TECHNICAL NOTES

national advis!rar committee FOR AERONAUTICS

 SEPGUMA MALEDENAL ADVISORY SOMIITTES FOR AEROITAUTIOS.

FILE COPY

To him redmond to

$$
\begin{gathered}
\text { the files of the Langley } \\
\text { Memorial Aeronautical } \\
\text { Laboratory }
\end{gathered}
$$

$$
\text { September, } 1924 .
$$

NATIONAL ADVISORY COMITTEE FOR AERONAUTTCE.

TEGHIICAL NOTE NC. 204.

A STUDY OF STATIC ETABILITY OF AIRSHIPS.
By Frank Rizzo.

Introduction

The suoject matter of this report, submitted to the National Advisory Comnittee for Aeronautics for publication, deals with the study of static stability of ajrships and is subividea into two sections, a theoretical discussion and an experimental investigation.

The experimental work was carried out in the four-foot wind tumel of the Massachusetts Institute of Technology, and the results were originally submitted by the writer as a thesis in the course in Aeronautical Engineering at that Institution.

The author wishes to express his indebtedness to Professor Warner, head of the Aeronautical Department, for the helpful suggestions during the preparation of the thesis and to Messrs. Ober and Ford of the same department for the valuable assistance received in the performance of the experiments.

Summary

The first section of this work deais entirely with the theoretical side of statical stability of airships in general, with particular reierence to conditions of equilibrium, longitudinal.
stability, korizontal flight, directional stability, critical speed and a discussion of the retersai of controls.

The second section, besiles tests of a preliminary ne ture on the model alone, comprises experiments for the deterniration of:

Effects die to change of tail area.
Effects due to change of anpect ratio.
Effects due to change of tail form.
Effects due to change of tail thiomess.
In all these tests, longitudinal ana trarisverse forces on the model at verious angles of yaw and angles of tail setting were observed and the results and deduction derived therefrom are found in Tables III to IX and Figures 11 to 19.

From the experimental data me may summarize that:
(1) An increase of area over the standard taji surface is undoubtedly advantageous, probably more so for the horizontal stabilizers thail for the vertical ones, while a reduction of area rould be dangerous.
(2) Similarly an increase of aspect ratio is highly recommended, while a reduction woula be unwise.
(3) From the form point of riew a rectangular shaped tail surface is far superior to the other two, while the one with balanced rudder is better than the stardard shaped one.
(4) The results on the thickness experiments, at least from an aerodynamic point of view, are in favor of the thin-
nest section, tail NO. 9 (Fig. 1.9).

PAFT I.

THEORETICAL STAEILITY OF AIRSHIPS.
Static Equilibrium.

An airsinip is in static equilibrium when the ascensional force is equal to the total weight, a condition which takes place at an altitude where the weight of the air displaced by the airsinip is just equal to its total weight. When this condition is fulfilled the center of gravity and the center of buovancy of the airship lie on the same vertical line and the equilibrium condition is expressed by the formula:

$$
W=F=\rho V
$$

where ρ is the air density at the altitude in question and V is the displaced volume of air.

From this condition of equilibrium, the airship can ascend or descend only by two distinct causes, namely, atmospheric changes or the discharge of ballast or gas respectively.

Statical Stability of Airships.

An airship in steady flight has three types of stability; that of pitch or longitudinal stability, that of yaw or directional stability, and that of roll about the longitudinal axis. While these stabilities are all correlated in the case of an air-
plane, such, however, is not the case with an airship, the three types of stability being independent of each other. Furthermore, due to the fundamental properties of lighter-than-air craft, static and dynamic stability are both true and distinct, since strictIy speaking the only real statical stability is that which exists when the engines are stopped.

An airship is said to be statically stable if it tends to return toward the initial condition of steady motion whenever slightly disturbed from said motion. The above definition applies to motion in which the longitudinal axis of the airship moves on either the vertical or the horizontal plane and the following discussion, applying to these two types of stability, will be based upon these assumptions:
(a) That the ascensional force remains constant.
(b) That the total weight remains constant.
(c) That the speed remains the same.
(d) That the form of the airship remains unchanged.
(e) That the C.G. and C.B. remain fixed.

In actual practice, however, this is never the case; the initial static equilibrium is gradually changing during ascent on account of the adiabatic cooling of the gas and on account of the expenditure of fuel. The center of gravity of the gas moves fore and aft along a line above the longitudinal axis of symrnetry, due to the motion of the gas in the inclined position of the envelope. This motion will be forward of the normal position when in an as-
cending attitude and aft when in a descending one. These changes will in turn produce also a slight variation in the aerodynamic moment due to the alteration introduced in its couple arm.

In rigid and semirigid types of airships this inconvenience is to a great extent eliminated by having gas-proof diaphragms of oiled silk at suitable intervals fore and aft; these diaphragms permit the gas to diffuse slowly in case of excess pressure in one compartment over.its neighbors, but they are still sufficiently impermeable to prevent the uprush of gas when the airship pitches.

If we take an airship flying along a trajectory which makes an angle θ with the horizontal, and its longitudinal $\partial x i s$ makes an angle α with the path, or an angle $(\theta \pm \alpha)$ between the axis and the horizontal, the airship will be in static equilibrium under the action of the following forces and moments (See Fig. I):
(1). Longitudinal resistance $R=K_{1} \nabla^{2}$
(2) Iift or lateral force Le $=K_{z} V^{2}$
(3) Pitching moment $M_{e}=\left(K_{3} V^{2}\right)$ l.

These forces and couples, due to the dynamic reaction of the air, apply for motion of the axis in both the vertical and horizontal planes, in so far as the envelope is a body of revolution and giving as a result equal air reactions for the same inclination of the axis to the wind in pitch and yaw respectively.

In addition to the aforesaid, we also have a moment contributed by the lift of tail surfaces perpendicular to the plane of motion as expressed by:

$$
\text { (4) } M_{t}=\left(K_{4} V^{2}\right) a
$$

Other forces and cotrples in the veriical plane are:
(5) The thrust I of the propeller parallel to the axis of the envelope acting o units below the C.G.
(6) The ascensional force F acting upward through the center of buoyancy of the envelope.
(7) The total weight $\overline{\text { (7 }}$ of the complete airship acting through the center of gravity.
(8) A couple aue to the propeller thrust $=\mathrm{Tc}$.
(9) The static righting moment due to the total weight and the inclination of the axis with the horizontal:

$$
M_{s}=W h(\theta \pm \alpha)
$$

Iongitudinal stability.

The following conditions of equilibrium must be satisfied for Iongitudinal stability, when the C.G. is assumed coincident with the G.B. (See Fig. 1).

$$
\begin{align*}
& \Sigma H=R+T=0 \tag{I}\\
& \Sigma V=F \pm L_{e} \pm L_{t}-W=0 \tag{II}\\
& \Sigma M=T C \mp I_{t} \pm M_{e}=0 \tag{III}
\end{align*}
$$

Horizontal riight.
With the skip on an even keel $(\theta=\alpha=0)$, and on further assumption that $F=W$

$$
\begin{array}{ll}
\text { Then, } & \overline{\nu e}_{e} \pm I_{t}=0 \\
\text { and, } & M_{e}+I_{t} a+I_{c}=0 \tag{IV}
\end{array}
$$

Observing that the statio moment is zero, and that $M e$ and Le act always in the same direction, one of three possible conditions may exist:
(a) If M_{e} and $I_{e}=O$, then $T c$ is leit unbalanced.
(b) If 积e and Le are positive, It is negative and the airship would be unstable under the action of three couples ail acting in the same direction.
(c) If Me and Le are negative, Ist is positive and $T C=k^{r} e+L_{t a}$.
This proves that the airship car maintain static equilibrium in horizontal flight only when the above condition is satisfied, namely, by flying with a small negative angle of incidence and the cooperation of the control surfaces.

In general, however, winen $e \neq 0$ and the C.G. is below the C.B., equation IV becomes:

$$
M_{e}+E_{t} a+T c-W h \theta=0
$$

for all angles and the general equations becone:
(I) $\operatorname{Fcos}(\theta \pm a)-\operatorname{Hcos}^{(\theta \pm \alpha)}=I_{e}+I_{t}$; normal to path.
(2) $R \pm \operatorname{Wsin}(e \pm \alpha)=T \pm \operatorname{Fsin}(\theta \pm \alpha)$; paraliel to the path.
(3) $T C \pm W h(\theta \pm \alpha)+M_{e} \mp M_{t}=0$; about G.B. of envelope.

Again, at the eitituae where $T=F$

$$
\text { equation (1) gives } L_{e}=-I_{t}
$$

$$
\begin{array}{ll}
\text { also if } \alpha \text { is zero, } & I_{e}=0 \\
\text { and. } & I_{i}=0
\end{array}
$$

Thich condition, when appied to equation (z) fites:

$$
\mathrm{Tc}=0
$$

This is an impossibility as long as the airship is under-way, since from equaiion (2) T must at least balance R and is invariably acting at a distance c belor the center of buoyancy. The only alternative left is that some pitcinge morent must be preserved to counteract the thrust couple Te. This, in gractioe, is accomplished by the tail surface couple $I_{t} e$; I_{t} is in turn balanced by Le, which force introduces also a negative envelope couple k_{e}, and the above conditions of equilibrjum are tins reestablished providing that $(\theta \pm \alpha)$ does not become zero. For values of $(\theta+\infty)>0$, and $F=W$, then we get:

$$
\begin{aligned}
& L_{e}=-I_{t} \\
& T=-R, \quad \text { and }
\end{aligned}
$$

(4) $\quad T C+M_{e}=W h(\theta+\alpha) \pm I_{t}$

If, howover, $(\theta+a)<0$, the Iatter condition becomes:
(5) $\quad T c+W h(e-\alpha)=M_{e} \pm I_{t} a$.

That is, the static couple Fih $(\theta \pm \alpha)$, works against the thrust couple in a climbing attitude of the ship and with it in a descending attituce. The reverse is true conceming the envelope pitching moment M_{e}; it hejps to keep the nose of the airship in a climbing attitude in the formem case and vice-versa when $(\theta+\alpha)<\theta$.

To be bure, in horizontal flight both Pe and Wh ($\theta \pm \alpha$) disappear as α approaches zero; urder any other conditions, however, while both moments are straight line functions of α, the envelope moment M_{e} varies also with the second powar of the speed.

A study of the above general equations of equilibrium indicates that the airship is most unstable at zero angle of incidence; it indicates also that any excess or lack of ascensional force must be balanced by dynamic load, requiring that the airship must fly at such an angle of incidence as to satisfy the condition on hand. In the particular case when $W>F$, an equivalent amount of ballast must be disposed of if the engines should stop in order to maintain equilibrium; and vice-versa, when $F>W$, an equivalent amount of
4. gas must be valved out if the engines should stop in a dynamic descent.

Directional Stability.

If the above airship flying in longitudinal equilibrium is caused to turn about its vertical axis by a certain deviation of the rudder the resulting motion will be circular in a horizontal plane and new forces and moments will appear which are, with the exception of the centrifugal force, identical with those dealt with in the longitudinal stability.

Looking at it from a different point of view, since the airship is now moving in a curved path the unbalanced forces acting on it may be resolved into tangential and normal components; the
tangential component will be:

$$
F_{t}=\frac{M \dot{\alpha}^{2} s}{d t^{2}}
$$

and the normal component

$$
F_{n}=\frac{M V^{2}}{I}=\frac{M}{I}\left(\frac{d s}{d \frac{s}{t}}\right)^{z}
$$

where r is the instantaneous radius of curvature of the path determined by the intersection of perpendicrlars to the instantaneous trajectories of any two points on the airship. It is obvious then, that as far as the forces in the horizontal plane are concerned, the centrifugal force due to yai and the thrust must be in equilibrium with the resuitant air force, or
(I) : $Y_{e}+Y_{t}+T \sin \frac{v}{+} \cdot F \cdot=0$, normal to path.
(II) : $T \cos \psi+R=0$, parallel to patin.
and

$$
\text { (III): } N_{e}+N_{t}+T(c \sin \Phi)=0 \text {, in yaw. }
$$

Where T is the thrust when the longitudinal axis inclines ψ° with the path and the Z axis Φ° with the vertical; $C \sin \Phi$ is the arm of the new thrust couple in the horizontal plane, c being, as before, the distance between the center of buoyancy and the line of thrust.

In a way similar to that of longitudinal stability N_{e} and Y_{e} must be both negative; and since Y_{t} must of necessity have the same sign as the centripetal force, to insure negative Ne the angle of incidence must be negative (inaide of the trajectory) and the rudder setting β also towarls the concave side of the path.

Gritioal speed of Ajrships.

If the airship in suestion, maneuverjng at a speed V with the controls in neutral positior, were lest free while in motion with its axis along the irajectory, it would take a drift angle of about 20 degraes in yaw*, and the yawing moment causirig inis drift is, in practice, counterbalanced by the control in the vertical plane, the mader.

In the case of pitching motion the cynamic reversing moment is partially counterbalanced by the rignting moment contributed by the total weight W at the C.G., h fect below the C.B.

It is erident then, tinat if we take the above airship in straight flight without tail surfaces, longitudinal static stability is only possible as long as the statio uprighting moment is greater than the dynamic upsetting moment in pitch,

$$
\begin{aligned}
& \text { that is, }: M_{S}>M_{e} \\
& \text { or }: \text { Wh } \theta>\operatorname{KW\theta }^{2}
\end{aligned}
$$

Where h is the distance of the C.G. beIow the C.B. and θ the angle which a vertical in the plane of symmetry makes with the line joining these two points.

Since the left member is fired for a given angle of pitch, and the right member varies with the square of the speed, there will be a velocity V beyond rhicn, without the assistance of elevators, the airship would becone anstable; this is the so-called critical * Hunsaker, Smithsonian Miscellaneous Collections, Vol. 62, No. 4 .
speed of the airship and expressed by

$$
V>\sqrt{\frac{K}{\mathrm{~K}}}
$$

If we now apply tail surfaces to the envelope, the value of K being a linear function of the tail surfaces involyed, and in surely being proportional to the linear dimension of the envelope, it can be easily inferred that if such large area could be used as to make K approach zero, V would become infinity; this is only theoretically possible, as various mechanical reasons would prohibit the use of both the enormous tail area and the great speed 2, w well.

Rate of Control Motion.

If the controls of an airship under way are suddenly shifted from an original setting e_{1} to θ_{2} in a short interval of time, the air force acting on its surface is no longer that due to the soeed V of the airship, but to W the resultant velocity of V. and of. U the velocity due to rotation of the surface about its instantaneous center, the hinge.

$$
\begin{array}{ll}
\text { That is, } & W=\sqrt{V^{2}+U^{2}} \\
\text { where } & U=l_{1}\left(\frac{\partial \theta}{\partial \frac{1}{U}}\right)
\end{array}
$$

and l_{1} is the radius of gration of the motirg surfaces. The dynamic force due to this rotational speed U is

$$
R=K_{1} A U^{2}=K_{1} \dot{A}_{1}^{2}{ }_{1}^{2}\left(\frac{\alpha \theta}{\dot{\alpha} t}\right)^{2}
$$

and the corresponding couple abcut the hinge is:

$$
C_{1}=\mathbb{R}_{1} A I_{1}^{3}\left(\frac{C G}{C_{i} t}\right)^{2}
$$

While thes due to the translational speed is:

$$
\therefore \quad C_{2}=K_{2} A V^{2}
$$

The combined effective souple about the ininge is thorefore the sumration of these:

$$
C_{I}=C_{1}+\bar{C}_{2}
$$

This resultant couple causes the airship to turn with an angular acceleration around a pivoting point P (Fig. 2), so that any portion of it, at a distance I_{R} from P, and of area A, will have

$$
\begin{aligned}
& \text { a Velocity through soace of } I_{2}\left(\frac{d \theta}{\partial t}\right) \\
& \text { an aerodynamic force of } A\left(I_{2}^{2}\right)\left(\frac{d \theta}{d t}\right)^{2}
\end{aligned}
$$

and.
a moment about P proportional to $A\left(I_{2}{ }^{3}\right)\left(\frac{d \theta}{d t}\right)^{2}$
opposing the angular motion of the airship about point P.
The angular acceleration is not, and ought not to be very large due to the enormous inertia of the airship; the retarding moment, on the other hand, which is zero at the start, increases to a maximum when it is equal to the couple \mathcal{C}_{P} and the ship has reached uniform angriar motion and finelly dies out as soon as the control coupie S_{I} is dissipated.

The outstanding ifabure of this retaraing moment is that it
varies as the square of the angular speed, but what is more important, as the cube of the distance I_{2}. This distance I_{a} is moreover subject to great change, as the pojnt P, for a given curvilinear path, moves forward of the center of kuoyancy with increasing angle of yaw. Recent free flight experiments on a C-class
 indicated that the axis of the angular motion P moved as far foxward as the nose. Iittle is known so far soncerning the total resistance to transverse motion or to turning; whatever the nature and distribution of this force, we are safe, however, in stating that the effect of these transient couples on airship hulls is considerably more serious when the controls are moved from one extreme position to the other of the vertical plane of symmetry, due to the fact that the stresses thus incurred. are all reversed. The danger of exceeding the maximum allowable stresses is undoubtedly most pronounced in the case of nonrigid and of semirigid airships in which the envelope has to stand stresses due to internal pressure and to bending moments as well. These facts indicate the militant necessity of keeping the angular acceleration of airships within allowable limits so that their enormous inertia coupled to the great distance of tail surfaces from the instantaneous center of rotation may not give cause to such disastrous results, as those of which the $R-38$ was probably a victim.**

* Report No. 208, "A Determination of Turning Characteristics of the c-7 Airship by Means of a Camera Obscura."
** The British Aeronautical Cormittee, upon the causes that contrib-. uted to the destruction of the airship $\mathrm{R}-38$, says: "The structure was not improbably weakened by the cumulative effect of reversals of stresses of magnitude not far short of the failing stress." (Aerial Age, March 6, 1922.)

PAFT IT.

Descriction of Model Used.

A rodel airship of the $1-33$ trpe was constructed by the author according to dimensions previously used by the British Advisory Committee for Aeronautics.*

The model, $1 / 153$ of the full size, with an overall length of 50.5^{11} and a maximum diameter of 6.2" was built in two halves of 7/8" laminae, hollowed out before assembling, so that the weight could be reduced to a minirmm. The odd dinersion of $1 / 153$, instead of $I / 150$ the full size, as previously planned, is purcly accidental, being caused by six months of extra seasoning.

Drawings and characteristics of the airship model are shown in Fig. 3, and the lines tabulated in Table Ia. Tail units 1 to 9 inclusive, are indicated in figures following the rodel. These tails are all made of white wood with the exception of set No. 9, which is only $1 / 16^{\prime \prime}$ thick and consequently made of aluninum plate.

Tunnel and Apparatus.

The experiments as previousiy stated were made in the 4 -foot wind tunnel of the Nassachusetts Institute of Technology, the 8-foot one being still under construction at the time, A detailed description of the wird tunnel has been given by Professor Warner in "Aviation," of March 13,1922 , and needs no repetition here. The $\frac{\text { airspeed was } 40 \text { K.F.H. for all tests and calibration of this had }}{\text { * R\&M No } 361 \text {. }}$
previously been checked by mearis of a Chattock gage.

Tbe Eiance.

An attempt was made to use the N.P. L. balance available but the weight of the model (approximately O li.) was so great that it raised the center of gravity of the wnole system and caused the balance to become sluggish and insensitive. It was therefore decided to use a wire suspension balance of the Gotttingen type diagrammatically shown on Fig. 4.

The use of this type of balance incidentally has two advantages over the ordinary method of suspending tine model on a spindle. First, the resuits are more accurate, since the elasticity of the spindle causes the model to vibrate and acourate readings are thus rendered very difficult, while with the suspension balance the vibrations are eliminated and the difficulty removed. Secondy, due to the definite location of the wire attachments on to the model, the position of the resultant force is readily determined, while in the spindle type of balance this determination can only be obtained in an indirect way.

Disadvantages, which are, however, common to both types of balance are: sluggishness under heavy models and marked vibrations at angles of pitch greater than 10°, especially when the control surfaces are set at large angles.

Referring to Fig. 4, the airship model is counterweighed by weights w_{1} and π_{2}. The fine wires a and b engage with balances
A and B respectively. Tires c and \bar{d} meeting at o connect to balance C. Wire e has its luwer end fixed to the floor of the tunnel and makes an anglo of $45^{\circ} 7 i t h$ it.

Counterveight W_{3} serves to reop the apparatus in tensjon thus preventing any undesirabie notion and unnecessary vibrations of the suspended model.

From what precedes, itis clearly seen that the dead weight of
 that the balances A and B carry the vertical component of the dynamic load, corresponding to the crossaind force or lift; similarly, since wires c and d are flerible mombers capable of taking tension only, and since wile e makes equal angles with c and d, the pulls in these must be cqual to each other and balance C therefore carries the resistance in the line of flight, or the drag.

The inclination of the model was adjusted by sighting through a protractor alongside of the turnel on to the axis of the envelope, care being taken that tho drag wire remained horizontal at all angles of pitch. The angles were set once and for all by means of engaging nuts fastencd along wires a and b, one pair for each angle setting; the wire d was kept horizontal by properly locating the suspension pulleys f and g simultaneously to the proper adjustments.

Regiatance of Wire Baiance.

The best way to determine the resistance due to the wire of
the balance would have boen by doubling on all wires, care being taken that no additional drag due to interference is introduced by the second set of wires. The extra drag introducea by the latter would then have corresponded to the wire diag and mutual interference of the rodel and wire oalance proper. The precision of the balance as a whole did not, however, warrant such refined precision and resort was thereforo mare to an empirical determination of this balance drag.

The balance was so rigged that the model hung in the middie of the tunnel when at an angle of 20° with the horizontal, the diag wire remaining always parallel to the wind direction, and that portion of wire between stern and rearward counterweight varied from horizontal to plus or minus 10° incination. The resistance of the wire in each case was figured on that part of the wire subjected to the action of the airstream betmeen model and tunnel wall. This was done for each attitude of the model and was deduced from available experiments* on wire, the interference between model and balance was disregarded in all cases.**

[^0]Ba 'ance Fesistance.

TMBLE I,

a°	$\begin{aligned} & I^{\prime} \\ & \mathrm{cm} \end{aligned}$	Res. g	$\frac{71}{11} \frac{12+42}{+42}$	R^{2} Z^{n} g cm	Res. g	$\frac{71}{71 / 2 * 42}$	$\begin{aligned} & R^{11} \\ & g \end{aligned}$	$\begin{gathered} R \\ \mathrm{R} \end{gathered}$	Total resist. E
0	76.2	11.3	. 797	$9.0 \mid 70.2$	工ᄀ. 3	. 791	9.0	180	19.0
5	74.4	11.0	.785	$3.8 \mid 57.8$	10.2	. 738	8.0	13.8	17.8
10	72.6	10.8	. 797	8.6 59.2	8.8	. 830	7.2	15.8	16.8
15	70.8	10.5	. 799	8.2 49.8	7.4	. 838	6.2	14.4	15.8

In the preceding table, the intercepted length I^{1} and 1^{11} of the forward and rear wire suspension respectively, are, in each case, maltiplied by the resistance of the wire per unit foot $(3.76 \mathrm{~g})$ and entered in columns 3 and 7 respectively. The factors

$$
\frac{13 / 2+42}{1^{2}}+42 \quad \text { and } \quad \frac{7 n / 2+42}{11}+42
$$

are the proportions of these resistances carried by the drag balance (See Fig. 4). Taking the dras of the longituainal wires (practically constant for all atiztudes of the model in the wind tunnel) as . 08 g per foot and adding it to R^{1} and R^{11} we get the total drag of the wire balance for each attitude of the model, shom in the last colum of the above table.

Envelope Resistance.

The absolute coefficients C_{I} and C_{2} per unit area and unit volume respectively, the resistance R, the airspeed V, and the
x
N.A.C.A. Technical Note NO= 204
density of air $\left(2.37 \times 10^{-3}\right.$ s.ug/it. ${ }^{3}$), the volume V and the maximum cross-sectional area A of the airship are related by the formulas:

$$
\begin{aligned}
\mathrm{R} & =\mathrm{C}_{1} \rho \mathrm{~A} \mathrm{~V}^{2} \\
\text { and } \quad \mathrm{R} & =\mathrm{C}_{2} \rho \mathrm{~V}^{2 / 3} \nabla^{2}
\end{aligned}
$$

R in botin cases being corrected for the spurious force on the model due to the drop in static pressure along the axis of the tunnel.

Pressure Drop correction.

The pressure gradient for this particular tunnel is represented, at any speed, by the equation:

$$
p=-.000045 \mathrm{~V}^{1.88}
$$

where p is the drop in static pressure in pounds per square foot per foot of run along the axis of the tunnel, and V the velocity of wind in miles per hour.

Taking the volume of the model as $0.579 \mathrm{ft}^{3}$, and $40 \mathrm{M} \cdot \mathrm{P} \cdot \mathrm{H}$. for ∇, we obtain the total pressure drop correction to be deducted from the total drag to be

$$
\vec{F}^{T}=\mathrm{pV}=0.043 \mathrm{Ib}
$$

Dimensions of "33" Class Airship Model.

TABLE Iz.

Station	x / D	$0 . / D$	$x(i n)$.	$\mathrm{D}(\mathrm{in})$.
1	0.0	0.0	0.0	0.0
2	0.042	0.104	0.184	1.160
3	0.208	0.415	1.310	2.620
4	0.354	0.536	2.230	3.380
6	0.687	0.719	4.330	4.530
8	1.080	0.854	6.800	5.370
10	1.490	0.943	9.400	5.950
12	1.910	0.988	12.02	6.230
14	2.325	1.000	14.65	6.30
18	3.160	1.000	19.90	6.30
23	4.210	1.000	26.65	6.30
25	4.630	0.991	29.20	6.25
27	5.040	0.962	31.70	6.16
29	5.460	0.907	34.40	5.71
31	5.860	0.831	37.00	5.24
33	6.280	0.737	39.60	4.65
35	7.710	0.623	42.40	3.93
37	7.530	0.489	44.90	3.08
39	7.900	0.329	47.50	2.08
41	8.050	0.158	49.80	0.99
42	8.170	0.000	50.70	0.48
43				51.50

$x=$ distance from nose
$d=$ diameter
$D=$ maximum diameter
FULI SIZE $\quad L=196.18$ meters (643.6 feet $)$
$D=24.0$ meters (78.7 feet)
SGALE OF MODEL: $\quad=1 / 153$

$$
\begin{aligned}
& I=4.22 \mathrm{ft} . \quad(50.6 \mathrm{in.}) \\
& d=0.516 \mathrm{ft} .(6.2 \mathrm{in} .)
\end{aligned}
$$

Volume $=0.579 \mathrm{ft} .^{3}$
Center of buoyancy at 47.4% of 1
C.B. to C.P. $\boldsymbol{\alpha f}$ tail surfaces $=23.25$ in.

Significant Characturistics of Tail Surfaces.

Tail surfaces, whether appliea to submarines, airpanes or airships periorm ezactiy the same funotion, that of controlling and steadying the motion of the oraft to winch they are attached. Nater vessels having two or more screws have at times been steered by the propelier alone, but lip to the present time no other deVice has succeeded in suparsecing the oid system of tail surfaces in guiding the vessel ir its motion through the medium.

In the case of airorari, as well as in the case of submarines, due to the three dimensional freedom of motion of these crafts, the problem of controllability becomes very important. The two main questions encountered in the design of control surfaces are:
(a) What moment should tine controls produce; and
(b) How efficiently is this moment prodiced?

The quantitative question in itself is a simple problem in statics, the simplest case of which arises when the airship is travelling witil its axis nearly parallel to the trajectory, in which case very little assistance is needed from control surfaces. If, horever, the boty $A B$, moving in the direction of its axis has its rucaer moved through a small angle DAC or β, the dynamic pressure acting on it normally to $A C$ is, as snown in Fig. 5,

$$
P=\mathrm{ksV}^{2}
$$

Where k for symmetrical sections similar to the Göttingen* No. 429 * N.A.C.A. Reports Nos. 93, l24 and 182: "Characteristics of Airfoils."

Or the Eiffel No. 56, is atraight line function of the angle up to 11° and 15° respectively.

This force can be resolved at the hinge into two components: one parallel to $A B$, and the other perpendicular to $i t$. The force $B A$ tends to retard the motion of the airsnip while the force $A F$, by introducing two other forces equal and opposite to it at the O.G. of the body, can be repleced by a couple $l F$, producing rotation of $A B$ about the S.G., and a force F^{\prime}, tending to move the vessel laterally in the direction of the force. Thus, knowing the speed of the airsnip through the air, l the distance from 0 to the center of pressure of control surfaces of area s, we obtain for the rotational moment about 0

$$
M=k_{1} S V^{2} I
$$

from whion it is clearly seen that the only variables involved are the area S and the distance l, both admitting variation within constructional limits.

An airship is most efficiently handled when it takes a small helm to keep it on its course, that is, when it responds readily to control rotion; for, if equilibrium is not established in time the lateral motion caused by the unvalanced force $\mathrm{F}^{\text {t }}$ (Fig. 5) is still further altered by the reaction of the air at the lateral center of pressure of the airship while the conter of gravity persists travelling in the original direction; the result is that the angular motion will incrcase or decrease depending on the location of the center of resistance; if the center of lateral resistance
is back of the center or gravity the direction will be restored, but the swing will be increassa un the contraxy, honce the cooperation of tail surfaces.

What precedes demonstrares in general the importance of having large fin surfaces and as far bask of the center of volume as possible, if other limitations had not to be contended with, namely, the to ual weight allottod to this item congistent with the economic performance of the aircraft. Nobile*, for example, estimates the weight of vertical planes to be proportional to the surface of the envelope, and the horizontal ones to be proportional to the volume. On this assumption he deduces the total weight of these in terms of the airship volune (M^{3}) to be:

$$
\begin{aligned}
W & =(.043) \mathrm{V} \mathrm{~kg} \text { for empennage, } \\
\text { and } \quad \bar{W} & =(.004) \mathrm{V} \mathrm{~kg} \text { for maders. }
\end{aligned}
$$

The question of neutralizing the lateral force by means of tail surfaces is most pronounced in the case of an airship flying in a circular path, in winch case, in addition to the lateral component of the rudaer, we also have to counterbelance the centrifugal force $\frac{m V^{2}}{I}$ acting in the same direction and througn the c. G. of the airship. And since constant angular velocity contributes neither resultant force nor moment**, the only alternative left is to navigate the vessel at such an angle that the transverse dynamic force just neutralizes tirese lateral components.

* "Giornale del Genio Givile," Anno IIX, 1921.
** N.A.C.A. Technieal Note Fo. 104, on Aerodynamic Foroes, by Munk.

This is accomplished by fiying the airship so that the crosswind force is in opposition to the centrifugal force, that is, with its nose inside of the trajectory. Tre theoretical value of this angle, as deduced by $D x$. Munk* is:

$$
\alpha \sim \frac{a(1)}{\left.R_{1}^{\prime} k_{2}-k_{1}\right)}
$$

in which k_{1} is the additional longitudinal mass, and k_{2} the additional transverse mass. Taking these mass coefficients as deduced by Lamb** for elippoids, for the fineness ratio 8 to be .029 and . 945 respectively, then their difference is equal to .916 and the value of a becones proportional to
$\frac{a}{R}\left(\frac{1}{.316}\right)$
Where a is the arm of the reversing moment and R the radius of curvature of the trajectory.

Crocco's Coefineient.

When the airship is deviated from its course by an angle α, a reversing moment is produced which will tend to deviate the airship still further unless some external force is applied to produce an equal and opposite couple. This is accomplished by the control surfaces which must be set at an angle a^{\prime}. The ratio $\frac{\alpha^{\prime}}{a}$ is then a measure oi the efficiency of the control surfaces and the information derived therefrom is that the smaller this ratio is the * N.A.C.A. Technical Note No. 104, on Aerodynamic Forces, by Munk. ** R\&W No. 623, "The Inertia Coefficients of an Ellipsoid Moving in Fluid."
larger the efficiency of the control surfaces in question becomes.

Description and Disposition of Tail Units.

Figs. 9 to 12 inclusive, show dimensucns and form of nine tail units used, detailed characteristics of same being given in Table II. They are all streamlined with the maximum thickness at approximately 40% of the chord.

These tail units were so disposed on the airship model that the center of figure of each stabilizing surface was at a distance of 23.25 inches from the center of buoyancy or 47.25 inches from the nose.

The movable paris were attached to the fins by steel wires so that they could be bent and thus set at any desired angle with reference to the fins; only two controls from each set were so fitted, those perpendicular to the plane of inclination, the other two controls having been left integral with the fins.

The above disposition of tail surfaces is justified in part by the fact that the center of pressure travel for similar symmetric sections is the same for angles of pitch or yaw when the controls are in neutral position.

Stabilizing Surfaces.

TABIE II.

$\begin{gathered} \text { Tail } \\ \text { No. } \end{gathered}$	Total area	Fixed area	Movable area	Aspect Ratio	$\begin{aligned} & \text { Area } \\ & \text { in } \% \\ & \text { of } 1 \end{aligned}$	Maximum thickness in.	Control form	Remarks
1	8.48	6.58	1.90	2.61	100	7/16	Standard	
2	6.56	5.12	1.44	2.61	75	$7 / 16$	"	Area
3	12.15	9.29	2.84	2.61	150	7/16	\square	group.
1	8.48	6.58	1.90	100\%	$\mathrm{A}_{\text {S }}$	T_{S}	Standard	Aspect
4	8.48	6.58	1.90	75\%	A_{5}	$\mathrm{T}_{\text {S }}$	Standara	Ratio
5	8.48	6.58	1.90	150\%	A_{S}	$T \dot{s}$	1	group.
3	12.15	9.29	2.84	$\mathrm{R}_{\text {S }}$	150	7/16	Standard	Thick-
6	12.15	9.29	2.84	R_{S}	150	I/ 4	Stan	ness
7	12.15	9.29	2.84	R_{S}	150	1/16	\%	group.
1	8.48	6.58	1.90			T_{S}	Standard	
8	8.95	6.73	2.22	$115 \% \mathrm{R}_{\mathrm{S}}$	108	T_{S}	Bal. Pud.	Form
9	8.40	6.48	1.92	99\% ${ }^{\circ} \mathrm{R}_{\mathrm{g}}$	99	$\mathrm{T}_{\text {s }}$	Rectang.	group

Note.- Tail surface No. 1 is the standard adopted, as used on the original airship; tail surface No. 3 was, however, used in the third group, instead of No. 1, with the hope that the larger area may help to magnify the presumed minute effects caused by changing the thickness.

Determination of Drag, Iift, Moment and Center of Pressure.

Referring to Fig. 4, showing the model in equilibrium under the action of the forces indicated, we have:

$$
\begin{aligned}
& \text { Lift }=R_{A}+R_{B} \\
& \text { Drag }=R_{C} \\
& \text { Momento }=x R_{A}+z R_{G}-y R_{B}
\end{aligned}
$$

Where M is the moment about the centex of bucyancy of the model due to the external forces ard tending to deviate the airship from its course, drag ana lift are the forces parallel and perpendicular to the direction of the airstream respectively, wille R_{A}, R_{B} and R_{C} are the forcee measured by the balances A, B and C respectively,

The center of pressure through which the resultant R acts is then found by ordinary statics. Tims the resultant force is:

$$
\begin{array}{ll}
& R=\sqrt{I^{2}+D^{2}} \\
\text { the angle } & \alpha=\tan ^{-1} I / D
\end{array}
$$

and the point of application is at a distance a from the chosen axis as given by

$$
\sum \frac{M}{R}
$$

The above determinations apply to all tests in general; those tabulated $\hat{I} O r$ each tail surface, however, were obtained by subtracting the forces due to the model alone from those due to model with fins attached.

Similarly, by deducting the moments about the C.G. with elevators in neutral position, from the corresponding moments with elevators set at various angles, we obtain the moments due. to the controls themselves. Since the stabilizing surfaces were symmetrically disposed, that is, equal fins and equal controls in both longitudinal planes, and since no cars were used in the investigation, these moments can be taken either for rudder settings um...
and angles of yaw, or as elevヨtor setiings and angles of pitch. It must be noted here that if the resultant dynamic forces were plotted relatively to the model at various angles of yaw, we would find that they would describe an envelove with its apex on the axis of the airship.*

From simple static considerations it is evident that the ideal position for this apex would be the center of buoyancy of the envelope of the airsnip. This condition, however, would require so much fin area as to render the airship over-stable, an undesirable and impacticable condition since a certain amount of instability is desired for the sake of good maneuverability.

Precision of Results.

The results found, even after corrected for pressure gradient, still remain subject to a variety of ermors, the most conceivable of which are the following:
(a) Effects due to unsteadiness and turbulence of airstream in the wind tunnel.
(b) Effects due to limited dimensions of the airstream; in this particular case the section of the test chember (4 ft. dia.) is only 64 times that of the model (1/2 ft. dia.)
(c) Effects of boundary walls of tunnel.
(d) Probable geometrical dissimilarity due to greatly reduced model proportions.
(e) Improper correction for supporting apparatus.
(f) Doubtful macinanical similitude between model

* "Theoretische und Experimentelle Untersuchungen an Ballon ModeIlen" by Fuhrman.

> and full-scale airship in the relative motion of the air past the model and past the fullscale airship.

Sources of error (a) and (c) can be corrected for, to a fair degree of precision, by proper estimation of the airspeed around the model region for any particular attitude of the model. Source (b) comes as an effect on the wind speed in the tunnel due to the presence of the model in the channcl. As an illustration of the magnitude of this error British investigators have found that with the model at 0° and 5° incidence, for a wind of $40 \mathrm{ft} / \mathrm{sec}$., the values of V^{2} varied betweon -1% and -3% for the lower angles, but for the 5° angle they found it to vary as much as -3% to -8%.

All the above mentioned errors, rith the exception of the pressure gradient correction, even though they are of a commensurable nature, are nevertheless not likely to seriously affect "the main purpose of the investigation and are therefore considered beyond the object of this research.

Discussion of Results.

The most important feature shown by the test on the rodel, without stabilizing surfaces, is the low resistance at zero angle of yaw, namely, 51 g (1.8 oz.), Giving coefficients:

$$
\begin{aligned}
& C_{1}=R / \rho A V^{2}=\frac{.51}{454} / .002373 \frac{(\pi)}{4} \frac{(6.2)^{2}}{144} \quad \frac{(40 \times 4.4)^{2}}{3}=0.0655 \\
& C_{2}=R / P \quad V^{2 / 3} V^{2}=\frac{51}{454} / .002373(.579)^{2 / 3} \quad \frac{(40 \times 4.4)^{2}}{3}=0.0198
\end{aligned}
$$

Full line, curves on $\overline{r l i g s .} 6,7$ ard 3 are the characteristic curves for the model without stibilisirg surfaces; angles of yaw being taken for absciseae, drag and lift, and moments about the C.B. as ordinates; the forces Seve Deen plotted in grams as taken from actual observation, ara the reversing moments derived therefrom are in lb.-in. units.

The curves show that the drag gradrally increases from a minimum at 0° to 171% in 15° of jar.

The lift curve shots a pooitive increasing slope up to 10° of yaw and a cecrease from there on, with a probable maximum lift somewhere between 25° and $\overline{55^{\circ}}$ of yar. The reversing moment curve appears to have reached its maximurn value at 35° of yaw.

Area Group.

Fron the performance curves of this group of tail surfaces representing the standard area, $150 \% \quad A_{s}$ and $75 \% \quad A_{s}$ respectively, we observe that the lift in all cases varies, as we may expect, with the area of the taii units, and gradually increasing with the angle of yaw. Tail No. 2, for example, with the controls at 30° and an angle of yair of 15° furrished as much as twice the lift of the model alone, while the smallest fumishes only 100% Im at the same conditions.

The reversing moments are almost straight line functions for tails Nos. 1 and 3 men the respectire controls are in neutral position; tail No. 2 of this group, however, is slightly convex
upward with a maximum value at 11° of yaw.
As the angle of tail setting increases all the reversing moment curves become convex urwaid with an initial amount varying from 0 to $5.8 \mathrm{lb} .-\mathrm{in}$. for the largest of the areas; the smallest of the three areas with cortrols at 30° has, however, a double curvature vith a gencral slope downard to the right, indicating that the reversing moment tends to increase with the angle of yaw until the eirship finally becomes broadside to the wind.

The Jatter fact is more evident from the ourves of righting moments due to the tails. With the exocption of tails Nos. 1 and 3 at neutral, which reach a maximum value at 11° yaw, the general slope of these righting moment curves is upward to the right, while that die the 75% As begins to decline at 10° yaw even with the controls at 30°, indicating as said before, the inadequacy of this particular set of stabilizing surfaces.

Aspect Ratio Group.

The drag curves in this group of tail surfaces remain bunched together more than in any other group.

The Iift curves have likewise the smallest variation, only at 15° yaw, with controls at 30°, tail No. 4 constitutes 150% of Im , while with controls in neutral the contributions vary from 50 to 75% Of Im .

The reversing moments have the general shape, convex upward, with maximum ralues at large angles of yaw and of control setting.

The minimum values with controls in neutral position are very much like those for the area group, except the curve for tail No. 5 (the smallest aspect ratio) which almost coincides with the curve of reversing moments for the model alone.

From the curves of uprighting moments due to tails we observe that tail No. $4\left(150 \% R_{S}\right)$ is the highest of the three curves, and No. 5 (75%) has the lowest, never rising more than one unit above the moment axis, while No. 4 for the same conditions gives a maximum effort of 4 lb -in.

The explanation for the behavior of these tails is obviously due to the fact that the surface of least aspect ratio, being closest to the envelope is very inefficient, in the first place for performing in an airstream which is more or less turbulent, and secondly because of the well-know facts of aerodynamic effects on surfaces of reduced aspect ratio.*

The reverse is true about tail No. 4, its greater aspect ratio enabling it to extend more into the undisturbed airstream; furthermore, the center of pressure of these surfaces may travel in such a fashion as to favor tail No. 4 and disfavor tail No. 5.

Form Group.

Reference to the plots of performances for this group of stabilizing surfaces, including the standard, a rectangular form, and one with a balanced rudder indicates that the drags are practically the same as in the preceding two groups; 100% of D_{m} being offered * Wilson, "Aeronautics," p. 16.
by the standard one at the greatest angles of yar and control setting, and only 50% with the controls in neutral and 15° yaw.

From the lift point of view the rectangular surface (tail No. 8) is more efficient than either No. I or No. 6 (balanced).

All curves of lateral forces slope upward with the exception of No. 6 which declines wher controls are in neutral.

The reversing moment on the airship is observed to be a minimum when fitted with tail iNo. 8 (rectangular) and in the vicinity of 12° yaw; the other two sets irdicating a constantly increasing reversing moment when controls are in neutral position.

The curve of restoring moments for stabilizing surface No. 8 , is invariably higher than either No. I or No. 6, and with the exception of a single point (30° control and 15° yaw) at which the curve for standard form emerges from the rest the balanced rudder type of stabilizing surface is next best to tine rectangular type.

Thickness Group.

The curves of longitudinal and transverse forces for this group of tail surfaces show that the drag is greatest for the thinnest section (No. 9), anc least for the thickest one (No. 2), similarly the lateral force is greatest for the thinnest surface (No. 9), and least for the medium thickness (tail surface No. 7).

The reversing moment curves for tails Nos. 2 and 7 are very much alike and alrost parallel, while the one for tail No. 9 is in all cases divergent and always above the other two.

Restoring moment curres for these stabilizing eurfaces follow the same trend as those of refersing momerts; the thickest section, No. 2, being very nearly a straight line. Ourve No. 7 is slightly curved to the right, and ro. 9, the thinrest tail surface, is approrimately 50\% more efficient than either of the other two.

The main conclusions of the experimental data plotted in Figs. 6, 7 and 8 , for elevators at 1.0° may be summerized as follows:
(a) With the exception of the thimest tail surface of the thicknese group, and of the balanced ridder type of the foxm group, whicin iun approximately 50% higher than the rest, for angles of pitch above 10°, aiI other tail units give drags varying from 12 to 25% that of the model alone at 0° angle of pitch, and from 50 to 100% that of the model alone at 15° angle of pitch; in the whole group the greatest drag variance being in the neighbothood of 25% the drag of the model alone.
(b) The thimest eeotion of the thiciness group (having a surface 150% of standard area) gives 50% of the model lift over thet of the standard tail surface; the least lift giving unit being the smallest of the area group, $75 \% \mathrm{~A}_{\mathrm{S}}$, as mignt have been expected, (see Fig. 7).
(c) The vital part of these experiments is clearly illustrated in Fig. 8, giving the righting moments of model with tail surface, and those due to the various tail units themselves. In these, the thinnest section (150\%

> Ast) is 25% better than that unit of the area group of the same surface.
> The 50% standard thickness unit ls slightiy more efficient than that of the standard thickness of same area up to 10° pitoh, but falls below the latter beyond that point.

Conciusions.

The curves of slope of righting moment (Figs. 13, 14 and 15) furnish a direct means of comparing the effectiveness of the various tail units. The form group having no rational basis of comparison, no attempt was made to represent these results graphically,

With the control surfaces in neutral, for example, these coefficients indicate greater effectiveness for larger areas and greater aspect ratios, but the curves drop somewhat for the $150 \% R_{s}$ when the control surfaces are set at 10°, presumably due to an excessive amount of turbulence generated by the elevators at high angles. With the exception of all 15° elevator curves which are more or less erratic, those for the area group are nearly straight line functions of the area, the aspect ratio ones have the same property for low elevator angles, and the thickness group indicates best effectiveness for the $50 \% T_{s}$.

Figs. 16, 17, 18 and 19, representing collectively Figs. 6 to $8 c$ inclusive, give lift, drag and moment curves for each group of tail surfaces for the same angle $\left(\beta=10^{\circ}\right)$ of elevator setting.

BIBLIOGRAPHY OF EREVIOUS INVESTIGATIONS
 ON LIGETER-THAN-AIR CRAFTS.

The most important investigations carried by different authorIties, taken in chronological order, have beer as follows: 1903 - "The Effects of Atmospheric Pressure on the surfaces of Moving Envelopes." The results of these experiments were carried out by the Italians, Finzi and Soldati, in an attempt to discover the form of the solid of revolution which would offer the least resistance to rotion and also to ascertain the effect of atmospheric pressure on various models; they were published in 1903.

1904 - "The Dynamios of Dirigibles" was originated by col. Renard in 1904 who created the first theory of stability of airships.

1904-COI. Crocco seems to have been attributed the privilege of to "bringing the airship to a stage of maturity." This he has 1907 accomplished in various publications of the "Bollettino della Societa Aeronautica Italiana," particularly those for April and June 1907.

1907 - Some work on the resistance of bodies of revolution has to been done by M. Eiffel in his own laboratory and published date in his early publications.

1910 - The most exhaustive mork on the subject, however, has been to contributed by George Fuhrman of the GUttingen University 1911 in the famous "Theoretische und Experimentelle Untersuchungen an Ballon Modellen." In this invesiigation he carried his experiments on very thin, electrolitically deposited shells of various streamine forms. On these models the normal dynamic pressure on various points of the envelope was determined by means of fine perforations, one of them being open at a time. The integration of the horizontal components from the pressure distribution curve thus obtained enabled him to obtain the form resistance, which, when deducted from the total resistance measured by the balance, gave him the surface friction of the model.

Other books and publications I have freely consulted are:
(1) British Acivisory Committee for Aeronautics Reports and Memoranda, Nos. 361, 102, 307 and 623.
(2) National Advisory Comittee for Aeronautics Reports: No. 133 - "The Tail Plane," by Max M. Munk; No. I36"Damping Coefficient due to Tail Surfaces," Chu-Warner; No. 138 - "The Drag of "C" Class Airships," Zahm, Smith-Hill.
(3) N.A.C.A. Technical Notes Nos. 104, 105 and 106, on Aerodynamic Forces, by Munk. N.A.C.A. Technical Note No. 63, by Nobile on Limits of Useful Load of Airships.
(4) Hunsaker: "Wind Tunnel Experiments" and "Dynamical Stability." Smithsonian Miscellaneous Collection, Vol. 62, NO. 4.
(5) Bryan: "Stability in Aviation."
(6) WisIon: "Aeronautics."
(7) Lamb: "Hydrodynamics."
(8) Brauzzi: "Cours d'Aeronautique Generale."
(9) Bairstow: "Appiied Aerodynamics."
(10) Bianchi: "Dinamica del Dirigible."
(11) U.S.N. Aeronautical Reports (Construotion and Repair) Nos. 194, 150 and 161.
"La Technique Aeronautique," June, 1911.
(13) "Motorluftschiff-studiengesellschaft, " Fllnfter Band, 1911-1912.
(14) "Maximum Limit of Useful Load of Airships," by GoI. Crocco ("Rendiconti dell' Istituto Sperimentalle Aeronautico," Roma, September, 1920):

Data on liodel Alone.
Airspeed 40 N. P.H.
TABLE III.

Angle of Yaw	Measured Forces in Grams			
	0°	5°	10°	15°
Drag D_{1}	73	82	59	78
Drag D_{2}	143	153	142	183
Model Drag	70	71	83	105
Balance Drag	19	18	17	16
Correct D_{m}	51	53	66	89
Front R_{1}	97	76	57	45
Front R_{2}	94	136	200	225
Front Lift,	-3	60	143	180
Rear R_{1}	95	60	132	86
Rear R_{2}	105	I4	80	50
Rear Lift ${ }_{\text {L }}$	10	-46	-53	-36
Total Iift	7	14	91	144
Moment ($\mathrm{g}-\mathrm{cm}$)	-465	$+4385$	+8418	$+9823$

Moments are taken about center of buoyancy assumed coincident rith the center of volume, and determinod by the expression:

$$
\begin{aligned}
& M \\
\text { Where } \quad & D^{\prime} z+R^{r} x-R^{\prime} y \\
& =1.348 \cos \alpha \\
\text { and } \quad & =1.159 \cos \alpha \\
z & =2.000 \sin \alpha \\
& (\text { see Fig. 4) }
\end{aligned}
$$

2. Elevatars, in Noutral position

Table of Longitudinal Forces (grams)
TABIE IV.

Angle of yaw	Model alone	Forces on Area Group		Aspect Ratio Group			
		As	150%	75%	Rs	75%	150%
0	52	54	50	51	54	55	54
5	54	50	59	53	50	54	60
10	67	72	71	77	72	75	81
15	91	115	131	118	115	125	117

Iateral Forces in Grams

0	7	0	0	0	0	8	0
5	14	63	58	27	63	26	49
10	91	130	157	127	130	114	155
15	144	248	296	224	248	217	268

Table of Moments about C.B. (Ib.in.)

0	-.41	0.00	0.00	0.00	0.00	0.34	0.00
5	3.78	2.51	1.80	3.12	2.51	3.28	2.68
	10	7.28	4.80	3.40	5.29	4.80	7.38
15	8.48	6.76	3.25	6.92	6.76	7.33	4.41

Table of Moments Due to Tails (Ib.in.)

0							
5	00.41	00.41	00.41	00.41	00.41	00.75	00.41
10							
15		-1.27	-1.98	-0.66	-1.27	-.50	-1.10
		-2.48	-3.88	-1.99	-2.48	-.10	-2.93
	-1.72.	-5.23	-1.56	-1.72	-1.15	-4.07	

Elevators in Neutral Position

Table of Longitudinal. Forces (graras)
ERBLI IV (cont.)

$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { yaw } \end{gathered}$	nozel alone	Form Group			Thickness Group		
		Fs	$\begin{aligned} & \text { ruc- } \\ & \text { de= } \\ & \text { Bei. } \end{aligned}$	Rectangular	Ts	50\%	12\%
0 5 10 15	52 54 67 91	51 50 72 115	53 62 76 778	$\begin{array}{r} 57 \\ 57 \\ 77 \\ 112 \end{array}$	54 50 72 115	$\begin{array}{r} 58 \\ 61 \\ 85 \\ 118 \end{array}$	$\begin{array}{r} 58 \\ 68 \\ 95 \\ 157 \end{array}$

Lateral Forces in Grams

0	7	0	11	-4	0	21	-5
5	14	63	63	30	58	37	67
10	91	130	126	133	157	142	178
15	144	248	158	280	296	313	322

Table of Moments about C.B. (Ib.in.)

	0	-.41	0.00	0.13	-.12	0.00	2.14	-.18
λ	5	3.78	2.51	1.80	2.46	1.80	2.99	1.64
	10	7.28	4.80	4.35	4.69	3.40	4.16	1.17
	15	8.48	6.76	7.56	4.33	3.25	3.73	1.28

Table of Moments Due to Tails (Ib.in.)

0							
5	00.41	00.41	00.54	00.29	00.41	2.55	00.23
10		-1.27	-1.88	-1.32	-1.98	-.79	-2.14
15		-2.48	-2.93	-2.59	-3.88	-3.12	-6.11
-1.72	-.92	-4.15	-5.23	-4.75	-7.20		

ETevators Set at 10°
Table of Lorgitudinal Forces (grams)
TABIE V.

Angle of yaw	Model alone	Forces on Area Group			Aspect Ratio Group		
		As	150\%	75%	Rs	75\%	150\%
0	52	57	67	54	57	54	59
5	54	66	75	63	66	66	68
10	67	91	101	85	91	93	93
15	91	155	168	140	155	126	141

Table of Lateral Forces (grams)

0	7	30	48	35	30	32	58
5	14	59	91	75	59	78	93
10	91	137	205	127	137	159	180
15	144	323	359	248	323	265	318

Table of Moments about C.B. (Ib.in.)

	0	-.41	-.92	-1.47	0.54	-.92	-1.03	-1.11
	5	3.78	1.27	0.13	2.34	1.27	1.48	0.85
	10	7.28	2.89	0.80	3.92	2.89	3.11	1.81
	15	8.48	1.88	-1.09	4.76	1.88	3.94	-.19

Tabie of Moments Due to Tails (Ib.in.)

0
5
10
15
:---
-3.51
-4.39
-6.60

E? Evatore Set at 10°
Table of Longitudinet Forces (grams)
TABTH V (cont.)

$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { yaw } \end{gathered}$	ModeI alone	Form Group			Thickress Group		
		Fs	$\text { Fudd } 3 x$ Eal.	$\begin{gathered} \text { Rectan } \\ \text { gular } \end{gathered}$	Ts	50%	12\%
0	52	57	60	65	67	62	65
5	54	66	65	73	75	73	74
10	67	91	91	59	101	96	114
15	97	155	208	1.42	168	150	188

Table of Iateral Forces (:grams)

0	7	30	31	45	48	34	39
5	14	59	54	107	91	102	115
10	91	137	154	185	205	202	255
15	144	323	323	583	355	344	418

Table of Moments about C.B. (Ib.in.)

	0	-.41	-.92	-1.61	-1.85	-1.47	-2.00	-2.62
	5	3.78	1.27	0.33	-.08	0.13	-.08	-1.06
	10	7.28	2.89	1.83	1.66	0.80	0.66	-1.74
	15	8.48	1.88	2.72	0.51	-1.09	0.59	-3.07

Table of Moments Due to Tails (Ib.in.)

0	-.51	-.51	-1.20	-1.44	-1.06	-1.59	-2.21
5	-2.51	-2.51	-3.45	-3.86	-3.65	-3.86	-4.84
10	-4.39	-4.39	-5.45	-5.62	-6.48	-6.62	-9.02
15	-6.60	-6.60	-5.76	-7.92	-9.57	-7.89	-11.55

FI evators Set at 20°
Table of Longi cuainal Forces (grams)
TABIE VI.

$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { yaw } \end{gathered}$	Model alone	Forces on Area Group			Aspect Ratio Group		
		As	150\%	75%	Rs	75%	150\%
0	52	58	73	58	58	59	66
10	54	69	87	59	69	72	78
15	91	147	204	129	147	147	157

Table of Lateral Forces (grams)

0	7	56	105	45	56	68	70
5	14	101	162	7.0	107	90	129
10	91	170	248	164	170	170	222
15	144	338	330	274	338	327	387

Table of Moments about C.B. (Ib.in.)

0	-.41	-1.72	-4.20	-1.58	-1.72	-2.76	-3.73
5	3.78	-.34	-3.17	1.28	-.34	0.03	-.95
10	7.28	1.62	-2.13	2.86	1.62	1.44	-.20
15	8.48	1.98	-3.04	3.06	1.98	2.07	-.85

Table of Moments Due to Tails (Ib.in.)

0						
5						
10						
15			-1.31	-3.79	-1.17	-1.31
-4.12	-6.95	-2.50	-4.72	-3.35	-3.32	
-5.66	-9.41	-4.42	-5.66	-5.84	-4.73	
-6.50	-11.52	-5.42	-6.50	-6.41	-9.33	

Tievators spt at 20°
Table of Longitudinel Foroes (grams)
TRBLE VI (Cont.)

$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { yaw } \end{gathered}$	Model alone	Tism aroxo			Thiciness Group		
		F's	$\begin{gathered} \text { Fudder } \\ \text { nal. } \end{gathered}$	Ficotang1Iar	T's	50\%	12\%
0	53	58	67	85	73	66	71
5	54	69	77	79	87	84	91.
10	67	98	-12	108	120	115	136
15	91	14\%	-66	156	204	177	221

Table of Lateral Forces (grams)

0	7	56	29	83	105	78	110
5	14	101	99	145	162	124	182
10	91	170	207	233	248	261	309
15	144	338	334	370	390	404	514

Table of Moments about C.B. (Ib.in.)

0	-.41	-1.72	-4.66	-3.81	-4.20	-3.66	-5.15
5	3.78	-.34	-2.01	-1.91	-3.17	-2.55	-4.68
10	7.28	1.62	0.14	-0.76	-2.13	-1.98	-5.01
15	8.48	1.98	0.51	-0.51	-3.04	-1.61	-7.24

Table of Moments Due to Tails (Ib.in.)

0						
5						
10						
15	-1.31	-4.25	-3.40	-3.79	-3.25	-4.74
-4.12	-5.79	-5.69	-6.95	-6.33	-8.46	
-5.66	-7.14	-8.04	-9.41	-9.26	-12.29	
-6.50	-7.97	-8.99	-11.52	-10.09	-15.72	

Elevators set at 30°
Table of Longitwairal Forves (grams)
ThELE VII.

Angle OI yaw	Model alone	Forces on Area Group			Aspect Ratio Group		
		As	150\%	750	Rs	75\%	150\%
0	52	67	$\varepsilon 4$	56	67	74	77
5	54	91	102	73	91	86	93
10	67	139	3.41	100	129	122	130
15	91	194	380	143	194	177	183

Table of Lateral Forces (grams)

0	7	106	77	71	106	63	61
5	14	157	178	102	157	137	169
10	91	227	288	172	227	220	274
15	144	373	438	284	373	374	403

Table of moments about c.B. (Ib.in.)

0	-0.41	-3.75	-5.74	-1.19	-3.75	-3.92	-3.84
5	3.78	-2.29	-4.66	-.67	-2.29	-1.49	-3.60
10	7.28	-2.03	-4.36	1.68	-2.03	0.39	-2.37
15	8.48	-3.39	-5.63	2.91	-3.39	1.02	-3.47

Table of Noments due to Tails (Ib.in.)

0							
5							
10	-3.34	-5.33	-0.78	-3.34	-3.51	-3.43	
15		-6.07	-9.44	-4.45	-6.07	-5.27	-7.38
-9.31	-11.64	-5.60	-9.31	-6.99	-9.65		
-11.37	-14.11	-5.57	-11.87	-7.46	-11.95		

Elevators set at 30°
 Table of Longitudina? Forces (grams)
 MABLJ VII (Cont.)

$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { yaw } \end{gathered}$	Model alone	Form Group			Thiokness Group		
		Fs	Fudder Bel.	$\begin{gathered} \text { Rectan- } \\ \text { gular } \\ \hline \end{gathered}$	Ts	50\%	12\%
0	52	67	73	76	84	86	80
5	54	91	91	88	102	111	108
10	67	129	7.60	119	141.	158	164
15	91	134	787	115	220	223	262

Table of Lateral Forces (grams)

0	7	106	84	109	77	124	119
5	14	15	146	178	178	202	232
10	91	227	237	247	288	316	377
15	144	373	365	369	438	484	540

Table of Moments about C.B. (Ib.in.)

0	-0.41	-3.75	-4.29	-4.87	-5.74	-6.45	-2.72
5	3.78	-3.29	-2.72	-2.59	-4.66	-5.93	-6.90
10	7.28	-2.03	-.63	-2.12	-4.36	-5.79	-7.53
15	8.48	-3.39	-1.51	-2.12	-5.83	-6.28	-9.60

Table of Moments Due to Tails (Ib.in.)

0
5
10
15
---:
-6.07
-9.31
-11.87

Slope of Riviting Fouent oumes
Stabilizers ia Neatral
TABLE VII。

Tail Unit	0° Yaw	$5^{\circ} \mathrm{Yaw}$	10° Yew	15° Faw	Group	Remarks
Siand. A_{S} 150% 75%	$\begin{aligned} & -.42 \\ & -.32 \\ & -.55 \end{aligned}$	-.80 -.30 -.25	$\begin{aligned} & -.36 \\ & -.20 \\ & -.33 \end{aligned}$	$\begin{aligned} & -27 \\ & +.15 \\ & -10 \end{aligned}$	Area	Min at 12.5° No minimum No minimum
$\begin{aligned} & \text { Stand. } R_{S} \\ & 150 \% \\ & 75 \% \end{aligned}$	-.47 -.33 -.46	-.47 -.65 -.36	-.36 -.33 -.36	$\begin{aligned} & -.32 \\ & +.81 \\ & +.10 \end{aligned}$	Asp. Rat.	Ein. at 12.5° No minimum Min. at 12.5°
Rectang. BaI. Rud. F_{8}	$\begin{aligned} & -.43 \\ & -.23 \\ & -.38 \end{aligned}$	-.47 -.37 -.49	-.35 -.48 -.15	-.31 -.85 +.31	FOrm	No minimum No minimum Min. at 12°
$\begin{aligned} & T_{S} \text { NO.I } \\ & 50 \% \mathrm{NO}-2 \\ & 12 \frac{1}{2} \% \mathrm{NO} .3 \end{aligned}$	-.37 -.18 -.37	-.33 -.23 -.11	-.12 -.10 +.13	$\begin{aligned} & +.23 \\ & +.25 \\ & -.20 \end{aligned}$	Thickness	$\begin{aligned} & \text { Min. at } 12.5^{\circ} \\ & \text { Min. at } 11.4^{0} \\ & \text { Max. at } 11.5^{\circ} \end{aligned}$

Slope of Righting Momont gurves

Stabilizor $3 t 100$
TABLiE IX.

Tail Unit	$0^{\circ} \mathrm{Yaw}$	$5^{\circ} \mathrm{Yav}$	$10^{\circ} \mathrm{Yaw}$	15° Yaw	Group	Remariss
$150 \% \mathrm{~A}_{S}$	-. 29	-. 22		+. 57		0 at $9^{\circ}+$
A_{s}	-. 58	-. 37	-. 12	+.35	Area	O at 11°
${ }^{\prime} 56 \% A_{S}$	-. 32	-. 30	-. 22	-.03		No minimum
R_{S}	-. 39	-. 25	0	-. 66		0 at 10.5°
] 50\%	-. 42	-. 36	-. 09	$+.37$	Asp. Rat.	0 at 11°
${ }^{7} 30$	-. 42	-. 36	-. 20	0		0 at 15°
Rectang.	-. 33	-. 28	-12	$+.48$		Min. at 11°
Bal. Fud.	-.35	-. 38	-. 21	-. 05	Form	No minimum
F_{S}	-. 38	-. 33	-. 11	$+.47$		Min. at 11.5 ${ }^{\circ}$
T_{s}	-. 48	-. 04	+. 20	+. 25		Min. at 5.5°
50%	-. 44	-. 35	+. 08	+. 48	Thickness	Min. at $9^{\circ}+$
12, $\frac{1}{2} \%$	-. 31	-. 20	-. 03	+. 09		Min. at 12°

Fig. I
Longitudinal equilibrium

Fig. 2
Directional equilibrium

Fig. 4 General arrangement of apparatus

Fig. 5
Force diagram

Fig. 6
Drag curves for elevator angle 10°

Fig. 6b
Drag curves for elevator angle 10°

Fig. 6c
Drag curves for elevator angle 10°

Fig. 7
Lift curves for elevator angle 10°

Fig. 7b
Lift curves for elevator angle 10°

Fig. 70
Lift curves for elevator angle 10°

Fig. 8a
Noment curves for elevator angle 10°

Fig. 8b
Moment curves for elevator angle 10°

Fig. 80
Moment curves for elevator angle 10°

Fig. 16 Performance curves of an $[-33$ model fitted with area group of tail surfaces. Elevators 10°

Fig. 17 Performance curves of an L-33 model fitted with aspect ratio tail surfaces.Elevators 10°

Fig. 18 Performance curves of an L-33 model fitted With form group of tail surfaces. Elevators 10°

[^0]: * Rell Nos. 102 and 307.
 ** This fact is partly justified by previous experiments on similar tests, in which, approaching the model by a wire three times as thick as that used for the suspension introduced, no appreciable change in the resistance (rem No. 244, p.42).

