The comhination with such adjustable striker of mechanism to cause it to rise up as the mould-charger moves forward, for the purpose of leaving the clay higher at the back than at the front part thereof, in order to obviate the difficulty of the clay heing more condensed in the front than in the rear part of the charger when its back movement is made.

RAILWAY RAILS.

Anner Gervox, of Lyons, director of the Lyons Railway, for means to prolong the durability of rails on railsocys.-Patent dated February 19, 1858.

Claim.-The means described of prolonging the durability of rails used on railways.
It has been observed that the wrought-iron rails of railways become, by exposure to the weather, and by the passage of locomotives and other machines over them, very much weakened, losing their fibrous structure, and assuming, instead, a crystalline appearance. The patentee therefore proposes to prolung the durability of such rails by the application of his method, which consists in the application to them of heat, stter eight or ten years' use; by this means restoring to them their fibrosity. The intervals at which it will be necessary to subject them to this process will depend upon the quality of the iron, and on the traffic to which they are subjected, and Which may be decided by any engineer. For the purpose of heating the rails, the patentee employs a furnace divided into t wo compartmenta, and connected by flues through which the heat passes from one division to another, and capable of being opened or closed. The rails are placed in the furnace and laid upon bars, sufficiently near to preclude their bending when red hot, and while the rails in one division are being rendered red hot, those contained in the other department are allowed to cool. When they have become sufficiently cool, they are withdrawn from the furnace and restored to their original use.

COMBINATION REFLECTORS.

Is the last number of the Journal (p. 804), we gave a paper "On the Admission of Daylight into Buildings," by Mr. Hesketh. For the want of drawings, the description of "the Combination Reflectors" does not appear to be easily understood: we have therefore obtained the engravings the better to illustrate the subject.
 ing for light exposed to a hemisphere of sky, the section being at right angles with two of the sides of the rectangle. Let the sides Ac, bD, of the opening be square with the face, and let $\mathbf{c x}, \mathrm{D} F$, be splayed off at equal angles one to the other. Let us consider first only the plane of the section. Join $\mathbf{B} \boldsymbol{c}$ and $\mathbf{B E}$, and bisect them in o and L respectively. With centre o rad. ос descrive circle онв, passing through 4 (because $\boldsymbol{\text { a }}$ с is a

 point in circléasalso, becausésisia a right angle. Tbrough b draw meparallel to E ह. Now m . is the line of one of the two extreme oblique rays which can pass through the opening (A F being the otber). Also from every point in that part of the sky which is intercepted between es and pa produced, triangles of rays will pass through the opening limited by its sides. These rays, if systematised according to their parallel directions, will form parallelograms parallel to every line between e e and 4 F. Taking these parallelograms in order, from the line of the extreme ray a to the line of the other extreme ray A P, their widths on $B E$ is o; their widths then continually increase up to the perpendicular to $A \mathrm{~B}$, and then continually diminish till on $A F$ they are again 0 .

Fia. 1.
A very approximate proportional value of these parallelograms may be obtained by taking the widths at certain small equal angular intervals as they pass from beto \triangle F. These small intervals will subtend equal angles so long as the centre lines of the successive parallelograms pass through the centres of the circles on which the degrees are measured, and let us take two degrees as the equal intervals. Take any such paral-lelogramisimm-then, therefore, cais is a right angle, therefore $\mathrm{B} \boldsymbol{\mathrm { B }}$ (or chord of arc в н) measures its width. So the chords of the arcs from B to $\mathrm{B} \boldsymbol{\mathrm { B }}$ (rad. $\mathrm{L} \mathbf{B}$), taken at two degrees intervals, measure all the parallelograms at such intervals as far as the parallel of x. Thus far a and z have been the points which limit the widths of the parallelograms; but on passing the parallel of $\mathrm{E} \boldsymbol{\mathrm { H }}, \mathrm{B}$ and c become the limiting points. At this parallel beis the chord of both circles-bereand brac. Also the chords from arc в н to arc в \boldsymbol{A} a taken at such \boldsymbol{q}° intervals, will measure all the remsining parallelograms at similar intervals, as far as the perpendicular to 4 . . Therefore the sum of the chords of arcs from \quad to arc b \boldsymbol{H} (rad. in), added to the gum of the chords from arc bito arc bis (rad. a b) will measure proportionably all the parallelograms passing at such intervals through the opening from Be to the asid perpendicular to Ab. Also the same will measure the parallelograms passing through the opening from $A F$ to the said perpendicular to $A B$. Therefore twice the said sums of chords will measure all the parallelograms passing at such intervals through the opening on the plane of the said section. But the chord of an arc $=\boldsymbol{2} \times$ sine of $\frac{1}{2}$ the arc. Therefore (taking now degrees as the intervals instead of q degrees) $\& \times$ sum of sines from B to $\frac{1}{q}$ arc
 X rad. o в measure the same.

Andf arc birad. obis represented by $\angle \mathrm{BCH}\left(=\frac{1}{2} \angle \mathrm{BGB}\right.$
Now, putting the diameter" $B E$ for twice the rad. I i and the
 from 0° to $\angle B E O+B C X$ sum of sines from BCE (supplement
 apply to the section perpendicular to the other two sides of the rectangular opening, and the results of the two formula multiplied together will give a number proportionate to the quantity of light pasoing through the opening.

[^42]The following general theorem may be deduced in like manner. Let fig. 2 represent a section perpendicular to two sides of a rectangular opening, the aides being irregular. Figure the two points which are in the line of one of the extreme rays 1, 8. Then considering the successive parallelograms which

Fse. 9.

would pass through the opening, beginning from line 1,9 , these points 1 and 2 will at first limit the width of such parallelograms. The succession continuing, another point will perhaps become one of the limiting points instead of either 1 or \mathcal{q}. Let this point be instead of 1 , and figure it 3; say the next limiting point is instead of 2 , and figure it 4; the next is (say) instead of point 3, and figure it 5 ; now suppose the next limiting point is instead of 5 (and therefore on the same side of the opening as 5), in this case recur to point 4 , and assign a second figure 6 , then figure the limiting point instead of $\delta, 7$; let the next be instead of point ${ }_{6}^{4}$ \} and figure it 8 , and so on. The even numbers will thus be on one side and the odd numbers on the other side of the opening. This being done, the table which follows will give the proper result:-

The following are the rules for constructing the table:-(1.) Put diagonals in order $1.8,2.3, \& c$., as far as the figures on the diagram extend. (8.) If the same diagonal is represented on two lines, bracket them as $\left\{\begin{array}{l}4 \\ 5 \\ 5\end{array}, 6\right\}$. (3.) Put (or auppose) zigzag lines from 2 to 1,1 to 3,3 to $2, \& c$, as shown. This forms the first column of diagonals. The second colnmn shows the angles between which the rums of the sines are to be taken at successive intervals of degrees. (4.) Look to the column of diagonals and take the angles in the zigzag order as shown, 213, $139,324,8 \mathrm{zc}$. The first line will be from 0° to $\angle 219$, the second $\angle 132$ to $\angle 984$, \&rc., and the last line will be from the last three figures (as above, 687) to 0°. (5.) If two obtuse angles come in the same line (as in the third line above), put down from first angle to 90° added to 90° of the second angle. (6.) The third column is the multiple $\frac{1}{2}$. The use of the table is as follows:-(1.) Measure the diagonals $1.2,2.3$, \&cc., and put down the measures in order in feet and decimala. (8.) Measure the angles 213, 13q, \&rc., and put down the number of degrees in order. (3.) Find from the table below the sums of sines (taking the supplements where obtuse) and note them in their place. (4.) The result is found as follows: Diag. 1.9 \times sum of sines from 0° to $\angle 913$. + diag. $2.3 \times$ sum of sines from $\angle 138$ to $\angle 384$, and so on. The sum of the quotiente to be multiplied into the third column ($\frac{1}{9}$).

So long a formula will seldom be required in practice. Where the sides of the opening are similar it will be sufficient to go only up 90° from the line of the extreme ray. Thus in fig. 1 , which is figured according to the rule, the formula is-

The third line is nil, because 354 and 546 are both right angles. The third column ($\frac{t}{6}$) of the formula is cancelled, because we have considered only the parallelograms up to the
perpendicular to $\triangle \mathrm{B}$, and the result would have had therefore to be doubled.

Fia. 3.
Fig. 3 is a diagram showing the application to openings through floors, \&c., as well-holen under a skylight. The figures apply to the quantity of light passing through the bottom opening $\left.{ }_{6}^{3}\right\}$. The formula is-

Dingonalo.	Sum of sines.	
1.2	\times from 0° to 213	
2. 3	\times from 139 to 324	
$\left\{\begin{array}{ll}3.4 \\ 4.5\end{array}\right\}$	\times from 943 to 546	
5.6	\times from 465 to 0°	

Tasle of the Sume of Sines of Arci taken at intercals of Degreet from 0° to 90°, Radius 1 to 2 decimal places.

Des.	. Sums of Slam.	Deg.	Sume of Slaes.	Deg.	Suma of Bines.
	. 02	31	. 8.44	 29.93
2	. 05	32	. 8.97	62	. 30.84
3	- 10	33	. 9 . 52	63	. 31.73
4	. 17	34	. 10.07	64	32.63
5	. 26	35	10.65	65	.. 33.53
6	. 37	36	. 11.24	66	. 34.45
7	. . 49	37	11.84	67	35.36
8	. 63	38	12.45	68	36.30
9	. 78	39	13. 08	69	37.23
10	. 96	40	. 13.73	70	.. 38 . 17
11	1. 15	41	14.38	71	39. 11
12	. 1.36	42	15.05	72	. 40.06
13	1. 58	43	15.73	73	. 41.02
14	1. 82	44	16.43	74	. 41.98
13	. 2.08	45	17.13	75	.. 42.95
$16+$	+... 2.36	46	17.85	76	. 43 . 91
17	2.65	47	18. 59	77	44.89
18	2. 96	48	19.33	78	.. 45.87
19	. 3 . 28	49	20.08	79	. 46.85
20	. 3 . 63	50	. 20.85	80	. 47.84
21	3.98	51	21. 63	81	. 48.83
22	4.36	52	22.41	82	49.82
23	4.75	53	23.21	83	.. 50.81
24	. 5.16	54	24. 02	84	. 51.80
25	5. 58	55	24.84	85	52.80
26	. 6.02	56	25.67	86	53.80
27	6. 47	57	. 26.51	87	54.80
28	. 6.94	58	.. 27.36	88	. 55.79
29 7.43	59	.. 28 . 21	89	. 56.79
30	.. 7.93	60	29. 08	90	57. 79

 the araaller arc from that oppodic the larger arc, thua: sum of nines from 16° to mal place for the nams of ilines, and owe only for the perts of a foot in menaring
the diagonal

We extract the following additional particulars relative to the practical application of the invention, from a pamphlet iwued by Messrs. Boyd and Chapman, of Welbeck-street, who are the sole mannfactures of the Combination Reflectors.

Refectors are required to be in combinationt, for the following reasons:-

1st. Single reflectors, having to be placed an as to reflect the light from the sky to a particular part, would generally have to be fixed askew, snd in such a manner as to project in an inconvenient or unsightly manner either outside or inside of a window.

Ind. If projecting outside, many of the rays from either side will be reflected upon the outside of the wall; if projecting inride, many of the side rays will be intercepted by the jambe of the window before reaching the reflector.

Srd. Single reflectors are difficult to regulate.
4th. If made of a material which will stand the weather and atmosphere of towns, the cost will increase in m much greater ratio than the increase of sice.

Now, a reference to these four objections in order will show reasons for the adoption of the combinations.

1st. Combination reflectors are arranged in any given plane, and within any given thichness; such as in the reveal of a window, in the space occupied by a dwarf window-blind, \&c.
and. Being disposable within the thickness of the wall of the opening, the side rays of light are not intercepted by the jambe, and after reflection pass at once into the room.

Srd. The combination may be regulated by a simple lever movement, so as to regulate or vary tbe light at pleasure, and instantaneously from the inside of the room.

4th. The combinations consist of comparatively small reflectora, and the required number of smaller ones will be much leas costly than one larger one of equal area: for instance, in the article of glass alone, where ten pieces of glass, each 1 foot superfical, cost 13 s .4 d , one piece of 10 feet costs $92.18 .8 d$.

Fra. 4.
The reflectors used to resist the action of the atmosphere are made by chemically depositing metallic silver upon the
back of glass, by which a reflector more brilliant than a common mirror is obtained, and no air or damp can come in contact with the reflecting surface. This process cannot be applied without great additional expense, aud risk of failure, to large surfaces.

The general system may be best explained by the diagram (fig. 4), which represents the section through a window 7 feet high, giving light to a room which opens into an alley supposed to be 6 feet wide, and to have the opposite buildings 18 feet high above the window-sill. The limit of the direct light which enters is shown by the line $\triangle B$, so that it falls on the floor only to the extent of 4 feet.

Now, suppose a reflector placed within the reveal 5 inches in width, and as long as the opening is wide, as at $e b$, then the ray $a b$, from the top of the opposite building, will be reflected in the direction $b c$, and the ray $d e$ will be reflected in the direction ef; be and ef show, therefore, the extent of the reflected light from the reflector eb." If three other reflectors, as shown, are placed under $e b$, then they will refiect the light as represented by the other diverging lines. The reflected light from all four reflectors will traverse the whole room, whatever may be the distance of the back wall from the window. If the back wall were 30 feet from the window, the light would cover the upper 8 feet of the wall, and the ceiling to 7 feet from that wall.

If the reflectors are moved so as to be nearer the horizontal position, the light will be thrown more upon the ceiling; if they are turned to be nearer the vertical position, the light will be lowered towards the floor. Owing to their being placed within the thickness of the wall, the rays which come from either side of the opening up and down the alley are reflected sideways into the room, so as to illumine the side walls.

The diagram shows the combination as applied to the lower half of the window. This will give the greatest quantity of light with loast cast. But if they are placed in the upper part of the window, they will give a more pleusing light.

It will be easily seen, that if the reflectors are, instead of being parallel planes, placed at different angles with the hurizon, the reflected light may either be diffused to a greater extent, or be more concentrated as may be desired.

In some instances an oblique arrangement will be most suitsble.
The following are the usual applications of this combina-tion:-
1.-Where a defined effect is required, the reflectors are fixed so as not to be moveable.
2.-They are made to be easily regulated by movement from the inside, so as to produce, at pleasure, different effects of light.
3.-They are made with wrought-iron backs, so that, in an instant, they may be closed, by a lever movement, as before mentioned, and thus form, at once, a fireproof shutter externally, and a brilliant reflector internally, so as to assist the artificial illumination of the room at night, and be ornamental also.
4.-They may be combined with glass ventilating louvres.
5.-They may occupy the place of dwarf window-blinds. These are made either with reflectors of flat glass, or with reflecting glass prisms.
6.-Fig 5 shows a combination $\boldsymbol{n} \mathrm{x}$, fixed on a wall under a skylight A B , to reflect the rays into the part under c D , which may be continued to a considerable distance. Δa shows the direct ray, which enters furthest under od. But the reflected light from the combination penetrates under in to any distance up to the furthest wall. The ray falling from A on the top reflector $a b$ is reflected to d. That from B is reflected to c, so that the reflected light from the reflector $a b$, is bounded by the lines $a c$, and $b d$. The directions of the rays from the other reflectors of the combination are shown by the other diverging lines. The reflectors of such a combination may (as in the first-described system) be disposed so as either to diffuse the light more, or to concentrate it, as may be desired.

One great advantage in this system of lighting apartments is, that the light may be reflected upon the ceiling, which, being generally the lightest coloured surface in the room, is the best for diffusing the light by secondary reflection, and, being above the sight, reflects the light in the must agreeable manner.

[^43]In many instances, as in Manchester warehouses, and other places where the light requires careful regulation, there will be the advantage of obtaining, at pleasure, any angle of incidence.

Fxa. 3.
In many cases where sufficient daylight is obtained, much valuable space has been lost by the necessity of having large uncovered yarda to the houses, of confining part of the buildings to one story, or of forming shafts or well-holes in the floors to allow the light to pass to a lower story. A muoh larger space may now be covered with building than could otherwise be so covered, because by the use of these Reflectors much leas space is required than formerly for obtaining a sufficiency of daylight.

INCLINED PLANE ON CANALS.

In our last number (p. 201) we gave a deacription of the Blackhill Inclined Plane, from a paper read by Mr. Leslie, at the Royal Scottish Society of Arts. Since the paper was published the author has learned that three inclined planes for boats were constructed about ten years ago by Sir William Cubitt, on the Chard Canal, Somersetshire, and that they have acted quite satisfactorily. One near Chard, which is a single incline, takes the boat, lyiug dry on a carriage having fuur wheela, over a summit, and down another incline into the upper reach of the canul. The height of this incline is about 86 feet, and the gradient 1 in 8 . The motive power is a turbine wheel at the foot of the incline, working a wire rope over the top of the car-riage.-Another at Wrantage takes the boat afoat in a caisson, set on a carriage having six wheels, This is a donble incline, with a chain passing round a horizontal drum or sheave at the top, and the motion is communicated by running more water into the descending than the ascending caisson, breaks or other apparatus being provided for stopping or checking the motion. The caisson is 28 ft . 6 in . by 6 ft . 9 in . inside; but as the gates open inwards the boat cannot be longer than 25 or 26 feet. The height of this incline is $27 \frac{1}{\mathrm{t}}$ feet, and the gradient 1 in 8 .A third incline at Ilminster is of similar construction to the last described.

23visurs.

Rome in the Nineteenth Century; containing a complete account of the Ruins of the Ancient City, the Remains of the Middle Ages, and the Monuments of Modern Timer. By Ceaslotte A. Eaton. Fifth Edition, 2 vols. Bohn's Illustrated Library. London: H. G. Bohn. 1858.
Mrs. Earon's book still remains the special book on Rome, and Mr. Bohn has rendered a considerable service by bringing it before the puhlic in a cheaper and more accessible form. While popular in its style, this work is not wanting in those references to classical authorities which are essential to give it a standard character. The notes of this class are numerous, as indeed they must be if the structures of ancient Rome are properly illustrated. By the public this work will be received as supplying a great want, and furnishing them with sound information on a subject which is always of interest; and younger professional readers will find here those general details which will prepare them to receive and appreciate the engravings and descriptions of the great edifices of antiquity and of their modern rivals. In a work so wide in its subject, it is of course impossible to expect a completeness of delineation on any one subject. Thus to the architectural student the space devoted to St. Peter's will appear too scanty; but this is unavoidable, for it requires volumes for itself, and atlases of drawings. Mrs. Eaton has, however, an artistic appreciation which makes her a good painter of Rome in its ancient and modern condition. We cannot necessarily expect architectural essays, or novelties in archzological research, but we may read with interest the views of such a writer upon the monuments of Rome, even if in some cases they involve depreciating comments on the buildings of Michael Angelo.
It is not so, however, with St. Peter's; and to the architect anxious to know the effect produced on the mind by such a great work, the following will be welcome. What may be called architectural sengations are seldom expressed fully except by acknowledged critics, and we rarely get a measure of public feeling. To an architect, however, the imaprossion produced on the mind by a great work is a subject of interest, for whatever reasons he may have for imagining that in the design of his own works he bas complied with all requirements, still he is anxious to know how far the public are impressionahle. The conviction of being able to achieve a great success in this way is one of the atrongest inducements to the exertions of a man of genius. BIrs. Eaton says:
"'The isterior burat apon our astonished gaze, reaplendent in light, magnificence, and beaty, beyond all that imagination can conceive. It apparent amalliness of aize, however, mingled some degree of surprise, asd ovoa disappointment, with my admiration; bat al alowly walked ap its long anve, empanelled with the rareat and richent marblea, and adorsed with every art of sculpture and of tate, and canght through the lofty arches opening viewn of chapela, and tombs, and altars of surpasing spleadoar, I felt that it was lndeed, anparalleled in beauty, in magniwhea, and magnificence, and oue of the nobleat and moat wonderful of the works of man.
"Wo pansed beneath the lofty dome-which, like heaven itself, seems to reve above our hoad, and around whose golden vault the figurea of the Apoocles appear enabrined in glory;-and leaning against the raile of the Confensional of St. Peter, looked down to that magnificent tomb, where, Hehted by a thourand never-dying lampa, and canopied by the wronthed pilias and cartained featoons of the brazen tabernacle-the mortal remsins of the Apostle repose. On every side tbe Latio cross opened apoa us in leagtboning beanty, and decked in various aplendour, which the labour of ages, the wealith of kingdoms, the apoila of ancient times, and the proudent inventions of modera magnificence, have combined to faraish. Yet, with all ite prodigality of ornament, it is not overlonded ; and while its richness charms the eye, ite parity and harmony atisfy the taste. There is no valgarity, no show, no glare, no littie paltry detail, wo cact the attention and take from the grandeur of the whole. All is gabservient to the general effect. The interior, indeed, on the whole, at far surpased my highly-raived expectationa, at the exterior fell short of them. Yet, notwithatanding ita beanty, I was conscious of a species of dimppointment too commonly felt, when what we have long dwelt on in feocy is seas in reality. It was equal, perhaps superior, to what I had expected, but it was different ; for wo cannot avoid forming some idea of eaghing we think of so mucb; and St. Peter's, in the inside at well as the ont, was as unlike the inage in oyy mind an posuible. I had pictured it ro myeelf less beantifal, and far leat magnificent, but more sublime. With ta imagination deeply impressed with the imponing effecte of the Gothic Cathedrals of ouf own country, I expected, from the immensity of SL Peter'g, even more of that religioas awe and doep solemn melan.
choly, which they uever fail to inapire; and I wat unproptred for ite lightneas, decorstion, and hrilliance; -and, above all, for that impreasion of gaiety, which the fint sight of its interior producee. I knew, indeed, it was Grecian; hut the lengthening colonnade and majeatic entahlatore had dwelt on my fancy, and I was surprised to see the Corinthian pllaster and the Grecian arch : and that arch, however nohle in itself, from the vecessity of proportioning it to the magnitude of the bailding, has the nufortunate effect of diminishing the apparant Iength, which the perspective of a Grecian colonoade, or a Gothic aisle, uniformly appears to increate. There are only four archea in the whole length of the nave of this immense charch, and the eye, measuring the space by the namber, becomes cheated in the dirtance. This I cannot but concider a capital defect. Yon may indeed arguo your underatandiag, but not your seneea, Into a conviction of the size of St. Peter's: the mind believes it, bat the eje remains unimpressed with it.
"The window, too, are mean and poor-looking, and otionsive to the oye. It is easier, however, to point out the fanlt than the remedy; for windows do not enter gracefully into the beantifnl combiantions of Grecian arehitecture. They did not origially form an integral part of it. The temples, the porticoes, the theatrea, and perhaps even the bonees of the ancient Greeke and Romans, had none. In Gothic charebea, on the contrary, how grand and majestic an object la the arched and ahafted window I Indeed, if I may ventore to own to you the trath, lt is my bumble opinion, that thongh Grecian architecture is admirably adapted to palaces and thatrea, and places of public assambly, and public build ings of almost every other kind, it is not suited to churches; and thangh it possosses a grace, a lightness, an elogance, a gadety, and a refinement, that barmonise well with the amusements and bucinese of life, it does not secord with the solemn purposes of Christian worship, to which the aimplicity and grandenr of the Gothic, and its imprestive effect upon the mind, are so peculiarly fitted, that I could almont fancy its conception to have been en emanation from that depotion it is so eminently calealated to inspire.
${ }^{4}$ The Gothic would be as miapleced in a theatre at it is appropriate in a church. This may certainly arise in some degree from asociation, but I think there is something in is intriasic fituen. Before we drove awry, I atopped to take another view of the façade of the chareb, in hopes of finding more to admire; bat I am sorry to aay, I only found more to condemn.
"Certainly some apology may be found for its defects, in the frequent changes of plans, and architects, and Popes, daring the bailding of it; and in the real or imaginary necesaity of having an upper balcony for the purpose of giving the benediction; a circumstance which has been to ruinons to if beanty, that we might asy with truth, that the blesnings of the Popet have been the perdition of the church. But whatever be the canse, the faule of the front of St. Peter's are unredeemable and anpar. donable. I believe Oerlo Moderno wey the name of the man who had the merit of iff present frightfulaes.. It is aingular, that neither this charch, nor that which ranke next to it (St. Pael's, In London), should have had their original admirable plana completed. But we must jodge of churches ace of men, by what they are, not by what they ought to be ; and I muat asy that the exterior of St. Paul't, with all lit faultit-and they are many-it, on the whole, anperior to St. Peter's in architectural beauty. Nay, I am persuaded that if it were of the same magnitude, built of the game rich and stainleas stone, pleced in the same adrantageous situation, and sarrounded with the same noble accompanimank, it would be far more grand, and mure chaote."

The above comparison between 8t. Peter's and St. Paul's is one commonly made by the English, and is perhaps in no way tainted by prejudice. Speaking of the baldacchino, the writer says:
"But I forget that I have left you standing all this time in the Tomb of St. Peter and St. Pand, whilst I am talking scmadel about defunct queens.
"Bmerging from those gloomy, magnificent sepulchral regions of durkness and death, to upper day, we atopped to survey the great altar which atanda above the Confeasional of St. Pater, and beneath the dome, but it is not exactly in the centre, which rather harts the eye. It is a pity St. Peter bad not been buried a litile more to one aide.
"Above it rises the baldacchino, a gilded and brazen canopy, with four supporting twisted columas, made from the bronze, or precions Corinthian metal plondered from the Pantheon, by Urban VIII., who showed as little taste in applying, at judgment in appropriating it.
"So small does this agly canopy look in the vast size of the charch, that it is searcely posaible to believe the fact, that it is quite as high as a modera cantle.
"At the upper extrenuity of the great nave, the figare: of the four doctors of the church, made of ancient bronze, and handsomely gilded, support the famous chair of St. Peter ; which venerable relic ls also to weil encased in the same precion material, that it is difficult to see any part of the old wormeeaten mood of wich it was composed. This apontolic saat wat unhappily broken, an accident typical, saroly, of the fall of those whum it is metaphorically said to sapport; metaphoricallyfor it is held up at such a beight by the brawny arms of ita aupportert,
that a Pope muat really be monntebank-which one of our Scotch farmers' wives used to call him-and have served a anccesuful apprentice. ship to the art of vaulting and tumbling before he could seat bimsolf in it. From the gigantic size of these four doctorn, we must allow them the praise of being strbag pillart of the church."

Of the other modern architecture of Rome, including even, as we have said, the productions of Michael Angelo, Mrs. Eaton has but an unfavourable opinion, and devotes but little space to their details. On the Basilica of St. John Lateran there are the following among other observations:
"Contiguons to the palece, Constentine built the Basilica; but all his exartions have long since disappeared. It has been hurnt down, and built up, and oplarged, and improved, and new-fronted, so many different ways, and at so many different times, and embelliahed by 10 many different Poper, that, take it an whole, it is one of the largeat and ugliest chorches you can see anywhere. Its sonthern elevation is, howover, imposing, notwithatending its load of ornaments, and its glaring defects. As a proof of the taste which hat beautified its interior, I need only mention that Borromini, the lat architect who traproved it, built up the ancient colamas of oriental granite that supported the great nave, in his hage whitewashed battreases ; I could not hat mourn, as I contemplated them, over the loas of the imprisoned granite columns within, and the wate of marble in the uncouth colossal statues of the aposties vithout-one of which, like a watchman in bis box, is placed in every buttress.
"The high altar carries above it a hage tower, intended, as I was asared, for ornament-than which nothing can le more frightful. In a semicircular sort of gallery, which runs hehind the upper end of the church, there is, at ore end, an altar decorated with four ancient columas of gilt bronze, asid to be the identical columas made by Augustus from the rostra of the shipa taken in the battle of Actium, and dedicated by Domitian on the Capitol. So, at least, Mariano asserts, without asaigning any proof. However, the fact seems ansumed by various contemporary writers, as if of acknowledged truth; and, probably, they knew them at leatt to have been brought from the Capitol. At all events, they are nuqueationably ancient columna, and, I believe, the only ancient columna of bronze in the world. At the other extremity of this gallery, on each aide of the organ, are two magnificent ancient columne of giallo antico, one of Which was taken from the Arch of Constantine by Clement XII., Who replaced it by one of white marble.
"The Coraini chapel in this cburch, in the unrivalled heanty and aplendour of the ancient marbles which line ite walls, the columns which sustain its rich frieze of scalptared bronze, the gilding which emblazons its dome, the polished merbles of ita variegated pavement, the precious atones which gem ita altara, and the prodigality of magnificence that enshrines the tombs of its Popes-far surpasses all that a transalpine fancy could conceive. It is built in the form of the Greek cross; but tha eye is withdrawn from its perhaps too anohtrusive architectare by the aplendour of its decoration, which is, however, remarkably chaste."

To Santa Maria Maggiore the writer devotes a few remarks:
"The Basilica which holde the third rank in Rome, is that of Santa Maria Maggiore. It atands on the highest of the two summits of the Esquiline Hill, and is believed to occupy the site of the ancient Temple and Grove of Juno Lacina, an opinion which seems to have derived its origin from a hlack-and-white mosaic pavement, which was found at an inconsiderable depth below the pavement of the church, during some slterations made in it in the time of Benedict XIV., and was attributed to that temple.
"In the fourth century, an old pope wat instructed in the proper situation of this church, by a miraculous shower of snow that fell in the middle of summer, exactly covering the apot. I suppose his Holiness must have correctly imitated, in the building, every dent and curvature of the snow; for nothing else can account for the eccentricity of its external shape. It would pazzle an able geometrician to define to what figure it belonged. It can only be described by negatives. It is not long, nor aquare, nor round, nor oval, nor octagonal, nor yet triaugular-though it approaches the nearest to that of enything. Nobody could suspect it of being a church, but for the deformity of an old trick belfry, which sticks up in a singularly awkward position from the roof. It has more faces than Janus, and they resemble esch other in nothing but their ugliness. In the advance of one of these atands the solitary marble column brought from the Temple of Peace, and erected by a pious pope on a dispropor. tioned pedestal. The other front boasts one of the Egyptian Obeliska that atood before the Mausoleum of Augustus.
"The inaide of the church owes all its beauty to its ancient Ionic columas, which are sapposed to have belonged to the Temple of Juno Lucina. The roof of the nave is tawdry, fat, and low. The graceful line of the colonnade is broken by arches, that open into lateral chapeia of rival magnificence. The least dazzling is that of Sixtus V.; but then it contains a tomb, in which lies the body of that pontiff, miraculously pnchanged by death, and working great and unceasing wiracles. So, at least, I was informed.
"The splendour of the opposite Borgheme Chapel so far surpasees my feeble powers of description, that I shall leave it all to your imagivation -to which you mey give abundance of latitude, for it can scarcely surpass the reality. It contains one of St. Lake's precions performences, a miraculons image of the Virgin; but those who, like me, have been bleaned with the sight of many of that Evangelist's works, will probably prefer the paintinge of Guido, the only ones worth seeing in the whole church, though even they will not particularly reward the obsarver.
" Poor Cigoli went mad, in consequence of Paul V.'s refusal to allow him to obliterate his paintings on the dome of this church, which be ardently desired, in order that he might endeavour to execute something more worthy of his genius.
"You may be sensible of the obligations gou owe me for my moderation in respect to this chureh, when I tell you that a deceription of it has been published in a large folio volume! I had nearly left it without telling you that it contains the real cradle of Jesua Chriat; or, as the Custode reluctantly confessed, half of the real cradle only."

What Mrs. Eaton observes of palaces we ehall leave to her own introduction:
"Palaces, to an English ear, convey an ides of all that the imagination can figure of elegance and splendour. But, after a certain reaidence in Italy, even this obstinate early asociation is cooquered, and the word immediately brings to our mind images of dirt, neglect, and decay. The palaces of Rome are innumerable; but then every gentleman's house in a palace,-I should say, every nobleman's, for there are no gentlemen in Ifaly except noblemen; society being, as of old, divided into two claseces the patricians and the plebeians : but though every gentleman is a nobleman, I am sorry to iay, every nobleman is not a geatleman; neither would many of their palaces he considered hy any means fit residences for gentlemen in our conntry. The legitimate application of the word, which, with us, is confined to a building forming a quadrangle, and enclosing a court within itself, is by no means adhered to bere. Every bouse that has a porte cochere, and many that have not, are called palaces; and, in short, under that high-sounding appellation, are comprehended places whose wretchedness far surpassea the atmost streteh of an English imagination to conceive.
"Rome, bowever, contains real palaces, whose magnitude and magnificence are astonishing to transalpine eyes; but their tasteless architecture is more astonishing still.
"Though they have the great names of Michael Angelo, Bramante. Veroapi, Bernini, \&c. \&c. Emong their architects; thongh they are bailt of travertine stone, which, whether viewed with the deepened hoes of age in the Colosseum, or the brightness of recent finish in St. Peter's, is, I think, by far the fineat material for building in the world; and thoagh, from the grandeur of their scale, and the prodigality of their decoration, they admitted of grand combinations, and atriking effect, yet they aro lamentably destitute of architectural beauty in the exterior; and in the interior, though they are filled with vast ranges of spacious apartments, though the polished marhles and precious apoils of antiqnity have not been spared to embellisb them, though the genius of painting hat made them her modern temples, and aculpture adorned them with the choiceat remains of ancient art, get they are, generally speaking, about the mont incommodious, unenviahie, uncomfortable dwellinga you can imagiae.
"I know it may be said, that comfort in England and in Italy in not the same thing; but it never can consist in dulness, dirt, and dilapidation, anywbere. Italian comfort may not require thick earpets, warm fires, or close rooms ; hut it can be no worte of clean floora, commodious furniture, and a house in good repair.
"In habitations of such immense size and contly decortions at these, gou look for libraries, baths, music-rooms, and every appendage of refuement and luxury; but these thinga are rarely to be found in Italime palaces. If they pere arranged and kept up, indeed, with anytbing of English propriety, consistency, order, or cleanliness, many of them would be noble habitations; but, in the beat of therm, you see a barresness, a neglect, an all-prevailing look of misery-deficiences everywhere and contemptible meanesses adhering to grasping magniticence. But nothing is so offensive as the dirt. Among all the palaces, there is no such thing as a palace of cleanliness. You see (and that is not the worst) you sinell abominable dunghills, heaped up againat the walla of aplendid palacen, and foul heaps of ordure and rubbish defling their columned courts; you ascend noble marble ataircases, whose costly mate. riala are invisible beneath the accumulated filth that covers them; and you are aickened with the noxious odours that assail you at every turn. Yon pass througb long suites of ghastly roomn, with a fow crasy old tables and chairs thinly gcattered shrough them, and behold around you nothing but gloom and discomfort.
"The custom of abandoning the ground-fioor to menial parposes, except when used for shops, which is alnost universal throughout Italy, and covering its windows, both for security and economy, with a strosg iron grate without any glass behind it, contrihates to give the houses and palaces a wretehed and dungeon-like appearance.
" It is no uncommon thing for an Italian nobleman to go up into the attics of bis own palsee himself, and to let the principal roota to lodgers.

Proad as he is, he thinks this no degradation; thongh be would aporn the iden of allowing his sons to follow any profession save that of arms or of the chureh. He would sooner see them dependents, fatterers, eavet-droppers, spies, gamblers, cavalierd serventi, polite rogues of anj kind, or even beggars, than honeat merchants, lawyers, or phyaicians.
${ }^{\circ}$ The Fiano Palace has its lower story let out into shops, and its saperior ones occapied by ahout twonty different families; among which the duke and duchess live, in a corner of their own palace.
" It is the same case with more than half the nobles of Rome and Naples. But the Doria, the Borghese, and the Colonna, possess enough of their ancient wealth to support their hereditary dignity, and their immense palaces are filled only with their own families and dependante. Not hot that, though lodgings are not let at the Doria Palace, batter is reguiarly sold there every week, which, in England, would seem rather an extraordinery trade for oue of the first nohlemen in the land to carry on in hit own house. Tet this very butter-selling prince looks down with a species of contempt upon a great British merchant."

The Ville or Casino of Raphael is a favourite with the writer:
"Since I have been in Rome, many are the viaits I have paid to the Casino of Raphael, which was the chosen scens of his retirement, and edoraed by his genian. It is about half a mile from the Porta del Popolo. The firat wooden gate in the lane, on the right of the entrance into the grounds of the Villa Borghese, leade you into a vineyard, which you croas to the Casino di Rafiaclio; for it atill bearn his name. It is unfarnished, except with caska of wine, and uninhabited, except by a contadine, who shuws it to strangers.
"We passed through two rooms, painted by his scholars; the third, which was his bedroom, in entirely adorned with the work of bis own hands. It is amall pleasunt apartment, looking out on a little green lawn, fenced in with trees irregularly planted. The wall are covered Dith arabesques, in various whimaical and beautifol designs-uch as the sports of children; Loves balancing themselves on poles, or mounted on horseback, foll of glee and mirth; Fauna and Satyrs; Mercury and Minerva ; towers and carllng tendrila, and every beautiful composition that coold angeat itaelf to a mind of taste, or a clasic imagination, in ita most sportive mood. It is impossible to describe to you the apirit of these designs. The eoraice is supported by painted Caryatides. The coved roof is adoraed with fonr medallions, containing portraits of his miatress, the Fornarina-it seemed as if he took pleasure in multiplying that beloved ohject, 20 that wherever his eyet turned, her image might meet them. There are thres other plintings, one representing a Terwinus with a target before it, and a troop of men shooting as it with bows and arrow, which they have atolen from ansuspecting Cupid, who is lying asleep on the ground, his quiver empty beside him. One or two roguish-looklng Loves are creeping aboat on the ground, one of them bearing a lighted torch. The markamen are all bending forward, and tome are quite horizoptal, with their feet in air.
${ }^{4}$ The second pipture represents a figure, apparently a god, seated at the foot of a couch, with an altar hefore him, in a temple or rotunda; and from gardens which appear in perspective through its gay intercolampiations, are seen advancing atroop of gay joung nymphs, with comething of the air of Bacchantes, hearing on their heade vases full of fresh-gathered roses. I could not make ont the image to be a female, or elee 1 should have anpposed it to be the feast of Flora; therefore, for want of a better explanation, I concladed it meant for the feast of the god of the Gardens.
ω The last, and beat of these paintings, represents the nuptials of Alexander the Great and Rorana. I never saw a figure of more exquisite loveliness-more touching modenty and grace. She is seated at the foot of a conch; a little Love heside her is drawing off a veil which yet half conceals her beanty. Hymen, with his saffron robes and torch, leads in Alexander, disarmed, but wearing his helmet. A crowd of attendant Loves are emplojed in their service; some are carrying off his aword, \&c.; and one, a comical little Love, has put on his heavy cont of mail, which is ridiculoualy large for it, and, having tumbled down, is unable to get up egain.
"1 I have perhaps described with too mach minateness the Casino of Bephael : but in general he painted for others-bere he painted for him-celi-and it is interesting to see those sports of his mind, and to trace the fond delight with which he mused his leinare hours in decoratiog tis home, the seene of his pleasures."

As to ancient Rome, Mrs. Eston is more rapturous:

"Croasing over to the opposite side, beaeath the broken and defaced triamphal arch of Titas, fast tottering to its fall, but beautiful even in deeay, we beheld the grandeat remains of antiquity in the world-the majentic ruins of the mighty Colosseum. No relic of former greatnessno monament of haman power-no memorial of ages that are fled, ever spoke $s 0$ forcibly to the hast, or awakened feelings so powerful and unmiterable. The art of the plinter, or the atrains of the poet, might evail in some degree, to give you a faint image of the Colosseum-but bow can I bope, hy mere dencription, to give you any idea of ite lofty ma. jesty and roined grandear? How convey to jour mind the sense of its beantiful proportiona, its simplicity, its harmony, and its grandear; of
the regnlar gradations of Doric, Ionic, and Corinthian orders, that support its graceful ranges of Grecian areades; of the rich bues with which Time hat overspread its massy walls, and of all that is wholly indescrib. able in ite powerfal effect on the eje, the mind, and the imagination?
"It stands exactly where you would wish it to stand-far from modern Rome, her streets, ber churches, her paleces, and her population, alone in its solitary grandour, and surrounded only with the ruins of the Imperisl City. On one side, the magnificent Triumphal Areh of Constantine atill stands in undiminished beanty, adorned with the spoils and the trophies of better times. Above it rises the Palatine Hill, overshadowert by aged evergreena, and covered with the ruins of the palace of the Ceasirs. At its southern base, extends the long line of the Via TH. wmphalis, crossed with the lofty arches that once bore the Clandian waters to Nero's Golden House. Behind it appears the dark ridge of the Ccelian Mount, covered with the majentic remains of ruined aqueducts, with monldering walls and suhatructures, the very parpose of which is unknown; and on its height, amidet doep groves of melancholy cypreas, stand the quiet towert of the Convent of St. Joha and St. Paul.
"On she other side of the Colosseam, veatigen of the Bathe of Titus, and the weed-covered summit of the Temple of Peace, are indistinctly seen; and on a gentle eminence, between the Colosseum and the Fornm, appear the remains of the double Temple of Venus and Rome, the richly ornamented roof of which atill hangs over the vacant altar-piece of the dethroned deities. Around it are widely strewed, in every direction, hage fragments of colossal granite columns, half-buried in the earth, whose gigantic shafts, it wonld almoat seem, no human power conld bave broken, and that this scene of tremendons ruin must have been the work of the vengeful gods, whose glittering fane lies here overthrown.
"We walked round the vast circle of the Amphitheatre. In no part hes it been completely broken throagh, hut in only a small aegment it the erternal elevation preserved entire. On this is atill affixed the cross placed there by Benedict the Fourteenth, who, by proclaiming the Colowsenm to be consecrated ground, hallowed by the blood of the martyra, aaved it from the total demolition to which it was rapidly hastening, and merited the gratitude of posterity. That there ever should have been martyrs, one cannot hat mont aeriously lament; but since they were to he martyred somewhere, I hope it is no great sin to rejoloe that they were ascrificed here rather than in any other place; and mont ferveatly do I deplore the cold-hearted insenalbility of former Popea, in not reeall. ing their sufferinga before the work of destruction had advanoed so far. Had Paul V. consecrated the Colosseum to their memory instead of palling it down to build his hage palaces, how we should have venerated him for such an act of piety !
"In the inside the destruction is more complete. The marble seats are all torn away; the stept and the romitories overthrown, and the sloping walls and broken arches which once sapported them, are now overgrown with every wild and melancholy weed, waving in all the lagn. riance of desolation.
"In the centre of the grast-grown arena stands a huge black crons, which liberally promiess two hundred days' indulgence to every person Who kisses it (heretics not included, I presume); and many were the kisses we aaw bestowed opon it ;-mo wonder, indeed I The pious persons who saluted it afterwards applied their foreheads and ohins to it in a manner which thay meemed to feel highly comfortable and consoln. tory.
"The French-who perhape did not expect to profit hy its indulgences \rightarrow bowed it no indalgonce on their part, hat took the liberty to kaock it down ; remortelesaly depriving the Romens of the benefit of two hundred dayt of indulgonce, for which they certainly deserved to be condemned themselves without henefit of clergy. They aiso carried off, at the same time, the pictured representations of the fourteen atages of Christ's pilgrimage under the croms, which are again reinstated in their ancient honours, and atand round the benutiful elliptical arena, griev. ously offending the Protestant eye of taste, however they may rejoice the Roman Catholic spirit of piety.
"There are other of their improvements which have heen auffered to remain, that we would rather have seen removed. French taste bas formed a little pablic garden at the very base of the Colosseum, so wofully misplaced, that even I, notwithstanding my natural passion for flowers, longed to grab them all up by the rootr, to carry off every restige of the trim paling, and bring deatruction upon all the amooth gravel walke.
"We ascended, by a temporary wooden ataircase, to the highest practicable point of the edifice-traversed the circling corridors, and caught, through the opening arches, glimpsea of the scattered roins, the dark pine trees, and parple bille of the diatant country, forming pictares of ever-varying beanty and interest. We looked down on the vast arene; its loueliness and silence were only broken by tome Capuchin friars kneeling before the represontations of our Saviour's last suffering pilgrimage, and muttering their oft-repeated prayer at they told their beads.
"The clear blue sky, in calm repose above our heads, brenthed ite serenity into our minda. The glorious ana shed its beams of hrightneas on these walls with undiminished splendonr. Nature was uncbanged, but we atood amidst the ruins of that proad fabric, which man had dettined for eternity. All had passed away-the conqueror, the vietims,
the imperial tyrants, the slavish maltituden; all the ancomaive generations that had rejoiced and triumphed, and bled and ouffered here. Their name, their language their religion, had vaniabed-their inhuman sports were forgotien, and they were in the duat.
"But let me restrain myself. Meditation here is inezhanatibla, but to others, our own meditations can rarely be interesting. There is a charm in these magnificent ruins, powerful but indefinable, which every mind of refiection and sensibility must feel-and we lingered amongst them till the day wat done."

Roports by the Juries on the Subjects in the Thirty Classesinto which the Great Exhibition was divided. London: Printed for the Royal Commission, by William Clowes and Sons. 1859.
Tarse reports are now of individual rather than of general interest, but they will be perused by many persons because they give in a cheap form reports in some cases by eminent persons of the present state of various branches of industry. Of a work so multifarious it is impossible to speak generally, and we must therefore limit ourselves to extracts from portions more particularly bearing on subjects of interest to our readers. Class VI. was devoted to Manufacturing Machiues and Tools. The Jury say of Engineers' Tools:
"Amongst the machine tools, lathes, as might be expected, appear in the greatest number and of every variety of size and arrangement, from the powerful machines which are capable of turning wheels 7 or 8 feet in diameter, or shafts 36 feet in length, down to the delicate lathes used by amatours, or the makers of small machines and apparatus. However, it must be remarked, that in this collection, complete as it is, several important machines are not represented, as, for example, the colossal lathes which are employed for boring cylinders.
"A magnificent railway-wheel lathe, with two opposite head-stocks and face-plates, and two compound slide-rests to correspond, capable of turning wheels above 7 feet in diameter, is exhibited by Mesars. Sharp, and one of smaller dimensions by Messrs. Whitworth and Co., who also contribute two of their patent duplex lathes, in which tbe work is acted upon simultaneously by two tools cutting at the opposite extremities of the same horizontal diametrical line. Thus vibration and deviation of the work in ahaft-turning is wholly prevented. The beds of these lathes are 18 feet and 36 feet in length reapectively, and the latter is provided with two duplex slide-resta, which can be made to travel simultaneously by self-action, either in the same or opposite directions at pleasure, so as to economise the time required for finishing the work. They also exhibit a 5 -inch self-acting foot-lathe, with complete arrangements for sliding, screwing, and surfacing. Large lathes of excellent workmanship, each having some peculiar facilitiea in the details, and adapted for sliding, screwing, and surfacing by self-action, are exhibited by Messrs. Smith, Beacock, and Tannett; Parr, Curtis, and Madeley; Bandford, Owen, and Watson; and Shepherd, Hill, and Spink. Mr. Muir contributea a well-made small foot-lathe, with a variety of screw stucks and other tools.
"In the American department, a lathe sent by the Lowell Machine Shop, of 12 -inch centre and 13 -feet bed, with the usual arrangements for self-action, will be looked on with great interest, as a specimen of first-rate transatlantic workmanship in this branch, and as offering various peculiarities of form and distribution of metal, the latter being employed as sparingly as possible on account of the great cost of iron. Hence a lightness of construction carried to the extreme point consistent with strength aud atifness, which presents a singular contrast to the solid proportions adopted by our own engineers.
"In the smaller clase of lathes Mesars. Holtzapffel and Co. take the lead, by exhibiting a first-rate amateur lathe, provided with all the apparatus required for ornamental turning, such as oval, eccentric, and drilled work, and a variety of tools and contrivances appertaining thereto, of the most elegant and perfect workmanship. Mr. Dalgety has a highly-finished lathe, to which is appended, amongst other things, his useful chuck, which is capable of fixing perfectly central a wire of any sixe not larger than ${ }^{\text {f }}$-inch. Other lathes are contributed by Mr. Williams, with a new tool-holder and self-acting screw-cutting apparatus; by the Messrs. Knight, who have fitted up a complete amateur-worl cabinet, and by Messrs. Eades and Son. Messrs. Mordan, Sampson, and Co., send a new machine for tracing roseengine patterns. M. Hamann has a highly-finished amatenr lathe, adapted for turning either in metal, or wood and ivory, and provided with a variety of the usual chucks and apparatus.
"Planing Machines.-Six planing machines are to be found in the collection, amongst which, of course, those of the largest size are not sent, on account of their bulk and weight, and because their arrangements are the same as those of the medium size, of which excelleat specimens are exhibited by Mesars. Sharp, Parr, and Co., and Messrs. Whit worth, the latter sending two, of which one is provided with his revolving reversing tool, which enables the machine to plane both ways. The varietiee of construction by which these admirable machines are individually distinguished, although they are perfectly similar in general form and purpose, aford the most interesting studies for the engineer and mechanist. This remark may be applied with equal force to the slotting and shaping engines about to be described, and indeed to many other groups of machinea in the present collection. Messrs. Whitworth also send a small planing machine (2 ft .6 in . long) moved by a crank, arranged to gire a slow cutting action and a quick return; and Mr. Shanks a diminutive hand-machine for the use of opticians.
"Slotting Machines.-Of slotting and paring machines we find one large specimen from Messrs. Sharp, and two smaller ones by Messrs. Whitworth. One of the latter is provided with a complex bed for sustaining the work, composed of four rectilinear alides, and one rotating disc, by means of which any form composed of a combination of eccentric circular arcs, and atraight lines, may be pared and finished upon the machine.
"Shaping Machines.- The shaping machine, as it is called, in a kind of planing machine in which the tool is attached by proper slides and holders to the end of a horizontal bar, to which a reciprocating motion for cutting is communicated in the direction of its length, by a crank or eccentric. The work is either fixed to a horizontal table with longitudinal and vertical adjustmenta, or to an arbor, and the machine is employed for shaping levers and cranks or curved and plane forms in general; and as it is susceptible of many varieties of construction and detail; the six specimens which are here exhibited by several leading engineers will be compared with great interest by mechaniste. The largeat is contributed by Messrs. Parr, in which the tool has a stroke of 12 inches, and the bed is 7 feet long; two lesser ones are sent by Messrs. Smith, Beacock, and Co., and one by Messrs. Whitworth. Messrs. Sharp exhibit one of a very neat and compact arrangement, but not possessing all the capabilitioe of those just mentioned, and there is also one sent by Mr. Shanks.
"Drilling and Boring Machines.-There are six drilling machines of various sizes and capabilities; amongst them Messrs. Whitworth again appear, as the exhibitors of a large radiai drill, the framing of which may be selected as an admirable specimen of casting in iron. The arm of this machine is moveable through an arc of 190°. Messrs. Hick contribute a large radial drilling machine, the pillar of which is formed into a screw that allows the arm to be turned completely round, and raised to any required altitude.
"Excellent self-acting vertical drilling and boring machines, with various arrangements of the table, are exhibited hy Messrs. Whitworth, Smitb, and Co., Parr and Co., and Williams."

The details of the steam-engine department being given in a tabular form, do not admit of convenient extract. Of Hydraulic Machines, Jury X, say:-
"In reporting upon the Hydraulic Machines exhibited, it is impossible to refrain from adverting to the general neglect of those elementary principles of scientific knowledge on which the perfection of such machines always depends, and, in some cases, their whole usefulness in an economical point of view. The Exhibition affords positive evidence of the sacrifice of a large amount of capital, and of much mechanical ingenuity, due simply to the ignorance of certain acknowledged principles of hydraulic science. In adverting to this fact, the Jury cannot but observe that the success with which the principles of mechanical science, in their application to practical questions, are beginning to be cultivated in France, appears in the superiority of the French hydraulic machines. Thus their water-wheels have attained a perfection which is probably nowhere else to be found in the application of water-power. The total amount of such power derivable from the running waters of France, and applicable to manufacturing purposea, has been largely increased, by expedients of a scientific character. Among the most remarkable of these is the introduction, now almogt universal in France, of the curved float-boards of M. Poncelet in undershot and breast-wheels, and of the tur-
bine of M. Fourneyron. It is not however, only in the adopsion of new forms of water-wheels in France, that the improvement has been apparent, but in the better establishment and more skilful working of the old forms; such as are in use in this country.
"Of all such expedients for the economical application of water-power, it is a principle that, as far as it may be possible, the water should be received on the machine, without shock, and that it should leave it without velocity. For that there is power lost by the ahock of water is apparent from the fact that the whole power of a fall of water may be absorbed in the regervoir into which it falle, by the shock and commotion of its particles; and it is plain that if the water which works a machine leaves it with any velocity which might have been avoided, then the power which must have been expended in giving it that velocity has been thrown away. It is another condition, founded on the same principle as that of avoiding a shock of the water, that there should be no sudden contractions or expansions of the influent or effluent streams. It is, we repeat, on the acientific application of these principles that all expedients for the economical working of hydraulic machines are founded. We have, however, only to pass through the rooms of the Exhibition assigned to this class of machines to find them almost universally ignored.
"The record of this fact is important, as placing in an obvious point of view the necessity of other means than are now afforded for the scientific education of mechanical engineers."

The particulars of centrifugal and other pumps contain many valuable details, but we caunot profit by them on this occasion. Water-Meters are thus mentioned:-
"The labours of the Health of Towns Commission have given fresh importance to the invention of water-meters. To afford an unlimited supply of water, it is necessary that some means should be afforded of measuring the quantity each house consumes. If each house were provided with a reservoir, into which the water for its consumption were from time to time received, and from which it was distributed, this would be comparatively eary by means of a meter constructed on the principle of a rain-gauge, with a divided chamber and a tumbling shoot. The desideratum is, however, to measure the efflux directly from the pipes, under whatever pressure the service may be made, and to dispense with the reservoir.
"Five different contrivances for this object are exhibited. The Jury has, however, found noneso far perfected as to satisfy the conditions of a good meter. In the majority of them the measurement is made by the revolution of a fan, like a screwpropeller, fixed within the pipe, and driven round by the effuent stream. Among other objections to which this principle of construction is liable, is the fact that a considerable leakage may be obtained without giving sufficient motion to drive the fan.
"A water-meter, exhibited by Bryan Donkin and Co., is constructed on the well-known principle of the disc steamengine. Although this is free from the defects which belong to meters constructed on the principle of the revolving fan, it is open to those of insecure packing and unequal wear.

A Manual of Mathematical Geography; comprehending an inquiry into the Construction of Maps, with rules for the formation of Map-Projections. By Wllinm Huoheq, F.R.G.S. Second Edition. London: Longmans. 1858.
As this is a second edition, we can say little more of it than that it fully maintains the reputation of the first issue, and will be found highly useful by professional students, as giving the whole science of map drawing. The first edition of the work was, by order of the Indiau government, translated into Hindostanee for use in the Civil Engineering College at Rourkee and other achools.

The Engineer's and Contructor's Pocket Book for the yeart 1859 and 1853. London: Weale.
The Engineer's Pocket Book contains not only the usual tabular and standard information, but many new tables and additional matter of equal value. Of a work that had attained a standard character we can hardly say that it is much improved, but everything has been done to keep up the cbaracter of the work, and meet the requiremente of professional men.

The Studenl's Guide to the practice of Deoigning, Measuring, and Valuing Artifcers' Work. Second Edition. By E. Lacy Gabbett, Architect. Lundon: Weale. 1859-3.
This work has been in three competent hands. The manuscript was originally compiled by an architect and eurveyor of fifty years' experience; it was prepared for the press by Mr. Edward Dobson, a practical surveyor; and the second edition is undertaken by Mr. Edward Lacy Garbett. It embraces every branch of the building trade, with practical instructions for measurement, and with comments on construction from Mr. Garbett.

The Practical Lithographer. By Cybes Mabon. London: Mason. 1858.
We are glad that the subject of chromo-lithography is being taken up in earneat by the members of the profession, believing, as we do, that it wants but a alight degree of cultivation to place us on an equality with the Germans, those masters of the art. At the same time, there is no doubt but that we have im-proved-witnese the late "Blue Lights" of Messrs. Day and Son. The object of the author, as atated by him, is not to depreciate former works on the subject, but, by the collation of a variety of hints communicated to him from time to time by different professors of the art, native as well as foreign, to remove the difficulty felt by the beginner in obtaining the necossary information preparatory to the practice of Lithography. In this laudable endeavour he has auccoeded in such a manner us to leave nothing further to be desired by the atudent of his book.

THERMOMETER SCALES

Me. Janges Eures, of Lewisham, has forwarded to the Times a few easy formulm for the reduction or conversion of the three thermometric scales at present in use in Europe, from the one stated into that which is best known or understood by the querist. He says: "The hest of boiling water is described to be as 219° Fahrenheit, 80° Réaumur, and 100° centigrade; freezing point 32° Fahrenheit, 0° Rézumur, and 0° centigrade. In the absence of a comparative table, or of a thermometer gradusted into these three scales, 1 think you will ind the following rules more simple and easier to perform, by the first three rules of arithmetic-namely, addition, subtraction, and multiplicationthan by the decimal formulm given in Dr. Ure's 'Dictionary of Chemistry':-

1. To reduce or convert the degrees of Fahrenheit into those of Réaumur:

$$
\frac{F^{\circ}-32^{\circ} \times 4}{9}=R^{\circ} ;
$$

because Fahrenheit's soale is equal to iths of Kéaumur, and Réaumur $=$ ths of Fahrenheit.
9. 'To convert the degrees of Réaumur to those of Fahrenheit :

$$
\frac{\mathrm{R}^{\circ} \times 9}{4}+32^{\circ}=\mathrm{F}^{\circ} .
$$

3. To convert the scale of Fabreuheit's thermometer to that of the centigrade :

$$
\frac{\mathrm{F}^{\circ}-38 \times 5}{9}=C^{\circ}
$$

4. To convert the gcale of the centigrade thermometer into that of Fahrenheit:

$$
\frac{\mathrm{C}^{\circ} \times 9}{5}+32^{\circ}=\mathrm{F}^{\circ} .
$$

5. To convert the acale of Réaumur's thermometer to that of the centigrade, and vice versa, we have but to remember that 80° Réaumur is equal to 100° centigrade, and consequently is relatively as 8 to 10 , or as 4 to 5 .

In Russis they mostly use De 'IIsle's thermometer, which marks the boiling-water point as 0° (zero), and divide the scale downwards to the freezing point into 150°. This scale can be similarly reduced, or converted into those of Fahrenheit, Réaumur, and the centigrade, but, as it is so rarely quoted, examples are unnecessary."

ON MARBLE AND STONE WORK.

By Prof. D. T. Angred, M.A., F.R.S.

[Eshitition Lecture delivered at the Society of $A r t s$, London.]
The manufacture of marble and stone, except in the case of inlaid work, offered little that is new, and no deviation from the long-known and eatablished methods seems to have been illustrated in the Exhibition. Many of the more simple forms, both atraight and round, are easily cut and polished by machinery, which may, of cuurse, be driven either by water or steam power. The latter has been effectively employed, both in the neighbourhood of London, and elsewhere, to reduce the cost of marble work. The harder kinds of stone, particularly the jaspers of Rusgis and Norway, are, however, much more difficult to cut, and in some cases involve a vast expenditure of manual labour, combined with much ingenuity; but there seems to be no great amount of cultivation or skill required to produce those singular monuments of patience or perseverance, of which the carved jades of Chins and India, as well as the jasper vases of Russia, are alike examples. These mere results of the constant repetition of minute touches, so characteristic of a people in a state of inactive civilisation, are curiously contrasted with the granite obelisks and columns prepared for the occasion, and brought into their places with almost unequalled rapidity and precision, by some of our own exhibitors; and they are likely to remain unimitated, not only because we have not in Englaud any materinl so hard as some of the Siberian rocks, but because there are no means of obtaining sufficient human labour at a low rate of wages to allow of the economical production of such objects. It occurred to me, however, in examining the collection of jades and agates from India and China, that for certain purposes we might with advantage make use of the patienceand cheap work of the Eastern people, by sending over models of various articles that it would be deairable to have constructed in the hardest stone.

As the most numerous and varied examples of sculptured stone and marble work not inlaid were, as might have been expected, of English make, and as this cource of industry is much followed amongat us, in consequence of the great variety and abundance of the material with which we are provided by nature, it will be well to commence with a sketch of the condition of the manufactures in this country, and the probable effect of the Exhibition in respect to them.

Very few countries exist in which so many and such excellent materials for construction of so varied a character exist in so amall an area, and in such great abundance, as England.
Several very distinct kinds of limestone and magnesian limestone, both uncrystalline, and partially or completely crystalline; several kinds of slate adapted for different purposes, of the best quality and in almost infinite abundance; numerons grits and sandstones, some of them the finest in the world; different kinds of granite and porphyry, including several of excellent quality and almost perfect durability, besides great beauty; these may be met with at the surface in varioss places, may be quarried readily, at little cost, and may generally be conveyed away either by land or water-carriage at small expense. With these advantages it might have been expected that stone-work would be met with in perfection in all our town-that our public monuments would be noble illustrations of this source of national wealth-and that we should have only too many proofs of the skill of our workmen and the taste and genius of our architects. This, however, is, as we all know, by no means the case. Our metropolis and every town in our island abound with illustrations of material, badly selected, badly worked, improperly exposed, and in every sense discreditable.

That there are numerous exceptions I would not for a moment deny, but the rule is as I have said. To save a very small proportion of the first cost, some cheap stone is commonly selected for public as well as private edifices and for public monuments; little or no pains have been taken, at least till very lately, to learn the true relative value of different materials, and thus, in the course of time, we find ourselves surrounded with specimens whose greatest use is that they may serve as warnings, if not as examples.

As far as the Exhibition could be said to represent the present state of this country as to the use of material for construction, it was not, however, unsatisfactory, and indicated an increasing demand for good stones. The valuable grits from Yorkshire and Edinburgh, the yet more valuable and beautiful granites
and porphyries from Cornwall, Aberdeen, Peterbead, and elsowhere, and the paving-flags from various previoully known districts, were all not only illustrated, but well and effectually shown; but of the English limestones scarcely any were to be seen, except as raw material. The case was, however, quite different with regard to slates; these being not only well, but lavishly, sent from all the principal sourcea whence the material is obtained. A great amount of novelty was shown in the application of alate, and some modern and very economic adeptrtions received much and deserved notioe.

Although the English limestones were by no means well illustrated, and there was not a single exhibitor of Caen stone in any form from France, this beautiful and useful material was well represented in the English mineral and archæolugical courta by several monumental works-a font, a chimneypiece, and other well-chiselled and admirably designed objecta. We mention these as highly creditable to the English workera in stone; bat the material is universally acknowledged as one of the fineat known for architectural and monumental work, and genarally for internal decoration where stone is required.
The use of marble in England has not hitherto been so considerable and extensive as the abundance of the common kinda renders desirable and possible. Every one must have noticed the comparative abundance of marble in slabs and ornamental house furniture, in most parts of the continent of Europe, and its rarity in English houses of the middle clacses. There is nu sufficient reason for this; and it may be hoped that, before long, both Derbyshire and Devonshire will be greatly benefited by a very large increase in the consumption of a material of which they possess an inerhaustible supply of admirable quality, and which they can furnish at prices which will, I am satisfied, command attention. In order to illustrate in some measure the state of the case, I have obtained from a marble-works at Bakewell (the proprietors being the Messrs. Lomas, who make use of water power and machinery for the principal part, not only of their fat, but round work), a number of apecimens of the ordinary marbles of Derbyshire; and I am enabled to atate that chimneypieces of the common grey kind, of good form and properly finished, can be prepared now at a price not more than 158. for bed-rooma, and 908 . to 30 s . for ordinary sitting-rooms, while slabs for wash-stands and other purposes may be obtained at curresponding rates. Messrs. Lomas have sent for the museum of the Society, and for constant reference, a series of excellent samples of the different marbles. I am able to state that the marble trade in Derbyshire is increasing, but there is nothing like the activity that ouglit to prevail in furnishing a substance so cheap, clean, durable, and elegant.

The taste displayed by the exhibitors of marble work for furniture was, on the whole, inferior and unsatisfactory, especially in those cases where there appeared the amalleat protence of originality or style. Thus the marble chimneypieces and the forms of slabs were, with few exceptions, either overloaded with ornament or badly deaigned for the kind of decoration, or else ill adapted for the purposes for which they were intended. I feel obliged to include in this somewhat sweeping censure most of the marble and stone chimneypieces, whether of English or foreign material, sculptured in England, and sent by native exhibitors.
Amongst the strictly decorative objects constructed of marble or such-like material, the variety was considerabie, and the taste in some cases decidedly good, though rarely original. A comparatively new material also was exhibited, bitherto little used for general purposes, although greatly admired and extremely beautiful. I allude to the Cornish serpentine, a apotted marble of red or green colour, of which were constructed a pair of obeliska, a font, candelabra, and other articles, placed in a very prominent position. This serpentine, and the steatite from the same district, offer many advantages, from the facility with which they are cut and the brilliancy of their greens, reds, and other colours; but they are very apt to show ugly white streaks, and can rarely be obtained in large slabs of good quality. They are worked for the most part at the same establishments as those which cut and polish the finer Cornish granites; and in justice to the exhibitors of such objecte, it must be said, that the forms selected are not only good in themselves, but, on the whole, well adapted to the objects manufactured-a matter of no little cousequence in the application of a substance admitting of but limited use. The manufactures of alabaster from Eng land were in no sense remarkable.

The black marble goods sent from Derbyshire were worthy of particular notice, not only as illustrating the use of a material probably the best of its kind to be obtained at present in Europe, but as being a really valuable key to the state of the local and general taste in decoration among the higher class of purchaears. With little reason from the expense, either of the material or the labour bestowed upon it, this black marble is not common, and is made for the most part into forms s o monstrously bad that it may be matter of congratulation that this is the case. It is true, indeed, that several good illustrations of its use may be found readily in Derbyshire, both simple and inlaid; but theae are chiefly large and costly, owing apparently to the want of demand for thinge really excellent on a moderate scale. The most important uses at present are in the mannfacture of the finer kinds of dining-room chimneypieces, and in the tables to be inlaid in the Derbyshire imitation of Florentine mosaic. 1 am happy to state, that in a very recent visit to the marble manufactories of Derbyshire, I have seen some admirable and quite novel forms introduced, which are, there is reason to believe, amongst the early results of the Exhibition; and I feel certain that much good has been done already in this quarter, which requires only to be encouraged to produce greatly improved models. Good black, as well as coloured, marbles (especially the fine green varjetyfrom Connemara), are obtained abundantly in some parts of the west of Ireland, and would fully justify an endeavour to establish - manufactory in that district.

By far the most remarkable and ornamental among the marble manufactures of England is that imitation, or rather applieation, of the method of inlaying, long known as Florentine mosaic, which was introduced into Derbyshire some years ago, and has since been greatly extended. It affords now an important and increasing employment to a considerable number of ingenious workmen.

The inlaid work of Derbyshire is performed on solid slaba, generally of black marble, on which the forms to be inlaid are firnt sketched in outline, and then cut out to a small depth by proper tools. The marble to be inlaid, having been first sawn into thin veneers, is cut into the required shapes by saws and files, and cemented into the recess prepared for it, either by a sof coment, or by shell-lac. The whole surface is afterwards polished together. From the nature of the method it will be geen that the chief iugenuity consists in the selection of proper patterns, and their adaptation to the marbles which can be obtained for inlaying; and there has hitherto been very little attempt at originality in so preparing designs as to be fitted to the exact conditions obtainable in the present state of the manufacture. Imitations of Florentine work (a very different manufacture, as I shall presently explain), copies of Roman pavements, usually in clay tessera, and the most unmeaning geometrical forms, have hitherto been the chief results: but here again I am happy to be able to point to an unquestionable improvement arising from the Exhibition; and I look forward to the introduction of taste and ingenuity that will, before many years are over, elevate the manufactures of Derbyshire into a very distinct and prominent position.

I cannot here omit the name of Mr. Grüner, who supplied the pattern for an elegant border to a table exhibited in the Fine Arts Court by Mr. Woodruffe (the property of His Royal Highness Prince Albert), and who has aince then, on learning moure accurately the nature of the material and the details of manufacture, provided another design of singular beauty, which promises to be in the highest degree successful. It is right to eay that the Derbyshire mosaic is by no means costly compared with other similar works, and may easily be obtained at prices listle, if at all, higher than those commonly asked for imitations of Florentine work of far less artistic or mechanical merit.

Beside the Derbyshire mosaic, there is a somewhat similar bat inferior manufacture carried on both in Derbyshire, and Devonshire, and in many other placen, in which geometric and other shapes of marble in veneer are fastened by cement on a flat alab of alate or marble. Numerous specimens were exhibited, but, with the exception of a large and very beautiful table of Devonshire marbles, there is no need that I should refar to them in this place.
The manufacture of fluor spar (locally called Blue John) into rases and other ornaments is another source of occupation to a limited number of persons in Derbyshire. The spar is generally of a deep purple tint, and rarely clear, but, on exposure to a
moderate heat, the tint becomes much less muddy and passen into a pink, and would in time be discharged. With proper care, the commoner kinds are thus rendered available, and are largely used in the construction of ornaments.

In concluding a reference to the mosaic work of England, I might refer to the use of malachite, were it not that this material is so much better, as well as more largely, employed in Russia, and that its application with us is rarely to be justified, owing to the bad selection of objects manufactured of it. Many other foreign marbles, and a number of pastes and glasseg, are also used from time to time where particular colours are required. Even shell is sometimes employed in the same way. There can, I think, be little doubt that this practice of resorting to artificial stone, generally of different hardness from marble, is unworthy of the artist, and in every sense undesirable. By taking advantage of the stores that nature has provided in foreign countries, much may certainly be done, but the limitation of the pattern to colours and markings that can be obtained is the true mode of escape from the difficulty. Few things can be more incongruous or in worse taste than the insertion of a piece of malachite to represent a leaf, or of a fragment of shell with nacreous reflections for the petal of a flower. These are faults which may still be noticed in Derbyshire work; and I fear the error of taste is at least as great in the purchaser as in the mosaicist.

I pass on now to the stone and marble manufactures of other countries, and amongst these Italy claims the first notice, not less for the exquisite beauty and taste of many articles than for the relative importance which these products bear to the whole group of objects exhibited. Of stone-work, indeed, Italy sent hardly any examples, and these few were by no means remarkable; but in marble of all kinds, alabaster, spars, and mosaics in pietre dure, the series was highly interesting, though the absolute novelties were very fer. Of all European countries Italy is the most rich in available marbles, and the variety obtainable seems inexhaustible; but the marbles of other countries are also there worked, and, perhaps one of the most perfect specimens of marble work that has been seen in this country was the vase of Egyptian alabaster (a peculiar form of carbonate of lime) exhibited in the east nave, near Rome, whose rich and soft tint of colour was only surpassed by the beanty of the form into which it was chiselled and its admirable work manship. The whole of this vase was cut from a single block of stone, and the quality of the stone itself was unequalled.
Several fusts, or portions of columns, of brecciated and other marbles, several slabs, more or less completely formed into tables, and a number of less finished specimens, besides some figures that were intended to belong rather to the class of Fine Arts than that of Mineral Manufactures, bore testimony to the importance of the marble trade in Italy, and were worthy of study. A large vase of true alabaster, executed in Volterra, was a noble instance of the application of this material; and there were also some other illustrations of its use in a pair of candelabra and other articles, not so well adapted or so elegant.
But the most remarkable of the Italian worke in marble and stone were the specimens of Florentine mosaic. This art consists in the preparation of a very thin slab of black marble, on whose surface is first etched some design to be inlaid; the marble is then cut away from these portions, and prepared stones in a finished state are inserted with the greatest care. The stones thus inserted are not marbles, but chalcedonies, agates, and other siliceous pebbles, of which a singular variety occurs in the bed of the Arno; but with them are mized lapis lazuli, jaspers, and some other foreign minerals. The hardness of these being so much greater than that of the marble, the polishing cannot be effected after the inlaying is completed, and the stones being very difficult to work, and often of small size, the whole manufacture is essentially different from that followed in Derbyshire. The inlaid plate, when completed, is cemented on a alab of black marble, and may then be finished off. True Florentine mossic is thus a far more costly manufacture than that of Derbyshire, and is also much more durable. The city of Florence has long been justly celebrated for several manufactories remarkable for the simple elegance of the designs inlaid; and the specimens exhibited, although offering little that is new, fully kept up the high character that has been obtained.
In speaking of Italy I have not included the northern provinces, which are politically Austrian. These sent a number of works in stone and marble including amongst them a variety of
marble chimney-pieces, more remarkable for their elaborate design than for their fitness or adaptability. From Austria proper the variety of marble and stone manufactures was inconsidersble, and the degree of originality very small.

From the island of Malta (blmost a part of Italy in manufactures of this kind) there were several groups of objects sent for exhibition, proving the anxiety of some of the manufacturers to take a high position both in stone-work and marble mosaic. The former consisted of numerous carved vases, worthy of careful examination and much praise, while the latter included excellent specimens of a modern adaptation of the Italian work in pietre dure, the stones not being harder than marble, and the whole veneered on a slab of slate or stone-generally the latter. The value of this manufacture may be regarded as intermediate between that of Florence and the better kind of Derbyshire work, but there was decided originality and some merit in the designs, a reference to the material being especially observable. It may be well to mention that the materials of the Malta tables were not generally from the island, with the exception, I believe, of a very beautiful dead white limestone, which might beintroduced with great advantage into England.

France was by no means remarkable for the stone or marble manufactures sent to the Exhibition; and, owing to the utter want of all arrangement either in the building or the catalogue, it was equally dificult to discover and refer to any object from that country that one might wish to study. The chimneypieces were the only marble manufactures of the kind having any claim to notice, but these were in no way remarkable for excellence.

Belgium is rich in marbles of ordinary quality; but with a few exceptions, in the case of some fine black marble, and a large and well-executed chimneypiece of Carrara marble, there were few important works in this department of manufacture. A very well-constructed pinnacle, in a hard even-grained stone of good colour, may be mentioned as an exception. Germany also offered but little, although a few specimens were sent of the Silesian marbles, which include some of great beauty and others of considerable but unequal hardness. Sweden and Norway exhibited very fine specimens of granite-polishing and inlaying, while Spain and Portugal sent many remarkable and beantiful samples of material, but nothing in the way of finished manufacture that requires special notice.

Far different, however, is the case of Russia, which offered, as has been already hinted, some illustrations of an extent of human labour almost fabulous in modern times, and some examples of a gorgeous and truly Oriental magnificence in the veneered malachite work so abundantly shown. The former consisted of a few vases of a jaspic stone of the most extraordinary toughness and hardness, of which we can masy little more than that the best-tempered and hardest steel tool turns aside from it without producing any impression, although the form and decorations of the vases exhibit an amount of manipulation and undercutting, and are executed with a freedom which could acarcely have been surpassed if they had been made of alabaster. The total absence of any useful reault, and the very small amount of any kind of beauty, must, however, be regarded as greatly diminishing the interest felt in this singular mannfacture.

The malachite work for which Russia has been long celebrated was never seen in western Europe in anything like perfection until the occasion of the Exhibition induced the princely owners, both of the mineral and the manufactory, to make extraordinary exertions in order to illustrate this very remarkable fabrication. Single specimens, some of them of large dimensions and of great value, had been occasionally sent as imperial presents to various distinguished persons, but these were for the most part put together before certain recent improvements had been iutroduced, and they had never been exposed to minute and careful examination. This part of the Russian exhibition wus, in some respects, more remarkable than anything else among the mineral manufactures; and if an intention, at one time expressed, of preparing a malachite apartment had been fully carried out, the effect would, doubtless, have been greater than it was.

I need not detain you with any account of the raw material (blue carbonate of copper) made use of in this manufacture. As a substance available for veneering it is found chiefly in a single locality in Russia, in lumps of moderate size, rarely so large as a child's bead, and is cut for use into thin slices, which are fastened on a copper, iron, or marble surface, prepared for the particular use designed. Formerly the slices were with etraight edges, and were put together without much reference
to the continuity of the natural lines of veining; bat, by a very ingenious set of contrivances of modern date, most of the surfaces are now curved, and not only fit into corresponding earves, but the veining is made continuons as in nature, 50 that extremely simple but elegant patterns are produced, giving an appearance as if the whole of a large surface were of one piece. The offect is greatly heightened by a peculiar cement, made of broken fragments and powder of the malachite itself, imitating accurately a natural breccia frequently occurring in the lampa. The rounded and other surfaces are all cut out of the solid block by saws constructed for this purpose; and the labour incurred in making any large objeot, together with the enormons mount of waste in the raw material, combined with the original costliness of the stone, render the expense very considerable. The prime cont of fine malachite at St. Petersburgh varies from 12s. to 16 . per pound avoirdupois, according to the quality, and at least two pounds are wasted for everr pound used. Estimating the thickness of the vancers used in the manufacture of the duors at one-eighth of an inch, and the surface covered at about 120 square feet, there must have been required for these objects alone at least $\mathbf{3 0 0 0}$ pounds weight of rough malachite, the value of which in the country could not have been lese than 20001, sterling, exclusive of all cost of labour.

For some time past there hat been a manufactory at St. Petersburg, originally conducted by Florentine workmen, and repeating in pictre dure many of the well-known Florentine patterns, cut from pebbles obtained even from the Arno itself. Samples of imitative Italian work from this manufactory (now conducted by native Russians) wen very creditable, but there was also a novel modification, more blriking, if not requiring so much skill. I allude to the box or jewel-case belonging to the Empress of Russia, remarkable for the presence of selected stones in high relief, represented by natural peculiarities of colour, texture, and appearance, such fruits as pears, grapes, currants, \&c. Nothing could well be more pleasing of ís kind, but at the same time the dificulties were rather those surmounted by patience than genius. Tha design was, however, very pleasing.

From extra-European countries, marblas and polished stones, as well as marble mosaica, were only numerous and remarkable in the case of India, although from China also were some very extraordinary works, apparently construoted of jade. The Indian marble work was admirably illustrated by a $e t$ of garden chairs, presented to her Majesty, which are well worthy of notice for the extreme delicacy and finish observable thronghout, and the perfection of the mechanical part of the work. The design in this case is perhaps hardly equal to the execution, but there is considerable elegance in the pattern. In a smaller way, but involving much labour, I would remind you of the numerous articles manufactured in agate, cornelian, bloodstone, jasper, and jade, which employ a considerable population at Cambey, and which might certainly be rendered available for many purposes in this country. I cannot omit noticing also the lattice work in stone, of which there were some extremaly delicate and beautiful examples exhibited.

But chief amongst the Indian mineral manufactures must be mentioned the remarkable and exquisitely delionte mosaice in hard stone, of which it is difficult to know which most to admire and wonder at, the design or the execution. T'he designs are generally free, simple, fowing, and, as befits objects generally of moderate size, they are small and delicate. It would seem that this manufacture is of very ancient date in Indis, but it is cortainly carried on now as well, and nearly after the same fashion, as it was at least $t w o$ centuries ago; and according to Dr. Royle it is chiefly confined to one district in Northern India. It is perhaps to be regretted that advantage has not been taken of this elegant manufacture to ohtain ornamental furniture of various kinds for the English market.

The articles made of jade sent both from India and China were chiefly ornamental, and in most cases appeared to be merely illustrations of great mechanical difficulty overcome. Thus plates, bottles, cups, pots, boxes, and other things, were inlaid with rubies or emeralds in singular profusion, grotesque figures were represented, and small models executed in this material. It would be well if suggestions made through the proper quartermight encourage a somewhat more useful and practical application of this industry.

RAILWAY TRAFFIC.

Ir appears from the report of Captain Simmong, R.E., of the Railway Department of the Board of Trade, that the number of passengers travelling on railwaya in England and Wales, which, in 1850, amounted to $88,514,435$, reached $70,471,179$ in 1851, abowing an increase of 20 per cent., while the receipts from those passengers rose from $5,888,6031$. to $6,959,612 l$., being an increase of 18 per cent. The mean length of railway upon which this traffic was conducted had increased in the same period only 6.6 per cent. It appears that in the preceding years for which returns of traffic have been prepared the averape annual increase in the length of railwaya in England and Wales had been 81 per cent., being more than three times the rate of last year; and that while the average number of passengers has increased annually 11.03 per cent., the receipts from passengers has increased 6.4 per cent. Hence it would appear, that although the railway communications in England and Walea, have in the past year, increased at a rate much below the average (being about one-third), the number of passengers has increased at a rate nearly amounting to double the annual averafe, and the receipts derived from, them at nearly three times the ordinary rate of increase. The number of passengers in the last year has exceeded the number which would have been conveyed by railways, if they had only increased at the ordinary rate, by $5,502,602$; and the receipts from them in the same manner by 687,138J. This increase is in a great measure to be attributed to the vast facilities for travelling afforded to the public by means of excursion trains, which in 1850, had received a great impulse, but was developed in an extraordinary degree in the past year during the Exhibition. The mean length of railway open for traffic in Scotland during the year has increased 6.2 per cent., while the number of passengers has only increased from $8,844,191$ to $9,986,313$, or 4.9 per cent., and the receipts from them from 600,0821 . to 622,5491 ., or $3 \cdot 7$ per cent. The mean length of railway open for traffic in Ireland during the year has increased $12 \frac{1}{f}$ per cent., while the number of passengers conveyed has only increased from $5,495,796$ to $5,639,603$, or $2 \cdot 5$ per cent. ; the receipts from them having risen from 339,0761 . to $\mathbf{3 6 5 , 6 0 3 h}$, or $7 \cdot 8$ per cent. In England and Wales the receipts for goods have risen from $5,480,7711$., to $6,044,1831$., or $10 \cdot 3$ per cent.; in Scotland from 791,1761. to 814,053l., or $18 \cdot 8$ per cent.; in Ireland from 174.959l. to 198,4591 ., or $19 \cdot 4$ per cent. The general results of trafic over all the railways in the the united kingdom show that the aggregate number of passengers conveyed in 1850 amounted to $92,854,42 \%$; in 1851, to $85,391,095$; being an increase of $12,536,673$, or $17 \% 2$ per cent. The gross receipts from passengers in 1850 amounted to 6,897,761l.; in 1851 to 7,940,764l., showing an increase of $1,113,003 L$, or 16.3 per cent. The gross sum received for the transport of goods amounted, in 1850 , to $6,376,907 L$, and, in 1851, to 7,056,695l., showing an increase of 679,7881 ., or 10.6 per cent. The gross revenue of all the railways, arising from traffic of all descriptions, which in 1850 mounted to $19,204,6681$., amounted, in 1851, to $14,997,4596$., or very nearly $16,000,000 l$., showing an increase of $1,792,7911$., or $19 \cdot 5$ per cent.

RAILWAY NOTES.

Capt. Galton, R.E., Mr. Bass, C.E., and Mr. Ogilvie, contractor, have gone over the works of the Farnham and Alton new branch of the South-Western Railway. The line is nine miles in length, and will be immediately opened for trafic.The Liverpool, Crosby, and Southport Company has just completed and opened their extension line from Birkdale to Southport, the watering-place of the manufacturing district. -On the Soth of June the Newport and Pontypool Railway was opened for public traffic, Captain Laffan having on the previous day inspected the line, and pronounced it in a fit state for traffic.

Folland and Belgium.-A convention has been concluded between the governments for the junction of the railways of both countries. The great artery, which beging at the port of Antwerp, will be extended to Rotterdam, and there communicate with the Dutch railways. The Bavarian government has offered an indemnity of $1,400,000 \mathrm{f}$. to the administration of the Palatinate Railway, on condition that it will complete within a ghort delay the works of the Ludwigshafen and Wissemburg Railroad. It is in that direction the Strachurg line is to be prolonged, on the side of France, towards the frontier.

Austria.-The railroad from Szolnok to Szegedin is nearly finished, and it was decided that the line between Sroinok and Debrezin, by way of Puspok-Ladany, should be completed as soon as possible. Plans for railways between Grosswardein and Puspok-Ladany, and between Sxegedin and Temesvar, are being prepared. The military frontiers, Agram and Warasdin, will probably be brought into immediate connection with the metropolis by means of branch lines communicating with the great Trieste-Vienna railway. It is intended to raise a loan for the constrnction of railroads, which are to be given as security to the mortgagees.

Turkey in Europe.-The projected English railroad through the northern Turkish European provinces excites much attention there, and is pronounced by the Wanderer to be a matter even more important than the Egyptian Railway. It appears that six English engineers have already examined the country between Constantinople and Belgrade; and in a detter from the latter city to Agram, a hope is expressed that the Servian government will also construct a line from Alexinac (probably Alexinitza, near Nissa, on the western frontier of Bulgaria) to Belgrade. Four English vessels, laden with wrought and sheet-iron, are said to be on their way from the Main to Vienna.

HOTES OF TEX MONTE.

Thames Embankment.-An act of parliament of the last session empowers the Commissioners of Public Works to construct an embankment and public road on the bank of the Thames from Vauxhall Bridge to Chelsea Gardens. Why not extend it so as to take in Chelsea as far as Battersea Bridge or Cremorne Gardens? -we should then have one section of the river completed.
St. Luke's Church, Chelsea.-A very elegant stained glass window has been recently put up in St. Luke's Church, Chelsea, from the design of Mr. Gibbs, of Camden Town. The top (the part to which we wish to direct public attention, represente the Twolve Apostles, the figures being alike remarkable for truthfulness of desigu and richness of colouring. The work is in thorough keeping with the elegant architecture of the church it ornaments, and will repay a visit from those interested in works of this character.

Porter's Patent Anchors.-The Privy Council have granted an extension for six years of this patent, granted in 1838. Several witnesses were examined to prove the superiority of this anchor-as improved by Mr. Trotman, a nephew of Mr. Honiball (the assignee of Porter's anchor), and who offered no opposition,-over ordinary anchors. The peculiarity consisted in its strength as compared with its weight, the tenacity with which it held in the ground, the facility with which it came into its position, its non-liability to become fouled, and its convenience in stowage and transport. It is used in upwards of 150 men-of-war, and by several of the large steam companies. It appeared that hitherto there had been a loss of about $15,000 \%$. in working the patent. The Attorney-General tendered no opposition.

Berrington's Knapsack.-The Privy Council have recommended an extension, for five years, of this patent, granted in 1838. They expressed surprise that so great a lapse of time should have taken place without the knapsack being adopted in any one of Her Majesty's regiments.

Paris.-The ceremony of laying the foundation stone of the grand gallery which is intended to connect the Tuileries with the Palace of the Louvre, parallel to the Rue de Rivoli, was performed on the 25th.-The French government has sent M. Emile Chevalier to England, for the purpose of inquiring into the construction and operation of the model lodging-houses.

Cape Town.-An excavation for the accommodation of the fast increasing shipping at this port, has been for some time in contemplation. A suitable position has been pointed out near the Chavonne Battery, and it is proposed to procure, as speedily as possible, plans, estimates, \&c., for the satisfaction of the public and the formation of a company, should it be determined to execute the work as a private concern. In connection with this work, and simultanenusly with it, the breakwater, so long determined on, should certainly be commenced. The stones excavated to form the docks would be used in the construction of the breakwater. In the meantime, some additional convenience for coaling the steamers is urgently required.
 the object of which is to complete the chatn of canal commuatcation between the Zuydarsee and Meppen, on the river Ema, in Henover, and to purchase about 12,000 scres of valuable pret land in Holland. This communictiton is to commence from the Zaydersee, to run up the Hver Yasell, thence by capal to Z wolle, from Which the Dedema Canal extends as far at Gramobergen, withln a short distance of the frontier cown of Kcerordon-thel ocal authoritlen of whicis place have Foted the requisite sum to complete the line of communication to that town. The total cost of the canal and the orher aecemary outlay le eatimated at sbout 125,000 . By this project, two hundred miles of tediour and dangerone navigition will be taved to the shipping of Hanover, Which bring the tlmber and other produce of that country
Damube Nawigation.-M. d'Eichsen, directorin-chief of the Dannbe Niangation Company, han left Vienna on a vialt to Piance, England, Scolland, and the north of Germany, in order to study the syatems of constructing veatols and steam-englnes Which have been adopled In those countries, with the intention of applying them to the numerous steam and salltog vassels which the company Intend to hive ballt.
Twonoping in Funqury,-A tunnel, 10 English miles long, leading from the shores of the तfver Gran to tbe mines in the Schemaltser Hilis, if now advancing towarda completion. It Is intended to anamer the double purpote of a channel to dran of the water accomulating in the worls, and of a rall way to tranaport the ore from the malnes to the river.

Separation of Gold from Aramioal Pyriter,-The mines of Relchenstein, Blleala, bandoned for more than five centuriea, have been recently opened with advantage, in consequence of the application, on a large scale, of a meibod invented by Profecaor Plather, and adopted by Mr. W. Guetter, for separating gold from the waste of Irtenical ores. The ore at Reichenatein le an arsenical pyrites, containiug about 2 o gralns of gold ta the ton. The ore it roated in a reverberstory farnace, surmounted by a larre condensing chamber, in wblch the arsenlous actd is condenced as fan anit volatilieed. There then remalns, on the foor of the furnace, oxide of iron mired which a certala quantlity of artenic, together with the whole of the gold. This is piaced a a venael, so arranged that a current of chlorine can be pasced through it, by which the gold aod iron are taken up, and afterwards separated from the residnum by the ad of a certain quantity of water, aud the gold la aftermarda precipitated from this colution by anlphuretted hydrogen. To prevent the sdmixture of iron at this stage, a small doee of hydrochloric acid is added to the olullon before the suipharetied hydrogen is introduced. The auriferous compound baving been teparated from the Hquor, is wathed and heated in en open porceian crusible, to drive of the maphur by which the gold in rednced to the metailic atate by fusing in the usua manater hat ample and Meichenstein Mine, foqualiy applicable to the
near many other old worke.-Mining Jowral.

HIST OE NTV PATMNT:

gmanted in england yrom June 24, to July 22, 1852.
Six Months allowed for Encolment wnless otherwise expressed.
Samuel Lusty, of Blrminghnm, for improvements in mannfacturing wire into woven Rebics and plas.-June 24.
Thomas Bell, of Don Alkall Worts, Sonth Shields, for improvementa in the mann. facture of sulphuric ncid,-Jupe 24.
Joweph Morgan, of Manchester, patent candle-machiee manafacturer, and Peter Gakell, of the fame place, gentleman, for tmprovements In the manufactnre of can-dlem.-Jnne 24.
Charlen Jamen Wallt, of Clarendon Chambers, Hand-court, Boiborn, civil engineer and mechanical draughtaman, for certala improvements in machinery for crashing; pulverising,
Thomse Batey, of Mancheater, cotton-iplinner, for improvemente in mechines for
Thomas Batey, of aincheater, cotion-ilk, and other fibrous materials. June 24 .
John M"Conochle, of Iverpool, engineer, for improvements in locomotive and other team-englpes and boilers, in rallways, riliway carriages, and thelr appurtonancem; lso in mechinery and apparatns for producing part or parts of auch lmprovemente. -Jane 24.
Thomat Allan, of Bdinburgh, angtweer, for Improvementa ta prodacing and applying electricity, and in apparatuig employed thereln.-June 24.
Thomas Hoblyn, of White Barn, Hertford, eaquire, for cartain Improvements In the art of naviction.-June 28 .
Matthew Augustus Crooker, eagtaeer, of New Yotis, America, for certala imprevements in paddies for steam-verselin.-June 20.
James Edward Coleman, of Porchemter House, Baytwater, geotleman, for Inprovemente in the application of ladia.rubber and grita-percha, and of componade thereof. -June 28.
Dancan Mackeazie, of London, geatleman, for certain Improvements in machinery and apparatas for retiding in and transferring dealgas or pattarna, and for cuttiag, punching, and nambering, or otherwise preparing, perforsted cards, papers, or other materials used or suitable in the mannfacture of syured textile fabrics by Jacquards or other weaning looms or frames.-June 29.
Laesre Prancola Vandeiln, of Upper Charlottestreet, Fitzroy-square, for improvemeats in obtalining wool, sllk, and cotton from old fabrics in a condition to be agaln used. (Partly a communicetion.)-June 30.
Rlchard Horanby, of Spittlegate, Grantham, Wacolo, egticaltural-implement maker, for improvements in mechinery for threihing, ghakiag, ndding, and dreadig ker, for impron
corn -July 8.
Edward Clureace Shepard, of Duke.street, Wextminster, geulleman, for Improve-
 ments in electro-magretle apparatut saitable for
heat, and of lighe. (A communicstion.)-July 6 .
Kartyn John Roberta, of Woodbank, Bucke, gentlemen, for improvementa in the production of electric currenty, in obtaining light, motion, and chemical producte and frects by the arency of electricily, part or parte of which Improvemeats are also applicable to the manufacture of ecide, and to the reduction of oret.-July 6 .
William Tanaer, of Exeter, leather-dreaser, for lmprovemonte in diesaing leather. - July 6.

Edward Meleland Stapley, of Chempside, for improvements in cutting movidings, grooves, tongues, and other forms, and in planing wood. (A communlction.)-Juip 6 . Mowen Poole, of the Patent-ofice, London, gentleman, for Improvements in reap-
 Ing and mowing machines, sud in puiveriang Lemoine, of Courbevole, near Parts, chemint, for an improved componition applicable to the purposes of varnish, to the waterprooing of fabric, to the manufacture of transparent fabrics, to the fining of colowrs, and to other usefal parposes. \rightarrow July 6 .
 in milis fur erindiag. Jnly 6.
James Higetns, of Salford, Lancenter, mechlaomater, sod Thoman Scholelat Whit orth, of the of me place, mechanic, for certaln lmprovemettin in mechinery or

Harold Potter, of Over Darmen, Lancanter, carpet manufacturer, and Mationer Smith, of the ame place, manager, for certain improvemente is looms for wearinge and in the manufacture of terry fahricu.-Jaly 0 .
John Henry Johnion, of LIncoln's ton-Gilds, Midalenex, and of Glemgom, North Brtaln, gentleman, for certaln Improvements in cteara تagiaes. (A commaniontions) -July 6.
Alfred Hency faullie, of Parls, sculplot, for an Improved plantie eomponition appits able to manafactaring purpones.-Jaly 6 .

Whiliam Septimas Losh, of Wrany gyle, Cumberiand, gentiomen, for lmprovements in ohtalning salts of sode.-J aly 6.
James Murdoch, of Staple's-inn, Holbora, Middlemer, for on Improvement In ite manufacture of certain kinds of woolien fabites (A communication.)-July 6.
John Aadrewr, of Fairoals-terrece, Minde, Newport, Moamouthshire, contractor, for certaln tmprovements in colre ovens, and in the apparato connected thertivh,July 6.
Prederick Sang, of Pall. Mall, artist in freaco, for cortain Improvements in machipery or epparatus for cutting, tawing, griadiag, and polishlag.-Jaly 6.
Priedrich Gestrvela, of Canostadt, Wurtembers, mone-mmoon, fot E method of preparing for baing and hur when oo prepared, os thoronghiy and completely as common brick can now be baked or burat.-July 8 .
John Remeden, of Mancheater, screw-bolt manufnctorer, for certaln improverent in machtpery or apparatais for catelag erems.-Jaly 6.
Joseph Jepson Oddy Taylor, of Gracecharch-street, Londoo, machivith, for ar extenaton for the term of four years, from the lat day of May lant for part of his invention deseribed in the orlytal lettert patent nader the title of, "An tmproved mode of propelling ships and other vessels on water.-July 6 .
Warren Stormes Fale, of Queen-street, Chmpaide, eandle-malrer, and Ceorge
Roberta of Great Peter-itreet, Westminater, miner, for Improrements in the mannRoberts, of Great Peter-Atreet, Westminate
facture of nlght Highte or mortars.-Jnly 8.
Alfred Vincent Newton, of Chancery-lade, mechanical drepghtaman, for improwe
 - Jniy 10

Thomas Jordan, of Old Brosd-atreet, London, for Improvements in duspfection
 Josoph Bexon Palur, of Cante-street, Eolborn, for an improved mode of balibles bricks, tiles, and other kinds of pottery or eartheuware.-July 18.
Charles Burrell, of Thetford, Norfoll, and Matthew Gboon, of Eolliagton-terrees, Newcantle-on.Tyne, for fmprovements in reaping mechines.-J dy 15.
George Binton Bovill, of Abchorch-lane, London, for improvementa In matrabetaring wheat and other grain into meal and flour.-Joly 15.
Mones Poole, of the Patent office, London, gentlemen, for Improvements th book Monet Poole, of the Patent oflice, Lomdon, gentlemen, for imp
hoen, clogn, and similar articlen. (A commulenalon.)-Jaly 15 .
Heary John Ganntlett, of Charlottositreet, Portiand-plect. Middienex, doctor ta
 music, for improvements In organs, seraphines, and okher similar mind
and almo improvements in piano-fortes. (A communlcation.) Juiy 15.
Charles Barriggton, of Philadelphia, United States, geatleman, for an Iraprown steam-boiler water.feeding apparatns, and furnace therefor. (A commonicabions) July 15.
Charies James Pownall, of Addison-road, Middlenex, gandlerann, for frpprowemetts in the treatment and preparation of fiax and other dimllar forous vegetnbie amb-stances.-July 15 .
Thomas Richards, of St. Brth, and Samuel Groee, of Gilnear, both in Cormatil. Thomat Richardi, of St. Erth, and Samuel Grone, of Grinear, boin in Cormerail; for certain improvements in machine
sfones, and other subatances.-July 15 .
Johu Hunt, of Reanet, France, gentieman, for cortaln mechtiery for manhtose and eeparatling ores.-July 16 .
Willam Pawcett, of Kidderminater, Worcester, for certaln Improvements it the manufacture of carpeta,-This patent being opposed at the Grect reent, wat not eenled tII 17th Inatant, bat bears date the 2nd Pebruary last, by order of the Lord Cher cellor.
Joweph William Schlealnger, of Briston, Surrey, fentleman, for improveraeate h fire-arma, In cartidgen, and in the manufacture of powder. (A commonicetton.)July 20.
Jullut Priedrich Phillipp Ludwis Von Gparre, of Brewer-stoet, Golden-mpagre, minlog engineer, for lmprovements in separating anbetances of diritrent specific pes. mining engineer, for improvements in separaing sabetaces of diurent
vilues, and in the mechinery and apparatus employed therain-July 50.
Stribblehill Norwood Mey, of Flisrov-iquare, gentlemen, for certain improvemeate In the manufacture of thread, yera, and vartous textlle falrics from certinin abrowd matters.-July 20.

Emery Rider, of Bradford, Wilte, mannfacturer, for Improvements in the manate ture or treatment of india-rubber and gutta-perchis, and is the application therwofJuly 20 .
John Shaw, of Dakinfield, Chester, cyllinder-maker, for certata Improveceente in macblnery or apparatal for carding cothon, woot, fax, and other Abroun matertily July 20.
Sir William Buraett, Kaght Companion of the most Houoarable Order of the Bath, of Somerset House, Middlesex, an entension for the term of ecren Fears from the 26 ch day of July 1852 , beling the expiration of the ofginal grant of his pateat for
John Prancis Eran, of Covent-garden, for Improvements ia the manafactare of John Prancis Egan, of Covent-gard
sugar. (A communication.)-July 20 .
sugar. (A communication.)-July 20.
James M'Eenry, of Liverpool. mert
James M'Henry, of Liverpool, merchant, for certala Improveneatis In machitwery for manufacturing bricks and then. (A communication.)-July 20.

Rlchard Bealey, of Radcllfie, Lancester, bleacher, for certaln Improvementis in ap paratue used in bleeching. July 20.
George Augustas Haddart, of Bryplir, Carnarvan, eaquire, for imprevernenes ha the manufacture of cigars.-July 20 .
Richard Birckton and Thomas Lawnon, both of Leedg, Tork, mmafmeturera, fout certaln improvements in tbe adaptation and appliestion of a new manufartured ma certala to certajn artlclen of drese.-July 21.
John Kirthem, of the New-road, Mildlewex, civl engloer, and Thomat Neatam Kirtham, of Pulhem, Surrey, civl engincer, for improvementa in the manaracturt of g^{a} for Ughtiag mad heating. July 22.

ST. COLUMBA COLLEGE, DUBLIN.

P. C. Hardwion, Eeq., Architect.

(With an Engraving, Plate XXXI.)
Tre College of St. Columba is situated at Holly Park, near Dublin, and occupies a most beautiful position overlooking the bay and harbour of Kingstown, with the Hill of Howth in the distance; and immediately behind the grounds belonging to the College, rise the Wicklow mountains. The College was established in the year 1845, at Stackallan, in the county of Meath, and removed to the building it now occupies in the year 1850 . The main object of the College is to furm a public school for Ireland, on somewhat the same footing as the great public schools in this country; but without those defects which lapse of time and change of manners have produced in many of the English schools. As well as forming a school, the object of the College is to educate a certain number of students in the Irish language, with a view to their ultimately taking holy orders, and being able to preach to the Irish in their own language.

The College is presided over by a warden, which office is now held by the Rev. G. Williams, Fellow of King's College, Cambridge, well known by his work on Jerusalem, and other books. Besides the warden, there are several fellows and masters who superintend the education of the boys. At present, the chapel and schoolroom are temporary wooden buildings; the dormitory and hall have been recently erected, and the warden and fellows inhabit the old house belonging to the estate.

The Plan shows the new buildings that are now proposed to be erected, as soon as sufficient funds are collected for the purpose. The chapel will be 65 feet long by 30 feet wide; the hall 60 feet long by 29 feet wide; the sohoolroom 75 feet long by 30 feet wide. The dormitories will contain about ninety cubicles, one of which is devoted to each boy.

Mr. Moyers, of Dublin, is the builder. The cost of the buildings to be exected will be about 11,0001 .

ON THE EMPLOYMENT OF COLOUR IN THE DECORATIVE ARTS.

> By Owen Jones, F.R.I.B.A.
[Exhibition Lecture delivered at the Society of Arts, London.]
As architectare is the great parent of all ornamentation, it is from the study of architectural monuments that we shall best obtain a knuwledge of the principles which govern the employment of ornament and of colour generally. In all ages but our own the same ornaments, the same system of colouring, which prevailed upon their buildings pervaded all they did, even to their humblest utensils: the ornaments on a mummycase are analagous with those of the Egyptian temple; the painted vases of the Greeks are but the reflex of the paintings of their temples; the beautiful cushions and slippers of Morocco of the present day are adorned with similar ornaments, having the same colours as are to be found on the walls of the Alhambra.

It is far different with ourselves. We have no principles, no unity; the architect, the upholsterer, the paper-stainer, the weaver, the calico-printer, and the potter, run each their independent course; each struggles fruitlessly, each produces in art novelty without beauty, or beauty without intelligence. The architect, the natural head and chief of all who minister to the oumforts and adornments of our homes, has abdicated his high office; he has been content to form the skeleton which it should also have been his task to clothe, and has relinquished to inferior and unguided hands the delicate modelling of the tissues and the varied colouring of the surface;-who can wonder at the discordance and incongruity of the result? Until very recently the employment of colour on buildings has had but few advocates in this country; we are still imbued with the prejudices left us by our immediate ancestors and developed in our early education.

Although we now know that many of the monuments of antiquity were entirely covered with colour and ornament, while of others we have evidence that they were partially painted, and are further bound to conclude that they were entirely so, yet this is still digputed, and not long since the Royal Institute of Britiah Architects were unable to vanquish this prejudice arnongst their own body; and it remains to this day with them, alse! a disputed question to what extent the monuments of Greece were coloured. There are artists more willing to believe
that the Greeks were imperfectly organised for the appreciation of colour, and consequently misapplied it, than that the defect can lie with ourselves, and our imperfect knowledge of what they did and why they did it.
I will ask you to believe that the stupendous monuments of the Egyptians, the Greeks, the Arabs, and other Eastern oivilisations, with the nearer-to-us Gothic buildings of our own forefathers, were not in vain covered with a most elaborate syatem of ornamentation requiring colour for its development, but rather in obedience to a patient observation of Nature's works, where we find everywhere colour asaisting in the development of form and adding many charms which but for this were wanting. In asking you to watch the means by which these additional charms were given, I do not wish you to understand that what the ancients did we should now repeat, but should follow them only so far as we find they acted on principles by them universally recognised and running through all time, and which we may now presume to be discovered truths, and therefore not wisely to be rejected.
He who should set about furming a new style for himeelf, without regard to the past, would be like a student in astronomy who should reject the discoveries of Newton, and endeavour to work out every process for himself. Yet, on the other hand, where would the science of astronomy be now if successive students had been content to receive the discoveries of Newton as final truths, instead of employing them as the bases of fresh researches? The successful labours of past ages are our inheritance, and should not be rashly squandered or unprofitably hoarded: we should not be content blindly to follow any in their steps, but rather endeavour to go forward, patiently working out the great principles which the experience and practice of successive ages have evolved.
Regarding our present subject from this point of view, I have put together a series of rules, which 1 believe are axioms, but which we will call "Propositions." They will be found, I trust, available and safe guides in the employment of colour in the decorative arts. Some are derived from the observation of the works of nature; others are the teachings of science; others, again, gathered from the practice of all those nations who have carried the decorative arts to the highest perfection.
I. Colour is used to assiat in the development of form, and to distinguish objects or parts'of objects one from another.
The most cursory glance at the works of nature will establish the truth of our first proposition. We see everywhere in nature colour assisting form in producing distinctness: thus flowers are separated by colour from their leaves and stalks, and these again from the earth in which they are planted; and, not to fatigue you with examples, it is at once evident how much in nature would he meaningless hut for the many charms of colour spread over the earth so lavishly. Had nature applied but one colour to all objects they would have been indistinct; but, by an ever-changing variety, each has its proper tone and hue, from the modest lily in the field to the parent of all colour, the glorious sun in the heavens. The ancients ever obeyed this law: thus the capitals of their columns are separated by colour from the shafts; and these, again, by colour from their bases or pedestals.
II. Colour is used to assist light and ahade, helping the undulations of form by the proper distribution of the several colours.
But for light and shade we should have been unable to recognise the distinctive forms of objects; without it a globe would be but a circle,-the light on the exposed surface and the shade on the retiring surface alone convince us of its rotundity. We find therefore in nature's works, colour assisting light and shade; by its help the modulations of form are rendered more apparent; were it otherwise it would be to little purpose that the flower should be distinguished by colour from the leaf, if the individual form of the flower and the leaf had been extinguished in the process.
1II. These objects are best attained (i.e. objects or parts of objects are distinguished one from another, and the undulations of form are assisted) by the use of the primary colours on small surfaces, and in small quantities, balunced and supported by the secondary and tertiary colours on the larger masses.
This proposition will not so readily be accepted as the two preceding. There are many who will object that the primary colvurs are the delight only of the savage and the uncultivated, but I answer that the primary colours are never vulgar or dis-
cordant when properly applied; the defect will lie, not with the colours, but with the want of skill of the hand that applies them. They must be used as in nature, with a sparing hand, on small surfaces, and in small quantities; the secondaries and tertiaries in larger masses, and on larger surfaces, atoning for their lesser brilliancy by their greater volume.

We find in the works of the Egyptians, Greeks, Arabs, and Moors, during the best periods of their art this beautiful law invariably followed: but, on the contrary, when the art of each civilisation declined, the primaries are no longer the ruling harmonies; the secondaries and tertiaries from being subordinate, became dominant, and muddiness and indistinctness resulted.

In Egypt, during the reigns of her native kinge, the primaries mainly prevailed; whilst under her Greek rulers art languished, and being practised rather from imperfect tradition than from poetic inspiration, the secondaries usurped the place of the primaries, and the beautiful harmonies which had before been produced by their combination were lost.

The progress to further decline is again remarkable noder the Romans, who taught the Egyptians to build up temples of greater magnitude, with stones more nicely fitted, with the mechanical processes more advanced, but with the poetic fire wanting, and naught but a barren work of skill remaining.

The same decline may be observed with Greek architecture. In the temples of Greece, as far as we are acquainted with them, the primaries were dominant; whilst in Greek towns under Roman rule, the true principles of their noble ancestors were thrown aside, and the caprices of their Roman masters substituted.

When the truly-enchanted palaces of the Moors fell into the hands of the Catholic kings, who despised a civilisation they were unable to appreciate, the true principles which the Moors had learned in their worship and observation of nature's works were despised and rejected, because, as now, not understood. Their blues and reds were repainted with green and purple, without law or reason.

Trace the history of our own Gothic buildings, of stained glass, turn over the pages of the illuminated MSS. of every age, you will find everywhere the same cause at work.

Each civilisation in the ascendant goes to nature for its principles, and enriches its own invention with the choicest conceptions of antecedent ages; while for this admirable union of conscientious erudition and fertile originality, declining civilisations substitute only a series of decrépit, disordered, and faithless caprices.

We possess the inestimable advantage of living in an age when nothing of the past remains s secret; each stone of any monument of every clime has told its tale, which is now brought within the reach of our own firesides: yet, hitherto, how little have we shown ourselves worthy of this great privilege!. The ease with which our knowledge might be obtained has made us indifferent of its acquirement, or led us to substitute an indolent and servile imitation for an intelligent and imaginative eclecticism.

IV. The primary colours should be used on the upper portion of objects, the secondary and tertiary on the lower.

This proposition, founded also on observation of nature's works, was generally obeyed in the best periods of art, but nowhere so well or so universally as in the buildings of the Moors, who confined the primary colours entirely to the upper portions of their buildings, and the secondary and tertiary to the lower. In Egypt we do see occasionally the secondary (green) used in the upper portions of their temples; but this arises from the fact that ornaments in Egypt were symbolical, and more nearly represented natural objects than in other styles. If a lotus-leaf were used in the upper portions of a building, it would necessarily be coloured green, but-the law is true in the main: the qeneral aspect of an Egyptian building gives us the primaries above and the secondaries below.

Even in Pompeii we find this sometimes; in the interior of their houses there is a gradual gradation of colour downwards from the roof, from light to dark, ending with black: but this is by no means so usual as to convince us that they felt it as a law, for there are many examples of black immediately under the ceiling. This law will be found of great use in the decorstion of the interiors of our dwellings. Ceilings and cornices may be decorated rith the primaries of prismatic intensity on the small surfaces of their mouldings; the walls, on the contrary,
from presenting larger masses, should be of secondary colour, of low tones and hues. The dadoestill stronger in colour and more broken in hue. The carpets should be darkest of all, composed of broken secondaries and tertiaries, 80 interwoven and neutralised that they retire from the eye, both as furniahing repose for the colouring of the upper portions and as backgrounds to the furniture placed upon them.

The favour with which the colouring of the interior of the Great Exhibition building, after running the gauntlet of much adverse criticism, was ultimately received by the pablic, emboldens me here to refer to it as a familiar illustration of the practical working out of our four first propositions. The objects I had propoeed to myself were-First, 80 to bring out the construction of the building that it should appear higher, longer, and more solid; eecondly, so to colour each particular part that its light and shade should be assisted, and its peculiar form made most manifest; thirdly, so to balance the primary colours used for this purpose that they should harmonise with the varied conteuts of the building of every imaginable hue, and to which 1 trusted for the completion of the scheme.

I may be permitted to say that these objects were, if not fully attained, yet were so beyond what the most sanguine could have hoped. The effect which I had sought of the colours of the building forming a neutralised bloom over the whole of the contents, was attained to such an extent that those who only saw it when completed looked in vain for that vulgar and discordant colouring of which they had heard so much during the progress of the works.

The blending of the three primary colours in the roof of the nave, where the effect could be seen uninterruptedly, was most complete, and produced an artificial atmospheric effect of a most surprising kind. This artistic effect has been lost since the removal of the canvas from the roof; and although there are many who will prefer it, as it is more like their Crystal Palace, yet it is no longer an art problem resolved. By reason of the glare from the glass the red and yellow have disappeared, and we see simply a repetition of blue girders with sky between. The consequence is, that the effect of aeriel perspective which it had has disappeared; the girders at the extremities of the building fall so rapidly one on the other that they present but a mass of blue. The nave, judged of now from the perspective of the roof, appears two or three hundred feet shorter than it did; because the eye has lost the power of measuring beyond a certain distance, whilst when the canvas was on the roof the eye was able to distinguish girder from girder down to the very last one.
The columns also have lost much by the removal of the back-ground-they were painted light in order that they might tell out strongly in relief on the articles exhibited: these being removed their lightness is now a defect-they lose in appearance of solidity.
V. The primaries of equal intensities will harmonise or neutralise each other in the proportions of 3 yellow, 5 red , and 8 blue, -integrally us 16.
The secondaries, in the proportion of 8 orange, 13 purple, 11 green,integrally as 32.
The tertiaries, citrine (composed of orange and green), 10; ruset (orange and purple), gl; olive (green and purple), it; intogrally as 64.

It follows that,

Each secondary (being a compound of two primaries) is neutralised by the remaining primary in the same proportions; thus, 8 of orange by 8 of blue, 11 of green by 5 of red, 13 of purple by 3 of yellow.
Each tertiary (being a binary compound of two secondaries) is neutralised by the remaining secondary; as 24 of olive by 8 of orange, 21 of russet by 11 of green, 19 of citrine by 13 of purple.
We derive these valuable rules from the works of Field, who was one of the earliest to establish the fact now universally received, that the prismatic ray consisted of 3 colours and not 7 . He has shown, by direct experiment, that a ray of light consists of yellow, red, and blue, in the proportion of 3 yellow, 5 red, and 8 blue.

It is evident that the nearer we can approach to this state of neutrality the more harmonious will colouring become. An examination of the best ancient specimens of colouring will show that this law has been well observed; that is to say, broadly, there has been as much blue as of yellow and red put together: thus the light and the shade balancing each other.
VI. Each colour has a variety of tones when mized with white, or of shades when mixed with grey or black.
When a full colour is contrasted with another of a lower tone, the volume of the latter must be proportionally increased.
This follows naturally from Prop. V., for if 5 red is nen: tralised by 11 green of equal intensities, it is evident we should require a much larger quantity of pale green to effect the same purpose.
VII. Each colour has a variety of hues, obtained by admixture with other colours, in addition to white, grey, or black: thus we have orange yellow on the one gide, and lemon yellow on the other; so of red, scarlet red, and crimson, and of each every variety of tone and shade.
Then a primary, tinged with another primary, is contrasted with a secondary, the secoudary must have a hue of the third primary.
Thus, orange yellow will require to neutralise it blue purple; lemon yellow, red purple; scarlet red, blue green; crimson red, yellow green.

The truth of these two last Propositions is so self-evident that they would hardly require discussion here, were we not reminded by all we see around us how much they are every day disregarded.
It is evident that for the proper balancing of such infinite varieties of tones, shades, and hues, no mechanical means can be found of estimating the value of the colours, or the relative areas they should occupy; but we are fortunately endowed with an organ as susceptible of cultivation in this respect as the ear for sonnd; and although many amongst us are more favourably endowed than others, both with ears for sound and eyes for form and colour, it is by study and cultivation alone that any approach to perfection can be reached, and he who can carry in his mind the proportions which science thus teaches us will be in a far better condition to arrive at success than he who trusts to his unaided instincts and natural gifts.
In the East Indian collection of textile fabrics at the Great Exhibition the perfection at which their artists have arrived is most marvellous; it was hardly possible to find a diacord,-contrasting colours appeared to have just the tone and shade required; the contrivances by which they corrected the power of any colour in excess are most ingenious. It would occupy too much of your time more particularly to refer to them here; but, fortunately, a portion of the collection has been purchased by the government, and, is now being exhibited to the public: if examined with attention they will afford most fruitful lessons, not only to the student but to every cultivated mind. The additional charms which colour gives to everything which surrounds us should render none indifferent to the cultivation of the faculties implanted in them to enable them to understand and appreciate it.
As Field wisely says, "He who can regard nature with the intelligent eye of the colourist has a boundless source of neverceasing gratification, arising from harmonies and accordances, which are lost to the untutored eye."
It would be very desirable that we should be made acquainted with the manner in which, in the education of the Eastern artists, the management of colour is made so perfect. It is most probable that they work only from tradition and a highlyendowed natural instinct, for which all Eastern nations Lave ever been remarkable: they have the further advantage of working out the style which grew up with their religion, with which every thought and action of their daily life is interwoven.
Since the Reformation, which with us separated the tie which should exist between religion and art, we have been deprived of this advantage: the want of unity in feeling has caused a want of unity in expression; there is the same disorder in the art as scepticism in the mind. This acting generation on generation, each descends lower and lower.
Children born in an age of ugliness cannot hope to have their instincts quickened for the beautiful; but, on the contrary, the natural instinct will be extinguished, and will no longer be born with them. 1 can conceive a paternal and wise government visiting with punishment all those who produce abortions in art as justly as those who lower the tone of the morals of society; in either case they rob the rising generation of their birthright.
If it be true, as Field says, "That whaterer refines the taste improves the morals, enhances the powers, and promotes the happiness of the people," the converse is true also.
VIII. In using the primary colours on moulded surfaces wee should place blue, which retires, on the concave surfaces; yellow, which advances, on the convex; and red, the intermediate colour, on the underside: separating the colours by white on the ortical planes.
When the proportions required by Prop. V. cannot be obtained, we may procure the balance by a change in the colours themselves: thus, if the surfaces to be coloured should give too much yellow, we should make the red more crimson and the blue more purple; and we should take the yellow out of them: so, if the surfaces should give too much blue, we should make the yellow more orange and the red more scarlet. Red never looks well when seen in a strong light; it is too positive and painful to the eye: on the contrary, in soffites, in hullows or depths of any kind, it looks most brilliant.
In the Exhibition alarm was caused by my painting the under sides of the girders red: had they been painted blue they would have appeared curved upvards; if yellow, downwards; they would appear straight only as red.
IX. The various colours should be so blended that the objects, when vieved at a distance, should present a neutralised bloom.
Colours should not only be used in the proportions laid down by Prop. V., VI., VII., but they sbould be so interwoven that no one colour should attract the eye to the exclusion of the others; when viewed at a distance they should melt into one another.

In the Oriental patterns we find this result invariably attained; they seem ever awake to correct the least tendency of any one colour to overpower the others: for instance, it is very common with them when they have a massive gold ornament on a coloured ground to allow the ground colour to reappear on the gold ornament as another ornament: so that not only the volume of gold, when in excess, is thereby lessened, but the ground colour is carried into it, so that a perfect balance is obtained.
X. Vo composition can ever be perfect in which either of the three primary colours is wanting, either in its natural state or in combination.
This is evident. Blue and yellow, red and yellow, red and blue would be discords; so green and yellow, purple and blue, orange and red; yet each of these discords may be resolved by the interpositions of the neutrals white or black, which contain all colours in the positive and the negative state.

They are also harmonised by the interposition of metallic gold, of which more hereafter. They, of course, may exist on parts of objects, if the third colour is so near at hand as to be comprehended in the same glance.

The Propositions XI., XII., XIII., XIV., are derived from the "law of the simultaneous contrast of colours" of Mons. Chevreul, who, by a series of experiments, carried on for a number of years, established the fact that colours juxtaposed influence each other in a remarkable degree. He establishes two kinds of contrast: the one, contrast of tone, or the modification which each colour suffers in intensity; the other, contrast of colour, or the modification which each colour suffers in hue. He tells us that all coloured bodies, besides reflecting the coloured rays proper to their particular colour, reflect a certain number of white rays and a certain number of others, which are complementary to the colour of the particular hodies: for instance, a red body at the same time that it reflects red rays in a large quantity, reflects also white rays and a certain number of green rays.
XI. When two tones of the same colour are juxtaposed, the light colour will appear lighter and the dark colour darker.
We have here the contrast of tone: as the light colour will reflect more white rays than the dark colour, their superior force will extinguish the white rays reflected from the darker colour; hence this will appear darker. This may be readily tested by placing two halves of the same sheet of paper of a light colour, and the two halves of the same sheet of paper of a darker colour, on a white screen. Placing the half of the lightcoloured sheet edge to edge with the dark-coloured sheet, and placing the other halves at a little distance on either side, it will be seen that the light-coloured sheet standing by itself will nppear darker than where it joins the dark-coloured sheet, and that the dark-coloured sheet by itself will be lighter than where it juins. The effect is strongest at the edges, and goes on diminishing to the extremities.
XII. When two different colours are juxtaposed they receive a doubte modification: first, as to their tone, the light colour appearing lighter and the dark colour darker; secondly, as to their hue, each will become tinged with the complementary colour of the other.
If we take two half sheets of pale red, and two half sheets of dark blue, and place them as in the former experiment, we shall see the pale red become paler, and at the same time tinged with orange, and the dark blue will become darker and be tinged slightly with green.

XIII. Colours on white ground appear darker, on black ground lighter.

The white, by its superior force, extinguisbes the white rays reflected by the colour, and we see the colour purer-as black reffects but fow white rays, the white rays reflected by the colour appear more prominent by contrast, and the colour appears lighter.
XIV. Black grounds suffer when opposed to calours which would give a luminous complementary.
As light colours have dark complementaries, the dark added to the black increase its brilliancy; those, on the contrary, which have light complementaries must diminish its intensity.

Thus, orange on a black ground would add blue to the black, and make it more intense; but blue on a black ground would add orange to the black and destroy its brilliancy.

It will be evident how paluable a perception of this law of contrast must be to any one engaged in any way with the employment of colour, as any colour can be subdued or heightened in effect by justaposition. In fact colours are mere relative terms;-they change at every instant; that which appears deep red when compared with an orange red becomes orange red when compared with a still deeper red. Blue, red, yellow, and all other colours, can exist only in the mind.

Chevreul mentions a case in point: he says that a shopkeeper exhibiting to a customer a number of pieces of red ailk, one after the other, of the same colour, those last shown would invariably appear more feeble in colour than the first. A shopkeeper, wise in his generation, should, after showing one or two pieces of red silk, interpose a silk of another colour-green, for ingtance-to reatore the judgment of the eye.

We now come to a series of Propositions, which we derive chiefly from the study of Oriental works, and which may be seen in great perfection on the textile fabrica of the Indian collection purchased by the government and now exhibited at Marlborough House.
XV. When ornaments in a colour are on a ground of a contrasting colour, the ornaments should be separated from the ground by an edging of a lighter colour; as, a red flower on a green ground should have an edging of lighter red.
The reason of this we gather from the law of contrast, that when the eye dwells upon a spot of colour on a contrasting colour, each has a tendency, by reason of the strong contrast, to furnish the complementary colour of the other; and this effect is strongest towards the edges: so that the colours have a tendency to fuse one into the other, and indistinctness results. To confine the eye, therefore, within the ornament it is necessary to define the form, and this is well effected by the outline of the lighter colour.
XVI. When ornaments of any colour are on a gold ground, the ornamont should be separated from the gold ground by un edging of darker colour.
The remon of this is, that the gold ground, from its greater power, has a tendency to invade or overflow on to the coloured ornament, and this is at once arrested by the darker edging.
XVII. Gold ornaments on any colour should be outlined with black.

The cause here is the same-viz., the tendency of the gold to overrun the ground, which is arreated by the black line; and as gold must be regarded as a neutral, it is best effected by the neutral black.
XVIII. Ornaments of any colour may be separated from grounds of any other colour by edgings of white, gold, or black.
White, black, and gold are neutrals, and, therefore, by their interposition prevent the simultaneous contrasts from being sensibly felt, and preserve the integrity of the colours.
XIX. Ornaments in any colour may be used on white or black ground without outline or edging.
The white ground reflecting all the rays, deatroys by its superior intensity the white rays reflected by the coloured body; and its form becomes perfectly defined. The black ground absorbs all the rays, or reflects but very feebly white rays so as scarcely to modify the colour juxtaposed.
XX. In self-tints tones or ohades of the same colour, or of the same hue, a light tint on a dark ground may be used without oulline; but a dark ornament on a light ground requires to be outlined with a still deeper tint.
The reason of this is, that the light tint being the most advancing is able to detach itself from the ground, but the dark fint has a tendency to pierce through the ground if not arrested by a darker outline. Ornaments in relief do not appear to require the interposition of white or any other colour; the light edge on the one side, and the shadow on the other, is sufficient to prevent harshness of contrast. This may help to explain how it is that ornaments in metallic gold may be placed on grounds of any other colour without discordance. Green and gold are well known as most harmonious, yet green and yellow are equally well known to be discordsnt: one cause is, that gold, more in the nature of a secondary, is slightly orange; and, moreover, from its granular surface, a series of hills and valleys, and furnishes both light and shade.
Our two last propositions belong only incidentally to the subject; but I offer them for discussion here, as I think it most desirable that attention should be directed to the subject, for the prevention of practices which have increased, and ara increasing daily, and are fraught with most disorganising influence on the taste of the present generation.
XXI. Imitations, such as the graining of woods and of the oarious coloured marbles, allowable only when the employment of the thing imitated would nat have been inconsistent.
There has ofteu been much discussion upon the propriety of imitations in decorative art, such as imitations of the graining of woods and various coloured marbles. There is no doubt that, of late years, the skill obtained by our artisans in producing these imitations has caused the practice to be very much abused, but it need not for that be entirely discouraged.

The principle which should regulate the employment of imitations has never yet been defined: it appears to me that imitations are allowable whenever the employment of the thing imilated would not have been inconsistent.

For instance, there can be no objection to grain a deal door in imitation of oak, because the mind would be perfectly satisfed if the door were oak; but it would be an absurdity and abuse of means to paint it in imitation of marble.
Again, the practice of covering the walls of halls and staircasea with paper in imitation of costly marbles is very objectionable; because the employment of marble to such an extent would be incousistent with the character of most houses, and, consequently, the sham is much too glaring: on the contrary, were the pilasters and columns of a hall only painted, the objection would cease, seeing that the mind would be satisfied with the reality. A violent instance of the abuse of graining existed formerly in the Elgin Room at the British Museum, where beams on the ceiling thirty feet long were splashed in imitation of granite. Here was a manifold absurdity, as no granite beam could have supported itself in any such situation. The door-jambs of an opening, on the contrary, might be imitation granite without inconsistency, as in such a situation granite would be useful as indicating strength.
In the outcry against the mode of colouring I proposed for the interior of the Great Exhibition, my opponents fell into an error of this kind; led away by the desire of having the metallic character of the building expressed, the majority were in favour of colouring the whole of that vast edifice in imitation of bronze, entirely forgetting that the employment of so costly a material for such a structure would have been impossible, and would have had the further disadvantage of being too weak to stand: therefore its imitation would have been an absurdity, quite independent of the artistic objections to such a mode of colouring, which were many.

The mode I adopted treated the whole as a painted surface, and the eye was left at liberty, and was quite able to distinguish the material painted by its form aud scentling; no one, as was
often prophesied, mistook the columns for wooden posts, because no wooden posts could have existed in such a form under such circumstances.
XXII. Flowers or other natural objects ahould not be used as ornament, but conventional representations founded upon them, sufficiently ouggestive to convey the intended image to the mind without destroying the unity of the objoct they are employed to decorate.
We find this law universally obeyed in all the best periods of art, and equally violated when art declines; those who conventionalised the most were the Mahometan races, who, forbidden by their creed to represent living forms, carried the conventionality of ornament to the highest perfection.
The Egyptians, with whom every ornament was a symbol, yet took care so to use them as never to violate a sense of propriety. The Greeks equally conventionalised in their ornaments, and although the law will not appear to hold good in their application of senlpture to architecture, yet we ee here they adopted a conventional treatment both of pose and relief, and very different to that of their isolated works.

In the later Gothic buildings the floral ornaments have a much nearer approach to nature, and are less conventional in arrangement than those in the earlier buildings. In the early illuminated MSS. the ornaments were conventional, and their illuminations were in flat tints with little shade and no shadow; whilst in those of a later period highly-finished representations of natural fowers were used as ornament, casting their shadows upon the page: the illominations also were highly-finished pictures, evidently unfit for the pages of a book where the affected relief was in danger of crushing.

The Chinese, whose works, however wanting refinement and art-knowledge, yet steer clear of this; and all their figures, buildings, and fowers are so conventional in treatment that they never shock the eye or destroy the unity of the object which they decorate.

If our proposition, then, be sound in theory, and be fortified by the practise of past ages, it applies with great force to the mural decorator, the paper-stainer, the calico-printer, the weaver, and the potter; and, in fact, to all engaged in the decurative arts.

First, mural decorators. It is very evident that the treatment of a picture in fresco should be very different to that of a painting in oil: in the painting in oil, all the resources of art are invoked to make, as far as possible, the picture appear a reality; within his frame the painter has to himself a world. But it should be far different with a fresco; the fatness of the wall chould never be disturbed; all chiaroscuro should be avoided, and the figures should appear on one plane: in fact, a true fresco should be little more than a painted bas-relief. Such were the early freacos, or more early still, the mosaic paintings.
The art of the paper-stainer, in the next place, has been very much neglected in this country, and is, indeed, but little better in France, although they have brought to bear upon the subject a great deal of mechanical skill in printing, and much good drawing and designing; yet it is drawing and designing mostly on false principles. It is evident that one of the first principles to be attended to in the adornment of the walls of an apartment is, that nothing should disturb their flatness; yet it is very dificult to find a paper that does not in some way violate this rule: they are either large masses of conventional foliage, generally a variation of the eternal acanthus-leaf surrounding patches of unbroken colour, or representations of fruits or fowers twisted into the mort unwarrantable of positions. Here are specimens of English papers, than which nothing can be more absurd,-a wall covered with repetitions of the same subject, men and horses standing on each other's heads, or steamers floating on each other's masts. You will say they are cheap papers, below criticism; but here we have a French paper, which has had a great run in this country: you see it is a wall of strawberries. Now, in what are the English papers more absurd than this? Beautiful as this strawberry pattern is, well drawn, well printed, the colours nicely distributed over the surface, it is yet offensive, because it violates the first of all rules-propriety.

We say, therefore, that all direct representations of natural objects in paper-hangings should be avoided: first, because it places these objects in unneemly positions; secondly, because it fo custumary in almost every apartment to suspend on the walls pictures, engravings, or other ornamental works, and therefore the paper ahould merve as a background, and nothing on it should
be obtrusive or advancing to the eye. Disper-patterns in selftints are safest for this purpose, but when varieties of colours are used, the Oriental rule of so interweaving the form and colour as that they may present a neutralised bloom when viewed at a distance, should never be departed from.

The prevailing colours of the walls of roums hung with printed paper should, of course, vary with the character of the room and the aspect. Halls and staircases look well hung with green, because the eye on entering a house is generally fatigued with the atrong glare of daylight, and the green is the most refreshing. Studies and dining-rooms look well with dull reds in diapers or flocks, which may be enriched with gold; these form good backgrounds for engravings or pictures, but the reds or greens must never be positive colours, but low-toned and broken, so as not to disagreeably impinge upon the eye. In drawing-rooms, where the paper has to do more towards furnishing and beautifying a room, they may be more gay; almost any tone and shade of colour heightened with gold may be used, provided always that the colours are so arranged, and the forms so interwoven that a perfect balance be obtained, and the eye never attracted to any one portion.

The calico-printor and the weaver violate our proposition at every step. We have ladies dresses, ribbons, furniture-prints, carpets, which are the more and more admired from the more perfect knowledge of botany they display, violating the sense of propriety at every step: we walk on flowers and tropical plants crushing beneath our feet; we have chintzes covered with roses in violent contortions over the sinuosities of our furniture, or broken in twain by the folds of curtains; ladies robed in rose, shamrock and thistle (a high achievement); the fast man with race-horses and ballet-girls printed on his shirt, and pointers woven on his neckerchief.
The Potter keeps pace with his fellows; without his flowers he believes his art would cease to be: with him consistency is disregarded,-be serves us flowers with every dish, magnified and microscopic.

So runs the fashion of the present day; would that its sun were set, that we might awake to a more healthy dawn!

ON THE PRINCIPLES WHICH SHOULD DETERMINE FORM IN THE DECORATIVE ARTS.

By M. Digby Wyatt, F.R.I.B.A., Assoc. Inst. C.E.

[Exhibition Lecturs delivered at the Society of Arts, Iondon.] Ir has pleased the benificent Designer of "the world and all that therein is," not only to surround man with the evervarying and inexhaustible beauties of nature, and to endow him with the gift of sight to perceive her graces, but He has been pleased also to confer upon him a mind to understand, and a hand to imitate them. These gifts are clearly talents committed to our charge, and to be accounted for by us. The same Power

> "That gave us in this dark eapate
> To know the good from ill,"
conferred upon us also an unerring natural test to distinguish the beautiful from the mean or ugly. That test is the sensation of delight which invariably accompanies our recognition of beauty, moral or physical. Whenever the powers of the mind are concentrated upon any of the great external evidences of Omnipotence-upon "the heavens above, or on the earth beneath, or in the waters which are under the earth"-it is impossible to refrain from pouring forth a tribute of silent but heartfelt admiration; and at such moments the Creator, as if to mark his approbation of the sacrifice, lulls for a while all memory of earthly pain or care, and pours peace and happiness into the soul. Thus it is that "a thing of beauty is a joy for ever." It is impossible to examine the smallest object upon which the skill of Divinity has been exercised-a shell, a fower, or an insect-without feeling a longing to know somewhat of the mysterious laws which make that individual specimen of design so perfect, and without experiencing a desire to emulate the marvellous powers of creation. The first sensation of the exercise of such powers we feel to be God-like. Thus it is man naturally attempts, in his feeble way, to emulate the loftier faculties of Divinity; and thus '"tis to create, and in creating live a being more intense, that we endow with form our fancy." From such exertious spring all that is ideal or puetical in every art.

Whenever we attempt to penetrate the wondrous system that makes all nature one vast harmony, it is impossible to refrain from feeling that "God moves in a mygterious way His wonders to perform; and that it is as yet our portion only to see the full light of His majesty "as through a glass darkly. Enough, however, is still apparent to teach us that there are conditions of harmonious relation which pervade the most exquisite forms in Divine creation; and it is only while catching a faint reflection from their glories that we can hope to succeed, in the slightest degree, in throwing a veil of beauty over our comparatively insignificant productions.

The first operstion indispensable to any attempt to define the principles which should determine form in decorative art must obviously be an investigation into those conditions of divine design in concord with which all human attempts at its imitation must be moulded before a supreme sensation of delight can be produced. The occurrence of such a sensation we have already pointed out as the constant and unerring test of real beauty.

We propose, therefore, in the first place, to draw such general inferences together, concerning the great scheme of design manifested in the noblest works of nature, as we have been enabled to collect, either from the experiences of others or our own study of the subject.
The second operation must evidently be to trace the application of these general inferences to the various material branches into which the different necessities of man or his sympathies have divided all those decorative arts which minister to his cravings for enjoyment on all occasions. We purpose, therefore, in the second place, to take a rapid survey of the principal members of that great family, and to point out some of the innumerable enactments of nature, specially affecting several of the most important individual "departments of practical art." Never in the whole history of the past has such a body of appropriate illustration of this branch of our subject been collected as was brought together in the vast extent of the ever-memorable Palace of Industry, and it was impossible to examine carefully the rich store of material inclosed with its glassy walls, without gathering some few valuable hints.

In entering on the first division of our perhaps too ambitious attempt, we are overcome with a sense of the infinite minuteness of our knowledge of the great conditions of creation. We recognise an almost universal beauty throughout the works of nature by the exercise of some faculty as intuitive as memory, and not less inexplicable when we essay to predicate concerning its ineffably mysterious constitution. It has been well observed by some mataphysical writer that in the development of the intellectual powers the first effort is to realise, the second to enjoy, and the third to reason. In obedience to this theory, the first and constant effort of every child is to feel, to see, to use its senses, and to verify the fact of its existence by ascertaining its physical relation to all by which it is surrounded. Its second and occasional effort is to eat, to drink, to smell, to show pain and pleasure, likes and dislikes, and to observe and treasure up such experiences as can affect its subsequent enjoyment. The third effort is to exercise the gift of thought, and to form conclusions by other processes than those of direct sensation. Now we, as respects our knowledge of Divine beauty, can be regarded only as very little children; and, if we should improve upon our coudition of ignorance, instinct leads us onwards through parallel states of progress. Let but the first effort of one totally uneducated in art be to see and to feel nature, to look upon her works with an observant eye, and he will almost instantly find himself led on by unerring sensations of delight to the second stage of advancement. In that stage be will enjoy, discriminate, select, store in his memory, and at length endeavour either to reproduce, or cause to be reproduced, those natural objects, contact with which has caused him the greatest amount of pleasure. Thus the first phase of all art is rude direct imitation. No sooner does he arrive at the full development of his secondary condition than he passes into the third. He begins to speculate upon the sensations he experiences, upon the phenomena of their recurrence, and on the means wherebs he may be enabled by his own descriptions or imitations of the original types, to convey to others the pleasure he himself derived from a contemplation of them: thus the ignorant may grow into the connoisseur, and thus the child into the artist.

A knowledge of the sequence of these natural phases of transition points out the course by which alone special education in decorative art can be brought to a successful issue. Surround
the pupil with every attainable example of general beanty of form, if he is to be a general artist or draughtsman; make him acquainted with all the antecedent productions in his specialty, if he is to be a special desiguer. Show him only as much as possible of what is good, whether general or special; tben his sense of enjoyment will teach him selection, and he will store his memory with the best. Practise his hand as you educate his senses, and the feeling of power will soon come upon him. Reason will assert its empire, and inquiry will be stimulated. Once roused, effort will succeed effort, and thus in time the pupil will grow into the master. As it is impossible to arrive at correct theories in science, except by the analysis of accumulated observations, firstly of thinge, secondly of properties, and thirdly of relations, so it is impossible to assume any general conclusions concerning Divine design without passing through the three stages of realisation, enjogment, and relection.

When we take into consideration, on the one hand, the ahortness of life and the limitation of the powers of man, and, on the other, the extent and illimitable divisibility of matter, and itg incessant changes in form and application, we cannot but feel conscious in how elight a degree the best disposed and most talented student of nature can have become aquainted with her innumerable phenomena, a thorough knowledge and enjoyment of which we have shown to be indispensable to any just general conclusions. It is only by the transmission from generation to generation of accumulating experiences and deductions, that the very few points we are about to indicate have been assumed as universal recurrences in the external forms in which natare pours forth her bounteous gifts to man.
The first quality with which the observer must be struck is the infinite variety of form which pervades creation. On attempting to reason concerning it, he perceives its dependence upon the functions each object and the component parts of each object are ordained to fulfil; hence he will at once recognise the fact that form is in every case, if not dependent on, at least coincident with, structural fitness. When the most complex flower is submitted to the test of a scientific botanical examination, no particles are found to be adventitious-all are concerned in fulfilling the appointed functions of vegetable physiology. As those functions vary with the growth of the plant, so in every case does its form-changing from tender bud to blooming thower, and from blooming flower to reproductive seed-pod, as each successive change of purpose progresses. Infinite variety and unerring fitness thus appear to govern all form in nature.

While the former of these properties demonstrates her infinite power of complexity, the latter restrains the former, and binds all in beautiful simplicity. In every case ornament appears the offspring of necessity alone, and wherever structural necessity permits the simplest lines in every case consistent with the variety of the uses of the object are adopted. Thus the principal forest trees, which spring erect and hardy from the ground, in their normal state, uninfluenced by special conditions of light or heat, shoot straight aloft, with boughs equally balanced on all sides, growing so symmetrically that a regular cone or oviform would, in most cases, precisely define their outline; and thus the climbing plants, from their first appearance, creep along the ground in weak and wayward lines until they reach something stronger and more erect than themselves; to this they cling, and from it hang either vertically or in the most graceful festoons; to each its character of form as of purpose-to each the simplest line consistent with its appointed function and propriety of expression. From Nature's delight in simplicity man probably derived his earliest perception of geometrical figures. The term horizontal at once betrays the source from which our idea of such a line may have been derived. Upon the horizon, as a base, endless perpendiculars are erected in every plant that pierces the soil at right angles to its tangent. A plain in nature furnishes the idea of a plase in geometry. Every variety of triangle is indicated by the outline of the snow-clad peaks of the loftiest mountains; every kind of cone by their substance. The thin clouds that sweep along the sky at sunset, hanging over the distant blue line of the ocean form exquisite parallela, and where cut by the lines of trees and plants suggest every variety of square and oblong, rhombus and parallelogram. Where compactness is indispensable, the honey-yielding hexagons abound, and in her endless variety of crystals nature has furnished us with models of the most exquisite solids. In the rainbow we have her noblest arch; in the parabola at once one of her most graceful curves and most elegant formula of projection.

While a consideration of the quality of fitness binds us to simplicity, that of variety, as if in counterbalance, conducts us to a just recognition of the value of contrast throughont all the works of creation. Simplicity becomes appreciable only when opposed to complexity; while complexity itself will, on analysia, be found to consist only of the combination of parts, individually of extreme simplicity. Mr. Owen Jones has told us respecting the beautiful laws of the simultaneous contrast of colour, so that we may for the present content ourselves with noticing the parallel effects, produced in obedience to the laws of the "simultaneous contrast of form." The researches of Mr. Penrose have lately developed many of these most intereating phenomena; and have not only demonstrated the fact of the scientific acquaintance of the Greeks with their peculiarities, but have shown how essential an attempt to apply such knowledge has been to the production of those exquisite monuments which, from the first moment of their creation to the present time, have maintained a position of unquestionable supremacy over every other work which human art has yet produced. The general result of Mr. Penrose's investigations tends to the assumption, that no two lines can come in contrast with one another, either in nature or in art, without the direction of the one acting, either attractively or repulsively, upon the other, and tending to diminish or exaggerate the mutual divergence of both lines-i. e. to increase or lessen to the eye the angle at which they meet. Thus, if to a perfectly horizontal line another be drawn, meeting it at an angle of six degrees (about half the angle at which the inclined sides of the best Greek pediments leave the surface of the cornice), it will be difficult to convince the eye, as it traces the direction of each line, that the angle has not been materially increased by an apparent deflection of the base line, and an apparent very slight drawing down of that with which it actually forms an angle of six degrees only. In order to remedy similar apparent distortions in their monuments, the Greeks have given entasis, or swelling to their columns, inclination of the axes of their pillara towards a central line, a tendency outwards to their antre, and exquisite convex curves to the horizontal lines of their cornices and stylobates, which would otherwise have appeared bent and crooked.

Nature, in working out her harmonies of contrast, abounds with similar optical corrections. The infinitely gentle convexity of her water sky line is precisely corrected into perfect apparent horizontality by contrast with any line at right angles to a tangent to its curve. It is by attention to the optical effects produced by the impact of lines upon one another in nature, that the artist can alone store his mind with the most graceful varioties of delicate contrast. Thus it is alone that he can appreciate the extreme beauty of her constant, minute, and generally inappreciable divergence from the precise mathematical figures, in approximation to which simplicity demands, as we have already shown, that her leading forms should be modelled.

We have now arrived at a recognition of the four principal elements which invariably concur in producing those emotions of delight which may be regarded as infallible tests of our contact with real beauty in the productions of nature-Variety-Fitness-Simplicity-Contrast.

Before leaving our consideration of these elements we cannot refrain from drawing attention to that which is the crowning illustration of the effects of their co-operation-the Human Body. That theme, upon the reproduction of the external featores of which the highest yowers and the profoundest gtudy have been lavished by the greatest artists of all time. In its etracture, the anatomist, aided by microscopic examination, discovers a variety, to which that of the Great Exhibition was monotony itself-a fitness, to which the most exquisite machines therein contained displayed no parallel-a simplicity of external form, which, without the slightest display of all that marvellous internal mechanism, confines the whole in a space precisely adapted for the free working and protection of every part, and yet covers all with a soft and undulating gurface, the curves of which are gentleness and simplicity itself. Contrast between carve and curve, between one line of limb and another, produces in motion incessant variety of expression, still in obedience to the bounding conditions of simplicity. The swelling muscles, increasing as the angles of approach are diminished by their sction, counteract otherwise apparent ungraceful concavities; and in that loveliest of created things, the perfect female form, every quality of beauty is freely and exquisitely balanced and nnited.
'Io recapitulate the sequence of these four great impressions,

We may state, that when the attention of the student of nature is first concentrated earnestly upon her works, his senses are bewildered by the variety of her charms. His first discovery will probably be that of the perfect individual fitness of some one object upon which he may fix for analysis; he will subsequently recognise fitness as universal. In perfect fitness he will marvel at perfect simplicity; and as he becomes acquainted with normal forms, isolated or at rest, he will learn to gather general impressions when he witnesses their combination, or varying forms in contrasted action. As from this point his experiences increase, he will begin to appreciate marvellous affinities; be will find certain conditions universally forming the basis of propriety in all imitations of nature. Thus he will recognise that she has a style of form and detail peculiar and appropriate to every material in which she works, and that this style of form and detail is, in every case, modified by the exact method in which her operations of manufacture are conducted. Of this no more perfect lllustration can be given than the lines of fibrous reticulation which constitute the gubstance, and at the same time form the ornament of every leaf that blows. In the aggregate of every class he will trace general character, while the slightest variety of structure will infallibly be testified by some change in external outline. Gradually form will become with him an index to all leading attributes-a clue by which he will at once recognise the relation of bodies, or their properties, to one another. Thus, from form alone he will soon discern at a glance of what materials, and how, any particular object he may examine has been executed. This index or clue, be it remarked, never misleads; the "Iamp of truth" never in nature burns dimly, nor with fallacious fires-never refuses to illuminate those who incline to learn in a truthful and reverential spirit. One material in her productions never looks like another. Rocks have their rugged outlines-minerals their appropriate crystalsmetals their colours and glittering aspects-timber its bark and cellular section-flowers their delicacy and evident fragilityeven transparent bodies their varying angles of refractionwater its glassy surface when at rest, and unmistakeable curves when agitated. Never does a flower look like a piece of metal -never a piece of timber like a rock.

As the student's scquaintance with these consistencies in nature increases, his power of generalising will become developed. He will learn to separate constants from accidents, and to trace the distinctive lines which convey the idea of each general family of materials, or modes of formation. He will begin to select, and to treasure up in his memory, those symbols of expression with which nature indicates the leading characteristics of every variety of object she produces. On the amount of the artist's acquaintance with such conventionalities, or, in other words, with the written language of nature, will entirely depend his possible success in producing by his labours sensstions of delight at all equivalent to those excited by the aspect of her noblest works. Direct imitation will do next to nothing, fanciful and ignorant invention still less: it is alone by his power of wielding her weapons of expression, and making in all cases the form and the object strictly concordant, as she does, that the artist may aspire to emulate the power of giving delight, which, above all others, appears to be her paramount prerogative. Time will not permit our dwelling further upon the general inferences deducible from a study of the wonderful beauties of nature. Enough may, however, have been enunciated concerning the most palpable principles, to warrant our assertion, that there exist conditions of harmonious relation which pervade the most exquisite forms in divine creation. It will be our pleasing task now to show how essential it is that we should catch a faint reflection from their glories, before we can hope to succeed in the slightest degree in throwing a veil of beauty over our comparatively insignificant productions.

In entering on the second division of our subject, we shall endeavour to trace the application of principles analogous to those on which we have lately dwelt, -in the first place, generally; and in the second to the respective leading and special departments of practical art.

In the first place, then, it may be observed generally that the endless diversity of men's tastes, and the ever-changing conditions of their education and association of ideas, demand for their productions a variety almost as incessant as that which pervades creation. Whenever that craving after variety has been gratified, irrespective of fitness, novelty has degenerated into frivolity, design into conceits, and style into mannerism and vulgarity. Without a due attention to simplicity, fitness has
never been adequately carried out; attention bas been diverted from a proper estimate of every work of art or object of manufacture, and false impressions concerning its true and legitimate functions have been generated. Great care is necessary in applying nature's principles of simplicity to human productions, since many have erred by regarding simplicity as identified with plainness, or a bare and frigid style. The true office of simplicity is to limit form and ornament to a correct expression of whatever may be the predominant sentiment endeavoured to be conveyed by any object, and to reject all that is extraneous to that sentiment. Where, for instance, as in jewellery or in regal furniture, a sentiment of splendour is demanded, simplicity accords the same latitude that nature assumes in her most brilliant sunsets or most magnificent fowers. Where, however, in the ordinary vessels which minister to the material wants of man, simplicity prescribes a closer range; there the greatest amount of true good taste will be invariably found in the most modest form consistent with the perfect adaptation of the vessel to its office. It may, perhaps, sound paradoxical to assert, but it is nevertheless correct to believe, that the true principle of nature's just simplicity was scarcely less worthily represented by the gorgeous chair of the Rajah of Travancore than it was by the rude yet graceful articles of Hindoo pottery. A gown, relatively speaking, displays its just amount of simplicity, not by the dowdiness of its colour, pattern, or material, but by its due accordance with the age, position, claims to beauty, or other social accidents of its wearer.

Contrast teaches us to give a due relief to all which we would desire to call attention. A sudden break in a long straight line, a slender necking in a continuous sweep, a sudden concavity in a generally convex outline, a bold projection starting forward from an even plane, right lines opposed to curves, segments to sections of the cone, smooth to rough surfaces, conventional forms to direct imitations of nature, all carry out the desired object, and are every one subject to the phenomena of simultaneous contrast of form. To obviate such optical delusions allowances must be made in every case by the artist; many such corrections are constantly perceived and effected by the eye, but few, alas! by rule. In reference to such corrections, it is justly remarked by so ancient a writer as Vitruvius that "the deception to which the sight is lisble should be counteracted by means suggested by the faculty of reasoning. Since the eye alone," he continues, "is the judge of beauty, and where a false impression is made upon it through the natural defects of vision, we must correct the apparent want of harmony in the whole by instituting peculiar proportions in particular parts." It is singular that this passage should occur in connection with the subject of entasis, and the theory of those subtle proportions in the construction of temples, on which the Greeks bestowed such exquisite refinements of study. We cannot afford in the present lecture to dwell further on this department of the study of form, deeply interesting though it be, since we have a fulllength sketch to give, and but a kit-cat to execute it upon.

When we turn to a consideration of the united action upon human design of the general principles of consistency exhibited in the works of nature, we find that of all qualities which can be expressed by the objects upon which our executive ability may be occupied, the noblest and most universally to be aimed at is plain and manly truth. Let it ever be borne in mind that design is but a variety of speech or writing. By means of design we inscribe, or ought to inscribe, upon every ohject of which we determine the form, all essential particulars concerning its material, its method of construction, and its usesby varying ornaments, and by peculiar styles of conventional treatment, we know that we shall excite certain trains of thought and oertain associations of idea. The highest property of design is, that it speaks the universal language of nature, which all can read. If, therefore, men be found to systematically deceive-by too direct an imitation of nature, pretending to be nature-by using one material in the peculiar style of conventionality universally recognised as incident to another-by borrowing ornaments expressive of lofty and high-minded associations, and applying them to mean and paltry oljects-by hiding the structural purpose of the article, and sanctioning by a burrowed form the presumption that it may have been made for a totally different object, or in a perfectly different waysuch men cannot clear themselves from the charge of degrading art by syetematic misrepresentation, as they would lower human nature by writing or speaking a falsehood. Unfortunately, temptations to such perversions of truth surround the growing
designer. The debilitating effects of nearly a century's inceesant copying without discrimination, appropriating without compunction, and falsifying without blushing, still bind our porera in a vicious circle, from which we have hardly yet atrength to burst the spell. Some extraordinary stimulant could alone awaken all our energies, and that etimulant came,-it may not, perhaps, be impious to esteem Providentially,-in the form of the great and glorious Exhibition. It was but natural that we should be startled when we found that in consistency of design in industrial art those whom we had been too apt to regard as almost savages were infinitely our superiors. Men's minds are now earnestly directed to the subject of restoring to symmetry all that had fallen into disorder. The conventionalities of form peculiar to every class of object, to every kind of material, to every process of manufacture, are now beginning to be ardently studied; and instead of that vague system of instruction by which pupils were taught that anything that was pretty in one shape was equally pretty in another, a more correct recognition of the claims of the various branches of special design, and the necessity of a far closer identification of the artist with the manufacturer, in point of technical knowledge, have been gradually stealing upwards in public estimation. Let us hope that success will crown exertion, and that in time the system of design universally adopted in this country vill offer a happy coincidence with those lofty principles by means of which the seals of truth and beauty are stamped on every emanation from the creative skill of Divinity.

In approaching the more directly, though not emsentially, practical portion of our subject, that of the application of nature's principles to some of the special departments of practical art, represented in the Exhibition, we shall premise by e few considerations on architecture and sculpture, and the plastic arts.

It would be difficult to imagine a juster and more comprehensive view of the extent of direct imitation admissible in each department of the fine arts than that which was presented in the appendix to the third report of the commissioners, by Sir Charles Lock Eastlake, and republished in his 'Contributions to the Literature of the Fine Arts.' In a note to one of those important essays the writer observes that "the general style of the formative arts is the result of a principle of selection as opposed to indiscriminate imitation. It consists, therefore, in qualities which may be said to distinguish those arts from nature. The specific style of any one of the arts consists in the effective use of those particular means of imitation which distinguish it from other arts. Style is complete when the spectator is not reminded of any want which another art or which nature could supply."

Now the specific style of architecture is especially worthy of study, since not only do similar conditions pervade all branches of design into which structural forms enter as principal elements, but of all the arts it is obviously the least imitative and the most abstract. The effects of delight which can be produced by it are dependent not upon a reproduction of any objects existing in creation, but upon a just display by the architect of his knowledge of those subtle general conditions, a few of which we have recognised as pervading every perfect work of nature. The beauty of civil architecture we are told by the best writers upon the subject, depends upon-first, Convenience; secondly, Symmetry or proportion; thirdly, Eurythmia, or such a balance and disposition of parts as evidences design and order; and, fourthly, on Ornament. In too many modern buildings, alus! we find that either convenience has been attended to and all other qualities left to chance, or, what is still worse, ornament alone aimed at and all other considerations disregarded. Let us, for the sake of example, trace the operation of the principles to which we have alluded, all of which will be found to have their origin in the provisions of nature. The wise architect will begin by considering the purpose of his building, and will 80 contrive its plan and leading form as to fulfil all the utilitarian objects for which it was proposed to be constructed; in other words, he will be governed by a sense of convenience or fitness.

He will then consider how all the requisites can be most agreeably provided, and harmonious proportion combined with an expression of purpose. He will find, on recurring to nature, that every substance suitable to be employed in construction exhibits endless variety in strength, weight, and texture. He will study these various qalities, and by experiment ascertain that each material possesses a certain acale of proportions and a
certrin series of solids, by the employment of which, in fixed pocitions its functions may be at once most economically and most fitly employed. Acting on such data, he will distribute his lines of substructure, his columns of support, his load supported, his walls to resist the driving of the elements, and he will assign to each it special proportion and form-never confonnding those of one substance with another-never using tron as he would stone, or wood as glass should be. Thus aided by his sense of the fanctions of each portion of the structure, the material of which it may be constructed, and its condition of relative importance, the architect adjusts the appropriate dimension of every part. His work is as yet, however, only half done; his materials require bringing into graceful and regulated distribution. At this point Eurythmia, the original of "the fairy order," steps in, bringing geometry in her train. Doors, windows, columns, curnices, string-courses, roofs, and chimneys, are instantly disposed so as to contrast with, and balance one another, showing by the symmetry of their arrangements the artist's appreciation of that method and evidence of design, which indicate the restraining power of mind over matter throughout all nature-wild as her graces may occasionally appear. The crowning difficulty yet remains behind in the adjustment of appropriate ornament. In all other departments of his art the architect employs only pure abstractions, harmonising with bis general deductions of leading principles of beauty: in his application of ornament, however, his resources are somewhat more expanded. All decoration, the forms of which are borrowed from nature, to be pleasing, must undergo a process of conventionalising; direct imitation, such as that which would be produced by casting from a gelatine mould, would infallibly disappoint, since the perfect reproduction of the form would lead to demands for reality in colour, in texture, and in other qualities which it might be utterly beyond the power of any other material or processes to render, than those which nature has herself employed in the original. The duty of the architect is, therefore, to study, first of all, to omploy such forms as harmonise and contrast with his leading lines of structure, -and then, in those few instances where, for the sake of adding more immediately human interest to his work, or for explaining its purpose more directly. he may desire to suggest the idea of some object existent in nature-then, and in such a case, it is his duty to symbolise rather than to express and to strive to convey an idea of particulars and qualities only, instead of to make a necessarily imperfect reproduction, which conveys no idea at all.
The eract amount of resemblance which the hieroglyphic may be permitted to bear to that object, some ideal property of which it is intended to express, must depend upon so great a variety of circumstances that it obviously becomes one of the most delicate operations of the artist's akill to adjust the precise form in which he shall work out his ornament. The treatment of the honeysuckle by the Greeks, and the lotus by the Egyptians, are probably the happiest existing illustrations of refined appreciation of the mysteries of jadicious conventionalising.

As a general rule the less closely the artist attempts to embody nature the more safe he will be, but as there are, we conceive, some few cases which justify a nearer approximation than is generally admissible, we shall proceed to enumerate the most important of them, premising that, paramount over every other consideration, must reign an exact regard to the conventionalities incident to the material employed, and the absolute necessity of arranging the forms of the ornament no as to contrast rightly with the adjacent geometrical lines of structure.

First, that imitation may approximate to nature only in an inverse ratio to the resemblance of the material in which the work is to be executed to the object to be copied. Thus, the amoothness of flesh may be imitated with delicacy in white marble, and the idea of rock-work only conveyed in the asme material by a completely formal and geometrical method of representation.

Secondly, that as imitation in all cases interests and attracts attention, it becomes necessary to restrict its use sparingly to particular situations; thus we may on the one hand, with propriety employ decorations suggestive of natural types, in those few important points on which we wish the eye to dwell, such as the centre of a facade, the principal doorway or window, the starting of a staircase, or the end of a boudoir; but if, on the other hand, we employed in such leading situations mere conventional patterns, and in leas important parts, ornaments in
convention approaching imitation, then we should find attention concentrated on those meaner portions of the structure, and the really principal features of the design passed over and neglected. A striking illustration of the consequences of this want of discrimination was shown by the sculptor Lequesne, in his various groups in the Great Exhibition; the care he bestowed in working up his accessories, his weeds, foliage, rocks, earth, and everything else, almost entirely neutralised the interest which should have been excited by the finished treatment of the flesh of his unhappy mother and her miserable infant. The admiration which might otherwise have been given to his two groups of doge and boys, were completely absorbed by admiration at the patience with which "each particular hair" was made to curl. To all the above-described faults the works of M. Etex offered a truly remarkable contrast, the labour in them beiug applied at exactly the right points.

Chirdly, that where ornament is contrasted by evident connection with geometrical lines of structure, conventional imitation may be introduced. Thus in many of the marble chimney-pieces in the Exhibition, and in much of the furniture, the structural forms of which made regular panels or conventional framework, the introduction of nicely-carved flowers or fruit, of the size of nature, and in low relief, produced an agreesble effect. Where, in others (and more particularly in some of the Austrian), the foliage, scrolle, cupids, and all sorts of things, completely ate up the whole surface, and made up the whole structure, the effect was eminently objectionable.

Fourthly, that where the copy differs absolutely in bulk from the original, minutis of surface detail may be introduced. Thus when we reduce a subject, such as a bunch of grapes, from the round or full relief to the lowest relievo, much of the conventionality which would otherwise be essential may be dispensed with.

Fifthly, that considerable differences of acale in things of unvarying dimension justify an approach to natural form. Phus, when we materially diminish in our reproduction any object the smallest size of which is generally known never to equal that to which it is lowered in our copy, we may safely atteupt as close a conventional transcript as the material in which we work admits of. On this account delicate flowers, such as those which decorate small Dresden china vases, and which are executed with such skill in biscuit by Mr. Alderman Copeland, Mr. Minton, Mr Grainger, of Worcester, and others, form not unappropriate ornaments when confined to a scale considerably smaller than nature. In cases, however, such as that of the Dresden white camellia tree of the Exhibition, where an attempt is made to copy nature on her own scale, the effort altogether fails, and the labour so far from giving pleasure, utterly fails, and becomes a trick not less inimical to good taste than the veiled figures.

Sixthly, that where in ornament the leading forms are geometrically disposed, as in regularly recurring acrolls or other curves, which could never take so formal a position in nature, a rendering of her spirit, though not of her substance, may be permitted in the leaves and accessories. Thus, in much of the elaborate wood-carving produced by Mr. Rogers and others, the artificial disposition alone of the beautifully-executed objects redeemed many of the groups from the charge of too close is reproduction of nature.

We have dwelt at some length upon these special circum. stances, which modify conventional treatment in ornament, partly because we felt that the data applied generally to must varieties of enrichment as well as specially to architecture, and partly because we felt it necessary to indicate some of the exceptions, the comparative rarity of which tends generally to a confirmation of the accepted dogma, which prescribes that architectural ornament shall be in a remote style of convention only.
Before proceeding to the subject of sculpture, we would fain offer one or two remarks concerning what is called style in art, for fear lest our recommendations to systematic study of elementary principles should be misapprehended. In what are generally understood as styles in the history of art, such as the Grecian, the Roman, the Gothic, the Renaissance, \&c., may be recagnised deeply interesting accumulations of experience concerning the nature of mens intuitive affections for certain concatenations of form. Styles are usually complete in themselves; and though not of uniform excellence, are still generally concordant among all the various members that compose them. Whatever may have been the domiuant form in each, or
whatever the favourite set of ratios, proportion usually pervadea each whole monument, as it may be generally traced in a few detached mouldings. Styles, therefore, may be ragarded as store-houses of experiments tried, and results ascertained, concerning various methods of conventionalising, from whence the deaigner of the present day may learn the general expression to be obtained, by modifying his imitations of nature on the basis of recorded experience, instead of his own wayward impulses alone. Canova, Gibson, and many of the greatest masters in art, held and hold the creed, that nature, as developed in the human form, can only be rightly appreciated by constant recurrence to, and comparison with, the conventionalities of the ancient sculpture of Greece. Mr. Penrose has shown us what beautiful illustrations of optical corrections in line may be gathered from the study of her architectural remains. Mr. Dyce, who has made himself deeply acquainted with ancient styles, thus expresses himself on the subject:-"In the first place," he remarks, "the beauties of form or of colour, abstracted from nature by the ornamentist, from the very circumstance that they are abstractions, assume in relation to the whole progress of the art the character of principles or facts, that tend, by accumulation, to bring it to perfection. The sccumulated labours of each successive race of ornamentists are so many discoveries made-so many facts to be learned, treasured up, applied to a new use, submitted to the process of artistic generalisation, or added to. A language and a literature of ornamental design are constituted; the former of which must be mastered before the latter can be understood; and the latter known before we are in a condition to add to its treasures. The first step, therefore, in the education of ornamentists must be their initiation into the current and conventional language of their art, and by this means into its existing literature." By this last passage we may fairly assume that Mr. Dyce would recommend first the study of the conventionalities of the student's specialty, and then as much as life is long enough to learn. The great previous error in art-education has been to grasp at so much vaguely and attain so little practically.

The modifications which nature receives at the hands of the intelligent sculptor are so various, and frequently so subtle, that it would require a volume to enumerate them, and an Eastlake to write it. We can at present glance but at a very few. The first condition of the highest class of sculpture is, that it should be allied with the noblest architecture, to which it should serve as an inscription, explaining to those capable of reading its ideal expression those purposes of the structure which it is not in the power of architecture alone to convey. In all such cases fitness prescribes the subject-simplicity, its sublimest treatment-contrast, the general conditions of the lines of its composition. In order to give to his works that commanding language which speaks to the heart (the phonetic quality in Mr. Fergusson's admirable theory of beauty in art), the sculptor requires to nelect from his observation of the expression of individual forms, those precise lines he learns from study and experience invariably convey the particular sensations it is his office to communicate to the mind of the beholder. It is by some such process that an approach was made by the Greek sculptors of old to attain an embodiment of their conceptions of divinity and the beau ideal in loveliness of form. Time will not permit a longer reference to this topic, but it may be found touched upon with the utmost acuteness and good taste in an article on physiognomy in the last number of the "Quarterly Review," written, if any confidence may be placed in internal evidence of style, by one worthy in every respect to occupy herself in kindred studies to those which engage the attention of the President of the Royal Academy.

The peculiar refinements of form and texture which fall within the especial province of the sculptor to carry to their highest pitch of perfection, he constantly heightens by availing himself of the effects on the senses of the simultaneous contrast of form. Thus he exaggerates the roughness of the hair and the coarse texture of every object coming in contact with his flesh, in order to give to it the exquisite smoothness of nature; he introduces straight lines, equally balanced folds, and angular breaks into his draperies, in order to bring out the tender sweeping curves of the outlines of the limbs he so gracefully disposes. His is of a truth the happy art which begins by collecting all that is most sweet and fresh; and then, by one additional touch, one further artful contrast, be "throws a perfume on the violet." In sculpture, as in every other of the decorative arts, changing circumstances bring ever-changing
conventionalities, and as supreme arbiters over the propriety of one and all, atill preside our original great principles-cariety, firness, rimplicity, and contrast.

In turning to those departments of practical art into which sculpture enters as a predominant ingredient, matal-work first presents itself to our notice. Nothing can be more apparent than the variety of properties and yualities of the several metals, nothing more consistent than to prescribe a different mode of treatment to each. Sculpture in metal, partly on account of the much greater ductility and tenacity of the material, and partly on account of its peculiar colour and power of reflecting light, can rarely, however highly its degree of finiah may be carried, be mistaken for that which it professes to imitate. Hence it arises that elaborate execution of details may, and indeed should, be carried in metal to the most minute perfection. Works in gold or silver should, as a general rule (except in instances where an overpowering display of wealth is intended, in which case art does not much signify), be confined to small dimensions, and those relatively correspondent to the associations of idea connected with the rarity and value of each. It was from inattention to these conditions that many of the largest pieces of plate in the Exhibition failed to interest us, and that the eye dwelt with much greater complacency upon the smaller than upon the larger objects.

In parcel-gilding inattention to the just amount of profusion of the several metals is frequently lost sight of. The gold instead of the silver, is allowed to preponderate on the surface, and the improbable idea conveyed that the vessel is made of the nobler metal, and inlaid with the baser. It would be a asd want of a due recognition of rare talent if in allusion to metal work an acknowledgment was omitted of the rare talents of \mathbf{M}. Vechte, by whom the exquisite vase and unfinished shield, exhibited by Messrs. Hunt and Roskill, were made for those enterprising manufacturers. Whoever examines the marvellous grace and refinement of the modelling and chasing of theas objects will admit that there is ample room for improvement in English silversmith's work of the highest class, and for refinements which, though perhaps little appreciated at present, must sooner or later become estimated at a value equal to those fabulous sums which are constantly paid for mutilated etchings of the great masters, cabinet pictures by Hobbima, Wouvermans, and Metsu, or factitious specimens of the great Cellini. It was gratifying to be enabled to notice, with regard to furnishing brass-work, that direct imitations of things, which, however beautiful they may be in nature, have no business stuck about one's curtsins; lilies and convolvuluses, looking all alive, were on the decrease; and that correct conventionalities, the unobtrusive and graceful forms of which were suitable for execution in metal, were rapidly taking their place.

When we pursue the subject of sculpture or plastic art, as carried out in other materials, such as the woods which are used for furniture, \&c. \&c., we are led at once to apply in all cases the test of fitness before we can unhesitatingly approve the principles upon which the greater portion of what was shown in the Exhibition appeared to have been designed, and much, we are sorry to say, would not quite stand the ordeal. In too many instances, in the furniture, fitness and structure were entirely disregarded; table-tops were supported on bulrushes, and what should have been the simple and rigid portions of looking-glasses, cabinets, \&c., all made up of flowers, scrolls, figures, and so on, which apparently no material, and certainly no spiritual connection held together. In the trestment of furniture much was to be learnt from the sensible construction of poor Pugin's mediæval woodwork. In it the refinements of joinery were all made the most of; the object was well put together and serviceable; while in the panels and other intervals of the framework as much ornament was inserted as was consistent with the purposes of the article. Where nature puts her most delicate work she always contrives a special shelter for it; her most exquisite spars and stalactites are ever protected, her tender shoots are al ways shielded until they acquire strength to stand exposure. It would be well if many of our wood-caryers in that respect followed her example.

The mere possession of an elaborate bed such as that in Fhich, according to a satirical Frenchmen, "On ne pourrait même bailler sans casser un Cupidon," would be a continual annoyance. The very idea would be irritating of having a look-ing-glass covered over with all sorts of statuettes and ornaments in high reliefs, from which any morning the slightest touch of a bousemaid's brush might bring down two or three little "unpro-
tected females." The true syatem of arranging ornament is, in that reapect generally, thoroughly understood by the French, who, if they put delicate ornament to look at, ingert it where it will be quite affe from accident, and put strength and flatness to use or come in contact with. Not only in a technical, butin an artistic point of view, this subduing of ornament is excellent, since while the effect of decoration is obtained the bounding lines and surfaces are kept broad and simple. Any one unsequainted with the attention habitually paid to this preservation of ornament, who had been allowed to pass his hand over the richly-ornamented pistols, daggers, vase-handles, finest bronzes, and best French furniture, would have been much surprised at the comparative little obatruction it would have ordinarily met with in its passage over even the richest objects. We cannot leave the subject of furniture without glancing at the extremely eppropriate mode of ornamenting it by marqueterie, or inlaid wood. That process is to woodwork something like what enamelling or damascening should be to metal-work. Among the specimens of cabinet-carving in wood were many which it would appear impossible to surpass as pieces of execution, although in eaveral the extreme attenuation of substance was suited rather for metal than for woodwork. In several of the plantic materials, such as gutta-percha, carton-pierre, papiermeché, canabic, stamped leather, \&c., much good design was exhibited, alchough the tendency, more particularly in the guttepercha, was rather in the direction of a plethora of ornament. Nature, it ahould be recollected, abhors monotony even of beauty, and there is nothing so cloying and fatiguing as too much sweetness, from which perpetual plainness would be a haven of refuge. In respect to these materials a good deal of misapprehencion has prevailed of late years; they have been called "shams"" and a variety of names which they intrinsically in no wise deserve. When people paint and grain papier-maché to make it look like oak or other valuable woods, or when they dust aand over carton-pierre to make it look like stone, then cartainly they perpetrate meannesses at which good taste is disgusted the instant the deception is found out; but when the materials are used simply as ornaments, either in a uniform colour or picked out with eny variety of tints, everybody recognises the nature of the material; and there can, then, be no more sham or trick in employing them than there could be in using Caen stone for a pulpit instead of masble, or iron for a column instead of gold.

There is, perhaps, no substance in the manufacture and deaign of which so great an improvement has taken place in this country within the last ten years as in that of glass. Witness for manufacture the Glass Palace and its wonderful fountain. The subject of glass, its materials, appropriate form, colour, and other conditions, having been most ably treated in the last lecture of this series, renders it unnecessary now to make any further observation on the subject. Never at any other period has anything corresponding to the present perfect execution of glass-work existed; and that so soon as the cumbrous, lumpy decanters, tumblers, and rummers, in which our fathers delighted, shall have been all broken, there will be very little left to desire in respect to table-glass.
With regard to china and the group of analogous materials, such as porcelain, terra-cotta, \&c., time compels us to be brief. In all such objects, the fragility of the material warns us against rash projections, and yet we constantly recognise them stuck on, as though merely for the purpose of being knocked off. The primitive arrangement of the potter's wheel, and the plasticity of the material, yielding beneath his hand curvea, which in Etrurian and Magna Grecian ware we admire as exquisite, direct us as it were to simplicity in all works in such materials. So long as by the readiest means, and by a little education of the workman, we might obtain forms quite as beautiful and as various as those which we always have and always shall admire in the antique, there can exist no excuse for casting octagon and hexagon jugs, or making teacups up out of half-a-dozen curves.

In many respects it was gratifying to observe that the most beautiful objecte, upon the production and decoration of which the highest artistic talent of France had been employed in the Royal Manufactory at Sèvres, almost without exception, were rigidly simple in their outlines, and produced structurally by that primitive instrument, we must ever respect and associate with pottery-the potter's wheel. Much information as to the proprieties of the form and ornament of china might be derived from a study of some of the beautiful Indian and Tunisian ware; and if our exquisite mechanical execution were combined
with their feeling for pure form, and the proper application of not too much ornament, effects of surpassing beauty might doubtless be produced.
We have now very hurriedly run through the leading classes of objects on which practical art operates directly, and which possess what the Germans call "selbstandigkeit," that is to say, an independent structural existence. There remain for us to notice those whioh apply particularly to surfaces, and the treatment of which consequently involves the consideration of superficies only. We are told most truly, that one "guiding principle of their admirable Oriental ornamentation appears to be that their decoration was always what may be called surfuce decoration. Their general guiding forms were first considered and these forms decorated. Their flowers are not natural flowers. but conventionalised by the material in which they worked. We do not see, as in Europesn works, a highly-wrought imitation of a natural flower, with its light and shade struggling to stand out from the ground on which it is worked, but a conventional representation sufficiently near to suggest an image to the mind, without destroying the unity of the ohjects it is intended to decorate. There is a total absence of shadow. The patterns of their shawls and fabrics are harmonious and effective from the proper distribution of form and colour, and do not require to be heightened in effect by strong and positive oppositions; the great aim appears to be that objects viewed at a distance should present a neutralised bloom-each step neurer exhibits fresh beauties, a close inspection the means whereby such effects are produced. In their diapers and scroll-work, one of the means whereby their harmonising effect is produced, appears to be that the ornament and the ground occupy equal areas; to obtain this requires no ordinary skill, and can only be arrived at by highly-trained hands and minds. In their conventional fuliage in all cases, we find the forms flowing out from a parent stem; the space which has to be filled, however varied in form, being accomplished with the most exquisite akill. We never see here ornaments dotted down, as in modern works, the existence of which cannot be accounted for; every flower, however distant, can be traced to its branch and root."

These are but a few of the general principles which should aid the designer of surface decoration, hundreds more there are which vary in their precise form of application with every special case and subject. Where, for instance, on the one hand, drapery has to be ornamented, which is intended to cling tightly to, and exhibit the form it covers, it would obviously be absurd to introduce a bold pattern of strong contrasts, the lines of which would arrest the eye, instead of allowing it to travel over the outlines and inflections of the form it is intended to veil, but not conceal; where, on the other hand, material has to fultil the office of a hanging, buch as a porteire or curtain, or a loose covering, there a bold pattern may frequently be introduced with the happiest effect. This principle of costume was finely understood by the Venetian and Florentine weavers, and by the Italian ladies of the sixteenth century, as may be seen in many a splendid old female portrait by Titian, Giorgione, or Parmegiano.

Of the varioun appropriate modes of conventionalising nature, scarcely any is more agreeable than that which is frequently adopted by the skilful paper-stainer, in what are commonly called panel papers. It consists in treating as a picture flowers and other objects, grouped with scarcely any apparent artifice, in their natural forms and sizes, and with all their lights, subdued shades and reflections, but with no cast shades. This, at first sight, would appear to be too direct an imitation of nature to be agreeable, and therefore liable to objection-and so, unless care is taken, it very frequently is. Now the method of preserving all that is requisite is effected by representing the flowers by successive blotches of body colour dabbed on, with no attempt to soften the edges or conceal the method by which the effect is produced. Thus, at a little distance the decoration looks, not like a group of flowers, for that would be a mistake, but like a very clever sketch of a group of flowers framed and inserted in the panel. Where directimitation of natural flowers, with endless tiresome repeats, are carried out, either in paperhangings, block or cylinder printed goods, in carpets, damasks, or other woven hangings, the effect is rarely, if ever, agreeable, however marvellous the manufacturing power may be which can effect such elaborate reproductions. In woven goods the conditions of manufacture constantly modify the structure of patterns; and those even which have been originally derived from nature frequently become reformed to such an extent in putting
on or draughting, that the best mode of convention, that which is induced by the process of manufacture makes that agreeable, which if it could have been more perfectly carried out would most probably have been extremely faulty.

The subject of surface decoration is one which involves such infinite varieties of conventional treatment, which demands so large a study of the effects of complicated geometrical subdivisions in mosaic ; and, in fact, so large a field of vision, that we feel that within the limits of one lecture it is quite impossible to systematise a subject which could scarcely be fitly treated in half-a-dozen. We are fuin, therefore, to draw to a close this our most difficult attempt to define the principles which should determine form in the decorative arts. In doing so, however, we would pause for a few moments to remark that, allhough for the sake of perspicuity, we have throughout this lecture adopted the language of analysis, it must be borne in mind that our divisions are altogether arbitrary, and have no existing prototypes in the great scheme of creation. In that, subdivide as we may, all is unity and omnipotence. Vuriety, fitmess, simplicity, contrast, and perfect truth, all are swallowed up in one thing perfectly good, and therefore perfectly beautiful-Divine will-that Divine will, which in the beginning created the heaven and the earth, and saw that everything created was very good. Surely we, whose privilege it is to be fashioned in God's own image, may strive to follow reverently and closely, though at an infinite distance, that great example which has been given us; and study, so far as lies in human power, to insure that all we do, and all we make, may, like the great works of nature, be all "very good."

VENTILATION OF THE HOUSES OF PARLIAMENT.

The Select Committee appointed to consider the best means of improving the ventilation and lighting of the house and its appendages, have made their second report. They say the only portion of the New Palace under the superintendence of Dr. Reid is the House of Commons, with its division and gallery corridors, the House lobby, and the Speaker's and Cabinet rooms; all the remainder is under the control of the architect. At the commencement of the Session the lighting of the House was in charge of Sir C. Barry, but since that period it has been transferred to Dr. Reid.
The Committee are of opinion that the condition of ventilation of the House of Commons and its appendages is still unsatisfactory.
The system of Lighting adopted by Sir C. Barry (viz. by large gas chandeliers descending for a considerable distance into the body of the House), however well it may have accorded with the general architectural character of the room, rendered the requisite control over the ventilation difficult, if not impossible; the heat radiating from these highly heated surfaces pervaded every part of the House, and rendered the Galleries almost intolerable.
In consequence of defective arrangements in regard to the gas, much of it escaped from the pipes and burners, and contaminated the air which was drawn into the House from the corridors.
The plan of forcing air into a building by mechanical power, to produce what is called plenum or plus ventilation, combined with the extracting powers of a shaft with furnace or steam jet to effect what is termed vacuum ventilation, with ascending and descending currents for the supply of fresh and abstraction of vitiated air, is, in the opinion of the Committee, a complicated system, and one which they are not prepared to approve.
The vaults used for the purpose of transmitting the air to the House of Commons are liable to be affected by damp and impurities arising from bad drainage; and unless this evil be effectually remedied those vaults ought not to be used as air channels.
The air is deteriorated at times by over-heating, which it experiences when in contact with iron pipes, heated some by steam, others by hot water, contributing to produce the disagreeable taste and smell which has been complained of. This disturbance of the wholesome condition of the atmosphere renders complicated manipulation necessary to restore the balance, an operation attempted in hoth the systems adopted in the New Palace, and without success.
No satisfactory evidence has been obtained in regard to any apparatus for warming which shall dispense with metal surfaces for beating the air. Some more appropriate material, such, for
instance, as glass, or glazed earthenware, will be found to be applicable to this purpose; and they trust the subject will not altogether be lost sight of.

The present practice of heating a certain portion of the air beyond the ultimately required temperature, and then cooling it down by the admixture of cold air, is not only injurious to the quality of the air, but is productive of ascending currents of air of different temperatures.
One of the causes of defective ventilation in the House of Commons is the want of a sufficient area of opeaings at the floor of the House, and the necessity which thence has arisen for admitting the air through the interstices of the carpet. This operation, it is found, causes the dust to rise with the ascending ourrent of air, and produces grave inconveniences. The opening: for the admission of air at or near the floor of the House should be so enlarged as not to require any portion of the air to be drawn through the fibres of the carpet, which never can be free from dust and other impurities.

As regards the ventilation of the Committeo-rooms, which is in an extremely defective state, much improvement would be effected by an enlargement of the openings both for the supply and discharge of air.

The present structural arrangements for ventilation and warming are stated to be sufficient, and susceptible of easy adaptation, at a moderate outlay, to any other system that may be considered preferable.

The Committee desire to give it as their opinion that the failure of the ventilation of the House of Commons, at the commencement of the Session, cannot fairly be imputed to any radical defect in Dr. Reid's system, because the House was hastily occupied with an infinity of arrangements incomplete; and the lighting, from which the greatest amount of mischief arose, was neither contrived by Dr. Reid nor under his control; and in surveying the whole of this matter it is perhaps only fair to that gentleman to bear in mind, that his original plan was a comproheusive scheme for the ventilation of the entire building, of the superintendence of the greater portion of which he was deprived when the works were more than half completed. As regards future management, the entire responsibility of ventilating and lighting the House, and its appendages, should be confided to one competent person, under the direction and supervision of the Board of Works; and with a view to secure proper attention to any complaints that may hereafter arise, a committee should be named, at the commencement of each Session, to confer with the Board of Works upon any measurea that may appear necessary to remove such complaints.

Dr. Rew's Arrangements for Warming and Vontilating the New

 House of Commons.Dr. Reid, in a report dated April 5, 1852, states as follows:-
"These arrangements having been introduced when Dr. Reid was deprived of means and resources, the use of which had been previously provided, and were always contemplated during the period when the ventilation and lighting was under his directions at the New Houses of Parliament, they are to be considered as the result of a system that forced upon him the necessity of sustaining a continued protest since 1846, and compelled him to act under disadvantages, and amidst incessant alterations, of which he had often no notice till he saw them in process of execution on the works.

It is also necessary to mention that the warming and ventilating arrangements executed were proposed on the distinct understanding that a system of lighting should be adapted to them that would in no way interfere with them, and Dr. Reid proposed a plan accordingly in unison with the instructions conveyed to him, but this plan was set aside on Sir Charles Barry objecting to it, though Dr. Reid never once had the opportunity of submitting previously any answer to Sir Charlea Barry's objections.

1. Source of Supply.-a. From the highest available part of the Clock Tower, which would alone be used, could it be preserved at all times free from the action of smoke-shafts at the Houses of Parliament and other sonrces of vitiated air, and connected with all parts of the House where a supply is necessary. b. From the level of the ground-floor, immediately under the north portion of the Central Hall; a supply is also avaitable from this level at either side of the House, to be used only under very special circumstances, or in the event of any accidental overflowing of the vaults. c. From the level of the roof, by a channel opening on the east aide of the central portion
of the river front, and on the west side at a turret opposite Westminster Abbey.
2. Purification of Air.-The deposition of dust and soot. when the air is loaded with these materials, are the principal ingredients which it is desirable to remove. Until the arrangements for the supply of water shall be more advanced, this can only be effected by temporary measures. When the heat is great, the barometer low, and analysis proves a very marked exceas of carbonic acid and other impurities in the air, special chemicals have occasionally been used with great relief; but as a general rule they are avoided, with the exception of water and lime.
3. Modes of Heating.-By hot water apparatus, worked usually at a temperature of 90° during the sitting of the House, but capable of giving to the tempering chambers any warmth that may be required in preparing them for the sittings of the House. In some places a local heat from steam counteracts the action of cold windows in the corridors, but the measures for this purpose are not yet completed. The fires introduced in the division corridors and cabinet rooms are intended for the special use of those who desire them.
4. Mode of Cooling.-a. By the introduction into the vaults of air from the greatest possible altitude. b. By the action of cold water within the apparatus used in winter for heating air. c. By the direct action of water when the air is dry and requires moisture, though the direct action of water is at other times considered very objectionable, frequently saturating the air with moisture, and diminishing exhalation from the body when it is most grateful.
5. Moistening the Air.-a. By the evaporatlon of water previously purified when necessary. b. By the action of steam, used alone when unobjectionable in quality, or made to assist the evaporation of water.
6. Drying the Air.-Generally by the action of heat, which may produce this effect practically for ordinary use withont the actual removal of moisture. A space is provided for the occasional use of absorbents of moisture, such as have been used under special conditions of the atmosphere with great relief.
7. Moving Power-The air can receive any adequate impulse from a steam-engine below (at present replaced by manual lubour), and from a smaller engine above. Power is also obtained both from the ceiling and the floor, by the action of the shaft; No. 9. These, however, are brought into use so as to assist, under those restrictions which the structure imposes on the natural movements of tempered air around the person, the right development and action of which is considered the most important object which they can facilitate or sustain, according to the ever-varying circumstances of the case, in a building surrounded entirely with corridors or passages at two different levels, exclusive of those connected with higher levels.
8. The Distribution of the Supply of Air is as universal as could be given, though far below the amount used by me in rooms where the decorations afforded no obstacle to the introduction of universal diffusion at the walls, floor, and ceiling. The burface of the floor may, with the exception of certain fixed places, be considered completely porous, though from the state of the paint it has hitherto been only partially brought into use. In the ceiling there is an aperture on each side of the panels, the whole opening amounting to nearly 270 feet in area. In the lower corridors the whole floor is porous. The supply is by perpendicular surfaces, the discharge by panels in the ceiling. In the upper corridors it was found impracticable, except at a cost and delay which were considered objectionable, to obtain any supply except that sccorded at the upper portion of the inner walls. The discharge is by panels in the ceiling. In the House lobby there are supplies at the angles on the floor, and at a high level, to be used under different circumstances. The discharge is effected by panels in the ceiling.
9. The Discharge is under the special control of a ventilating shaft, which can by the action of valves be brought to bear in any required proportion on the House and division corridors and lobbies, so that air shall leak from the House into the corridors, or from the corridors into the House, as may be dexired.
10. Aetion of the Ventilation.-This can only be understood astiefactorily by a reference to diagrams. It will therefore be sufficient here to state that a general ascent from the level of respired air, with a supply from below, alone, or combined with a certain amount of deacent from a portion of the ceiling, constitutes the general movement by which the ventilation is effected. Hitherto, from the leakage of gas, the want of proper
doors, or excessive heat upon the forehesd produced by the lamps, the House has never once known what the ventilation is when not injured by these causes. From certain portions of the floor a perpetual descent is maintained."

Method employed for warming and ventilating the House of Lords and other portions of the New Palace at Westminster, amounting to about four-fifths of the entive Buidding, under the control of the Architect, Sir Charles Barry, R.A.
"Steam and hot water constitute the heating power employed, and the motive power for the supply and discharge of air, independent of gravity caused by differences of temperature, consists of s powerful fan worked by a steam-engine, local rarefactions, and steam-jets; the steam-boilers and engine employed are placed in a court to the south of and contiguous to St. Stephen's Crypt.

The supply of atmospheric air is taken solely from the turrets of the Victoria Tower, at the base of which the air is purified by a spray of water from a steam-jet; it passes through screens [this process frees the air from any mechanical impurities that it may acquire from the atmosphere, as well as adds to its hygrometric quality], and then passes through a main channel in the basement of the building, aided, where necessary, by the tractive power of the fan, which forcen it into a chamber under the Central Hall; it is there tempered to any degree of temperature which may be considered desirable, according to the season of the year and the state of the external sir. From this central chumber the sir passes, or is forced, as may be necessary, by other main air-channels of distribution, to the several portions of the building, namely, southwards, to the House of Peers, Royal Gallery, \&c.; eastwards, to the Libraries, Committee-ruoms and liefreshment-rooms, \&c., belonging to each House; in the River-front westwards, to St. Stephen's Hall, St. Stephen's Porch, the Cloisters, and Westminster Hall, \&c.; and vertically, to the Central Hall. By means of valves in these main flues of distribution, the whole supply may be thrown at pleasure upon any one portion of the building, as the exigency of circumstances may require. Each of the abovenamed portions of the building, and the several chambers within each portion, have respectively a separate warming spparatus in the basement for special use, a coil heated by steam, when a high temperature is required; and each of the windows of the principhl rooms towards the river has a similar warming apparatus beneath it within the room, to counteract the cooling effect of the glass in severe weather. Its effect is to do awry with the cooling power of a very large proportion of glass, when considered in comparison with the cubic contents of the room; it is employed for the purpose of counteracting those effects before the rooms are occupied, and is either kept in action or not, us according to circumstances. Great advantage would result from the double glazing of the windows in the east front. The House of Peers, the Prince's Chamber, Royal Gallery, Honse Lobby, and the Libraries, Com-mittee-roums and Refreshment-rooms, \&c., of each House, are supplied with air in a tempered state, by means of vertical flues in the walls connected with the main air-channels of distribution in the basement, which air enters through a portion of the ceiling of each room, as well as partially through the skirtings and wall framing, and is delivered in such abundance as to create a plenum within the room, by which all ingress of air, and consequent draughts by the opening of doors, may be avoided. 'The supply to every chamber is separately controlled by valves; the vitiated air from each chamber is discharged through a portion of the ceiling separated from that which is used for supply; and in respect of the House of Peers, partially through the floor, into the main foul-sir flues in the roofs of the building, from whence it is conveyed into exit shafts in the Koyal Court and Sjeaker's Court, the Central 'Iower, or tower used for the smoke flue of the boilers west of the Central Tower, a tower west of the Public Lobby of the House of Peers, and a twwer at the north end of the House of Commons, wherein rarefying apparatus and steam-jets are empluyed, to insure a constant current of sufficient force and velocity for the purpose required. The smoke from the whole of the fires is also carried into main smoke-flues in the roofs of the building, which terminate in the same exit-shafts. The total area of supply is, or will be, about 100 superficial feet, and that of diacharge about 280 superficial feet. The cubic space warmed and ventilated amounts to about $3,644,000$ feet."

EXPANBION OF ISOLATED STEAM, AND THE TOTAL HEAT OF STEAM.

By Cbarles W. Siemens.

[Paper read at the Institution of Mechanical Engineers.]
The object of this paper is to lay before the members the results of certain experiments on steam, purporting in the first place, to corroborate Regnault's disapproval of Watt's law, 'that the sum of latent and eensible heat in steam of various pressures is the same;" in the second place to prove the rate of expansion by heat of isolated steam; and, in the third place, to illustrate the immediate practical results of those experiments in working steam-engines expansively.

The author pursued these experiments at long intervals since the year 1847, with no other object in view than to extend his own information; and, consequently, without pretence to generalisation or extreme accuracy. The question, however, is one of great practical importance to engineers, and with the advantage of valuable suggestions and the co-operation of his friends Mr. Edward A. Cowper and Mr. William P. Marshall, the author has again taken up the experimenta, which, having been referred to at the previous meeting by Mr. Cowper, he feels himself called upon to lay before the Institution in their present state, though incomplete.

The amount of heat required to convert one pound of water into ateam of different pressures has occupied the attention of natural philosophers from the earliest period of the modern steam-engine.

Dr. Black observed, about a century ago, that a large quantity of heat was absorbed by water in its conversion into steam (not accompanied by an increase of temperature), which he termed "the latent heat of steam." His apparatus consisted simply of a metallic vessel containing water, which he exposed to a very regular fire; and from the comparative time which was occupied, first, in raising the temperature of the water to the boiling point, and, secundly, in effecting the evaporation, he approximately determined the amount of latent heat. Resuming the experiment, in conjunction with Dr. Irvine, he employed a different apparatus, consisting of a steam generator, and of a surface condenser, or a serpentine tube, surrounded by a large body of cold water. The steam which condensed in the serpentine tube was carefully collected and weighed, and the rise of temperature of the surrounding water was observed, which, multiplied by its known quantity, represented the total quantity of heat which the steam had yielded. The quantity of heat requisite to raise the temperature of one pound of water through 1° Fahr. being taken for the unit of heat, Black and Irvine obtained for the total quantity of heat in

> Steam of atmospheric pressure, the number 954 Southern..$~$ 1021

Watt obtained the number 1140
Regnault ... 1145
Dr. Ure... 1147
Desprer, 1136, but later..........................., 1152
Brix ... 1152
Gay Lussac, and Clement 1170
Count Rumford 1206
All of these eminent experimentalists employed easentially the same apparatus, and the differences between their results proves its great liability to error. Brix, of Berlin, was the first to investigate those errors, and to calculate approximately their effect upon the results obtained.

While such a large amount of labour and talent has been expended to determine the latent heat in steam of atmospheric pressure, a far more important question seems to have been passed over with neglect-namely, What is the relative amount of heat in steam of various densities? The celebrated Watt justly perceived the importance of this question, but coutented himself with one experiment upon which he based his law, that the sum of latent and sensible hoat in steam is the same under all pressures.

Southern repeated the experiment, and found that steam of greater density contained absolutely more heat than steam of lower pressure, which induced him to adopt the hypothesis that the latent heat of steam was the same at all pressures.

Subsequent experiments and general reasoning seemed to be in favour of Watt's law, which enjoyed the general confidence until it was attacked, only a few years since, by Regnault, of Paris, who proved, by a series of exceedingly elaburate and care-
fully conducted experiments that neither the law of Watt nor that of Southern was correct, but that the truth lay betwean the two. The apparatus employed by M. Regaault may be said to be a refinement upon those previously employed, and with the advantage of Brix's labours to determine the amount of errora, he seems to have succeeded in measuring the absolute amount of heat in steam of various pressures with surprising sccuracy. The costly and complicated uature of the apparatus employed by M. Regnault has hitherto prevented other experimentalists from repeating the experiment, and in the meantime practical engineers still continue to adhere to Watt's law.

Shortly after the publication of Regnault's experiments by the Cavendish Society in 1848, the ides occurred to the author of the present paper that their results might be brought to a positive test by a simple apparatus, which he placed before the meeting in operation, shown in fig. 1. It consists of an upright

cylindrical vessel of tin-plate A, which is aurrounded by an outer vessel filled with charcoal BB, or other non-conducting material. A steam-pipe C, with a contracted glass vein D, enters the inner vessel in a blanting position, in order that the water of priming from the boiler, aud of condensation within the pipe, may return to the former, allowing only a small jet of pure steam to enter the vessel, where it suddenly expands and communicates its temperature to the bulb of a thermometer E, which is inserted through a atuffing-box from above. The lower extremity of the inner vessel A is connected on the one hand to a mercury gauge G, and on the other to a condenser, by means of a stop-cock to regulate the pressure. The pressure and temperatore of the steam within the boiler being known, and the temperature of the expanded steam observed, it will be seen whether that temperature coincides with the temperature which is due to preesure indicated by the mercury gauge. If it did, then Wattie law would be confirmed, but since the temperature rises higher than is due to the pressure, it follows that the high-pressure steam containg an excess of heat, which serves to super-heat the expanded steam. All losses of heat from the apparatus would tend to reduce the temperature, and be in favour of Wattis law; but it will be shown that those losses may be entirely eliminated, and a true quantitative result be obtained. For this purpose the pressure in the boiler should first be raised to its higheut point, and the indicating apparatus be well penetrated by the heat; the fire under the boiler should thereupon be reduced, and observations made simultaneously, and at regular intervala, of the declining pressure within the boiler, and temperature of the expanded steam of constant pressure. The pressures being nearly equal, the fire under the boiler is again increased, and the observations continued until the maximum pressure is once more obtained; and the loss of heat by radiation, \&sc., may be correctly estimated by a comparison of the two series of observations.

The second portion of this paper relates to the rate of ex－ pansion of isolated steam by heat－that is，steam isolated from the water from which it is generated．The author has not been able to meet with any direct experiments on this subject，except some at a recent period by Mr．Frost，of America，which， however，do not seem entitled to much confidence．The rate of expansion of air and other permanent gasea by heat was first determined by Dalton and Gay Lussac simultanenusly，who determined that all gasea expanded uniformly，and at the same absolute rate，amounting to an increase of bulk equal to sioth part of the total bulk at 32° Fahr．for every one degree Fahr．， or stoth part of the total bulk at 212° ．Dulong and Petit con－ firmed the law of Dalton and Gry Lussac，but it appears that these philosophers confined their labours to the permanent gases and atmospheric pressure，and merely supposed the general applicability of their discovery．

Being interested in the application of＂super－heated＂steam， the author tried some direct experiments on its rate of expansion， in the year 1847，which confirmed his view，that vapours expand more rapidly than permanent gases，or，in other words，that the rate of erpansion of different gasse and vapours is equal，not at the same absolute temperature，but at points equally removed from their point of generation．
The apparatus employed in these experiments is shown in the annexed engraving，fig． 2 ，and its simplicity，when seen in operation，is such that the result can hardly be doubted．It

Fio．2．－Apparatus for Measurfag the Expanalon of Isolated Steam．

consists of a metallic trough AA，containing oil，which is placed upon a furnace BB，heated by gas lames．One end of the trough is provided with a stuffing－box，through which a glass tube C ，about $\frac{1}{18}$ inch diameter，and sealed at one end，may be slipped，which will rest horizontally upon a scale below the surface of the oil．The mouth of the glass tube is connected to an open mercury syphon G ，with either the one or the other leg filled with mercury，to produce the desired pressure within the horizontal glass tube．A small drop of water and a piston of mercury P ，being introduced into the bottom of the tube，it is placed in the oil bath，and connected to the syphon．The oil bath is then gradually heated，and the temperature observed． As soon as the boiling point of water under the pressure in question is reached，the mercury piston will move rapidly forward until all the water is converted into steam．The temperature continuing to increase，the piston will continue its course more slowly upon the scale，where its progress is noted from time to time，together with the temperature．The experiment is con－ tinued until the temperature reaches about 400° ，when the oil begins to boil．The gas－flame is then withdrawn，and the bath allowed to cool gradually．The observations of the temperature and the position of the mercury piston are continued until the steam contained behind it is re－condensed．A comparison between the two series of observations gives the correct mean of the experiment，by which the effects of the friction of the mercury piston，any possible slight leakage of steam past it，and faults consequent on the slow transmission of heat，are com－ pletely neutralised．
The general result obtained from the above experiments may be stated as follows：that steam generated at 212° ，and main－
tained at a constant pressure of one atmomphere，when heated out of contact with water to

240°	ditto	4	ditto
$\underline{260}{ }^{\circ}$	ditto	3	ditto
370 ${ }^{\circ}$	ditto	\boldsymbol{z}	ditto

An extension of our knowledge on the properties of steam is a matter of such evident importance to engineers，that it would be useless to dwell upon its practical importance．Suffice it to say，that it has been theoretically demonstrated that a perfect Boulton and Watt condensing engine（abstracting friction and all losses of heat in the furnace and through radiation）would only yield about seven per cent．of the mechanical force，which would be equivalent to the expanded heat．It may be argued from this that the steam－engine is destined to undergo another great modification in principle，and，in the authors humble opinion，this crisis will be accelerated by inquiries into those properties of gaseous fluids which have hitherto excited but little attention，and especially into the properties of dry steam or isolated steam．
Table of Experiments on the Expassion of Isolated Atmorpheric Steam．

Tempert ture in Degreet Fabren－ helt．			3 量 C 8 8 0		$\begin{aligned} & 8 \\ & \text { 总 } \\ & \frac{0}{8} \\ & 6 \\ & 6 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & \text { 晋 } \\ & \text { 最 } \\ & \hline \end{aligned}$	Descending
209	05.0	\cdots	\cdots	\cdots	\cdots	－	＊＊	－	
210	$5 \cdot 00$		＊			．		－	
212	$8 \cdot 00$	8＇00	\cdots	10.00	970	\cdots	800	＊＊	904
213	\cdots	\cdots	10.00	．．	－	＊＊	\cdots	\cdots	＊
214	\cdots	$8 \cdot 40$	10.40	\cdots	10.05	．	$8 \cdot 50$	\cdots	－
215	$8 \cdot 80$	$8 \cdot 68$	$10 \cdot 52$	$10 \cdot 12$	$1+16$	－	$9 \cdot 90$	\cdots	$9 \cdot 30$
2174	900	$8 \cdot 00$	$10 \cdot 68$	1020	1032	．．		$9 \cdot 30$	$9 \cdot 45$
220	$9 \cdot 10$	$9 \cdot 11$	$10-84$	10.30	10.50	．	1050	9.511	$9 \cdot 57$
222d	$9 \cdot 22$		1094	$10 \cdot 48$	10.61	．		960	$9 \cdot 66$
220	9．32	9.34	11.01	10．53	10－70	－	$10 \cdot 70$	968	974
2278			11.11	10.61		．．		9.75	＊
240	$9 \cdot 54$	9－58	11－21	10．68	$10 \cdot 60$	－	1100	$9 \cdot 81$	991
2：124			11.29			．			
2×5	9－68	$9 \cdot 70$	11.84	$10 \cdot 84$	11.00	－	$11 \cdot 16$	9.95	10.02
240	$9 \cdot 80$	$9 \cdot 8$	1146	$10 \cdot 94$	11.12	－	11.34	10.06	10.13
245	99.	9.96	11.58	11．04	11.28	\cdots	11.49	1019	10．28
250	1010	10.05	11.70	11.18	11.35	－	11.60	$10 \cdot 29$	10.38
255	$10 \cdot 21$	$10 \cdot 15$	1180	11－36	11．47	．	11.71	10.40	$10 \cdot 44$
260	1031	1025	11.90	11.40	11.59	\because	11．88	1050	10.64
2 Cl						$11 \cdot 90$			
265	$10 \cdot 41$	$10 \cdot 85$	12.00	11－51	11.70		11.04	$10 \cdot 60$	1064
268			－．		$1{ }^{\circ} \mathrm{Co}$	$12 \cdot 10$			
270	$10 \cdot 51$	10.44	．	11.61	11.80	1218	1248	10.70	10.75
275	10.60	10.33	\ldots	11.78	$11 \cdot 91$		$12 \cdot 16$	10.80	10．85
278	1070		．			12.80			
240	$10 \cdot 70$	10.62	－．	11．85	1202	12.36 12.45	12－28	$10 \% 0$	10．98
284	$10 \cdot 80$	$10 \cdot 72$	\cdots	11.98	1214	12．45	1240	$17 \cdot 00$	$1{ }^{\circ} \cdot 08$
200	10.90	10.81	－	$12 \cdot 10$	1226	12－53	1260	11.10	$11 \cdot 17$
294			\cdots		－	1264		－	－
295	10.98	10.91	．	12－20	$12 \cdot 39$	－	1260	11.20	11．27
290			．			1275			
300	1108	11.01	－	$12 \cdot 90$	12.50	1279	1270	11－30	11.88
805	11.18	$11 \cdot 11$	．	12.40	1268	12.88	12.80	11.40	11.48
810	11．28	$11 \cdot 21$	．	12.31	1269	18.00	1295	11.60	11.58
815	11.96	11.31	\ldots	1262	$12 \cdot 80$	$18 \cdot 10$	1808	11.60	11.69
820	11.48	11.42	\ldots	12.73	1290	－	－	11.71	11.79
325	11.56	1152	．	12.85	13.02	．	．	11．81	11.89
350	11．69	11.64	－	1298	$13 \cdot 16$	－	．．	11.91	11.99
885	11．78	11.75	．	$15 \cdot 10$	18.25	．	＊	12.02	1208
340	11.89	11.85	\because	13.21	$13 \cdot 36$	．	．	．	－
345	11.93	11.95	－	13.33	13.41	－	－	＊	－＊
350	12.02	12.05	．	18.48	13．50	．	．	＊	－
365	1211	1215	－	．．	：	－	－	＊＊	\cdots
360	$12 \cdot 20$	1226	．	．	．	．	．	\cdots	－
365	$12 \cdot 30$	$12 \cdot 40$	－	．	－	－	＊＊	．	＊
870 875	12.40	$12 \cdot 50$	\cdots	．	\cdots	．	－	－	－
375	12.50	12．55	\cdots	\cdots	－	＊	\cdots	＊	\cdots
380	$12 \cdot 60$	12．60	＊	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots

The present paper will be confined to showing the effect of the above experiments upon the rate of expansion of steam within the steam－cylinder of an engine．It was demonstrated by the first－named experiments that expanded steam is super－ heated steam；and，by the secund，it is shown what is the expansion of bulk due to an increase of temperature．Supposing the results of the experiments to be correct，the expansion curve as laid down by Pambour，and which is based upon Watt＇s law，requires a modification due to the excess of temperature in expanded steam；and it will be observed that this correction in the curve of expansion in in favour of working engines ex－ pansively，as a greater aversge pressure is obtained during expansion than would be the case if the expanded steam were not thus super－hested．Its correctness is corroborated by some
actual obeervations by Mr. Edward A. Cowper in taking diagrams of expansive engines previous to his acquaintance with the above experiments. It moreover appeara, that in Cornwall, ongineers have been practically acquainted with the fact that expanded steam is super-heated steam, and more economic in its use than saturated steam; for it is a practice with them to generate the ateam at very high pressure, and to expand it down to the required pressure previous to its reaching the steam cylinder.
Another remarkable practical observation is, that a jet of highpressure steam does not scald the naked hand, while a jet of low-pressure steam does, although the high-pressure steam is the hotter substance. The cooling effect of a jet of high-pressure steam is ao powerful, that, as the author has been informed, ice has been actually produced in the heat of summer in America by blowing a powerful jet of steam of 400 lb . pressure per square inch against a damp cloth. This phenomenon may be explained by the perfectly dry and under-saturated state of expanded steam, which, with a strong tendency to re-saturate itself, produces a powerful evaporation on moist surfaces with which it comes in contact. The rapid rate of expansion of steam by heat, when still near its boiling point, proves the economy of heating the steam-cylinder either by a steam-jacket or by the application of fire. It is, however, important to observe that the specific heat of steam seems to diminish the more the temperature exceeds the boiling point.

ON THE EXPANSIVE WORKING OF STEAM IN LOCOMOTIVES.

By Daniel Kinnear Chark, C.E.

[Abstract of a Paper read at the Institution of Mechanical Engineors.]
(With Engravings, Plate XXXII.)
In locomotives, the adoption of a low standard of boilerpressure is the first obstacle in the way of carrying out the expansive working of ateam, as the more expansively the steam is worked, the less is the work done by the engine. The second obstacle is, in many locomotives, the exposure of the cylinders, by which the steam within is partially condensed. Moreover, the proportion of steam so condensed increases with the degree of expansion, in a very formidable ratio, which will be afterwards submitted to examination.

The object of this paper is to show at what rate in practice the efficiency of steam is increased by expansive working in locomotives with the best existing arrangements of cylinders, valves, and valve-gear, and to point out the conditions on which expansive action may be most successfully carried out.
I.-Of the Action and Capabilities of the Link-Motion.-The action of the valves in the "distribution" of the steam (a term borrowed from the French) is regulated by three elements, the lap, the lead, and the travel. When these are given, the point of the stroke of the piston at which the steam is admitted to the cylinder, cut-off, exhausted, and compressed or shut up, are all deducable by model, by diagram, or by calculation. This can be done, whether the valve derives its motion from a single eccentric, or from a link-motion, as the motion of the valve is virtually' the same in both cases. The way in which the valve is caused to cut-off or suppress the steam earlier by the linkmotion, is by shortening the tracel of the value; this is accomplished by means of the reversing gear, in such a manner that whatever be the reduction of travel communicsted to the valve, the lead is always at least the same as in full gear, and with the shifting-link is rather increased.

In working out the four changes in the distribution of the steam, already enumerated, which regulate the movements of the steam, the action of the link-motion is such that, 1 st, the sooner the steam is cut-off, the sooner it is exhausted, the sooner the port is closed for exhaustion, and the moner the port is upened for the admission of steam.
and. That though every change is made earlier-as measured in parts of the stroke-there is less difference in the position of the points of exhnust, compression, and admission, than in that of the cutting-off. Consequently, the shorter the admission, the longer is the expansion, as the exhaust-point does not recede so much as the point of cutting-off.
3rd. That by the shifting link-motion, the steam may be cutoff at from ${ }^{\text {th }}$ to \ddagger th of the stroke.

4th. That though the exhaust takes place earlier for every increase of expansion, it does not in any case take place within the first half of the stroke. For mid-gear it occurs in fact at 54 per cent. of the atroke; and the steam is expanded into $3 \$$ times the length of stroke at which it is cut-of.
sth. That the period of compression, increasing as the admiasion is reduced, amounts to about one-half stroke in mid-gear.
6th. That the pre-admission of the steam, not above 1 per cent. of the stroke in full gear, reaches about 10 per cent. in mid-gear.

These results prove that the link-motion is capable of cutting off steam as early in the course of the struke as can ever be advisable in practice.
It has been seen that the earlier the steam is. cut-off, the earlier also it is axhausted; until in mid-gear it may be released at half-stroke. This has been deemed a serious objection to the use of link-motions for high expansion, as it is supposed to lead to a serious loss of expansive action, by exhausting prematurely. This loss is, however, s mere trifle in practice. The escape of the steam is by no means ingtantaneous, as is easily proved by the diagrams in fig. 1 (Plate XXX11.), taken by the writer from the "Caledonia" passenger-engine, by means of M'Naught's Indicator, at speeds of 1 and \bar{q} miles per hour. The numbers in the diagrams indicate the number of the sector-notches to which the reversing lever was placed, while the diagrams were described. Referring to No. 1, taken under full gear, the steam is shown to be admitted to the cylinder a little before the beginning of the stroke, at A. From B to C the stearn is admitted, at C shut off, expanded to D , and thence exhausted to E the end of the stroke, whence it continues to be exhausted till the point F in the return stroke, where the erhaust-port is closed. Now, the exhaust line D E shows that nearly all the period of exhaust for the steam stroke is employed for the complete evacuation of the steam. And if this be the case for speeds of 1 and 2 miles an hour, it is much more so for the regular working speeds of trains. To select from a very admirable series of Indicator diagrams, with copies of which the writer has been favoured by Mr. Daniel Grooch, by whom they were taken from the cylinder of the "Great Britain" locomotive, on the Great Western Railway, the figa. 4 and 5 contain diagrams taken at 17 and 55 miles per hour respectively, under the 1st, 3rd, and 5th notches of the sector. The following are the conditions of the valve-motion of this engine, when the diagrams were taken.

State of the Valoes of the "Great Britain" Locomotioe, G.FI.R.
Cylinder, 18×24 inches; Wheel, 8 feet; Lap, $1 \neq$ inch; Countant Leed, inch; Travel in full gear, $4 \frac{1}{4}$ inches; Blast oritice, $5 \underline{1}$ inches diameter.

No. of Notch	Poaitiom of Polnta of Viatribution.			Pertod of Exhanat during Stean-8troke.
	Cutting or	Exhaust.	Compresioc.	
1	inclies. 16	Inches. 21 書	$\begin{aligned} & \text { inchea. } \\ & 3 \end{aligned}$	inches. 2
3	11 星	198	5	4
6	7	17	71	6

On the diagrams the points of cutting-off and exhauat are marked, and the steam-line falls only very gradually during the period of exhaust, especially at the high speeds. The expansion curves are shown by dotted lines $\mathbf{A}, \mathbf{B}, \mathbf{C}$, figs. 4 and 5 , continued to the end of the stroke. These are easily calculated in terms of the relative volumes of steam, from the presaures indicated at the points of exhaust, and are such as would have been described had the exhaust been delayed till the end of the stroke. The shaded areas A, B, C, inclosed between these dotted curves and the curves actually described, express the power lost by erhausting the steam before the stroke is completod. Averaging them for the whole stroke, they are as follow:-

Low speeds.
High Speede.

The losses at high speeds are very small,-merely nominal; and curiously enough, the loss by the carlier exhaust of the 52h notch is actually less than that under the 1st notch. The losses are of course greater at the low speeds; but even then, in the lst notch, which is the only notch employed at vext low epeeds, the luse does not amount to 1 lb . per inch. The ens

CLARKE ON EXPANSION OF STEAM,

Bif 5. Rymanim in Locornatives. caused to Water in the Cytindur.

-
and 5th notches are employed only at apeeds much above 17 miles per hour, and the loss by them is of no practical moment.

Upon the whole, it follows that the possible loss by the early exhaust yielded by the link-motion is of no importance. On the contrary, it can be proved to be beneficial, as an early exhaust is at high epeeds essential to a perfect exhaust during the returnstroke. It plainly appears, therefore, that with the existing arrangements of locomotives, any attempts to eke out the power on the steam-line, by prolonging the expansion materially beyond what is accomplished by an ordinary valve and linkmotion, are not only useless, but highly prejudicial.

Another objection to the link-motion is, that the steam is injuriously wire-drawn by it when under great expansion. Hence the numerous attempts to sapersede the link by the employment of a aeparate expansion-valve. The diagrams, fig. 5, may be referred to as examples of wire-drawing by the link. They were taken nearly consecutively with one opening of the regulator; and it is clear that the steam attained fully as high a pressure in the cylinder under the sth notch as under the lst. The pressure falls considerably towards the point of cutting off, but from the form of the steam-line, it is plain that very little additional steam is admitted for an inch or two before the cut-ting-off actually takes place. The most of the steam is admitted at the higher pressure, and in fact a partial expansion of the steam already admitted takes place for some distance before the expansion nominally begins. Thus the wire-drawing is, to a great extent, equivalent to an earlier cutting-off, and a greater degree of expansion. The whole possible loss by wiredrawing is comprised within the dotted line D, added to the diagram, which is merely an extension of the expansion curve to meet the steam line, drawn horizontally to represent a free admission up to an imaginary point D of cutting-off, 5 inches from the beginning of the stroke. This shaded area D amounts exactly to a mean luss upon the whole stroke of one pound per square inch, by wire-drawing, under high expansion. For the lst and Yrd notches, the amount of loss by wire-drawing must obviously be still less; and, in short, the objection of wiredrawing by the link-motion, when of libersl proportions, is of no practical woight.

Another objection to the link-motion, and apparently the most formidable one, is the large fraction of power neutralised by the compression of the exhaust steam, and which increases with the degree of expansiun. Compression, however, involves no loss of efficiency; for as by compression a quantity of steam is incidentally reserved and raised to a higher pressure, it gives out the power so expended in compressing it, during the next steam-stroke, just as a compressed spring would do in the recoil. But, apart from this general argument, the actual effciency of the steam in the cylinder, with and without compression, may be exactly estimated. The most direct method of doing so is, to find the quantities of water consumed as steam for one stroke, under the two conditions, and to compare them with the relative effective mean pressures. It will suffice to analyse, as an example, the high-speed diagram, fig. 5 , under the 5th notch, No. 5. The volume of steam admitted is measured by the product of the area of the piston, ($254 \cdot 47 \mathrm{in}$.), and the periad of admission, plus the total clearance in the cylinder and steam-passage; the clearance being measured for simplicity in inches of stroke, we have $7+1.8=8.8$ inches, for the total volume admitted. The pressure of the steam when cut-off is 65 lb ., for which the relative volume of water is 359 . Therefore the volume of water as steam, or the water-equivalent of the steam admitted, is

$$
\frac{254.47 \times 8.8}{359}=684 \text { cubic inohes. }
$$

From this is to be deducted the quantity of steam reserved by compression; the volume so reserved is measured by the period of comprossion, plus the clearance ($7 \cdot 5+1 \cdot 8=9 \cdot 3$), and the pressure at the point of compression is 8 lb ., for which the relative volume is 1125 . Then the water equivalent of the resarved steam ig-

$$
\frac{954.47 \times 9.3}{1125}=9.10 \text { cubic inches; }
$$

subtracting, there remains $6.24-2 \cdot 10=4 \cdot 14$ cubic inches of water as steam, actually expended for one stroke of the piston.

Were there to be no reservation of exhaust steam by foreclosing the exhaust-port, the whole area of resistance by compression
would be removed, and there would be a reserve of steam of atmospheric pressure equal in volume to the clearance only. The relative volume of atmospheric steam is 1669 , and the waterequivalent of the reserve would be-

$$
\frac{254.47 \times 1.8}{1669}=0.27 \text { cubic inches; }
$$

the expenditure per stroke would be $6.94-0.27=5.97$ inches of water.

Now, the positive mean pressure during the
steam-stroke, as indicated, is
And the mean resistance by compression is 11.5 lb
Thus the effective mean pressure is 29.4 lb
This effective mean pressure of 29.4 lb . is maintained by a consumption of $4 \cdot 14$ inches of water per stroke; and it has just been found that with the compression removed, the positive mean pressure of 40.9 lb . per inch would be maintained by a consumption of 5.97 inches of water per stroke. The effective pressure created per cubic inch of water is, therefore,

In actual practice $\frac{29.4}{4.14}=7.1 \mathrm{lb}$.
And would be by removing compression $\frac{40.9}{5.97}=6.9 \mathrm{lb}$.
These quantities are expressions of the relative efficiency of steam employed with and withont compression; they are virtually identical, and show that the resistance by compression in the cylinder, due to the action of the link-motion, does not in the alighteat degree impair the efficiency of the steam.
The last objection to the use of the link, requiring notice, is that at high speeds considerable back exhaust-pressure is created. The amount of this is very various, and it depends also on circumstances for which the link-motion is not responsible; such as a deficiency of inside lead (which is regulated by the lap), small ports, a small blast-orifice, and imperfect protection of the cylinder. It suffices on the present occasion to point to what can be done by superior arrangements, as exemplified in the diagrams, fig. 5, taken from the "Great Britain." The cylinders of this engine are in a manner suspended in the smokebox, and thoroughly protected; the steam-ways are very large, 13×2 inches, being in area about $\frac{1}{10}$ th of the cylinder; the exhaust-passage is very direct; and the blast-orifice is $5 \frac{1}{\frac{1}{2}}$ inches diameter, or about ith of the area of cylinder. As a whole, these proportions are superior to those of any other engines with which the writer is acquainted; and the diagrams prove that the per centages of back exhaust-presure, in terms of the positive mean pressure, at 55 miles per hour, are-

$$
\begin{aligned}
& \text { For the 1st notch } \\
& \text { For the 3rd notch } \\
& \text { For..................... 8妾 per cent. } \\
& \text { Fer cent 5th notch } \\
& \text {.................. nothing. }
\end{aligned}
$$

Better results than these should not in practice be required, for when locomotives are adapted to their work, and running at high speeds, they ought not to require an admission of steam above half-stroke. However, the area of blast-orifice rules the back exhaust-pressure; and, when the cylinder is duly proportioned to the boiler, it is quite practicable, by a few modifications in detail, still further to increase the orifice, sufficiently to banish all traces of back-pressure of exhaust at all practicable speeds.
II.-Of the Rate of Efficiency of Steam worked Expansively in the I,ocomotive, by the Link-Motion.-To determine this ratio experimentally, under the actual circumstances of clearance, wire-drawing, and back-pressure, the writer has analysed twenty-gix of the indicator-diagrams from the "Great Britain" already referred to, taken at speeds of 15 to 56 miles per hour, of which the figures are examples. The following table contains in the first nine columns an analysis of these diagrams; the effective horse-powers, col. 10, are estimated in terms of the diameter and stroke of cylinder the dianieter of wheel, and the effective mean-pressures in the 9 th column. The water-equivalents, columns 11, 12, and 13, are estimated from the indicated pressures and the period of the distribution for each nutch, in the way already exemplified. The expenditure of steam per hour, column 14, is deduced from column 13, in terms of the speed, the cylinder, and the wheel; and, dividing that by the effective horse-power, we have the contents of column 15 in inches, and of column 16 in pounds. Column 17 contains the coke consumed per horse-power per hour, deduced for the

Results from Indicator-Diagrams, taken from the "Great Britain" Locomotive, G.W.R., in 1850.

several diagrams from the consumption of water, column 16, admission in inches by $2 \cdot 75$, and divide by the length of stroke allowing llb. of coke to evaporate 8 lb . of water.

Referring to the contents of the last two columns of this table, it is obvious that the consumption of water as steam, or of coke, for a given amount of work done, becomes less the more expansively the steam is worked; and the means of the several quantities for the notches separately are as follows:-

Consumption per Horse-power per Hour.
For the 1st notch, 28.3 lb . water, or 3.54 lb , coke.

As the results under each notch vary very little, the means above stated may be adopted for all practical speeds without material error. From these mean quantities the following rule is derived:-

Rule I.-Tofind the consumption of Water as Steam per Horsepower per hour, for a given period of admission. Multiply the part of the stroke in inches during which the steam is admitted by 22, and divide by the length of stroke in inches; and add 14 to the quotient. The sum is the required consumption in pounds. Let $L=$ length of stroke,$S=$ the period of admission of steam, and $\mathbf{W}=$ the consumption of water in lbs. per horse-power per hour; then

$$
\begin{equation*}
w=82 \frac{s}{\mathrm{~L}}+14 \tag{1.}
\end{equation*}
$$

Allowing 8 lb . of water to be evaporated by 1 lb . of coke, we have the following rule for the consumption of coke:-

Rule II.-To find the Consumption of Coke per Horse-power per Hour, for a given period of admission. Multiply the period of
in inches, and add 1.75 to the quotient. The sum is the consumption in pounds per horse-power per hour. Naking C the consumption of coke, we have

$$
\begin{equation*}
\mathrm{C}=2.75 \frac{\mathrm{~S}}{\mathrm{~L}}+1.75 \tag{2.}
\end{equation*}
$$

These rules may be employed with safety for all periods of admission between 10 and 75 per cent. of the stroke, which are the utmost limits worth regarding in the locomotive engine. They are applicable also for maximum pressures during admission, ranging betwen 60 lb . and 180 lb ., though based on resulta from steam of 80 lb . to 84 lb maximum pressure. For extreme pressures, the results by the rule are slightly too small in the case of lower pressures; and rather greater for the higher,these divergences being due to the constant deduction of 15 lb . for atmospheric resistance from the total pressure. It is presumed that engineers will not return to the error of low-pressures in locomotives, and that high-pressures will be cultivated. For pressures above 80 lb ., the rules are perfectly safe, as they err rather by excess on the safe side. The following table is worked out by Rule 1 ., to show the efficiency of steam by expansion in the locomotive cylinder, under good conditions in actual practice. The 4th column contains the theoretical maximum relative efficiency of steam, expanding to the end of the stroke, according to the law of Boyle, with a perfect vacuum behind the piston, and without clearance, back-pressure, or compression; extracted from the ordiuary tables on the subject. In col. 5 are given the relative amounts of work done by steam, under the admissions named in col. 1, being directly as the effective mean pressures in the cylinder, which are found by a rule to be afterwards given.

Efficiency of Steam by Expansion in the Cylinder of the Locomotive in Actual Practice.
For Maximum Prestures during admission of 60 lb . to 120 lb .

Periods of Admlation or Points at which the Steam it Cut of ta plarta of Strole.	Whter as Rteam conammed in Pounds per H. P. per Hour	Relative Eff. clency of Steam $\stackrel{\text { In }}{\text { Actual Practice }}$	Poantble Maximum Effiency.	Relative Work done by stenm of the same Maximum Presbure to the Cylinder
Per Cent. 10	162	$2 \cdot 22$	$3 \cdot 30$	15
12.5	16.7	$2 \cdot 15$	3.08	20
15	17.3	2.08	2.90	24
17.5	17.8	$2 \cdot 02$	$2 \cdot 73$	28
20	$18 \cdot 4$	1.96	$2 \cdot 60$	32
25	19.5	1.85	$2 \cdot 39$	40
30	$20 \cdot 6$	$1 \cdot 75$	$2 \cdot 20$	46
35	21.7	$1 \cdot 66$	205	52
40	22.8	$1 \cdot 58$	192	57
45	239	1.50	$1 \cdot 80$	62
50	$25 \cdot 0$	$1 \cdot 44$	1.69	67
55	26.1	$1 \cdot 39$	1.60	72
60	27.2	$1 \cdot 32$	1.51	77
65	$28 \cdot 3$	1.27	$1 \cdot 43$	81
70	29.4	$1 \cdot 23$	$1 \cdot 35$	85
75	30.5	1.18	1.28	89
100	36.0	1.00	1.00	100

The periods of admission of steam to the cylinder may be varied by link-motion from 75, the greatest useful period, to 10 per cent. of the stroke. By the table, the relative efficiency varies within these limits from $1 \cdot 18$ to $2 \cdot 22$, the variation being as 1 to 2 nearly. It follows that under the most favourable existing circumstances, the utmost possible efficioncy of steam worked expansively in the locomotive by the link-motion, is about twice that of the steam when worked under full gear; that is, the same quantity of steam does twice the quantity of work.
By a consideration of the effective mean-pressures in the first table, it appears that the average rate at which it increases with the period of admission is expressed by the following rule:-

Rule III.-To find the effective Mean-pressure in the Cylinder, in lerms of the Muximum-pressure, for a given per centage of admission. Multiply the square root of the per-centage of admission by $13 \cdot 5$, and subtract 28 from the product. The remainder is the effective mean-pressure in per cent. of the maximum pressure of steam admitted. By this rule the following table is composed.

Effective Mean Prosumre in the Cylinder for various Admissions. For Maximum Pretsures of 60 lh . to 150 lb .

Periode of Admiasion in parte of the stroze.	Effective Mean Pressare: in parts of Maximum Pressure.	Periods of Admiasion in common fractions of stroze.	Efreetive Meas Premure in common fractions of the Maximum Prosare.
$\begin{gathered} \text { Per Cent. } \\ 10 \end{gathered}$	Per Cent. 15	1-10th	1.7th fall
$12 \cdot 5$	20	-•..
15	24	1.8th	1.5th
$17 \cdot 5$	28	\cdots	-...
20	32	1.6th	1.4th
25	40	1.5th	1.3 rd
30	46	1.4th	1.25 th
35	52	1.3rd	1.2nd
40	57	- . ${ }^{\text {c }}$	-••
45	62	-•••	\cdots
50	67	1.2nd	2.3rds
55	72
60	77	\cdots	\cdots
65	81	2-3rds	4.5ths
70	85		
75	89	3.4ths	9-10ths

In all well-protected cylinders, with blast orifices not less than the th of the area of the cylinder, the foregoing rules and tables of data apply to the action of steam at speeds under 30 to 40 miles an hour, as the writer has fully shown in his work on 'Railway Machinery.' For speeds amounting to 55 to 60 miles an hour, the loss by imperfect exhaust causes a large increase of consumption per horse-power per hour, of from 33
to 12 per cent., according to the amount of admission. With steam-ports of about $\frac{1}{1}$ th , and blast-orifices $\frac{1}{18}$ th of the cylinder, the rules likewise apply, at speeds under 30 to 40 miles an hour. At the higher speeds, the useful power is considerably impaired by imperfect exhaust.
The proportions of the "Great Britain," from the performance of which the foregoing results are deduced, may be repeated here as standard ratios for practice, until superior results are obtained.

$$
\text { Sectional area of cylinder.......................... } 1
$$

$" \quad "$ of steam-port. \qquad 1-10th
\qquad 1-11th
Lap of valve, $1 \frac{1}{4}$ in.; travel, $4 \frac{9}{4}$ in. in full gear; lead, $\frac{1}{4}$ to $\frac{8}{8}$ in.
In a second paper, the writer discusses the conditions necessary for the successful expansive working of steam in locomotives. The following is a comparison of the actual results of engines working with ordinary gab-motions and with link-motions. The engine "Europe," on the Edinburgh and Glasgow Railway, cylinder 16×18 inches, wheel 6 feet. Doing one week's work in 1849, with gab-motion, consumed an average of 19 cwt . of coke per day, and 2 cwt . of coal. As, in the locomotive builer, coal is about two-thirds of the value of coke, two cwt. of coal is equivalent to 1.33 cwt . coke; and the consumption per day may be stated at $80 \cdot 33 \mathrm{cwt}$. coke.

The same engine, fitted with link-motion, used at the same season in 1851, and doing the same work, 12 cwt . of coke, and 3 cwt . of coal daily, equivalent to 14 cwt . coke; over a run of 94 miles, the expenditure becomes

$94 \cdot 22 \mathrm{lb}$. per mile with gab-motion
16.70 m

$$
7.50 \mathrm{lb} \text {. reduction, or } 30 \text { per cent. with link. }
$$

The periods of admission in the two cases would be about 70 and 45 per cent., and by the table of efficiency the consumption would be as $1 \cdot 50$ to $1 \cdot 23$, showing an economy of only 18 per cent., or barely two-thirds of what was actually made. The greater actual efficiency must in great part be due to the superior opportunity of working with high-pressure, during the admissions offered by the link.

Again, the test may be applied by measuring the water consumed. The following are a selection of cases from the writer's own experience and observation:-
Engine with Link-motion, Cylinder 15×20 inches, Wheel 6 feet. Edinburgh and Glasgow Railway.

Date.	Fingine.	$\begin{gathered} \text { Mean } \\ \text { Bpeed. } \\ \text { MMlese } \\ \text { Per Hour. } \end{gathered}$	Average Traln of Carriages.	Consumption of Water in feet, per Mile.	Remarke.
$\begin{gathered} 1851 \\ 26 \text { Aug. } \end{gathered}$	"Orion," ordinary train	$19 \cdot 6$	16	$2 \cdot 97$	Stiff Wind ahead
	Do. do.	$24 \cdot 4$	7	$2 \cdot 01$	Do. favourable
	Do. do.	$24 \cdot 4$	7	$2 \cdot 22$	Do. abead
	Do. Express	$32 \cdot 0$	5	$1 \cdot 65$	Do. favourable
$7{ }^{1850}$ Sep.	Do. do.	$32 \cdot 7$	5	$1 \cdot 63$	Slight wind ahead

Engines with fixed Gab-mation, Oylinder 16×18 inchen, Wheel 6 feet.
Edinburgh and Glagow Railway.

Express Engine, with fired Gab-motion, Cylinder 16×18 inches, Wheel 6 feet.-North Britiah Railway.

1851	Exprese	385	5	$2 \cdot 70$	Calm
	*	$38 \cdot 5$	5	$2 \cdot 70$	Do.
		38.5	4	$2 \cdot 96$	Wind ahead
	Mail	$35 \cdot 7$	7	3.05	Calm
	Ordinary	22.0	12	3.45	Calm

These results show, as before, that under similar circumstances what has been deduced from an independent examination of
indicator-diagrams, taken under the link-motion, as to the coonomy of steam reorked expanaively, is fully borne out by a direct appeal to the relative consumption of coke and water.
It is now proposed to consider the conditions on which the expansive working of steam in Locumotives may be most beneficially carried out.
The Condensation of Steam in the Cylinder by exporure, which takes place in certain arrangements of locomotives, is susceptible of proof in various ways: by the internal evidence of the indicator-diagram, in respect of its general form, the form and course of the expansion-line, and the back pressure; also by a comparison of the volume of sensible steam which is found to pass through the cylinder, with the volume of water found by measurement to be consumed from the tender and the boiler. The evideuce of the expansion-line of the indicator-diagram will be first considered, both for well-protected and partiallyprotected cylinders.

Evidence of the Expansion-line of the Indicator-Diagram.-As the total heat of saturated steam is nearly constant for all pressures, being slightiy greater the higher the pressure, there can be no condensation of steam during expansion, in a perfectly non-conducting vessel, but rather a slight surcharge. The surcharge is so slight, however, as not to require further notice in the present inquiry; we are only concerned in showing that per-fectly-protected steam under expansion, without any deduction from, or accession to its heat, continues substantially in a state of saturation, and unaltered in quantity or mass; and that if the indicator-diagram show that at the end of the expansion the final quantity of sensible steam is either greater or less than the initial quantity at the beginning, and surcharge by condensation or otherwise must have taken place in the condition of the expanding steam. The initial and final quantities, or their equivalents in water, are readily found by dividing the capacity of the cylinder and the ciearanos occupied by the steam, by the relative volumes due to the initial and final pressures. By the anme law we may find the expanaion-curves, which would be described with a constant quantity of saturated steam under expansion; this has been done for the slow diagrams from No. 13, C. R. (fig. 1) and the curves of simple saturation thus found are shown in dutting. The deviations of these from the actual curves ane all referable to one cause-the condersation of the steam.
In No. 1, the cylinder must have been at a lower temperature than the steam during the admission, and some condensation must have taken place, for no mooner is the steam cut off, than condensation is made visible by the sinking of the expansioncurve below the standard throughout the whole of its length. In No. 9 , also, this takes place to a small extent for the first half of the curve, when the temperatures of the steam and the material of the cylinder become equal; after this, as the preasure continues to fall, and the temperature of the steam with it, the curve rises and meets the standard curve at the end, in virtue of a partial re-evaporation of the steam previously precipitated caused by the cylinder itself, which, colder than the steam, and heated by it in the first stage of the expansion, is now relatively hotter, and partially restores the heat of which it had previously robbed the steam.
In Nos. 3 and 4, the process of succeasive condensation and re-evaporation is still more distinctly brought out. In these casea, the greater portion of the heat engaged in the restoration of the steam during expansion must have been absorbed by the cylinder, by condensation of the steam during admission. Under the 3rd and 4th notches, the observed final equivaients are shown to exceed the initial by 19 and 45 per cent. of the latter respectively; which proves that, in the two cases, at least 19 and 45 per cent. of the steam admitted must have been condensed during admission, as the additional steam can have been obtained from no other source. Although the actual expansion-curves, Nos. 3 and 4, indicate much higher mean pressures, during expansion, than the standard curves, and may so far be viewed as superior results, the favourable difference is only a partial amends for the much greater loss by initial condensation; and an expansion-curve may be constructed backwards, in terms of the indicated mass of steam at the end of the expansion, to show from what initial pressure this mass of steam could have expanded, had there been no condensation. Take No. 4, for example. The final pressure at G is 13 lb ., for which the relative volume is 989 , and the ratio of the initial and final total vulumes, or the degree of expansion, is 1 to $2 \cdot 66$; then $939 \div 2 \cdot 66$
$=358$, which is the relative volume for $66 \frac{1}{2} \mathrm{lb}$. stemm nt the point of suppression. Tracing the expansion-curve GH for this pressure, as in the drawing, for which any number of intermediate points may be found in the same way, and drawing a horizontal admisaion-line HI to the beginning of the stroke, the extra shaded area so inclosed is a representation of the real loss incurred by initial condensation of steam; and, without going into figures, it appears nearly as much again as the area, or power, actually obtained.
The diagrams just discussed are, of course, extreme cerses, which might occur in any cylinder, outside or inside; and they have been selected simply for purposes of illustration. They have served to show in what way the expansion-curves of indi-cator-diagrams may be turned to account in developing the condition of the steam. Our business is now to find to what extent, in the ordinary working of locomotives, the condition of the steam is affected by the circumstances of the cylinder.

The firgt point is to show, by the expansion-line, that in wellprotected cylinders the steam is not subject to condenation. Referring to the 26 diagrams obtained from the "Great Britain," of which the cylinders are suspended in and freely surrounded by the hot gases in the smoke-box, it appears that for each notch the influence of speed on the relation of the initial and final water-equivalents of the steam expanded is nearly inappreciable. Dealing therefore with the means, the mean differences by which the final are less than the initial equivalents are-

For the ${ }_{n}$ ist notch, 3 per cent. of the initial equivalent.

These per centages are practically nothing, and the virtual constancy of the mass of expanding steam during expansion. thereby proved, shows that for the greatest observed degrees of expansion in the cylinder of the "Great Britain," no change in the condition of the steam is observable, and that there is, consequently, no condensation at all.
Experiments made by the writer on some of the engines of the Edinburgh and Glasgow Railway, with inside cylindera, lead to the same conclusion.
Numerous diagrams were obtained by the writer from the outside-cylinder engines of the Caledonian Railway, of which the cylinders are placed beyond the direct influence of the heat in the smoke-box, and considerably exposed to the atmosphere. Seventy-six were selected as average samples of diagrams obtained during the regular work of the engines. These have been analysed in the way adopted for those of the "Great Britain," and the mean results range from 9 per cent. deficiency, to as much as 67 per cent. excess at the greatest expansion. Specimens of the diagrams from No. 42, Passenger-enging and from No. 125, Goods-engine, are given in fig. 2. These diagrams were taken by McNaught's Indicator, and the dotted lines show the actual curves which are affected by the oscillation, to which that indicator is subject at high velocities. The mean lines have been drawn on the diagrams on the principle which the writer has eatisfied himself applies in the particular case of the indicator-that action and reaction are equal, and that therefore the mean line, or radical form, ought to inclose the same collective area of diagram as the fluctuations in the lines actually described, due partially to momentum, cutting off at one place as much as it incloses at another.

For the greater ratios of expansion, the final equivalent of the steam is much above the initial, and the greater the ratio the greater is the per centage of this excess, amounting to 67 per cent. with an expansion of $3 \frac{1}{s}$ times. This relation is juat what was found for the slow diagrams from No. 19, and there is no doubt the excess of steam, at the termination of the expansion, is due to the same cause, namely-the condensation of the steam in the cylinder during admission, and during the first part of the oxpansion, and the subsequent re-evaporation of a portior of the precipitated steam. During the experiments there was at all times ocular demonstration of the existence of water in the cylinder, in the spray which escaped from it through the indicator, and which woas given off more abundantly the more expansively the steam was worked.

To find the general rate at which the per-centage of condensation increases in these engines with the deyree of expanaion, the results obtained may be referred, as ordinates, to a baseline representing the ratios of expansion. Let AB, fig. 4, be a base-line divided to represent the total volumes by expansion in terms of the initial volumes; and from B draw the vertical scale to measure the relative per-centages of condensation.

From A set off on the base-line the ratios of expansiom, and for oech ratio eet off perpendicular distances by the vertical scale, equal to the respective per-centages of the differences of waterequivalents, col. 13, and define their extremities by pointa, aetting off minus per-centages below the line, and plus per-centages sbove. The mean line CD, drawn through these points, is straight, and repreaents the mean rate at which the indicated condensation increases with the degree of expansion. It is found to meet the vertical from division 1 , at 80 per cent. below, oroses the base-line at a volume of $1 \cdot 53$, and terminates at E, the point due to an expanded volume of $3 \cdot 4$, and to a per-centage of 70 , and would, if produced, meet the vertical from B, at 9ed per cent. The atraightnese of the line implies that the indicated per-centage of condensation increases uniformly with the relative volume by expansion. Fur an expansion of 1.53 times, the per-contage of condensation, or indicated difference of equivalents, is nothing; and, generally, for expansions advancing by half-volumes, the per-centages are as follows:-

Expanded Yol the laidial Volume				Indicated Per	
1.5	.	-	-•	-	-14
1.53	.	-	-	-	0
2	.	.-	..	.	171
2.5	-	364
3	55
$3 \cdot 5$	-	.	.	.	734
4	-•	.	-	-•	921

For every half-volume of expansion there is an increase of 18 per cent. of indicated condensation, and this becomes so serious that for an expansion of four times, if this were practicable with ordinary valves and link-motions, there would be $92 \frac{1}{2}$ per cent. of loss by condensation, or a loss of nearly onehalf of the total quantity of steam admitted.

For rendy reference it is expedient to find the relative expansion and indicated condensation for different periods of admission, yielded by ordinary link-motions. The following table contains in col. q the total expended volumes due by the nature of link-motion to the several periods of admission in col. 1 , and col. 3 contains the relative indicated per-centages of condensation due to these expansions, measured from the diagram.
Of the Indicated Condensation of Steam in Owtside Cylixders during the Admission of Steam.

Perlod of Admiestion to partil of the Btrake.	Total Volume by Expansion, the intial Volume betag=1	Indicated Condenstion, io gerts of the Inceted Bream cat off.	Approximate Proportion of Steam Condensed,	
			In parta of the Indioatad Steam consumed.	In parta of the Wholl steam consumed, (lacladiog the Condensed Bteam).
Per Cent 75	Ratio. 1.22	Per Cent. -120	Per Cent. 12	Per Cent. 11
60	1.40	- 5.2	12	11
50	$1 \cdot 54$	0.0	12	11
40	$1 \cdot 78$	$9 \cdot 4$	21	17
30	2.07	$19 \cdot 9$	32	24
20	245	$34 \cdot 1$	46	32
12	3.17	66.1	73	42
1	2	8	4	6

Though the losses ahown in the 3d column are great, the real lomes must be still greater; because the restoration of condensed steam, by which the losses have been measured, cannot be entire. The indications, indeed, fail to show any loss at all, at 50 per cent., as the re-evaporation balances the condensation during expansion. For 75 per cent., the re-evaporation (if any) is no slight as to leave a deficit of 12 per cent., by condensation, during expansion, compared with what was indicated as cut off. Now, the whole tenor of the evidence shows plainly that the degree of condensation increases as the admission is shortened; and it may be safely inferred that as 1 y per cent. is shown to be lost in full gear, there is at least 12 per cent. of loss for 50 per cent. of admission, cutting off at half-stroke. An approximate loss of 18 per cent. will, on this ground, be adapted for all admiesions greater than half-stroke; and 12 per cent will also be added to the indicated losses for shorter admissions, as an approximation to the real conditiong.
Col. 4 contains the approximate losses as thus revised, in parts of the indicated ateam admitted. Adding the lost steam admitted to that indicated, the sum expresses the whole steam admitted
and expended; and col. 5 containg the per-centage of approximate loss, expreseed in terms of the whole steam so used, which is a more convenient form for reference. From this column it appears that for 40 per cent. admission, 17 per cent. or one-sixth of the ateam, is condensed; for 30 per cent., one-fourth; fur 20 per cent., one-third; and for 12 per cent., or mid gear, two-fifths, or not far from one-half.
It must be added that the foregoing deductions are based on steam-pressures under 601 l ., generally about 50 lb ., during admission. For higher pressures, and admissions above halfstroke, the condensation is proportionally leas, as will afterwards be shown.

Proof of the Condensation of Steam in Outside Cylinders, by comparison of the indioated consumption of steam with the measured consumption of water.-Many experiments were made by the writer on this point; one was made with No. 42, passengerengine, on the Caledonian Railway, during a trip of 105 miles, from Glasgow to Carlisle, with an average train of $6 \frac{1}{c}$ carriages, done in three hours 22 minutes, five stoppages included. Indi-cator-diagrams were taken from the cylinder at intervals of one or two miles, and the notch of the expansion-gear observed for each diagram, and the points of the line where each change of notch was made.

The several points of cuttling off, expansion, and compression were accurately ascertained by means of the slow diagrams; from which were calculated the exact quantities and pressures of sensible steam actually consumed in each interval of the trip, and the water-equivalents for the several quantities of steam present in the cylinder; which, multiplied by the number of strokes of the two cylinders in each interval, gives the total quantity of water efficiently used as steam. The following final results were thus obtained.

Distance Travelled.	Water ueed A4 Senntble seetw		Excons.
$\left.\begin{array}{l}\text { 1. Glasgow to } \\ \text { Motherwell } \\ \text { 2. Motherwell } \\ \text { to Carstairs }\end{array}\right\}$	3076 ft. 43.91 ft . 57.28 ft . $62 \cdot 42$ f.	$35 \cdot 82 \mathrm{ft}$. 48.85 ft . 67.74 ft . 7950 n.	$5 \cdot 06$ n., or 14 per cent. 4.94 ft , or 10 do. $10 \cdot 46 \mathrm{ft}$., or 15 d do. 17.06 ft , or $21 \frac{1}{\mathrm{t}}$ do.
	$194 \cdot 37 \mathrm{n}$.	23191 ก.	$37 \cdot 54 \mathrm{ft}$, or 167 v cent.

The examination of the indicator-diagrams \ln the manner employed before, by comparing the initial and final water-equivalente of the steam during expansion, shows that at least 13 per cent. of this loss of $16 \frac{1}{4}$ per cent. was due to condeusation, and it is probable that no appreciable proportion was due to priming; indeed the least loss was observed to take place with the least degree of expansion, and when the consumption of steam from the boiler is going on at the greatest rate, as we find on referring to the per-centages of admiesion; which is the reverse of the effect that would be observed if priming were a material cause.

Experiments made by the writer with other outside-eylinder engines, or imperfectly-protected cylinders, corroborate the above deductions obtained from the performance of No. 4R; and they are still further corroborated by his experiments on inside wellprotected cylinders, which show that in ordinary good condition there is no sensible excess of water of any importance, actually consumed from the boiler, above what is estimated from the indicated steam passed through the cylinder. These results are also confirmed by the results of the trialn of Mr. D. Gooch, with the "Great Britain" and similar engines.

The increased back pressure of exhaust affords additional evidence of the presence of water in the cylinder. The back exhaust pressure is the consequence of the want of facilities for the timely discharge of the exhaust steam from the cylinder; and the impediments to its discharge are much increased by the presence of water amongst the steam, whether due to condensation or to priming. The presence of water is immediately made apparent by the increase in the back exhaust-pressure, shown by the indicator-diagram, as the writer has on many
occasions had an opportunity of observing. The effects of priming from foulness of the water in the boiler are shown in fig. 3: A and B are indicator-diagrams taken from the well-protected cylinders of the "Orion," in which very little, if any, condensation could be detected. The diagram A was taken before, and the diagram B after the boiler was blown off and supplied with clear water, both being taken at the same speed, and showing 7 lb . back pressure caused by priming in the former case.

The diagrams C and D, fig. 3, show that the total quantity of water from condensation is considerably greater, with the greater degrees of expansion, where a smaller quantity of steam is admitted, and consequently the loss is more seriously felt. These diagrams were taken from the outside-cylinder goods engine No. 127, working at the same speed up and down an incline on the Caledonian Railway; the diagram C cutting off at twothirds the stroke, and the diagram D at one-sixth of the stroke. The latter, D, though it had the advantage of a much earlier exhaust, and only one-fourth of the quantity of steam to discharge, was affected with 10 lb . more back pressure than the former, \mathbf{C}, when working in full gear. This great back pressure was maintained over a continued run of twenty miles, when of course the cylinders had got into their working heat for that degree of expansion; and the inference is, that the steam was loaded with water of condensation, (proved also by the expansion-curve,) which was with difficulty expelled, and which only became proportionably less when the degree of expansion was diminished; and, consequently, the mass of steam increased that was to be cooled within the same superficies of cylinder.

That the total mass of the stoam has much to do with the condensation is proved by the diagrams E and F, fig. 3, taken under the same degree of expansion, and at the same speed, but with 75 and 20 lb . steam respectively admitted to the cylinder. In the latter diagram, F, the back exhaust pressure is 7 lb . greater than in the former diagram, E, although the total quantity of steam to be discharged was so much less. In the latter case, indeed, there was found to be an excess of 18 per cent. of the whole water used over the indicated steam expended, which was most probably altogether by condensation, as the rate of consumption was 80 moderate as to preclude any likelihood of priming.

Now here is a case where, in the same class of engines, the back exhaust-pressure increases as the quantity of steam to be discharged becomes less, notwithstanding that the facility for pxhaust increases at the same time. This is clearly a case of water in the cylinder, the quantity of which increases with the degree of expansion; and the water is as clearly a precipitation of steam by condensation. Also, though a full admission of steam at higher pressures may reduce the proportion of condensation, yet whenever expansive working is attempted by cutting-off earlier, the heavy back pressure and the course of the expansion-line alike show that no pressure of steam, however high during the admission, can mitigate the evils of condensation in exposed cylinders.

Evidence from the Proportions of the Valve-gear.-The greater the lap of the valve, the greater also is the inside lead, for the exhaust exposed cylinder, we should expect, would therefore require longer laps than well-protected ones, seeing that wet steam exhausts with difficulty. Accordingly, it has been found that in Sharp's inside-cylinder engines, on the Edinburgh and Glasgow Railway, which have only a 5 -inch lap, probably the shortest lap in present practice for a 15 -inch cylinder-the exhaust is as perfect as in the Caledonian passenger-engines with $1 \frac{1}{2}$ inch lap for the same cylinder. Further, in inside cylinders with clean boilers, it is practically a matter of indifference what amount of wear or slugger may have taken place in the valve-gear, so far as concerns the exhaust: in outsides, on the coutrary, it is a very important object to maintain the gearing in the highest order, so as to keep up the inside lead, as the wear of the gearing directly reduces the lead, and therehy increases the back pressure. The Caledonian is perhaps the first line in this country on which the special advantage of long lap for outside cylinders was experienced.

The formidable degree of condensation which accompanies high expansion in partially-protected cylinders, accounts for the opinion held by men of experience of the inutility, for economical objects, of cutting off the steam earlier than at halfstroke, for the proved advantage of expansive working in inside cylinders is neutralised in outsides by the condensation. Mr.

Buddicom, of the Rouen Railway, led the way in the re-introduction of outside cylinders in this country: and to this day, he, and some of his followers, have adhered to the fixed gab-motion.

Conditions on which the expansive working of steam in locomotives may be carried out with efficiency and success.-The first condition is to perfectly protect the cylinders, and to maintain them at a temperuture at lenst as high as that of the steam admitted to them. Simple non-conducting envelopes are not sufficient; external supplies of heat must be employed, and the application of a nteam-jacket to the cylinder would be advantageous, when other sources of heat are not readily available. The writer tried an experiment with the "Orion," Edinburgh and Glasgow Railway, which has its cylinders suspended in the smoke-box, like the "Great Britain's, in which, by the use of partitions, the hot air from the tubes was directed eutirely round the cylinders, previously to its emerging by the chimney: but he could not detect the slightest change in the performance of the engine, probably because the hot air was really very little hotter than the steam, and the cluser contact made no difference. For cylinders already well protected, more thorough modifications would be required to make a sensible improvement. The steam should also be surcharged, previously to entering the cylinder, by passing over an extensive heating surface, deriving its heat from the atmosphere of the smoke-box, or, if necessary, from a hotter source.

Mr. W. C. Hare, of Stonehouse, Devon, to try the value of surcharging the steam, experimented on a small engine, with cylinder $3 \frac{1}{8} \times 8$ inch stroke, and a boiler of 9 feet heating surface. He found that when the steam was passed over a surcharging surface of $5 \frac{1}{4}$ feet in a coil of copper tube, and heated to 400° before entering the cylinder, the consumption of water from the boiler was three gallons per hour; and wheu the communication with the surcharging pipe was cut off, and the steam led directly to the cylinder, the water used amounted to six gallons, or twice the other, while doing the same work, and involved a great increase of fuel consumed. To effect the reduction bere noted, it appears that a surcharging surface equal to fully one-half of the heating surface has been necessary; and it is probable that for locomotives a considerable allowance must be made to produce a very decided change. The results of this experiment show that very much has yet to be done before the capabilities of the locomotive are fully developed.

As steam has been found so very sensitive to exposure on the one hand, and to surcharging on the other, it would probably be of advantage to lead the hot smoke round the barrel of the boiler and the fire-bax, or the barrel only, previously to it discharge by the chimney.

The second condition of successful expansive working in locomotives is the combination of a sufficiently high boiler-pressure of steam, with suitable proportions of cylinder and driving wheel, to admit of highly expansive working consistent with the required duty of the engine. It is probable that 150 lb . per inch is about the highest pressure at which it is advisable to work a locomotive, consistent with the fair working and durability of its parts. The maximum pressure being settled, and it being assumed that the same pressure is to be maintained in the cylinder during admission, the degree of expansion to be adopted determines the capacity of the cylinder to develope the necessary average power. Long strokes are not advisable on the score of stability, at least for outside cylinders, and large diameters should rather be adopted; for the same reason, large wheels are preferable.

Thirdly, in the details of the mechanism, the cylinder should be arranged to have the shortest practicable steam-ways; as, for short admissions, a long steam-way deducts very much from the efficiency of the steam. Such an arrangement would be greatly promoted by the introduction of balanced valves, or such as have provision for preventing the steam-pressure on the back of the valve; as, by being balanced, they could with facility be made large enough to embrace the whole length of the cylinder. The loads which ordinary valves are forced to carry on their backs are enormous; and though there is certainly no momentum in these loads to contend with, yet the friction of surfaces due to the loads is very great, even at the most moderate computation.

Discussion.-Mr. Stephenson (the Chairman) observed that he felt much obliged to the author of the paper for explaining in such a clear and practical manner the action of the slidevalve and the link-motion; and the paper was particularly valuable for the actual numerical results that were given so
completely of the variations in practical working, showing the improvements effected and the defects avoided.
Mr. M‘Connsll agreed that the link-motion was the most advantageous and useful of any valve-motions known for locomutive engines. He thought a hot-air chamber should be contrived, passing round the cylinders, to be kept at a temperatare sufficient to maintain the steam perfectly dry.

Mr. Charx said, that in the Great Western enginea, Mr. Gooch had carried the steam-pipe straight down in front of the tubes, instead of curving it on one side as usual; and the pipe being of ifinch copper, it absorbed the heat from the tubes rapidly, and surcharged or dried the steam.

Mr. Stepaenson observed, that with regard to the question of surcharging steam, he remembered being told by Mr. Trevithick of an experiment which he made in Cornwall in 1830. He had to repair an old engine there, which had no steam-jacket to the cylinder, as most of the other engines had, to keep up the pressure of the steam; and he built a brick casing round the cylinder, leaving an air-space all round, and applied a small fire to keep tbis air heated. About one bushel of coals in twentyfour hours was consumed in heating the cylinder, and he found a great increase was effected in the duty performed by the engine, with the same consumption of fuel under the boiler as before. He then removed the fire from the cylinder, in order to find the relative efficiency of the coal when consumed under the boiler or under the cylinder, and he found that it took five bushels of coals applied to the boiler to produce the eame effect as the one bushel of coals applied to the cylinder. Mr. Stephenson said, he had been so much impressed with the results of this experiment, that in the "Planet," one of the early locomotives made in 1832, he had the cylinders carefully incloged inside the smokebox instead of being outside, and there was found to be a considerable increase of power effected by the plan. That was the first locomotive constructed with heated cylinders, and it appeared the principle ought never to have been deserted; but it was singular how temporary prejudices sometimes caused a good thing to be departed from. Those inside cylinders were abandoned because the crank axles were found liable to break: but then, after that objection was subsequently removed by improved manufacture, the prejudice against the inside cylinders still remained; however, they appeared now to be going back to them. The construction of locomotives was still perhaps much influenced by these local prejudices arising from individual circumstances; and he was confident that this Institution would conduce greatly to the removal of them, by the mutual interchange of ideas and experience that was promoted by it; and nothing could assist more in forwarding such a desirable object than the reading of such papers as the present one by Mr. Clark. He quite agreed with the opinion stated in the paper on the great drawback to the application of expansion in locomotive engines caused by the condensation, from the cylinders not being heated: he considered some additional heat was required to be supplied during expansion to prevent condensation taking place, as it appeared the quantity of heat in steam was not sufficient to maintain the whole in the form of steam during expansion, but a portion returned to the form of water, as shewn in the able inveatigation of the expansion of steam given in Lardner's 'Treatise on Heat.'
Mr. Cowper deacribed some experiments that had been made by Mr. Siemens and himself, which he thought showed that condensation did not take place during expansion. They took a cylindrical tin vessel closed at the top, about 12 inches high and 2 inches diameter, the metal of which was very thin, and coated thickly with felt outside to prevent any loss of heat. A small steam-pipe was connected at the top, but the bottom of the cylinder was open to the atmosphere; and a stream of 30 lb . steam was blown into the vessel from a very small orifice, and allowed to escape freely into the atmosphere at the open end of the cylinder. After a short time, when the cylinder had become hot, and was maintained just full with expanded steam at the atmospheric pressure, a thermometer inserted a short distance into the open end, showed a constant temperature of 214° to 215° instead of 212°, proving the total quantity of extra heat that is in high pressure steam; and no condensation could be perceived inside the cylinder, no vapour being visible until the steam had escaped from the cylinder into the atmosphere. This experiment was tried on several different occasions, and on one it happened that the boiler was priming slightly; and when a drop of water came over through the steam-pipe and dropped upon the bulb of the thermometer, it was observed to fall sud-
denly to 212°, and remained at that point until the water was boiled off, when it again rose 2° to 3° above the boiling point as before.

Mr. Stepienson said he did not think that mode of trying the experiment would give a correct result as regarded the present question, as the steam was escaping into the atmosphere instead of being all confined within the cylinder, and the temperature in the cylinder being maintained above the boiling point would prevent any condensation taking place during the expansion of the steam.

Mr. Cowper did not think that in a cylinder thoroughly protected from loss of heat by radiation or conduction, any condensation of the steam would take place during expansion, and that if any condensation occurred, it would be found to he owing to the steam having lost some of its heat, which it conld not recover. The result that he obtained by indicator diagrams from a pair of 35 -horse power, high-pressure, expansive, and condensing engines, which he had constructed come years since, fully bore out this riew ; the steam was expanded in the cylinder of each engine independently, and the practical expansion curve was obtained very accurately. The whole body of the cylinder was necessarily nearly at a mean temperature between the highest and lowest steam in the cylinder (the cylinder not having a steam-jacket), consequently the steam ought to be slightly cooled on entering the cylinder, and towards the end of the stroke, where it was at a lower temperature from expansion, it ought to be slightly warmed by the cylinder;-now the indicator figure showed both these circumstances to have taken place, for the actual curve during the first part of the stroke, after the steam had been cut off, was rather below the true expansion curve; and during the latter part of the stroke it was rather above; this also showed that the expansion curve required a slight correction for the extra quantity of heat in the high-pressure steam.
Mr. Clabk remarked that he had found by the indicator diagrams that a great condensation of the steam took place in exposed outside cylinders during the first part of the stroke, from the coldness of the cylinders, and a considerable amount of condensation also was caused even in protected cylinders, where they were not artificially heated by exposure to the hot air in the smoke-box, because the temperature of the mass of metal in the cylinder remained about the mean temperature of the steam whilst expanding in the cylinder, which might be many degrees below the original temperature of the steam on entering from the boiler. This caused the actual pressure of the expanding steam to be below the theoretical pressure during the first half of the stroke, as shown in the indicator diagram, fig. 3; where the theoretical curve of expansion is shown by the dotted line BCD, allowing for the contents of the steam port and the clearance represented by the space AA. But about the middle of the stroke, the two curves coincide at C, as the steam was then at its mean temperature, and agreed with the temperature of the cylinder; and after that point, as the steam continued to expand and lower in temperature, the cylinder remaining nearly constant was hotter than the steam, and returned some of the heat it had robbed from the steam, re-evaporating more and more of the water that had been condensed, and raising the curve of actual pressure above the theoretical curve at the end D, where the exhaust commences. A portion of the lost steam is thus restored in the second half of the stroke, but a serious loss of power atill remains; and the consideration of this action that is always going on to a greater or less extent in the cylinders of locomotives, however well they may be protected, except where they are artificially heated, shows what an important source of economy is to be found in carrying out that principle.

Mr. Cranpton thought that enough attention had certainly not been paid to the condensation in the cylinders of locomotives at slow speed; he did not think it was of so much importance at high speeds. It was also particularly of importance in steamboat engines, where the question had not received so much attention as it deserved. He remembered an experiment which showed a remarkable effect of condensation: four condensing engines, of equal size, were working coupled together in a boat, with the steam cut-off at one-quarter of the stroke and expanded; two of the engines were then disconnected, and the other two engines were worked, cutting-off at half-stroke, using, consequently, the same quantity of steam as the four engines did, cutting-off at one-quarter of the stroke; but a greater effect was found to be produced by the steam than when it was used
in the four cylinders. This increase of effect sppeared to be entirely due to the greater amount of condensation that took place in the four cylinders than in the two cylinders. There were no steam-jackete, only ordinary clothing on the cylinders, and he thought much improvement was required in this respeot in marine enginea, and it was a matter well deserving the consideration of engineers. In reply to an inquiry, he said the boilers were working with salt water, but he did not think that would affect the result.

Mr. Peacoor suggested, that part of the effect in the experlment mentioned by Mr. Crampton might have been due to the smaller amount of friction in the two cylinders than in the four cylinders, when giving out the same total amount of power.

Mr. Crampton replied, that a greater effect was found to be produced after allowance was made for the friction, by taking indicator-diagrams, and the relative consumption of the water.

Mr. Weyterzad thought the loss by back pressure would also be less in the case of the two cylinders than with the four.

AMERICAN DOCKS.*

The tidal position of the United States is 50 different from our own, and so peculiar, that the docking system has been carried out in a manner totally independent of that which has prevailed in this country. Accustomed to a considerable rise and fall of tide on the shores around our islands, it does not readily strike us that the position of any other country does not present the same local circumstances, and, so far as docking is concerned, the same natural facilities. There are few of our rivers and harbours in which a ship cannot be run into a dock at high water, and left dry at low watcr; and consequently, except in extraordinary cases, dock works for repairing ships do not go beyond the permanent water-line. Indeed, in many cases uli we have to do is to embank a certain portion of the shore, and provide it with lock-gates. Except for particular purposes, the stenm-engine is not required to empty docks, the ebb-tide leaving the vessel on the dock floor.

It is perfectly true that on the shores of our colonies the rise of tide is great, and in the Bay of Fundy to an enormous and unexsmpled extent; but as we go south, the tidal influence is less, and in many places the difference between high and low water on the shores of the United States is not more than two feet. Hence, until a comparatively late period, the conatruction of a floating dry dock was a formidable undertaking, inasmuch as any such establishment must be provided with machinery for emptying out the water. Where the depth of water in-shore is small, or the flats run out far, the difficulty of any such undertaking is enhanced. The consequence was, that both for public and private purposes, the want of docking accommodation was long felt, and, as compared with this country, the States were far bebindhand. The ingenuity of our Atlantic brethren was, however, stimulated by these difficulties, and the reault has been the successful working out of a number of valuable inventions, and the organisation of a system of docking thoroughly original.

Morton's and other slips for hauling ships bodily, at first chiefly engaged the attention of the engineers, but various forms of floating basins for inclosing shipping were proposed and ultimately carried out. Of these, by far the most copions account is that given by, Mr. Hyde Clarke, in Weale's 'Quarterly Papers on Engineering,' under the head of the "Floating Dry Docks of New York." This contains practical descriptions and engravings of the earlier inventions, and brings down the history of the subject to a comparatively late date. This is continued by the work now before us, in which, under the title of the 'Naval Dry Docks of the United States,' General Charles B. Stuart, the Engineer-in-Chief of the United States Navy, describes not only the Floating and Sectional Dry Docks, but completes the subject by giving the desoription of those works lately constructed by the navy department, and which We better understand by the name of "Dry Docks."

The difficulties attending these latter works will be better conceived, when it is observed that it was not until 1845 that the works for the Dry Dock at New York were effectively begun, although the urgency of such an establishment for the United States Navy had long engaged the attention of public

[^44]men. Our readers know well enough that however valuable the alip is for hauling up small vessels, yet that it is dificult to apply it to first-class war-vessels or stesmers. Bo liable are vessels to strain, that among our own shipbuilders objections are entertained even to lannching newly-built vessels from alipa, and for that reason many prefer building them in dock and floating them out. Nevertheless, the exigencies of the commercial navy requiring it, New York had some gigantic slipa, in which great operations have been conducted. Plans of machinery for this purpose will be seen in 'Weale's Papers.' The favourite plan in the Atlantic cities for some time was to bring the shipe over a sunken and hollow raft, on the exhaution of the water from which the ahip was borne to the surface and lay on a cradle high and dry, with a good platform around her, on which the ship carpenters could work. The great advantage of moet of these plans is, that the ship is kept in a horisontal or toatable position, and thereby the strain is diminished. Timber being cheap in the Atlantic States, and space abundant in the watera, the construction of these floating establishments, which can be steam-tugged to any required spot, presents great advantages.

The requirements of the naval establishments are otherwise; although at inferior navy establishmenta, and at Ban Francisco, flosting and sectional timber docks have been authorised, from motives of economy. Yet at the great permanent establishments it is essential there should be a large dock in one fixed spot, where it can be fortified and defended. This explains the anxiety to construct what is called the "Granite Dry Dock" at New York.

We should observe that the work of General Stuart, who has had part in the operation, is one which is an accession to professional literature, and very honourable to the country which produces it. It is one of those works which must becomes standard in the professional library, taking its place by the side of the productions of our leading men. The letterpresa and the engravings, which are so much more important to practical men, have been produced in New York; they are of a very hondsome style, and the latter numerous and copious in detsils General Stuart has by this publication done a service which will be as much esteemed by his brethren and countrymen on this side of the Atlantic as by those beyond the broad sem, among whom he was born. It is one of the most important professional contributions we have yet received from the other side, and to us not without great practical utility, because with the extension of our relations, there are many placea in our Indian empire and in our colonial possessions where works of a like character are required and indeed in many foreign countries, on the Baltic and the Mediterraneen, where our engineers practise, and where the value of this guide will be sensibly felt.

The greater portion of the volume and the moat copions details are given to the New York Dock, and acquire the more valuable character as they are to a great degree derived from the General's own observations. Many of these details are of local reference, as the estimates of contractors and the price of works, but many of them are of general and practical application. Our space will not permit us to avail ourselves to any great extent of those portions of the text in which the writer enters upon many practical points of interest which arose during the progress of works so great and so difficult, and we must therefore content ourselves with a partial description.

The dock of which we are speaking was run out into Wallabout Bay, an arm of the East River, and required the construetion of a cofferdam, within which the works had to be carried on. It may very well be conceived that such a cofferdam presented very great difficulties, inasmuch as piles of 50 feet in length had to be sunk without reaching hard ground, the botiom of the bay being 10 feet of slusher quicksand. Several breaches occurred in the progress of the works, which required skilful treatment, and these operations are fully narrated. The piles were first driven with a treadwheel, but afterwards the steam pile-driver was used with great economy of time, and we presume of money. At any rate, it was of importance to get the inclosure completed as early as possible, for it was only then that it could be stayed within so as to resist the great pressure of the waters of the inlet.

The temporary expedients of securing the coffering to the shore by chain cables were found very unsatisfactory, several cables having parted in storms, and the work requiring close watching. During the course of the work, green pilee were substituted for sessoned piles, as it was found the latter being

WIGAN PITHHC HALL。

Sanle to Elevation Scale to Plans
drier, were readily split ander the pile-driver. General Stuart given many particulars as to the pile-driving, and as to the practice of Nasmyth's steam pile-driver, which will be found of value, because the extent of operations was great. In June 1847, a pile was driven 43 feet with Nasmyth's pile-driver, and then another pile, 15 feet deep, driven on the top of that. In some cases the piles were driven 25 feet through the subsoil, and yet the cofferdam was weak. The situation seems to have been one in which Potts's hydraulic process would have been valuable, but it had not then been practically applied on a large scale.

As might be expected, bottom springs were among the most troublesume opponents in carrying on the works. These springs were met with when the excavation had extended to within about 6 feet of the required level for the foundations. These springs, it may be noted, were of fresh water, although the bay water whs salt; and they canse evidently from a stratum of considerable depth, the veiny of water, even when contiguous to each other, not being always connected together, and supplied, doubtless, from a high source. Their temperature was higher than that of the mater in the Bay, and the fow was not affected by the rise and fall of the tides.

One difficulty attaching to these springs was, that they carried sand in suspension. This sand is described as so fine and impalpable that it insinuated itself even through the cheeks and cracks of the timbers, to the danger of the surrounding works. It was necessary, therefore, to provide for the flow of the water, and to check at the same time the escape of the sand

One of the most powerful springs, says General Stuart, was that met with near the temporary pump-well at the north-east corner of the dock. The first case of undermining from this spring was the settlement of the piles driven to support the pumps and engine, rendering it necessary to change the pumpwell; but the spring followed, and compelled another change of the well. This spring was driven out of the old well, by filling it with piles, but it immediately burst up among the foundation piles of the dock, near by. In a single day it made a hole, in which a pole was run down to the depth of 90 feet helow the foundation timbers. One hundred and fifty cubic feet of cobble stone was thrown into this hole, which settled 10 feet during the night, and 50 cubic feet were thrown in the next day, which drove the spring to another place, where it undermined and burst up through a bed of concrete a feet thick. This new hollow was several times filled up with concrete, leaving a tube for the water to flow through; but in a few days it burat up through a heavy body of concrete, in a place 14 feet distant, where it soon undermined the concrete, and even the foundation piles, so that they settled from 1 to 3 inches. These foundation piles so affected were 33 feet in length, driven by a hammer weighing 2800 lb ., falling 35 feet at the last blow, with an average of seventy-sir blows to each pile, the last one of which did not move the pile above half-an-inch.

It may well be imagined that this last result was viewed with alarm, and that the most complete measures were resolved upon to prevent further injury. It was determined, therefore, to drive as many additional piles as could he forced into the space, and, by means of followers, to force those already driven as deep as pussible. This work having been done, although under very disadvantageous circumstances, the old concrete was removed to a depth of 20 inches below the top of the piles; an area of about 1000 square feet around the spring was then planked, on which a floor of brick was laid in dry cement, and on that another layer of brick was set in mortar made of Roman cement. The space was next filled up with concrete, and the foundations completed over all, in the usual manner, and with the greatest dispatch possible. Several vent holes were left through the floor and foundations. After a few days' interval, when the cement had become well set, the spring wan forced up to a level of 10 feet above the former outlet, and at this point it flowed clear and no longer charged with sand.

The other bottom springs were, it is said, furty in number, and were, many of them, of the same obstinate character, but were treated with equal success. Two of these springs, it seems, were accidentally closed by freezing in 1848, and forced up, in one cuse 8 v 0 , and in the other 1200 square feet of the foundations. This injury tork place between the lower timbers and the planking, lifting also the first course of the ntone floor, which was from 12 to 15 inches thick. None of the springs were closed until the inverted arches of masonry had been laid, and the cement had become well set. Even then the pressure
on the bottom of the floor was so great that the water came through the joints, though it did not disturb the stone. The arrangement proposed to be effected was to bring up all the springs through the foundation in lead pipes, and leave no pressure upon it until the masonry was laid, and the cement had become well set; but there were many minute veins of water unnoticed when the foundation was laid, which exerted a force upon the cement joints, rendering their setting very slow, and making it necessary to caulk them carefully with Roman cement and fine Rockaway sand, in 1850 and 1851.

Beside the main gate, hereafter to be described, there are balance gates of very ingenious construction carried out by General Stuart himself, and in which he introduced the latest English system of construction, but with some modifications, and carried out on the largest bcale yet accomplished. The floating gate or caisson is a curious work, being an iron vessel or ship, with keel and stems made to fit the grooves in the masonry at the entrance of the dock. By admitting water into this vessel it sinks and settles in the grooves, and forms a barrier against the sea. It is removed from its place by pumping out water sufficient to raise it clear of the grooves, which are wider apart at top than at bottom. A contrivance of this kind is very seldom likely to be required in England.
After fully describing the details of the New York Dock, and giving general descriptions of the other docks, with engravings, the writer enters upon the second part of his subject, copious enough to make another volume, that of floating dry docks. The chief work here described is the Philadelphia Floating Dock. There is likewise described what is called a Balance Floating Dock, which has not yet been made known to the profession to any extent; and the Sectional Floating Dock, which is however more copiously illustrated, and on a larger scale, in Weale's 'Quarterly Papers.'
In concluding this short sketch of the work, we can but repeat what we said in the beginning, that it is one of a class which raises the character of the profession as well as that of the engineer by whom it is written; and we hope to welcome many like productions from General Stuart and our fellow countrymen,-no longer so far distant from us, but brought by the powers of steam within a few days' reach.

NEW TOWN HALL, WIGAN.
 R. Lane, Esq., Architect.
 (With an Engraving, Plate XXXIII.)

On the 11th August last, the foundation stone of this public hall was laid by N. Eckersley, Esq., the Mayor, in the presence of the corporation, the members for the borough, the local clergy, and a large number of persons. It is to be erected from the design of R. Lane, Esq., architect, of Manchester, by Mr. Fairclough, contractor, at a cost of 38401 .; but the expenses of lighting, warming, and fitting up the hall are anticipated to be about 700l. more.
The facade is of an Italisn character, the lower compartment being of stone, with a granulated rustic basement, terminating with a deep facia and moulded stringcourse. The upper compartment is of stock brickwork, with stone quoins and dressing to windows, surmounted by a bold modillion cornice, facia, and neck-mould. In the centre is a circular-headed recess in stone formed with quoins corresponding with those at the external angles of the building, inclosing a door-case with Doric columns, and entablature with triglyphs and dental cornice, having a circular-headed doorway with moulded imposts and archivolt, carved spandrils and key-stone. The central window over is circular-headed, and ornamented with a carved scroll band. The whole front, though simple in its forms, is rich and effective.

In the internal arrangements, a flight of steps, 13 feet wide, leads to the vestibule and principal staircase. On the right and left of the entrance is the library and news-room, and committee room, and from the centre of the vestibule are the doors leading to the large public room, 80 feet long by 40 feet wide, and 30 feet high, fitted up with a spacious orchestra at the end, adequate for concerts on a large scale. Over the library and news-room is a large saloon, 40 feet by 30 feet, for balls, public meetings, lectures, \&c. The space below the large ruom is intended to be appropriated to the purposes of a mechanics' institution.

LONDON CATTLE MARKETS.

Sre-As public attention appears to be at present somewhat directed to the discussion of the fatare position of the London live cattle market, you may, perhaps, be so good as to insert in your valuable Journal the following observations on the subject. I venture to intrude them upon your notice because, firstly, I have had occasion to examine the subject in considerable detail; and, secondly, because I believe that the expression of a sincere opinion must always serve to elucidate truth, even should it be arrived at from imperfect data, or be incorrect in itself.
One of the most serious objections to the retention of a eattle-market in a city appears to me to consist in the interference with the trafic through the streets, and the sufferinge the animals must endure whilst passing over the hard roads. This might, to a certain extent, be obviated by forming large lairs, able to receive the maximum number of cattle exposed, round the market. If this were done, it would be easy to drive the cattle at such hours that their entry into the market should take place when no carriages were passing through the streets; they would be taken to the lairs after being sold and conducted to the different butchers' shops, or the various slaughterhouses, at the next period of cessation of traffic. The sufferings of the cattle do not, however, admit of so simple a remedy. The very fact of the market being in the centre of a city renders it impossible that the approaches should be other than paved roads, because in such positions the daily traffic would destroy any macadamised roads with frightful rapidity. But it may be questionable whether, after all, it be not a refinement of compassion for the animals to attach so much importance to their comfort during the hours immediately preceding their slaughter. Nor, if the market were sufficiently capacious to avoid unnecessary beating in order to arrange them, and sufficiently well arranged to obviate the necessity for the cruel mode of removing them which now prevails, does it neem to me that the question of the roadway is really of much importance.

There is another serious objection to the existence of a market in the interior of a city-viz., that in such cases it becomes the centre of a class of industry susceptible of becoming prejudicial to the public health, unless it be very carefully controlled by the municipal authorities. This is especially true in our own country, where all repressive action, in questions of nuisance, is ex post facto. It may be also true that when the power to control such trades lies, as it does in our corporations, with parties elected by and from the very people exercising them, such power will never be efficiently or carefully enforced. Be that as it may, it is certain that around all the English markets held in the middle of towns, we find the foulest and most disgraceful assemblages of corruption and iniquity accompanying such trades and callings carried on in such a manner as to revolt every well-regulated mind, even if the possessors of the latter should not have a too delicate sense of smell.

Indeed, Smithfield itself is a gross iniquity: but "worse remains behind"-the neighbourhood is fouler still. And moreover, it is to be observed that Smithfield is an intolerable nuisance for only two days out of the seven, whilst the neighbourhood is a permanent centre of mental and physical contagion.

Smithfield market is condemned; and sooner or later it must be abolished, although as the Act for its abolition was passed by the last Administration, it is more than probable that some ridiculous blunder will enable the City authorities still to resist. For, in passing, we may observe that the Whig Administration have very ingeniously contrived to spoil every measure they introduced for the improvement of our internal regulations, by the choice of their agents. Witness the Health of Towns Bill, the Sewers Commission, the Extramural Sepulture, the Water Supply, \&c.; all founded upon good principles, and intended to meet the requirements of some urgent necessity, but all alike spoilt by the incapacity, or the carelessness, or the insolence of the agents to whom they were intrusted. In fact, as the Whigs did propose the Smithfield Abolition Bill, it is fair to assume a priori that they have again compromised a necessary measureat least for a time.

The measure was necessary because, firstly, the value of land in the City is too great to admit of a market being ever constructed there sumficiently large to obviate the nuisances now attaching to the market itself; secondly, because if even a good market could have been constructed, it is essential that the various attendant trades should be removed elsewhere. It
seems, however, that the City authorities have detarmined to carry the market to the Caledonian Fields, and that considerable opposition to that project has arisen on the part of the inhabitants of the neighbourhood.
On the score of nuisance I cannot say that I think that much injury will be inflicted upon them, because, to my mind at least, there will be an advantage in the subatitution of a large, open, well-drained market for the evils usually attending brickfields near London, or for the existing accumulation of filth so common in this abandoned part of the metropolis. Any person who will take the trouble to walk near the Regent's Canal and the Gasworks must at once have ocular and nasal demonstration that anything like a market-quoad market-which, by drawing together many people, will compel the parochial authorities to mend their ways, must produce a contingent good effect apon the neighbourhood far exceeding any nuisance it can itsalf create. But it may fairly be questioned whether the parochial authorities, who have allowed this district to become what it is, would be likely to regulate the slaughter-houses, tripe-boilers, bone-dressers, and other trades following in the wake of a market; and in case these nuisances should be allowed to develope themselves with all the rank luxariance of the existing laystalls, possibly the new market would add to the actual evil. It would behove the City authorities to adopt such precautions as lie in their power to prevent such a contingency-it behoves the parochial authorities to suppress the evils which now exist, and hereafter they will be more justified in interfering with such others as may arise. It must, however, be repeated, that if a market be well situated and properly conatructed, there are really no nuisances of hecessity connected with it; so that, in fact, the question, so far as the public is concerned, resolves itself into this-"Is the situation proposed the best which can be found?" For several reasons I say "No; and, if the market must be in the northern suburbs of London, that the existing Islington Market is in a better situation."
First, Islington Market lies higher, and is, therefore, more easily susceptible of being drained.

Secondly, it exists de jure, and almost do facto, so that opposition on that ecore cannot be maintained.

Thirdly, as a very respectable neighbourhood surrounds the market, it is probable that great vigilance will be observed in preventing the establishment of the usual concomitant nuisances.

Fourthly, Islington Market is situated upon the principal line of arrival of cattle for the London market, and it has very commodious access on every side, which would not be the case on the west of the proposed site in the Caledonian Fields.

Fifthly, if Islington Market be somewhat farther removed from the Junction Railway than the proposed site, yet the nature of the works required to put it in connectiou therewith is much lighter. And as Islington Market could at present be purchased at a rate probably lower than the new site, it is reasonable to suppose that the capital outlay would be less.
Sixthly-and this is the most important consideration-if London be divided into a series of districts it will be found that Islington Market is considerably nearer to the mean centre of gravity of those districts than the Caledonian Fields; and that consequently the distance, to be traversed in going to and fro the market, will be less in the former than than in the latter case; and at the same time the access from all quarters is far easier.
I have, in the above remarks, studiously avoided entering into the question of the advisability of concentrating the whale of the cattle trade to one spot. Indeed, for many reasons it would appear to be preferable to form two or perhaps three, markets at much greater distances. I have taken it for granted, however, that the Government project is to be carried into effect, and the great cattle-market formed at some spot in the northern suburbs; and really, if those very questionable considerations are to be accepted as the postulates in the diacussion of the subject, it appears to me that Islington possesses such advantages over its more favoured rival as to warrant the expression of surprise at least that the vested rights of its proprietary should have been so entirely neglected.
G. R. B.

London, July 31st, 1858.

TIMBER AND ORNAMENTAL WOODS.
At the Great Exhibition there was exhibited a valuable collection of woods from all parts of the world, by Mr. W. W. Saunders, which was particularly interesting on account of its extent and arrangement, the woods being all labelled and classified; and their value is greatly enhanced by the publication of the following classified catalogue. The Jury awarded Mr. Saunders a Prize Medal for the series.

WOODS, NATIVE OF OR GROWN IN BEITAIN-Contimed.

WOODS, NATIYF OF OR GROWN IN BRITAIN-continuod.

\begin{tabular}{|c|c|c|c|}
\hline KAEE, ARD PMACE OT OROWTE. \& \[
\left|\begin{array}{c}
\text { Weighs } \\
\text { perb. Pu. }
\end{array}\right|
\] \& \[
\begin{aligned}
\& \text { 8pect- } \\
\& \text { 日rav. }
\end{aligned}
\] \& Hexarich \\
\hline \& \& \& \\
\hline Pyras malas (apple)-Oxfordsbire \& \(\begin{array}{ll}85 \& 0 \\ 39 \& 7\end{array}\) \& \({ }^{-381}\) \& Specionea from the opper part of \\
\hline plag \& \& \(\cdot 725\) \& the stem \\
\hline " \("\) " Yorkehtre \& \& . 728 \& Hard, cloce-grained, itrons \\
\hline Pgrue "borbas (service tree)-Ep-
plag \& 4611 \& -74 \& Hard, ine-gralned, compsect; much in repute by miliwrighta for cogi, \\
\hline Pyrue torminalio-Ite of Wig \& \& . 679 \& \\
\hline Q'urcuag Hex (evergreen onk)- \& \& . 757 \& Wood very shaky when eged; it dorable and strong; and makea an excellent charcoal \\
\hline \& \& 756 \& \\
\hline "p \({ }^{\prime \prime}\) Surrex \& \& 6442 \& \\
\hline Quercas pedancolata (Engilimh onk?
-Suscex \& \& . 624 \& Mach eateemed for shipbullding; the atrongest and moat durable of British moode \\
\hline -Wrandaworth (pollard onk) \& 4410 \& \(\cdot 714\) \& Ac old tree \\
\hline \(\because\) (common oal: \& 4014 \& . 654 \& Part of a large lower branch \\
\hline \& \& +451 \& Part of a large b \\
\hline Quercas meadiliors (Weloh ont). \& \& \({ }^{-603}\) \& Good wood for stipbullding ; asd \\
\hline rco \& \(51 \quad 10\) \& -828 \& \\
\hline Garden, Chalmen \& \& \& \\
\hline Quercon sp. (Americna onk)- \& 42 \& -681 \& Hard, compact \\
\hline ") (beetard oak)-Tec \& 88 \& -584 \& \\
\hline \begin{tabular}{l}
rordëbire \\
(Spaniah oalk)- Ox.
\end{tabular} \& 4813 \& -701 \& Close-grained, appareatly a good rood \\
\hline Ahamnue alaturous-Mortlaks \& \& \(\cdot 774\) \& Hard and clow-grained \\
\hline Rhamnus catharticue-Epping \& 3411 \& -655 \& \\
\hline Rbampua fragula - Epplog . \& \& -403 \& \\
\hline Rubinis preudo-meseta (common acacla, locuab) \& \& -705 \& From apper part of the maln atem; much uend for treenalle lo ohip. bailding, and to in repute in the United states for ponte and ralla \\
\hline Wandr- \& 4) 11 \& -651 \& \\
\hline \& \& -888 \& \\
\hline saliz albe (white" \({ }^{\text {diliow }}\))-Surre \& \& -398 \& Ueed for Loyt, and by the millwright, tough, elestic, durable \\
\hline Ballx caprea (palm enllow)-0xfordentre \& 24 \& -352 \& Tough, elaste; used for havalife to rools, and makee good hurdieu \\
\hline salix fragilie (crack willow)-Oz- \& 320 \& - 392 \& Light, pliant, toagh; to seld to be \\
\hline \[
\underset{\text { suire }}{\text { Sulix }} \text { i (back sallow)-Oxford- }
\] \& 38 \& . 512 \& Toagh, elastic; well adapted for turnlag \\
\hline \& \& \[
\begin{array}{r}
\cdot 536 \\
-474 \\
\hline 44
\end{array}
\] \& \\
\hline Sallow. \& \& \& \\
\hline Sambueva nlgra (common ilder)Oxfordabire \& \& 54 \& \\
\hline Scö̈ \(\ddot{\text { a }}\) " Epping \& \& -603 \& \\
\hline Scoteb Ar. see Pinus Serrice tree. see Pyrus \& \& \& \\
\hline liver fir. cee Pinus \& \& \& \\
\hline Spruce Ar. see Ablet \& \& \& \\
\hline \& 4816 \& . 783 \& Very hard and compact \\
\hline worth \& \& \& \\
\hline Taxüs becente (y̌w) . Sarrey \& \[
\begin{array}{ll}
48 \& 19 \\
4 \& 9
\end{array}
\] \& \[
\begin{aligned}
\& -781 \\
\& -685
\end{aligned}
\] \& \\
\hline Taxas breceta (yew) - . . \& \& \& sed ror making bown, chang darnble, very tough, elagtic, and ane grained \\
\hline West Grinatead \& \& -812 \& \\
\hline Thujs orlentalio-Nartlake . . \& \& -358 \& \\
\hline THi europiea (common lime) - \& 27 \& -436 \& Uned for cutting-blocks, earring, mounding bourds, and toy \\
\hline Tilia sp. (Scotch lime)-Scotland \& 80 \& \(\cdot 485\) \& Used for turning and carring \\
\hline Tullp tree. ma Liriodendron \& \& \& \\
\hline Ulex europues (furse)-Ilíreombe. \& \(\begin{array}{ll}52 \& 8 \\ 30 \& 0\end{array}\) \& \(\cdot 840\) \& Henvy, hard, close-gradned; in the north of Mevonshife the stem reaches 6 in . diameter sometimea \\
\hline Ulmue campentris (English elm) \& 30

26 \& -489 \& Used in shipbullding for ander. water planking, \&ec., belag very darable when kept wet or burled in the earth

\hline ", "\# ", \& 28.6 \& $\stackrel{\cdot}{489} \times$ \&

\hline \& $41^{\prime \prime}{ }^{4}$ \& -665 \&

\hline O"fordebire (common elm)- \& \& - 537 \&

\hline " " 0 Epplag \& 397 \& -681 \& One of the lower branches of a young Fgorous tree

\hline ") " (pollard elm)- \& $31 \quad 13$ \& -509 \& From an old tree

\hline | Weat Gringteed |
| :--- |
| Uimue montane (wrch elm)-Ox | \& 3514 \& \&

\hline Ulmus montans (wych elm)-Ox. fordehlre \& 3514 \& - 674 \& Thought to be better than common slm; used in carpentry, shipballding, \&e.

\hline " \#, Epplag \& 36 \& - 581 \&

\hline Vitis riolfere ($\mathrm{H} \mathrm{n}+\mathrm{)}$) Wapdeworfb \& 4211 \& -683 \&

\hline alnat. Mee Jughan. \& \& \&

\hline Willow. see Sallix \& \& \&

\hline Yew. ${ }^{000}$ Tarus \& \& \&

\hline
\end{tabular}

WOODS OF EUROPE.

WAare AXD place of growtu.	$\begin{gathered} \text { Welght } \\ \text { per } \\ \text { Cub. Ft. } \end{gathered}$	$\begin{aligned} & \text { Speci- } \\ & \text { fic } \\ & \text { Grav. } \end{aligned}$	REMARKB, AND WHAT USED yol,
Africati oak-Sierra Leone	lb. or,	'823	The hest quallty
n n	$\begin{array}{ll}30 & 7\end{array}$	$\cdot 807$	Excellent for shlpbuilding
" West Congt of ${ }^{\text {a }}$	$30 \quad 0$	- 800	Sometimes called Silver oak
Africañ teak . ${ }^{\text {West Coast of Africa }}$	$\begin{array}{ll}43 & 11 \\ 4 & 5\end{array}$	-899	Shipbuilding ; another term for
			Afrlean oak
Bar (Baphia nittda)	$\begin{array}{ll}36 & 7 \\ 34\end{array}$	'583	Dyelog and turning
	34.13	- 577	Dyeligg and turulng
Columblee-Madagascar	$33^{\circ} 1$	849	Dyeing
Fernando Po wood-Fernando Po	301	451	Stripbuildling
Red Sänger wood	$\begin{array}{cc}45 & 14 \\ 61 & 0\end{array}$	784 .797	Heary and compact

WOODS OF NORTH AMERICA.

Ash, Amerlcan (Frazinas)	$35 \quad 10$	*570	Tough, elastic, much used
Ash, white-Upper Canada	3014	494	
Balsam (Picea balsamea)-Upper Canada	190	-304	Catrpentry
Bass wood (Tilia)-Upp. Canads .	250	-400	Even grala, like common limewood
Beech, white (Fagus americana)U.S.	42	$\cdot 674$	
Beech (Fagus ferruginea)-Upper Canadn	369	-585	Dry carpentry ; the wood has more rufous tiot than common beech
Birch, black (Betula nigra) .	357	-567	Shipbollding In Canada and Nova Scotia, but not a durable wood
Birch (Batula $->$) - Upp. Can.	3011	491	An inferior wood
Box elder, ash-leaved maple (Acer Negundo)-U. S .	240	-184	
Butter put (Juglans cinerea)-Upper Cauada	238	$\cdot 376$	
Butter wood .	2812	-460	Shipbuilding
Batton wood, sycamore (Platanus occidentalls)-Unlted States	26 3	*424	Mueh used for making bedsteads
Cedar (Larix - ?)-Upp Canada	186	-294	
Cedar, red or pencil (Junlperua ber-mudlana)-Bermuda	84 Is	-559	Shipbuilding and for making pencils
Cedar, red (Jualperus virgialana) Ulalted Staves	2610	'426	For making pencils, but not so good as the jusip, bermudiana
$\begin{aligned} & \text { Cherry wood (Prunus - }) \text {-Up- } \\ & \text { per Canada } \end{aligned}$	2915	-479	
Cberry, wild (Cerasus virgialana) United States	323	$\cdot 515$	
Chestrat (Castanea resca)-U.S.	95 4	-404	
Colfer tree (O ymnocladus canadea-sis)-U.S.	407	'647	Hard, compact, strong. tough
Cppress (Cupressus disticha) - Uolted states	22 13	$\cdot 365$	Grows to an immense size
Dogwrood (Cornus florida)-U.S.	474	${ }^{7} 756$	Hard, close-grained strong
Eim (Ulmus americana)-Upper Casoda	36 I1	+587	Hard, close-rained atrong
Elm, american rock	363	579	Shipbullding
Elm, rock .	3710	'602	
Kim, swamp	3310	538	". praferred to English elm
Elm, white Elm, red (Ulmus fulva)-U. ${ }^{\text {a }}$ ([18	.549 .680 609	By wheelwrights
Elm, red (Ulmus fulva)-U.S.	$\begin{array}{ll}12 & 8 \\ 11 & 2\end{array}$	-680	
Gum" tree, sour, or black "(Nymsat	40	- 649	
Gum tree, sour, or black (Nyama maluflona)-U, S.	40 a	'646	
Hack-berry (Celtis crassifolla)U.S.	336	$\cdot 614$	Tough, elastic
Hackmatack (Larix amerjcana)	379	-601	
* \quad "	362	$\cdot 378$	Esteemed in British N. America
Hazel, wyeh, or Quebec rock elm Uhmus)-Canada	42	-5, 46	Shlptuilding
"	4.311	. 699	
" ${ }^{\text {r (}}$ (blescaindensls) ${ }^{\prime \prime}$	510	'822	
Bemiock (Ables canadensis)-Uni. ted 3tates	230	-263	
Hemlock sprsee-Upper Canada .	230	-863	Common carpentry
Hickory (Carya ataata)-U.S.			Common carpentry
Rilckory, pignut (Carya porcina) U.S.	498	-792	8tronger and better than any other kind of hickory
Hielory, shell-bark (Carya sulcata) - U.S.	$43 \quad 2$	*690	
Hickory?	$47 \quad 8$	$\cdot 700$	
Blelrory (Juglane alba)-Upper Canade	452	770	*
Honey locust (Gleditachla trlacan. thus-U.S.	406	- 646	Very hard, splits with great facle 11ty
Iron wood (Ostrya ringinlea)-U. 3 ,	43 It	7779	
Judas tree, or red bud (Cercis ca-nadenais)-U.S.	347	- 535	Close-grained, compact
Locuat (Robinia pseud-acacia)- U. 8 .	$\begin{array}{ll}45 & 8 \\ 41 & 11\end{array}$	-728	Shipbuilding occasionally, chlelly for treenaila
Maple, "sof (Acer" eriocaroum)-'	41.11	-667	
Upp. Canada	3014	-5129	
Maple, red, (Acer rubrum)-U.b.	395	-618	
Maple, angar (Aver saccharina@) - D. 8 .	386	-614	
	396	-630	
Maple, blrd'a eye-Upp. Canada	$40 \quad 15$	655	Oriarnenta! work by carpesters
Maple, curly-Upp. Canada	3610	-5isf	Cormmon carpentry
Maple, var. bird's eye	360	25\%	Ornamental work; a pecullar
Maple, hard-Upp. Canada . .	3010	. 634	growth of the tree

MAME, AED PLAOX OP GMOWTH.	Weight per Cub. Ft.		REMAHKS, AXD WEAT UEED POM.
Mulberry, red (Morus rubra) - U.S	$\mathrm{Ib}, 02$	-561	
Oak (Quercus alba)-Upp, Canada	$47 \quad 14$	766	
Oak, white-U.S.	40	- 641	
Oak, while-Upp. Canada Oak, Quebec-Canada	$\begin{array}{lr}44 & 4 \\ 8 & 11\end{array}$.708 $\cdot 589$.589	
Oak, Quebec-Canada	(88	.589 .725	Shlpbuilding, but not durable Specimen of an inferlor quality
Oak, "Quebec white-Canada*		${ }^{-689}$	Shipbuliding, but not in repute
	54	-870	alpbullding
Oak, 'red (Qüercus rubrä)-U.S.	$\begin{array}{ll}32 & 2\end{array}$	-514	
Oak, black (Quer. Linctoria)-U.S.	34	-558	
Oak, Live (Quercus virens)-U,S,	$\begin{array}{lr}56 & 4 \\ 51 & 11\end{array}$	-900	Heaviest and hardest of the oaka
Pawpaw (Uvaria triloba)-U.8.		-359	
Persimon (Diospyrua virginlana)U.S.	4	$\cdot 710$	Hard, close-grained
Pline, yellow (Pipus mitia)	23	-376	Carpentry work
Pine, Amer. yellow		-367	
Pine, red (Plous resloosa)- U, s,	287	-455	Carpentry ; strong
Pine, Amer. red		- 4272	Carpentry drab
Plae, pitch (Pinus rigida)-Sonth Carollna		$\cdot 512$	Strong aod durable
		-674	Much nsed in shipbullding
Pine ?-Upper Canha	${ }_{2}$	-360	Same parposes as common deal
Poplar, yellow (Liriodendron tu-lipifera)-U.S.	$24 \quad 3$	-887	
Poplar (Populus ——) - Upp.Ca- nada	20 I1	-331	
Red bü' sengade tree "		-318	Light, Inferior wood
Sassafras (officloale)-U,S,	37	-590	From a young tree
Sprace, white (Ables alba)	2313	$\cdot 381$	
Sycamore. ree Button wood			
Tamarack (Larix americana)-Up- per Canada	2315	-383	Good for shipbullding purposes
Treenall (Robinla psead-acaclaj-	418	-664	Treenalls in shipbuilding
Walnut, white-U.s,	30	-485	From a young tree
Wainut, black (Juglans U.S	28.15	-463	Strong, tough, not liable to syllt
	2811	${ }^{4} 459$	
WOODS OF THE WEST INDIES.			
Batuta	5411	$\cdot 875$	Heary, compact
Braziltetto (Ceesalpinla brasilien-sis)-Jamalea		-819	Dyeing and turning
Broad leaf (Termimalia latifolla)-- Jamalca		-560	
Bully tree, bastard (Bumella sall- cifolla-Jamalca	51.9	. 825	
Bully tree, black-Jamaica	52 12	-844	
Calabash (Crescentia cucurbitina) -Jamalea		' 660	Rather noft, tough, durable
Cedar (Cedrela odorata) - Jamaica	23	-376	Largely used in Jamaica for floor-
Cedar, bastard (B	4) 1	.657	log, doors, \%c. Tougb, not durable
-Jamalca		.007	Tough, not dur
Cedar, common-Santa Martha	3811	-619	Common carpentry
Cocus (Amerimnam ebenas ?)-	${ }^{86} 6$	$1-062$	Turning
Cosurbaril [Hymentea courbaril)	6014	'974	Ornamental furniture
Dogwood (Piscidia erythrina?)Jamalca		. 877	Hard, durable
Flg, red-Jamalca.	25	${ }^{4} 409$	
Fig, white [Ficus - ${ }^{\text {a }}$-Jamalca	30	448	Useless, except for fuel
Hard wood-Trinidad	63	$1 \cdot 016$	Shipbuilding
Hogplam (Spondias graveolens)	36.15	-591	Shlpbuilding
Hogplum (Spondias graveolens)Jamalea	2511	4 41	Soft, valueless
Horseflesh, or Mangrove-Jamalca	$45 \quad 15$	785	Sometimes in shlpbutiding
Lignum vite (Guiacum offictnate)	718	$1 \cdot 144$	Machinery, and turnlng
Logwood (Hrematoxylon campe- chiannm)	**	-.	Dyoing, occasionally in turning
Mahoe, blue (Hibiscus tillaceus)Jamalca		-584	Remarkable for toughness
Mahogany, Bsy-Honduras .		424	Furniture and shipbullding, called "Common southern"
" " "		$\cdot 413$	Shipbuilding, called "Common southern"
" " "		'683	Shipbailding, called "Superior northern"
" ${ }^{\text {" }}$		-507	Shipbuilding, and called "Good northern"
" \quad "		'376	Shipbuilding, called *Commoti northern"
Mabogany, Cuba	$46 \quad 11$	747	Exterior of the butt of a log
	$49 \quad 10$	794	Exterior of the top of a \log
Mahogany, Honduras-Honduras		+ 424	Outalde of the butt of a log, ftctLity laferior
\% \quad "		-630	
" ${ }^{\text {" }}$		418	Interior of the butt of a log. quaslity inferior
" "		-573	laterior of the butt of a log, quaLity good
" " \quad "		-555	Exterior of the butt of a log, quality zood
	$\begin{array}{ll} 44 & 1 \\ 36 & 9 \end{array}$	$\begin{aligned} & \cdot 705 \\ & \cdot 585 \end{aligned}$	teterior of the top of a log Exterior of the top of a log

WOODS OF SOUTH AMERICA.

Acapu-Pars.	56	'904	The bett wood of the country for ghading exposure to the wea. ther; much used in honse earpentry
Brazll (Crealplon echlosta)	b8 18	911	Dyetog and turalng
Brasllea hard wood	58 9	-937	shipbuhlitug
Braslian oak-Brazil	51	. 820	Sblpbuilding
Bultet wrood-Demarara	58	928	
Cedrale ? (Cearo)-Pars	23 ${ }^{24} 18$	- 487	
Demerare wood-Demerara	2313	-881	Shipbuilding
Greenheart (Laurue chloroxylon)-	$51 \quad 15$	-831	Excellent for ablpbailding; and acknowledged by Lloyd's to be one of the eight timb-rate
Brasif	${ }^{56} 58$	901	Shipbulldiag
1tanbs-Para .". ${ }^{\text {On }}$	${ }_{54}{ }^{51}$. 868	A fine hard wood
Kling wood-Brasil	$4{ }^{4} 11$	-699	Turning and oraamental furniture
Limoelro preto-Braxll		-01	Shipbaliding
Miacackubí-Para .		201	Hard, handsome; ased for fural- ture
Masaaranduba-Pora	69	$1-018$	Hard, of good quality
Norra (Mors excelen)-Damerara	B5 12	-892	Valuable forsblpbuilding ; acknow. ledged by Idoyd's as first-rate
" "	57	. 927	Sometimes called Demeraraliocust
" "\% Guimat	6213	1.003	Shipbusiding ; atrong, durable
O'smarelle-"P	60 68	-973	
Pao d'arco-Pera	54	-835	Used by the Indians for bows; ts
			much used in machinery
Piquia-Pars.	4316	703	Very tough; for water-wheels and tumbera for boats
Rosewood, or Jacaranda (Mimose)	4414	718	Mncb used for ornamental fural.
		. 600	ture Occasionally ln shipballding
Satin-wood :	55	-825	shiplualding
Sonth American hard wood, or Santa Marla.wood-Brasil	4714	764	"
Suuth American hard mood, or	bs	-852	
Sucapuia			
Stink-wood-Brazil	5211	-843	Fins a very unpleacant mmell
Ytu-Para	83	1-336	Remarkably beavy and tough
Ytu-Brasil	32	$\cdot 521$	Por making sugar boxet
Ytu-Carthagena	26	$\cdot 400$	Bosea and common carpentry
WOODS OF AUSTRALIA.			
Beet wood	5612	. 908	Ornamental farnitare
Hisck gum, Bortoe	56	-907	Hard, compact
Hlue gutu (Eucalyptas piperta)	57	-916	Shipbuilding; strong, durable
Box - . . .	59	-945	
Cedar	84	- 350	
Finderala Australia	32	517	
Gum wood (Eucalyptum realnifera)	52	. 814	Shiphuilding
Huon pine (Dacrydum Fraaklind) -Ván Diemen'e Land	25	-402	
Iron bary	65	$1 \cdot 049$	Very hard, compact
Lemon.	3014	$\cdot \underline{494}$	
Mahogany	${ }^{60} 13$	-778	
New Souih Walee cedar	294	-4ïd	Johnery and furnit
New suuth Walet hard wood	54	778	shipbuildiag
	39	-624	
Stingit bark (Rucalyptus- - ${ }^{\text {S }}$)	49 4 48	-788	Shipbuilding ; good for treenuile Shipbuilding; atrong, durable
Trydee	4418	-717	

FAXK, AMD PLACE OF OROWTR	$\left\|\begin{array}{c} \text { Weight } \\ \text { Per } \\ \text { Cub. } \end{array}\right\|$	$\begin{aligned} & \mathbf{S}_{\text {pect- }} \\ & \text { Grav. } \end{aligned}$	
Ake	40	. 644	
Ake Ake, or Mohowrangs.	63	1.011	
		-659	
Fapus (. .	338	-531	
Kahikatea (Dacrydjuta taxlfollam)	31	-497	
Karipatich or Macook - -	57 9	-921	
Kikiteah (Dacrydium tarifollum).	2313	${ }^{865}$	
Kowdie (Dammara Australis)	$35 \quad 9$	169	
Mero - . .	48	${ }^{7} 78$	
Moru, or Malre (Damd pline (Dammira Austr.)	34 35	- 4.498	Much valued for maste and upa
Pon ${ }^{\text {n }}$	26	-429	The best quallty
Pohotakana - - .	$\begin{array}{ll}38 & 2 \\ 52 & \end{array}$	-854	
	$\begin{array}{lll}32 & 3 \\ 31 & 7\end{array}$	${ }^{-837}$	
Rewarewa	5315	. 688	Good quallty, hard, compeet
Rimu	346	. 560	
Rowal	4318	$\stackrel{7}{-701}$	
Tanekaha	36	${ }_{\cdot}{ }^{5} 588$	
Tariedy	3512	- 372	
Totars (Podocarpus totarre).	895	.6\%9	
Towha .	35	3 Sh	
Toumas	436	. 674	

REGIBTEB OF NTW PATRETHA

ROLLING AND PRESSING MACHINERY.

Peter Armand Le Comte de Fontainemoreau, of 4, Southstreet, Finsbury, patent agent, for cortain improvements in lithographic, typographic, and other printing presses, which improvements are also applicable, with certain modifications, to extrocting saccharine, oleaginous, and other matters, and to compreseing in general. (A communication.)-Patent dated January 94, 185%.

Claims.-1. The arrangement of apparatus for obtaining inpressions from lithographic stones; \&. the modification of the aforesaid apparatus for obtaining impressions from typographic plates; 3. the apparatus for extracting saccharine, oily, and other similar substances; 4. the application of the said apparatus to compressing in general.

First. The damping of the stone may be effected by two different machines. The first of these consists of a thin copper box, wider at the bottom than at the top, and open at the top and bottom parts, but closed at the sides; the lower part is filled with sponge and woollen rags, containing a certain quantity of water in suspension. These sponges and rags are covered over with buckskin, and the whole rests upon a piece of woollen cloth, having the sbape of a bag, and fired at the bottom of the box; this apparatus, when placed acruss the working parts of the machine, extends the full width of the stone, and damps it all over as it paases underneath. The supply of moisture to the apparatus is rendered constant and equal by the reservoir, from which it escapes in drops through taps, being so constructed and disposed as to be capable of very nice regulation. The next means of ubtaining an impression consists in a roller composed of two hollow cylinders, fitted one within the other, the internal one being of cast-iron and the external one of copper; the two cylinders are perfurated with a number of small holes, and are retained in their proper relative positions by means of several adjusting screws. By turning one of the cylinders, the size of the apertures will be widened or narrowed, and thus the flow of water with which the interior of the cylinder is filled may be regulated. This cylinder is supplied from a reservoir through copper pipes, passing through the stufling-boxes, which are fixed to the roller at its extremities; the roller is surrounded with woollen cloth covered with buckskin, and also with a thick woollen stuff. This sponge roller is placed across the machine so that every part may successively come in contact with it. The roller also has a motion communicated inversely, so that it would derive from the friction of the stone its reciprocating motion if it were free; by that means the surface of the stone is thoroughly cleansed, and the particles of dust are deposited on a brush placed above it. As soon as the stone has passed under either of these machines, it is sufficiently damp to receive the ink, which is communicated by two rollers covered with leather. These rollers, denominated respectively transmitting and inking, are surmounted by a rubber sur-
mounted by two other rollers, serving to equalise the flow of ink upon its surface. The rubber is fed by the transmitting roller, which is supplied by the inking roller, against which rests the bottom of the ink hox, which may be brought more or leas near to it, and by this means the supply of ink is regulated. The ink roller is worked by a system of bevil wheels, which receive their motion through a crank, which also communicates a to-and-fro motion to the table upon which the stone resta; this table can be raised or lowered at will by means of an adjusting screw. The stone moistened and inked, as before deecribed, is ready to transmit the drawing or letters to paper; the neceseary pressure to be given to the paper for this purpose is effected by means of a rubber of hard wood, the bottom part of which is in the form of a priam fixed within cast-iron cheeks, which serve to hold it firmly. This rubber has at its extremitiea two pivots resting in a bearing adapted to two circular plates, at the circumference of which plates are set the pivots of sixteen small rollers turning freely on their axes. These two plates are fixed upon a wrought-iron axis retained in the two bearings of the machine by means of spiral springs, which only admit of a slight vertical motion. The whole thus forms a single roller opened at the bottum, which contains the rubber moveable in one direction and compressed in the other. It is retained in an oblique direction by a spring which presses upon the upper part, and thus leaves a space free for the passage of the stone to be inked. At the moment when the pressure of the rubber is required, it is forced into its perpendicular position by a cam, and remains so as long as the pressure lasts, and when it ceases is again restored to its oblique position by the effect of the epring. The cam just mentioned is fixed on one of the two cog-wheels fixed upon the same axis as the before-mentioned plates, but outside of them, and united by a segment passing ontside the before-mentioned small rollers without touching them. The pincers are set upon one of the borders of the segment, which take the paper between them; they are fixed at a certain distance upon two axes, and thus form two rows corresponding with each other. One of these axis presses them against the leather which surrounds the roller, and passes over the small rollers; the other row of pincers seizes the sheet by placing itself upon the first row. The leather is thin, and stretched all over the circumference of the roller from one extremity of the segment to the other; two cog-wheels are adjusted at the two ends of the roller, and turn freely upon their axes. Whilst the stone passes to the inking rollers they are immoveable, and retained by a rod; when the stone returns, this rod is put in motion by two eccentrica, and takes into the cog-wheels, and allows of a complete revolution, by which a sheet is printed. The rubber, which is an essential appendage to the rollers, retains its oblique position until the paper is near the stone, when the cam before mentioned puts the paper in a perpendicular position, and thus presses the lenther upon which the paper is set against the stone. This leather, drawn by the rack-work and segment, is kept upon the stone during the pressure of the rubber, which ceases as soon as the stone has reached the proper height. The motion of the pincers is regulated by two eccentrics placed outside and kept in their position by two rods, which transmit to them a partial rotary motion; and, by letting fall the eccentrics corresponding with the axis of the pincers in their ontering parts, these pincers are held tight by springs, which force them towards the centre of the roller.
Secondly.-The cylinder containing the before-mentioned rubber can likewise be constructed in the following manner, which affords the advantage of enabling it to be used instead of the pressing cylinders in typographic printing presses. The cylinder described in the former system, as formed of small rollers, consists in this case of cast-iron, formed hollow, polished outside, and opened at the bottom. This opening is of the same size as that occupied by the small rollers in the first-mentioned syutem. Within this opening is fixed the rubber in the manner previously described, the pincers and the leather acting also in a similar manner. When it is desired to change the friction roller for the pressing cylinders it is merely necessary to take away the rubber, to substitute woollen cloth or felt for the leather surrounding the cylinder, to fix the cog wheels at the two ends of the cylinder by means of screws, and to remove the bolt screw, which prevents the axis of the cylinder from moving upon itself. The pincers, as also the other parts of the mechanism, which are so constructed as to be serviceable in either case, remain, except the sponge roller, which must be sup-
pressed, the types requiring no damping. The process to which the paper is subjected is as follows:-The sheets, after having been damped, are laid in heaps upon the inclined plane at the top of the machine; thence they are taken one by one and presented to the pincers, which conduct them, with the leather, between the stone and the rubber. After receiving the impression they are conducted between rollers formed of small discs fixed apon two superposed axes; there the sheets are left, and the rollers convey them to an inclined plane abutting the table, where another person receives them, and again places them in heaps. The machine is set at work hy means of a fly wheel, upon the axis of which is a pulley, which puts in motion another pulley of a larger character, fitted upon an axle, at the other end of which is a crank, by means of which a to-and-fro motion is communicated to the table, and thereby to the stone, as before mentioned.

Thirdly-The apparatus for the extraction of saccharine, oily, and otlier matters, consists of a number of plates of iron or steel, forming the links of two endless chains, which pass between a series of five or more rollers, which receive the matters to be pressed, which, when consisting of beet-root, turnips, and other similar matters, have to be praviously reduced to a pulp; but if of oleaginous seeds, are reduced to flour. The five pairs of rollers are so arranged that every successive pair has a larger space left between them than between the preceding pair. These rollers turn upon wrought-irnn axes, and communicate motion to one another by means of cast-iron cog-wheels, the strength of which is to be proportioned to the required pressure. The plates of the lower endless chain differ from those of the upper ones, the former having a fiange on each side, running in the direction of the length of the chain, and also a great number of conical holes with which the bottom of the chain is perforated, through which the liquid escapes, and falls into a receiver placed under the machine, the flanges of which prevent tbe substance to be pressed from eacsping through the sides. The lower plates run upon small rollers, which rest upon the frame; the plates already mentioned are covered with thin plates of sheet iron, pierced also with conical holes; these plates are covered with a thick and strong woollen cloth, upon which is apread the pulp, flour, or other substance to be preased, which, falling from the rasp or mill (this fall being regulated by any suitable means), forms a thick and even coating upon the plates of the lower chain, which begin to be pressed when it reaches the first pair of rollers. The upper chain, formed also of plain strong steel or aheet iron platee, and also linked together like the lower ones, is lowered upon the substance so arranged and adjusted between the flanges above-mentioned. After passing between the last pair of rollers the plates or chains again separate, and the lower ones let fall the residue, deprived of its juice or oil, into a receiver placed for that purpose behind the machine; the woollen stuff with which the plates of the lower chain are covered facilitating the disengagement of the residue without further aid. As regards the general purposes of compression, it is evident that after having removed the cylinders, stone, types, rubber, \&c., it can then be accomplished with the greatest facility, either by the printing machine, by a horizontal to-and-fro motion, or by a circular mbvement, by means of the expressing machine replacing the hollow plates by ordinary fat ones, or by any other way.

ARTIFICLAL FUEL.

Wililay Piding, of the Strand, for improvements in the manufacture, preparation, and combination of materials or substances for the production of fuel, and for other useful purposes to which natural coal can be applied.-Patent dated January 94, 1852.

Claims.-1. The various modes of treating, preparing, and combining the substances specified, and the product or producta thereof-anch product, or products forming a new and useful species of fuel; 9 . The sole use of the combinations described of certain subatances with coke, producing by such combinations a material or substance applicable to many useful and ornamental purposes.

The first part of this patent relates to the manufacture of artificial fuel out of small coal, the refuse of the pit's mouth, anthracite, turf charcoal, the roots of trees, of plants, and other carboniferous materials, by the following methods:-The materials employed are first compressed together and then saturated with a solution of saltpetre; the whole mass is then burnt, and then broken into pieces of such a size as to admit of their
easy re-combination by means of pressure (that of the steam hammer being preferable). Another method consists in forcing into the pores of the materials fatty. resinous, or bituminous substances, and then pressing them into a box-sbaped mould, having a cover to fit it exactly, and in which the mass is baked.
The second part of the invention consists in reducing charcosl, coal, or coke to powder, and then forcing it by compression into the pores of the coke. The mass is then submitted to carbonisation and afterwards pulverised. It is re-carbonised after it has been compressed into moulds of the shape of the article required to be produced. This composition may be applied to the production of various articies of common use, as picture frames, book covers, sounding boards for piano-fortes, culinary utensils, \&c., and building materials.
The patentee does not claim the particular form of the mould described in his specification, as it may be modified to whatever shape required. Nor does he claim the materials separately, but the several combinations described.

FURNACES.

Joseph Jones, of Bilston, Stafford, furnace builder, for an improvement or improvements in furnaces used in the manufacture of iron.-Patent dated January 24, 1852.

Claims.-1. The use of water or other liquid or solution, applied in troughs fixed near the flue jamb-plates, bridge jambplates, and back wall-plates of single, puddling, boiling, or heating furnaces, and also in a tank or tanks under the bottom plate of such furnaces, for the purpose of cooling and preserving the inside plates of the same. [The water passes through a supply-pipe down to a trough fixed at the back of the flue jamb-plates; the water from these passes into a trough placed between the flue bridge-plates, and thence into a trough placed over the back wall-plates; it then passes down into a tank placed under the bottom-plate. A trough at the back of the bridge jamb-plates is supplied in the same manner, the water passing into a trough between the fire bridge-plates, thence into a trough near the back wall-plates, and lastly into the tank below. $]$
2. The use of water or other liquid or solution applied in troughs near the flue jamb-plates, bridge jamb-plates, and partitions of double puddling furnaces, for the purpose of cooling and preserving the inside plates of the same.
3. The use of the flue for carrying off the heated air, sparks, and products of combustion, from a refinery furnace.
4. The economisation of the heat from a refinery furnace, by passing the heated air from the same through the flues of, or around a steam-boiler.
4. The use of water or other liquid or solution, applied in a trough or troughs to the doors of furnaces used in the manufacture of iron for the purpose of cooling and preserving the same. [The iron casing of the door is filled with water, supplied through a slot by a flexible pipe, and passes out through another slot, the circulation being by this means kept up.]
6. The use of water or other liquid or solution, conveyed in a trough or troughs into slide dampers employed in the flues of furnaces used in the manufacture of iron, for the purpose of cooling and preserving the same.

ELECTRIC TELEGRAPHS.

Edward Hiohton, of Clarence-villa, Regent's-park, civil engineer, for improvements in electric telegraphs.-Patent dated January 29, 1859.

The improvements comprehended in this patent are-
First-An improved arrangement of keys for telegraphic parposes, which are so arranged that one spring only is employed in lieu of two, as usual. For this purpose the spring is placed between two keys, each of which is furnished with two studs. The spring, which is connected with the battery, presses upwards against a stud, and to which stud are fastened the telegraph wires. The method of working the machine is as follows: On the key being pressed down, one of its studs touches the spring, and the other the stud against which the spring presses, which is connected with the wire, and thus a current is sent along it. By touching the other key a current is sent in the opposite direction.
Second.-Two arrangements of alarums for telegraphic pur-
oses.

Third.-The preparation of paper or fabrics to receive impreseions from the telegraph by the ordinary liquids or materials in use for the purpose of rendering paper or fabrics capable of a change of colour when acted upon by acids sugceptible of assuming one colour when acted upon by a positive current of electricity, and another colour when acted upon by a negative current. The electric current is spread over the fabric by the pointa, and the combination of the two colours is used to make a code of signals.

Fourth.-A method of more completely ingulating telegraphic wires, by suspending them on arms placed obliquely to the eupporting posts, instead of vertically or horizontally.

Fifth.-The use of power derived from the hydraulic ram for tightening the wires between the supporting posts.
Sixth.-Another method of tightening the wirea, by bringing them into rigzag lines between the posts.
Seventh.-A method of suspending telegraphic wires and insulating them at the point of support. The wires, after being coated with varnish for about two feet of their length from each side of the supporting post, are bound round with varnished silk, and are finally inclosed in a coating of gutta-percha of the thickness of half-an-inch. The wires are suspended from the post by means of hook-shaped clamps of galvanised iron.
Eighth.- The more perfect insulation of the wire by means of the use of a band of galvanised iron round the supporting post above each wire, which band is connected with the earth by means of a wire. The electric fluid escaping from the wirea passes on to the band, and from thence by the wire into the earth. It is thus prevented from in any way affecting the other wires.

SCREW PROPELLERS.

Jobeph Haythoine Reed, of the Harrow-road, for improvements in propelling vesoels.-Patent dated January 31, 1852.

Claims.-1. The vertical axes as a substitute for the horizontal ones of paddle and screw propellers as hitherto used; \boldsymbol{q}. The plane paddles as a substitute for the circular or other paddles and screw; 3. The valve principle of planes moving in one direction only, as applicable to paddles generally for the purposes of propulsion; 4. The general construction and combination of parts shown for the better propulsion of ships and other vessels
This invention is upon the principle of the screw ordinarily used for the purpose of propulsion. At the stern of the vessel are placed two frames attached to vertical axes, and which are divided into two or more parts by rods running throughout their lengths, and to which rods are hung floats of the same length as the frames. The axes of these frames being made hollow, other axes fitted with catches are placed within them. These catches are capable of being turned from side to side and prevent the floats moving but in one direction. By bringing the catches to bear on the opposite side of the floats in the frames (which is to be effected by turning the external axes), their action will be reversed, as, if the frame turns in a direction contrary to that of the catch it closes of itself, owing to the resistance of the water, and if turned in the direction of the water it is closed by the catch.

PROPELLING VESSELS.

Alexandre Hediard, of Rue Tait Bout, Paris, for improvements in propelling and navigating ships, boats, and vessele by steam and other motive power. -Patent dated January 31, 1852.

Chaims.-1. The construction of an apparatus in which the external water received by an ingress orifice is projected through an egress orifice of smaller dimensions, againgt the outer water in any required direction, for the propulsion and navigation of ships, boats, and vessels; ε. Kegulating the volume and velocity of the projected jet of water by means of plates of various dimensions adapted to the egress orifice.
For the purpose of effecting this olject a circular pump is placed in the vessel to which this species of motive power is intended to be applied, and which is connected with a cylinder, the bottom of which opens to the external water by means of an elbowed pipe, the bend being towards the stern of the vessel. In a line with this aperture, and towards the fore part of the vessel, is another orifice opening from the external water directly into the circular pump. The working of this machine is as follows:-The external water, assisted by atmospheric pressure, enters the last-mentioned opening, and is forced by the pump
into the cylinder, which it leaves by the elbowed tube, and by the velocity with which it does so forces on the vessel. The velocity of the water may be regulated by means of heads (with saitable apertures) being affixed to the tube under the cylinder and capable of being screwed on and off as may be deemed requisite.

TURNTABLES AND STEAM BOILERS.

William Beokett Johnbon, of Manchester, manager for Messrs. Ormerod and Son, engineera and ironfoundera, for improvements in railways, and in apparatus for generating steam.Patent dated February 9, 1862.

Claims.-1. The construction of the framework of turntable tops of wrought-iron bars, bent or made in the form of seators of a circle, and bolted or riveted, or otherwise connected together. [The wheel is made out of four pieces of iron bent into a triangular shape, having the angles more curved: these are united together by means of an iron band, after the manner of a wheeltyre, being placed round the whole. Two iron bars are then placed across the whole at equal distances from the sides, and which are riveted to the rest. The rails upon which the carriage rests are fired to the table by means of the ordinary chair.]
2. The application of two or more furnaces or chambera applied to a steam-boiler in such manner that the products of combustion proceeding from them shall meet each other in opposite directions. [In this case the boilers are placed one on each side of a space in the centre of the engine. The gases produced by the combustion of the fuel pass into a space at the backs of the respective boilers, and from thence through pipes passing through the boiler into the before-mentioned space, from whence they are carried into the chimney.]
3. The application of tubes to stationary boilers in such manner that the products of combustion shall return through them to the front or firing end of the boiler. [The fire-box is placed in the centre of the boiler, and through the boiler passes several pipes. The gases are carried from the fire-box through these pipes to a space at the other end of the boiler, from whence they return by means of a cavity passing underneath the fire-bor to the spot from whence they were derived.]
4. A mode of fitting tubes into the tube-plates of boilers, by causing their ends to be expanded, or forced into cavities or enlarged diameters formed in the ordinary tube-holes of the tube-platea. [The metal tube being placed in the hole in which it is intended to be fixed, and the edge of which hole is grooved for the purpose, an expanding mandril is placed within the tube, which being worked, causes the metal to spread into the grooves. The outer edges are then beaten flat.

RAILWAY CARRIAGE SPRINGS.

Grorge Spencer, of Lacy-terrace, Islington, engineer, for improvements in the springs of raitway carriages, trucks, and toagons. -Patent dated February 3, 1862.

The improvements described in this patent consist in the construction of buffer, draw, and bearing springs for railway purposes out of india-rubber vulcanised.

Claime.-1. The use of a confining cylinder or case, made of wrought-iron or other material when used for railway carriage buffer, bearing, and draw springs. [Above the axle-rest is placed a kind of cylinder inclosing a series of rings composed of vulcanised india-rubber. The rod of the piston contained in the cylinder presses upon the axle-rest, and thus forms a new kind of spring. In the construction of buffers the same means are employed, with the exception that the cylinders are placed horizontally instead of vertically.]
9. The use of rings of vulcanised india-rubber, or other suitable elastic material, of certain forms shown, when used for railway carriage buffer, draw, and bearing springs.
3. The combination of rings of vulcanised india-rubber, of various densities or sizes, so as to regulate the resisting power of the springs when used for railway carriage buffer, draw, and bearing springe.
4. The use of any combination of the rings described with a confining case or cylinder, when used for railway carriage buffer, draw, and bearing springs.

MOTIVE POWER.

Ceristian Sohiele, of Oldham, machinist, for certain improvements in obtaining and applying motive power. -Patent dated February 12, 1859.
The improvements claimed and described in this patent are as follow:-

First. Certain arrangements of machinery for obtaining motive power by the action of steam, water, or other fluid on a species of turbine or rotary cone-wheel, and for transmitting the motion therefrom. In the interior of a cylinder are placed two cones joined to each other at their respective bases. Inside these is placed a fan-wheel horizontally. The steam or other motive power entering the lower cone forces round the wheel, and by that means produces the required motion.

Secondly. A species of piston governor, or speed regulator for steam-engines and other machinery, wherein the unbalanced pressure on the two sides of a piston in a detached cylinder is made to adjust the throttle-valve, or passage for the actuating medium.

Thirdly. A means of transmitting power along ranges of pipes or fluid ducts, and of transmitting motion therefrom, and regulating or governing the same.

Fourthly. A mode of working the expansion-valves of steamengines by means of an adjustable pendulum-action for varying the "cut-off."

GAS BURNERS.

Peter Armand le Comte de Fontainemoreav, of 4, South-place, Finsbury, for certain improvements in gas-burners. (A communication.)-Patent dated February 23, 1852.

Claims.-1. The construction of gas-burners divided into compartmenta, and provided with internal tubes for regulating the supply and combustion of gas.
8. The supplying air to gas-burners through orifices in the chimney, the said burners being covered with a metal cloth; and the adaptation of tubes, in lieu of the ordinary orifices, for the passage of gas, by which joint arrangements the vacillation of the flame is avoided.

The gas reaches the burner through a pipe divided into two branches, and adapted to the bottom part of the burner, as is usually the case. The gas is conducted into a chamber through pipes; when it has arrived in sufficient abundance to fill the chamber, it descends by a tube into a lower chamber, from which it ascends through a tube into another compartment; and from a third chamber it egresses into the point of combustion through holes perforated circularly in the upper part of the burner. The third chamber forms a kind of a reservoir, into which the gas slowly introduces itself, after losing, by the circuit which it has been compelled to perform, the impulsive force which the difference of pressure, produced by a variety of causes, might have given to it. By that means the extinction of a large number of burners on a sudden pressure will not produce any effect on this burner. The dimensions of the chambers and the diameter of the pipes may be varied at discretion, according to the elevation of light required. The patentee can, at option, apply on the tube an inverted capsule, set on a ring soldered to the tube. When this capsule is employed, it is provided with a lateral opening, which allows the gas contained in the second chamber to introduce itself into the tube: the dimensions of the capsule vary according to the intensity of the light required. He also provides a vertical section of a gas-burner, in which the current of air is supplied through orifices made in the glass, and is forced to pass through a metallic cloth, and the gas is made to egress from the burner by the place of consumption through tubes adapted to the top of the burner.
Another improvement relates to the prevention of the vacillation of the light in gas-burners placed in passages and in places exposed to strong currents of air. To obviate these inconveniences, the burner is constructed on the same system as that hereinbefore mentioned in reference to the compartments, the current of gas arriving in the burner with this difference, that the current of air in the apparatus is entirely suppressed, and the gallery usually placed on the burners for supporting, the chimney-glass is entirely closed instead of being opened. The glass used for the burner has a lateral opening cut at about three lines above the base of the point of combustion; and to prevent the air from striking directly against the flame, the upper part of the burner is provided with a metallic cloth at about one-
third inch from the flame, being supported by hooks or claws fixed to the gallery. All the burners are made with a worm, so as to enable the upper envelope to be removed to clean all the tubes and change the capsule, if unemployed, for one of a different size. The chamber can also be increased or lessened in size; but for that purpose the burner mnst be constructed of two parts, áttached by means of a screw-worm, which will serve to vary the dimensions of the chamher. The burners, as well as all the compartments, may be constructed of metal, porcelain, or any other suitable material. These improvements are applicable to all kinds of burners by merely fixing the tubes of the different burners on a cylinder provided with the chambers and tubes of the same invention.

ON ECCLESIASTICAL ARCHITECTURE.

By Edmund Sqabpe, M.A.

[Read before the Archaological Institute, at Vewcastle-upon-Tyne.]
Churon architecture is separated into two principal divisionsone in which the circular arch only is employed, and the other in which the pointed arch is alone employed; and that is so simple and so much of a leading division at the same time, that we can have no hesitation in adopting it. The architecture of buildings in which the circular arch obtains is usually denominated the Romanesque, while that which is characterised by the pointed arch is commonly called the Gothic. It is, however, necessary to bear in mind that these two classes exclude a very large number of buildings in existence at a period before the circular arch was altogether abandoned, and when it was used in conjunction with the pointed arch. For the ecclesiastical edifices erected in the intermediate period between Saron and Norman times, during which both the pointed and circular arch had been used, no term is so applicable as that of "Transition." On the other hand, as regards the buildings of the Gothic period, when the pointed arch was used, no division is so convenient as that suggested by the principal changes in form through which the window passed during that period. For half-a-century after the disappearance of the circular arch, the window appeared under a form which, from its general resemblance to a lancet, caused the application of that term to all the windows of that period. Out of the practice of combining a number of lancets into one arch, and of decorating the intervening spaces between the heads of the arch the beautiful invention of tracery took its rise; and for nearly three-quarters of a century after its introduction tracery is found characterising every form of window in which the circle is most conspicuous. This gave rise to the expression "Geometrical period," at the close of which the curve called the " O. G." had begun to make its way into the tracery of windows, and to impart to it a grace and an ease which it had not previously possessed. The term Curvilinear might, therefore, be applied to the tracery and all the details of the windows of that period. In the latter part of the Curvilinear period, a horizontal bar or transept made its appearance in the windows. Vertical lines also commenced to make their way into the tracery; in fact, a new principle began to pervade the whole of the building-this is the straight line which overran the entire part of the structure. We shall, therefore, call that the Rectilinear period of Gothic architecture. This divided Gothic architecture into six portionsnamely, the Norman period, which prevailed from 1006 to 1145 ; the Transition period, from 1145 to 1190; the Lancet period, from 1190 to 1244; the Geometrical period, from 1244 to 1315 ; the Curvilinear period, from 1313 to 1360 ; and the Rectilinear period, from 1360 to 1450.
The architectural remains of the Saxon period are all undoubtedly of very great interest, but are altogether of such a detached, fragmentary character, that it is utterly impossible to reconstruct two interior or exterior compartments which can be used to represent correctly the main idea of a Saxon building. With regard to the Norman period, its characteristics are very apparent at the first glance. The proportions of the building are massive; for instance, a circular mass, sometimes a cluster of heavy shafts, is seen resting on piers which were scored and ornamented with a series of zigzag lines. The blind story is usually very large, while the clerestory consists generally of a triple arcade, the centre compartment of which is the largest. The circular arch prevails every way.-The next is the Transitional period, in which the proportions of the building are con-
siderably lightened; the piers especially being very much lem substantial and massive. Certain of the arches have the pointed, while others maintain the circular form. The employment of the circular and pointed arch simultaneously in the same building is the characteristic of this period, examples of which are to be found in the choir of Ripon Minster. The capitals of the piers are also of a much lighter description. There is, likewise, another very peculiar mark of that periodindeed, it is the most characteristic of it-which consists of a small volute, to be found in the corners of the capitals, Fith the curl turned upwards instead of downwards. It was called, therefore, the Transitional volute. We have no nobler examples of the Norman period than are to be found in the nave and other portions of Durham Cathedral. In Carlisle Cathedral we have only the remnant of the nave, but it is a very interesting example indeed, although sadly encumbered with pews and by being cut into two parts by a floor. Of the Transitional period we have a tolerable example in Brinkburn Priory, Northumberland, in the Galilee of Durham Cathedral, and in the door of the Castle, in which the Transitional volute is seen in every capital of the building. In St. Andrew's Church, New-castle-upon-T'yne, we have also some interesting remains of the transitional period. In Darlington Church, which is reputed to have been built by Bishop Pudsey, we have the style in a very advanced state-so much so, that the architecture of that church has always been called in modern times "Early English," though erroneously. The chapel of the Bishop of Durham's palace, at Bishop Aukland, likewise contains very interesting specimens of the Transitional period.-In the Lancet period the piers are seen bruken into slender and detached shafts, and all the foliage decorating the capital is of a conventional rather than of a natural character, consisting mostly of a serien of stiff leaves growing out of the stems. We have also the lancet form of window prevailing everywhere throughout the building. We have some beautiful examples of this period at Durham, in the priory church of Hexham, and in the west front and nave of Lanercost Priory.-In the Geometrical period the circle prevails everywhere, while the ornaments taken from the vegetable kingdom are of a much more uatural kind than in the former era.-In the Curvilinear period we find the sinuous form obtains in every direction, not only in the windows, but in the panelling of the walls, examples of which are to be found in the choir of Ely Cathedral.- In the next, or Rectilinear period, we have the characteristics of straight lines, while the blind story disappears altogether, examples of which are to be found in the nave of Winchester Cathedral. There is also a peculiar festure in the form of the arch, which is flattened, and descends from four different centres. This characteristic is also prevalent in the window.

THOMAS GRAINGER, E8e., C.E.

IT is with extreme regret that we have to record the death of this gentleman, under circumstances of so very painful a character. He was engaged in numerous large undertakings, embracing many ongineering difficulties, which have heen overcome by works of remarkable magnitude. In the tunnel which extends for 1000 yards under the streets through the new town of Edinburgh, almost insurmountable obstacles arising from the running sand, and the proximity of fine ranges of street houses, have been successfully overcome. And while the 44-arch viaduct on the Edinburgh and Glasgow Railway was once the largest of his works, it has been exceeded in magnitude by several of his works in England; and, beaides the magnificent model of his proposed Central Station for the junction of all the lines at Leeds, we have admired the models of many of his spacious iron arches.
Mr. Grainger had, during the last two years, enjoyed a relaxation of the arduous bodily exertion which his extensive business required of him during the railway mania; but amid the anxiety of his many responsible consultations and arbitrations, he was a valuable President to the Royal Scottish Society of Arts, and is well known to have largely increased the number of members of that popular scientific body, and he had the distinguished honour of being appointed to the chair a second year. He was also a member of the Royal Society of Edinburgh, the Institution of Civil Engineers, the Britiah Association, \&c.

NEW MODE OF SHIP BUILDING

L. Arman, Ship Builder, of Bordealux, Inventor.*

From time immemorial timber appears to have been the material almost exclusively employed in the construction of ships and other floating bodies of capacity; and so long as vessels were constructed of those proportions which long experience bad proved to be best adapted for sailing purposes, it was not found necessary to resort to any other material; hut since the introduction of steam for the propulsion of vessels, it has been thought adviaable to make a considerable variation in the old proportions generally assigned to asiling vessels; that is to say, the length of steam-vessels has, with great advantage for speed, been most materially increased, to the extent of onehalf, or more, as compared with the breadth and depth.

Unfortunately this addition to the length of vessels has necossitated a great increase in the scantling of the material (timber) employed in the construction, thereby greatly augmenting the weight and displacement of the vessel, and to a great extent nullifying the advantages indisputably obtained by the fine lines produced by the additional length; and it should be remarked that the great increase of weight in the material is required, not only as regards the mere strength of cohesion of the purts lengthways, but is requisite in order to obtain adequate rigidity and stiffness, which are so important in all steamers expected to have great speed.

The deficiencies of the ordinary description of timber, to meet the requirements of the new order of long fast steamers, very moon became apparent; and a substitute offering the required properties was eagerly sought for. The search was not long, for it was soon discovered that the material iron possessed the requisite qualities in an eminent degree; and irom has therefore been most extensively and auccessfully employed in the construction of the fastest and most splendid steam-vessels now in existence.

But attention was early drawn to the fact, that iron steamvessels, when employed in warm climates, very soon become foul on the surface; an incrustation of weeds and ahells is speedily formed, and very seriously retards the speed of the vessel; moreover the material itsalf is liable to very rapid deterioration, of which there are many well-authenticated cases; in iron vessels that have been employed for only a few years within the tropica, on examination, the iron outside plating or skin exposed to the action of the water, as well as the iron frames, has been fuund very extensively changed in character, being converted into a mort of plumbago, easily cut with a knife, without any atrength or tenacity, and creating alarm of gudden destruction and disaster: many endeavours have heen made to remedy these evils, but it is feared with only partial success.

Besidea these very important ubjections to the use of iron as a material for shipbuilding, there is another so paramount and 00 unanswerable that the Lords of the Admiralty had at one time determined to put a stop, as far as they could, to the building of vessels with that material altogether; iron vessels having been proved by different experiments carried on at Portsmouth, by urder of the Board, unfit for war purposes, all packets intended to carry the mail, or take contracts for that eervice under government, were ordered to be timber-built vessels, that they might be added to the naval forcos of the nation, should they at any time be required.

To obviate the foregoing serious objections, no plan has hitherto been thought of; and the employment of heavy timberbuilt vessels is atill continued in England, France, and the United Statea. But in almost every case, where great speed is an indispensable consideration, iron is still resorted to, notwithstanding the very serious evils attending the use of that material, as it is generally employed.

Messrs. L. Arman and Co., shipbuilders, of Bordeaux, have brought forward a plan for the construction of long sharp steam-vessels, in which they ertensively employ iron, in comhination with timber. The plan unites the two modes of building; that is to say, the outside part of the vessel in contact with the water, and exposed to the weather, is a timber-built veasel, while internally it is an iron vessel. For instance, in a reseel built on this plan, a framing of timber of the usual form, bnt of considerably reduced scantling, is prepared; on the

[^45]outside of this timber-frame the wood planking is secured in the common manner, copper-fastened and coppered, as may be judged advisable; inside the timber-framing is introduced a second framing of iron, the ribs of which are formed of iron, rolled in a shape like the letter Z. The iron ribs are not placed vertically, but diagonally, about two or three feet apart, crossing the first framing at an angle of about 45°, and bolted to the timber-frame at every crossing, something similar to the plateiron riders frequently adopted in timber-built ghipa. The lower ends of these iron ribs are continued forward or aft, 60 as to connect them with, and form a part of, an iron kelson, introduced for that purpose. Iron shelf-pieces, clamps, beams, \&c. \&c., are also used as in iron-built ships; so that in fact the inside is to all intents an iron vessel. Longitudiual plate-iron strakes are riveted or bolted to the inner surface of these iron ribs at different heights, dividing equally or nearly so, the distance between the under part of the beams of the main-deck and the floor timbers, leaving thereby spaces or interstices which fully expose to view both the iron and wood framings, as also the inside of the wood planking.

To prevent any portion of cargo finding its way into these interstices, they may be covered over with moveable or sliding panels, composed either of wood or iron.

Fia. 1.-Yertical Section.

Pio. 2.-Interior View of one Side
In the year 1851, Messrs. L. Arman and Co., built on this plan a steamer of one hundred and twenty horse-power, the General Castilla, which it is stated so completely fulfilled the high expectations entertained of Mr. L. Arman's new mode of building, that the French government appointed a commission to examine this new construction, and report thereon: and M. Sabattier, a naval engineer, expresses himself in these words, addressed to M. de Chassoloup-Laubat, Minister of the Naval Department:-
"The hull of this vessel [General Castilla] is lighter than that of any of the mail-packets of one hundred and twenty horsepower, having the same dimensions; and Mr. Arman has certainly succeeded by his combination of wood and iron framings in making it much more rigid and solid.
"The draught, here annexed, will explain clearly the system adopted by this gentleman; and a few explanations of the mode of construction of the said vessel will show all the advantages of his plan.
"The timbers of packets for one hundred and twenty horsepower are, for the floors, moulded $6 \frac{1}{4}$ inches, and $8 \frac{5}{3}$ sided; and 4×6 inches at the gunwale. Mr. Arman has reduced the
scantling of these frames to 48 inches, from the floor-timber to the gunwale. The distance between the timbers is 64 inches, and he introduces alternately a pair of ribs, and then two single ribs. When his timber-frame is formed, he brings in his fillingin pieces for the bottom, bolts the frame with the keel; and substitutes for the wooden kelson an iron kelson of 13 inches high, and nearly half-an-inch thick.
"This kelson is fastened to the timbers by rag-bolts, and to the filling-in pieces hy fore-lock bolts. Then beginning about midships, and proceeding fore and aft, he crossees this timber framing by a second framing of ${ }^{2}$ double angle-iron, riveted back to back, in the shape of the letter Z, extending from the under part of the deck to the iron kelson, to which it is fastened, and forming the sides of the iron kelson aforesaid. These iron ribs are fastened to one or two galvanised iron bolts on each timber, which they cross at an angle of about 45°, and clinched on the outside. These iron ribs are 4 ft .7 in . apart, and between and parallel to them, a light wooden piece $8 z^{3} \times 5 \frac{7}{1}$ is made fast on each of the timbers. Iron shelf-pieces and clamps are substituted for those of wood, and fastened to the framing as done in iron vessels. The beams are of iron in the engine-room, and of wood towards each end.
"The engine-room is separated from the other parts of the vessel by iron bulkheads, fastened to the timber-frame by angle iron. The stiffness of the vessel is also increased in this part by four iron riders extending from the main-beams to the ironbearers; establishing thereby a connection between the different parta, and giving to the whole a great solidity. The engine and boiler bearers are of plate and angle-iron; fastened on the timber-framing, with bolts clinched outside, previously to the fastening on of the outside planking.
"When these framinge are properly fastened, as well as the engine-bearers and the iron-riders above mentioned, they proceed with the outside planking, wales, \&c., which are copper-bolted on the timber-framing only, the bolts being clinched inside as usual. When the outside planking is securely fastened, and the whole has been well painted, three longitudinal atrakes of plate iron are riveted on the inside surface of the iron ribs, dividing equally, or nearly so, the distance between the shelf-pieces and the lower floor-heads. Interstices are left between these plateiron etrakes, which fully expose to view the double framing, which may be kept in order and painted, so as to last longer than usual. This important point constitutes one of the greatest advantages of Mr. Arman's plan. The engines are perfectly steady on the Iron-bearers, and during our trials at sea not the smallest vibration or play could be discovered in any part of this double-framed vessel. We may therefore say that this plan of building combines all the rigidity and eolidity of iron-built vessels, with all the advantages of timber-built ahips. Repairs of all sorts will present less difficulties than usual; and should it be necesaary at any time to remove any of the iron ribs, coachscrews may then be advantageoully used in refixing them.
"In conclusion, we may say that sea-going vessels built according to Mr. Arman's plan are lighter and stronger, though not dearer, than those built according to the old system. It is therefore most important to the French navy that a trial should be made, and that one of the vessels that are ordered should be built on this plan."

THE SUPPLY OF WATER IN PARIS.

Paris is divided into two distinct zones for the distribution of water. All the lower portion, that is to say, four-fifths of Paris, might be supplied by the water of the Canal de l'Ourcq, arriving naturally from its own weight, without the aid of machines and the expense of fuel. This is the first zone. The other portion, less important as to extent cannot receive the water except by artificial means. On the left bank it comprises the Montagne St. Genevieve and the neighbouring quarters, which are supplied by the waters of Arcueil, the well of Grenelle, and the forcingpump of Notre Dame; on the right bank, the second zone forms the line running parallel to the octroi wall. These are the richest and best built quarters of the capital, yet they are the worst supplied with water from the Seine. The forcing-pump at Chaillot gives a very insufficient supply. Wanting the means of action, either on account of the small number of its pipes or of their small size, the city of Paris cannot utilise the mass of water which it has a right to expect from the Canal de l'Ourcq. In fact, according to the agreements entered into in 1848 and in

1851 between the company having the concession of the canal and the administration, 5000 inches of water may be taken as it may be required by the engineers, at 25 mètrew above the level of the Seine, sud in all seasons of the year, to be used by the public fountains, or any other mode of distribution in the interior of Paris. Out of these 5000 inches acarcely more than from 2400 to 2500 inches have been used during the greatest heats of summer, in consequence of the insufficiency of the means of distribution which we have just enumerated. In consequence of the inconveniences which every day arise from this sad state of things, in the simultaneous service of the fountains at the corners of streets, the watering and the public fountains, the city had decided on utilising all the water it can draw from the Canal de l'Ourcq. For this purpose the three reservoirs of the left bank-Vaugirard, Racine, and St. Victor-the supply of which, in consequence of the narrowness of the pipes, is not sufficient for those populous quarters, will be united to the aqueduct by large pipes of 50 centimètres. Thanks to this system, the reservoirs will be always full, and in a state to supply uninterruptedly the accessory pipes which donvey the water into the different streets of Paris. As to the right bank, a reservoir capable of containing 1800 mètres of water, will be made at Chaillot, and new pipee will supply all those parts in which the distribution has been hitherto insufficient. Aa far as regards the second zone of Paris, a part lower than the level of the Canal de l'Ourcq, and which is supplied by the waters of the Seine, the new machines at Chaillot will convey to it 1400 or 1500 inches of water instead of from 400 to 500 , which are now distributed by the old machines. The works for the execution of these improvements will entail an expense of $9,800,000 f$:- viz., distribution of the water of the Oureq $1,300,000$.; distribution of the water of the Seine, $1,500,000$. In adopting this vast system in principle, and in devoting to it a first outlay of 300,000f. on the budget of 1859 , the city has comprehended that it would be a productive expense, and that the sacrifice which it was obliged to make would not be onorous for its budget. In fact, after providing for the service of the fountains at the corners of the streets, the watering and the monumental fountains, the city now derives from the sale of its water a revenue of nearly $1,200,000 \mathrm{f}$. This is a revenue which is every day increasing, and which will be atill forther increased by the ameliorations we have just spoken of. The receipts for the sale of water in 1830 were 575,641 f.; 1840, 845,571f.; 1848, 1,065,683.f; 1851, $1,187,968 f$. The amount of the reoeipts every year increases; out of 35,000 houses, 6000 at the most have taken concessions, and this number will certainly augment as soon as the city can offer water to the proprietors of houses in every quarter. These are useful expenses; they will turn to the profit of the finances of the city, and to the comfort of the inhabitants; they will complete with the new system of sewers now in use, na ensemble of desirable improvements.—Journal des Débats.

INSTITUTION OF CIVIL ENGINEERS.

Award of Premugme-Seation, 1851-52.

The Council of this Institution have awarded the following preminus for papere read during the latt seavion :-

1. A Telford Medal, in silver, to Captain Mark Huish, Aneoc. Inat. C.B., for his paper "On Reailway Accidents"" (See Jowrmal, ante p. 159, 198.)
2. A Telford Medal, in silver, to Braithwaite Poole, Astoc. Iast. C. \mathbb{B}_{n} for bis paper "On the Economy of Railways." (See Jowrwah, ante p. 159, 198.)
3. A Telford Medal, in silver, to Colonel Samuel Colt (U.S.). Assoe. Inst. C.E., for his paper "On the Application of Machinery to the Manafacture of Rotatiog Chambered-breech Pire-arma, and the peculiaritiee of those Arma." (See Journal, Vol. XIV. p. 611, 629.)
4. A Tolford Medal, in silver, to Prederick Richard Window, Asuoc. Inst. C.E., for hia paper "On the Electric Telegraph, and the principal improvements in ite construction." (See Journal, anfe p. 116.)
5. A Telford Medal, in silver, to Charles Colea Adley, for his paper entitled "The History, Theory, and Practioe of the Electric Telegraph." (See Journal, ante p. 117.)
6. A Telford Medal, in tilver, to Eugene Boardon (Paris), for his " Description of a new Motallic Manometer, and other Instruments for measuring Pressures and Temperatares." (See Journal, Vol. XIV. p. 608.)
7. A Telford Medal, in ilver, to Pierre Hippolyte Boutigny (d'Rvreax), for his "Description of a new Diaphragm Steam Generator," (See Jowrmal, ante p. 118.)
8. A Telford Medal, in silver, to George Prederick White, Assoc. Iast
C.E., for his "Obeorvations on Artiticial or Portland Cement." (See Jowrual, ante p. 198.)
9. A Council Preminm of Books to John Baldry Redman, M. Inst. C. B., for his paper "On the Aluvial Formations, and the Local Changes, of the South-Bastern Coast of Bngland, from the Thames to Portland." (See Journal, Vol. XIV. p. 656 ; Vol. XV. p. 38.)
10. A Conncil Premium of Books to William Thomes Doyae, Assoc. Inst. C.E., and to Professor William Bindon Blood, for their papar entilled "An Inventigation of the Strains upon the Diagonals of Lattice Beama, with the reanling Formulao." (See Journal, Vol. XIV. p. 596.)
11. A Conncil Pramium of Booke to George Donaldson, Assoc. Inat. C.B., for his paper "On the Drainage and Sewerage of the Town of Richmond, Surrey." (See Jowrnal, ante p. 158.)
12. A Councll Preminon of Books to Professor Christopher Bagot Lene, Asac. Inst. C.E., for his "Account of the Works on the Birmingham Extention of the Birmingham and Oxford Junction Railway." (See Journal, Vol. XIV. p. 640.)
13. A Council Preminm of Books to William Bridges Adams, for his paper "On the Construction and Duration of the Permanent Way of Railsays in Earope, and the modifications most suitable to Egypt, India, te." (See Jowrnal, ante p. 77.)

Subiects for Pagaidys-Searton, 1852-53.
The Council invite commonications on the following, as well at other anhjects, for Preminms ; and which are to be forvarded to the Institution prior to Janarer 30, 1853 :-

1. On the principles apon which the works for the improvement of river navigation should be conducted, and the effects of the worke upon the drainage and irrigation of the district.
2. The conatruction, improvement, and maintenance of natural or artificial barbonrs and docks, with the forma and action of large sluices for cleariog away deposits by the use of backwater, or by directing the natural currente.
3. The selection of sites for the construction of docks on the course of tidal streama, with reference to the communication with railways and with inland navigation.
4. The selection of siten for, and the principles of, the conatruction of hreakwaters and of herbours of refoge; illustrated by examplea of existing works.
5. The forma and construction of piers, moles, or breakwaters (whether solid or on arches), sea-Trulls and thore defences; illastrated by examplea of known conatructions, anch as the Cobb Wall at Lyme Regis, \&ec.
6. The beat system of forming artificial foundations, showing the ratio of preasure to sarface, and the eoil beat calculated to anstain heavyatructures; iliustrated by the beat examples in modern practice, and by ecconnts of the fxilures of large works.
7. The relative value of varions kinds of natoral stones available in Great Britain, for the parposes of conatruction; with experiments on the law of incresse of the crushing force of short blocks of stone, with their diametera.
8. On brick and tile making, and the capability of introducing now forms for engineering and architectural purposes. With the proceases mont aseful to emigrants and settiers.
9. The lave of the strength of cant and wrought iron, under the varioos conditions of tensile, compressive, transverae, tortional, impulsive, and other strains ; with examples illustrative of the co-efficiente employed by eminent practical authoritiea in the construction of works.
10. The construction of girder-bridgen, whether of trassed timber or wooden lattice ; of cast-iron, trused or plain, or combined with wroughtiron, in simple or compound triangalation; of wrought-iron lattice-work; or of plate-iron riveted siden with cellalar top and bottom.
11. The construction of suspension-bridgen Fith rigid platforms, and the modes of anchoring the atay-chains.
12. The comparative advantages of iron and wood, or of both materiala combined, for the construction of steam-reasela, with drawinge and descriptions; the methods for preventing corrosion; and details of the arrangement for the compases in iron shipa.
13. On the changes that have been introduced, within the last fifeen years, in the lines of ships and steam-veascls; and an examination of the effecte produced by the new law of meanurement for tonnage.
14. An examination of the circamatances which appear to limit the maintenance of higher speeds than are now attained by ateam-shipa in deep tea navigation; and an inquiry into the canses which have hitherto prevented the ascerted bigh speede of steam navigation on the American rivers from being arrived at in England.
15. The beat method of external condensation, so at to permit the employment of salt or of bard water, and farnishing pure water for the boiler; with a description of various aystems of evaporating, refrierating, 8ec.
16. The resalte of the ase of tubular boilera, and of steam at an increased pressure for marine and other engines, noticing particalarly the difference in weight and apeed in proportion to the horse-power and the tonnage; with detaila of the most succenaful mean for avoiding smoke in farnaces of all deacriptions.
17. The beat methods of reducing the temperature of the engine and boiler room of ateam-vemela, and of preventing the danger ariniag from the over-heating of the base of the fanael.
18. The relative efficiency of the ecrew-propeller and the paddlewheels, when appliod to reasels of identical form, tonnage, and atonmpower, independent of the use of ails.
19. The results of the application of atenm-power and acrew-propellers to the convegance of con, as compared with the aytem of atilingveasel.
20. The arrangement and distribation of the workshopa at the principal repairing atation of a railway, for the repaira and maintenance of the locomotives, pascenger, and other carriages, \&cc.
21. The constraction of locomotive enginea, apecially adapted for ateep inclines; with accounts of experiments domonatrating the comparative valne of large and mall engines, under varions circumatancea.
22. Improvements in the construction of railway-carriages and wagons, with a view to the reduction of the grose weight of pasenger-trains. Aleo of railway-wheels, axlea, bearinga, and breaki ; treating particularly their ancertained daration and their relative friction.
23. The reanlts of a series of obecrvations on the fow of water from the ground, in any large districts, with aceurately recorded raingange registries, in the same locality, for a period of not less than twelve monthi.
24. The conveyance and diatribution of water for the supply of towni the sonrcea from whence it may be derived, noticing the relative permeability of different rocke and soils, and their actan capacity for retainlng and delivering water; a description of the different modes of collecting and altering; and an scoonat of the advantages or diadvantages of the high-service constant supply syatem, with notices of the beat forme of large valves, and of the beat methoda of jointing pipes of large dismeter to reant conaiderable preseare, aad the precantions to be observed in laying the maine through mining districts, where the ground is liable to sink.
25. The comparative duty performed hy the varions deweriptions of steam-enginea for raising water, for the supply of towns, or for the drainage of mines; noticing the depth and length of the noderground workingt, the height of the surfece above the sea, the goological formation, the contiguity of atreams, \&ce.
26. The drainege and aewarage of large towns exemplified by acconnts of the aystems at present parsued, with regard to the level and position of the outfall, the form and dimensions of the sewera, the prevention of emanations from them, the disposal of the sewage, whether in a liquid or soiid form, and of the arrangements for connecting the house drains with the public sewers.
27. On Farming and ventilating buildinga.
28. The precautions adopted for guarding against accident hy Are. damp in mines.
29. The reanlts of contrivances for fucilitating the driving of tunneis, or drifts in rock.
30. Deecriptions of the varions kinde of machinery in use in the principal ahipping ports, for the abipment of coal; noticiog particularly those in which the greateat expedition in combined with the least amount of breakage of the coal ; and aleo accounta of the meana of ansbipping, and meanaring or weighing the coal on its arrival in port.
31. Descriptions of the ovens, and of the beat processen used in Great Britain, and on the Continent, in the manufacture of coke for railway and other parpones ; with the comparative valnee of the producta.
32. Improvements in the ayatem of lightiog by gas; the results of the nse of cley retorts-of lerge ovens (for producing a better quality of coke)-of exhaustert, condensera, and modes of purifying, and the precantions for the economical disuribution of gas.
33. A matbematical or geometrical demonatration of the advantages of flat salis for shipa, over those of different degrees of curvature, when exposed to direct and slanting winds; with practical examples.
34. On the application of machinery, combined with mechanical power, and the means of tranaporting mannre and produce on large farma and agricultaral eatablishments; and on improvements in the plan of the worke and haildings, and the 'plant' employed.
35. The most effective arrangement and form of centrifugal and reciprocating blowing apparatus.
36. The chemical analytia, and the application to economic parposes, of the gases generated in iron blast furnaces.
37. An inveatigation of the canses of "red" and of "cold-shortaess" in malleable iron, and other chemical characteristica which affect the physical properties of cast or of wrought iron.
38. Description of cant or wrought iron eranes, acaffolding, and machinery, employed in large works, in stone quarries, hoists, or lifte on guayn, in warehouses, \&c., eapecially where cither steam or water is used as a motive power.
39. The various syatems of preserving timber from decey, and from the stfecks of marine insects or the white ant
40. On the improvements which may be effected in the buildings, macbinery, and apparatus for producing sugar from the cane in the plantations and sugar-worke of the British colonies, and the comparison
with beet-root, with regard to quantity, quality, and economy of manafacture.
41. Description of the machinery adapted for the preparation of Indian cotton.
42. Improvements in flax machisery, and in the proceswes for preparing the flar for manipulation.
43. Notice of the priacipal self. acting tools employed in the manuficture of eagines and machines; aleo of mouldiag machines and wood-working machines ; and the effect of their introduction.
44. On the beat gyatem of remedying the inconvenience resulting from the present want of aniformity between the weighls, measures, and coina of the different countries of Europe.
45. The construction of lighthousea; their machinery and lighting apparatus; with notices of the methods in ase for distingaishing the different lights.
46. Memoirs and accounta of the works and inventiona of any of the following engineers: Sir Hugh Middleton, Arthur Woolf, Jonathan Hornblower, Richard Trevithick, William Mardoch (of Soho), and Alesander Nimmo.

THE NEW BILLINGSGATE MARKET.

TaE extensive alterations and improvements for the enlargement of the great city fish market, long known as Billingagate, are proceeding rapidly towards completion. Apparently there has been some delay in the prosecution of the works ordered by the Court of Common Council to be carried into execution in July 1852. Since that period, however, several unforeseen obstacles to the plan of the city architect have had to be overcome, with reference more especially to the drainage of the enlarged market. These difficulties being now overcome, and the whole of the works being near completion, perhaps an authentic sketch of the improvements involved in the outlay agreed to (independently of the erection of the building) for sanitary and ventilating purposes, viz. 1840l, may prove interesting. There will be an abundant supply of water, pumped in the first instance from the river through an iron filter (similar to that used by Messrs. Calvert and Co., the brewers, of Thames-street). This filter will be sunk below low-water mark, and a sufficient supply of water, of a pure quality, will be obtained for the use of the saleamen. Independently of this a sufficiency will be furnished for thoroughly cleansing the surface, flushing all drains, and keeping constant streams running in the waterclosets and urinala at all times when requisite. The surface drains, both in the upper and lower markets, are so constructed that they will carry off the filth and water from cleansing the fish, \&c., and will have a constant and plentiful flow of water through them to assist in its removal, and to keep them perfectly sweet. Instead of providing a cistern for the reception of the filtered water from the cylinder fixed in the bed of the river, the water is pumped up to the same height as the cistern would have been placed, and arrangements are made so that it may discharge itself in the form of a fountain in the upper market, the fountain not having cost more than a cistern would have done. As a great quantity of water is used in the lower or shell-fish market, which is considerably below the level of high water, it has been found to be necessary to pump out the drainage, hydraulic machines for this purpuse having been provided. The drainage by pumps has these advantageo-that it prevents the necessity of a large cesspool for the accumulation of filth and foul water from the lower market closets and urinals, and that the drainage can be carried out to below lowwater mark, and kept constantly discharging in small quantities under water, instead of running away over the surface of the mud, emitting the most unpleasant odours, which during the existence of the old market were so frequently and so justly complained of. The market being inclosed on three sides, and the lower market having only the well-holes for the admission of light and air, it has been thought advisable to provide means for ventilation, as it appeared that such works might be done in connection with the drainage and works at a trifling increase of expense. This is accomplished by a ventilating disc, which it is believed will prove at all times necessary in the lower market, and highly beneficial to both in producing a current of air in close or sultry weather. The river front of the market, with the shell-fish and upper market, ia nearly completed, and the Thames-street front is rapidly prooeeding, the stone pillars for the support of the intended superstructure being erected. It is expected that the entire area will be opened for business purposes simultaneously during the autumn.-Glabe.

LIAT OF NEW RATEDT:

gianted in enemand peom July 22, to Aveget 26, 1852. Sis Monthe allowed for Bnrolment malesp othervive eapresed.

Henry Bememer, of Bexter Hoose, Old 8l. Puncrus.road, Middlesex, for improrements in the manufacture, rodning, and treatiog engar, - part of which im provementa are appliceble for svaporating ocher Aulds. - July 24.
Henry Wickest, of Cariton-chambers, Regeni-street, Weatminater, gentleman, for improvements in obtaining motive pover. (A communication.) Jaly si.
Bamuel Slarkey, of Clapton, Middicesex, gentleman, for improvemeota in machioery for wahing minerile, and separating thems from other mabatances. Jaly 81.
John Gerald Potter, of Orer Darwen, Lancmater, curpot manuficturer. and Matthew Smith, of the seme place, manager, for certuin improvements in the manaficture of carpeta, ruge, and other fimillar fabrles. July 31 .
Whlime Rdward Newton, of Chancery. lane, Middileser, etril eqgtaner, for improvements Ia the construction of wheela for carrityts. (A commanlcation.) - Jaly sl.
Whulem Ackroyd, of Birkenshaw, near Leeds, for improvementa in the manuficture of yarn and fabrics when cotion, wool, and allt are employed.- Jaly 31.
Whilam Betherington, of Haodsworth, near Birmingham, gentieman, for tan. proved machinery for stamping or ibaplipg metale (A communichlion.)-August 3. Alfred Vincent Newton, of Chancery-lene, for Improvements in the manufictare of metailic feoces, which improvenents are tivo applicable to the manofectare of veravdehe, to trass framee for bridges, and to other analagoos manofictures. (A communieation.)-Aggust 7.
Boger Mind, of Warrington, ead beer, for certaln improvement In the contruction of machinery or apparatua applicable to malghlag.mechinee, weigh-bridges, rallwiy tarn-tables, cranea, and othor slmilar apparatus.-Augont 7.
Alemander Milis Dix, of Salford, Lancaster, brewer, for eertaln foppovemexta to artificial 1 lumination, and in the apparatus conpected therewith, which fmprovements are aloo applicable to heating and other dimilar purposet.-Augunt 7.
Richard Archibald Brooman, of Flest-atreet, patent afent, for improrements in the manuficture of manure. (A communication.)-Auguat 10.
Edward Joseph Bughes, of Manchester, for Improvements In machinery or apparatis for aplantrg and wearing cotton, wool, and other fibrons anbalancet, and alto
In mschtnery or apparatut for stitching alther plain or ormamentaly, Angent 10.
Robert Weare, of Plumstead-common, Kent, olectrical enginet, for lmprovementa
In galvanic batteries.-Amgust 12 .
In gavanic batteries.-A Bgast 12. Melchlor Colson, of Blashury-tquare, Middiesex, dy
provernenis in the continuctlon of vehicles.-Anguat 12.

Danial Adameon and Leonand Cooper, of Newton-wood Iron-morise, near Byat,

 are appleable to marine, locomolive and other bolar, and marise archice 18 .
Richard Laming, of KHiwall, Middlesen, chemint for improvements in tha manufacture and the burning of gis, in the treatment of rueddual producta of anch tmeture and the burming of gits, In the treatment of rwidnal producta of anch menameture, and of
Nashanlei Jones Amles, of Manchester, manufacturer, for certaln Improvemente is the manifacture of braid, and in the machinery or apparatus connected therewth, Augeat 12.
Francofs Bernard Beksert, of Cecll-ntreet, Btrand, for Improvements in the mano-
seture of alnc wbite. (A communication.)-A ruit 12.
James Lowe, of Charlotie-place, Upper Grangetrod, Bertnodesey, mechanic, and Thomas Eyre Wyeh. of Grorge-ntreet, Manaton-houme, london, gentlemen; for it provementin is propeiling veapels.-Augant 10.
Willtam Palmer, of Sution-street, Clertrenwell, Mhdenex, manufactarer, for the provements in the manufncture of candlen and candle-lamps, and in packint candien and night-llghts.-Anguse 19.
Thomes Enat, of Iemen-atreet, Goodmanit-feldg, Middiener, gun-meker, foes isprovements In Are-armi.-Auruti 19.
Geary Hawson, or Lelestier, for improvements in propartifg and straighsentes wool and other fbrous materials.-Auguit 19.
Beary Epencer, of Rochdale, Lancester, manayer, for certaln improrements 如 mschinery or apparetua for preparing, apinning, and wearing cotion and other abrows aubetances.-Angust 19.
Charles Butlor Clough, of Tyddy Mold, Flint, gentleman, for certafin tm provemente in mechinery or apparatus applicable to the purposes of brashing and cleeplof.-Angunt 19.
Pierre Armand Lecomte de Fontidnemorean, of South-atreet, Finbrart. Middlewen. patent egent, for certala mprovement in entular echintus for alates. (A communi-ction.)-Angast 19.
Samuel Nichols, of Coldham-etreet, Nottagham, mechanic, John Lreaty, of Net Lenton, in the ame county, draughtaman, and Edward Wronghton, of New Lenton, In the county aforesald, mechanic, for fapprovements in the marufacture of teatio fabrica, and In mechinery for producing such fabrics.-Augnat 19.
Benry Needham Scrope Ehrapnel, of Gogport, for improvements in ardnance and fre-arms, cartridget, and ammunition or profectiles, and the mode of maitos up or preparing the same.-August 23.
 In botlers.-Augrat 28.
Joilah George Jesninge, of Great Charlotte-ntreet, Blackfriars-road, breeofounder, for improvements in water-cloveta, in trapa and valres, and in propaAugute 28 .
Jullus Roberts, of Portamoath, lieatenant in the Boyel Marine Artilery, for Improvementa in the marlaere' compase.-August 28.
Auguete Edousid Loradoux Belliord, of Cestle-ttreet, Holborn, for improvements In the machinery and apparatua for printiog fabrica and other aurfaces. (A commani-catlon.)-Augutt 29.
Panl Joeeph Pogsioll, of Paris, France, gentleman, for an lmproved medicel com-pound,-Apgust 20 .
George Twift, of Birmingham, button-manufactarer, for certaln improvemente in the manufacture of buttong and other drete-ferteninge, and in the machlaery and apparatus to be uned thereln,-August 26 .
Charles Cowper, of Southampton-bulldings, Chancery-lane, Midilesex, for Improrements in the application of Iron to ballding porpoes. (A commmacialion.) Angust 20.
John Pish, of Oswaldtwiatle, Lapcaiter, for certiln Improvements In looss for reeving-Auguet 26.
Andrew Croese, of Broomfield, Somervet, Eaq., for Lmprovemente in the ertraction of metala from thetr orem-Auguse 28.
Plerre Amible de Saint Simon Slcard, chemiat, of Paris, for improvements enabling permons to remaln under water mad in noxious rapours,-Augats 26.
inbrooz, Middeter, brewer, for mprorements in lereang apparitot-Auguat 26.
-

Section at Centre

AMERICAN DOCKS.-No. II.*

(With an Engraving, Plate XXXIV.)

In our first notice of General Stuart's work we alluded to the floating-gate or caissoon, which, as it is rather novel in its details and applications, we have thought may interest our readers. Works of the kind have been executed in this country at Sheerness and Woolwich, and Mr. Brunel also has one in progress at Bristol: General Stuart's impression is that his is the first constructed entirely of metal.

This floating-gate at the New York Navy Yard is in addition to the turning-gates, and is an iron vessel, with keel and stems made to fit the grooves in the masonry at the entrance of the dock. By floating the vessel over the grooves after a ship has entered the dock, and by admitting water into the vessel, it settles into these grooves, and forms a barrier against the sea. - It is removed from its place by pumping out water sufficient to float the vessel clear of these grooves, which are curved, and therefore wider at the surface line than at the bottom line. The grooves are cut in masonry, 26 inches in width and 18 inches deep from the top to the bottom of the side walls, and in the floor. The fluating-gate is used in case the turning-gates require repair, or to relieve the strain on them by dividing the pressure of the water.

The outer dimensions of the caissoon are 50 feet at the keel and 68 ft .8 in . at the rail. At the first or upper deck it is 67 feet long; at the second, 65 feet; at the third, 61 ft .3 in ; and at the fourth deck, or at the top of the truss-bracing, 37 ft . $q \mathrm{in}$. The beam at midship section is 16 feet, and at the keel 7 feet.

The material used for the keel and stems is plate of $\frac{9}{4}$-inch iron, 2 feet wide, and 9 inches deep. The frame is made of vertical ribs of iron, bent to the form of the vessel, covered with boiler-iron, and stiffened by angle-iron deck-beams and cast-iron tubes. At the keel the bottom plates are 24 inches wide and sinch thick, and the stems are of the same size. The sides of the keel are formed by bending the garbuard streaks at right angles to the bottom plate, and those of the stems by a continuation of the side streaks, of which there are sixteen in number, made of boiler-plate, 9 feet long by 2 feet wide. The first six of these, from the keel, are s-inch thick; the next four $\frac{1}{t}$-inch; the next three, $\frac{8}{8}$-inch; and the next two, for bulwarks, are $\frac{1}{4}$-inch thick, with a lining of $\frac{8}{18}$-inch iron, from upperdeck to rail. They are all secured together by $\frac{9}{4}, \frac{5}{8}$, and $\frac{1}{5}$ inch rivets, at $2 \frac{1}{2}$ inches from the centres. The ribs of the frame are composed of wrought-iron, thus: first futlock, or to the second deck, 6 by 1 inch; second futlock, or to the upper deck, 5 by 1 inch; and from main deck to rail, angle-iron, $2 \AA$ by 3 inches, and by tiuch. The pieces of each rib are welded together, and butt at the centre of the keel, in castings provided for the purpose, and secured by rivets 1 inch diameter. There are thirty-one ribs on each side of the vessel, moulded to conform to sections, 2 feet apart, as shown in Plate XXXIV. fig. 1. The knees to which the sheathing is secured are of wrought-iron, each limb being 4 by 4 inches in width, and fastened to the ribs, one knee on each side of each rib, secured by two 1 -inch rivets, as seen in fig. 1.

The cast-iron truss-braces are 5 inches outer diameter and 3 inches bore, through each of which passes a $2 \frac{1}{2}$-inch bar of wrought-iron, which is secured to the sides and keel-plates by keys passing through them and the bar.

The kentledge-tableis so arranged that a passage-way of $2 \frac{1}{\frac{1}{2}}$ feet high is left between that and the keel, for the purpose of repairs and painting, a very necessary arrangement in such a construction. Thia table is 5 feet wide, and on it is now placed, says General Stuart, $211,295 \mathrm{lb}$. of cast-iron kentledge, formed with sockets and pins to fit one into the other, and so to prevent it from shifting, which might upset the caissoon, and cause serious trouble. The top of the truss-beams is moulded to 4 inches high in the centre, with provision for laying on a deck if needed. The truss-braces and beams commence at frame No. 1, alternately to frame No. 11, at which they terminate with cast-iron transom-plates, running into the stem at each end of the vessel. There are likewise two cast-iron transom-plates at the stems under each deck.

The beams and decks are all composed of wrought-iron. The

[^46]former are of angle -iron, $3 \frac{1}{2}$ by 3 inches, riveted to the frame at each rib by six $\frac{3}{4}$-inch rivets. The decks have lapped joints, with the exception of the main deck, which is butted, and has a crown of 3 inches. The decks are all riveted to the limbs of the beams by $\frac{1}{2}$-inch rivets, and the rivets of the main deck have counter-sunk heads. Each deck is supported by five cast-iron columns in the centre, of 4 -inch bore, communicating from the keel to the main deck.
The filling-tubes, four in number, are of cast-iron, 17 inches diameter, and 14 inches bore, extending through the whole width of the vessel, riveted to the sheathing, and secured with keys to the ribs. Each filling-tube is provided with two valves for the purpose of passing the water through the caissoon into the chamber of the dock when the ship is floated out, and likewise into the inside of the caissoon, when required, by four branch valves from the same tubes. These last valves are only used when the vessel is being put into place on the grooves, and are of composition metal, cast in halves, planed and fitted together, and bolted through the chambers and flanges of the tubes, which are made in two lengths. The valves are worked by means of shafts and wheels bearing handles, as shown in fig. 1. To one of the tubes is connected a discharge-pipe, having two double-action pumps, each of the following dimensions: 16 inches bore, 14 inches length of stroke, worked like a common fire-engine, by breaks and levers placed upon the main deck, as shown in fig. 8 . These pumps are placed on the third deck, and from them suction-pipes extend to within 12 inches of the keel. In addition, a 4 -inch bilge-pump is used to take the water out of the inside of the keel, and from below the kentledge-table when required. There are likewise what are called two Kingston valves, worked like the other valves, at the bottom of the vessel, through which it can be emptied, when the chamber of the dock is free of water, without using the hand-pumps.

There are two capstans of cast-iron on the main deck for warping the vessel, and cast-iron heads to secure her when afloat. From the main deck there are connected with the pumps two pipes of 3 inch bore, to be used for washing out the caissoon and chamber of the dock, and in case of a fire in the neighbourhood or on board of a ship when in the dock for repairs.

A lining of india-rubber, 8 inches wide, and 1 inch thick, weighing about 979 lb ., was fastened to the outer surface of the keel and stems, with countersunk screws, before the caissoon was launched, to prevent as far as possible the leakage of water between the vessel and the masonry of the dock. This, says the General, answered the proposed purpose very well, until it became torn by repeated use of the caissoon during the past year. Oak or yellow-pine plank is to be used instead, arranged like the buffer-timbers of the turning-gates.

The contract for the floating gate was made in August 1849 , the iron keel laid in October of that year, and the vessel launched on the 1st of January, 1850, the day the contract expired. The whole of this complicated and massive structure was built in the short space of seventy-two days. The weight of metal and ballast is about 380 tons, and the total cost 79,419 dollars, or about 18,000 .

The description of Plate XXXIV. is as follows:-
Fig. 1, shows an internal elevation of the caissoon, with its general arrangements for operating it; including the capstans, pump-brakes, frame, bulwarks, main deck, second and third decks and their supports, stairways leading to them, valve-gear, pump chambers and pipes, truss bracing, ribs, angle-irons, knees, stems, and kentledge-table and ballast.

Fig. 8 , shows an external elevation of the caissoon, with the side and stem plates, openings of filling-tubes, hawse-holes, ring-bolts, \&c.

Fig. 3, shows a plan of the second deck, with the ribs, columns, and ties to support the upper-deck, and wheels for working the filling-tubes' valves, and on the right are seen the filling-tubes on the third deck, the hatchway, transom-plate, and stem.
Fig. 4, is a cross section of the caissoon, decks, frame-pumps, filling-tubes, valves, wheel, truss-bracing, and keel.
Fig. 5 and 6 , are an enlarged view of the truss-bracing, fillingtubes, and kentledge-table in plan and section.
Fig. 7 and 8 are enlarged views of the transom-plates in plan and section.

Fig 9, shows the Kingaton-valves, and hand-wheel gear for operating them.

NECESSITY OF AN ARCHITECTURAL EDUCATION ON THE PART OF THE PUBLIC.
 By Owen Jones, F.R.I.B.A.

[Exhibition Tecture delivered at the Society of Arts, London.]

In all times but our own all ornamentation reaulted from architecture; in the present age we have no guiding principle in its design or unity in its application: the architect has abandoned to inferior hands that which was his especial province. The education of our architects must undergo some change before we can hope that architecture and its attendant arts shall faithfully represent the wants, feelings, and faculties of our time; this result can never be effectually obtained till a much higher amount of art-knowledge exists in us as a nation.
How is any change for the better to be brought about? It is certain that the production of a national style must be, as it ever has been, a work of slow development; yet, if never attempted, the problem never can be solved.

It seems to me-now that we have so many schools devoted to the improvement of design as applied to manufactures, and that a movement in this direction, aided by this Society, is receiving a fresh impulse-that if the government were to undertake to gather together all the records of the past, and would disseminate that knowledge with correct principles for making use of it, a vast stride would be made in the right direction.

The system of architectural education followed in France is very superior to that pursued in this country. Here the young architect is apprenticed to an architect in practice as to a trade, and lis engaged for five or seven years on the works of his master; he gains thereby a good knowledge of construction and of the business of an architect, but has but little opportunity of studying architecture as a fine art. In France, on the contrary, besides the drawing-schools which exist in every town, where the young may obtain much elementary knowledge, there are in Paris many studios where professors devote their time to the instruction of a large number of pupils; making them thoroughly acquainted with the works of every period, and giving them a thorough knowledge both of architecture as a fine art and of construction in theory.

The pupils of these various studios are mostly attendants at the Architectural Academy, where they once a-month produce designs in competition for a given subject, and they are assisted in the formation of these by their professor. One consequence resulting from this system is, that we see in France at any given period a much greater unity in the character of their works; and there is not that disorder and waste of forces which we see in this country, where each architect is pulling in s different direction.

Works executed in France have a family resemblance not to be found in those of this country; the influence of the professor is much more felt, and schools of architecture are thereby formed, much as were the ancient schools of painting.

All these architectural students do not become architects; those who do so, when they have finished their studies, become clerks of the works under government architects, where they learn the practice of their profession, and ultimately practise on their own account. Many of those who have not been sufficiently advanced, or want government influence to be so placed, turn to other professions connected with architecture-become decorators and designers for manufucturers. It is this cause which gives to the designs of France the superiority they have. Mostly all their designers have had an architectural education. I do not mean to say that the French have made much more progress towards the formation of a national style than we have; what they have done is, that, at any one period, they have carried out the reproduction of any extinct style with much more unity. The fashion, as long as it lasted, has been general; and we do not see in France, as we see here every day, the building of one style of architecture, the decorations of another, and the furniture of a third, with every variety of age and period. However, it is the kind of education as pursued in france which I think it would be useful if our government could be prevailed upon to foster. The Schools of Design have not hitherto produced any marked improvement in the designs of our manufacturers, and have been conducted as if it were the intention only to make painters. The study of the human figure has been carried to excess, and much labour wasted upon it; useful as it is for refining the taste and teaching accurate ubservation, yet it is a roundabout way of learning to draw for
the designer for manufactures. I may here remind you that the Eastern nations, who appear to excel all others in their works of ornamentation, are forbidden by their creed to make any representation of the human figure; and it is probably to this cause that we may attribute their excellence in ornament.

I cannot but feel that if the education of the government schools were made more architectural, much real benefit would result to this country; besides that the study of architectural forms must be the best preparation for the designer of ornament, they would do more good in helping to make architects than painters, to whom individuality is less of an evil. Architects should be educated in masses, because it is their duty to give expression to common wants aud common feelings. The opposite system has been in use in this country, and has mort assuredly failed. The knowledge we have acquired of the works of past ages has been procured by individual efforts, but, unfortunately, with but small results. Each has been tempted ta exaggerate the importance of the style of his predilection, and which he undertook to illustrate. That a little knowledge is a dangerous thing has proved most true in architecture and its attendant arts.

As each new architectural publication appears, it immediately generates a mania for that particular style. When Stuart and Revett returned from Athens, and published their work on Greece, it generated a mania for Greek architecture, from which we are barely yet recovered. Taylor and Cresy did as much for the architecture of Rome. The travels of Belzoni and his successors produced the Egyptian Hall, and even Egyptianfaced railway tunnels. The celebrated French work on the architecture of Tuscany, and Letarouilly's 'Modern Rome; have more recently inspired us with a desire for Italian palaces The works of the elder Pugin and Britton, with a host of followera, have flooded the country with Gothic buildings; with Which, notwithstanding the learning and research they exhibit, I must frankly avow. I have but little sympathy. I admire and appreciate the Gothic buildings, which were the expression of the feelings of the age in which they were created; but 1 mourn over the loss which this age has suffered, and still continueu to suffer, by so many fine minds devoting all their talents to the reproduction of a galvanised corpse.
Instead of exhausting themselves in the vain attempt, who will dare say that had these same men of genius, as they certainly are, directed their stepa forward instead of backward, architecture would not have made some progress towards becoming, 88 it is its office, the true expression of the wante, the faculties, and the sentiments of the age in which we live? Could the new wants to be supplied, the new materials at command, the new sentiments to be expressed, find no echo to their admonitions? Alas! iron has been forged in vain,-the teachings of science disregarded,-the voice of the poet has fallen upon ears like those of the deaf adder, which move not, charm the musician never so wisely.
More than this; instead of new materials and processes suggesting to the artist new forms, more in harmony with them, he has moulded them to his own will, and made them so to speak, accomplices of his crime. The tracery of Gothic windows, generated by the mason's art, have been reproduced in castiron; the Doric columns of Greek temples, which owe their peculiar form and bulk to the necessities of stone, have been but a hollow iron sham.

We have gone on from bad to worse: from the Gothic mania we fell into the Elizabethan-a malady fortunately of shorter duration; for we then even worshipped not only a dead body, but a corrupt one.

We have had an Italian mania without an Italian sky; and we are even now threatened with the importation of a Renais. sance mania from France. It would be most unfortunate if the attention which has been directed to the peculiar beauties of the East Indian collection of the Great Exhibition should result in an Indian mania; but if this disease, like measles, must come, the sooner it comes and goes the better. What we want to be convinced of is, that there is good mixed with evil in all these styles; and I trust, when each has strutted its brief hour on the stage, recording for posterity the prevailng affectation of the day, we shall. We want to be convinced that all these styles do but express the same eternal truth, but in a different language; let us retain the ideas, but discard the language in which they are expressed, and endeavour to employ our own for the same purpose. We have no more business to clothe ourselves in mediaval garments than to shut ourselves in
cloisters and talk Latin; to wrap ourselves in Indian robes and to sit all day on divans, leading a life of voluptuous contemplation.

After the expression of mo much heresy, I must beg to say the fault does not at all lie with the architectural profession, to which l esteem it an honour to belong. The fault lies with the public; the public must educate themselves on this question. Architects, unfortunately, can but obey their clients: this one will have an Elizabethan mansion; this clergyman can admit no other than a mediæval church; this club of gentlemen must be accommodated in an Italian palace; this mechanics' institute committee must be located in a Greek temple, for there alone wisdom can be found or philosophy taught; this railway director has a fancy for Moorish tunnels or Doric termini; this company, apain, an Egyptian suspension-bridge-the happy union of the alpha and the omega of science; the retired merchant must .spend his surplus in Chinese follies and pagodas. And, to wind up the list of these melancholy reproductions. I will cite the worst I ever saw, though fortunately not an English one. We have here a client, who requiring a steam-angine for the purposes of irrigation for his garden, caused the architect to build an engine-house in fac-simile of one of the beautiful mosque tombs of the caliphs of Cairo. The minaret was the chimneyshaft. Nothing was omitted; even the beautiful galleries, which you all know were used for the purpose of calling the Moslem to his prayers, here surrounded a chimney without a means of sccess.

I again repeat, the fault lies with the public; an ignorant public will make complaisant and indolent architects. Manufacturers, again, will always tell you, in answer to a reproach for the bad designs they produce, that they are only what the public require, and will have: let us trust that this excuse will no longer avail them. The Great Exhibition has opened the eyes of the British public to our deficiencies in art; although they were unable to suggest better things, they were found quite able to appreciate them when put hefore them. There must be on the part of manufacturers, architects, artists, and all who in any way minister to the wants and luxuries of life, a long pull, and a strong pull, and a pull altogether; they have one and all, like dramatic authors, written down to the taste of the audience, instead of trying to elevate it. The public, on the other hand, must do their part, and exercise a little pressure from without.

1 know that I shall be told that the production of a new style of architecture is not so easy a matter; that it has never been the work of any one man, or set of men, but rather something in the like of a revelation; for which, probably we may be told to wait. Much of what I have said here this evening will be set down as the ravings of folly. Some will say, architecture is a thing of five orders, discovered and perfected once for all, beyoud which we cannot go, and all that is left us is an adaptation of it to our own wants; others will tell you that a Christian people should have no other than Christian architecture, and will tell us to go back to the thirteenth century in search of architecture, and that beyond this there is no salvation; but I answer that this architecture is dead and gone; it has passed through its several periods of faith, prosperity and decay; and had it not been so, the Reformation, which separated the tie which ever existed between religion and art, gave to Christian architecture its death-blow.

To show how new styles are really formed, I will here give you an instance of the progression of an architectural idea. Here is the ornament known as the egg-and-tongue moulding, so common in Roman architecture, which we produce over and over again to such an extent that there is hardly a building or house erected where it is not used externally and internally. Let us see what the Arabs did with it; let us see if they were content to cunsider it as perfection, and to set themselves down before it with folded arms to worship it.
When the Mahometan religion and civilisation rose with such astonishing rapidity in the East, the Arabs, in their early mosques, made ase of the materials which they found ready to their hands in the ruins of old Roman buildings, or buildings which they purposely destroyed; they took columns with their Corinthian capitals, \&c., and adapted them to the arrangement required for their own temples. In their subsequent works they did not, as we should have done, continue to copy and reproduce the models which were at first so convenient to them; but, applying to them their own peculiar feelings, they gradually departed from the original model, to such an extent at last,
that but for the intermediate steps we should be unable to discover the least analogy between them. Yet by this process the capitals of their columns can be traced back to the Corinthian order which they, in the first instance, found so abundantly for their use.
In the instance before us, who, at first sight, could see any connection between the egg-and-tongue moulding and the ceiling of the hall of the Two Sisters of the Alhambra? Yet, by placing side by side the intermediate stages, we may be as certain of the process by which they arrived at it as if we saw them at work before our eyes. Here is a cornice yery common on the earlier buildings of the Araby. You will see that it resembles in all respects the egg-and-tongue moulding, save that what is here round in the Arabian cornice is straight. Some fresh mind at work upon it saw an opportunity for fresh beauty in doubling it, as you see here another in tripling it; then there must have burst upon some other that this muitiplication of a simple element was a mine of wealth to them. We now see this principle developing itself in the formation of peadentives, and the filling up of niche-heads and doorways. It was reserved for the Moors to carry this principle to its utmost limit; and we see in the Albambra capitals of columns, arches over large openings, and ultimately the ceilings of their halls, were covered with the stalactite roofs, which are not more remarkable for their elegance and beauty than for their scientific construction.

This model before you is a portion of the ceiling of the hall of the Two Sisters; it is composed of 5000 pieces, being combinations of the same seven, based upon three primary formsa right-angled triangle, being the half of a square; a parallelogram, having one of its sides equal to the hypothenuse, and the other to one of the sides of the angle; and an isusceles triangle, also with sides equal to the sides of the right angle; so that as these seven piecers occupy the same space on plan, but are different in elevation and section, they may be used indifferently one against the other, and the most astounding varieties can be produced: in fact, they are infinite, like the combinations of the seven notes of the musical scale.

Similar progression may be seen in every architecture. Many of the types of Greek architecture may be seen in Egypt. The flutes on the Doric column were first simply corners cut off in the piers of the rock-cut temples of Egypt. They then became eight-sided, and so on, till some one must have suggested making the sides curve inwards; and lo! we have the flutes. A rude type of the honeysuckle ornament, so prevalent in Greek architecture, is seen on the Assyrian monuments discovered by Dr. Layard and M. Botta; in fact, any one so disposed will find numberless instances of these progressions: but 1 have said enough to show that architecture, till now, has ever been progressive. What has been done in past ages may bedone in this, if our minds are only so directed.

We have all the works of the past, as I said before, for our inheritance. We may use the principles and knowledge derivable from them, but may not parody the results of these principles. From the works of Egypt we may learn how to symholise; from those of Greece we may learn purity of form and grace of outline; from the Arabs and Indians, perfection of form, harmony of colouring, and more eapecially the conventionality of natural forms; from the Moors, in addition, the great powers of geometrical combinations, and the immense value of the repetition of the most simple elements, as producing grandeur and richness; and when fully impressed with this Enowledge, have we not before us the whole range of Nature's works, furnishing us suggestions of endless variety? See what the Egyptians did with the lotus, the Greeks with the honeysuckle, the Romans with the acanthus, the medimval artists with the trefoil, the maple, the vine, ivy, and oak. Have the plants and flowers of every clime been gathered together in vain for the architect? can they furnish him no hint for the development of new conventional forms?
There is but little hope that any but a slight modification can take place in the art of the present generation, but it is the bounden duty of all to help in the elevation of the future. We have movements going ou around us to promote the knowledge, improve the morals, and preserve the health of our race. Philosophers measure the innermost recesses of the vault of heaven, or descend into the bowels of the earth for knowledge, which they disseminate by cheap litersture to the homes of the humblest. Free trade supplies food and raiment to all. The railway movement quadruples the power of locomotlon. The
sanitary movement seeks not only to prolong life, but to render that life a blessing rather than a curse. The movement in favour of the drainage and irrigation of the soil now dawning, promises so far to increase the pruductiveness of the country by pouring on it the waste of towns, that what are now the luxuries only of the few will hereafter be daily supplied to the many. Shallwe, then, be content to supply only the material and intellectual wants of man, neglecting that far happier portion of his nature, the sentiments? Shall there be no movement in favour of bringing art-knowledge within the reach of all? I would strongly urge that there could be no more noble result springing out of the Great Exhibition than this; no more noble task for this Society, which brought about the Great Exhibition, to set itself than this.

Every town should have ita art-museum, every village its drawing-school; every parent should educate himself in art, as far as he can, and cause his children to be educated still further: it is as necessary for the refinement and the happiness of mankind to develope the innate poetry of his nature by the cultivation of the eye as to develope his intellect by giving liim the power of reading and writing. Do not say this is visionary or impossible; every movement now successful was once so regarded, was once but the philanthropic yearnings of the few.

The government may, and ought, to assist in developing this movement; it should help with no niggard hand: a fow thousands spent in forming art-museums, accessible to all, would save many thousands more from being spent in building grols.

Although the evil passions lurking in the breast of man can never be eradicated, yet they may be subdued and charmed to slumber by the cultivation of his higher mental and sentient powers. Give a people healthy pleasures, and the tendency to crime must be diminished. As a first step in the development of this movement I would preserve the Crystal Palace. When I reflect that at the very moment when the Ruler of France decrees-That, seeing the city of Paris has no permanent building worthy of public exhibitions and national fites, therefore let there be one on the plan of the Crystal Palace of Loodon; when I reflect that we who have it are about to destroy it, I arm perfectly astounded at the apathy of the British public which allows it.

It is to me a melancholy sign of the little feeling which exists for art in this country, and that there are so many educated people found to ask, What would be the use of keeping it where it is? Why, sirs, I assert that were the building simply to remain as it is, a vast covered area, where the people of every class might daily intermingle, it would have a civilising infuence over the present generation, which would be worth the paltry sum required to purchase it many times over.

There is no country in the world where the manners of the peer and the peasant so nearly approach as in Spain, and we find there every town and almost every village has its paseo or promenade, its alameda or elm-grove, where daily, just before sunset, all classes freely mingle together, enjoying the refreshing evening breeze, their hearts dilated by the contemplation of nature's noblest works. Their churches, again, are their artmuseums; on their marble pavements the duchess and the grisette kneel side by side. Who can doubt the influence of these facts in forming those refined artistic instincts so universal in a people who are very deficient in acquired knowledge?

There is no doubt whatever that the free mixing of the several classes which took place last year in the Great Exhibition has produced a feeling of higher appreciation of each other, both with the great and the humble; the great have a higher respect for the humble, the humble look with much less of envy on the great. Were the opportunity for this continued, the impression would become permanent instead of being transitory, or worse.

This civilising influence, I say, would result from the empty building; but when we imagine, in addition, its vast nave, adorned with a complete history of civilisation recorded in sculpture from the earliest times to the present, with casts of the statues of our great men which now adorn our squares and public places, invisible from London smoke; when we inagine the plants of every region, however distant, climbing each column and spanning each girder; the sides of the buildings set apart for the formation of collections, recording man's conquests over nature, where hundreds daily may be taught to see with the mind as well as the eye, an education as necessary to
the governors as to the governed; were such a scheme carried out nobly and lovingly, the success of the Great Exhibition would be, in comparison, failure itself.

To effect this, and in further developing the movement in favour of bringing art-knowledge within the reach of all, the government may do much, but the public must do more; it must depend for success on the co-operation of all.

It is a movement that may not be delayed; we must be up and stirring, if we would not that England, in the midst of her material greatness, become a byword and a reproach amongat nations.

PROMOTION OF ARTISTIC EDUCATION AMONG THE WORKING CLASSES.

Onz of the greatest impediments to the development of artistic composition by architects is the want of competent assistance from workmen. In exact proportion to the desire and capability of the architect to exhibit artiatic excellence is the difficulty he finds to carry his designs into execution. Great as may be his acquirements, fertile as he may be in composition, and assiduous as he may be in the discharge of his duties, it is impossible that he can fully design every detail, if such detail is to receive its due artistic treatment. Even in a small structure it is undesirable and impossible for the arehitect to be the cole designer and only artist employed; and in a large building the attempt is at once acknowledged to be hopeless. In the paucity of adequate assistance from workmen, from the fear to intruat to rude hands the treatment of parts, the architect is led to rely ou mechanical reproduction, and to design patterns which can be put into the hands of the manufacturer and supplied by the cwt. or yard run. Hence the want of earnestneas and lifelikeness in our modern edifices as compared with those of antiquity; hence the appearance of poverty of execution in the works of our greatest masters, or the impression that the atructure is unfinished.

It is from the cause we have exhibited our efforts for the promotion of originality in art are paralysed, for while we stimulate the architect to exertion, he only moves forward to encounter serious obstacles. We can, it is true, urge the architect to exertion, but we cannot insure him, from an untrained population, adequate instruments for achieving his deaigns. We have never concealed from our readers the necessity of obtaining a remedy for this state of affairs, and of placing architecture as all other arts, on the only true and living groundwork-that of the sympathy and co-operation of the mass of the population. Whatever may be the thought elsewhere as to the desirability of confining any hranch of education to a select class, nowhere can we so well appreciate the false economy of it as in the department of art. A population uneducated in art deprives the artist not only of efficient assistance, but of patronage; and what is still dearer, the moral appreciation of his exertions, Those who will work for cognoscenti, or for exclusive patrons, must narrow the sphere of their conceptions, because they narrow the means of execution; and in no respect, perhaps, does the true artist more sensibly feel the decline of art among us than in its low condition among the working classes. Every relic of antiquity shows us not only that the artist of old was more of a Forkman than now, but that every workman was more of an artist.

It is under these convictions that we again bring this subject before the architectural profession, feeling assured that there is such a degree of earnestness awakened as will enlist the cooperation of every member in the promotion of any practicable and well-intentioned measure. If heretofore this co-uperation has been less manifest, it is because there has been no adequate encouragement for the exertion of the architect. Schools of design were, it is true, founded some years ago, but on such narrow principles that they promised to do as little for the architect as in reality they have performed. These schools turn out their scores of pupils; but what the architect wants is instruction for his tens of thousands of masons, carpenters, smiths, and workmen-and this the schools of design could never afford. We dwell upon this neither as an exculpation for the architects, nor as an inculpation of the schools of design, but for the simple explanation of the state of the case. The schools of design have undoubtedly done good in many branches of ornamentation, and have greatly promoted the views of the architects; but they must not lead us away from the more com-
prehensive question-that of the artistic training of the mass of the population. In our early volumes we advocated this, for already fifteen years ago the inadequacy of the schoole of design was felt, and a movement was begun in the formation of the Society for Promoting Practical Design, which, although it effected only partial good then, at any rate kept the true prinoiples alive. In that society Haydon and Sir Martin Shee, Mr. Wyse, Mr. Ewart, Sir Robert Peel, and Mr. Labouchere, endeavoured to correct the narrow policy of the government, to carry out the views of the parliamentary committee, and extend artistic instruction among the population. In its short-lived career the society succeeded in reducing the fees of the government schools from 106. a-year to 6d. a-week; in opening the study of the figure and the higher departments of instruction to the working man; in removing the obstacles to the free development of artistic instruction; and in giving the example of the first female-school. The committee also republished and circulated extensively the same ovidence of Mr. Dyce and others as to the state of foreign schools and the means of rivalling them, as is now, after so many years, brought before the public by the Department of Practical Art. In the success achieved with such small means by the society, the new department has the best ground for its exertion, and the best asssurance that its labours will not fall to the ground.

The School of Design was certainly an important step, but for nearly fifteen years the cause remained without progress. The next step, and which is likely to be attended with still greater benefit, is that taken this year in the establishment of the Department of Practical Art. If we correctly understand the objects of this new organisation, they are of a twofold nature-first, the promotion of the direct practical application of the arts to manufactures; and next, the extension of elemeutary artistic instruction among the body of the population.

The department has under its charge the metropolitan schools of design, and twenty provincial schools, the Trustees' School at Edinburgh not being reckoned. All theae schools are now for males and females; but the most extensive organisation is in London, where, besides the high school at Somerset-house, there is a special school at Marlborough-house for the principles and practice of ornamental art and the study and practice of special processes of manufacture. There are likewise special classes of instruction for silk patterns, painting on porcelain, woodengraving, and chromo-lithography. There is a class for architectural details and practical construction, under Mr. C. J. Richardson. The Department is now taking measures for cooperating with the mechanics institutions, each of which has its drawing class, and which train students for the schools of design.

New rules have been promulgated to encourage the formation of elementary schools for drawing and modelling, which contemplate a government guarantee for a fixed period towards the payment of the master's salary, until such time as the scholars' fees shall be sufficient to afford a remuneration.

A very useful measure is the introduction of an official drawing-master, to give weekly lessons in each public school in a town, at the charge of 51 . yearly for each school.

It is however requisite to give a further stimulus to instruction in the common schools; and this weshould propose to effect economically by a system of inspection and rewards. The twenty schools of design, or of ornamental art as now called, would furnish in their masters inspectors for the National (English and Irish), and British and Foreign Schools already under the Board of Education, and a small additional fee would meet this system of inspection in the first instance. A further sum should be appropriated in sums of $5 l$. each for the reward of those masters of the inspected schools who should have proved themselves most efficient. Such a sum would be adequate inducement to stimulste the exertions of numerous members of the now increasing class of public schoolmasters.

We should observe, thst the Department of Practical Art has fallen into the old practice of publishing and recommending elementary books, by their own parties. The less the Department has to do with publication the better we are convinced it will be for itself and for art. Indeed, we can already trace the affect of mannerism in the tone already adopted. Thus we see the artificial Geometrical system patronised by one member, and the Oriental or Alhambric scheme of colouring by Mr. Owen Jones. No course can be adopted so sure to create prejudice against the Department, because many in the sphere of art entertain strong objections to the inculcation of the geometry of the square and circle as a vehicle for the study of nature and
natural mechanics; and Mr. Owen Jones's theories have been already the subject of controversy. The Department has quite enough to do practically without engaging in bookselling, and in jobbing the books of its members to the exclusion of the productions of others. Messrs. Longman will always be willing enough to publish the works of Mr. Dyce, Mr. Redgrave, and Mr. Owen Jones, without the adventitious qualification of a government monopoly.

Besides the schools, the Department has a museum of ornamental art at Marlborough-house, formed by donations and a treasury grant of $5000 l$., for the purchase of articles from the Great Exhibition. This museum is in its infancy, and must soon obtain a greater extension, while it will exercise a material inflaence on other museums which have objects of kindred interest, and lead to their re-organisation with a view to special objects of study. Such are the Museum of Practical Geology, that of Economic Botany, the Soane Museum, the Egyptian, Etruscan, and Roman departments of the British Museum, the Tower Museum, the United Service Museum, Asiatic Museum, and the incipient Museum of Economic Botany just opened by the Royal Botanic Society. There are likewise objects at St. James's, Windsor, and Hampton Court, which will acquire a new interest as examples of ornamental art.
The Marlborough-house Museum contains many well-chosen objects, and the catalogue is one of a useful character, giving a greater value to the collection. Each article catalogued is accompanied with its price, and observations on its artistic or manufacturing qualities. Although we may dissent from some of the theoretic views enunciated, we are bound to acknowledge that these observations are calculated to be of use to the student by exciting habits of reflection.

One division of the Museum is that devoted to exsmples of works on false principles-a museum, in fact, of morbid anatomy, and therefore the more valuable. In engineering, few things are considered of more practical value than an accurate acquaintance with failures, with a view to ascertaining their causes and avoiding their recurrence. The public will grieve to find many favourites in this limbo, but we cannot pity any of the culprits after having seen them. The formation of such a class was a task of some hazard, but it seems on the whole to have been well carried out.

In the collection of casts and drawings, our professional readers will be glad to be informed there is a copious selection from the Renaissance style. Who knows but in time we shall have the elements of the so-often-wished Architectural Museum?

The library is only just begun, and intended for the students; but we hope the managers will use it with liberality. It will be well worth their while to give up a room to it, and make it at least as accessible as the British and Soane Museums, and gratuitous. It will not be long before they receive donations and government grants more than compensatiug for any presumed loss. The opening of this library will react beneficially on the two libraries already named, and likewise on the Royal Academy and Institute of British Architects.

The Annual Exhibition of the works of students of all the schools is now an established institution: and here, again, we have the opportunity of adverting to a wider field which each effort is certain to obtain, thereby greatly extending the influence of the individual example. A short time ago, ornamental art had no field of display, but now there is not only Marlborough House, but the Architectural Exhibition and the Society of Arts, besides many provincial exhibitions.

It will be seen, from what we have already stated, that a movement is in progress, which must have a very great influence on art, and necessarily on architecture. The period has arrived when the architect must consider what part he shall have in this course of progress, or whether, awaiting the fruits, he shall resign active participation in the preliminary labour to other artists. If he do so, his own profession must lose an opportunity for distinction, and bis own art will fail in obtaining a proper degree of advantage from the system of instruction carried out. It will be, as heretofore: the objects of the architect will be slighted or slurred over, and the more clamorous applicants will monopolise attention. Manufacturers will contend for the workmen, and painters arrogate to themselves the management, and architects, as in so many cases, be deprived of their fair claims. On the other hand, by judicious and liberal co-operation in the metropolis and the provinces, not only may general results of interest to the profession be secured, but special classes like that under Mr. Richardson, be formed on a more extensive scale.

BRITISH ASSOCIATION.

Selections from Papers read at the Meeting held at Belfast, September, 1859.

INTRODUGTORY OBgERVATIONS OF JAMES WALKER, ERQ., C.E., PRESIDENT MEORANIOAL EECTION**
I had not been told, until I came here yesterday afternoon, that it was expected that the Presidents of the departments of this Association were to introduce the business by addresses; indeed, I have been, as respects attendances, so very unworthy a member, that I suppose the honour of being selected to the chair of this very important department is due greatly, or chiefly, to my connection with Belfast, as Consulting Engineer to the Harbour, which professional employment 1 have filled ever since the great improvements were designed and executed. I believe Mr. Smith, the respected and talented Resideut Engineer, and under whone immediate direction the works have been executed, intends to present a paper on the subject, when some observations may present themselves.
I have said that the Mechanical department is important, so far as regards the useful and practical purposes of life in an improved society; I believe I might have said the most important, for they are all dependent upon it, and improve as machinery improves. The time has long passed when machinery, supplanting mannal labour, was a subject for alarm, unless it be with those whom machinery has not yet reached, and who, perhaps, entertain the almost equally reasonable fear of witchcraft. I do not say that there are no cases in which mechanical improvements have not caused temporary injury to individuals, nor can it be said that the belief in witcheraft has not prevented crime; but, in general, the one is about as reasonable as the other, and superstition has, perhaps, as many arguments in its favour. It is useful until reason supplants it, and so hard labour is useful until mechanical inventions are brought to light, and no longer. Take this town as an illustration-but for the employment of machinery for the manufacture of its staple article, it never would have reached its present thriving state and great and increasing population; and its active and industrious inhabitants do not want to be told, that if they allow the machinery of other towns, as applicable to the manufacture of linen, to get ahead of them, the sun of their glory shall have set. See, again, the effects of mechanical knowledge in lessening the resistance of water to the passage of ships, by improving their form, and, more recently, by the application of the steam-engine as a propelling power upon ahips and railways, and consider how universal their effects are felt, in administering to our convenience and comfort, as printing, that greatest of all enemies to ignorance and superstition, does to our mental improvement and happiness. But not only are books, and better clothes, and long journeys, cheapened, and brought within our reach, by machinery, and the produce of all parts of the world, as it were, brought to our doors, and the fuel we use supplied to us by means of canals and railways, at one-tenth or one-thousandth of the expense they would otherwise be,-but as machinery gets to be more and more applied to the improving and draining of land, or the growing and preparing of corn, rice, and other grains, the great staft of life, bread, in all its forms, becomes cheaper and more abundant. Not only does the same ground produce a greater crop, but it produces it with a less quantity or expense of labour, and therefore enables each individual to exchange his labour for a greater quantity of food. If I am asked how machinery effects this, I would refer to the vast variety of machines shown at agricultural meetings, and the number in the yard of every good farmer,-to the winnowing-machine, the thrashing-machine; the application of steam to this, and also to grinding, in lieu of a precarious water-power; and last, but not least, the canals and railways for conveying the corn to market, contrasted with the roads scarcely passable in winter, along which the farmer's horses had to drag a small load, adding materially to the cost. The operation of these causes in cheapening the corn and the produce of the soil generally does not appear to me to be alluded to so much as they deserved. I consider the present low prices of many of the necessaries of life to be the effect of them, and that to apply machinery still more to agriculture is the most natural and unobjectionable means of meeting the cheapening effects of the free importation of corn from other countries. Linen, as respects the growth of flax, and its conversion into cloth, is a manufacture; and so also is bread

[^47]as respects the growth of corn, and its conversion into bread. Now, Belfast is not afraid of a free-trade in linen-itg improved machinery enables it to defy the world; it imports foreign fiax at a cost, and is ahle to make linen, if they will take it, cheaper than the country which grows it can make it at all.

But for improved machinery, again, as applied to the sciences -take the most sublime of them all, astronomy-Lord Rosse could not have brought down the wonders of the heavens to our senses by his great telescope, if he had not been a mechanic as well as an astronomer; and Mr. Craig, whose great telescope I have seen, could not probably have brought his ideas into practice as respects the formation of the great tube, and the mode of fixing and adjusting it, without the assistance of the engineer's gravatt.
I shall couclude these remarks with one involving the interests of capitalists, in respect to the effect of the late discoveries and importation of gold reducing the real value of their nominal property, money and money rents, to show huw much mechanical science may come in to relieve them.

That the greater abundance of gold, and the lesser labour in procuring it, must have the effect of cheapening the article, cannot be doubted; but the same principle applies to every other article, including, as I have before shown, corn; and if we progress with machinery and the other means of cheapening all articles, this may still enable as large a weight of corn and other articles to be exchanged for the same weight of gold as before the late golden discoveriea-their relative value may remain the same as before. It is to that we may ascribe the little effect which the importations of gold, and prospects of greater abundance, have had upon the markets. One day of rain during harvest produces more effect on the price of corn than all the fear of being overwhelmed with gold has done. Consider, also, that there are a hundred, or perhaps a thousand times the number of men employed in cheapening corn by machinery, draining, and digging, to one digger of gold.

After this hurried address, which has extended beyond my intentions, it will not be expected or wished that 1 should go into a description of recent scientifical inventions; but I cannot close without noticing, in general terms, the electric telegraph, by which communications are made at the rate of six times round the earth in one second of time, and how mechanical appliances have been adopted to make this practical and useful by land, and more by water. The knowledge of the operations of thiswhat it is that passes along the wires at this enormous rate-is beyond our reach at present : we only know that something, a property-matter-actually does so, but for the knowledge of what it in we must refer to the Author of Nature, the great source of all science.

mechanical process for cooling air.

Remarks on the Mechanical Process for Cooling Air, proposed by Profeseor C. Piazza simyth. By W. J. Macquoan Rankine, C.E.

It has been proposed by Prof. Piazza Smyth, for the purpose of cooling air for the ventilation of buildings in tropical climates, to make use of the well-known property which air posseese, in common with all other elastic substances, of causing heat to disappear by its expansion. The air is to be first forced, by a compressing pump, into one end of a refrigerator, consisting of a long tube, or a series of tubes, surrounded by water. The heat developed by the compression being given out by conduction to the water, and the air restored to its original temperature, it is to be allowed to escape from the other end of the refrigerator into the building to be ventilated, where, by its expansion, it will become cooled to an extent depending on the extent to which it was originally heated by compression.

The machinery which Prof. Smyth proposes to employ having been described to this Seotion at a former meeting, and also in the C.E.\& A. Journal for 1850 (Vol. XIII. p. 299), it is not my intention to enter into details respecting it. My object in this paper is to show the method of calculating the power necessary to work the machinery; and especially, the saving of power which may be obtained by means of an improvement recently proposed by Prof. Smyth. This improvement consista in adding, at the escape end of the refrigerator, a second cylinder, in which the air during its expansion works a piston, before being distributed through the building. The effect of this addition is at once to save and employ in assisting the compression of the air, the mechanical power developed during its expansion, and to prevent the partial re-heating of the air by friction, whioh
might take place if it were allowed to escape without working a piston, \ln consequence of the violence of the blast. The saving of power is in fact so great, that the friction of the machinery becomes the principal part of the resistance to be overcome, instead of being, as before, secondary to the compressive power.

The formule which I shall use are not minutely correct in theory, for they treat air as a perfect gas, and assume the laws of its action with respect to heat and elasticity to be more simple than they actually are; but they are sufficiently near the trath for practical purposes.
Let T denote temperature in degrees of Fahrenheit, measured from the ordinary zero; then what is called Absolute Temperature is given by the formula

$$
t=\mathrm{T}+462^{\circ}
$$

Let t_{1} denote the original absolute temperature of the atmosphere; t_{0} that to which the cooled air is to be ultimately brought; t that to which the air must in the first instance be heated by the compression: these three temperatures are related by the proportion $t_{0}: t_{1}:: t_{1}: t_{3}$; or by the equation

$$
\begin{equation*}
\frac{t_{\mathrm{g}}}{t_{1}}=\frac{t_{1}}{t_{0}} \tag{1.}
\end{equation*}
$$

Let p_{1} be the pressure of the external atmosphere; p_{2} the pressure in the refrigerator: these pressures are connected by the equation

$$
\begin{equation*}
\frac{p_{\mathrm{g}}}{p_{1}}=\left(\frac{t_{1}}{t_{0}}\right)^{n} \tag{2.}
\end{equation*}
$$

The value of the index n, as nearly as we can at present ascertain it, is $n=3 \frac{1}{2}$.

Let v denote the volume of one pound avoirdupois of air at the pressure p and absolute temperature $t ; v^{1}$ its volume at any other pressure p^{1} and absolute temperature t^{2} : then

$$
\begin{array}{rlrl}
v: v^{1} & : \frac{t}{p}: \frac{t^{1}}{p^{10}} \\
\text { or, } & \frac{v^{1}}{v} & =\frac{t^{1}}{t} \cdot \frac{p}{p^{1}} . \tag{3.}
\end{array}
$$

For the ordinary temperature 60° Fah. (that is, the absolute temperature 582° Fah.) and the pressure of one atmosphere, the bulk of one pound avoirdupois of air is about 13.085 cubic feet. Hence

$$
\begin{equation*}
v=13.085 \text { cub. ft. } \times \frac{t}{522 \times \text { pressure in atmospheres }} \tag{4.}
\end{equation*}
$$

These formulm will serve to calculate the volumes and pressures assumed hy the air in different parts of its course.

It is obvious that the expansion-cylinder ought to be smaller than the compression-cylinder in the ratio of the original and final absolute-temperatures of the air, $t_{1}: t_{0}$.

The mechanical power consumed in raising, by compression or friction alone, the temperature of one pound of air by one degree of Fahrenheit, is about 130 foot-pounds, which is also the power given out by the same mass of air in expanding till its temperature falls by one degree of Fahrenheit. The corresponding amount of power, for so much air as fills one cubic foot at 60° Fah. and one atmosphere of pressure, is obviously almost exactly 10 foot-pounds. Consequently, the power consumed in the compression cylinder, in raising the air from t_{1} to t_{3}, is

$$
\begin{equation*}
10 \mathrm{ft} .-\mathrm{lb} . \times\left(t_{2}-t_{1}\right)=10 \mathrm{ft} . \mathrm{lb} . \times \frac{t_{1}}{t_{0}}\left(t_{1}-t_{\mathrm{o}}\right)^{*} \tag{5}
\end{equation*}
$$

for each cubic foot, measured at $60^{\circ} \mathrm{Fah}$, and one atmosphere, exclusive of friction of machinery.

This formed the basis of my previous calculations, when I stated that one horse power working for one hour would lower the temperature of 9000 cubic feet of air by $20^{\circ} \mathrm{Fah}$., in round numbers. But if we now take into account the power saved in the expansion-cylinder, which is, for the same quantity of air, $10 \mathrm{ft} .-\mathrm{lb} . \times\left(t_{1}-t_{\mathrm{p}}\right)$, we find the net amount of power, exclusive of friction of machinery, to be

$$
\begin{equation*}
10 \mathrm{ft} .-\mathrm{lb} . \times\left(t_{1}-t_{0}\right)\left(\frac{t_{1}}{t_{0}}-1\right) \tag{6}
\end{equation*}
$$

- It may here be observed, that thif formula gives, though by a more aimple procese, she geme pumerical rwalt which would have been obtained by uning the formala whlch expresees the power requirtd diretily in terme of the preasures and volames succeaively mamed by the air-vis.

$$
p_{9} v_{2}-p_{2} v_{2}+\int_{v_{2}}^{v_{1}} p d v=\int_{p_{2}}^{p_{g}} v d p
$$

per cubic foot, measured as above; a quantity so small, in all practical cases, that friction becomes by far the most important part of the resistance to be overcome.
It is almost impossible to estimate what this friction will be, until the machine is actually in operation; but to fix the ideas and illustrate the subject, I shall take the amount, which is not improbable, g ft.-lb. $\times\left(t_{1}-t_{0}\right)^{*}$ per cubic foot of air; giving finally,

$$
\left\{2+10\left(\frac{t_{1}}{t_{0}}-1\right)\right\}\left(t_{1}-t_{0}\right) \text { ft.-lb. }
$$

for the power required, per cubic foot of air, measured at 60°, and one atmosphere. For example, let the air be at 90°, and let it be required to cool it down to 60° : then, $t_{1}=552^{\circ} ; t_{0}=529^{\circ}$, and the power required is,

$$
\left\{2+\left(10 \times \frac{30}{528}\right)\right\} \times 30
$$

$=\mathbf{7 7} \mathrm{ft}$.-lb. per cubic foot of air, or about $\mathbf{2 5 , 7 0 0}$ cubic feet of air per real horse-power per hour.

In this example, the absolute temperature at which the air must enter the refrigerator is found by the proportion $t_{0}: t_{1}:$: $t_{1}: t_{3}$; or

$\left.\begin{array}{c}\text { This temperature, as usually mea- } \\ \text { sured, is found to be }\end{array}\right\} \quad 121^{\circ} .7$ Fah.
sured, is found to be . . . So that the air must, in the first instance, be heated by $31^{\circ \circ} 7$, in
order that it may ultimately be cooled by 30°. The difference, $1^{\circ} 7$, corresponds to 17 ft .-lb. per cubic foot of air, spent in causing transfer of heat, which, with 60 ft .-lb. allowed for friction, makes up the 77 ft .-lb, already stated.
The ratio of the initial and final absolute temperatures of the air is

$$
\frac{t_{1}}{t_{0}}=1.058
$$

This must also be the ratio of the size of compression-cylinder to that of the expansion-cylinder.
The ratio of the pressure in the refrigerator to that of the atmosphere is found by equation 2 to be

$$
\frac{p_{3}}{p_{1}}=\left(\frac{t_{1}}{t_{0}}\right)^{n}=(1.058)^{34}=1.216 ;
$$

so that, if the pressure of the atmosphere is that of 30 inches of mercury, that in the refrigerator should be $36 \cdot 48$ inches.
By means of the formula 3, the condensation of the volume of the air in the compression-cylinder, as well as its dilatation in the expansion-cylinder, is found to be in the following pro-portion:-

$$
\frac{v_{2}}{\theta_{1}}=\frac{t_{9} p_{1}}{t_{1} p_{2}}=0.87=\frac{1}{1.15} \text { nearly }
$$

In passing through the refrigerator, the air undergoes a contraction in the ratio T . d of the air at the beginning and end of the entire operation.

With respect to the pressure in the refrigerator p_{9}, it may be observed, that the calculation of the precise amount is liable to some uncertainty, owing to the exact value of the index n not being perfectly known. In practice, therefore, it will probably answer best, after having constructed the two cylinders according to the proportions already laid down, to determine the proper pressure in the refrigerator experimentally, by gradually increasing the load on a safety-valve until the desired effect on the temperature of the air is produced.

Professor Smyth's method of cooling air has been lately found, in a mine in South Wales, to answer well even with imperfect machinery.

- This entimate to one-anh of the power produced in the expanalve cyllinder. It Is somewhet larger, therefore, in proportion, than tie friction of the Cornigh Eigine it Old Ford, which is about one-seventh of the total effect.
gTBAING JN LATTICE GIRDERG.
On the Caloulation of Strains in Lattico Girders, with practical deductions therefrom. By James Barton, C.E.

Mr. Barton showed that, notwithstanding the large and valuable investigations of late years into the theury and form of wrought-iz on girders for large bridges, yet the nature, intensity, and directions of the strains in the vertical web or portion of
the beam which separates the top and bottom were comparstively neglected, or conclusions drawn without correct theory; and having shown the great amount of material used in this portion of girders, and therefore the economic importance of the investigation, he proceeded to explain the mode in which he had arrived at accurate resulta as to these strains in the case of lattice-beams. Having investigated the subject in connection with some large bridges he has lately erected on the Belfast Junction Railway, and for the design for the Boyne viaduct, the calculations for which, and working out of the detail, had been intrusted to him by Sir J. Macneill and the directors of tbe company, the results showed the high importance of a separate consideration of the effects of a passing and of a constant weight; and, by diagrams, were shown the maxima strains of compression or tension to which each bar and each portion of the top and bottom is subjected in ordinary bridges from both of the above causes. The paper went on to compare the relative values of single systems of bracing with the lattice, and to consider the true angle of economic bracing; also, how far the calculations are effected by riveting together the bars at their intersections. The paper further proceeded to the practical application, and to the details of construction, explaining some improvements introduced by the author, both as to the mode of construction of the compression-bars, which are by him made to form lattice-beams; as, also, in the connection of plates, by means of which he proposes to rivet plates which have to bear tension with but very slight loss of their sectional area.

Mr. Faibiaian, of Manchester, observed that the subject was important; that the only difference between tubular and lattice bridges was in the sides, and that he considered baving them solid gave them additional stiffness. He did not see why it should be better to have the sides open instead of being made of plates. He adopted tubular-bridges believing them to be the best, but if shown that a lattice-bridge is better he would adopt it. He did not comprehend how, in Mr. Barton's experiments, the tubular beams had not borne more than they appeared to have done, and thought they must have been peculiarly constructed.

Mr. W. Coates, of Belfast, stated that he had constructed the experimental girders exactly as directed by Mr. Barton, and the weight, span, and depth of beam being equal, the lattice bore slightly more than the tubular. He also stated, in answer to the President, that he could construct lattice-girders at from 10 to 20 per cent. less cost than tubular girders.

Mr. Fairbairn assented to Mr. Coates's statement, and also to the facility of repair afforded by the lattice system.

Mr. Barton, in reply, showed that when the sides of a beam are made of solid plates, theory demonstrates that there is a loss of iron, as there is unnecessary material there which would be more effective in the top and bottom. He accounted for the fact of the tubular and lattice beams, in his experiments, not bearing as much for their weight as in Mr. Fairbairn's experiments, by the fact that the beams were, in his experiments, of uniform section throughout, being made so for convenience; this circumstance not affecting the comparison, he expressed how valuable he felt Mr. Fairbairn's experiments to have been, and the importance of what had been done in tubular-bridges, but that he conceived that theory showed that advantages were to be obtained, of considerable importance, by bracing for the sides, which would meet more directly and economically the etrains induced.
telegrapi time gionals.
On Telegraph Time Signals. By Cbarles V. Walker, Engineer and Superintendent of Electric Telegraphs to the SouthEastern Railway Company.

Mr. Walker stated that his object was to explain the arrangements that have been completed, as far as his part in them extends, for promoting the scheme of transmitting Greenwich mean time throughout the whole kingdom. He then detailed the proceedings between himself and the Astronomer Royal on this subject, and the schemes suggested. On the 5th of August the first time-sigual passed; and on August 19th the clock at Greenwich, which originates the signals, having been brought to time, and the adjustment elsewhere having been completed, the regular transmission of signals commenced; in the first instance to Dover at noon, and at 4 p.m. Mr. Wulker described the apparatus constructed by Mr. Shepherd, and erected at the London terminus, by which the connections are made. And,
incidental to this, it is to be understood that in the Galvanicroom at the Royal Observatory is a set of ordinary aand-acid batteries: one battery termination is connected with the earth by means of the gas-pipes; and the other with a spring contained in Mr. Shepherd's electro-magnetic clock. The Greenwich London wire also terminates in the same clock; and the connections are such that, at the last second of the last minute of each hour, this line-wire and the battery-wire are placed in contact for an instant; and, consequently, if the circuit is completed at the other end of the wire, whether at London, Dover, Rochester, the Strand, Lothbury, or elsewhere, a signal will pass every hour; and, when the circuit is left open, no signal will pass. To accomplish this, a train of wheels is connected with the rod of Mr. Carter's turret-clock, now erected over the South-Eastern Terminus. Sets of springs are placed near at hand to some of the wheels; the springs are all tipped with platinum, and are respectively connected with the several wires concerned in the scheme; and, according as the contacts between the several springs are varied, 80 is the time-signal led to its destination. Mr. Walker then explained an ingenious contrivance by whicb, at the completion of the circuit at Greenwich, a voltaic current of instantaneous duration passes from Greenwich to Dover, and causes one sharp deflection of the galvanometer needle of the usual electric telegraph. The clerks at the several stations, should they overlook the general order to cease working, and to be on tbe watch, are reminded that the time is nearly due by finding that the telegraph circuit is broken; which happens during the two minutes that the spring is lifted by the pin off the earth-wire at London. The clerks watch the signal, and make note of the error of their local clock. The time-signal will, at set times, be allowed to pass automatically to Hastings, to Deal, and to Ramsgate, by turning them on the main line by the usual telegraphic turn-plates now in use at junction stations. The signal will be transmitted to intermediate stations by hand, which can be done correctly to a fraction of a aecond. The clerk will watch for the signal while he holds in his hand the handle of a group, or a branch instrument; he will move his hand as he sees the signal, and a simultaneous signal will pass along the group.

GRAPHITE BATTERIES.

On the subject of Graphite Batteries. By Charles V. Walker, C.E.
After referring to the unfitness of copper, and the too great cost of the superior metals for the purpose of batteries, he said he had early sought a substitute for both purposes. The corrosion or grapbite collected in old gas-retorts seemed to promise all that he desired. He selected some fine blocks, and cut them into plates 4 inches long, 2 inches wide, and 9 -inch thick. He selected 12 plates, and connected them with wellamalgamated zinc-plates by copper slips. They were placed in a 12 -cell trough, filled up with sand, and charged with dilute sulphuric acid (1acid +15 water) in the usual way, and connected them with the telegraph instrument in his study, which was in connection with a fellow instrument at the Tonbridge station, and forming a circuit of about a mile and a-half. He left them now to do the ordinary work with that instrument, and they were put to a stringent test, for they would in this case have a minimum of working and a maximum of waiting; that is, the instrument was used only in the morning or at night, when he was at home, and was rarely used during the rest of the day. He made notes of all the attention paid to the battery, and the rule he observed was not to add liquid to the battery until the clerks at the station complained that the signals were bad, and required improvement. The diary commenced April 5, 1849, and ended February 4, 1851, during which period the battery was only twenty-one times supplied with water and occasionally acid. The powers of the battery fell at very irregular intervals; in some instances the causes of this difference were not apparent, and were not inquired into; but for the most part, they were due to the variations in the bona fide evaporation, due either to the temperature of the weather or to the artificial temperature of the apartment. Throughout this period the sand was left undisturbed, and the acid water was added at the rate of a tea-spoonful to each cell. The ordinary copper-zinc battery would have required several times cleansing and reamalgamating during this period of nearly two years; and the sinc would have required renewal. The results of further experiments were then stated, and during the same period

London station has been working with the copper-zine sand batteries, which have been changed six times in the interval. More work is done by these-and they are not therefore comparable in all conditions. But a similar set of copper-zinc batteries used at Tonbridge, for the signals of the branch-lines, have been once cleansed and twice changed during the same period; and are at this date again exhausted, and undergoing purification. They have less work than the graphite set have had.

SUBMABINE ELECTRIC TEIGERAPHS.
On Electric Telegraphic Signals by Land and Sea. By F. C. Bakewehl.

The author, in this paper, endeavoured to show that the system generally pursued in the insulation of wires is radically defective. In his opinion, confirmed by experiments, the points of attachment to the posts which are now the only parts attempted to be insulated, are not of so much importance as the exposure of the reat of the wires; which in damp weather transmit the electricity from each other through the nearest circuit. He is of opinion that there is an unnecessary waste of labour and money in endesvouring to prevent the escape of the electricity from a few feet of wire, whilst the electric force is escaping, without any attempt at hindrance, from miles of surface. Another question mooted by Mr. Bakewell referred to submarine operations. He contends, that to use thin copper wire instead of thick iron-as is common in all the submarine telegraphs hitherto laid down-is the reverse of what ought to be the practice. Iron conducts electricity with much less facility than copper, hence the preference of the latter; because a less surface being required to conduct the electric fluid, it has been assumed that the insulation could be better effected. If, however, as much electricity escape from a small exposed surface of copper as from a large exposed surface of iron, in the ratio of their respective conducting powers, there would be no object gained in adopting copper wire for such a purpose, while the liability to injury is prodigiously increased. The plan of an economical telegraph with a single wire is a favourite one of Mr. Bakewell. He estimates such a submarine telegraphic communication at the rate of 301 . a-mile, and that by the means of improved instruments, such as his copying telegraph, it might do the work of five or six wires, as at present commonly used. Since last year he said he had been enabled to increase the rapidity of transmission by the copying telegraph to three hundred letters per minute, and as yet he saw no limit to the rapidity attainable by the copying process. But, taking three hundred letters per minute as the limit, at that rate it would transmit a greater number of messages in a day than are now sent between all parts of the kingdom. The total number of messages transmitted by the Electric Telegraph Company last half-year, between all their stations, was 85,913 -being about 500 in a day. Such a means of communication, therefore, would amply suffice for the present telegraphic wants of lreland. One of the peculiarities of the copying telegraph is the means it affords of maintaining the secresy of correspondence by transmitting the messages invisibly. Mr. Bakewell concluded his paper by exhibiting a specimen on which the writing had been impressed invisibly, and by washing it over with a solution of prussiate of potass he rendered it legible.

TELEGRAPHIC COMAUNICATION.

On Telegraphic Communication betveen Great Britain and Ireland, by the Mull of Cantyre. By W. J. Macquorn Rankine, C.E., F.R.S.E., and Joнn Тномяon, C.E.

Alfhoten we are well aware that the project of connecting Britain with Ireland by a submarine electric telegraph between Tor Point and the Mull of Cantyre, has occurred to others besides ourselves, yet, as we conceive that so appropriate an occasion as that of the meeting of the British Association at Belfast ought not to be allowed to pass without bringing this scheme before the public, we shall, as briefly as possible, describe its leading peculiarities and advantages, in the hope that when these become extensively known, this useful and important line of communication may meet with the support which it deserves, and may ultimately be executed.
The strait between Tor Point and the Mull of Cantyre is the narrowest part of the channel between Great Britain and Ireland,
being only $12 \frac{1}{2}$ miles wide, or 9 miles less than the atrait between Donaghadee and Portpatrick. The depth at each side increases very rapidly from the shore, the line of 50 fathoms soundings being within 3000 yards of the coast. The situation of the proposed line of telegraph in this strait is such, that the event of a vessel anchoring across it may be looked upon as an almost impossible occurrence.

Two alternative lines of telegraphic communication from Glaggow to the Mull of Cantyre are laid down on the map: one passing through Dumbarton, and crossing three arms of the sea-viz., the Gareloch, Loch Loug, and Loch Fyne, on its way to the peninsula of Cantyre. This line would require the construction, between Glasgow and the Mull of Cantyre, of $5 \frac{1}{2}$ miles of submarine telegraph across narrow arms of the sea, and 92 miles of land telegraph, commencing at Glasgow; but as a telegraphic communication as far as Dumbarton, a distance of 14 miles, may be considered necessary for local purposes, the length of land telegraph in Scotland specially required for this line may be reduced to 78 miles.

The other line laid down on the map extends from Glaggow, through Paisley and Greenock, to a point called "the Cloch," opposite Dunoon. At this point it crosses the Firth of Clyde, which is here 2 miles wide, proceeds by land to Loch Fyne, which it crosses at a strait 3 miles wide. Its course along the southern portion of the peninsula of Cantyre is the same with that of the former line. This line would require the construction, in Scotland, of 5 miles of submarine telegraph across the Firth of Clyde and Loch Fyne, and 87 miles of land telegraph, commencing at Glasgow; but as a telegraphic communication from Glasgow to Greenock, a distance of 22 miles, is requisite for purposes connected with the latter town, the length of land telegraph in Scotland specially required for this line may be reduced to 65 miles. Thus the line from Greenock is the shorter by half-a-mile of submarine telegraph and 13 miles of land telegraph; but its submarine portions are somewhat more exposed than those of the line from Dumbarton.
The line of land telegraph from Tor Point to Belfast, through Cushendall, Glenarm, Larne, and Carrickfergus, would be 48 miles in length; but as a line of telegraph from Belfast to Larne, a distance of 20 miles, may be considered necessary for local purposes, the length of land telegraph in Ireland specially required for this scheme may be reduced to 88 miles. The extent of the entire line of telegraphic communication between Britain and Ireland by the Mulf of Cantyre may be thus summed up:-

The advantages possessed by this line of telegraphic communication are the following:- 1 . The line of submarine telegraph across the Channel is the shortest that can be found, by 9 miles; 2. It is also the safest, for there is no risk of its being disturbed by ships' anchors; 3. The additional 5 or $5 \frac{1}{2}$ miles submarine telegraph required to cross inlets are in small detached portions, which can be laid at a moderate expense, and in which the effects of any accidents which may happen may be easily detected and repaired; 4. Independently of its advantages in a natiounl point of view, this line of telegraph possesses the important local advantage of presenting the most direct line of communication from Belfast, and the north of Ireland generally, to the ports on the Clyde.

The most impartant advantage, however, of the proposed line of communication is its security; and we conceive that this adrantage, independently of local and economical considerations, would be sufficient to warrant its execution, even were the lines of telegraph from Portpatrick and Holyhead in full operation.

On a new Flax-Dressing Machine. By Matthew Whyytra, Auckland, New Zealand.-The distinctive feature of this machine is that it acts transversely instead of longitudinally on the fibre.

MALLEARLE TRON GIRDERS.

On the Form of Iron for Malleable-Iron Beams or Girders. By T. Murray Gradstone, C.E.

For fireproof building, the necessity for using metal beams is obvious. Careful experiments have been made so as to determine the value of their power and the strongest proportions of section on which to make those of cast-iron. These have been extensively adopted for viaducts, bridges, mills, and warehouses. Although, however, the greatest care may have been taken by previous proof, they have been found frequently very unsafe, and have given way when loaded far below the test to which they had been subjected. While the positive strength of castiron under compression has been easily and safely fixed, when its tensive action has been tried, it has been found very variable and most uncertain, especially in large castings. Its crystalline brittleness forms a chief objection, and its defective property so small and doubtful, that it is now considered very unsafe without an enormous margin beyond what might and had been considered due test. From these causes, it has been extensively superseded by wrought or malleable iron, especially wherever any vibration from friction or sudden impact has to be met; also, wherever any extent of tensive pressure on its fibres has to be brought into action. Consequently, in heavier engines-indeed, in an infinite variety of ways-it is avoided; although, in many cases, from the peculiar form, size, or proportions readering it difficult in manufacture, and increasing the cost, wrought-iron is now used, and has been found safe and equal to every occasion.

It is on the application of wrought-iron beams or girders I propose to make some remarks by contrasting their powers and properties with those of cast-iron; to show what form of iron I conceive best adapted for such use, and to state, as a mannfacturer, what may be expected as the capabilities of iron-work to produce the same beyond previous efforts, as to meet the increased requirements of the times. Of the experiments and the facts taken, therefore, with reference to the adoption of wroughtiron, of which to construct those immense beams, the Britanniabridge, with many others, are familiar to the members; and therefore it is not needful for me further to refer to them than as showing the vast advantage and full proof of the power of wrought-iron so distributed, contrasted with any cast-iron girders.

It is found, that by converting iron from a cast into a malleable state, the adhesion of the fibres of the metal under tension, becomes increased from 7 to 27, and indeed much beyond that when the best quality of material is manufactured. At the same time it is stated that the compressive strength is somewhat reduced. In this latter assumption I do not altogether concur, from a permanent feature in the experiments not being sufficiently taken into account-namely, that in experimenting with wrought-iron, as a given extension from pressure is necessary before you obtain even a medium value of the resistance, a modicum of deflection must take place to bring into play each of the fibres; consequently, not like as in a rigid cast beam, where the full action of compression acts at once, some allowance must be made for the change from the first position, in calculating the compressive forces.

Assuming generally that the increased strength of tensive power of wrought compared with cast iron is 27 to 7 , it at once reduces the six-fold area of the bottom web of the iron beam, and nearly reduces to one-half the required sectional area throughout, yet retaining an equal strength for every purpose. In many cases this increase of strength, enabling to reduce the weight, will fully compensate for the difference in price, so that up to this point the market and effective value of both may be said to be equal. The wrought-iron beam, however, possesses this material advantage, and that is, it will always give good warning before the point of danger is reached, and this mainly from its vastly-increased deflective power-indeed, before its maximum is reached, a great deflection can safely take place; therefore, both for life and property, its advantage is most conspicuous.
W ith regard to the best form for carrying the greatest weights with the least metal, I have come to the conclusion, from actual experiment on a large scale, that the double 1^{2} section is the best, provided the flanges are sufficient to prevent lateral action from the load. I have experimented on bars 8 inches deep, 4 -inch flange, and $\frac{3}{4}$-inch thick, both in webs and flanges. Of these, with two beams 10 feet apart, and 10 feet
between the supports, and a load resting all within a feet from and on the centre, the deflection from 21 tons was only ${ }^{-}$-inch, and when removed the beams returned back to their original position. With two such beams having $18 \frac{1}{f}$ feet span, and the load within a radius of 3 feet of the centre, the deflection is only 1 inch, which load so placed is more than equal to 25 tons distributed over the whole surface. This difference shows clearly the effect of extended span with the same iron, from which I deduce, that for the effective resistance, while the proportion should be half the breadth of fiange for the depth of the beam, the depth should be at least $\frac{1}{13}$ th of the span.

At the Belfast Iron Works the members can see one of these experiments with its load upon it, at the present time; also iron of the section khown, in bars of 26 feet long, and weighing nearly half-a-ton, so that it will be seen the mills are now constructed so as to roll iron almost any dimensions which may be required, and such bars, from the breadth of the flanges have never before been attempted in the three kingdoms. When I had the honour, some four years ago, to read a paper at the Society of Arts, on a means of constructing bridges without any centering, of such proportions of iron, no ironmaker would attempt to produce such a proportion of material, while now I have accomplished it and would have no hesitation in making them much larger if required. I have not a doubt for warehouses, mills, puhlic buildinge, and bridges, its value will now become extensively applied and appreciated. It must be seen that the section here given differs materially from that which is the ordinary double T-iron, which 1 conceive to be very defective, from the insignificant breadth of their flangea, as they do not sufficiently prevent lateral action, while a proportion of flange which determines an equal-sided triangle from the centre or neutral axis, will be fonnd fully to provide for every diffculty.

As these bars are rolled solid throughout, on comparison I have found they will bear nearly one-third more than any made beams of equal sectional area-that is, with a beam of which the centre rib is of plate-iron and the danges of angle-iron, and riveted thereto, and so distributed as to make the double \mathbf{T} form. This is easily accounted for, as you necessarily weaken the whole by its being requisite to introduce riveting, while a due and equal resistance is offered from all parts by the solidlyrolled bar.

It would be too long to go into the details of calculations bearing upon this subject, the experiments upun which of a Fairbairn, a Rennie, with many other eminent men, have been extensively and minutely given, and form the best guides on the subject. The given points herein are new features upon the question, particularly the relative proportions of the fianges, which 1 have briefly brought before this section of the Society in order to have its merits discussed and considered as fully as possible.

tubular boilers.

On a New Tubular Boiler. By W. Fairbairn, C.E.
IT is now upwards of fourteen or fifteen years since Mr. Fairbairn first introduced the cylindrical boiler with double flues and double furnaces, which, up to the present time, has been successful and in general use. Repeated attempts have been made to improve this construction; but it has yet to be proved whether the alterations recently introduced are substantially improvements on the original boiler, with the double furnaces and alternate firing. The new boiler, as now constructing by Messrs. William Fairbairn and Sons, consists of two furnaces the same as the double-flue boiler; but with this difference (as shown in the annexed diagram) that the cylindrical flues A, A, each 9 ft .8 in . diameter, which contain the grate bars, are united at $B, 8$ feet from the front of the boiler, into a circular flue C, 3 ft . 10 in . in diameter, which forms the mixing chamber, and where the heated currents of combustion from each furnace unite. This chamber, 8 feet long, terminates in a disc plate D, which, with a similar plate E, at the extreme end of the boiler, receives from 104 to 110 s-inch tubes, also 8 feet long, similar in every respect to the tubes used in marine boilers and the locomotive. These tubes are contained in a boiler 7 foet in diameter, and from the thinness of the metal become the absorbents of the surplus heat escaping from the mixing chambeand the furnaces. On this principle of rapid conduction. © whole of the heat, excepting only what is necessary to m-ijior
the draught, is transmitted into the boiler; and he - period
the economy of entirely diapensing with brickwork and flues, an important desideratum in those constructions.

The heating surfaces in the improved boiler, as compared with the old one, are as follows:-

Old Double-Fime Boiler.

which gives a ratio in favour of the improved boiler of about 6 to 9.

In the construction of the improved boiler just described, it must be observed, that in "gathering" or forming the plates as they pass from the two circular furnaces into the cylindrical chamber, an ellipse is formed, and in order to render this part of equal strength, and increase the vaporative power of the boiler, three vertical tubes, 6 inches diameter at the bottom and θ inches at the top, are firmly riveted through the transverse
diameter of the ellipse, thus imparting the required strength to that part, which, if not attended to, would contain the elements of destruction whenever the boiler should happen to be severely pressed. The flat ends are points of construction which require equally careful attention, and there is no plan so well adayted for such a purpose as guseets radiating from the centre of the boiler, securely riveted by angle-iron to the external circumference, and by having them divided at not more than 12 inches on the circumference. The required uniformity of strength, assuming the end plates to be one-half thicker than the shell of the boiler, will be as nearly as possible obtained.

Mr. Fairbairn said he did not as yet know what amount of fuel would be consumed by the new boiler, as there was no calculation on that part of the subject; but he was certain that its generative powers were very great, and that it was perfectly secure, although of course it was exceedingly necessary that the several parts of the boiler should have uniform strength. It was on the same construction as the boilers of the locomotives: and a good boiler was calculated to last for twenty-seven years, and in every respect it was superior to those at present in use.

THE MINIE RIFLE

Remarks on the Minié Rifle. By W. Fairbairn, C.E.
In attempting to describe the new rifle-gun and its results, as compared with that formerly in use, I must approach the subject not so much in the light of a question involving considerations of great military importance, but as one more immediately connected with practical science. I have, therefore, ventured to bring it before the Section, under the conviction that any improvement by which we are enabled to advance the interesta of the public, and the advancement of mechanical science, must be interesting to the meeting.

Before alluding to the effects produced by this new construction, I may be permitted to allude to the improvements which have taken place, and great facilities which are now afforded for the construction of muskets and every other description of fire-arms. Until of late years, all the gun-barrels for the army, and other descriptions, had to be welded upon mandrils, some of them formed by a bar of iron rolled upon the mandril in a spiral direction, and then welded by repeated beating from the muzzle to the breech. Others were differently constructed, by welding the bars longitudinally, in the line of the barrel, and not in the spiral direction adopted in the former process. Now the whole is welded at one heat, and that through a series of grooves in the iron rollers, specially adapted for the purpose. This, with the other improvements introduced by Mr. Lovel, the government officer at the head of the Small Arms Department, has rendered the manufacture of rifles and other arms a matter of much greater certainty and of security than at any former period.

Admitting the advantages peculiar to this manufacture, it does not, however, affect the principle of the rife itself, in which there is no alteration, but in every respect similar, even to the spiral grooves, which I believe are not altered, but are the same as in the old rifle. This being the case, it has been a question of much interest to know wherein consists the great difference in the practice with the new rife, as compared with that of the old one. It is not in the gun, and must, therefore, be in the ball, or that part of the charge which generates the projectile force. But, in fact, the improvement consists entirely in the form of the ball, which is made conical, with a hollow recess at the base, into which a metallic plug is thrust by the discharge. The plug is so constructed as when driven into the ball, it compresses the outer edges against the sides of the barrel, and, at the same time, forces a portion of the lead, from its ductibility, to enter the groove, and to give the ball, when discharged, that revolving motion which carries with such unerring certainty to the mark. In the practice which 1 witnessed, with one of those rifles, on the marshes at Woolwich, the following results were obtained:- Out of twelve rounds, at a distance of 700 yards, as near as I can remember only one bullet missed the target, and the remaining eleven rounds were scattered within distances of about six inches to four feet from the bull's eye. At 800 yards three shots missed the target, and the remaining nine went through the boards, two inches thick, and lodged themselves in the mounds behind, at a distance of about twenty yards. The same results were obtained from a distance of 900 yards, and at 1000 yards there were very few of the bullets but what entered the target.

In these experiments I have to remind you that the end of the rifle was supported upon a triangular standard, and the greatest precision was observed in fixing the sight, all of which are proved by Mr. Lovel at Enfield Lock, and graduated to a scale in the ratio of the distance varying from 100 to 1000 yards, which latter may be considered the range of this destructive instrument.
Mould for Conical Bullets.-Mr. Woodyouse then read a short paper on the mould for casting conical bullets, which, in connection with the previous paper, was the subject of a short conversation, in which Mr. J. G. M'Gill, the Chairman, Mr. Fairbairn, and others took part.

THE JET PCMP.
On the Jet Pump. By James Thouson, C.E.
The purpose for which this instrument is designed is to clear the water out of the pits of submerged water-wheels, when access to them is required for inspection or repairs. For this special purpose it was likely to prove very useful, though there were very few other cases in which it could not be employed with advantage. Mr. Thomson then proceeded to describe the pump, the principle of which will be seen in the accompanying engraving. P, represents the pipe conducting a fall of water from any height; it terminates in a jet J, inserted into a small chamber which admits the pipe A, from the well whence the water is to be drawn. T, is a conical tube inserted into the chamber opposite the jet, and through which the discharge takes place. When the pump is in action, the horizontal force of the fluid draws up the water from the well, and the action continues as long as the water flows down the conduit-pipe P. The height that water can be raised in this manner is, of course,
 limited by the pressure of the atmosphere. In the course of his remarks, Mr. Thomson said the action of the jet-pump depended on two principles. One of these is the same as that of steam-blast used in locomotive engines, and in the ventilation of mines. The other is one which was known to the ancient Romans, and has been used sometimes by them for drawing off more water from the public pipes than they paid for. The pump was first tried at the mill of Messrs. Herdman and Co., Belfast, when it was found most successful.

At the conclusion of Mr. Thomson's paper a conversation as to its merits ensued, in which Dr. Robinson and several other gentlemen took part, which resulted in an entire conviction as to the great simplicity and usefulness of the pump.
vortex water-wheel.
On a new form of Vortex Water-Wheel. By J. Tвомson, C.E.
This wheel, Mr. Thomson observed, is a new variety of the general class of water-wheels called turbines. In this machine the moving wheel is placed within a chamber of a nearly circular form. The water is injected into the chamber tangentially at the circumference, and thus it receives a rapid motion of rotation. Retaining this motion it passes onwards towards the centre, where alone it is free to make its exit. The wheel which is placed within the chamber, and which almost entirely fills it, is divided by thin partitions into a great number of radiating passages. Through these passages the water must flow on its course towards the centre, and in doing so it imparts its own rotatory motion to the wheel. The whirlpool of water acting within the wheel-chamber being one principal feature of this turbine, leads to the name vortex as a suitable designation for the machine as a whole. For some time past there have been several of these new turbines in course of construction and erection. The one first completed and brought into action for practical use was for a new beetling-mill of Messrs. C. Hunter and Co., of Dunadry, near Antrim. It was constructed in Glasgow, and on being brought across the channel and erected
at its destination, its first trial was made on the day before Chrismas last. This trial proved completely successful, and the subsequent performance of the machine has been highly satisfactory.

Mr. Thomson explained that the velocity of the circumference is made the same as the velocity of the entering water, and thus there is no impact between the water and the wheel; but, on the contrary, the water enters the radiating conduits of the wheel gently, that is to say, with scarcely any motion in relation to their mouths. In order to attain the equalisation of these velocities it is necessary that the circumference of the wheel should move with the velocity which a heavy body would attain in falling through a vertical space equal to half the vertical fall of the water, or, in other words, with the velocity due to half the fall; and that the orifices through which the water is injected into the wheel-chamber should be conjointly of such area that when all the water required is flowing through them, it also may have a velocity due to half the fall. Thus one-half only of the fall is employed in producing velocity in the water; and, therefore, the other half still remains acting on the water within the wheelchamber at the circumference of the wheel in the condition of fuid pressure. Now, with the velocity already assigned to the wheel, it is found that this fluid pressure is exactly that which is requisite to overcome the centrifugal force of the water in the wheel, and to bring the water to a state of rest at its exit, the mechanical work due to both halves of the fall being transferred to the wheel during the combined action of the moving water and the moving wheel.

Fig. 1 is an elevation and section, and fig. 2 a plan of this machine. B, is the body of the wheel, which is broad in the centre, and tapers off to the circumference, having a space A, of about 3 inches for the entrance of the water; E, is the central aperture for the discharge of the water, which flows out above
and below; P, is the conduit-pipe through which the water is injected against the sides of the radiating passages $A, A, A ; C$, represents a portion of the outer case; and S, is the vertical shaft, fixed to the wheel, and revolves with it. The wheel is worked a few inches below the level, L, of the water.

PERMANENT WAY OF RAILfayg.

On the Permanent Way of Railways. By James Babton, C.E.
Transit by rail has now become so prominent an item in the list of those matters which every-day use and enjoyment has caused us to consider nearly in the light of necessaries, that, though almost wholly a practical subject, it may not be uninteresting to consider how this rail, over which we are accustomed to pass 80 rapidly, is best constructed so as to form a secure road, and what recent practical improvements have been made in it, or in other parts of that which is ordinarily termed the permanent way or superstructure of the railway; and, in doing 80, I may be permitted briefly to notice the steps by which we have arrived at our present practical knowledge on this subject. The first attempt at a railway ever made in Great Britain appears to have been at Newcastle, for the conveyance of coal-wagons, and was merely pieces of timber laid longitudinally for the wagon-wheels; and such are described as existing in the year 1676. For nearly one hundred years after this, little advance was made. The railway had, however, become a cross-sleeper road, with longitudinal timber rails fastened by wooden pins. The system of communication by canals being about this period developed, seems to have decreased the anxiety for further improvements in railways. The next important step was the cast-iron tram-plate instead of the wooden rail; and was used, about the year 1768 , by the Colebrookdale Company, and, a few years later, at the Sheffield Collieries. These trams were, of course, of simple construction, but were from that time gradually improved. The first use of stone blocks to secure them seems to have been about 1797, at Newcastle; and for about twenty-five years after this the details of connections and forms of rail were the subject of a great number of improvements, the great difficulty being the securing of the joint of these short cast-iron rails on the stone blocks. Amongst the important modifications at this period were the form of edge or double-headed rail, as it is termed-that which increased in depth between the points of support, according to the results of the theory of girders; also, the securing the rails by different forms of cast-iron chairs.

The first wrought-iron rails ever used are supposed to have been at Newcastle, by Mr. Nixon, the rails being square bars, 2 feet long. But the first wrought-iron rail, properly so called, can hardly be placed much before Birkenshav's patent, in 1820. His rails were very similar to some of the present edge-rails, except that they were made to increase in depth between the sleepers, the mode of managing which was very ingenious. These rails were from 12 to 15 feet in length, and secured by a cast-iron chair. They were, after a time, lapped at the joints, and other ways were devised for improving the connections, as also the section. The rail adopted by Mr. Stephenson, for the Liverpool and Manchester Railway (the first, as we may say, of the present system of railways), was of a section something similar to this, and rested upon large stone blocks, being secured thereto by cast-iron chairs and keys.

As railway travelling now became very mach increased in its speed from anything heretofore attempted, the effect of the working upon the weak parts of the permanent way became much more manifest, and the difficulties of keeping the fastening in the blocks secure, and the concussion, when the road was subjected to the violent blows of the wheels of a train passing over a loosened or bad joint, became so serious a defect, that engineers were forced to go back to the timber road, as giving a soft material to meet the concussions, and so to adopt, in fact, a temporary substructure to prevent the ovils of an imperfect superstructure.

In 1835, Professor Barlow, at the instance of the London and Birmingham Railway Company, instituted a series of experiments on rails, and came to the important conclusion, that the parallel rail, that is one whose section was uniform throughout, is equally strong for the work it has to do, and has many practical points of superiority when compared with the description of rail which increased in depth between the supports. Since that time almost all engineers have had their rails made parallel.

The edge-rail, though giving theoretically the maximum strength for a given quantity of iron, admitted of modifications without seriously affecting its theoretic value; and of these, the most important was that which divided the vertical web into two, and attached to the bottom of each one-half of the lower flange, thus forming the bridge-rail, which has been very extensively used by Mr. Brunel, Sir John Macneill, and many others.

There are a variety of models in which timber is applied as sleepers-longitudinally under the rail, across at intervals, and a combination of these two; and the relative merits of each plan have been advocated by some of the most eminent engineers. The cross-sleeper road is, however, generally admitted to be the cheapest, and is contended for as having other advantages, practically, by Sir J. Macneill, and others who have adopted it. Both have their important defects, with which it is now my present duty to deal. The rail-joint in both is imperfect, and the timber sub-structure is constantly decaying, and requires a large annual cost for its renewal.

Those whose professional duties have brought the subject of permanent way prominently before them have been lately giving much consideration to the further improvement, and geveral patents have been lately taken out for improvements of which I would bring under the notice of the Section two or three which appear to me the most important. These improvements all consist in the spplication of cast or wrought iron to ondeavour to meet the two grand defects above-named-the bad joint and the decaying sleeper. The first improvement I would take the liberty of bringing under your notice is that of Sir John Macneill's, who has patented a cast-iron sleeper which is applicable to the bridge-rail only; it is secured by riveting to the flange of the rail, and at intervals secured in gauge by transverse bars, upon which the opposite sleepers are cast, and which secures the important advantage of the bevel to the rail top by whioh it is caused to coincide with our conical wheels. Of tbis description an experimental length has been laid, for about two years, on the Belfast Junction Railway, and is now being adopted to a certain extent by the Drogheds Railway Company, where the sleepers have become decayed, their rails being of the bridge form and being quite sound-likely to last a great number of years. I shall have occasion to refer to it again, in reference to experiments which I made to test the value of the different improvements. The nert is a cast-iron sleeper, applicable to the edge, or double-headed rail, patented in 1849 by Mr. P. Barlow. This sleeper has been laid already in parts of the South-Eastern Railway and on the Ashford and Hastings line in England, and on the Londonderry and Enniskillen Railway in Ireland. It gives a large bearing surface, is easily laid and repaired, and enables a light rail to be used with advantage, the distances of bearing points being less than in the ordinary cross-sleeper road. I have laid for experiment 100 yards of this deacription of road also, on the main line of the Belfast Junction Railway; and besides the observation of its action for the last year and a half, I have also tried experiments and calculated its strength and cost, \&c. There is also a patent for an improvement of tbe joint of the edge-rail when secured to wooden sleepers, which has been patented by Mr. Samuels, and which consists in fishing, as it is termed, the joint with bars of wrought-iron riveted or bolted through the vertical web of the rail, these fishes lying in the hollow between the upper and lower flanges. This has a good effect so far as it goes, and is a considerable improvement to an edge-rail upon timber-sleeper roads. There is another cast-iron sleeper applicable to the bridge-rail just devised by Mr. Godwin, which I have not as yet had opportunity of examining. The last improvement I shall draw your attention to is Mr. W. H. Barlow's broad-flanged rail, which is distinguished most materially from the other improvements, inasmuch as it casts away the sleeper altogether, gives up the cast-iron also, and proposes a bearing surface of wrought iron, and that wrought iron the rail itself: it is, in fact, making the rail its own base, and doing away with all substructure. I annex drawings of this description of rail, of which I laid down an experimental length, as for the other kinds, and tried upon it, also, experiments, \&c. The form of this rail is that known as the bridge, but it is rolled 80 wide and thin at its flanges that it gives, according to weight, 11,12 , or 13 inches of width of bearing surface; the connections being formed by a chair of wrought iron whose external form exactly coincides with inside of the rail, to which as a joint cover, both are riveted; the crose-ties being angle-irons secured by the same rivets, and being curved or bent to give the bevel correctly, as in the case of Sir John Macneill's.

It will, perhaps, be interesting, before considering what advantages these different roads may offer, to allude to a point on which considerable difference of opinion has been expressed, namely, whetber or not it is safe to rivet together the rails of a railway, that is to say, whether the effect of expansion and contraction will not be such as to render such a course impossible to be permanent. Directly opposite opinions have been given on this point, and practical proofs offered by both sides. Professor Barlow reported to the London and Birmingham Railway Company that it was quite inadvisable, and his opinion lias been followed in practice very generally ever since. It would appear to me that the matter is a simple one, dependent on the amount of expansion, and the strength of the iron, for if a bar of iron be held secure at the ends, and cooled down, the contraction by cooling is prevented by the extension which the induced strain upon the fibres caused by holding it firmly produces. Now, if the length to which we may extend the iron, without injury to its elasticity, be as great as the contraction caused by cooling, the heating and cooling may be repeated constantly without injury. The case of a jointed bar requires that the joint-cover and rivets shall be able to bear the above strain; the amount of this strain is simply arrived at, for, let us take the extreme range of our temperature at about 75°, the contraction of a bar riveted at that temperature will be yolosth of its length, the contraction being about rovणrth for each degree of Fahrenheit: but the strain to lengthen a bar $\mathrm{g}_{\mathrm{d} 000}$ th of its length is five tons to every sectional incb, or one ton per inch to each rodno of the length. How, then, is it that rails are said to have lifted, and to have gone out of line by expansion? Very simply, because the rajl was secured in cold weather, and the effect of expansion was not to injure the iron, but to cause flexure, the rail in this case acting as a pillar, and its strength depending on the laws of pillars-say the cube of its least dimension-instead of directly on its section as in the case of extension. It is, therefore, I submit, perfectly safe that a properly secured road be laid without expansion openings; but important that, if so, it be finally riveted up at a high temperature, so that there will be but little expansive action, and so the induced strain be almost entirely a tensile one, arising from contraction. I should note also that there is a considerable difference between the expansion of rails raised on a non-conductor like timber, and those either riveted to a cast-iron sleeper, imbedded in the ballast, or, as in Mr. Barlow's case, the rail itself deeply imbedded. This is supposed to decrease the effect of tempersture one-third or one-half.

The constant hammer-like sound of the wheels of a train passing over each joint is necessarily familiar to all; this is caused by the one rail sinking below the other, and necessitating a stroke of the tyre, as it mounts or depresses the higher rail; the noise, and its effects upon the carriages and engines, is almost wholly got over in most of the abovesgstems of our road, and we approach more nearly to a continuous rail.

We have, too, a permanent structure, one which will last for a long series of years, and when worn out will be renewed at a cost of about il. per ton, as the rails will merely have to be rerolled and the waste supplied. 1 annex herewith a copy of the experiments which I made to determine the mode of permanent way which 1 would recommend to the Dublin and Belfast Junction Railway: the object of the experiment was to ascertain the relative strength of the cast-iron sleepers, and wrought-iron road against fracture and other displacement; and I have tested these by the fall of a ram, weighing 13 cwt ., let fall upon the rail from different heights. This may represent the effect upon a rail in case of an obstruction, over which the engine-wheel passes and drops upon the line again, or in case of other accident. I have found by this test, that I had, in almost all the descriptions of cast-iron sleepers, as great a strength as in the rail itself, between the timber-sleepers, which is the total useful strength of a timber road in practice. And in Mr. W. H. Barlow's rail, weighing 90lb. per yard, I had, as might be expected, considerably more strength than in any other kind. Again, I tried a series of experiments by a number of blows, caused by a slight fall of the same ram, which might represent the effect of trains passing a bad joint, and noted how long it took to depress the part of the rail so struck, so that it should require packing. These last experiments, however, did not elicit any important difference as to maintenance between the roads, and were insufficient data to determine cost of maintaining, inasmuch as the great difference in different roads is the difference of time between opening out a sleeper road to get at it
for repair, and the simple clearing the gravel off the castings. In this latter respect Sir John Macneill's sleeper and the flange rail of Mr. W. H. Barlow were most economical.

The effect upon a train of properly riveting an even joint is, that the joint becomes wholly imperceptible to the passer; but, to attain this perfection, the rails must be manufactured with great accuracy as to being perfectly straight, and identically similar in the end section. This is difficult in such a large rail as Mr. Barlow's, but is gradually being accomplished by the manufacturers, amongst whom Messrg. Crntwell and Allies, of South Wales, have taken considerable trouble and gone to expense, and succeeded to a large extent. After a careful consideration of the queation, the rail which I finally recommended to the companies for which I was acting was the broad fiange rail, of a section slightly modified from tbose before laid. Nor did I do so lightly, as I was thereby proposing the adoption of a rail at that time not laid on any line except on a small length on the Midland Railway, in England, by the inventor, and my professional brethren in this country expressed many doubts. I have, however, now most confidence in expressing a favourable opinion, being fortified by those lately expreseed by a number of our most eminent engineers in both countries. The great economy of this road is its most striking feature. The estimates given below are eitber from my own knowledge, or when they refer to maintenance for a term of years, are taken from actual tenders made to me for the work; and we see from them that, in comparison with a timber road, the first cost of the flange railroad is less by about 3601 . per mile, and a constant annual saving of about 561 . per mile; and the cast-iron sleepers would show an increased first cost of about 1601 ., but a decreased annual cost of about $50 l$. per mile per annum-and these are immense savings on long lines:-

Deacriplion of road.	Cont of materialt for a double lide for one milte, and for laying same	Cont of ballenting per mille of double llac.-A verage.	Cost of repewal from the decay and wear of matertale of permanent mety, for doable line per mille per manma.
Crose-aleeper timber roed and bridgerail, 80 lb . to the yard	2900	800	8
Cast-Iron leepers for elther the bidge or edge ratl, Sir John Macperli's or Mr. Barlow's	3260	600*	30
Broad, Alaged rall, Mr. Barlow'胃	2740	600	24

*The fron ronda require five or six inches leas of bellast in coneequegce of the depth of wooden sleepers, and this decreased quautity givel the same depth under the eleeper.
Some of these iron roads have been objected to for a sensation of hardness which they seem to produce in passing over them, but that this is a matter principally caused by the peculiar sound which is produced, and is not of any consequence practically, appears to me to be proved by a variety of considerations; and, amongst others, that the reality of any increased vibration which might be supposed to be the cause is rendered donbtful by the results of experiments upousmoothing tried by Mr. Barlow, by a machine he has arranged, which he terms a salograph, which magnifies and marks on paper, to a large scale, every inequality in a road over which it passes, when properly connected with the carriage framing. I have now had laid by order of the Belfast Junction Railway Company seven miles of the flange rail, and rails are preparing for delivery for twelve more to make a second line of rails for a portion of their line. Mr. Hemans, I am informed, has lately adopted it also for the second line of the Galway Extension.

ventilation of coal mines.

On the Evolution of Gas in Wallsend Colliery. By Prof. Permarps.
This is one of the very numerous coal-mines which have been rendered remarkable for the frequent explosion of the inflammable gas with which they are filled, and the awful loss of life which has, in so many cases, been the consequence. The coal is arranged in perpendicular layers, between which the gases exist in a highly compressed state. In order to detach these layers with the least possible danger, it is usual to cut through them endways, by which means the gases are allowed to make their escape at once from a considerable portion of the coal. A district of this colliery, covering about 50 acres, was effectually
$\mathbb{F} \mathbb{I} \mathbb{R} \mathbb{E} \mathbb{R} \mathbb{I} \mathbb{C} \mathbb{K} \mathbb{G} \mathbb{A} \mathbb{S} \quad \mathbb{R} \mathbb{T} \mathbb{O} \mathbb{R} \mathbb{S} \mathbb{S}$
Fig.1. Front Elevation.

walled up in consequence of the immense discharge of gas that was continually taking place. A pipe was led from this inclosed portion up through the mine and for 40 feet above the surface, and from this pipe there has been a constant discharge of gas for the last eighteen years. This gas has been inflamed, and in the roughest and most stormy weather it has burned without intermission; and were it as rich in carbon as ordinary carburretted hydrogen, it would illuminate the conntry for miles round. Two water-gauges were fixed to the pipe, one at the sorface of the earth, and the other at the bottom of the minethe results were, that whilst the pressure in the mine was only Finch on an average, that at the top of the pit was upwards of tinches. It was observed hy Prof. Daniels, in his researches at the Royal Society, that the water barometer indicated the change of pressure an hour earlier than the other. From practice in these mines it is seen that discharges of fire-damp, depending on atmospheric pressure, take place before being indicated by the barometer, and that, as an indicator, that instrument cannot be relied on.

NEW PATENT LAW.

On the New Patent Jaw, with its bearing on the interests of Inventions and Manufactures. By T. Werster.

Mr. Weaster contrasted the facilities which the new law afforded in the several stages in the application for patents, with the cumbrous expensiveness or duplicated processes which characterised the former system, by which collusive speculation for the mers purpose of making profit by registering patents was encouraged, while real invention was retarded. He pointed out the pernicious effects of the caveat system, by which persons who might be able to introduce actual improvement could be prevented by any parties who entered a caveat, while another of the evils of the proceedings was the enormous fees. He showed the cheapness and other advantages of the new system, by which those abuses were repressed, and greater protection affurled to the invention by the visitation of all the costs upon persons who entered groundless opposition to the patent, while the administration of the law being confided to the Commissioners, the public were relieved of trouble and responsibility. He advised inventors to assert their rights, and see that the law-officers did their duty. The establishment of an office for filing specifications, and the provision for having copies of them in the principal towns, were also valuable improvements,

FIRE BRICK GAS RETORTS.

By Jobn E. Clift, of Birmingham.
[Paper read at the Institution of Mechanical Engineers.]

> (With an Engraving, Plate XXXV.)

Tre object of this paper is to describe a plan for constructing gas retorts, which the writer has had in use several years at the works under his management, and has also adopted at various other towns; and the only apology he has to offer for bringing it before the meeting is, the request of the Council of the Institution to furnish the practical results of the working of the plan. The first great desideratum in a gas-generating retort is on all hands acknowledged to be surface, a large surface, upon which may be spresd a thin layer of coal; this was early shown by Mr. Clegg, in his invention of the revolving-web retort, the only difficulty in working which was the destructible nature of the material of which it was composed. The second condition required is, that this large surface shall be economically heuted. A strong opinion existed for a long time against the use of fireclay for retorts, in consequence of the inferior heat-conducting properties of that material compared with iron; but experience has proved that as large a quantity of gas can be generated, with a given weight of fuel, with fire-clay retorts as with iron. This may be accounted for partly by the fire-clay losing less of its heat on being exposed to the air whilst charging, and on the cold charge of coal being first thrown in; or in other words, that the greater mass of fire-clay acts as a reservoir of heat, and does not become so readily exhausted when a large demand is made upon it, but on the contrary maintains a greater uniformity of temperature throughout the process; this is easily demonstruted by observing the small quantity of gas made from an iron retort during the first hour after charging compared with a fire-clay one. It is also partly accounted for by the iron retorta, as they are generally set, being so covered and shielded
with fire-bricks to preserve them from destruction, as to partake as much of the character of clay retorts as of iron.

The following table, which is the average of a number of experiments, gives the quantities of gas generated, as indicated by the meter, from iron and clay retorts, during each half-hour of the charge, from the same quantity and quality of coal :-

IRON EETORTS.					BRICK	RETORTS.	
1	half-hour	950	cubic feet.	1	half-hour	480	cubic feet.
9	9	630	99	2	39	1800	99
9	9	1340	9	9	9	2000	17
4	99	2300	39	4	3	2000	17
6	19	2600	9	5	3	2300	99
6	17	2640	\%	6	3	2300	3
7	9	2600	9	7	19	2460	19
8	39	2600	9	8	9	2400	9
9	19	1700	9	9	19	9000	9
10	9	1630	9	10	3)	1630	9
11	\%	1790	19	11	99	860	9
12	9	700	19	12	9	550	,
	Total	0,780			Total	20,780	

The third requisite in a retort is durability. The proper way to measure this element is to divide the quantity of gas made, by the cost of the retorts and ovens, and the repairs during the time they are worked; this will be shown presently by a comparison from the actual working of iron and clay retorta.

The retorts to be described in the present paper are composed entirely of fire-bricks, with cast-iron front plates to attach the mouth-pieces to, and to bind the brickwork together, and they are made of any length, width, or height. They are generally constructed in sets of three, as shown in fig. 1, Plate XXXV., which is a front elevation. AA, are the front plates of castiron, $1 \frac{1}{4}$ inch thick. BB, are the wrought-iron stays, $4 \times 1 \frac{1}{9}$ inches, fastened at the bottom by cramps built into the brickwork, and at the top by tension bars, connected to similar stays on the opposite side. C, is the furnace-door. DD, two retort mouth-pieces, 15×15 inches. E , a large retort mouth-piece. F, sight-holes for examining the flues and cleaning dust from the external surface of the retorts.
Fig. \boldsymbol{q} is a transverse section; G, is the furnace; $H H$, are the two lower retorts, 15 inches wide, 15 inches high, and 80 feet long, with a mouth-piece at each end. The fire-bricks forming the bottoms and sides of the retort are 16 inches long and 3 inches thick, the arch-bricks forming the top are 9 inches long by $3 \frac{1}{2}$ inches deep. Each brick is rebated 1 inch deep in the transverse joints, and grooved in the longitudinal joints, as shown by the enlarged drawing, fig. 3 ; these grooves are filled with stiff fireclay when they are put together, which burns into a hard tongue $\frac{1}{6}$-iuch thick as it becomes heated; the object of these tongues is two-fold, - they offer a resistance to the leakage of the gas by breaking the juint, and they tie together the arch of the retort.

K , is the large upper retort, 5 ft .9 in . wide, and 80 feet long, open for charging at both ends; the bricks are similar to those forming the small lower retorts; L, is a cross arch 5 inches thick, spanning the furnace fat on the top, which covers the underside of the transverse joints of the bottom of the large retort; the longitudinal joints are covered by small arched bricks, marked I. J, are the side flues; N, the longitudinal flues, shown more fully in fig. 4, which is a plan of the top of the upper retort, showing the course of these flues. In rising from the furnace the heat passes partly underneath and partly over the small retorts into the first flue, No. 1, moving to the back of the oven, then crosses the division and returns to the front along the 2nd flue, then to the back along the Srd flue, and to the front along the 4th, when it meets with the heat which has gone through a similar course on the opposite side, and passes along the middle flue, No. 5, into the main flue M , as shown in the longitudinal section, fig. 5 . By this arrangement the heat passes over 50 feet length of surface of retort from the time it leaves the furnace until it reaches the main fue.

Fig. 5 , is a longitudinal section through the upper retort K , showing the opening into the main flue M, and the damper O, hy which the draught is regulated. In this figure the position of the cross arches L, that carry the large retort is shown; covering the joints in the bottom of the retort; also the centre wall P, which divides the two furnaces and flues, and carries the main fue.

Fig 6, is a plan of the lower retorts, showing the two furnaces GG, with the centre division-wall P, the side flues II, and the floor of the lower retorts HH.
It will be seen by the plans figs. 4 and 6 , that the sight-holes FF are so arranged as to command a view of the whole longitudinal and side flues, by which means the condition of the retorts may at all times be observed, and any defects detected.
With regard to the durability, the writer may observe that t welve sets of the retorts were put up by him in 1842, and worked constantly, with the exception of short periods, up to 1849 , when they were taken down for the alteration of the works, and they were found then in good condition, and were fit for working several years longer with slight repairs. The writer also put up twelve sets of these retorts in 1844, and they continue in regular work now, and are in good condition; the cost of repairs of the retorts, ovens, and furnaces during the eight years they have worked has not exceeded twenty shillings per annum for each set. The writer accounts for the durability and economy of retorts constructed on this plan-firstly, by their being composed of a great number of piecen, instead of only one; so that when their temperature is altered, either by the carelessness of the stokers, or in letting down the heat to throw the retort out of work, each joint opens a little, equal to the contraction of a nine-inch brick, and prevents any portion of the retort cracking. In the same way, in getting up the heat (which is a time when a great number of clay retorts made in one piece are destroyed), if one portion of the retort becomes heated more than another, the joints accommodate the expansion; or, if the brickwork is in a very green state, and the expansion from the moisture is great, the screws of the tension rods may be eased, which will allow the whole mass of brick work to swell, but as soon as the moisture is expelled it will sink back into its place, and be as perfect as when first built. When a set of these retorts is first put to work, either new or after being let down for any purpose, it leaks through the joints for about twenty-four hours, gradually stopping; and after that time, if the heat be good, it will have become quite sound, and permanently gas-tight, under a pressure equal to 10 or 12 inches head of water.
From a sufficiently long experience, the writer has proved that brick retorts bullt upon this plan will wear for ten years, with the outlay of twenty shillings per annum for repairs, and that iron retorts will not last more than id year, under the most favourable circumstances. Then, to show their comparative economy, take a number, say 20 sets or beds of Iron Retorts, and 20 beds of Brick Retorts, each bed being capable of making 20,000 cubic feet of gas in 24 hours; and to make the calculations as correct as possible, let the cost and repairs of each be estimated, and the quantity of gas they will make, during a period of 10 years, in order to ascertain the cost of the gas produced from each plan per 10,000 cubic feet.

Iron Retorla.

First cost of 20 beda of Iron Retorts:-

Brick Reforts.

Firat cost of 20 beds of Brick Retorta :-
Bricks, clay and labour, for arches.. .

f	8.	8
367	0	0
126	0	0
180	0	0
110	0	0
783	0	0

Cont of repairs for 10 stars, at 20a. per
bed per annum..
Less ralue of old front plates, \&c., 20
tons, @ 25s
10000
2500
7500
Making the total expense of Brick Retorts
$£ 858 \quad 0 \quad 0$
Now, as the quantity of gas that each of the two descriptions of retorts is estimated to generate is the same for ten yearsnamely 1460 million cubic feet, it follows that the gas from the cast-iron retorts cost $9 d$. per 10,000 cubic feet, and that from the fire-brick retorts $1 \frac{1}{\mathrm{~g}} d$. per 10,000 cubic feet, for the item of retorts and ovens; showing an economy of 84 per cent. in the improved fire-brick retorts.

Mr. Clift, in answer to questions, replied that a defect in fire-brick retorts could be easily repaired at any time, without stopping the working of the retorts; the surface of the retorta could be thoroughly examined through the different sight-holes, and any defective joint detected by the appearance of a gasflame, and a single brick could be taken out of any part when required, and removed by proper tools through the sight-holes, which were made large enough for a brick to pass, and another brick was set in its place with fire-clay, without occasion to let down the heat of the retort. When a brick-retort was pulled down, it was found that the carbon deposited from the gas filled up any crack or fracture by the carbon adhering to the rough surface of the brick, and collecting upon it, from the indestructible nature of the brick. But a crack in a cast-iron retort continued getting worse, and became constantly more open on account of the surface of the iron perishing in the sides of the crack, which prevented it from getting closed up by a deposit of carbon as in the brick retorts. When a cast-iron retort was once cracked it was done for, and must be thrown away, requiring the whole oven to be opened out and rebuilt, and causing a serious delay to the work, as well as expense. And he observed that the plan of constructing the retorts of double the usual length, with a mouth-piece at each end, he had only in use for about a year, but he found it a decided improvenent, and had since adopted it in all new works. The other retorts became scurfed up with a large accumulation of carbon, particularly at the back ends, where the scurf became several incher thick and very hard, and the retorts had to be stopped work and the heat let down, usually every eight monthg, for the purpose of clearing out this scurf, and getting it detached by the contraction in cooling. But, in the long retorts, open at both ends, there was no back for the scurf to accumulate, and the current of air through the retort every time that both ends were opened, caused the scurf to scale off, and it was much easier to detack, and conseqently it was found that they would work much longer before requiring to be let down. Also the centre portion of the oven, which is the hottest part, and most valuable for making gas, was lost before by the blank ends of the retorts, but is now made available, as there is only a single brick wall dividing the flues, and by this means the heating surface and contents of the retorts are increased, without any increase in the size or expense. Another advantage is found in preventing the injury and shaking of the joints that was caused in drawing the coke from the retort, by the heavy rake being driven againt the back of the retort.

Proposed Subnarine Telegraph.-A scheme has been proposed for a transatlantic telegraph to take the line from the northern coast of Scotland through the Orkney, Shetland, and Farroe Islands; thence to Iceland, Greenland, and Labrador, whence they would easily communicate with Quebec, and also with the 27,177 miles of electric telegraph already in operation with the United States.

SUPPLY OF WATER IN TOWNS.*

By Miobael Scott, C.E.
Mr. Scort having been appointed to report on the supply of water in the town of Swansea, drew up the document now before us; and the authorities feeling it very desirable that the improvements proposed should be popularly known among the inhabitants, requested Mr. Scott to publish his report for circulation. In this document he has endeavoured to lay the whole facts of the case before the parties interested, and although much is only of local importance, and beyond the scope of professional men at a distance, there are some points of a more general nature, which our readers may think worthy of their attention. Thus, Mr. Scott has given all the arguments for and against that much-debated question, constant or intermittent supply; and as they are by him succinctly stated, we think it worth while to reproduce them:-
"Nature of the Supply.-There can hardly be two opinions respecting the requirements, either as affecting the consumers or the supplying body, seeing that in cases where the full benefits are to be realised, continuous supply under pressure is better than a supply on the intermittent principle. But, whilst this may be readily conceded, I must be permitted to add that much misconception has prevailed respecting the relative advantages of the two systems; and, for this reason, I propose to enter somewhat into detail, for the purpose of pointing out their distinctive peculiarities, with which experience has made me familiar. As a consumer's question, the principal advantage anticipated from the introduction of continuous (or constant) supply is, that house-cisterns and butts would nolonger be required, and therefore that not only would the cost of the internal fittings, original aud annual, be diminished, but that the water would be obtained for use in a more pure and desirable state. With reference to these anticipations, I would observe that, in the case of the poorer class of houses, they would be realised, but with regard to the dwellings of the middle and upper classes, the amount of benefit would not be so great. For, assuming that there could be no object in wishing for an ample supply unless it were intended to make extensive use of it, I must conclude that water-closets, baths, and other conveniences, would be generally introduced, and that water would be laid on to every floor, so as to be everywhere and always available, under pressure.
"Now, it appears to me, that when many persons picture to themselves the enjoyment which such perfect arrangements would afford them, they forget to reckon the cost; or, rather, basing their anticipations upon the erroneous statements which have appeared from time to time upon this subject, they believe that their visions can be realised without any additional outlay whatever, or prohably at a diminished rate of charge. Let us look more closely into the matter. Suppose the case of a town which has hitherto been supplied upon the intermittent aystem, but in which the inhabitants are now to obtain water under continuous high-pressure. The old cisterns, formerly required, would be dismantled, except such as could be adapted to serve the water-closets and baths; for, with respect to the former, I have never met with any description which operated satisfactorily withont a cistern; and, with regard to the latter, particularly shower-baths, it would be rather disagreeable to stand shivering in the cold, between every pull, waiting until the small supply pipe furnished the quantity for another discharye; while even with the plunge-buth considerable time would frequently elapse before the body of water required could be delivered, because the pressure may be diminished if water is being drawn off below. + Secondly, it should be noticed that in the great majurity of cases, the lead pipes would not be capable of sustaining the increased pressure, chiefly on account of their being too light and thin, but partly from the defective system of manufacture practised until recently. ${ }_{\ddagger}$ For, even assuming that the elevation of the source from which the supply was formerly delivered remained unaltered, the chances are that the pressure due to that elevation never was placed upon the pipes,

[^48]because, in the intermittent system, all the tenants in the district under service would be drawing at once, some below and some above, and thus numerous taps would be open during the time the water was turned on; but on the constant system, the case is very different, for if not in the daytime, at all events during the night, every pipe would be subjected to very nearly the total pressure due to the head. Besides this, the concussions to which the lead pipes are subject in the lower parts of the houses, on shutting the taps is generally very much greater under constant supply than under the intermittent system; because in the former the pressure is derived direct from the mains, and in the latter it is only that due to the height of the cistern in the house.
"It ought alzo to be borne in mind, that to take full advantage of the new supply, additional apparatus, such as sinks, pipes, \&c., must be provided, not to mention baths and waterclosets, which have been supposed to exist in each house, Now all this work will obviously be of an expensive character, having to be calculated not to sustain a limited pressure for a few hours every other day, but a constant and very high pressure.* For, be it remembered, the supply is to be available at all times on the upper floors, and to sustain this condition will, of necessity, involve a very high pressure, seeing that parties may be drawing water below at the same moment that it is required above.
"The alterations in the structural arrangements to be effected at the cost of the house-owner or tenant will, therefore includeFirst, either the adaptation of the old cisterns, or, what in most cases will be the cheaper plan, the erection of new ones; secondly, the renewal and extension of the leaden communication and service pipes; thirdly, the fixing of the new taps, sinks, and similar apparatus; and, fourthly, supposing them not to be already provided, the erection of baths, water-closets, and other conveniences, with all the accompaniments of overflows, soilpipes, \&c. Nor will the expense end here; for the continuousness of the supply, combined with the increased pressure, renders it necessary to keep the taps in much better condition; and experience shows that the requisite repairs are costly, especially if the water contains sand or other matter, which, by attrition, expedites the decay of the moving parts. Indeed, I have known cases in which it was found cheaper to provide cisterns, into which the water was delivered in the first instance, and from which the various taps were fed, the pressure upon them being thereby reduced.
"Of course, in the case of the introduction of water for the first time, where no works existed previously, part of what has just been stated would not apply; but I have thought it right to mention these facts, because many large towns are supplied on the intermittent system, and to this Swansea is not an exception.
"It here occurs to me to be necessary to guard against misapprehension, or a misconstruction of the foregoing remarks; for I wish it to be observed, that I am not arguing that the intermittent system is equal, much less superior, to the constant system per se; but I have been endeavouring to show that such comforts as water-clusets and baths are not necessarily a part of the constant, any more than of the intermittent system, and therefore that their enjoyment must involve expense in any case.
"Still, considered as a consumer's question, 1 would now allude to some advantages attached to constant supply, which do not involve a per contra, in the form of increased outlay, \&cc.
"In the dwellings of the poor, where no apparatus is generally provided beyond a single lap, constant supply confers a great benefit, by substituting one service reservoir, or one very large cistern, for numerous small ones or butts; and the former being placed under competent management, the arrangement is better and cheaper, besides affording infinitely less opportunity for the defilement or deterioration of the water. Moreover, a sufficient quantity is rendered available at all times, which is seldom the result on the intermittent system.
"The same effect follows in the case of the supplies required by manufactories, such as breweries, where constant supply saves the expense of large vessels, and reduces the dimensions and the cost of pipes, cocks, and similar fittiags,-affords facilities for feeding boilers and filling them up when cold, without

[^49]pumpr, \&sc. The large tanks heretofore employed in euch establishments were no doubt useful for measuring the quantity taken, and determining the charge made for the supply; but Mr. Siemen's beautiful invention bids fair to attain this objoct in a leas expensive manner, by providing a very perfect water-meter, a desideratum long felt.
"Amongst the more recent applications of water wherein constant supply (under pressure, of course) possesses great superiority, I may advert to the washing of railway carriages, as originally proposed and carried into effect by the writer, and which will no doubt be more extensively adopted when more generally known.
"For supplying shipping, including filling casks and tanks, washing decks and holds, filling new vessels to test their tightness, \&c., water always obtainable under pressure is very valuable, inasmuch as smaller hose may be used, fewer men employed, and less time occupied in each operation, all of which contribute towards saving money and promotiag convenience; and, as illustrating one point only, I may state that as water is generally the last thing taken on board prior to sailing, amidst much hurry and bustle, without very considerable facilities vessels frequently lose the tide, as it is called, or find the dockgates shut before they can get out, which is a very serious matter, especially in the case of emigrant vessels, as it will probably involve a delay of twenty-four hours.
"Hitherto we have considered the subject of constant supply as a consumer's question; but there is another aspect in which it ought to be viewed-namely, as affecting the supplying body, and to them there are several advantages, the most prominent of which I will notice. The first is, that fewer men are required to attend to complaints of non-supply, and as turncocks in connection with the service for domestic and trading purposes: for in the case of constant supply, the tenants have only to help themselves, whereas, with intermittent service, the water has to be turned on to different districts, at different periods of the day, and the turncock requires to see that the tenants are supplied before he shuts off the water again. The second point is, that, with constant supply, many of the pipes may be smaller, if cisterns are provided for water-closets and baths, because these receptacles become filled during the night; but if no cisterns were provided, and if the inhabitants were to avail themselves fully of the water for bathing, \&c., the difference in the dimensions of the pipeage would not be great, inasmuch as the demand for water being general at certain periods of the day, the quantity passing through the pipes requires to be correspondingly large, if the pressure is sustained so as to reach the upper floors of the houses. Thirdly, with constant supply under high pressure, that waste of water is saved which arises, under the intermittent system, from the poorer class of consumers throwing away the surplus quantity they may have stored in various vessels from one water day to another; and when pipes are carried into each house, the very force of the water tends to prevent the inhabitants from permitting it to run to waste; but, on the other hand, with outside or atand pipes, and even inside, unless taps of a superior kind be provided and kept in good condition, the waste from them may be, and frequently is, enormous, especially in the case of ball-cocks supplying cisterns provided with overflows. Fourthly, the constant pressure system has this advantage, as respects the landlords of weekly property, who may be considered as the supplying body, that it, in a great measure, prevents the tenants from abstracting the fittings, as is not unfrequently done under the intermittent system, thus furnishing the landlords with a reason for objecting to supply the necessary apparatus. Fifthly, a fertile source of annoyance under the intermittent system-namely the contamination of the water by gas drawn into the pipes by the vacuum formed when the supply is shut off and the pipes emptied, is avoided under constant supply; because however saturated the ground may be with gas, it can find no entrance into the mains when they are kept always full. Sixthly, the strain upon the service-pipes is not so great on the constant system as on the intermittent system; for, on the former, it is more nearly that due to the simple pressure, whereas, on the latter, concussions frequently arise, in consequence of the sudden admission of water into pipes either partially or completely empty, alchough this effect ismodified by the use of cocks, which open gradually. Seventhly, the oxidation of the iron of which the pipes are composed, arising from the action of the oxygen of the atmosphere, is considerably less when they are constantly charged.
"On the other hand, the intermittent system affords greater
facilities for repairs to the service and commanication pipes, and, in addition, it is free from the following disadvantage, which is of a serious nature. In many cases, eapecially when the supply is given by means of stand-pipes, it is hardly practicable to recover the water rents from many of those served, because so long as one pays, the supplying body is precluded from cutting of the water from others who may wish to avoid so doing. But this cannot occur to such an extent with intermittent service, becanse not only is the presence of the turncock a check, but as the water is left on only long enough to serve those who do pay, there is no time for those who do not to obtain a supply.
"For sanitary purposes, such as washing courts and pathe, and watering streets, all of which are more cheaply and effectually done by a jet of water than by any other means, pressure is indispensable; and the same remarks apply to the cleansing of slaughter-houses, markets, \&c.
"As I have paid some attention to this subject, the present opportunity may be taken to point out some of the principal advantages of the system of watering streets by jet, as compared with the old method of water-carts; and, as a ready means of doing so, I shall quote in substance from a report made by me some years ago, merely varying it according to the suggestions of recent experience.
"The objections to the use of water-carts are, the valuable space they occupy in crowded thoroughfares, either when being filled or when in motion, and the slowness of their operation. The jet system, on the contrary, offers little interruption to the traffic, and is infinitely more effective, because the streets may be much more thoroughly drenched at one operation, without a corresponding loss of time, But these are minor advantagea, when compared with the facility which is afforded by this aystem for washing, not only the streets, but also the paths, courts, and narrow passages, where no cart could enter, although it is in such passages that the detergent process is more particularly required: and, as an important collateral benefit arising from the jet system, I may mention that there would be a large number of men trained to use the branches and hose, who would form a valuable body in the event of fire.
"There is one question, however, which may naturally arise, and which deserves attention-viz., Why is watering by jet not more generally practised in towns where an ample supply under pressure may be had? I conceive that, one, it might almost be said the reason, is, beause there has been no means of controlling the extent or force of the jet ; for, if the water flowed with great velucity, then, although it enabled the operator to sweep or include a large area of street, still he could not water the part near himself, except in one of two ways-by allowing the jet to rise perpendicularly and so descend with great force, or by directing it downwards-either of which would disintegrate the surface of the street, at all events, if laid in macadam. I shall now explain the method which 1 adopted for overcoming this difficulty, without diminishing the force of the water required to give the necessary range. It consists of a branch furnished with a small wheel, which, on being turned, shuts or opens a valve inside the pipe, and thereby regulates the stream of water; and the valve being nearly in equilibrium is quite easily moved, whatever pressure of water there may be in the main. Here, then, we have all that is required to remove the only objection worthy of notice to the jet system. The water can be made to fall 100 feet off, or drop gently at one's feet. It can be made to flow with full force, or be shut off entirely in a moment; in fact, it is so perfectly under control, that neither danger nor annoyance need be apprehended.
"Lastly, for the extinction of fire, great pressure is essential, if the water is to be applied without the intervention of a fireengine. Water has for a long period been applied direct from the mains for this purpose (1 remember it being so used many years ago in Glasgow), and the only improvement mure recently effected consists in the employment of greater pressure, which confers the following advantages:- First, it enables the operator to reach the upper portions of the building on fire, and frequently this cannot be the case with limited pressure, because the intense heat of the burning mass prevents a very near approach to it; secondly, great pressure gives power sufficient to break the glass in the windows, otherwise a dangerous operation, and yet uften a most necessary one, for the admission of water into the interior of the building; tbirdly pressure and quantity are, to a certain extent, convertible terms; and as it has been found that to insure the efficiency of water applied
direct from the mains, comparatively very large pipes are required, even with considerable pressure, it follows that, with the ordinary service-pipes laid for domestic supply, either very great pressure must be nsed, or it will not be possible to dispense with fire-engines; since a much smaller quantity would be discharged through a single jet and length of hose than would flow into the engine-tub at the level of the atreet. In the case of a fire on ship-board, in the dock or harbour, where the usual course of scuttling the vessel is expedited by pouring in water from above, high pressare, as increasing the quantity, is most important."

VENTILATION OF THE HOUSES OF PARLIAMENT.
Analynis of the Evidence given before the Select Committee appointed to Consider the Ventilation and Lighting of the House and its Appendages.
Gurney (G.)-The atmosphere of the House, in its mechanical condition, is in a state of considerable disturbance, a state of aërial commotion. He has gone through the chambera below, he has gone through the House, and he has also gone through the chambers above; he finds that the air is all in a state of commotion, from the time it enters to the time it escapes. It (the air) is forced in below by a large fan, by which much diatarbance is given to the air; it next passes into the first chamber through certain openings prepared for the purpose. In these pasarges it takes an increasing velocity, and that increased velocity produces a second disturbance; the air is set into a state of retrograde currents, eddies, and cross impulse from one side of the room to the other. The air now goes into a third chamber, in which these disturbances are still increased. In the second chamber the air is warmed; part of it is heated by tubes, or iron cylinders, filled with hot water; this produces a difference in the specific weight of the air, coming in different parts; and here the natural brattice is formed, which is another disturbing force.* When the air comes into the house it meets with another series of disturbances. The House is in a otate of minus pressure, or partial exhaustion as compared with the atmosphere outside; the preumatic balance between the external air and the internal air is broken by the air of the House being at higher temperature. The principle of ventilation which witness had laid down is, that a sufficient quantity of air should be extracted, under control, for the requirements of the House, and arrangements so made that that quantity shall be supplied by an insensible movement under nature's law. Under this plan the same simple gystem of drawing in the air from the roof of the building, and admitting it at the floor, might be made to afford a perfect ventilation, even if the air is prepared and warmed before it is permitted to enter. Under witness's system, supposing the temperature of the House to be fifty or sixty degrees, and the external temperature to be thirty-two degrees, if either doors or windows were opened there would be no current of air; the disturbance would be so small it would be scarcely perceptible. The current of cold air which comes into the building on the opening of the doors arises from the state of exhaustion of the House itself; the House itself being in a state of partial exhaustion, or minus pressure. One of the radical evils is, that the accesses of air in the present House of Commons are too small; evils arising from the difficulty which the air has to pass through the strangulated channels prepared for it, and the twists and turns given to it before it can get to the House. The process of respiration constantly alters the composition of the air. The laws of diffusion of gases soon produce an equal division of any effluvium that may happen to be floating in a room. But in the present condition of mechanical dieturbance of the House, there is no disturbance from the laws of diffusion. Evidence shows that it is partially decomposed, one of its conditions being that of air over-heated, heated above

[^50]ninety degrees. Air is so vitiated by over-heating as to have a great effect upon the animal constitution. Another cause of the unpleasant condition of the air is, that by the partiallyexhausted state of the Honse, it is vitiated from foreign and unprepared sources. A further cause arises from the wet iron surface over which the air is made to pass over the floors, having been previously over-heated by dry iron cockles. The air should never be heated up to a high degree in order to be pulled down again. When the two doors going into the House of Commons are opened, there is more air passes than is sufficient to ventilate five such houses. Objects to forced ventilation as contra-distinguished from natural ventilation. Ventilation should be as simple as possible: the vitiated air should be simply drawn off, nature will do the rest. Witness has had the Court of Common Pleas and the Court of Exchequer under his control for the purposes of ventilation. The mode of ventilating the Court of Exchequer is downwards. The vitiated air is drawn amay by a steam-jet placed in a chimney opening into and very near the floor of the Court. The air comes into a chamber below the floor, and it is drawn out by a ateam-jet, and sent into the open atmosphere. This eteam-jet is under the management and control of the man in the charge, who opens or shuts the stop-cock more or less as he requires power; he has the power of producing any amount of draught he pleases. The air comes in from ahove unrestricted and unthrottled from the external air; the chilliness is taken from it in cold weather as it passes, so that the pneumatic balance between the court and the external atmosphere is preserved. Baron Parke sometimes likes the rindows open, which are about two-thirds of the diatance between the foor and the roof, and we find no inconvenience from this opening; the cold air does not come in through the windows, as might be supposed, in sufficient quantity to make an unpleasant draught. During frost his lordship will sometimes have the windows open, when the temperature inside is not above 60 degrees. The height of the building is about 30 feet. At the time fresh air is coming in, the vitiated air is drawn out by the jet. More or less power from the jet is turned on and off according to the requirements of the court; and fixed in accordance to the pressure-gauge connected with the anemometer provided for the purpose. In addition to the escape at the floor there is a little escape provided through the lanthurn by a small self-acting Venetian valve; this small escapage is to take off a certain gas which is formed from respiration, and which is much lighter than the atmosphere. In summer the air is cooled by what is called "the spray-jet." It is an invention of Mr. Cayley's the barrister, the son of the member for North Riding, which we had recourse to within the last twelve months. Whter is driven by a compressed jet of air, or high-pressure steam, one tube acting within another, like the oxy-hydrogen blow-pipe, into spray, which cools air very rapidly. When we find by the hygrometer that the air is taking up too much water, so that the hygrometer shows a break below 5 degrees, air is then passed through the same battery or apparatus, which battery becomes reversed in its action by being filled with cold water instead of hot; instead of being filled with steam, it is then filled with water at a lower temperature than the atmosphere. If ice-water is employed the cooling power is very rapid; or freezing mixtures so rapid that you may bring the air down below 40 degrees, and it falls out at the bottom between the leaves of the apparatus. The spray-jet is placed in the Court at the inlet of the air. The difference in principle between witness's system and that adopted by Dr. Reid is, instead of a furnace drawing of the air, either downwards or upwards, a steam-jet is used as the tractive power, and instead of using tubes filled either with hot water or steam, as adopted by Dr. "Reid and Sir Charles Barry, witness adopts parallelograms, which apparatus are called "warming batteries;" called 80 on account of being in form like the galvanic battery. The difference between Sir C. Barry's principle and the one adopted in the courts of law is, that in the latter there is one power only, which is an extracting power. Sir C. Barry has a fanner for injection, so that he may keep up by the force of injection, and at the same time by a simultaneous action which is going on above, an exact balance in the House of Lords is preierved; the bulance is adjusted by these powers. The air in Sir C. Barry's system at the House of Lords comes in at a high level and gues out at a high level. In the system witness has adopted it comes in at a high level, but goes out at a low level. Witness has the means of sending it out also at a high level, but if that is done the Court is not so comfortable. The present mode of lighting
the House tends to make the air oppressive; this was not the case in the old House, as the lamps were insulated. The present areas for the access of air to the House are not sufficient. Would prefer the clock-tower as the source from which to draw the supply of air. Witness does not reject the vaults as a means of obtaining air. A portion of the air now enters the House through the hair-cloth carpet; this very much hinders its ingress into the House, and must have the effect of carrying with it particles of dust. Witness does not know practically of any process to cure air of its impurities. Chloride of lime is used to correct smells; the chlorive partly acts on the hydrosulpherets, but it seems to act on the principle of one smell overpowering another. Does not think that any chemical change is effected by it of the atmosphere. There is an effect produced by electricity or galvanism, and on oxygen of the air, called ozone. It is said there was none of it in the atmosphere when the cholera was here. A process has been adopted for relieving the air of impurity in a large manufactory on the other gide of the water, where the escape of smell was so great as to be an annoyance to the whole neighbourhood. By driving the impurities, by means of a steam-jet, through a fire at a white heat, it burns the air and the uffensive particles which were floating about in it. Witness considers that in the whole of the building, generally speaking, there is the foundation of everything that can be required except for crowded committee-rooms on special occasions: there is a good deal of artificial ventilation in many of the rooms which is not required. The principal evil in the committee-rooms arises from the μ reat extent of glass surface, which should be removed. The cooling influence of the glass occasions a plate of cold air to fall, which is not prevented by the arrangement made against it. The glass cools the air in contact with it very rapidly, and it falls as a plate or sheet of cold air. Attempts have been made to warm that sheet of air from below the windows, but the warm air is overpowered by the falling sheet of cold. These windows are very high, and there is an unusual quantity of glass. Witness would not recommend double windows; first, because they would be very expensive, and would interfere with the architectural arrangement of the building; secondly, double glass would only get rid of one half the mischief. If a simple transparent blind or curtain which drew upwards instead of downwards (so as not to interrupt the light above the principal part of the window) was properly arranged, the stream of cold air falling from the glass might be warmed in situ by the present warming apparatus. The intervening air then would be warmed, and the evil now produced by the falling cold sheet of air would be removed. Those curtains would go a little more than half-way, which would be sufficient even in the coldest weather; there is no occasion to draw them up so far as this in warm weather; a plain white curtain would be sufficient for the experiment, and even for practical purposes. He thinks the warm air from a triple steam-coil, or from those now fixed, would remuve the evil. Has found that the cold glass of the window brings a current of cold air down at the rate of above a foot a second, from 60 to 80 feet a minute: it being a sensible and disagreeable fall; it runs along the floor. The principal evil is from the cold glass; there is an incast through the windows; there is a leakage always found about windows, however well made; does not think that that intake of air is of so much consequence as the cold sheet of air which falls from the cooling influence of the glass; the air that comes through the window-leakage will go horizontally, or nearly so, into the room; but the air that witness refers to is the cold sheet that falls from being cooled by the glass surface. Persons could not look out when the blind was drawn up; if this is an object, a double glass frame might be put up occasionally part of the way. If another glass is put inside instead of the curtain, persons might look through it, and the same effect would be produced by warming the air between the two casements as between the curtain and the window; without this warming between, glass alone would only remove one-half of the evil. The term "sheet" and the term "plate" mean that vertical plate of air next in contact with the window. The descending particles of air call after them other particles, which fall in with the current; the whole increases as it descends, and forms a large descending-plate of air; when it touches the bottom it runs along the foor into the ruom. That sheet having come down is supplied by another sheet, which is equally cooled against the glass, and comes down, and so continually follow. Thinks that the ivconvenience which is felt in the rooms arises principally from the difference
of temperature between the internal and external air, and not from the pressure of air arising from the wind; unleas the latter blows strongly from the east dues not think it of much coneequence. With double windows one-half the evil is got rid of, and no more; but when you pass warm air between double windows, you get rid of the whole; you effectually get rid of it. It is converted into a mixing-chamber. You have a portion of warm air, and a portion of cold; the air is cooled by the atmosphere without, through the glass; if you have warm air between the two frames of glass you have a plate of warm air insulating the external air entirely. The principle has been introduced into some hot-houses with great advantage. As regards the special coil, placing the pipes vertically is a far better arrangement than placing them horizontally. All the inlets and outlets appear to be under proper regulation, though they are not exactly, upon the system witness would have recommended; witness's plan would bave been to extract from below, and allow the air to come in from the upper parts of the windows. It is far more desirable to ventilate by the single action, as adopted in the Court of Exchequer, but it is one which cannot well be now introduced into the Holse of Commons. Is of opinion that it is not worth while to upset the present system of ventilation, and go to a great expense to upset the building. The libraries are comfortable, with the exception of the cold windows. The great defect of the air of the House, compared with that of the libraries, committee-rooms, and lobbies, may be attributed to its being partially over-heated, and partially to impurities being drawn into the House from sources which are contaminated. The difference between the Houses consists in oue being warmed by means of a horizontal pipe, and the other a vertical; partly to the different sources from which the air is extracted, and partially to the greater over-heating in the case of the House of Commons, compared with the House of Lords. In the one case there are horizontal pipes and in the other vertical ones: there is a partial vacuum in the one case, by which air is drewn in from uncontemplated sources; in the other the balance is very nearly preserved. When witness made experiments in the House of Commons with his differential barometer, he found the air in the House in a rarefied state, which he attributes to the vacuum draught upon the air from the shaft, where the furnace was. The apertures for the iugress of ajr are deficient. Carbonic acid expired from the lungs will fall in a atill atmusphere, though not if the atmosphere is disturbed; therefore it offers no opposing force. The downward system of ventilation favours the immediate escape of carbonic acid and the sebacic formations; they are both heavier, and both naturally tend to go immediately out in escapage, if drawn from below. The skin, as well as the lungs, gives out carbonic acid; it lies at a low level. The nitrogen which leaves in combination with the breath is very nearly of the same weight as the atmosphere, 80 that it does not interfere with the escape, whether it goes up or down; all physiological facts, connected with the subject, are in favour of the downward system of ventilation. There is always an ascending and descending current near a wall; if the wall is at a lower temperature than the room, there is a descending current next it which is very sensible: if the wall is warmer, there is an ascending current next it, so that these currents interfere to mix the air; the oppression alluded to is a matter of tempersture. In a theatre the upper part is the hotteat, and the lower part is the most unhealthy. In the Lyceum Theatre the temperature, on one occasion, was 84° above the level of the boxes, 70° in the middle, and at the buttom about 60°. The difficulty in breathing would be in the rare atmowphere above. The advantages of a downward system, as compared to an upward current in ventilation, are chiefly as to the products of combustion being heavier, the inconvenience of dust rising from an upward current, and as to the most serious practical objection of all, the incoming jets of air. The latter is one which cannot be got over; it is inseparsbly connected with pneumatic laws of air entering below for ventilation; that air, where it enters, must produce a series of disturbances highly objectionable to the feet and legs, if in sufficient quantities for proper ventilation. Formerly it was thought that a draught of air was "m draught," and nothing more, going straight ahead in given direction; but on the investigation connected with the rationsle of the steam-jet, it was apparent that the secondary currents arising from the primary motion were of more importance than the first as respecting this question; for instance, it was manifest the air first passed in a given direction drew after it air that fell in its wake, which formed a series of currents of more conse-
guence than the first. These would all take place near the foor, or near the source of the air entering, wherever it might be; if the entry of air were through the floor these series of currents would all happen in that locality, and therefore they would fall upon the person, and be very inconvenient. Another reason is, the emanations from the skin and sebacic glands. A dog follows his master for miles in the country entirely by the falling of this effuvia, even in stormy weather. This in the dog is a natural power; there is something which has fallen to a luw level from the person, it is this which produces what is commonly called scent. Witness prefers that the lights of the House should be reflected through glass, nut only on account of its intercepting the rays of the heat, but on account of insulating the lights entirely from the House, and also on account of its facility in colouring the rays to soften them; by colouring the glass very slightly you get a tempered quality of light, which is more agreeable than a pure white light. If you colour the reflecting surfaces you diminish their reflecting power; the expense of light is materially increased; you are obliged to have a larger quantity of initial light to produce the same effect. It is better to deal with reflected rays by coloured media. It would be better to put a glass shade under the light, ranging with the ceiling; it is a matter of taste whether it be of coloured or figured glass. If it was a very slightly coloured yellow or orange the light would be more agreeable. The late Sir Robert Peel suggested that coloured water should be placed between two plain layers of glass, for the purpose of colouring the rays; the coloured water, he conceived, would have two useful properties: in the first place, it would cut off the direct rays of heat, would insulate the burner; and secondly, it would produce a tempered light. That experiment was tried and approved of; there not being much loss of light. Proposes to bring the drop light down into the body of the House, to avoid the shade under the galleries. Sir David Brewster proposed that under the edge or cornice of the galleries a refracting roedium should be placed, which should change the angles of light, and send them under the gallery: in the experiment it sncceeded. Those refractors got their light from above. A portion of the light falling perpendicularly, would, by these refractors, be turned out of that direction and thrown under the gallery. The refractor is placed immediately under the outer edge of the gallery. The present light is rather too white; light a little coloured is far more agreable than pure white; this can be carried out when it is reflected through glass. The up current is assisted when the lamps are lit. The introduction of lights inside the House is objectionable. Reflection from a metallic surface, and transmitting that light through glass into the House, is the best mode of lighting. The loss by reflection is, from the surface of a mirror, only one-ninth; from the surface of a polished reflector, as used by the Trinity House, it is scarcely so much; when reflected, if in a true parabola, there is no loss. Radisted light loses as the square of its distance, but not reflected light; this depends on the angle of reflection. On one occasion, a light placed at Purffeet, 11 miles away from Blackwall, threw a visible shadow of a stick held against a white board at Blackwall. If the reflecting surfuce is imperfect, there may be great loss either by material or from angles; but if the reflecting surface is very good there is no great loss. The loss in radiation of light arises from the fact that it has to illuminate a space increasing as the squares; but if reflected from a true parabola the rays pass in one direction parallel to each other; the loss through the atmusphere by flosting particles of opaque bodies is the only source of loss in such cuse. He would have more lights for two reasons; first, that it would be more agreeable in appearance; and, secondly, that it would make up in quantity of illuminated surface what is now produced by intensity. The intensity is now too strong to be pleasing; if you made it up in quantity, the light on the ceiling would be more agreeable; it would not be so offensive to the eye. The amount of expense of a smaller numher of large, or a greater number of small lights, would be very nearly the same. It would only be the first cost of the burners; there would be very little difference in the expense of the nightly consumption. Proposed that a small mask catoptric light should hang from each of the present pendents, of which there are ten, and that the roof should also be lighted on the present system, with certain modifications. Witness cunceives it posxible, by increasing the amount of light, to get a sufficient amount of illumination for the House generully, by making the eeiling a reflector; but there would then be more light in the
galleries than in the budy of the House; this would have an unpleasant appearance. A pleasing effect would be produced by having the surface, that is the roof and ceiling of the House, of an agreasble refecting colour. There is nothing to prevent the present House being lighted perfectly well, exactly as the old House whs lighted, by adding to the present light in the roof a couple of chandeliers fitted with catoptric masks; this would light those portion of the roof which are now in shadow. He proposes to illuminate the whole of the panels in the central part of the roof. Would propose the "Atmosyheric Bude light," with concentric burners, as used in the old House. He would place small masked lights concealed under the gallery, so as to illuminate under it, and to illuminate the members who sit below, and also the back panels. It would be necessary to make it a masked light, because a naked light would be offensive to their eyes, and possibly seen from the House; a masked light, shedding its radiance over the whole of the panel-ceiling of the gallery, would not be seen; it would diffuse itself generally, and would be agreeable to the eyes. As the quantity of light required under the galleries is small, spring wax-lights may be used, properly placed and made for the purpuse; they mist be made to burn for twelve hours, and constructed to be fitted to the catoptric mask. Witness had them in the old House constructed for that purpose, with a large quantity of wax in proportion to their length; they were placed in a springsocket, so that the flame was always at the same level, like the flame of a carriage-lamp. They used to burn twelve or fourteen hours. He proposes to illuminate the gallery by placing a light between, behind, or in a line with the pillars, so as to reflect against the ceiling below the front of the gallery. Taking out the present panels and substituting glass would in no way affect the hearing; which would be the case if the panels were left open. The result of experiments which witness has made with respect to the colour most suitable for the reflection of light, shows that silver reflectors are the best. The most powerful reflection is from white surfaces; the least powerful is from brown or black; you find them follow nearly in the same order of colour from white to black; the whiter the surface the more light is refected. Gold is practically good; experiments were made with gilded reflectors; the light was good, and produced a very agreeable tint upon the countenance; persons looked very well, particularly when it was a deep gilding. The quantity of light reflected from a gilded surface in proportion to the quantity of light that would be reflected from a white surface, was less; he measured it by a good photometer: thinks the loss was in the ratio of one upon five, about a fifth upon the gilded surface, was lost. Would not recummend gilding as a matter of economy of light, but as a matter of effect; in many cases it might be used with advantage. Would recommend highly polished silver reflectors: they are used in all the lighthouses; the object is to reflect the light as effectively and profitably as possible. It has been found that there is less light lost from silver reffectors, properly burnished and properly curved, than from any other surface, even from a mirror: if the reflector gets dull, the power of reflection is considerably reduced. If the panels were dead silvered in the same way as if gilded, you would get a quantity of light from it greater than you get from rough white painted surfaces; ordinary white surfaces are a series of white points or facets; dead silvering would be much the same thing. So that a system of silvering might be applied instead of gilding, which would answer decorative purposes, and at the same time give a very good reflected light. By a little mixture of light blue (if introduced with taste) the effect might be very pleasing.

Aanotr (Neil, M.D.)-There cannot be a perfect system of warming and ventilating in a building having separate rooms, if there is a deficiency in respect to any one of the following pur-ticulars:-First, means of moving through the building steadily the definite quantity of pure air known to be required; secundly, means of duly distributing this air to the different rooms and compartments; thirdly, means of properly diffusing the air in each room; fourthly, tit means of discharging the vitiated air from the ruom; fifthly, means of giving to the air the fit temperature; and, lastly, means of giving the fit moisture. The more the apparatus is rendered self-regulating, or independent of the constant watching and interference of attendants, the hetter it is likely to be both as to performance and econtumy. Even the learned have understood that the air we breathe is as much t material substance as the water we drink or the food we eat, mad may be mingled with poisons as these may be. A hundred
years ago nobody on earth knew that there was such a substance in nature as oxygen, now called also vital air, which is one of the elements of our atmosphere, but which constitutes also fourfifths by weight of the whole substance of the ocean, and nearly one-third by weight of the solids forming the crust of the earth. In respiration the oxygen which enters the lungs takes from the blood there some carbon, and returns as carbonic acid gas, which cannot aafely he breathed again, and therefore has to be removed by ventilation. The natural ventilation of persons is produced by the warmth of their breath and the wind. The poisonous hot breath being lighter than the surrounding air, is buoyed up, and the wind carries it away. Walls and roofs of houses, however, by preventing these natural movements, soon made men aware of the necessity of ventilation; therefore, even of old, when crowds had to meet, they did so in the open air. Smaller numbers found that they could meet under cover, and yet breath comfortably for a while if they had open doors and windows. Then appeared more spacious houses, and particularly with large space nhove, as in cathedrals; then openings for air were formed in buildings below and above. The history of the attempts to ventilate the Engish Houses of Parliament during the last 100 years is curiously instructive, both as proving that the art of ventilation is a very new art, and as showing the steps by which the art has advanced. For a long while the only means of ventilation in the House of Commons were four openings made, by order of Sir Christopher Wren, in the ceiling of the House, of a foot square each; short tubes were placed by him over these openings, to make them draw more strongly; then fires were lighted in connection with the tubes, still further to increase the effect. Another adviser, Dr. Desaguliers, for the purpose of extracting the foul air from the roof, introduced a fan-wheel over the ceiling of the house, which, although answering better than anything which had preceded, was still very unsatisfactory. Then, about thirty yearsago, Sir Humphrey Davy being consalted, caused two iron tubes, of one foot diameter, to be made as channels for vitiated air, leading from the ceiling through the roof, and in their course passing through fires to heat the air in them. But this scheme slso signally friled, owing to the smallness of the tubes and the weakness of the fire. Not long after happened the destruction of the Houses by conflagration. In the temporary House of Commons which succeeded, Dr. Reid had the merit of exhibiting for the first time an air-moving mechanism equal to the demand. It was his great heated chimney, 100 feet high, and with internal area of nearly 100 square feet. Its performance gave great satisfaction. In the present new Houses, similar gigantic chimneys again appear; and, in addition, there are gigantic fan-wheels, moved by steam-engines and powerful steam-jets, familiar now to the public eye in the chimneys of engines on railways. Those enumerated can be used to produce the one or the other of two effects, which have been distinguished by the names of the plenum and the vacuum movements; the first blowing pure air into the House, so as to force an equal quantity of foul air out ; the second, extracting foul air from the House, and so drawing in (to use a popular phrase) ar equal quantity of fresh air. The plenum is the more simple of the two, and has considerable advantages. A plenum, produced in another way, is already familiar to the public, in the shape of a gasometer, as seen working in great perfection at all the common gag-works, distributing over a great town one kind of air from a central station, with uniform force, and with certainty, to all the houses, from garrety to cellars, of the town. The gasometer is a simple mechanical means of moving air, without fail, upon the plenum principle. Considering that it can be made to act with any desired steady force, that it is cheap, and easily managed, and is always hy its visible movement declaring accurately the amount of work done by it, we may wonder that it has so lately been introduced as a ventilating agent. Some of the advantages of a plenum used in ventilation are, that it makes impussible the entrance into the place so supplied with air, of smells from drains, or of smoke, and lessens or prevents altogether the leakage of gas from pipes. That will depend, of course, upon the pressure of the air in the room, as compared with the pressure of the gas in the pipe. A plenum always lessens the chance of leakage, and, if strong, might prevent it altogether. With a plenum in a room all crevices are made outlets instead of inlets; cold air cannot come in; if any door is open the air flows out. The vacuum again has the disadvantage of favouring the entrance of all these impurities into the house; every crevice with it becomes
an inlet ready to admit smoke, or gas, or molls from the kitchen, or any other source of impurity, Mechanical power enough exists in both Houses to move the air through with the required force; but, owing to the complexity of the arrangements, incressed attention and intelligence will be required in the attendants, and the chance of irregularities greater. Considers the apparatus already completed, or in progress, may be made to work very well. Is in favour of the single system of the plenum movement, it being so simple. At present the distribution is made by having channels to every room, and every channel with its simple valve or door, which has to be more or less opened or shut, as found necemary, by attendants always watching. Instead of the simple doors or sluices, which, if left in any fixed position, allow very different quantities of air to pass, as the moving force or resistances vary, he advises self-acting regulating valves, of a kind which, when adjusted to any known degree maintain, notwithstanding any accidental change of forces, a uniform current or supply until a new adjustment be made. There are at present sufficient means of distribution, but only with hand regulation. The present channels are sufficient for the distribution of the air, either by vacuum or plenum. The apparatus at Yorl Hospital is on the self-regulating principle: the water which enters for the general purposes of the hospital, in falling from a high cistern to lower ones, furnishes the power for moving this machine; it acts on a small water-engine, which keeps up the motion of the air-pump night and day without cessation; the number of strokes is determined by a cock in the descending pipe. 「hinks by this apparatus one pint and a quarter of water, descending from a height of 60 feet, iajects 250 cubic feet of air at every double stroke of the pump, and eight strokes in the minute give the required quantity of 2000 cubic feet of air in a minute. The engineers to the Board of Health made an estimate that it would cost about one shilling a day for the whole expenses of the apparatus, the working power (even if the water flowed to waste), and the superintendence. The nir enters the wards by chinks round the skirting-board in sheets as thin as the blade of a knife, and so mingles at once cumpletely with the air of the room; it passes away by the openings near the roof, and as, when diluted, it is not so hot as the breath of the parties in the room, the breath rises and eacapes first. Dr. Arnott stated what the diffusing power is, and also what he considers to be the difference between distribution and diffusion. The distribution is made to the separate apartments of the House; the diffusion is the sending of the air equably over any single apartment. If there were a crowd assembled on a field, in the wind, the people on the windward side would have pure air, those to leeward would inhale the breath of others near them. As the smoke of London accumulates to leeward on a windy day, and the air is pure to windward, so it is with the breath of a crowd. If there were no means of ventilating a room but by open doors and windows, some of the company would have too much and others too little. The idea of perfect ventilation for a crowd is suggested by seeing birds on a tree, where the air enters below and passes up between them, and no one is taking air from another. The pierced floor of the House of Commons exhibits a like result: the air is diffused by entering an apartment under the floor of the House, and then rises through narrow apertures equally to every person. The difficulty connected with this matter is, when the quantity of air passing is considerable, to convert the sharp jets which traverse the apertures under the impulse of the ventilation movement, into a diffused slowmoving mass of air like what may rise among the branches of a tree in a calm; a sensible draught or current of air in a room is unpleasant, and unless the air be properly warmed is dangerous. Various means of slackening and diffusing air-currents are known, such as the great multiplication of the openings, diffusing cuvers placed over these, the hair carpet-and such are adopted in both Houses; but he doubts, from the complaints made, whether with the completeness required. Considers there are at present sufficient means for diffusion. If he had to arrange the ventilation of the House of Commons with its present means, or any means, he would bring the air in from the floor; although the downward current from the ceiling would more directly prevent the rising of dust from the carpet, and any sensible draughts among the feet. The bringing of air in at the ceiling is a less natural mode, as in all temperate climates the air which we breath ascends to pass away; and if an artificial ventilating current descend only as fast as the hot breath tends to rise through it, that breath will acrua-
mulate round the mouths of persons there, and may be breathed again. Then, because cooler beavy air above cannot repose quietly or evenly on warm lighter air beneath, more than water can rest on oil the pure air will descend írregularly in some parts, and the hot breath will rise irregularly in others, and the desired uniform downward movement will be prevented. Still, notwithstanding the objection stated, if the speed of the deacending air be rendered considerable, and if the expense of gending the much larger quantity of air required through the House be not regarded, it is possible to ventilate very fairly by a downward current. Preference to be given to the mode of ventilating from below; the pierced floor of the House nearly answers this purpose. There is risk of its carrying up dust, and the following are among precautions used in regard to this: daily cleaning the carpets; having the parts of the floor most trodden upon left solid or unpierced, so that no air can pass through; or if pierced, having separate air-channels underneath them, by which a downward movement of the air can be there eatablished, while the upward movement goes on elsewhere; and lastly, on the principle of road-watering, it has been proposed to keep the gangways or portions of the carpet on which persons chiefly tread, mointened a little by threads absorbing water from below, as for the wet bulb of the common hygrometer. The air should be let in over the whole floor, except where the principal gangways are, and also from some perpendicular surfaces about the steps of the floor and benches. An upward ventilation would be imperfect if no part of the carpet were used, but at the gangways there might be a down-draught through the carpet; bringing the air in at the ceiling is an unnatural mode. It is of great consequence that all the air which enters should be sifted, by passing through wire-gauze, to prevent the entrance of dirt. There could be no difficulty in carrying into effect the plan of creating a plenum in the House by having to force the air through the carpet. Objects to the ventilating current descending from the roof. There are diffculties in the way of lighting the House in the event of ventilation coming from the roof; the over-heating of the upper portion of the House can be better overcome by the ascending system. In case of the introduction of warm air from the roof, it is doubtful whether the members would derive any benefit from it whatever. Does not approve of the system of ventilation in the House of Lords. Proposes a simple mode for discharging the vitiated air where it tends to accumulate, by diacharging it at the roof through the vitiated air-chanuels towards the up-cast shafts, moving chiefly under the infuence of a plenum impulse from below, aided by the action of the simple chimney-shaft, through which it escapes to the atmosphere. Sees no difficulty in adopting the system of the plenum movement only in the ventilation of the House of Commons. With a perfect system of ventilation there would be no need of pumping or forcing out the vitiated air. The discharging apertures for the vitiated air in the House of Commons are sufficient for the adoption of any system of ventilation. The greater density of the atmosphere within the House by witness's plenum system would be very little, not sufficient sensibly to affect the respiration. One syatem of ventilation would answer for the whole of the House of Commons buildings, as well as the House itself. Necessary for the person charged with the ventilation of the Houses of Parliament to have complete control of the means necessary for accomplishing it. Objects to the present system of giving to the House the fit degree of temperature by means of steam. The distribution of the machinery and pipes for warming the House is good, and might be applied in the carrying out of witness's system. In answer to a question, What is the best mode of supplying moisture to the air of the House? he said the importance of the moisture in air he need not speak of; persons knew that a north-east wind in spring is very dry and cold, and that coming upon the body it absorbs the moisture from both external and internal surfaces, and occasions great discomfort. A south-west wind is the opposite in these particulars, being warm and moist. Hence, in cold and dry winds it had been deemed important for persons in weak health, and even for persons in strong health, as precaution, that a due proportion of moisture should be added to the air: common means bave been to hang up wet cloths in the place, or to let a jet of steam pass in. The simplest mode for large buildings he believes to be that of jetting steam from a pipe with branches placed in the channel by which the air enters. The steam should be uniformly diffused. It is easy to let more or lessenter as may be desired, by turning the steam-cock; the hygrometer
would show almays what quantity of moisture was in the air. All air which is warmed from a low to a bigh temperature is thereby made capable of dissolving a larger quantity of moisture to make it like the ordinary atmospheric air. The healthiest state of the atmosphere in respect of moisture is, with a difference of about 8 degrees of temperature between the wet bulb and the dry of the hygrometer. He would apply steam for moistening the air only in winter; in summer using evaporating surfaces or the cold water jet; artificial rain has been made to fall into a channel by which the pure air was entering a building; this cools the air, and if the air be dry moistens it. He passed into the gallery when the lamps were burning, and found the heat from them very oppressive there. The lamps when lighted up in the House, already warm enough, become like a blazing fire lighted in a summer apartment. In this committee-room lately, an honourable member reported some experiments which he had made on the difference of temperature in different distances from the lamps in the upper part of the Hodse, according perfectly with what witness observed. Light from above is the most natural light to us; for the sun sheds his light from above; but where light is united with much heat, as in the sunbeam, or in the illumination of the mass of gas-lamps In the House of Commons, a screen becomes necessary. In nature, the hair of the head even of the naked savage, defends him from the sun; among civilised people we see the turban answering this purpose; the hat, the umbrella, the parasol, and so forth; frequently, persons exposed to the hot sun with the head uncovered are affected with head-ache, coup de soleil, palsy, \&c.; the lower animals seek the shade of trees. Now, the intense heat upon the heads of members sitting in the gallery of the House of Commons is oppressive, and not without danger ; it seems essential, therefore, if the House is to be lighted chiefly from the top, which probably is the beat mode, that there should be some screen to give protection. It happens conveniently that the substance of glass, although allowing the heat of the sun to pass with the light (as proved by the action of a burningglass), arrests the radiant heat of ordinary combustion; this is familiar to us in the instance of a glass screen standing before a drawing-room fire: a person sits on the distant side of the screen and feels nothing of the radiant heat of the fire; the glass itself becomes heated just as a sheet of imn would be, and then, as a new centre diffuses the heat which falls upon it in all directions, instead of letting it pass on to the person screened. Lamp-glasses themselves being near the flame may become almost red hot, but a sheet of glasa at a greater distance remaina comparatively cool. If the lamps in the House of Commons were raised so near the ceiling as that a floor of glass could be placed beneath them, separating them in fact from the House altogether, and causing them to be supplied with air from above, nearly the whole light of the lamps would enter and descend into the House, with very little of the heat. It had been proposed for the late House of Commons, by Dr. Reid, to place the lamps outside altogether, above the ceiling and on the outside of the windows. Side-lights might be planed where the painted windows now are. Considers a system of lighting by wax candles exceedingly inferior, for many reasons, to gaslighting well managed. The system of gas-lighting for the House, with a false glass roof and the lights above it, would be sufficient for lighting the House of Commons. Until the late House of Commons existed, there never was in the world a room in which 500 or more persons could sit with comfort for 10 hours in the day, and day after day; it was a perfect novelty in regard to the science of ventilation.

Clari (Williay, C.E., Assoc. King's College)-Has applied Mr. Gurney's system of ventilation at the Court at Hull. At the time he was engaged there he found that the upward system of ventilation had been adopted; air was admitted from the exterior, which came into contact with hot-water pipes. The stench in the court was very great indeed, owing principally to the peculiarity of the persons who attend. He re-established the downward ventilation by erecting an air-shaft, which is connected with the building by channels passing under the floors; a series of steam-jets are placed in the shafts, which, when in action, exhaust the air from the building. Air is admitted at a high level: the result is, the air enters the court through the windows near to the ceiling, the openings being properly regulated. The velocity with which the external air conies in is not found to be at all objectionable. The air within the building is warmed by steam-pipes, placed round the interior above the floor, by the front of the ssats, and round
the gangways of the court. This artificial means of warming is used only when there are a few persons in the court, or when a number suddenly leave. Does not imagine that persons breathing retain a certain portion of the foul air around them for a length of time, but thinks the extent to which the exhaled gases ascend is very much less than is generally supposed. When it is considered that one of the most abundant impurities, carbonic acid, is as heavy at 950° as pure air is at 60°, that the specific gravity of the combined gases is as great at the temperature of 68° or 70° as the pure atmosphere is at 60°, and when a person breathing upon a thermometer, in an atmosphere of 60°, and at a distance of 12 inches from the mouth, cannot raise the thermometer so high, then it must become apparent that these gases do not ascend so far as is generally supposed; at all events, they can only ascend while they retain their temperature; but inasmuch as the temperature becomes diluted by mixing with other atmosphere, they have a tendency to obey the law of gravity, some being heavier, others lighter, particularly in a crowded assembly, who being perfectly still, caused but a very slight mechanical disturbance of the air. They would start at about $94^{\circ} ; 98^{\circ}$ is the temperature of the body. Has been engaged to ventilate the assize courts at York upon the same principle, where he has introduced a heating battery as the means of raising the temperature; and is about to introduce the same at the courts in the neighbourhood of Beverley.

Daukes (Samuel Whitfield, Architect)-Objects to the principle of ventilation adopted by Sir Charles Barry in the House of Lords and the committee-rooms, and to the manner in which it is developed. In the system of ventilation adopted by witness, the object has been to approximate as nearly as possible to the principles of natural ventilation. In natural ventilation, air, rendered warm by radiation from the earth's surface, ascends, its place being immediately supplied by air of a lower temperature. In artificial warming and ventilation the object is to maintain an agreeable temperature of pure air, about 63°, upon the same natural principle, fresh air of modified temperature continually entering at the low level to supply the place of the vitiated air which is escaping at the high level or ceiling of the room. For the House of Commons the air should be introduced through channels beneath the floor, entering the House at places where it would not be inconvenient to any person sitting or standing. The mode of warming the air would be by a machine formed of a series of flat vertical vessels (full of heated water), inclosed in a chamber, the cold fresh air entering beneath them, and having passed between them, and become warm in its passage, it is discharged into a flue, and thence into the House. In each of these flat vessels the water circulates; and it is not by conduction, but by the water circulating in each vessel, that the surface becomes of the temperature required to warm the air sufficiently to enter the room, according to the state of the external atmosphere. The vitiated air escapes from the ceiling in channels provided for that purpose, communicating with an external shaft. Witness does not propose to use any tractive power at all, but considers the natural upward passage of the vitiated and hotter air to be adequate to produce a sufficient and constantly recurring supply of fresh air into the building. It is innossible successfully to apply a forced ventilation tothe Houses of Parliament. The systent of ventilation in the Colney Hatch Asylum is by the vacuum principle, and performs satisfactorily. The principle of ventilation adopted in the House of Commons is at present incomplete; the supply of fresh air is not adequate to the requirements of the House, and consequently there is not an escape of the vitiated air. The variety of temperature in the House is in consequence of the air being unequally discharged into the chamber from which the ventilators which feed the House with air open; some portion of the cold air enters at some ventilators, while at others the air is escaping. The admission of fresh air is stifled by the perforated floor being covered with a carpet; there would be plenty of fresh air passing through if the carpet were removed. Witness does not consider that when the works are completed, and the whole principle in force, that the ventilation will be satisfactory. The gas-lamps would have no prejudicial effect in an upward-current ventilation. The ventilhtion of Exeter Hall is natural ventilation, and acts successfully. The artificial aystem of ventilation adopted by witness, which has been found successful in the several buildings in which employed, is exceedingly simple in construction, and easy of regulation; it is what is called Mr. Price's plan. The diffusion of air under witness's system is under
complete control. Witness prefers the tractive power of ventilation only to the forcing power, or the union of the two. The present apparatus for the ventilation of the House of Commons is not applicable to what witness considers a complete system. Is of opinion that where there is a current of air passing through a vault a very disagreable close smell will be discoverable in the air. The mode which witness should adopt for improving the warming and ventilation of the House of Commons would be this: he would adopt the plan, as in the House of Lords, of covering the whole floor over with lead, and the carpet exactly as in the House of Lords; then calculate the quantity of air that would be necessary to pass through the House thoroughly to warm and ventilate it, and have a suficient number of openings where it would not be inconvenient to any of the members sitting, and admit the air in those parts through ventilators; then there would be a very gentle radiation from the floor itself, and the admission of air through the ventilators provided for it would be sufficient to sustain ample ventilation in the House, and warmth tou. The warm air would naturally pass off, but if it required it he would apply a proper contrivance to rarefy the air in the extracting-shaft. The system of warming proposed by witness would be perfectly under command, so that it could be raised or lowered at pleasure. Witness does not agree with Mr. Gurney that by his system the barometric balance could be preserved to such a nicety that a window might be opened without any rush of cold air being felt. Proposes to moisten the air, after it has passed over the plates, by evaporation: he places the water for evaporation in the warmair flue, in a shallow pan, and allows it gradually to moisten the air. The mode adopted by Dr. Reid to diffure the cold and fresh air is quite inadequate to its purpose. At present the air is atifled in its very first discharge by the carpet covering the whole of the orifices in the floor. Would confine the uprise of tempered air to certain portions of the House, instead of making the entire floor a channel for the uprise of fresh air. Placing ventilators for the admission of air on the risers of the steps in the gangways to the seats, would be the best position, as there would be little or no inconvenience felt therefrom. The centre of the House would be a very good position for the admission of moderately warmed air. The present lighting of the House is not injurious to any contrivance for ventilation on the ascending principle. Witness would admit the air at a temperature a few degrees lower than that at which it would be desirable to maintain it in the House. Seven apparatuses are required for the ventilation of the Colney Hatch Asylum, from the enormous extent of the building. Witness does not give Exeter Hall as at all a perfect specimen of the application of his principle, but merely to show what little assistance to natural ventilation is required. The double system of letting the air enter the floor, and drawing it out at the floor must operate very much against the ventilation. There are no channels now existing from the roof of the House of Commons to conduct the vitiated air into the upper air-shaft. Witness sees no great objection to the admission of air above the heads of the persons occupying the building, if it were necessary. Witness is in favour of ventilating the House of Commons or any building of the kind, from or near the floor, relying upon natural means of ventilation, with the assistance of an extracting-shaft, with a rarefier in it in case of need. The apparatus now in use would not be sufficient to effect a complete system of ventilation according to witness's ideas. The pipes are not at all equal as a warming medium to the flat verticul vessels. Would substitute for those pipes fat plates with hot water. One apparatus would take the whole range of the committee-roons; its dimensions would be a matter of calculation as to the surface required. Witness's apparatus would be much better regulated and under contril. The temperature of the pipes of each of these apparatuses, heated by steam, is obliged to be maintained at 212°; while the water will circulate at much lower temperatures, according to the temperature of the room. He would dispense with the steam-engine, the boilers, and the fan. Would use the air-courses connected with the Victoria Tower by constructing an inner independent flue through the vaults on purpose for the cold air, and equal in dimensions to the quantity of air which would be required to be discharged in the various rooms. He would not allow the cold-air flue to come in contact with the adjoining walls. He would case the present vaults, or rather form an independent flue; would case them with brick.
(To be conlinued.)

-

REGISTER OF NEW PATENTG.

ROTATORY ENGINES.

(With an Engraning, Plate XXXVI.)

Joseph Maudslay, of the firm of Maudslay, Sons, and Field, of Lambeth, Surrey, engineers, for improvements in steam-engines, which are also applicable, wholly or in part, to pumps aud other motive machines.-Patent dated January 26, 1858.

Claims.-1. For improvementa in obtaining motion in steamengines by means of two cylinders revolving on independent centres, the one within the other, and in such relative orbits that the lesser cylinder shall, during each revolution, come throughout its entire length in contact with the larger cylinder; \&. For the application of the said improved modes of conatruction to pumps and other motive machines.

The invention relates to that class of engines commonly called rotatory engines: it consists of an improved arrangement of parts represented in figs. 1, 2, 3, and 4, Plate XXXVI., fig. 1 being a lougitudinal section of an engine constructed according to said arrangement; fig. 2 , a plan thereof in section; fig. 3, an ond view; and fig. 4, a crose-section on the line cd. A, B, are two cylinders of different diameters, the lesser of which is designed to revolve within the larger one, but eccentrically in regard to it; so that the outside of the smaller cylinder shall, throughout its entire length and circumference, come in contact with the inside of the larger one as they revolve together, but only a portion or line lengthways of the cylinder being in contact at the same moment. C, is a pistou-plate, which projects from the inside of the larger cylinder, and as that cylinder revolves, moves in and out of a recess D, formed in the side of the inner cylinder A. The ends A^{a}, and B^{b}, of both the cylinders are turned traly, and fit exactly the one into the other. The larger one has a hollow trunnion furmed on each end, and the two trunnions revolve on fixed bearings G^{1}, G^{2}, which are provided with set screws for exactly adjusting the position of the cylinders in relation to each other. F, is a apindle or axis, which carries the smaller cylinder A, passing right through the centre of it, and also through the hollow trunnions $\mathrm{G}^{3}, \mathrm{G}^{4}$, and resting at its extremities in the bearings H, H. The two sets of bearings G^{1}, G^{2}, and H, H, are parallel to, but not in the same line with one another, and the hollows of the trunnions of the large cylinder are of such size as to allow the axle of the smaller one to pass clear through them in its eccentric position. I, I, are boxes which contain the packing for the axles, and also serve as passages for convering the steam to and through the trunnions. K, K, are openings made in the end of the small cylinder, through which the steam is admitted into the interior of that cylinder. L, L, are passages for the admission of steam behind or on one side of the pistonplate; and M, M, are passages for the escape of the steam on the opposite side, or from in front of the plate. N, is a fourway cock for starting, stopping, regulating, and reversing the engine. The mode of operation of the engine is as follows: steam is passed through the hollow axis or trunnion G^{4}, at une end of the large cylinder into the interior space between the two cylinders, that is to say, into the space which, for the time being, is behind or on one side of the piston-plate; and this steam pressing against the piston-plate carries it round, and along with it both the larger cylinder to which it is attached, as also the smaller cylinder with which it is interlocked (by means of the piston-plate). As the two cylinders revolve together the piston gradually loses its effective area of propulsion, that is to say, the area of the piston exposed between the cylinder is gradually diminished until the point of contact between the two cylinders or dead point of each revolution is reached, over which point the engine is carried by the momentum of the parts in action. After the steam has thus performed its office, it passes off from the opposite side of the piston-plate through the hollow trunnion G^{3}, on the other end of the large cylinder, either into the atmosphere or into a condenser, according as the engine is worked as a condensing or a non-condensing engine.
A modification of the preceding arrangement is exhibited in figs. 5 , and 6 . Here the larger cylinder A, is made with an outer steam casing A^{2}, and fitted with false ends adjustable by set screws; and it is divided by a partition D , into two compartments, to each of which there is a separate piston-plate E, the two piston-plates being placed in opposite positions in regard to each other, so that a more uniform power may be obtained
throughout each revolution. And instead also of one inner cylinder, two (D^{1}, and F^{1}) are here employed, one of which is keyed on to the spindle F, while the other is left loose upon it, and so at liberty to adapt itself to the varying position of the piston. In this modification the steam may be admitted at one trunnion, and be conveyed through the outer casing formed round the larger of the two cylinders into the space behind the piston-plate or plates, and conveyed thence through the smaller cylinder to the other trunnion; or the motion of the engine may be reversed by causing the steam to enter through the smaller cylinder, and pass away through the outer casing of the larger one. L, is a four-way starting and reversing cock.
Another modification is shown in fig. 7 , which it will be proper to adopt when it is desired to work the engine on the continuous expansion principle, The outer and larger cylinder A is made as in figs. 5 and 6 , with an outer casing A^{1}, which is divided by partitions B, B, into two compartments of different sizes, each of which is provided with a separate piston-plate, the two piston-plates being placed in opposite positions to each other. In this arrangement also, as in figs. 5 and 6, there are two inner cylinders (D^{1}, and F^{1}) of different sizes, the larger one of which, F^{1}, is keyed fast to the spindle F, and the other left loose. The steam is admitted through the trunnion G, and apertures H, H, into the outer casing A^{1}, and thence into the space behind the piston-plate of the smaller compartment of the larger cylinder, from which it passes through the interior of the small cylinder D^{1}, iuto the outer casing A^{1}, when it enters the space behind the piston of the large compartment, where it acts on the piston by its expansive force, after which it is allowed to pass off through the interior of the inner cylinder F^{1}, and the trunnion G, either to the condenser or to the atmosphere.
A fourth modification is shown in figs. 8, and 9. A, is an annular cylinder, which is mounted on a spindle or axis C, which revolves in fixed bearings D, D. Within the annular space is a ring E, with a groove or opening cut in it, through which a piston-plate or plates B, passes, which piston-plate or plates is fixed to the outer and inner ring of the annular cylinder. The ring E, revolves on its own centre in bearings which are fixed eccentrically in regard to the other bearings D, D, so that as the one ring revolves within the other, the outside of the interior ring shall be brought in contact with the inside of the outer ring of the annular cylinder, whilst, at the same time, its interior is in contact with the outside of the smaller ring of the annular cylinder; thus forming two lines of contact between the annular cylinder and the internal ring. To allow of the insertion of the interior ring, the large one (A) is made in two halves, as shown. Tbe smaller ring E, has a circular flange P, by means of which it is attached to the outer casings F, F, which are carried by hollow trunnions G, G. The piston-plate B , forms the barrier against which the steam acts, and through the medium of which motion is communicated from the annular cylinder to the interior ring, so that they shall revolve together, but each on its own centre. Stean is admitted, as in the arrangements previously described, through one of the trunnions and the holes K, K, to the back of the piston-plate, and escapes from before the piston-plate through the other trunnion and holes, shown by dotted lines at l, l. The steam passes from one side of the annular flange P, to the other through the holes i, i. Instead of the annular cylinder being fixed on a spindle, as in the arrangements just described, and the internal ring being carried by an outer casing with hollow trunniuns, it may in some cases be found more advantageous to form the hollow trinnions on the former, and carry the latter on a circular flange or boss fixed on an axle passing eccentrically through the trunnions.
The different forms of steam-engines before described offer in common the following advantages: first, their great simplicity, lightness, and compactness, the working parts being in each case few in number, and these all in balance, or nearly so, and there being neither valves nor slides nor eccentrics required for the admission and emission of the steam; secondly, the directness of their action; and tbirdly, the great velocity at which they are capable of being unintermittingly driven, and without noise or shock.
Instead of the piston-plate in the engine, represented in figs. $1,2,3$, and 4 , and its modification, being attached to the larger or outer cylinder, as before described, it may be attacbed to the smaller or inner cylinder, and made to work in a recess in the outer one. It is preferred to use cylinders, though cones or por-
tions of cones, with the axles so placed as to bring the surfaces in contact, might be employed. So also, instead of the spindle of the smaller cylinder being employed as the driving-shaft, the motion may be taken from a toothed-wheel and gearing attached to the outer or larger cylinder.
Any other elastic or non-elastic fluid may be used for working these eugines as well as steam. An arrangement which would be particularly suitable for being driven by water, is represented in figs. 10 , and $11 ; A$, is an annular cylinder, open at one end, which has a piston-plate P, fitted into it, and revolves on its centre in fixed bearings $C, C ; D$, is an internal ring made hollow, to form a channel for conveying the water to the back of the piston-plate, and which has its centre or axis formed by a hollow trunnion revolving in the bearing E, which is fixed eccentrically to the bearings C, C. The annular cylinder has at top a circular flange or disc. which must be sufficiently large to allow for the change of position as the two parts revolve together. Water is admitted down the hollow trunnion, and through the passages f, f, into the space behind the piston, and it is allowed to escape from before the piston through the passages g, g, in the annular cylinder.

As pumps for raising or forcing water or other fluid, engines on any of the plans which have been described will be found especially useful, as, in consequence of the high velocity of which they are capable, and their continuous rotatory action, a small machine may suffice to discharge a large quantity of water or other fluid. An arrangement of the engine well adapted for pumping water is shown in figs. 12, and 13. The axis A, is made hollow, and the water admitted through it to the interior of the smaller cylinder, whence it passes through a passage B, into the space behind the piston-plate, from which space it is discharged through the passage C, in front of the piston-plate into the outer casing D, from which it is finally discharged through the delivery pipe E. As blowing machines, too, they will have the advantage of maintaining a great pressure of blast with a regular and easy motion.

MULTIPLYING MOTION IN STEAM ENGINES.

(With an Engraving, Plate XXXVII.)
Charles Cowper, of Southampton-buildings, Chancery-lane, Middlesex, patent agent, for improvements in multiplying motion applicable to steam-engines, saw-mills, and other machinery in which an increase of velocity is required. (A communication.)Patent dated January 31, 1858.
Chaims.-1. For multiplying motion in steam-engines, so as to obtain a complete revolution of a shaft from one stroke of the piston of the engine; 9 . For multiplying the motion of the piston of a steam-engine, and regulating the same; 3. For multiplying the motion of steam-engines by the application of an oscillating-cylinder, in combination with a lever; 4. The particular applications of the invention to saw-mills, punchingpresses, and engines for driving the screw-propeller; 5. The mode or modes of multiplying motion so as to obtain from a single stroke of any prime mover, four or eight strokes, or other greater number of strokes (such number being a power of the number two).
The invention relates to improvements in multiplying motion by means of a lever or levers, and a rod or rods, in such manner that each stroke of the piston of a steam-engine, or other reciprocating motion, is multiplied so as to produce two, four, or eight, or more strokes; and thus to be applicable for driving the screw-propeller of a steam-vessel, and also for driving vertical saw-frames, and other machinery in which an increase of velocity is required.
Fig. 1 is a transverse section of a portion of a steam-vessel, showing the mode of applying the invention to a steam-engine for driving a screw-propeller; fig. 2 is a plan of the engine. C, is the steam-cylinder, placed horizontally, and provided with a slide-valve B, and expansion-valve A, of any of the ordinary constructions. D, is the exhaust-pipe or passage, which is continued through the foundation-plate E, to the condenser G, on which is placed the double-acting air-pump H. I, is the hot well; and J, the hot water delivery-pipe. The air-pump \mathbf{H}, is shown in section. It has passages leading to the bottom of the condenser, to enable it to remove the water from the condenser, or a separate pump may be employed for that purpose. a, is the piston-rod of the steam-cylinder, which is provided with a cross-head and two side-rods b, b, which are jointed to the
levers c, c, which turn on pina or fulcra at their lower ends Each of these levers carries a pin d, from which a connectingrod e, proceeds to the pin s, of the crank or lever f, on the shaft g. On this shaft is auother lever h, from which a connecting-rod i, proceeds to a crank on the shaft O, which drives the screw-propeller. m, m, are two additional piston-rods attached to the piston of the steam-cylinder C, and connected by the cross-head l, to the rod of the air-pump.

The action of the machinery is as follows: the lever c, works to and fro with the motion of the piston of the engine, and the pin d, moves in the arc shown by the dotted lines. When the piston is at the end of its stroke, the point 8 , is in its lowest position, as shown in fig. 1. When the piston has reached the middle of its stroke, the lever c, and rod e, are in a line with one another, and the pin s, is raised to its highest position z. As the piston proceeds and arrives at the end of its stroke, the point s, again descends to its first position, and thus the levers f and h, make two strokes for one stroke of the engine. The same effect is produced in the return-stroke of the piston, and the motion being communicated by the rod i, to the screw-shaft O, that shaft will make two revolutions for every double stroke of the piston. The slide-valve of the engine is worked by a crank or eccentric on a shaft, which is driven at balf the velocity of the screw-shaft by means of toothed wheels. Two of these engines should be employed to drive cranks at right angles to each other, on the screw-shaft O; or the two engines may be arranged so as to drive the same crank as indicated by the diagram fig. 3 , in which the various parts are indicated by the same letters as are employed for the corresponding parts in figs. 1 and 2. During a small portion of the centre of the stroke of the piston, its power over the lever f, is very great; but its motion at that part is regulated by the resistance of the airpump, as well as by the inertia of the moving parts. When necessary the motion may be rendered still more regular by the application of a fly-wheel, as shown in fig. 4.
Fig. 4 is a side view, partly in section, of a steam-engine applied to work a saw-mill according to the invention. C, is the steam-cylinder; P, is the piston, and a, the piston-rod; b, is a side-rod connecting the piston-rod end to the lever c, which turns on a fulcrum at its lower end; d, is a pin on the upper end of the lever, which is connected by a rod e, to the short end f, of a lever or beam, turning upon a pin, g; the long end h, of thia lever gives motion to a vertical saw j, by means of the rod $i ; k$, is a paul jointed to the beam $f h$, and driving the ratchet-wheel l, which advances the timber or other material to the saw in the ordinary manner. The piston-rod a, is connected by the con-necting-rod Q, to the crank R, of the fly-wheel S, which serves to regulate the motion of the whole. This arrangement may be used to produce a rotary-motion by applying a connectingrod and crank-ahaft, in lieu of the rod i, and saw j.
In all these figures it will be seen that the motion commanicated to the lever f, is much greater than it would be if the pin d, moved in a straight line, as it would do if the rod e, were connected directly to the cross-head or end of the piston-rod. 'rhis is a point of great importance, and is owing to the application of the lever c, in combination with the rod e. The motion may be still more increased by communicating the motion of the piston to the lever c, at a point nearer to its fulcrum than the point d, as in fig. 4 .
Figs. 5,6 , and 7 , show three applications of the invention to oscillating-engines. In these cases the cylinder and its pistonrod are caused to act in lieu of the lever f, and rod e, in the previous figures. C, is the steam-cylinder oscillating upon the trunnion a. The end of the piston-rod b, is jointed to the lever e, which turns on the fulcrum d, and moves in the arc shown by dotted lines. The points b, o, c, indicate the extreme positions of the end of the piston-rod. The cylinder is thus caused to make two oscillations for each single stroke of the piston, and this multiplied motion is applicable to various machinery. Thus in fig. 5 , its application to a saw-mill is shown, the saw being driven by an arm q, attached to the cylinder. The stroke of the saw is from q, to z, and this motion may be increased or diminished by lengthening or shortening the arm q. Fig. 6, shows the application of au oscillating-engine, according to the invention, to a punching-press: l, is a lever attached to the trumion of the engine, and giving motion to the punch p. In fig. 7, is shown the application of an oscil-lating-engine for obtaining a rapid rotary-motion, suitable for driving a screw-propeller. The arm q, is fixed to the cylinder C, and is connected by the rod B, to a crank on the
ahaft O, which is thus caused to make to make two revolutions for every douhle stroke of the piston. The length of the stroke of the arm is from q, to r. In lieu of attaching the arm q, to the end of the cylinder, it may be placed in any other convenient gosition, as shown by the dotted lines, in which q^{\prime}, is the arm; B^{\prime}, the connecting-rod; and ${ }^{\prime}$ ', the crank.

In all these arrangements of oscilliating-engines, when the power to be communicated is considerable, it is advisable to employ guides for the piston-rod, which guides are fixed to the cylinder or cylinder-cover, and serve to prevent the bending of the piston-rod by the lateral strain upon it.

In lieu of taking off the motion from the oscillating-cylinder, it may be taken from the lever c. Thus, in fig. 7, the crankshaft may be placed below the fulcrum d, of the lever e, and may receive its motion from a connecting-rod jointed to the lever e; or intermediate levers, or beams like those marked f, and h, in figs $1,2,3,4$, and may be employed to increase or vary the length of stroke.

In the sawing and punching machines hereinbefore described, the parts are so arranged that the steam may be expanded in the steam-cylinder with great advantage, as the greatest pressure of the steam is employed to produce the downward or effective motion of the saw or punch, while the reverse motion is produced by the expansion of the steam. The motion of the piston in either of the arrangements may be regulated by a flywheel, in a similar manner to that already described with reference to fig. 4. In figs. 5 and 6 , the motion of the piston may be arrested at each end of the struke, by means of springs of steel, or other suitable material, or by arranging the slidevalve of the engine so as to close the exhaust-passage and confine a purtion of steam in the end of the cylinder, which portion of steam then serves as a spring or cushion to check the motion of the piston, and prevent it from striking the end of the cylinder.

When it is required to multiply the motion four times in lieu of twice, it is effected by first doubling the motion in the manner hereinhefore described, and then again doubling the motion in a similar manner. Thus, if a rod be jointed to the end of the lever f, in fig. 4 , and placed in a horizontal position, when the lever f, is horizontal; and if the opposite end of this rod be connected to a vertical lever, this last lever will make four strokes for each single stroke of the steam-piston. In a similar manner the motion may be again doubled, and so on as many times as may be required.

The various modes of multiplying motion hereinbefore described, may be employed for driving other descriptions of machinery, which require a multiplication of motions, as well as those hereinbefore mentioned.

CAST METAL PIPES AND RETORTS.

Edward Moseley Periins, of Mark-lane, for improvements in the manufacture of cast-metal pipes, retorts, or other hollow castings.-Patent dated March 8, 1852.
Claim.-The mode described of making core-barrels used in the manufacture of cast-metal pipes, retorts, or other hollow castings.
This improvement consists in the construction of hollow corebarrels to be used in the manufacture of cast-metal pipes, retorts, \& c., in three sections. These sections are fastened to metal shafts capable of being moved outwards by means of a screw passing through theiraxis. This enables the outer sections to be contracted or expanded at pleasure, thus facilitating their withdrawal from the mould.

ELECTRIC TELEGRAPH APPARATUS.

Whliam Smite, of Park-street, Grosvenor-bquare, civil engineer, and Archibald Smith, of Princes-street, Leicestersquare, for certain improvements in electric and electro-magnetic apparatus, and in the machinery for and method of making and laying down submarine, submerged, and other such lines.-Patent dated March 8, 1852.

Claims.-1. A mode of insulating suspending wires at the points of support. [Upon an upright post are placed as many boxes of earthenware, or any other non-conducting material as there are wires, having two "dead-eyes," one on each side. In each of these "dead-eyes" is inserted a piece of
galvanised wire; they are then filled with some non-conducting material, and their covers placed tight upon them, in order to exclude damp or the atmosphere, and thus entirely insulate them. At the extremity of each wire is fastened the conducting wire, and by this means thorough insulation is effected. To prevent the possibility of the current being broken, a thin band of copper covers the wire from one point of insulation to the other.]
2. Certain arrangements of machinery for making telegraphic cables.
3. The setting up of such or analagous machinery on board steam or other vessels whereby telegraphic wires may be manufactured and submerged simultaneously. [The wires to form the rope are placed upon as many wheels as there are intended to be strands to the cable. The wheels are then made to revolve simultaneously with another wheel, which, revolving transversely, receives the wires upon its circumference, and performs the operation of twisting. Also, simultaneously with all these revolves a wheel, upon which the core of the cable is wound, and which, by its revolution, gives off the wire intended for this purpose. The cable thus completed may be payed out at the stern, and fixed in the manner usually pursued with respect to submarine telegraphs.]
4. A mode of testing the conducting power of telegraphic wires as they are made into cables.

DECORATIVE PAINTING.

Williay Frogatt, house and decorative painter, for a certain improvement or improvements in decorative painting, which improvement or improvements are applicable to rooms, halls, carriages, furniture, and other purposes to which decorative painting has or may be applied. -Patent dated March 30, 1852.

The method employed by the patentee for effecting this object is as follows:-White zinc or lead is ground into spirits of turpentine, which is allowed to evaporate by drying; after this copal varnish is mixed with it to reduce it to a consistency necessary to facilitate the object of the artist. The mixture is then laid on to the object to which it is intended to be applied, after which it is left to dry; more varnish is added, and also after each coating, until, at the last coating, it is one almost entirely of varnish. This is the method employed to produce a white ground; various other colours may be produced by employing the different pigments, in all cases mixed with white lead until the required tint is produced.

REPAIRING A SHIP'S BOTTOM WHILE AFLOAT.

The following communication on the above subject, appeared in the Boston (U. S.) Daily Transcript, of August 12th:-
"Sir-In your paper of this morning, I have read an article named under the following head, viz., 'Repairing a ship's bottom while afloat,' to which I wish to call the attention of our oldeet ship-carpenters, that they may join with me in claiming the invention for an American. The piece it is said is copied from the London Civil Engineer and Architect's Journal, which contains an account of replacing a defective sheet of copper on the bow of an English man-of-war, five feet below light-water line. The article goes on to explain how the work was accom-plished-viz., on the principle of the cofferdam invented hy a shipwright in the British service. More than twenty-five years have passed away since the Delaware ship-of-the-line, then in this Navy Yard, had a plank in her bottom under the larboard bow, so much destroyed by the ' marine worm' that the water forced itself through-under 'light-water line' seven or eight feet; the defective plank was removed, a new piece fitted, and over all coppered secure. Charles D. Broadie, Esq., late Naval Constructor, invented the cofferdam-box, a description of which is given precisely in the london papers. The box was known and spoken of as 'Broadie's Box.' The Commissioners of the Nayy made Mr. Broadie a handsome present, and the fact was published in all the newspapers of that time. Mr. Broadie rests in peace, and a friend wishes to do him justice.
"Navy Yard, Gosport, U.S.
J. J."
"August 11th, 1858.

ON THE CONVERTIBILITY OF PHYSICAL POWERS.

By W. J. Macquorn Rangine, C.E., F.R.S.E.

IT is much to be desired that practical men were more generally acquainted than they yet appear to be, with a principle which has long been conjectured to be true, but which has only within the last few years been proved experimentally, that all the different forms of physical energy, whether chemical action, light, heat, electricity, magnetism, or visible motion and mechanical power, are convertible into each other; and that although physical energy may be converted from one form to another, or transferred from one portion of matter to another, its whole amount in the Universe is unchangeable. This principle may be justly considered as the foundation of the whole of the physical sciences. It embraces, as a particular case, the principle of the conservation of vis-vivu, which is the foundstion of that physical science which treats of visible motion and ordinary mechanical power. In its general form, it is obviously of paramount practical importance in the working of nll machines which act by the transformation of one kind of physical energy into another, such as steam-engines and air-engines, which transform hest into expansive power and visible motion. In such engines, the gross mechanical power given out is the exact equivalent of the heat which disappears in the working; that is to any, the difference between the quantities of heat possessed by the expansive material, whether steam or air, or any other subatance, on entering and on leaving the cylinder or other working part of the machine, allowance being made for the waste of heat by conduction and radiation.

The mechanical value of heat has been very accurately determined by Mr. Joule, by means of experiments on the production of heat by friction. He has found that so much heat as is capable of raising the temperature of one pound of liquid water by one degree of Fahrenheit, is equivalent to so much mechanical power as is capable of lifting a weight of one pound to a height of 772 feet. Consequently, for every 772 foot-pounds of power given out by a steam or air engine, so much heat must disappear during the expansion of the steam or air as is capable of heating one pound of liquid water by one degree of temperature on Fahrenheit's scale. I have tested this principle by several comparisons with the actual performance of steam-engines, and found it to be corroborated in every instance.
The knowledge of the law of the convertibility of physical energy is the only safeguard against a tendency which has manifested itself in the minds of many ingenious persons, to devise machines which shall produce power out of nothing; a tendency from which some men of high scientific reputation were not wholly free, before this law became a matter of experimental demonstration as well as of reasoning and conjecture. It was, indeed, a necessary consequence of the hypothesis of a fluid of heat, or caloric, that the visible mechanical power of engines acting by the agency of heat must be produced out of nothing.
A striking instance of the fallacious conclusions to which this hypothesis leads, is found in a passage of the description, in the New York Tribune, of Capt. Ericsson"s Air Engine, or "Caloric Engine" as it is called. The writer, after describing an apparatus called a "Regenerator," for saving as much as possible of the heat which would otherwise escape with the waste air of this engine, makes this remark, "The power of the steam-engine depends upon the heat employed to produce steam within its boilers; but that heat, amounting to about 1800 degrees, is entirely lost by condensation the moment it has once exerted its force upon the piston. If, instead of being so lost, all the heat used in creating the steam employed could, at the moment of condensation, be re-conveyed to the furnace, there again to aid in producing steam in the boilers, but a very little fuel would be necessary; none, in fact, except just enough to supply the heat lost by radiation."
So that, if radiation and other waste of heat conld be prevented, the engine having been once set in motion, would go on for ever producing power and overcoming resistance, without any fresh supply of heat-a conclusion opposed to common sense; and yet the legitimate consequence of the hypothesis that heat is a substance, and therefore inconvertible.
The principle of the convertibility of heat with mechanical power reconciles, in a very aimple and obvious manner, two resulte of experiment which appear, from the reports of a recent meeting of the Institution of Mechanical Engineers, to have been considered at variance with each other.

Early in 1850 it was predicted independently, and almost simultaneously, by M. Clausius, in Germany, and by myself in Britain, in papers published respectively in 'Poggendorf's Annalen,' and in the 'Transactions of the Royal Society of Edinburgh,' that it would be found that when saturated steam, or any other vapour, gives out mechanical power by expansion, the heat converted into mechanical power by the expanaion is greater than that supplied by the reduction of temperature corresponding to the reduction of pressure, so that a portion of vapour must be liquefied to supply enough of heat to expand the rest.

Professor William Thomson, of Glasgow, to whom this conclusion was communicated before its publication, was at first struck with its apparent inconsistency with the fact of the dryness of high-pressure steam which has escaped from a jet; but he almost immediately suggested the explanation, that when vapour escapes from a jet into the atmosphere, or into a receiver, the whole of the mechanical power developed by its expansion, instead of being applied to the moving of a load, is immediately re-converted into beat by the mutual friction of the particles of vapour; so that the vapour ultimately possesses all the heat which it originally had, and is therefore super-heated by an amount equal to the difference between the quantities called the total heats of evaporation at the original and final temperatures.

That this is a true explanation has since been shown by the experiments of Mr. Joule and Professor Thomson, on the temperatures at different parts of a jet of air rushing from a recoiver into which it had been compressed. On first rushing from the orifice it was found that the temperature of the air fell suddenly by an amount depending on the expansion; but at a distance from the orifice sufficiently great to allow the great velocity and agitation of the air to subside, it was found to have very nearly, though not exactly, received its original temperature; showing that the mechanical power at first produced at the expense of heat by the expansion, had been re-converted into heat by the friction which had caused the agitation of the air to subside. Had the air, on the contrary, been made to raise a loaded piston, it would have been permanently cooled by the expansion, to an extent equivalent to the work performed.

Now, it has been concluded by Mr. Daniel K. Clarke, from the results of an extensive series of experiments on locomotive engines, described in the Civil Engineer and Architect's Journal for September, 1852, that during the expansive working of steam a portion becomes liquefied, unless it is supplied with heat from without. Mr. Clarke arrives at this conclusion from a comparison of the quantities of steam measured out by the cylinders of locomotive engines with the quantities of water actually consumed.
Mr. Charles W. Siemens, in a paper published in the same journal, states that Mr. Cowper, Mr. Marshall, and himself, had found steam which was allowed to expand by rushing from a jet into a tube connected with a condenser, to be super-heated, or at a higher temperature than necessary to prevent it from liquefying under the pressure applied.

At the meeting of the Institution of Mechanical Engineers, at which Mr. Clarke's paper was read, it seems to have been considered by some of the members present that his conclusions were at variance with the results of the experiments of Mr. Siemens, Mr. Cowper, and Mr. Marshall. It must be evident, however, from the explanation already given, that the results arrived at by Mr. D. K. Clarke and by Mr. C. W. Siemens, are not only consistent with each other, but are precisaly what had been anticipated by reasoning from the principle of the mechanical convertibility of heat. In Mr. Clarce's experimenta, the steam in expanding had performed work in driving an engine, and had lost an amount of heat equivalent to the work performed, in consequence of which a portion was liquefied. In Mr. Siemens's experiments, the steam had performed no work, and, consequently, lost no heat; and it was therefore superheated by an amount equal to the difference between the total heats of evaporation at its original and final temperatures. This difference, as measured in degrees of temperature applied to liquid water, is, according to the experiments of Regnault, $0.305 \times$ the difference between the two temperatures of the steam.

Although Mr. Clarke's experimenta afford a general verification of the deduction from the mechanical theory of heat to which I have referred, it may be doubted whother the whole of the discrepancy between the quantity of water consumed, and the quantity computed from the bulk of steam in the cylinder,
arose from liquefaction in the cylinder; for we know little of the bulk occupied by a given weight of steam under different circumstances except by conjecture; and from the analogy of the more easily condensible gases it may be inferred, that steam and other vapours near their point of condensation, especially when of great density, are affected by the force of cohesion to an extent which causes them to occupy much lese bulk than they would do according to the laws of the perfectly gaseous condition.
It is true, as I have shown in a series of papers published in the 'Transactions of the Royal Society of Edinburgh,' Vol. XX., that formula, founded on the assumption that ateam is a perfect gas, agree with the actual performances of expansive steamengines; but this fact throws little light on the subject of the actual density of steam, for, according to a law discovered by Carnôt, reconciled with the mechanical theory of heat by Clausius and Thomson, and shown by me to be a consequence of the supposition that heat consista in a molecular oscillatory movement, the proportion of the heat employed in expanding an elastic subatance which is converted into mechanical power by an engine, depends solely on the two temperatures at which the beat is supplied, and the unconverted portion of heat abstracted being greater as the former of those temperatures is higher and the latter lower; and is independent of the nature of the substance which works, and of the law of its expansion; so that, although an erroneous law of expansion may be assumed in calculating the power of the engine, it may still, by a compensation of errors arising from Carnôt's principle, lead to correct results in practice.
The knowledge of the density of steam at various pressures and temperatures, is now the most important desideratum, both in the theory of heat and in its practical application. M. Regnalt long since announced that he was about to undertake a series of experiments on this subject, at the expense of the French government, but the results have not yet appeared. It is to be hoped that they may not be much longer delayed.

59, St. Vincent Street, Glasgoro,
W.J. M. Rankine. September 23, 1852.

REPORT ON DESIGN AT THE GREAT EXHIBITION.

By Richard Redorave, R.A.*

The desire evinced by the rudest, as well as the most civilised, nations for the decoration of their buildinga, utensils, and clothing, almost raises ornament into a natural want, and must render its proper application of the utmost consequence to the manufacturer, since upon it the value of his manufactures in the various markets of the world greatly depends. It can hardly be possible, therefore, that any one should doubt, on the present occasion, the importance of a careful review of the union of design and ornament to manafacturing skill, since all that the inventive powera, the fancy, and the handicraft of man can do, has this year been gathered into one place, and the world been invited to consider and examine it. But, without come critical guidance, some judicial canons, or some careful separation of the meretricious from the beautiful, it is to be feared that the public tapte will rather be vitiated than improved by an examination of the Exhibition, as it will readily be allowed that the mass of ornament applied to the works therein exhibited is of the former character, and from that very cause more likely to impose on the uninformed taste of the multitude than the simpler qualities of real excellence to impress us with a just sense of their worth. Such considerations were, doubtless, among the reasons which influenced the determination of the Royal Commissioners on this subject.
We have spoken of design and of ornamental decoration. These are two essentially different things, and it is highly necemary that they should, from the first, be considered as separate and distinct. "Design" has reference to the construction of any work both for use and beauty, and therefore includes its ornamentation also. "Ornament" is merely the decoration of a thing constructed.
Ornament is thus necessarily limited, for, so defined, it cannot be other than secondary, and must not usurp a principal place; if it do so, the object is no longer a work ornamented, but is degraded into a mere ornament. Now, the great tendency of

[^51]the present time is to reverse this rule; indeed, it is impoasible to examine the works of the Great Exhibition, without beeing how often utility and construction are made secondary to decoration. In fact, when commencing a design, designers are too apt to think of ornament before construction, and, as bas been said in connection with the nobler art of architecture, rather to construct ornament than to ornament construction. This, on the slightest examination, will be found to be the leading error in the Exhibition, an error more or less apparent in every department of manufacture connected with ornament, which is apt to sicken us of decoration, and leads us to admire those objects of absolute utility (the machines and utensils of various kinds), where use is so paramount that ornament is repudiatel, and fitness of purpose being the end sought, a noble simplicity is the result.
The primary consideration of construction is so necessary to pure design, that it almost follows that, whenever style and ornament are debased, construction will be found to have been first disregarded; and that those styles which are considered the purest, and the best period of those styles, are just those wherein constructive utility has been rightly understood and most thoroughly attended to. A dissertation upon difference of styles would be out of place in this Report, as well as an expressed preference for any particular one, since each, doubtless, contains some qualities of beauty or excellence which will justify its use when restrained and regulated by fixed principles. It may not, however, be improper to illustrate, by a few remarks, the opinion expressed above, since it involves important principles connected with a proper consideration of works coming within the scope of the Report.
To begin with the ecclesiastical architecture of the middle ages: when the style was purest, the construction was most scientific, the arches ware best formed for resistance, the groining was elevated and simple, the ornament modest, and applied to the forms of construction only. As the style progressed with time, it departed from its primitive simplicity: it became more ornamental it is true, but at the sacrifice of some of its constructive truth: the use of the arch was partly obscured by its being placed under an horizontal arrangement, and supported by perpendicular mullions, and it was gradually flattened to the worst form for sustaining pressure. The groining, at first simple, became a most elaborate system of reticulation, by its numerous lines reducing the apparent height of the roof, to the entire loss of the sublime effect produced by its elevation and simple groining in the earlier period. At the same time the enormous pendants seemed ready to fall on the heads of the beholder, and to bring with them the flattened arch of which they were the key-stones. The exterior was everywhere decorated, effecting the ruin of the building by the dnst and moss which this humid climate soon engendered. In its last period, decoration could be carried no further, and so Gothic architecture, which had grown into glory and beauty, from its just and scientific construction, was thrown aside when a florid ornamentation had taken the place of constructive truth. It was succeeded in this country by the Tudor style, a modification of the Renaissance. The Renaissance itself arose mainly from the study of Roman remains, and those often of the worst period of the Empire, when Greek science, skill, and pure taste had fallen before Roman magnificence and barbarism, and before modern discoveries had opened up the Athenian treasures of Greek art. It was introduced, however, by men of enlarged minds, most of them great constructive architects, and by them it was constructively gdapted; they embodied in it many of the just principles of the ancient styles; and if the stream of tradition had brought down much rubbish as well as treasure, still the master-minds of the fifteenth century gradually separated them, and applied with unrivalled skill and a fertile fancy what was beautiful and good. It was, however, essentially pagan in all its details, and its ornament conveyed no symbolic truths to the hearts of men. In the hands of less skilful masters, it soon became decoration without a pervading spiritornament merely used as ornament, without propriety as without meaning; and thus, as the Tudor style, it succeeded in this country to the Gothic, that style dying out, partly from the causes above stated, and partly from the change of feeling consequent on the reformed opinions which then prevailed. This debased form of the Renaissanoe, in its decoration, had already cast off all constructive truth and consistency: much that was bad in the late style was retained and mixed with it; whatever was good was as certainly forgotten. Columns were reversed, the
heavy and broad part being upwards, the small part below; they swelled alternately into enormous bands, and were contracted into severing rings, and sometimes they stood upon balls, to give a further sense of insecurity. Terminal figures were introduced, which had the weight of their entablatures borne on baskets of imitative fruits or flowers. The covering-pediments were broken, contrary to all constructive application, or were placed successively one within another: entablatures were enlarged out of all proportion to the supporting columns; and the useful was superseded by the ornamental.

In France first, and afterwards in all the countries of Europe, the Renaissence was degraded into the style known as that of Louis Quatorze. In all that this style differed from the true Kenaissance, it differed merely as arising out of decoration. As a style, it never had a commencement in construction, as the Gothic and Renaissance had, both of which were founded on an architectural basis; this sprang from the love of the Grand Monarque for magnificence and display. In it, all that was constructively true was disregarded utterly and systematically; thus, supports became curved and broken in line exactly where they require strength; bearing-rails were severed in the centre where the greatest bearing is; the union of horizontal and peryendicular forms was suppressed, atyles and rails as far as possible hidden; veneers applied with the grain across the framing, and every effort of invention strained, not to decorate the due constructive truth of things, but utterly to hide and abolish construction altogether. The ruling principle of the style, as far as it can be said to have had one, was the avoidance of symmetry, and the search after variety by every possible means: for this reason, central forms had dissymmetrical sides, and the most unequal division of parts was the rule of consosition. Nevertheless, for the purpose which called it forth, for mere magniticeuce and display, it was admirably adapted, being one of the most suitable styles for the display of gilding, and for brilliancy and sparkle in metal and ormolu work, showy and glittering beyond anything attainable in the simpler forms of the Renaissance or of classic antiquity. From these qualities it has long maintained its hold on the public taste; and its forid and gorgeous tinsel still prevails in three-fourths of the works of the Great Exhibition, notwithstanding its gross contempt of constructive principles.

The ornament of past ages is the tradition of the ornamentist, and traditiou ever hands down to us things good and bad, both equally consecrated to most minds by the authority of time. But a moment's refection will show how necessary it is to discriminate before receiving anything on such anthority. A church or temple built in a rude age remains undisturbed by some happy chance; a villa or a theatre in a remote provincial town escapes the fatalities of accident or time; some tomb is opened, some overwhelmed city exhumed from the dibris of ruin that had gatbered over it. The ornamental details found therein are copied and illustrated by the notes of antiquarians, or published in the proceedings of learned sucieties, and are at once regarded as authorities for imitation, it being forgotten that they were perhaps the works of obscure provincial artists, of a barbarous age perchance, or of a people with whom art, no longer studied for its principles, had ceased to progress, or had rapidly declined.

Such traditional ornament, moreover, had or had not a local use-a consistent application to domestic, ecclesiastical, or funeral purposes-in fact, a local symbolism; but even if it had, this, mostly overlooked, is sure to be soon diaregarded; and not only have we ornament of a degraded period, of a declining age, or by inferior artists, but to this must be added, that its symbolic life is totally extinct, and perhaps fortunately so, for when revived it is indiscriminately, for purposes totally at variance with its first application and original intent. Moreover, the ornament suited for one material is misapplied to a material different from that for which it was designed. Thus, ornament originally carved in stone, is used for metal or for wood, or, worse still, for carpets or fur dresses. That which was intended to be carved in relief, is imitated as the inlay of a floor or the hanging of a wall, and senseless anomalies of all kinds speedily arise from undue reverence for, and indiscriminate use of, traditionsl ornament. That this is no forced view of things, a glance at the Exhibition will at once show, wherein are to be seen the sacred vessels of the church imitated for secular purposes; the funeral urns of the Greek revived as drinking-vessels for the table; the columns of temples turned into candlesticks, and sarcophagi into wine-coolers; while the decorations of coilings are applied
to carpets, and the carved frieze of an Ionic temple to amasin curtain: all these errors arising from the indiacriminating uee of those materials with which antiquity has supplied us.

Ornamentists may fairly be divided into two clagses: the traditional, who superstitiously reverence the remains of past ages, and are wedded in practice to exiating styles; and thowe who despise the past, and feel themselves at liberty to adopt from the abundant sources of nature a mode and manner for themselves, without regard to the woriss of their predecessors. The first class simply seek to follow where precedent leads, and to be able to claim the sanction of suthority for their works, These, even when taste duly regulates their choice, are men of limited ideas and small progress. Those of the second class, who pay no deference to authority, who think that ornament is governed by no laws, and who see no principles by which they are to be guided, are little likely to raise the art to the level of past times, and still less to advance its aim and widen its scope. The true ornamentist would seem to be one who seeks out the prisciples on which the by-gone artists worked, and the rules by which they arrived at excellence, and, discarding mere imitation and reproduction of details, endeavours, by the application of new ideas and new matter, on princiules which he believes to be sound, or which time and the assent of other minds has approved to be fundamental, to attain originality through fitneas and truth. The antiquarian ornamentist, however, will alwaya have a certain reputation, and justly, if he has the taste to eelect what is best from the great masters of past times. In any case, the critic must be bold who speaks against the authority of the fathers of the art; and praise is safe when great names are on the side of the critic. From this class of ornamentists we may at least demand purity of style, that marked eras should be kept distinct, and that the adopted ornament should be fitly applied to fabrics or manufactures of the like nature, and, as far as possible, for the like uses, as those for which the ornaroent was first desigued.

From the labours of the second class of ornamentiste, united to that constant search after novelty at any sacrifice of true taste for which manufacturers are so constantly urgent, there has arisen a new species of ornament of the most objectionable kind, which it in desirable at once to deprecnte, on account of its complete departure from just taste and true principles. This may be called the natural, or merely imitative style, and it is seen in its worst development in some of the artucles of furm.

Thus, we have metal imitations of plants and flowers, with an attempt to make them a strict resemblance, forgetting that natural objects are rendered into ornament by subordinating the detaily of the genieral idea, and that the endeavour ought to be to seize the simpleat expression of a thing rather than to imitate it. This is the case with fine art alsu: in ids highest effort mere imitation is an error and an impertinence, and true ornamental art is even more opposed to the merely imitative treatment now so largely adopted. Let any one examine floral or foliated ornament produced in metal by electrotyping the natural object, whereby every venation and striation of the plant is reproduced, and compare it with a well and simply modelled treatment, where only the general features of the form are given, and all the minutest details purposely omitted; and if this latter has been done with a true sense of the characteristics of the plant, the meanness and littleness of the one mode will be perfectly evident, compared with the larger manner of the other. But this imitative style is carried much further: ormolu stems and leaves bear porcelain flowers, painted to imitate nature, and candles are made to rise out of tulips and China ssters, while gas-jets rush forth from opal Arums. Stems, bearing flowers for various uses, arise from groups of metal leaves standing tiptoe on their points, and every constructive truth and just adaptation to use is disregarded for a senseless imitative naturulism. In the same way, and douhtless supported by great authority, past and present, enormous wreaths of fowers, fish, game, fruits, \&c., imitsted à merveille, dangle round sidebuards, beds, and picture-frames. Glass is tortured out of its true quality to make it into the cup of a lily or an anemone; not that we may be supposed to drink nectar from the flower, but that novelty may catch those for whom good taste is not piquant enough, and chaste forms not sufficiently showy. In fabrics, where flatness would seem most essential, this imitative treatment is often carried to the greatest excess; and carpets are ornamented with water-lilies floating on their natural bed, with fruits and flowers poured forth in overwhelming abundance,
in all the glory of their shades and hues; or we are startled by a lion at our hearth, or a leopard on our rug, his spotted coat imitated even to its relief, as well as to its colour, while palmtrees and landscapes are used as the ornaments of muslin curtains. Though far from saying that imitative ornament is not sometimes allowable, still it will at once be felt that the manner wants a determined regulation to exclude it in most of the above-mentioned cases from all works aspiring to be considered in just taste, and to leave it to be adopted by those only who think novelty better than chaste design, and show preferable to truth.

The constant search after novelty has just been alluded to as one of the sources of bad taste in modern ornament. Manufacturers are eager to obtain it at any sacrifice of truth and at any cost. The efforts of those past ages, when taste was most indisputable, appear to have been directed rather to the continually perfecting and refining their designs and inventions, than to creating new ones. Thus, in architecture, the robust simplicity and grandeur of the Doric order remained unchanged from age to age, architect after architect striving only to perfect its just proportions and the symmetry of its parts, rather than to add any novelty of feature or ornament, until, in the Parthenon, it seems to have arrived at the most perfect development that taste, science, and art could unitedly effect. Even among the more voluptuous inhabitants of Asia Minor, at least until the age when their artists became servants and panderers to the coarser magnificence of Rome, the details of ornamentation were few, and those universally received. The volute, the acanthus, the anthemion, the echinus, and a few frets and guilloches, seemed to pass the ordeal of criticism, not that they might be rejected for more novel treatments, but that the symmetry of their parts might be more justly balanced, the commoner curves rejected for those more varied, beautiful, and refined, and the true import given to their projections. Proportion and symmetry being thus sought after instead of novelty, their ornament has come down to us with authority like that of Scripture, rather than that of tradition, aud all the after efforts of artists, who have adopted and adapted it, have failed to improve its elegance, or add to its beauty. Even in the eastern nations we find the same usage prevail; and to this day Indian ornament is composed of the same forms as it was in the earliest known works; the principles that governed ornamental practice in those works seem still to be a tradition with the artist and the workman, and still to produce the same beautiful results, as is abundantly seen in the fabrics and tissues of the Indian department of the Great Exhibition. Now, however, our efforts are of an entirely different nature, and the hunger after novelty is quite insatiable; heaven and earth are racked for novel inventions, and happy is the man who lights upon something, however outre, that shall strike the vulgar mind, and obtain the "run of the season." Such patterns as often result from the caprice of accident as from any effort of thought-witness what is called the diorama pattern in cotton printing, which was very popular, yet was the result of an accidental folding of the stuff on the cylinder in printing. Accepted for the season, these fantasies no sooner pass away than the world wonders how it could ever have looked upon them with astisfaction, or tolerated for an instant such solecisms in taste, such strange incongruities, or gross absurdities.

The ornament of past ages was chiefly the offspring of handicraft labour, that of the present age is of the engine and the machine. This great difference in the mode of production causes a like difference in the results. In old times the artist was at once designer, ornamentist, and craftsman, and to him was indifferent the use of the pencil or the brush, of the hammer, the chisel, or the punch: his hand and his mind wrought together, not ouly in the design, but in every stage of its completion, and thus there entered a portion of that mind into every minute detail, and into every stage of finish, and many a beautiful afterthought was embodied by the hand of the "cunning artificer," many a grace added to the work by his mastery and skill. He worked, not to produce a rigid sameness, but as Nature works:-she produces nothing exactly similar to its fellow, in every turn of every stage of growth, in every flower, and in every leaf, adding a changing grace, a differing beauty; oo he varied bis labours with every feeling of his overflowing mind. But this is not possible with the stamp, the mould, the prese, and the die, the ornamental agents of our days: after the type or model is made, all the products are rigidly the same, whence arises a sickening monotony, a tiresome sameness,
unknown in the works of nature and peculiar to these artificial works of man: the varying mind has no share in their production, and man himself becomes only the servant of the machine.

Moreover, the old ornamentist worked generally from feelings of piety, from love of his labours, or from the desire of fame, motives hardly known to the artists of this class in our days, at least in this country. Who seeks fame from the ephemera of a season? Who loves a labour that is so soon to pass away? Who cares for a work that is not to be the child of his own hand, but to be produced in thoussends by the aid of machinery? 'The toil of him of old times was spent upon the thing itself, and not upon a mere model for it: the chalice, the cup, the lock and key, the reliquary, were to be without repetition, and without rivals; he sought to give them their highest excellence, and, labouring from one of the feelings we have described, threw his whole soul into his work. so that it became a thing for future ages to look upon and to prize. Not that handicraft or art-workmanship is utterly excluded from our manufactures; it is only partially so, making more painfully evident how greatly ornamental art has suffered from its union with machinery. Wherever ornament is wholly effected by machinery, it is certainly the most degraded in style and execution; and the best workmanship and the best taste are to be found in those manufactures and fabrics wherein handicraft is entirely or partially the means of producing the ornament, as in china and glass, in works in the precious metals, carving, \&c. This partly arises from the facilities which machinery gives to the manufacturer, enabling him to produce the florid and overloaded as cheaply as the simple forms, and thus to satisfy the larger market for the multitude, who desire quantity rather than quality, and value a thing the more the more it is ornamented. This state of modern manufacture, whereby ornament is multiplied without limit from a given model, by the machine or the mould, ought at least to awaken in the manufacturer a sense of the importance of the first design. One would think that what was to be produced by thousands and tens of thousands should at least be a work of beauty, and no pains be spared to insure its excellence. The cost of the first design or model must in such a case be a mere atom when divided among its myriad prototypes. It would seem strange, too, that any one could be found to throw away great expense upon dies and moulds, to carry out a design which in itself was hardly thought worth paying for. Yet, often in this country artists are paid little better than workmen, and a belief seems to prevail that knowledge, skill, and taste come by nature: the artist has often no interest in the result of his labours, his name is unknown, his pay is niggardly, and what there may be of beauty and excellence in his work is often spoiled by the alterations of the manufacturer, who makes no scruple of setting his own taste above that of the artist, and altering and changing his design at his sole pleasure. In France, and some parts of Gernany, where taste has long been cultivated, and the value of ornamental design is better understood, these relations are better understood also; and in this country, if good taste is to prevail, the manufacturer must learn to appreciate more highly the value of the designer's labours, must seek to foster his talents and stimulate his amour propre. Society, also, must be prepared to contribute more largely than heretofore to public education in ornamental art, aud taste must be disseminated by every available means; for it is not only truth, but a truth that should be told, that, notwithstanding our skilful workmanship and our excellent manufacture of most fabrics, we are sadly behind in the design applied to them, and greatly indebted to foreign artists even for what little is good. Moreover, our greatest difficulty consists even less in the want of designers than of skilled art-workmen to carry out designs. A design for cotton-printing may be spoiled by the "putter-on," or for silk by him who prepares it for the loom. The sculptor may design a statuette, but there are few able to chase the bronze, or to retouch the clay, or to unite the parts when they come forth from the mould. Even where such are found, they are mostly men of slow minds, who enter little into the spirit of the artist's labours, and who work without feeling as without fire. We find plenty of chasers able to imitate the fur of animals, or the texture of draperies, but few who understand the bones and the anatomy of the parta, and fewer still who carry an artist's spirit into their works. In painting, also, the painter on glass and china is generally a mere copyist, or he works too entirely by rote, and without feeling. The lily and the rose which he paints are always the same lily and the same rose, a work of the hand and eye, in which the mind has nu
share. There are honourable exceptions, no doubt, but with the many art is a mere handicraft. In France, in Germany, in Bavaria, in Italy, this is not the case. There the artiat often carries out his own design, and, where he does not, has always at hand a band of skilled art-workmen to embody his ideas, or to complete his labours. The beautiful works in metal, by Vechte, Wagner, and Weishaupt, the china paintings of Jacobber, Schilt, Ducluzeau, Haman, and a multitude of others, and the furniture carvinga of Lienard, are choice examples of the above-stated truths; while the works in oxidised silver, such as seal and knife handles, paper-weights, cigar-cases, \&c., exhibited by Rudolphi, with the bronzes of Méné, Pradier, and a host of other such works, show the skill, taste, and knowledge of the art-workmen of France. In France, moreover, there is a fitness and fancy pervading ornamentation; the ornament, especially where figures and animals are introduced, being specially adapted to the thing ornamented. In England, the ornament designed for one work is made to do duty for twenty others: one figure truly plays many parts, and is often used with an inconceivable want of fitaess. But the English public, and the English manufacturers as a body, are hardly yet awake on the question of design: government has established schools of ornamental art in many of our large manufacturing towns, for the purpose of spreading genuine taste, and educating our workmen; but they are as yet a forced product, and have hardly anywhere, after ten years of struggle, won the warm support of the local manufacturer. Even in this great Exhibition, the question of design was nearly overlooked, and the works of the designer left without a place: his name was not necessarily coupled with the fabrics or manufactures his skill had designed or decorated, and his reward, therefore, was left to the good feeling of his employer. No special jury was named to unite with manufacturers in the various classes in judging of the taste and art displayed in the ornamentation of their fabrica; and that art which, as we have before said, is calculated, when excellent, to raise the reputation of a nation's manufactures, was left to the judgment of those too likely to consider, not its real excellence, but what an untaught multitude would purchase and would prize. In France, many large establishments have wellappointed schools attached for teaching drawing and modelling, and the rudiments of science connected with their manufactures. In Germany also, and in Jtaly, schools and institutions have long been in operation for the cultivation of taste in design; and it will be necessary for this country to enter seriously on the same course, if we are to maintain even our manufacturing reputation before the world.

In estimating the progress of this country in ornament and in art-workmanship, as compared with the continental nations, there is one circumstance that must enter largely into consideration. In France, Germany, Italy, and Belgium, in addition to schools for teaching ornamental art, royal and national manufactories have been established for many years. In these, no necessary expense is spared to bring to perfection the fabrics wrought in them, both as to the highest excellence of workmanship and materials, and to their embellishment by ornamental design. The best painters, sculptors, and designers, as well as men of the most scientific acquirements in botany, mineralogy, and chemistry, are among their professors; and the works being carried on at the public expense for the attainment of excellence, the cost of repeated failures is unheeded. In such establishments, a band of skilled workmen must of necessity be trained to the ultimate benefit of the private manufacturers, and inose difficulties which science had found the means of overcoming, or those new processes and new materials which it had brought to light, be spread abroad for the common advantage of all. Moreover, the sight of excellence and of the products of skilled workmanship is one of the greatest stimulants to further exertion, since all art and all manufacture arrive at perfection by gradual advance on past labours. The workman who sees the results of the skill which has produced such works in china and porcelaln as are exhibited in the Sevres room or in the hall of the Zollverein, must feel this stimulus in no mean degree. When it is remembered what one single artist did in this country for the same manufacture, and how greatly Wedgwood and his workmen were indebted to Flaxman, we can well feel What influence a band of artists of like ability, exercising their talents to improve every department of the manufacture, and of these a continued succession, would be likely to exprcise over the taste and skill of those in contact with them. Nor is this all: the excellence of one fabric awakens a desire for like
excellence in others, and call forth the same spirit of emulation. It surely cannot be doubted, therefore, that the continental nations, and more especially France, in this manufacture, and through it in many others, have been largely benefited by auch institutions; besides the amount of national reputation obtained by them from the display of the choice works which are therein produced.

In these remarks it is not intended to plead for the desirableness of such establishments in our own country, but only to point them out as the means whereby other nations have attained to great excellence. It is no answer to such an argumentalthough it is indeed true-to say, that without these aids the general manufacture of such fabrics in Germany and France is behind our own; and that the private show of such works by Minton, Copeland, and others, is, both as to manufacture and design, superiur to that of any private manufacturer of thoee countries. This may arise from various causes; but with the like advantages on our side, it may well be imagined that much greater excellence would have been attained: the want of skilled art-workmen being felt and acknowledged by these manufacturers as a great hindrance to the complete success of their manufacture. Moreover, it is but fair to remember that such royal and national establishments, by the beautiful worke produced in them, have added largely to the number of rewards won by other nations in this peaceful contention, and have placed at some apparent disadvantage the manufacturers and workmen of our own country. Let us hope, however, that the time is coming when England will seize eagerly every proper means of improvement. Symptoms of it are already abroad; and there seems a likelihood that the Great Exhibition of the Industry of All Nations will be valuable to all in showing shortcomings as well as excellences; and to none will it be more so than to the British nation, if it awakens us to a knowledge of our deficiency in ornamental art, and to a hearty endeavour immediately to remedy it.

Decoration of Buildings.

The objects in the Exhibition which range under the above head belong to almost every known style of ornament, and are so various in their character and uses that it is hardly possible so to arrange them as to bring them under general criticism, or to define any principles which would be universally applicable to their design. They consist, first, of decorative treatments, exhibited as efforts of skill; secondly, of restorations of parts of buildings, and of ornamental coustructive parts; and thirdly, of works intended to form integral parts of a building, but which are manufactured so as to be adventitiously applied. Properly speaking, the design for the decoration of any building, both externally and internally, is the province of its architect, since in this case decoration is essentially a part of architecture. If the principle insisted upon in the prefatory remaris to this Report, that ornament is the decoration of construction, be just, it will be apparent that it is hardly possible to judge of the oae without the other. In works wherein the decorator makes his own sham construction in order to ornament it, as well as in those multiplied manufactured "parts," which form the staple ornament of a large class of coorkmen in this line, we may admire the skill of the execution, the cleverness of the details, the excellence of the manufacture, or the imitation of early works of acknowledged merit; but to appreciate "decoration," we must view it as a whole in the place for which it was specially designed, and in harmony with the building whose construction it ornaments. Moreover, it must mainly originate in local circumstances, and ought to have an individual significance. Here, however, the moment we enter upon the varied inspection, we become sensible how impracticable it is to lay down any general canon for works which differ almost as widely as the beginning and end of time. In other ages of the world, nations have been fortunate in so adapting design to prevailing wante, and in sympathy with existing feelings, as to produce a national atyle. But in the present day, men no longer attend to such considerations; they are wholly without such guiding principles, and consequently are totally without a characteristic style. They are satisfied with the indiscriminate reproduction of the architecture of Egypt, Greece, and Rome, or of Christendum in any, or all, its marked periods. Originality they have none. One man delights in a Gothic villa; another prefers the style of Italy: even India and China have their advocates, who never consider that climate and use should rule the choice, rather than fantasy and whim, and that there must be conditions arising
from the present state of society, from fiscal regulations, modern habits, \&c., which duly attended to, would, in addition to utility, be likely to result in novelty and beanty.
It is this merely imitative character of architecture which has so largely contributed to decorative shams, to the age of putty, papier-maché, and gutta-percha. These react upon architecture; and, from the cheapness with which such ornament can be applied, and its apparent excellence, the florid and the gaudy tase the place of the simple and the true. A popular writer describes the wearer of cheap finery as having his jewellery "a size larger than anybody else;" and so it is with the cheap finery of imitative ornament: it is always "a size larger" than it should be-bolder, coarser, and more impudent than the true thing; it excites our contempt by its flasby tawdriness, so incongruous with the meanness and vulgarity it is intended to adorn.

From this manufacture of omament arises all that mixture of styles, and that incongruity of parts, which, perhaps, is itself "the style" of this characterless age. Through it, also, the plasterer and the paperbanger too often usurp the place of the architect, to the certain dismissal of the mason and the woodcarver; and ornament, perchance in itself unobjectionable, is sure in such hands to be grossly misapplied.

The "designs" for architectural decorations exhibited are few in number, and are very open to the foregoing criticism.

Those on the foreign side are in the French department: they seem the very vagaries of a fantastic imagination, full of fancy, it must be owned, and skilfuly executed, but without the slightest sense of utility or of constructive truth. Everywhere ornament is in excess; the architectural construction obscured and overlaid with figures, fruits, flowers, Rc., so that they seem more fitted for the scene of a theatre, than for any sober purpose of every-day life. Crowded together in such capricious abundance, the ornament can only be that of those cheap imitative manufactures we have above referred to. The "designs" on the English side consist of a few reproductions and adaptations of early styles, on which invention is as much wanting as in the others it is in excess. Of the works themselves exhibited in this section, the reasons already given will dispose of a large number, since it is impossible to view them otherwise than as specimens of skilful execution, or the reverse; thus, for example, what can justly be said of the ceiling exhibited by A. Montarari, of Milan? The room which is fitted up for its reception is badly lighted, and otherwise unsuitable, and the reverse of what is requisite for a library, for which the decoration is intended; but that matters little, since, under the best circumstances, it could be truly appreciated only in connection with an architectural reality. It may deserve praise for its extremely dexterous and skilful execution; but this is quite a separate thing from exhibiting any just principles on which it has been designed. It may be said, however, that as a ceiling, the decoration is too heavy, both in form and colour. This, which would be even more apparent in a lighter apartment, is a great error in a ceiling decoration, having the effect of depressing it, and diminishing the height of the room-a fault often seen in the richly gilt and massive ceilings of the continental palaces. It may, indeed, be laid down as a rule, that the decoration of a roorn should diminish in heaviness, in strength, and in gorgeousness as it passes into the ceiling. Then, again, as to the numerous ceiling decorations beneath the galleries on the English side: from the same causes it is only possible to speak of the skill of the decorative workman, since to judge of their local adaptation is out of the question; the light and graceful decorations being necessarily placed at the same height as the heavier and more richly treated ones, and of course their due adaptation judged of equally by that height, although, perhaps, the one may have been designed for a much lower ceiling than the other. The like difficulties, arising from causes before enumerated, prevent the proper considerations of the various specimens of wall-decorations. The principles, however, which are given under the head of Paper-hangings, eminently apply to such works.

The restoration of parts of existing buildings calls for little originality in the designer, since it almost wholly consists in the careful study of the decoration which remains, aided by a knowledge of the traditional ornament of the period. Such are the carefully-reatored spandrel for Hereford Cathedral by N. J. Cottingham, part of the tomb of Queen Philippa by S. Cundy, and the wood-carving for the dining-room at East Sutton Place, designed by C. J. Richardson. In such works the taste of the
designer is shown in excloding the conrser characteristics of the style, and making use of those only which, if less marked are also less extravagant, adopting its general spirit rather than copying its individuality. Thus in the sister art the unskilful portrait-painter seizes on the most salient characteristics of his sitter, and dwells upon all the individual defects of form and feature: the result is a likeness indeed, but a caricature even upon tbe homely original. The painter more skilled in his art avoids such coarse renderings, and under his hand even the plainest face is refined and generalised. In the same way a style becomes degraded. The decorators who adopt it overlook the epirit of its general idea, and exaggerate its peculiar characteristics, until at length it is likely to become a mere distorted caricature. Thus it was that the Renaisaance degenerated into the Tudor, and the ornament of Louis XIV. was further degraded into the rococo and bizarre style which now goes by that name. A work, otherwise of much merit, may serve as a slight illustration of these remarks; it is the decoration, caryed in walnut wood, for the end of a room, in the atyle of Francis l., exhibited by Messrs. Holland and Sons. This skilful work is detracted from, in a degree, by want of due selection; thus the large shell-forms, used in the blocking course above the cornice, are heavy and out of place in such a situation, and should not have been so used, however sanctioned by traditional authority. The ornament of the pilasters also, otherwise well designed and skilfully executed, ought in wood-carving to have been kept in lower relief, so as to have been within the surface of the pilaster itself, instead of projecting beyond, by which it is at once evident that the ornament is applied, and not, as it should be, carved from the solid wood.
Space will not permit, even if it were necessary, to npeak of the numerous carved and other works in stone, wood, and marble, for decorative additions to buildings, exhibited in various parts of the Exhibition, since there is little which, from the original or peculiar application of design, calls for eapecial notice. The errors of such works will often be found to originate in the construction fitted for one material being applied to another; thus, that which ought to have been stone is wrought in wood, or wood treatments are carried out in stone or metal. The costly malachite decoration exhibited in the Russian Court may be noticed as an example of this mistake. Stone doors at all would seem to be an anomaly, but framed after the manner of wood still more so. In addition, the doors, which necessarily produce a sense of extreme weight, are hung to pilasters so narrow as to be quite disproportioned for their support.

It may not be amiss here to advert to the error arising from excess which these works illustrate. Thus, the malachite vases exhibited in this room are improperly supported on malachite pedestals, greatly detracting from the sense of rarity and richness which would result from having only the principal object made of the rare material, and its support in a baser one, while all the enrichment which would arise from contrast is lost also, and the eye is fatigued with the quantity and sameness of colours, which would have been refreshed had a marble of some homogeneous colour been used for the bases instead of the malachite.
Ornaments manufactured from plaster materials, such as guttapercha, putty, carton-pierre, \&cc., have no doubt a substantial value in the Great Exhibition, commercially considered. As regards design, however, they are but dangerous subsidiaries, often doing greater injury, from the tasteless, misplaced, and false decoration arising from their use, than good, by ministering to decorative purposes. Apart from that monotonous multiplication of the same forms, necessarily resulting from the unvarying productions of the mould and the die, which has been before alluded to, there are other evils sure to accompany manufactured decorations such as those now under consideration. The great cheapness of the substitute, compared with the real material, inevitably leads to excess. Such ornament always seems added or applied, stuck on as it were, and can rarely be made to appear as a part of construction; it therefore constantly carries with it a sense of untruth, till the mind and eye, from habit, become satisfied with it, and at the same time deadened to what is really true and good. Moreover, decoration of such materials must necessarily be patchy and incomplete; when the parts to be ornamented are large, this evil is seen in its most exaggerated form; a forid and gaudy centre has perhaps to be united with coarse corners, either by other ornaments or by the repetition of the centre portion, and all sorts of expedients must be resorted to to "bring in" the parts so as to suit the architectural distribution of the apartment; it can indeed barely be possible that
the quantities, or the geometrical arrangement in which the ornament has been originally constructed, will agree with the place to which it has to be adapted, and more or less of makeshift must be the result. One of the most important works in such materials is the centre compartment of a room in carton-pierre, by V. Cruchet, which, with all the excellences of the manufacture, exhibits many of its prominent defects, and may serve to illustrate the general faults of such materials. Thus it is decidedly over ornamented, and this is shown not only in the excess of ornament, but in the want of relative scale between the ornament and the constructive forms of the architecture, the former being far too large, as well as too redundant. Scale also seems to have been quite disregarded in the parts themselves, since the fruit and flowers, the birds and game, of one part, are different in size from those of another part. The style, again, is mixed, one part being two centuries earlier than the other. There is, besidex, far more pains taken with the exact rendering of fur or a feather, than in perfecting the form of a moulding, or the shape of a panel-the architecture has, in the designer's mind, been subordinate to the ornament, and an ill-formed ellipse, or a coarse and unrefined moulding, appears of less importsace to him than the mere imitation of the feathers of his birds, or the fur of the animals of which his ornament consists. Carry this treatment a little further, and it will result in having the game, the fruit, the foliage, and the fluwers not only modelled to the exactest imitation, but the skill of the painter called in to add to its naturalism, and the whole painted with the colours of nature; thus decoration will be thought perfect only when it competes with those strange relieved pictures which are exhibited in frames in close juxtaposition with the work in question.

Of the artistic and skilful grouping, and of the merit of the modelling of the ornamental portions of this decoration of Cruchet's, there can be no question; but, as has been before said, even these excellences may merge into faults if they are too exclusively directed to mere imitation, and if the design to which they are applied has not the merit of a just perception of use and purpose. One great cause of evil in the use of the materials under consideration, consists in the false principle of their application to decorative purposes. It is found, for instance, that peculiar qualities, which are difficult of attainment and an effort of great skill in other materials, can easily be obtained by a new means; instead, therefore, of carefully atudying its just adaptation to oruamental production, the effort is only to emulate in excess those peculiar qualities which are trials in the more intractable material. It too often happens, moreover, that the original works imitated were in false taste; and this becomes far more apparent in the copies, since the mind can no longer dwell on them with that admiration which is caused by a sense of difficulties overcome, and which compensated, in sume degree, for the absence of good taste in the works they emulate: for instance, the exact imitation in wood or stone carving of the individual details rather than of the general character of objects used as ornament, extreme relief, under-cutting, lightness, thinness, and picturesqueness of the forms of folinge nud flowers, whereby their natural growth is attempted in carving rather than a due ornamental disposition of their forms-all tending to excess and exaggeration, and to be avoided rather than copied. Another source of error consists in rendering what should be true constructive forms into mere ornament: thus pilasters, and even columns, consoles and trusses intended to support weight, are manufactured in these imitative materials, and introduced only to decorate, until all sense of utility and construction is lost, and ornament becomes the principal instead of the subordinate. Such materials, however, are capable, under proper control, of useful application to ornamental purposes, buth from their ready adaptability to various surfaces and forms, and from the cleanness and sharpness with which they can be moulded, as is seen in the works of the Gutta Percha Company, Jackson and Son, Bielefield and Co., and others, as well as in the work above referred to. It is most desirable, therefore, that the errors to which a false application leads should be carefully pointed out, so as to bring these materisls as much as possible within their duly limited use.

Some of the above criticisms will apply to terra-cotta also; but this material, partaking largely of reality, and allowing of being perfected by the hand after the first mechanical process of moulding, would, under fitting regulation, become a most useful and durable agent of ornamental decoration.

Stained Glass Decoration.

The art of painting on glass, or glass-staining, has come down to us so intimately mixed up with the ecclesiastical architecture of the middle ages, that it is almost impossible to view the one unconnected with the other. It was born of the same parent (the Church), and from the first both were equally devoted to her service. Of Gothic architecture, and of it almost exclasively, stsined glass has always formed a necessary decoration; it follows, therefore, that its ornamentation is almost wholly traditional, and has relation to the various periods of the Guthic architecture which it accompanies.

Not that it is necessary, or even desirable, that the epochs of the two arts should, in their revival, continue to correspond: but the periods of each, whether simultaneous or otherwise, when utility and beauty were most fully understood and attained, should be diligently studied in search of the principle that guided the artists of those times, and that which is best should be chosen, irrespective of mere correspondence of epoch or antiquarian authority. Moreover, the errors which the ignorance of an early age evidently occasioned should be carefully separated from the truths, and not considered as of necessity a part of the style of the period in which they are found-such, more particularly, as bad drawing and want of knowledge of the human figure: at the same time, that simplicity of treatment which is so highly characteristic of early works, which overlooks all details, and renders a composition from the Scriptures, or a single figure, more as a symbol than as a picture, should, if it is found to be a principle of excellence, be carefully retsined.
As is the case with all other manufactures and fabrics, so it is with painted glass; the question of utility, rightly considered, will lead us to some knowledge of what is most suitable in its treatment as a decoration. Glass was introduced into the numerous windows of Gothic architecture to temper the glare of light, and to serve in a manner as a blind, by preventing the direct entrance of the sun's rays, and also to shed that solemn religious light which so well accords with the sacred myateries of religious worship. The mosaic glass of the early artists of the 1 Ith and 13 th centuries was most admirably adapted for this purpose: being composed of many small pieces of full and pure tints, with little white glass, the rays of the sun were broken and dispersed, the light lowered in brilliancy, and the whole effect was homogeneous, rich, and solemn, sufficient light being still permitted to enter for the performance of the religious services of the church. Even compositions of figures were subject to the principle that regulated the whole: the Gigures were small, so that the colour of their draperies and accessories might be broken up into many pieces to give the same equal distribution as in the ornamental parts of the window. It would seem, indeed, that the painter did not intend to simulate a picture, but rather to symbolise a sacred text or thought, and the figures, therefore, were not so much pictorially arranged, as composed with extreme monumental simplicity; thus they not only partook of the general effect of the window, but the attention of the spectator, impressed with the solemn yet beautiful light, was at the same time filled with the holy thought conveyed by the subject, without being distracted by 200 great an individuality of parts. The representation of shadow, strictly upeaking, was not admissable, the composition consisting only of flat forms of the greatest simplicity. For this, even, there would seem to be just reasons: the light being transmitted through the glass to the spectator within, shadow would appesr to be anomalous and out of place, since the illumination in such a case emanates from the figures themselves; moreover, the simplicity of the shadowless forms was better suited to impress the eye from the distance at which such works must necessurily be viewed. Such would seem to be some of the principles which ought to regulate, and which in the best times did regulate the design for painted glass. An entirely different view of the art has, however, sprung up with its revival and has obtained many advocates, especially on the Continent. It has been felt how greatly urt has advanced in the hands of the historical painter since the time spoken of: that the principles of composition, of foreshortening, of perspective, of light and dark, and of the arrangement of colour, then quite unk nown, have been discovered and developed; that drawing, then in its infancy and unaided by knowledge, has now arrived at maturity; and that science has given us power over the materials which they possessed not, and enabled us to conquer difficulties which
they considered insuperable; and it is asked why the painter on glass should not avail himself of all these advantages, to perfect his art, and to render it as pictorial as the works of his brethren. By nrtists who entertain these views the surface of the window is treated almost as a canvas would be: the forms of the figures are large, even as the size of life: the draperies are massive, and the heads painted with great imitative skill and completeness. Clair-obscar and perspective are studied, and foreshortening and pictorial attitudes in the fgures supply the place of the monumental and statuesque delineations of the earlier artists; in fact, everything is done to treat the rindow as a picture.

To the advocntes of this style it may be objected, that a picture is specially intended to address itself to the mind and imagination only, while painted glass has a reference to use also; and that, spart from this consideration, each and every art has its own mode of rendering nature-not necessarily implying deceptive or complete imitation; thus, for instance, the art of the sculptor is a generalised imitation of form, and even the painter of high art does not desire to make his picture deceptively imitative, but listens with impatience to the remarks of the ignorant, who are apt to praise his work for this quality above others proper to it which they do not understand. An outline of Flaxman's fills the mind with a perfect sense of beauty and with the fulness of a poetical idea; surely, then, the fiat and simple treatment of subjects in glass-painting, if such treatment is requisite for its utility and most in consonance with its other qualities, may be found sufficint to give as complete an expression to the pictorial rendering of a Scripture truth as the material and situation of such works require.

It would seem to be a great fault in glass to have a prevailing tint or hue, since by a truly harmonious composition of colour such a result would be avoided. This defect is visible in the glass exhibited in the North-east Gallery, in some of which a prevailing green, in others a yellow hue, is ubservable. This is often the case also with the modern French glass, as seen in some of the restored churches of Paris, more especially the pictorial glass, in which a hot red hue is often present, sometimes to a painful extent: the flesh especially is hot, and dirty in the shadows. It is to be doubted, indeed, if, with all our Knowledge of the harmony and complements of colours, we have jet attained to the principles by which the old glass-painters arranged their agreeable combinations. Whatever was the method, the effect was coolness of general tone: the flesh had litele local colour, the prevailing tints of the draperies and accessories were blue, cool green, and amethyst, and even the red was cool, inclining to crimson. The hot browns of the flesh in the modern glass, together with its opacity, are often very disagreeable; and the effect of scarlet instead of crimson may be seen in the work of Marechal, "St. Charles administering the Communion to the Plague-stricken," where the robe of the cardinal is of that hue, and greatly tends to increase the hot and glaring effect of the whole. In the Parisian churches, where ancient and modern glass are both to be found, even when the former is not of the best period, as in St. Germain l'Auxerrois, for instance, it is quite refreshing to turn the eye from the modern to the old glass, showing how far more harmonious the one is than the other.

In estimating the excellences of the one or the other methods of glass-painting which have been spoken of, the superior durability of the earlier method is to be noticed; also the much smaller liability to accidents from the diminished size of the pane, and the much less damage if a fracture does take place: an unlucky blow may immediately destroy the finest portion of a pictorial window, while it could do but small injury to a work on the older principle. These are minor merits, but to them may be added the greatly increased brilliancy of colour occasioned by the more frequent interposition of the dark line of the leading, and the lustre occasioned by the slight change of plane, in the smaller pieces of the early method, bringing out thereby the richness of the glass, as the varied facets of the lapidary do of the precious stone. Indeed, it may be doubted if the subject of leading has had all the attention it so well deserves. The skilful manner in which this was executed in the early works is apparent from the preservation of the windows, unharmed by the storms and winds of centuries. It is certain that a varied surface was at times adopted in such works, for resisting, as has been supposed, the pressure of the winds: thus, at Haddon Hall, in the long gallery, glazed in the reign of Elizabeth, each window is waved inwards and outwards over the whole surface, and each piece of glass cut to adapt it to this
treatment: the result has been great durability, even although the lead itself is extremely narrow. These, are, it is true, windows of uncoloured glass; but it may probably point to some such method being used in decorated windows to enhance their brilliancy and iucrease their effect.

Inlaid Floors, Mosaic Pavements, Inlaid Tiles, scc.

The ornament of this section seems the soundest and most satisfactory in the Exhibition-the most free from false principles, the most thoronghly amenable to true. Although this no doubt partly arises from the conditions of the manufacture, it is, in a degree, to be attributed to other causes. The modern introduction of such works in England, was at a fortunate time, when the attention of the ecclesiologists and of able artists was called to the revival of medireval art, and to the study of the best wurks of Greece and Italy. The designer, therefore, started upon just principles, and continues to adhere to them, even repudiating some of what must be considered errors in the ancient works which have been handed down to us, such as those arrangements of light and dark inlays, giving the appearance of relief, which are found occasionally even in the best ancient examples. The "designs" exhibited are almost wholly on the English side. Apart from those in conjunction with manufactured specimens, Mr. Digby Wyatt's are the most important: they are varied and fanciful, thoroughly flat in treatment, and consisting mostly of combinations of simple geometrical forms, although there are some of Italian conventionalised ornament. They evidence the careful examination and study which the artist has given to the best antique and medireval treatments of mosaic.

Mr. Minton exhibited an intaglio and enamelled tile of a Moorish pattern, for covering the surface of a wall with an ornamental texture, and with a broken harmonious richness of colour, in very durable materials, for which purpose it is admirably adapted. This manufacturer exhibits also many novel and praiseworthy works in burnt and coloured clay to facilitate the application of design and colour to the exterior of buildings. Among others, a species of Majolica ware, with ornament in relief, coloured with delicate tints, intended to be introduced into friezes, stringcourses, panels, \&c., and other comhinations of the art of the designer with the skill of the tile-maker and the potter, which will enuble the architect to break the monotonous surface of brick buildings, and introduce ornamental forms and colour without the necessity of resorting to plaster and stucco, so long the wretched resource for such purposes. From the geological position of London, bricks must always be the prevailing material for building purposes: such means, therefore, for the safe introduction of colour and ornament, are especially deairable, and should be carefully studied, that the most judicious and sound principles of ornamentation may be adopted in these newly-revived materials. It is curious to see how instantly the removal of the excise-duty on bricks has been followed by the infusion of a new life into the manufacture, both as to novel forms and the application of coloured ornament to their surface; it must be remarked, however, that the ornament of each separate brick should be perfect in itself as well as perfect in combinations, a circumstance which has not been attended to in the glazed and coloured bricks exhihited by Mr. Minton.

From the general use of carpeta, considered, as they are, as a necessary comfort in this country, inlaid floors are far less uged here than on the Continent, and it is on the foreign side, therefore, that the best design applied to such works nust be sought, The principle of ornamentation, of course, is the same as that for mosaics and other inlays; care, however, should be taken to select wood without a strongly-marked form in its grain, since this is likely to interfere with the pattern of the inlay in general; also right-lined figures are preferable to curved ones, from there being less need of crossing the grain of the wood in cutting.

Many skilful and ingenious combinations of geometrical forms are seen in the works of this kind in Belgium, Austria, Russia, and France; among others, the flooring of the bed-chamber in the Austrian room, of which the border, consisting of violet ebony and mahogany banded with maple-wood, is simple and pleasing in effect.

Paper and other Hangings.

If the use of such materials is borne in mind, the proper decoration for them will at once be evident, since this ought to bear the same relation to the objects in the room that a background does to a picture. In art, a background, if well designed,
has its own distinctive features, yet these are to be so far suppressed and subdued as not to invite specisl attention, while as a whole it ought to be entirely subservient to supporting and enhancing the priucipal figures-the subject of the picture. The decoration of a wall, if designed on good principles, has a like office: it is a background to the furniture, the objects of art, and the occupants of the apartment. It may enrich the general effects and add to magnificence, or be made to lighten or deepen the character of the chamber: it may appear to temper the heat of summer, or to give a sense of warmth and comfort to the winter: it may have the effect of increasing the size of a saloon, or of closing-in the walls of a library or study: all which, by a due adaptation of colour, can be easily accomplished. But, like the background to which it has been compared, although its ornament may have a distinctive character for any of these purposes, it must be subdued, and uncontrasted in light and shade; strictly speaking, it should be flat and conventionalised, and lines or forms harsh or cutting on the ground as far as possible avoided, except where necessary to give expression to the orammentation. Imitative treatments are objectionable on principle, both as intruding on the sense of flatness, and as being too attractive in their details and colour to be sufficiently retiring and unobtrusive. Some of the best examples, as well of paper as of silk, velvet, snd other hangings, are treatments of terture in a self-colour: as of flock on plain or satined ground in paper, of tabby and satin in silk hangings, of stamped forms or cutting in velvet, or the same contrast of pattern with the ground in various mixed stuffs. By these means the ornament is necessarily flat, and does not disturb the general effect. With the slightest attention to the choice of form it can hardly be in bad taste, whilst great elegance and beauty often arise from such treatments. Next to these, graduated tints of the same colour produce a safe and quiet ornamentation for such fahrics; or gold upon a coloured ground, where the gold is sparingly distributed, add the colour not too strongly coutrasted, since in all cases a general tone of surface is to be sought for rather than pronounced individual forms. Further richness may be obtained by the judicious use of two or more colours, either, according to the ancient method of harmony, separated from each other by bands of black, white, or gold, or contrasted and enhanced by their complementaries, and enriched by flock in either case, in the Iatter by gold. But it is everywhere apparent that the combination of many colours, though it may increase expense from the number of blocks, is far from producing richness in the same degree, while it has often quite the contrary effect, and results only in poverty and meanness. It is necessary, however, to advert to a perfectly different treatment of these materials quite at variance with these rules, and bound by no such principles, by which paperhanging becomes a pseudo-decoration, the wall being divided into compartments often irrespective of architectural construction, and pilasters, friezes, and mouldings imitated in false relief on its surface, with compositions of pictures, statues, hangings, flowers, fruits, \&c., skilfully designed and well drawn, and it may be, often most ably blocked for the purpose of printing; it is, however, at best but a sham decoration, amenable to no laws, necessarily false in light and shade, often constructively inapplicable, and always impertinent and obtrusive, and should be left to those who, desiring display, are too much wanting in taste to be annoyed at its untruth and extravagance. It perhaps is not quite out of place in the saloon of a theatre, in cafés, or taverns, but ought to be confined to such localities, and only used there until the general taste is so far instructed that the public will no longer tolerate gaudy shams and false magnificence.

The same laws which ought to govern design for paperhangings would, therefore, appear proper to regulate hangings of other fabrics, tapestries, \&c. Although far from looking at ornament in that exclusive spirit which would reject what is beautiful when it does not square with the requisitions of a theory, it must be obvious that pictorial and picturesque treatments for such fabrics are wrong whenever they intrude on the domain of another art. Thus figures, landscapes, fruits and flowers, when rendered as they would be in works of fine art, are almost of necensity inferiortothe pictures they imitate, even when they are as skilfully snd wonderfully wrought as in the works exhibited by the national establishments of the Gobelins, where every effort of skill and science has been most successfully used for their manufacture and embellishment. Indeed, it is a matter of doubt whether custom, and the authority of great names and of past times, are not the cause of the continued admiration of
such decorations, which perhaps we rather persuade ouraelves we like than are fully satisfied vith.

With very few exceptions, the exhibited "designs" for hangings appear to be totally unregulated by any perception of rulea for their ornamentation, and, even when they happen to be on just principles, would seem to be so by chance rather than by choice. They are mostly florid and gaudy compositions, consisting of architectural ornament in relief, with imitative flowers and foliage. In some of the cleverest designs, the flowers and fuliage are perspectively rendered with the full force of their natural colours, and light and shade; moreover, they are often three or four times as large as nature, whereby the size of a room would be apparently diminished. The French are the largest contributors, and their designs are characterised by the foregoing remarks; they are, however, exceedingly skilful in their details, the fowers and foliage well underatood and artistically arranged, and blocked with great skill and knowledge; but as to style, they are most objectionable, and lead to the worst results, especially in the common manufacture of such goods.

The pupils of the government schools exhibit, among other designs, some meritorious ones for paperhanging. It is evident that their general taste is controlled and regulated by the knowledge of the just principles which should govern the ornamentation of these as well as of the other manufactures for which they have laboured. Being student ${ }^{\prime}$ works, they can hardly be expected to abound in fancy or invention, and it is sufficient to find that they are well drawn, skilfully executed. and amenable to just laws of composition. In examining the design applied to the manufactures themselves, the same want of just principle is observable as in the works of the designers. It is true that manufacturers must produce works in every style, as well to suit those who are unable to appreciate what is good, as those of more informed taste; but it might be expected, in an exhibition of this nature-an Exhibition of skilled labour, and of the strife after excellence-that excellence would be the rule, and error the exception, whereas the reverse is generally the case. Were it a part of the duty of the reporter to enter into the clever and skilfal execution, the treatment of the pigments, the excellent blocking or the general manufacture of such fabrics, there would be much to say of the foreign exbibitora, and of others on the English side; but in the design of their papers there is little to commend, and works of passable excellence in this respect are the rare exceptions of their collections. The English and foreign manufacturers seem equally at sea; with the exception of a few simple diapers, which hardly call for individual remark, the works of the best exhibitors on the English side, while they are very heterogeneous, are less original, and equally wanting in a gound knowledge of what is properly characteristic for such works.

There are, however, honourable exceptions to these remarks: after passing in review the paperhangings of the various countries, it is quite refreshing to meet the clever wax-cloth decorations by M. E. T. Vivet (France.) The ornament of these works is without shadow or imitated relief, thoroughly flat in its forms, which consist of graceful and flowing lines; the colour is equal in scale, without harsh contrasts, and of semi-neutral hues. There is no attempt at shams, to imitate marble, or oak, or any carving; nor to panel it, which is left to arise out of the architectural forms; but a series of graceful lines, with a quiet uniformity of tint, satisfy the mind and give repose to the ege. Moreover, having laid down certain principles on which manufactures and fabrics should be designed with a view to the true use of materials, and to avoid unnecessary display, by the proper application of ornament, it is impossible to refrain from speaking in high terms of the works contained in the Medimval Court, manufactured under the direction and from the designs of Mr. W. Pugin. Some may object to the exclusiveness of the style, and to its too purely ecclesiastical and traditional character, even in domestic works; but for just principles of decoration, for beautiful details, for correct use of materials, and for excellent workmanship, the general collection is unique. Thus, in the paperhangings, for instance, there is no throwing away of many blocks to obtain richness, when one or two can be made sufficient: there is a perfect flatness and a subdued harmony of colour in all such works; and if Tudor roses and heraldic lions are sometimes too pronounced, and there is occasionally a little excess of oruament, richness is generally obtained at the smallest sacrifice of means, and without any sacrifice of truth. The same may be said of the hangings in silk and wool, and the
carpets in this collection, the designs for which are highly commendable for their strict adherence to true principle.

Without having any sympathy with theapplication of decorative paperhangings of France, it would be unjust to pass them without praising the artist-like design, the powerful execution, and the great ability displayed in these works by the French artista. In that by Delicourt, besides the skilfully-blocked hunting gubject of the centre panel, the details of the parts, such as the grouping of the game and arms on the pilasters, and of the birds and children on the frieze, have great merit, apart from the skill with which the whole has been adapted for blockprinting. The same may be said of the work exhibited by Mader Brothera (France), which is an extremely fanciful and clever piece of decoration, and in as good taste as such false treatments can well be. The frieze of children is well designed and ably managed for printing; the landscape of Zurban (France) has aloo much merit in its details; and the work of Genoux has parts worthy of examination.

These decorations bear out the remarks at the opening of this Report as to the superiority of the French working artists. The men who carry out the designer's inventions in France must themselves have a large share of skill and art-knowledge to be able to prepare the design for the manufacturer's processes with the ability so evident in the works just remarked upon.

Among the English contributions in paperhanging are specimens of the lately introduced processes of printing by such machinery as is used for cotton goods, and of applying many colours from one block. These are likely to create a style of ornamentation for such fabrics of the most depraved kind. The largeness and flatness of details attainable by block-printing are less suited to cylinder-printing than more minute details, and the new processes offer ready means of applying several colours at a small expense; the reverse of what has hitherto been the case; hence the effort has been to impress as many tints as posaible on paper, and excellence is reckoned rather by the number of colours than any other qualisy. Thus we are informed that works are printed in "sixteen colours," in "fourteen colours," \&c., the works themselves evidencing the absence of all knowledge of the effective arrangement of colour; while violent, crude, and harsh tints are too of ten used to give greater impression of this excellence! and the result is littleness and extreme meanness; in fact, such papers are, in point of design, much inferior to those printed in two colours by the same machinery. Well-considered design, thoroughly adapted for this process, would enable the manufacturer to unite good taste with extreme cheapness; whereas the only present result is by increased labour to detract from the beauty of the ornamentation. It is impossible, however, not to remark the skilful printing exhibited by our English manufacturers.

Exterior and ather Metal Work.

The works in metal of this section which are exhihited, consist chiefly of constructions for fountains, and of ornamental ironwork in gates and balconies, and for door-panels, lamp-pillars, fiower-vases, and tazzas. The hest of the metal fountains are so nearly within the limits of fine art, that their consideration may be left to that class. It is, however, to be remarked, that the zinc castings of the French and German founders show how suitable that metal is, as the means of spreading the best art, for any exterior purpose, in a cheap and durable material, as well as of embellishing public works of the above-named character at comparatively small cost, without the evils arising from oxidation when iron is used. Notwithstanding all that has been said about the incongruity of uur climate with public fountains, there are undoubtedly long periods of the year, and those when London is most crowded as well as with her own resident population as with visitors, when such works are not only extremely ornamental, but when an exhausting atmosphere would render them of real utility and refreshment. The motion of water, at any season, has a great charm, and is peculiar in its power of giving pleasure even in the simplest jet or fall, agreeably and artistically diaposed; and ornamental arrangements for its full display would not only be picturesque additions to our citr, which offers so many localities for their adoption, but would afford to our artists motives for combinations of figures with ornamental decoration, and thus, perhaps, be a means of once more uniting fine and ornamental art, which, sadly to the deterioration of public taste, have for so long a time been almost wholly separated. It may be doubted if the public would willingly part with even the tame and commonplace repetitions

Which adorn Trafalgar-square; and those who have had the pleasure of enjoying the fountains of Italy and France will be quite prepared to judge of the effect which more skilfullydesigned structures would have on the public mind here.

Such works in iron as gates, balconies, and panels are, for the greater part, in cast metal, which of late years, from its capability of cheap ornamentation, has almost wholly superseded wrought-iron for these purposes. Where the object is intended to be fixed and immoveable, as a balcony or panel, cast work is not unsuitable, and is capable of much beauty of ornamental design, as we see in panels exhibited by Muehl, Wahl, and Co. (France.) In these the ornament adds to the strength by its numerous articulations, while it is light and elegant in its forms. Works of this kind are generally of a size to admit of casting in one piece, insuring thereby strength and lightneas by corrtinuity of parts. But in cast-iron constructions intended to be moveable, as in the various kinds of gates, a very different character of design is necessary; in the first place, because entire casting is not always possible, both from the difficulty of running the metal into the numerous ramifications of the ornament in works of such increased size, and from the fear of warping in the cooling, as well as the great expense of a mould, which is saved by forming the ornament of a series of parts. This leads to the necessity of framing the work in wrought, and applying the ornamental details in cast iron; but hence results this evil, that the ornament has little constructive use, and is apt to look rather an addition than an integral part of the work. In the park-gates exhibited at the south end of the transept, great pains have been taken to get over this difficulty, but not with success, since the two metals are joined in parts wholly at variance with constructive strength; in fact, it is a wruughtiron design, partly executed in cast metal. Moreover, cast-iron ornament is necessarily far heavier than that of wrought-iron from the extreme brittleness of the cast metal ; this heaviness is sadly opposed to its real constructive strength in the manner usually adopted for putting together; the ornamental parts of such structures being riveted or screwed into the framing, there are smaller points of attachment than in wrought-iron; the parts bed themselves less perfectly at the junction, since it is impossible to assist this union with the hammer, and the metal has small teuacity, and easily breaks with any sudden jar: thus there is much less power to support, while there is of necessity much greater weight to bear; and without very careful and well-considered design, making the ornament as far as possible a brace to the work, the whole is apt to be an insecure aggregation of parts, without constructive unity or trutb. In large works cast in one piece, such difficulties are greatly surmounted, as weight can then he made to add strength, instead of detracting from it. In the old hammer-wrought gates, the ornament was not only a truly integral part of the work, but most materially assisted in the general support. Thus great lightness and elegance were, in this case, consistent with great strength, since the ornamental details supplied a means, not only of tying and bracing the work together, but of preventing the front of the gate from drooping with its own weight, to the great hindrance of its use, and which in cast works of this kind has often to be assisted by the use of friction-rollers-a makeshift that the older workmen would have despised. When, therefore, we consider the varied beauty of which wrought-iron is capable, its far greater durability, its tenacity and power of resisting accidents, the individuality of design which arises from its being wrought by the hand, instead of cast in a mould (thereby leaving the fancy and the feeling of the workman untrammelled), it seems not too much to say that it is to be hoped the use of the wrought metal will again prevail over that of cast for such purposes.

The gates and pilasters exhibited by the Coalbrookdale Company, at the north end of the transept. from designs by Charles Crookes, are an excellent specimen of casting, being wholly of cast-iron, each gate in one piece. Much of the false construction alluded to has consequently been avoided, and many of the difficulties overcome. The design of the gates, however, partakes too much of that adopted in wrought constructions, especially in carrying up the form of the centre, at the top, into florid ornamentation, which tends in this weightier metal to sway down the gate, without any compensating beauty or usefulness. The introduction of a heavy panel of ornament below is also rather commonplace, and due regard seems hardly to have been had to the whole surface in designing the ornamentation. The pilasters have more originality: the small twisted bars surround-
ing the centre columns give a lightnese, compared with the strength obtained, which adds to the elegance: the strikingplates of the hand-gates, however, should have been ornamentally constructed or banded in with the pilasters in the centre, to increase the strength and resist the jar of the closing. The other great work in metal by this Company is an ornamental dome of cast-iron. This is a work of much pretension, designed in the natural style, the pilasters representing oak-stems, ornamented with leaves and acorns, and with the intervening branches twisted into an ornamental form: this treatment is mixed with some conventional ornament, here and there, as it were, indiscriminately introduced into the pilasters, having a very patchy effect. The pilasters, also, arising as they do from a single stem, and widening above their base, have an unsteady and insecure appearance, which might easily have heen avoided. The great fault, however, is in the setting on of the dome, which from the outside seems to have no constructive connection with the pilasters, since in it the rusticated treatment is abandoned, and it seems dropped in among the branches, without any proper support. The work, nevertheless, has a certain impressiveness, from its size, and its general proportions are well chosen.

There are in various parts of the Exhibition garden-seats and chairs in cast-metal, which are principally to be noticed from the great want of due consideration of the material evidenced in their design: thus sometimes they are ornamentally constructed of branches and foliage naturally imitated, or of branches alone; while, in others, carved and flowing lines are given to the back, arms, and legs of the seat, which add nothing to the comfort of their use, and sadly detract from the form properly belonging to such works in cast-metal, which should be right-lined, and have a geometric character both of ornamentation and construction. It must be confessed, indeed, that the tendency to consider the ornament before either the requirement of the material or the use to which the work is to be applied, is but too evident in many of the works in metal in this class. Thus, two large lamp-pillars, designed by an architect, and exhibited in the Austrian department, have as much iron in their over-charged bases as would found three pillars, each capable of sustaining the taper upper shaft of the same design. The application of metal to the construction of the building is, on the other hand, an excellent example of just use, construction having had the first consideration, and ornament being entirely subservient; a due amount of elegance has nevertheless resulted from its simplicity, and from the true priuciples on which it has been designed.

AUGUSTUS NORTHMORE WELBY PUGIN.

A painful interest has lately been excited by the distressing account of the state of mind of this eminent man, being such as to render confinement necessary. Still, hopes of his ultimate recovery were entertained, and he was removed to his residence at St. Augustine's, Ramsgate-a house erected by himself for his own special occupancy, in singularly archaic taste. It was there that he breathed his last, on Tuesday, the 14th September, in the 41st year of his age. He was the only child of Augustus Pugin, a native of France, but long established in this country, and an English artist, who acquired a brilliant reputation by his excellence as an architectural draughtsman, and his works upon paper. One of his earliest works was the designing the furniture for Windsor Castle. Besides being an architect of very extensive practice-chiefly in the erection of Ruman Catholic churches and colleges - he did as much with his pen as with his pencil, in most of the publications which bear his name. The work on Gothic Furniture, as well as that on Iron Work, was published in 1835. His 'Contrasts, or a Parallel between the Noble Edifices of the 14th and 15 th centuries, and similar Buildings of the present day, showing the preaent Decay of Taste, accompanied by appropriate text, which appeared in 1836, made quite a sensation among the profession, not only on account of the severity of its remarks, but for the novelty of its form and spirit, it being a direct satire upon the taste and practice of his contemporaries. Neither Smirke nor Soane were spared; James Wyatt was spoken of as "Wyatt of execrable memory;", Regent-street and the Regent's-park as "nests of monstrosities;" and such "public monuments" as Buckingham Palace, the new British Museum, Goldsmiths' Hall, \&c., declared to he nothing less than " a national disgrace." So bold and unprecedented an attack on his professional brethren and their employers, and
that, too, by so young a man, could not fail to fir attention upon its author. He now evinced a determination to preach up Gothic architecture and medizvalism, and to assail "modernism" ansparingly, in all its shapes. This he was enabled to do the more safely, as by his conversion to their creed, he had obtained the countenance and favour of the Roman Catholics.

His 'True Principles of Pointed, or Christinn Architeoture, 1841, answers well to its title, as being not only an able advocacy of that style, but explanatory of its elements, its nature, and constitution. Even then, however, he indulged in many aatirical remarks upon the architecture of our own times; introducing, by way of specimens of it, some grossly extravagant caricatures.
His 'Apology for the Revival of Christian Architecture in England.' which appeared in 1843, has a dedication in black letter to the Earl of Shrewabury. It is thoronghly in keeping with its dedication, and is fraught with an enthusiasm for medirval art and for archaic fancies that partakes of the pedantry of the cloister. His greatest work, 'The Glossary of Ecclesiastical Ornament,' was published in 1844.

Mr. Pugin brought out several other publications, chiely illustrative of medimval ornamentation and deaign; but it is only those we have been speaking of which can claim to be considered literary productions. Yet although not witbout considerable merit and interest, they did not engage public attention.

The following are some of his principal works:-St. Mary's, Derby; St. Chad's, Birmingham; St. Mary's, Wymeswold; St. Wilfred's, Manchester; St. Barnabas', Nottingham; St. Martin's. Buckingham; St. Bernard's, Leicester; St. Mary's, Beverley; -churches at Kenilworth, Oxford, Hammersmith, Pontefract, Fulham, Woolwich, Liverpool, Newcastle-on-Tyne, Kugby, Northampton, Ware, Preston, Cheadle, and Stockton-on-Tees; cathedrals at Killarney, Enniscorthy, and St. George's, Southwark; convents at Birmingham, Nottingham, Leicester, Liverpool; colleges at Radclife, Rugby, and Maynouth. Alton Towers received several additions under Mr. Pugin's direction.

ENGINEERING IN THE GOLD REGIONS.

1. Report of Janes Blackburn, C.E., City Surveyor, on the Propoved Improvement in the Communication between Hobson's Bay and Melbourne. Nov. 21, 1851.
2. Report of the City Surveyor on the Propased Waterworks at Melbourne.
Amono the persons to whom the gold discoveries in Victoria have given greater scope for exertion has been the City Surveyor of Melbourne, Mr. Blackburn, from whose pen we have before us two reports on important subjects. The port of Melbonrne is in Hobson's Bay, between which and the city flows the small winding stream of the Yarra Yarra, to which both the reports refer. At present the navigation is circuitous, and only accessible to small vessels; and Mr. Blackburn therefore proposes to supersede it by cutting a ship canal of about $2 \frac{1}{2}$ miles acrovs a neck of land, so as to reach the deep water in the bay. He canvasses several schemes for improving the navigation; but notwithstanding his remarks, we cannot but think a railway is preferable, for whatever measure he might adopt, the silting now going on at the mouth of the Yarra Yarra, and to which he strongly directs attention, would, as all experience shown, take place at the month of his cut or ship canal. With a railway no disturbance would take place, and docks might be carried into the deep water with rails on the quays.

With regard to the water plan, Mr. Blackburn proposes n comprehensive system, so as to give the city a constant service, and at the same time to provide mill sites and power, which would give a considerable additional revenue.

The Practical Examinator on Steam and the Steam-engine, with instructive references relative thereto. By Wwliak Texpleton, Engineer. London: Atchley and Co. 1852.
Thes is the second edition of a very useful work, the want of which bas long been felt among engineers, as its object is to assist the memory in all questions respecting steam-engines. It contains many valuahle tables (in this edition considerably enlarged), numerous rules and observations of a practical nature, and altogether will prove a very valuable work to those whose occupation may render a book of this kind necessary.

LAUNCH AT CHERBOURG.

The following letter, describing the launch of the Austerlity, at Cherbourg, appeared in the Times on the 28th ult., from its correspondent:-
"The Austerlitx is a noble vessel of 100 guns, having a colossal bust of the Emperor for a figure-head. The upper deck is fush fore and aft, and of the extraordinary length of 75 mètres (243 feet English). She has been 23 years on the stocks, but to make her subservient to the present wants of the service she has undergone considerable modifications. The whole of the afterpart has been taken away, the hull lengthened, and the atern made completely round, finishing in a graceful curvature in her inferior parts. She will mount 40 guns of large calibre on each of the two lower decks, and 20 guns (which may be augmented to 30) on her upper deck. In order to render her as formidable as possible, the round stern has been adopted, which will diminish the comfort of the officers, for they must live in the cabins, surrounded by the guns; but that form adds greatly to the strength of the vessel. The part that most interested me was the contrivance for the machinery, on the screw principle. The well-part of the vessel is the weakest part, but the French engineers seemed to have arrived at a satisfactory result; the sternpost is consolidated by a massive framing in bronze, which goes all round and unites it to the body of the vessel; it is all in one piece, and the finest piece of bronze-casting I ever saw. To judge from the centre of the hole for the shaft of the screw, which is about $8 \frac{1}{2}$ feet from the keel, the screw will be about 17 feet in diameter. This can be removed on and off in ten minutes, I was assured. From the improved system of the machinery, it will be so far submerged in the water as to put it completely out of all danger from projectiles in action. Her engines are of 500 -horse power, which will give her a speed, like the Charlemagne, of ten miles an hour.
"On the day before the Jean Bart, of 100 guns also, was launched at LOrient; thus making four vessels of this rank (tbree of which have been launched this year), and a frigate. It is surprising that the English government should have remained so long ignorant [?] of what tbe French were doing to introduce a new feature into their navy. On the other hand, if they knew it, perhaps they treated the iden of giving a sailing vessel of 100 guns a speed of ten miles an hour by steam alone as chimerical. Be that as it may, the French have solved the problem, and have even arrived at the fabulous apeed of 13 French knots (nearly 15 miles) an hour! But this was not the only question to be resolved; the essential condition was to place the whole of the machinery out of danger of the enemy's projectiles, and this they have done by submerging their improved engines so much as to give perfect security. It is evident that paddle-wheels can only be employed for transport in the naval service, for the first shot may put them hors de combat. So long ago as 1843 the first essay to adopt the screw to war vessels took place on board a corvette built expressly for this purpose, the model of which may still be seen in the Musée de la Marine at the Louvre. The result was very satisfactory, and this led them to try it on a frigate of 36 guns (the Pomone), which was equally successful. Thus encouraged, the government resolved to try this new principle, called the mixed-that of sailing and steaming -0 a vessel of 100 guns, and the Napoleon was constructed for that purpose. After various modifications in her machinery, which is of 950 -horse power, but which is effective to 1300 , they have at last arrived at a result that surpassed all expectations. The Napoleon has a speed of nearly 15 miles an hour under steam alone, without detracting anything from her sailing qualities; on the contrary, from her length and peculiar form, she is found to go in a light breeze seven knots an hour where an ordinary vessel of her rank will K0 no more than four. To have vessels of war possessing these advantages, sacrifice must be made of something. The ponderous machinery with a supply of 800 to 1000 tons of coals, takes up a cunsiderable space. The question was, whether a sacrifice should be made in the armament of the vessel, or whether it should fall on the provisions and stores not indispensably necessary. In the position of the French, who have no colonies to protect that require a steam navy, there could be no hesitation. Six weeks' provisions would enable them to cross the Channel as well as the ordinary supply of six months."

Ventnor Independent Chapel.--Sixteen designs were sent in for competition; that of Mr. Rafles Brown has been selected, the strle being Early Decorated, and the cost 12001.

Balmoral.-It has been determined to build a new palnce for the Queen at Balmoral. It is to be built on a site between the river and the present castle, fronting the south, and is estimated to cost from $80,000 l$. to 100,000 . The architecture is modern, and will combine the ornamental with the useful. A new bridge is to be thrown over the Dee; and the public road which now leads through the forest of Ballachbine, is to be shut up, and a better road provided along the south bank of the river. The old palace is to be entirely removed. The new palace is already staked out.

Monument to Charles Albert.-A colossal bronze statue, about 60 feet in height, is proposed to be placed at the top of the Colina della Regina, which overlooks the Po, and is situated between Soperga, where Charles Albert is buried, and Moncalieri, where he used to pass the summer. Notwithstanding its immense bulk, this statue is to be highly finished, and is to represent Charlea Albert proclaiming the nationality of Italy and granting the constitution.
Iondon Vecropolis and National Mausoleum Company. On Tuesday, the 14th September last, about 200 gentlemen, forming the vestries of the metropolitan parishes, left the Waterloo Station of the South-Western Railway by special train, on the invitation of the directors of the company, as a deputation, to view the burial-ground belonging to it at W oking Common, about twenty-five miles from town. On arriving, they were welcomed by Mr. J. H. Voules, the chairman of the company, who informed them that the spot where they then were had been selected for their leaving the train, in order to refute a report that the ground was of a marshy nature, it being 75 feet above the level of the high-water mark. The visitors then dispersed over the grounds (2000 acres in extent, and laid out under the direction of Mr. H. R. Abraham, of Howardstreet, architect), the geological formation of which is Brixton gravel at top, and from the rounded form of the pebbles, is evidently a marine deposit; then peat of a dry nature, then red gravel, and, lastly, red sandstone of the new formation. At two o'clock they assembled in a marquee, for the purpose of doing justice to a luncheon provided for them. After the unual loyal toasts had been drunk, they were addressed by Mr. Voules, who eloquently pointed out the advantages that would accrue from the adoption of the scheme, which is the allotment of a portion of ground to each of the metropolitan parishes, to be under their own individual and separate control, without any interference from the company. There would also be an allotment to Roman Catholics and dissenters. As regarded burials, an arrangement bad been made with the railway company, by which the deceased and their friends might be brought from town in thirty-five minutes, by a special train, to a station erected on the grounds, the railway passing throngh them. Several gentlemen then addressed the meeting to the same effect, which, after drinking the health of the chairman, returned to the train, and arrived in town soon after six.
Land Slip.-A land-alip occurred on the Birmingham and Oxford Junction Railway, on the 24th ult., at the embankment between Temple-row and Monmouth-street, where forty yards of massive brick-work, four and a-half feet thick, and between thirty and forty feet high, fell with a tremendous crash, bringing down with it the back premises of several houses. The line is to be opened for passengers and general traffic on the lst of the present month.-Birmingham Gazette.
Improvement of the River Wear.-The Commissioners of the River Wear have, on the report and recommendation of their engineer, Mr. Meik, determined to carry out some important improvements on the river, principully with a view to the encouragement of iron shipbuilding in Sunderland. The improvements will consist in the erection of new quays, and the nariowing of the channel from tbe Wreath-quay as far as Hylton. The Pallion Canch and the Mannigan Sands will thus be taken in, and by this means about seventy or eighty acres of ground, which is now waste, will be recovered, and let for the purpose of iron shipbuilding, for which the situation is well adapted. The river will also be deepened three feet the whole length of the quays; and, altogether, this will be one of the most important improvements ever effected on the Wear.

Manufacture of Iron.-A very interesting experiment in the manufacture of pig-iron, by the use of "Cannel coal" in the furnace, has been receatly tried in Cincinnatti, U. S., at the Buckeye Furnace, Jackson County. Commencing the blast entirely with charcoal, they gradually introduced first onequarter, then a-half, and finally three-fourths of Cannel coal. An improvement in the working and yield of the furnace was noticed at each successive addition to the charges of Cannel coal. We understand that this interesting experiment will be further prosecuted. The Buckeye Furnace estate contains exhaustless quantities of Cannel coal.

Large Timber Bridge in America. - The bridge over the Genessee river, at Portage, is one of the most stupendous structures of the kind in the world. It is 800 feet long, and 834 feet high, from the bed of the river to the rail.

It contains $1,600,000$ feet b . m. timber; $108,000 \mathrm{lb}$. iron bolts, $\& \mathrm{c}$. , and 9000 yards masonry. There are nine trestles or bents above the abutments, of which there are four in the river. The bridge was commenced July 1, 1851, and was crossed by a locomotive and cars for the first time on the 14th of August, 1852. It is estimated that the trestles will sustain a weight of 3100 tons in addition to their own weight. While sitting on one of the lower bents, a train of six passenger and a large number of platform cars, filled with passengers, passed over, and had it not been for the noise, no one would have known of the passing, so little was the jarring. This stupendous structure, together with the natural scenery in the immediate vicinity, must form one of the popular uttractions of the country. Just below the bridge, the first falls of the Genessee occur, 90 feet high; a little further on are the second, 110 feet high; and about a quarter of a mile below these, the third, 60 feet high. The banks rise up from the river perpendicularly from 300 to 500 feet high, and the whole presents a grand and picturesque appearance. The canal crosses the river in an aqueduct at the village of Yortage, and winds along ahout midway up the eastern bank of the river, passing under the bridge.
Gigantic Boring Apparatus.-For the purpose of carrying the Troy and Boston Railroad through the Hoosac Mountain, the construction of a tunnel is necessary; and, with a view to expedite this operation, the contractors have erected a huge machine for excavating the rock by drilling instead of by hand labour. It consists of a train of powerful wheels, fixed in a stupendous frame, which act upon an immense iron shaft as thick as a beer barrel, and of great length, terminating in a drill five inches in diameter, which bores the centre hole. On the same shaft is a wheel 25 feet in diameter, carrying on its circumference a series of cutters made in the form of pulleys, which revolve as they cut the rock, thus forming an annular incision the full diameter of the tunnel, the flooring of which has to be levelled by hand. When the boring has proceeded a certain distance the centre core is charged with powder, the rock blasted and carried away, and the operation is again resumed. The frame is moveable, so that when the shaft is carried to its extreme length into the rock the whole machine is advanced forward. The hard fint and mica schist with which the rock abounds completely destroyed the first cutters, and, although they were to be made much stronger, some doubts were entertained as to ultimate success. The contractors, however, feel no doubt on the subject. It cuts from a sixteenth to an eighth of an inch in each revolution, making five or six per minute, which more than meets the obligations they have undertaken. The stoppage of the machine for blasting and removal of the stuff is the greatest difficulty.
Danish Railways.-A concession has been granted to Mr. Peto for the introduction of railways into Denmark. The first line to be constructed will be from 'Tonningen to Flensburg, a distance of 35 miles, which will open up a rapid communication with the Baltic, and, in conjunction with the contemplated operations of the North of Europe Steam Company, give a powerful impulse to the already important trade of that district. This road will pass over a dead level, and its cost is estimated not to exceed $10,000 l$. a mile. The concession, which is for 100 years, gives exclusive privileges also for ulterior extensions, and the general arrangements entered into, both with regard to the occupation of land and the security for an adequate return upon the outlay, are believed to be extremely favourable.

The Iron Trade.-Much excitement has prevailed in this trade throughout the last week, and it is with great difficulty that business can be transacted. Most of the large makers have yet orders on hand, taken at the low prices, that will consume a large portion of the ensuing quarter to work off: and manufacturers in general are so pressed by their customers at the 80 . advance already declared, and even at higher figures, that they feel much hesitation in making sales. It is stated that cireulars have been sent out by some houses quoting from 30s. to 400. advance upon their last quarter's sales; while the more moderate are refusing to accept orders, unless subject to future alterations. From London, Liverpool, and all the places of export, report speaks of extraordinary activity, and doubtless there exista, both here and in all other iron districts, still a decided upward tendency; but we are not aware that any formal declaration of more tban 208. on the nominal price of iron will be proposed at the preliminary meeting which is announced to be held at Wolverhampton. The result of its deliberations is looked forward to with some anxiety; but it should be remembered, as we sume time ago stated, that to reach even the prices that would be 80 declared, a very much larger advance than 908 . (in some cases full 40s.) will have to be obtained, and to anything further we do not think purchasers would be at all inclined to submit. In the meantime meetings have been held in the different localities to arrange the amount of wages to be given to the various classes of workmen, and the time from which the advance shall be paid; and we trust that a better understanding has now been established, and that no further interruption will be experienced in that quarter to the progress of asound and healthy improvement in the trade.-Birmingham Gaxette.

LIBT OF HINW RATEATTS

granted in england peoy August 26, to September 24, 1852.
Sir Monthe allowed for Bnrolment wnless otherwise expressed.
Willam Henry James, of Great Charlotto-street, Surrey, civil engineer, for tmprovements in heating and refrigeratiog, and in apparatia connectod theremithseptember 8 .

Peter Armand Lecomte de Fontainemorean, of South-itreel, Pinchary, for Improrements in producing gat, end in lis application to hest and light. (A companicements in producing.
tion.)-Seplember 7.

John Jamee, of Leadenhall-street, London, manofnctarer, for certaln improvememe In weighing rachines and weighing cranes, September 8 .
Henr Francols Tonmealnt, of Parks, gentleman, for improvimenta in obetintog a product from the wood of the cactus.-September 10 .
Jullan Bermard, of Gulidford-street, Ruasell-square, Middiesex, genileman, for Improvemente in the manufacture or production of boote and shoes, and In matertals, machlnery, and apparatus conmected therewith. -September 10.

John Wright Treeby, of Elinbethan Vilis, St. John'h-wood, Middleaex, gentleman, for improvements in regulating the flow of Uquids.-September 10.
Stephen Tapior, of New York, gentleman, for certain improvements in the conatruction of are-arms, and in cartidget for charging the anme.-September 10.
Alezander Stewart, of Glagow. North Britain, manufacturer, for improvementa it the manifacture or production of ornamental fabrice.-September 10.
Frederick Sang, of Pall-Mall, Middiesex, artist in freaco, for certain fmprovementin In floating and moving veasels, vehicles, and other bodlee on and over water. -September 16 .
Charies Anguitus Peller, of Abchurch.isne, London, merchsnt; John Rastwood, of Bradford, York, woolcomber; and Samuel Gamble, of Bradford, aforesald, machivemaker, for improvements in mechlnery for comblng, draming, or prepaing wool,

Jobn Macintoeh, of New-atreet, 8urrep, divi engineer, for improvements mane facturing and refting eugar.-September 18 .
James Piliant Wison, of Belmont, Vauxhall, Surrey, geptleman, for improrements In the manufacture of cloths, and lo the preparmation of wool for the manufacture of woollen and other fabrics, and in the preparation of materials io be used for thete purposes.-September 18.
John Mitchell, of Cslenick, Cornwall, for improvements in parffing tur oret, and separating orea of tin from other minerali.-September 18.
William Smith, of Little Woolstowe, Bucks, farmer, for improvementin in machtory for reaplag.-Septimber 18.
George Hutchinson, of Giagrow, merchant, for amethod of preparing ofle for labricating and burning.-September 18 .
James Warren, of Montague-terrace, Mlle-end-road, and Baraard Peard Walker, of North-itreet, Wolverhampton, for improvements In the manufacture of serew and urew-keys, and in the conatruction of bridges, applicable to tooringe, rooting, and paviag.-September 18 .
Muset Poole, London, gentleman, for improvementa in eomblning caoutchone with other matcert.-September 18.
Francois Mathieu, of Hatton-garden, Middlesax, gealleman, for improvementa in apparatus for contalalng, terating, refrigeratag, filiering, and drawing of liquide, and In arnamentiag auch apparatus,-September 23 .
John Lawson and Edward Lawnon, both of Leede, machine makern, for improwements in machinery for acutching and cleaning fax stram.-September 23.
Jacquee Leon Tardleu, of Park, gentleman, for certaln iomprorements in the colouring of photographical imagen. - September 23.
Robert Bowman Teaceat, of Gracechurch-street, London, merchant, for certain Improvements in the mode of pulplng cherry coftet, and in the machinery applimble thereto.-September 24.

$\mathbb{N} \mathbb{F} \mathbb{R} \mathbb{S} \mathbb{C} \mathbb{H} \mathbb{D} \mathbb{L} \mathbb{N} \mathbb{I} \mathbb{S} \mathbb{R} \mathbb{E} \mathbb{S} \mathbb{E} \mathbb{S}$

gloucester and bristol diocesan training INSTITUTION.

Mestrs. J. Craziez and J. Norton, Architecta, London. (With an Engraving, Plate XXXVIII.)

On several occasions lately we have had to record the erection of a new class of buildings of an important and somewhat collegiate character, destined to furnish our various dioceses with a long-felt desideratum-namely, a supply of male and female teachers, qualified by previous education and training for the discharge of the important duties required by the advanced and entightened apirit of the times for the office of Masters and Mistresses of Parochial and Village Schools. It is confidently asserted, that in a few years hence an efficient and well-trained class of young persons will be supplied by the exertions now making, sufficient for the demand, and the clergy will thus be relieved from a source of constant annoyance and dificulty. It is a matter of exultation to all friends of the Established Church that the great movement which is daily adding increased facilities of education to the poorer classes all over the country, will not depend solely on the existing and precarious supply, but that authorised institutions, under diocesan supervision, will afford a certain guarantee to founders and promoters of church schools that the exigencies of the times have been met, and that competent persons will ever be ready at hand to carry into effect their benevolent wishes of affording to the classes most needing it the advantages of a sound education, based on the teaching of the Church of England.

The building to which we wish particularly to refer our readers forms the subject of illustration in the present humber, and is now progressing at Fishponds, near Bristol. Although the buildings are nearly half completed, the chief atone of the chapel was only laid on the 28th ult., by the Lord Bisbop of Gloucester and Bristol.
Similar institutions have recently been erected near Birmingham, for the Diocese of Worcester; at Bishop's Stortford, for Rochester; at Culham, near Abingdon, for Oxford; and in other places; and, as stated in the inscription, the latter is in connection with the Institution under notice, which will accommodate seventy-five mistresses, whilst the sister building, near Oxford, provides for one hundred masters, jointly for the use of both dioceses.
The Oxford buildings form a conspicuous object from the Great Western Railway, rising up in the flat country between the town of Abingdon and the branch line to Oxford. The site of the Fishponds Buildings is altogether secluded, and not inappropriate to its scholastic character. The village is situated about three miles north-east from Bristol, on the old Gloucestershire road, and is in the parish of Stapleton, where is situated the Episcopal Palace. The building is placed out of sight of the main road, between the village and the river Frome, the picturesque banks of which afford so many subjects for our annual exhibitious, and are to be recognised in the charming sketches of Müller, West, and other of Brislut's artistic celebrities. The scenery over the valley of the Frome is finely wooded, and commands a view of Stoke House on the opposite heights, and the romantic and secluded village of Stapleton. But as this is indicated in our view, we will add some notes on the arrangement of the building itself. The plan is unusually broken and irregular; but as this is characteristic of the style adopted-the Middle Pointed or Decorated Gothic of the age of the Edwardsmuch picturesqueness results. We are informed the site proved to have been quarried irregularly all over; and to avoid expensive foundations, the architects were confined to the irregular outline occupied by the buildings; but lovers of the picturesque will not regret the dificulty, for the bold breaks and receding blocks of buildings form an ensemble somewhat nuvel and refreshing in this age of monotony and show fronts, which so frequently satiate without pleasing the eye.
The chapel, placed with due regard to orientation, forms the first feature, and is a single parallelogram, with enriched and traceried windows, and an ornate bell-turret on its western gable. A series of open arches forms a sort of cloister to the chapel, and connects with the main college buildings; and in continuation of this cloister is a wide corridor, or ambulatory, extending the entirs length of the front, lighted by a series of mullioned windows.

The first block of buildings comprises class-rooms, library, and music-room, opening into the ambulatory. The main
entrance for visitors forms the feature of the tower, opposite which is the principal staircase to the dormitories. The pointed windows to the right light the dining-hall, which is of noble dimensions, and a corridor extends westward from this to the residence of the matron, which has a frontage towards a road leading to Stapleton behind. The dormitories for the pupil teachers are large and lofty, being obtained partially in the high pitched roofs. Separate divisions are formed for each pupil by wood framing, and in each division is the apartment of an assistant mistress, for purposes of supervision.

A block of low offices connects the scholastic buildings with the residence of the Principal, who will be a married clergyman, and (with the matron) superintend the working of the establishment. A covered way extends from this point across the field to the block of picturesque buildings in the foreground. These are destined for "Practising Schools," for the use of the pupil teachers, and consist of three rooms of large dimensions for girla, infants, and the children of yeomen of the surrounding villages, with class-rooms and their needful accessories. The ruofs of these rooms are open, of high-pitch, and well broken up with louvres, chimney-stacks, and other constructive features. Playgrounds will be formed for the use of the children, and gardens and walks for the recreation of the inmates of the college. The entrance-drive will be from the road leading to Oldbury, through a pointed archway, at the side of which is a lodge for the gate-keeper and gardener.

It is expected the establishment will be completed by about May 1853, and we learn the cost will be under 90001 . (irrespective of fixtures and furniture.) 'The stone for walling, paving, and tiling for roofn, being quarried on the site, or close by, has materially reduced the amount of the contracts. These are undertaken by Messrs. Willcox, of Bristol, with the exception of the iron castings, for floors (which are constructed fireproof, on Fox and Barrett's patent), supplied by the Butterley Iron Company. The necessary funds have been raised by the exertions of the Bishop of Gloucester and Bristol, assisted by the clergy and many wealthy laymen of his diocese interested in the cause of education based on Church principles, further aided by large grants from her Majesty's Committee of Council on Education, and the National Society.
The architects are Messrs. Joseph Clarke and John Norton, of London, who are now engaged in carrying their design into execution.

EXCAVATIONS AT SAWLEY ABBEY, CRAVEN.

On the Excavations recently made at Sawley Abbey, in Cravon, a Ruin situate in the Fale of the Ribble, immediately above that point of the riter where it becomes the boundary between the counties of York and Lancustor. By John Richabd Walbean, of Ripon.- (Paper read at the Thornton College Meeting of the Lincolnshire and Yorkshire Architectural Societies.)
After giving a sketch of the history of the convent, which was of the Cistercian order, and founded by William de Percy in 1147; an account of its suppression in consequence of the attainder of the abbot in 1537; the descent of the estate from the crown grantee, Sir Arthur Darcy, to its present possessor, the Earl de Grey; some particulars relative to the site of the village of Sawley that has sprung up within it since the Re-formation,-Mr. Walbran proceeded to detail, with great minuteness, the result of excavating what has previously appeared only to be a shapeless mass of rubbish. Though, with the exception of a portion of the church, no part of the wall rises much above 10 feet high, yet the greatest part of the entire ground-plan has been discovered, and many singular and interesting objects brought to light.
According to the usual Cistercian arrangement, the church was on the north side of the cloister court, though only bounding it for a small space; the chapter-house, and two other small apartments, flanked its east side; the frater-house, kitchen, refectory, and scullery, were on its south side. The weat side of the quadrangle has been so much 8 pal. ned, that in is improssible to say more than that it has beea furmed of buildiug: appropriated to domeutic uses, and, the uph contrary to all ruse, not improbably, by the ahbot's house. The phan of the church is cruciform, but with this singularity, that its width from north to south, along the transept, exceeds its length from west to east by 24 feet. Of this latter space the nave, which is a mere excrescence from the transept, contributes only 39 feet. It has
been exceedingly gloomy, and withont aisles. In the Decorated period, however, it had become necessary to add a north aisle, though this was done in the most clumsy manner, no opening having been made either by arcade or otherwise towards the nave, and to the transept only by a rude aperture that would admit of light but not of transit; and, in the excess of parsimony, the altar has been formed out of the very wall through which the opening has been quarried. The transept, which measures 132 by 38 feet, has been entirely reclaimed by the oxcavation. The east side is flanked, on each side of the choir, by three chapela, large portions of the altars remaining, except In those immediately joining the choir, which appear to have been cleared previonsly to the Reformation, when a new choir was in progress. In the foor of the southern chapel is a large epulchral alab, remarkable for the aculpture of two foliated Early English crosess of similar design and dimension. That this design, which though very unusual is not unique, has not proceeded from the fancy of the sculptor is evident, for two ikeletons were found immediately below in one shallow undivided grave. Near this stone, but in the transept, is a large slab which the circumscription tells us covers the remains of William de Rimington, once prior of this house and chancellor of the University of Oxford in 1378, and, as Mr. Walbran conjectured, the writer of some manuscript treatises against the Wickliftites, now in the Budleian Library at Oxford. When the atone was repaired and adjusted, the skeleton of a tall and sthletic man was seen below. There is no sign of interment in the next chapel, but the pavement is one of the most beautiful of the geometrical polychromatic works of the 13th century that has been diacovered, and so nearly resembles one found in the Abbey of Meux, in 1760, that it is evident both had been copied from the aame design. The middle chapel in the north transept has also a pavement of similar character, and in excellent preservation. The pavement of the northenmost chapel has been too of this sort, until disturbed by the insertion of a large sepulchral slab which covers, according to the inscription, in Norman-French, Robert de Clitherhow, rector of Wigan in Lancashire; a fact of more than ordinary interest, since this was the person who not only raised men to support Thomas of Lancaster against Edward II., but who also offered absolution to all who would join, in that quarrel, the standard of the barons; an offence for which he was brought to trial and condemned to death, but eacaped by a timely application of his purse. West of this stone is a noble slab of marble, which, beside an Early English cross, bears on one side of it a sword, and on the other an object to which no use can be assigned, unless a sling for casting stones is thus meant to be represented. The choir, according to Norman fashion, has been very contracted, measuring only 40 by 25 feet; an inconvenience endured nearly to the time of the Keformation, when a spacious structure, 111 by 58 feet, was begun, though it is impossible to say how far perfected, since the foundation alone remains. At the same time, too, it was intended to enlarge the nave, as is shown by the foundation of the south wall running the whole length of the cloister-court. The chapter-house, a rectangular apartment, 45 by 20 feet, has been torn down nearly to the floor; but neither there nor in the church are any tombs either of the noble founder or of Lord William de Percy, who died in 1944, or of his son, Lord Henry de Percy, who sided so actively with King Henry the Third in the Baronial wars, and were all buried here, can now be identified. In the remaining parts of the building, which, though spacious, were poor like the rest, in architectural character, nothing is to be noted of particular interest, save that the ruin of the Gate-house has been cleared of the hovels by which it was surrounded, and that the Abbey mill and garners were leased to the father of the late Sir Robert Peel, who, finding the utility of the water power created by the dam, that has now for seven centuries stemmed the torrents of the Ribble superinduced a cotton-mill, now happily abandoned, on the walls of the old structure, which still remains in tolerable preservation.
During the excavation, which was directed by Mr. Humphries, of Ripon, with unusual taste and judgment, many curious relics were discovered. Among the singular encaustic tiles described by Mr. Walbran, one has the inscription, "Johes Sallay Abbas xrs. ihu." Several hundred pieces of stained-glass were also picked up among the rubbish, mostly in good preservation, exhibiting beautiful patterns of diapers and borders, and part of a aeries of the twelve apostles, of the Decorated period, each delineated after a very unusual fashion at that time, on one pane
or piece of glase. There were found also a few coing, a hawk's bell, a bronze needle, part of a candlestick or corona lucis, and three templets of lead, need in carving wooden tabernscle work, which are perbaps unique epecimens of this kind of workingmodel.

The paper, which was of considerable length, and was heard with great interest and attention, will, we understand be published, with many illustrations, in the forthcoming volume of the Transactions of the united srchitectural societiea.

PROGRESSION IN ARCHITECTURE AND ART.

By Jayes Edereton, jan.
At the opening meeting of the Architectaral Amociation, on October 1st, the Annual Addrom was delivered to a very numerous audience, at their roome, Lyon's-inn, by Mr. James Edmeston, the Vice-President, as follows:-
"In the absence of our respected President, I have the honour to open this, the tenth Session of the Architectural Association; and without entering for one minute into the history of its past proceedings, or attempting to declare what may be its future success I will venture an observation or two upon the work we really have in hand-upon the importance of the objecta which societies like ours are endeavouring to attain; important, because they are demanded of us by the times we live in. We hope by so doing we may all be stimulated to a fresh and vigorous exertion in the session now commenced.

True that we, as students of an art by which perhaps many of us are to gain our daily bread, by which we hope to reach a position of eminence and reypect in society-perhaps a proud distinction-attach a real sense of utility, and find a real profit in our labours here for mutual advantage; and it is our happiness to mix up the grateful pursuit of knowledge and the cultivation of taste with solid considerations of substantial reward; but beyond all this, we may have the pleasurable consciousness of being workers in that grest field of healthful thought and feeling, of bearing part in those efforts to develope the higher intellectual faculties by means of the gentle yet powerful teachings of the beautiful, which mark 00 distinctively the present age-the result of long years of peace and plenty; the growth first, and then the nourishment of a generallydiffused elevation of national morality.

The schools of design established all over Europe-the art societies-the artizan schools, and numbers of similar associations -all point plainly towards the direction public taste is taking, and are all called into action by it; and if one proof could be found stronger than another, it is to see, at this moment, the hard, calculating spirit of trade, deliberately counting the cont and relying on the profit to be reaped by an expenditure of large treasure in furnishing forth a rebort of public amusement with food for the mind, and not merely for the eye and ear; in sending forth two gentlemen of known ability to select and purchase at great cost works of art the best and most rareefforts of the highest taste and genius-and that to please and entertain a holiday multitude.
A better comprehension and oriticism of worka of art is becoming more widely diffused each day; the eye of the beholder becomes more alive to the beauties that may be placed before it, and learns to discriminate between the fictitious, the claptrap, the merely mechanical, as opposed to the true and the poetic.

Since the first establishment of the schools of design in this country, in 1836, there has been a rapidly increased knowledge and demand on the part of the public for artistic treatment; and perhaps the great opportunities for comparison and for the exercise of judgment afforded by the Exbihition of 1851, have immensely contributed to advance this state of things. Time was when, from the lighest hranches of poetical design, down to the lowest connection between design and production of all kinds, there was but little encouragement afforded by the public at all. In manufactures the direct application of art was not understood, and there was a general absence of enlightenment and perception upon all matters of decorative art in all forms; and Professor Cockerell himself complained very justly, before a Select Committee of the House of Commons, that while the improvements in the science of building gave us great advantages over our forefathers, Architecture, as an art, had lost ground, and its priuciples were less understood than formerly.

At that time it was no fashionable subject of research; it was matter of caprice as to what style, of any age or country, could be called the best (the prevailing taste, indeed, was Elizabethan) -a state of things to be truly laid to the ignorance of the mass in matters of taste. But it was time that things shonld mend: manufacturers found there was a necessity to adopt different views-art manufactures and applications were called into existence-an art journal found a widely-extended supportbooks were written-lectures given-papers resd before societies, the least and the worst of all ns indicative as the best, of an earnest desire, an arakened spirit; calling into action all sort of argument, warm discussions, almost hostile demonstrations - 80 that opinions heretical to all before received became a creed to some, and the even, easy path of professional life became filled with stumbling-stones, with gaps and hules, hidden and unseen before; till the weary mind was well nigh tempted to put the whole down as empty trash, and to listen no longer.

But not so: the change within the last fifteen years is no less real than startling. The dark and changeful atmosphere of conflicting opinion for a time was calm, and the Great Exhibition rose like a work of enchantment, to bear an unimpeachable teatimony to the work that had been doing. It is gone; but not its influence-not its effect upon the minds of the mass so inert before-nut the interest in the admirable lectures hy Redgrave, W yatt, Jones, and others-not the love of the beautiful, engendered, perhaps for the first time in the minds of many, and the critical spirit aroused.

Without doubt, most of the false notions at one time universal, as to what constitutes an art are now done awny with; people anderstand that the material has little or nothing to do with the question, and that the hand and the mind are the same, whether applied to wood, stone, metal, or composition of any kind, no matter what the purpose or use of the thing itself. Much remains to do, but much has been done, to awaken an appreciation of beauty by its application to things of everyday necessity and common use. The industrial arts are leading the way, and each day the public mind will become more alive to, and will learn to relish, the higher and more ideal creations of fancy. Insensibly the public eye will become educated; the demand will be raised; and our business it is to be prepared to satisfy it, and to see that the noble art of architecture is not alone hehindhand: and there is, indeed, much to do. In all this great city of London, how little is there which attempts, or professes in the least degree, to bear any part whatever in the general progress.

T'ime was when fashion, nut principle, governed architectureWhen it was a purely imitative, not an inventive art. The Elizabethan is no longer the rage. We have had a rage-the Gothic; but under the new influences how different to former imitative efforts! They failed, indeed. Far different the results achieved by those many active, zealous, intelligent minds, brought to bear, not on the beyt mode of exactly repeating something already existing, but in searching out undiscovered principles. And the more this is done, and the more it is felt, we see the imitative habit thrown off, and the inventive faculty called into active action; so that now there is hardly any Gothic church erected which can be pointed at as copied from any example-at least, not by any of the masters in the art. The mass is unfortunately not yet so well instructed but that in some-in many-cases the matter is intrusted to ignorant and imbecile hands.

Mr. Dickens finds fault with those who "have put back the band on the cluck-face of time;" and a talented lecturer is so far carried away by his identity with the present, as to designate Gothic architecture a "galvanised corpse;"-a venerable budy it may be, yet alive with meaning, principle, and science. Let us not forget the immediate and excellent subject it furnished at the right mument for the spirit of investigation, and the discovery of principles which, so far from being exhausted, still offer an almost entirely unworked field for invention. The habit thus once engendered will hecome fixed; and the art will insensibly leave its leaning-post, and learn to run alone.

Nor have the profession been idle amid the general stir after improvement. I might dwell upon the great good that was done when its members banded themselves together, and occupied a bigh and influential position as the Royal Institute of British architects. I might allude to many societies, some of older utanding- Bume of yesterday-some in the first stage of formation merely. But our immediate business to-night lies naturally with the mode in which this Society is made to bear its part towards the end to be reached,- as to how it can best improve
its members in those qualities which we have endeavoured to show the age is unmistakeably demanding of them.

The architectural student labours under many difficulties. No mere drawing school or school of design will do for him; it would be quite insufficient, because bis pursuit is mixed up with the technical knowledge of numerous handicrafts, of which he could not possibly gain any experience in a school. In the office it has been the custom to give him at the best a technical education-he is rarely or never consulted even on matters of taste; much less is there any regular course of instruction in its principles. The technical education is good, it is absolutely indispensable; and he has ample opportunity, with ordinary attention, to obtain a vast scieutific and practical knowledge, particularly if he have the good fortune to he connected with talented and enterprising masters.

In the time of Angelo, Raffaelle, Corregio, \&ac., there were truly no such schools; but then the master and his pupils formed a sort of school in themselves, and worked through the several gradations of handicraft to the final artistic finish, from beginning to end, and the learner had far superior opport unitiea to him of the present day.

We have then a blank to fill up: and how can we do it better than by the formation of societies, combining the discipline and emulative character of the school, with a spirit the freest and most unshackled-where not only the experience of different members on practical points may he brought together for careful study and consideration, but where in addition there may be undisguised discussions and siftings of those artistic views present to the minds of all-besides the opportunity of putting upon paper results of such discussions or convictions produced periodically, and subject to a like open criticism. We may observe many of these efforts now upon the walls and tables, some of great merit; and there is not even a failure which has not in some degree benefitted the designer, if he be of an earnest and right spirit; and left him better than it found him.

In commencing a new term of our delightful labours, it will he well to remind ourselves of a fow of those great general principles which we should ever have before us, and in the observance of which lie weighty aud important resulta. For example, I would say, let us start fair without the trammels of prejudice, and, in estimating the works of others, and the efforts that come befure us here, consider above all things, not whether they are good Gothic-correct Italian-a pure Greek-but whether they are good Art; and by this ground let them stand or fall.
As to decoration, I would say that an edifice is ta be ornamented, not converted itself into an ornament; that all decorative art must be considered entirely with reference ta construction; that a sham construction to show ornament oan be allowed on no plea whatever, however good in itself, however perfect in some other situation; and that unless it be the growth of local necessity, and be in harmony with the building it belongs to, it cannot be good.

Let all merely imitative attempts be shunned; let the architect realise and cleave to guiding principles, grapple manfully with the demands of utility, welcome all the wants of the society of this day, and resist every temptation to shams of all kinds: so will his invention have a character of its own and of the time.

Let all designs in any of the preceding styles be made with a clear perception of their principles, rejecting peculiarities simply because they are such, and adopting the spirit in its purest and best form.

Everything should be designed with the most complete reference to the material and its constructive necessities. A cast-iron door, made on the model of a wooden one, with stiles and rails, would be a manifest absurdity-yet not so great but that it has been often done: witness also for a similar error the malachite doors in the Great Exhibition.

I might pursue this subject further; but I see around me gentlemen, not only ominent in the profession, but who may also claim a high powition in the world of literature and learning; and I trust they will take it up for an improvement, and not leave us this evening without the benefit of their experience.

I would say, finally, above all things let us join in this present session, with an earnest and untiring zeal, in advancing the objects we have in hand. Let all minor considerations be lost in the full appreciation of the work we have to do; and, I doubt not, this session now commenced will be as interesting, as instructive, and more so, than any that have preceded it.'

FRESCOES IN THE TOWNHALLS OF ACHEN AND ELBERFELD, GERMANY.

Frasoo painting is undoubtedly that poie of pictoral art moat turned towards the cause of the people-the painting for all. It in in Germany, however, where this tendency has been eminently followed of late, reminding us of the bett times of the Italian commonwealth. And thus Kaulbach and Cornelius, names world-known, have been succeeded by junior artiste, fully promising to follow in the path of their great masters. M. Alfred Rethe is a pupil of the Munich school, but mostly oxerted himself in the Rhinelands. There he first painted his scenes of the Introduction of Christianity into Germany. His St. Winfried is as well a historical tablet as a historical picture. There, amongst the primeval forests of old Germania, stands the gaint, surrounded by the sturdy, golden-haired (gold-harigen) inhabitants of those wild countries; at his command the oak consecrated to Wodan is cut down, to serve as the material of the new Christian temple, the plan of which the apostle draws on the surface of the sand. This and similar performances spread the fame of the artist, and when the Dusseldorf Art-Union decided on ornamenting the guildhall of Achen with frescoes, Rethe's deaigns obtained the prize, and are to be executed at their expense. The following subjects show the judicious selection of this artist amongst the important historical events of Germany, fit for a great pictorisl representation:-the Destruction of the Irmensul, the great heathen memorial of the Teutones; a Battle with the Saracens near Cordova; the Baptism of Wittekind; the Building of the Achen Cathedral; Coronation of Charlemagne in Rome; and the opening of the Sepulchre of Charlemagne by Otho III. The completion of these frescoes will make the guildhall of Achen one of the most interesting in the whole of Germany. M. Rethe has of late been sojourning in Rome, being occupied with drawings of an especially daring character-the Passage of the Alps by Hannibal, copied from the description of Titus Livius and Polybius. Some of these deaigns are of the highest character, and denote the great artdaring in grappling with such vast masses and scenery as the snow and wilds of the Alpe, \&ce. It is very probable, however, that these sketches will never be executed on the continent, but that M. Rethe, like his fellow-artist, Leutze, will adorn thereWith some of the public buildings of the great republic of the West.

In conjunction with the works pf Rethe, we may name those of M. Joseph Fay, of Cologne, whose frescoes for the townhall (Rath-haus) of Elberfeld attract general notice. They represent scenes of the primeval history of the German people, r calling the vivid descriptions of Tacitus. Thus, a sword-dance, where splendid, youthful figures, full of life and daring, jump through and around the swords planted in the ground. Another cartoon represents the religious rites of the ancient Germans. A grey-haired priest stands before the fiery pile, engaged in imprecation and prayer. This night-scene has been especially admired in Munich and Paris, where M. Fay has exhibited his cartoons, and which, when executed, will place high in the scale of art the comparatively modern city of Elberfeld.

J. L.

THE CONVERTIBILITY OF PHYSICAL POWERS.

Sir-l have just seen Mr. W. J. M. Rankine's paper on this subject in your last number; in this paper he notices the results of my experiments on locomotives, and adduces them in favour of his principle of the convertibility of heat with mechanical power. Fixed and acknowledged principles are certainly desirable, even when they may not have any direct influence upon practical arrangements, as they at least prevent useless speculation and economise intellectual labour. I do not believe that much more can be said for the doctrine of mechanical equivalence and convertibility advocated by Mr. Rankine, even if it be well founded; and it is my impression that he has overstrained his conclusions, while he has certainly misinterpreted the evidence of my experiments. His principle is, specifically, that "when saturated steam, or any other vapour, gives out mechanical power by expansion, the heat converted into mechanical power by the expansion is greater than that supplied by the reduction of temperature corresponding to the reduction of pressure; so that," he adds, "a portion of vapour must be liquefied to supply enough of heat to expand the rest." He distin-
guiches also between the condition of expanding steam or air moving a load, or doing work, and its condition while flowing freely into the atmosphere, as a jet; and finds that in moving a load, a quantity of heat is converted into mechanical power, and, as heat, permanently disappears; whereas, in expanding freely, the heat consumed by expansion is restored when the agitation subsides, by the friction of the particles.

Now, it appears to me that much more direct and decisive evidence is wanting for the establishment of these principles than Mr. Rankine has supplied; for the phenomena he adduces in support of his doctrine are equally and much more simply explained by the ordinary laws of nature. The distinction between expanding steam moving a load, and expanding steam flowing into the atmosphere is merely circumstantial: in the former case the steam moves something else; in the latter, itself. Its expansive force is the same in buth cases, and, so far as expended, does the same amount of work.
In his allusions to my experiments, Mr. Rankine does not fairly represent my views, for he gives it as a conclusion of mine, "that during the expansive working of steam a portion becomes liquefied, unless it is supplied with heat from without." He should at least have added that not only does the steam condense during expansion, hut that in guch a case it condensea also during its admission into the cylinder; moreover, that when the expansion is sufficiently protracted, the condensmation ceases at a certain stage, and a reverse process of re-evaporation takes place during the later part of the expansion; and to such an extent may this reacting process be carried, that the quantity or weight of steam at the end of the expansion often greatly exceeds the weight of steam at the moment of suppreasion or cutting off. My explanation of these remarkable results wan, that the material of the cylinder extracted the heat of the steam at the higher pressure, during the first part of the stroke, and restored it to a greater or less extent towards the end of the stroke, when the temperature of the steam fell below the newly acquired temperature of the cylinder. In my second paper on the subject, read before the Institution of Mechanical Engineers, and also in my work on 'Railway Machinery,' I have given numerous confirmations of this view of the question; and 1 do not see that Mr. Rankine's theory explains the phenomens referred to, with anything of the probability that attaches to the explanation already given and fortified by varied observation.
But, indeed, it is no notion of mine that steam must be partially liquefied during expansion, unless supplied with heat from without. What I hold in, that if the temperature of the cylinder be at least as great as that of the steam, there is no condensation; and that the steam becomes slightly surcharged in the mere act of expanding,-which I think is very plainly proved by Mr. Siemen's experiment. In short, it would be sufficient for the dry expansion of steam that the material of the cylinder be a perfect non-conductor of heat.
D. K. Clabe.

99, Buccleuch-place, Edinburgh. October 23, 1859.

ON THE SIZES OF MAINS AND SEWERS.*

The general practice with respect to the sizes of sewers conatructed previous to the investigations made by the Comeniosioners, and even yet very commonly adbered to, is concisely given in the evidence of Mr. Kelsey, then surveyor of the City Sewers Commissioners, taken before the Commissioners for inquiring into the means of improving the Health of Towns:-
"For the ordinary purposes of one house an 18 -inch main drain receiving collateral 9 -inch drains may with fair usage last many years without cleansing, but when it has to be cleansed, the trouble and the cost of digging pits from the surface and raking out the filth will be considerable. But for the use of a line of houses in a public gtreet, wherein some one or other will treat the drains unfairly, it may be laid down as a first principle that no common sewer should be so small that an ordinary-sized man could not get in to cleanse it: for if it were so small it would not only soon become choked up, but opening the surface to cleanse it would stop or more or less impede the traffic of the

[^52]street. Taking a man of ordinary size, it will be found that a height of 1 ft . 11 in . will just allow him to equeese through on hands and knees, and 3 ft .3 in . will admit him crouching, and 4 feet stooping. To these must be added two or three inches to allow of the raising of the body when moving forward, and there should be some additional allowance made for indurated soil in the bottom of the sewer. Taking these dita, one can scarcely allow less than from 2 ft .4 in . to 2 ft .6 in . for a man to crawl through; and 3 ft .6 in . for a man to crouch through; and 4 ft .4 in . to 4 ft .6 in . for a man to stoop through; and as few men are less than 21 inches across the shoulders, it would not be unreasonable to say that 2 feet is the least width in which a man can work effectually, although he may pass sideways through 14 inches. Applying these to the question of what is the best sized sewer that ought to be built in any street, one is compelled to admit that it ought not to be less than 30 by 94 inches, and its depth not less 18 feet in its shallowest part. The thickness of the brickwork cannot be less than 9 inches, nor would it be prudent to leave fewer than two tiers of atrutting and planking in the ground. The cost of such a sewer would probsbly be about 9s. 9d. a foot, being somewhat less than half the cost of a sewer 4 ft . 6 in . high, and 9 ft .6 in . wide. But this assumes that the work is done under the most favourable circumstances, and at the present low prices; and the calculation of course, does not include gulleys, man-holes, $丸 c$., nor securing tbe houses of a narrow street. The term 'common sewer' (as for more than one house) is used in contradistinction from public sewer (as unfit for more extended purposes), and taking the limited height of 20 inches from the bottom of a public sewer to the bottom of a drain, as a fair and reasonable allowance for the accumulation of soil in such sewer, before the private drains can be obstructed and the sewer said to be foul; by adding $\& \mathrm{ft} .6 \mathrm{in}$. to that, we shall find that 4 ft .2 in. is the least height which it is advisable to give a public sewer, but 4 ft .6 in . is better as allowing freer space for cleansing"

It would be better that sewers of deposit, in their frequent condition, should be required to be opened to the surface as house-drains of deposit are, for cleansing, rather than that it should be permitted to continue the practice of sending men to crawl up them amidst foul ordure, to the certain injury of their health and at the hazard of their lives.
Main sewers were very generally found to be of larger sizes, with the certainty of containing greater accumulations than those in the circular form constructed for the City of London. For the convenience of working in them, they were commonly made with nearly flat segmental buttoms, and with upright sides and spreading footings. Circular work being more difficult or troublesome, it was found that the builders cummonly preferred a similar construction for the smaller sewers, as the whole were built upon the hypothesis that deposit must accumulate; and except in the case of main sewers in valley lines, with considerable runs of water, it does so.

The whole evaporating surface of stagnant and pestilential matter beneath the houses and streets of the metropolis has been estimated to be equal to a canal 50 feet wide, 10 miles long, and above 6 feet deep, such as, if spread out 6 inches deep, would form a putrid swamp nearly 800 acres in extent, being nearly three times as large a surface as the whole population could lie down upon.
Sometimes large sewers ns well as large drains are filled nearly to the top with deposit. In many lines of sewers irregular accumulations were found to have been deposited in consequence of uneven bottoms, junctions at right angles, or other causes. When large bodies of water, from sudden and extraordinary storms, have been driven into sewers containing such accumulations, the sewers have become completely choked, and have caused flooding, not, as was commonly supposed, because they were too small to convey away the storm-water, but because they were too large to be kept clear by their usual streams. The instances cited to prove the insufficient capacity of sewers, really proving tbeir extravagant sizes, or their bad construction, or both.

It is important that the result of inquiry on this point should be understood-namely, why a amall channel or draiu, properly adjusted to the run of water to be discharged, will be kept clear, while a large cbannel, with the same quantity of water to be discharged, and with the same fall or inclination, will accumulate deposit.
In large drains, a given run of water is spread in a thin sheet, which is shallow in proportion as the bottom of the drain is
wide; hence friction is increased, the rate of fiow retarded, and, according to a natural law, matters at first held in suspension, and which a quicker stream would have carried forward, are deposited. If there be any elevated substance, the shallow and slow stream, having less velocity and power of floating or propelling a solid body, passes by it. But if it were a 4 -inch drain, the same quantity of water would assume a very different relative position; and it will be readily understood that the deeper stream of the contracted channel would be more powerful to remove any obstructing body.
Instesd of concentrating the flow of small streams, and economising their force, the common practice is to spread them over uneven surfaces, which "deadens" and "kills" them. In a small drain an obstruotion raises an accumulation of water immediately, which increases, according to the size of the obstruction, until four, five, or six times more hydraulic pressure is brought to bear for its removal than could by any possibility be the case in a large drain; for in a large drain of three or four times the same internal capacity, the water can only be darmmed up to the same relative height by an accumulation of matter three or four times higher and therefore twenty-seven or sixty-four times greater, which will gradually lengthen out, and then be beyond the power of removal by the water.

Earthenware pipes, if properly constructed and non-absorbent, wear away less than brick drains do, and much less frequently want repair. From their reduced size less earth has to be excavated from a narrower trench, and they may be laid down more quickly and with more certainty tban the common brick-drains. Rats cannot work through earthenware pipes, and as, when properly laid, they detain no deposit, and when smoothly made, give no foothold, they afford neither food nor shelter for such mischievous vermin.
Observation of the laws of moving water, or the conditions under which water in slow motion deposits matter in suspension, and, with increased motion, lifts and removes, first, fine sand, then, with accelerated motion, coarser sand; tben pebbles; then large stones; and, lastly, boulders and vast masses of rock; and the consideration of the inclinations by which velocities might be regulated, should have prevented the expensive errors which are displayed in the sewage arrangements for towns. But such investigations have yet to be made and recorded, at least as respects flows on the scale of rivers; though authentic and trustworthy experiments, made under varied circumstances, would be a work of national importance. The data usually referred to as governing practical applications were found upou inquiry to be wholly unsatisfactory; as, for example, those in Professor Robison's 'Treatise on Rivers,' which proved to be largely at variance with other observations.* Some of these discrepancies appear to have arisen, from partial investigations, from the omission to notice, amongst other things, that the power of water to suspend and to remove solids along the same line of inclination or fall, is as the depth or head of water flowing. Thus a stresm of water 4 feet wide and 1 inch deep with a fall of 1 in 150, is sluggish; the same water, if passed through a pipe of 12 inches diameter, having the same rate of fall, would be comparatively a rapid stream. The one would deposit silt or sand, the other would certainly remove buth.

It will be seen it would be far better, were it necessary for the inhabitants of many houses to pay for new tubular drains every year, and run the risk of having them stopped up every month, than to have large drains, detaining and spreading deposit, and facilitating decomposition within the walls and beneath the floors of their dwellings.
The necessity of the construction of house-drains with better materials and forms became immediately manifest upon the sanitary inquiry in 1842, but at that time nothing of the kind existing or being known in the house-building trades, Mr. Roe was requested to get some pipes made. Being afterwards asked to ascertain experimentally, for the immediate purposes in view, the difference of the run of water in an earthenware tubular drain, as compared with that through a tubular or barrelled brick drain, he found that the gain of velocity in favour of the better formed and less inexact surface was not less than one-

[^53]third; there would consequently be, with the same quantities of water, nearly a double power of cleansing. But the tubular drains of the deseription tried, though the best that could then be obtained, were by no meaus perfectly true in shape, and they may still be rendered much more exact by a pressure applied by a machine when half dried. With thia increase of exactness, and with but slight variation in diameter, it appears that they discharge one-fourth more water in the same time even than the rude hand-made pipes first tried.
It appeared to be a common doctrine which governed the construetion of such works, that it mattered little whether the surface of sewers or drains was smooth or rough; that even if they were made of rubble stone the only practical effect would be to diminish the diameter of the drain to the space between the points of the protuberances Upon investigation this doctrine was found to be wholly erroneous in respect to sewers as well as house-drains; Mr. Roe showed that brick sewers, whenever the surface was made comparatively smooth with cement, were kept clear of deposit, whilst the sewers having rough brick sarfaces, with the same inclinations and the same quantities of sewerage, accumulated it.
Subsequently other trial works were directed to be made to ascertain the correctness of the exieting hydraulic formula, and their applicability for determining the sizes of underground channels which might serve for town-drainage. The chief results as respects the house-drains are thus described in an examination of Mr. Medworth, the aurveyor appointed to make the trials:-
Among other things, were jou not directed to try the flow of water from pipea of different construction-some formed with pressure and nome formed in the common way?-I was.
Did you not find that making the pipes smooth in the interior gave an increase of velocity of a third or fourth through a 3 .inch pipe?-I did. Experimenta were made with redware pipes, moooth, bat not glazed.

What quantity of water would be discharged through a 3 -incb pipe on an inclination of 1 in 120?-Pull at the head it would discharge 100 gallons in three minates, the pipe being 50 feet in length. This it witb stoneware pipe manufactured at Lambeth. This applies to a pipe receiving water only at the inlet, the water not being bigher than the head of the pipe.
What would be the rate of discharge supposing the whole 100 gallona to pass through the drain from the back to the front of the house, aay some 60 feet, and how soon would the water be clear of the premises? -All that could be swept away by 100 gallons would be discharged clear of the house at the rate I have already stated.
What would be the power of sweep?-Sufficient to remove any and even more than ordinary and uanal semi-duid deposit that is found in house-drains-that is, suppoting the whole of the 100 gallons wat to be discharged in the time atated.
What water was this ?-Sewage.water of the full consiatency, and it was discharged so completely that the pipe was perfectly clean.
At the same inclination what would a 4 .inch pipe discharge with the same diatances?-Twice the amount (that I found from experiment); or, in other words, 100 gallona would be discharged in half the time. This likewise applies to a pipe receiving water only at the inlet, and of not greater height than the head. In these cases the section of the atream is diminished at the outlet to about half the area of the pipe.
Then a 4 inch pipe will discharge a 24 houra' supply of sewage-water a diatance of 50 feat in a minute and a half?-Yes ; taking the 24 hours' supply to be 100 gallons.

Did you not try the force of this discharge with sand? and if so, with What proportions?-Yes, with sand, in proportion of from $\frac{1}{\sqrt{6}} \mathrm{th}$ to $\frac{1}{\text { fotb }}$ th the rolume of the water, and the whole was entirely removed.
But the different conatruction of the pipe with respect to smoothnest will make full a fourth difference in the rate of velocity ?-Yes; with the redware pipes formed by pressure, the accelerated velocity due to regnlarity of form and amootbness of surface was one fourth.
What pipes did you ase in these experiments?-In some experiments, including thoso previously referred to, we used redware pipes, but principally glazed stoneware pipes were pued in the experiments at Greekatreet.
Have jou nol found that exactitude in the make is more importent than the glaze?-Yes; the exactness of form and accuracy of joint are very important, wo that the pipes may ran into each other and form a complete cylinder. As an instance of the importance of exactness of joint, I had a case happen at one of my housea within the last few days. The tenant complained of the atoppage of the train from the closet, \&c. Upon sending a man to make an examination, it was found that the trap contained several oyster-shella, and one had been discharged into the drain where it was arrested by an imperfectly-formed joint.
Then you found on experiment ibat this exactneas of form expedited the discharge full one fourth?-Yes; wa before stated in the case of the redware pipes.

Before these experimente were made, were there not various bypo. thetical formule proposed for general une?-Yea.

What would these formols bave given with a 3 inch pipe, and at an laclination of 1 in 100? and what was the reault of your experimente with the 3 -inch pipe ?-The formula would give 7 cabic feet, the actaal experiment gave $11 \frac{f}{f}$ cubic feet; converting it into time, the discharge sccording to the formule, compared with the discharge found by actinal practice, would be an 2 to 3.

Or, puttiog it into another form, if there were a given quantity of detritus or freces to be remored, it woold aceording to the formalse, require nearly doubie the quantity of water that wat found absolutely requisite in practice?-The proportionate discharges were found to be at 2 to 3, therefore the power required woald be in those ration.
How would it he with 4 4-inch pipe? - The formale would give about 14.7 cubic feet per minote, whereas practice gavo 23 cubic feet per minate.
Take the case of a 6 -inch pipe of the sume inclination ?-The result, according to Mr. Harkeiley's formula, would be 40,1 cabic foet per minute ; from experiment it was foand to be 631 cabic feet per minute.

Will you convert that into time, and cosaider the 6 -inch pipe as a small branch sewer? Within what time wuild 100 gallona be discharged at the same inclination over 50 feet?-It would be diacharged in 15 seconds.
That is to eay, that the actual experimenta prove how much less water can be made to suffice than these formule prameribe?-Precisely 20.

Then with reapect to masina and drainage orer a fats surface, the resalt of course becomes of much more value as the difference proved by actual practice increases witb the diminution of the inclioation?-Certainly, to a very great extent. For example, the tables give only 14.2 cubic feet per minute as the discharge from a pipe 6 inches diameter, with a fell of 1 in 800; practice showa that, ander the same conditions, $47-2$ cabic feot will be discharged.

Will you give an example of the practical valne of this, when it is roquired to carry out drainage works over a very fat anface? An inclinetion of 1 in 800 gives only 14 cubic feet per minute according to theory, Thile, according to actual experiment, and with the ceme inclination, 47 cuhic feet are given.

Then this difference maty be converted either into a saving of water to effect the same object, or into power of water to remove fecolent matter from beneath the sice of any houses or town ?-It may be so.
And also the power of smallinclinationa properly managed ?-Yea; for example, if it was required to conatract a watercourse that should ditcharge, ay 200 cubic feet per minute, the formula would require as inclination of 1 in $60=2$ inches in 10 feet; whereas, experiment has shown tbat the same would be ditcharged at an inclination of 1 in $200=$ finch in 10 feet, thas effecting a considerable saring in excavation, or a smaller druin would auffice at the greater inclination. The practical importance of k nowing the precise value of inclination is incelculable, and will be found ao in laying down drainage for a flat diatrict, or through loose and wet aoila, where the extra labour in excavating the last few inches in depth to obtain a given level will often exceed In cost as many feet. I have frequently met with such casea. To name one, I will atote that, doring the progress of a sewer contract I had in 1842 for the Commiasioners of the Holborn and Finubury diatrict, the depth of the Trench was about 9 feet, and perfectly dry; the cost for laboar was Bd. per cubie yard; the invert of the sewer, according to the levelo given by the sorveyor, required to be about 6 inches lower, and this proved to be in a ranning sand of the most trouhleaome nature, and cost me at the least 10p. per yard in the removal before the invert could be leid down.

Guin of Fall on the same Levels by small Tubular Drains.
Besides so much gain in the force of sweep at similar inclinstions, obtained by the use of tubular drains, gains in fall are obtainable from their reduced size, improved form, and amoother surface. In level districts this will frequently be a most important advantage. The height from the top of a 9 -inch barrel druin to the bottom of the opening is $13 \frac{1}{\frac{1}{2}}$ inches, while that of a 4 -inch tube is only 5 inches, consequently, if the former must be level, the latter may have a fall of 8 inches; this, in a drain of 90 feet in length, would give a fall of 1 in 135 . If a brick drain 60 feet long must be level, a 4 -inch pipe may be laid with a fall of 1 in 90 ; if 30 feet long, with a good working fall of 1 in 45; whilst with the shorter lengths of discharge available by meaus of back drainage, say of 10 feet, the fall would be 1 in 15. This is of great consequence, as the velocity of discharge and its cleansing power increase proportionately with the fall.

Gain in Fall and diminished Friction of House Draine by Improvement in their Direction.

Besides reducing the sizes of house-drains, it appeared upon investigation that great alterations were required to improve their inclinations, or fall, and also to reduce their length. Water is chiefly used in and about the back offices of houses; water-
chosets are generally mituated there, and thence the discharge of waste water will principally be.

The common or general practice has been to place sewers for the reception of house-drains so as to compel the passage of the refuse by a drain across the court-yard, underneath the back room or kitchen, underneath the front room, front pavement, and half the carriage pavement, to the centre of the street; Whereas, if sewers had been laid at the back of the premises, frequently a house-drain of about one-third the length would have sufficed, and by the same means more rapid falis would have been obtained. The frictional area over which the refuse must be carried, by placing the sewers in the centre of the streets, will be many times greater than that which would occur in carrying the branch-drains to the back of the premises.

By the common practice of draining houses separately from the back, through the house, into the sewer placed in the centre of the front street, the offensive and noxious matter is carried completely under the house, instead of directly away from it, and the chances of stoppage are increased in proportion to the increased frictional area, and to the diminution of the fall. By these ignorant and mischievous arrangements, when a stoppage does occur, it can frequently be remedied only by taking up the floors of the front as well as the back room, and opening the foot and carriage pavement to the sewer in the centre of the street, all which work must be done at great inconvenience, and at oppressive expense.

The openinge made by rats, through defective brick-drains, permit the escape into houses, not only of noxious effluvia from deposit in the house-drains, but also from that in the still furtber elongated cesspools-the sewera-as commonly constructed. A house-drain, as commonly constructed and arranged, acts as the neck of a retort, of which the sewer is the bulb, containing decomposing matter, which is discharged in the gaseous form into the premises.

Trial of Tubular House Drains.

The great majority of a town population do not differ so much in their habits, either as to the use of water-or in other respects affecting this question-to prevent the well-observed experience of an average group of houses sufficing, as to the main points, for general comparison; and the first trial works, Which were made under the careful attention of the Dean of Westminster, were by him cunsidered to afford a decisive proof of "the efficacy of draining by pipes, and of the facility of dispensing entirely with cesspools and brick sewers."

A severe epidemic fever had burst out in the houses connected with the cloisters at Westminster. Thirty scholars and inmates had been attacked, of whom several died. The houses had nearly all cesspools, and the inmates, during the variations of the weather, were beset with foul smells. ()n examination, it was found, that beneath the houses in which the fever raged there was a net-work of cesspools, old drains, and sewers. From beneath fifteen bouses which were the chief seats of fever, 150 loads of ordure were taken; and from drains and cesspools connected with the houses, upwards of 400 loads were taken. These cesspools and old drains were all filled up, and an entire system of tubular bouse-drains with water-closets, substituted.

The changes in the sizes of the drains are thus stated:-"At the outlet, the main sewer in the old works was 4 feet high, by 3 ft .6 in . wide, varying in width to 6 or 7 feet, and in height in one part to 17 feet. In the new drainage substituted there are two 9-inch stoneware mains, the united sectional area of which is but one-sixtieth of the area of the smallest part of the old sewer, and not more than one-half the area of the average of old single house-drains. We state that the secondary pipes are of 6 inches diameter, and the branches of 4 and 3 inches: 4 -inch pipes were however used in many parts where 3 -inch would have amply sufficed for all the requirements of the drainage, from an apprehension that the irregularity of the pipes would tend to create a certain amount of obstruction. This new drainage conveys the refuse and rain-water from fifteen houses, the Westminster School Buildings, the Chapter House, and Cloisters of the Abbey, Little Dean's Yard, \&c., comprising an area of about two acrea. There is a total length of drain of upwards of 3000 feet. The cubical capacity of the interior of the whole of the new main and branch drainage is about one thirty-second part of the cubical capacity of the interior of the old sewers; or the capacity of a portion of the old system is 32 times the capacity of the whole of the new system, exclusive of the old housedrains and cesspools; or the capacity of the old sewers is equal
to a depth of water of more then 2 inches on the whole aurface drained of about 87,120 square feet, or two acres; and they would have retained a rain fall of this depth on the whole area."

In this block of buildings, the noxious evaporating surface underneath the area was upwards of 2000 square yards. The flow of gaseous emanations from such matter in certain thermometric or barometric conditions was such as, in a stagnant atmosphere, would have filled the school in about three hours, the houses in about sixteen hours, and the abbey itself in about ninety-three hours. It would have been a great gain to the inhabitauts and scholars had the extent of the evaporating surface been merely diminished in proportion to the reduced cubical capacity of the tubular drains, but the whole of the old deposit was removed; with that deposit, the foul and noxious smells arising from beneath the premises have ceased, there has since been no epidemic fever, and a greater improvement in the general health of the population has succeeded than might be reasonably expected in a small bluck of houses, amidst an illconditioned district from which it cannot be completely isolated.

With respect to the action of the pipes, the result of this change, which has now (1852) been in operation more than three years, proves that, notwithstanding intermittent and ill-applied supplies of water, the force of the sweep in 4-inch tubular drains, properly laid, keeps them clear of all deporit, and also further proves that they require no extraordinary flushings. An accumulation of noxious deposit under housea, appeared uponinvertigation to be often due even more to the vicious construction of house-drains than to the bad falls produced by the defective arrangement of the system of sewers. One of the inspectors states, that in Sheffield a difference of 108 . in one particular case, between the tender of a responsible contractor, and one upon whom no dependence could be placed, determined the drainage of some valuable buildings in favour of the latter. In six months, the whole length of drain was full of deposit, and had to be reconstructed, at his own price, by the more responsible person. The proposed saving was about 3 per cent.; the eventual loss was 106 per cent. The owner was wealthy, and a clever business man. Similar cases frequently occur, and are not confined to any one locality.

The clearance of common house-draing, as well as sewers, when made on the hypothesis that they will accumulate deposit, is a source of constant expense. On an inquiry as to the cost of cleansing the brick-drains of 8000 middle-class houses in the metropolis, it was found to be, on the average, nearly 16. each per annum, which, as it included the expense of making them good, as well as of opening and cleansing, may be said to include the expense of repairs. If the expense of cleansing the brick street-sewers were charged upon each bouse according to the frontage, at the average expense of about 296 . per mile per anuum, it would amount to 68 . or 8s. per house, in addition to the expense of cleansing the brick-drains.

If the expense of removing all the stoppages which have occurred either in tubular house-drains or sewers were to be taken as a necessary and constant charge, it would be very trivial in amount as compared with the expenses above referred to. But stoppages in earthenware pipes are found to be due to want of care or skill, and are preventible. The stoppages in pipe-sewers, where they have occurred, have been chiely from the bad quality, the thinness, and the breakage of the pipes in sandy or slippery soils, where they have been laid without proper protection,-from the inlets not being properly protected, from not putting cesspits to prevent the admission of granite detritus into pipes, sewers provided with only very small or intermittent runs of water,-from the inlets of the house drains not being protected against the admission of large solid sub-stances,-or from the drains being badly laid, with insufficient fall, or through ignorance or gross careiessness laid with reverse inclinations. In the metropolis, however, during the yeary 1849, 1850, and 1851, there have been laid down about 50 miles of pipe-sewer, and upwards of 150 miles of private pipe-drains, or a total of 200 miles, which keep clear by the action of their ordinary runs of water, where the older constructiong-large sewers and brick drains-regularly accumulate deposits. The expense of cleansing the old brick sewers in the metropolis has been from $17,500 l$. to 18,500 l. per annum. The same extent of cleansing, if it had been performed by hand labour or cartage, would, at the former contract prices, have been more than ten times as much. In the metropolis upwards of 18,000 houses have been pipe-drained.

NEW YORK EXHIBITION OF THE INDUSTRY OF ALL NATIONS.

Mebsrb. Cangtenark and Gudemeserer, Architecte.

(With an Engraving, Plate XXXIX.)
Tae Exhibition of Raw Materials and Produce, Manufacturea, Machinery, and Fine Arts (including Paintings, Sculpture, \&c.), is to be opened in the City of New York, on the 2nd May, 1853. The directors have decided that prizes for excellence in the various departments of the Exhibition shall be awarded under the superintendence of eminent persons. The building, of which we give an engraving, is in course of erection on the ground in front of the Croton Reservoir, called Reservoir-square. The materials used in the construction are chiefly iron and glass.

The ground-foor is a regular octagon, 365 ft . 5 in . in diameter. This measurement does not include the three entrance-halls, each of which projecting 87 feet, is 40 ft .5 in . wide. On each side of these entrances offices are attached, projecting 18 feet from the main building, and being 27 feet in width.

The interior consists of four great divisions, each having a main avenue with side aisles, which are connected on the groundfloor by four triangular sections. These main avenues unite at the dome, and together form a Greek cross, which shape is preserved in the gallery floor.
Dimensions.-Diameter of dome, 103 feet; height of dome from floor to akylight, 182 feet; height of avenues in the clear, 67 feet; height of first story in the clear, 84 feet; height of second story in the clear, 81 feet; height of aisles, total 45 feet; width of sisles, 54 feet; height of triangular sections, is feet; height of substructures, varying from 8 inches to 8 ft . 4 in.; width of avenue 41 ft . 5 in.; width of galleries, 54 feet; width of each front, 149 ft .5 in .; diameter of each of the eight octagonal towers, 8 feet; height of towers above side-walk, 75 feet; area of principal floor, 111,200 square feet; area of entrances, halls, and offices, 6000 square feet; area of galleries, 62,000 square feet.
The building is being erected under the superintendence of Mr. Delmold, C.E.; the iron contracty having been taken by various houses. The chief part of the castings will be delivered from the 18t to the 15 th December. The inauguration of the first column will probahly take place about the 15th October; the time from 1 st September until now being occupied with the masonry work. The cost will be about 45,000l. Mr. Carstensen is also the designer of the Casino and Tivoli at Copenhagen.

THE BROCK MONUMENT, TORONTO.

A monument is to be erected to the memury of the late General Sir Isaac Brock, at Queenston Heights, Toronto; and considering the nature of the work to be constructed, and how seldum an opportunity is afforded for the exercise of taste in so popular and attractive a subject, the competition appears to have signally failed. This may probably be traced to the fact that most of the architects declined to interfere in consequence of the claims of one of their number, whose design was approved and accepted some years since. Seven designs only were submitted for the premium of 251 . by five competitors. One a Grecian-Doric column, chaste and effective in character, by Mr. Young (the author of the design originally adopted). Two from Mr. Thomas-the first a Composite column on a high pedestal and stylobate, extremely graceful in design, of great altitude, but perhaps somewhat too delicately enriched; and the second, an arch surmounted by an equestrian statue of the General-which could not be said to offer any rivalry to the before-mentioned work by the same master. Another design-a Greek column, of no established order, but elegant in outline and detail, by Mr. Hutchinson Clarke, of Hamilton; two by an anonymous contributor-a Corinthian column with a garland wreathed around a shaft (!); and a Gothic mausoleum of most wretched charater and miserably rendered; with a Doric column, having sculptural ornamentation by a Boston sculptor, completed the number of essays submitted for this unquestionably attractive subject. From amongst these the committee have selected Mr. Thomas's Roman-Composite column, 185 feet in height, including statue, to be executed in Queenston stone, the construction of which is to be immediately commenced, and which, when completed, will doubtless approve itself to the public as worthy of its purpose and of the high reputation of its author.一The Canadian Journal.

EVIDENCE ON VENTILATION AND LIGHTING OF THE HOUSES OF PARLIAMENT.

Analysis of the Evidence given before the Select Committse appointed to Consider the Ventilation and Lighting of the Houme of Parlianient and their Appendager.

(Conciuded from page 344.)

Kina (Alpran, Engineer, Liverpool)-Has been employed in lighting large buildings. The most important building which witness has been employed in lighting is the Philharmonic Hall at Liverpool: it is rather more than 180 feet long, 60 feet wide, and about 60 feet high; it is lighted simply by a row of jets; the ceiling is coved. Mr. Cunningham was the architect of the room; a good deal of attention was given to the construction of the room, in order that it should be properly ventilated. Natural currents are resorted to for the ventilation of the room successfully. Never heard any complaints. The centre part of the ceiling is flat, but the sides are brought down by curves to the cornice, which surmounts the walls. On the cornice are placed the lights, which are simply a row of 942 very small naked burners; over the orchestra there is one large clustered naked light, containing about 170 of the same lights as those on the cornice. That lights the wbole of the orcheatra, but the rest of the room is lighted from the cornice by the continuous row of lights. The fame is horizontal; a small jet of gas is always burning near to them, so that when the large supply is turned on, it instantly lights it, it flashes at once; the large sun-burner or cluster is lighted by a small jet of gas being always buraing. Each jet of gas is sufficiently near to the next, that if one is lighted, it makes a train throughout the burner: it does not follow that they need necessarily touch to do that. The lights around the cornice are lighted by hand in sections. The supply-pipe is not a continuous supply throughout the building, but there is one large main supply from which there are branch sectional pipes; one pipe, perhaps, supplying twenty burners. A portion of the latticed-work of the cove falls forward, forming a trap-door, and then, by a staff, the twenty lights, which have been turned on, are lighted, and the person goes to the next and turns on another section, and so lights the whole. The greater portion of the light is produced by the direct light from the cornice. $\$ 000$ culic fect per hour are consumed in the Hall, which will cost 98 . The horizontal light has been used in Liverpool four or five years. The rose light is a combination of vertical flames; the sun-burner a combination of horizontal lames. There is a cone of metal over the clustered burner, over the sun-burner; this cone or exit-pipe is only 6 inches in diameter, and even that is obstructed by means of a valve. That arrangement is necessary, in order to get the flames of the sun-burner to burn horizontally; for if the full amount of draught up that central pipe were allowed, the flame would be drawn together up the tube; but when that tube is used for purposes of ventilation (and a very powerful ventilator it becomes), it is surrounded by other tubes of a much larger size. The rarefaction produced within those larger tubes by the heat of the central pipe is so great that a very powerful current rushes up thuse exterior tubes. There is a valve in the ventilating-pipe over the clustered lights. It is simply a circular disc, supported on an axle which can be either turned in a vertical position in the pipe, or in a horizontal one, so that the quantity of draught in the pipe can be regulated by the position in wbich the disc of metal is placed. It never is closed, the current is only moderated; but even if it were closed, the products of the combustion would escape over the edge of the cone, and immediately flow up the surrounding tubes. They are concentric tubes, the burner being in the centre; then around the central pipe or cone, which contains the burner, is placed a large cylinder, and around that a still larger cylinder. These arrangements are necessary to secure the building from fire. They are introduced not simply for the purposes of ventilation, but also for protection. In some cases the cone, the internal portion of this arrangement, is at a dull red heat: it affords an immense amount of ventilation. The air enters the room for the supply that is taken out by these pipes all along the sides of the wall, about 5 feet from the leval of the floor, through perforated zinc plates; it is either cool or warm air as the case may require. Witness has seen the contrivance adopted in the House of Commons at present for lighting. Is of opinion that no advantage would be gained by having ground glass placed beneath the lights. There is no doubt that great advantage is derived in the lighting of a room

$\mathbb{N} \mathbb{E} \mathbb{F} \mathbb{F} \mathbb{R} \mathbb{R} \mathbb{E} \mathbb{E} \mathbb{S C I B} \mathbb{B} \mathbb{I} \mathbb{I} \mathbb{N} \mathbb{N} \mathbb{B} \mathbb{I} \mathbb{I} \mathbb{D} \mathbb{I} \mathbb{N} \mathbb{G}$ From a design by Mess ${ }^{\text {rs }}$ Carstensen and Gildemeister.

Scale 100 feet to 1 inch.
from the colour of the wall; white is the best for economising the light. Is of opinion that the lights might be so arranged in the present House of Commons that there should be no offensive shadow. The House of Commons might be lighted very differently from what it is. Witness's principal objection to it is its ineficiency, and it is also unsightly. It is always desirable that the light should be placed as much as possible above the line of vision. The same system of lighting might be adopted in the cornice in the square part of the House. It might be lighted by a combination of sun-burners and lights round the cornice. Witness does not contemplate that there would be any fickering in the light.
Price (Henry Cruaer, C.E.)-Has been upwards of twenty years engaged in warming and ventilating buildings. About twenty years ago he took out a patent for a new hot-water apparatus. His system had been applied at Windsor Castle and Colney Hatch Lunatic Asylum.* Has warmed several county prisons and county lunatic asylums, and other public buildings. He adverted to an asylum which he has recently completed in the county of Wilts. At Windsor Castle he depended almost entirely, and at all seasons, upon what is called natural or spontaneous ventilation and warming. At Colney Hatch, in the winter, they relied entirely, and obtained all the results that are required there, by natural ventilation also; but in the summer they have the artificial motive power of a furnace for occasional use; constant use of it, even in summer, is found unnecessary. But in the Wilts asylum the warming power is hot water, and the ventilating power is hot water also. He mentioned that particularly, because, in his judgment and experience, that is the right combination. He used the hot-water coil as an extracting power; it is preferable to the furnace, as there are none of the fluctuations in the one that there are in the other. He recommends the following method for warming and ventilating:"One feature of my method of warming is to accumulate a large amount of warming power in a comparatively moderate space. 1 centralise it. I do not mean that if 1 have a very large building to warm I place the whole warming power at a central point. I do not; that is highly injudicious, and involves a great deal of expense and difficulty. Another essential feature of my system of warming and ventilating is to pay a scrupulous regard to the relative and proper proportion of the areas of the air-paseages. For instance, the main ducts should be calculated with areas equal to the precise demand that will be made upon them; then all the tributary, all the branch flues, mast have a relative proportion of area to the main; so that in fact the whole thing is systematised. If a heating chamber for a large building like Colney Hatch were to be centralised, you would scarcely be able to move the air through it. When 1 mention that at Colney Hatch we have 25,000 superficialfeet of warming surface, and that that building is 1800 feet long, if the power were placed centrally you would have to move the air horizontally 900 feet right and left; and as you would want to reach the remote parts to produce the same effect as in the near ones, the channels for air must be of a uniform area throughout, which would involve enormous expenses." His method is by low-pressure hot water; fixing the maximum temperature in most cases at 170°, that is 42° below boiling point. You cannot bring atmospheric air in contact with the surface at 918° without impairing its qualities. He adopts the ascending, the natural movement always, and relies principally upon the natural force of the differences of specific gravity, and only adds artificial force at that point where nature fails to be sufficient; and whenever the warming power is in operation, which it is during the winter season, then it is not requisite for artificial power to be added. It is only when there is a tendency to approximate in temperature, and when the specific gravity of the external air and the internal nearly epproach each other, that it becomes necessary to assist nature by the application of artificial motive power. All systems of warming tend more or less to alter the natural hygrometric and electric states of the air. For every additional 27° of Fahrenheit that the air is raised in temperature, its capacity for moisture is

[^54]doubled. The low-pressure hot water disturbs the balance of the air much less than the higher one; because, with the lowpressure, limiting the maximum of temperature to 170°, the temperature of the in-flowing air, which is of the greatest importance, can be limited, and it is found that that limit can be fixed at 80°. His objections to the descending movement are, that it necessitates artificisl power; it will not act except under compulsion; then it brings the vitiated and breathed air, that ought to be carried away, and not breathed over again, down to the lungs to be re-inspired. It also tends to subvert another natural law by keeping the head in the hottest medium and the feet in the coldest, and the ventilation is arrested altogether if the motive power is not kept in constant operation; whereas, in greater portion of the year, nature will accomplish it, if allowed to doso. He should aim at keeping the temperature at 65°. Five cubic feet per minute to each person would sustain a thoroughly pure atmosphere; 3 feet per second would be a proper velocity. There is a fixed law of cooling applicable to windows: it is that it cools down the air of a room from whatever temperature it may be, to the temperature of the external air, at the rate of $1 \frac{1}{2}$ cubic foot per minute for every superficial foot of glass. This applies to glass placed under any form. The mode of lighting the House is a very important ingredient in the plan of warming and ventilation; if the mode of liyghting be one that generates a large amount of heat, it may produce a greater power of rarefaction than is required for ventilation. There would then be great difficulty; an excess of air would have to be drawn to answer that rarefaction. The downward radiation of heat from the ceiling is a most important consideration. It is very easy to account for the bad smells. The air is allowed to come in contact with all sorts of things and all sorts of persons, the channels being thoroughfares, aud the nature of the surfaces of those large passages being objectionable. Witness saw, in what is called the Mixing Chamber under the House of Commons, no less than six persons dusting. The present system of ventilating the House is altogether bad and unsatisfactory. Mr. Price stated his system of warming as follows:-A rising pipe from the boiler opens into a square vessel, technically called the expansion-box, to admit the increased bulk which the water takes by being raised in temperature, and it aloo leaves a certain space for the escape of the air which is held by the water when cold, and set free when warm. The heated water that rises from the boiler flows along a feed-pipe, which has the same number of flanges and apertures as there are flat vessels. There is a corresponding feed, or rather return pipe, which, in like manner, is attached to the lower ends of the flat vessels, and brings back the cooled water to the boiler to be re-heated and re-circulated through the flat vessels or air-warming aurface. This supply-cistern maintains the water-line (which is of course above the feed-pipe), and keeps the whole apparatus charged with water-cold water in the first instance, and of one temperature. The equilibrium is disturbed and motion imparted simply by the action of the fire; then the hottest part rises here, and the coolest returns to the boiler. It is like the circulation of blood in the human system, it keeps flowing out and returning back in the same manner. The effect of this form and disposition of the warming surface is, that every one of the flat vessels answers the purpose of spreading out the hot water which is rapidly circulating through them into numerous and thin streams. The thickness of the sheets of water is $1 \frac{1}{1}$ inch, and the air spaces between these flat vessels are $1 \frac{1}{2}$ inch also, so that there is an alternation of thin and numerous streams of water with equally thin and equally numerous streams of air. The air from the ontward atmosphere, falling by its own gravity down the flue, is then drawn, by the rarefaction produced by the warming vessels, into the chamber. Then the single current of cold air thus brought down is divided into 40,50 , or 10 Jo streams, if there are su many flat vessels, and there is a thin stream of air, of $1 \frac{1}{2}$ inch thick and 3 feet square, touching at each side each pair of flat vessels: so that in fact each stream of air and each stream of water thus brought into close contact are each of only sinch in thickness. As these surfaces are all arranged vertically, in order to favour and develope the natural upward tendency of the air, the air passes up between them with a freedom and a velocity that causes the cold air to abstract the caloric of the water very rapidly, and thus attempered fills the airchamber with hotter and hotter water, and the water as it couls flows back with a proportionate and accelerated velocity to the boiler, the source of heat. The air, on the other hand, rises continuously upward, and never returns: there is no mixing
of air. The communication is unbroken between the vertical shaft and the air-passages. It has no contact with anything; nothing tainted or impure can touch it till it is discharged into the House. The operation of the apparatus upon the hygrometric state of the air is not attempted till the air begins to flow towards the House. Suppose the interior of a chamber to be four brick walls; round these aren certain number of covered trays; when you do not want to vaporise the air those covers are down, but when you want to vaporise it you throw those covers open; then you expose the surface water. The air absorbs the vapour, and then flows onwards, charged with its natural amount of moisture; 27° of Fuhrenheit additional temperature doubles the capacity of the air for moisture, and in very cold weather, and especially with the easterly winds, there is an absolute dryness in the natural atmosphere, independently of any operation to increase its temperature. In such a natural condition of the atmosphere, the dew point being very low indeed, a certain amount of moisture must be imparted beyond that which is due to the air's increased capacity for moisture arising from increase of temperature. For reducing the temperature, stop-cocks are employed. They are shut off, which stops the circulation directly, but without stopping the flow of fresh air; the air continuing to flow over the surfaces, and the water having no power of return to the boiler to have its temperature restored, is reduced 10° or 80° in the course of fifteen or twenty minutes. The hygrometer ascertains the quantity of moisture.
Mreson (Alfred, C.E.)-Is in charge of the ventilation of the Houses of Parliament, with the exception of that portion under Dr. Reid's superintendence. The object of the system of ventilation of the House of Lords is to obtain a plenum. The extracting power is a steam-jet in some instances, and in other instances it is a coil of pipes heated with steam, and both in some: it is never in such force as to commence a vacuum, except in the Smoking-room, which is a vacuum ventilation; if it were a plenum ventilation there might be a liability, if the plenum was in excess in that room ard the adjacent corridor and staircases, that the smell of tobacco would get into other parts of the building: therefore, whenever the door of the Smoking-room is opened, the air goes into instead of out of it. Self-regulating meters to measure the supply would not answer for the Houses; a little anemometer, by simple inspection, tells how much air, at the moment the observation is taken, is thrown into the building. The pipes are heated entirely by steam, with the exception of the Journal offices on the ground-floor, which are heated by hot water. The steam-pipes do not act on the air prejudicially in the tempering-chamber, where the air is first admitted in contact with the pipes; the temperature of them is seldom so great but that a person's hand could be borne on them. Any quantity of steam can be admitted, and any temperature produced. They are distributed through a large chamber; there is a rapid circulation of air around them, and that keeps the temperature of them so low. The pressure of steam is from 3 lb . to 5 lb ., but it is wire-drawn into the pipes, so that any amount of heat can be produced in the pipes. The pipes are filled with hot steam at less than 812°, or rather hot vapour. It condenses through these pipes into water more rapidly than it is supplied, or as rapidly as it is supplied, therefore it distributes itself instantly into a rarer vapour throughout the pipe. The temperature of nir in the tempering-chamber can be reduced 15° in ten minutes. The tempered air is mixed with the warmed air by passing the former from the tempering-chamber into a channel that conducts it into the Committee-rooms; that channel has also a side chamber, in which is the additional warming apparutus. The tempered air is permitted to pass from the first channel directly on into the second chamber, where the warming apparatus is, and may be passed through both at the same time; it then comes up into a chamber which is under the principal floor, and from thence passes through other ducts to the rooms that are to be supplied; so that for each of the Com-mittee-rooms there are four channels of supply, two for tempered air, and two for the tempered air after it has been warmed; they unite in one chamber, and the air passing from that through flues to chambers under the floors up the buttresses to the ceiling of the room, is there passed through a trelliced frame. In this passage it becomes so thoroughly mixed that there is no need for any further mixing of it. A downward ingress of air is used principally, upward subordinately. In the House of Lords the ingress is in the centre portion of the ceiling; it is forced up from the fan under the House up vertical channels. The fan is in the channel near the tempering-chamber; it
throws a portion of air into the chamber, and throws another portion on the other side of the fan, without passing into the tempering-chamber, directly into the House of Lords. The fan draws from the main air-chanael; the air returns horizontally down into the House, and descends to the floor before it seeks for its exit. There is power to obtain air from the throne, and from the ends of the side framing. A series of flaps placed along the risers at the back seats, admit of being opened some two or three inches; there are some hung on centres that admit of being opened to a larger extent; at the table there is an aperture about 18 inches square on the top, covered with a finely perforated piece of zinc. In the Committee-room of the Inquiry, the ingress is from the east side of the ceiling over the windows, extending some two or three feet along the north and south sides; around the skirtings there is a noulding which is kept some short distance away from the plinth of that moulding, leaving a channel of about $\frac{1}{2}$-inch wide; at the top of the wallframing there is a provision made fur a supply, but it is not used. The egress is from the west side of the ceiling, extending also some few feet on the north and south sides eastward. There is a coil of pipes at the windows for giving additional warmth to the window-side of the room in times of very severe easterly winds and north-easterly winds, by radiation; it is very difficult to counteract, unless by some local heat, the effects of cold from such large windows. The whole of the Committee-rooms for Inquiry have one channel throughout the whole length in the vaults below, 100 feet in area; each room is distinctly separated from another room by a fire-proof material all the way down to the vaults; from the vaults vertical communication is made, by four channels about 9 feet square each, with the horizontal part of the ceiling in each Committee-room. Two of the flues are used for warm air, and two for tempered air; all four are not usually used at the same time. For egress the air passes out upwards into a chanuel about 50 feet in area; that goes the whole length of the river front over the corridor, and passes out through a tower or louvre, which is situated at the Speaker's house, and another at the Black Rod's house. The channel serves for twelve Committee-rooms and the corridors, and is drawn along by a steam-jet and by its natural temperaturo-by the temperature it acquires. The air is forced into the rooms by a fan; the admission of air is regulated at the commencement by four valves at the bottom of the vertical flues in the vaults; they are closed when there is the requisite quantity of air. The ingress of air to the House of Lords is at the rate of 4 feet per minute; about 1 foot from the ceiling the velocity of vitiated air, where it passes from the ceiling upwards, is about the same. The flour of the House is of iron perforated, covered with lead; the whole exit takes place at the two sides of the ceiling, and a portion from the riser of the first step of the raised seats on either side of the House. It is better and simpler if the air enters at the ceiling, to let it go out again at the ceiling, and not by the floor.

Leslie (Jobn, Engineer)-Considers that drawing air down long open brickwork shafts; pulling it by means of powerful steam-engines along damp, dirty cellars and vaults; moistening it; causing it to pass over heated iron surfaces; tempering, moistening, and equalising it-destroys all the original freshness and purity of the air, and forms a most deteriorated mechanical mixture, combining dust and other impurities, and producing an atmosphere injurious to the health and comfort of those who are compelled to breath it. Objects to the manner in which the air is forced through a number of small apertures; the velocity of these separate currents, impinging on the human body, causes a sensation of cold, and, by experiments he showed, lowered the thermometer. The egress of the air is most objectionable: the vitiated air passes through slots or longitudinal apertures of about an inch wide all round the edges of the panels; the ascending current strikes against the whole bottom of the panel, causing a general reverberation, producing eddies and currents, consequently permitting only a partial escape of the vitiated air; the remainder of which, by this reverberation, is caused to diffuse itself again, and return into the general atmosphere of the room. Witness's remedies, which he would propose to apply to the defects of the House-reserving his opinion for the moment, that the Houses of Parliament, the Committee-rooms, the halls and corridors, could be much better warmed and ventilated separately, than by any one combined system for the whole buildings-are, that he would lead in from the highest and least objectionable sources a copious supply of fresh air through glazed eartheuware pipes, of large diameter, the joints
of which being most perfectly secured; these earthenware pipes traversing into and round and round a large heating chamber; the floor and walls of this heating-chamber being made of fire-brick materials, in the centre of which, and upon the tirebrick floor, he would erect one of his patent fire-brick grates, with an independent supply of air to support combustion, by ${ }^{-}$ means of which any desired temperature of the air circulating through these hermetically-jointed earthenware pipes could be secured, and the air from them could be led in similar pipes of smaller dimensions to the different points, rooms, or places requiring the supply; the air would nowhere be brought into contact with heated metal. The results of the present means of supplying air and carrying off the vitiated atmosphere of the Committee-rooms are very unsatisfactory. A large quantity of coals is consumed in the Committee-rooms; one quarter of the coals would be sufficient on witness's system. As to the manner in which the Committee-rooms should be warmed and ventilated, he should lead in an entirely new and copious supply of air through one opening in the floor of the room, taken from the outside of the wall; the portion that was for warming the room would pass round the fire-place to be sufficiently warmed, and the portion that was reserved for the occasional acceleration and proper support of combustion would be contained in a chamber immediately before the fire-place. This air he would cause to circulate round the bottom and sides of the grate, and discharge itself into the room, either at the sides of the fireplace or at the opposite end of the room, as might be found most convenient. He would have also a small supply of air brought in by the same channel to support or accelerate the combustion in that grate when it was a very cold day, so as to have an independent supply of air for the fire burning, without drawing upon the general air that was in the room. The firebrick grate he would make in a circular form, because it is most easily managed by increase or decrease of fuel, according to the alterations of external temperature which so frequently occur. The whole fuel necessary would not cost $4 d$. a day upon the average for a room. The egress for vitiated air would be simply by the chimney, as close to the ceiling as possible, which would answer perfectly well, even when there is no fire in the grate. He would shut off all blow-pipe influences from the floor and sides of the House; shut off every sort of connection as to descending currents of air; would remove the whole of the centre framing and panels of the ceiling. The floor of the House should be constantly and uniformly warm; this he takes to be the basis of all good ventilation; and would shut off all influence of air entering from below. The supply of air should be self-regulating; the removal of the vitiated atmosphere should pass quietly away, and with the least possible frictional interruption. 'Ihe supply of air on the separate system of warming and ventilating the Huuse would be similar to the Committee-room detailed above. The supply for the House he would bring down from the exterior of the roof in glazed earthenware pipes. Calculates that four square feet of supply-channels would be amply sufficient : two from the east side of the Honse and two from the west side. That consequently would necessitate two fireplaces, one on either side of the House. The exit of the vitiated atmosphere would be through the large aperture in the ceiling, conveyed away through a shaft, the moving power of which should be a small fire-brick open grate, costing fur fuel about 6d. a day, and which power would remove more foul air from the body of the House, and there would be a consequent acceleration of supply of fresh air as you increased the height in that shaft. Proposes open fireplaces in the House, so as to cause a current of warm air to pass all over the foor of the House. As to lighting the House, thinks lighting the gas-lights during the time the House is sitting a preat inconvenience. Suspending lights from the roof is very dangerous. 'I'o avoid these objections, he takes a gas supply all round the edge of the panels, with perfectly fixed and secure lights inside of the opening. Would apportion 3 cubic feet of purified cannel coal gas per hour; the House would be perfectly lighted for $2 s .6 \mathrm{~d}$. an hour; would place these lights one foot above the existing ceiling, so that as soon as the order was given for artificial light, the men would go and light those burners without interrupting the House at all, or without the chance of the least accident in the House from anything falling. The chamber which is now called the roof would be a chamber of light; would place no obstruction of glass in the panels, by which a great per-centage of light would be lost. Removing the panels from the ceiling would not affect the hearing in the House. The failure of the ventilation has chiefly arisen from
there not being sufficient means of escape for the vitiated air. Considers there is a great deal too much care taken as regards forcing air into the House, rather than taking it away. Stated the importance of his burner. If 3 feet of cannel coal gas be taken, properly purified, and passed through the burner, he can probably get the amount of light of from sixteen to twenty wax candles; but if the mode of consuming it be changed by putting on a glass a little longer, he decreases the light and increases the flow of gas. The more the glass be elongated, the less is the light and the more the gas, because the ascending current is increased by the length of the chimney, and the gas being of lighter specific gravity than the atmospheric current which is passing through it, the atmospheric current takes the gas away unproductively for the purposes of light. Would not take the responsibility of the red hot tube mentioned in Mr. King's evidence.

Appoln (George, C.E.)-Has paid great attention to the subject of warming and ventilating buildings. The present state of the ventilation of the House of Commons is very pleasant and regular. Witness made experiments to ascertain the variation of the temperature of the House, and obtained very satisfactory results. Thinks the light being in the roof is decidedly the best plan. If the lights were put outside the windows, and passed through stained glass, there would be three or four times the heat now experienced: there must be so much more light, and that light must strike upon the coloured glass, and make it hot. The plenum is the most preferable system; he would use no extracting power. In order to have a plenum, care must be taken that the ingress is larger than the egress, otherwise a forcing power must be employed to keep up a balance. The passage of air over iron pipes heated with steam or hot water is very injurious to the qualities of the air; so much so that he uses a self-regulating gas-stove. Witness has one in use at his own house; it is a square iron case, with a large gasburner inside. There is a connection of about 1000 feet of pipe from the top; the air goes up the stove; the pipes are all vertical, and connected with the bottom of the stove as well. There is a current of air through the stove down the pipes, which comes to the bottom of the stove again. And besides that, there is another connection to carry off a certain current of air up the chimney, to give more warmth up the House. By that means a very large surface altogether is obtained. There are about 1000 feet of pipe, which is kept at a very low temperature, and then the heat of the stove is regulated by a self-acting thermometer, about two stories away from the stove-that is to say, upstaira; and when the House gets half-a-degree warmer in the staircase, the gas is turned off, and put completely out, except in the cigar-jet, which is a little jet merely kept alight, being handy. By that means, the instant the House is warm enough, then the stove is out, and afterwards the House gets cool. Mr. Appold said:-Supposing I am going to have a party, lighting and other heat warms the place. My stove is then put completely out, which before I found a nuisance with the stove. With hotwnter pipes you have your hot water; your friends come, and the House keeps warm. I think there ought to have been here a very large chamber to heat the House, so as to get about the quarter of the size of this room with gas inside, and pipes passing through that channel and air through the pipes. The instant the House is warm enough, instead of shutting the air off to let it out in contact with the hot pipes, you could let the gas out entirely if you like, or only partinlly out, as I do. I go out, and nobody knows anything about the stove but myself, and it is never out of order, except 1 show it to some gentleman and forget to put it to rights again. If the pipe gets too hot, the hyerometric balance is destroyed; in that case I only care about my bed-room. I have a hygrometer there; if the atmosphere gets too dry, the hygrometer opens the valve, which lets about ten quarts of water on to 300 feet of pipes, which are covered with blotting-paper. In ventilating the House of Commons, would regulate the temperature by an aperture at the outlet; the velocity of a current of air upon a dry-bulb thermometer immediately causes the temperature to sink; the air should be sifted by passing through a wire gauze at the source of supply. Placing two or three thicknesses of hair-cloth over the floor where the members walk would remove all the incovenience at present felt from the dust, and tend to improve the diffusion of the air. Has inspected the plan of lighting the Philharmonic Conceit-room at Liverpool; spproves of the sun-burner method of lighting as adopted at Liverpool; it would do very well in the House of Commons. Ihe side-lights adopted at Liverpuol
would not be applicable for the present House of Commons. Prefers the present system of lighting the House of Commons, in conjunotion with the sun-burner, to any other, because it takes the products of combustion off'so well.

Brown (Thomas, Architect, Edinburgh)-Has erected several public buildings; almost all the prisons erected or enlarged in Scotland for the last twelve years have passed through witness's hands. Dr. Reid has made from time to time several suggeotions on the subject of ventilation. Witness finds every day that the more he attends to carrying out the views which he suggested when fair opportunities occur, the better he succeeds. He introduces his system of ventilation from prison to prison as they go on. He introduced the descending current of ventilation into the prison at Berwick; this prison was erected under the management of the English Board of Commissioners. Witness prefers the ascending current to the descending. The arrangements for warming and for the escape of air are very nearly perfection, if they were properly managed. It is possible to carry out a system of ventilation without making use of the windows as a means of ingress. Witness has no objection to the supply of air for the House being taken from the vaults, provided they are kept clean and absolutely dry. Mechanical power need not be used for forcing the air in, as quite sufficient air could be obtained without it. The furnace in the shaft witness considers to be a very manageable power, and preferable to the jet or fan. There does not appear to be any unnecessary apparatus used in the warming and ventilation of the House. The lights very much assist the ventilation of the House. In bringing air in at the roof and carrying it out at the roof, witness doubts whether it would go down to the floor. Witness showed the difficulty of working a syatem of ventilation where the foor is made both the ingress and egress of the air, but with respect to certain parts there is no difficulty. Mr. Brown, in relation to this, informed the Committee of the following arrangement:-In some of the prison cells the inmates use a chamber vessel of ordinary earthenware, and in the wall close upon the foor is formed a small cast-iron box with a door upon it, in which this vessel is set. While drawing off the air from the cell at the ceiling, we have also a draught on this small box to take away the effluvia. We are there then drawing off at both floor and ceiling. In the one case it is a small flue, and in the other it is a large one. There is a pipe attached to the box which contains the uteusil, which goes into some flue, and there is a method by which from a certain portion of the floor, you draw off foul air at the same time that you draw the general foul air of the chamher from the ceiling. He never found the air damaged in any way by heating it with hot-water pipes.

Stephenson (Robert, M.P., C.E.)-Has been down to Liverpool to look at the lights in the Philharmonic Concert-room. The chief feature was the great advantage of the extreme diffusion of light. The diffusion was almost as unifurm as the light of day, and not unpleasant, excepting under the sun-burner, which is simply for lighting the orchestra. The cornice-light would be inapplicable to the House of Commons; it would be brought down to too low a level. Witners also considers the sun-lights, as applied in the Philharmonic Room, would be an objectionable mode of lighting the House. Sun-burners for such purposes as lighting an orchestra or a small space from above, so as to give, as it were, a radiance as over the altar of a church, the effect is very beautiful: but if sixtyfour of these clusters were diffused over the flat part of the ceiling of the House of Commons the effect would be extremely good. The effect of the light in the Philharmonic Room at Liverpool is very much the same as the effect of Dr. Reid's lights in the hollow pyramids, because the room has been simply plastered, and it is now perfectly white; therefore a preat deal of reflected light comes to the eye, and perhaps the larger bulk of it is still reflected light; although the lights are not screened, they extend over such a large surface that the eye does not receive from any one point an inconvenient amount of intensity. Dr. Reid's opinion as to the lighting of the House appears to correspond with witness's, as Dr. Reid first of all proposed to put a separate light in each panel. Witness objected to this in the beginning to save expense, but thinks Dr. Reid was perfectly right. Ihe hollow pyramids are not very sightly, but might easily be made so. At present the lighting is so contrived as to have a very material and beneficial effect on the ventilation; placing there sixty-four sunlights in the panels would not interfere with the ventilation, but would rather
improve it. The aystem of mon-lights, in an economical point of view, is to be recommended. Witness does not object to the shadow beneath the galleries; and is of opinion that it is desirable that there should be some portions of the House on which the eye may rest without being affected by the large amount of light necessary for business purposes; a mitigated light might easily be thrown under the galleriea. Making an incressed number of openings in the ceiling of the Honse would not interfere with the acoustic principle upon which it has been constructed: the roof being broken up is beneficial; its flat surface is perhaps objectionable; if it were broken up it would prevent any confusion of sounds. Witness considers all the apertures for egress too contracted; a number of small apertures is by no means equal to the same area in a large one. There is no difficulty in ventilating downwards or upwards. In the House of Commons, which is occupied at night, and where an abundance of light is necessary, it would be counteracting the very tendency which that light has to ventilate the House, to have the access of air from above; but in the Committee-rooms, which are used only during the day, it is a very good plan. He Would certainly not have the access for freah air and the egress for vitiated air on the same level.

Report of Messre. S. W. Daukes, Architect, and H. C. Price, C.E.

Among the principal defects in the present systems of warming and ventilating the Housen of Parliament, three may be specified as demanding the gravest consideration:-First, the general supply of atmospheric air to the Houses, which is insufficient in quantity; secondly, the nature of the temperature, which is irregular and conflicting; and, thirdly, the quality of the air, Which is so inferior as to be unfit for respiration.

It naturally follows, and such indeed are the actual complaints urged against the present systems, that the interior temperature of the Houses is frequently either too hot or too cold. That the ventilation is most commonly insufficient, and at other times excessive. That there is a prevalency of unpleasant odours. That the effect of the general atmosphere of the building is to excite sensations of closeness and oppression; and, in short, that there is nearly a total absence of that consciousness of elasticity and freshness which is incident to the breathing of the natural atmosphere.
In seeking for the grounds of these complaints, and the sources of these great and undoubted defects, we have arrived at the conclusion that the insufficieucy of the general supply of air to the Houses arises in a great measure from the imperfect and conflicting arrangements which have been made for the ingress of the fresh air, and for the egress of the foul air.
A large and excessive amount of mechanical power is doubtless provided for propelling the air through the channels constructed for its transit, and a corresponding power is provided for extracting the vitiated air; but before it reaches its destination, which is the interior of the Houses of Lords and Commons, Com-mittee-rooms, \&c., its progress is impeded by the mechanical hindrances of a countless number of minute, wire-drawing, and friction-creating orifices in the shape of perforated iron floory, porous hair-carpets, and other contrivances ; and its intended operation is obstructed by arrangements which violate both scientific and natural principles, and even reverse the intention of the inventors, by carrying off at the ceilings the air that should descend to the floors, and drawing off at the floors the air that should ascend to the ceilings.
The irregularity and contrariety of the temperatures are occasioned by the unsuitableness of the motive powers employed for moving the air through the Houses, and the numerous and contrary operations periormed upon the air with a view to attemper and otherwise prepare it for the use of the Houses; first, inflicting upon it a wetting process, then a drying one; secundly, overheating it, then cooling it; and, lastly, mixing, or rather attempting to mix intimately two distinct currents of air at different temperatures, both being propelled in parallel currents with considerable velocity.
The remaining, and certainly the greateat and most serious defect of the three, the bad and unwholesome quality of the air supplied to the Houses, chiefly ariwes from the very unsuitable and impure character of the air-passages, by which we mean the large subterranean vaults and other channels through which the atmospheric air is compelled to travel from its first descent duwn the Clock and Victoria Towers to the interior of the Houses of Lords and Commons, Committee-rooms, \$c.

The damp and mouldy state of the surfaces of those vaulte, and the large amount of extraneous and contaminating materials, and oven pereons, that are to be found in those and the other channels for air destined for the use of the Houses, abundantly reveal the source of much of the deterioration and injury suffered by the air in its passage merely through these interior thoroughfares.

There is likewise an extensive contaminstion of the general atmoaphere of the buiiding proceeding from numerous other sources, which, although they operate but indirectly upon those apartments immediately surrounding the Houses of Lords and Commons, yet materially tend to aggravate the effect of thone specific and more direct influences to which we are here adverting.

We allude in particular to escapes of gas, leakages of steam, smell of oil and jointings of pipes, suffocating atmosphere of the engine-room, emission of noxious fumes from open coke fires, and generally the impure atmosphere of the numerous unventilated, or, at all events, ill-ventilated, passages, staircases, \&cc, which exist in all directions.

One purpose of the present communication being to present to your Committee, in few and concise terms, the nature of the principal errors committed in devising and executing the sysrems of warming and ventilation for the Houses of Parliament, and of the remedies that should be applied to them, we resignedly restrict ourselves to the foregoing heads, and not because there are not many more, and thone very substantial objections, to be raised against other mistakes of principle and practice which have been committed, but because we presume that in respect of any system which does not thoroughly and successfully deal with conditions of such obvious importance as purity and wholesomeness of atmosphere, and equality and uniformity of temperature, it must plainly be matter of very secondery consideration how many or how few of the inferior requirements may be fulfilled.

We recommend, in the first place, that the present practice of moving the air through the Houses by mechanical power only should be abandoned, and that for the future the chief reliance (except in the summer months) should be upon the natural power of the spontaneous upward movement.

Secondly. That the downward movement of the air currents shali be entirely abandoned, and with this "noxious fallacy" should also be relinquished the fallacious attempt to produce and sustain such opposite and contrary forces as the plenum and vacuum principles of ventilation in the same rooms and at the same time.
Thirdly. All the present air-passages, whether for the transit of fresh or foul air, should be reconstructed, or at sll events so remodelled as to combine in one appropriate and uniform system a series of free and unobstructed, but closed, air-channels, arranged in strict accordance with the natural upward tendency of warm air currents, and framed with a scrupulous regard to the greatest possible uniformity of form, and by a rigid observance of those definite and proportionate relative areas between the main and branch fues, without which we do not hesitate to assert that no system of ventilation, however skilfully devised in other respects, can be protected from those adverse and disturbing influences which must peril the success of any scheme whatever.

Fourthly. We advise that the use of steam at 930°, or even 218, as a medium of heat for giving temperature to the airwarming surfaces, should be abandoned, and hot water, at a maximum heat of 170°, be substituted. Btearn over-heats and orer-dries the air, and admits of no gradual control over the extensive range of temperature that lies below 212°. Hot water can be employed at any desired degree of heat below the boiling point, and admits of the most minute and gradnal control over that range of temperature which lies below the degree of 212; a point of the utmost importance in relation to one of the mont essential requirements of the House of Commons; and hot water likewise affords a most ready and simple means of imparting moisture to the air in correction of any undue state of dryness, whether arising from the operation of artificial warming, or a state of absolute dryness in the natural atmosphere itself; a question this of considerable interest, when it is remembered that the capacity of air for moisture is donbled by every 87° Fahrenheit increase of temperature; when, as is also known, that the most salubrious state of the air is when the dew-point is not less than 10° nor more than 20° below the temperature of the room. And,
moreover, when, a is likewise underatood, that evaporation tends to relieve the unpleasant effects of imperfect ventilation, by producing positive electricity of the air, and by auding moisture renders it a good conductor of atmospheric electricity, while dry air, on the contrary, is an extremely bad conductor.

Fifthly. We recommend that the air-warming surfaces should be vertically, and not horizontally arranged, and that they should be so altered from their present form as to spread out the air and water in thin and numerous alternating streams; the first condition being essential for the full and free development of the natural ascending movement, and the second material for the rapid abstraction by the cold air of the caloric of the heated water. These features of the warming surface also involve another important element of good ventilation-namely, concentration of large power within a moderately small space.
Sixthly, and laatly. We advise that in the manipulation of any system provided for warming and ventilating the Houses of Parliament, that the attempt-the worse than useless attemptto meet the continual and conflicting wishes of individual members in respect of temperature, should be discountenanced; for we are convinced that the operation of no cyatem whatever, however perfectly carried out, can be made generally satisfactory under such a course of proceeding. Neither are any such futile attempts necessary, nor, if practicable, are they advisable. On the other hand, we beg to represent to your Committee, in the strongest posible manner, that in our deliberate opinion, a course the very opposite should be pursned; which is that the great aim of the person in charge of the ventilation of the House ghould be to avoid all changes and fluctuations in the ventilating power whilst the House is sitting, and never to practies any sudden and perceptible changes in this respect during that period. There are doubtless certain contingent circumstances bearing on this point, as also upon the temperature of the House, which are of ordinary occurrence, and we will cite one to which, by common consent, the greatest degree of importance is attached-namely, that adjustment of the rate of ventilation which is aupposed to be, and of the degree of temperature which really is imperative, from the sudden and large fluctuations which take place in the number of members present at the same time in the House, small numbers tending to a depression of temperature, and large numbers causing an inconvenient elevation.

Now mont certainly, the way of meeting this contingency is not by suddenly raising or suddenly lowering the temperature of the House 5° or 10°, nor by, with equal suddenness, reducing or increasing the ventilation; since both these courses produce strong sensations of heat and cold, and powerful impressions from altered velocity of the air currents.
These fluctuating demands must assuredly be answered, but it ought to be by some simple and gradual process; not by opening or shutting an indefinite number of ingress and egress airvalves, nor by the projection into the House of forcible and successive hot and cold currents of air, but by permitting all the ingreas valves to remain undisturbed, by making no change whatever in the amount of ventilation, that having been properly determined before the sitting of the House; but by simply and gradually effecting the changes of temperature in the warming power, which, without augmenting or diminishing the renewal of air, will in a sufficiently ahort space of time aocomplish the deaired end, whether that be to meet the demand arising either from a sudden increase or an equally sudden decrease of the number of members in the House.

Letter to the Committee, from Mr. William Bardwell, Architect.

It appears to me that the result to be obtained by this Committee hingee apon the Committee's opinion of the ascent or descent of the products of combustion and respiration. I unhesitatingly affirm that these products ascend: that carbonic acid gas, as found in coal-mines or in wells, is heavier than atmospheric air, has long been ascertained; but it is probable this gas is never found in an uncombined state, or rather in noxious quantities, at the surface of the earth; for if it were so existing, then would the basement-floors of our houses be uninhabitable, and the Thames Tunnel would be impassable. On the contrary, that it ascends is proved by the smoke from our chimneys, by the air in a crowded church or theatre being far more agreeable on the floor than in a gallery, and far more agreeable in the open space than beneath a gallery; further, if
in a room on fire you remain upright, you will be suffocated; whereas, if you creep along the floor, you may breathe in comfort. Moreover, if in frosty weather we see the breath and sweat of horses ascending into the air, we may confidently assume that the emanations of our bodies are combined with sufficient caloric and aqueous vapour to carry them to the top of any room. How unwholesome, therefore, and destructive to heslth must be the attempt to bring in fresh air by a ceiling, and thus cause these emanations to be breathed or inhaled over and over again! A mode of ventilation like this, which shuts out all ingrese of air except through certain tortuous passages, which alters the natural course of our vital support, however it may be admirable as showing the power of mind over matter, is highly objectionable in practice, placing the human beings subject to its operstion exactly in the situation of so many mice under the bell of an airpump, with just as much or as little air as the operator chose to afford them. But living as we do, immersed in a subtle fluid, there are physical impossibilities against the complete development of such a system, and hence it must ever be unsatisfactory.

Nor is this all; for both in the House of Lords and in the House of Commons, provision being made for bringing in air from the top, from the bottom, and from the sides, commingling together like the waters of a Maelstrom, up and down, and round and round, the air is in that state of commotion that the sound of the voice cannot radiate. I'hrow a stone into the placid waters of a lake, and the effect will be seen in a series of concentric circles. Sir Isaac Newton says that sound is communicated in a similar manner; but throw a stone into a Maelstrom, and no such effect can be produced; hence the acoustical property of the Houses is rather destroyed by the mode of ventilation than by architectural defects.

In addition to the inconveniences which are felt, I apprehend it is capable of proof that the expenditure incurred in carrying out false principles has been nearer 300,000l. than $200,000 l$., and that their maintenance involves a cost of some thousands of pounds a year, while the remedies which I propose may be effected and kept in operation at an expense of a few hundred pounds a-year.

Having asserted a broad and distinct principle, these remedies will be easily understood and easily executed.
'The officers of the Houses complain of the draughts of air sent upon them in their apartments. And no wonder; for, like those persons waiting in the corridors, all are blown upon or are stifled, without any power to help themselves. Now, it is clear the chief of every office should have the right of admitting as much or as little air as he finds agreeable; and this, by a simple arrangement of the fire-place, at a cost not exceeding 5l. to each room, and by stopping up the holes in the ceiling, with the addition of casements to the windows, I could easily put into his power.

So, also, in the Committee-rooms, a man, ns Lord Baconsays, does not know where to "become" to be out of the draughts, besides having the unpleasant notion that he may be inhaling the air just emitted from another person's lungs; a similar arrangement as that just recommended for the office fire-places may be made at an expense not exceeding 51. for each room, reserving the holes in the ceiling for the exit of foul air, and adding a hotwater pipe to the transom of the windows. So perfect would be this ventilation, that as soon as it was brought into operation in this noble pile of buildings, every palace, every public office, and every goud house would be fitted in like manner, thereby adding many years to the lives of the occupants, and health and comfort to those lives.

Both the House of Lords and the House of Commons being beautifully arranged for ventilation, 1 would introducc an airshaft 4 feet by 1 foot beneath each window on each side of the House, the outer end of such shaft (having a valve to regulate the admission of air) opening into one of the courts, the other end opening into the House at 6 inches above the floor beneath the graduated seats. In front of this opening must be placed a coil of hot-water pipe; the shafts must be near the ceiling of the lower corridor slanting upwards; the fresh air would then be constantly flowing into the air-chamber, be warmed on entering to any desirable temperature, pass into the House through boxes opening about six inches below the seats; it would then rise upward, carrying with it all exhalations, and pass out at the ceiling, its exit being assisted by the ceatre gas-burners, the chinneys of which would enter h close shaft running through the roof into the open air. The floor of the House and the
floors of the corridors must be laid with tiles, not only to assist the acoustic property of the House, but also to preserve the members from dust and bad smells, by cutting off all commonication with the chambers or vanlts below. The floor beneath the rising seats may be covered with boards.

That the air on the surface of the earth is sufficiently pnre for the maintenance and promotion of robust health, is proved by the healthy appearance of hawkers, of the sellers of fruit and fish, of the omnibus and cabmen, of the park-keepera, and of the watermen, all of whom probably at night occupy close and illventilated lodgings.

The House may be lighted equally and uniformly in every part, without heat, without shadow, and with the pure white light of day, in the following manner, using glass just gufficiently tinged with blue to alter the yellow rays of light. One cluster of gas-burners in each of the five great compartments of the horizontal ceiling, each cluster to have a dish composed of five plates of glass, each g feet square, suspended beneath it. The windows to have double casements, the one containing the present glass for day, the other filled with pale blue glass for night, to open and shut alternately, and to have gas-burners outside the windows. Ten of the panels of the sounding-boards heneath the galleries on each side of the Huuse to be removed and filled in with glass, to have a gas-burner behind forming an illuminated panel, the space to communicate by pipes with the open air, or with the corridor, and not at all with the House. Thus no one would ever come into the House for the purpose of lighting it; the centre gas-burners being always alight to assist ventilation, the light is instantaneously heightened by turning a cock; while the other burners are lighted from the outside.

ON NAVAL ARCHITECTURE.

By Baron Dupin.*
Ir is not unworthy of remark, as being a singular feature in the maritime history of Great Britain, that whilst, daring a period of war, vast improvements were being made in its military service, very little was effected forits navy until after the Treaty of Peace. It was not until a general pacification in 1814 had freed Europe from a severe and terrible military struggle, that Sir Robert Seppings, then Surveyor of the Navy, brought forward his improved method of naval construction. The lower parts of the frames of ships of war were then for the first time filled in, and no longer afforded interstices for the accumulation of dirt and putrid water; and the frame-timbers of the bottom presented a compact mass of wood from the keel up to about the light water-line. Besides this great improvement, the whole fshric was further strengthened by means of a system of diagonal trussing, which, together with the solid bottom, opposed such resistance to the forces due to the weight of the hull and ita contents acting downward, and to the forces due to the displacemevt or pressure of the water acting upward, as effectually wo prevent the keel from shortening, and consequently the ship from hogging or breaking down in the direction of her length, as it was liable to do formerly, or otherwise yielding to the forces of pressure under sail, or those of pitching and rolling in a tempestuous sea.

In addition to these first great steps in the progress of shipbuilding, the upper parts of men-of-wsr were much improved in form and strength; the stern, instead of remaining open to the fire of an enemy, has been more strongly built, in a semicircular, or rather elliptical shape, better fitted for defence in every direction. The upper decks have also been enlarged, and space gained for working the guns. The building of ships of war has been further improved in many ways which cannot be explained here. More solidity has been obtained by greater precision in joining the various masses of wood constituting the ship. By such means the working of the timbers in a heavy sen is kreatly prevented; and both solidity and greater durability are obtained.

Instead of firing the great guns by the same mechanism as old muskets, caps and hammers have been adapted to them. Advantages of still higher importance have been obtained by the introduction of guns of a very large calibre, mainly due to General Paixhans, which were introduced nearly twenty years ago, and called canons a la Paixhans. At first very few such
" Keports by the Jurira on the Suliects in the 'I hirty tiapses iuto which tha Great Exhibition was divided.' Lundon: Clowea aud Soms. les2.
guns were placed in each ship; but now we find complete batteries of 68 -pounders, the effect of which cannot fail to be tremendous.

The combination of large masts has been rendered more economical, easy, and solid, by the employment of coaks or cylinders of hard wood, inserted one-half of their length into each of the pieces of the masts brought into contact.

Sir W. Symonds, who succeeded Sir Robert Seppings in 1832, as Surveyor of the Navy, turned his attention towards an improved form for ships of war, and designed them of such figure and dimensions as to require very little ballast; this he in great measure accomplished by a considerable increase of the breadth. This system had many advantages; it gave greater stability, and in sharp ships more space below for stowage, besides a larger field or deck for working the guns; and although many talented naval constructors and officers considered this form unfavourable to an easy motion at sea, and liable to distress the spars, we have, nevertheless, great cause to be thankful to this talented and meritorious officer for his laudable and unwearied endeavours to improve the construction of ships of war.

We are further indebted to Mr. J. Scott Russell, the distinmuished Secretary of the Royal Commission, for a series of valuable experiments and researches on the form of least resistance at high velocity; this form being determined by examining the form of waves produced by drawing vessels through a canal at different degrees of speed. Further experiments are being made by this gentleman in the application of his deductions to sea-going ships, and he has our best wishes for their ultimate success.

The theory of stability, so important in the navy, and which we considered in a geometrical point of view, has been examined, both successfully and ingeniously, by the Rev. H. Moseley.

The stowage of ships has been much improved of late years, both in the form and disposal of stures; thus, water-casks are replaced, at the suggestion of General Bentham, by iron tanks. IThe cubic or prismatic form of these tanks insures great economy of space as compared with the cylindrical form of casks; they also preserve the water perfectly pure during long voyages; casks, on the contrary, have the soluble part of their wood dissolved by the water, causing putridity, which produces various diseases, especially in hot climates. Equally important with the improvements in keeping water free from taint must be considered the mode invented by M. Appert for preserving all kinds of meat.

The preservation of gunpowder free from humidity, so necessary for ships of war, is now rendered perfect by the employment of hermetically-sealed metallic cases, or wood cases with metallic lining; an improvement due to the British nuvy. In the French navy great improvements have been made by separating passages for the conveyance of cartridges from the magazine up to the various batteries of the ship. These arrangements were particularly remarked by the English during their visit to the French fleet at Cherbourg in 1850 .

We now come to a series of improvements of the highest importance to the safety of ships. The hemp-cables formerly employed were very objectionable, being liable to rapid decay, particularly in hot climates. When the anchor was cast on a rocky bottom, the cable was frequently cut by the rocks, and very often parted, no that the ship was greatly endangered. A captain of the British navy (Sir Samuel Brown) introduced cables made of iron links, so arranged as to be easily worked. These chain-cables are now in general use, not only in ships of war, but also in the commercial shipping of every maritime nation. We should have been happy if so vast an improvement had been recent enough to have received the highest of our awards as being one of the greatest effected for the shipping interests and the preservation of life and property.

The first method for stopping iron cables is due to the English; the last and best belongs to the captain of the French frigate Legoff. A high encomium is due to M. Barbotin, cupitaine de onicseau in the French service, for having devised the means by which the chain-cable can be worked on the capstan. The various links as they succeed each other fall into grooves, on the periphery of a large polygonal prism forming the body of the capstan. When the capstan is put in motion, the links of the chain-cable have in succession half their thickness lodged in these gronves, and successively disengage themselves with mathematical precision.

The improvement in cables naturally leads us to speak of
anchora, Very remarkable improvements have been recently made by Lieut. Rodger, K.N., insuring a better distribution of the metal in the direction of the greatest strains. The palm of the anchor, instead of being flat, presents two inclined planes, calculated for cutting the sand or mud instead of resisting perpendicularly; and the consequence is, that these new anchors hold much better in the ground. The Committee of Lloyds, so competent to judge of every contrivance likely to preserve ships, have resolved to allow for the anchors of the ships they insure, a sixth less weight, if made according to the plan of Lieut. Rodger.

Another source of eafety most important to ships is an efficient application of metallic conductors by which they are secured against the destructive element of lightning. Franklin made the immortal discovery of the identity of artificial electricity and that from the thunder-cloud, and through the instrumen.tality of the lightning-rod, devised a happy application of his discovery to the preservation of buildings and ships in thunderstorms. The variable and complicated circumstances, however, under which ships are necessarily placed, rendered the use of such rods on ship-board difficult and apparently impossible. The masts-the only parts to which they could be well applied -consist of many distinct portions; these it is often requisite to move one upon another, and sometimes to remove altogether; they are also liable to injury from wind and other forces acting on them. The defence of ships from lightning had hence been confided to a small chain or rope of wire temporarily applied along tbe rigging; but which, from the very nature of the case, fails to afford the full amount of security to be derived from a inore powerful conductor permanently fixed along the mast. Sir W.S. Harris conceived the idea of making capacious metallic conductors an integral part of the masts and hull of the vessel, so as to bring the general fabric into that perfect conducting or non-resisting state it would assume, in respect of the matter of lightning, supposing the whole mass to be metallic throughout; this he hus effected by incorporating with the masts and hull is series of copper plates, so arranged as to meet all the varying conditions of the spars, and so tied together that an electrical discharge striking upon any part of the vessel cannot enter upon any circuit of which the conductors do not form a part, and thus the ship is preserved from the effect of lightning at all times and under all circumstances, without the officers and crew being in any way concerned in the matter. Sir W. S. Harris has shown, by original researches in science, that in whatever position the sliding-masts may be placed, a line or lines of conductors pass through the ship into the sea, affording less resistance to the passage of the electrical discharge than any other arrangement which can be devised. The most perfect security is derived from the plan thus introduced. Sir Baldwin Walker, one of our fellow-jurors, has himself experienced the great advantages of this system in a large frigate commanded by him, which was struck both on the fore and main masts by heavy discharges of lightning on the coast of Mexico. In this case the force of the discharge was such as to partially fuse the metallic point aloft on which the lightning struck, and leave spots of fusion on the surface of the conducting-plates, but without the least damage being done to the spars or hull; and this, too, while the topgallant masts were housed.

Another source of safety in the construction of ships is the substitution of iron for wood. In a country like Great Britain where iron is so aburdant, cheap, and well sdapted to various purposes, it was natural to use it instead of wood for shipbuilding. Iron ships have the great advantage of not being liable to that rapid decay to which wooden ships are subject, especially in hot climates; and to the dry rot which attacks them in moist climates; iron, likewise, cannot be attacked by the worms so destructive to wood under water. Iron ships can also be made lighter, with the same bulk, as compared with wooden ships; and they resist better in case of being driven on shore, or upon a bank of sand. Such are the advantages which justify the employment of iron in shipbuilding. In ships of war, however, the iron sheets of the hull are liable to be rent by cannon-balls in such a way as, in many cases, to render it impossible to stop the leak and save the ship. Maritime countries have, therefore, after expensive experiments, abandoned the idea of wholly substituting iron for wood in the building of ships of war.

The rigging, blocks, and sails of ships have been improved both in their combinations and materials. The construction of blocks is managed with remarkable economy since the invention
Table I.-Principal Dimensions and Calculated Elements of a Series of Sailing Shipe of the Royal Navy.

Specification of the Princlpal Dimenalona, and Calculated Elem		$\begin{gathered} \text { Quees, } \\ 116 \end{gathered}$	Alblos, 90	$\left\|\begin{array}{c} \text { Hanalbal, } \\ 90 \end{array}\right\|$	$\begin{gathered} \text { Comar, } \\ 90 \end{gathered}$	Suparb, 80	$\begin{gathered} \text { Cressy, } \\ 80 \end{gathered}$		$\begin{gathered} \text { Emerald } \\ 60 \end{gathered}$	Narcisas	Dlamond,	Aracher, 18	$\begin{gathered} \text { Bliren, } \\ 16 \end{gathered}$	$\begin{gathered} \text { Pilot, } \\ 12 \end{gathered}$	$\begin{array}{\|c} \text { Britomare } \\ 10 \end{array}$
Length on the load water-line from the fore part of stem to 7 after part of post, in feet and inches	2223	2047	2050	2077	20910	1910	2009	1816	1867	1817	1409	1148	1096	1046	920
Breadth on the load water-line to outhide of planking, in feet $\}$ and inches	6010	59 21	59	0	560	3	550	586	520	5010	414	350	40	330	288
Relation of length to breadth at the lond water-line	$3 \cdot 65$	$3 \cdot 45$	$3 \cdot 45$	3.577	3.734	3.395	$3 \cdot 652$	$3 \cdot 392$	3.588	3.576	3.405	$3 \cdot 276$	3.220	$3 \cdot 166$	$3 \cdot 241$
Load draught of water, in feet and inches f forward	239	246	235	236	236	2311	23 3	2210	210	210	166	146	139	138	123
Load draught of water, in feet and inches $\left\{\begin{array}{l}\text { aft } \\ \text { a }\end{array}\right.$	253	26 에	$25 \quad 3$	246	246	254	243	242	219	219	176	150	146	153	136
$\left.\begin{array}{l}\text { Mean draught of water in relation to the extreme breadth at } \\ \text { load-line }\end{array}\right\}$	0.402	$0 \cdot 426$	0.410	0.413	0.428	0.438	0.431	0.439	0.411	0.424	$0 \cdot 411$	0.421	0.415	0.439	0.449
$\left.\begin{array}{c}\text { Height of the lower port-sill from the load water-line, in feet } \\ \text { and inches }\end{array}\right\}$	70	68	62	73	70	63	66	66	90	90	72	59	46	42	17
$\left.\begin{array}{l}\text { Depth of the keel and false keel below the rabbet of the keel } \\ \text { in feet and inches }\end{array}\right\}$	16	19	10	16	16	17	16	19	15	18	16	11	12	10	09
$\left.\begin{array}{l}\text { Distance of the greatest transverse section before the middle } \\ \text { of the load water-line, in terms of its length }\end{array}\right\}$	0.069	0.057	0.061	0.041	$0 \cdot 026$	0.029	0.066	0.057	0.087	0.069	0.052	0.043	0.062	0.092	0.065
$\left.\begin{array}{r}\text { Distance of the centre of displacement before the middle of } \\ \text { the load water-line, in terms of its leagth .. } \\ \begin{array}{l}\text {.. }\end{array} . . .\end{array}\right\}$	0.015	0.003	$0 \cdot 003$	0.009	0.017	0.608	0.014	0.006	0.016	0.016	0.010	0.014	0.028	0.029	0.011
Circumscribed rectangular parallelopipedon contained by the length of the load water-line, breadth on water-line, and $\}$ mean draught of water, in cubic feet $\because, \quad . . \quad . .\}$	31227	305836	296017	288951	282011	264565	262229	228191	207357	197261	98892	59193	52593	49996	33961
Displacement, in terms of the said parallelopipedon ..	0.529	0.538	0.516	0.516	0.527	0.497	$0 \cdot 490$	0.489	0.469	0.469	0.409	0.382	0.370	0.390	0.383
Area of the circumscribed rectangle contained by the breadth $\left.\begin{array}{l}\text { of the water-line, and depth from the water-line to the } \\ \text { lower side of the rabbet of the keel, in square feet } \\ \text { l.. }\end{array}\right\}$	1399	1391	1348	1303	1260	1294	1224	1164	1048	1025	640	478	442	445	348
	$0 \cdot 763$	0.760	$0 \cdot 713$	0.753	0.729	$0 \cdot 700$	$0 \cdot 693$	0.704	0.678	0.675	0.632	0.618	0.578	0.595	0.600
Area of the circumacribed rectangle contained by the length and breadth on water-line, in square feet ..	13519	12112	12166	12039	11750	10744	11041	9710	9703	9231	5817	4013	3723	3448	2637
Area of the load water section, in terms of the said rectangle	0.857	0.873	$0 \cdot 864$	0.847	0.883	0.860	0.857	0.854	0.829	0.833	0.804	0.762	0.782	0.816	0.796
$\left.\begin{array}{l}\text { Depth of the centre of gravity of the greatest tranaverse tec- } \\ \text { tion, in terms of the mean draught of water .. }\end{array}\right\}$	$0 \cdot 390$	0.382	0.374	0.375	0.349	$0 \cdot 363$	$0 \cdot 367$	0.360	0.345	0.346	0.322	0.326	0.321	0.335	0.334
Distance of the centre of gravity of the load water section length from the middle of the load water-line, in terms of ita $\}$	$\begin{aligned} & \text { Abaft } \\ & 0.002 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.002 \end{aligned}$	$\begin{aligned} & \text { Ahaft } \\ & 0.004 \end{aligned}$	$0 \cdot 003$	$\begin{aligned} & \text { Before } \\ & 0 \cdot 008 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.005 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.003 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.058 \end{aligned}$	0.000	$\begin{aligned} & \text { Before } \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.005 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.248 \end{aligned}$
$\left.\begin{array}{cccccc}\text { Height of centre of effort of asils above the load water-line, } \\ \text { in feet } & . . & . . & . . & . . & . . \\ . . & \text {.. }\end{array}\right\}$		91.4	$86 \cdot 6$	$89 \cdot 0$	$88 \cdot 3$	85-26	$85 \cdot 7$	81-66	$76 \cdot 8$	$76 \cdot 9$	63-66	53.0	33.0	$49 \cdot 5$	4.4
Diatance of centre of effort of asils before or abaft the centre of gravity of displacement, in relation to the length of the $\}$ load water-line	$\begin{aligned} & \text { Before } \\ & 0 \cdot 121 \end{aligned}$	0.011	Before 0.014	0.012	0.006	$\begin{aligned} & \text { Before } \\ & 0.008 \end{aligned}$	0.007	$\begin{aligned} & \text { Before } \\ & 0.012 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.002 \end{aligned}$	0.005	$\begin{aligned} & \text { Abaft } \\ & 0.014 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.023 \end{aligned}$	$\begin{aligned} & \text { Ahaft } \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { Abeft } \\ & 0.020 \end{aligned}$	$\begin{aligned} & \text { Ahaft } \\ & 0.006 \end{aligned}$
Relation to the moment of the asils abaft the centre of gravity of displacement to the moment of the saila before the said $\}$ centre 	0.864	0.920	0.914	0.918	0.959	0.942	0.988	0.916	0.968	0.965	1.022	1-24	$1 \cdot 052$	$1 \cdot 144$	1.045
$\left.\begin{array}{c}\text { Area of asils in relation to the ares of the greatest transverse } \\ \text { section }\end{array}\right\}$	$8 \cdot 9$	27-75	$30 \cdot 48$	32-55	$32 \cdot 97$	30.57	$32 \cdot 67$	30.19	$34 \cdot 13$	35-04	37-68	40.16	$41 \cdot 73$	36.	$36 \cdot 25$
Ares of sails, in aquare feet, in relation to the displacement	$0 \cdot 176$	$0 \cdot 178$	0.198	$0 \cdot 216$	$0 \cdot 203$	$0 \cdot 211$	$0 \cdot 215$	$0 \cdot 221$	0.249	$0 \cdot 261$	0.376	0.516	0.546	$0 \cdot 493$	0.580

Table II.-Principal Dimensions and Calculated Elements of the Experimental Frigates of the Royal Navy.

Speelication of the Principal Dimenalions, and Calculated Elemente.	$\begin{aligned} & \text { Arethuse, } \\ & \text { so } \end{aligned}$	$\begin{gathered} \text { Indefatigable, } \\ 50 \end{gathered}$	$\begin{aligned} & \text { Leander, } \\ & \text { so } \end{aligned}$	Phaeton, 50	$\begin{gathered} \text { Redergh, } \\ \text { so } \end{gathered}$	$\begin{gathered} \text { Nanklu, } \\ \text { so } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { San Proverao } \\ \text { so } \end{gathered}\right.$	$\begin{gathered} \text { Thetie, } \\ 88 \end{gathered}$	Inconsetent, 8	Eurydice, 20	Epartan, 26
Length on the load water-line from the fore part of atem to after part of poot, in feet and inchea $\quad .$.	1822	1824	1828	1858	1816	1872	18910	1638	161	143 3	133
	522	516	506	494	496	508	50	466	45	382	40 0
		$\begin{aligned} & 3.54 \\ & 20 \quad 4 \end{aligned}$	3.615 20	$\begin{aligned} & 3.763 \\ & 21 \quad 0 \end{aligned}$	$\begin{aligned} & 3.66 \\ & 20 \quad 8 \end{aligned}$	$\begin{aligned} & 3.695 \\ & 210 \end{aligned}$	3.759 209	$\begin{aligned} & 3.562 \\ & 18 \quad 10 \end{aligned}$	$\begin{aligned} & 3 \cdot 56 \\ & 18 \quad 8 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 1511 \end{aligned}$	$\begin{aligned} & 3 \cdot 337 \\ & 1610 \end{aligned}$
Load draught of water, in feet and inches $\left\{\begin{array}{l}\text { forw } \\ \text { aft }\end{array}\right.$	232	214	216	2211	21	22	21	20	19	167	180
Mean dranght of water in relation to the extreme breadth at lond-line $\left.\begin{array}{l}\text {.. }\end{array}\right\}$	0.431	$0 \cdot 404$	0.413	0.446	$0 \cdot 428$	0.431	0.420	0.421	0.417	0.425	0.435
$\left.\begin{array}{l}\text { Height of the lower port-sill from the load water-Hine, in feet } \\ \text { and incbes .. } \\ \text {... }\end{array}\right\}$	86	9 1	92	82	97	810	90				
$\left.\begin{array}{l}\text { Deptb of the keel and false keel below the rabbet of the keel } \\ \text { in feet and inches } \\ \text {.. }\end{array}\right\}$	18	13	18	18	16	13	1	1	1	12	10
$\left.\begin{array}{l}\text { Distance of the greatest transverse section before the middle } \\ \text { of the load water-line, in terms of its length .. }\end{array}\right\}$	0.073	0.070	0.024	0.069	0.086	0.030	0.039	0.032	0.072	0.042	0.097
Distance of the centre of displacement before the middle of tbe load water-line, in terms of its length $\}$	0.010	0.012	0.013	0.022	0.016	0.605	0.013	0.014	0.020	0.027	0.030
$\left.\begin{array}{l}\text { Circumscribed rectangular parallelopipedon contained by the } \\ \text { length of the load water-line, breadth on water-line, and } \\ \text { mean draught of water, in cubic feet }\end{array}\right\}$	213594	195593	192556	201104	190106	206230	203711	150828	138448	88829	93023
Displacement, in terms of the said parallelopipedon	0.436	0.481	$0 \cdot 427$	0.457	0.473	0.431	0.469	$0 \cdot 447$	$0 \cdot 410$	$0 \cdot 408$	0.398
Area of the circumacribed rectangle contained by the breadth lower side of the rabbet of the keel, in square feet	1085	1008	970	1001	973	1038	997	841	797	576	657
$\left.\begin{array}{c}\left.\begin{array}{c}\text { Area of the greatest transverse section, in terms of the anid } \\ \text { rectangle } \\ \text { A. }\end{array}\right\} \quad \text {.. }\end{array}\right\}$	$0 \cdot 649$	0.716	$0 \cdot 651$	$0 \cdot 739$	0.679	0.662	0.698	$0 \cdot 639$	0.660	0.625	$0 \cdot 621$
$\left.\begin{array}{c}\text { Area of the circumscribed rectangle eontained by the length } \\ \text { and breadth on water-line, in square feet .. }\end{array}\right\}$	9511	9390	9224	9158	8984	9482	9586	7703	7325	5466	5340
Area of the load water section, in terms of the said rectangle	0.819	0.809	0.824	0.797	0.851	0.814	0.842	0.846	0.820	0.803	0.810
Depth of the centre of gravity of the greateat transverve section, in terms of the mean draught of water	0.343	$0 \cdot 356$	$0 \cdot 332$	0.369	0.349	0.345	0.386	0.318	0.370	0.327	$0 \cdot 344$
$\left.\begin{array}{l}\text { Distance of the centre of gravity of the load water section } \\ \text { from the middle of the load water-line, in terms of its } \\ \text { Iength }\end{array}\right\}$	$\begin{aligned} & \text { Abaft } \\ & 0.206 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.005 \end{aligned}$	$\begin{aligned} & \text { Ahaft } \\ & 0.002 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.009 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.0204 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.005 \end{aligned}$	$\begin{gathered} \text { Before } \\ 0.002 \end{gathered}$	$\begin{aligned} & \text { Before } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.005 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.001 \end{aligned}$
$\left.\begin{array}{c}\text { Height of centre of effort of sails above the lond water-line, } \\ \text { in feet } \\ \text {.. }\end{array}\right\}$	75.93	$77 \cdot 63$	77.75	76.20	78.70	76.94	77.33	70.70	70.50	$61 \cdot 70$	61.60
Distance of centre of effort of sails before or abaft the centre of gravity of displacement, in relation to the length of the load water-line	$\begin{aligned} & \text { Before } \\ & 0.008 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & \mathbf{0 . 0 0 2} \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.016 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.009 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.004 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.015 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.024 \end{aligned}$
Relation of the moment of the saila abaft the centre of gravity of displacement to the moment of the sails before the said centre	0.943	0.977	0.897	1.025	0.922	0.933	0.976	0.964	0.904	1.064	$1 \cdot 180$
Area of sails in relation to the aree of the greatest tranaverse $\}$ section	34.42	$33 \cdot 58$	38.38	32.77	36.60	35-30	34.85	36.65	37-85	$39 \cdot 40$	34•88
Area of sails, in square feet, in relation to the displacement	0.264	0.257	0.290	0.263	0.270	0.273	0.254	0.292	0.526	0.396	0.382
By wbom designed	1	-		4	s	6	,	-	-	10	12

Tarle III.-Principal Dimentions and Caloulated Elements of the Experimental Brigs of the Royal Navy.

Specifention of the Principal Dimencions, and Calculated Elementa.	$\begin{array}{\|c} \text { Fiying Mish, } \\ 12 \end{array}$	$\begin{gathered} \text { Esplegle, } \\ 12 \end{gathered}$	Daring, 12	O-prey, 12	$\begin{gathered} \text { Mative, } \\ 12 \end{gathered}$	$\begin{array}{\|c} \text { Water Witch } \\ 10 \end{array}$	$\begin{gathered} \text { Pantuloon, } \\ 10 \end{gathered}$
Leagth on the load water-line from the fore part of stem to $\}$ after part of post, in feet and inchee	1022	1053	1042	10010	1014	910	890
Breadth on the load water-line to outaide of planking, in feet $\}$ and inchet	3201	31 61	3104	31 61	316	2810	286
Relation of length to breadth at the loed water-line... ...	$3 \cdot 18$	$3 \cdot 34$	$3 \cdot 35$	$3 \cdot 20$	$3 \cdot 21$	$3 \cdot 191$	$3 \cdot 123$
Load draught of water, in feet and inchen $\{$ forward	136	129	125	122	128	106	117
Load draught of water, in feet and inches \{ aft	147	149	$16 \quad 91$	151	14 21	142	133
$\left.\begin{array}{l}\text { Mean dragght of water in relation to the extreme breadth at } \\ \text { loed-line .. } \\ \text { H. }\end{array}\right\}$	$0 \cdot 440$	0.434	0.474	$0 \cdot 431$	$0 \cdot 427$	0.427	$0 \cdot 435$
	41	50	15	46	49	48	4
Depth of the keel and false keel below the rabbet of the keel in feet and inches	10	13	14	10	11	13	14
Dintance of the greatest tranaverse section before the middle $\}$ of the loed water-line, in terms of its leagth	0.027	0.010	0.072	0.075	0.061	0.031	$0 \cdot 093$
Distance of the centre of diaplecement before the middle of $\}$ the load water-line, in termi of ite length.	0.012	0.013	0.018	0.013	0.016	$0 \cdot 016$	$0 \cdot 029$
Circumseribed rectanguiar parallelopipedon contained by the length of the load water-line, breadth on water-line, and $\}$ mean draught of water, in cubic foet	46112	45456	47115	43193	42800	32348	31478
Diaplacement, in terms of tbe eaid pirallelopipedon	0.374	0.377	$0 \cdot 396$	0.395	0.394	0.356	$0 \cdot 355$
$\left.\begin{array}{l}\text { Area of the circumecribed rectangle contained by the breadth } \\ \text { of the water-line, and depth from the water-line to the }\end{array}\right\}$ $\left.\begin{array}{l}\text { of the water-line, and depth from the water-line to the } \\ \text { lower side of the rabbet of the keel, in square feet }\end{array}\right\}$	419	394	410	397	387	319	315
Ares of the grestent transverse section, in terms of the asid $\}$ rectangle	$0 \cdot 606$	0.592	0.685	$0 \cdot 633$	0.622	$0 \cdot 605$	$0 \cdot 595$
Area of the circumacribed rectangle contained by the leagth $\}$ and breadth on water-line, in square feet ..	3270	3318	3227	3176	3194	2623	2536
Area of the load water section, in terms of the anid rectangle	0.761	0.781	$0 \cdot 770$	0.785	0.801	0.751	$0 \cdot 769$
Depth of the centre of gravity of the greateat tranaverse sec- $\}$ tion, in terma of the mean dranght of water	$0 \cdot 333$	$0 \cdot 296$	0.346	$0 \cdot 322$	0.322	0.318	0.326
Distance of the centre of gravity of the losd water section $\left.\begin{array}{l}\text { from the middle of the load water-line, in terms of its } \\ \text { length }\end{array}\right\}$	$\begin{aligned} & \text { Abaft } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.022 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.002 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.003 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.0031 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.0095 \end{aligned}$
Height of centre of effort of asila above the load water-line, $\}$ in feet	48.9	49•8	$48 \cdot 2$	48•7	$49 \cdot 2$	44.9	44.7
Distance of centre of effort of saila before or abaft the contre $\left.\begin{array}{l}\text { of gravity of dieplecement, in relation to the length of the } \\ \text { lond water-line }\end{array}\right\}$	$\begin{aligned} & \text { Abaft } \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0 \cdot 026 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.035 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.019 \end{aligned}$	$\begin{gathered} \text { Ahaft } \\ 0 \cdot 009 \end{gathered}$	$\begin{aligned} & \text { Abaft } \\ & 0.013 \end{aligned}$	$\begin{aligned} & \text { Abaft } \\ & 0.011 \end{aligned}$
Relation of the moment of the asils abaft the centre of gravity of diaplacement to the moment of the atila before the asid ceptre	$1 \cdot 112$	1-195	$1 \cdot 375$	1.016	1.016	1-028	$1 \cdot 072$
$\left.\begin{array}{l}\text { Area of sails in relation to the area of the greatest transverso } \\ \text { mection }\end{array}\right\}$	$34 \cdot 07$	38-3	$32 \cdot 0$	37-3	37-35	39•13	40-3
Aree of atils, in square feet, in relation to the diaplacement	0.493	$0 \cdot 521$	0.477	$0 \cdot 527$	$0 \cdot 527$	0.655	0.675

of the admirable block machinery by the late Bir J. Isambard Brunel, in his youth a French naval officer. We have a warded Prize Medals to improvements in the construction of large blocks composed of several pieces of wood, by which are obtained economy in material and a better fitting of their hooks and rigging. Rope-making is likewise improved. We owe to British ingenuity the obtaining of equal tenaion amonggt the threads of which the largeat ropes and cables are now made, and the operation of laying the ropes by mechanical power with mathematical precision. The commercial marine of France exhibit cordage made in this manner, which is certainly much better than any shown on the English side of the Exbibition. Both countries have improved the texture of their sail-cloths.

We shall conclude these general remarks upon Naval Architecture, with some interesting documents relative to various classes of ships, which we have before adverted to.
The Admiralty and merchant builders having contributed a large number of models of ships to the Exhibition, for the purpose of illustrating the forms and other characteristics of ships of the most recent construction: we conceived that some record of those ships should be preserved, in order to indicate the present state of naval architecture in Great Britain. With this view we present a series of tables, containing the principal dimensions and such other mathematical elements relating to the construction of these ahips as could be obtsined.
Table I. contains the dimensions and calculated elements of a complete series of sailing-ahips, from a first-rate man-of-war to
a small brig. Within the last twenty years, ships in the nary have been constructed with greatly-increased width or breadth of beam. To some extent this increase of breadth may have been necessary to enable them to sustain-without too great inclination under sail-the increased weight of armament now placed on board ships of war by mogt naval powers. But the general opinion founded on the result of experimental trials of these slips with those of former years is, that breadth of beam, when carried to excess, contributes to make the shipe roll quickly, and in some cases deeply also. As this is a most serious evil in ships of war, materially affecting their efficiency in the use of their guns, ships of more recent construction have had increase of length as well as of breadth given them; but the latter to a less extent; thereby obtaining the requisite amount of stability without rendering them liable to those sudden impulses produced by great breadth at the water's surface alone which causes the side to round greatly inwards, both above and below the water-line. The ships referred to are neverthelees a very fine class of ships; and in the Queen we see a first-rate ship, combining with great speed, stability, easy motion, and every other essential property of a man-of-war.
Table II. contains the principal dimensions and other elements of a number of frigates constructed by different persons with a view to competition. Several of these frigates have been attached to the late experimental squadron, under the command of Commodore Martin, for the purpose of fully teating their sailing and other properties as ships of war. The results of

Table IV.-Principal Dimensions and Caloulated Elements of Ships-of-War fitted with Screw-Propellers.

Spectication of the Princlpal Dimenslons, and Calculated Elements.	$\begin{aligned} & \text { St. Jean } \\ & \text { diAcre, } \\ & 100 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Agamem- } \\ \text { non, } \\ 90 \end{gathered}\right.$	Imperieuse, 50	$\left\|\begin{array}{c} \text { Arrogant, } \\ 46 \end{array}\right\|$	Tribune, 30	$\left\lvert\, \begin{gathered} \text { Eigbilyer, } \\ 20 \end{gathered}\right.$	Archer, 12	Crairar. 16	$\begin{gathered} \text { Regaard, } \\ 10 \end{gathered}$
Length on the load water-line from the fore part of item to $\}$ after part of post, in feet and inches	2406	2316	2148	2024	19210	1913	1806	160 4	1476
Breadth on the load water-line to outside of planking, in feet $\}$ and inchea	554	534	500	436	430	360	3310	3110	277
Relation of length to breadth at the lond water line	$4 \cdot 346$	$4 \cdot 184$	$4 \cdot 293$	4.446	$4 \cdot 484$	$5 \cdot 312$	$5 \cdot 335$	$5 \cdot 037$	$5 \cdot 348$
Load draught of water, in feet and inchea $\{$ forward	236	236	210	190	$17 \quad 3$	156	1311		
	250	240	219	200	189	160	145	140	126
$\left.\begin{array}{l}\text { Mean draugbt of water in relation to the extreme breadth at } \\ \text { load line }\end{array}\right\}$	$0 \cdot 438$	0.429	0.427	0.428	0.418	$0 \cdot 437$	0.419	$0 \cdot 408$	0.430
$\left.\begin{array}{l}\text { Height of the lower port-sill from the load water-line, in feet } \\ \text { and inches }\end{array}\right\}$	66	66	96	96	76	112	94	89	611
$\left.\begin{array}{l}\text { Depth of the keel and falce keel below the rabbet of the keel } \\ \text { in feet and inches }\end{array}\right\}$	10	10	10	14	10	09	10	10	011
Distance of the greateat transverse section before the middle $\}$ of the load water-line, in terms of its length	$0 \cdot 082$	0.049	0.055	0.061	0.059	$0 \cdot 031$	$0 \cdot 029$	$0 \cdot 055$	0.033
Ditence of the centre of displacement before the middle of $\}$ the load water-line, in terms of its length	0.034	0.023	$0 \cdot 025$	0.013	0.033	0.034	0.012	0.024	0.015
Circumscribed rectangular parallelopipedon conteined by the length of the load water-line, breadth on water-line, and $\}$ mean draught of water in cubic feet	322692	304211	229686	179517	149250	108439	86526	66343	48323
Displacement, in terms of the said parallelopipedon	$0 \cdot 595$	$0 \cdot 698$	0.497	0.504	0.498	0.560	0.506	0.502	0.500
$\left.\begin{array}{l}\text { Area of the circumscribed rectangle contained by the breadib } \\ \text { of the water-line, and depth from the water-line to the }\end{array}\right\}$ lower side of the rabbet of the keel, in square feet	1286	1259	1020	827	731	540	446	382	304
$\left.\begin{array}{c}\text { Area of the greatest tranaverse nection, in terma of the said } \\ \text { rectangle }\end{array}\right\}$	$0 \cdot 857$	0.858	$0 \cdot 725$	$0 \cdot 733$	$0 \cdot 756$	0.862	$0 \cdot 838$	$0 \cdot 828$	$0 \cdot 834$
Area of the circumacribed rectengle contained by the length $\{$ and breadth on water-line, in square feet ..	13307	12809	10733	9206	8292	6885	6106	5103	4071
Area of the load water section, in terma of the said rectangle	$0 \cdot 858$	$0 \cdot 865$	0.831	0.823	$0 \cdot 821$	0.825	0.777	0.798	0.782
Depth of the centre of gravity of the greatent tranaverse sec- $\}$ tion, in terms of the mean draught of water	0.426	0.413	0.364	0.363	0.377	0.412	0.395	$0 \cdot 315$	$0 \cdot 415$
Distance of the centre of gravity of the lond water sectionfrom the middle of the load water-line, in terms of its length .	$\begin{aligned} & \text { Before } \\ & 0 \cdot 0073 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0 \cdot 0001 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.009 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.008 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.013 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.011 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0.008 \end{aligned}$	$\begin{aligned} & \text { Before } \\ & 0 \cdot 0095 \end{aligned}$
$\left.\begin{array}{l}\text { Height of centre of effort of anils above the load water-line, } \\ \text { in feet } \\ \text {.. }\end{array}\right\}$	$88 \cdot 75$	88-75	$76 \cdot 8$	$73 \cdot 6$	70.1	$58 \cdot 6$	53-4	52.6	$43 \cdot 8$
Distance of centre of effort of sails before or abaft the centre? of gravity of displacement, in relation to the length of the $\}$ load water-line	Before -0037	$\begin{gathered} \text { Before } \\ \cdot 008 \end{gathered}$	Before -0018	Before - 0197	$\begin{array}{r} \text { Abaft } \\ \cdot 005 \end{array}$	$\begin{gathered} \text { Abaft } \\ .014 \end{gathered}$	$\begin{gathered} \text { Before } \\ 011 \end{gathered}$	$\begin{aligned} & \text { Abaft } \\ & \cdot 0056 \end{aligned}$	$\begin{gathered} \text { Before } \\ \cdot 0075 \end{gathered}$
Relation of the moment of the sails abaft the centre of gravity of diaplacement to the moment of the saile before the asid $\}$ centre	0.912	0.929	0.987	0.877	1.038	1-109	0.905	$1 \cdot 047$	0.947
	$27 \cdot 1$	27-5	$33 \cdot 2$	36.9	$36 \cdot 5$	$31 \cdot 6$	31-8	$34 \cdot 4$	32-8
Area of sails, in iqaure feet, in relation to the displacement	0.154	$0 \cdot 163$	0.212	0.248	0.271	0.232	0.271	0.327	0.343

these trials, in so far as they have yet been determined, have been indicated in a Report ordered to be printed by the House of Commons, on the lst July, 1851. The superiority of sailing was in favour of the Phaton over other frigates similarly fitted. Her superiority was maintained, notwithstanding various changes in the trim of the rival frigates. the Leander and Arethusa; but the Arethusa had tbe advantage over the two others in respect of stowage, and she sailed better than the Leander.

Table III. gives the principal dimensions and other elements of several brigs which have been tried together at sea for the purpose of ascertaining their relative merits in regard to sailing and other necessary qualities for vessels of this class. The results of the trials of the brigs in Table III. are given in Captain Corry's Report, published in Parliamentary Paper, No. 394 (A), Session 1845.

Naval architecture, as far as it concerns ships moved by wind and sails, has thus presented to us many improvements. But we have now to speak of progress, by far more complete and important, in ships moved by the power of steam.

Paddle-Wheel Stcam-Ships.

Many persons, in various countries, claim the honour of having first invented small boats propelled by steam; but it is to the undaunted perseverance and exertions of the American, Fulton, that is due the ever-lasting honour of having produced this revolution, both in naval architecture and in navigation. When the general peace took place in 1814 there was not a single steam-ship
in the ports of England; Scotland, however, had one small vessel of this kind. For several subsequent years steam-boats, of small size and with very insignificant engines, were employed in rivers or along the coasts, but the idea of going far out to sea with them was considered very presumptuous. In 1818, however, an American captain traversed the Atlantic in a steam-ship, the Savannah, touching first at England, and then proceeding up the Baltic to St. Petersburgh. About seven years after this steam was applied to railway travelling on shore; and then it was that most important attempts were made to extend the power of steam to long voyages by sea, and to the passage across the Atlantic from England to the United States. In accomplishing this, however, far more powerful engines, and much larger ships than had yet been built, were absolutely requisite.
Steam was soon applied very generally, both to the commercial navy and to ships of war; a main object being the application of such velocity combined with economy and safety as would induce persons to travel by sea. 'To procure such a velocity it was not enough to increase the propelling power; it was also indispensable thoroughly to modify the forms of the vessels, to diminish the bulk of the prow and stern, to reduce the breadth, and proportionally increase the length. In this way the forms of steam-ships have been made very similar to those of the galleys of ancient times; when, instead of steam power, human labour was applied to propel the vessel by means of oars; whereas now, the mechanical force is transmitted by the paddles of wheels or screws acting longitudinally.

Such is, at present, the empire of man upon the ses, that calms, contrary winds, and adverse currents, formerly 80 detrimental to epeedy narigation, are quite overcome. Periodical steam-ships start and errive on fixed days, and almost fired hours, at the ports of Liverpool or Havreand New York; as well as from London or Marteilles to Constantinople and Alexandria; and from Suez to Bombay, Ceylon, Calcutta, Singapore, and Hong Kong. Contracts are made between the Admiralty of Great Britain and steam navigation companiea, obliging the vessels of the latter to cross the Atlantic and the Mediterranean at the rate of at least nine miles an hour, taking all the chance of contrary winda. Great Britain, ever attentive to the preaervation of her maritime power, looks upon the great steam-ships built by private companies, and under contract with the government, as a valuable reserve in case of war; with this view, special articles of the contracts with the companies oblige them to build their ships of wood, and not of iron, because with the latter material they would not be so fit for defence, as we have already explained. At the first signal of war, the Admiralty would, from this source alone, have an auxiliary steam navy of 20,000-horse power! The exertions of private speculators, and of the English government, during the last fifteen years, in sacuring the conveyance of letters, valuable goods, and passengers between Europe, America, Africe, and Asia, are deserving of the highest admiration. The many rich and powerful companies engaged in promoting similar undertakings, by ordering steam-ships to be built of great dimensions, either of wood or iron, so as to be at once very solid and sufficiently light, have greatly advanced the science of naval architecture. We have to award medals to several eminent shipbuilders who have presented the Exhibition with models of the excellent steam-ships which they have lately designed and constructed.

We should have been glad if the great maritime nation of America, instead of sending incomplete and imperfect models or drawings of their steam-ships, had furnished us with the requisite data for eatimating the degree of perfection arrived at by their best shipbuilders, so as to have enabled us to recognise tbeir incontestable merit. The United States cannot at present compete with Great Britain in the number of their great and regular communicstions by stesmers, although on the lines opened by them they are nothing inferior to their mighty rivals. The depth and vastness of the rivers of the United States, such as tbe Mississippi-the greatness of their lakes, which are indeed so many inland seas, have enabled the Americans to build steamers which may be considered as floating cities, and which satisfy the wants of the greatest wayfaring nation of the world. The Americans, however, are to be reproached for their recklesgness, and the little care they take to avoid evident peril. Catching fire, blowing up, or foundering from the effects of the latter-accidents which a little foresight might have prevented -are considered and accepted by them as casualties very little to be regarded. They brave these dangers knowingly, and to meet competition with a rival ship. Hence the accidents which occur are frequent and dreadful, and still they do not teach the commercial navigators to be more circumspect. The steamships of war, however, reserving danger for the time of battle, exhibit, on the contrary, a prudence which makes velocity subservient to security.

In the British navy much has been done experimentally for the best application of steam power to naval architecture. We shall notice in our reports the results of these experiments, which are well worthy of attention. The experiments we allude to are mainly relative to navigation with recently-adapted screwpropellers. This method of propulsion has the advantage of acting entirely under water, and is consequently protected from the fire of an enemy, an advantage not possessed by paddlewheels. Paddle-rheels, also, by the large space they occupy on both sides of the ship, do not permit the use of guns along the whole length of the deck.

Several French professors, engineers and naval officers, have made some interesting experiments on steam propulsion, with ships varying in form and size. The researches and experiments of Messrs. Bourgois and Moll have been already proclaimed and recompensed by the National Institute of France. These gentlemen are still pursuing tbeir inquiries at the great manufactory of steam-engines for the French Marine at lndret.

We much regret that the maritime nations of tbe Continent did not contribute examples of their naval architecture to the Great Exhibition. The Norwegians and Swedes, those excellent and bold navigators, have not sent any models or deaigns of the
shipt they employ either on the ocean or the Baltic. Their shipbuilders, inheritors of the science and art of the celebrated Chapman (the eminent author of 'Architectura Navalis Mercatoria, 'Stockholm), would have figured honourably, oven in comparison with the most advanced seafaring people.

Since the last change in the Navigation-Jaws of Great Britain, the Anglu-Maltese purchase merchant-ahips of the Greeks, and have them registered with those of the United Kingdom-finding these shipe of very little cost, and well adapted to the navigstion of the much intersected seas of the Cyclades and other parts of the Levant. The Greeks, however did not send us models of any of their ships. The Venetians, the Gencese, and even the Dutch, a maritime people both by nature and necessity, failed also to send models. Finally we regret that the French shipbuilders of Havre, of Nantes, of Bordeaux, and of Marseillea, who do not want either ingenuity, learning, or experience, have not contributed in any way to this Exhibition. We had only from that country a model of the great iron steamers which are built for the navigation of the Rhone, the most rapid and dangerous of the French rivers. M. Schneider, of Creusot, constructed these ships and thelr machinery.*

In twelve years there have been built at Creurot for the Rhone, under the direction of M. Schneider, eighteen steamers, the first of 89 -horse power, and the last of 300 , to carry 620 tons, and to overcome a mean velocity of the Rhone equal to at leass two mètres per second, ascending from Arles to Lyons in 36 or 38 hours. Other steamers, built for passengers, make still quicker voyages. Machinery for war steamers has been constructed for the French government at Creuzot, of 453 and 609horse power, with remarkable success.

Screw-Propeller Steam-Ships.

The application of the screw-propeller to ships of war is of comparatively recent date, but has, notwithstanding, been 80 successful as to lead to the expectation that it will ultimately be generally applied to ships in the navy, either with full or auxiliary steam-power. The first ship in the navy to which the screw-propeller was applied was the Rattler, of 888 tons, in which with engines of 200 -horse power, a speed of 10 knots per hour was obtained. The results of the trial of the Rattler with the Alecto, a ship built from the same lines, and having engines of the same nominal horse-power, but fitted with paddle-wheels, proved so highly favourable to the screw-ship, that the Admiralty, in the year 1845, were induced to order four old ships of the line of 74 guns, and four old $46-\mathrm{gun}$ frigates to be fitted with screws, with a view to their being employed as block-ships or harbour guard-ships. The Blenheim, La Hogue, and Ajax, three of these ships, were therefore fitted with screws and with engines of 450-horse power, and have been recently tried at sea. The speed obtained so greatly exceeded anything contemplated, whilst their efficiency as men-of-war for general service became so fully established, that they are no longer ragarded as fit only for harbour service, but are considered as sea-going ships, poeseasing powers and capabilities far exceeding those of ordinary mailing ships. \dagger

The speed obtained by steam-power alone varies, in theae ships, from 6t to $7 \frac{1}{2}$ knots per hour: and by sail and steam combined, a speed of about two knots more than that which sail alone would give is frequently obtained, with the power of sailing cloeer to the wind. The forms of La Hogue, Blenheim, and Ajax, although more or less altered abaft to adapt them for the screwpropeller, cannot be regarded as altogether well suited for itn effectual operation. Daily experience shows that much greater comparative length than these ships possess, combined with a bow or entrance, as well as a fine run, is necessary to insure the best results from the screw.

By comparing the dimensions of ships in the mercantile navy with those of the royal navy, it will be seen that screw-ahips for this service are of still greater comparative length than in the royal navy; and that, in consequence, still better results have been obtained.

Table IV. contains the dimensions and some of the calculsted elements of a series of screw-ships of the most recent construction.

[^55]
BRITISH ASSOCIATION

Selections from Papers read at the Meeting held at Belfast, September, 1852.

CBEMELCAL COMBINATION.
On the Nature and Effocts of Chemical Combination. By Thomas Woods, M.D. (Paper read before the Chemical Section, by Dr. Gladstone, Secretary.)

Dismissino all hypothetical ideas, and arguing from such phonomens only as can be demonstrated, I will endeavour to divest chemical action of any mysterious character or properties more than thoee belonging to the ordinary changes in simple matter, and extend the laws which regulate the latter to combining and decomposing substances.

If two similar bodies, unequally beated, be placed together, one expands and the other contracts, until an equal volume is attained by both. If two bodies of equal volume be placed together, and then pressure be applied to one, the other becomes hested or expanded in proportion to the pressure or diminution of volume of the former. If any substance expand, it deprives come other of heat or volume; as in the solution of salts, \&c.
In the foregoing molecular changes of mattter, it is evident that to whatever cause they may be attributed, there are equal movements simultaneously occurring in opposite directions. (No.1.)

Every substance is compressible, and has a certain specific gravity, proving that it is composed of particles, whether these be what are called atoms or otherwise; and that, because it has a specific gravity, these particles must be separated by a definite space or distance, which is always the same for the same body at like temperature and pressure; and at any distance from the zero of temperature, or absolute contact of particles, these particles must be at different distances in different bodies, for bodies expand differently when heated. It follows, then, that the space and matter which compose every substance mnst be related; or, in other words, that the distance between the particles of a body must be some function of, or have some dependence on, the nature of the matter composing it (No. 2).

To these propositions may be added a third-that particles form one body when they are at insensible distances (No. 3).

Now, before chemical action can take place, the bodies about to act must be brought together at insensible distances-that is, form one body; but if two substances of different kinds form one body, and that the distance between particles be some function of the nature of the matter (No. 2), it follows that the distance between the particles of the mixture of the two bodies cannot be the same as that of either. Hence, the distances must change; and as (No. 1) every molecular change must be accompanied by an equal and opposite one, when the distances diminish, the distances between the particles of some other body increase, or heat is produced. Chemical action may, therefore, be said to consiat in an alteration of the distances between the particles of matter, consequent on the change that is produced in the nature of the matter itself, by the substitution of a mixture of two bodies for one; and as, if two substance be brought together from sensible to insensible distances, any alteration in the distances of particles must be a lessening (for if it were an expansion the bodies would not come to an insensible distance at all, or at least could not be brought nearer than the very bounds), the heat of chemical action io-the necessary simultaneous equal and opposite molecular movement or expansion. If two simple bodies, therefore, combine, the distance between the elements of each compound particle being less than that between the particles of either bodies in the uncombined state, heat or expansion in some other substance must be produced; just as when the particles of iron for example contract or come together from pressure or any other cause, expansion in another substance is the result. I proved in the Philasophical Magazine, for October 1851, that the opposite effect, or cold, is the consequence of the expansion among the particles in the decomposition of a compound.

The value of external circumstances in chemical combination may be estimated by the fact, that although at first the compound particle may absorb the expansion or heat produced by combination, yet other bodies in the end take it up; and this equal and opposite movement must be modified by them. If it be true, then, that the distance between the particles of a body depends on the matter composing it (No. \&), and that chemical combination depends on a lessening of this distance, or rather
conaints therein, it follows that affinity results from the circnmstance, that when two bodies are mixed together, the nature of the mixed matter requires a amaller distance between the particles than that of either body separately; and elective affinity is -that, when three bodies are brought together at insensible distances, those two which require least distance between the particles always must unite-and, as the opposite movement or expansion alwaya accompanies the combination, the heat produced is a measure of the affinity; or, if heat be produced, by mixing E simple with a compound body, it shows that the former decomposed and united with an element of the latter-notwithstanding that the decomposition of the latter produced cold, yet the combination that takes place at the same time produces more heat than counteracts that cold; because, if that were not the aase, the particles of the combining bodies would not have come more closely together than those of the decomposing one, and no change at all have taken place. For example-if potassium or zinc be placed in water, their metal, the oxygen and the hydrogen, are at an insensible distance from each other; but, as the distance required between oxygen and the zinc is less than between any other two of the elements, or between the particles of either of the elements by itself, the oxygen and zinc unite or come together, while the opposite movement or expansion is supplied partly by the expansion or separation of the oxygen and hydrogen, and partly by external bodies. Zinc can, therefore, decompose water; but, if copper be placed in water, as it does not produce as much heat by combining with oxygen as hydrogen does (or, in other words, does not lie so closely to it in combination), no change is produced-the water is not decomposed. If, however, oxide of silver in solution be substituted for the water, as copper produces more heat in combining than silver does with oxygen, the oxide of silver is decomposed, the oxygen uniting with the copper; or if nitric acid and copper be mixed, as the last proportion of oxygen does not produce so much heat with the nitrogen as they do with the copper, the nitric acid is decomposed and oxide of copper formed.

Thus the heat produced is a measure of the so-called affinity of bodies; for heat is but expansion among particles, and whenever expansion occurs, contraction must be simultaneously going on. That contraction in chemical action is a lessening of the distances between the combining particles; and the greater this is, the greater is the heat.

The movements occurring in chemical combination are thus referred to the same causes, and made to differ in nothing from those occuring in simple matter when it contracta or expands. Perhaps the phenomena of what is called "latent heat" may more clearly express my meaning. I consider the particles of combining bodies to be similarly circumstanced with those of steam becoming condensed-the distances between the particles in either case becomes less; the opposite effect, or expansion or heat in case of steam, is called the latent heat; in the case of the chemical action it is called the heat of chemical combination. They differ from each other in nothing except amount; and this 1 endeavoured to account for in the Philosophical Magazine for January 1858.

To account, then, for chemical action, and the heat produced by it, we have only to admit the existence of two laws:-1. That the distance between the particles of bodies has some dependence on the matter composing them; 2. That any change in their distance is necessarily accompanied by an equal and opposite one among others.
As a postscript, I would say that the idea of attractions and repulsions between particles of matter should be altogether dismissed, as, to say the least, unnecessary-for in all the cases where they are supposed to exist, they must be acting equally and in an opposite direction, so annulling each other. If attraction be imagined to keep the particles of bodies together, an equal repulsion must be imagined to exactly counteract the force, or the particles should collapse; and if attraction be said to cause chemical combination, an equal repulsion must, at the same time, be supposed to act; for expansion or heat simultaneously occurs. I believe the particles of bodies are perfectly passive with respect to each other, and only move in expansion or contraction as the opposite movement is at the same time determined by the law of relation, volume, or distance, as spoken of above.
I would refer, for other particulars of the theory I offer, to the Philosophical Magazine for January 1852; the present paper contains a mere outline. As I remarked in this paper, that theory pointed out the ciroumstance that bodies which produced
most heat had the greatest affinity; or that, in fact, the heat produced by combination might measure the amount of that affinity. I made some experiments to test the truth of this opinion. In another paper which I submit with this one to the meeting, I give the amount of heat which various simple bodies produce with oxygen; and it will be found that those bodies which produce more heat are also capable of taking oxygen, from its combination with those producing less; and that if two bodies be combined, a third will cause their separation if it can produce more lheat with either element than the other element does, and will have no effect if otherwise.

I will briefly sum up my opinions-I conceive that there is a mutual dependence or relation between the space and matter which compose a body, such relation causing the distance between the particles to be definite; that, therefore, if the nature of the matter changes, the distance between its particles must slso change; that, if two bodies be mixed or brought together, at insensible distances, as in solution, tbey are no longer tao but one body; and, as they were dissimilar previously to being mixed, the one body they form must be diasimilar from either separately, and so the distance between the particles must be different. It must also be less; for, if grester, the bodies could be brought nearer at sensible than insensible distances, and so could not form one body at all, which is contrary to our supposition. But, as every molecular movement is accompanied by its opposite, this lessening of distance between combining particles is attended with expansion among others, and this expansion is the heat.

COMBINATIONS OF METALS DNTO OXYGEN.
On the Amount of Heat produced by the Combination of several Metals with Orygen. By Thomas Woons, M.D. (Paper read before the Chemical Section, by Dr. Gladstone, Secretary.)

The reasons spoken of in the foregoing paper having led me to the opinion that the heat of chemical combination is not the result either of opposite electricities uniting, or the disengagement of any subtle fluid, or any affection of matter which is not met with in simple bodies: but the compensating, or accompanying and opposite movement among particles, whereby the loss of volunie or distance between the particles uniting is balanced; and judging from the theory I advanced that in a mixture of bodies those particles which could come the closest together would unite to the exclusion of others-or, in other words, would have the greatest affinity - 1 concluded that as the heat or expansion is equal, although opposite, to the contraction of the combining bodies, it would be a measure of the affinity exerted between different substances. I accordingly endeavoured to ascertain the amount of heat liberated by the combination of several substances with oxygen, in order to find whether those which produced most heat were likewise the strongest bases. The method I adopted is partly founded on the inference I drew in the paper published in the Philosophieal Magazine for October 1851. From the fact I there proved, "that the decomposition of a compound body gives rise to as much cold as the combination of its elements produces heat," I said that "it might be made the means of determining the amount of heat produced by the combination of bodies, as the loss occasioned by their decomposition shows the gain hy their combination." Knowing, then, the amount of heat produced by the combination of hydrogen with oxygen, I knew that if water were decomposed, a like amount would be absorbed; and therefore if any body were placed in contact with water, and could decompose it by joining with its oxygen, the amount of heat of such combination could be calculated by adding the heat absorbed hy the decomposition to that marked by the thermometer. For instance, if putassium be placed in water, the oxygen unites with it, and a certain amount of heat is produced; but the decomposition of the water to supply the oxygen absorbs a certain amount also-the latter must be added to the former, and the sum is the quantity of heat the combustion of potassium in oxygen would produce. If the addition of sulphuric acid be necessary to make the metal continue the decomposition of the water, as in the case of zinc, then the heat produced by the combination of the oxide with the acid must be allowed for; and in cases (such as copper) where the metal cannot decompose water, some other fluid must be substituted, as nitric acid, and the amount of heat absorbed hy its decomposition allowed for in the general result.

I would remark, as a preface to the following experiments, that
although they are given as if an equivalent (oxygen being l) of each metal were diesolved in a quantity of fluid equal in ralne of being heated to 60 gr . of water, no fixed weight of each was used; but, according to circumstances, a portion being weighed sccurately, was dissolved, and the mmunt of heat being marked, the result was calculated. For instance, when experimenting with potassium or sodium, I always weighed whatever happened to come from the bottle, the pieces varying from $\frac{1}{2} \mathrm{gr}$. to $2 \frac{1}{8} \mathrm{Gr}$. Zinc I used in larger pieces than mercury, because it was more quickly acted on, \&c., but I calculated what an equivalent of each would produce from knowing what the weight used developed in each case. The fluid, however, was, in every instance, the same in quantity. It amounted to 180 gr . when nitrid acid was used, and 807 gr . When dilute sulphuric acid or water-that is, the menstruum, the vessel containing it, and the thermometer, were all taken together, equal in value on being heated to this quantity of water. As an example of the exact steps followed, I will copy from my note-book one experiment with potassium. Having ascertained, by previous experiments, that the value of the glass tube which contained the fuid and the thermometer were equal in value to 97 gr . I placed in the tube 180 gr . of water; its temperature, 59°; temperature of room, $63^{\circ} .{ }^{*}$ I rolled $1 \frac{1}{\frac{1}{f}} \mathrm{gr}$. of potassium in 10 gr . of platina foil, in order to make it sink in the water, and, having placed it in the fluid, the water was decomposed, and the oxygen uniting with the potassium, the temperature rose to 70°-that is, 11°. Calculating from this experiment, 1 gr . of potassium would raise the temperature of 60 gr . of water $25^{\circ} \cdot 3$, or 5 gr . of potasainm (equivalent to 1 gr . of oxygen) would raise the temperature of 60 gr . of water to $196^{\circ} \cdot 5$. But to this must be added the heat sbsorbed by the decomposition of the water. According to Andrews, 1 gr. of oxygen uniting with hydrogen would raice the temperature of 60 gr , of water $126^{\circ} \cdot 5$, therefore potassium must produce, by the combination of an equivalent of oxygen, exactly twice as much heat as hydrogen, or 253°. According, however, to Grassi, the combination of 1 gr . of oxygen with hydrogen would raise the temperature of 60 gr . of water to 130°.

Each of the following results is calculated from a mean of several experiments:-

Sodium.-S gr. of sodium, by dissolving in water, raises the temperature of $60 \mathrm{gr} .154^{\circ}$, decomposition of water, to supply 1 gr . of oxygen, absorbs 130°; therefore the 3 gr . of sodium (or 1 equivalent) raises the temperature of 60 gr . of water $154+130$ $=284^{\circ}$, by combining with oxygen.

Potassium.- 5 gr , of potassium raises the temperature of $\mathbf{6 0} \mathbf{g r}$. of water by dissolving in it $126^{\circ} \cdot 5$; add 130°, for the heat absorbed by the decomposition of the water, and $256^{\circ} \cdot 5$ is the amount of heat liberated by the combustion of 1 equivalent of potassium.

Zinc.-The solution of 4 gr . of zinc in sulphuric acid (dilute) produces heat sufficient to raise 60 gr . of water 72°. The combination of the oxide formed and the sulphuric acid developes in the same quantity of water $42^{\circ} \circ$; this must therefore be subtracted from the 72°, as it is not due to the oxidation of the zinc, and there then remain $29^{\circ} \cdot 8$; but to this quantity must be added 130°, absorbed by the decomposition of the water, and $159^{\circ} .8$ is the amount of heat that the combustion of zinc would produce in 60 gr . of water.

Copper.-Copper will not decompose water; nitric acid was therefore substituted for the dilute sulphuric acid. 3.96 gr . (or I equivalent of copper) by dissolving in nitric acid raises the temperature of 60 gr . of water $77^{\circ} \cdot 9$; but in this is included the amount of heat produced hy the combination of the oxide of copper with the nitric acid, which is 35°; subtract this sum therefore, and $42^{\circ} \cdot 2$ remain; but as the decomposition of sufficient nitric acid to give 1 gr , of oxygen would absorb as much heat as would lower the temperature of 60 gr . of water $30^{\circ} \cdot 4$, this must be added to the $42^{\circ} 2$, and we obtain $72^{\circ} \cdot 6$ as the amount of heat produced in 60 gr . of water by the combustion of copper.

I'he manner in which I found that the decomposition of nitric acid absorbs the above amount of heat was by dissolving 4 gr . of zinc in 180 gr . of the acid; it liberated heat sufficient to raise 60 gr . of water $171^{\circ} .6$; as this included the heat of combination of the oxide of zinc and nitric acid $42^{\circ}-2$ must be abstracted, and there remain $129^{\circ} \cdot 4$: but in the former experiment with the dilute sulphuric acid, it was shown that 4 gr , of zinc being oxidised would raise the temperature of 60 gr . of water $159^{5 \cdot} \cdot 8$, therefore the difference $159^{\circ} .8$ and $129^{\circ} \cdot 4$, equal to $30^{\circ} \cdot 4$, is absorbed by the decomposition of the acid.

[^56]Bismuth.- $8 \cdot 9$ grains of bismuth, by its solution in nitric acid, developes sufficient heat to raise the temperature of 60 gr . of water $80^{\circ} 1$. Subtract 36° for the heat of combination of the acid and oxide, and add $30^{\circ} \cdot 4$ for the absorption of heat by the decomposition of the acid, and the result is, that 1 equivalent of biemuth produces by its combustion as much heat as would raise 60 gr . of water $74^{\circ} \cdot 6$.

Lead. - $12 \cdot 7$ gr. or 1 equivalent of lead, by its solution in nitrio acid, produces heat sufficient to raise the temperature of 60 gr . of water 106°, including 37° for the combination of the oxide with the acid; the latter being extracted leaves 69°, to which must be added $30^{\circ} \cdot 4$ for the amount absorbed by the decomposition of the acid, and there remains $99^{\circ} \cdot 4$ as the amount of heat produced in 60 gr . of water by the combustion of 1 equivalent of lead.

Mercury. - I could not ascertain satisfactorily the amount of beat produced by the oxidisement of mercury, its solution in nitric acid is slow, and its equivalent number is high, and the combination it forms with the acid is not well ascertained. It is generally thought that when there is an excess of acid, the salt formed is a sub-salt, HyzO being the base. If such be the case, 25 gr . of mercury raises the temperature of 60 gr . of water 50°, including the combination of the oxide with the acid, and this produces sufficient heat to raise 60 gr . of water 40°; the oridisement alone produces $50^{\circ}-40^{\circ}=10^{\circ}$; to this sum add $30^{\circ} .4$ for the heat absorbed by the decomposition of the acid, and it leaves $40^{\circ} 4$ as the quantity of heat produced in 60 gr . of water by the combustion of 1 equivalent of mercury.

Silver.-13 $\frac{1}{2} \mathrm{gr}$. (or equivalent of silver), by its solution in nitric acid, raises 60 gr . of water $40^{\circ} \cdot 5$. Subtract 32° for the heat produced by the combination of the acid with the oxide of silver, and add $30^{\circ} \cdot 4$ for the heat absorbed by the decomposition of the acid, and $38^{\circ} \cdot 9$ id the number of degrees 1 equivalent of silver, by its oxidisement, would raise 60 gr . of water.

Iron.-The amount of heat produced by the oxidisement of iron could not be calculated with any certainty, from its solution in dilute sulphuric acid, as it required a large amount to be dissolved to cause a perceptible rise of temperature. The heat it produces must be very nearly the same as that produced by hydrogen; as if it differed considerahly a small quantity of it would give rise to a large amount of heat, as its equivalent is small. The heat absorbed by the decomposition of the water very nearly balanced that produced by the combination of the iron with the oxygen. Iron produces only a very little more, if more at all, heat with oxygen than hydrogen doea. When iron is dispolved in nitric acid, the peroxide is formed, and of gr., or 1 equivalent-for 9 g gr . unites with 1 gr . of oxygen-when dissolved in nitric acid, produces heat sufficient to raise 60 gr . of water 102°. As 1 equivalent or 10 gr . of peroxide of iron, by combining with acid, produces heat sufficient to raise 60 gr . of water 20°, 24 gr. must raise it 6°. Subtract this number from 102°, there remain 96°, and add $30^{\circ} \cdot 4$ for decomposition of the acid, and $126^{\circ} \cdot 4$ is the quantity of heat produced by the oxidisement of iron.
Tin. When tin is dissolved in nitric acid $3 \frac{1}{\mathrm{gr}}$., take 1 gr . of oxygen to form the peroxide, and raises the temperature of 60 gr . of water 105°. If the combination of the peroxide with the acid produces the same amount of heat as the peroxide of iron does, 6° must be subtracted; there remains 99°. Add $80^{\circ} .4$ for decomposition of acid, and $129^{\circ} .4$ is the number of degrees the oxidisement of tin would raise 60 gr . of water.
Summary.-The following table gives, at a glance, the number of degrees that 1 equivalent of each metal, by its combination with oxygen (1 gr .), would raise $60^{\circ} \mathrm{gr}$. of water. Subjoined are the results that Andrews arrived at for such of the metals as he has experimented with by directly burning them in oxygen calculated to the same standard as my own-viz., the quantity of heat their combustion would produce in 60 gr . of water.
Amount of heat produced by the combination of an equivalent of each

The length to which this paper has run prevents me remarking on the foregoing table as fully as I would wish. It will be, however, seen those metals which are capable of displacing others from neutral solutions produce most heat by their combination with oxygen; or, according to the view I take of chemical combination, require less distance between their particles and those of oxygen than do the other metals. Thus, when a salt of silver in solution is poured on copper, oxygen, silver, and copper are brought together, at an inseusible distance, mechanically, for the first instant, forming one body, their particles lying together, perfectly passive with respect to each other; but as we deduce from experiment that oxygen and copper lie more closely together than oxygen and silver, the particles of the oxygen and copper are exactly in the same predicament as a heated body would be in conjunction with a colder one-the particles being separated from one another to a distance greater than natural, so to speak, for the mean temperature-these particles, therefore, move together, or contract, just as those of a heated body would do; and the particles of oxygen and silver which may represent the colder body separate or expand to supply the opposite movement. It will be seen I do not attempt to explain why copper and oxygen lie more closely together than silver and oxygen in combination. I merely say that as their uniting is accompanied by a greater expansion or heat in other bodies, and as that expansion may be taken as equal and opposite to the contraction between the uniting bodies, those substances producing most heat must lie more closely together; and that, therefore, all such hypothetical ideas as electricities, subtle fluids, modulations, \&c., thay be discarded in accounting for the heat of chemical combination; and the movements immediately concerned in producing it may be looked on as being in nothing different from those where heat is given out from a simple body whose temperature is more elevated than surrounding ones; except in this particular, that a simple body, whose temperature is rassed, loses its volume to other bodies by an approximation of its own, or similar particles, but in chemical combluation it is the approximation of diverse particles moving to unite.

eEOLOGY OF IRELAND.

Outline of the General Geology of Ireland. By Mr. Geippith. (Paper read before the Geological Section, Lt.-Col. Portiock, R.E., F.R.S., President, in the Chair.)

Mr. Gripfith, having directed attention to his most interesting map, and to the various improvements which he had been enabled to make on it since 1838, acknowledging with thanks the services rendered to him by Colonel Fordyce, and Messrs. Bryce and M'Adam, of Belfast, proceeded to take up the subject of his lecture.

On looking at the map, it will be found, he said, that the conformation of Ireland is peculiar, the coast being mountainous and the interior flat. Taking the line from Dublin to Galway, which is 180 miles, the summit level is seen to be only 160 feet above the level of the sea; hence it is that our canals and railways have been made at an expense so comparatively trifling. Lough Allan, which may be considered the source of the Shannon, is 160 feet above the level of the sea; while between Killalue and the tide-water at Limerick, a distance of about twelve miles, the fall is only 110 feet. The average fall is less than six inches to the mile-a circumstance to which we are to attribute so many sluggish rivers, and the existence of large tracts of country flooded during six or nine months in the year. The mountain-ranges which indicate the strata of lreland, run in the north from north-west to south- east, and in the County Cork from nearly east to west. Beginning with the foundation and going to the top, it may be said that the mica-slate, which forms the basis of all the sedimentary rocks of lreland, occurs in great abundance in the Counties of Londonderry and Donegal, where it is found twisted and contorted in every direction by the protrusion of the granite. The granite was formerly considered among geologists to be the oldest rock, though now, in many cases, it has been proved to be among the most recent. The greenstone of the County Donegal is older than it, as is proved by the appearances exhibited at Talcorrib, on the coast at the west of Dungloe. In this locality the strats consist of mica slate and quartz rock, which have been elevated by the protrusion of enormous masses of greenstone, and this greenstone itself contains masses of mica slate and quartz rock, thus proving that it is newer than them. Immediately to the south the granite occurs, cutting through the greenstone and the quartz rock, and
containing angular fragments of both, thus leading to the conviction that the granite is the nowest rock of the three. Mr. Grifith next alluded to stratifications in the Counties of Mayo and Galway, which, he remarked, were chiefly componed of mica slate, granite rock, and limestone. Granite also occurs to the north of Galway Bay, where it is succeeded by metamorphic rocks and mica slate. To the north of the grand boundary several granite rocks occur, protruding through the mica slate and limestones. In this district there appears the green marble, which is only limestone metamorphosed by the action of the granite. Passing northward, the mica slate is found covered by silurian rocks in an unconformable position. These rocks contain numerous fossils belonging to the silurian system, and are succeeded by enormous masses of conglomerate, containing large pebbles of grey granite, some of them nearly a ton in weight, and perfectly rounded. The granite thus observed is quite distinct in its character from the granite of the district, and clearly enough belongs to an older period. The thickneas of the silurian strata, including the conglomerate, may be set down at about 5000 feet. The speaker next alluded to the slates and silurian ranges of the promontory at Dingle, in the County of Kerry, and described similar formations in the Counties of Waterford, Wexford, and Wicklow, remarking that the granite in the same localities is found to be newer than the slate-a fact proved by the protrusion of several granitic hills through the most of the slate district. To the north of Dublin there is snother slate district, similar in character to that of Wicklow and Wexford, and probably belonging to a lower silurian series; though, as no fossils have been discovered in it, except at the sunth portion, its exact age remsins undetermined. This is accompanied with the granite at the Mourne Mountaing, which Mr. Griffith conceives to be newer than the slate. One of the most interesting silurian districts in Ireland occurs near Pomeroy, in the County Tyrone. It was discovered by Colonel Portlock, who has fully described it in his valuable works on the geology of the County Tyrone and the neighbouring districts. The learned gentleman next described the old red sandstone, particularly alluding to the large district which occurs in the County Tyrone, and which, apparently has some relation to the silurian district at Pomeroy, described by Colonel Portlock, and then pointed out on the map several mountain ranges which are capped by the deposit, particularly the Galtees and Knockmedown Mountains, Slievenish, in the west of the County Kerry, and districts north of the County Cork. Having remarked that the old red sandstone is succeeded by the great mountain limestone district of Ireland, which occupies two-thirds of the entire country; and which, on account of its lithological character, he was accustomed to subdivide it into five portions, consisting of the yellow sandstone, the carboniferous slate, the lower limestone, the calp or shale series, and the upper limestone, he proceeded to say, that as this would form the subject of a separate paper, he would decline entering into its consideration on the present occasion. The carboniferous limestone series, he observed, is altogether about 6000 feet thick, 3000 feet of which belongs to the lower portion of the series, and 3000 to the upper. He next described the several coal districts of Ireland, commencing with Ballycastle at Fair Head, on the north coast of the County Antrim. This district, which is of greater antiquity than any other in Ireland, had, he remarked, been worked to a considerable extent. The coal was worked by tunnels, and the beds, which were affected at different elevations by the protrusion of dykes of greenstone, have been nearly worked out, though at Murlough Bay, which contains bituminous coal or stone-coal, there some beds, whether exhausted or not, he had not information to say. The next coal district is that situated near Cualisland, in the County Tyrone. It is very amall, and the beds are now nearly all worked out. A third occurs in the Counties of Leitrim, Cavan, and Roscommon, stretching to Lough Island, which contains only one bed, not exceeding two feet in thickness, though in this locality there is a site of the Arigna Iron Works, which, though they are not worked at the present time, formerly attracted much attention in this country. The shale accompanies the coal with rich beds of argillaceous ironstone, some of it containing so much as 40 per cent. of iron; indeed the iron that was made at Arigna was found to be of very superior quality. Mr. Griffith next described the Kilkenny coal district, which contains, he said, an unflaming coal or mineral charcoal alone. There are several beds in this district, two of which are 3 feet in thickness, one 4 feet, and two less than 3 feet. The upper beds have been long since worked out; the
lower ones still remain, though they are at impure in quality, and contain so much sulphur that they are not used except to burn limestone. The Munster coal district was next dwelt upon. It occupies a considerable portion of the Counties of Clere Limerick, Cork, and Kerry, and contains three beds, some of which are not more than 6 inches in thickness. The most valuable portion is found at the south, immediately to the north of the river Blackwater, where several excellent beds of anthrscite occur. The learned gentlemen having remarked that he would not say that a valuable coal-bed would not be found in Ireland, though he believed that no such coal would be had in the country 98 is to be found in England, proceeded to take up the new red sandstone. The new red sandstone, he said, is very sparingly developed in Ireland. The most southern locality in which it is found is at Carrickmacross, in the County of Monaghan, where in sinking through it to obtain coal, a bed of gypsum, 40 feat in thickness, was discovered; and the districts in which it is found most extensively are in the Counties of Tyrone and Antrim. At Tyrone it adjoins the coal district, and rests upon it. It also occurs in the valley of the river Lagan, in the Counties of Down and Antrim, continues under Belfast, and again displays itself at Carrickfergus. This stratum contains gypsum in thinner beds, however, than those mentioned as occurring at Carrickmacross. Some time ago, when ainking through it to obtain coal, a bed of salt was discovered; this discovery, however, he would not touch upon, as he understood a local paper on the subject would be presented to the Association during the sitting. The new red sandstone, he proceeded to asy, is covered by the lias, which is similar to that in England, and this again by the chalk, which, in the north of Ireland is called white limestone, owing to being more dense than the chalk found in England. The chalk is covered by lobatin trap, which occupies a large portion of the Counties of Antrim and Derry. Mr. Griffith next went on to explain the position of the tertiary beds, -remarking that a very interesting tertiary district occurs in the south side of Lough Neagh, in the Counties of Tyrune and Down. It is ten miles in length and four in breadth: a bore was made through it to the depth of 300 feet, with a view to obtain coal, and the strata was found to consist of alternations of white ironstone and blue clay, with surlurbrand or wood cosl-a series precisely similar to that at Bovey, in Devonshire. The level of the Bore, which was situated not far from the coal field, and adjoined the coal district, was about 70 feet above the level of the sea; and as the boring itself was 300 feet deep, the depth of the series was 230 feet below the level of the sea, though even at this distance it was not penetrated. Mr. Grifith next alluded to the tertiary districts situated on the coasts of the Counties of Wicklow, Wextord, and Waterford, and concluded a most interesting sketch of the geology of the country by a rapid view of tho escarp hills and diluvial gravel which cover so large a purtion of Ireland, and which appeared to him to have been produced by currents setting in from the north-west towards the south-east.

The President, having alluded to the many obligationg under which Mr. Griffith had placed the Association, proceeded briefly to state the various interesting points in that gentlemans address. Mr. Griffith had shown, by a reference to the north or north-west, that the granite includes pebbles of greenstone and mics slate; and that, therefore, the granite must be newer than the greenstone and the mica slate. This was a most valuable fact; and there was another stated by Mr. Griffith not less sonamely, that in the east and lower east, in which the granite occurs, it is newer than the old red sandstone, though the new red sandstone is as it were formed of the detritus of the granite. Another point of very great interest was the scarcity of coal. Here was a matter in which geology was of vast importauce, as it was desirable at once that the geologist should point out where to obtain valuable minerals, and that he should exercise a wise discretion in preventing others expending time and money in investigations where these properties are not to be expected. It was clear by Mr. Griffith's statement that coal is not to be found in any quantity in Ireland; and therefore every attempt to leave that impression, and to induce parties to embark in speculations which must prove fruitless, ought to be discouraged.

Mr. Saull expressed his surprise at one remark which he said had been made by Mr. Grifith-that in which he asserted that the mica slate was older than the granite. That was no contrary to his own understanding, and so opposed to hundreds of facts, that he could not but hesitate in accepting it.

BARBDUR OF BELPA8T.
On the Improvements mado in the Harbour of Belfast. By J. Garbetr. (Paper read before the Mechanical Section, J. Walker, Esq., President, in the Chair.)

Tre town of Belfast is situated on the river Lagan at its junction with the extensive inlet from the Irish Channel, known as Belfast Lough, which extends in a south-westerly direction for about 11 miles from the general coast line, and is bounded on the south-east and north-west by the Counties of Down and Antrim respectively. The lough is seven miles in width at its seaward entrance, and decreasing gradually towards its southern extremity, prements a well-formed receptacle for the western portion of the north tidal stream. The courses of the flood and ebb tides through the lough do not differ materially-a circumstance of much importance, as tending to prevent the formation of any formidable shoal or bar, so often found to exist at harbour entrances, but from which that of Belfast is entirely free. The anchorage is about 14 square miles in extent, with from two to ten fathoms water, and affords excellent "holding-ground," consisting principally of blue clay. The importance of this lough as a harbour of refuge is clearly pointed out in the following extract from the Admiralty sailing directions:-
"The bay of Belfart is. with moderate caution, free from dangers of any kind; the shores on either side being approachable by the lead to a moderate distance, and a ship may anchor in any part of it claer of the banks for a tide. Even in the event of a ship running in dismasted, and witbout cables and anchors, she might with confidence run upon Garmoyle bank, or as uearly as possible to where vessels lie. She would make a dock for herself, and remain in safety till fine weather; and this is an advantage which few other ports on the coast of Ireland possess."
The river Lagan rises in the Mourne Mountains, and empties tself into the lough after a course of about 36 miles in length, through a catchment basin of 200 square miles in extent. The tidal water lows up the river for about two miles above the town, where its further progress is prevented by the works of the Lagan Navigation, by means of which a water communication is afforded between the port of Belfast and the interior of the country.
The earliest mention of Belfast as a trading town is in a charter granted by James I., in 1613, to empower a "guild of freemen to erect a wharf or quay in some convenient place in the bay or creek;" and until the year 1780 the only accommodation which the town afforded for shipping was in the above-mentioned "creek," formed by a small river running down the centre of High-street, which is at present covered over, and forms one of the sewers of the town. The first authentic plan of the town was by order of government in 1685, to enable them to lay out fortifications, and in it the harbour is shown as above described; and the Long Bridge, which was commenced in 1688, is represented as being in course of erection. In 1720, the first quaywall along the Lagan was built; and from this date very little alteration was made in the harbour until the year 1785, which may be considered as marking the commencement of its progress. From this date up to 1814, many improvements were made in the harbour; these, however, were not of such a nuture as to alter materially the previous character of the navigable channel, which remained narrow and tortuous (bounded on either side by very extensive banks, uncovered at low water) for a distance of about three miles, extending from the roadstead called Garmoyle to the quays at the town.

We learn from Mr. Rennie's report in 1881, that the channel was only from 2 to $4 \frac{1}{2}$ teet deep at low water opposite the town, and continued with little increase for about $2 \frac{1}{\frac{1}{2}}$ miles lower down, when it was joined by the Seal channel, through which was conveyed the greater portion of the water covering the large area of the low banks along the Antrim side of the lough at high water; at this point the depth was about 8 feet, and increased gradually to 16 feet at Garmoyle, showing an addition of 8 feet in depth in the short distance of half-a-mile. Mr. Rennie, however, in noticing this increase, does not mention that the Conswater river, which conveys the drainage of a considerable district in the County Down, in addition to a large quantity of tidal water, discharged into the main channel near the same place.

The roadstead, or pool of Garmoyle, had a depth of from 18 to 20 feet at low-water spring tides, with good anchorage, and was so well sheltered that vessels could lie in it safely during every
wind. As the rise of spring tides was only 12 feet, and neap tides 8 feet, vessels drawing 14 feet and upwards could not proceed to the town, but were necessitated to remain in Garmoyle until the greater portion of their cargoes had been discharged by roman of lightara-a mode of operation buth inconvenient and expensive.

The unsatisfactory state of the herbour, which has been described, together with other imperfectlons causing annuyance and delay to the revenue department, indwed the Comniissioners of Customs (in 1814) to give instructions to Mr. Killaly to report to them on the improvement of the poret; but this gentleman's attention weems to have been directed mainly towards providing dock accommodution, witheet melting to effeot any improvement in the means of communicationdesween the town and the sea.

In 1821, the late Mr. Rennie, by the direction of the Lords of the Treasury, reported upon the general improvement of the harbour. He stated that the first thing required was a sufficient depth of water to enahle vessels to come up to the quays without being obliged to discharge part of their cargoes in the lough; and, secondly, improved dock arrangements. To supply these deficiencies be proposed two measures. The first was (in the words of his report), "to convert the whole of the river in front of the town into a wet dock, and from thence to make a ship canal into the deep water of the lough. This ship canal must terminate either at the buoy of the flats, at the head of Garmoyle, or at Whiteabbey, adjoining the town of Carrickfergus, about five English miles from Belfast." The second was to have the quays and harbour as they then were, and to make a wet dock (capable of receiving all the vessels with exciseable or customable cargoes), having a canal to communicate with the lough either at Garmoyle or Whiteabbey, and a lock to communicate with the existing harbour.

The first plan would have involved the necessity of making a new course for the Lagan through Ballymacarret, and a canal from it into the wet dockalso; if the ship-canal had been carried to Whiteabbey (as recommended in the report), a sheltering pier would have been necessary to protect the entrance from the sea. For the second plan, it was reco mmended that the entrance to the proposed canal should be constructed at Garmoyle.

In 1824, the Ballast Corporation requested Mr. John Rennie (now Sir John) to report to them his views with respect to the best mode of improving the harbour, and about two years afterwards he submitted to them three designs. The first was to form an open-tide canal to Garmoyle, and make the river at the town into a wet basin, or to make a basin independent of the river. The second, to make a lock-canal to Garmoyle, and a basin as in the first, having a communication with the river. The third (which he recommended for adoption) was to form a basin, as in No. 1, and make a ship-canal from it (nearly on the line of high-water mark along the Antrim shore) to Silverstream, about 5 miles below the town ; and at this place to construct an entrance-harbour, with locks, \&c., so arranged as to admit the largest vessels into the canals at all times.

Mr. Telford was next consulted on this important question, and in 1829 reported his opinion in favour of the formation of a canal, connecting Garmoyle with three new floating docks at the town-the canal to have a double lock at its entrance into Garmoyle, and to be so constructed as to admit vessels drawing 20 feet of water during neap tides. This plan rendered it necessary to divert the course of the river Lagan, and to erect a weir, \&c., to keep the water in the river above up to the level of high-whter spring tides.

In 1889, Sir Sohn Rennie reported a second time, and recommended the formation of wet docks at the town, with a canal leading to Garmoyie; he also proposed to dam up the river above the town, and form a new channel for its overflow waters. This design is almost identical with that proposed by Mr. Telford.

Mr. Walker was now asked for his opinion, and in 1830 Messrs. Walker and Burges recommended the design which has been, with some slight modification, adopted. This was in general terms to straighten and deepen the river channel from Garmoyle to the town, by means of two new cuts, which, although in the same line, were quite distinct from each other -to construct a large floating dock, communicnting with the river through an entrance lock-to extend and improve the existing quays, and form new wharfs on the County Down side of the river.

In 1835, Mr. Cubitt (now Bir William) reported to the Board of Works on the several plans proposed, and suggested two designs himself for the improvement of the harbour. The first was to form a new channel for the river through Ballymacarrett, turn the existing river course and the quays into a floating-dock, and make two new cuts between Garmoyle and the town, the upper one to be formed into an entrance basin, with a single pair of gates at the lower end and a ship lock at the upper. The second plan was to form the docks and cuts towards Garmoyle as in the first; but instead of a new course being formed for the river, it was to be dammed up and its overflow waters discharged over a long weir.

Many other plang were proposed by various gentlemen, but as they do not contain any different principle, and merely vary in detail from those already enumerated, it is unnecessary to describe them here.

From 1814, when the first of the reports above described was made, until 1839, when the first of the works designed by Messrs. Walker and Burges was commenced, many improvements of a minor character were made in the port, which need not be detailed here; but in order to assist in forming an estimate of the extent of improvements effected in the harbour generally by the subsequent extensive alterations, it may be stated that, in 1837, there were about 5 feet maximum depth of water opposite the quays, and about 8 feet in the south channel below the town, at low water. The accommodation for shipping consisted of four tidal docks (one of which could accommodate twenty-five vessels of 400 tons, but the others were only fit for the reception of small sloops \&c.); there were two graving docks suitable for vessels of from 300 to 600 tons, and the entire quay room was about 3000 feet, of which a large proportion was not available for vessels of considerable tonnage.

Before proceeding to notice the results which have flowed from the execution of the design of Messrs. Walker and Burges (which, so far as carried out, has fully realised the anticipations of its projectors), it may be well to direct attention to two points in particular, in which it differed from the various projects recommended by the other eminent engineers whose attention was directed to the subject. First, the design adopted possessed the great practical advantage of an arrangement of parts which admitted of its being executed in distinct sections, which were each in itself attended with beneficial results, independent of their combined effects as portions of one comprehensive design; secondly, that the flow of the tide up the esturry, instead of being opposed by barriers to prevent its progress (or, at best, put aside as if unworthy of attention), was treated as a valuable ally, and so guided as to aid by its unceasing action in giving permanence to the improvements effected in the channel.

The great increase in shipping accommodation afforded by the late works (which have been so well carried out under the superintendence of Mr. Smith, the Kesident Engineer to the Harbour Commissioners) may be observed by comparing the account previously given of the state of the port in 1837 with the following statement of its present condition. The depth of water opposite the quays is 9 feet at low water. There are 6980 feet of quayage; two tidal docks, capable of accommodating fifty vessels of from 800 to 400 tons; two graving docks and swo patent slips -showing an increase of upwards of 3000 feet of quayage, and an additional dock accommodation for twenty-five vessels, together with the advantage to the shipping interest derived from the facility of repairs afforded by the patent slips.

The period which has elapsed since the completion of the now channel (the second portion of which was opened in July, 1849) is rather short to enable one to pronounce as to its ultimate effects; but it is gratifying to understand that the results, so far, are most favourable. Scarcely any dredging is now required to maintain the depth of water in the new cuta, and no injurious effect on the channel lower down has been observed. This is to be attributed, in a great measure, to the increased velocity of the current, caused by the superior facilities afforded for the passage of the tidal and river water, by the more direct course of the new cuts, together with the increased inclination given to the bed of the channel by the shortening of its course.

The formation of floating docks (in which vessels may lie afloat at nll times of tide) is an important portion of the design remaining yet to be executed, and when this shall have been accomplished (for which there are local facilities possessed by very few ports in the kingdom, Belfast may be justly pointed out as an eminently-successful development of the idea-that an improved river with docks is better than the substitution of
docks for a river. The truth of this must appear forcibly to any one who witnesses the advantages enjoyed by the public from the present arrangement, which admits of the free arrival and departure of steamers and vessels of a similar draught of water, with nearly equal readiness at all times of tide, and who considers the delay and inconvenience which would necessarily ensue from any system which would render "locking" neceseary at all times, except at or near high water.

The average daily arrivals and departures at present are thirty-two sailing vessels and twelve steamers.

The paper then proceeded to mention some facts connected with the extensive slob-banks on the borders of the lough, which have undergone considerable changes at a comparatively recent period; which changes the author attempted to show to be the effects of natural causes.

Mr. Godwin, C.E., took the opportunity of bearing testimony to the great improvements which had been made in the harbour of Belfast, as stated in the paper by Mr. Garrett, and considerad that the Harbour Commissioners had been exceedingly fortunate in adopting the plans which had been carried out and in having a man of Mr. Smith's ability as their engineer. Hehad no faith in the principle of canals, and thought that the advantages of vessels coming up to the town should be always preferred. He alluded to Newry as a case in point, and believed that if the people of that town had expended the 200,000 l. which their present harbour accommodation had cost them in following up the principle laid down at Belfast, they would have found the same benefits as had been discovered here. He observed that any alteration in the course of the river would have the effect of making a change in the length of the river, and instanced the case of the river Chepstow. If the course of the river be contracted, or, as in this case, narrowed, it would produce a greater rise in the water further up towards the river's head, although it might not make much difference in the instence of the Lagan. Mr. Godwin wished to know whether, by the water being allowed to pass over the slob-lands, the scour of the channel would be improved, or whether, towards that end, it should be confined as much as possible to the course of the river? This was a subject which he thought worthy of the attention of the meeting.

Mr. Garbett remarked that by the rise of the tides the water flowed up the new channels, and covered the slobs, and that on the fall of the tide it returned back by the same course.

Mr. Waleser, the Chairman, said that he had the honour of acting as engineer for the harbours of the Clyde and Belfast; and he believed that the eminent Engineer to the Belfast Harbour Commissioners had performed all that could be desired for the benefit of the trade of the port. When he was applied to by the Commissioners to propose a plan for the improvement of the harbour, he at once saw the necessity of large steamers being able to run to and from the town; although he did not think, if that end had been accomplished, all the credit was due to him. At Glasgow, when he was studying at the University there, the depth of the water at the quays was not more than 4 feet; only very small vessels being able to come up to the town. Mr. Smeaton, the eminent engineer, when spoken to by the Glasgow people on the contemplated improvements to their quay, assured them that if they would follow his advice he would give them 4 feet of water at low, instead of high tide. This of course was deemed next to impossible, but had been fully accomplished-a vessel drawing 20 feet of water, and of 2500 tons burthen can now come up to the town. This, he thought, should have satisfied the people of Glasgow, but it had entirely failed in doing so.
safety harbours.
Design for Safety Harbours. By Joseph Saunders.-The advantages of the design are-durability, cheapaess of execution, and security from damage during the progress of the work. The sea pavement, which has heretofore been the ruin of our best harbours, will be by this design dispensed with, substituting a strong sea-wall instead. The bell-work to seaward will be constructed upon an entirely new plan, diminishing 1 foot in each course till it reaches low-water mark, on which the great seawall will commence with the ordinary batter; this wall will be supported from the interior by horizontal arches and sectional walls; and the horizontal arches will be filled with concrete and small stoues to high-water mark.

DISCHAEGE OF water.
On the Discharge of Water. By J. Barker, C.E of Manchester.
Mr. Barkre communicated a series of observations on the discharge of water for the purpose of driving machinery; and in the course of his remarks he laid down the following certificates for calculating the velocity of water discharged through various apertures:-Through an opening 6 feet long and 6 inches deep, with curved approaches inside, and formed with a radius of st inches, the coefficient proved to be 7.8 ; through an opening of the same dimensions, but curved inside only, the coefficient proved to be 7.04; through a similar opening, but curved outside only-merely resembling the discharge through a thin platethe coefficient proved to be $5 \cdot 6$; and the coefficient ordinarily used by engineers was $5 \cdot 1$; and the coefficient for theoretical velocity was 8.04. Mr. Barker further stated that his experiments proved the accuracy of formule established by Chevalier Dubuet for calculating the mean velocity of water in the separate channels.

REVIEWB.

A New General Theory of the Teeth of Wheels. By Edmand Sang, F.R.S.S.A., Professur of Mechanical Philosophy in the Imperial School, Muhendis-hana-berrii, at Constantinople. Edinburgh: Black. 1858. 8vo. pp. 180; 53 plates.
Odontography, or the delineation of the teeth of wheels, has frequently engaged the attention of mathematicians and mechanicians for the last two centuries. It does not appear, however, that the results of theoretical investigation are very generally and scrupulously observed in practice. The mathematician demands, for the practical application of his resulte, an amount of labour of numerical computation, and of delicacy of mechanical execution, which the workman is unable or unwilling to bestow. It is a very common practice with those whose business it is to set out the teeth of wheels, to draw their lines in accordance with the dictates of experience and a general judgment, rather than by exact scientific methods.

Professor Willis, who brings to bear on the subject not merely his theoretical attainments, but also a long and extensive experience, and admirable powers of mechanical invention, discussed the theory of wheels in a memoir published in one of the earlier volumes of the Transactions of the Institution of Civil Engineers. He was of opinion that ordinarily the form of each halfcog might, with sufficient exactness, be represented by two circular ares of proper radii. He therefore reduced the difficulty to that merely of finding the centres from which these arcs should be struck, and for this purpose he invented an instrument called the odontograph.

Mr. Sang, in the elaborate work before us, proposes much more operose methods; and though cases might perhaps arise in which delineation by pairs of arcs would not be sufficiently exact, we should imagine that it would be hardly possible to meet with instances requiring all the labour proposed in the present treatise. It is, however, replete with information of great value to the practical mechanician, and the remarkably original investigations exhibit an immense amount of careful thought and labour.

The problem of odontography is here regarded from a point of view different from that ordinarily adopted. Instead of the proposition-Given one revolving contour; to find another which will move in exactly rolling contact with it-we have this:Given the path of the point of contact; to find the corresponding truly rolling form of each wheel. It is clear that each wheel will have a different form for different angular velocities, and that, therefore, there is an unlimited number of contours, each of which will work properly with any one of the rest under the prescribed condition.
The curve described on a revolving disc by a tracing point moving in a given path, does not seem to have been separately investigated by Mr. Sang. The differential equation may, however, be easily found as follows. Let x, y, be co-ordinntes of the tracing point, at the time t; the axis of y being in a line through the pivot of the disc; θ the angle through which it has revolved; b the co-ordinate of its pivot. Now, the whole velocity of the tracing point upon or relatively to the disc is equal to the difference between the absolute velocity of the tracing point
parallel to either axis, and the velocity with which the point under it of the disc itself moves in the like direction. The latter velocity due to rotation is $(y-b) \frac{d \theta}{d t}$ parallel to x, and $-x \frac{d \theta}{d t}$ parallel to y. The inclination of the resultant velocity is the direction of the tangent of the curve traced on the disc: but this direction has for its tangent the ratio of the relative velocities on the disc parallel to either axis. In this ratio omit the common denominator $d t$, and call $d x^{1}, d y^{1}$, elements of the curve on the disc. Then

$$
\frac{d y^{1}}{d x^{1}}=\frac{d y+x d \theta}{d x-(y-b) d \theta}
$$

This is the required differential equation to the curve traced, in terms of the simultaneous increments of the co-ordinates of the tracing point and the angle of rotation. The condition that two contours so traced may roll truly together requires their tangents to have the same direction at any time t. Hence, from the last equation

$$
\frac{d y+x d \theta}{d x-(y-b) d \theta}=\frac{d y+x d \theta^{1}}{d x-\left(y-b^{2}\right) d \theta^{1}}
$$

where θ^{1} is the angle through which the second dise has turned, and b^{1} the co-ordinate of its pivot. This relation between the motion of the tracing point and the rolling pair of contours agrees with Mr. Sang's obtained in a different manner.

From this fundamental relation all the theorems and principles of the formation of wheels are derived by him. The application of the equation requires the arbitrary assignment of the path of the point of contact of the teeth working together. For this path Mr. Sang finds that the "hour-glass curve," as he designates it, which resembles in form the figure 8, is convenient. Giving different proportions to different parts of this curve, he traces the consequent variations of the forms of the teeth traced out by a point moving along it; distinguishing, with great skill and care, the relative merits of the several results-such as the number of teeth simultaneously engaged-freedom from abrupt changes of curvature-from obliquity of pressure, \&c.

One of Mr. Sang's propositions has somewhat more generality than he seems to have noticed. The absolute velocity of the point at the distance b from the pivot of the dise revolving with the angular velocity $\frac{d \theta}{d t}$ is $b \frac{d \theta}{d t}$. Suppose, now, that in the last equation $b d \theta=b^{1} d \theta$; that is, let the angular velocities be to each other in a constant ratio, and let the origin be at that point in the line joining the pivots which has the same velucity on both discs (called the pitch point). Also let this velocity be
$-\frac{d q}{d i}$. Then the foregoing equation will be found to become simply $\quad x d x+y d y=x d q$.
It would appear hence that this transformation requires not that the angular velocities be constant (as is stated p. 5), but merely that they be in a constant ratio.
The pitch point is that at which both discs have the same velocity: hence it is that at which they would touch each other if they were merely two circles, without teeth, revolving by rolling friction with the assigned angular velocities. If these be in a constant ratio, the pitch points trace circles on the discs. As a remarkable property of the pitch point in relation to the forms of teeth, we suggeat the following simple demonstration. Suppose the wheels in equilibrium, acted on by the mutual normal pressure of one tooth of each, and each by one of the forces having the moments M, and M^{1}, respectively, to turn it about the pivot. Let the direction of the pressure (P) on the teeth meet the line joining the two pivots at the angle φ at the distances c, c^{1}, from them respectively. Then, for the equilibrium of the wheels separately, taking moments,

$$
\mathbf{M}=\mathbf{P} c \sin \varphi ; \mathbf{M}^{1}=\mathbf{P} \boldsymbol{c}^{1} \sin \varphi
$$

Also imagine a slight displacement of rotation: then, by virtual velocities, for the equilibrium of the whole system,

$$
\mathrm{M} d \theta=\mathrm{M}^{1} d \theta^{1} ;
$$

or using the abuve connecting equation for b and b^{1} when those quantities express the distance of the pitch point from the pivots,

$$
\frac{\mathbf{M}}{\overline{\mathbf{M}}^{1}}=\frac{b}{b^{1}} . \quad \text { But } \frac{\mathbf{M}}{\overline{\mathbf{M}}^{1}}=\frac{c}{c^{\mathrm{l}}}
$$

from the preceding result; also the dintance between the pivote $=b+b^{\prime}=c+c^{\prime}$. . Hence $b=c, b^{\prime}=c^{\prime}$, and consequently the normal pressure passes through the pitch point. Hence the important remult that the line joining the pitch point and the point of contact of the teeth is always a normal to the contours of both.
The mechanical, as well as geometrical, principles relating to the teeth of wheels are examined by Mr. Sang. He investigatea the loss of force due to the friction of teeth, and arrives at the conclusion that the lose of force arising from the friction of involute teeth is independent of the obliquity of action, and is proportional simply to the square of the distance passed over by the pitch line. An increased obliquity augments the pressure on the surface of the tooth, but lessens, in the same ratio, the amount of aliding.

Where several teeth are engaged at once, the pressare becomes indeterminate. Its distribution depends on the compression of the parts, and therefore on their curvature. In default of exact information, Mr. Sang supposes the pressures equally shared by all the teeth, but acknowledges the assumption to be arbitrary. It does not seem to us the most probable that could be suggested. When the teeth are in contact they touch, not in mere lines or points, but, on account of their elasticity, in cylindrical surfaces of small magnitude. For equal compressions these surfaces are as the square roots of their radii of curvature. For let these be r, r, respectively before compression, and let $l \theta, l \theta^{\prime}$ be the arce which the two equally compressed surfaces subtend at their centres of curvature. Then the distance of compression $=r$ ver $\sin \theta=r^{\prime}$ ver sin θ^{\prime}. Hence, θ and θ being small, $r \theta^{\prime}=r^{\prime} \theta^{\prime 2}$ nearly, and the surfaces compressed are as $r \theta$ to $r^{\prime} \theta^{\prime}$; or as $\sqrt{ } r$ to $\sqrt{ } r^{\prime}$.

The pressure depends not only on the surface compressed, hut on the degree of compression. The total mutual compression of the surfaces is proportional to the virtual velocity of the pressure (supposing the general form of the wheel constant), and therefore increases with the distance from the centree of the wheels and the obliquity of action. As the pressure is a function of both the surface and pressure, we might, as a first approximation, take it to vary as the first power of each.
That the pressure depends on the curvature may be easily conceived from this analogy:-If a carriage having many wheels rest on a yielding road, the wheels of large radius (ceteris paribus) sustain the greatest pressure. That the pressure on the teeth increases with the obliquity of action may be seen from the consideration, that if the action be very oblique, the teeth are in risk of being "jammed" fast together.

Amongst the intereating mechanical investigations of the present work are those of the effects of abramion in altering the forms of teeth, and the increase of pressure and strain due to variations of angular velocities. A valuable set of tables and plates accompany the work, which must have been one of immense labour. Indeed, one cannot help thinking that Mr. Sang sometimes encounters toil for the sheer love of it-exempli gratid, his painful numerical computations for a train of wheels connecting the hour-wheel of a clock with one which turns once in the tropical year of $365-249217$ mean solar days. However, the treatise is certainly an admirable example of the amount of new and valuable knowledge, which patient thought and scientific attainments may discover, even in a subject so frequently investigated as that of odontography.

[^57]A Practical Treatise on Chimneys; with a few Remarks on Stoves, the Consumption of Smoke and Coal, Ventilation, \&c. By G. F. Eckstein. London: J. Weale. 1858.
In this small work Mr. Eckstein has, in a very praiseworthy and homely manner, submitted to the public his experience on the cause of amoky chimneys, how they are to be prevented smoking, and how they may be improved. He first gives fourteen causes of smoky chimneys:-
"Cause 1. Chimneys, especially kitchen chimneys, frequently smoke from their being too small.
"2. In the chimner-pot being too small to allow the free passage of the smoke from a kitchen, or other large fire-place.
"3. Chimneys frequently smoke from their being too short, as in attics; for, although the openings for the stoves in that part of the house are usually small, which is an advantage, the
fuem have not power to contend against the dense air at the top, and the various currents and eddies occasioned by the wind.
"4. A large opening of fireplace-that is to say, an opening disproportionately large to the size of the chimney. As water passes more slowly (which is perceptible), through the wide part of a river, or stream, than it does through the narrow, or under a bridge where the piers, \&c. reduce the water-way, the same quantity of water having to pass, so kitchen chimneys, with large openings at bottom, are more disposed to smoke than those with narrow ones, as the air in entering them, being dispersed over so large a space, the current is not sufficient to carry up the sooty particles with it, nad allows much to fall in the room. The air will, however, pass more freely under that part of the chimney breast that is immediately beneath the upright shaft, and the range or grate should be so constructed for the fire part to be as nearly as possible at that point; i. e. towards the right or left of the fire opening as the shaft may be. It is not said with reference to the front part of the grate being forwarder than the shaft.
" 5 . Chimneys frequentlyamoke from being in a cold situation; as in an external wall with only the thickness of half a brick between the fue of the cold or damp atmosphere, which is very usual in detached houses; also in low out-buildings where the chimney is carried up alone above the roof, and all sides exposed to the cold, or against a wall with three sides exposed.
"6. In the case of a low chimney being near a high building, where the air, passing over the high building, will drop like a waterfall upon the low chimney; or, when blowing strong from the contrary point against the high building, will rebound and form an eddy upon the top of the low chimney, and thus impede the free ascent of the smoke from the same.
"7. In there being two or more fireplaces to one flue; which, unless very judiciously arranged, is nearly certain to cause smoke.
" 8 . In the want of a proper supply of air.
"9. Large rooms having two fireplaces, or drawing-rooms communicating by doors; if one flue is in a warmer stack than the other, or has a stronger fire kept in the fireplace, that one will take away the necessary supply of air from the other or weaker one, and cause the smoke from it to descend into the room; and should there be no fre in the second grate it will even draw the smoke down that chimney from the surrounding chimney-tops to feed that one fire and flue.
"10. Many chimneys are called 'dreadfully smoky' where the fires are seldom lighted, except in the evening, as is frequently the case in bed-chambers and dressing-rooms.
"11. Another annoyance from smoke is sometimes occasioned by the relative situations of the doors and windows in the room, by which the current of air from a door or window, having an outlet at another door or window, creates a sort of whirlwind, and drives the smoke out of the fireplace into the room before it reaches the chimney-breast, as if bellows be used to a fire obliquely, the smoke and flame will be driven to the contrary side of the grate; the flue having no control over the smoke, which is driven awny by a strong current before it reaches the chimney, as the air to supply the flue will pass immediately under the chimney-breast, while the smoke is carried away by an under-current into the room.
"12. Another, and a very prevailing annoyance is, the smoke from an adjoining chimney, or from one in an adjoining stack passing down the flues that are entirely out of use, or at the time that there is not any fire in them.
"13. It is not uncommon for chimneys to smoke at the sudden shutting of a door, especially in well-fitted rooms where there is an inadequate supply of air. When a door is opened inwards, it presses the air towards the chimney, and when suddenly shut, the air is drawn hack from the chimney into the room, and this will generally produce a puff of smoke.
"14. Many chimneys smoke from not having been properly cored at the time of the building of the house."

Mr. Eckstein then gives us several cases of chimneys, which were smoky, remedied by him; the principal defect, he tells us, is either through building the chimneys too small, or putting chimney-pots too small. One instance will show how a very bad case was remedied:-
"At a vicarage-house in Hampshire, where I was consulted on the contruction of the flues, earthen pipes 9 inches in diameter for a chamber flue in an upper floor, and 12 inches in diameter for the kitchen, where the opening for the range was to be 5 feet
(Cause 4) were actually provided (Cause 1). The building being only two stories high, and one side of the stack of chimneys exposed to the cold (Cause 5), not only would the abovesized flue have been totally inadequate to carry off the smoke from the kitchen fire, but quite insufficient to cause the jack to perform; I therefore directed the flues to be built 14 inches square for the chamber (which, being very short, required to be of large capacity), and 18 by 14 inches for the kitchen chimney. I also provided for the ventilation of the kitchen by constructing an air-flue immediately under the ceiling, 14 by $4 \frac{1}{2}$ iuches, close to the flue from the range, that it might be always warm to insure an upward current; but as the ventilating fluid would take much air from the kitchen (Cause 8), I procured a good supply of fresh air through the ash-grate in the hearth, by an air-drain communicating with the external atmosphere, which was also very useful for the range flue, and for the supply of combustion, without having recourse to opening a door or window."

We must conclude our notice of this very useful work by giving one more extract, on the construction of new flues, which will not only be useful to our professional readers, but will, we hope, at the same time induce them to refer to the work itself:
"Kitchen-chimneys with small fireplaces should not be less than 14 by 9 inches; and if the opening of the fireplace exceed 3 ft .6 in . in width, the chimney should be 14 inches square, or 18 by 9 inches, whichever way be the most convenient in the arrangement of the building, only providing that the Gue have an area of 200 square inches. But the square chimney is preferable, it being more suitable to the brush for sweeping than is 18 by 9 inches. If the opening of the fireplace exceed 6 feet in width, the chimney-shaft should be 18 by 14 inches, or of an area of about 250 square inches. If the chimney-shaft be less than 36 feet in height, the sizes should be severally 14 inches square, 18 by 14 inches, and 18 inches square, in lieu of the above dimensions.
"Dining-room or ground-floor, and drawing-room or firstfloor chimneys in lofty houses, may be built in the usual way, 14 by 9 inches.
"Upper stories, the chimneys of which are usually 10 feet or more shorter than the drawing-room floor, should have them 14 inches square.
"Attic chimneys should be still larger till near the top, where they should be reduced, to keep out the weather, or to receive a chimney-pot.
"Cottage buildings or detached houses, which are usually low, should not have any chimney less than 14 inches square, and the upper floor 18 by 14 inches. When chimneys are exposed to the air and damp by being in an external wall, it will be a considerable advantage if the brick work canbe left 9 inches thick between the flue and external air, instead of $4 \frac{1}{2}$ inches as is usual.
"If a kitchen fireplace be required in the upper part of a house, and consequently the chimney cannot be long, it must be made up in size. I would recommend t wo flues of the dimensions given for low buildings, or one flue of double those given dimensions; the top to be reduced about 150 square inches, or if two flues about 150 square inches for the two.
"Having given the dimensions which I think necessary for the construction of flues for dwelling-houses generally, perhaps it may be advisable to state what I consider the best method for constructing the thront or commencement of those flues.
"The kitchen-flue is generally commenced first, and frequently it is required to gather it over very quickly on one side to make room for the fireplace upon the floor above. It often happens that the commencement or throat of the chimney is very considerably out of the centre, and this becomes an evil; therefore I recommend that kitchen chimneys should be gathered over on each side, if possible; and when that is done, the direction of the flue afterwards is of very little importance, providing that it can be properly cleansed.
"When the elevation of the kitchen is so low that the flue cannot be gathered over upon each side, a piece of stone or slate, or some other substance, should be placed on the opposite side to the gathering wing, so as to cause the air to enter the flue as near the centre as possible; or if that cannot be done, the grate should be so constructed that the fire part be as much as possible under the commencement of the flue. And this is necessary for two reasons: first, that as the air will enter the fireplace with more rapidity at that part of the chimney-breast which is immediately under where the upright shaft starts from,
it should be brought as much as possible in contact with the fire to be heated, and thereby receive its ascending power; secondly, that as the air proceeds more rapidly at that point, it should be brought in contact with the smoke, so as to carry off the hesvy particles emitted from the coal. As to chamber-flues where register-stoves are to be fixed, it is not important to attend to this rule, as the register-door forms a central opening for the air and smoke, whether the flue be gathered over upon one side or both.
"In small fireplaces with short shafts, I would not gather them over at all till compelled to do so, but would leave all the size I could to give extra power to the chimney."

The Principles and Practice of Hydraulic Engineering, applisd to Arterial and Thorough Drainage, the Conveyance of Water, and Mill Power: also Tables of Earthwork for finding the Cubic Quantities of Excavations and Embankments in Raihoays, Roads, Rivers, Drains, fe. Second Edition. By John Dwyer, C.E., Assoc. Inst. C.E. Ireland. Dublin: M'Glashan. 1852. Tas extension of hydraulic engineering as a distinct branch of the profession, has caused the development of a new department of literature which has produced several works of great practical utility and of material assistance to our members. Among them is the work of Mr. Dwyer, which has reached a second edition, and thereby given him the opportunity of making very considerable improvements and additions. It has also the special advantage of being particularly directed to the use of hydraulic eugineers in Ireland, a class who are obtaining extensive employment in the great public improvements in that country. There is thus a large field for experience; and Mr. Dwyer, in addressing himself to the practical wants of the profession, has succeeded in drawing together a mass of information which can nowhere be found so conveniently nor so well digested. The tabular matter is very extensive and well worked out.

Handbook of Natural Philosophy and Astronomy. By Dionysius Lardner, D.C.L. Second Course: Heat - Common Elec-tricity-Magnetism-Voltaic Electricity. London : Taylor, Walton, and Maberley. 1852.
Tae bnok now before us is the second portion of a set of popular treatises on natural science by a popular writer. When, however, we speak of this as a popular work, it must not be understood as in any way implying that it is carried below the level of acientific instruction. Being intended as an educational work, and more particularly for self-instruction, the experienced writer has endeavoured to make it as practical as possible, and thereby popular, at the same time that he has hrought it within such compass as to be readily mastered by the student whose time is limited.

Lancaster; with Morecambe Bay and the Lake Mountains. By W. Linton.

This is a drawing of scenery which is among the most beautiful in the world, though little known and appresiated. The litbograph from Mr. Linton's picture is admirably executed by Mr. J. Needham; and here we have before us the town and picturesque castle of Lancaster filling up the foreground, the glorious bay of Morecambe with its fine sheet of water crowned by the amphitral hills of Furness and the lakes. Harbours and watering places are coming into life on the shores of this hitherto neglected inlet, and the railways, of which one breaks the foreground, are now pouring visitors into its valleys. The day will come perhaps when its shores will be as crowded with villas as those of the Neapolitan bays.

Six Views of the Antiquities of Rome. Drawn on Stone, by T. C. Tinkles, Esq., Architect.

Tagaz six views are drawn in a very apirited manner, and form a series of architectural sketches taken on the spot by Mr. Tinkler during his travels through Rome. They consist of the Forum of Nerva-the Temple of Antoninus-the Forumthe Arch of Constantine-the Temple of Jupiter Stator-and the Coliseum. In order to encourage the fisheries in Jreland, Mr. Tinkler, in a very praiseworthy manner, has presented these views for publication in aid of the funds of the Fishing and Industrial Settlement for Boys, at Belmullet, Mayo.

DRAUGHT OF WAGONS WITH BREAKS.

By M. Joles Porber, C.E.

[Paper read at the Sociely of Civil Engineers, Paris, and Tranulated for the C.E. \& A. Journal.]
In the sitting of the 17th September (M. Eugene Flachat, C.E., in the chair), M. Jules Poirée, Engineer of the Ponts et Chaussées, read a paper on the resistance to traction of wagons with breaks. The experiments were made on the Lyons Railway, and their object was to measure the resistance of wagons to traction wheu the breaks are put on, or when the rolling friction becomes a sliding one. The wagons were common, and unsuspended, and were tried on wet as well as on dry rails. A ballast-wagon was used, weighing empty 3400 kilog . (68 cwt .), and the dynamometer was one of Morin's, placed between the tender and the wagon.
It was observed that in the experimenta of the 12th, 14th, 16th, and g1st July (the suspending springs of the wagon being free), the body was exposed at high speeds to very marked vertical oscillations; but in the experiment of the 31st (the springs having been calé), the wagon slid like a sledge, without any movement of oscillation. At low speeds the draught worked by very quick shocks, so that it was impossible to obtain a regular working. The wagon being low, it was not thought necessary to take account of the resistance of the atmosphere.

The Table A shows the result of the experiments made on the draught of wagons with the breaks screwed up.

Table A.-Experiments on the Draught of Wagons.

Weight of the Wagon.	Speed in Métres per Second.	Distanee for which the Draught and Speed remalned Constant.	Draght.	Proportion of Draught to the Weight Drawn.	$\begin{aligned} & \text { 8tate } \\ & \text { of } \\ & \text { the Rallia. } \end{aligned}$
$\begin{gathered} 1851 . \\ \text { suly } 13 . \\ 3400 \text { kllio. }\{ \end{gathered}$	4.6 7.8 10.0 14.3	$\begin{array}{r} 500 \\ 800 \\ 800 \\ 1600 \end{array}$	710 809 870 492	0.208 0.179 0.167 0.144	\} Raila dry.
$\begin{gathered} \text { July 14. } \\ 8400 \text { kdio. }\{ \\ \text { July 16. } \end{gathered}$	7.9 13. 18. 22.	800 300 1000 400	839 768 690 697	0.246 0.242 0.222 0.202 0.167	$\} \text { Ralis dry. }$
8400 rilo. $\{$	8.8 20.8	1000 750	990 698	0.110 0.083	\} Ratle wet.
$\begin{aligned} & \text { Jaly } 21 . \\ & 3400 \text { kilo. } \\ & 6450 \text { kilo } . \end{aligned}$	6. 8. 9.2 13.2 9.	400 400 400 500 500	704 610 615 570 198	0.201 0.182 0.175 0.162 0.169	($\begin{aligned} & \text { Ralls dry, } \\ & \text { but had been } \\ & \text { met in the } \\ & \text { moralng. }\end{aligned}$
Suly 31. 3400 kdlo. $\{$	7.25 10.8 15.7 20.	$\begin{array}{r} 300 \\ 850 \\ 750 \\ 1300 \end{array}$	700 64 341 464	$\begin{aligned} & 0 \cdot 200 \\ & 0 \cdot 172 \\ & 0.154 \\ & 0 \cdot 132 \end{aligned}$	$\left\{\begin{array}{l} \text { Ralle dry: } \\ \text { \& suapenion } \\ \text { spring of the } \\ \text { body of the } \\ \text { wagon cales. } \end{array}\right.$

The experiments which are given, though few, are held by the writer sufficiently in accordance to admit of the following conclusions being drawn:-

The resistance of wagons with breaks is proportional to the weight of the wagons. It may vary with the state of the rails from single to double-that is to say, for low speeds, from 0.11 to 0.25 of the weight drawn.

The resistance of wagons with breaks diminishes when the speed increases. Within the limits of the customary weight and speed, the diminution of resistance resulting from the augmentation of speed is almost independent of the weight of the wagon and of the state of the rails, and may be represented by the following formula of velocity:

$$
25 \mathrm{~V}-0.35 \mathrm{~V}^{2}
$$

and consequently the resistance of the wagons with breaks may be given by the formula:

$$
f=\mathbf{K P}-25 \mathrm{~V}+0.35 \mathrm{~V}^{3}
$$

$\underset{V}{ }$ being the weight of the wagon;
V being the velocity;
K a constant coefficient, varying only with the state of the rails. We may employ approximatively:

$$
\begin{aligned}
& \mathbf{K}=0.14 \text { for wet rails; } \\
& \mathbf{K} \equiv 0.25 \text { for dry rails, but having been lately wet; } \\
& \mathbf{K}=0.29 \text { for very dry rails. }
\end{aligned}
$$

The formula must, however, only be applied for speeds comprised between 5 and 22 mètres per second.

It is admitted as a rule that the sliding friction is independent of the speed of rubbing bodies. This law, established by experiments in which the speeds were comprised within very narrow limits, will be found to prevail with very high speeds.

We may be allowed to doubt this; such, at any rate, is the general opinion of practicians, and the experiments here reported confirm these doubts. It has indeed been seen that the draught of wagons with breaks, sliding on the wayslike sledges, diminished gradually as the steam was augmented, but it must be observed that, on account of the discontinuity of the rails, the train received a shock at each joint, the shocks being greater as the speed increased; and these shocks would necessarily cause loea of power, and increase the draught. The sliding friction will therefore diminish when the speed of the rubbing bodies increases, and this diminution will be more rapid than that given in the preceding formula.

A nother portion of the subject was on the resistance of trains to traction. These experiments were made between Paris and Melun by means of a Morin's dynamometer placed between the engine and the train.
The first experiments as to traction are summed up in Table B.
Table B.-Total and Means of the Run from Paria to Melwn, and baek.

Total length run.
85.840 m.
7.072 " 1

Time of the ran in seconds
Time of the run in hours and fractions, decimals of an hour
Mean apeed of the run in metres per second.
Length on which the steam acted.
Corresponding time in seconds
Correaponding time in hours and decimal fraction:
Mean apeed corresponding in mètres per second
Weight of the train in tons.
Weight of the gross in tons
Total work for haulage of the train alone
Mean resistance for the train hauled on the length run-total
Mean resiatance for the train havied daring the action of the ateam-per ton
Mean resiatance for the train hauled on the total length run-total

1 h. 96
12 m. 17
77.030 ,
5.693 "

Mean resiatance for the train hauled on the total length run-per ton.

1 h. 58
13 m. 33
46 t.
86 t.
39.487.690

313 k.
11 k. 13
460 k.

Force in horse-power for haulage of the train alone

10 k.

Force in horse-power for haulage of the gross train, deduction made for additional friction of the engine of the train.

92 b. p. ${ }^{4}$

172 h. p.
Force in horae-power for haulage of the gross train, taking into account the additional friction of the train engine

185 h. p.'
Consamption of coke during the action of the steam-total

520 k .
Consumption of coke during the action of the ateam per hour

329 k.
Consumption of coke during the action of the stemm per hour and per h.p. of the train hauled

3 k. 58
Consumption of coke daring the action of the steam per hour and per h.p. of the grost train.

1 k. 91
Consamption of coke during the action of the steam per kilomètre.

6 k. 73
Consumption of coke during the action of the steam per ton of the train hauled and per kilomètre

0 k. 146
Consumption of coke during the action of the ateam per ton of the gross train and per kilomètre.
Consumption of water during the action of the steam-total

0 k. 078

2 Deduction made for all aroppagea.
8. e. length during which the regulator of the traln englae whe open.

Including the engine aod a truck, weighlog 3 wna 7 cwt .
Including the working engline, the engline halud, and the fruck pat betweoo them.
${ }^{5}$ Given by the dynamometer.
6 H.P. reckoned daring time of action of the ateam.
1 The additional frictlona are reckoned approximately for 0.15 of the druogbi.
*The eame has been fonod ta experimenta on canal propulation -ED. C.E. \& A.JL

Consumption of water during the action of the stenm per hour
Conaumption of water during the action of the atemm per hour and per h. p. of the train hauled
Consamption of water during the action of the stemm per hour and per b. p. of the groas train.
Conmomption of water during the sction of the ateam per kilomètre
Consumption of water during the action of the steam per ton of the train hauled and per kilomètre
11.22

Consomption of water during the action of the ateam per ton of the grusa train and per kilomètre .
M. Poirée has endeavoured to ascertain the resistance of the air developed by a train, employing a cast-iron plate of a t-mètre, which, being above the carriages, registered on a special dynamometer the resistance to which it was exposed.

Brperiments between Paris and Mehun.

Total effect of the wind on the surface of the acemometer having a section of 0.25 niètre.

203,078
Total effect on a surface of 1 square mètre
The anemometer having worked over $\mathbf{4 1 , 2 2 0}$ mètrea, the mean reriatance of the air per square mètre was.
The force in horses corresponding to the time during which the steam acted was nearly
During the experiment the nataral wind made a mean angle with the railmay of

812,312

The resultant of natorel wind and of the speed of the train made with the railway an angle of

Total effect of the wind on the surface of the anemometer, having a section of 0.25 metre

230,762
Total fffect on a sorface of 1 square mètre
The anemometer having worked over 43,000 metres, the mean resiatince of the air per square mètre was .
The force in horses corresponding to the time during which the steam acted was nearly

923,048

During the experiment the natural wind made a mean angle with the railway of
The resultant of natoral wind, and of the speed of the train made with the railway an angle of 6°
It results from these indications that the natural wind was of no importance, the atmosphere being almost calm. During the experiment the cylinders of the engine were oiled with the greatest care, and no piece heated.

CALORIC ENGINES.*

Two caloric engines are at work in the foundry of Measrs. Hogg and Delamater, foot of Thirteenth-street, New York, one of 5 and the other of 60 -horse power; the latter has four cylinders. Two, of 70 inches in diameter, stand side by side. Over each of these is placed one much smaller. Within these are pistons, exactly fitting their respective cylinders, and so connected that those within the lower and upper cylinders move together. Under the bottom of each of the lower cylinders fire is applied. No other furnaces are employed; neither boiler nor water is used. The lower is called the working cylinder, the upper the supply cylinder. As the piston in the supply cylinder moves down, valves placed in its top open, and it becomes filled with cold air. As the piston rises within it these valves close, and the air within, unable to escape as it came, passes through another set of valves into a receiver, whence it has to pass into the morking cylinder to force up the working piston within it. As it leaves the receiver to perform this duty it passes through what is called the regenerator, which we shall soon explain, where it becomes heated to about 450°, and, upon entering the working cylinder, it is further heated by the fire underneath. We have said the working cylinder is much larger in diameter than the supply cylinder. Let us, for the sake of illustration merely, suppose it to contain double the area. The cold air which entered the upper cylinder will, therefore, but half fill the lower one. In the course of its passage to the latter, however, we have said that it passes through a regenerator, and let us suppose that as it enters the working cylinder it has become
*Abrdged from the New York Tribunc.
heated to about 480°. At this temperature atmospheric air expands to double its volume. The same atmospheric air, therefore, which was contained within the supply cylinder is now capable of filling one of twice its size. With this enlarged capacity it enters the working cylinder. We will further suppose the area of the piston within this cylinder to contain 1000 square inches, and the area of the piston in the supply cylinder above to contain but 500 . The air presses upon this with a mean force, we will suppose, of about 11 lb . to each square inch; or, in other words, with a weight of 8500 lb . Upon the surface of the lower piston the heated air is, however, pressing upward with a like force upon each of its 1000 square inches, or, in other words, with a force of $11,000 \mathrm{lb}$. Here, then, is a force which, after overcoming the weight above, leaves a surplus of 5500 lb ., if we make no allowance for friction. This surplus furnishes the working power of the engine. It will be readily ween that, after one stroke of its pistons is made, it will continue to work with this force so long as sufficient heat is supplied to cxpand the sir in the working cylinder to the extent stated; for, so long as the area of the lower piston is greater than that of the upper and a like pressure is upon every square inch of each, so long will the greater piston push forward the smaller, as a 8 lb . weight upon one end of a balance is quite sure to bear down 1 lb . placed upon the other. We need hardly say that, after the air in the working cylinder has forced up the piston within it, a valve opens, and, as it passes out, the pistons, by force of gravity, descend, and cold air again rushes into and fills the supply cylinder, as we have before described. In this manner the two cylinders are alternately supplied and discharged, causing the pistons in each to play up and down, substantially as they do in the steam-engine. We have endeavoured to explain the construction of the caloric engine. Its most striking feature consists in what is called by itsinventor the regenerator. The power of the steam-engine depends upon the heat employed to reduce steam within its boilers, but that heat, amounting to about 1800°, is entirely lost by condensation the moment it has once exerted its force upon the piston. If, instead of being so lost, all the heat used in creating the steam employed could, at the moment of condensation, be reconveyed to the furnace, there again to aid in producing steam in the boilers, but a very little fuel would be necessary; none, in fact except just enough to supply the heat lost by radiation. Now, the regenerator is composed of wire net somewhat like that used in the manufacture of sieves, placed side by side until the series attain a thickness, say of 12 inches. Through the almost innumerable cells formed by the intersection of these wires the air must pass on its way to the working cylinder. In passing through these, it is so minutely subdivided that the particles composing it are brought into close contact with the metal which forms the wires. Now, let us suppose what actually takes place, that the side of the regenerator nearest the working cylinder is heated to a high temperature. Through this heated substance the air must pass before entering the cylinder, and in effecting this passage it takes up, as is demonstrated by the thermumeter, about 450° of the 480° of heat required, as we before stated, to double its volume. The additional 30° are communicated by fire beneath the cylinder. The air has thus become expanded; it forces the piston upward; it has done its work; valves open, and the imprisoned air, heated to 480°, passes from the cylinder, and again enters the regenerator, through which it must pass before leaving the machine. We have said that the gide of this instrument nearest the working cylinder is hot, and it should be here stated that the other side is kept cool by the action upon it of the air entering in the opposite direction at each up-stroke of the pistons. Consequently, as the air from the working cylinder passes out, the wires absorb its heat so effectually that when it leaves the regenerator it has been robbed of it all, except about 30°. In other words, as the air passes into the working cylinder it gradually receives from the regenerator about 450° of heat; and, as it passes out, this is returned to the wires, and is thus used over and over, the only purpose of the fires beneath the cylinders being to supply the 30° of beat we have mentioned, and that which is lost by radiation and expansion.

The regenerator contained in the 60 -horse engine we have examined measures 86 inches in height and width internally. Each disc of wirc composing it contains 676 superficial inches, and the net has ten meshes to the inch. Each superficial inch, therefore, contains 100 meshes, which, multiplied by 676, gives 67,600 meshes in each disc, and as 200 discs are employed, it follows that the regenerator contains $13,520,000$ mesher, and
consequently, as there are as many spaces between the disca as there are meshes, we find that the air within is distributed in about $97,000,000$ minute cells. Hence it is evident that nearly every particle of the whole volume of air in passing through the regenerator, is brought into very close contact with a surface of metal which heata and cools alternately. The extent of this surface, when accurately estimated, almost surpasses belief. The wire contained in each disc is 1140 feet long, and that contained in the regenerator is consequently 228,000 feet, or $41 \frac{1}{2}$ miles in length, the superficial measurement of which is equal to the entire surface of four steam-boilers, each 40 feet long, and 4 feet in diameter; and yet the regenerator, presenting this great amount of heating surface, is only about 2 feet cube less than rempth of the bulk of these four boilers.
Involved in this wonderful process of the transfer and retransfer of heat is a discovery which justly ranks as one of the most remarkable ever made in physical science. Its author, Captain Ericsson, long since ascertained-snd upon this is based the sublimest feature of his caloric engine-that atmospheric air and other permanent gases, in passing through a distance of only 6 inches in the fiftieth part of a second of time, are capable of acquiring or parting with upwards of 400° of heat. He has been first to discover this marvellous property of caloric, without which atmospheric air could not be effectively employed as a motive power. The reason is ubvious. Until expanded by heat it can exert no influence upon the piston. If much time was required to effect this, the movement of the piston would necessarily be so slow as to render the machine inefficient. Captain Ericsson has demonstrated, however, that heat may be communicated to and expansion effected in atmospherio air with almost electric speed, and that it is, therefore, eminently adapted to give the greatest desirable rapidity of motion to all kinds of machinery.
The ship is now approaching completion, and is the finest specimen of naval architecture (especially in point of strength) ever built in the United States.

THE VICTORY GATE, MUNICH.

ON the 15th October, the inauguration of the great artistic monument, the Siegesthor (Victory gate) took place in the city of Munich. It is surmounted by the Bavaria, with the quadriga of lions. The lion which obtained the prize at the Great Exhibition will have the precedence of being hoisted first on the platform of the gate. The entire monument has been put together at the royal foundry, and exhibited to tbe public, in the evenings illumined by gas. On a regal car, of Grecian form, richly ornamented, stands Bavaria, in antique attire approaching somewhat the ancient Doric style; the under garment covers the whole body, with the exception of the arms, while a slight over-garment leaves the left shoulder free, and is fastened on the right. The head is covered with a laurel crown, which is moreover ornamented by some drapery descending on the neck. The statue repuses on the left fout, and bends a little forwards for the better direction of the attelage; her right hand grasps the reins, her left the regal staff. Of the four lions attached to the car, the two exterior look down and outwards, and the two inner ones in the opposite direction towards the city. The two inward animals are combined by a yoke, through which pass the reins for the whole four. The idea and symbol intended to be conveyed to the beholder are as follows. The Victory Gate, on which this great work is placed, is dedicated to the Bavarian army: therefore the Bavaria is not represented, as statues of Homa and Victory on ancient triumphal arches generally are, turned with her face towards the city, as if preceding the march of a victorious army: the attitude of the Bavaria will be turned to the outward, as if welcoming the army returning from victory. By this a lively, joyful attitude will be produced, in juxtaposition to the usual repose and quiet of similar groups. The statue of the Bavaria measures 17 feet, the whole monument with car being 22 feet high; the breadth of the lions in front is $27 \frac{1}{f}$ feet. Nearly 30 tons of brass were employed in the casting. The lion which gained the prize in London will receive an especial inscription, commemorative of the great event of the universal exhibition. The work has issued from the ateliers of M. Miller, of Munich, the casting having commenced as early as the year 1848.

LEEDS POST OFFICE.

W. R. Corson, Enq., of Leeds, Architect.
(With an Engrating, Plate XL.)

Tax engraving here given of the front of the Leeds Post Office exhibita a design lately executed, in cement, for the purpose of givng the appearance of a public building to what has hitherto been a plain brick edifice, with ecarcely the slightest pretension to architectural effect. The case presented some difficulties which may be briefly pointed out, as upon the consideration of these, and the means adopted to overcome them, must rest much of the criticism which the design may receive. The eatablishment occupies, under lease, a yortion of a warehouse, and the entrance to it is by an archway which pierces the centre of the front: only that portion occupied by the Post Office, and the gateway, have been included in the design;-the ground-floor required to be greatly free from work round the windows on account of the letter-boxes, \&c.;-the windows of the first-floor were not so tall as those of the second and third floors (as may be seen in those of the warehouse to the left); -two windows in each of the upper stories were blanks, and the space between the top window and the eaves-gutter was very small, and insufficient for a cornice such as the height of the building demanded;-the expense, being borne by the proprietor, Wm. Hargrave, Esq. (since deceased), and the Postmaster, James Anderson, Esq., for the public benefit, was necessarily limited.

The cornice springs from below the window-head, and, to gain surface, has a very large projection. The blank windows have been partially built up and treated as panels; the first-floor windows have, as it were, a double architrave lintel to give them height and importance. The cornice has been omitted at the two centre windows to avoid the bugy, and, it seems to us, awkward effect of one window standing on the top of another. The archway, formerly segmental, has been changed to semicircular, and enriched to give it importance as the entrance; and the name of the establishment worked into the design in a prominent manner. The clock, formerly flat upon the wall, has been corbelled out to show three faces, so that it may be read from every direction in which people can approach. The motto, "Time and tide wait for no man," warns to punctuality, and the orb and cross surmounting the clock indicate the rogalty of the establishment. The side clocks are illuminated very effectively by reflectors placed in the window-reveals. The details (given to one-fourth size) exhibit the character of the mouldings and enrichments; the latter are conventional studies of two kinds of thorn-leaves. Throughout the design all allusion to stonework has been avoided. It is necessary to ohserve that the enrichments of the main cornice and window-cornices, also the motto under the clock, have been for the present omitted on account of expense, with the intention, however, of executing them in colour.

The plasterer was Mr. Charles; clock-maker, Mr. Groves; M. J. Hall illuminated the clocks; and the architect was W. R. Corson, Esq., all of Leeds.

REGIETER OF NEW PATENTE.

gas manufacture.

George Lowe, of Finsbury-circus, civil engineer, and Frederick John Evans, of Hurseferry-road, Westminster, civil engineer, for improvements in the manufacture of gas for the purposes of illumination, and of improvements in the purification of gas.-Patent dated January 20, 1858. [Reported in Newton's London Journal.]

Claims.-1. The combining of gases which possess different degrees of illuminating power, by the introduction of gas, obtained in any of the ways above indicated, into retorts or vessels containing carbonaceous matter under distillation; 2. The improvements in the purification of gas, first, by the use of anhydrous peroxide of iron, prepared as hereafter described; and, secondly, by the use of sulphite and bisulphite of lead, for the remuval of sulphuretted hydrogen from coal-gras.

The first part of this invention refers to certain means of enriching or improving the quality of gases, so ns to render them fit for the purposes of illumination. In carrying out this
improved manufacture of gas, the patentees pass gas, ubtained from any of the sources hereinafter specified, through heated retorts containing Cannel coal, coal, lignite, resin, pitch, tar, oil, retinite, or other substance or substances capable of yielding carburetted hydrogen gas; by which means such a combination of rich and poor gases may be produced as will be exactly suited to the purposes of illumination. For this purpose it is proposed to ase retorts open at both ends, as shown in the annexed engraving, which represents a longitudinal vertical section of the apparatus employed in carrying out this part of the invention.

Only one retort is exhibited; but a similar arrangement of retorts may be adopted to that in general use in gas-works. A, is the retort, set in a suitable furnace for heating the same; and B, B, are mouth-pieces and lids, fitted to both ends of the retorts. C, is the pipe for carrying off the gaseous products generated in the retort; and D, is a pipe for introducing into the retort the gas which is intended to combine with the gaseous products of the substances under distillation in the retort. As soon as the retort is charged with cosl or other carbonaceous matter, a cock E, in the pipe D, is opened, which allows the gas to flow into the retort; and it then passes in the direction of the arrows, and mingles with the gas that is evolved from the carbonaceous matters contained in the retort; whereby a compound gas is formed, possessing a mucl higher illuminating power than could have been obtained had the combination taken place after instead of at the time of the generation of the gas in the retort A. The gas, which is brought to the retort by means of the pipe D_{3} may be forced into the retort, so as to overcome the internal pressure put on the retort by means of the hydraulic main; or, instead thereof, an exhauster may be applied to draw off the gas from the retort. Should tar, oil, resin (previously melted), or any liquid hydrocarbon be employed for the generation of the gas, it is to be run into the retort in the way generally adopted for making oil or resin gas.

The sources from which the patentees propose to obtain inflammable gases, to be applied as above indicated, are wood, sawdust in a damp or dry state, spent tanners' hark, and other like substances capable of yielding an inflammable gas. These substances must be put into a red-hot retort, and distilled like coal. The resulting gases may be either purified at once or passed directly to the retort containing the coal or other carbonaceous material. As a general rule, however, these gases are preferred to be stored in gas-holders for use; as, in that case, a more uniform and constant supply to the coal retort may be relied on.

A nother source of inflammable gas is from coal of an inferior description, or from peat. These substances having been distilled in a retort, the resulting gas can be then employed as above indicated. It is also proposed to conduct carbonic oxide gas into retorts coutaining carbonsceous matters under distillation. This gas the patentees obtain from carbonic acid, by passing the latter gas (which maybe obtained from any convenient source) through a retort or furnace containing red or white hot coke. Or they utilize a portion of the gases generated in furnaces, by collecting these gases and converting the carbonic acid they contain into carbonic oxide, by passing them through a retort or furnace, as described for treating carbonic acid; or the gases may be cunducted directly into retorts, wherein carburetted hydrogen is being generated, for the purpose of effecting the desired combination.

From the foregoing description it will be understood that the object of this part of the invention is to obtain gas of a
uniform quality-that is, possessing a definite amount of illuminating power. Now, it is well known that if the gas be too rich in carbon it will burn with a dull flame, and give off a large amount of smoke; and that, if deficient in carbon, it will burn with a blue flame, and possess rery little illuminating power. It is therefore proposed to mix the rich and poor gases, obtained as above described, in such proportions as will be needful to produce a highly illuminating quality of gas. As the proportions will depend entirely on the quality of the gases to be comined, no rule can be laid down for the amount of the gas required to be passed into the retorts wherein the distillation is proceeding. The mode, however, in which the gas burns on issuing fron the retort will be a sufficient test for the workman in attendance.

The second part of this invention refors to the purification of coal-gas from sulphuretted hydrogen; and consists in effecting this operation by the use of what has been considered by chemists to be the ferrate of potash, but what is now found to be a peroxide of iron in a peculiar state, and such as results from the employment of the following means:-First the patentees heat together peroxide of iron and caustic potash or soda to a dull red heat, by which a kind of ferrate or ferrite of potash or sods is produced; and when this substance is washed in water, it undergoes decomposition, with the reproduction of caustic potash or soda (which remains in solution), and the precipitation of peroxide of iron in the state fit for the purification of gas. All or any of the peroxides of iron may be used for the above purposes, and will, by its means, become useful for purifying gan, though previously inert ; and the solution of potash or soda, when evaporated to dryness, may be again and again employed upon fresh portions of peroxide of iron, so as to communicate to them the peculiar property desired. Or peroxide of iron may be heated with a smaller quantity of caustic potash or soda, and a portion of common salt, in order to economise the potash or soda; the heat in this case should be as before, a dull red; and the same measures must be adopted for recovering the potash or soda and common salt, which may be used over and over again with fresh portions of peroxide of iron. Or the patentees heat the common hydrated peroxide of iron to about 600° Fahr, -taking care that the heat never reaches a bright red; and in this way they obtain a peroxide of iron, having the requisite properties. Or they heat in the same way, and with the same precautions, such of the native ochres or ferruginous compounds as will, after such treatment, become rapidly black upon being subjected to the action of a stream of sulphuretted hydrogen.

A quantity of peroxide of iron, fit for purifying gas, having been procured, by any of the means thus indicated, the oxide is next to be mixed with sawdust or other convenient material, and damped slightly with water; and the mixture is then to be spread in a dry lime purifier, and used in the way adopted with hydrate of lime; or it may be mixed with water, and run into a wet lime purifier, and used in the way adopted with regard to lime when employed in this kind of apparatus. In both cases it will be necessary, after the peroxide of iron has ceased to act upon the gas, to expose it to the air, by which its energies are renewed, so that it may be again and again used for the purificatiou of gas. With the dry lime purifier, simple exposure is all that is required. With the wet lime purifier, the mixture must be run out and left at rest for some time; then, when the fuid has entirely separated from the solid part, it may be allowed to escape; and as the sulid portion dries, its power will become renewed : after which it may be mixed with water, and employed as before. The renewal of the peroxide of iron, in both these cases, is known by its changing from black to red or deep brown.

Another part of the invention relates to the use of the sulphite and bisulphite of lead, for the removal of the sulphuretted hydrogen of coal-gas. These substances are to be employed singly or together, mixed with water, in a wet lime purifier, exactly as is practised with regard to lime. When they cease to purify the gas, the mixture is run out of the purifier; and after the water has been removed by subsidence and decantation, or by a filter, the residue is dried and burned, so as to make sulphurous acid, which is employed in the manufacture of fresh sulphite or bisulphite of lead, or in the production of sulphuric acid. The matter which remains, after this hurning process, is carefully roasted, and thus converted into oxide of lead or litharge, from which sulphite or bisulphite of lead may be again produced.

RAILWAYS AND CARRIAGES.

Pavl Rapaey Hodge, of Adam-etreet, Adelphi, civil and mechanioal engineer, for certain improvements in the conotruation of raikoays and railway carriages; parts of which are applicable to carriages on common roads. (A communication).-Patent dated March 8, 1858.
The chaimg in this patent are as follows :-

1. The application of a galvanic or electro-galvanic current to the rails of railways, in order to prevent oxidation of the metal of which they are composed. A galvanic current is sent along one line and returned along the other, it being wellknown that electricity operates as a preventative to the accumulation of oxygen upon any surface.
2. An arrangement of moveable points in which springs are used to bring the shifting parta in close contact, so as to insure a firm tread of the wheels.
3. An arrangement of springs for railway carriages, in which india-rubber springs are combined with ordinary springs, and with a cross-head and links. Upon two upright bars is placed the spring ordinarily used. These bars respectively pass through the centre of upright india-rubber springs, constructed after the manner of buffers, so that a double amount of tension is gained.
4. An arrangement of steam spring and lifting apparatus for railway carriages. Above the axle-boxes are placed small cylinders in connection with the boiler, and the pistous of which are connected with the springs of the carriage.
5. Several improved forms of axle-boxes, with double oil or grease chambers. The axle-boxes are fitted with two chambers, au upper and under one; the upper one is filled with oil and wool, and serves to grease the axle. An aperture nearest the wbeel leads to the lower chamber into which the waste oil falla, it being carried towards the aperture by the motion of the axle.
6. A mode of constructing railway carriage wheels, with rings of india-rubber interposed between the sides of tbe nave of the wheel, and collars formed on the axle for the prevention of lateral vibration or jar.
7. An improved form or forms of metal railway wheels. The box is formed of wrought-iron, and the spokes of cast-iron. They are made to cross one another, and to take in and out.
8. An improvement in the wheels of carriages to be used on common roads, which consists in interposing rings of indiarubber between the axle-box and nave of the wheel, so as to prevent lateral and vertical shocks, and deaden the noise produced when the wheel is travelling over uneven surfaces.

RAILWAY CARRIAGES AND WHEELS.

Wrulam Pidding, of the Strand, gentleman, for improvements in the canstruction of velicles used on railways or on common roads. Patent dated March 24, 1852.

The improvements comprised in this patent are as follows:-

1. A method of constructing carriage wheels with spokes composed (for two-thirds, or three-fourths, or whatever proportion experience may discover to be most useful) of spring-stoel, whalebone, lance-wood, or some other flexible material. Another feature of this improvement consists in the wheel tyres being divided, and the several portions of tyre covered with a flexible material, such as vulcanised india-rubber or gutta-perchas.
2. The combination of the power of the spokes of carriage wheels constructed upon the above system upon one point, by uniting them together by means of catches placed near the axle, by which means the pressure is readered equal upon all the spokes.
3. The diapensing with lubricating material by the use of fric-tion-roller bearings, formed of pieces of galvanised metal and vulcanised india-rubber, placed alternately, and radiating from a common centre. The whole are then bound together by a band of vulcanised india-rubber, which, by its constant tendency to contract, binds the circle together, and, where the metal by friction wears away, fills up the deficiency.
4. A method of mounting wheels, constructed as above described, on axles the length of which is unequal, thus bringing them close together, by which they are made to project beyond and overlap the other couple.
5. Two methods for the employment of portable rails, to be - taid down by an advancing carriage.
6. A method of constructing the panels, mouldings, \&c., of railway and other carriages from the following materials, viz.,
grass, straw, chopped leather, chaff, \&ce, and of fecula, alone or combined with the last-named materiala There materials are reduced to a pulp in a suitable machine, and baked in amould of the required shape. It is impervious to the rays of the sua, and does not crack and blister like the material ordinarily need.

MOTIVE POWRR.

Antone Mateice Tardy de Montravel, of Pavia geatloman, for certain improvements in obtaining motive power, and the machinery employed therein.-Patent dated March 24, 1852.

Claims.-1. The system or mode of obtaining motive power by the alternate application of heat and cold to atmospheric air or other gases permanently inclosed in a cylinder or other suitable vessel; 2. The uze and application of liquid or semifuid matters, between the atmospheric air and the piston; 3. The various arrangements of machinery or apparatus described.

The object of this patent is the obtaining motive power by means of atmospheric air or some suitable gas compr essed in a cylinder by means of an air-pump. The cylinder contains a piston working both ways, and which is worked by the alternate expansion orcondensstion of the air or gas within the cylinder. This expansion and condensation is produced by the alternate application of heat and cold to the exterior of the cylinder. The motion of the piston is made to operate upon a crank, or any other suitable means for obtuining pewer. Te render the piston air-tight, in the place of the ordinary packing, the following system is pursued: at the point where the packing is uszally placed, a vacant space surrounds the piston-rod, which is filled with water or grease, soft clay, or any suitable semifluid matter. The patentee deacribes another method of obtaining motive power by means of a piston partly filled with water, which water is propelled against the piston by the expansion of warm air contained within the cytinder.

STUVES AND FLUES.

Isamo Brookes, of Birmingham, manufacturer, and Wimina Lutwyohe Jones, of Birmingham, aforesaid, manufacturer, for certain improvements in stoves and other apparatus for heating.Patent dated March 24, 1859.

Claim.-The general arrangement of chambers, dampers, and flues, described, wherein heated air and products of combustion may be made to pass directly to the exit-flue, or wholly or partially through chambers and descending or ascending flues before passing to the exit-flue, which arrangement may be applied to close stoves, or to open or partially open stoves, or to open fireplaces.

The means employed to effect this object are as follows:Above the fire-box is a square chamber, divided by a partition into two portions; one portion opening into the fire-box, acts an a receiver for the gaseous vapourn arising from the atove. These vapours pass down two tubes placed at the corners of the chamber into another chamber below the stove, from whence they ascend through two tubes placed at the other side of the lower chamber into the second division of the upper chamber, from whence they pass by means of a flue capable of being open or shut at pleasure, and by the partially opening or closing of which fue the degrees of heat may be regulated. The upper part of these stoves is usually made ornamental and hollow to cuntain water, by the evaporation of which the unpleasant smell asually arising from stoves is prevented, and the air of the room rendered fresh.

STEAM ENGINES.

Jobn Smith, of Bilston, Stafford, brass-founder, for certain improvements in locomotives and other steam-enginos.- Patent dated March 25, 1852.

Claim.-The application to locomotive and other engines of a moveable valve, by means of which the induction-pipe may be converted into the eduction-pipe, or vice versa, at pleasure, and the motion of the engine thereby reversed, and whereby aleo the engine may be stopped if required.

The means employed to effect theoe objects consiss in a cylindrical box (fig. 1), placed immedistaly under the receiver. This box is fitted with a partition A, moving upon an eccentric rod passing through the centre of the box, and terminating in a handle at B; C, is the steam-pipe; D, the exhaust pipe. When the partition is in the position 1 , the steam entering the spaes
ab, by the steam-pipe C, passes through the pipe FF (fig. 2), to where it branches off in two directions, passing through f, to the opper aide of the piston contained in the cylinder H , and through e, to the underside of the piston contained in cylinder I. Should it be wished to reverse the engine, it may be done by

Fig. 2.

Mig. 1.
turning the handle which shifts the partition A, to the position \& when the steam passes down the pipe G G, from whence it emerges at K, where it branches off in two directions through g, to the underside of piston H, and through h, to upper side of pieton I. Should it be required to stop the engine, it may he effected hy shifting the partition to position 3 , which shuts off all communication between the pipe C, and the pipes $F F$, and G G. Similar letters on the diagrams refer to similar parts.

MANUFACTURE OF GLASS.

James Timeins Chance, of Handsworth, Stafford, glass manufacturer, for improvements in the manufacture of glass. (A communication.)-Patent dated March 29, 1852.

Claim.-The application of anthracite or stone-coal in the manufacture of glass.

The fuel hitherto used has been for the most part bituminous coal, but this evolves so much smoke as to produce an injurious effect on the colour of the glass manufactured; and it is with a view to prevent or obviate such injurious consequences that the present improvements have been devised. The furnaces for burning this description of fuel require to be very little altered from the construction at present in use. The fuel will be supplied by feed apertures, and suitable pipes must he added for introducing a blast of air, which blast may be created by fan or other blowers. The air may be heated by interposing a suitable heater between the blower and the furnace, but the heating is not considered necessary. The beds of the furnaces should be closed, which may be done by "loaming" over the grate bars, or by introducing a moveable plate beneath them; and the ash pit should be made deep enough to contain a considerable quantity of ashes. The pots are of the usual construction, and they should le placed on sieges elevated above the orifices of the blowing pipe to an extent that will admit of the flame being directed against the lower as well as the upper parts of the same.

FIKE-ARMS AND PROJECTILES.

Jobn Walter de Longuevilie Giffard, of Searle-street, Lincoln's-inn-fields, barrister-at-law, for improvements in firearms and projectiles.-Patent dated April 5, 18.52.

Chims.-1. The construction of fire-arms with the breeches projecting inwards; 2. The construction of projectiles with internal thimbles of hard metal.
The breech or lock end of the fire-arm is caused to project into the barrel, in place of being formed concave or flat; the touch-hole is to be formed from the exterior into the breech, in such manner that the ignition may take place in a line with the centre of the barrel. It may be applied to a rifled or unrifled fire-arm.

The thimbles are formed of metal, tin plate being preferred, by a disc or drawing-through tools; they are introduced into a suitable mould according to the form of the exterior shape intended to be given to the projectile. The thimble to be
employed is placed in the core of the mould, and the melted netal is to be run in, and thus will be produced the projectile. The charge of powder is introduced into the hollow interior of the projectile, and is kept there by a paper covering, which is perforated with minute holes, so that the powder will not pees, and yet when the projectile is rammed into a fire-atm, and comes in contact with the interiorly-projecting breech, it will be punctured or torn freely.

ORNAMENTATION OF GLASS AND CHINA.

Jobn Ridoway, of Cauldon-place, Stafford, china manufecturer, for certain improvements in the method or process of ornnmenting or decorating articles of china, glass, earthenware, and other ceramic manufactures.-Patent dated April 20, 1858.

Cham.-Not to the solutions for coating as such, but to the application of "electrotyping," or electro-metallurgy, to the objects stated in the title, provided the articles be so prepared as to allow them to combine from an alloy with them.
The first object of the patentee is to apply a new glaze, which shall enable the metallic coating to adhere firmly, by capillary attraction, and give affinity for copper as a first coating. In pursuance of this, the article is first submitted to an alcoholic solution, or a gelatinous solution, and then brushing over it an impalpable powder, composed of half carburet of iron and half sulphate of copper. The article thus treated is then to be corroded by the fumes of hydro-fluoric acid; and is then to be smoothed, by brushing it over with silver sand, or by the scratch-brush; but when the shape and nature of the article will not admit of this, it is to be plunged into a liquor, consisting of 6 quarts sulphuric acid, 4 quarts of aquafortig, $\frac{3}{4}$ oz. muriatic acid, and 6 quarts of water. Grease is to be carefully removed from the article, and a thin film of mercury is to be applied. The solution of copper consists of 1 sulphate of copper and 4 filtered water. Suitable solutions for silvering or gilding are to be applied, in accordance with the practice of electrutyping.

SMOKY CHIMNEYS.

Williak Henry Dupre and Clement le Sueur, of Jersey, for improvements in certain apparatus or apparatuses for preventing omoky chimneys, applicuble to other purpases of ventilation.-Patent dated April 17, 1852. [Reported in the Mechanici' Magazine.]
These improvements consist, 1 . In a peculiarly constructed windguard, in which blades or sections of acrews ranged round a conical frame are employed to reflect the wind, and produce such a current as to carry off the ascending smoke or vitiated air.
2. In an arrangement of ventilating valves, where glass or other transparent material is used to admit light, and a counterweight employed to retain the ventilator open to any required extent.

SHIPBUILDING.

Jobn White and Robert Whitr, of Cowes, in the Isle of Wight, shipbuilders, for improvemente in shtpbuilding.-Patent dated March 24, 1852. [Reported in the Mechunics' Magazine.]

We have pleasure in laving before our readers an important improvement in shipbuilding, which has the advantage of being exceedingly simple and easy of application. Messrs. J. and R. White, of Cowes, finding that the keel of ships huilt with diagonal planking was very much weakened by the diagonal planks being carried over and across it, conceived the idea of making the diagonal planks terminate in rabbets cut on each side of the keel. By this arrangement the keel is capable of being of the serme depth and thickness from stem to stern, and the diagonal planks serve to support it. The whole ship is necessarily much strengthered. We understand that two large steam-ships are being laid down on this plan by Messrs. White, une of which is for the Royal West India Mail Steam-Packet Company. The invention will be better understood by the following description and engravings, which we take from the patentees' specification;-

Whereas, in ships as now built with diagonal planking, the main-piece of the keel is much weakened to allow of the diagonal planks being carried over and across it; the keel becoming, in fact, a hanging keel, brought on after the diagonal planking has been laid, supported only by the outer skin or coat of longitudinal planks, together with bolts. Now, our invention consists
in forming a keel from stem to stern, of the same thickness and depth throughout, and with grooves or rabbets cut therein for the reception of the diagonal planks, the which do not eross the keel, but terminate on each side of it in the grooves or rabhets. The keel being laid in a continuous length, the floor-timbers crossed and the kelson lnid and bolted thereto at the commencement of building, we obtain a permanent and solid foundation on which to construct the ship; the planking of the bottom is facilitated, and one length of the planking extends from the keel to the gunwales, the ship is much stronger than if the keel were cut to allow of the diagonal planks being carried across it, and we are also enabled to build ships with diagonal akins or coats of any rise of floor.

by both the diagonal and longitudinal planks, and the ship is thereby consequently much strengthened.

Fig. 1, is part of a midship-section of a vessel, construated according to the present method of diagonal shipbuilding. A, is the hanging keel; BB , is the diagunal planking; C C, the outer and longitudinal planking by which together with bolts, the hanging keel is supported. ${ }^{\text {D D, are }}$ the floor timbers; and E, the kelson.

Fig. 2, is part of a midship section of a vessel constructed according to our improvements. A, the keel, solid thronghout, having rabbets on each side made for the reception of the ends of the diagonal planks B B, and the outer planks C C. D D, represent the floor timbers; and E, is the kelson. The keel is here thus supported

RAILWAY SUSPENSION BRIDGE, NIAGARA RIVER.

This bridge will form a single span of 800 feet in length. It is to serve as a connecting link between the railroads of Canada and the State of New York, and to accommodate the common traffic of the two countries. It is established by ample experience, that good iron wire, if properly united into cables or ropes, is the best material for the support of loads and concussions, in virtue of its great absolute cohesion, which amounta to from 90,000 to $130,000 \mathrm{lb}$. per square inch according to quality. The bridge will form a straight hollow beam of 28 feet wide and 18 feet deep, composed of top, bottom, and sides. The upper floor, which supporta the railroad, is 94 feet wide between the railings, and suspended to two wire cables assisted by stays. The lower floor is 19 feet wide and 15 high in the clear, connected with the upper one by vertical trusses, forming its sides, and suspended on two other cables, which have 10 feet more deflection than the upper ones. The anchorage will be formed by sinking 8 shafts into the rock 25 feet deep. The bottom of each shaft will be enlarged for the reception of cast-iron anchor plates, of 6 feet aquare. These chambers will have a prismatical section, which, when filled with solid maeonry, cannot be drawn up without lifting the whole rock to a considerable extent. Saddles of cast-iron will support the cables on the top of the towers. They will consist of two parts-the lower one stationary, and the upper one moveable, resting upon wrought-iron rollers. The saddles will have to support a pressure of 600 tons, Whenever the bridge is loaded with a train of maximum weight. The towers are to be 60 feet high, 15 feet square at the base, and 8 feet at the top. The compact, hard limestone, used in the masonry of the towers, will bear a pressure of 500 tons upon every foot equare.

Height of Bridge.

Weight of Railroad Tratus.

The tension of cables which result from a weight of 1379 tons and an average deflection of 59 feet, is 2340 tons. Since the assumed maximum tension can but rarely occur, it is considered ample to allow four times the strength to meet this tensionthat is 8960 tons. But assuming 8000 tons as a tension to which the cables may be suljected, five times the strength to meet it is allowed, and an ultimate strength of 10,000 tons provided for. For this purpose, 15,000 wires of No. 10 will be required. At each end of the upper floor the upper cables will be assisted by 18 wire rope stuys, and their strength will be equivalent to 1440 wires; these deducted leave the number of wires in the four superior cables 13,560 , the number of wires in one cable 3390 , diameter of cable $9 \frac{1}{4}$ inches. The railroad bridge will be elevated 18 feet on the Canadian, and 88 feet on the American side, above the present surface of the bank, and above the present structure. It will be the longest railroad bridge between the points of support in the world.

The Brusels National Monument-This immense column will be orected in stone, and surmounted by a symbolic statue. The four corners of the pedestal will be adorned by statues representing the four Liberties-that of the Assembly, Religion, Instruction, and the Press. These have been entrusted to Messrs. Simonis, and Guill. and Joseph Geefs. Messrs. Mellot and Pallaert will execute the statues of the nine Provinces of Belgium, which will be placed above the pedestal. The entire monument was designed by M. P. Dens, architect, of Antwerp, and will be completed next year.

NAVAL DRY DOCK AND RAJLWAY AT PHILADELPHIA.*

Tar United States Dry Dock at this port having recently been completed, was successfully tested during the past month by the lifting and haaling out of the ateam ship City of Pittsbusg; of 9800 tons burthen. This Dock and appendages being the largest in the world, merits more than a passing notice. The lifting power consists of nine sections, six of which are 105 feet long inside, and 148 feet over all, by 32 feet wide, and $11 \frac{1}{2}$ feet deep; three of them are of the same length and depth as the others, but q foet less in width; the gross displacement of the nine sections is 10.037 tons, gross weight 4145 tons, leaving a lifting power of 5892 tons, which far exceeds the weight of any vessel yet contemplated. The machinery for pumping out the sections consists of two engines of 20 , and t wo of 12 horse power. In connection with the sections(which form the lifting power of the dock,) is a large stone basin, 350 feet long, 226 feet wide, and 12 ft .9 in . deep, with a depth of water of 10 ft . 9 in. at mean high tide.
At the head of this basin are two sets of ways, each being 350 feet long, and 26 feet wide. These ways are level, and consist of the bed pieces, which are three in number, and firmly secured to a stone foundation; the central way supports the keel, while the side ways receive the weight of the bilge; these ways are of osk, and are finished off to a smooth surface. On the top of the bed pieces or fixed ways, comes the sliding ways or cradle, which are also 350 feet long and 26 feet wide, so constructed as to admit of being adjusted to the length of any vessel.

The operation of the dock is as follows:-The sections are sunk so as to allow the vessel to be floated in; as soon as she is secured in the proper position, the pumps are put in operation, when the sections begin to rise, and as soon as they come to a bearing on the keel, the bilge-blocks are run in until they fit the ship. When all is secure, the sections are pumped out until the keel is oome two or three feet above the water. If repairs that will only require a short time are contemplated, the vessel is kept on the sections, and no other purtions of the dock used. But the Pittsburg was taken up for the purpose of testing the several parts of the dock, and after she was lifted out of the water the sections carrying the ship were floated into the basin in line with one of the sets of ways. When this is accomplished, the sectione are filled with water, and rest on the bottom of the basin, which is of stone. Bed-ways are now laid on the sections in line with those before-mentioned. When they are secured they are greased, and the cradle is now slid under the ship, and she is blocked up on the cradle, and the blocks on the sections are removed. At this point of the operation a new instrument of power is brought forward for the purpuse of hauling the ship from the sections on to the bed-ways in the Navy-yard. It consists of a large hydraulic cylinder, having a ram of 15 inches diameter and 8 feet stroke, and a power of 800 tons. On the Lop of this cylinder, and attached to it, are two vertical direct acting engines, with cylinders 16 inches in diameter and 16 inches atroke, connected at right angles to one shaft, on which are four eccentrics for working four hydraulic pumps of $1 \frac{1}{2}$ inch bore, and 6 inches stroke; the tank which carries the water for the press is also on the top of the cylinder, aud forms the bed on which the pumps are secured. The boiler which supplies these engines with steam is on a sliding cast-iron bed-way, some 12 or 15 feet ahead of the hydraulic cylinder, and connected to it by two cast-iron rods. This boiler is of the usual locomotive form, and has eighty-five tubea of 2 inches diameter, and 9 feet long. To get ready for operation, the hydraulic cylinder is slid down to the edge of the basin, its ram is run in, and a connection made by means of two side rods of wrought-iron from the croeshead of the ram to the aliding cradle which carries the ship. The central bed-way has keyboles mortised through it horizontally, every 8 feet, and there are projections from the hydraulic cylinder, which have corresponding key holes in them. Two cast-iron keys, 24 inches wide, and 6 inches thick, are slid through the key holes on small wheels; these keys secure the cylinder to the central bed-way; the engines and pumps being now put in operation, a pressure is hrought on the 15 -inch ram, and as soon as the pressure overcomes the resistance, the vessel must move. The estimated weight of the Pittsburg was 8800 tons, exclusive of the sliding-ways and blocking; the power required to start this weight on a level, greased surface, was 250 tons.

[^58]Assoon as the vessel has been moved 8 feet, the keys which hold the oylinder to the central way are withdrawn, and by means of a screw which is attached to the head block of the ram, and driven from the engine, the cylinder and boiler are in their turn rapidly slid ahead, (the water in the cylinder being allowed to escape into the tank, when the cast-iron keys are again slid in place, and the vessel moved another 8 feet. After the first starting of the Pittsburg, the power required to remove her was but 150 tons, and she was moved 260 feet in six hours. To push the vessel off, the cylinder and appendages are moved to the head of the ways, put on a turn-table and reversed, when it is again brought down to the cradle, and the cylinder being secured as before, the head of the ram is applied directly to the cradle, and the vessel shoved back on to the sections, which requires the same time and power as to haul them off. In docking and hauling out the Pittsburg, every part of the work gave the most entire satisfaction, no portion showing the least defect, and the time required to go through the various operations being less than was expected. But six sections were used for lifting in this operation, leaving three unemployed. It will at once be seen that the capacity of this dock exceeds that of the stone docks at Now York, Boston, and Norfolk, combined, for united they can take but three vessels, while here, two of our longest war steamers may be hauled out on the ways, and two frigates lifted on the sections. The advantages that must result from the facilities of repairing a vessel elevated into light and air over one sunk in a stone dock, are very great, and have only to be seen to be appreciated.

SPANISH RAILWAYS.

Tavegovernment has approved of the plans for the junction line from the port and city of Alicant, on the Mediterranean, to Almaza, a town of Murcia, on the borders of Valeucia; with some modifications relstive to the works of art. The concessionnaires were to commence the works on the 19th of October. The line will pass near the town of Xixona and by the towns of Elda, Sax, and Villena. It is probable at this point it will be directed towards Candete, St. Phillipe de Zativa, thence towards Almaza and Bonete. Mr. Mackenzie, C.E., is on the ground arranging the preliminary works; his presence is an indication of activity, which he has always given proof of in directing the works of the Aranjuez line and the first section of the Almaza line. The plaus have been forwarded to the government, of the first section of the line frum Almaza to St. Phillipe, which is fifteen miles in length, and proceeds by Candete towards the valleys in the neighbourhood of the towns of Onlinente and Albaida, which are situated in a mountainous district. Immediately the plans are approved the works will be commenced with activity. A portion of the line from Valencis to St. Phillipe, about eight miles in length, has been inaugurated. The late rains have been a great trial for the earthworks, \&c., but they have not been in the least damaged, they having been constructed with great care, in consequence of the naturally wet soil of Valencia.
The material for the commencement of the line of Granollers, eighteen miles north-north-east of Barcelona, has arrived at the latter city. The works of the line to the town of Martorel, in Catalonia, on the right bank of the Llobregat, are to be commenced, the plans of which are approved. The station at Barcelona will be situated on the glacis at a place called Puntarro.
The project of the line of Saragossa presents probabilities of a speedy commencement. A meeting of shareholders has been held at. Barcelona, presided over by the governor of the province: the laws of the company have been approved. This lise will unite the railways of Mataro, of the North, of Martorel, and those projected of Sarria and Gracia.
M. Sanchez Mendoza, contractor of the Cadiz and Xeres Railway, has returned from Lundon, where he had purchased a considerable materiel for the construction of the line. He departed for Cadiz, to give the necessary orders for the commencement of the works.
The preparatory works of the Lisbon and Santarem Railway which is deatined to open a communication between Spain and Portuga, are proceeding with much activity. The negotiations pending on the subject between the cabinets of Madrid and Lisbon are greatly advanced, and, in a very short time, all the difficulties that might have opposed the realisation of a project so useful for both countries will be adjusted.

The first section of Almaza and Aranjuez to the town of Tembleque, in New Castile, will be opened to the public about December. It will be some month before the line of Cuidad Beal, from Alcazar to Manzanares, will be ready for traffic. M. Alvarez is the conceasionnsire. The works are to be placed under the direction of Mr. Arthur Green, C.E.

Signior Brana, a capitalist of Cornnna, has brought forward a milway project, which will depart from that seaport, the capital of Galicia, pasaing by the Cortenan, the city of Orense on the Minho, the town of Viana, thence to the frontier town of Zamora on the Duero, joining the line of Valladolid.

At Cordova and Seville difficulties relative to the line from Seville to Madrid, through the mountainous province of Estramadura, and also concerning the concession of the line from the port of Malaga to the city of Cordova, have arisen.

A provincial meeting has been held at Cadiz, to consider the line conceded from that port to Seville. A commission was named, which is occupied in concerting mearures for the carrying out of it.

The inhabitants of the ancient city of Grenada are consulting as to a branch to connect their city with the line from Malaga to Cordova. It will run in the valley of the Darro and Xenil rivers, passing by the capital town of Santa Fé.

FOREIGN RAILWAYS.

Norway.-A prospectus has been issued of the Norwegian Trunk Railway, with a capital of 450,0001 ., of which one-half is furnished by the Norwegian Government, while the other is to be raised in this country. From the port of Christiana the line extends a distance of forty-two miles north, through the most populous districts, to the inland lakes of Ojern and Miosen (both in the government of Aggerhuus), and, according to the returns obtained by the government, the traffic is estimated at 6 per cent., without allowing for any increase consequent upon the introduction of a new system. Threefourths of the work are alrendy constructed, and the entire line will be finished before the end of next year. Interest at the rate of 4 per cent. is to be paid to the subscribers until the opening, and thenceforth the conditions are, that the whole profits of the road shall be applied, first, to insure a payment of them of 5 per cent., after which the government are to take all that may accrue between 5 and 9 per cent., while any surplus beyond 9 per cent. is to be shared equally by both. The grant is for 100 years (at the end of which time the government may take possession upon payment of the 295,0001 . expended by the company); and during its continuance it gives freedom from all taxes and local dues, as well as the privilege of importing the necessary working materials, including coals, duty free. The engineers are Messrs. Stephenson and Bidder, and the directors appointed by the king of Norway are Messrs. Ricardo, Peto, and Brassey.
Denmark.-The concession of the government for the construction of the Schleswig Railroad by Mr. Peto gives an exclusive right in the line for the conveyance of goods and passengers for 100 years from the date of the opening of the road. During that period no other concession will be granted, under the condition that the road shall be completed within three years. It will run from Flensburg, a seaport, with a population of 16,000 , on the east coast of Schleswig, in the Flensborgerwieck Gulf, containing depth of water for the largest ships, traversing South Jutland, to the seaport of Husum, on the west coast of Schleswig, thence to the seaport of Tönningen, a place of great activity on the river Eyder. There will be a line also from Husum to the town of Reudsburg, on the frontier of Holstein, at the junction of the river Eyder and the Canal of Kiel, which communicate with Christiana Haven.

Russia.-Among the improvements which are being executed at the city and port of Riga, for the benefit of its commerce, none are of greater importance than the proposed line of railway between Riga and the town of Dunaburg, on the Dwina, thus branching into the already formed line between St. Petersburg and Warsaw. The execution of the plan is of the highest importance to the well-being of the port. In order to preserve its commercial activity, which is being removed to other places, an engineer is now occupied in taking the provisional levels, which are neceasary for obtaining the government guarantee of interest.

Turkey.-We have heard that the question of the railway from Constantinople to Belgrade is definitively settled, and the works will be commenced in the appresching spring. Three of the English engineers who had been charged with the necessary surveys have already submitted their plans to the divan.
Italy.-The Genoa Chamber of Commerca, and the Provincial Counci, have demanded that the railway, which is to commence at San Pier d'Arene, should communicate with those of Switzerland and Germany. The Genos merchants found their future prosperity on their relations with Germany. Railroads alteriug the condition of States, they desire that Genos should become the port of the Prussian Zollverein in the Mediterranean. There are two obstacles to the realisation of that projectnamely, the Helvetic Alps, and the disinclination of the Swiss cantons to open railroads, which might hereafter afford facilities to invade their country. The Chamber of Commerce obviated these difficulties by saying that the Helvetic Alpa could be crossed at the defiles of Luckmainer and Grimsel, and that, as to the apprehensions of the Swisn, they had of late modified their opinions, and did not wish to remain behind in the progreas visible throughout Europe. -The construction of the Central Italian Railway has been decided on by the Holy See, Tuscany, Austria, and the Duchies of Parma and Modena, through whose territory it will pass. This railway, which was the object of a special treaty concluded at Rome on May 1, 1851, was conceded on 26th June last to a Company which has been formed at Florence. The duration of the concession is 80 years. A minimum interest of 5 per cent. is guaranteed to the Company for 50 years, on condition that the nett profits over and above 5 per cent. shall be divided equally between the Company and the above five Governments. The starting point of the Central Italian line is naturally the railway which already uniter Florence, Pies, Lucca, and Leghorn, and which is prolonged as far as Rome. The new line will commence at the city of Pistoja in Tuscauy, will cross the Appenines at the most favourable point, deacend towards Bologna by the valley of the Reno, and then turn in a northerly direction to reach Modena and Reggio. It will there hranch off in two lines; one will continue as far as the town of Guastalla in the states of Parma, then cross the Po at Borgo Forte, and proceed to Mantua, where it will join the Austrian line. The other will be directed on Parma and Placenza, to be thence continued as far as Milan, and join the Sardinian lines to Turin and Genoa. This railway, which will cross the most populous and fertile plains of Italy, will be 270 kilometres in length. The necessary expense for the construction and working is estimated at $3,000,000 \mathrm{l}$. Taking as the basis the present receipts of the Italian lines at 8 centimes per passenger and 80 centimes per ton for merchandise per kilometre, it is calcusated that the nett produce will be 920,0001 . The Neapolitan government has decided on constructing a railroad between the Mediterranean and the Adriatic; that is, from Naples to the seaport and gulf of Manfredonia. -The papal government having failed in their negotiations for the construction of a railway from Rome to Bulogna by Ancona, has intrusted the survey of the line to M. Michel, of the French Corps of Engineers, who is to makean estimate of the expense of constructing the railway.

Belgium.-The inauguration of the railway from Charleroi to the frontier of France, took place on the 11th ult. It is twenty miles in length, and will be the direct route from Pario to Brussels and Prussia. At Aulne, where the immense ruins of an ancient abbey are situated, it has been found necessary to have a tunnel 450 yards in length; it is the only une in Belgium.

France.-At Chaumont the engineers of the company of the railway from Blesmes (in Auvergne) to Saint Dizier (Upper Marne), and Gray (Upper Saone), are occupied in recruiting workmen for opening the works of the line. If sufficient are not immediately obtained, foreign workmen are to be sent for.-The government is occupied in the construction of an electric telegraph between Nantes, Vannes, \&c., as far as Brest. They will commence placing the posts in a few days. -The works of the railway between Dijon and Besancon are being actively proceeded with in the neighbourhood of Dole, an old town situated ou the north of the Doubs, twenty-three miles west-south-west of Besancon. The rails are laid on a portion of the embankment, and on these earth-wagons, drawn by horses, are running.-The section of the railvay between the town of Chateauroux, thirty-two miles south-south-west of Paris, and
the city of Limages, two hundred and fifty miles south-southwest of Paris, is being actively proceeded with; the workmen are organised. Notwithstanding the bad weather, a great impulse will be given to the works in the department of the Haute Vienne, the contract for one of the principal works on the line of the centre. The viaduct which crosses the river Gartempe has been conceded; it will be of grand proportions, the length being 2186 yards, nearly one mile and a quarter.

India.-The whole line of the Great Indian Peninsular, between Bombsy and Callian, is now under contract in three separate portions, and the works are in various stages of progress, promising completion accurding to the several agreements. It is expected that the first portion of the railway, from Bombay to Tanna, will be opened for traffic early in the ensuing year, and a supply of engines, carriagee, and other rolling stock has been forwarded to Bombay sufficient for the opening. In the deapatches last received, dated Bombay, September 1, the chief resident engineer reports as follows:-"Of the permanent way, about four miles of double line, and sixteen miles of single line are laid nearly three-fifths of the entire length upon the contract, and five-uinths of the ballasting is spread, and I expect that the whole line will be laid by the end of November, or early in December." The whole capital of 500,000 . has been paid into the treasury of the East India Company, and the guarantee interest is now accruing upon the total amount. The surveys for the extension of the railway beyond Callian across the Ghauts into the interior have been completed. In the despatches under date September 1st, it was stated that "the drawings, phaus, and estimates of the Ghaut Extensions, together with the engineer's report upon them, will be ready in a few days." But the last India maih, which arrived on 15 th ult., brought no advices from Bombay, and, consequently, the promised surveys beve not yet come to hand.

OBITUARY.

Cowper.-We have the deep regret to announce the deccase of Profeseor Edward Cowper, aged 69, who was well known to the engineering world, and held the professorship of Mechanical Construction in the department of Applied Sciences at King's College. His lectures at that institution were delivered with great clearness, and were illustrated with numerous models. He aceompanied the atudents to most of the principal manufactories in the vicinity of the metropolis, and his great attention to their acquiring a sound mechanical knowledge will he long remembered by them. He was consulted in many of the litigated patent cases, and was a frequent witness at the courts of law. In conjunction with Mr. Applegath, of Dartford, he invented the Times printing press. In 1815, Mr. Cowper obtained his patent for curving stereotype-plates, for the purpose of fixing them on a cylioder.

Cuarke. - On Sept. 28nd, William Tierney Clarke, C.E., at Hammersmith. He erected several bridges, among which were two over the Danube at Vienna and Pesth; that acroas the Neva; those at Hammersmith, Shoreham, Marlow, Rochester, Bath, and Welbeck; and the Gravesend town pier was designed by him. He had been for several years resident engineer of the Weat Middlesex Waterworks Company, and had lately been over to Haarlem, advising on the works being erected there by the contractors, Messrs. Hutchins, Brown, and Co., under the direction of Mr. W. Bland Croker, C.E., for the sopply of Amsterdam with water. For some time previous to his death, Mr. Tierney Clarke was engaged in preparing for the press a large publication on his great work, the Pesth bridge, and which was intended as his contribution to the stores of professional literature, in conformity with the example of his great predecessors, being desirous of preserving, too, a proper record of his labours for those students who are unable to visit the original. Very happily the plates had all passed under his own eyes, and are now in Mr. Weale's hands, without requiring more than trifing references and some care in the arrangement.

Colby.-Lately. At Liverpool, died, in the 69th of his age, Major-General Colby, R.E., who was for twenty years at the Gead of the Ordnance Survey, to which post be was appointed by the Duke of Wellington, when Master-General of the Ordni nce. By him this great national work was organised and eff ciently conducted.

Slater, - On Sept. 90th, at Monmouth-road, Bayswater, John Robert Slater, C.E. aged 37.
Jebson. - On Oct. Srd, William Jesson, aged 34. He was formerly attached to the Ordnance Surveys of England and Ireland.

Barnes.-We regret to announce the death of John Barnes, marine engineer. His decease took place on the 24th of Sept. at La Ciotat, near Marseilles, France, in the 54th year of his age, after an illness of about six weeks. No serious apprehensions were entertained in respect to the termination of hia illness until within a few days of his decease. Mr. Barnes a few years since was well known in this country as the principal of the firm of Barnes and Miller (now Miller, Ravenhill, and Salkeld), but, at the time of his decease, he was directing the construction of stenm-engines and vessels for the service of the great and well-known establishment, the Messageries National of France. Mr. Barnes held a distinguished reputation as a constructor of marine steam-engines. His talents and general acquirements were of a very high order, and indoed his usefulness as an engineer was admitted by those who new him to be unsurpassed. The death of this gentleman (who was the bro-ther-in-law of Mr. Miller), will be a great loss to France, and, indeed, to the whole edgineering world.

Cayburn.-On the 18th ult.i at Tetbury, aged 56, Richard Clyburn, engineer, formerly of Uley Iron-works, Gloucestershire.
Geare.-On Sept. 29th, at Battersea, Surrey, in the 77th year of his age, Mr. George Gears, for many years clerk of works to public buildings.

Hornby.-On the loth ult., at Wombleton, near Helmsley, Yorkshire, aged 83, Thomas Hornby, land surveyor. A few years ago Mr. Hornby published a Treatise on Land-Surveying, which was highly appreciated; and he was also a contributor to the Lady's and Gentleman's Diaries, both in the mathematical and poetical departments, for upwards of sixty years.

Grippith. - Lately. At Lyons, Vicars Grifith, Assistant Secretary to the Royal Dublin Society.

Gibson.-Lately. John Gibson, portrait painter, well known at Glagyow, died from the effects of an accident. He had been superintending the hanging of the pictures in the West of Scotland Academy's Exhibition; had returned home and again visited the rooms in the evening. Between ten and eleven o° clock the same night he was found by the watchman lying at the stair-foot, insensible; he died the next day. It is supposed that in the dark he had missed his footing and fell down stairs.

Fairland.-On the gend uft., at Aberdeen place, Maida-hill, Thomas Fairland, artist.

Elsensten. - Lately. Dr. Eisensten, raged 30, an eminent mathematician and member of the Berlin Royal Academy of Sciences.

TOTME OF THE MOENES.

The St. Jean D^{\prime} Acre, building at Devonport to carry 90 guns of large calibre, is now in an advanced state, and will soon be ready for launching, and when launched she is to be immediately fitted with engines of 600 -horse power, of Messrs. Penn and Sons' construction, on their patent trunk plan, which gave such satisfaction when tried in the Agamemnon, 90 now at Sheerness. The engines of the St. Jean D'Acre are already in progress, and all the castings and works are to be made and finished from the models used for casting and making the engines of the Agamemnon, these models baving been ueed for the first time for the engines of that vessel. The diameter of the cylinders of the engines is 78 inches, the trunk $38 \frac{3}{4}$, equal to $70 \frac{7}{4}$ inches when the trunk is deducted; the length of the stroke 3 ft .6 in . the diameter of the engine shaft $13 \frac{1}{4}$ inches, and the screw shaft 12 inches. The diameter of the air-pump is $23 \frac{1}{2}$ inches, the diameter of the screw 18 feet, with a pitch of 20 ft .6 in ., the length being 3 ft .4 in . The boilers are in four pieces, and the tubes 1904 in number, each $9 \frac{1}{2}$ inches diameter outside, and 6 ft .6 in . long. The fire-grates are twenty in number, and so arranged that the position for the stokers is well ventilated. 'I'bere is also ample space for getting to every part of the engines, and the whole of the boilers and engines being considerably under the water line, they are well prutected from injury in the event of the vessels in which they are fitted being engaged in actual warfare.

Iron Ships.-The Liverpool Albion says, that as a good deal of attention has lately been given to iron ships it may be interesting to shipowners to know that the iron bark Richard Cobden, now being overhauled in the No. 1, Canning Graving Dock, was recently bored through one of apparently the worst and most corroded plates in her, Mr. W. F. Sim, the managing owner, being anxious to ascertain what the actual diminution in thickness would prove after eight years' service between this and the East. The result was, that the plate operated upon turned out to be precisely the same thickness that it was when the ship was launched in July 1844-namely, $\frac{9}{18}$-inch on the sixth tier from the keel. The only part of the vessel which, on examination, exhibited any corrosion, and that only slightly, was the bow, where the anchor and chain had chafed the paint or coating with which the vessel is covered as a preservative, and which appears to perform its office effecturlly.

Monster Blast of Gunpowder.-A mouster blast of gunpowder has taken place at Furness Granite Quarry with complete success. The charge consisted of no less than three tons of gunpowder, and was deposited in two chambers-one and a-half tons in each. The shaft was 60 feet in depth, and the chambers in which the powder was placed were 17 feet long. The charge was ignited hy a galvanic battery, and lifted an immense mass of rock, computed to have been between 7000 and 8000 tons. Tbe flame belched out on the seaward side.

Slob Lands in Ireland.-The Tralee county surveyor, Mr. Henry Stukes, is surveying the slob lands in Castlemain Bay, for Mr. Dargan, who, it is said, intends applying to parliament for a bill to inclose all the slob and marshes round the south and west coast of Ireland. Mr. Stokes has already surveyed the Cronane and Killorglin sides.

The General Board of Health.-The transactions of the General Board of Health, from its formation to the 4th of June last, are given in a parliamentary blue book which has been printed. From September, 1848, to the 5th of May, 1851, the number of officers was 23. From September, 1848, to April, 1851, the amount expended in respect of the application of the Public Health Act, was $80,5921.88 .5 d$. From May, 1851, to the 4th of June, 1852, the number of officers was 18. The expense of applying the act in the period was 10,5051 . 68 . 3d. The book shows the expense of obtaining private acts of parliament. Four are given, and the average cost of each was 2425l. 18s. $4 \frac{1}{2} d$. The St. Pancras Paving Bill, 1851, cost 3560l. 7s. 7d.; the Carlisle Gas Act, 1850, 1372. 7s. ld.; the Bilston Improvement Act, 1850, 3463l. O8. $5 \frac{1}{8} d$. ; and the Brighton Improvement Act, 1850 , 1307l. 18s. 11d.

The Julia Busilica.-The Pope has directed the excavations of the Forum at Rome to be continued, particularly in the vicinity of the ruins of the Temple of Castor, and on the Mons Capitolinus, in order to ascertain whether the remains existing there be those of the Basilica, built by Julius Casar, under the title of Julia, or not. It is expected these excavations will throw great light upon several obscure passages of the classics.

Ancient Colossal Theatre.-An ergineer of the Ottuman Commission of Surveys has discovered a colossal theatre at Smyrna, near the old castle, in the direction of Mount Pazas. It is in tolerable preservation, and is said to be of the time of Strabo.

Bristol General Hospital Commission.-The report of the Committee has been issued, after having called in the professional assistance of Messrs. George Wightwick and T. H. Wyatt; it is decided that Mr. B. W. Gingull shall have the first premium, and be appointed architect; the second premium has been awarded to Messrs. Aickin and Capes; the third to Messrs. Clarke and Norton, and the fourth to Messrs. Coe and Goodwin.

Princess's Theatre. - In the melodrama of Mont St. Michel lately brought out, some excellent scenery is introduced illustrating the bay and sands of St. Michel, Normandy. The representation of the base and upper part of the Mount, with the picturesque castle surmounting it, are ably painted by Gordon. The third scene-the soldiers destroying the interior of the Chateau de Rochemont-affords an opportunity of effective grouping which has been taken advantage of. In the last scene, a mist overspreads the quicksands which favours the escape of the heroine and her father from the castle and convent. They are followed by the soldiers who can only proceed slowly until the dispersion of the mist. The scene is a masterpiece of Mr. Dayes'.

IIBT OP NEW PATMTH

ORANTYD in gnoland prom Septemben 24, to October 21, 1852
Six Monthe allowed for Elwrolmont melese otherwise expressed.

Henry Medinnt, of Clerkeawell, Middlemex, englineer, for Improvements in weter
 meten, and in resulati
Uquid. - September 27.
Anguate RHonard Londoux Bellford, of Castle-atreet, Holboro, for improvemen ts In the mannfacture of boots and choes, part of which seld smprovemente are also applicable to the mapuficture of various other articles of drem. (A commantentiono) September 80 .
Mowes Poole, of London, gentleman, for improvemente to the manufictare of comber (\boldsymbol{A} commanicatlon.) - Sepplember 30 .
Sarih Lester, of St. Petery aquare, Hammarnmith, Middieser, execurix of the Late Micheel Joreph John Donlan, of Rugeley, Beaffordohire, Fencleman, for improvements to treating the eeeds of flim and hemp, and alos ta the treatmeat of gax and hemp for dremeling. (A communication from the eadd M.J.J. Doalen.)-Septem: ber 30 .
Chriatophar Nichels, of York-road, Lambeth, manufacturer, and Beqjamin Burrows, of Laticeater, for im provements in weariag. - September 30.

Henry Gardener Guion Jude, of Lower Copanhagenatreet, Berabbary- road. Iallagton, for improvements in the manufacture of type. (A commanication)-ieptem. ber 30
Cbarles Billeon, of Leiceater, manufecturer, and Caleh Bedelle, of Lefeenter, afore sald, manufactarer, for improvements in the manuficterse of erticles of drees where looped fabrice are used, snd in preparing looped fabrice for making articles of drees and parts of garments.-September 80 .
Edouard Moride, of Nantes, France, for certaln improvementa in tanalag.-september 30 .
William Funt, of Stoke Prior, Worceater, mapafactaring chemiat, for certala itaproved modes or means of producing or obtelaing ammoniscal melte.- September 80 .
Richard Archibald Brooman, of Fleet-atreet, patent egent, for Improvemente in mnitifing machloery. (A commnaleation.)-October 7.
Bichard Archibald Brooman, of Pleet-street, patent agent, for improveweati it the manufecture of angap. and in the machinery and apparalas employed therois (A communicacion.-Oelober 7 .
Alexander Shairp, of Pleet-street, for an Improved cutting and aliclog machloe (A communicmtion.)-October 7.
John Reed Randell, of Newlyn East, Cormwall, farmer, for Improvemente in cutting and reaping machines.-October 7.
Plerre Armand Lecomte de Fontainemorean. of South-atreet, Fingbury, for certain improvements in wabing, bleaching, and dyoing far and hemp, and in mising them with other textile substances. (A communication.)-October 7.
Solomon Andrems, Perth Amboy, in the United States of America, engibeer, for Improvements in machinery for cetting, punching, stamplag, forging, and booding metals and otber subatinces, which are alos applicable to the driving of pllee and other stmiliar purposes, and to cruablag and pulverialag ores and other herd eubetences. -Octover 7.
Whilam Edward Newton, of Chancery-lane, Mindlenex, efvil englaeer, for Iopprovements in steam and other gangen. (A communication.).-October 11.

Hichard Archlbald Brooman, of Fleet-street, Londoa, patent agent, for lmprovementsind mowiaf, cuttog, and reaplag machines. (A commanication.)-October 14.
Walter Ricardo, of the frm of A. and W. Ricardo. of London, sharebroker, for im provemente in gas burners. (A commualcation.)-Oclober 14.
Thomas Carter, of Padicow, Cornwall, ehipboilder, for Improvements in propalling -October 14.
John Field, of Warnford-conrt, Throgmorton-atreet, for Improvementa in tranoferring and printing.-October 14.
Willam Brown, of Heaton, near Bradford, York, mechaniat, for certain Improvemente in machinery and apparataif for preparing and eplaniog wool, hair, fix, ailt, and all other fbrous materials.-October 18 .

Alfred Vincent Newton, of Chancery-lane, Middlesex, mechanical draugheman, for an Improved mode of manufactoring raluray chairs. (A communication.)October 19.

Joseph Palin, of Liverpool, Lancaster, wholenale drugsist, and Robert William Sievier, of Upper Holloway, Middlesex, for improvemente In brewing; and also in the production of extracts or infusionif for other purposes. - October 19.
Wulism Bdward Newton, of Chancery-lane, Middlesex, civll engineer, for Improrements in machinery or apparatus for eewing. (A commnalcation.)-October 19.
Whlisun Edward Newton, of Chancery lane, Middletex, civll engiaeer, for improres ments In machinery or apparatus applicable to public carriages for ascritaining and registering the number of paneengers who have travelled therein during agiven pertod, and the diatance each pasaenger has travelled. (A commanication)October 19.
Edwerd Henry Jechen, of TitchBeid-atreet, Sobo, Middlesex, machinist, for certin improvements in producing artifcial light, aod also in producing motre pertian mprovernent

Edward Brallaford Bright, of Livarpool, Becretary to the English and Irlah Mapnetic Telegraph Company; and Charles Thiston Bright, of Manchester, telegraphic engineer, for lmprovements in maling telegraphic communtentiona, and in ibetroments and apparalus employed thereln and connected therewith.-October 81.
Willim Reid, of University- itreet, electic tolegraph englacer, for improvemente In electrte telegraphn.-Oewober 21.

William Boggett, of Et. Martin'o-iane, Weatminater, gentlemen, and George Broolks Pettit, of Linle-street, Weakminstre, gas engineer, for improvements in obtalpios and applying heat and Hght.-October 21.
Joho Charlee Wileon, of the Redford Flas Factory, Thornton, near Eirkeaddy, of Fife, North Britaln, civil engineer, for Improvements in the machinery and procerses employed in and for the manufacture of flas and ocher fibroon vegetable aubatinge. -October 21.

Errata. - In our lat number, p. 328, col. 2, line 18, 14, for " the engineer's grat

WROUGHT AND CAST IRON AND WOOD BEAMS.
With a Desion for a Beidor, with Beams on this principle, over the Thames at Webtminateb,
(See Engraving, Plate XLI.)
R. M. Mabchant, C.E., Inventor.

Wrovert-iron Beams, which have to a considerable extent superseded the use of cast-iron ones, have had attention more particularly directed to them and to the advantages they offer by their application to works of such magnitude as the Britannia and Conway bridges, and latterly to the Chepstow bridge. The experiments preceding this application of wrought-iron (an account of which is given in the very interesting and valuable work of Mr. Edwin Clarke, on the 'Britannia and Conway Bridges') show that the total capacity of wrought-iron as applied in beams is greater than that of cast-iron so applied in the proportion of about $17 \frac{3}{4}$ * to $12+$; and where the material is to he applied in a continuous beam, the partial substitution of a strain in tension for that in compression at the top of the beam increases the advantages offered by wrought-iron as the material for the beam. As experiment gives the relative powers of wrought and cast iron for resisting a strain in tension in the proportion of about 20 wrought-iron to 7 cast-iron, and their relative power of resisting a strain in compression in the proportion of ahout 16 wrought-iron to 40 cast-iron, the ultimate power of wrought-iron for resisting tension is shown to be about three times as great as that of cast-iron, and its power of resisting compression is only about two-fifthe as great. and induces the consideration whether a combination of wrought and castiron (each metal being employed in its most favourable position) cannot be so effected ns to offer in the construction of beams practically those advantages which their several qualities suggest. It is evident that in a beam which has for its material cast-iron as the material in compression, and wrought-iron as the material in tension, the material as best adapted is applied to each particular strain, and that by adopting cast-iron for the upper portion of the beam instead of wrought-iron, the required resistance to the compressive strain is ohtained with two-fifths of the material, and a saving is thus effected of not only threefifthe of the quantity of material which would be required were the top also of wrought-iron, but the beam being also by so much the lighter, less metal is required in the top and bottom to give a beam of equal resistance to the constant strain to which it is subjected by its own weight and that of the roadway. Now, the entire substitution of wrought for cast iron in beams gives us the same strength with about one-third less material, and, consequently, with less strain arising from the weight of the beams themselves to provide for, it also offers greater facility of application on a large scale; and it is submitted that the substitution, for entirely wrought-iron beams, of cast and wrought iron combined, as hereafter suggested, offers the same advantages to a greater extent. The proportions in a wrought-iron beam of the material in the top and hottom should be as 20 top to 16 bottom, or as 1 to $\frac{3}{4} ; \ddagger$ by the substitution of cast-iron in the top three-fifths of the material represented by the 1 is saved, and a Jighter and less expensive material is substituted, and the whole material in the top and bottom being representer by $1 \frac{s}{4}$, the saving of material is represented as three-fifths, and a saving in bulk of $\frac{1}{8}$ ths of the whole is effected.

The constant strain on a beam arising from its own weight being less by this removal of weight, less material is necessary to give a beam of equal strength, and a further reduction of material is open to us. It is submitted also, that (except as tubular beams with the load passing through them) greater facility for application on a large scale is afforded by beams so constructed, and a design for a bridge with beams on this principle over the river Thames at W estminster is submitted in illustration of the proposed manner of applying the material so

[^59]combined, and the advantages it offers. In this design the beams to the centre opening are 504 feet in length between the piers, and the constant struin at the centre of each beam from its own weight and that of the roadway is 4645 tons; 8291 tons being therefore the constant strain on the the two beams. This constant strain on the beams does not equal one-fourth of the capacity of the material for resistance, the sectional area of the cast-iron top at the centre of each beam to meet this strain being 4991 inches, 999 inches for the two beams; and the sectional area of the wrought-iron bottom at the centre of each beam being 969 inches, 1938 inches for the two beams; and the strain from the maximum possible load, which is assumed at 2000 tons on this centre opening (many times any probable load), would not give a strain on the material exceeding one-third of its capacity of resistance. The weight of each beam complete is ahout 1193 tons, but had the top been constructed of wrought-iron to keep the constant strain from its own weight and that of the roadway within the same limits, the weight of each beam would have required increasing by about 1080 tons-nearly doubling their actual weight, and more than doubling their cost, with no accompanying advantage,* and with greater difficulty of applying the material in a sightly form; for there would be nearly four times the present bulk of material to apply in the top of the beam, to which there would then be required a sectional area equal to aloout $10 \frac{1}{2}$ square feet of solid metal. It is submitted that the cast-iron boxes forming the top of the principal beams as connected at the ends with the wrought-iron plates forming the bottom, offer an advantageous and convenient method of applying the material to girders of magnitude, and that the cunnecting castings, and plates and tie-rods, give a good and complete connection between the top and bottom of the beams.

The transverse girders, which are 70 feet long between the bearings, have also, as designed, a cast-iron top and a wroughtiron hottom. The weight of cast-iron in the top is $2 \frac{1}{2}$ tons, the weight of wrought-iron in the bottom is 4 tons. It is proposed to connect the top and bottom of these girders by filling the space between the castings and the wrought-iron plates with either oak or pine timber, with a few intermediate connecting castings, and with bolts passing through the whole. It is believed that up to 100 feet span, the connection between the top and buttom of such girders would be well and economically made by timber and bolts. It is believed that for the wroughtiron plates, forming the bottom of these transverse girders, as shown, timber might be advantageously substituted, as hereafter suggested. The intermediate girders are formed of a simple cast-iron plate for the top, and of a wrought-iron plate for the bottom, with a wood and bolt connection, and are calculated to bear, within one-fourth the capacity of the material, a strain at the centre of 28 tons.

The question next arises whether as pine possesses a tenacity of 5 tons per square inch of sectional ares, or one-fourth that of wrought-iron, whilst its weight is only one-tenth that of wrought-iron, balks of this material cannot be advantageously substituted in the bottom of such beams for the wrought-iron plates; the great difficulty to be got over in buch a subatitution arising, at the junction of the balks, from the small capacity of timber for resisting a strain tending to make the fibres separate and slide on each other, its capacity for such a strain being only from 5 to 6 cwt . per superficial inch; and necessitating at the joints such an auxiliary strength as shall, with the resistance given there by the timber to a strain so conveyed, equal the capacity of each balk to bear a struin in tension.

The use of Jeffrey's elastic Marine Glue, in connecting the balks and scarfs for their whole length would, to a considerable extent, lessen the plates and bolts required at the joints. By a substitution of pine balks for the wrought-iron plates, 658 tons of wrought-iron to each beam would be abandoned for 290 tons of timber, and about 100 tons of iron-showing a saving in weight, on each beam, of 338 tons, or a saving in weight on the two beams, to the centre span of the bridge, of 676 tons; and a cost for this portion of the beam, if we estimate the wroughtiron at $30 /$ a ton, and the timber as high even as 88 . per cubic foot, of 74001 ., instead of 19,7401 .-or, on the two beams of $14,800 \%$., instend of 39,4801 . We have also 676 tons less of constant weight to provide for; and the constant tension on the timber bottom for the twu beams becomes 7898 tons, or 3949 tons in each beam-giving a constant strain, on the available area, of a little more than $1 \frac{f}{2}$ ton per square inch of timber in tension,

[^60]and with the same maximum load as supposed with the wroughtiron bottom, a maximum strsin for the two beams of 19,029 tons, or 6015 tons on each beam-giving a possible maximum tension, on the available area of the timber bottom, of $3 \frac{3}{4}$ tons per square inch. The depth of the beam, with a timber bottom, should probably be increased 3 , or even 4 feet, and the maximum possible strain kept below 3 tons per square inch of section. It is believed that timber might, in this manner, be advantageously applied to form the chain of a suspension-bridge; as the same strength could be obtained with less than half the weight and cost (but for the plates at the joints, a saving of about six-tenths of the weight would be effected, and it might be so applied as to give a far more rigid structure than hitherto ubtained on the suspension principle.

For the purpose of showing the application of the patent to practical cases, the following proportions and calculations have been made by the inventor for the proposed Westminster Bridge.

Centre Span, 504 feet; Depth of Beams, 30 ft .6 in.-The total weight of the bridge and roadway for this centre span may be taken approximately at 4500 tons, which weight is equally distributed over its length, or nearly so, and may therefore be treated as half this weight, or 2250 tons at the centre of the span; therefore the total strain on the beams at the centre of the opening $=\left(259 \div 30 \frac{1}{2}\right) \times \frac{2580}{g}=9293$ tons. The constant strain on the beams from their own weight, and that of the roadway, is not to exceed one-fourth their capacity of resistance, which, taking a low average for that capacity, will be 10 tons per square inch of section on the cast-iron in compression, and 5 tons per square inch of section on the wrought-iron in tension; and this necessitates a sectional area to the centre of the beams of not less than 929 inches for the cast-iron boxes forming the top of the beams, and of not less than 1858 inches for the wrought-iron plates forming the bottom. There are two beams, and therefore, for each beam at the centre, these sectional areas become 465 inches at the least for the cast-iron boxes forming the top, and 929 inches at the least for the wrought-iron plates forming the bottom.

Now, at the several dis$\left.\begin{array}{lllllllllll}\text { tances between the piers of } & 63 & 126 & 189 & 258 & 189 & 125 & 189 & 63\end{array}\right]$ the strains from an equally distributed load are in the proportion of \ldots... \ldots... $7 \quad 12 \quad 15 \quad 16$ and as the sectional area of the wrought-iron plates required, as stated by the strain at the centre, is 989 square inches, the sectional area of these plates to bear (within the strain of δ tons per square inch of section) the strain resulting at the several distances from the piers, of 63 feet, 126 feet, 189 feet, 259 feet, must be respectively not less than 407 inches, 697 inches, 871 inches, 929 inches; similarly at $94 \frac{1}{2}$ feet from the piers, the sectional area required (at the strain, as limited to 5 tons per square inch of sectional area) for these plates is not less than 566 square inches; and it is proposed to have these plates, which are to be $98 \frac{1}{2}$ inches in width, thus-

The constant strainat the centre of each beam being 4647 tons, and there being here 34 plates, forming the bottom, the strain on each plate is nearly 137 tons, which will therefore be the shearing strain on the bolts connecting them with the lap plates at the joints; and this strain limited to 5 tons per equare inch of sectional area of the bolts, gives the sectional area as 27d inches at the minimum; and it is intended to connect each plate to the lap plate at the joints throughout, by seven bolts of $2 \frac{1}{4}$ inches diameter each, and two bolts of $1 \frac{1}{4}$ inch diameter each, and to have the lap pieces 8 inches wider than the plates themselves.

The dimension of each of the cast-iron boxes, of which there are to be 8 , forming the top of each of these beams, is to be externally $18^{\prime \prime} \times 12^{\prime \prime}$ of $\frac{8}{8}$-inch metal from the piers to the distance of $\delta 6$ feet from them, giving a sectional area of 888 inches; ${ }^{*}$ from

[^61]these points to the distances from the piers of 98 feet, thece boxes are to be of $\frac{7}{8}$-inch metal, giving a sectionsl area of $395 \frac{1}{6}$ inches;* from these points to the distances from the piers of 126 feet, these boxes are to be of 1 -inch metal, giving a sectional ares of 448 inches; ${ }^{*}$ and between these points they are to be of 1 $\frac{1}{h}$-inch metal, with a sectional area of $499 \frac{1}{2}$ inches.*

Side Spans of 252 feet each; Depth of Beams, 19 ft. 6 in.-The total weight of the bridge and roadway, for each of the sidespans, may be taken approximately at 1600 tons, which weight is equally distributed over the length, or nearly so, and may therefore be treated as half this weight, or 800 tons at the centre of the span; therefore, the total strain on the beame at the centre of the opening is $\left(196 \div 19 \frac{1}{2}\right) \times \frac{800}{8}=2585$ tons,
The constant strain on the beams from their own weight, and that of the roadway, is not to exceed one-fourth of their capacity of resistance, which, taking a low average for that capacity, will be 10 tons per square inch of section on the cast-iron in compression, and s tons per square inch of section on the wroughtiron in tension; and this gives a sectional area to the centre of the beams of not less than 259 inches for the cast-iron boxes forming the top of the beams, and of not less than 518 inches for the wrought-iron plates forming the bottom of the beams. There are two beams, and therefore for each beam these sectional areas at the centre of each beam become 130 inches at the least for the cast-iron boxes forming the top, and 259 inche at the least for the wrought-iron plates forming the bottom.

The dimension of each of the cast-iron boxes, of which there are eight, forming the top of each of these beams, is to be externally $12^{n} \times 12^{n}$ of $\frac{3}{8}$-inch metal from the piers to the distances of 56 feet from them, giving a sectional area of 139 d inches; and between these points these boxes are to be of $\frac{1}{2}$-inch metal, with a sectional area of 184 inches.
 $\begin{array}{llllllll}\text { tances between the piers of } & 28 & 56 & 84 & 112 & 84 & 86 & 28 \\ \text { the strains from an equally } \\ \text { distributed load are in the } & \mid & \mid & \mid & \mid & \mid & \mid & \mid\end{array}$ $\begin{array}{lllllllll}\text { distributed load are in the } & & 1 & 1 & & 1 & 1 & \mid \\ \text { proportions of . } \cdot \text {. } \cdot & 8 & 14 & 18 & 20 & 18 & 14 & 8\end{array}$ and as the sectional area of the wrought-iron plates required, as stated, at the centre of each beam, is 259 inches, the sectional area of these plates to bear (within the strain of 5 tons per square inch of section) the strain resulting at the several distances from the piers of 98 feet, 56 feet, 84 feet, 112 feet, must be respectively not less than 104 inches, 182 inches, 234 inches, 259 inches; and it is proposed to have these plates, which are to be twenty-two in number, 1 ft . 1 in . broad, of $\frac{1}{8}$ inch metal for the first two bays extending to 28 feet from the piers, and giving a sectional ares of 143 inches; of $\frac{7}{8}$-inch metal for the nert two bays extending to 56 feet from the piers, and giving a sectional area of $205 \frac{1}{4}$ inches; and from that point to have them of 1 -inch metal throughout, with a sectional area of 286 inches.

It is intended to connect each plate to the lap plate at the joint throughout by seven bolts of 2 inches diameter each, and two bolts of $1 \frac{1}{4}$ inch diameter each, and to have the lap pieces wider than the plates themselves.

Tranoverse Girders.-Fifty tons of roadway, including the weight of the girder itself, may be taken as the maximum weight uniformly distributed over each girder, which may be treated as a weight of $\mathbf{2 5}$ tons at the centre of the girder; therefore the total strain at the centre of the girder $=(35 \div 4) \times \frac{25}{2}=$
110 tons. Keeping the constant strain per inch square of sectional area on the cast-iron top in compression, and on the wrought-iron bottom in tension, as for the large beams, we require at the centre of each girder 11 inches of sectional area for the cast-iron top, and 82 inches of sectional ares for the wrought-iron bottom. The cast-iron tup to these girders is formed by two cast-iron bux tubes, each $8^{\prime \prime} \times 4^{\prime \prime}$ of $\frac{1}{2}$-inch metal throughout the whole length of the girder, giving a sectional area of 92 inches. The wrought-iron plates, which are to be cix in number, are proposed of 8 inches in breadth and s inch thick throughout the total length of the girder, giving a sectional area of 36 inches.

Intermediate Girders.-The extreme passing load being taken at 4 tons per foot run, each intermediate girder may be considered as liable to an extreme uniformly-distributed load of 8 tons; and therefore the total possible strain at the centre
of each girder $=(14 \div 1) \times \frac{4}{2}=28$ tons; and in this case the extreme passing load is provided for within the limit for the constant strain, and we have 3 inches for the sectional aren of the cast-iron top, and 6 inches for the sectional area of the wrought-iron bottom.

Cast-Iron Plates under Roadway.-Taking the extreme passing load as above, there would be an uniformly-distributed load of thon per foot run of plates (of ofeet in width) \therefore the strain
in the centre of the plate per foot run $(25 \div 0.5) \times \frac{0.25}{2}$ less
than $\frac{8}{4}$ of a ton; these plates, as designed, may be cast of $\frac{1}{4}$-inch metal. The strain on the eeveral parts of the bridge, with the maximum load, is now to be considered, and it is assumed that the maximum improbable load would be equal in weight to four lines of locomotive on the bridge, or to 25,250 men who might be made to stand upright on the centre opening, and half that number on each side opening. The first assumption would give a further equally-distributed load on the centre span of about \$000 tons, and on each side opening of 1000 tons; and the latter (at $1 \frac{1}{4} \mathrm{owt}$. per man) would give a further equally-distributed load of 1594 tons on the centre span, and on each side span of 797, which may in either case be treated as half these weights at the centre. Assume the greater of these loads, that from the rows of locomotives, and with such a load the cotal strain on the two beams to the 500 feet span at their centre is

$$
(252 \div 301) \times \frac{2250+1000}{2}=13,426 \text { tons }
$$

or on each beam a strain of 6713 tons at the centre; to meet which maximum strain there is at this, the weakest point of the beam, a sectional area of $499 \frac{1}{2} \times 32$ inches to the cast-iron boxes forming the top of the beam, on which there would therefore be a crushing strain of something less than 13 tons per equare inch of sectional arem, and to meet which maximum strain there is also at this, the weakest point of the beam, a sectional area of 969 inches to the wrought-iron plates forming the bottom of the beam, on which there would therefore be a tension of something less than 7 tons per square inch of section, or, with this maximum load in each case, a strain of about onethird the breaking wtrain. The uniform loud giving less than one-fourth of that strain, and also with such a maximum load, the total strain at the centre of each beam to the side spans is

$$
\frac{\left(126 \div 19 \frac{1}{4}\right) \times \frac{800+500}{9}}{2 \text { beams }}
$$

to meet which strain, there ls at this, the weakest point of the beam, a sectional area of 184 inches to the cast-iron boxes forming the top of the beam, on which there would therefore be a crushing strain of something less than 18 tons per square inch of sectional area; and to meet which strain there is also at this, the weakest point of the beam, a sectional area of 886 in . to the wrought-iron plates forming the bottom of the beam, on which there would therefore be a tension of something less than $7 \frac{1}{t}$ tons per square inch of sectional area; there being here also, therefore, with this maximum load, a strain of about one-third of the breaking strain, the uniform load giving less than onefourth of that strain. With such a maximum load, there would be an additional load uniformly distributed over each transverse girder of 56 tons, which may be treated as half this weight at the centre of the girder. The total possible strain at the centre of the transverse girder would then be

$$
(35 \div 4) \times \frac{95+28}{2}=292 \text { tons; }
$$

to meet which maximum strain there is at this, the weakest point of the girder, a sectional area of 22 inches to the castpron top, on which there would be therefore a crushing strain of about $10 \frac{1}{2}$ tons per square inch of sectional area; and to meet which maximum strain, there is also at this, the weakest point of the girder, a sectional area of 36 inches to the wrought-iron bottom, on which there would therefore be a tension of less than 6 tons per square inch of sectional area; there being therefore with this maximum load a strain of little more than one-fourth of the breaking strain.
The strain for all the other parts of the bridge ase, at this maximum load, kept within the limits of 10 tons per square
inch of sectional area on the cast-iron in compression, and of 5 tons per inch square of sectional ares on the wrought-iron in tension; and no strength ohtained from the sides or side bracing is taken into these calculations. The advantages obtained in this case by the use of cast-iron in the top of the beams is shown by the fact that had the beams to the 504 feet span been constructed entirely of wrought-iron, the comparative resistance to compression of wrought and cast iron being in the proportion of 16 to 40 , and cast-iron being poth lighter than wrought-iron, instead of the 313 tons of cast-iron which now form the top of each beam, 882 tons of wrought-iron would have been necessary to bear the same amount of strain within the required limits; and each beam becoming from this addition of material 509 tons heavier, its atrength would necessarily hive to be increased to bring the constant strain on the material from its own weight and that of the roadway within the required limits; and the further strain at the centre of each beam, from its additional weight of 509 tons is 1053 tons, which requires the strengthening of each beam by an additional quantity of metal in the top of 137 tons, and in the bottom of 110 tons; and in so increasing the strength to maintain the constant strain on the metal within the required limita, we again crente an additional weight of beam of 247 tons to be further provided for; and it will be found necessary to continue increasing the strength of the beam to provide for the additional weight so accruing until a further quantity of metal of 179 tons weight has been added to the top, and of 145 tons weight to the bottom. Were the beams, therefore, entirely of wrought-iron, each beam would so require to be 1080 tons more in weight than (the 1190 tons) it actually weighs as constructed with the cast-iron top, where the constant strain is within the required limits, which would considerably more than double the cost of the beams as designed for the centre span of 504 feet.

In beams entirely of wrought-iron, an above supposed, although the constant atrain is barely within the required limits, there is of course a considerably-increased strength for any passing load-but it is useless, as, with the maximum possible load on the beams with the cast-iron top, as provided, the strain is within the limit of one-third their ultimate power of resistance; and this strain is far above that which would be given by any extreme load at all likely to be put on it, and at least four times that of any probable luad; and the beams, as designed, will carry within their breaking weight six times this maximum strain, which greatly exceeds that from any probable load.

It would be almost impracticable, unless as a tubular bridge, to construct a sightly beam of this depth and span entirely, of wrought-iron and of sufficient strength to carry the required weight, for in the case given above the average sectional area of a wrought-iron top for such a beam would be 1517 inches, equal to a solid mass of wrought-iron of $3^{\prime} 0^{\prime \prime} \times 3^{\prime} 6^{\prime \prime}$; and the average sectional area of the bottom is 1146 inches, equal to a solid mass of wrought-iron of $3^{\prime} 0^{\prime \prime} \times \varepsilon^{\prime} 8^{\prime \prime}$; which in the top of the beam gives a mass of metal of nearly four times the bulk of that in the beam with the cast-iron top to be dealt with, and gives in che bottom of the beam a mass of metal to be dealt with of nearly $1 \frac{1}{\frac{1}{2}}$ times the bulk of that in the beam with the cast-iron top-involving the necessity of much greater breadth, and creating great difficulty of disposing of the material required in the tup advantageously, otherwise than by converting the beam into a tubular beam.

As pine possesses a tenacity of 5 tons per square inch of sectional area, or one-fourth that of wrought-iron, whilst its weight is only rith that of wrought-iron, it becomes a question whether the difficulty of obtaining such a junction to balks of this material as shall enable a series of them to possess an uniform capacity for resisting a strain in tension, cannot be got over. This difficulty arises chiefly from the small capucity of timber for resisting a strain tending to make the fibres separate and slide on each other, its capacity for such a strain being only from 5 to 6 cwt . per superficial inch; necessitating at the joints such an auxiliary strength as shall, with the resistance given by the timber to a strain so conveyed, equal the capacity of each balk to bear a strain in tension. Supposing that for the wroughtiron plates, forming the bottom of the centre beams to the bridge as shown, a bottom composed of eight balks, each $19^{\prime \prime}$ square, were substituted, and that the joints were formed by scarfs with auxiliary plates and bolts as shown (the thickness of the centre plate being taken out of the adjoining balk and not out of the joint) we should obtain an area of $361 \times 8=2888$ inches; but as nearly $\frac{1}{2}$ th of the strength of the timber is lust by the bolts
and plates passing through it at the several joints we can only reckon on a serviceable ares of 2600 square inches capable of bearing a maximum strain in tension of at least 13,000 tons.

The use of Jeffiries elastic marine glue in connecting the balks and scarfs for their whole length will, it is believed, to a considerable extent lessen the plates and bolts required at the joints; but in proceeding with the present statement no allowance is made for its use. By such a substitution 658 tons of wruught-iron to each beam would be abandoned for 980 tons of timber and about 100 tons of iron; showing a saving on each beam in weight of 338 tons, or a saving in weight on the two beams to the centre span of the bridge of 676 tons, and a cost for this portion of the beam, if we estimate the wrought-iron at Sol. per ton and the timber as high even as 88. per cubic foot, of 7400%. instead of $19,740 l$., or, on the two beams, of $14,800 l$. instead of $39,480 l$. We have 676 tons less of constant weight to provide for, and the constant tension on the timber bottom for
the two beams becomes $\left(259 \div 30 \frac{1}{2}\right) \times \frac{1919}{2}=7898$ tons, or 3949 tons in each beam, giving a constant strain on the available area of more than $1 \frac{1}{2}$ ton per square inch of timber in tension, and with the same maximum load as supposed with the wrought-iron bottom a maximum struin for the two beams of
$\left(282 \div 30 \frac{1}{2}\right) \times \frac{1912+1000}{2}=12,029$ tons, or 6015 tons on each beam, giving a possible maximum tension on the available area of the timber bottom of $3 \frac{3}{4}$ tons per square inch. The depth of the beam with a timber bottom should probably be increased abont 3 feet, and the maximum possible strains should be kept below 3 tons per square inch of section. There can be little doubt that the transverse girders should have a timber bottom and a cast-iron top on this principle, as balks of sufficient length could be obtained, and the joints would be avoided.

ON THE ORGANIC CONTENTS FUUND BY THE MICROSCOPE IN WATERS SUPPLIED FROM THE THAMES AND OTHER SOURCES.

By Edifin Laneester, M.D., F.R.S.
[Report made to the Directors of the London (Watford) Spring Water Company.]
Modern science has placed in the hands of investigators two principal means of ascertaining the purity of waters, and their adaptation to the purposes for which they are employed by man,-chemical analysis and the microscope. By means of the former, the saline or inorganic contents dissolved in water are ascertained, whilst by the latter instrument the organic beings which are nourished and live in water are made apparent.

The observations contained in the following Report have been principally confined to the application of the microscope for the purpose of ascertaining the particular forms of plants and animals found in the waters named. Although in perfectly pure water it would be impossible that either plants or animals should live, yet in a state of nature water is seldom met with that does not contain the elements out of which plants and nnimals are formed. Of the various elements of which the whole vegetable and animal kingdoms are built up, there are four which are universally present in plants and animals, and which must consequently be always present in waters where either plants or animals exist. These are-carbon, bydrogen, oxygen, and nitrogen. These elements do not, however, occur in their pure form, nor would they, if pure, subserve the nutrition of organic beings; but they are found more especially in the form of carbonic acid and ammonia. The first substance contains carbon and oxygen, the last nitrogen and hydrogen. Just in proportion as these substances abound within certain limits will be the abundance of vegetable life, and just in proportion to the vegetable life will be the amount of animal life. Plants derive their nourishment from carbonic acid and ammonia -animals derive their nourishment from plants.

The natural source of carbonic acid and ammonia in water is the atmosphere. Waters exposed to the atmosphere, as in rivers, and rain-water, contain these substances. An additional source of these substances, in rivers and wells, is the presence of organic matter in a state of decomposition. Wherever decaying vegetable and animal substances or excretions are found, they give off these gases-hence one of their uses as manures. In
proportion, therefore, to the introduction from withont of organic matters, will be the increase of organisms within the water; and as in climstes like our own it is only at certain seasons of the year that vegetation is active, there will always be in such waters a quantity of vegetable and animal matter in a state of decay, always disagreeable, and under some circumstances likely to be highly injurious to the health of thuse who consume it in their diet.

The sources of the organic matter of the river Thames are sufficiently obvious on its banks, where it is found that the sewers of almost every tuwn, village, and house in its vicinity empty themselves into this river. That the organic matter thus discharged into this water is not all decomposed and taken np by its vegetation, is proved by the great deposits of mud above the influence of the tide, and which consists principally of animal and vegetable matter in a state of decay. The sources of these substances when they exist in wells are soakage frum manured lands, or percolations from neighbouring sewers or cesspools. Many of the shallow wells in London present from this cause a large amount of organic matter, and of those as line substances which are the result of chemical changes going on in the organic matter in contact with the oxygen of the air. The saline substances thus formed are principally salts of nitric acid, which is formed by the union of the nitrogen of the organic substance with the oxygen of the air. These salta are known to have a very depressing effect upon the human system.

When plants and animals die, and their tissues are exposed to the action of water, many other substances are formed besides those resulting from the compounds of the above-mentioned elements. Both sulphur and phosphorus are found in small quantities in animal and vegetable bodies, and sulphuric and phosphoric acids amongst the saline ingredients of water. Through these substances the gases known as nulphuretted and phosphuretted hydrogens, more especially the former, are pruduced. The action of these gases on the system is very depressing, and they give the disagreeable odour to water that has been kept for a few days. Very small quantities of organic matter, kept in contact with the salts of sulphuric acid, as I have shown in my work on tbe 'Mineral Springs of Askern,' will serve to produce quantities of sulphuretted hydrogen that would destroy all vegetable or animal life in the waters which contained it.

Besides the elements carbon, hydrogen, oxygen, and nitrogen, and those of sulphur and phosphorus, there are others contained in water which exert an influence on the life of particular planes. It is well known that sea-weeds will only live in water containing chloride of sodium (common salt). Land and fresh-water plant require potash, whilst a large number of plants flourish in proportion as the salts of lime or silica are present. Where these salts exist they encourage the growth of certain planits, and with them animals which would have no existence without them, These facts will explain the difference observed in different waters with regard to the presence of organic life, and the existence of the latter must be regarded as one of the best tests of the degree of impurity of the waters in which they are found.

Before speaking of the results of a microscopic examination of the waters supplied by the Water Companies from the river Thames and other sources, I may refer to those facts with regard to its condition which are ohvious to every observer. That it must contain large quantities of organic matter, is evident by the sewage of the towns on its banks being emptied into it. It runs also through a highly-cultivated district of England, 80 that the surface drainage which necessarily falls into it is more than usually charged with organic matters from the manure employed in cultivation. As a proof of this, it may be stated that vegetation has been observed to be more prolific in the river after heavy rains, and Dr. Angus Smith atates that at such times it is richer in saline contents.

Throughout the whole extent of the Thames from which the present Water Companies obtain their supplies (including the Lambeth Company at Thames Ditton), banks of a black deporit exist, which consist principally of animal and vegetable dibris in a state of decomposition, and which abounds with snimal and vegetable life. In the summer season the Thames abounds with aquatic flowering plants belonging to various species, which grow from the beds of mud on its sides, and indicate by their luxuriance the large supply of manure they receive. Various species of Confervm are also abundant. The Thames also abounds with fish and various forms of invertebrate animals easily detected with the naked eye. Mollusca belonging to the
genera Limnens, Planorbis, Unio, Cyclas, Palludina, Neritina, and others, are very numerous. The larver of almost innumerable forms of insects are found in its mud, and on the stones on its banks. Visible forms of Annelides, amongst which may be mentioned the common leech, with other species of the same genus, occur in great numbers. Various species of water-spider are common. Crustaceans, from the larger forms of the freshwater shrimps, down to the microscopic Cyclops and Daphnia, which, scarcely seen singly, by their numbers frequently give a yellow colour to the water, are amongst the most abundant forms of its animal life. Of the Radiate animals the Hydra with Cristatella and other forms of Zoophytes are frequently present, whilst the freah-water sponge (spongilla fluviatilis) is found in some places in great ahundance, and its spicula form a part of the deposit of the purest specimens of the water.

The plants and animals whose existence and true nature are revealed by the microscope are much more numerous than those discoverable by the naked eye. The mode of proceeding in order to examine these creatures as they exist in waters supplied by the London Companies was as follows: The waters were collected and sent in bottles numbered and labelled, so that they could be identified. After having been placed in various situations, they were examined as to whether any creatures visible to the naked eye were floating about. The clear water was then poured off with the exception of about two ounces, which contained whatever of animal and vegetable matter had been deposited, as well as the majority of the living organisms to be found in the water. These deposits consisted of decomposing animal and vegetable matter, and almo living plantsand animals. A large quantity of the deposit was composed of disorganised matter, sometimes quite black, at other times of a brown or a light yellow colour. Frequently in the midst of this matter could be seen portions of animal and vegetable tissue in a less decomposed state. Portions of woody tissue, spiral vessels, cotton hairs, fragments of leaves, and parts of small branches, seeds of water-plants, and pieces of wood, were frequently observed. Of animal remains, the legs and cases of the crustacea were most common, but pieces of the skins of the larvw of flies, as well as the hairs of animals and even portions of muscular fibre, were not unfrequent. It is from such substances as these that living organisms derive their food, plants the gases which they need, and some animals their usual nutriment.

The plants discovered by the micruscope belonged to the families Confervacea, Desmiden, Diatomacea, and Fungi.

The Confervacea are generally inhabitants of fresh water. Although many of them grow in pure waters, certain forms of them are adapted to almost every condition of impurity. Thus I have found Calothrix nivea and species of Oscillatoria in the sulphureous waters of Harrowgate, Askern, Moffat, and of other places where these springs exist. The same plants are also present in waters highly charged with night soil or the refuse of towns. The portions of these plants found in the Thames water belonged to those forms which are generated in the above circumstances, and may certainly be regarded as indicative of the impurity of the water in which they were found.

The Desmidece are all of them microscopic plants, which are found in most abundance in still waters; they would therefore not be expected to occur in abundance in waters procured from a running stream. Several species, however, have been found in the waters supplied by the Companies, and great numbers in the mud of the Thames procured in quiet spots far above Teddington Lock. In the case, of water procured from the Lambeth Company's supply, which had stood for a few days exposed to the air of a room, the bottom of the veasel was observed to be green, and on examination this colour was found to depead on an immense quantity of a small Desmidian, the Closterium setaceum. An example of one of the most frequent of these plants is shown in fig. 7.
The Fungi are plants rather of the land than of the water. They are found wherever animal or vegetable matter is decomposing in the air. Some of the species, however, are found in the water, and in most of the waters which 1 have examined the well-known fibrilla of these plants have presented themselves. They were in considerable numbers in the waters taken from covered wells 94 feet in depth, in the city of Brussels.
The Diatomaceas are by far the most abundant forms of plants of a micruscopic size found ln water. These beings are endowed

Fg, 7-Scenedesming quadifarids, magoified 300 diamelert.

with movement, and were ats one time regarded as animalsTheir distinguishing peculiarity is that they possess a solid framework of flint, which is covered with a membrane of vegetable matter. The specimen (fig. 1) is an example of a

Fig. 1.-Naricala
Hippocampus, Hippocampus
magnifed 470 diameters.

Fig. 2.
(a) Vorticelle nebullfera,

(o, d) Prugliarde pectinalis,
Narculs arcun,
Prustule of Gomphonems,
Prustule of Gomphone
Infuiofts
megnitied 100 diameters.

Mg. 3.-Eactilaria aloggath, 200 diametorr.

Fig. 4,-Syaedra Ulua, magnifed 100 diameters.

Pig. E.-Asterionilla formosa, matriked 100 diameters.

Fig. 6.-Bacillaria
ralgaris,
magnlied 100 dtameters.
very common form of these beings, in the Thames water. The flint they contain in their substance must have been derived from the waters in which they live, and they arealways indicative
of a water containing silex as an ingredient. I have found some form or another of these Diatomacer in all the waters which I have examined. They sometimes clothe other substances in clusters, as is the case with the Synedra Ulna (fig 4). As met with in the water, they are mixed with the other forms of animal and vegetable life as presented in fig. 2. The mode of development of these plants is not known, but it is probable that they are propagated by minute spores which evade the filtration to which waters are usually subjected (figs, 3, 4, 5, 6). It is not always easy to identify the spores or reproductive cells of individual species of plants, but in almost every instance 1 found amongst the decomposing debris of the waters examined, the spores of some of the lower forms of plants.
The microscopic forms of animal life found in the waters sent me for examination were very numerous, and belonged to several families. I have already spoken of the visible forms of Crustacea. Many of the smaller kinds, called Entomostraca, are only discernable by aid of the microscope, although some species can be easily detected with the naked eye when floating through the water. The most common form of these creatures is the Cyclops quadricornis (figs. 20, 21, and 28). The next most common form is the Chydorus sphericus (fig. 93). These creatures are to be found all the year round in waters about the metropolis, but they are more especially abundant in the summer months. They are carnivorous in their habits, and indicate not only that waters contain organic matters, but that plants have been formed and that these plants are inhabited by smaller animals on which they prey.

F48. 20.-Cyclop quadricornis (female),

Fig. 21 -Cyclopa quadricornis (male), magnified
50 diametert

Pig. 22. Cyclops (young), magalfed 50 diameters.

Fig. 28. -Chydoras iphericus, magnified 50 diameters.

But few of the true insects in their perfect state are found in the filtered waters snpplied for use in London, although waterbeetles and other forms abound in the open Thames. The eggs and larves of insects, however, are not nncommon. Many of the Neuropterous and Dipterous insects deposit their ova on plants in the water, and after they are hatched the larvol live on the plants and on the organic deposits of the river. Some plants obtained in the month of May in the River Thames were literally covered with the larve of a small ε y. Such larvo are not always easily discoverable from some permanent forms of articulated animals belonging to the family of Annelides, a family to which the leech belongs. A creature evidently ralated to
this family, and known by the erroneous name Vibrio fluviatilia, was found present in every specimen of water submitted to examination (fig. 19). These creatures are always found in greatest abundance where the deposit in thickest and blackent, and are most numerous where the waters contain the largeat quantity of organic matters in a state of decay.

Fig. 19.-Vibro furiatalls, magoifed 100 diametern.
The creatures mentioned last resemble some of the forms of Entozoa or worms found inhabiting man's body, and it is a grave question for consideration, from whence these creatures are introduced into the body. It is almost certain that they aro

Flg. 24.-Chmetonotra Laris, magnitied 500 dianeters.

Fig. 28, - Euchlanis brevispina, magolied 200 diameters.

Fis. 25. - Notommata aurlia, magnified 280 diap eters.
not generated de nowo in the human body, and consequently that their eggs or some form of their existence are introduced from without. From what is already known of the history of theee
creatures in the lower animals, it is probable they are introduced into the system with the water which is drank. Thus it is known that the stickleback awallows the egge of a species of entozoa called Bothriocephalus, but whilst inside the fish these egge never develope into a perfect entozoon; but if the fish is eaten by a bird, the creature becomes perfectly developed. The Gordius or hair-worm deposits its eggs in water, but the eggs are not developed in this position; they are first swallowed by insects, and in this position the egg is hatched, produces the gordius which becomes impregnated, and escapes from the insect into waters where it deposits its egge. The eggs of a species of tape-worm, when swallowed by a rat or mouse, will not produce perfect tape-worms in the inside of those creatures, but if they are eaten by the cat or dog, then the perfect tape-worm is produced. Many other instances might be quoted to show that it is not improbable that some of the forms of animal life which abound in waters containing organic matter, are transitionary states of those permanent forms of animals which infest the body, and sometimes even destroy human life.

Of the animals made conspicuons by the microscope, none have more varied habits, or present so high an organisation for their small size, as the Rotifers or wheel-animacules. These creatures, like the Entomostracous Crustacea, are mostly carnivarous, and indicate, where they are, that lower forms of animal life are present. In the waters examined, 1 have been
enabled to identify twelve apecies of these oreaturas. The species represented by figs. $24,25,26,27$, may be ragarded as types of the forms which these animals assume.
Amongst the first organic belngs which are brought into existence by the presence of decomposing animal and vegetable matters are the Infusoria. These creatures, which a little time ago were unhesitatingly classed as animals, must now, many of them, be regarded as plants, as the function they perform in the waters in which they are found is to organise the carbonic acid, ammonia, and other gases which are given off during the decomposition of organic substances. To plants rather than to animals, we may refer such forms as those presented by figs. 11, 13, 14, 17, and 18. Although there is no doubt that these beings are wisely adapted to take up those matters which would be more injurious were they not present, it should be recollected tbat wherever they exist, they indicate the presence of substances which cannot but be injurious when taken into the human system.

Of the animal character of many of the creatures belonging to this family there can be no doubt. Such are the group of which fig. 8 is the type, and which, when in the water, can be seen to devour many of the smaller forms of animalcules. Such appear also to be the various forms of Vorticelline, fig. $\boldsymbol{2}$ a, fig. 12, and fig. 16. These creatures are found adhering to portions of decaying matter, and living on the more plant-like forms referred to above. Many of the Infusoria are adapted to living in circumstances which would destroy the life of higher animals. Thus with the plants of the sulpbureous waters I invariably found associated forms of Infusoria adapted to live upon the plants growing under these circumstances. Such forms as those presented by figs. 9,10 , and 15 , are found where decomposition of organic matter is going on most actively.

There is another group of animals which are perhsps lower in organisation than the Infusoria, and which contribute to the adulteration of the water of rivers: these are the sponges. The fresh-water Sponge (Spongilla fluviatilis) has the solid parts of its body made up of siliceous (flinty) spicula, and when the animal part dies the spicula remain, and are often presented under the microscope.

The waters examined were as follows:-

1. New River water, three quart bottles of which were sent me from 19, Buckingham-street on the 9th of May; they were dated May 6th, and signed James Fry. I also received from Dr. Clark a pint bottle of water, which he stated he had procured from the top of the water at the spring at Chadwell. In all these cases the water presented a considerable deposit of a light brown colour after standing a few hours. In two bottles out of the four, small entomostracous crustacea could be seen floating about with the naked eye. With the exception of the West Middlesex, the New River water presented the greatest number of forms of animal and vegetable life.
z. Water of Lambeth Company supplied from Thames Ditton. Six specimens of this water were sent me: three labelled May 6th, and sent to my house May 8th; two sent May 28 nd, and one May 29th, all signed James Fry. These specimens differed little from each other, either in the general appearance of the water, the amount of deposit, or the number of species of plants and animals found in the deposit. The deposit was not so dark in colour nor in so large quantity as in either the New River, West Middlesex, or Surrey Sand waters, but it presented, within three species, as many forms of animal and vegetable life as any of them.
2. West Middlesex Company. Three specimens of this water were sent me, and dated May 8th, and signed James Fry. Single specimens of a small entomostracous crustacean were seen floating about the water. The deposit was of a light brown, and considerable in quantity. Of all the waters examined it presented the greatest variety as well as the greatest number of forms of plants and animals. When exposed for several days to the action of light, the vegetation of Conferve and other plants at the bottom of the vessel was greater in this water than any of the others I received.
3. Water collected from the Surrey Sands near Farnham, proposed by the Hon. W. Napier, and adopted by the Board of Health. They were sent to my house on the 15 th and 16 th of May, and examined by me at various dates from the 17 th of May to the 5th of June. They were marked as follows: B. S. 1, Bramshot; B. S. 2, Barford Mills; B. S. 3, Cosford House; B. S. 4, Sweet Water Pond; B. S. 5, Northfleet. They had all a light yellow colour, a rather plentiful dark brown deposit, and, on exposure to light, the bottom of the vessel presented a green appearance, from the growth of a species of Conferva. Although the deposit was much the same, the variety of species of animals and plants found in these waters varied considerably. Thus, B. S. 1, gave 24 species; B. S. g, gave 21 species; B. S. 3, gave 11 species; B. S. 4, gave 10 species; B. S. 5 , gave 10 species. These waters contained fewer Diatomacew and a larger number of infusory animalcules than any of the others with the exception of the West Middlesex.
4. Water from wells at Brussels. There were three green glass bottles-full sent : the first, labelled "No. I., from a deep well at Brussels 94 feet;" another, "No. II., from a well in the middle of Brussels, Place des Barricades, 54 feet deep, May 14, 1858." The label of the third was lost after it reached my house. All these waters presented a copious deposit, which consisted of crystals, part of which were dissolved up by hydrochloric acid, and part resisted this agent. The former were probably carbonate of lime. Amongst the deposit were portions of decomposing vegetable matter and a certain number of plants and animals. The water having been obtained from deep wells and kept in dark glass bottles was not in a favourable condition for the development of organio beings.
5. Grand Junction Company. The water was obtained from the pipe and cistern at 22, Old Burlington-street. The water whs examined from the pipe from the cistern, and after it had been submitted to the action of the house filter. This water did not present so great a variety of forms as many of the others, but the furms that presented themeelves were very numerous, especially the Diatomaces. Even after the most cureful filtering by one of Lipscombe's filters, it presented the following objects: 1. Portions of woody fibre; 2. Navicula elongata (fig. 3); 3. Actinophrys Sol (fig. 17); 4. Numerous Monadinæ (fig. $2, k$); 5. Kolpoda cucullus (fig. 11); 6. Species of Diatomacem (figs. 1-5); 7. Uvella virescens.
6. Watford Spring Water. Of this I have examined several specimens, softened and unsoftened, sent me by Dr. Clark from 19, Buckingham-street, brought by Mr. Dugald Campbell. In some of the frst of these specimens, traces of organic matter
were found, but after further examination it was discovered that this was probably owing to the difficulty of obtaining specimens from an open spring free from organic matter. In specimens collected with care, and especially when softened it was found as free from organic matter as distilled water itself.

REVEFTV.

A Treatise on Rural Architecture. By W. J. Geay, Architect. Edinburgh: Lizars. 1858.
We have several times impressed on our readers the importance of this rising branch of practice, on which any information is valuable. In the work now before us Mr. Gray gives the result. of his own experience in the construction of geveral farms farm-houses, cottages, manses, and schools, the specifications and drawings of which constitute the chief material; and as these are very full, the plates of themselves numbering fortyeight, with full details, the character of the work may be well enough appreciated. It is, indeed, material of this kind which is now chiedy wanted.

Progress in Art and Architecture, with Precedents for Ornament. By John P. Seddon, Architect, M.R.I.B.A. London: Bogue. 1852.

We have already had the opportunity of laying before our readers Mr. Seddon's views on the promotion of architecture, having given full reports of the papers read by him before the Architectural Association, which form the basis of the present volume. This precludes us from noticing it at that length which the importance of the subject would otherwise demand; but we think it right to observe, that in the present work we have a complete exposition and carefully-digested treatise on the subject matter, with very copious illustrations, serving as a very usefal compendium of the wsthetics of the Pointed styles. In these plates the varied characteristics of the continental style will be most readily studied.

Statement of Buths and Washhouses. By P. Prichard Baly: C.E. London: Effingham Wilson. 1852.
Among the various good measures taken by the Committee for Promoting Baths and Washhouses for the Labouring Classee, has been that of directing Mr. Baly, their engineer, to publish a statement of their proceedings. To professional men this will be interesting, because it gives full information as to the working of such establishments; and the more so, because it gives such convincing facts as to their success as must lead to a great extension of the system in our provincial towns. Bathe and washhouses, however complete in their individual examples and details, are as yet in their infancy, for they will hereafter be absolutely necessary, and inseparable from towin organisation, as other public buildings are now recognised to be.

We should have liked to have gone more fully into the subject, as Mr. Baly's report enables us to do, but want of space unfortunately prevents. We cannot refrain from remarking, as a caution to our architectural friends, that much remains to be done in the way of economy, by adopting the cheapest materials and means, so as to reduce the cost of building. We should, above all, deprecate expenditure in ornament, though Mr. Baly shows a small establishment can be formed for 2250 . We shall very probably revert to his work nest month.

A Concise Treatise on Eccentric Turning. By An Anatecle

 London: Pelham Richardson. 1852.The object of this treatise is on the plan of Mr. Ibbetson's, to furnish a familiar guide to the use of the lathe. The writer takes as his standard one of Holtzapffel's lathes with eccentric and oval chucks, division-plate, slide-rest, and drilling-frame, and bases his instructions accordingly. It is a peculiarity of the book, and will be a recommendation to many parties, that the whole of the illustrations of the book and binding were turned on boxwood and metal by the author himself, who has further worked off the impreseions with Mr. Cowper's parlour printing presses. We think this system of decoration might be practically applied for wood engravings and bookbinding more extensively than it is, and that the lathe might become an
accessory of the wood-engraver as of the copper-plate engraver. The author of the book before us gives many useful instructions, by which patterns invented by Mr. Ibbetson for complex apparatus are adapted to the common lathe.

Plan for Protecting Railuoay Trains. By J. P. Wachter, C.E. Rotterdam. 1858.
The plans for the protection of rallway trains are numerous; but when they are presented in a practical shape, as this is, and come from a practical man like Mr. Wachter, they merit attention, and therefore we commend his invention to the notice of the railway engineers.

Railway Machinery. By Daniel Kinnear Clari, Engineer. London: Blackie aud Son. Part XIV.
We have every reason to confirm the anticipations which we have first held as to this work, and which have been supported in its progress. It is one of the cheapest and most useful works which has been offered to the practical man, and happily combines amplitude of design with copiousness of detail, the text, too, well supporting the engraved illustrations. The part on the Locomotive, now hefore us, gives full evidence of this.

Society of Arts._The Society have published their usual list of subjects for which they offer premiums, and it shows a praiseworthy and enlightened zeal for the promotion of industrial interests. We therefore beg to call the attention of professional men and mechanics to the subject, as it is desirable that every means should be taken for promoting the objects of the Society. The list may be obtained at the rooms of the Society.

ON ECCLESIASTICAL DESIGN.

By Samued Hugoing.

[Abstract of a Paper read at the Liverpool Architectural Society.] Mr. Hugoins, in introducing the subject said, one of the results of the late extravagant influence allowed to precedent and of the undue attention paid to style, has been forgetfulness of those eternal principles, by the application of which we can alone arrive at real beauty in architecture. Antiquarian research into the art of the past, discrimiration of distinctions in style, anxiety after chronological truth in the recombination of ancient elements had left little time or inclination for study of the principles of architecture itself, for gaining a knowledge of those laws that are binding upon all styles and that cannot be suspended in favour of any; and, consequently, ignorance of the conditions of beauty had produced a multitude of buildings, which, however correct in style, do not give full satisfaction to the mind. Before proceeding further he expressed a hope that, in pointing to what he deemed the errors of styles and schools, it would not be supposed that he had any especial allusion to works in Liverpool or its vicinity. He thought that many churches and other structures lately erected in that neighbourhood declare the relative rank of Liverpool in architectural talent to be high. On several works of late emanation from the profession in Liverpool, of both styles, he himself had looked with admiration; thongh he might have regretted at the time that to a greater or leas extent, talent had been misapplied, or purpose misunderstood. He entered at length into the subject of proportion, particularly in reference to spires and towers, and illustrated his remarks by reference to various cathedrals and churches, and concluded by correcting what he deemed an error of Ruskin on the subject, who speaks of the pinnacles being the third term to the spire and tower; he said that the writer had mistaken the meaning of the term proportion, as used by architectural writers, and understood by the profession generally. He treated on the proper connection of spire and tower, and alluded to a remark of Mr. Britton, who had found fault with Salisbury spire. He said the chief scope for feeling in such btructures consists in adjusting the tower to the harmonious reception of the spire, proportioning the latter to it, and gracefully joining them together. Church towers, with a pinnacle at each of the four angles, and wone in the middle, had been objected to; but perspective, which aids the picturesque, in some measure corrects the fault of equality, as it causes one of the
pinnacles, in most views of the tower, to be visually supreme. The height of towers generally throws one angle up so high as to produce sufficient of the pyramidial form to the eye of the spectator. A tower at each of four angles, or four equal towers to a building, is quite justifiable, he considered, when there is a centre feature to unite them, though it might be less in height, provided it be superior in some other respects; as of greater beauty of form-a dome, for instance, as the mosque of Achmet, with its guard of minarets-or even a tower, if greater in diameter, or more light and elegant in shape: it unites them together, as they all refor to it, and seem to exist for its protartion. On the sulject of outline he dissented from a late writer (the late A. Bartholomew), and entered into a full exposition of his own views thereon, which he concluded by observing that there are principles besides beauty of outline; there was power of effect-expressional requirements, which had been more neglected in the Classic than in the Gothic. He spoke approvingly of All Saints' Church, Oxford, which in most respects, he said, was the best he had seen of its class. The great charm of Aldrich's steeple, he remarked, lies in its simplicity and its power. Complexity and tameness were the characteristics of most others he had seen. Piling order upou order in mid-air, a practice which too many examples exhibited, was a jesting with Classic architecture, and produced at best but so many rivals of the Chinese pagoda. Neither in St. George's Church nor in St. Michael's Church, of this town, had the architects caught the secret of general effect in the coniposition, which is contrast between the form of the orders or stories. St. George's presents the transition from an octagon to a circle, with no increase of columnar richneas, and consequently looks tame; and St. Michael's Church, though far more effective, rises but from a square to a slightly expressed cross; while All Saints' Church breaks at once from a plain square tower to a rich, thickset, circular peristyle, the square basement giving increased effect to the latter, which strikes at once with its classic and artistic beauty. We must fail in these, as in all else, unless we look for inspirations of beauty on the fair face of nature; and for power of effect, on her grander imagery. The poet holds the mirror up to nature and life; and so, according to his power, does the architect, whose art not only yields majestic and beautiful images of nature, refined by human fancy and feeling, but has sympathy by its mysterious forms, and combinations with the triumphs and woes, the hopes and aspirations of humanity. He treated on a variety of topics connected with his subject, and combatted many of the prejudices and errors of the day. He said that to divest the architectural mind of all prejudice and chance associations-of all restrictions imposed by precedent, fashion, bigotry, narrow or false criticism-and bring it to yield obedience to natural laws only, is to be the great task of the day. Freedom is in all things an essential condition of growth and power. Political freedom is not more essential to intellectual, moral, and religious prosperity and progress, than is freedom of mind from all the shackles of precedent, and the bonds of ancient rule, to advancement and wuccess in architecture, which cannot extensively flourish, and reach the excellence of former times, until these are brought into perfect abeyance. He concluded by remarking that the true artist will not restrict himself to one style or language of art, but will extract from all styles for the storing of his mental hive; but he combines them according to new affinities; and from the elements which other minds in other lands have invented, he will rear structures of glory and beanty for every required use-new in the right sense of the word; new, and yet old-new by their originality of conception; old as the universe, by their sympathy with humanity.

Mortise Bricks.-Mr. J. Z. A. Wagner has exhibited to the Franklin Institute a new form of brick of his invention, having a mortise in its centre. The advantages claimed for this brick are, economy of fuel in its manufacture, less liability to alsorb moisture, the ease with which it may be divided, and greater strength of wall constructed of bricks of this form.

Specification of Works.-It has been decided in the Court of Exchequer, by the full court, in the case of Instan v. Yates, that a specification of works signed by the parties to an agreement for their execution, and referred to in such agreement, but not annexed to or indorsed upon it, should be stamped separately from the agreement. It is too late to make the objection, in moving to set aside the verdict and enter a nonsuit.

ON FITNESS, AS A PRINCIPLE OF DESIGN IN ARCHITECTURE.*

By Joseph Boclt.

By fitness in architecture, I wish to be understood as speaking of the adaptation of the internal arrangements of any building to the purposes to which it is applied; of consistency between the external appearance and the internal arrangements; of propriety in the design of the ornamental detail; and of appropriateness in the materials made use of; the whole governed by a regard to the funds at command; so that no incongruity may be apparent in the erection through one part being bedizened with ornament, whilst another is left naked and povertystricken.
That every building should be adapted in all respects to the purposes for which it is built, appears at first sight a self-evident proposition, a truism. But a very cursory inspection of almost every public, and of many private edifices, will satisfy any one that it is almost the last idea in the mind of the architect. Nay, as regards public buildings at least, the opposite opinion is not unfrequently inculcated by those who consider it derogatory to an art-that is, a fine art-to submit itself to conditions of every-day convenience; hy. men who form to themselves an ideal of what architecture should be; which might be realised if the edifices were to form part of a museum of architecture, and were only specimens to look at, not buildings for use and occupation, and erected for a purpose involving considerations common-place perhaps, but also practical, and giving to them, in the estimation of the public, an appreciable value. We should think our host a very unreasonable man indeed if, having loaded his tables with specimens of his confectionary art in filagree work and sugar-candy, and omitted the edibles, he should expect our bodily appetites to be satisfied by the vision of that which is pretty to look at but cannot be devoured. Yet, in architecture, the gratification of the eye only is thought to be the end and aim of the art; and one of our principal architects controverts the opposite opinion as heresy, in the following words:-"It will be proper to make a few remarks on the distinction between mere house building and that high character of composition in the Grecian and Roman orders which is properly styled architecture; for, though we have many nobly architectural houses, we are much in danger of having our public edifices debased by a consideration of what is convenient as a house, rather than what is correct as an architectural design." It must certainly be admitted that the architects of the Exchange Buildings and the Custom-house are not obnoxious to the accusation of having vulgarised their works by any such common-place notions; tested by Mr. Rickman's principle, as far as the nbsence of convenience is a guide, they should rank as specimens of very high art indeed. But they are not so esteemed by the public, who seem to judge in the spirit of the proverb which speaks of the "proof of the pudding;" and are unable to estimate that art whose quality is so fine as to he inappreciable to their common-sense ideas of utility and couvenience.

The advocates of any opinion, and the professors of any art, who do not receive that attention from the public they think their due, may feel satisfied there is some inherent defect either in that they advocate or in their own manner of teaching it; and it would be no unprofitable occupation for an evening if we could help each other to popularise our profession, which ought to rank highly, combining as it does, in its perfect practice, scientific knowledge of no mean character, with a genial appreciation of all artistical beauties.
In the works of that Great Architect, who has strewn the universe with his glorious and his beautiful creations, as far as our finite powers are able to gauge infinite wisdom, we find indubitable evidences of an intention to make all beauty subserve purposes of the highest but most practical utility. Ask the professors of different sciences, whose pursuits are the investigation of various departments of nature, and the astronomer will tell you of the dependence of all the heavenly bodies upon each other by influences so proportioned that any derangement would be felt throughout the universe; of gravity, which rules the planets in their course and bows the snowdrop's pensive head; of the laws of light; of the succession of the seasons; and of the recurrence of the tides: the natural philosopher will

[^62]appeal to varions phenomens, and will prove that the storm and the earthquake are not only grand but beneficial in their influences, and promotive of new phases of beanty; that the thander is not only awful and the lightning glorious, but that electricity is an active agent in promoting the ends of never-wearying benevolence; that chemistry is ever engaged in decompoaing existing bodies when their sphere of usefulness is clused, in order to restore their elements to usefulnese of another kind, graced by beauty most transcendent: the geologist will tell us of animals who lived in former ages, the mastodon snd the mighty megatherium, the pleaiosauros and the icthyosauros, the ammonite and trilobite, having a resemblance to existing species, modified by a regard to an antediluvian world: whilst the natural historian will refer to the works of the inferior animals, and will show how, in the seal's dam and the bee's honeycomb, the principle of fitness reigus paramount: and the traveller will speak of the Esquimanx's hut and the Arab's tent, which are constructed according to its dictatee.

Turn where we will, it is only in the architectural constructions of civilised man that we find the most extraordinary discrepancies between the arrangements of a structure and its parposeas. Are, then, inconvenience and unfitness evidences of civilisation? or are they rather to be regarded as proofs of the forgetfulness of that instinctive principle upon which all excellence muat be based? Stated thua nakedly, the question can receive but one answer; yet how otherwise are we to acconnt for the superiority of the seal and the humble bee?

Much of the unfitness observable is due to the sickening cant with which the study of architecture is overiaid. Each amaterr, according to prejadices accidentally imbibed, assumes that his favourite style embodies all excellence, and that the others are barbarous substitutes; and the generality of the profession are either equally prejudiced or are governed by the prejudices of their patrons, and can admire no excellence which is not recorded by Vitruvius or Stuart and Revett, practised by Palladio, or inculcated by the ecclesiologists, just as the whim may take them.
So long as architects will not work out for themselves a standard of excellenco- 50 long as they take their ideal from the whims of their patrons, and it is not the result of study and investigation-architecture will continue as subject to the fluotuations of fashion as do upholstery and paperhanging; and the country will, from time to time, be overrun by a mania for the ClassicsI, the Italian, or the Gothic styles as "time and chance determine."
Let it not be supposed that I wish to underrate the importance of studying the predilections of the age, and of enlisting the more worthy associations of ideas in favour of the work in hand; but this must be done by refining the common-place, by elevating the ruling spirit to a higher standard; it must not be done at the expense of the purpose for which the building is erected, or we shall be only copyists and modellera-not architects and professors of a creative art.
If we glance at the course pursued by our architectural predecessors, we shall find that they can be imitated with better effect by studying the spirit rather than the letter of their practice.
We find in the earlier ages, except where the art is in a manifestly transition state between two styles, that it is uniformly governed in its main characteristics by the climate, the materials, and the habits of the people, modified by the associations derived from a preceding age or from other countries. The elements of the colossal architecture of Egypt attain their most perfect development at Thebes and Karnak, and were gradually refined to the slender proportions of Athens and of Rome. Of the private edifices of the Egyptians and the Greeks we have no remains; but their temples and their tombs are embodiments of their religious superstitions, were conducive to the purposes of their erection, and are evidence of their architects adhesion to the principle of fitness; whilst at Pompeii the architect of later Rome acknuwledges the force of the same principle, by studying the convenient arrangement of the different buildings there preserved, and by their appropriate decoration.

The irruption of Northmen completed the destruction of the enervated remains of classsical architecture as then practised, and prepared for the evolution of a new style, as different as possible in its principle of beauty and effect; but the medimval architects-those noble Freemasons who cherished the lamp of science and the elements of civilisation in an age whose internal history is but imperfectly recurded-have left no proof that they wished to traverse this first principle of success in the art. But
in their cathedrals, their convents, their castles, and in all their works, having left enduring evidence that according to their knowledge the material was that most suited for the purpose to which it was applied; whilst the external forms of the edifice, its outline or plan, and its elevation, were due to the climate and to the convenient occupation of the building.

With antic piliar, mages proof, roof,
With antic plike, mansy proof,
Aad atorled wiodows richly disht
were all subservient to the great purpose of the building-not stack on and about at random, without judgment and without taste. Their columns and arches, their buttresses, pinnacles, and mouldings, were features essential to constructive excel-lence-the common-places of building refined, by the taste and imagination of the Freemacon, intc evidence of his just appreciation of the purpose of the art, which he studied with scientific earnestness, elevated by his artistic feeling, and consecrated by his religious devotion.

Since the dissolution of their mighty union their art has wofully declined, in conseguence of the association of ideas produced by the revival of ancient learning, of the increased influence of the Italian republics upon the art, and of the promiscuous application of religious edifices at the Reformation. Here we reach a new era in architectural history; and a glance at this and subsequent periods will afford a clue to our deficiencies.

The confiscation of church property and its bestowal upon laymen, would open a wide door for the admission of numerous incongruities, since many buildings erected for religious societies had to be adapted to the use of private families, and the ecclesiastical edifices of one church applied to the use of another Hence a necessary violation of the principle of the fitness of the original design; and so also of the conversions of castles and fortified mansions to the purposes of a peaceful age; and as there are in all time men who more admire the errors of those above them than the unpretending excellencies of their own sphere, the blemishes thus produced would find frequent copyists in new buildings of humbler rank or for parvenus; and would be heightened by association with buttresses that strengthened nothing; turrets with blank loopholes containing the chimney-flue; battlements never manned; drawbridges never raised, across moate innocent of water; portcullises which were never lowered; and "arms hung up for monuments" which had not been "bruised" in the stricken field; and occasionally, to give additional piquancy to this mimicry of the baronial hall, a belted knight cased in mail, with lance and shield, kept watch upon a carpeted staircase, doing no deeds of bravery and chivalry, but a mere man of straw after all.

The wealth and magnificent longings of the Italian republics stimulated their architects to strike out forms of grandeur and of beauty, which harmoniously combine many of the features of both ancient and mediæval art, with a natural preference for the former, surrounded as they were with its fine remains, and residing as they did in a climate unfavourable to the highest developments of Gothic architecture.

The wealth, the learning, the refinement, and the commerce of the republics would naturally confer great influence upon their habits and taste, and assist in their diffusion throughout the civilised world. In this country foreign travel and the employment of foreign architects would produce further violations of the principle of fitness, by importations from countries of very different climate, habits, and associations. Classical architecture has found this soil as ungenial to its highest developments as was Italy to the Gothic, the experience of both affording strong arguments in favour of that principle which I believe to be the basis of all excellence in the art.

The revival of literature produced a morbid craving for examples of the temples described in the ancient authors; and as the writings and sculpture of the ancients were manifestly superior to those which were indigenous, it was hastily concluded that so must be their architecture; and therefore were the temples of an extinct or degraded people to be revived and adapted to modern use. In the absence of correct knowledge of the sublime works of Athens, many barbarisms passed muster ns classical beauties, and were worshipped as fac-similes of the glorious schievements of the age of Pericles, until Stuart and Revett's delineations directed attention to the true characteristics of Grecian architecture. Experience seems to prove that in its purity this style is quite unsuitable for any country but those which are blessed with a climate similar to that of

Greece. Our light is so cold, and the colour of our material, after exposure to a smoky atmosphere, so sombre, that the peculiar beauties of this style are quite lost, and the effect is chilling and repulsive. With the freshness of youth upon them, and with the modifications introduced by the architects, the Assize Courts and the Branch Bank may appear to controvert this opinion; but I am afraid that a very few years will establish its truth as regards them, since it is supported by past experience. The liverties which each architect has ventured to take appear to be conceived, for the most part, in a correct and artistic spirit, particularly at the Assize Courts, and may for a time delay the result, I fear.
Classical architecture, at any rate for the present, has succumbed to the Italian and Gothic styles, but it has left its mark in the numerous unsuitable edifices throughout the country, in which the colonnades of southern Europe give shade and damp to buildings it is sought to enlighten and warm with English windows and fireplaces, which are, for the most part, introduced in downright violation of all propriety, or are masked with all the ingenuity the architect is master of; whilst upon and around this specimen of pure art are placed statues clothed à la Greo (that is, one remove from a state of nature), as though they would persuade the shivering denizens of this cold, damp clime that it is the sunny south.
The portico, as now introduced, is generally a mere ornamental excrescence stuck on to the building, not embodied as an essential feature of the accommodation required, as though architects took the idea from meeting a bull with a stay's head, or some similar lusus natura, which to his perverted imagination appeared worthy of reduplication. Of this we have illustrations in the National Gallery and University College, London, and the southern entrance to the Assize Courts in this town, where the portico is placed at the top of so many steps that any one wishing to shelter under it may be wet through before he reaches it. The Wellington Rooms offer striking evidence of the random manner in which such applications are made. The elegant portico, as originally designed by Mr. Aikin, did not yield the requisite shelter, so the spaces between the columns were built up; and on ball nights a temporary shed is placed across the footpath, to the annoyance of the public, in order that the company may avoid exposure on leaving their carriages. Tbe committee, by whom the portico was closed up, have been, as I think, very unjustly censured for preferring a practical convenience to a merely visionary beauty: the party really open to blame is the architect, for had the original portico been a car-riage-porch, it might have retained its pristine beauty, and proved its adaptation to the purposes of the building. The eminent architect of the Assize Courts appears to have completely overlooked any provision for the exigencies of the climate and the use of the building. It is not now too late to repair this deficiency, but if it be amended it should be in a spirit consonant with the talent and taste of the original design. The Temple of Minerva Polias will give a hint as to one way in which this may be done.
[Since this was written, I have perused pretty nearly the whole of Mr. Fergussun's work upon the 'Principles of Beauty in Art,' and in the midst of much that appears on a frst reading fanciful but worthy of study, I have been rejoiced to find much sound common-sense and practical appreciation of art, with which I have cordially sympathised.
In concluding some observations upon the studied irregularity which the Greeks obser ved in the grouping of their edifices, he observes, "Had we any remains of their domestic or civil buildings, it would not now be required to notice or insist upon what is so self-evident; for to suppose that a people so eminently artistic as the Greeks could for one instant tolerate a falsehood in art is to show but little knowledge of either what art is, or how the Greeks practised it. They could not be ignorant that one of the first, and indeed the fundamental canon of true art in architecture, is, that the exterior of a building shall in every part and every detail express the interior as correctly as it is possible it can be done; and that all attempts to make two or more small things look like one large one, or any building look like what it is not, or as if belonging to another age from that in which it is erected, are vicious and false, and can only result in a direct falsehood covering an ill-concealed deceit."

And again, after gome remarks upon the Greek drama, he says, "It is a form, it is true, that has passed away and cannot return. But the fornis of beauty are numerous as the stars of heaven; and when one sets in the west it is only that others
may rise from the east not less bright than those which have disappeared; and the smallest star is a more beautiful and more sublime object to him who understands its meaning and its beauty, than is the sun itself to him who turns only an ignorant and listless gaze upon its splendid orb."]

The usual division of a church into the nave and side aisles appears to have had its origin, not in symbolism, but in fitness. In vaulted churches the span from wall to wall would be excessive, and large buttresses would be required to resist the thrust of the vaulting; and a similar difficulty would be experienced with the timber roof at a time when constructive carpentry was in a very low state. But the division of the span into three intervals removed these difficulties, and the introduction of the clerestory windows assisted the illumination of the building. 'The accession of dignity which was thus gained was an accidental accompaniment of this constructive excellence, not the essential feature of the design, to which economy, stability, and convenience-in a word, fitness-was to be sacrificed. If, however, we examine most of the churches built since the accession of the Tudors, we find this principle of fitness, and of the subserviency of appearances to conveniency of plan or constructive excellence, egregionsly violated. St. Paul's Cathedral is a remarkable example, for here, as has been well observed, "one half of the church is built to conceal the other." Here the architect has been so faitbless to his great scientific talents, and so unaware of the source of true architectural effect, as to conceal all his constructive resources and to mask his transcendant abilities, as though he was ashamed of his glorious handiwork!

The division of the church into a nave and side aisles involves the introduction of intermediate supports-a necessary evil in those days, and but little felt in a service whose influence was so dependent upon ceremonial observances, the effect of which would be rather heightened than impaired by such an arrangement. But in Protestant churches, particularly amongst the Dissenters, the interest of the congregation is concentrated upon the pulpit and the reading desk. It is desirable, therefore, that the audience should have an unimpeded view of the officiating clergyman; and intermediate supports should be avoided, as they either conceal the pulpit from a portion of the audience, or else, if placed in the aisles, impede the passage or necessitate the loss of space. The plan adopted by Mr. Holme in St. l'aul's, Prince's-park, is one way of obviating this objection: other designs for roofs present themselves to the investigator.

The introduction of the essential features of one class of religious edifices into churches whose ceremonial is independent of such accessories, is in bad taste, as suggesting discordance and controversy where harmony and unison are most desirable. In like manner, the formation of niches without statues, and where there is no probability of statues being provided at any time, is objectionable, as suggesting a feeling of incompleteness where, in fact, all is done that is intended. And thus that which is an agreeable feature when justified by its application to legitimate purposes-i. e. when fitly introduced-becomes by its misapplication evidence of the architect's want of resource and taste.

The introduction of blank windows, blank doors, blank chimneys, or shams of any kind, may be taken as prima facie evidence of a want of skill in the architect. He must be very deficient in taste who has resource to make-believes, when, by the exercise of a little talent, he can avoid such deception. I would add that I consider the introduction of shams as evidence that the architect had reversed the right order of proceeding, and designel his elevation before considering his plan; unless, indeed, they be adopted on the same principle as that which induced the ladies of the last century to wear patches of conspicuous size and ugliness, in order to distract attention from comparatively minur blemishes.

The modern use of the plinth is a striking illustration of that forgetfulness of the principle of fitness which is now so common. Uriginally the plinth was used as a protection to the set-off occasioned by the projection of the lower part of the wall as compured with the upper; the face of the plinth was flush with that of the wall beluw, and the upper edge was weathered to throw off the rain. Now the external face of the wall is one plane throughout, and the plinth-course becomes an unmeaning string of great depth and without weathering.

The form of the roof has an important influence in determining the character of the exterior; and as we enjoy more choice of material than did our forefathers, so will our architecture be leas
peculiar; we are at liberty to introduce roofs of a mach fistter pitch than they could venture to do. It must be determined by reference to convenience, expense, and appearance; but the character of the ornamental details should be modified by a regard to the climate and material. The large and greatiy projecting cornice of the Italian school is scarcely suitable to this locality, as the weathering on its surface is so flat as to yield very little protection to the stone; whilst the water diacharged over the face of the cornice disfigures the mouldings, and is an annoyance to passers-by, or to people waiting at the house door. The cornice of the Gothic style, on the other hand, is a better protection to the stone, and the gutter being worked in it, the quantity of water discharged over the front is much reduced. A comparison being established between the cills, ntrings, and other horizontal members of the two styles, will be found to establish a similar preference for the Gothic mouldings generally. At the same time there is 80 much that is agreeable in the Italian style, that I believe we should all regret its banishment; but if we continue its use, it must be acclimated by the introduction of such modifications as will remove these objections.

A regard to expense has its sway in fixing the character of a building, and, in connection with its size and design, legitimately determines the standing it occupies as an architectural work. Frequent mistakes are made, when the funds are but small, by undue outlay being lavished upon one portion of the building, to the injury of the remainder, inside and out, when a more equal distribution would produce a whole more perfect and gratifying. In works of art it seems indisputable that a whole of good and appropriate design is to be preferred to one of unequal character.

For illustration, compare the exteriors of the Royal Institution in Colquitt-street with that of the Royal Insurance Offices in North John-street. On the one hand, we have an edifice with the proprietors of which money was manifestly an object; the architect had no opportunity of showing his taste by the introduction of any ornament beyond a portico little better than a door-case, and cornices of an unpretending character on the main walls; but the arrangement of the parts, the grouping, is so effective, that I think it is almost impossible for any one to pass the building without pausing to look at it and carrying away a pleasant impression. In the Insurance Uffices, on the other hand, the observer would naturally suppose that he was looking at a club-house, to the owners of which expense was no object; ornament is profusely lavished, stuck on and about in almost every situation it is posssible to put any; and yet, with all this extravagance, the whole produced is unsatisfactory. Frittered into innumerable parts, unnecessary and senseless, it is a heavy conglomeration of many features, each struggling for notice, and depriving the design of all unity and repose. If we pass into the interior, we make the painful discovery that the lavish expenditure is all outside, like the apparelling of a dandy spendthrift; and were it not the property of a known wealthy proprietary, we might suppose the exterior to be some bankrupts "folly," purchased and completed by careful, prudent men, who wished to make the most of their bargain. In the Commercial Bank, to take another illustration, we have an exterior that might have been prepared by a student member (and even then it would be thought a young design), with an interior handsome and costly, agreeably indicative to the customers of a wealthy company.
It is an essential element in good constructive architecture that piers should be built upon piers, and not over voids, yet there is scarcely any principle which is more frequently evaded. Look around and see the innumerable examples, where piers and openings are jumbled together in such admirable confunion that at first a careful examination is needful to ascertain whether first principles are not sometimes wrong, and if a pier is not actually supported by a void; but fractured lintels and cills, crooked reveals, shattered bricks or stone, and long straggling cracks, the accompaniments of settling, show too plainly that nature's laws will not sanction such gross deviations frum the dictates of judgment and experience. Yet, day after day, is the same fault committed, as though the lesson was never to be acted upon. Shop-windows are the most glaring manifestations of this perversity, which leads men to build heavy piers on unseasoned timber bressumers, as if all the flaws produced by settlements were so many beauties, the presence of which was to be insured by every artifice the architect's talent can devise. It is certainly not impossible to make handsome shop-windows in
accordance with the principles of sound architecture,-as at the Apothecaries' Hall, or Mr. Rainford's new shop in Reashawstreet, -and if they should be a little smaller, less capital will be required for their daily dressing or baiting to catch customers.

The proper application of materials is a subject which would of itself fill a paper of considerable length; I shall not enter upon it this evening further than to protest against the use, or rather the ABuse, of cement. The practice of smearing over the exterior of a building with this composition is costly, is subversive of good workmanship, and is at variance with the dictates of common sense, because it seeks to protect the more durable material by the assistance of the more perishable.

It is well known that bricklayers do not take the same pains with their work when it is to be concealed by cement as when it is to be open to the light of day; and I am sure that Liverpool bricklayers require every incentive to improvement and excellence, and no excuse nor opportunity for making bad work. The use of cement in exteriors I conceive to be allowable only where necessary to repel damp, and where an old building is to be furbished up as good as new, or for some other temporary purpose. The habitual use of it by architects of standing must, Ifancy, arise from an impatience, perhaps not wholly unnatural, to see how their works will look in old age; but they should remember that premature old age wants a charm belonging to the influence of time; and that though the senility which proceeds from natural decay is touchingly beautiful, that which is the consequence of the misapplication of talents is mean and contemptible. The ruins which are hallowed by the course of many years, and around which are entwined the recollected associations of other days, are indeed beantiful; but the mushroom inanities of rubbish and cement, which decay almost before they are finished, are paltry in the extreme; and he who trusts his reputation to such keeping must bear the odium usually attached to bad company. False and meretricious as are such paste-like imitations, the application of them, which is now so common, cannot be too deeply deplored-too eeverely censured.

But one shade better, or rather, I should say, but one degree less blameable, are the imitations of various materials, in which our painters and decorators are striving to excel-lavishing in the pursuit of an excellence which becomes less valuable the more nearly it is attained, that time which would be more judiciously employed in studying correct principles of colouring, drawing, and design. Surrounded, as we are, from our youth up, by sham oak, sham stone, sham marble, by scrolls and patera in sham relief, and by all those other shams in which the architects of our days exhibit sham taste and seek sham fame, what wonder is it if suciety should take its colouring from the falsities which surround us, and that we should be disgraced by sham sentiment, sham credit, and sham principles; that we find the fruit that was fabled in a former age frequently plucked in this-fair and beautiful to the eye, but within filled with ashes and bitterness, falsehood and disappointment?

And here I will conclude, though much may be said on the application of the general principle of fitness to the arrangement of buildings-their elevation, the details of their ornament, and the material; but to do justice to all these would occupy too much of your time. If, however, the principle I have laid down be adopted, its application may be readily deduced. Let it not be supposed that 1 consider "fitness" synonymous with beauty-far from it; it is but the framework upon which beauty is to be wrought. If the frame be shapeless, can we but regret the art which is wasted on its decoration? I do, however, believe that truth is an essential element in all-enduring beauty; and to secure truth in architecture we must first have "fitness." This principle ought to pervade every structure, however mean or noble; and where it exists it gives individuality and character. It is this which legitimately distinguishes ecclesiastical from domestic edifices, the haunts of commerce from the seats of science, the cottages of humble poverty from the abodes of wealth and luxury; and were it always allowed the influence it ought to exercise, we should have no more examples of Grecian temples applied to modern uses; of conventual buildings adapted to domestic purposes; or of barn-like erections consecrated to the Most High; but all our practice would be governed by a due consideration of the uses for which our work is intended.

FORM AND SIZE OF SEWERS AND DRAINS.*

Increased Power of the Sweep of Wuter gained by Alterations

 in the Forms of Sewers.Ir appeared on examination that accumulations were greatly influenced by the shape of sewers, where the conditions as to run of sewer water or fall were the same. The trial works prepared in respect to sewers are here adverted to as illustrative, on a large scale, of the principles of construction previously noticed. Mr. Roe, surveyor of the Holborn and Finsbury division, who made one of the earliest advances in the improvement of the construction of sewers, had shown that, by an alteration of the form of sewer from a flat segment to an egg-shape-with the same quantity of water, at the same inclination-the deposit was reduced one-half. As a point of pecuniary economy accompanying improvement in construction, it was shown that the number of bricks required to construct a sewer, with upright sides, 75 inches long, would suffice for the construction of an egg-shaped sewer, with the same sectional capacity, 122 inches long.

Uther examples might be adduced of improved results obtained by variations in form, without any change of the internal capacity of sewers.t. The egg-shape possesses an advantage over the circular sewer in the increased scouring action derived from the greater rapidity of flow when the stream is small, and occupies only a small proportion of the area; and this is the general condition where sewers are made large enough for men to traverse them, without reference to the quantities of sewage which they have to convey; but it should be observed, that wherever good inclinations are obtainable, and the ordinary flow would be sufficient to keep the circular form of sewer clear of deposit, that form is to be preferred. It is stronger and more economical, it presents less frictional surface, and is more capacious, with the same amount of material. The special advantage of the egg-shape diminishes moreover with the size of the sewer, so that in the smaller areas it becomes scarcely appreciable. For pipe-sewers and drains the circular form is on the whole to be preferred, because the greater risk of unevenness of form, and the difficulty of obtaining the same accuracy of joint with the egg-shape, more than counterbalance the advantage of the small increase of fow which would be acquired. For intermittent purposes, where the house-sewage occupies only a small portion of the area, but the sewer is liable to be filled with storm-water, the egg-shape is undoubtedly the best. In proportion as the flow can be equalised and adjusted, and the principles of drainage reduced by practical ecience to an approximation of constants, to the same extent the egg-shape must yield to the circular, as the best form of sewer, without reference to size.
Increased Power gainod by Alteration of Size, as well as Alleration in Form of Sewers.
The following is an account of several trial works, and illustrates the effects of altering the size as well as shape of the channel of conveyance, with a better adaptation to the run of sewer water, and the service to be performed. It is contained in a Report of Mr. Hale, the surveyor, who was directed to make the trial.
"The main line of sewer in Upper George-street is 5 ft .6 in . high and 3 ft .6 in . wide, and runa from the Edgeware-road to Manchester-street, where it falle into the King's Scholars' Pond sewer. I have laid a 12 -inch pipe $\mathbf{5 6 0}$ foet long upon the invert of this main line, and bave built a head wall at the end of it, so that the whole of the sewage discharged by the collateral sewera above the pipe, as well as what sewage may find its way independently into the upper part of George-street, in forced to pase through the pipe. The whole area drained by the eewert running into the 12 -inch pipe in George-street is 213,778 square yards, or about 4h acret. Observations are being continanilly made on the work, and the

- Gemeral Board of Hzalth.- Miautee of Informetion collected with reference to Worke for the Removal of soll Water or Druinage of Dwellung-Housee and Public Edifcee, and for the Sewerage and Cleansing of the Sites of Towari' Ordared to be printed for the nae of Local Boarda and their Olicers engaged in the Administration of the Mabic Benmand of Her Majenty. London: Eyre and Spotismoode. 1852.
+ Narrow and deep changala frequently cut by streams in the aurface of the son deponit aceumalated in fiat-bottomed sewrart, were demonatrative of the very litule observacion on which emineat engineers have declared that the form of the botion of a sewer te of no consequence. It was deciared at the outset of the lnvestigation that a newer with mpright sidea and wide-spreadiog footivg: whe the beat and most certain form of construction. The examiantions directed in the subterranean turvey have proved the erroneous doctrine in extensive fallurea of that form of eower when
carriod thronfh elippery ground. In mome instancen whole linea have been found driven lo at the aldes.
resulte are at follows :- The velocity of the atream in the pipe has been observed to be forr-and-a-half times greater than the velocity of the aame amount of water on the bed of the old sewer." The pipe has not been found to contain any deposit, bat during heary rains stopes have been distinctly heard rattling through it. When the pipe is nearly filled, the velocity and concentration of the water are sufficient to clear away any matter which may have been drawn into the pipe from the large sewers, and mach of which matter it may be presumed would never enter a well-regulated syatem of pipe sewers; also the force of the water insuing from the end of the pipe is sufficiently great to keep the bottom of the old sewer perfectls clean for 12 feet in length; beyond this diatance a fow bricks and stones are deposited, which incronse in quantity as the distance from the pipe increases. Beyond a certain diatance mud, sand, and other deposits occur to the depth of several inchen, so that the stream there is wide and comparatively aluggiab, and being dammed back by the deposit, exerts an unfarourable influence on the fow of water throngh the pipe. On the invert of the origind sewer, which now forms the bed of the pipe, deposit was constantly accumulatiag, and wat only partially kept under by repented fushings. The superficial velocity of the water in the pipe is generally three, foor, and five times greater than the superflial velocity which obtained wader the same ctrcumstances, in the original sewer, and the velocity of the whole mass $\& f$ rater in the pipe approximates much more to its aurface velocity, as ascertained by a Loat, than does the velocity of the whole mass of water in the sewer approximate to its own arface velocity. On one occasion I bad the sewer in Upper George-street carefully cleaned out immediately below the pipe, and then caused a quantity of deposit, consiating of and, pieces of bricks, stonea, mud, \&ec., to be put into the head of the pipe; the consequence was, the whole of the matter passed clear through the pipe (560 feet long), and much of it was deposited on the bottom of the old sewer, at some distance from the end. When the pipe was fowing nearly half full, two pieces of brick, one weighing one pound and three-quarters, and the other one pound thirteen ounces, were impelled by the force of the water throngh the whole length of pipe, and atruck the legs of the man at the end of the pipe with considerahic force. A live rat was also washed with great violence through the pipe, and strock the legs of a man with such foroe as proved the rat had no control over its own motion. When the water was only 5 inches deep in the head of the pipe, nearly a whole brick, weighing four pounda, was put in it; it was heard for a few seconds moving down the pipe, but was not caught at the end. The halk of the stream at the head of the pipe is diminished to about half its dimensions when it arrives at the end, the velocity being greater. A great number of irregular-shaped stonea, each of several onncen weight, were washed through the pipe with the asme apparent ease as marbles, and the distinct rattling noise I occasionally beard them make might convey a correct notion of the considerable force with which they mast have been impressed. All the foregoing reanlts were effected When the pipe was either only haff full, or less than balf full of water, which has been gauged in the pipe. The house-drains connected with the experiment in George-street are in moat respects like the reat of the house-drains of the metropolis ; the general characters of the whole are great size, irregularity of form, and filthy and bad-smelling condition. The variations in size are from nearly half a square foot to four aquare feet crose section, and the different forms include the circle, the square, and square bottom and sides with semicircular top; their inclinations aeem not to vary more than from horizontal to fall of two inches in ten feet. Their condition with respect to quantity of matter deposited in them does not seem to be regulated by their inclinations. Tbis may be accounted for by the fact, that their wide and irregular inverts apread the amall atreams and destroy their force, and canse matter to lodge with greater security. Many of the ends of the drains are so dilapidated, that their original form cannot essily be distinguished ; but enough can be determined to know that the anm of all their areas (480) would enceed the area of a circle of 30 feet in diameter. Much of the rabbish and obstructions in the house-drains have been found to consist of heaps of pieces of brick and mortar which from time to time have fallen from the soffits and sides of the drain, as it hat progressively hecomo dilapidated. Various species of fungi shoot out from the interstices of the brickwork; and the existence of old cobwebs around the sides, and nometimes nearly covering the mouth of the drain, furnishen another proof, in some instances, that the drain bas not heen for a long time, if ever, half filled with water. These old drains are the apecial harbours of rate and other vermin." \dagger

[^63]It may be here observed that vitreous pipe-sewers, if properly made, will bear very considerable internal pressure. The smaller-sized stoneware pipes have been tested to several hundred feet. Common redware clay pipes of 6 inches have been tested to between 100 and 800 feet of pressure. Pipe sewers and drains, properly laid, and cemented with Roman cement, may therefore be used under pressure. Eixperience, as well as a consideration of the difference of structure, shows that it is not safe to use sewers of the commou brick and mortar construction full.*

The following is a view of a sewer in which another trial work was most carefully conducted by Mr. Lovick, surveyor, to determine accurately the amount of sewage from 1800 averagesized houses in the metropolis on the days when there was an intermittent supply of water from the different water companies.

In this sewer, which had a flat segmental bottom 3 feet wide, a sectional area of 15 feet, and an average fall of 1 in 118, the deposit from the 1200 houses regularly accumulated at the rate of 6000 cubic feet per month. But a pipe of 15 inches diameter placed along the bottom of this sewer, with a somewhat less inclination (1 in 153), kept it perfectly clear of deposit. The average flow, without rain-fall, was about 51 gallons per house per diem; the absolute drainage, apart from rain-water, from all the 1200 houses would have passed through a 5 -inch tube (of the relative size of the smaller one shown within the 15 -inch tubular pipe placed along the bottom of the brick sewer), or not one-third the area of the minimum-sized drain which had, up to the time of the invertigation, and upon the advice of professors of architecture, been declared and enacted in the Metropolitan Building Act to be necessary for a single house-namely, one of not less than 9 inches diameter. On the same rate of flow, the whole of the mere house-drainage from all the houses in the metropolis might be discharged through a sewer of 3 feet in diameter. \dagger
Adjustments of the Sizes of Tubular House Drains and Main Drains required for the Discharge of Storm Waters.
Whilst the drains for the discharge of soil-water from within houses are made of 3 or 4 inches diameter, the main-drains and sewers will require some enlargement (beyond the space required for the ordinary waste-water from the houses) to receive variable quantities of rain-water.
The necessity of provision for the reception of these variable quantities of water was alleged as one justification of the enormous sizes of the sewers as, until recently, constructed; but on examination the data were found to be wholly insufficient to warrant such dimensions.
annum per mile. Even this expense was owing t) old accumalations now in courne of removal. In the Holborn and Finsbury division, where the fashing fer regular, the arerage expenie of keeplog the sewers clean by fushing, at piecewort, is 17l. 3t. per mile per anoum. Now, the total cost of such a subntar seprer as that above described by Mr. Hale, allowing for a 16 - Inch plpe Instead of a 12 .Inch one, apd spreading the payment over twenty years, would not be more than 19x. 8e. 3 da pet mile per annum, if expcuted on a large ecale at the prices therein deacribed. Under the fluching system in the least uncieanly eawern disirct, the expenee of fuabling represents the expense of removal of 517 loads of detritus and decompostag refoes at $8 d$. per losd, aprrad in portions over a mile of surface $\mathbf{3}$ feet wide on the averege, undl it is remored at wreelly and fortnightly latervila. At an extri annued expence of 2l. Ss. the retention end spreading of a proportionate part of thooe 317 loads may be prevented in atreets where there happens to be anficient fall.
With reapect to a great number of the recently-bults and most expendre bricl eevers in the metropolis, it is reported by the offeers engaged in the sabterranean saryey, "that with one-fourth the atreagth of man you maydrive a mercher through the brickwork end meveral feet beyond; then, by using the eetarcher as a lever, you may shake the whole sewrer for a yard round;" and that the workil cmabol be reanonably expected to stand for more than ten ortwelve years, much less any fall fows of storm-water.
1 It will be obrious that by this calculation it is not intended to convey the meanime that a 3 -feet eewor would suffice for the dralage of the metropolis, bat merel tha ansuming tbe average of the whole of the house-draingge alone to be that which wat found In this experiment, and that the whole were dowing In one chanol at the same rate, a s.fett mever would aufice to convey it.

The greatest storm which need be considered-uch a storm as occurs in England only in the course of years-would be a fall of about 2 inches in the hour, or 44,789 gallons per acre. Now, it was proved by the trial works that a three-inch tube, at an inclination of 1 in 180, will clear away more than this amount of rain-fall from 10 squares, space enough for three labourers' cottages, classed as fourth-rate houses under the Building Act in the metropolis; at a fall of 1 in 80 if was found that it would clear away the rain-fall from 18 squares, or one first-rate and four fourth-rate houses; at a fall of 1 in 40 , from 17 squares, or five fourth-rate houses; and with a fall of 1 in 90 , it would serve for 25 squares, or the space of two first-rate houses, or eight fourth-rate houses. A 4-inch tube would carry away nearly t wice as much water ($\frac{18}{8}$) as one of S inches diameter; that size is, therefore, for such an area more than sufficient for the greatest contingency.

Observation of the flow of any outfall of storm-water, and of the tributaries from a hill-side, offers to an unscientific person some approximate conception of the sizes of the channels or tubes which would be required to convey it away; so in a town, the observation of the flow of storm-water in the rough kennels or channels of streets, where there is no under-drainage, would be suggestive of the maximum sizes of the underground sewers required for its removal. But it was found on investigation that for side streets and streets where the storm-water never rises above the side gutters, enormous sewers had been constructed of a capacity sufficient to receive water enough to cover the whole surface several inches deep, and to give it the appear-ance-which it never had-of a river.

The occasional bursting of large sewers has been referred to as a proof of the necessity of their large size for the discharge of atorm-waters; but it appeared upon investigation that the burstings were caused by accumulations occasioned by the large sizes of the sewers, by their irregularly-constructed bottoms, their junctions at right angles, and by other causes. On the occurrence of a sudden storm, one accumulation is rapidly driven up the incline of another, occasioning a complete stoppage. When the internal condition of the sewers was examined at the places where these burstings occurred, it became a matter of surprise that such accidents had not even more frequently happened.

One plea often urged in justification of the extravagant sizes of the old drainage works, even for lines of streets in which but little extension could be reasonably expected was, that they were made so large to meet an assumed probable extension of the population. Such outlags are open to the objection that immediate and certain levies ought not to be made upon the present population to provide for coutingencies remote and uncertain. It is overlooked in such expensive provisions that the reduced rates at which improved works may be constructed, as compared with former defective works, will pay for their removal within very short periods. Further, it is presumptuous to say that no improvement can be reasonably expected upon existing works, and that they will for ever be the most eligible. Moreover, the plea cannot be sustained, even as regards the future, for reason has been generally found for believing that the same lines of sewer wonld admit of considerable additional heads of water without any increase of size whatsoever.

The provision of extra capacity for guch purposes has, however, been frequently made on the assumption that the increased area required would be proportional to the population, whereas it appeared that an additional head causes, by the increased velocity, the discharge of the additional quantity throngh the same sized sewer; an effect not then nnderstood, but which was displayed in the trial works. It would be in exceptional cases only that the drainage area would be increased with increase of population.

Neither is the formation of a whole system of sewere of extraordinary sizee justifiable on the pretert of their being required on the occurrence of extraordinary storm-waters.

In many cases an increase in the number of the higher branch lines may ultimately necessitate an increased size in the valleylines; but in respect to all the branch lines it may be concluded that the concentration and economy of the ordinary flow, and the most rapid and complete daily sweep of the sewers preponderates in importance over the inconvenience occasioned by extraordinary storms, occurring at intervals of many years, and sometimes only at intervals of generations, such as the storm which fell upon parts of the metropolis in 1846, of 4 inches in the hour.

Various formulm were presented to the Commissioners for inquiring into the means of improving the Health of Towns, as furnishing the means of obtaining greater certainty in the construction of town sewers, and plans for the sanitary improvement of large town districts were prepared upon those formula; but the sewers thus designed were still so large, and consequently so very expensive as to offer very formidable obstructions to the extensive voluntary adoption of works of sanitary improvement. These plans were apparently thought repugnant to common and empirical observation of natural outfalls of the nature above referred to, and therefore it was found necessary that trial works should be instituted for the better determination of the proper sizes. The chief results of these trials, made with the smaller and more manageable channels for the removal of sewage or drainage water, have been already described in the evidence cited. In respect to the larger channele, the branch and main sewers, there occur elements not ascertainable by any readily manageable trial works; such could be determined only by observation from an ascertained rain-fall upon a given town area how much did really reach the outfall, and within what time.

To test-compendiously the statements as to the alleged necessity of such large sizes for the removal of varying quantities of storm-water, observations were directed to the flows of water at the outfalls from large districts after rain. The following portions of an examination of Mr. Roe exemplify the course and results of these investigations:
"Has carried on a set of practical observations as to the flow of sewer of different sizes and capacities nader different circumstances, over since bo has been in the service of the Commissioners of Sewers for the Holborn and Finsbary divisions. Hat carried on observations as to the velocities of water in the river Fleet sewer; subsequently he extended his observations to branch and collateral sewers of different deacriptions. About 4400 acres are drained by the river Fleet, of which 1888 acres are covered, or town area, and 2512 acres nncovered, or rural area. The Fleet zewer is 12 feet high and 12 feet wide, with a sectional area of 120 feet in tho largent part in the Holborn and Finsbury divisions; but the capacity of the whole line varien generally according to the quantity of surface drained by each portion. With regard to ite inclination, it varies from 1 inch in 100 feet to 1 inch in 2 feet, whilst some portions are on a level. The sum of the capacitien of all the sewers that fall into it is sbout $\mathbf{5 5 0}$ feet, and they are aizty in number. The capacity of the main is about 1 to 4 of the capacity of the sewers, of which it is the general outlet. The everage inclination of the sewers which fall into the Fleet in most instances varies; some of them are a quarter of an inch in 10 feet, others are 3 inches in 10 feet. If every house within the district had a drain of 9 -inch diameter, the proportion the capacities of the house-drains would hear to the sum of the capacitien of all the sewers woald be about 16 to 1 , and to the capacity of the main ontfall about 75 to 1.
" Bngineers and theoretical writers have set forth varions furmulae ts to the flow of water; and in the Second Report of the Health of Towna Commisaion there are some tables, hy Mr. Hawksley, on the capacity of sewers required for various areas of drainage. Taking table No. 1, witneas finde that the sizes recommended for sewere to drain certain portions of land are larger than the actual requirements; for instance, the quantity of acrea that a cylidrical sewer 48 inches in diameter is (by the table) allowed to drain, when the inclination is 1 in 240 , is 47 ; whereas in practice it is found that such a sewer, with that inclination, drains more than 100 acres of town area at a similar fall of rain to that on which the table is formed. Again, a sever, with a similar inclination, to drain 129 acres of town area, should (by the table) be of the capacity of about 28 feet; but in the great storm of Auguat 1846, the water from 215 acres of town area, and 1785 acrea of rural district, occupied only 301 feet of the superficial area of a sewer with that inclination. With reapect to larger sizes, the table shows, that at an inclination of 1 in 480 , a atwer to drain 329 acres of town area should have a cspacity of about 78 feet; wherean, in a sower with a similar inclination, the area occopied in the storm of 1844 was only 79 feet; and to this sewer there drained 1181 acres of town ares, and 2656 acres of raral district.

In the formation of the tables for showing the proper size of sewers it has usually been assumed that a certain large proportion of the rain falling upon a town area will flow into the sewers as quickly as it falls, and that the channels for its conveyance ought to be large enough to carry that quantity away, supposing it all to enter at the head. Mr. Roe finds from long-continued observations that a very much smaller part of the rain runs off into the sewers in the same time than has been assumed (i.e. that very heavy falls of rain are much shorter in continuance than the floods they occasion, and that sewers receiving along their course the confluence of many smaller channels will convey away far more water than if it all entered at the head. He consequently finds that sewers of much smaller section than the usual tables indicate are amply sufficient, and therefore that the
use of such tables, or of the formulse on which they are constructed, has led to large unnecessary expenditure.
Since Mr. Roe gave the evidence already cited, he has been compelled by illness to resign his office of chief surveyor to the Metropolitan Commission of Sewers; but he has since his retirement, and during his convalescence, occupied himself in completing for the Board a table of dimensions of sewers, founded upon his observations, in the Holborn and Finabury district of the metropolis, of branch as well as main lines of sewers-observations the most extensive of any which have yet been made. The runs of water through the smaller-sized pipes are corroborated by the results of trial works, promoted in pursuance of the investigations directed by the Metropolitan Sanitary Commission.

The discrepancies of the formalse adopted by various eminent authorities for calculating the run of water through pipes are well known. Some mathematicians appear to have deduced their constants from experiments on a scale so small ns could be tried in a room, and to have assumed that empirical formulas so obtained were of universal application; but the results of such calculations arefrequently at variance with fact and with each other. And correct though certain formulse may be for determining the discharges of water through simple pipes or channels under certain conditions, it is quite certain, from all the most recent and careful investigatlons, that the ever-varying conditions connected with the complete drainage of a town or district renders the application of any of the formulm hitherto used not merely impracticable but productive of serious constructive error. The objections to the use of all the tables prepared from such formulew for determining the sizes of sewers were stated in evidence before the Metropolitan Sanitary Commission. Their entire inapplicability for this purpose is strikingly confirmed by Mr. Roe's table, founded upon the only observations of considerable extent in the sewers themselves which are known to have been yet made; and the circumstances of the flow in the larger sizes, and of most extensive lines of sewers, are such as could be corroborated by no trial works obtainable with any available means, or within reasonable time and cost.

The size of a stream which would be produced by a given fall of rain upon a given area admits of calculation, assuming that all or a given proportion of the water arrives at the drain at a given rate; but it would appear that notwithstanding the enormous expensiveness of drainage works, persons directing the outlay had never determined by actual observation the greatest rate at which the water did really run off, and consequently could not know of what size drains should be made.
The proportion of the flow which actually reaches the sewers differs greatly under different circumstances of season, soil, and surface, and especially of different rates of rain-fall in a given time. In long-continued rains, and in heavy storms, for wbich the table is calculsted, a much larger proportion reaches the sewers than on ordinary occasions, the greater flow from the covered portion of the surface usually having time to pass away before the rain falling on an absorbent surface of garden, meadow, or arable land, reaches the sewer.

The following is Mr. Roe's table, and his account of its forma-tion:-
Table shooing the Quantily of Covered Surface from which Circular Sewers (with Junctions properly connected) will convey away the Water coming from a Fall of Rain of One Inch in the Hour, with Houre Drainage, as ascertained in the Holborn and Finebury Divisions.

* Ihe table is formed from resalts obsained from observations extending dver a period of twenty yeara in the Holborn and Finabury divisiona. In
some instances the observations were carried on daring the whole period of heary rains, being commenced as each storm hegan, and continned until the effect had cesced in the aewers, the depth of water being takem every five minutes, and the velocity of the current repeatedly noted at every depth. In some instances the observations were continued day and night for several montba in different years, and in others they were conducted day and night for a period of two yeara; rain-gauges being kept to ascertain the depth of rain that fell. The particulars from which the table is compiled fill apwards of 100 memorandum books. The first saving which these observationa enabled me to make wha about 4000 L , hy lessening the size of a proposed portion of main line, by which a reduction of two goineat per foot lineal wat effected in a length of nearly 2000 feet. In other sewers of smaller size, savings were effected to the amount of ceveral thousande per anoum for many jears. In 1843, I was called upon to report on the beat means of saving the town of Derby from the diastrous effecte of floods. It was from the knowledge obtained during the course of theme ohservationa, that I wat enabled to suggens the aize of cewers which would convey the flood-water of the Markeatonbrook, the overdowing of which shortly before had not only cansed damage to the amount of many thousand pounda sterling, but also loas of life. From the time of the completion of the sewer to this date, it has answered every expectation, no tooding having been complained of, althongh in Augast 1846, more rain fell in a short apace of time than 1 find on record at any other period. This knowledge also enabled me to judge of the size required for a main line of sewer in the town of Bir. mingham some jears since, and which has also answered every requirement. The necessity of carefully forming the sewers, to that no obstruction to the passage of the water may obtain, cannot be too strongly impreased on the minds of all connected with such works. At the head of the table I have named, 'junctions properly connected,' nor will the respective sewers drain the area atated, unless this important matter be duly attended to. Every junction, whether of sewer or drain, should enter by a curve of anfficient radias. All turna in the sewers should form true curves, and as, even in these, there will be more friction than in the atraigbt line, a amall addition should at curved points be made to the inclination of the aewer. I may mention a case or two in lllustration. In 1844, a great quantity of rain fell in a abort space of time, over-charging a first-ize sewer and flooding much property. On examination, it was found that the tarna in the aewers were nearly at right anglea, and also that all the collateral sewers and drains came in at right angles. The facta and suggested remedy were reported to the Hulborn and Finsbury Commissioners, and directions given by them to carry out the works. The turns and junctions were formed in carves of 30 feet radias, and carved castiron mouth put to the gully-shoots and draina; the result was, that although in 1846, a greater quantity of rain fell in the same apace of time than in 1844, no flooding occurred, and aince then the area draining to this sewer bas been very much extended without inconvenience. In another case flooding was found to proceed from a turn at right angles in a main line of sewer. This was remedied by a curve of 60 feet radius, When it was found that the velocity of current was incressed from 122 (as it was in the angle part) to 208 (in the carved part) per minute, with the same depth of water. In the winter season, on meadow groand 82 acres in area, having a clay aubsoil, 3 feet per acre per minute was the greatest quantity that came at one time from a fall of rain of half an inch in depth, and this amount did not reach the sewer until three quarters of an hour after the rain had ceased. From similar ground during the summer, when a greater fall of rain took place, no water ran off the surface, and that which percolated to the land-drains did not reach the sewer until after the greatest fow from the streets and houses had passed away. In applying the table to localities where the inclination of the surface is greater than that of the Holborn and Pinsbury divisions, a modification of the sizes of sewers will be required; for inatance, in one case that came under my notice, where the general inclination of the surface of the strecte was about 1 in 20, the greatest flow of water from a thunder-storm came to the sewer at the rate of one-third more than it did to a sewer draining a similar fall of rain from an area with a general surface inclination of 1 in 132 ."

In examining this table, two points of error must be guarded against, into which the ordinary calculations would lead, and which constitute the striking difference between the results here noted, and those which have been hitherto put forward for guidance; namely, the error of calculating the discharges obtained only from pipes running full at the head; and the error of assuming, without observation, that the given quantity of rain falling in a certain time would be discharged within the same period.

The effect of junctions on the line of sewer constitutes a most material difference in the discharge. The experiments and observations show, that with a pipe laid at an inclination of 1 in 60, with junctions along its line, the capacity of discharge is upwards of three times greater than if the flow were merely from a full head; and in the larger sizes it will be found that the quantity accumulated increases to upwards of eight times

Thall showing the Sise and Inclination of Main Howco-Dratan for gioen Surfaco, and the Number of Hownes of either Rate thereon, calculated from Mr. Rop's Table for a Fall of Rain of 2 anches in the Howr, as oblaining in the Holborn and Finebwry Divisions.

Sartuce oceupled.		Namber of Honses of either rate, either of which may reapectively be dralned.				Diameter and Incllation of Tuber.									
Acres.	$\begin{gathered} \text { Squarem } \\ 100 \text { feet. } \end{gathered}$	Iat	2 d	8 d	4th	8.1 chch.	4-inch.	8-inch.	6. mech.	7-Inch.	8-lpch.	9-Inch.	12-linch	15-Ineh.	18-inch.
t	54	1	2	3	4	1 in 120									
4	112	2	4	6	9	1 in 20	1 in 120								
$\frac{9}{10}$	193	3	7	10	15	. .	1 in 10								
$\underline{1}$	224	5	8	13	18		1 in 30	$1 \ln 80$							
18	265	5	9	15	21	. .	1 in 20	1 in 60							
	448	10	15	26	36	-	- -	1 in 20	1 is 60	$1{ }^{1} 120$					
18	528	11	17	29	40	-	- .	-	1 in 40	1 in 120					
14	648	15	23	39	34 67	-	-	-	1 in 20	1 in 60	1 ln 120				
14	814	19	28	49	67	-	-	-	- .	- .	1 ln 80				
$2{ }^{218}$	912 1094	21	38 38	65	76 80	- \cdot	.	-	-	- \cdot	1 in 60	1 in 120			
2	1200	27	42	71	99	.	$\stackrel{\bullet}{*}$	-	-	-		1 in 60			
41	1970	45	68	117	162	.	-	-	.	.	- \cdot	. .	1 is 120		
518	2308	52	79	136	189	-	-	-	-	.	-	. .	1 in 80		
$5 \frac{1}{4}$	2534	59	88	150	208	-	.	-			-	-	1 in 60	1 in 240	
78	3432	79	118	205	284	-	-	-	-	-	-	- .	. .	1 in 120	
9	3976	90	135	234	324	-	-	-	-	- .	-	- .		1 in 80	
10	4404	101	152	263	364		-	-	-	-	-	- .		1 in 60	1 in 240
17	7400	169	253	439	608	-	.	- .	- .	- .	.	-		. .	1 in 120
1980	8700	200	300	520	720	. .	-	-	-	- .	$\bullet \cdot$	1 in 80

that which would be discharged if received only from a full head. If the area is lengthened and distant, with little inclination towards the main, and there is a considerable portion of rural area, the conveying sewer may be proportionately less. In such cases the flow from the nearer portion of the district will frequently have been discharged before that from the distant area will have reached the main, and at all times the rain-fall on the rural portion will be proportionately longer in reaching the sewers.

It should be observed, that although the actual sizes given in Mr. Roe's table would more than suffice for the drainage of the areas stated, with the houses thereon, yet in relation to the smaller sizes, for the drainage of courts and collections of houses, some modifications will be found necessary. In these cases, many of the ressons alluded to, which are seen to operate in great reduction of size of sewer for larger areas, aud for space from which several connections would be furmed, more or leas distant, will not be in action. The rain-fall from the smaller spaces will fow more immediately to the drains, and their capacity must be equal to its discharge with corresponding suddenness. The pipes themselves, moreover, are often not of the full sizes which they are stated to be, and their greatest effect is not obtained from unevenness of form. The risk of carelessness in laying and jointing is greater also in the smaller sizes, where it is of the most importance, and operates still further in reducing the available capacity of the pipes. These points have so far infuenced the practice that 3 -inch tubes have scarcely been used hitherto, except for branch house-drains. For these reasons it is considered advisable to admit of greater margin in the calculation of the sizes for this purpose; and the above separate table has been prepared by Mr. Roe for special application to house and court drainage.

From this table it will be perceived, that the sewer formerly proposed as the smallest size admissible for the drainage of a "mansion," viz., 15 inches, would at a fall of 1 in 120, drain 79 of the largest mansions, or 984 of the smallest houses; that a 9 -inch drain (the minimum size prescribed by the Building Act, for the drainage of a single house), would at the same gradient remove the storm-water from 21 of the largest mansions, or from 76 of the smallest houses; or, at a fall of 1 in 60 , would drain nearly 100 of the smallest, or an area of nearly $2 \frac{s}{4}$ acres of covered surface.

An 18 -inch sewer, less than that prescribed as the minimum sise into which a man might crawl for cleansing, would, at an inclination of 1 in 80 , remove the storm-water from nearly 90 acres; and a sewer of 3 feet (less than the minimum size formerly recommended for the smalleat street), would, at the eame inclination, remove the drainage from $\mathbf{9 9 5}$ acres.

In distributing the inclinations, which a given fall in any continuous length will admit of, it should be borne in mind that it is always desirable to graduate them, 80 that the utmost inclination which may be practicable should be given to the upper part of the line, where there will be the less current and force of spreep. The drains should always be laid at the greatest inclinations which can be obtained; and this should always be kept in view, therefore, in selecting the sires from the table. The sizes of the drains will require modification according to variations in the area and inclinations of the ground, and the number of houses to be provided for.

ON THE CONVERTIBILITY OF PHYSICAL POWERS.

By W. J. Macquorn Raneine, C.E., F.R.S.E.

Had I pretended (in my remarks on thls subject published in the Civil Engincer and Architect's Journal for October) to give a complete account and explanation of the phenomena observed by Mr. Clark in his numerous experiments on the axpanaive action of steam in locomotives, or had I even adduced those phenomena as a definite and conclusive confirmation of results deduced from the law of the mutual convertibility of heat and mechanical power, I should have deserved the strictures contained in Mr. Clark's paper, published in November.

But so far from this being the case, my mention of Mr. Clark's experiments was merely incidental, and made molely in order to point out one reason for the difference in the phenomena exhibited by the steam in them and in the experiments of Mr. Siemens; a reason founded in a great measure on the analogy between the latter experiments and those of Mesgrs. Thomson and Joule, on the heating of air by the agitation of its particles. 1 expressly disclaimed, moreover, the considering Mr. Clark's experiments as affording more than a general verification of the conclusion, that vapours working a piston are partially liquefied by their own expansion, on the ground of our present imperfect knowledge of the bulk occupied by a given weight of steam at a given pressure and temperature.
I admit, with Mr. Clark, that where alternate liquefaction and re-evaporation occur, they are probably produced in a great measure by the alternate transference of heat to and from the cylinder; but I must still consider the expansive working as one cause of liquefaction, especially when I find it stated by Mr. Clark, that the steam in expanding falls below the temperature of the metal.

Glasgow, November 1852.
W. J. M. Rankine.

gUGGESTIONS FOR ALTERING AND ENLARGING THE PRESENT NATIONAL GALLERY.

By C. H. Smite.

[Paper read at the Royal Inotitute of British Architects, Noo. 15.]
Ir seems to be generally admitted that a considerable enlargement of our National Gallery is indispensably required, in order to make room for the reception of the National Pictures. If a fow of the rooms in the present gallery are large enough for the purpose of viewing the grandest of the pictures exhibited, they are neverthelese not suficiently capacious to admit the number of valuable works which there is reason to believe would be presented or bequeathed to the nation, if the conviction were general that government had provided proper accommodation for receiving them. Mach has been said about the pernicious and destructive influence of the London atmosphere on pictures, and much more might be auserted without proving the truth of such statements. In all cases, colours that are mired with any kind of oil must necesearily become darker and darker by time, in consequence of the natural tendency which that vehicle has to absorb oxygen from the atmospbere; some varieties of oil, it Is true, absorb it much more rapidly than others, but, sooner, or later, all fatty subatances employed as menstrua in painting will certainly change to a dark brown colour. In this respect, so far as the atmosphere is concerned, precisely the same change would take place, whether the pictures were exposed to the air of Lombard-street of Trafalyar-square, or of places far remote from the busy world's unceasing sound. Castle Howard, Blenheim, and Belvoir Castle, are baronial mansions placed in the midat of beantlful woodland scenery, at distances of eight or ten milea from any large town; they all contain numerous pictures by celebrated masters, which to the beat of my recollection, are in no better state of preservation than those in the galleries at Bridgewater House, of the Marquis of Westminster, in Gros-venor-street, or the many excellent pictures that have been kept for ages in the halls of some of the companies situated in the midst of the City of London. But the best evidence that I can mention, to show that there is nothing in the situation or atmosphere of London likely to destroy or injure the beauty of pictures, is, that the nine pictures painted on canvas by Rubens, Which form the main portion of the ceiling of the Chapel at Whitehall, have been exposed to the atmosphere in the very neighbourhood of the present National Gallery, during a period of between two and three centuries, without the advantage of any particular care or attention, and that they are get even now in as good a state of preservation as if they had only been painted within the last twenty years.

We must all admit that a vast difference in the amount of our laundress's bills depends on whether we reside in town or in the country; similar remarks apply to the furniture of our houses, and to our habitations generally. To appear decent, a London house should be cleaned, or fresh painted, much oftener than one in the conntry, but this difference arises merely from dust or soot slightly adhering to the surface, which, in the case of picturea, may be easily washed off once in a few years, without risk of their receiving the slightest injury.
For all useful purposes, London is the only proper situation for the picture gallery of the British people; were it erected a mile or two out of the metropolis, the number of students and visitors would decrease surprisingly, in inverse proportion to the increase of distance. If there be any appreciable objection to the air of London, it must be useless to think of removing the pictures anywhere within eight or ten miles of so pestiferous a place. But convinced, after much consideration, that it will be difficult to find a better locality, or a more commanding situation for a grand public building than the north side of Trafalgar-square, I would propose, without entering upon the well-knuwn restrictions which the architect had to contend with before commencing, and the numerous difficulties he had to overcome in carrying out the present building, to proceed at once to the question, whether the present building forming the National Gallery and the Royal Academy of Fine Arts, can be enlarged sufficiently to meet the present as well as the prospective demand for space; whether the principal elevation facing the south can be improved without great expense; whether the entire alteration and enlargement, when completed, are likely to answer the intended purpose; whether it will be worth the money it is likely to cost; or, whether it will be a waste of outlay, merely to produce a mean and unsatiafactory result.

Mr. Wilkins, the grehitect of the National Gallery, in his evidence before the Committee of the House of Commons in 1836, suggested that a very considerable extenaion of the galleries might be obtained by the purchase of the dilapidated buildings which now occupy the site westward, at the back of the new houses in Pall Mall Esst. This addition alone would more than double the present space in the National Gallery; but as this is not a new idea I will leave it, and call your attention to a much larger space existing on the north of the eastern half of the present site. The workhouse buildings of $\mathbf{S t}$. Martin's parish, situated between Hemming's-row and Castlestreet, occupy at least an acre of ground, contained in a compact quadrangular, though not rectangular, figure, immediately behind the portion allotted to the Royal Academy. I am not one who would, for interested motives, turn out the inhabitants of a district merely becanse they are paupers, but the poor of St. Martin's parish might be much better accommodated, and certainly more healthily located, in a new building, sitysiond in the middle of a beautiful garden, a few milas out of the metropolis, instead of being imurred in the present old prison-lite edifice, in a crowded neighbourhood, misnamed "St. Martin's in the Fields." In this manner the trustees of the National Gallery and the guardians of the poor of the parish, might mutually be considerably benefited by the exchange, and it may be presumed that the workhouse buildings, together with the freehold site, could be purchased for a sum not exceeding their fair marketable value.
An arrangement, something like the plan now submitted, would give six rooms or galleries, each averaging above 100 feet long by 40 wide; two, 55 by 40 ; three, 40 feet equare, and a hexagonal room, say 45 feet diameter; or, in other words, there would be about eight times the space of the present National Gallery. The whole of these rooms would be on the first-fioorthat is to say, would be nearly on a level with the present exhibition rooms, consequently there would remain the entire range of rooms on the ground-floor of the proposed new building a vailable for other purposes. With regard to the communication to be made from the present building to the proposed new galleries, I think it will be admitted that an uareasonably large space is occupied with gloomy halls, vestibules, and staircases at the chief entrance either of the National Gallery or Royal Academy, and certainly without affording the commensurate advantage of any particularly-grand architectural feature. This central portion of the building is therefore all that I propose to disturb and re-arrange. The principal entrance doorway and the two Corinthian columns would remain as at present, while the ittle cupola over the pediment being taken down, would obviate the necessity for the the wall which divides the entrance from the vestibule; this alteration would give a hall aboat 40 feet by 22 , from which steps of nearly the entire width would lead up to a new vestibule, on the site of the present Antiqua School or Sculpture Room, the floor of which vestibule would be on a level with the exhibition rooms in the present National Gallery and Royal Academy. From the new vestibule, doorways to the right and to the left would communicate with two new rooms, each nearly the size of the largest in the present building. These rooms would open into the present galleriea without any further alteration than cutting a doorway through the north wall of the large exhibition room of the Royal Academy, to open a communication at the end of the building with the proposed new galleries.

The public footway from Castle-street, through Duke's-court, to St. Martin'g-lane would remain; but in order to connect the old with the new galleries, it would be necessary to build communications over Duke's-court, which I would propose to form over the public way in two distinct places, at an elevation of probably 16 or 18 feet above the foot-pavement of the court. To whatever purpose the ground-floor of the proposed new building might ultimately be appropriated, height of the rooms would always constitute a valuable feature of the scheme; consequently, as the ground rises gradually 4 or 5 feet from Duke's-court towards Hemming's-row, I ahould give that much additional elevation to the flowrs of the new galleries, by ascending a few steps at the junction of the new and old buildings, to be formed over Duke's-court. A few broad and easy steps, to vary the level in so extensive a suite of apartments, might be considered almost an ornament rather than a defect in the general arrangement. The outline or boundary of the proposed site would be very nearly of the shape, dimensions, and relative proportions represented in the plan now exhibited; by which it
will be perceived that the walls would not be equare to each other, but a little contrivance in the direction and thickness of the walls might enable us to build the rooms right angled. By the errangement of the rooms and doorways represented on the plan, a person ontering from the hexagonal vestibule, and following the direction of the arrows, might vislt every room without passing over the same ground a second time. Not to occupy your time by going into minute detalla, generalities will be sufticient for the present purpose. It must be evident that the accommodection thus proposed would certainly be sufficient for a vast accumulation of pictures; is it, therefore, advisable to build gallerien so very extensive that they may probably remain empty during the next one hundred years? But buppose all the rooms auggested to he erected on the site of the workhouse should become filled to axcess with fine works of art within thirty or forty yearn, is it not highly probable that during such interval an opportunity might offer to purchase the old buildings alluded to by Mr. Wilkins? or that the barracks, and the large piece of gound adjuining, which already belong to the Crown, might be vacated for some spot more convenient for military parposes?

The socond question is, "Can the principal elevation be improved for a moderate outlay?" In my humble opinion, as a non-profescional man, I am disposed to think that much might be done with the present materials if differently arranged; in which case the chief expense would be incurred for removing and refixing them. It strikes me that one of the principal objections to the existing elevation is the great number of Iungitudinal parts into which the front is divided. If these could be disposed in larger masses, greater breadth and simplicity would be obtained; with this impreasion I have tried the effect of removing the columns from the side porticos, and adding them to that in the centre; I suppose the same pediment to be elevated, elongated, and reconstructed, withont further alteration; I have already proposed to dispense with the little cupola over the pediment, which may be considered almost a useless feature, neither dignified in its external appearance, nor internally convenient, as a place in which the students of the Royal Academy have to study from the living model. In lieu of this, I would propose to erect a dome of larger dimensions over the new ventibule.
To alter the elevation principally by re-arranging the old materials, according to the plan which I have suggested, would probably not exceed the sum of 3000 l . or 4000 l ; but should it be considered impossible to amend the present elevation, and therefore desirable to pull it entirely down, to sell off the old stone, and to erect a new facade in the Greek, Gothic, Egyptian, or Chinese style, with about the same amount of labour and materials, we should still retain possession of this fine situation, and the whole course would not even then exceed some 15,000 .; I have good authority for naming this sum, because I made a detailed estimate of the masonry for Mr. Wilkins, and the contrwet for the external stonework was taken for a trifle under that amount.
No galleries which are decidedly erected for the display of paintings should be architecturally decorated internally; plain, straight walls are most fit for the object in view. If ornament be admitted at all, it should be confined exclusively to the ceiling or covering; and in this respect many valuable hints might be taken from some of the recently-constructed iron and glass roofs at the railway stations and termini. With regard to the exterior of the proposed additional buildings the public thoroughfares of Duke's-court, Castle-street, and Hemming's-row, are not of sufficient importance to warrant any expenditure for the display of architectural design, not even to the extent of stone-facing; therefore perfectly plain brickwork, without break or recess of any kind, would sufice.

Thus 1 have endeavoured to show that the present site of the National Gallery is an admirable one for such purpose; that the exioting elevation may be altered, or entirely rebuilt, for an insignificant sum; that the demand for space may be supplied to almost any reasonable extent, and galleries sumficiently large to receive the grandeat performances of historic art may be built. And further, I venture to say that the number of rooms and extent of accommodation could not be produced in so satisfactory a manner anywhere else for so small a sum of money. If the scheme thus merely suggested were properly carried into effect, I am disposed to imagine that the ultimate result would never be considered mean, incomplete, or unsatiafactory.

In conclusion, I beg to offer a few remarks respecting the
construction of the new National Gallery, wherever it may be determined to erect it. No part of the architectural profession appears to give so little astisfaction to the great body of artists and amateurs as that by which the architect arrangea the mode of admitting daylight into picture-galleries. Some of our most eminent professors have failed in this respect, and I can scarcely bring to mind any large room where the light is eo admitted as to give general satisfaction to the artists who send their works for exhibition: I would, therefore, ask if this part of the subject is so difficult to determine, why not try experiments upon a large scale at full size, and in the actual building during its progress? As soon as the general plan of the edifice is settled, let me suggest that the walls of one of the principal rooms should be built up to the full height with as little delay as may be consistent with sound construction. Upon these walls place a temporary roof or covering, with a superabundance of glazed lights; let the entire roof, and, as far as practicable, every part of it, be made to admit of a variety of adjustments or alterations; -if there be too much light, it will be easy to modify it with sun-blinds where requisite. When these arrangements are ready, hang up a few large pietures to try the effect, and submit the experiment to a committee of artists, or other persons competent to form a correct judgment in such matters; if the first attempt should prove unsuccessful, try various other modes of lighting the apartment: it will be much better to apend a few hundreds, or even a thousand pounds, in experiments to ascertain the best mode of giving light to the pictures, than to finish the galleries at an immense expense, and, when they are completed, to find that the greater number of artists consider the pictures improperly lighted, and, consequently, that the building does not properly answer the purpose for which it has been especially erected. More useful information is likely to be derived from such experimental modes of procedure, than from examining and comparing plans, sections, measurements, and descriptions procured of all the picture galleries in the civilised world.

I have already stated that the New Galleries, in the plan submitted by me, are proposed to be placed on the first-floor; this arrangement would leave the entire range of rooms on the ground-floor available for other purposes, such, for example, as rooms for Archbishop Tenison's Library and School, and a Subscription Library belonging to St. Martin's parish; both these institutions now occupy part of the site, and might well be accommodated on the ground-floor, under the new galleries. The ground-floor frontage, in Hemming's-row, might be valuable for shops or warehouses. Should the objection be made that the various hazardons trades and occupations, carried on in these tenements immediately beneath the picture-galleries, would endanger the safety of the building by conflagration, I confidently submit, that it is possible, and quite practicable in these days, with all our modern improvemeats, inventions, and appliances, so to construct a building as to set flames and incendiarism at defiance. With brick, tile, stone, slate, iron, glass, and various cementa, the entire edifice may be constructed and finished, ready for the pictures, without an atom of what is usually termed inflammable matter in its composition.* Even the furniture and fittings might, to a very considerable extent, be manufactured with incombustible materials. But if a little wood should be introduced in places for greater convenience, no very great harm could arise; a small quantity of fuel can never be kindled into a large fire; still I must maintain the assertion that it is not necessary to use inflammable substances to form any part of the building; and that the entire fabric might be erected, from the foundation to the roof, completely fire-proof.
Discussion.-Mr. D. Mocatta, the Chairman, after expressing his opinion of the importance of the subject treated by Mr. Smith, said, that with respect to the supposed injury occasioned to pictures by the London atmosphere, although Mr. Smith had suggested that it was a question for chemists, they, as architects, were always glad to have the opinion of artists on such subjects; he therefore hoped that the artists present would favour the meeting with their sentiments on this most vital point in con-

[^64]nection with the proposed change in the site of the National Gallery.

Mr. Gabling said that it might be doubtful whether many other causes, benides the oxygen of the atmosphere, did not combine to produce the injury complained of. Leaving, however, that important question, he begged to offer some remarks on the addition to the present National Gallery, as proposed by Mr. Smith. The plans of all public buildings should present a regular geometrical outline, without acute or obtuse angles, from which no considerations of site should induce the architect to depart. The plan exhibited by Mr. Smith was defective in this respect, but might easily be improved, without any material loss of space, by making its outline and subdivisions square. Duke's-court and the bouthern end of Castle-street were extremely unimportant as thoroughfares, and, as an Act of Parliament would in any case be necessary, it would be better to close them altogether, and take into the proposed addition the whole width of the latter street. In such a thoroughfare as Hemming's-row the shops proposed by Mr. Smith could not be remunerative, as they would be only fourth-rate, and he hoped that feature of the project would therefore be given up.
Mr. Scoles hoped that the act, if carried, would embrace the removal of the houseg in St. Martin's-place, which would otherwise hide the new building.

Mr. Mocatta said the real question was one of site rather than arrangement. If the site were determined, it would not be difficult to provide for the reception of many more pictures than might be added for years to come to the National Collection, and certainly there was plenty of available space for enlarging the existing building. The magnificence of the present site, and its central situation, would render it highly desirable to retain it if possible. The Institute and other learned and scientific bodies would be glad to be accommodated in a building in such a situation, and therefore, the suggestion of making shops a portion of the structure might be at once abandoned. In his opinion, however, the first question was, whether the pictures really sustained any injury in their present situation? and he hoped Mr. Foggo would give the meeting the benefit of his views on that subject.

Mr. G. Fogao asaid that he had given much consideration to the subject, and to the evidence and reports of committees in reference to it. He regretted to say that the last Parliamentary Committee had rejected all the conclusions arrived at by previous Committees, and recommended a change of site without hearing any opinions to the contrary. Indeed, although two artists had tendered their evidence in favour of the present site, the Committee refused to hear one of them, and only received the opinions of the other on condition that they should appear as an appendix to their report. The importance of having a National Gallery tn the centre of the metropolis could not be over-rated. He (Mr. Foggo) was a member of a deputation which had waited on Lord John Russell to solicit the removal of the Cartoons from Hampton Court to the National Gallery. Until about twenty years ago, the keeper or deputy-keeper at Hampton Court was allowed a stove and coals to keep the cartoon gallery dry, and the fire, with the spray from the fountain in the court-yard, had produced more injury to those valuable works than they could possibly have sustained in London. He had strongly urged upon Lord John Russell the immense importance, in an educational point of view, of rendering the cartoons more accessible to the population of the metropolis, and his lordship rather warmly expressed a similar opinion. In fact some of the cartoons had been brought to London for study at the Royal Academy and the British lnstitution without especial injury. Mr. Smith, he believed, was perfectly right in stating that the carbonic acid gas which settled on a properly varnished vil painting might easily be cleaned off without injury to the picture. It was well known to picture dealers that when the re-paints and varnishes were taken from an old picture, it was often found "as hard as narble;" and pictures imported from the fine climate of ltaly were never supposed to sustain injury from remaining ten years or more in the shops of the neighbourhood of the National Gallery. Indeed, if there were any truth in the idea, every nobleman and gentleman in London possessing fine pictures would at once send them away. The Duke of Northumberland's gallery was even in a worse situation than the Niational Collection; and whilst the former was not supposed to have been at all injured, a picture by Hilton in the latter had suffered materially. Indeed, an entirely new picture with the magilp, which was now so fre-
quently used, would suffer more in the three months exhibition of the Royal Academy than would a Raffaelle in a hundred years. All picturea, indeed, changed more in the first three months than in three years; and more in the first three years than in fifty yeara after. A faithful copy of an old picture, in like manner, would in a very few years be much darker than the original; and if any part of a picture requiring it were repaired, the repaired portion soon became a dark spot. If in glazing a picture an excessive quantity of oil were used, the oil floated on the surface, and attracted the oxygen, as described by Mr. Smith. Mr. Farrer, in his evidence on the National Gallery, had stated that the improper use of magilp instead of mastic varnish, was the cause of their deterioration, and that the magilp was now so thick upon them, and so great was its tenacity, that if the practice were discontinued and varnish employed instead, the pictures would be torn to pieces; therefore, there was, unfortunately, no remedy for the existing evil, whilat every fresh coating of magilp made the picture darker by attracting the oxygen. The result would be the same in the country as in loondon. The fountains in front of the National Gallery, and the smoky chimneys around it, might be supposed to have injured the site, but he doubted whether damp or smoke were seriously injurious, and at all events those evils had been promoted by the anthorities who now sought to remove the pictures from them. Some had said that the dust raised by the visitors to the gallery injured the pictures, but if that were so they should not be exhibited at all; but in truth the grand object was that these great works should be seen and criticised by all classes of men, women, and children. Hictures were subject to atmospheric influences abroad, as in England, and the situation of the Louvre, eapecially in November or February, was much worse than that of our own National Gallery. The pictures there were very liable to be injured by the fog, which though whiter than our own, often preverited the building being seen from the opposite quay; and there was more irregularity there in warming and ventilating than in London. The coul fires, also, which darken the London fog, maintain a greater degree of warmth and ventilation. In the dingy atmosphere of Holland the finest pictures of Van Eyck and others were preserved, even with the most beautiful glazings ever seen. More benefit would be done by offering premiums for good oils and varnishes than in building a new National Gallery. Admitting the darkening infuence of the London atmosphere, Mr. Foggo contended that it was not confined to the centre of the metropolis. The sheep in Ken-sington-gardens and at Shepherd's-bush were as dark as in the heart of London; and when certain winds prevailed, the fog and smoke were conveyed to Harrow, Uxbridge, aud Epping-forest; whilst he had often observed that a dense evening fog in the outskirts was dispelled in the metropolis by the gas-lights. In regard to Mr. Smith's design, he thought a magnificent frontage to Trafalgar-square would supersede the necessity of other fine elevations; and if the additional apartments were spacious and regular within, the external irregularity would not be of oso much importance.
Mr. Papworth adverted to the evidence of Mr. Faraday, to the effect that the national pictures were mainly damaged by the ammonia deposited upon them by the perspiration of the immense multitude of persons who visited them. Either Mr. Faraday was wrong in that conclusion, or another question arose-namely, whether such works were to be preserved unchanged as monuments of departed artists, or to be kept for the education and benefit of the people at large. In the latter case they should be alluwed to do their work and perish, when they mipht be supplied by others.
Mr. E. 1. Parris observed, that the supposed injury to pictures from the London atmosphere was rather to be ascribed to the mode in which they were originally painted. Besides the picture by Hilton, to which Mr. Foggo had referred, he (Mr. Parris) had observed that the painting by the same artist presented to the church at Newark, had cracked throughout in precisely the same way. Another picture by Hilton had actually run away, having been described to him as actually "melting; and the meeting would no doubt remember the painting of 'Sabrina' by the same artist, in which the eye of the principal figure had fallen down upon the cbeek, so that it was necessary to turn the picture upside down, in order that it might run back again. Reynolds, and other artists of his time, prepared their colours according to their own notions of chemistry; and adopting the views of Vasari and others, they used builed oil extensively, and with the worst effect. He (Mr. Parris) had
recently restored some pictures at Norbury Park, Surrey, which, from being painted in the manner referred to, with a mixture of bitumen (pitch) had become perfectly black. The oil and bitumen being differently affected by heat and moisture, they could never coalesce. Most of Reynolds's and many of Wilson's pictures, had suffered from the same cause. The pictures at Norbury were by Pastorini, Cipriani, Barret, sen., and Gilpin; and besides the blackness which obscured them, there were cracks in them so deep, that he had found it necessary to scrape, rub and fill up, to a great extent, to get a surface. At present the preparation and mixture of colours was conducted with such skill that he believed, if they were carefully used, the pictures of living artists, would be as enduring as the best of the old masters. Magilp was a mixture of drying oils and mastic varnish; the drying oils being boiled to blackness with sugar of lead, \&cc. The landscape by Rubens in the National Gallery, formerly the property of Sir George Beaumont, while in his possession was never varnished, but merely rubbed with salad oil to nourish it. He agreed with Mr. Foggo, that the greatest changes in pictures took place soon after they were painted, and was decidedly of opinion that the London atmosphere was not at all injurious to pictures.

Mr. Mocatta thought that the latter point was really the most important, and he hoped that the removal of the National Gallery would not be decided on till the Institute, as an important public body, had been appealed to, when it would be for them, if they thought fit, to make a stand in favour of the present site. He concurred in the view that the atmosphere of Paris was inferior to that of London for the preservation of pictures; and if the National collection were to be removed, the question was, how far should it be taken. Certainly it was important, if it could be done with safety, to retain it in the metropolis. It was satisfactory to know, as Mr. Smith had stated, that 15,000 . would produce an entirely new elevation for the present building.

Mr. Jennings inquired whether the sulphuric acid from the gas used in London was supposed to be injurious to pictures.

Mr. Papworth repeated that Mr. Faraday considered ammonia to be the sole cause of injury.

Mr. Parbis agreed with Mr. Faraday; and considered that, if a picture were to be left without varnish (which, however, was never the case in London), the acids arising from the gas would immediately combine with the oil. Varnish being a gum, of course, resisted all the acids and salts. The Cartoons of Raffaelle which had been brought to London, were as perfect as those which had never been removed.

Mr. Foge said that sulphuric acid could not penetrate the thinnest coat of any other surface.

Mr. Twining referred to the varying condition of the works of the old masters in this and other countries, as a proof that they were not deteriorated by atmospheric influences, but by some cause dependent on the manner in which they were painted. Even if the London atmosphere were injurious, no removal to e less distance than twenty miles could prevent the evil. He cordially approved of Mr. Smith's ingenious proposition, especially as economically improving the elevation of the present building.

Mr. Heareta eulogised the arrangement of the additional building, as proposed by Mr. Smith, which gave the smallest quantity of external wall to be exposed to the damp, and afforded access from room to room without going again over the same ground; the necessity for doing which (as there was only one room in depth) was a serious defect in the present building.

Mr. Jayes Bell, M.P., said that if the site of a new Gallery at Kensington had been actually secured, as had been stated, it would require the utmost vigilance on the part of the Institute to prevent the completion of the scheme. If, indeed, that plan were carried out, the Cartoons at Hampton Court would be nore accessible than at the National Gallery. He would not call the proceeding referred to n jub, though he could hardly describe it in other terms; and if Mr. Foggo had accurately characterised the proceedings of the last committee, the Institute would know what they might expect.

Mr. Billings congratulated the Institute that a member of the body was now in a position to look after this and similar matters in parliament. He thought nothing effectual could be done to improve the preseat elevation of the National Gallery, and that so many private collections would be offered to the nation, if a proper building were provided, that Mr. Smith's plan (ingenious as he admitted it to be) did not provide anything like sufficient space, If a new National Gallery were to be
built, he hoped the design would be open to general compatition; but, if what he had heard was correct, he thought the plans for the intended building at Kensington were already nearly prepared.
Mr. Mocatta, in proposing the thanks of the meeting to Mr. Smith, expressed a hope that Mr. Billings was misinformed, and that there might yet be an opportunity for the Institute to interpose.

FLOATING BRICKS.

Mr. Honner has exhibited, at the Liverpool Architectural Society, some specimens of a very light description of brick, manufactured from silicious earth, found in the Tuscan Maremma, called in that country "fossil flour." The deposit of this earth, which may be, perhaps, a mile in extent, exists near Castagneti, supposed to be about the centre of ancient Etruria, and was first discovered during excavations made in search of Etruscan antiquities. Mr. Harald Srûb of Leghorn, who furnished the descriptions from which Mr. Horner gave a translation, sayo-"Arrived at the pit, we turned up the surface with picks. In the first place, we came upon a stratum of vegetable earth and remains of trees, under which lies the 'fossil flour,' called by the country people 'Latte di Luna' (Milk of the Moon). This is a light, porous earth, somewhat tenacious and moist, which is dug out in lumps, and which is remarkably white, although it may sometimes be stained by infiltration from the vegetable mould. If exposed for some time to the action of the sun and air, the earth loses its tenacity, and where stained becomes pure white, showing that the accidental colouring matter was vegetable. When viewed through a strong magnifier, it appears for the most part to be composed of small, shining, needle-like crystals, not visible to the naked eye. Water being thrown upon the earth, it gives out an argillaceous smell, with a very slight steam. It is also slightly plastic. Exposed to the heat of a furnace, it remains infusible, and only loses about oneeighth of its weight. My friend, Signor Fabbroni, turning it to account in a yery ingenious manner, has made bricks of it, so light that they will float in water. Quoting from memory, I give the result of this friend's analysis, viz.:-

Its composition, therefore, is very different from that of other earth commonly called by the same name, 'Latte di Luna,' which is simply a pure argillaceous carbonate; and, not to confound this with other substances, we call it, with Signor Fabbroni, ' fossil fluur.'"

The Clyde.-Lately there was launched from the buildingyard of Messrs. Tod and Macgregor a large iron steamer, for the Peninsular and Oriental Company in the Indian Seas, of a tonnage of 2300 tons. The launch was attended by circumstances exactly resembling those of the recent launch of the Marion Moore at Liverpoul. While the men were engaged knocking away the shores or supports at the stern part of the vessel, the immense mass was suddenly seen to move, and plunged into the river; the ship did not wait for her name -the Bengal-but it was wafted after her. She is 10 feet longer than the Great Britain; but having less depth and breadth of beam, she has not, of course, the same ainount of tonnage. The same gentlemen have in the course of construction in their building-yard two steamers, to be named the Cadiz and the Dourn, each of 1000 tons, and they are about to lay down the keel of a magnificeht steamer to be called the Simla, and which will be 20 feet longer than the Bengal. All these are for the Peninsular and Oriental Company. Indeed, when the present contracts held by Messrs. Tod and Macgregor, and other gentlemen in the neighbourhood, are finished, this company will have spent no less than one million sterling in shipbuilding on the banks of the Clyde.

HAMPTON COURT PALACE.

We have already (oee pare 60, Vol. XIV.) called attention to this extensive pile of building, to the circumstances of ite erection at different periods and under different auppices, and given some general remarks upon the architecture itaelf. On the present occasion the subject of our illustration, and of these notes, bear reference to the eastern part more particularly, the whole of which portlon was designed by Wren, conjointly, it may be said, with his royal master, William the Third. It will be recollected that our former drawings alluded to were in illustration of the Fountain Court, which immediately adjoins the eastern wing, and serves as the connecting link between the Clasaic and Gothic portions of the edifice.

The eastern front presents a symmetrical design, of which a amall purtion, with its details, is shown in the annexed engravinge. Documentary evidence shows that it was erected between 1690 and 1694, for the purpose of increasing the number and convenience of the state apartments. For this reason the rooms are all en suite, and of imposing proportions and decoration. Externally the front presente a masive, un-
broken elevation, about 330 feet in length, executed in red brick; the alternate angle-quoins, the window-dressings, and ornamental accessories, being in stone. There are in all nineteen compartments in this elevation. The centre consists of an eightcolumn pseudo-portico of the Corinthian order, having a wellproportioned entablature and pediment, with elaborate sculpture in the tympanum. This order occupies the first-floor and mezzanine story only, for in the attica the columns ara rapiaced by pilasters, and in the ground-floor by 1 in , Be Between these latter is the approach to the Fountain Court, already alluded to, through some peculiarly elegant iron gatea, which give great completeneas to tue ensomble.
Sculptured devices are scattered freely and varied, but chiefly referring to national events, monograme, and royal initials. The keystones to the windows alone will, on examination, fully corroborste these statements. But the subject is exhaustleas. Let all see and compare for themselves.

THE CATHEDRAL OF ST. ASAPH.

By J. H. Cooper, Trin. Coll. Cam.

[Abetract of a Paper road at the Cambridge Architectural Society.]

In the midst of the Vale of Clwyd , about seven miles from the sea, the rivers Elwy and Clwyd unite their waters. At the point of land formed by this confluenceis a steep hill (according to books, "arises a gentle eminence"), or rather-for the hill is only on the north side-the level of the Vale suddenly sinks; and on the sides and base of this acclivity is acattered the city of St. Asaph, the principal street being straight up the steep hill, after the usual fashion of Welah towns. At the summit stands the cathedral, and though on elevated ground, yet its lowly height, surrounded by its tall churchyard elms, gives an impreasion of but simple grandeur and modest dignity.

Mr. Cooper gave a lengthened and intereating deacription of the origin and early history of the city and cathedral, and having noticed the dilapidations and restorations the latter had at various periods undergone, proceeded to give an account of its more modern history, as follows:-

In 1629, after a succession of bishops, a repairer and beautifier was found in J. Owens, chaplain to Charles I. when Prince of Wales, and the first bishop to eatablish preaching in Welsh. He rebuilt Bishop Redman's throne, made a neat pulpit, and also set forms for the accommodation of worshippers in general. Nor did he stop here, for he gave an organ. At this time we may consider this cathedral to have been in its most perfect state; it had been repaired and adorued by the pious care of ita bishops as it had never been before, nor yet has been since; but, like Solomon's Temple of old, the period of its greateat glory was short-the day of rebellion, with its attendant sacrilege and despoiling was at hand. A few years, and, instead of the notes of the organ, the neighing of horses and the bellowing of oxen resounded along the nave, calves were tied up in the choir, the holy font was turned into a pig's trough. The generous bishop had fled in exile and poverty, and his palace was converted into a beer-shop.

In 1669, Isaac Barrow, uncle to the master of Trinity, was translated from the Isle of Man, and instantly set about repairing his cathedral, and especially the choir, the east end of which is covered with the wainscoting he placed there. His tomb is just outside the west door, and has ingeribed on it a prayer. In 1708, there came Bishop Fleetwood, who laid out large sums of money on the interior of the cathedral, repairing it, and painting and "beautifying" the choir. The present throne is the work of Bishop Griffith (1714), who, however, never occupied it, dying just as it was finished.

As to the present state of St. Asaph's Cathedral, in an architectural point of view, its great peculiarity is, that it has no peculiarity about it. It is more uniformly built than English cathedrals in general: any further comparison only serves to point out its defects. We look in vain for some of the most beautiful features of a cathedral church-the lady chapel, the cloisters, the chapter-house, and even the monuments. Richman describes it as a plain cross church, principally in the Decorated style; and it certainly is a singular example of what appears a paradox-viz., Plain Decorated. We have only two dates to keep in mind-1884, when the walls and pillars now remaining were erected, at which time (Edward I.) the Decorated atyle had just been introduced; and 1490, whea Biabop Redman put in the
east window, and raised the walls to the height at which they now stand, and then the Perpendicular had fully developed its distinctive features.

A close examination suppliea a proof of the fact of the different periods of building, for the upper part of the nave is not of the same workmanghip as the lower; and while most of the church is built of a red soft atone, the east window is of white free-binne; while the windows of the nave and transepts are Decorated, the ni: in the clerestory show that they owe their shape to the times of the Tudors. Let us now go round the church, beginning from the west. IIere we find a very plain simple front, having a deeply-recessed Pointed door, and a really elegant (from its excellent propertions) Decorated wimiow of sir lights, with flowing tracery, which excited the admiration of Richman. On each side a plain square buttress terminates in a pinnacle panelled and crocketted; and it is to be remarked, that the buttresses about the cathedral are both few and plain; the plain cross on the gable point has been receutly restored. The nave has side aisles, though the trausepts and choir are destitute of them. The south aisle can boast of nothing but four plain Decorated windows, a door now closed up, and the apertures in the clerestory, hardly windows, which are aquare, and of Tudor work. Among the beautifyings of modern times, the clerestory has entirely disappeared from the inside. The transepts are very good features in the cathedral, presenting, as they do, some simple beauties of the late Decorated in the windows both of the north and south sides and their east walls. The north and south walls of the choir have each two late Decorated Pointed wiudows, now filled with stained glass by the bishop, as a memorial of the late Mrs. Short; and in the east wall is one said to be copied from a window at Tintern abbey, filled with stained glass in 1810 , by voluntary contributions, the subject being the arms of the contributors. At the intersection of the nave and transepts rises a square embattled tower of very lowly appearance, being only 90 feet high; each face possesses as its sole ornament a Late Decorated window, and up the north-east corner runs a square staircase turret to an elevation slightly above the rest of the tower.

On entering by the west door we are met at once with a proof of the extent of mischief usually wrought in modern times by "substantial repairs" and "beautifying" operations, which eeem to have but une universal rule-to deatroy the character of the building, by additions as much as possible at variance with it. The nave and aiales are plain almont to meannems the archea, indeed, are Pointed, but their pillars are without capitals; the
ceiling is plain, in the worst sense of the word, consisting, as it does, of plaster vaulting, with a few lines here and there to represent tracery. In the nave this style of roof has only lately succeeded a timber one of unornamented beams and rafters. The tower rests on four Pointed arches, in the western of which is the screen and organ. The transepts are blocked up to serve the purposes (north) of chapter-house, vestry, and (south) of library. The choir is mainly "a modern re-edification, with much attempt at the imitation of ancient work, but with no real resemblance to any style, though the intention seems to have been the imitation of Perpendicular." The canopies of the stalls alone remain to attest the short-lived beauty of the original choir; they were carved for Bishop Redman, and still bear his arms. Fourteen feet from the altar is the episcopal throne, erected by Bishop Grifinh in 1714; it is not above 14 feet high; but neither doesit, or the pulpit, possess any festures worthy of notice.

PLAIN CYLINDRICAL DRUM PROPELLER.

Profeseor A. Cerestanozo, Inventor.

The patentee of this novelty in steam navigation considers the use of paddles to be a mistace, and that the best and cheapeat method of improving the propeller is to use simply the plain circumference of cylindrical drums. He states that it is a natural supposition that a plain round surface should have no tractic adhesion with the water; but, on close examination, it will be found not only that such is not the case, but, what is even more surprising, the tractic adhesion of a plain cylindrical drum is far greater than that of a paddle-wheel of equal size. Taking, for instance, the steam-vessel Allantic, whose paddlewheels are 35 feet diameter, and length of paddles 12 ft .6 in . supposing a moderate immersion of 5 -feet paddles, one pair of drums of equal size at equal immersion would displace a pair of cubic segments at about $125,36 \mathrm{ll}$. of water; or, what amounts to the same thing, a pressure of not less than 60 tons would act upon the drums as a tractic adhesion, which is by far superior to that afforded by the best method of paddle-wheels in the most favourable circumstances. Now, the cylindrical propeller has the substantial advantage that it can be, when reduced to a moderate diameter, applied as well totally immersed as if it be fitted into a semi-cylindrical case, with only such a clearance as is just sufficient to let the drum have a proper action, the other half drum or semi-cylinder projecting out of the case for the propelling action. There is no piece of mechanism which more strenuous and frequent attempts have been made to improve or supersede than the paddle-wheel, and of which there are $s 0$ many different descriptions. Surely, when so many and large interests are at stake as are represented by steam navigation, those who are engraged in the large steam communications should give it a fair trial. In a heavy gea, where the solling of the vessel is considerable, what a difference between a paddle-wheel and a plain cylinder! And the machinery of such a propeller would not require to be repaired during the passage, as is often the case with the paddle-wheels, causing a loss of time equal to what has been gained. And when we consider that each of the paddle-wheels of the Orinoos, Parana, and Magdalena, weighs nearly 80 tons, it is not too much to say that, with such a weight, a cylindrical propeller may be made quite gun-proof.

The patentee is of opinion that an immense advantage will also be obtained by the surface of a cylinder entering and leaving the water without a splash, in removing the great obstruction to the practicability of steam-vessels of quick velocities in canal navigation-that is to say, the agitation of the surface, and the consequent injury to the banks of the canal.

Society of Antiquaries.-At the meeting of the Society of Antiquaries on the 95 th ult., the attempt to increase the sabscription from two guineas to four, was defeated by a division of 51 to 39. The reduced subscription is looked upon with contidence by its promoters, as a means of restoring the Society to a position of greater utility, and of enabling the more extended co-operation of persons interested in antiquarian pursuits. The opposition seems to be based on the desire to keep up an exclugive system, and to prevent a competition with the Archmological Institute and Association, which have thriven under the exclusive ragime of the Society of Antiquaries Now, that the Late heavy subacription of four guineas is finally abolished, we may look to the inrolment in the Bociety of many practical and zealous antiquariea.

DIMENSIONS AND COMPUTATIONS OF THE AMERICAN，PITTSBURG，AND CINCINNATI PACKETS， AND SOME OF THE OTHER LARGE STEAM VESSELS WHICH NAVIGATE THE OHIO RIVER，ABOVE OR BELOW THE FALLS．

By Wifliam J．McAlpine，C．E．

PAETS MEABURED， in feet，and decimals of a foot．	Pittaburgh and Cinctnast Packets．							Loutandleand CinclinasPackets．		Loolarille and Niw Orieana 8tnembotis．					
		官									$\begin{aligned} & \text { 㵄 } \\ & \text { 要 } \end{aligned}$	$\begin{aligned} & \text { 尤 } \\ & \text { 芯 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ion } \\ & \text { 最 } \\ & \text { 易 } \end{aligned}$		
Lengtho－															
Stem to itern ．	215.	227 －	250	264.	$244 *$	242.	226.	235		265.	266°	265.	295.	172.	153.
Stem to promenade deck	28.	28.	28.	28.	29.	28.	28.	$8{ }^{\circ}$	－	25°	26.	28.	35.	27.	21.
Stem to boilers－	59.	71.	73.	81.	71.	73.	73.	80°	．	75.	82.	83.	88.	55.	40.
Stem to wheelthaft	145.	157.	162 ．	172 －	160	157 ．	152 ．	165.		173 ．	169 －	177 ．	186	129.	108.
Of pilot homses	9.	8.	8.	10.	8.	8.	$8 \cdot$	11.	．	12.	10°	14°	16 －	．．	10.
Breadthe－															
Of beam	32	32	30	$30 \cdot$	31	31	28.	34．		34．	34°	$33 \cdot$	35.	$27 \cdot$	27°
Outside of guards．	54.	58.	57°	56.	58.	65．	54.	66°	．	66°	69°	69.	72.	．．	37.
Of pilot house．	15.	15.	12.	12.	12.	12 ．	14.	13.	\cdots	14.	13.	$13 \cdot$	16°	\cdots	10 ．
Depth of hold ．	$6 \cdot 9$	$7 \cdot 5$	$7 \cdot 2$	7.8	$7 \cdot 2$	$7 \cdot 4$	7.	7.		$7 \cdot 5$	8.	$8 \cdot$	9.	$5 \cdot 6$	$5 \cdot 7$
Draught when light	$3 \cdot 2$	$3 \cdot 5$	$3 \cdot 3$	$3 \cdot 5$	$2 \cdot 9$	$3 \cdot 3$	$3 \cdot 5$	．	$3 \cdot 5$	$4 \cdot 7$	$3 \cdot 8$	．	4.4	$1 \cdot 8$	$2 \cdot 7$
Heighte above the surface of the water when light－															
Main deck	4．4	4.0	$4 \cdot 3$	4.5	4－2	$4 \cdot 3$	$3 \cdot 5$	$3 \cdot 3$	4－2	$3 \cdot 5$	4.	$4 \cdot 3$	6.0	－	$3 \cdot 7$
Promenade deck ．．	16.8	16.	16.	16.	15.	16.	$14 \cdot 5$	15.	$17 \cdot 8$	$15 \cdot 8$	$16 \cdot 3$	$18 \cdot 3$	$21 \cdot 3$		$10 \cdot$
Hurricane deck	$22 \cdot 3$	$23 \cdot 6$	25.	$23 \cdot 8$	$22 \cdot 5$	23.	$19 \cdot 5$	24.5	27.	$26 \cdot 5$	27.	$26 \cdot 5$	30.		21.
Skylight deck	$25 \cdot 9$	$26 \cdot 1$	$27 \cdot 7$	26.	$25 \cdot 2$	$23 \cdot 5$	22.	$28 \cdot 7$	31.2	29.	$29 \cdot 5$	$29 \cdot 8$	34－2	－	23.
Pilot house	$45 \cdot 1$	$46 \cdot 3$	$46 \cdot 1$	$45 \cdot 7$	43.4	$45 \cdot 8$	$40 \cdot 5$	$48 \cdot 6$	$50 \cdot 4$	$49 \cdot 5$	50－1	$43 \cdot 8$	$56 \cdot 7$		$32 \cdot 5$
Wheel house	26－7	30－7	$30 \cdot 3$	$30 \cdot 8$	$28 \cdot 4$	32.	$24 \cdot 2$	$29 \cdot 5$	$32 \cdot 3$	30－2	$34 \cdot 5$	32.	41.5		24.
Croas braces	$28 \cdot 7$	\cdots	$27 \cdot 7$	$34 \cdot 1$	$26 \cdot 8$	$26 \cdot 7$	$43 \cdot 5$	$29 \cdot 5$	．．	$29 \cdot 5$	32.	$30 \cdot 8$	38－2		$25 \cdot 3$
Hog chain bracea	．	51.4	．．	$32 \cdot 4$	．	．．	．	－	－	－•	－•	－	．	．	－
Dinmeter	25	29	$30 \cdot$	$31 \cdot 3$	$30 \cdot$	$32 \cdot 6$	26 ＊	$27 \cdot 5$	30.	30.	$30 \cdot$	$30 \cdot$	40.	22．	25.
Diameter of shaft．	1.	1.3	1.3	$1 \cdot 4$	$1 \cdot 3$	$1 \cdot 3$		．．	．．	$1 \cdot 3$	．		$1 \cdot 5$		
Length of bucket	$11 \cdot 3$	11.4	12.	11.5	12.	11.	12.	$14 \cdot 7$	12.	14.	15.	16^{*}	$12 \cdot 2$	$8 \cdot 3$	$7 \cdot$
Width of bucket ．	$2 \cdot$	$2 \cdot 2$	$2 \cdot 7$	$2 \cdot 6$	$2 \cdot 5$	$2 \cdot 3$	$2 \cdot 6$	3.	3.	$2 \cdot 5$	$2 \cdot 3$	$2 \cdot 5$	$2 \cdot 4$	$2 \cdot 2$	$2 \cdot$
Namber of sete of arms	16	20	19	20	18	18	18	18	18	18	20	18	26	15	14
Rerolutions per minute．	22	20	19	18	19	18	19	16	18	20	18	16	16	24	23
Chimney：－ Centre of fiues ab，surf．water															
	9．7	9－3	9－5	10.	9•7	9－8	$8 \cdot 1$	$8 \cdot 6$	$9 \cdot 3$	8．6	$9 \cdot 2$	$9 \cdot 8$	$12 \cdot$	$8 \cdot 2$	$8 \cdot 3$
Hinges $\quad * \quad "$	54－5	59.	27.	$26 \cdot 8$	$64^{\text {• }}$	21.9	$33 \cdot 7$	\because				\cdots			$23 \cdot 6$
Top of	$66 \cdot 7$	71.5	$77 \cdot 5$	$74 \cdot 8$	74.	$84 \cdot 7$	$63 \cdot 7$	72－7	$79 \cdot 8$	$85 \cdot 8$	$87 \cdot 5$	$73 \cdot 8$	$90 \cdot 4$	56.	$55 \cdot 6$
Top of，shove flues ．	57.0	62.	64.0	$64 \cdot 8$	64－3	$66 \cdot 9$	$35 \cdot 6$	64．1	66．3	$77 \cdot 2$	$76 \cdot 3$	$64 \cdot 0$	$78 \cdot 4$	47.8	47．3
Distance between chimnoys	\cdots	18.5	18.	－	－	$17 \cdot 8$	$15 \cdot 3$	4	－	\because	－	－	－	．\cdot	
Diameter of ．．．	3－66	$4 \cdot 55$	4.06	$5 \cdot 50$	$4 \cdot 45$	$4 \cdot 43$	$4 \cdot 5$	$4 \cdot 6$	$4 \cdot 85$	4．75	5.	$5 \cdot 1$	5.	．	$3 \cdot 55$
Width of iron ringe ．．	$2 \cdot 04$	2.07	$2 \cdot 17$	$2 \cdot 06$	$2 \cdot 04$	$1 \cdot 75$	2 ．	$2 \cdot 0$	$2 \cdot 0$	1．92	2 ．	1.83	$2 \cdot 0$	．	$3 \cdot 56$
				5	5	4	5	6	5	5	6	6	6	2	3
	$26 \cdot 2$	26－5	$30 \cdot 8$	30－2	30.	28.	$27 \cdot$	32.	$30 \cdot$	$34 \cdot$	31.	$32 \cdot 3$	$30 \cdot$	26 ＊	22.
	$3 \cdot 08$	$3 \cdot 33$	$3 \cdot 45$	$3 \cdot 5$	$3 \cdot 37$	3－33	3－42	$3 \cdot 33$	$3 \cdot 33$	$3 \cdot 5$	$3 \cdot 5$	$3 \cdot 5$	3．5	$3 \cdot 5$	$3 \cdot 33$
	$3 \cdot 7$	4.	$4 \cdot 1$	$4 \cdot 2$	$4 \cdot 2$	$4 \cdot 1$	4.	$3 \cdot 7$	4.	4.	4.2	$4 \cdot 2$	$4 \cdot 1$	4.	4 ＊
Number of flues ．．	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Diameter of flues inside	1.08	1.29	1.45	1.45	$1 \cdot 33$	$1 \cdot 27$	$1 \cdot 17$	$1 \cdot 17$	$1 \cdot 33$	$1 \cdot 33$	$1 \cdot 21$	$1 \cdot 25$	1－33	$1 \cdot 33$	$1 \cdot 25$
Draft opace，back end－	0.83	$0 \cdot 70$	1.	$0 \cdot 75$	$0 \cdot 90$	1.	0.90	$0 \cdot 92$	$0 \cdot 75$	$0 \cdot 75$	．	－	\because	$\ddot{0}$	\cdots
Draft apace，over bridge	$0 \cdot 42$	$0 \cdot 42$	$0 \cdot 5$	$0 \cdot 64$	0.60	$0 \cdot 58$	0.50	$0 \cdot 50$	$0 \cdot 70$	is		1	$0 \cdot 83$	$0 \cdot 46$	130
Pressure of ateam，in ibs．	150	140	140	140	150	150	150	130	160	145	140	123	125	135	130
Heaters－	1	2	2	2	2	2	2	2	2	2	2	2	2	2	1
Diameter	2.	$2 \cdot 7$	$2 \cdot 9$	$2 \cdot 9$	$2 \cdot 7$	$2 \cdot 3$	$2 \cdot 5$	$1 \cdot 7$	2 ．	$2 \cdot 5$	$2 \cdot 3$	2.	$2 \cdot 9$	1.5	$2 \cdot 2$
Length－．	4.	$8 \cdot 2$	$8 \cdot 2$	$10 \cdot 5$	10．2	$8 \cdot 3$	$7 \cdot 5$	6 ．	6 ．	6.	8.	8 ．	$8 \cdot$	5.	$6 \cdot 3$
Orate Bars－															
Length ．	4.	4.	4.	$4 \cdot 1$	$4 \cdot 1$	4.	4.	4.	4.	4.	4－1	$4 \cdot 1$	4.	$4 \cdot 1$	4.
Tbickness	0.07	0.06	0.06	0.08	0.09	0.07	0.07	$0 \cdot 12$	$0 \cdot 12$	$0 \cdot 17$	$0 \cdot 11$	0．17	$0 \cdot 06$	$0 \cdot 17$	0－12
Spaces，width of	0.07	0.07	0.07	0.08	0.08	0.07	$0 \cdot 16$	0.08	$0 \cdot 08$	0.06	$0 \cdot 08$	0.06	0.06	$0 \cdot 11$	0.08
Depth of，below boiler ． Engines－	$1 \cdot 75$	$1 \cdot 54$	$1 \cdot 62$	1.58	$1 \cdot 50$	$1 \cdot 67$	1.67	$1 \cdot 83$	$1 \cdot 67$	1．67	$1 \cdot 83$	$1 \cdot 75$	2.	$1 \cdot 04$	$1 \cdot 67$
	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Dismeter of do．	$1 \cdot 33$	$2 \cdot 19$	$2 \cdot 12$	$2 \cdot 42$	$2 \cdot 33$	2.	$2 \cdot 33$	$2 \cdot 50$	$2 \cdot 17$	$2 \cdot 21$	$2 \cdot 08$	$2 \cdot 50$	$2 \cdot 50$	$1 \cdot 42$	$1 \cdot 46$
Length of stroke	7 －	8 －	8.	8.	$7 \cdot 50$	7.	8.	8.	9.	9.	10.	10.	10 ．	$5 \cdot 50$	7.
Cate off at－	$5 \cdot 25$	4.	$3 \cdot 5$	5.	$4 \cdot 6$	$3 \cdot 5$	5.	4.	6．75	$5 \cdot$	$6 \cdot 25$	6.25	$6 \cdot 25$	$2 \cdot 75$	$4 \cdot 38$
Length of conneeting rods	$24^{.}$	26.	26.	26.	26.	26.	24.	26.	27.	29.	$30 \cdot$	30.	35.	20.	22.
Size of stenm ports，in iq．ft．	．	．	．．	0－2552	．．	．．	0－1872	－		．	．．	．．	0－3886	－	$\cdot 1512$
Size of eacape ports．．	$\because 0$	\cdots	．	0－3984		＊	0－2988	$0 \cdot 58$	$\because 0.62$	$0 \cdot 3$	．	．	0．4814		－ 1800
Dismoter of ateam valves	$0 \cdot 33$	．	．	$0 \cdot 56$	$0 \cdot 50$	．．	．．	$0 \cdot 58$	$0 \cdot 62$	0．34	．	．	0－71	$0 \cdot 33$	．．
Diameter of escape valves．	$0 \cdot 46$	\because	\because	$0 \cdot 62$	$0 \cdot 58$	．．	－	$0 \cdot 67$	0－71	$0 \cdot 62$	\cdots	\cdots	0－79	$0 \cdot 43$	．
Diameter of steam pipe．	2.	2.	$2 \cdot$	$\ddot{0} \cdot 65$	$0 \cdot 63$	0.50	0.65	0.65	\cdots	$0 \cdot 8$	$0 \cdot 67$	$\ddot{0} \cdot 70$			
Dismeter of branch pipes ．	0.40 1.00	0．67	0．56	0．65	0．63	$0 \cdot 50$ $0 \cdot 80$	$0 \cdot 65$ 1.10	0.65 1.00	i． 00	0.67 0.9	0.67 1.00	$0 \cdot 70$ 1	0.67 1.00	$0 \cdot 34$ 0.50	0.30 0.80
Dismeter of exhanat pipe	1.00	$0 \cdot 90$	$1 \cdot 10$	$1 \cdot 10$	$1 \cdot 10$	$0 \cdot 80$	$1 \cdot 10$	1.00	1.00	0.9	1.00	$1 \cdot 20$	1.00	$0 \cdot 50$	$0 \cdot 80$

Dimensiont and Computations of Amerioan Steam－Vesele，by W．J．McAlpina，C．E．－＿（Continued．）
［From the Journal of the Pranilin Institute，U．8．］

parts meastajd， in feet，and decimale of a foot．	Tituburg and CIncinoud Packeta．							$\begin{aligned} & \text { Loularilu } \\ & \text { and Ciperanatd } \\ & \text { Pachota. } \end{aligned}$		Loulrollike and Now OriacionSteambotion					
		总		号品						$\begin{aligned} & \text { 券 } \\ & \stackrel{1}{8} \end{aligned}$		遱	$\begin{aligned} & \text { 蹗 } \\ & \text { 品 } \end{aligned}$		
	0.75	1.00		$0 \cdot 75$	0.75	$0 \cdot 92$	0.67	$0 \cdot 75$	$0 \cdot 75$	0.67	$0 \cdot 75$	0.50	0.92	0.58	0.58
	2.00	1.50	\cdots	1.83	1.50	1.25	1.83	1.42	1.75	1.42	3.0	1.58	$2 \cdot 25$	1.25	
	2	2	2	2	2	2	2	2		2	2	2	2	2	1
	0.46	0.46	$0 \cdot 52$	0.54	$0 \cdot 50$	0.48	0.42	0.58	0	0.46	0.67	0.46	0.58	$0 \cdot$	37
				1.42	1.29	$1 \cdot 50$	1.00	1.50	$1 \cdot 75$	$1 \cdot 17$	2.0	1.58	1.67	$0 \cdot 71$	
	2	2	${ }_{0}^{2}$	2	2	2	2	2		2	2	2	2	2	1
	0.46	$0 \cdot 46$	0.52	$0 \cdot 50$	0.50	0.48	0.42	0.33	0.42	0．37	$0 \cdot 37$	0.33	$0 \cdot 50$	0.29	$0 \cdot 29$
				1.42	$0 \cdot 29$	0.50	1.00	1.50	$1 \cdot 75$	$1 \cdot 17$	$2 \cdot 0$	1.58	1.67	$0 \cdot 71$	
	3200 None．	4000 50	3000 72	4000	3000 60	3000 20	2500 80	\cdots	＂．	660	\ldots	－	\cdots	100．	
	36	36	36	30	42	38	40	9	10	132	144		－	3	
	52	52	52	50	52	${ }^{62}$	52	15	15	132	144	．．	．	3	
	10	10	10	12	9	10	10	10	12	12	11			7	
	1848	1846	1850	1830	1848	1850	1847	1848	．	1848			1850		1850
Tonnage，carpenter＇s measur＇t	$452 \cdot 1$	$525 \cdot 8$	316.4	$617 \cdot 2$	526.0	$335 \cdot 3$	$429 \cdot 1$	394－1	．	481.	710.	686.4	$918 \cdot 4$	$244 \cdot 2$	$216 \cdot 9$
Sectional area，in tq．fert－	96.4	$107 \cdot 6$	94.1	$102 \cdot 7$	82.85		94.0			$153 \cdot 9$	$123 \cdot 3$		150.0	46.6	$68 \cdot 7$
Of two chimneya	20.82	$32 \cdot 24$	38.32	$47 \cdot 00$	30.82	$30 \cdot 82$	31.38	$33 \cdot 10$	$36^{\cdot} 66$	$34 \cdot 70$	38.64	$10 \cdot 36$			19.58
Of all the flues．	$7 \cdot 36$	$13 \cdot 00$	$13 \cdot 20$	$16 \cdot 70$	$13 \cdot 90$	10.08	10.80	$12 \cdot 96$	$13 \cdot 90$	$13 \cdot 90$	$13 \cdot 80$	$14 \cdot 76$	$16 \cdot 68$	$5 \cdot 56$	$7 \cdot 38$
	17.06	$22 \cdot 72$	$20 \cdot 25$	26.95		$22 \cdot 73$	．．	$28 \cdot 12$	$24 \cdot 62$						
Area in square feet，of－ One bocket of wheel Grate surface Spacea io grate Whole heating surface ．	$22 \cdot 66$	$25 \cdot 69$	33.00	$30 \cdot 70$	30.00	$25 \cdot 63$	32.04	44.25	$35 \cdot 04$	35.00	$34 \cdot 95$	40.00	$29 \cdot 64$	$19 \cdot 16$	$14 \cdot 16$
	59.2	80.	65.6	$86 \cdot 1$	86.1.	65.6	80.	88.8	80.	80.	$93 \cdot 32$	93.32	$98 \cdot 40$	32.80	48.
	$28 \cdot 36$	$41 \cdot 64$	36.25	$41 \cdot 16$	$39 \cdot 11$		53.9	23.92	30.93	$20 \cdot 52$	41.41	$25 \cdot 66$	47.80	12.02	18.18
	1343	1927	1935	2394	2270	1614	1887	2649	2218	$25 \cdot 60$	2667	2839	2716	786	947
Contenta，eubic feet－	127	160	137	176	173	139	170	199	170	173	238	230	243		
Boileri，for water and ateam Ratio between－	569	775	718	19	889	669	919	1217	858	1125	1320	1353	1191	347	398
		2.09			1.38		1.47			$2 \cdot 20$	1.76		2.53	$1 \cdot 22$	$2 \cdot 43$
Bucketa \＆immern＇n of veasel Grate and effective heatiog surface	1 to		1 to												
	14.86	$15 \cdot 54$	18.90	17.84	16.92	15.91	$15 \cdot 47$	19.49	17.82	$20 \cdot 79$	16.96	$17 \cdot 99$	17.92	$15 \cdot 55$	$12 \cdot 77$
Contents of boiler and ef－$\}$ fective heating turface	$\begin{array}{ll}1 \\ 1 & \text { to } \\ 1.58\end{array}$	1 to	$1{ }^{1}$ to	$\begin{array}{cc}1 \\ 1 & \text { to } \\ 1.68\end{array}$	1 to	1 to	$1{ }^{1}$ to	1 to	1 to	1 10	$1{ }^{\text {to }}$－ 33	1 to	$1{ }^{1}$	1 to	1 to
$\left.\begin{array}{c}\text { Distance traversed by hot air } \\ \text { and gases．}\end{array}\right\}$ Fuel consumed in pounde of coal	107	$\begin{aligned} & 1 \cdot 60 \\ & 112 \end{aligned}$	1.73 123											97	
Fuel consumed in pounde of coat and ths equiralent in wood－															
$\begin{aligned} & \text { Per hour } \\ & \text { Per second }\end{aligned} \cdot . \quad$.	2545	3892	3409	4281	3032	\because	2989	－	－	3125	\cdots	－	\cdots	$\begin{gathered} 1166 \\ 0.32 \end{gathered}$	
$\left.\begin{array}{l}\text { Per hour on each square？} \\ \text { foot of grate surfice }\end{array}\right\}$	43.	48.63	51.97	49．72	$35 \cdot 22$	－	$37 \cdot 37$	－．	－	39.06	．．	．	．	$35 \cdot 57$	
Nominal horre－pover of all the engties－ At 100 lb ．steam，per inch	800	781	659	928	866	14	13	16	93	927	862	1104	110	267	578
At preasure of steam，stated $\}$ by engineer of boat ．	1200	1093	922	1300	1212	720	1279	1060	1432	1344	1207	1324	1380	360	491

REGIEMER OP RTV PATH2MP

ORNAMENTING METALLIC SURFACES．

Riceard Ford Sturaes，of Birmingham，Warwick，manufac－ turer，for an improved method or improved methods of ornamenting metallic surfaces－Patent dated January 24，1858．［Reported in Newton＇s London Journal．］

Tes improved method of ornamenting metallic surfaces， which constitutes this invention，conaists in the use of deaigns made of wire，sheet metal，thread，lace，paper，or other fabric or materisl，placed between two plates or sheets of metal，and subjected to pressure between rollers or otherwise，whereby the design is impressed upon the plates or sheets．

The designs may be continuous（i．e．repeated an indefinite number of times upon a long sheet of metal），or central（the design being confined to one part），or partly continuous and
partly central－that is，one part may be impressed upon the whole surface of the metal sheets or plates，so as to constitute a ground pattern，and the other portion may be confined to one part of the sheet or plate．Wire designs may be made by bending or working the wire into the desired pattern， either by hand or machinery．Thread designs may be worked by hand or machinery；and the designs in thread met with in commerce，such as lace，muslin，or other ornamental fabrics， may be used for impressing metallic surfaces．Desigas of sheet metal or paper may be cut out or pierced by any of the ordinary methods．The patentee sometimes combines pat－ terns or designs of lace or wire work with patterns or designe of paper or sheet metal：for example，he places upon a piece of lace the design of a shield or crest，or some central orna－ ment，such as a group of flowers，and，by pressing the same between the plates of metal，he obtains ornamental sarfaces having a ground pattern like that of the lace，with a central ornament left more or less plain．Sometimes the patentee
uses patterns or designs made of paper or sheet metal, or sheets of other subatances or fabrics, on which desjgus have been made in relief by writing or painting; and he finds that such designa, although alightly in relief, and of but moderate hardness, may be readily impressed upon metal.
The modes of applying pressure, to effect the objects of this invention, will vary; but the methods which have been found to answer aro-rolling, pressing by presses, and stamping. The metals which are nuitable for being ornamented by the above process are-gold, silver, copper, iron, tin, and lead, tinned iron, and the alloys of metals called brass, German silver, and Britannia metal.

Instead of placing a pattern or design between two plates or sheets of metal, and obtaining an impression on each plate, only one plate or aheet to be ornamented may be operated upon; and the said plate, with the pattern or design placed thereon, may be passed between rollers or otherwise pressed; or the pattern may be placed between the plate of metal to be ornamented and a plate of hardened steel or other hard surface, and the whole rubjected to pressure.

GAS RETORTS.

Jobn Swarbaice, of Blackburn, fire-brick manufacturer, for certain improvements in the method of manufacturing retorts used for gas and other purpases, and in the apparatus connected therewith. -Patent dated May 29, 1859. [Reported in the Mfechanics' Magaxine.]

Claims.-1. The mode or means of making retorts for gas or other purposes, or moulds, in a vertical or perpendicular position, with the apparatus described for making the same; 9 . The mixing of clay with coal ashes or other suitable refuse or substence, or the mixing of different qualities of clay in such proportions as the quality may require, thereby forming an improved composition for the said purpose.

The mode of manufacturing retorts adopted by the patentee is as follows:-He takes clay, as dug from the pit, and if it contains coal or other refuse, burns it until the coal is reduced to ashes; or, if no coal exists in the clay, then he mixes ashes with it, or other varieties of clay, until a suitable material for his purpose is obtained. He then grinds this with just sufficient water to produce a stiff, doughy mass, instead of adding as large a proportion of water as usual. Having taken a mould of the size required (and it is preferred that the moulds should be used in sections two to three feet long, with flanges for uniting them to each other), and placed it in an upright position, he introduces a core-bar into it, which he wedges firmly into the centre; he then rams the stiff clay into the spaces between the mould and core, and, withdrawing the wedges, fills also the space occupied by them with the clay. The core-bar is then raised by a lever or screw, another section of mould joined to the first, the wedges replaced, and the operation of running in clay repeated until the required length of retort is produced. Retorts formed in this manner are dry enough to be at once removed to the oven, and when baked will be found to be free from cracks or fisaures.

SALINE AND METALLIC COMPOUNDS.

Petkr Claussen, of Gresham-street, City, gentleman, for improvements in the manufacture of saline and metallic compounds. -Patent dated February 3, 1858. [Reported in Newton's London Joumal.]
The first part of this invention relates to the manufacture of certain saline compounds, such as nitrate of potash, and consiste in treating ammonia, and certain ammoniacal compounds evolving ammonia, in such manner that the volatile alkali may suffer decomposition and oxidation, so that certain nitracids, and especially nitric acid, may be formed;-lime, potash, moda, or other suitable base being presented to the nascent nitracid, in order that nitrate of lime, potash, or soda may be produced. To assist the oxidation of the ammonia, the patentee employs an apparatus containing pumice-stone, charcoal, coke, platinum foil, spongy platinum, or other substances which present an extended surface, possessing the property of absorbing large quantities of oxygen. The ammoniacal liquid is allowed to pass over the surface of the spungy platinum or other substance; and it is then, in jts oxidated state, brought into contact with a
suitable base, so as to form a nitrate of the same. The patentee states, that when using an ammoniacal ealt (buch as the sulphate of ammonia), he first presents to the calt some suitable body (such as lime) with which the acid will combine, setting the ammonia free: the part of the apparatus in which this change takes place must be closed, to prevent the escape of the liberated ammonia into the air. The ammonia, being absorbed by water, is allowed to drop on to the surface of the apongy platinum or other oxidating substance, and then into a solution of the base of the future nitrate. The above process may be employed in the nitrification of the ammonia obtained in the manufacture of gas from coal.

The second part of the invention relates to the manufacture of sods salts, and consists in the conversion of sulphate of sods, whether made directly or produced as a residuum, into caustic goda (hydrate of soda) and carbonate of soda. Thus, to a solution of sulphate of soda is added a suitable proportion of some substance, which, having a greater affinity for sulphuric acid than soda, will decompose that salt and set the soda free. If, for example, the hydrate of lime, baryta, or strontia be used, sulphate of lime, baryta, or strontia will be formed, and hydrate of soda be left in solution. By long exposure to the atmosphere, carbonic acid will be absorbed, and the hydrate of aoda will thereby be converted into carbonate of soda. The decomposition of the sulphate of sods is facilitated by the application of heat.

It is also proposed by the patentee to manufacture hydrate of soda and carbonate of soda direct from common salt, by decomposing that substance by certain organic acids (which are afterwards decomposed by heat); or by gaseous aclds; or by hydrates, oxides, peroxides, and certain metallic bases; or by certain carbonates,-carbonate of ammonia excepted.
The patentee claims, first,-the method of oxidation and combination of ammonia with alkaline and earthy bases, for the purpose of forming nitrates. Secondly,-the formation of caustic soda and carbonate of soda by the double or simple decomposition of sulphate of soda or of chloride of sodium.

RAIL AND TRAM ROADS.

Petkr Brutf, of Ipswicb, civii engineer, for improvemento in the construction of the permanent way of rail, tram, and other roade, and in the rolling stock or apparatus used therefor.-Patent dated April 29, 1859.
A metal clip, which the inventor terms a fishing key, is employed for supporting and keeping sacurely in position the ends of rails. The clip passes round the joint, and by the natural spring of the metal closes on it; or a wooden block may be introduced between one side of the clip and the rail. When chairs are used they should be placed within 18 inches either side of the fishing key. The second improvement is introducing longitudinal sleepers under the joints or ends. The intermediate ones being longitudinal, a transverse lateral motion is prevented, and increased durability acquired. The third improvement has relation to a mode of fastening the ends of rails on railways. These form the first claim. The second is for a peculiar combination of parts forming rail or plank-roads or ways. Longitudinal aleepers are bedded in the ground, and on these timber is laid diagonally, or two thickneases of planking may be laid down without the sleepers; the latter are laid diagonally to each other. A covering, when necessary, is employed of gravel-ashes, combined with asphalte, kamptulicon, or any preparations of cartouch or gutta-percha. This plankroad may be in connection with an ordinary road, the planking being laid down on one or either side. The patentee calls these roads Agricultural Railways. He proposes, as a means of connecting rail or other roads through places where rails would be inadmissable, that on one side of the roads should be fixed an edge-rail with a guide-block of wood; and at the required distances a longitudinal sleeper, bar, or dished-rail should be fixed in such a manner that it will not be raised above the surface of the road. The ordinary traffic would be enabled to use the whole road, the dished-rail serving to keep it on its proper side. The third claim is for forming tyres of railway wheels with broad flat flanges, to run on flat surfaces; but they are so constructed that the crosainge may be no impediment.

CHILLING CAST IRON.

Edward Hammond Bentally of Hegbridge, and Jamps How and, of Bedford, ironfounders, for improvements in the mode of chilling cast-iron.-Patent dated April $22,1858$.

Claim.-The mode of chilling cast-iron as set forth, in all or sny of its modificatlons.
In casting ploughshares or other articles, on the underside of the matrix is affixed a plate, which forms a -chamber; at the lower part a tube is introduced, which serves to convey air, forced in by a fan or other pneumatic apparatus, or an exhaust may be used. At the side of the chamber are vents for the entry or departure of the air; by this means the molten metal is more gradually cooled. In consequence of an equitable temperature that is kept up by the film of air, greater durability is obtained in the moulds than at present, as in order to ccol them water is thrown over them, whereby they are frequently cracked. A better quality of iron is produced by the equitable cooling. Water may be used as the refrigerator, care being taken that it is caused to move actively, in order to prevent the generation of steam. In casting plough-breasta a core of a zigzag shape is made in the mould, or a serpentine tube ls passed from end to end, which affords an equal cooling to all the parts. Care must be taken in casting small or complicated articles that the steam is not allowed to collect in any of the parts.

SOAP MANUFACTURE.

Cbarles Thomas, of Bristol, soap manufacturer, for improvements in the manufacture of soap.-Patent dated May 1, 1858.

Claims.-1. The combination of apparatus for stirring soap; 9. The pressing of soap in the frames by means of duid pressure. The object of this invention in the first place is to supersede the necessity of manual labour in stirring the boiling materials, and also to prevent their boiling over; and secondly, in compressing mottled soap when cooling in the frames. The first is accomplished by having a small agitator suspended from a shaft over the pan, and driven by such shaft. As the soap boils up in the pan it comes within the range of the agitator, which breaks up the surface, and liberates the steam therefrom. The second part is to obviate the plugging of soap, by means of wooden blocks forced in or otherwise. An iron pan is fixed at the bottom of the franie, into which is forced liquor of a greater density than the soap, and thus the soap is necessarily kept in a solid mass from the surface of the liquor to the top of the frame, where a thick board is fastened, to prevent the soap being forced out.

SMELTING.

Hegh Lee Pattinson, of Newcastle-on-Tyne, manufacturing chemist, for improvements in smelting certain substances containing lead.-Patent dated May 1, 1852.

The object of the invention is the smelting of the residuum arising in the manufacturing oxichloride of lead from galena by the use of hydrochloric acid. The following is the process adopted by the patentee: -4 parts of residuum are smelted with 1 part of common salt and 1 part of granulated or disintegrated iron. They are then run into a conical mould, and when cold the lead and silver, which will settle in the bottom, may be broken off, and the slag remelted on a common slag hearth.

REMOVING HOUSES AND TREES.

Stewart McGlashen, of Edinburgh, sculptor, for the application of certain mechanical power for lifing, removing, and preserving trees, houses, and other bodies.-Patent dated April 29, 1858.

The first portion of the invention relates to lifting and removing trees; the second to removing houses and other bodies. A trench is dug out and inside of the building to such a depth as to allow a block of wood with a rail on it to be placed under. Beams of wood are applied at each corner, and along the whole out and inside of the walls and gable, at sufficient distances from each other, with cross-bindings. The binding of the logs and the house together at the same time is done by applying screws to the inside of the logs, which prevents the walls from falling in or out. This framing is attached to a beam of wood which runs the whole length of the house, and has wheels, which run on the rails above-mentioned. Holes are then slapped through the
walls, through whloh bars are introduced, ruming ander the floors and foundations right through, and reating on the framing and carriage. A log of wood is laid over the side walls, project ing at either side; an iron tle runs through this, uniting it with the carriage. The whole being bound together, the carriage is moved forward by any convenient menns to the required position over the new foundations. The beams are then carefully removed.

INSTITUTION OF CIVIL ENGINEERS.

Noo. 9.-Jamas Maadows Rrndel, Euq., Preaident, in the Chair.
Tre buainess of the firt meeting of the pretent session was commenced by the announcement of the datea of the ordinary meetiags; of the appointment of December 21 at for the annual general meetidg for the election of the Prasident, Conncil, and officers ; and of the 31at of May, 1853, for the President's Converasione.
The paper read wes "On the Improvement of Tidal Navigations and Drathages." By W. A. Brooks, M. Inst. C.E.

The object of the commanication was chiefly to elicit observations from membera, and the narration of facto which might be asefully employed hereafter in an inveatigation into the lawe which govern the fux and refiux of the tlde in estasies. The anthor, after allading to the impedimente to improvement arising from the popalar prejadice againgt such constructions as woald appear by their bulk to diminish the apece for the tidal water, proceeded to show with how little reason the hacknied phrases "encroachment upon navigation," and "sbatraction of tidal water," were applied indincriminately to works which the axperiance of engipeer! pointed out as adapted to ameliorate the fow and ebb of tidal waters.

He then thowed that estaries were of two clauses. The firat and beat kind were bounded by shores, gradually receding from ench other as they approached the ocean, with their davigable channele bearing a large proportion to the full breadth of the stream at high water, as in the case of the Thames, \&e. The second and inferior kind had tortuous chandels of uncertain and varying capacitios, and with great disproportion between their relative widtbs at low and at bigh weter.
The firtat class afforded perfect drainage to the country on account of their capacioua low-water channela, in which the declination of anfface was very gentle; the tranumisaion of the tidal wave was therefore quick, and it was able to turn early and attain a bead to overcome the ebb, so that she interval of uagastion or rest at sea was very short, which leat Wha the heat teat for the general good state of a darigation. At the monthe of such rivera there were rarely any bara.

The festures of the second class of eatuarien were direotly opposed to those of the firt class ; the body of water was generally divided into several tortuous streame at low water, their capacity being greatly disproportioned to the width of the bed, which offered an undue resistance to the fow and the ebb. There was great fall and contequent rapid loas of height in the tidal column, which caused a considerable interval of rest between the currents of the flood and the ebb, daring which period a great amonnt of deposit took place. Numerous other features and their results were carefully pointed out and reasoned on.
The heat means were then described for promoting the natural action of the tidal water in rivers of good condition, so at to combine the most efficient drainage of the country with the bent itate of the navigable channel. The Misimuippi was then giren as an instance of the effect of a large volume of water, densely charged with alluvial mather, falling into the nearly tideless Bay of Mexico-producing a delta of great exteut, and so diminishing tbe depth of the harbours as to prevent vessela of any considerable tonnage from frequenting the coatt. This led to the enunciation of the axiom, that in the improvement of rivera of the recond class, although the river walle might not be raised above the level of balf tide, they would suffice to determine the futare condition of the bed of the estuary, behiud and parallel with them, as the converaion of those reclaimed apaces into land whe simply a question of time and of the amount of alluvial deposit brought down by the fioods. Thus, by this system the sarve effect would be eventually produced at by inclosing the space with full.tide walls, it being imponsible to keep open the rear apsce as receptacles for tidal water.
The tendency to deposit, in consequence of the formation of breakwaters, in certain siluations was fulty considered, with the question of the difference between the relative times of high water, as affording a true test of the condition of a river: thit latter view should be received With cantion, at the only certain test was the condition or progreas of the tidal wave throughoat the entire period of the flow. Thus the tidal wave would past more quickly through a broad and atraight reach after the ands were covered, although ith progress might have been very alow in the earlier stage of the tide, in consequence of the opposition of the andbank, which would form for the nascent flow a restricted and tortuous course through a reach which, at bigh water, might appear well adapted for the ready tranamission of the tidal colnom.

The anthor then deacribed the broad principles of his own practice in
tralaing the corrent of a fiver to be based chiefly on the constraction of full-tide timber groynea or jetties at right anglea to the intended new liue of river frontage. These atructures, raised at a cont of from twelve to thirty shillings per ruoning foot, hed been aptly denignated by Sir W. Cubitt " as the acaffolding for forming the new line of ahore;" and as " making so much more land and bringing the shore to the form represented by a line drawn through the ends of the groynea." In practice it Tas found that whilst the specen between these groynes efforded a locality for tho deposit of the allurial soil held in suspention, their action was also to produce a deepening of tbe main channel of the bed of the river, at a mach leas cont than by the conatruction of parallel rubble walla. In fact, the latter abould net be huilt until the groynes had completed their work of raising the acquired land between them to the level of the bed on which the rubble walla were to be placed.

By adopting these meant there was scarcely a river whose navigahle eapacity might not be greatly increased without any excessive outlay, aiding st the amme time the general drainage of the district, which, it wat remarked, had been lamentibly neglected in many of the achemes promulgated for the improvement of rivers.
Noo. 16.-The evening was entirely occupied by the diacussion of Mr. W. A. Brook' paper. It was contended, that the use of groyner was adrisable, as means for the regulation of the aectional area of the channel, which could only be accurately defined by practical experience, In some cases it would be better to combine them with training walls, on opposite sidel of the river. It was not considered that two classes sufficed to distinguish the differances exiating between rivers, and that their several characteristics and circumstences must be minutely studied, to determine the mode of treatment. The Wye and the Aron were quoted at rapidly rising rivers, and yet being witbout bara at their mouths; to which it was replied, that those streams were not cases in point; that they were mere tributaries, whose mouths were traverned and awept clear by the rapid current of the Severn; and that this letter river illoutrated the position assumed, as there was a great loss of tidal range between Beachley and Framilode, the channel Fandering through a range of shoals. The succeaful improvements executed at the entrance of Newhaven harbour, by Mr. Stevens, were alluded to. The treatment of the Dee, by groynes, and the Clyde, by training-walls, was examined, and it was argued, that the inconveniences experienced in the former case, from the washing out of deep pools, at the points of the groynes, must be attributed to the injudicious extension of those atructures, Whence the navigation was too violently contracted, the freshes flowing over them, and removing the deposit from between them. Rennie's Report on the Clyde, in 1807, showed that the irregularity of depth at the points of the groynes previously erected by Golbnine, was not any. where 12 inches more thau elsewhere in the channel. With reference to the wide expanse, or "pouch" form of the Mersey, above Liverpool, which it was urged was of utility in scouring the bar on the ebb, it was contended that the main body of water would pass off with the early elbb, without producing any beneficial effect; and it was shown, that in that part the loss of tidal range was considerable, from the great expanae covered at high water, hat which was shoal at low water. The improvemente of the Thames, by the removal of the shoala, and the construction of training-walla, were described, and it was suggested that it might be beneficisl to use groynes in the bays wbich had produced the shoals, now in course of remoral. Fully admitting the impossihility of generalising, in river engineering, it was atill urged that there was more similarity between canea than was generally underatood; and attention wat directed to the inevitable effect, arising from the conflicting action, hetween the ebb and flood-tides at the moutha of rivers haring a rapid rise of their low-water surface near their mouths, which invariably produced bars. It whe suggested that the treatment of some special river should be submitted to the Inatitution, in order to afford an opportunity for a continuation of the discussion of this interesting topic.

After the meeting. Mr. Doull, jun., exhibited a model of, and descrihed a syatem, proposed by Mr. James Forbes, for lowering and raising ships' boats, and also the construction of aylindrical Ship-Life-Boat, which latter, it was contended, approsched neurer than any other construction, the qualities considered requisite for a boat of that class. The cylindrical life-boat wat 30 feet long, 8 feet wide, and 2 feet deep, would carry with esse sizty persons, with provisions for a week, in the air-tight seats-could not be upset, or wamped-could he pulled either end foremost-watateered with an oar-had extra buoyancy in water-iight compartments, and was so constructed that a bole might he knocked into one or more divisiona without danger to the whole-was fully atowed with masts, sails, oarn, and everything complete, 10 as to be always ready for use on any sudden emergency. When folded up it was perfectly cylindrical, and on reaching the water opened out, and could in a minute be made a atifi boat, and the dimensions could be modified to suit any vessel. The apparatus for lowering the boats consisted of two devits, with tubular stems, down which the ropes passed, through sockets in the bulwarks, to a drum, on wbich they were coiled, so as to be easily wound up by a wheel and pinion, with the exercise of very little power, and in lowering, a friction-break could he used with great advantage. By this means the boat would awing out very eatily, as the davits could turn
entirely round, and it would be nearly impousible that a boat could be aramped, in the heaviest sea, or nader circumatances of the greateat difficalty. The cylindrical form, and its lightneas of construction, would enable a boat of this sort to be put over the bulwarka by aix men, without teckle of any kind, and by merely catting a lashiog when in the water it would fall open, when all the atoren, \&ec., would be found made fast within, and ready for une.
Noo. 23. -The paper read wat "On the Drainage of Towns." By Robert Rawlinson, Assoc. Inst. C.E.

The author, believing the subject of the drainage of towas to he so comprehensive, that itif full and completo consideration within the limits of a paper, to be read in one evening, would be impossible, restricted his remarks to a few general pointa likely to induce discussion and to elicit criticism on former and present syatems. The bistorical portion was limited to bhowing that in the now disinterred rains of the most ancient cities remainl of drains had been found, and the Cloaca Maxima formed part of the wonders of ancient Rome. Politically, the question of sewerage wiss very argent, ts the general bealth of the population influenced, to an important extent, the amonat of misery, pauperiam, vice, and crime existing in every city; and the increasing numbers, as ahown by the census, demonstrated the necessity for providing for the extension of all large towns. In 1841, the population of 117 districts, comprising the chief towns, was $6,612,958$ souls. In 1831 , in the same districts, the number was $7,795,958$. Disease had been rife in those districts, but it was shown that much of it might have been averted by tlmely sanitary precantion.
It was, however, to the social effect of town drainage that the attention of civil engineera would be moat naturally directed, as under thet head the leading principles of actual practice and the proposed modifications must be brought forward and discussed. The questions of forms, dimensions, fall, cost, \&c., of large and small sewers were passed over, with the remark that they were matters of detail, to be fixed by the knowledge and experience of the engineer ; contending, however, that the ayatem most deserving commendation was that which enabled the greatest extent of sewerage to be well and chemply accomplished. The position of the outlet would be goveraed by natural local conditions, and tbe dimensions would be fized by the area and the number of houset to be drained. The material of construction was a quention dependent entirely on experience and practice; earthenware pipes were, however, according to the author's views, the most economical and effective for all sewers and drains within the capacity of the material.

It was contended, that town sewers could not receive the excessive Glood waters, even of the urban portion of the site; they shonld never receive the suburban drainage, nor be combined with watorcoursea; they should be adapted solely to remove the solid and liquid refuse from the houses; and that it was safer for the inhabitents that there should be no seweri at all, rather than they should be of such dimensions as to become places of deposit. Pumping could be profitably sdopted In certain situations where, from the level, or the effect of tidal induence, the outlet flow might bo checked, Intercepting aewers at mid-level were approved. Sewers of minimum dimensions were advocated, in connection with pumping, and they thould be capable of resisting internal hydraulic pressure, in case of the water rising in them. The flow through sewers shonld be constant, and it was argued, this could only be secured by baving small conduits. The extraordinary fall of rain at Birmingham, in July, 1845, when nearly 2 inches of rain fell in half an hour, equivalent to 9.091 gallons per square yard, or $44,000 \cdot 440$ gallons per acre, wat used as an argament againat the building of large sewers below the level of the cellars, which, to be of service, must be capable of carrying off the heaviest rain-fall. It was contended, that the maximum surface water could not be passed through the sewers, but the natural surface outlet ahnuld be retained, to assist in carrying off the flood waters from the streets of large cities; though the fact of town sewers not baving been originslly intended to receive house drainage or soil, was prominently noticed. The want of connection between the houses and the sewers, in many parts of the metropolis, the absolute disconnection at Paris, and the prohibitory law, only recently repealed, at Liverpool, being quoted. With regard to earthenware pipes, 3 incbes diameter was considered too small for any drain pipes, and 30 inches diameter too large, for the material of which they were made. Pipes of 4 laches diameter would probably be found the least sectional area that should be used for house drains, and 9 inches for streets, and then not a leas gradient than one in sixty. It was decided that the beneficial use of pipe sewers could not be pushed beyoud certain limits; but the system should not be eatirely condemned because it had been carried to extremes by those who wanted experience. The general success of the use of egg shaped pipe sewers at Mancheater wes given as an example of the advantageous adoption of the pipe system. The various kinds of joints were described, and it was recommended not to use pipes of larger diameter than about 15 inches, as larger sizes were apt to be fractured, from unequal bearing at the joints. The difficulty of moulding, drying, and burning pipes incretsed, probably, as the squares of the diameters; if large pipes were moulded too thin, they were lisble to be crusbed in the finisued sewer; and if they were moulded of extra strength, the wet pipet collepsed with their own
weight in drying, were twisted out of shape in bnrning, or were imperfectly vitrifed. Sewert of radiated brickn, moulded for the parpose, were better and cheaper than large earthed pipea ; a cewer thus conatrocted, 3 feet in diameter, being cheaper than one of pottery pipe of 20 inches diameter, their relative capacities being as the squares of their diameters; and there was no reanon why brick sowers should not be as amooth within and as impervious as any pottery pipe.

After treatiog of side junctiona, gallay-holea, drain traps, and veatilation, the ase of cathiron conduits, in certain bad soils, was advocated, and as a summary, it was atated that all sewers should be helow the level of the cellars, and shonld be specially adapted to the work they had to porform. Rivers and natoral streams should not form part of any aystem of town drainage, and in how dimbiete the cewers atould be capable of resiatiog interval pressure. Free outlets should be preserved, whether from intercepting or low ewers; all amall drains sbould be circular, and large ones oval or egg-shaped; the largest radius abould be adopted, and there should be extra fall is the curves; all eewert and drains should be impervious to water, and should present even and smooth surfaces; she gradient of all large sewers in ateep ground should be modided, or interropted, and the materinals ased should be such as would realat rapid wear and burtling; wherever it was practicable, the outlet should be very free, and in all casea complete ventilation muat be provided for. All mention of cempools was omitted, as no locality conld he considered as properly dralned in which they were permitted to exint, except near the outlets, for altimate use for agricultaral purposes.

The true purpose of lown eewage muit be considered, as the removal, with the utmont rapidity, from the vicinity of dwelling-houses, and the cites of citien and towns, all the refuee, which being liable to decompoaition, could be conveged away in water; and the more perfectly this could be accomplished the better would be the work, and she greater the credit due to the engineer.

RECENT AMERICAN PATENTS.*

Improvements in the Manufacture of Plate and Window Glase. T. Clark, Pittsburg, Pennsylvania.

The invention consists, first, in a new and improved combination of machinery for rolling plate glass; and, second, for a new and improved construction of an oven for fire-polishing the plates or sheets of glass.

Claim.-" Having thas described my improved mode of making window or plate glass by machinery, what I claim as my invention is, 1. The use of hollow chilled iron rollers, in the manufacture of window and plate glass, in connection with the mode of heating them with charcoal or other combuatible placed inside ; 2. the combination of the grooves with the strips and guides and the set acrews, for the purpose of regulating the width and thickness of the sheet of glass; 3. The use of trucks, for carrying off the sheets of glass as they pass from the rollers as aforesaid; 4. The combination and arrangement herein before described, of the gates, flues, and furnace, in the coustruction of the polishing oven."

Improvement in Locomotive Engines. H. R. Remsen and P. M. Hutton, Troy, New York.
This invention relates to the employment of a locomotive engine, of three cylinders, whose cranks are arranged at angles to each other of about 120°, with valves, valve chests, steam and escape pipes, so arranged as only to admit steam to one side of the pistons when the locomotive is advancing, and the other side when it is backing, the reversal being accomplished by such change of the operation of the steam, without recourse to any of the ordinary means of reversal.

Inprovement in Valoss for Pumps. J. R. Bassett, Cincinnati.
The invention consists of a cylindrical box-valve, with its inducting openings, and its side or water-way openings, and its eduction openinge, and of a valve chest adapted thereto, with its induction, and side or water-way, and eduction openings, corrosponding to the openings in the valve-box; the whole, in connection with the usual water-ways and barrel of a double acting pump, furnishing the parts necessary to the operation of such a pump; thus obtaining from a single valve, deriving its motion from the out-flowing and in-flowing currents, the result for which several separate valves have hitherto been needed, substantially in the manner described.

[^65]Improved Valves, or Gates, for Oblique Float Paddle Wheeh. J. C. Carncross, Philedelphis.

The invention consists in placing at the edges next each other of the obliquely arranged paddles of the wheel, a series of radial gates, turning on journals, and having right-angled winge at their axes, for keeping them closed when they pass through the water, to prevent the water being moved laterally by the oblique paddles.

Improvement in Laad Pipe Machinery. B. Tatham, Now York. An improvement upon the method of making pipen from ret or solid lead, by a patent granted to T. Burr, of Shrewsbury, in Shropshire, England, dated the 11th April, 1880.

Claim.-" Having the core 80 that it shall not be affected by the vibrations of the ram; connecting the core with the ram, by means of an nniversal joint, or itn equivalent, so that the core shall be retracted with the ram, in combination with the cylinder and die of a machine for making pipe by pressure, from lead or other soft metal, run into the cy linder and on to the said core in the molten state, substantially as specified, whereby the core is retracted with the ram, and held in position while the charge is poured in, and during the operation of forming the pipe, the vibrations of the ram do not practically affeot the central position of the corein the dies, as herain specified."

Improvement in Locomotive Boilers. J. W. Farrel, Reading.
Claim.-"Isolating the lower portion of the water-apece surrounding the furnace from the upper portion, and connecting it by a free and constantly open communication with the tank of feed-water, in such manner that the feed-water of the tank will circulate without being forced by a pump in contact with the fire-plates, to cool them, and to be itself heated, preparatory to being pumped into the boiler."

Improvement in Stone Dressing Machines. S. W. and R. M. Draper, Boxborough.
Claim.-"Hanging the arm carrying the pick apon a shaft, which receives a vibratory motion through a cam, driven by a mill spindle, or other spindle provided for the purpose, aud giving the said arm a motion length wise along the said shaf."

Improved Wrought Nail Machinery. D. Dodge, Keeseville,

 New York.The invention is such a combination and arrangement of the cutter, gripers, and hammers, that when a rod of suitable dimensions is introduced into the machine, a piece of sufficient length to form a nail will be cut off, caught into gripers, and passed under a series of hammers, receiving one stroke from each, as it progresses, and revolving during its transition from one hammer to another, so that its different sides may be acted on alternately, until it has passed the entire series and is reduced to the requisite size and form, after which it is discharged.

Claim.-" 1. I claim the combination of a series of hammer faces with gripers, having both a rotatory and progressive motion, and so arranged as to convey the blank between the several pairs of faces successively, at the same time revolving it so as to present different sides successively to the hammers; 9. The several hammer faces, which act successively upon the blank, with regard to the distance of the lines in which they respectively move from the line in which the gripers move, that when the gripers move forward in said line, thereby conveying the blank from one pair of faces to another, the successive strokes which it receives, will fall on different points, thereby reducing different parts of it, successively, to the required size; 3. An arrangement of the faces, with respect to the gripers, such a graduation, in the nearness with which the several pairs respectively approach, when they strike, that the eeveral parte of the blank, upon which they respectively act, will be reduced to different sizes, and that the combined effect of the whole will be to reduce the nail to the proper form; 4. The combination of the two kinds of faces, broad and narrow, with gripers so arranged as to present the blank to the action of the narrow ones, until it is suitably elongated, and subsequently to that of the broad onex, to recelve a finish; δ. The arrangement of a set of gripers upon the interior of a circular hub or frame, in combination with
hammers placed in or near the centre of the circle in which they are arranged; 6. Adjusting the gripers, by means of a spring, or its equivalent, so arranged as to press them towards the hammers to their proper place, allowing them to recede as far as the lengthening of the nall requires, while the hammers are acting, and causing them to return again when the hammers are withdrewn.

THE AUSTRALIAN BOMERANG PROPELLER.*

Thy Liverpool Albion has given an account of the trial trip of the steamer Reera, fitted with Sir Thomas Mitchell's propeller, Which combines the parabolic and cycloidal curves; equilibrium, gravitation, the laws of hydrostatics relating to pressure on oblique surfaces under water; and, more particularly, that remarkable law by which the area must be governed-namely, that the area of working surface should never exceed the supplement of the spiral surface over the section taken at right angles to the shaft.

The screw is a modification of the wedge; the bomerang propeller is rotary oar, so made and attached by gearing obliquely to the axis of rotary motion, as always to present its narrow surface to the plane of the spiral, and a narrow edge in direction of its motion, but obliquely to the resistance. Every part of this edge cuts the water so as to form an angle with the radius, but, on one side, concave, like a sickle; on the other, convex, like a sabre. The two halves of the bomerang perform, distinctly, different functions in rotation, but yet equally; or so that the fore-half takes hold of the water with exactly the same force as that with which the stern-half throws it back. By this means an equilibrium of resistance is preserved, which belongs to no other kinds of propeller. It may be necessary to point out that the action of the bomerang weapon through the air is horizontal; whilst that of the bomerang propeller through water is vertical; that the force of the savage arm in the one case is represented by steam in the other; that gravitation and air afford the resistance in the first case, which in the second is derived from steam power scting on water. This method of converting the equilibrium exhibited by the bomerang's motion on air, while resisting the effect of gravitation, into an equilibrium of resistance in the water, with velocity enough to act on that element as a wedge, is quite new, and was much wanted, to enable us to employ powerful steam machinery with sufficient effect againgt the well-known powerful resistance of water.

The cylinder of water under the action of any propeller comprises the resisting medium on which that propeller acts. With the bomerang form this water is acted on by one screw, and no more. The three-bladed propeller consists of three perfectly similar portions, placed all in the same plane; consequently, the back parts necessary to complete the spiral to any of them are all wanting; and these three similar parts of a spiral not only have to act on the same cylinder of water, but on the same section thereof, revolving in a plane at right angles to the axis. To such a form of screw lateral resistance is inevitable; and this was so obvious and well-known to the able engineers who constructed the engines for the Keera, that they adapted them to this lateral resistance. That these separate bits of spirsls so placed as to act on the same cylinder of water, should do about even half as much as one spiral when truly applied, shows what a splendid medium has been given by the Supreme Power to man as well as to fishes for purposes of rapid locomotion.
The mpeciaction and an illustratlon of this invention were diven in the Jownal, Part 188, Vol, XIL. (184y), p. 28.

Appointments.-Henry Charles Mules, Esq., is appointed one of the three Chief Commissioners of the Tithe and of the Land Inclosure Commission for England and Wales, in the room of Captain Wentworth Buller, R.N., deceased. Mr. Mules was formerly Secretary to the Inclosure Commission, and has acted in the same capacity to the United Board ever since the consolidation of the Tithe Commission.-Frederick Goodall, Esq., has been elected an Associate of the Royal Academy of Arts, London.-Captain Galton, R.E., has been appointed Government Inspector of Railways, in the room of Captain Laffan, R.E., who has been elected M.P. for St. Ives.-Major General the Hon. George Anson, M.P., has been elected Chairman, and Mr. Robert Benson, Deputy Chairman, of the London and NorthWestern Railway.

THE INUNDATIONS.

The Iate fioods have been attended with ninexampled catastrophes to engineering works, and will be as romarkable in this respect as in any other of their phases of denolation. It will be seen that the destruction has affected not only the small local works, single arches, and highway bridgea, but has axtended to some of the largest railway visducts. We have therefore thought it necessary to record some particulars as to thees casualties, although we cannot embrace the whole. Although the flood seems to be without precedent in its extent and violence, we cannot but believe that its effects have, to some degree, been promoted by insufficiont capacity of works. Within the last fow years the great river-basins have been operated on in a twofold direction, tending to increase the power of the waters. The great lines of communication thrown acrose the country have in some cases deepened portions of the water-courses, or straightened them, and in others contracted them. The operations of agricultural drainage have likewise given greater means of throwing rapidly into rivers the rain-fall on the land. In the lower parts of the rivers new weirs, bridges, locke, and channels, have been constructed, bringing the tidal influence higher. Thus what is going on upon the Thames from various causes, is to be witnessed in the other basing; and with the progress and tendency of engineering improvement, it may be looked npon as an essential condition in all new bridges and viaducta, wherever situated, to carry down the piers much lower than hitherto, and greatly to increase the waterway. As so many works have been destroyed, and their re-construction is to be proceeded with, we earnestly recommend our professional friends to avail themselves of the present opportunity to carefully investigate the causes and extent of the floods in their localities, and ascertain what operations are in progress, or probable, which may affect their constructions, and $t 0$ provide against the repetition of catastrophes by which the traffic of the country has been impeded, and so much damage done. Greater waterway must be provided, and solidity of construction is less to be sought in strength of materials, than in judicious locstion of the members of the works. At the present moment it would be very useful to the profession to bring before the Institution the condition of individual basins; and papers on such subjects would not only afford information directly available to many individuals, but would promote discustions in which the general principles of congtruction would come under consideration.

Buiders' Beneoolent Institution.-An election of five peasioners will take place on February 92 1853, at the London Tavern. Applications of candidates must be sent in by the 9th inst. The Builders' Ball, in aid of the funds, is to tale place at Willis's Hooms on the 3d of February.
Putney Bridge.-A company has been provisionally registered, having for its object the removal of the present and the erection of a new bridge and pier. The Chelsea Waterworks Company will carry their mains over the Thames by this means, otherwise they would have to erect an independent aqueduct. Mr. Simpson, F.R.S., and Mr. S. Clegg, F.G.S., are the engineers engaged.

Stephemeon Monument.-A meeting of the committee appointed to make arrangements for erecting a saitable monument to the late George Stephenson, was held lately. Nearly 3000\%. has been collected. This sum includes a very gratifying feature-subscriptions from upwards of 3000 workmen, whose contributions ranged from 1d. to 58.178 subscribers had contributed 2550. $158.6 d$. , and 3150 workmen had given 285l. 98. 7d., so that the total amount subscribed is 28531 . 188 . Id.

Liverpool.-The shipbuilders of this town have come to the wise resolution of helping themselves, instead of calling upun Hercules to pull their wheel out of the clay, and the consequence is, that the trade of shipbuilding is coming back again to Liverpool. First in this movement is Mr. Laird, whose efforts in relation to ironshipbuilding have deservedly advanced his reputation, and brought him a cloud of commissions to build other ships. In addition to the extensive yard at Birkenhead, Mr. Laird has taken the yard next the Dingle, formerly occupied by Messrs. Vernon and Son, but which of late years has been lying idle.

At the Birkenhead yard Mr. Laird is at full work building the African screw steamers; and at the Dingle yard he has commenced operations, having erected some machinery and furnaces, and a number of men are already employed in this yard laying down the keel blocks and erecting the scaffolding for a large iron screw ateamer, which will be forthwith commenced, and this long-neglected place will gradually be transferred into a scene of the busiest industry. Next comes the yard of Messrs. Vernon and Son, which is equally alive with iron work for the Danube boats. And last of all come Mesers. Jordan and Getty, who have brought their iron ship up to the last two courses of plates. They are also deepening the Iron Princes screw steamer 3 feet. This vessel will be remembered as sailing between this port and Wales a year or two ago. It has been found that this vessel can be safely enlarged to that extent, which will add materially to her carrying powers, and of course make her a more profitable vessel. These builders have further taken the contract for the hall of the new Woodside boat from Messrs. Forrester and Co., the latter gentlemen making the engines. This boat will be laid down immediately. The dimensions are 110 feet long, 20 feet beam, and 8 feet deep. She will differ very little from the other boats, but she will be somewhat better finished, and possibly bave a cabin for ladies. It is proposed to place the steering- wheels in the centre of the ship, the steersman occupying an elevated position; and as some platform will be required for this purpose, it would be well to consider whether a deck-house something like that on the Satellite could not be erected as a place of shelter in wet weather. At the same time there might be a contrivance introduced by which passengers could step on and off a platform level with the landing-stage, instead of the awkward method at present in ase. But to retarn to iron shipbuiding. There is every reason to believe tbat it is likely to be conducted on a larger scale than ever at this port. It is more probable that iron shipbuilding will gradually supersede wood, and that the screw, in eome modified form not yet discovered, will substitute the use of sails. If we are to believe all we hear, the great obstacle to the use of iron in shipsnamely, "fouling," has been overcome. Should this prove to be correct, the question of iron or wooden ships will be at once settled. If an iron ship be sent to China or any other long voyage, she is almost sure to come home with her bottom covered with barnacles, which impede her progress, injure the iron, and make the vessel expensive to be kept clean. But remove this evil, and the only obstacle to the general use of iron is taken out of the way. Many minds are directed to this subject, and it may be that more persons than one will discover the remedy simultaneously. But whoever finds it out will have nothing to do farther to make his fortune.-Liverpool Courier.

FOREIGN RAILWAYS.

France.-The Paris and Strasburg Company are said to be about to construct a railway from Rheims to Givet. Rheims will then be the centre of three branch lines-one from Epernay to Rheims, a second from Rheims to Douai, and a third from Rheims to the Belgian frontier.-Three additional miles of the trunk line of the Sambre and Meuse Railway were opened on the 8th inst.-viz., from Walcourt to Silenreux, where it joins the great high road from Philippeville to Beanmont. The works of this section have, we are informed, been well executed, and do credit to the contractors. The further works are being pushed forward with much energy. On the main line Mr. Brassey has collected his material, and will be in a position in the course of a few days to considerably increase the force he has already upon the ground, and thus carry on the works at the tunnel at Senzeilles, and along the line. On the branches the contractors have made very great progress-in fact, all appears proceeding very satisfactorily, and promises well for the completion of the line and branches.

West Flanders.-It appears by the Directora' report that the affairs of the Company are in good condition. The Poperinghe line is being made for a sum within the estimates, and this month the first section, namely, from Courtrai to Werwicq, is to be opened, when the Company comes into the receipt of onefourth of the government guarantee of $16,000 /$. a-year.

Ituly.- We learn from Florence that the works for the completion of this line are already commenced. It will form, with the Maria Antonia and Lucca to Pisa lines, a communication between Flurence to Leghorn. In addition to this, the Central

Italian Railway will join this line, which will secure to the Lacca and Pistoja Railway all the advantages resulting from the traffic between the Port of Leghorn and the towns and important countries through which the cantral line runs, and vice versa. It is, we learn, proposed to issue 34,000 preference shares of 150 Florentine livres, or 52. esch, in order to complete the section from Pescia to Pistoja. These shares will produce an interest of five per cent. per annum guaranteed by the Tuscan government, and they will besides share in the profits of the railroad with the primitive shares. The line is to be open to the public in less then two years.

Egypt.-The railway works have been greatly advanced within the last few weeks, and 8000 men are now employed in throwing up the embankments along the shores of Lake Mareotis the coast line of which it traverses for twelve miles, or nearly its entire length. The foundation has proved more secure than was expected, and it is highly probable, from the exertions that are being made, that by the end of 1853, trains will be passing with passengers and merchandise between the Mediterranean at Alexandria, and the Nile at Kafi-Lain.

OBITUARY.

Buchanan.-Lately. George Buchanan, C.E., of Glasgow. Cbeuze.-23d ult., at Sydenham, Augustin, F. B. Creuse, F.R.S., principal surveyor to 'Lloyd's Register,' aged 58.

Deoaisne.-Lately. Henri Decaisne, aged 63.
Hasgell.-3d ult., at Lancaster, Edward Haseell, Member of the Society of British Artists.
Mantell.-18th ult., Gideon Algernon Mantell, LL.D., F.R.S., F.S.A., the renowned geologist, aged 63.

- Morasn.- $29 t \mathrm{th}$ ult., William J. Morgan, landscape painter.

Ramey.-Lately, aged 57, C. Ramey, the sculptor, Professor and Member of the Academy of Fine Arts, Paris.

Sequin.-Lately, in France, aged 59, Camille Segain, the wellknown engineer. He introduced the system of suspensionbridges into France, and constructed eighty-six of them in France, Spain, and Italy. He also brought to a successful termination several other great public works.

LXBT OT NEW PATENT:

giantid in england from October 21, to November 25, 1852. Six Monthe allowed for Enrolment unless otherwise expressed.

Robert McGavin, of Glangow, Lanark, North Britain, merchant, for improveeneals In the manufacture of Iron for ehjpbuilding. - October 28 .
Henry Needham Scrope Bhrapoel, of Goaport, for Improvementa in extrecting gold and other metals from mineral and earthy substances.-October 23.
Jamea Lamb, of Eingaland, Middleeex, gentleman, and Joseph. Menday, of the mane place, eogiveer, for improvements in the conatruction of illas for buratny or calciviag cement, chalk, limentore, and other abstances requiring such precese, and In the application of the hent rrising therefrom to the geperation of theamOctober 23.
Joseph Walker, of Dover, Kent, merchant, for improvements In treabag eottom seeds, in obtaining product therefrom, and in the procesees and machloery employed therein, parts of which improvementa are applicable to diatilintion. (4) communlcation.) -November 2.
Patrdek M'Anaple, of Liverpool, gentleman, for a new menufcture of Porthand tore cement and other compositions for geoperal bubldisg purpoes and hydraitic workin, Nuvember 2.
John Crowther, of Rudderifield, Y Fry, for a self acting hydranlic crane or engloge for lifting weights, wheh welghte when lifted to be used as motire power; as also for loading and unlosding ressels and vehicles.-November 4.
Lonle Arnler, of Rue du Loislr, Maracilio, Prance, engineer, for certaln Impropemente in ateam butlers. $-\mathbf{N}$ ovember 6.
Plerre Armand Lecomte de Fontalinemorean, of Sonth-atreet, Finsbary, Engish and forejgn patent egent, for certaln lmprovemente in the manufacture of certain and forejgn pauent agent, for certain improvemente
articies of dreas. (A communication.)-November 6.
Charles Liddell, of Abingdon-atreet, Weatminater, Esq., for Improvemente is electric telegraphi, -November 11.
John Weems, of Johnstone, Renfrew, North Britain, for Improvements in the manaw fecture or production of metaluc pipes and sheett.-November 11 .
Audrew Fulton, of Glasgow, Lapark, hatter, for improveconent in bats and ohber coveringe for the head.-November 11 .
Wiliam Petrie, of Woolvich, Kent, civil engineer, for Improvemente in obtalabge and applying electio carrenta, and in the apparasus amployed thereln; part or parta of which improvementa are applicable to the refining of certain metals, and to the production of metailic eolation and of certaln acide. November is.
Augubte Fidounrd Loradour Bellford, of Cantie-street, Holborn, for Improvemposts in the conntruction of aprioge for raliway and other cerrlasea.-(A commanicidion.) November 25.

[^0]: * Mr llonaldion here incidencalty advertad to the polychromy of the ancient Eygptiaus, which wuas well-knuwa to have been general or unllonited in ita applica. tion, and highly effective in the tesults. This epecter of polychringy aigbt be advautageousiy studied in the work of M. Horenu, who watalso present at the meellag.

[^1]: - Vide Keport of the Commiseioners appoinced to lnquire into the Appllation of Iron to Rullway Suructures. 1849.

[^2]: * In tbe strongeat cashiron beatn, as obtalaed from these experiments, the area of the sections of the cop and bottom ribs, in the middle, wat as 1 to 6 nearly; and the botiom nb had 244 tmen as much in its mectlon as all the reth.
 \dagger For the manner of compating the streagth of the Conway Tube, eos Appendix, by Mr. Modigkinion, in the Report ${ }^{\text {M }}$ the Commisatonert on the Strength of Iran, pp. 174, 175. In tubet formed of aimple plates, with celle at the top, as in thone

[^3]: - Vide Appendix to Report of the Commisuloners on Iron Beamis, page 116.

[^4]: CRECIAN MOULDINCS.

[^5]: *Tble Agure 1 have elaewhere collied the "composite ellipse;" and, as stated to the text, it ts componed of arcs of elther ten or twelve ordinary elliptes. It may be described around any isoncelee triagle by tbe following procens:-Take the atde of the triagie T G, fig. 11, as the major axia of an ellipse (which may elther be that of (1), as in each of the examples given, or any of the tomaller barmonic angles, and Wroagh T draw $T b$, making the angle of the required ellipse with T G. Bisect TG in a, and taling abas a emi-minor axis, the foul will be found at A and B. Fis correnponding foci, C D P F, on the other side and hase of the triangle. Fin a pto into each of those slx foct, and one at the yoint b, and tie a tbread tightily around them, usiog a little wax to provent the knot from slipping; when quite secure, remove the pla at b, and tasert a pencli or any traciog jucint, and by moving it round the pins, and keeping tbe thread tipht the vertical composite ellipse of (1) will be
 I L, L. M, and M N on the one side, and OP, P Q, Q U, U V, and R S on the other stide, ares of inclined ellipers, all harmonically ulended. Between the inosceles triaggles of (b) and (1-6) there mre, fuclunive, 22 of a harmonic kind, and an equal anma ber of ellipses. Therefore, as these may be combined Interchangeably, the Fariety of
 thoee fgures between the angles of ($\}$) and (1.6) mount to 484.

[^6]: *The degrees of fucitaution employed in conatructing an ovolo moulding between (2) and (1) being 18 , and the ellipses 22 , the varity of this moulding is 286 , inde-
 pendenty of that which ariges from the various modes of terminalug the eurve of the inclined ellipse thourn in $\mathbf{G g}$. 15.

 + When the angle of Inclinutiun is leas than 45° with the vertlcal lloe, the ellipse In vertically inclined; when more, it is horisontally iaclined.

[^7]: Wr. Dunmidson thowed, by reference to W. Iftort's drawtegs, thet he had epplind entour externalt to the Cuque National tat Park.

[^8]: * Le Play, Aan. des Mines, 1834.
 \dagger C. Weerth, Die Entitchelaus der Menchenracen durch Eiawircougen Fon amen. Lemgo, 1842.
 * Viriet, Coap d'cell itatieque mur la Metallargle dans mea Bapporta avee l'Indagtrie, In Civlisation, et Le Blamese des Peuplea.' 1897. Ami Boobs "Der ganse zweelrund der hoh' Nutien der Geologla." Wien, 1851.

[^9]: - In 1841-2, when I parsed mome months among the mines of Huogary, much had been dune and wat atill dolng by my fiends the lite Olerstinamerigraf von Sralczer and Br. Aittlager, the Inspector of Stamprorkn, for the improvement of the dressIng of gold and silver ores; and the works at Ancal and lilh, near gehempita, were well worthy of admiration tor thelr sewle sud economy.
 - Alemander Von Homboldt wat a stodent at the minios acodecoy of Frieberg, in 8axooy, Ia 1791, with von Buch, Prelealeben, and other coryphai of mineralogical and geological ncience.

[^10]: - On the nixht of Thureday the 8th, between 4 p.m. and 8 an.m. of the 6th, there foll 0.7 in . of raln.
 t Thil was between 4 p.m. 8aturdey, and 4 p.m. Sunday.
 \pm This wat from 4 p.m. Sundey, to 12 noon on Mondey.

[^11]: - ' Perupectiva Borate, p. 689.

[^12]: - The presence of minute paridies of the alloy of ommiun and irdijum in goid is comedmet very anoylag to jemellers and watch-cuse maken.

[^13]: *Hygrumetrical Tables to be used with the Wet and Dry Bulb Thermometers," by Jamen Olaliber, Eaq., F.B.S.

[^14]: \# It it curions to remark that the alabaster monumenta in Weatminater Abbey bive better reslated the corroding effects of the damp atmonphere than thome of Pelworth mosble, and that the deterioration of the former arjees eptirely trom maptop mis.

[^15]: - La teply to Mr. Scott, Mr. Scoles obeerved that she canogical height of the aluar,

[^16]: - Between sbe perlod of mediag this papar nad the time of pablicatlon, the author

 oo wiver by ceppiliary atrection opiy.

[^17]:

[^18]:

[^19]: ＊From the Journal of the Fravilim Inotieder．

[^20]: - We have given ooly an abstract of thia paper, many of the astruncmical tootru. mentif af the Exhibition havint been described in the Journat, Vol. XIV., p. 455 ,

[^21]:

[^22]:
 Which be afterwands made for the une of the bullder, the wectlons may be altered (in the sheer and body plane) 20 ate to reproment sections perpendicalar to the hel.
 t The plape on wich the anctions tre projected, tor the body pian, is perpeptien. ler to the weter ; not porpendicular to the rabbet of the hed to in the eatablinied method. Hence the waterllnet in the body plan, are atralght lines, and the tections do not terminate in one polot.
 llot. The dividin-line are as anmerous ω the particiey of water mhlch gurrougd the shlp. The whole surfere of a ship's bottom may be soppoeed to be mede of an Infinite number of dividiof-lines. But we ehooe one only to wort with, and choose that one which will be aboat the largeat on the whole aurface of the vased. When

[^23]: We can produce mony symmetical tharea of different dide, by doubling a Feve of paper, and deweribint mome arbtrary strolrea alopg the folded line; for
 Alide The imprendon is somewhint diaturbed by the clrcumenence that the uttle bates hove eloveted bordere on one side; bet the Inequilty firmentiy removed by a
 thing, but the stoven of the pen have here a distartang inflecace.
 4 Phove endinfouand to repreant thil in my introduction to "Netural Phllowophy'

[^24]: - This is evidenced by breadeh of been, diphowes of dranght, hollownees of foor and of entry combloed with grett abarppetis of prow: beyond thit the telapptalar cut

[^25]: - A coutharly afpect abould be conaldered as deatrable, not mo moch in respect of Ught as of warmith, and of the eujorment we, in our dull notitudes, derive from on occaplonal slesm of brightaesh. The regulacion of such light to more dity theted by bllads and cortuins than by atructural prothlond.

[^26]: - The diference oecasloned by the manner In which a room Ia to be coloured or fromished cannot form the subject of any rule, bat must be taken into account by extmaling the efrect of light in exiating examples of varione clased of rooms.
 \uparrow Probably the Pantheon, which has been noted for Its an 閪clency of Iight owes it to the brighter aky of Italy; for the proportion is amall compared with bulldiage

[^27]: - Except when economy th not the chtef condideration, or when for omaneat of

[^28]: - From the collection of Mr. Salt, which has been preaerved in the Britich Musenm, meveral bronce weaponis of warfare atcent this fack. A portion of a blade of a bevile-axe is in this collection 184 Inchen long, and 24 inches broad, inserted Into a silver tube, fxed with nalle of che same metai. The coat of armour or cutrage of the Eypptans has been dencribed as censlsting of about eleven horizontal rows of metal plites, secured by broaze pins. An Egyptian sword or dagger, which was excavated In the ratos at Thebes, aleo corroboraten the general use of bronse fa early tumes. "The blede whis broarte, thicker in the milddle than at the edges, and elightly grooved, and to exquistiely wes the metal worked that some of those examined were found to have retalned their plinblity and spring after a period of several thousard yeara, and halmost repembled akeel is olantleity." Such ts the dagger which has been discovered in A Theban comb. Spear-heads, javelin-hoads, of bronse-metal, hava also been foond and prewerred in museums (the Berlin) which correapond to the deacription of Homer. It in probable that the Egyptiane succeeded ow well in hardening bronze then not only awords, knives, and warlike weapons and armoar were made of it, but that the toole and chisels which were employed for carving and cuttigg bard atones, as grantia, and aloo implementa of husbandry, were made of it.
 In the rolne of Nineveh (from Jonah, Nineveh, or Nimroud, exthted 802 E.a.), Lapard hat at yes discorered few metalite remalna. The articles found are of coppet. The remalns of metals found in Egypt, preserved in the British Museam, conefiot chiely of articies in broare and copper, inch as raset, statues, agricultural im . plemente, epear-heade, awords, daggers, toole, mirrors, knivet, dec. In the Lycian collectina, the few specimens of molals conatot of articles in bronze and lead. In the mame maserm, the number of broneet of the Greets and Bomans reader It fmposilble to pericularise them, wuch vases, statuew, candelabra, helmeta, swords, apearbeads, \&e. In the Antiquerian Museum of Edinburgh there mre various specimens of Eoman articles in bronut found in Britaln.

[^29]: * Stonnum may alao have been very hard lead or pewter, Dlodorus narrater "that ebove Lutianta (Portugal) there ts mach tin metal-that in, In the lelands lylog in the ocean over agalnat lbetia, which are therefore called Cosilurides."

[^30]: The Chiaese gors motal in a mixture of 20 parts of ta to 80 of copper. The Chineae early knew the procta of brouring copper veande. Speculam netal cos. ciata of 1 part of tin with 2 parts of copper.

 + In Japan a mabre is described which mill cat through a nail without injuing the edge, and cat of a man's head or cleave him asunder at one blow. Marrellous are the accomets of oriental weapons. The anciente thy that with theds swords they
 could cut through shicld and helmets.

[^31]: * Brought to this country by the Vari of Arundel, in 1624-hence the name. They contalod the chronology of Greece from 1382 B.0. to A.D. \$4.

[^32]: * "Oree of tron are foond alonont everywhere, and are alco prodaced in the Ialand α Ilve (Elbe) In Italy..... Of all metale the vela or ore of Lroo to found in the triatest qumbity,"-PHm. Blat. Nat.

[^33]: - It in probabis the harrow noticed in eacred writ. Job. 2xilx. 10-" Will be hatrow the valleys after thee"-may bave been the crates of the Homand. The burruw ha thun tupposed to have been o: great antlquity. It is mentioned by Colitmella and other writers. Crates wha aloo the name given to all kinds of bankel-work; there are differeat varletien poticed by the Roman writers, as orates pastorales, erates thersorariaf, woven with straw or rubbes.

[^34]: * Dlodurns corruborates this, for he mentlong a bridge where, that the stone might be more firmly "Join'd, they were bound cogether with hook of iron, and the Jointe tlled up with melted lead." What more could she moderns do?
 + Thle bridge is mald to bave been to framed as to require neither iron belte not tee. No one readiog the deacriptions, however, of the colomal worlte of antiquity In Egypt and in Rome-of their bridgen, aqueducts, and sewert-of their triampha vinced that in the erceclon of these the une of metal was common.
 * Diodoros remarise- "For this engine Is on iogenloualy contrived that a napt quantity of wher is, strangely, with lithe labout, cat up..... The Ingenvity of the artist is to be edmared not only in thete pumpe, but juithy in maoy frr grtater thingat

[^35]: - Mucenm of Practual Geology and Geological Survey - " Records of the School of Mines and of sclence epplied to the Arte': Vol. L. Part I. Lacugural and 1 mfta
 tory Lectures to the Courser for the Seston 1851-2. London: Longrones. 1832 .

[^36]: " Bistory of the Barboure of the United Kingdom; oomplled by the Barboar
 Department of the Admiralty:-Bcfant. London: Eyre and Bpoteinwoode, Queen's 8 mpters. 1888.

[^37]: *The truth of chit will suficiently appear on comparing the coloured glage of the twelfth century with the apectment of Roman and Greek piase la the Britioh Museom. So complete an identity of colour argues an identity of manufacture, which manafacture, there is good ground for belleving, was handed down from Pagan times. Ibe strong recmblance, which the mast supertcial observer must iecognice, of the twoifth and eariy thirternth century drapertea and figuree to thoep of the Grvel achool of art, reises a reasonable liference that the glape palaters of those tiriet, hough. In all probability, antives of the countries in which they practised, derived thedr art from the Bynnilinet.

[^38]: * "The Jodgroent of the surrejor was orignally, listeed of palating in the manner It to now performed, to have beautised the inalde of the capola with the more durnble ormament of monalc-work. as lo oobly ereculed in the capole of St. Peternat Rome. For this purpose he biad projected to have procurod from Italy four of the most eminent artiste tn that profenion ; but at thite ert was a great aovelty in Englend and not generally apprehended, it did not reetre the encouragmeneat it deserved, It was Imaglined, alion, the expense would prove too grast and the tme very long in the execution; but though these and all objections were fally answered, yet thin excellent dentgo wat no forther purgued. The palating and gldalng of the architechure of the enat eud of the church over the Compunion Tuble, was intended ouly to serve the prement occulon, thl such time ate materlata could bive been procurod for a magalfeent dealgn of an Altar, cenulating of four pilinem wreathed of the rebent Greek marblet nupporting a canopy, hemiapherical, with proper decorations of archl; tectare and aculptare, for which the reapeotive dravings and a model were prepared."

[^39]: - Parentalla, page 291.-"The twenty-fonr cupoias of St. Parl's are formed of brick with stone wraths, the brick Invested with coable-dial lime, which becomes at bard as Portlaud atone, and which, having large planet betwren the stove ribe, asu
 capable of further ornaments of palntiag if required." Parantalia, pags 292 "the judgment of the surveyor was originally, initead of paintag in the menner it to now performed, to have beuulfied the indide of the cupola with the moredurabla ornament of mosaio work, as is nobly executad in S_{t}. Peter's at Rome, which duratiat the eye of the beholder with the most magalficent and splendid appearance, and

 of the east ead of the church over the communlon table was intended onl to merve the preasut ocension, thll such the as materials conld have been procored for some me nlicent alcor-piece, constoting of four pillarn, wreathed of the richent Greek morblet \& ic., for which the reopective drawloge and a model were prepared. Information and particular deacriptione of certaln blocks of marble were once sent wo the Butht Rep. Dr. Compton, Bishop of London, from a Levantine merchant in Holland, End coms. manicated to the surveyor, but upluclily the colourt and scauling did not antme his purpose. So it rested ta expectance of a ftter opportanity, elee probebir the

[^40]: - Latitado antem Ite folalur, ut longitudo io trea partee quan dirian fuert, ex his dine plote el dentur. Ldb. V., c. 1.

[^41]: - Mr. Wougian mucceded in reachtag the rock on Sunday the 2 fib of February; had been broken of at dificrent heighte, varying from 1 foot to 6 feet from the surtree of the rock; bat thet all the pointe of ettuchment remained unlajured, and the rote femill was dot vorn up.-Ser. Tnet, C. E_{4}

[^42]: Then ary hareatter called diagoants, more expreative of late patalug through the angles formed by the sides of the opentay.

[^43]: - An advantage of the comblation may here be noted; wis. that if any Hefiector, ane e, would difuce the light orer say is feet width of aurfnce, one 4 dmen the widsh mould not eover so much at 16 feet , though of courn the lifth would be more Intense.

[^44]: * The Naval Dry Dockn of the United Blatea; By CuAmuma B. STuame, Englneer.In.Cbltef of the United Statem Navy. Tweaty-Four Bteel Eagravinge. New

[^45]: - We refer our readers to Mr. Jordan'e patent for bullding reisela of tron and moed, reportid in the Journal, Vol. IIV. (1850) p. 80 . We suspect wome portion

[^46]: - 'The Naval Dry Dockn of the United 8tates,' By Charlbs B. Btuart, Eng-meer-ineChitef of the Ualted Stated Nary. Twenty-lour Steel Eagraringe. New Yort: Norton. London: Weale. 1852.

[^47]: * For the report of afr. Walier's Addrens we are Indebted to the Northern Whig.

[^48]: Report on the Sapply of Water to the Town of Swanses. By Miohabl Scort, C. R. London: W. Clowes and Sone. 1852 .
 \dagger Perhapa the bent evidedce of the pecesaity for ctsterns, ariaing fram the difficulty of antaining the preature in the upper toers of high housen, ist to be found at Glas gow, Where, with ghet capabilitics on the part of the waterworks, claterne ere alwayt provided, in order to prevent disaypolntment in this partlcular.
 \$ The method of forming leaden tube, at no distans period, way by the drawbench, Whereby any minute pore in the offimal casting was elongated into a split, dividing the pipe in the direction of tin lengit; and it is only within these few years that the more perfect plan has been fursued of forcing oolld lead through a de by hydrau-

[^49]: I do not mean that the risk of burating the pipe is aupmented by the pressure belog cunatant, but that the riak of injury to the house and furaiture, tf the plpe flues burat, is much increased; for although itop. cocks may be provided to shut of the water in the event of an accidelt, tilif, from long diaute, they are seldom in working
 condition. condition.

[^50]: - A brattice tea plate of afr at reat between two moviag currenta, one up and one down; horizontally it meldom exista, bat vertically it does. These corrente are prodaced by the difference in weight of two equal columan of alr, ocemaioned by difier. eat temperatares, the hesvier column descending, sod the lighter column acenalag. The plate of air between those two columns la called "the alatural brattice;" this is a term given by Mr. Guraey in 1849, when frat discovered exieting io a coal-pit np-cast, and has been adopted alace as a term; pernons at all acqualated with colliery ventiation will underatand It. In coal-mine shaf there is oiten a dirtaion of it from top to bottom by partilion of wood; one alde forms the up-cast and the other the down-cast column; this la called a brattice. pis. The cold atr goes down the one alde, and the werm adr goet up the other in thil brattice.plt; but when the sir forms of tiself into two colnmis, it is called "t the natural bratilice," namely, the quiescent plate of alr between tboee two currenth.

[^51]: E. Reports by the Jurles on the Subjects in the Thirt Clasees inw which the Great

[^52]: to Wotint tor the Removal of Soll Water or Drainage of Drelltpg-Boasee and Public Edifices, and for the 8ewrerage and Cleannlog of the Rites of Tumas, Or-
 dered to be priated for the use of Local Boards aud their Offert, eagered Ia the Adediniatration of the Pabili Hralih Act. Premented to both Hoaters of Pariament by command of Ber Majerly. Londan: Eyre and Spottiswoode, 2659.

[^53]: * He states, for example, as a general proponition, that a velocity of a turem of half-a-mile an hour, wili meparate and hif up particlen of coares sead, mad of about tisree-quartere of a mille fine gravel; whereat an instance was given of the velocity of water in the Bridgewater canal, sowarda the loche at Ruacorn, of a velocity of about one mite an hour, at which ailt is deposiled by the water. Hurera in many parts of the world depoalt silts so as to rales the surface of thetr watera above the pdjoinag land.

[^54]: *The following public bulldings have also been warmed and ventlated hy Mr. H. C. Price:-Wilte County Junatic Asylum; Lincola County Lunatic Asylum; LeiCenter and Datiand Lunatic Aaylum; Oxford and Berks Lanatic Asylum ; Bucka Coonty Chmalc Abylum; Uak County Prison; Lelcester County Prinon; Oxford Connty Frison; The sidal Pox Hospira, Righrate; Nava, Hospital, Chatbam; Ferer Eospitsi, Bedford; Connty Indrmary, Derby, new brilldings; Brecon County Courts; Doroy Dioceean araining Institution; Chenter Diocesan Tralaing Instutation; Bochetter Diocean Training Inatlention; Ozford Diocesan Training Inatitution; Martboroggh Ciergy College; Cirenceater Agricultural Coliege; Admiraty DepartIndifent BUnd Hehool; Insolvent Debtors' Court.

[^55]: *To M. Gchneider, when miniater, we are indebted for the selection of the thirtysiz Prench Jurors and Associntes sent to the Enhlbition.
 t As 200 n a the conditions of this new problem of naval arehicecture were lroow to the public, Baron Charles Duptn, In a report to the Prench Honte of Feers, announced, in poaltive and strong lerms, the great succeat to be expected from mean-of-war so fitted. He polated out the ner services which they could falfi, got merely as harbour gurdrahlps, but an a squadron of mutack, for the remotest polata
 of the European meas, and oven farther.

[^56]: - In inls paper, degreta of Fabrenhelt are agnified in every cene.

[^57]: *We percelve, ather the greater portion of thile review had pone throagh the preat, that the figure (1) has in every cave been inadvertently subetituted tor the acced: (').

[^58]: - From the Journal of the Franklin Inatitute.

[^59]: Thating the copacity of wroughtiron for resiating a strain in compreanion as 16 tons per inch square of sectional area, and ith capacity for renifiling a atrain in tenalon as 20 tona per Inch square of sectlonal area, gives the quantity of metal recapacity of the material for resistiog the combined strato of 178 toos per finch equare of esctional aren.
 \uparrow Taking the capacity of cast-Iron for ievisting the straly in compression an 42 tona per loch equare of sectional mas, and ite capacity for resisting a atrain in tenaion ase 7 Lona per inch square of sectional ares, plrem ibe quantity of metal required to the top and bottom of the beam to the proporiton of 1 to 6 , and a mean cepacity of the material for resisting the combloed atrain of 12 tons per inch aquare of erctional rea.
 \$The weakening of the botiom by the ordinery fiveting appears, however, to about equalise the sirength, at the Iron is now generally upplied, and io neceasitate the mape quantty of material in the bottom as in the top of each beam.

[^60]: - The beamb would carry a prenter maximam lond, but this is uoveceasary, and pot necemarl y tbercfore an advantoge.

[^61]: ©The fianges are not inciuded In the areas bere given; their sectional area it 32 Incbes.

[^62]: - Reprinted from the Proceedinge of the Lrerpool Architecturnl and Archeologieal Suctety, Vol. I.

[^63]: - An the force of a atream la proportionate to the aquare of its velocity, the clemaing power of the concentrated stream in the pipe would be above twentytimen m great as that in the wide sewer, consequently stonea, \&c., which might rest in the luster would be awept awisy by the more rapid flow.
 t An inquily whe directed to be made as to the enpense of laying down a mile of 16.Inch pipe in an old eewer, with jonctione of 4-Inch branch pipen to every honse. drain made good, whon it was estimated that the expene would be 2304 . 1tr. 50 . per mile; aud tt appeared that in many such situations as those, where accordlog to the dew of randous enginetre, cleensing by fushing or hand labour would be required, usch a line of pipe would keep the gewer entirely clear of deposit, and. so far as the newer liself was concerned, clenr of moll, whlle it mould greatly diminish, if not prevent, the circalation of foul gases from the house-dralas through the eewera. According to the report of Mr. Lovlet, the present expenie of fuahiog in some dis. trict is 24. 10a. per mile per week. In the newly-cleapaed diatricts it wit 29 i, per

[^64]: *The pictures mighs be huag by means of a contrivance fomething tire the mason's lewts: a number of cant-iron dove-tailed sockets, to receive the lewisee, betog inaerted duriof the progrees of the bullding into various parte of the waile where the picturra chould be cuspended, trom which iron rode or bare would pase through the rloge from one lewis to another, and from these rods small chalos might be attached to the pleture. frames wherever requisite. If the lewises, or fron roda, should be occastonally in the way, and interfert with the arrangempnt of the pictursa, she tewis
 It might be re-incerted, at a moment's notlce, whenever required by changee made in
 the arremgenent of the picturet.

[^65]: * From the Jouran of the Frantlun fostitute,

