
HIDDEN
ORDER
How Adapta,tion Butlds Complexity

Iohn H. Holland

e
Hsrrx  BooKS

Afr Addison-Wesley Publishing Company

Reading, Massachusetts ' Menlo Park, California ' New York

Don Mills, Ontario Wokingham, England Amsterdam ' Bonn

Sydney ' Singapore Tokyo ' Madrid ' San Juan

Paris ' Seoul ' Milan ' Mexico City ' Taipei



Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. 

.W'here 
those designations appear in

this book and Addison-Wesley was aware of a trademark claim, the designa-
tions have been printed in initial capital letters.

Libr ary of C on gress C atalo gin g-in-Publi cati on D ata

Holland, John H. (|ohn Henry) , 1929-
Hidden order : how adaption builds complexiry / John H. Holland.

p. cm.-(Helix books)
Includes bibliographical references and index.
ISBN 0-201,-40793-0
1. Adaptive control systems-Mathematical models.

(Biology)-M"thematical models. I. Title. II. Series:
TJ21,7.H64 1995
003 .7 -dc20 95-20042

CIP

Copyright @ 1995 by John H. Holland

All rights reserved. No part of this publication may be reproduced, srored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recordirg, or otherwise, without the prior writ-
ten permission of the publisher. Printed in the (Jnited States of America.
Published simultaneously in Canada.

Jacket design by Lynne Reed
Text design by Diane Levy
Set in lj%-point Bembo by Pagesetters, Incorporated
1, 2 3 4 5 6 7 8 9 10-DOH-98979695
First printing, July 1995

2. Adaptation

Helix books.



The Ulam Lecture Series

T"r, BooK ts the first of a continuing series of books based on the

Stanislaw M. Ulam Memorial Lectures give n at the Santa Fe Institute

in Santa Fe, New Mexico. These annual invited lectures, sponsored

jointly by the Institute and Addison--Wesley Publishing Company, arc

dedicated to the memory of Stanislaw Ula;m, a great mathematician

from the now legendary Polish School of Mathematics. LJlam came

to the Institute for Advanced Study in 1935, worked at F{arvard, the

Universiry of 
'W'isconsin, 

and much later at the (Jniversiry of

Colorado. Most importantly, he joined the Los Alamos National

Laboratory in its founding year and was an intellectual force and

inspiration there from 1944 until his death in 1984, fostering a per-

haps uniquely intense interaction between mathematics and science.

As a mathematician, Stanislaw Ulam held his own with the likes

of Kuratowski, Mazur, Banach, von Neumann, and Erdos and his

work ranged widely over mathematics. But he was much more, a sci-

entist with a variety of interests who worked with many of the great

scientists of the age. Among the topics on which he and his collabo-

rators did founding work were the Monte Carlo method, computer

simulations of nonlinear dynamical systems, thermonuclear processes,

space propulsion, metrics for biological sequences, cellular automata,

and much more. The list of his scientific friends and collaborators
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includes rrrany of the greatest minds of the twentierh century. Stan
Ulam's interests in science knew no artificial boundaries; his approach
was truly interdisciplinary. As Frangoise ulam has said, "Stan was a
sorr of one-man Santa Fe Institute." He would have loved the
Institute's interdisciplin atf, interactive atmosphere and would have
contributed much. It is our loss that he died within a few davs of the
official founding of SFI.

-L.  M.  SrunaoNs, . |n .
Vrcs PREsIoENT FoR AcnnEMrc AprarRs
SaNrn FE INsrrrurE



T
I r  rs A GREAT HoNoR for me to be here tonight to cele-

brate with you the tenth anniversary of the creation of the Santa Fe

Institute. I want to express all my thanks and appreciation to its

founder, ffiy good friend George Cowan, to its leaders, Ed Knapp and

Mike Simmons, and to all the other persons who were involved in

creating this new series of institute lectures as a memorial to my late

husband.
For those ofyou who did not know Stan L/lam, let me just say a word

or two about him.
In a sense, Stan was a sort of one-man SFI because of the inter-

disciplrnary nature of his pursuits. But that was so long ago that the

expression had hardly been coined yet.

Were he alive today, he would love SFI's unstructured informaliry, for

he had very little use for all the trappings of bure avcracy and authorify.

He loved to claim that the only committee he ever served on was the
'Wine-Tasting 

Committee of the Junior Fellows at Harvard.

At Los Alamos, he and Carson Mark, the Theoretical Division

leader, once confounded the Lab by creating and circulating an official

interoffice memo that listed the numbers from one to one hundred in

alphabetical order "for quick and easy referen ce."
'When 

he was promoted to group leader he delighted in the fact that

vii
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he was a group leader of one, namely himself; for at first he was the only
member of his group. 1

Stan, you see, was a very playful man. And he never considered
thinking "work" but rather "pLay)' as in playing with mathematical
ideas or inventing mathematical games. He also took great delight in
playing with words.

The clever title of tonight's lecture, "Complexiry Made Simple,"
would please him very much, I think, because it is the kind of paradox
he liked. So without further ado I will yield the floor to the next
speaker, so we can listen to John Holland explain to us in simple terms
what complex systems are all about.

-FnnNeorsE LJravr
AT THE TNAUGURATToN oF THr  Urau Lrc ruRES



Sometimes I feel that a more rational explanation for all that has
happened during my lfetime is that I am still only thirteen years old,

reading Jules Wrne or H, G. Wells, and haue fallen asleep.

-SrANrsLAw uralrr
Adventures of a Mathematician (1,97 6)

The man who had the highest record of accurate guesses in mathematics,
the man who could beat engineers at their game, who could size up
characters and euents in a flash, wcts a member of an all-but-extinct

profession, the profession of prophet.

-GraN-CaRLo Rora
IN rvrErvroRrAM : SraNrsLA\v [Jravr

Notices of the American Mathematical Society (1989)
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T
IN THE FALL of 1993, Ed Knapp, president of the Santa Fe Institute,

and Jack Repcheck, then editor-in-chief of Helix Books at Addison-

Wesley, approached me with a request: Would I inaugurate the Lllarn

Lectures? The series was to be an annual event, honoring the renowned

twentieth-century polymath Stanislaw tJlam. The lectures were to be

aimed at a general, science-interested audience, and they were to be

expanded into a book so that there would be a permanent record-

Although I am quite active in institute affairs, the request came as a

complete surprise.

At first I was apprehensive because the time was short-the lectures

were to be given sometime in the first half of 1994 and a publishable

manuscript was due at the end of that summer. But there were several

incentives.
At the top of the list was my long admiration of Stan l.Jlam's work-

'When 
I was a student, there were a few contemporary scientists whose

work and abilities I particularly admired: John von Neumann, Ronald

Fisher, and Robert Oppenheimer. In pursuing the many facets of von

Neumann's work, I repeatedly came across the name Stanislaw LJlam in

contexts close to my main interests. So I began to look into his work-

That was the beginnirg of an increasirg affintty for Ulamt approach to

science , tn affinity considerably enhanced when I read his 1 97 6 book,

XVII
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Aduentures of a Mathematician. (There was also a period when I was
convinced that Stanislaw Lem, a Polish science fiction writer of Well-
sian stature, was Stan (Jlam's pen name.) 

'W-hen 
I was offered a year in

Los Alamos as LJlam Scholar, the chance to get to know the place that
had supplied the setting for much of his career played its part in my
acceptance. It was the only time I ever met him. Later, when Frangoise
Ulam donated Stan's private library to the Santa Fe Institute, I was
delighted to see how rnany books my own hbrary held in common
with his. Ma bibliothdque, c'est moi.

Those same thoughts strongly influenced my decision to take on the
present commitment. As I began thinking seriously about what would
be entailed, I began to see the lectures as an unusual opportuniry to
make explicit the pattern underlying the intuitions and ideas that had
been guiding my research since graduate student days. Writing for a
more general audience would force me to strive for bridges and the
kind of coherent overview not usually forced on technical work. That
was a challenge difficult to ignore.

Then there was my aerie, just completed on the far nothern shore of
Lake Michigan and designed for this kind of effort. What a grand way
to initiate it! There were other reasons, too, including a nice financial
inducement, but they played a lesser role in the decision.

This book centers on an area that has received considerable notice
recently: complexiry. Stan Ulam made many focusing remarks about
complexiry using the word repeatedly and carefully, long before the
subject was popular or even named. Many of the themes here are
prefigured in Ulam's comments. In writing the book, I have concen-
trated on that aspect of complexiry that centers on adaptation, an area
now known as the study of complex adaptiue systems (cas). It is rny own
bias, as you will see from the book's content, that adaptation gives rise
to a kind of complexiry that gready hinders our attempts to solve some
of the most important problems currently posed by our world.

I have not tried for a comprehensive review ofwork relevantto cas,
nor have I tried to critique other approaches. Instead, I have put all of
my efficrt into producing a single, coherent view of a nascent discipline.
The resulting volume is certainly idiosyn cratic, though I think many of

xvii i



Preface

my colleagues at the Santa Fe Institute would agree with many parts of

it. Along with trying to provide an orderly overview, I have also tried to

give some feeling for the way a scientist attempts to develop a new

discipline. "Doing science:'particularly the synthesis of disparate ideas,

is not ^s arcane as it is often made out to be. Discipline and taste play a

vital role, but the activiry is familiar to anyone who has made some

effort to be creative.

The views presented here have been honed through regular intetac-

tion with fwo groups that have played a central role in my scientific

development. My longest affiliation is with the BACH group at the

universiry of Michigan (the current members are Arthur Burks, Rob-

ert Axelrod, Michael Cohen, John Holland, Carl Simon, and Rick

Riolo). We have been meeting regul"tly for more than two decades,

and four of the current members have been active participants from

the start. BACH is highly interdisciplinary-five departments are

represented-and highly inform aI, appearing on no roster or organuza-

tion chart in the university. Almost every idea in this book has been

"batted around" before the BACH group at one time or another.

The second group that has played a major role in my outlook is, of

course, the Santa Fe Institute (SFI). Though my association with SFI is

more recent than my association with BACH, it is no less important to

me. The institute encourages deep interdisciplin ary science more effec-

tively than any other organi zation I have encountered. As a graduate

student, I thought that the kind of interaction the institute encourages

would be the "bread and butter," or at least the "frosting on the cake,"

of a scientist's activiry Alas, that is rarely the fact. In a universify, much

time is taken up by advisory and administrative committees, grant

seeking and grant administration, negotiation of interdepartmental and

intercollegiate cooperation for proposed interdisciplin ary activities, and

so on. Add in the primary duties of teaching and publication, and there

is precious little time for extended interdisciplinary explorations. SFI

consistently provides what is hard to come by in a universiry setting, the

opportuniry for sustained interdisciplin ̂ry research. The institute came

into being through the insights and careful organi zational work of

George Cowan and was soon augmented by an advisory board of

xix
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scientists who were good at listening as well as presenting. That story
has been told elsewhere, by Mitch'Waldrop in his 1992 book, Complex-
ity, so I will not repeat it here. Suffice it to say that SFI provides a
scientific environment that comes very close to the ideal I held as a
student.

The event that ultimately led to my association with SFI was an
invitation from Doyne Farmer to deliver a talk at one of the annual
conferences of the Center of Nonlinear Studies at the Los Namos
National Laboratory. It was that conference that first introduced me to
Murray Gell-Mann. He later invited me to join the SFI advisory board,
which in turn led to a sustained interaction. That connection provided
me with a friend and critic par excellence. In trying to meet Murray's
standards for explanation, I have found myself repeatedly refining my
ideas about cas, attempting to strengthen their foundation and broaden
their applicabiliry. It has been an exhilarating exercise that is by no
means concluded. Of course, Murray is not the only person at SFI rvho
has influenced my work-the list is quite long and for the most part is
chronicled in Waldrop's book-but I think it is fa:ir to say that no orher
interactions have challenged me to the same degree.

The National Science Foundation has consistently supported my
work over several decades, first when I was part of the Logic of
Computers Group at the tJniversiry ofMichigan, with Arthur Burks as
principal investigator; then, in later years, when Burks and I became
co-principal investigators. 

'W'hen 
I was a young faculty member at

Michi gzru, it was Art Burks who used his prestige to enable me to go
down paths that were not pafi of the traditional university regirne. He
has been a close friend and mentor for almost forry years.

The MacArthur Foundation recently elected me a MacArthur Fel-
low. It was Murray Gell-Mann and his wife, Marcia, who informed me
of the honor. (And yes, I was in the shower when the call came.) There
is really no way to describe the feeling of freedom and elation that
accompanies such an award. For good or for ill, the financial security it
conveys has encouraged me to take ever-riskier steps in research. Deci-
sions about longer-term projects with uncertain return, such as this
book, are much easier.
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I would be more than remiss if I failed to mention Frangoise Ulam's

introduction to the Ulam Lectures. You can read her words at the

beginnirg of this book-but words on paper cannot convey the grace

of its delivery. I first met Frangoise at the reception preceditg the

lectures, where we had time for an extended conversation. Her charm

and intelligence immediately created a niche of liveliness and warmth

in a room full of conversations. It is easy to see why she influenced all

aspects of Stan Ulam's research and life, a point he made repeatedly in

his autobiography.
I have left my wife, Maurita, for the end of this preface. She has been

my constant proxy for the intelligent, science-interested layperson. She

has helped in many ways, over and beyond supplyirg support and

encouragement. Errly or, it was Maurita who suggested the name
"Echo" for the cds models described in this book. She has read the

chapters that follow many times. Perhaps more willing than the average

reader to accept my good intent, in all other respects she has been an

effective, unbiased critic. 
'Where 

this book shows some piece of clariry

or untrammeled phrasing, it is likely to be because of her suggestions.
-Jortxt HoTLAND

Fnnrunnt

GurrtvER, MtcHtcAN

Apnn 1,995
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Basic Elements

l.,fN AN oRDTNARy DAy in New York Ciry, Eleanor Petersson

goes to her favorite speci^Lty store to pick up a jar of pickled herring.

She fully expects the herring to be there. Indeed, New Yorkers of all

kinds consume vast stocks offood ofall kinds, with hardly a worry about

continued supply. This is not just some New Yorker persuasion; the

inhabitants ofParis and Delhi and Shanghai and Tokyo expect the same.

It's a sort of magic that everywhere is taken for granted. Yet these cities

have no central planning commissions that solve the problems of pur*

chasing and distributing supplies. Nor do they maintain large reserves to

buffer fluctuations; their food would last less than a week or two if the

daily arrivals were cut off. How do these cities avoid devastating swings

between shortage and glut, year after year, decade after decade?

The mystery deepens when we observe the kaleidoscopic nature of

large cities. Buyers, sellers, administrations, streets, bridges, and build-

ings are always changing, so that a ciry's coherence is somehow imposed

on a perpetual flux of people and structures. Like the standing wave in

front of a rock in a fast-moving stream , a ctty is a pattern in time. No

single constituent remains in place, but the cify persists. To enlarge on

the previous question: 
-What 

enables cities to retain their coherence

despite continual disruptions and a lack of central planning?

There are some standard answers to this question, but they really do
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not resolve the mystery. It is suggestive to say that Adam Smith's
"invisible hand," or commerce, or custom, rnatntains the ciry's coher-
ence, but we still are left asking How?

Other patterns in time exhibit similar riddles. For instance, ifwe shift
to the microscopic level, we find another communify every bit as
complicated as New York Ciry. The human immune system is a com-
muniuy made up of large numbers of highly mobile units called anti-
bodies that continually repel or destroy an ever-changing cast of invaders

called antigens. The invaders-primarily biochemicals, bacteria, and
viruses-come in endless varieties, as different from one another as
snowflakes. Because of this variery, and because new invaders are always
appearirg, the immune system cannot simply list all possible invaders. It
must change or adapt (Latin, "to fit") its antibodies to new invaders as
they appear, never settling to a fixed configuration. Despite its protean
nature, the immune system maintains an impressive coherence. Indeed,
your immune system is coherent enough to provide a satisfactory
scientific definition of your identity. It is so good at distinguishing you
from the rest of the world that it will reject cells from any other human.
As a result, a skin graft even from a sibling requires extraordinary
measures.

How does the immune system develop its exquisite sense ofidentiry,
and what makes that identiry vulnerable? How does an immune disease
such as AIDS manage to destroy the identiry? We can say that the
identifications, and the misidentifications, are a product of "adapta-

tion," but the "ho'w" of this adaptive process is far from obvious.
It is more than an academic quest to try to understand the persistence

and operation of these two complex communities. Pressing problems,
such as prevention of inner-ciry decay and control of diseases such as
AIDS, turn on this understanding. Once we look in this direction, we
see that there are other complex systems that pose similar questions, and
they too present troubling, long-range problems.

Consider the mammalian central nervous system (CNS). Like the
immune system, the CNS consists of a large number of component
cells, called neurons, that occur in a wide range offorms. Even a simple
CNS consists of hundreds of millions of neurons, of hundreds of types,



Basic Elements

and each neuron directly contacts hundreds, even thousands, of other

neurons to form a complex network. Pulses of enerry flash over this

nefwork, producing Sherrington's (1951) "enchanted loom." This net-

work is similar to the immune system, with an aggregate emergent

identiry that learns speedily and with great faclhty. Though the activify

of an individual neuron canbe complex, it is clear that the behavior of

the CNS aggregate identicy is much more complex than the sum of

these individual activities. The behavior of the central nervous system

depends on the interactions much more than the actions. The sheer

number of interactions-hundreds of millions of neurons, each under-

going thousands of simultaneous interactions in thousandths of a

second-takes us well beyond any of our experience with machines.

The most sophisticated computer, in comparison, seems little more

than an automated abacus. The rnyriad interactions, modified by

learned changes, yield the unique abiliry of canids, felines, primates,

and other mammals to anticipate the consequences of their actions by

modelirg their worlds.

After more than a century of intensive effort, we still cannot model

many basic capabilities ofthe CNS. We cannot model its abiliry to parse

complex unfamiliar scenes into familiar elements, let alone its abiliry to

construct experience-based internal rnodels. The relation between the

distributed, diverse CNS and the phenomenon we call consciousness is

largely unknowo, a mystery that leaves us with few guidelines for the

treatment of mental diseases.
Ecosystems share many of the features and puzzles presented by an

immune system or a CNS. They exhibit the same ovenvhelming

diversiry. We have yet to assay the range of organisms present in a cubic

meter of temperate- zone soil, let alone the incredible arrays of species

in a tropical forest. Ecosystems are continually in flux and exhibit a

wondrous panoply of interactions such as mutualism, parasitism, bio-

logical arms races, and mimicry (more about these later). Matter,

enerry, and information are shunted around in complex cycles. Once

agarrr, the whole is more than the sum ofits parts. Even when we have

a catalog of the activities of most of the participating species, we are

far from understanding the effect of changes in the ecosystem. For
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example, the stupendous richness of the tropical forest biome contrasts
with the poverry of its soil. The forest can only rnatntain its diversiry
through a complex set of interactions that recycle sparse nutrients
through the system, over and over agarn.

Until we have an understanding of these complicated, changing
interactions, our attempts to balance extraction of ecosystem resources
against sustainabiliry will remain at best naive, at worst disastrous. VZe, as
humans, have become so numerous that we perforce extensively mod-
ift ecological interactions, with only vague ideas of longer-range ef-
fects. Yet our well-being, even our survival, depends on our being able
to use these systems without destroying them. Attempts to turn tropical
forest into farmland, or to fish the Grand Banks "efficie ntIy," are only
symptoms of a problem that year by year becomes more serious.

Many other complex systems show coherence in the face of change.
But we can akeady begin to extract some ofthe commonalities, and we
will later examine additional systems in this light. We can see, for
instance, that the coherence and persistence of each system depend on
extensive interactions, the aggregation of diverse elements, and adapta-
tion or learning. 

'We 
have also noted that several perplexing problems of

contemporary sociefy-inner-ciry decay, AIDS, mental disease and
deterioration, biological sustainability-are likely to persist until we
develop an understanding of the dynamics of these systems. We will see
that economies, the Internet, and developing embryos offer similar
challenges-trade balances, computer viruses, and birth defects, for
example-and we will encounter still others.

Even though these complex systems differ in detail, the question of
coherence under change is the central enigm a for each. This common
factor is so important that at the Santa Fe Institute we collect these
systems under a common heading, referring to them as complex adaptiue
systems (cas). This is more than terminology. It signals our intuition that
general principles rule cas behavior, principles that point to ways of
solving the attendant problems.

Our quest is to extract these general principles. The quest is new, so
this book can only begin to map the territory. And much of that map
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will consist of terra incognita and legends such as "monsters exist here."

Nevertheless, we have come far enough to do more than make casual

comparisons. In this first chapter, we can observe some of the promi-

nent landmarks and we can estimate what kinds of apparatus will be

needed to come to a broad understanding of complex adaptive systems.

Ohjectiues

The purpose of this book is to explore the ways in which our intuitions

about cas can be transformed into a deeper understanditg. Theory is

crucial. Serendipiry rrray occasionally yield insight, but is unlikely to be

a frequent visitor. 
'Without 

theory we make endless forays into un-

charted badlands. 
'With 

theory we can separate fundamental charuc-

teristics from fascinating idiosyncrasies and incidental features. Theory

supplies landmarks and guideposts, and we begin to know what to

observe and where to act.

One specific piece of understandirg that theory could supply is a

more principled way oflocating "lever points" rn cts. Many cashave the

property that a small input can produce major predictable, directed

changes-an amplifier effect. A familiar example is a vaccine. An

infection into our bloodstream of a small amount of an incapacitated

antigen, say the measles virus, can stimulate the immune system to

produce enough antibodies to make us completely immune to the

disease. The vaccine "levers" the immune system into learning about

the disease, saving the costly, uncornfortable procedure of learning

about the disease 'oon line." We know of other lever points in other cts,

but to date we have no comprehensive method of searching them out.

Theory is our best hope of finditg such a method.

The task of formulating theory for cas is more than usually difficult

because the behavior of a whole cas is more than a simple sum of the

behaviors of its parts; cas abound in nonlinearities (more about this

shortly). Nonlinearities mean that our rnost useful tools for gen erultz-

irg observations into theory-trend analysis, determination of equi-

libria, sample means, and so on-are badly blunted. The best way to
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compensate for this loss is to make cross-disciplinary comparisons of cas,
in hopes of extracting common characteristics. 

'With 
patience and

insight we can shape those characteristics into building blocks for a
general theory. Cross-comparisons provide another advantage : charac-
teristics that are subtle and hard to extract from one system can be
salient and easy to examine in another. This chapter is about seven
characteristics that cross-disciplin ary comparisons suggest are central to
a broad understanding of cas. Subsequent chapters will weave these
characteristics into the elements of a theory.

Agents, Meta-Agents, and Adaptation

Before going on to a description of the characteristics themselves, I
should say something more about the general setting. Cas are, without
exception, made up of large numbers of active elements that, from the
examples we've seen, are diverse in both form and capabiliry (see Figure
1.1). Think of the great arruy of firms in New York Ciry or the exqui-
sitely tuned antibodies in the immune system. To refer to active elements

Figure 1.1 A Complex Adaptive System.
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without invoking specific contexts, I have borrowed the term agent

from economics. The term is descriptive but avoids preconceptions.

If we are to understand the interactions of large numbers of agents,

we must first be able to describe the capabilities of individual agents. It

is useful to think of an agent's behavior as determined by t collection

of rules. Stimulus-response rules are fypical and simple: IF stimulus s

occurs THEN give response r. IF the market goes down THEN sell.

IF the car has aflat tire THEN get the jack. And so on. To define the

set of stimulus-response rules possible for a given agent, we must

describe the stimuli that agent can receive and the responses it can

give (see Figure 1.2).

m srrMULUs TI]HItrN REsPoNsE

PERFORMANCE {A SUCCESSION OF S-R EVENTS}

Figure 1 .2 A Rule-Based Agent.
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Though stimulus-response rules are limited in scope, there are simple

ways of expanding that scope. Indeed, with rninor changes, the scope

can be enlarged sufficiently that clusters of rules can generate arry

behavior that can be computationally described. In the definition of

these rules, our intent is not to claim that we carr locate the rules

explicitly in the real agents. Rules are simply a convenient way to

describe agent strategies. In the next chapter I will say more about this

rule-based approach to agent behavior; for now let us treat it as a

descriptive device.

A major part of the modelirg effort for any cas, then, goes into

selecting and representing stimuli and responses, because the behaviors

and strategies of the component agents are determined thereby. For

agents in the central nervous system (neurons), the stimuli could be

pulses arriving at each neuron's sudace, and the responses could be the

outgoing pulses. For agents in the immune system (antibodies), the

stimuli could be molecular configurations on the surface of the invadirg

antigens, and the responses could be difGring adhesions to the antigen

surface. For agents in an economy (firms), the stimuli could be raw

materials and money, and the responses could be goods produced. We

could make similar selections for other cas. The "could" in each case is

relevant because other selections are possible. DifFerent selections em-

phasize different aspects ofthe cds,yuelding different models. This is not

so much a matter of correct or incorrect (though models can be poorly

conceived) as it is a matter of what questions are being investigated.

Once we specrry the range of possible stimuli and the set of allowed

responses for a given agent, we have determined the kinds of rules that

agent can have. Then, by looking at these rules acting in sequence, we

arrive at the behaviors open to the agent. It is at this point that learning

or adaptation enters. In setting up a list of basic elements, we might

think it natural to put " adaptation" at the head of the list, because

adaptation is the sine qua non of cas. But adaptation is such a broad topic

that it encompasses almost everything else in this book. The present

chapter centers on the more specific characteristics of cds, so I will only

say a fbw words about adaptation here and provide a more careful

discussion in the next chapter.
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Figure 1.j Adaptation and Learning.

Adaptation, in biological usage, is the process whereby an organism
fits itselfto its environment. Roughly, experience guides changes in the
organism's structure so that as time passes the organism makes better use
of its environment for its own ends (see Figure 1.3). Here we expand
the term's range to include learning and related processes. \Mith this
extension, adaptation applies to all cas agents, despite the di{ferent
timescales of different cas processes. And indeed, the timescales do vary.
Adaptive changes in individual neurons in the nervous system take
place over an interval that ranges from seconds to hours; adaptive

WW..'W..'O
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changes in the immune system require hours to days; adaptive changes

in a business firm take months to years; adaptive changes in an ecosys-

tem take years to millennia or more. Still, the mechanisms involved in

all these cases have much in common, once tirne is factored out. There

is a general framework that supports this extended use of the term (see

Hollan d, 1.992), but we do not need that level of detailjust now. Parts of

that framework will be introduced as needed throughout the book.

Overall, then, we will view cas as systems composed of interacting

agents described in terms of rules. These agents adapt by changing their
rules as experience accumulates. In cas, a major part of the environment

of any given adaptive agent consists of other adaptive agents, so that a

portion of any agent's efforts at adaptation is spent adaptitg to other

adaptive agents. This one feature is a major source of the complex

temporal patterns that cas generate. To understand cds we must under-

stand these ever-changing patterns. The rest of this book is devoted to

developing such an understandirg by filling in this rough sketch, adding

detail, content, and relevant pieces of theory. Now to our seven basics.

Seuen Basics

The seven basics consist of four properties and three mechanisms that

are common to all cas. They are not the only basics that could be

selected from a list of common characteristics; the selection process is,

rn part, a rnatter of taste. Still, all the other candidates of which I am
aware can be "derived" from appropriate combinations of these seven.

In presenting the basics, I have ordered them in a way that empha-

sizes their interrelations rather than grouping them into properties and
mechanisms.

AccnncATroN (Pnon Er<TY)

Aggregation enters into the study of cas in two senses. The first refers to

a standard way of simplifting complex systems. We aggregate similar

things into categories-trees, cars, banks-and then treat them as

equivalent. Flumans analy ze farniliar scenes in this way with the greatest

of ease. Not too surprisingly, the categories we choose are reusable; we
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can almost always decompose novel scenes into familiar categories. And

we can generate scenes we have never seen by recombining the

categories-much as the griffin, chim era,, and harpy of a medieval

bestiary are formed by recombining familiar animal parts in new ways.

Aggregation in this sense is one of our chief techniques for con-

structing models. We decide which details are Lrcelevant for the ques-

tions of interest and proceed to ignore them. This has the effect of

collectirg into a category things that differ only in the abandoned

details; the category becomes a building block for the model. Model-

irg, it should be clear, is an art form. It depends on the experience and

taste of the modeler. In this it is much like cartooning, especially

political cartooning. The modeler (cartoonist) must decide which fea-

tures to make salient (exaggerate), and which features to eliminate

(avoid), in order to answer the questions (make the political point).

The second sense of aggregation is closely related to the first, but it

is more a matter of what cas do, rather than how we model them. It

concerns the emergence of complex large-scale behaviors from the

aggregate interactions of less complex agents. An ant nest serves as a

familiar example. The individual ant has a highly stereotyped behav-

ior, and it almost always dies when circumstances do not fit the

stereofype. On the other hand, the ant aggregate-the ant nest-is

highly adaptive, surviving over long periods in the face of a wide

range of hazards. It is much like an intelligent organism constructed of

relatively unintelligent parts. Douglas Hofstadter's wonder l chapter

"Ant Fugue" in his 1979 book makes this point better than anything

else I have read. In it the ant nest provides a comprehensible version of

more spectacular emergent phenomena, such as the intelligence of

large numbers of interconnected neurons, or the identiry provided by

a diverse affay of antibodies, or the spectacular coordination of an

organism made of myriad cell fypes, or even the coherence and

persistence of a large cify.

Aggregates so formed can in turn act as agents at a higher level-

meta-agents. The interactions of these meta-agents are often best de-

scribed in terms of their aggregate (first sense) properties (see Figure

1.4). Thus we speak of the gross domestic product of an economy, or

1 1
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the identiry provided by the immune system, or the behavior of a
nervous systern. Meta-agents can, of course, aggregate (second sense) in
turn to yield meta-meta-agents. 

'When 
this process is repeated several

times, we get the hierarchical organization so rypical of cas.

Aggregnte Emergent

Aggregete Property

Gross
Domestic Product

'antitodt I
. antibody 2

IndiYidual
Identi. antiboily 3

Behavior

Figure 1 . 4 Aggregation and Aggregate Properries.

Aggregation in the second sense is indeed a basic characteristic of all
cLs, and the emergent phenomena that result are the most enigmatic
aspect of cas. The study of cas turns on our abiliry to discern the
mechanisms that enable simple agents to form highly adaptive aggre-
gates. 

'What 
kind of "boundaries" demarcate these adaptive aggregates?

How are the agent interactions within these boundaries directed and
coordinated? How do the contained interactions generate behaviors
that transcend the behaviors of the component agents? 

'We 
must be able

to answer such questions if we are to resolve the mysteries, and the
difliculties, that attend cas.

TaccrNG (MncErlNrsM)

There is a mechanism that consistently facilitates the formation of
aggregates-a mechanism that in this book will go by the nam e taging.
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The most familiar example is a banner or fl^g that is used to rally

members of an army or people of similar political persuasion. A more

operational version of a t^g, in these days of Internet, is the header

on a message that knits together members of a bulletin board or con-

ference group. Still more operational are the "active sites" that

enable antibodies to attach themselves to antigens. The sophistication

of this particular version of taggirg is well described in Edelman's
(19S8) discussion of cell adhesion molecules. We can continue with

the visual patterns and pheromones that facilitate selective mating

in animals, and the trademarks, logos, and icons that facilitate com-

mercial interaction (see Figure 1.5). It soon becomes apparent that

tagging is a pervasive mechanism for aggregation and boundary fov

mation rn cas.
'When 

we closely examine different instances oftagging, we see there

is a common feature: cas use tags to manipulate symmetries. Because

symmetries are common, we often use them in perceiving or modeling

our day-to-dry world, sometimes quite unconsciously. They enable us

to ignore certain details, while directing our attention to others. Weyl
(1952) gives a rich exposition of this point. The classic example of a

full-blown symmetry is a perGct sphere, say the white cue ball in

billiards. A cue ball exhibits complete rotational symmetry so that

rotation in arry direction produces no noticeable change . If we put a

stripe around the cue ball's "equator," turning it into one of the other

billiard balls, we break the symmetry allowing us to distinguish the

previously indistinguishable. For example, if we start the striped ball

spinning, we can easily observe whether or not the ballt axis ofrotation

defines the equator marked out by the stripe. Most rotations produce

noticeable changes, except for those around the axis that defines the cue

ball's equator. That is, some symmetries are broken and others remain.

In general, tags enable us to observe and act on properties previously

hidden by symmetries.
To carry the example a bit further, consider a set ofcue balls in rapid

motion on a billiard table, say after a strong "break." We cannot

distinguish the individual cue balls unless we keep ^ careful record of

their trajectories. But agarn, we can break the symmetry via a tag.If we
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SELECTIVE MATING

POLITICAL AGGREGATION

%H@8 ffi&li I%BE=3
MESSAGES & HEADERS

CATALYST & SUBSTRATE

catel5rrt

rub*trete

Figure 1 .5 T"gr and Aggregates.

put a striped cue ball in with the other cue balls, we can easily track it
despite its motion.

Ttgt are a pervasive feature of cas because they facilitate selective
interaction. They allow agents to select among agents or objects that
would otherwise b e indistinguishable. Well- established tag-based inter-

{K
{}

tag

condition
(tqg query)

TqBE provide Eggregates Yith
coordination and selectivity.
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actions provide a sound basis for filtering, specrahzatron, and coopera-

tion. This, in turn, leads to the emergence ofmeta-agents and organLz -

tions that persist even though their components are continually

changing. Ultimately, tags are the mechanism behind hierarchical

organi zation-the age nt / meta-agent / rneta-meta- agent / . orga-

nrzation so common in cas.We'll see many examples of the origin and

intervention of tags as we go along.

NoNr,rNEARrrY (PnonERrY)

It is little known outside the world of mathematics that most of our

mathem atical tools, from simple arithmetic through differential cal-

culus to algebraic topology, rely on the assumption of linearity.

Roughly, linearify means that we can get a value for the whole by

adding up the values of its parts. More carefully, a-function rs linear if the

value of the function, for any set ofvalues assigned to its arguments, is

simply a weighted sum of those values. The function 3x * 5y * z, for

example, is linear.

We say some numerical properfy of a system is linear, relative to nu-

merical values assigned to its parts, if the property is a linear function of

those values. Consider, for example, the fuel consumption c of aplane as a

function of its velociry u andits altitude x. Given suitable units for fuel

consumption, altitude, and velociry, we might be able to establish that

c :  ( 0 . 5 ) y  *  ( - 0 . 1 ) r .

Fuel consumption then would be linear in terms of velocity and

altitude.
Polls, or proJect trends, or industrial statistics, all of which employ

summation, are only useful if they describe linear properties of the

underlyirg systems. It is so much easier to use mathematics when

systems have linear properties that we often expend considerable efilcrt

to justrfy an assumption of line ̂ rrty.'Whole branches of mathematics

are devoted to findirg linear functions that are reasonable approxima-

tions when lineariry cannot be directly established. LJnfortunately,

none of this works well for cas. To attempt to study cas with these
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techniques is much like trying to play chess by collecting statistics on
the way pieces move in the game.

Let me illustrate the difliculry by starting with one of the simplest
nonhnear interactions, that between a predator population and its prey.
The model we look at, despite its simple assumptions, does a satisfa ctory
job of describing real data, such as the centuries-long record of lynx-
hare interactions derived from the Hudson Bry Company's yearly
records ofpelt acquisitions. In putting this model together, we sketch a
rypical procedure for building mathematical models. 

'When 
we have

finished, we'll have a clear example of the complications caused by
nonlinearities.

We begin with the commonsense observation that increases in either
the predator population or the prey population increase the likelihood
of encounters between predator and prey. Symbolically, if r,l represents
the number of predators in a given area, say a square mile, and V
represents the number of prey in the same area, then the number of
interactions per unit time, say a d^y, is given by cLIV, where c is a
constant that reflects the efficiency of the predator (fot example, the
average rate at which it searches the territory). If c:0.5, U - 2, and
V - 10, then there will be

c(JV : 0.5(2)(10) : 10 encounters

per d^y per square mile. If the number of predators increases by 2, SO
that U : 4, and the number of prey increases by 10, so that V: 20,
then the number of encounters will be quadrupled to

c(JV : 0.5(4) (20) : 40 encounters

per d^y per square mile. This expression involves a nonlineariry, one of
the simplest, because it entails the product of fwo distinct variables
instead of their sum. That is, the overall predator-prey interaction
cannot be obtained merely by addirg predator activify to prey activify.

Our next step is to take explicit account of the fact that the popula-
tions change over time. Notationally, we let UU) stand for the popula-
tion of predators at time t; similarly V0 stands for the population of
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prey at time /. We augment the predator-prey interaction by allowing
for births and for deaths from causes other than predation. Taking the

simplest approach, we set a common birthrate b for all predators, so that

the number of predator births at time t rs bu(t). Deaths can be handled

similarly by using a common death rate d, so that the number of

predator deaths at time t is dU(t).
If we ignore predator-prey interactions for a moment, we arrive at a

simple model ofthe way the population ofpredators changes over time.

The size of the population after one unit of time has elapsed is the

population at time /, minus the deaths, plus the births, or

U(t + 1) _ UU) - drJQ + br.t@.

This equation, with allowances for aging, is the foundation for popu-

lation proJections and such mundane things as life insurance pre-

miums. We use exactly the same argument to get a similar equation
for the prey,

V(t + 1) - VU) d' V(t) + b' V(t),

where b' and d' are the respective birth and death rates for the prey
(again without interactions).

To reintroduce the effect of predator-prey interactions, we incorpo-

rate the intuitive idea that the predator enhances its well-being each

time it catches prey. Ultimately this process exerts a positive effect on

the predator's production of offspring. To capture this idea mathe-

matically, introduce another constant r that represents the efficiency of

nTf#:il lil",': i fi?,l: :3*ff ":T' J"f,,ff : ffi;'ci 
o ns

r[cu(t)vU)]

as the enhancement in births because ofpredator-prey interaction. The

population change for predators then becomes

U(t + 1) - UU) du(t) + brJ@ + rlcr.JQ)VU)1.
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For prey, capture by a predator increases the number of deaths. Using r'
to indicate the vulnerabiliry to capture and death during interactions,
we obtain a population equation for the prey,

V(t + 1) _ VU) d'V(t) - r ' lcu(t)V?il + b'V(t).

This patr of equations for U(t * 1) and V(t + 1) is a version of the
famous Lotka-Volterra model (see Lotka, 1956). Standard ways of
simpliftitg and solving the Lotka-Volterra equations show rhat, under
most conditions, the predator population will go through a series of
oscillations between feast and famine, as will the prey population. This
prediction is borne out by the Hudson Bay Company's records. In the
long run, extensions of such models should help us understand why
predator-prey interactions exhibit strong oscillations, whereas the in-
teractions that form a cicy are rypically more stable. For now we are
only interested in the effect of nonlinearities on such modeling efforts.

Let's return to the interactive part of the model. The cU(t)V(t)
formulation is actually a starting point for many other models, includ-
itg interactions between atoms or molecules or even billiard balls. To
study the effect ofnonlinear interactions in the simplest possible settirg,
we shift back to the billiard balls (see Figure r.6).

Lett restrict the model to just three "species" of billiard balls: white
balls with a red stripe, white balls with an orange stripe, and solid-blue
balls. Assume that there are several of e achon the table andthat they are
in random motion kind of "big bang" or, better, "big break." Also
assume, somewhat fancifully, that the "stripes" sometimes stick to the
"solids" when they collide, rS if they had dots of Velcro on their
surfaces. The earlier formula cUV can now be used to model the rate at
which the "stripe/solid compounds" form.

To see this, let's begin with the red-stripe /blue-solid combination.
Our [/ gives the proportion of red-stripes on the table, V gles the
proportion of blue-solids, and the constant c now gives a reactlon rate
that depends on the stickiness of the red-stripe/blue-solid combina-
tion. Using Z(t) to represent the proportion ofred-stripes stuck to blue-
solids at time t, we get a simpler version of the Lotka-Volt erraequation,
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Figure 1.6 A Billiard Ball Model of Interaction.
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Z ( t +  1 ) -  Z ( t )  * c U ( t ) V U ) .

For example, i f  Z(t) :  0, UU) - 0.4, VU) - 0.5, and c:0.5, then

after one unit of time the proportion ofthe red-strtpe/blue-solid com-

pound is

Z( t  + 1)  :  0  *  0.5(0.4)(0.5)  :  0 .1 .

Different kindr of bellt mny heve

REACTION S
RATES omrrgc rtript

htur *oliil I 0.5

different reection reter:

s
rtd *tripe

o.1

Suppoae 're rent to know the proportion of collirions
reJutting in e *tripe-*olid compouud tGl and [l ] .

Ca^n we build e rimple model by esrigmng tn egguegnte

{ averege} tutg'c:il'ot tzte to the overell proce*r?

,"T*\ffi
ffF
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'ff\ r/
pruportion J
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Thir rerction aggregetes the rtripef frl it use* only the lgEl
prcportion of rtripes fproportion of S + proportion of QJ ] .

FOR THE MODEL TO WOR.K: Tro rnixe* of *tripes rith
the ferne totel murt produce the reilre tetult.

Figure 1.7 Aggregate Reactions.
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We can proceed similady with the orange-stripes, allowing for the
fact that stickiness of the orange-stripes may be different from that of
the red-stripes (see Figure 1.7). Let WU) be the proportion of orange-
stripes at time t, let Y0 be the proportion of the orange-stripe /bIue-
solid compound at time t, andlet c' be the reaction rate determined by
the stickiness of orange-stripes. Then, as for the red-stripes, the formula

Y(t+ 1)-  YU) + c 'W(t)VU)

gives the outcome of the interaction of orange-stripes with blue-solids.
If Y(t) : 0, WU) : Q.1,, and c' - 0. L, then

Y(t + 1) - 0 + 0.1(0.1X0.s) - 0.00s.

We can get the total stripe-solid compound (red-strtpe/blue-solid

plus orange-stripe /blue-solid) , X(t), by adding the results ofthe separate
reactions,

X(t+ 1) 
: #,'o**\t iu,{,ri'", * c'w(t)v(t)

Using the numerical values given earlier, we obtain

X(t + 1) -  0.1 + 0.00s -  0.10s.

This part of the model is indeed linesl-1fue whole does equal the sum
of the parts!

Now suppose we want to simpli$, the model by aggregating the
stripes into a single category. The idea is to calculate the total stripe-
solid compound using only the total proportion of stripes on the table.
Even when there are only two species of stripes, as in the present case,
this aggregation cuts the complication (the number of equations) in
half. 

'When 
there arelarge numbers ofspecies (as with an ecosystem or a

ciry) , aggresation makes the difrerence between feasibiliry and infea-
sibiliry when it comes to analysis. The simplification occurs because the
aggregate equation uses a single variable S(r) for the total population of



22 HIDDEN ORDER

stripes, along with a single reaction coefficient c", giving the single

equation

X( t+1)  -x (4+ i ' s (Av \ ) .

There is a problem about the validiry of this equation, however. For it

to be useful, we must find a coeffrcient /' that works for all mixes of
stripes.

LJnder a standard linear approach, we would obtain ," by avengirg
the coefficients ofthe individual stripe-solid interactions. However, this
is the point at which the nonlinearities interfere. Consider two different
mixes of stripes. In mix 1, the proportion of red-stripes is t/ - 0 .4 and
the proportion of orange-stripes ts W - 0.1; in mix 2, the proportion is
reversed, so that U - 0.1 and W - 0.4.In both cases the total number
of stripes is S - U + W - 0.5. It follows that in both cases the equa-
tions for Xmust give the same answers for the proportion ofstripe-solid
compound, since all the numbers on the right side are the same. But
what actually happens? Do the interactions of the two different mixes
really yield the same total proportion of stripe-solid compound?

To check, let's carry out the detailed computation for the two mixes.
For mix 1, we have already calculated the result when X(r) : 0,

X ( t +  1 ) - Y ( t +  1 ) +  Z ( t +  1 ) - 0 . 1 0 5 .

For mix 2, we have

x(t+1):Tr,o**

0+0

1 ) :  Z ( t +  1 )

Z(t) + cr,JQ)VU) * c'WU)V(I)

+ 0.s(0.1x0.s) + 0.1 (0.4)(0.s)
+ 0.020 - 0.045.- 0.025

And there's the rub. The two mixes produce different compound totals,
0.105 versus 0.045, even though the total numberofstripes is the same.
No summitg or averaging of the reaction coeflicients of the aggregate's
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parts will work, because there LS no coefficient that will work for both

mixes. The nonlinear interactions prevent us from assigning an aggre-

gate reaction rate to the aggregate rcaction.

We are now at the end of this particular tale. 
'We've 

seen that even

in the simplest situations nonlinearities can interfere with a linear

approach to aggregates. That point holds in general: nonlinear interac-

tions almost always make the behavior of the aggregate more compli-

cated than would be predicted by summing or averagung.

Frows (PnorEr-TY)

The idea of flows extends well beyond the movement of fluids. In

everyday usage, we speak of the flow of goods into a ciry or the flow

of capital between countries. In more sophisticated contexts, we think

of flows over a network of nodes and connectors. The nodes may

be factories, and the connectors transport routes for the flow of

goods between the factories. Similar {node, connector, resource}

triads exist for other cas; {nerve cells, nerve cell interconnections,

pulses] for the central nervous system; {species, foodweb interactions,

biochemicals) for ecosystems; {computer stations, cables, messages}

for the electronic Internet; and so on (see Figure 1 .8) . In general

terms, the nodes are processors- agenfs-and the connectors desig-

nate the possible interactions. In cas the flows through these net-

works vary over time; moreover, nodes and connections can appeat

and disappear as the agents adapt or fail to adapt. Thus neither the

flows nor the networks are fixed in time. They are patterns that re-

flect changing adaptations as time elapses and experience accumu-

lates.

Trgr almost always define the network by delimiting the critical

interactions, the major connections. Tags acquire this role because the

adaptive processes that modify cas select for tags that mediate useful

interactions and against tags that cause malfunctions. That is, agents

with useful tags spread, while agents with malfunctioning tags cease to

exist. Later on we will look at this process in some detail.

There are two properties of flows, well known from economics, that

are important to all, cas. The first of these is the multiplier tftrt (see, for
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example, Samuelson, 1948), which occurs if one injects additional
resource at some node. Typically this resource is passed from node to
node, possibly being transformed along the way, and produces a chain
of changes (see Figure 1.9).
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Figure 1.9 Multiplier Effect.
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The simplest examples come from economics. 
'When 

you contract

to build a house, you pay the contractor, who pays the tradesmen, who

in turn bry food and other commodities, and so oo, stage by stage

through the economic nerwork. In order to make a simple computa-

tion, let's assume that at each stage one-fifth ofthe new income is saved,

and the other four-fifths is paid to the next stage. Then for each dollar

you p^y,80 cents will be passed on by the contractor to the tradesmen,

who in turn pass on 64 cents, and so on. More generally, t fraction r is

passed on at each stage. So at stage 2, zfraction r of the original amount

is available. At stag e 3, a fraction r of that r is available, so F is available at

stage 3. And so it goes for each successive stage. We can calculate the

total effect by using the fact that 1+ r* P + P + - 1'/(1 n.
In this example, r :0.8, so the total effect is approximately

1/(1 - 0.S) - 5. That is, the initial effect, your contract, is multiplied

by five when we trace its total effect as it passes through the network.

This multiplier effect is a major feature of networks and flows. It

arises regardless of the particular nature of the resource, be it goods,

money, or messages. It is relevant whenever we want to estimate the

effect of some new resource, or the effect of a diversion of some

resource over a new path. It is particul"tly evident when evolutionary

changes occur, and it rypicallyjeopardizes long-range predictions based

on simple trends.

The second property is the recycling ffict-the effect of cycles in the

networks (see Figure 1 .10). This too is most easily explained using an

example from economics. Consider a nefwork involving three nodes,

say an ore supplier, a steel producer, and a node that stands for auto

fabncation and use. For simpliciry, we adjust the resource measures

(weight$ so that one unit of ore produces one unit of steel which in

turn produces one unit of automobile. Further, we'll have the steel

producer send exactly half its output to the auto fabrtcation/use node.

That is, if the ore supplier ships 1000 units of ore, that will translate

through the nefwork to become 0.5(1000) :500 units of auto. If we

assume that the autos produced are used until they turn into unrecover-

able rust, then the return for each 1000 units of ore mined is 500 units

of automobile. How do things change if we manage to recycle three-

quarters of the steel in autos? Some of the material now goes through a
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cycle from the fabrication/use node to the shipper through the steel
producer and back to the fabrtcation/use node. under this arrange-
ment, with the same 1000 units of ore from the miner, steel production
settles down at 1600 units output, which in turn yields 800 units ofauto
at the fabrication/use node. Recycling, with the same raw input,
produces more resource at each node.

That recycling can increase output is not particulrrly surprisirg, but
the overall effect in a network with many cycles can be striking. A
tropical rain forest illustrates the point. The soil there is extremely poor
because tropical downpours have a leachirg effect that quickly moves
resources from the soil into the river system. For this reason ordinary
agriculture, which does not recycle resources, fares poorly when the
tropical forest is cleared. Yet the forest itselfis rich in both species and
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numbers of individuals. This state of affatrs depends almost entirely on

the forest's abiliry to capture and recycle critical resources. For the forest

departs from the simple version of a food web, in which resources are

only passed upward to the top predator. Instead, cycle after cycle traps

the resources so that they are used and reused before they fitttlly make

their way into the river system. The resulting system is so rich that a

single rain forest tree rnay harbor over 10,000 distinct species (!) of

insects.

DrvEnsrrY (PnonERTY)

In that same tropical rain forest, in addition to the diversiry of insects, it

is possible to walk half a kilometer without twice encourltering the

same species of tree. But the rain forest is not an isolated example. The

mammalian brain consists of a panoply of neuron morphologies orga-

nized into an elaborate hierarchy of nuclei and regions; New York Ciry

consists of thousands of distinct kinds of wholesalers and retailers; and

so it goes for each cas in turn-

This diversity is neither accidental nor random. The persistence of

any individual agent, whether organism, neuron, or firm, depends on

the context provided by the other agents. Roughly, each kind of agent

fil|s a niche rhar is defined by the interactions centeritg on that agent. If

we remove one kind of agent from the system, creatin g a "hole," the

system rypically responds with a cascade of adaptations resulting in a

new agent that "fills the hole." The new agent rypically occupies the

same niche as the deleted agent and provides most of the missing

interactions. This process is akin to the phenomenon called conuergence

in biology. The ichthyosaur of the ancient Tliassic seas filled much the

same niche as the porpoise in modern seas. Though the ichthyosaur is

no kin ro the porpoise, it is surprisingly similar in form and habit. It

even preyed on cephalopods (squid and octopuses). And here you have

another convergence. The eye of a squid exhibits all the parts and

complexiry of a mammalian eye, yet the fwo are derived from entirely

different tissues. The two eyes fill the same niche in di{ferent physi-

ologieS, 2 niche determined by the interactions eyes must provide-

Convergence of akind also occurs when an established species enters
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vrrgin territory The islands of Hawaii, newly arisen a few million years
xgo, constituted virgin territory for a pregnant fruit fly (genus Dro-
sophila) that drifted or was blown there from elsewhere. Over 600
indigenous species of fruit fly have arisen from that founder. Still more
remarkable, these new species fill all sorts ofniches that are occupied by
very different fly species elsewhere in the world. The ecosystem inter-
actions are largely re-created, although the agenrs are quite different.

Diversiry also arises when the spread of an agent opens a new
niche-opportunities for new interactions-that can be exploited by
modifications ofother agents. Mimi.ry a pervasive biological phenom-
enon, is a good example. In North America the most familiar example
of mimrcry involves the monarch butterfly (see Figure 1.11). The
monarch is marked by a strikitg orange and black pattern, but it flies
quite openly in the fields, unlike most butterflies that flit quickly from
cover to cover to avoid predators. The monarch can move so freely
because its caterpillar accumulates a bitter alkaloid from the milkweed
plant; birds quickly learn that the monarch butterfly induces vomiting.
There is a second butterfly, the viceroy, that has a wing pattern almost
identical to that of the monarch but it lacks the monarch's bitterness. It
mimics the monarch, and thereby garrrs an important freedom. How
can blind chromosomes gener ate a complicated pattern that mimics the
pattern of an entirely different species? It's an important question that
we'll look into later, when we have a better foundation. For now we
simply note the new niche, and the diversiry, provided by the presence
of the monarch.

Mimicry exists at every turn in the rain forest. Insects mimic

Monerch Viceroy

Figure 1.11 Mimicry.
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snakes, and even bird splat. Orchids mimic a wide range of pollinators

so well that, as in the case of the bee orchid, they induce copulatory

movements as a means of covering the insect with pollen. The orchid

family itself consists of close to 20,000 species, exhibiting an extraordi-

nary variery of shapes and mechanisms (includitg pollen-throwittg and

clasping devices). Each new species opens still newer possibilities for

interaction and specialtzation, with still further increases in diversiry-

The diversify of cas LS a dynamic pattern, often persistent and coher-

ent like the standing wave we alluded to earlier. Ifyou disturb the wave,

say with a stick or paddle, the wave quickly repairs itself once the

disturbance is removed. Similarly Lr:r cds, a pattern of interactions dis-

turbed by the extinction of component agents often reasserts itself,

though the new agents may difrer in detail from the old. There is,

however, a crucial difference bewveen the standing wave pattern and cas

patterns: caspatterns evolve. The diversity observed rn cas is the product

of progressive adaptations. Each new adaptation opens the possibiliry

for further interactions and new niches.
'What 

mechanisms enable cas to generate and maintain temporal

patterns with such diverse components? Answers to this question are

pivotal to any deep understanding of cas. To have a comprehensive

theory we must answer this question in way that applies to all cas- A

principle from paleontology applies mutatis mutandis here: to under-

stand species, understand their phylogeny.

We can make some progress in comprehending the origins of diver-

siry ifwe revisit flows in the light ofthis paleontological principle. Note

first that the parrerns of interaction familiar from ecology-symbiosis,

parasitism,'mimicry biological arms races (see Figure 1'.1'2; Dawkins,

1,976, is worth readirg on this subject), and so on-are all well de-

scribed in terms of agent-directed flows of resources. Because these

interactions have counterparts in other cds, we can extend this observa-

tion to them as well. From the earlier discussion of recycling, we know

that agents that participate in cyclic flows cause the system to retain

resources. The resources so retained can be further exploited-th.y

offer new niches to be exploited by new kinds of agents. Parts of a cas

thar exploit these possibilities, particulrrly parts that further enhance
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recycling, will thrive. Parts that fail to do so will lose their resources ro
those that do. This is natural selection writ large. It is a process that leads
to increasing diversify rhrough increasirg recycling.

We can further enlarge this view if we add some thoughts about
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nonlineariry. The recycling of resources by the aggregate behavior of a

diverse array of agents is much more than the sum of the individual

actions. For this reason it is difficult to evolve a single agent with the

aggregate's capabilities. Such complex capabilities are more easily ap-

proached step by step, using a distributed system. This is a point to be

emphasized later when we examine the emergence of default hierarchies

in the next chapter. It should be evident then that we will not ftnd cas

settling to a few highly adapted rypes that exploit all opportunities.

Perpetual novelry is the hallmark of cas.

INTnnNAL MopErs (MncrrANrsM)

In introducing mimi.ry I mentioned the role of learned avoidance in

birds: insectivorous birds anticipate the bitter taste of butterflies with a

particular orange and black wing pattern. Just how do they do this? This

question, enlarged to encompass all cas, takes us to another hallmark of

cas: they anticipate. To understand anticipation we have to understand a

mechanism that is itself complex-an internal model. I use internal

model to cover much the same ground that Gell-Mann (1994) covers

with his schema. Unfortunately, the word o'schema" has become l

fixture in the study of genetic algorithms, designating a related but

different topic. Since both topics appear in this book, I choose to avoid

confusion by using the term "internal model" to reGr to the mecha-

nism for anticipation.
The use ofmodels for anticipation and prediction is a topic that, in its

broadest sense, encompasses much of science. It is a difficult topic, but

not impenetrable. In the next chapter we will bring out sufficient

apparatus to discuss the generation of models, but there are some

simpler aspects that we can look at now.

The basic maneuver for constructing models was pointed up in

our earlier examination of aggregation: eliminate details so that se-

lected patterns are emphasized. Because the models of interest here

are interior to the agent, the agent must select patterns in the torrent

of input it receives and then must convert those patterns into changes

in its internal structure. Finally, the changes in structure, the model,

must enable the agent to anticipate the consequences that follow
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when that pattern (or one like it) is ^garrr encountered. How can

an agent distill experience into an internal model? How does an

agent unfold the model's temporal consequences to anticipate future

events?

To make a start on these questions, let's take a closer look at rnodels as

predictors. We usually ascribe prediction only to "higher" marnmals,

rather than taking it as a properry of all organisms. Still, a bacterium

moves in the direction of a chemi cal gradient, implicitly predicting that

food lies in that direction (see Figure 1.13). The mimic survives because

it implicitly forecasts that a certain pattern discourages predators. 
'When

Svimrniqg up a glurose
gradient

Even simFle bacteria, such
as .f, mli, have internal
models provided by evolu-
tion.

Figure 1 .13 Internal Models.
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we get to the so-called higher mammals, the models do depend more

directly on the agent's sensory experience. A wolf bases its movements

on anticipations generated by a mental map that incorporates land-

marks and scents. Errly humans built Stonehenge as an explicit, exter-

nal model that helped predict the equinoxes. Now we use computer

simulations to make predictions ranging from the flight characteristics

ofuntried aircra{tto the future gross domestic product. In all these cases

prediction is involved, and in the last fwo cases external models aug-

ment internal models.

Taking these examples into account, we will find it useful to distin-

guish two kinds ofinternal models, tacitand ouert. A tacit internal model

simply prescribes a current action, under an implicit prediction of some

desired future state, as in the case of the bacterium. An overt internal

model is used as a basis for explicit, but internal, explorations ofalterna-

tives, a process often called lookahead, The quintessential example of

lookahead is the mental exploration of possible move sequences in

chess prior to movirg a piece. Both tactt and overt models are found in

cas of all kinds-the actions and identiry supplied by an immune system

fall at the tacit end of the scale, whereas the internal models of agents in

an economy are both tacit and overt.

How do we distinguish an internal model from other pieces of

internal structure that have nothing to do with modeling? We might

start with the critical characteristic of a model: a model allows us to

infer somethirg about the thing modeled. Following this line, we could

say that a given structure in an agent is an internal model ifwe carainfer

somethirg of the agent's environment merely by inspecting that struc-

ture. Certainly we can infer a great deal about the environment of any

organism by studying relevant pieces of morphology and biochemistry

Accordingly, we might say that those pieces constitute a tacrt internal

model. But, equally, we can infer a meteorite's history from its compo-

sition and surface condition. It is clearly fruitless, even metaphorically,

to attribute an internal model to a meteorite, so we need somethitg

more in our definition.

There is an additional requirement that will eliminate meteorites and

other inanimate structures. We can require that the structure from
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which we infer the agent's environment also actively determine the

agent's behavior. Then, if the resulting actions anticipate useful future

consequences, the agent has an effective internal model; othenvise it

has an ineffective one. 
.With 

an appropriate way of connecting future

credit to current actions, evolution carr favor effective internal models

and eliminate inefrective ones.

Despite the apparent and real differences befween the bacterium's

tacit model and mammalian overt models, there are important com-

monalities. In both cases the organism's chances of survival arc en-

hanced by the predictions, implicit or explicit, that the model entails.

Thus, variants of the model are subject to selection and progres-

sive adaptation. The timescale for change of the implicit model of

the bacterium or the mimic is orders of magnitude different from the

timescale for change of a, mammal's central nervous system, but the

process of selective emphasis that generates these models is not so difil'er-

ent as we shall see.

BurrprNc Brocr<s (MncErANrsM)

In realistic situations an internal model must be based on limited

samples of a perpetually novel environment. Yet the model can only be

useful ifthere is some kind ofrepetition ofthe situations modeled. How

can we resolve this paradox?

We get the beginnings of an answer when we look to a common-

place human abiliry, the abiliry to decompose a complex scene into

parts. 
-When 

we do this, the component parts are far from arbitrary.

They can be use d and reused rn a great vanety of combinations (see

Figure 1.14), like a child's set of building blocks. Indeed, it is evident

that we parse a complex scene by searching for elements already tested

for reusabiliry by natural selection and learning.

Because reusability means repetition, we begin to see how we can

have repetition while being confronted with perpetually novel scenes.

We gain experience through repeated use of the building blocks, even

though they rrray never twice appear in exactly the same combination.

By way of example, consider the common building blocks for a

human face: hair, forehead, eyebrowS, eyes, and so on (see Figure
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Figure 1 .14 Building Blocks (Generators).

1.15). Letb decompose the face into ten components (one ofwhich is
"eyes"), and let's allow ten alternatives for each component (m in
"blue eyes," "brown eyes," "hazel eyes," .). We can think of ten
"bags" holding ten building blocks each, {or a total of 10 X 10 : 100
building blocks. Then we can construct a face by choosing one
building block from each brg. Because there are ten alternatives in
each btg, we can construct any of 1010 : 10 billion distinct faces with
these 100 building blocks! Almost any new face we encounter can be

I  of - 1,OOO,OO0,0OO,OOO
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closely described by an appropriate choice from the set of 100 build-
irg blocks.

Ifmodel making, broadly interpreted, encompasses most ofscientific
acdviry, then the search for building blocks becom es the technique for
advancitg that activiry At a fundamental level, we have the quarks of
Gell-Mann (1994). Quarks can be combined to yield nucleons, the
building blocks at the next level. The process can be iterated, deriving
the building blocks at successive levels from specific combinarions of
building blocks at the previous level. The result is the quark /
nucleon / atom / molecule / organelle / cell /

underpins much of physical science.

progression that

We gain a significant advant age when we can reduce the building
blocks at one level to interactions and combinations of building blocks
at a lower level: the laws at the higher level derive from the laws of the
lower-level building blocks. This does not rnean that the higher-level
laws are easy to discover, any more than it is easy to discover theorems in
geometry because one knows the axioms. It does add a tremendous
interlocking strength to the scientific structure. 

'We'11 
come back to this

point when we discuss emergence Ln cas.

BUILDING BLOCKS AND RECOMBIHATION
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It would be a mistake to confine our attention to the building

blocks of physics. 
'Wherever 

we turn, building blocks serve to impose

regularity on a complex world. 
'We 

need only look at the use of

musical notation to transmit the endless variery of music, or the use of

a limited range of morphologies to describe the tremendous spectrum

of animal structures. The point applies with at least as much force to

our everyday encounters. If I encounter "aflat tire while driving a red

Saab on the expressway," I immediately come up with a set of plaus-

ible actions even though I have never encountered this situation

before. I cannot have a prepared list of rules for all possible situations,

for the same reason that the immune system cannot keep a list of all

possible invaders. So I decompose the situation, evoking rules that

deal with "expressways," "cars," "tires," and so on, from my repertoire

of everyd^y building blocks. By now each of these buildittg blocks has

been practiced and refined tn dozens or hundreds of situations. When

a new situation is encountered, I combine relevant, tested building

blocks to model the situation in a way that suggests appropriate

actions and consequences.

This use of building blocks to generate internal rnodels is a pervasive

Gature of complex adaptive systems. 
'When 

the model is tacrt, the

process of discovering and combining the building blocks usually pro-

ceeds on an evolutionary timescale; when the model is overt, the

timescale may be orders of magnitude shorter. Still, to reemphasize the

point made both for internal models and in the initial discussion of

adaptation, the underlyirg adaptive process remains much the same

throughout the ran ge of cas.

Where Next?

The next three chapters combine these seven basics (see Figure 1 .16) in

different ways to achieve fwo goals. The first goal, the object ofthe next

chapter, is to provide a definition of " adaptive agent" that works for all

the different kinds of agents found in cas. The second goal, to be

pursued in Chapters 3 and 4, is to provide a computer-based model that

has enough generaliry to allow us to carry out thought experiments



3 8 HIDDEN ORDER

relevant to all cas. We'll see that the seven basics appear over and over
again, suggesting mechanisms and directions (see Figure 1.I7).

Beyond these two goals is a larger objective: to uncover general
principles that will enable us to synthesize compl ex cas behaviors from
simple laws. Complex adaptive systems are quite different from most
systems that have been studied scientifically. They exhibit coherence
under change, via conditional action and anticipation, and they do so
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without central direction. At the same time, it would appear that cas

have lever points, wherein small amounts of input produce large,

directed changes. It should be easier to discover these lever points if we

can uncover general principles that govern cas dynamics. Knowitg

more about lever points would, in turn, provide us with guidelines for

effective approaches to cas-based problems such as immune diseases
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Systems.

The Role of the Seven Basics in the Study of Complex Adaptive
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inner-cify decay, industrial innovation, and the like. For problems so
complex, it is unlikely that we will make substantial progress without
theoretical guidelines. We are only at the beginning of the search for
general principles, but we do have some hints as to what those princi-
ples might be. I'11 set down those hints, as I see them, in the concluding
chapter.
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Adaptive Agents

V V E RETURN to New York Ciry for a quick illustration
of the outlook provided by the seven basics of the previous chapter.
Agents formed by dgregation are a central feature, fypified by firms
that range from Citibank and the New York Stock Exchange to the
corner deli and the yellow cab. These agents determine virtually every
fiscal transaction, so that at one level of abstraction the complex
adaptive system that is New York Ciry is well described by the
evolving interactions of these agents. We have only to look to adver-
tising, trademarks, and corporate logos to see how tags facilitate and
direct these transactions. The diuersity of these tags underscores the
variefy in the city's firms and activities, and the complexflow of goods
into, out of, and through the cify that results. That New York retains
both a short-term and a long-term coherence, despite diversity,
change, and lack of central directioo, is typical of the enigmas posed
by cas. As is usual, nonlinearities lie near the center of the enigma. New
York's nonlinearities are particul^ily embodied in the internal models-
models internal to the firms-that drive transactions. These models
range from spreadsheets to sophisticated corporate plans. There are
also continual innovations, such as the steady flux of new financial
instruments on Wall Street ("derivatives," the current innovation,
have absorbed even more money than their predecessors, 'Junk

41



42 HIDDEN ORDER

bonds"). Tlend proJection and other linear analyses provide few in-

sights into these activities. New perceptions will surface, I suspect, if

we can uncover the building blocks that are combined and recombined

to determine the ciry's outward app earance. The building blocks for

this enterprise are less obvious than for some other cas, though con-

tracts, organi zation charts, permissions, pieces of ciry infrastructure,

and taxes are all obvious candidates.

This view of New York Ciry is no less rntncate than other ways of

describirg this urban setting, but it does suggest that the ciry is not all

that different from other cas. 
'We 

have already seen these same basic

characteristics in variou s cas, and it is not particulrrly difficult to locate

them in still others. They are distinctive, and I know of no systems that

are not complex adaptive systems in which all seven are present simul-

taneously. That does suggest treating all cas wtthin a common frame-

work that exploits these basics. However, there is one feature of cas that

tempers this suggestion. The agents in different systems, even within

the same system, exhibit real dissimilarities. Firms in a city don't seem

to have much in common with antibodies, and organisms in an ecosys-

tem don't look at all like neurons in the nervous system. Is it really

possible to find a common representation for these very different

agents? If so, a uniform approach to cas LS feasible; if not, a uniform

approach seems unlikely. A common representation for agents, then, is

our next objective.
Let's explore the possibilities in three stages. First, we'll look

for a uniform way to represent the capabilities of different kinds

of agents, without any concern for changes that might be produced

by adaptation. I'11 call the result a performance system. The next

stage is to use the agent's successes (ot failures) to assign credit

(or blame) to parts of the performance system. I'11 call this process

credit assignment, followirg usage in other studies of learning and

adaptation. The last stage concerns making changes in the agent's

capabilities, replacing parts assigned low credit with new options.

For reasons that will becom e apparent, I'll call this procedure rule dis-

couery.
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A Prfrrmance System

The first step in arrivirg at a common description of agents is actually a

return to the description of adaptive agents in the early part of the last

chapter. There we used rules as a descriptive device; now we take rules

more seriously as a formal means of defining agents. For the rules to be

a successful unifying device, applicable whatever the agent's outward

form, they must meet three criteria:

The rules must use a single syntax to describe all cas agents.

The rule syntax must provide for all interactions among

agents.

There must be an acceptable procedure for adaptively modify-

irg the rules.

As in the last chapter, we look first at the simplest kind of rule: IF

(some condition is true) THEN (execute some action) . IF /THEN

rules are used for explanation in a wide variefy of fields: in psychology

they are called stimulus-response rules (see Figure 2.I); in artificial

intelligence they are called condition-action rules; and in logic they are

called production rules. Our immediate objective is to find a simple

STIMULIJS RESPONSE

IF SMALL FLYING OBJECT TO LEFT

THEN TURN HEAD I5O LEFT

Figure 2.1 A Stimulus-Response Rule.
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syntax for IFITHEN rules, a syntax that will work for any kind of

agent. Later we will add a simple modification that gives IFITHEN

rules enough power to model any agent that can be modeled on a

computer.

Irvpur / OUTPUT

The syntax we use for the IFITHEN rules depends critically on the

way an agent interacts with its environment. Let's start with the input

side. In ordrnary terms, an agent senses the environment vra an assort-

ment ofstimuli. Ifthe agent is an antibody, the stimuli are the molecular

configurations-tags-on the surfaces of the antigens. If the agent is a

human, the stimuli come through the five senses. If the agent is a

business firm, the stimuli are orders, cash flow, incomirg goods, and so

on. Typically, an agent is inundated with stimuli, receivirg far more

information than can be put to use.

The agentt first task, then, is to filter the torrent of information its

environment produces. To describe this filtering operation, I adopt

the common view that the environment conveys information to the

agent via a set of detectors. The simplest kind of detector is one that

senses a parttcular properfy ir the environment, turning "on" when

the property is present and "of|" when it is not (see Figure 2.2). That

is, the detector is a binary device that conveys one bit of information

about the environment. Such detectors might seem quite limited in

their ability to sense the environment, but an arbitrarily large amount

of information can be conveyed by a sufficiently large cluster of

detectors. Indeed, the amount of information conveyed goes up ex-

ponentially with the number, of detectors. A set of three binary

detectors can code for  2 X 2 X 2:23:8 colors;  a set  of  twenfy

detectors, using a variant of the "Trvenfy Questions" game, can

produce a unique stimulus for each of 22o, more than a rnillion,

distinc t categories.

It is worthwhile to emphasize, concerning detectors, a caution ear-

lier invoked for rules. This discussion of detectors ts not a claim that all

cas agents use btnary detectors. [t is, rather, a claim that we can use

clusters of brnary detectors to describe the way agents filter information
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from the environment; we can translate other means of detection into

this format. The value of binary detectors in this discussion rests on

their usefulness in modelitg arbitrary adaptive agents.

By means of binary detectors we can use standardtzed messages,

binary strings, to represent the information selected by the agent. Can

we extend this standardtzatron to the agent's output side? The actions of

cas agents are, after all, as various as theirways of extracting information

from the environment. We can gain sorne ground in regularrzing

output by "invertirg" the function performed by detectors. Let me

describe the agent's actions in terms ofa set of ffictors. Each effector has

an elemen tary effect on the environment when it is activated by an

appropriate message (Figure 2.2). At any given time, the overall re-

sponse of the agent is generated by the cluster of effectors active at that

time. That is, the effectorc decode standardrzedmessages to cause actions

in the environment. In so doing, the effectors "invert" the procedure

used by the detectors to encode environmental activiry into standardrzed

messages. As with detectors, we use effectors as a descriptive device for

modelirg the adaptive agent output.

PnocESSTNG AND SvNra,x

With this description of the input and output of agents in terms of

messages, it seems advantageous to handle interactions of the agent's

rules in the same way. Providirg for rule interaction is the critical step

Effectors

m€rtrgt

flte

purtu;

turn hrad

eilend torqgur

EnYironment

Performance
Symtem

Figure 2 .2 Detectors and Effectors for a Perficrmance System.
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that gives simple IFITHEN rules the full power of a programming
language. For one IFITHEN rule to interactwith another, it must be
that the IF part of one of the rules is sensitive to the actions specified by
the THEN part of the other rule. If we think of each rule as a kind of
microagent, we can extend the input/output role of messages to pro-
vide for interactions. Think of each rule as having its own detectors and
effectors or, more to the point, think of each rule as a message-
processing device. The rule then has the form

tt 

f:::.J 
t messase of the right kind) THEN (send a specified

That is, an agent is described now as a collection of message-prlcessing
rules (see Figure 2.3). Some rules act on the detector-originated mes-
sages, processing information from the environment, and some rules act
on messages sent by other rules. Some rules send messages that act on
the environment, through the agent's effectors, and some rules send
messages that activate other rules (see Figure 2.4).

IF sMALL FLY
THEN sEND

OBJECT CENTEREDING

@
IF@
THEN ExTEND ToHGUE

A mt*ragtr tf_ryrt4til l*F ty tt* wririlrrpnteil rymbol @, ir ty1rilcnly rtprtrcrde ril hy an
unir(rr1ruted trit rtdng in imphmrrildionr.

Figure 2.3 A Small Message-Passing Rule-Bascd System.
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MESSAGE LIST RULES

MATCH

#
Figure 2.4 A Message-Passing Performance System.

'With 
this description as a guide, we can develop a general syntax

for cas agents (see Figure 2.5). We begin with the allowable messages.

For simpliciry of exposition, assume that all messages are binary

strings, strings of 1's and 0's, and that they are all of standard length.

(The last assumption means that messages are much like the binary

strings stored in the registers of a computer.) Neither of these assump-

tions is really necessary, but neither causes arry serious loss of gen-

eraliry-and they do simplift presentation. Notationally, a message

has the form

/.o-\-
,t\J

IF I  THEN

IF THEN

IF THEN

IF @ THEN

@

!

@
o
o
@

MESSAGE + ACTION

t
@

I

OBSERVATION'-+ MESSAGE
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1 00 10111

l e -  L  - )  |

where L is the length of the standard message. The set of all possible
messages, M, is thus the set of all strings of 1's and 0's oflength L. The
forrnal designation of this set is [1,0]..

Next we must provide a syntax for the condition side of the rules, a
syntax that specifies which messages the rule responds to. Again, there
are many ways to do this, but one of the simplest is to introduce a new
symbol +, which can be interpreted as "anything is acceptable at this
position." More colloquially, it is a "don't care" symbol. Consider the
string of symbols

l +  L  +  |

used as the condition part of a rule. This condition responds to any
message that starts with a 1, not carrng what digits appear at the other
L-I positions. Similarly, the string

F

I
/.6.- 

Rule0 iF(moyiqsx*)---(s) ff iff i  f iee

.rQ 
Rule @ IF (moviqgXsXs-allilnear)THffi approach

Key: t : 'don't care' (rule does not use this
property)

A condition that uses more t's accepts
a vider raqge of messEges - it is more
general.

Message from detectrors

Figure 2.5 Syntax for a Performance System.
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++++ .  ++1+0

l +  L  +  |

represents a condition that responds to any message that has a 1 at the

second to last position, L-2, anda 0 at the last position, L. tJnder this

arrangement the set of all possible conditions, C, is the set of all strings

of 1's, 0's, and +'s of length L. The formal designation of this set is

{1,0,+}..
Because the only action of a rule in this format is to post a messtgt-,

all rules have the form

IF (condition from C satisfied) THEN (send message from IvI).

For example, with L:5, the rule

rF (1++++) THEN (00000)

will transmit the message 00000 if it detects ̂ ny message starting with a

1. The similar rule

rF (10101) THEN (00000)

will transmit the message 00000 only if it detects the specific mess ̂ge

1 0 1 0 1 .
'With 

the two sets, fu[ : [1,0]t and C - {1,0,+}t, and this format for

rules, we have the capacLt\l to describe the behavior of a wide variery of

agents. A particular agent is described by settitg down the cluster of

rules, in this fixed format, that generates its behavior. Rules so defined

act much as instructions in a computer, the cluster serving as a program

that determines the agent's behavior. If there is any way to model an

agent on a computer, these technical conditions guarantee that it can be

modeled using a cluster of rules in this format. To get full computa-

tional power we must give our rules two independent conditions, IF

( ) AND IF ( ) THEN ( ), and provide them with negation, IF
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NOT ( ) THEN ( ), but we can ignore these refinements for present
purposes.

'With 
this syntax we have a uniform, rule-based technique for mod-

eling agents, be they neurons, antibodies, organisms, or business firms.
Figures2.I and 2.3, not to be taken too seriously, illustrate the use of a
rule or two to capture one facet of the behavior of a frog (the abstract
symbols emphasize ttre arbitrariness of the bit-strings that encode the
messages).

S rrvrurreNE OUS ACrrvrTa'_ peneLLELrS M

Before proceeding further we must mak e a careful distinction between
the different uses of messages in this system. The detector-originated
messages have a built-in meaning assigned by the environmental prop-
erties detected. The rule-originated messages, on the other hand, have
no assigned meaning except when they are used to activate effectors.
They acquire meanitg in terms of their abiliry to activate other rules. It
is important to di{ferentiate these two kinds of messages. Otherwise,
rule-originated messages might be taken as coming from the environ-
ment, producitg "hallucinations" for the agent. The distinction is
usually accomplished by assigning identi$rirg tags to the two kinds of
messages.

Because rule-originated messages have no built-in meanings (setti.g

aside for the moment messages that activate effectors), 'we are not faced
with contradictions when several rule-originated messages are present
at the same time. That means we can have several rules active simul-
taneously without fear of contradiction; more rules active simply mean
more messages. This is a substantral advantage. We have a system that
can model the concurrent activities rypical of cas and, as we will see, we
can use messages as building blocks for modelirg complex situations.

To exploit this advantage we provide the agent with a kind of
inventory a message list, that stores all current messages. A useful, if
somewhat fanciful, metaphor for thinking about an agent's perfor-
mance under this arcangement is an office in which there is a large
bulletin board. The workers in the office are assigned desks, each of
which has responsibiliry for responding to certain kinds of memos on
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the bulletin board. And, of course, the output of each desk is more

memos. At the beginning ofthe dry the workers take down the memos,

they process them throughout the day, and at the end of the d^y they

post the new memos that have resulted from their efforts. In addition,

some memos come in from outside the office, and some memos go

from the office to the outside. LJnder this metaphor, the agent corre-

sponds to the office, the memos to messages, the bulletin board to the

message list; the desks to rules, memos from outside the office to

detector-originated rnessages, and rnemos to the outside correspond to

efrector-directed messages. In the agent, as in the o{fice, many activities

go on simultaneously, and only some ofthem are visible on the outside.

This provision for simultaneously active rules helps us understand an

agent's abiliry to handle a perpetually novel world. It contrasts sharply

with an approach wherein the agent has only a single rule for each

situation. 
'With 

the single-rule approach, the agent must have rules

prepared for every situation it may plausibly encounter. This poses a

problem analogous to the one we discussed earlier for the immune

system. An agent is unlikely to have a single rule adequate for each

situation it encounters for the same reason that the immune system

lacks a set of antibodies prepared ab initio for all possible invading

antigens-there are just too many possibilities. 
'With 

simultaneously

active rules, the agent can combine tested rules to describe a novel

situation. The rules become buildirg blocks.

By way of example, consider someone in the unfortunate circum-

stance ofhavinga*flat tire while driving a red Saab on the expressway."

Most of us have not driven a Saab, let alone had a flat tire while driving

one, but we would not be at a loss for an appropriate response. The

reason would seem to be that we decompose the situation into familiar

parts. Most of us have had some experience with flat tires, or at least

know procedures for dealirg with them. Most of us have driven on an

expressway. And so on. We can describe this in terms of rules for

dealing with components of the situation. In terms of our syntax for

rule-based agents, this means rules of the form IF (flat tire while

driving) THEN (slow down), IF (or an expressway with a flat) THEN

(pull into breakdown lane), and so oo, encoded in the C / M syntax
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(see Figure 2.6). These rules, evoked simultaneously by the detector-
originated messages and by other rules, activate the appropriate effector
sequences. Of course, in a real situation there would be many overtones
not captured in this simple example. There would be messages and
active rules corresponding to short-term memory (recent happenings
on the expressway), objectives of the trip, and so on. Hundreds ofrules
might be active, but the principle of decomposirg the situation, and
relevant history into familiar buildirg blocks would be the same.

I]F TTIilBN
ftat tire vhile driviug red saab on eEpressyay ll 

tt?::^ptttj.Tjouble
' ' 

ll rane, ger spare

- matrxtd =ith rals x hutldtag hlocts -

IF propertiestag Tf lHItrN action
I

o
o

msl$ condition rnotlon

turn tovard stidcar t t stid t
Gar t flat tire moYrngl t slov dovn

car
o
o
o

t oil loY stopped; turn off ignition

road

road

road tSpe car cond. road sign

continue at speed limit

Dreoare to stos
I
$

i gooe
itop sigl

nona

r t t
It roatl- tray flat t I uull to trouble lane

t
o
I

slze i--sSHr,
tire I flat t t get spare

tire
a
o
o

small lov s t use tire pump

o
o
o

I
I
I
I
I
I
I
I
I

Figure 2.6 An Example of Rule Parallelism.
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Adaptation-By Credit Assignment

We have said nothing so far about the agent's abiliry to adapt. We have

described the agent's performance system, its capabilities at a paftrcular

point in time. Now we have to look into ways of changing the system's

performance as it gains experience.

The first step is to look more closely at the role of rules in the

performance system. The usual view is that the rules amount to a set of

facts about the agent's environment. Accordingly, all rules must be kept

consistent with one another. If a change is made or a new rule is

introduced, it must be checked for consistency with all the other rules.

There is another way to consider the rules. They can viewed as

hypotheses that are undergoing testing and confirmation. On this view,

the object is to provide contradictions rather than to avoid them. That

is, the rules amount to alternative, competing hypotheses. 
'When 

one

hypothesis fails, cornpeting rules are waiting in the wings to be tried.

My inclination is toward this latter view.

If there is to be a competition, there must be some basis for resolving

it. It is also clear that the competition should be experience based. That

is, a rule's abiliry to win a competition should be based on its usefulness

in the past. The objective is closely related to the statistician's concept of

building confirmation for a hypothesis. We want to assign each rule a

strength that, over time, comes to reflect the rule's usefulness to the

system. The procedure for modiSring strength on the basis of experi-

ence is often called credit assignment.

Credit assignment is a relatively easy task when the environment

produces direct payoff (reward, reinforcement) fot an action. Ifwe turn

a k.y and the car starts, that action quickly becomes paft of our

repertoire. Credit assignment is much more diflicult when some early

stage-setting action makes possible a later useful outcome. The problem

is clearly exposed ifwe examine the play of a board game, say checkers.

Taking a triple j.r-p in checkers, when possible, almost always leads to a

win and, as with the ignition k.y, it is easy to credit a rule that takes that

action. But how should a neophyte credit a rule when that rule's action

is followed four moues later by the triple j,r-p option? How does the
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neophyte know it was that rule, not some rule acting earlier or later, that

was critical in setting the stage? Or perhaps the outcome was simply a

mistaken rnove on the part of the opponent. Yet good play in checkers,

and sophisticated actions Ln cAs, depend on crediting anticipation and

stage setting.

The credit-assignment problem becomes still more complicated

when we consider a perficrmance system with many rules active

simultaneously. As the system continues to adapt, some rules will be

useful and some will not. Some will decompose the environment in

ways that offer useful guides to action and some will not. Moreover,

long periods often elapse before the consequences of current action

are obvious. Some actions can be hurtful in the short run but helpful

in the long run, much like a gambit in chess. 
'Vfith 

all of these

impediments, how does an agent determine which rules are helpful

and which are obstructive?

Here we can use another metaphor to advant2g€, a standard link

between competition and capitalism. Each rule can be treated as a

producer (factor, middleman) buying and selling messages. The "sup-

pliers" to a rule are those that send messages satis&itrg its condition(s);

the "consumers" for a rule are those that act on its message. A rule's

strength is treated as its cash in hand. When a rule buys a message, it

must pay for it from its cash in hand; that is, its strength is reduced.
'When 

a rule sells a message, its strength is increased by the amount paid

to it by the buyer (see Figure 2.7).

*upplier nrle Il. consuilter
b R rncssrge rnrssige for R

pa5rment

t6l
pe5rment

tEl

R. eftcr trensaction- @= 60 - 6 + t

Stage-*etting nrler leeding to reward become *trong.

Figure 2.7 Credit Assignment-Changing Rule Strength.
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Competition is introduced through a bidding process (see Figure

2.8). Only rules that have their conditions satisfied are eligible to bid,

and only the winners gain the right to post ("se11") their messages. The

size ofa rule's bid is determined by its strength. Stronger rules bid more.

The winners then pay their suppliers; the losers pay nothing.

After winning, the winners have less strength and their suppliers

have more strength. The winners, however, have gained the right

to post their messages, with the possibiliry that they will have con-

sumers that will bid and pay. In this setting, a winning rule will

thrive-get stronger-only if its consumers pay more than the

amount bid in the first place. The old capitalist adage holds: buy cheap

and sell dear!

Just how does this spate ofbuyirg and selling help the adaptive agent

solve its credit-assignment problem? To make the connection, we must

determine the ultimate consumers (buyers). They arc the rules that are

active when the agent receives an overt reward from the environment.

The agent knows that these actions are desirable, as in the case of the

triple j,r-p, so the rules directly responsible are automatically strength-

ened. We canthink of the overt reward as being shared among the rules

Lfu
{ \ = / \

F
ft-J

OBJECT TO LEFT THEN TURN HEAD fiO LEET

OBJECT TO LEFT THEN TURN HEAD fiO RTGfiTT

R.ule* act es competing h5ryotheres; the rtronger t,he nrle
the nrone likely it ir to rin the comPetition.

Ooly rinning nrlet pott their messeges.

Figure 2.8 Rule Competition in a Parallel Rule-Based System.

,l

@
@

IF

IF
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active at the time of reward. This is much like Pavlovian conditioning-
with immediate reinforcement of desirable actions.

Now consider any rule that is an immediate supplier of a strength-
ened "ultimate-consumer" rule. Assume that this supplier helps set the
stage, making it possible for the ultimate-consumer rule to evoke a
reward from the environment. As the rewards make the ultimate-
consumer rule stronger, it makes larger bids because its bids are propor-
tional to its strength. The supplier in turn becomes stronger because of
the larger payments it receives. After a while, the suppliers of the
supplier will benefit from this increasirg strength ifthey set the srage for
the supplier. We can iterate this argument over any chain of suppliers
that progressively sets the stage for some overtly rewarding action. A11
rules in the chain will eventually be strengthened because of the pro-
gressive strengthening of their consumers.

A question: 
'W'hat 

if the supplier rule sends a message that activates
an ultimate-consumer rule, but " cheats" by not appropriately setting
the stage for the consumer's action? The consumer rule will then,
of course, not be rewarded, even though it has paid its supplier. It
will have paid without being paid, with a corresponding reduction
in its strength. As a consequence, the next tirne around, the cheating
supplier will be paid less by the consumer. Because the supplier is
earlier in its strength-building process than the ultimate-consumer
rule, its strength will soon fall below the point where it can win
competitions. This is particularly true if there are other rules that do
set the stage for the ultimate-consumer rule. Cheaters do not thrive
under this regime. Again, this argument can be iterated over any chain
of suppliers.

This credit-assignment procedure, which I call a bucket brigade algo-
rithm, strengthens rules that belong to chains of action terminating in
rewards. The process amounts to a progressive confirmation ofhypoth-
eses concerned with stage setting and subgoals. Theorems from mathe-
matical economics can prove this outcome for statistically regular
environments, and computer simulations show that it works in a wide
variety of environments, particulrrly when combined with the rule
discovery process.
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INTnnNAL Moours

There is a modification to the bidding process that furthers the con-

struction of internal models. It is based on the intuition that, other

things being equal, an agent should prefer rules that use more informa-

tion about a situation. In our syntax, the amount of information used

by r rule depends upon the number of #'s in the rule's conditions. A

rule is more specificif it has fewer {t's in its conditions (see Figure 2.5).

For instance, the condition + + + accepts any message, so it

provides no information whatsoever when it is satisfied. At the other

extreme, the condition 11, 1 is satisfied by one specific mess age, ̂

string of 1's, providing the maximum possible information. To imple-

ment the preference we must modifir the bidding process. The simplest

way is to make the bid proportional to the product of strength and

specificiry. That way, tf either the strength or the specificify is close to

zero, the bid will be close to zero; only rf both are large will the bid be

large.

Consider now a competition between a more specific rule, r1., and a

less specific rule, e . For a concrete example (see Figure 2.9), let 11' be

the stimulus-response rule

IF (there's a moving object in the environment) THEN (flee),

and Let A be the stimulus-response rule

IF (there's a small moving object nearby in the environment)

THEN (approach).

Ary message concerning a moving object will satisft 11, but only a

subset of those messages will satisfy 12, namely those messages pro-

claiming the additional properties that the object is small and nearby.

However, when there is a small moving object nearby, 11' and 12 wtll,be

in direct competition . If 11, and 12 erc roughly equal in strength, 2 will

have the advantage because of its higher specificify. That rs, 12 makes a

bigger bid because it uses more information about the situation.
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Mess4ge from detectors

I
/.6.- 

*t-9 lFlmoYiqs1*)...(s) ffiW nee

,r(._y' 
Rule @ IF (moviqgX$Xsmall)(near)ffiEHl approach

set of moviqg,
near obi

Figure 2.9 A Rule-Based Default Hierarchy.

Wb are now in a position, for the first time, to discuss the formation
of internal models. In effect, the two rules 11, and 12 form a simple
model of the environment. It is an apparently unresolved model, be-
cause r1. and 12 arc contradictory when they arc active simultaneously.
Flowever, a closer look at this contradiction reveals a kind of symbiosis
between these two rules. Assume this agent, a "freg," lives in an
environment where most moving objects, "herons" and "raccoons,"

ate dangerous, but small moving objects, "flies," are prey. The more
general rule, 11, becomes a kind of default to be used when detailed
information is lacking: "If it's moving, it's dangerous." Still, if this rule
were always invoked, the ftog would starve to death because it would
flee its food, flies as well as everything else. The more specifi c rule, 2,,
on the other hand, advocates the correct action when flies are around. It
provides an exception to the default rule, and because it is more specific
it outcompetes the default when the additional constraints "small and
nearby" are present. The followirg argument reveals the symbiosis.
Every time the default 11 makes a mistake, it loses strength. When 12

F

set of all movrng obiects

Rute Q correct incorrect



Adaptive Agents

wins, preventing the mistake, it saves 11 the loss. Thus, the presence of

12, though it contradicts 11,, actually benefits r1 . The two rules together

provide the ftog with a much better model of the environment than

either alone would provide.

In formirg inrernal models with the present syntax, 'we will find it

easier to discover and test a general rule than a specific one. To see

this, consider an agent that has L - 100 detectors. The simplest

condition that uses any information at all is one that relies on a single

detector, having +'s for all other detectors. A case in point would be

the default rule for our ftog, which uses only the property "moving-"

Just how many distinct conditions are there that rely on only one of

the 100 detectors? We can count them as follows. Select any one of

the 100 detectors (positions) as the properfy we're interested in. We

then have to decide whether the condition is to require the property

to be presenr (1) or absent (0). That is, we can select arry one of 100

positions, and there are fwo possibilities for the position. So there are

jusr 200 different possible conditions that use only a single detector.

All 200 of these conditions could be tested for usefulness in a short

time.
At the other extreme is a condition that uses all of the detectors.

Here, we have to select one ofthe two possibilities, present (1) or absent

(0), for each of the 100 positions. So there are

2  X  2  X  2  X  2 - 2 l a o  = l Q 3 o

100 +

distinct conditions of this kind. This huge number is much larger than

the estimated lifetime of the universe measured in microseconds-

Clearly, it is not feasible for an agent to try all such conditions.

General conditions are not just fewer in number, they are also

tested more frequently by the agent in rypical environments. As a trial,

let's assume that all messages from the detectors are equally likely.

Then a given detector will be on (1) about as frequently as it is off (0)-

This is the same as saying that about half of all messages will have a given

value, say 1, fo, a given detector. Consider then the general condition
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1+++. +. It will be satisfied about half the time! It is being rested
quite frequently, so credit assignment will quickly designare an appro-
priate strength to a rule using this condition

Contrast the only slightly more specific condition 10+++ . +.
Halfofthe messages will contain a 1. atthe first position, bur only halfof
those will also have a 0 at the second position. That is, only
y, x y, - /+ ofthe messages will satisft 10+++ . . . +, so that condi-
tion gets tested only halfas often as 1+++ . . . +. It is easy ro see that
the testing rate drops by % for each additional detector value used bv the
condition.

DEraurr HrnnARcr{rES

Obviously, useful general condilisns-defaults-are relatively easy to
find and establish. The more specific exception rules take progressively
longer to find and establish. This suggests that, under credit assignment,
agents early on will depend on overgeneral default rules that serve
better than random actions. As experience accumulates, these internal
models will be modified by additg competing, more specific exception
rules- These will interact symbiotically with the default rules. The
resulting model is called a default hierarchy (see Figure 2.g). Of course,
evolution rnay have "wired in" some specific rules (reflexes, for in-
stance) produced by generations of genetic selection. It may also hrp-
pen that highly specific conditions develop in response ro a common,
salient detector-message. But neither of these cases contradicts the
principle that default hierarchies expand over time from general default
to specific exceptions.

Now we need to look at the mechanisms att agent can use to
generate candidates for the default hierarchy.

Adaptation-By Rule Discouery
The first process that comes to mind for rule generation is to carry out a
kind of random trial and error, making limited random changes in the
rules already in place. This procedure may work on occasion, but it
does not make much use of system experience. Tluly random changes
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are like coin flipping: what happens next does not depend on what has

happened before. To make random changes in a complicated internal

model such as a default hierarchy, in the hopes ofimprovitg it, is much

like making random changes in a complicated recipe. Most changes will

not be for the better.
'What 

other options are there? Weill do better if we can assure some

kind of plausibitity for the newly generated rules: they should not be

obviously wrong when viewed in the light of past experience. In most

cases, plausibiliry arises from the use of tested builditg blocks. If we go

back to the "flattire while driving a red Saab on the expressway," we see

that plausibiliry resulted from using well-known building blocks to

describe the new situation. If we follow this line, the idea would be to

find components-building blocks-for individual rules. Then, intu-

ition would say, a component that consistently appears in strong rules

should be a likely candidate for use in new rules. 
'With 

enough strong

rules, and useful ways oflocating components in them, w'e can generate

a vast number of new rules without ever departittg from tested compo-

nents. The new rules are only plausible candidates-they may not

prove out-but the process should be considerably more efficient than

random trial and error. And, of course, there rrray be ways of discover-

itg new rule components, opening new ranges for testing.

A brief look at the role of tested builditg blocks in technical innova-

tion will help us understand the role of building blocks in the specific

case of rule innovation. A scan of history shows that technical innova-

tions almost always arise as a particular combination of well-known

building blocks. Take two technological innovations that have revolu-

tionized twentieth-century sociery the internal combustion engine

and the digital computer. The internal combustion engine combines

Volta's sparking device, Venturi's (perfume) sprayer, a water pump's

pistons, a mill's gear wheels, and so on. The first digital comPuters

combined Geiger's particle counter, the persistence (slow fade) of

cathode ray tube images, the use of wires to direct electrical currents,

and so on. In both cases most ofthe building blocks were already in use,

in different contexts, in the nineteenth century. It was the specific

combination, among the great number possible, that provided the
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innovation. 
'When 

a new building block is discovered, the result is

usually a range of innovations. The transistor revolutioni zed devices

ranging from major appliances to portable radios and computers. Even

new building blocks are often derived, at least in part, by combining

more elementary building blocks. Transistors were founded on knowl-

edge of selenium rectifiers and semiconductors.

ScrrnMATA

What about building blocks for rules? The most direct approach, for the

rule syntax used here, exploits the values at selected positions in the rule

string as potential building blocks. For instance, we can ask whether or
not it is useful, on average, to start ^ condition with a 1 at the first

position. In the earlier example of the frog, the first position corre-

sponds to the movement detector. For the ftog, the question about

using a 1, at the first position as a common building block for new rules

translates to a question about the importance of movement in the

environment.

This approach, treating the values at individual positions as building

blocks, corresponds closely to the classical approach for evaluating the

effects of individual genes on a chromosome. Each gene has several

alternative forms, called alleles. The different alleles for the human gene

for eye color, for instance, produce blue eyes, brown eyes, green eyes,

and so forth. Or we can look to Mendel's experiments with pea plants
(nicely described in Orel, 1984)-the experiments that founded g.-
netics. Among the genes Mendel investigated was one that controlled

the surface texture of the peas. One allele produced a smooth-surfaced

Pea, another produced a rough surface. Genes commonly have alterna-

tive forms, and these different forms usually have distinct observable

effects on the organism. The objective in genetics, as it is for rules, is to

determine the effects of different alternatives at different positions.

In mathematical genetics there is a classical approach to determining

these effects. It is to assume that each allele contributes somethirg,

positive or negative, to the overall fitness of the organism. The contri-

bution is estimated by lookirg at the average fitness of all the individuals
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carryLng that allele. Smooth-surfaced peas might tend to sprout more

often, so the smooth-surface allele would be assigned an appropriate

positive contribution. At least in principle, we could proceed through

each of the genes and alleles in this way, determining the contribution

of each. The overall fitness (value, strength) of any chromosome would

be the sum of the contributions of its constituent building blocks, the

alleles.
There are two major difficulties with the position-by-position ap-

proach. First of all, a given allele may have different effects in different

environments. Blue eyes rnay be valuable in the far north and detrimen-

tal at equatorial latitudes. More important, alleles interact. It is rare that

the effects of any gene can be isolated, as in the special cases of eye color

or surface character. Particular genes affect many characteristics and the

effects of different genes overlap. In short, fitness in a given environ-

ment is a nonlinear function of the alleles.
'When 

we change focus from genetics to IFITHEN rules, the first of

these difficulties is handled automatically. The conditional part of the

rule-the IF-automatically selects the "environment" in which the

rule will act. So the evaluation of the parts of the rule proceeds only in

the environments for which it is designed. The second difficulry-

nonlin earnty-is not so easily disposed o{ whether in genetics or rules.

I am about to propose an approach that works for both.

To begin, we must allow for building blocks that use more than a

single position in the strirg. That is, we would like to allow a building

block that encompasses the first three positions, or a builditg block

that encompasses positions !, 3, and 7 . For our ftog this could be a

building block that arnalgamates "moving:' "small l' and "nearby." 
'We

need a simple way to designate such a builditg block. The fact that we

want to look at some specific positions and ignore others suggests that

we make new use of the o'don't care" symbol that was helpful in the

syntax for rule conditions. Let's use a new symbol, "*," so we don't

confuse the fwo uses. If we are interested in a building block that

places a I in the first position of a condition, we designate that

building block by
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1 * * * * .  .  .  *

|  < -  t - l t

if we are interested in a building
position, a # at the third posirion,
designate that buildi.g block by

block that places a I at the first
and a 0 at the seventh position, we

1*+*0**

l e  L  +  |

A building block defined in this way is calle d a schema; the positions in
the string that contain symbols other than a * are called the defining
positions of the schema.

Note that the {t plays a very different role from the *. Recall that the
set of all possible conditions for rules is specified formally as {1,0,+}.,
the set of all strings of length L using the alphabet {1,0,+}. Each
condition specifies a set of messages it will accept. We can interpret a
schema in a similar way. In defining the schema, we constrain some of
the positions in the condition, the defining positions, to have one of the
values from {1,0,+}, and we make no requirement on the remainirg
conditions, indicating this by r *. Formally, then, the set ofschemata for
conditions is the set of all strings of the for- {1,0,+,*}t. An individual
schema from {1,0,+,*}t specifies the set of all conditions that use that
building block, much as an individual condition from {1,0,+}. specifies
the set of messages it accepts.

This mathematical convention, that the condition is identified with
the set of messages it accepts, while the schema is identified with the set
of conditions that contain it as a buildirg block, helps distinguish +
from *. The condition 1+111 . I accepts exactly two messages,
10111 . I and 1111,1 . 1. The schema 1*11,1 1., on the other
hand,  appears in  three d is t inct  condi t ions,  1+111 .1. ,10111 ! ,
and 111n 1. The first of these conditions accepts the two mes-
sages, 10111 l and 11111 . L, but the second condition accepts
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only one message, 1,01,1,1 1., and the third condition also accepts

only one message, 1,1,111 1. The * helps us define different sels of

conditions, while the # helps us define different sets of messages.

CnossrNc Ovnn AND THE FrrNnss oF ScrrEuATA
'With 

this notion ofbuilding blocks in hand, we can discuss the genera-

tion of plausible new rules in a careful way. It turns out that the

metaphor from genetics can be extended to suggest an actual pro-

cedure. The metaphor thus far is the following. The gene positions on

the chromosome correspond to the positions on the string defining the

rule; different alleles correspond to the different values {1,0,#} that can

be placed at each position in the rule string. We can go further.

Mathematical genetics commonly assigns a numerical value, called

fitness, to each chromosome. That value indicates the abiliry of the

corresponding organism to produce surviving offspring, as in the case

of Mendel's peas. In similar fashion, the strength assigned to a rule

under credit assignment measures the rule's usefulness. If "survival" is

mapped to "usefulness," then fitness corresponds closely to strength. To

extend the metaphor, then, let's treat strength as the counterpart of

fitness.
The extension suggests a procedure. Fit organisms are successful

parents, producing offrpring that grow to be parents in turn. This

analogy suggests treating strong rules as parents. Some useful ideas

follow from this correspondence.

I Offsprirg rypically coexist with the parents, usually replacing

other, weaker contenders in the environment. In a rule-based

system this affangement is important, because strong rules

represent knowledge won. Llnder competition, strong rules

usually determine the agent's actions, so they are the core ofthe

agent's internal model.

I Offipring are not rdentical to the parents, so this is a genuine

discovery process. Offspring, in both genetics and rule-based

systems, amount to new hypotheses to be tested against the
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:il1:::ilT;,i:,.-i,1,'.:'i,1il.;iff f ::"#lJ:i,:::f ,K
binations in the offspring. It is this recombination of sets of
alleles that is most interesting from the point of view of rule
discovery so we will discuss it at length.

Crossing over is the mechanism that breeders exploit when they
cross-breed superior plants and animals. It is a close-to-literal descrip-
tion of what happens to a parr of chromosomes when they exchange
genetic material. During the phase when the germ cells are being
forrned (meiosis), a chromosome from one parent may cross over the
chromosome from the other parent, forming a kind of X-shape (this
arrangement can actually be seen in micrographs of the DNA). Then,
say, the "tpp.r arms" of the X are exchanged (see Figure 2.10). The
result, after separation, is a pair of chromosomes that differ from the
parental chromosomes. Each contains a segment, from the "tip" to
the point of crossing, from one parent and then continues to the other
end with a segment from the other parent.

We know that crossing works well in combining superior charuc-
teristics of corn or race horses, but is it subtle enough to work with
rules? In the case of the corn or race horses, 'we know what characteris-
tics we want to enhance, and we select the parents accordingly. 

'W'hen

we look to rule-based agents, we have no a priori list of characteristics.
Our only measure is the overall strength of each rule. Individual build-
itg blocks (sets of alleles) within the rule do not have individual values.
How can we make judgments about individual building blocks? More
to the point, can crossing over implement such j,rdgrrents automat-
ically?

Let's start with the question of estimating the value ofbuilding blocks
(schemata) when our only data are the strengths of whole rules. Note
first that simple schemata-schemata where almost all positions are
occupied by *'s-will have many occurrences in an agent with many
rules. For example, if the agent has many rules, a large portion of them
will usually start with a 1,. All are exemplars of the schema 1***
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Intuition would say that that schema is a useful building block ifthe rules

that contain it are, on averzge, stronger than other rules. To capture this

intuition precisely, we rnust be able to compare the averuge strength of

the rules carrying 1*** . . . * to the overall average strength of the

agent's rules. Call the average strength of all the agent's rules ,4. First

determrne A, then determine the average strength of the rules using

Cr,ossoYer Operetor

Q crossover point
\

l 1  I  1  0  #  #  # l  1 1  1  I

ffi

Genetic Algorithm

ffi
ffi

Offspri4g

Strength
Ifitne*r]

Crorr-
oYerParents

St  1  o  #  #  #

$ *  #  o  1  I  I

o$offio 1
0 1 0 # # 1 0

#NoN# #
o # 0 1 # # 1

# # # 1 0 0 1

0 # o # # #

oNoNo
S*  o  1  #  #

1

#

#

I

1

#

1

1SNoNol
Ave- Streqgth of All Indiqs. ;

Ave. Streqgth of Instances of S****** 
= (l+0+l)r3 : 2t3

Ave. Stre4gth of Instances of -N*NN ** = (2+2+l)t3 : 5t3

Figure 2.10 Crossover and Genetic Algorithms.
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1 *** Call  the latter S(1***. . .  *) .  We consider the schema
1*** . . . * as better than average if S(1*** . . . *) ir greater than A.

Because this is only an estimation procedure, it can be wrong in
particular cases. It rnay be that the agent's rules are peculiar in some way.
For example, the agent's past experiences may not give a reliable cross-
section of its environment vis-i-vis the schema 1***... *. Then the
strengths of the rules using that schema will be skewed in some way.
Human agents often operate under such misapprehensions. Neverthe-
less, the estimate does provide a guideline where we had none before.
And if it is wrong, subsequent estimates will tend to correct the error.
The procedure is much like the confirmation of a hypothesis through
continued experimentation.

If'we greatly simplift the relations between scherrtata, we can think
of them as formi.g a kind of fantastic "landsc ape." Each schema is a
point in the landscape, and the corresponding schema average is the
height of the landscape at that point. Our objective is to find "hills" in
this landscape that are higher than ones akeady explored. Actually,
schemata as subsets of the space of possibilities form a complicated
lattice of inclusions and intersections, but the landscape metaphor is a
useful starting point.

Stuart Kauflinan and his colleagues have studied simple versions of
these landscapes-the n-k landscapes (see Kaufiinan, 1994). A/-k land-
scapes have built-in statistical symmetries that make mathematical anal-
ysis possible. Analysis of these special cases, though it is not easy, does
reveal some interesting guidelines, which rnay be gen eraltzable to the
more intricate relations that hold in the space of schernata-but that is
yet to be established.

Even if the landscape metaphor can be exploited, there is still a
problem. For each schema x of rnterest, we have to calculate the average
S(") if we are to be able to estimate the value of that schema.Just how
many schemata are there? The number is very large, which helps by
providitg many alternatives, but hinders by requiring the calculation of
many averages. To get some feeling for how large the number is, let's
look at the different schemata that can be found in a single condition of
length L. Consider the condition

*
*
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10+10+ . . . 10+

<- L -+ |

Ifwe replace some of the symbols in this string by *", the result will be a

schema that is a buildirg block for the condition. Examples of such

rep lacemen ts  a re  1 * * * . .  * ,  10+* * .  . * ,  *0 * *0 * . . . *0 * ,  and
** . . . ***10+. How many different ways can we insert *'s in the

given string? At each position we have two alternatives: we can either

retain the symbol that is already there or we can insert a * . So there are

2 X 2 X X 2 : 2 L

<- L -+ I

different schemata for a single condition. For L - L00, there are

21oo = |  Q3o

schem ata. This is an enormous number. If we were to calculate one

million schem a averages per second, it would still take longer than the

estimated life of the universe to do one round of averages for all of the

schematafor a single condition.

This leaves us with a considerable dilemma. It is not feasible to carry

out the detailed calculations of schema averages that would let us

conduct ^ detailed survey, and sophisticated analytic models provide

limited guidance even in simple cases. What can we do?

GENnrrc ATcoRITHMS

For evolutionary processes, where there is no apparatus for calculating

S-averages, the dilernma holds a fortiori. Yet the interaction of repro-

duction, crossover, and selection does discover and exploit building

blocks. To give one example, the Krebs cycle is a useful building block,

discovered early in evolutionary history, that has been used by a tre-

mendous range of species. It is a basic eight-step metabolic cycle
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common to almost all cells that use oxygen, ranging from aerobic
bacteria to humans. The genes that specifli this cycle have almost
identical alleles over this diverse range of cells. The Krebs cycle is just
one example among many; any text on molecular biology will supply
hundreds of other examples. It seems worthwhile to try to understand
how evolution accomplishes this overwhelming computational task
with no overt computatio nal facility.

We can get a ftitly accurate picture of what happens, even if we
throw away most of the details. Simphry the whole reproduction cycle
to consider only the reproduction and recombination of "chromo-
somes." Further simplift the process by representing the chromosomes
as strings. Then use only two genetic operations: crossing over and
mutation. Crossing over (crossouer, for short) has already been described.
Mutation, more precisely point mutation, is a process whereby individual
alleles are randomly modified, yielding a di{ferent allele for the gene. In
the rule strings, mutation could randomly flip a 1. at some position to a
0 or a #. In biological systems crossover is much more frequent than
mutation, often as much as a million times more frequent.

To simulate the process of producing a new generation from the
current one, we use the followi.g three steps:

Reproduction accordirg to fitness. Select strings from the
current population (this might be the set of rules for the agent)
to act as parents. The more fit the string (the stronger the rule),
the more likely it is to be chosen as a parent. A given string of
high fitness may be a parent several times over.

Recombination. The parent strings are paired, crossed, and
mutated to produced offrpring strings.

Replacement. The offspring strings replace randomly chosen
strings in the current population. This cycle is repeated over
and over to produce a succession of generations.

The k.y question is, what happens to building blocks (schemata)
under this procedure? A bit of arithmetic is helpful here. To make

1,.

2 .

3 .



Adaptiue Agents 7 1

things easy let the fitness of a string directly determine the number ot

offspring it has in a given generation, and set the average fitness of the

overall population to 1,, so that the average individual produces 1

offspring. (None ofthis limits the validiry ofthe point I want to make; it

merely simplifies the calculations.)

Consider the building block 1** . . . * and for purposes of calcu-

lation assume it has just three instances in the population, with fit-

nesses 1,0, and 1 respectively (see Figure 2.10). Let's see what happens

to this building block under step (1). The three instances of L**

will produce a total of 1, + 0 + 1, - 2 offspring, or an average

of % offspring per instance. Note that this average is simply the

average S(1**... *). Because these are the only strings carryuns the

building block L** . . .*, that building block will have only two

instances in the new generation (assumitg the parents persist for only

one generation). Because S(1**... *) - 2/z is less than overall popu-

lation average A - 1., this reduction in the number of instances of

L ** is the outcome advocated by our earlier estimation pro-

cedure.

To see what changes when the numbers change, let's look at a

second, more intricate building block in the same population. Consider
*0*++** and assume it also has three instances, with fitnesses 2,

2, and 1 respectively (see Figure 2.1,0). The three instances will produce

a tota l  o f  2+2+ 1-5 of f ipr ing,  or  an average of  % of fspr ingper

instance. Again the outcome is just as the estimation procedure would

advoca re :  S ( *g *4+* * . . . * )  -%  i s  g rea te r  t han  A - I ,  so  t he re

should indeed be more instances of *0*++** . . . * in the next gener-

ation.
'We 

could repeat this calculation for each building block present in

the population, obtaining in each case the outcome advocated by the

estimation procedure: under reproduction accorditg to fitness, above-

average building blocks are used more frequently, and below-average

are used less frequently.

For the mathematically inclined reader, this result can be given a

succinct form. For ar,,y schema b belonging to {1,0,*}r, let M(b,/) be the

number of instances of sche rna b in the population at generation /. Then
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M(b, t + 1) : S(b, t)M(b,r)

gives the number of instances in the next generation, at t + 1., after
reproduction. Here S(r,/) is the average strength of the instances of b at
time t, akeady defined.

This is precisely the result desired, so why complicate the procedure
by adding the crossover in step (2)? A rnoment's thought makes the
reason obvious. The reproduction in step (1) simply copies strings
already present; it does not produce any new combinations. In other
words, step (1) does not produce any new hypotheses, so the agent
would be limited to the best of the hypotheses present in the initial
population. No matter how large the initial population, this canonly be
a minuscule sample of the possibilities. In a complex, changing envi-
ronment, an agent using only step (1) is unlikely to fare well against
agents that can generate new hypotheses. That is where crossover
comes in.

Erpncrs oF CnossovER

Crossover can recombine schemata without greatly disturbirg the de-
sirable outcome ofstep (1).To see this, we have to take a more careful
look at exactly what happens when two real chromosomes cross. The
point at which they cross is not predetermined. In fact, the position at
which the two cross over is about as likely to be one position as another
(setting aside some skewing, caused by centromeres and other particular
pieces of chromosom aI apparatus) . For present purposes we carl assume
that the point of crossover is chosen at random along the string.

'What 
happens to a buildirg block (schema) when the crossover in

step (2) follows the reproduction of step (1)? We'lI see that the effect
depends on the length of the schema. That length is the number of
possible crossover points between the outermost of the schema's defin-
itg positions (recall that a definirg position is ̂ ny position without a *).

For example, in the string *Q*+ +** . *, positio ns 2, 4, and 5 are the
defining positions, so the outermost defining positions are positio ns 2
and 5. There are three possible crossover points between these outer-
most positions, so the length of schema *0*++**. . . * is 3.



Adaptiue Agents

Shorter schemata are less likely to be disrupted by crossover, because

crossover cannot "break up" a schema unless it falls within the outer
limits of the schema (see Figure 2.1,1). Schernata not broken up will be

passed on to the next generation, as dictated by step (1). On a string of
length L there arc L - 1 possible points of crossover (the points between
the genes). The chance of the crossover point falling within the outer
limits of a schema is the length of the schema divided by L - 1. So in

the example *0*++** . *, with | - 100, there are only 3 chances

out of 99 that crossover will disrupt the schema. That is, 96 times out of

99 the schema will be passed intact to the next generation. The

reasonirg of step (1) holds.
In mathematical form, if L(b) is the length of schema b, then

L(b)/(L - 1) is the probabiliry that crossover will fall within the outer
limits of b, and 1. - L(b) / (L - 1) is the chance that crossover wtll. not
fall within the outer limits of b. If we assume that every crossover
falling within the outer limits actually disrupts the schema, then
1 - L(b) / (L - 1) is the chance the schema will not be disrupted.
Accordingly, our earlier formulation, modified to take account of this

effect of crossover, becomes

M ( b , t +  1 )  _ [ 1  - L ( b ) / ( L -  1 ) ] s ( 4 A M ( b , t ) ,

where M(b,t + 1) is the average or expected outcome because we are
now dealing with a chance process, crossover.

Longer schemata, of course, have a much larger chance of being

broken up; for a schema oflength 50, when L : 100, crossover will fall

within the outer limits more than half the time. There are two reasons

why this disruption oflonger building blocks is not much of aproblem.
First, the above-average shorter schemata are the ones discovered

early on. The reasoning is similar to that given for the early discovery of
less specific conditions in default hierarchies: A schema must have one
of the three letters {1,0,#} at each ofits defining positions. Thus, ifwe

select a pafiicular set of k defining positions, 3k varrants are possible. For
k - 4,there are therefore34 :81 distinct schematato be tested. Even

a rather small population can, in a short time, have produced a useful
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number of trials of all of these alternatives. Because the number of

defining positions for a schema is, at most, one more than its length,

short schemata have fewer variants. These variants will be tested rather

quickly, and if some are above average they will quickly be exploited,

like the early exploitation of general rules in a default hierarchy.

Before we continue, it will be useful to recall the earlier point that

Number of genes: 51
Number of points for crossing over: 50

Schema 1:

F s*l
Schema has 3 interior crossover points, so there are
3 chances in 50 that a randomly chosen crossover
point will fall in the scherna's interior.

Schern a,2:

Z0 -'l

Schema has 2O interior crossover points, so there are
20 chances in 50 that a randomty chosen crossover' point $rill fall in the schema's interior.

Instnnce of scherna I destroyed by crossover:
paint of,

If v_alues (alleles) at the defrning positions for a schemn are the same
on both chromosomes, then the ichema will not be disrupted, even
if the crossover point falls within the outer limits of the schema:

Figure 2. 1 1 Effects of Crossover on Schemata.
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there are approximately 1030 schemata present in ^ single string of

length L - 100. Even if we limit ourselves to schemata deftned on 4

positions, the number ofsuch schematapresent on a single string is still

large. In fact, for L - 100 we can show that there are about 4,000,000

ways to choose different sets of 4 positions. (A simple calculation shows

the number of distinct ways of choosing 4 things from a set of 100).

Every single string contains each of these 4,000,000 distinct sets of 4

positions, so each string exhibits one of the 81 possible variants for each

ofthose sets. Because there are only 81 alternatives for each set, we can

still be assured that a rather small population will test all of the alterna-

tives at all positions. Specifically, a population of a few hundred strings

can produce useful estimates for all of the 81 X 4,000,000 schemata

defined on 4 positions. A slightly more complicated calculation shows

that even if these schem ata are limited to a length of 10 or less, there are

still more than 40,000,000 of them. Nine times out of ten, such

schemata will be passed on to the next generation without disruption

by crossover. Similar reasoning holds, of course, for other small num-

bers of defining positions.

From this we see that, with the genetic algorithm, the agent tests

a very large number of schemata, even when we restrict our attention

to the shorter schemata that are largely undisturbed by crossover. This is

so even if the agent uses only a small number of rules (strings), because

one rule in itself is an instance of a large number of short schemata, as

we have just observed. It would be surprisirg if none of these

short schemata were consistently associated with above- average per-

formance.

The second reason that crossover's disruption of longer schemata is

not so troubling stems from the observation that more complicated

schemata are rypically formed from combinations of shorter, well-

established schematt. More complicated building blocks are usually

formed by combining simpler buildirg blocks. This fact reflects our

earlier observation that innovations, such as the internal combustion

engine, tend to involve a particular combination of relatively simple,

widely used building blocks. Moreover, devices like the internal com-

bustion engine become, in turn, the centerpiece of a wide range of still
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more complex devices. The result is ^ kind of hierarchy wherein
the building blocks at one level are combined to form the building
blocks at the next level. lJnder a genetic algorithm a similar hierarchy
forms, wherein the higher-level (longer) schem ata are Tpically com-
posed of well-tested, above- aver^ge shorter schemata. This hierarchy
ameliorates the disruptive effect of crossover, as we shall see very
shortly.

First of all, under a genetic algorithm, above-average schemata soon
come to occupy alarge proportion ofthe population, because ofabove-
average replication in step (1) Consider, then, two parent strings that
contain identical copies of the same schema. Crossover cannot disrupt
the schema, even if crossirg over takes place inside the schema's outer
limits. The alleles exchanged will be replaced by identical alleles (see

Figure 2.1I). It follows that crossover rarely disrupts longer schemata
composed of particular combinations of shorter, above-average sche-
mata. If some of these longer schemata are in turn above average, they
spread through the population. The hierarchy becomes more elaborate,
providirg for the persistence of still longer schemata. A hierarchy of
disruption-resistant schemata emerges, similar to the way default hier-

archies emerge.

Erpncrs oF MurerroN

One question about step (2) rernains. 
'What 

is the role of mutation? To
find out, we have to look to step (3), replacement. It is possible for a
given schema, under reproductions, crossovers, and replacements
("deathS"), to come to be present rn euery member of the population.
W'hen this happens, all members of the population contain the same
alleles at the positions on which the schema is defined. Say, for example,
that the schema 1*** . . . * is present in all members, so that all strrngs
in the population start with a 1. . Then we have no strings that start with
either a 0 or a #. In the set of all possible strings, {1,0,+}t, only Vz start
with a1,. So, by losingjust the two alleles 0 and # at positioo 1, we are
reduced to trying out possibilities in only % of the space {1,0,+}t!'Worse, 

once the alleles have been lost, the actions of reproduction and
crossover cannot replace them. LJnder these circumstances the allele is
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said to have gone to fixation. If k alleles have gone to fixation, we are

reduced to searching (tA)k of the space {1,0,+}t.
We might adopt the attitude that when an allele goes to fixation, the

genet-ic algorithm has established that allele's superioriry, so we need

not try the alternatives any further. unless we are very sure ofthe allele's

superioriry, this is a poor way to proceed. Our attitude has been one of

sampling and estimation, because [1,0,+]t is so large as to make it

infeasible to try all combinations of alternatives. Estimates can be

wrong, even after considerable testing. No matter how many trials

underpin our estirnate of the fitness of 1*** . . *, we cannot be sure

that there is not a better string in the two-thirds of the space not being

searched. This concern is particulrrly pressing when the value of a

given building block (schema) depends on the context provided by

other building blocks. It might be that the fitness of 0*** . . . * is vastly

enhanced in the presence of *11*+** .*, and that we have yet to

sample an instance of that combination. If the allele l atposition l has

gone to fixation, the genetic algorithm will have no chance to observe

the combination of 0*** * and *1,1*+** *o unless the 1 at

position 1 is driven away from fixation.
In mathematical form, if P*,/b) is the probabiliry that a mutation

will modify scherna b, then I- Pn u,(b) is the probabiliry that mutation

will not rnodify b. lnserting this factor, as we did for crossover, we get

M(b, t + 1) _ [1 - L(b) / (L- 1)]t1 - P*ut(b)ls(b, )M(b,t).

This formula, then, gives the number of instances of schema b we

expect in the next generation after steps (1) and (2) of the genetic

algorithm have been applied. This formula is, essentially, the Schema

Theorem for genetic algorithms.
Mutation, by occasionally changing an allele to one of its alterna-

tives, reopens the search. From time to time a 1, in the first position

will be changed to a 0 or a +. In so doing, mutation provides the

replacement that reproducrlon and crossover cannot. Calculations

show that this "insurance policy" can be invoked with a mutation

rate that is quite low compared to the crossover rate. This relation
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between mutation and crossover

biological systems mutation rates

crossover rates.

is in keeping with the fact that in

are orders of magnitude lower than

ConnnrNED ErrEcrs

We can now put together all three steps of the genetic algorithm to see

how they exploit above- avenge buildirg blocks in producing a new

generation. Step (1), reproduction accordirg to fitness, causes all sche-

mata to be treated accordirg to the heuristic based on the estimation of

schema averages: above-average schemata have more instances in the

next generation, below-average schemata have fewer instances. In step

(2), crossover generates offspring that are different from their parents,

producirg new combinations of the schemata passed on by step (1).

Crossover sustains the increased use of shorter, above-average schemata

but may disrupt longer schemata, particularly those not using shorter,

above-average schemata as building blocks. Schemata not tried before

may be generated by recombination of fragments when crossover dis-

rupts extant schemata. That is, crossover may generate new schemata

even as it recombines those already present. Mutation acts in step (2) to

provide an insurance policy against loss of alleles, and it can also

generate new schemata by altering the defining positions of extant

schemata. Finally, in step (3), the offspring replace strings already in the

population. This process introduces a "death rate" just sufficient to

keep the population at a constant size. These combined e{fects are

summarrzed in mathematrcal form by the Schema Theorem (in a form

closely related to the equation at the end of the previous section).

The most important feature of a genetic algorithm is its abiliry to

carry on this sophisticated manipulation of building blocks by acting

only on whole strings. We saw earlier that the number ofbuilding blocks

is so large that it is not feasible to calculate explicitly the estimates of

schema fitness that would guide increased or decreased usage of given

building blocks. The genetic algorithm does implicitly what is infeasible

explicitly. The whole-string operations (reproduction, crossover and

mutation) do not directly deal with schemata and carry out no computa-

tions involvirg them. Yet the algorithm acts as if such computations

were being made and exploited. Above-average schemata of one gener-
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ation are used more frequently in the next generation and below-average

schemata are used less frequently. This abiliry to manipulate large num-

bers of schemata implicitly through the explicit manipulation of a rela-

tively small number of strings is calle d implicit parallelism.

Viewing rule discovery in terms ofbuilding block manipulation and

implicit parallelism changes the outlook in another way. Consider a

biological population, say a human population. No individual in a

given generation is identical to any individual of the previous genera-

tion. Even the best individuals in a generation are never repeated in a

future generation. There will only, ever, be one Einstein. Here we have

a bit of a dilemma. If evolution "forgets" the best individuals in each

generation, what does it "remember"? Implicit parallelism supplies an

answer. Particular individuals do not recur, but their building blocks do.

This recurrence of building blocks is a famtliar feature of artificial

breeding. Every thoroughbred breeder knows that certain desirable

features are associated with particular bloodlines. These are the building

blocks that are combined by selective crossbreeding. Though we will

never agarn see Man o' 
'War 

or Citation, their building blocks will

appear ag rn and again.
Evolution "remembers" combinations of building blocks that in-

crease fitness. The building blocks that recur generation after genera-

tion are those that have survived in the contexts in which they have

been tested. These contexts are provided by (1) other building blocks

and (2) the environmental niche(s) the species inhabits. There is actu-

a$y an extensive hierarchy that is continually teste d at every level. At

the lowest level are particular, short DNA sequences that provide

standard tags. These help implement the DNA translation process, such

as the "start" and "stop" codes for translation of the DNA sequences

that make up the chromosome's alleles. At the next level are the alleles

themselves, and one level above that are combinations of alleles, the

coadapted al),eles, that code for enzymes that work well together. The

Krebs cycle is an example of such a coadapted set, remembered over

hundreds of millions of years.
The building blocks that we observe are, by and large, the robust

building blocks. The Krebs cycle is so robust that it occurs throughout

whole kingdoms of organisms. Under this view, evolution continually
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generates and selects building blocks at all levels, selected combinations
of established building blocks at one level becomirg the building blocks
of the next-higher level. Evolution continually innovates, but at each
level it conserves the elements that are recombined to yield the innova-
tions. 

'When 
a new building block is discovered at some level, it usuatry

opens a whole range of possibilities because of the potential for new
combinations with other extant building blocks. temendous changes
and advances ensue. The genetic algorithm, applied to rule discovery
mimics this process but with a much simpler syntax.

An Example: An Adaptiue Agent

fo, the Prisoner's Dilemma

The Prisoner's Dilemma is a two-person game that captures major
political and personal interactions in a simple, well-defined context.
The interested reader can learn about the history and importance ofthis
game in Axelrod (1984). The game is of particular interest because the
solution given by the theory of games is to avoid cooperation (called
defection) whereas, in actual repeated play, players discover the benefits
ofmutual cooperation. Let me describe the game in greater detail, then
show how adaptive agents learn to play.

In the Prisoner's Dilemma, each player has just two options at each
play, known colloquially as "cooperate" (C) and "defect" (D). There
are, therefore, four possible outcomes to a given play of the game:
(C,C), both players elect to cooperate; (C,D), first player cooperates
and second player defects; (D,C), first player defects and second player
cooperates; and (D,D), both players defect. The payofr (relative value)
of these outcomes is given by the followirg table:

Second Plaver

C (cooperate) D (defect)

First Player 
c (cooPerate) +3' +3 0,  +5

+"1., + 1D (defect) +5,  0
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For instance, the outcome (D,C) is worth *5 to the first player and 0 to

the second, as given by the pair (+5,0) in the table.

The minimax solution given by game theory minimizes the maxi-

mum damage the opponent can do. It is determined by comparing the

maximum damage under cooperation with the maximum darnage un-

der defection. If the first player cooperates (C,-), the maximuln damage

occurs when the second player makes the response D, yielding (C,D)

with apayoffof 0 to the first player. Ifthe first player defects (D,-), then

the maximum damage again occurs when the second player makes the

response D, but now the payoff to the first player is *1. Thus, the first

player suffers minimum damage by always defecting. The same reason-

irg holds for the second player. Thus (D,D) is the minimax solution.

It is evident from the table that both players can do better. If th.y can

come to mutually cooperate (C,C), both can earn *3 on each play, a

much better outcome than the minimax solution. In actual repeated

play, players discover the benefits ofmutual cooperation after trying out

various strategies, and the game rypically settles down to long bouts of

cooperation. Experiment shows that a quite simple strateg, tit for tat,

induces cooperation while punishirg defection. To understand this

strateg, we need to know more about the notion of a strategy for

playing the Prisoner's Dilemma.

A strategy for repeated play of the game uses the recent history of

play to choose one of the two options for the next move. Here, we

simplift by settirg a "hor rzon" so that each player can only remember

the past three outcomes. At time t, then, the history would be the

outcomes at t-3, t-2, and t-1,, Sxy (C,D), (C,D), and (D,D).-With this

horizon there are 4 X 4 X 4 : 64 possible distinct histories ranging

from (C,C) (C,C) (C,C) to (D,D) (D,D) (D,D). They are listedin the

history column of the table below. A strategy must specift, for each

history what move (C or D) the player should make.

The table presents a particular strategy, tit for tat. The reply of the

first player at time / ("tit") simplv duplicates the action of the second

player the previous time, t- 1, ("tat"). "W'hen a history ends in D,

therefore, the next action taken should be D, whereas if it ends in C, the

action taken should be C.
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We can assign each of the 64 histories an index. Assign index 1 to
history (C,C) (C,C) (C,C) and index 64 ro history (D,D) (D,D) (D,D).
Thus (from the table), the strategy might say under history I, (C,C)
(C,C) (C,C), cooperate (C); under history 2, defect (D); and so on
through history 64.

Index Historv Action

t-3 t-2 t-I

(c,c) (c,c) (c,c) c
(c,c) (c,c) (c,D) D
(c,c) (c,c) (D,c) c

j.,.) (c,c) (D,D) 
:

a

(D,D) (D,D) (D,D) D

tJsing the indexes for histories, a complete strategy can be represented
by 

" 
string with 64 positions. At the first position in the string we inserr

the action to be taken under history 1., at the second position the action
to be taken under history 2, and so on.

1,
2
3
4
o

o

a

64

Index (histories):

String (actions):

1 , 2 3 4
C D C D

64
D

The tit-for-tat strateg/, then, places a C at the odd-numbered positions
and a D at the even-numbered positions, yielding the string

CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD.

A quick calculation shows that even for a game as simple as the
Prisoner's Dilemma with a three-step horrzort, the number of possible
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strategies is overwhelming-264, which is approximately equal to 1,6
billion billion!

We can think of a player learning to play the repeated Prisoner's
Dilemma by starting o{fwith a smtll, set of sample strategies to be tested
against the opponent. We can also think of each strategy as a set of
stimulus-response rules, where the immediate past history is the stim-
ulus that determines which play is to be made in response. Adaptation,
then, involves (1) assignment ofratings to each of the strategies on the
basis of experience, and (2) invention of new strategies to replace those
that end up with low ratings. The rating of a strategy is merely the
average of the payoffi it receives when it is used against the opponent.
The genetic algorithm uses these ratings as fitnesses and generates new
strategies accordingly.

Repertoire of Strategies
(player A)

Average Payoff

(against player B)

CDDCCCCDCCDCDDDCDDCCDCD .
DDDDDDDDDDDDDDDDDDDDDDD .

:...DDDDCCCCDDDDCCCCDDD 

.

a

CCCCCCCCCCCCCCCCCCCCCCC . .

DCDCCDCCC +0.5
DDDDDDDDD -0.4

DCCCCDDDD +0.7

CCCCCCCCC

It is an interesting sidelight that we can anticipate what schemata
(building blocks) will be used by the genetic algorithm, because we
know that tit for tat is a favorable strategy. C's at even positions and D's
at odd positions are components of a tit-for-tat strategy, so that combi-
nations of C's and D's satis$ring this requirement should enhance
performance. For example, the combination CDCD placed so that the
C falls at an odd position would be a useful schema. According to the
schema theorem for genetic algorithms, such building blocks should
appear ever more frequently m new strategies (strings) are generated.
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Moreover, as building
crossover can combine
itg blocks.

blocks at different positions become commoo,

them, providi.g offrpring with still more build-

Parent Strings Offspring Strings

crossover

Point

nn@ipcnoDDDCC . . . ccccc

I
ccDDDcnogpc@ZED. cDDDC

nnoF>cnbcccF,cffio . . . cDDDC

CCDDDCDDDCCDDDDDCC . . . CCCCC

Robert Axelrod at the (Jniversiry of Michigan, with the help of

Stephanie Forrest, designed a simulated player that started with a small

set of randomly chosen strategies (see Axelrod, 1987). The simulated

player employed the genetic algorithm to search the large set ofpossible

strategies. The hope was that the genetic algorithm would find the tit-

for-tat strategy after a reasonable number of plays. In fact, the genetic

algorithm did more than that. After discovering tit for tat, rt actually

generated a strategy better than tit for tat. This strategy exploited

players that could be "bluffed," reverting to tit for tat when hist ory

indicated the player could not be bluffed.

Adaptiue Agents and Economics

That adaptive agents can learn strategies in a game like the Prisoner's

Dilemfi:ra, combined with the close relationship between games and

economics, suggests an approach to economics based on adaptive

agents. Conversations with Brian Arthur at the Santa Fe Institute

induced me to pursue thoughts along these lines in a more than casual

way Our ideas, encouraged by inte rplay at some seminal workshops at

the institute set in motion by Philip Anderson and Kenneth Arrow

solidified into a prqect for simulating a stock market using adaptive
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agents. This prgect was to be a thought experiment, not an attempt at

prediction; it was aimed at getting a better feeling for the dynamics of

the market.
Though it might seem otherwise, market dynamics are not a natural

area of study for classical economics. From the classical point of view,

markets should always clear rapidly, moving in narrow ranges dictated

by changing supply and demand. Classical models do not readily gener-

ate crashes and speculative bubbles. It is easy to pinpoint the reason for

this lack. Classical theory is built around agents of perfect rationaliry-

agents that perfectly foresee the consequences of their actions, includ-

irg the reactions of other agents. I-Jnusual dynamics, such as crashes and

speculative bubbles, are usually attributed to incidentals, such as noisy

degradation of information.

Still, real markets typically fluctuate much more rapidly, and over

much wider ranges, than the supply and demand fluctuations that

supposedly drive them. Both Arthur and I felt that a market based on

adaptive agents, agents of bounded rationaliry rather than agents of

perfect rationality, was much more likely to exhibit "natural" dynamics.

In particular, we felt that the anticipatory speculations produced by the

internal models of such agents would generate speculative bubbles and

subsequent crashes. In other words, we felt that learning, and the

imperfect internal models it produces, would automatically generate

realistic dynamics without the introduction of exogenous variables.

With a computer-based model, we could see just how far the mecha-

nisms of the adaptive agent syntax would take us.

We proceeded to implement this approach, recruititg others, such

as the physicist Richard Palmer, xS we went along. In our model a

small number of adaptive agents trade in a single stock, with a (non-

adaptive) specialist program adjudicating bry and sell offers to deter-

mine a current price (the equivalent of a daily average). To produce

the "anonymity" of the stock market, and to keep things simple, zn

agent's only input information on each time-step is this current price.

On the basis of this information, perhaps collected in a "history" ("t

in the Prisoner's Dilemma), the agent decides on one of three actions

at each time-step: BuY, SELL, or HOLD. There is a "dividend" on



8 6 HIDDEN ORDER

shares held, so that an agent makes money by simply holding. (This
dividend, which does not fluctuate in the simplest models, determines
a "fundamental value" for the stock.) The measure of performance of
any given agent is the amount of money it accumulates through its
actions.

The details of this implementation do not add much to the descrip-
tion just given, and the earlier example of the Prisoner's Dilemma gives
some idea of what is involved. So I'11 go directly to results. In a fypical
run, the agents are started with randomtzed initial strategies. As might
be expected, the initial market is pretry disorderly. But credit assign-
ment and the genetic algorithm soon provide each individual agent
with experience-based rules for buyirg, selling, and holding. An agent
might develop rules of this form: IF (the price is 40) THEN (sell) , and
IF (the price is below 40) THEN (b"y). The rnarket soon smooths out
and begins to look like a market involvirg the agents of classical
economics. Then one of the agents finds a rule that exploits the
market's "inertia," making money by selling a bit "late" in a rising
market. Other agents begin to anticipate trends, and the whole learning
process yields a market which makes these trend prqections self-
fulfilling-for a while. Over time, after enough self-fulling prophecies,
the behavior becomes more and more exaggerated, leading to a bubble
and eventu ally a crash. The whole process seems quite natural, and not
the least surprisitg, in this framework. 

-When 
we "dissect" the agents,

we even find sets of rules that mimic, in this sirnple setup, well-known
market strategies such as "chartism."

Ours is not the only computer-based model using adaptive agents to
emerge from the Santa Fe Institute workshops in economics. Another
model, every bit as interesting as the stock market model, was designed
by Ramon Marimon and Thomas Sargent (see Marimon, McGratten,
and Sargent., 1990). This model is built on'W.icksell's Tiiangle, 2 classic
model in economics. 

'Wicksell's 
Triangle consists of three "countries,"

each of which produces a single product. A problem arises because the
product a country produces is not the product it wants to consume; the
product it desires is produced by one of the other countries. 

'What 
is an

efficient trading pattern for these countries? Among other things,



Adaptiue Agents

'Wicksell's 
Tiiangle concerns the emergence of "money," the use of one

of the products as a medium of exchange.

The scope for action of each of the countries in'Wicksell's Tiiangle is

so simple that it seems readymade for a computer-based simulation

based on adaptive agents. The triangle has been much studied by

economists, so that various mathematical approaches are available for

comparison. The simulation, starting with randomly endowed agents,

did exhibit the emergence of one product as a medium of exchange

under a wide variefy of conditions. In the simulation the conditions for

emergence were examined in some detail, providitg guidelines for

determining which of the products would serve as a basis for other

exchanges.

These early efforts at using adaptive agents to study bounded ratio-

naliry, and the ensuing dynamics of economies so described, seem to

me suggestive and hopeful. Because such systems do not settle down, or

even stay at a quasi-equilibrium for long, they provide a window on

aspects of economics not often available for rigorous study. An econo-

mist rnay ask, "'W'hat can we study in a system that exhibits perpetual

novehy?" But the situation is not so different from that faced by a

meteorologist. On all time and distance scales, the weather goes

through never-repeating changes. While we cannot predict weather in

detail over more than a few days, 'we understand the relevant phenom-

ena well enough to make many useful adjustments, both short term and

long term. For our adaptive-agent-based studies of economies, we must

find the counterpart of fronts and jet streams (tagged aggregates, mind

you) if we are to make progress. Then we llrray be able to uncover some

of the critical lever points.

Recapitulation

We can now step back to see just what we've given up and what

we've retained in this framework for representing adaptive agents. The

framework, as intended, consists of three major components: (1) a

performance system , (2) a credit-assignment algorith-, and (3) t rule-

discovery algorithm.
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(1) The performance system specifies the agent's capabilities at a
fixed point in time-what it could do in the absence of any further
adaptation. The three basic elements of the performance sysrem are a
set of detectors, a set of IFITHEN rules, and a set of eflbctors. The
detectors represent the agent's capabilities for extracting information
from its environment, the IFITHEN rules represent its capabilities for
processing that informatiott, and the effectors represent its abilify to act
on its environment. For all. three elements the abstraction loses the
details of the mechanisms employed by the different kinds of agents.

A closer look at the concept ofdetectors gives us a better idea ofwhat
has been lost and what has been gained. An antibody employs detectors
that depend on local arrays of chemical bonds, while an organism's
detectors are best described in terms ofits senses, and a business firm's
detectors are usefully described in terms of the responsibilities of its
various departments. In each instance there are interesting questions
about the particular mechanisms for extractirg information frorn the
environment, but we have put these questions aside here. Our frame-
work concentrates on the information produced-the properties ofthe
environment to which the agent is sensitive. 

'We 
exploit the fact that

any such information can be represented as a binary string, here called a
message. 

'We 
gain the abiliry to describe, in a uniform way, any agent's

abiliry to extract information from its environment. Defining the per-
formance system's abiliry to affect the environment in terlns of
message-sensitive effectors entails simrlar losses and gains.

The same considerations hold for the agent's abiliry to process infor-
mation internally. The mechanisms are various, but we have concen-
trated on the information-processing aspect. By conjoining IFITHEN
rules with messages, we wind up with rules of the form IF (there is a
message of type c on the message list) THEN (post messag e m on the
list). In so doing, we lose the details of the mechanisms used by partic-
ular agents for processing information. For example, if we are studying
the progression in which genes are turned on and off in a develop-
itg embryo, we lose all the fascinating details about the particular
mechanisms of repression and derepression. We retain, however,
a description of the stages of development, and the information fed
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back at each stage. In general, we gain the abiliry to describe arry

information-processing capabiliry that can be modeled on a computer.

Because many rules can be active simultaneously, we gai n a natural way

for describing the distributed activiry of complex adaptive systems. In

particular, systems with this parallelism automatically describe novel

situations in terms offamiliar components; internal models, in the form

of default hierarchies, forrn naturally. Both activities are pervasive rn' cas.

Once we settle on a rule-based description of performance, the

process of adaptation provides components (2) and (3) of the frame-

work.
(2) The essence of credit assignment is to provide the system with

hypotheses that anticipate future consequences-strengthening rules

that set the stage for later, overtly rewarditg activities. For cas this

process leads to a question we have not really explored so far. Just what

is it rhat should be considered rewarding? We'll look at this question in

some depth in the next chapter, but let me touch on it here.

In mathematical studies of genetics, economics, and psychology this

question is often settled by frat, assigning numerical values to the

objects ofinterest. Fitness is directly assigned to chromosomes, utiliry is

directly assigned to goods, and reward is directly assigned to behaviors.

But the question is more subtle. Consider the behavior of an organism.

Generally, evolution has built in certain internal detectors that record

the status of "reservoirs" of food, water, sex, and the like. The organ-

ism's behavior is largely directed at keeping these detectors away from

".rrrpty." For more sophisticated organisms, much stage setting and

anricipation goes into this task. It is a kind of never-endi.g game with

intermittent payo{fs. The value of any behavior depends on the current

position in the garne and the status of the reservoirs. Said another way,

figures ofmerit for cas ̂re usually implicitly defined. Competition, with

local payments, is one of the few techniques we have for handling such

problems in distributed systems. We'll soon see how pervasive such

competition is in cas; for now we sirnply note that competition is the

basis of the credit-assignment technique used to describe this aspect of

adaptive agents.
(3) Rule discovery the generation of plausible hypotheses, centers
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on the use of tested builditg blocks. Past experience is directly incorpo-
rated, yet innovation has broad latitude. This particular method of
recombining building blocks draws heavily on genetics, but it can be
considered as an abstract version of a pervasive process. We can even
describe neurophysiological theories of thought in rerms of building
blocks. Thke Hebb's (1949) classic, still influential treatise. In Hebb's
theory a cell assembly is a set of a few thousand interconnected neurons
capable of self-sustained reverberation. A cell assembly operates some-
what like a small cluster of rules that is coupled via common tags. Cell
assemblies act in parallel, broadcasting their messages (pulses) widely via
alarge number ofsynapses (interneuron contacts-a single neuron rnay
have as many as ten thousand synapses). Cell assemblies compete for
neurons via recruitment (adding parts of other cell assemblies) and
fractionation (dividing into fragments that serve as offspring). It is nor
difficult to see this as a process that recombines tested building blocks.
Moreover, cell assemblies canbe integrated into larger structures called
phase sequences. Indeed, it is not difficult, on rereading Hebb, to see
counterparts of all the processes we have discussed.

Because tags play such an important role in coupling rules and
providitg sequential activity, it is important to note that they too have
building blocks. Tags are really schemata that appear in both the condi-
tion and action parts of rules. As such, they are subject to the same
manipulations as any other part of arule. Established tags-those found
in strong rules-spawn related tags, providirg new couplings, new
clusters, and new interactions. Trgr tend to enrich internal models by
adding flesh (associations) to the skeleton provided by default hier-
archies.

Onward

With these definitions and procedures in place we have a uniform way
ofdepicting the daunting auray ofadaptive agents that appear Ln cds. The
availability of a uniform description for adaptive agents gives hope that
we can indeed portray all cas within a common framework. Cross-
comparisons of different cas then take on added meaning because they
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canbe made in a common language. We can translate mechanisms that

are salient and obvious in one cas to other cas where the mechanisms

may be obscure, though important. Metaphors and other guides in the

search for general principles become enriched. The search becomes

more directed, and more hoPeful-

To see where this may lead, look again at New York Ciry. Interesting

comparisons are possible even when the systems are at opposite ends of

the cas continuum. Consider an embryo as the metaphorical counter-

partof the ciry. If we look ro the origins of New York four centuries

ago and make appropriate changes in timescale, the growth of the cify

does show some similariry to the growth of an embryo. Both start from

a relatively simple seed. Both grow and change. Both develop internal

boundaries and substructures, with a progressively more complicated

infrastructure for communication and transport of resources. Both

adapt to internal and external changes, retaining coherence while

holding critical functions in narrow ranges. And, underpinning all,

both consist of large numbers of adaptive agents-in one case' various

kinds of firms and individuals, and in the other, a variefy of biological

cells.
Can we make these similarities into somethitg more than an inter-

esting anecdote? Are there lever points of embryonic development (and

we know quite a few from work in morphogenesis, for example; see

Buss, Ig87) that are suggestive in altering urban development? Later

we'll see that crises offer unusual opportunities for changing urban

habits. Are the experimental crises we induce in embryos suggestive in

this respect? Can we make comparisons in " araatomy" that will be

helpful in the way that Darwin's anatomical comparisons enabled him

to advance the theory of natural selection?

To make progress on this and similar questions, we need to use our

common representation for adaptive agents in a broader setting. 
'We

have to provide an environment that allows our genetic agents to

interact and aggregate. That is the subject of the next chapter-





,3r

Echoing Emergence

v v E cAN Now DESCRTBE the actions and interactions of an

adaptive agent in some detail, and we can do so in a common format,

whatever the agent's outward form. 
'With 

our new understanding ofthe

process of adaptation as background, it's time to look at. complex

adaptive systems as a whole. Here we confront directly the issues, and

the questions, that distinguish cas from other kinds of systems. One of

the most obvious ofthese distinctions is the diversiry of the agents that

form cas. Is this diversity the product of similar mechanisms in different

cas? Another distinction is more subtle, though equally pervasive and

important. The interactions of agents in cas are governed by anticipa-

tions engendered by learning and long-term adaptation. In spectftc cas,

some anticipations are held in common by most agents, while others

v^ry from agenr ro agent. Are there useful aggregate descriptions of

these anticipations? The combination of diversiry and anticipation

accounts for much of the complexiry of cas behavior. Both seem to arise

from similar mechanisms for adaptation and evolution. Is there a way

to weld these mechanisms into a rigorous framework that encompasses

all, cas?
It is only through a unifting model that we can develop a deeper

understanding of such critical phenomena as the lever-point phenome-

non. We know specific examples ofthis phenomenon: the vaccines that

93
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act as levers on the immuue system, the enzyrnes that direct and redirect
activities in the cell, the sudden fright that permanently changes the
central nervous system, the introduction of an organism (say a rabbit)
into an ecosystem where it has no natural enemies (Australia), and so
on. There even seem to be similarities among these examples. But we're
far ftom characterrzing the conditions tn cas that make leverage possible.
Ifwe look to a differertt cas, the search begins anew with no help from
previous instances. The examples just given tell us little about the kinds
of economic conditions that encourage the tremendous growth and
frnancral leverage of a Microsoft Corporation. We need guidelines that
go beyond specific cas, and we're likely to find them only when we
understand the general principles that underpin cas. That understand-
tng, in turn, is likely to arise only with the help of compurer-based
models that extract the essence of cas.

The attempt to provid e a framework and theory that applies to al| cas
depends, as is usual in the sciences, on two activities: (1) the provision of
an organrzed set of data, and (2) the use of induction, aided by mathe-
matics, to find laws that can generate those data. This is a familiar
process, often described in textbooks, but it helps to have a canonical
example. One of my favorites comes from the early days of science.
Tycho Brahe, as part of his extensive efforts in the sixteenth century
kept a careful record of the nightly positions of the planets, which over
the course of months move through the skies in a kind of S-shaped
curve. Latet, after an extended search, Kepler produced the insight that
ellipses, with the sun at one focus, can generate those data. (The
interaction between Brahe and Kepler, and the scientific results, are
nicely described in Lodge , 195A.) When this classic process is translated
to the study of cas, we'll see that it takes some unusual twists.

The present chapter uses a series of increasingly complex models to
illustrate the process ofselection and rejection that goes into organi zrng
complex data. I worked on an early precursor of these models in 1975
(Holland, I97 6), and some of the ideas were honed in a seminar
organizedby Doyne Farmer and Chris Langton during my year on "the
Hill" (Los Alamos National Laboratory) as Ulam Scholar. Flowever,
the spark that directly ignited the work was a request from Murray
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Gell-Mann: he asked if I could produce a simple, highly visual model

that would illustrate the creation of complex structures by natural

selection. It is difficult to say no to Murc\, and he is persistent. I began

to think ofways to satisfy his request while furtheritg my own research

objectives. The Echo model is the result, though I fear it does not yet

meet Murrayt needs.

Echo relies on the basic mechanisms and properties enumerated in

Chapter 1 to provide a framework for examinitg cas. By turning this

framework into a computer-based model (the subject of the next

chapter), we attain a fully rigorous presentation. The computer-based

version can be "run," so that we can observe the actions of its mecha-

nisms and the resulting behavior. (It is rather as if Brahe and Kepler had

a mech anrzed orrery for generating the positions of the planets.) B.-

cause cas are so intricate, computer-based models, with their well-

defined, manipulatable mechanisms, provide a crucial intermediate step

in the search for caslaws. Such models, where they mimic relevant cas

phenomena, put cas data in a rigorous format, thereby facilitating the

description of patterns and laws.

Organizing Cas Data

Organ tzing data cansometimes be simple. Brahe merely recorded time

and position for each planet. It becomes difficult when there are many

things that cauld be recorded. The modern experimental physicist

thinks long and hard about what instruments or gauges to use and

under what conditions. And these thoughts are guided by what theory

suggests should happen, or by holes in current theory. If the experi-

menter is inspired, the result is a critical experiment, where some assumed

law or mechanism is shown to be adequate, or inadequate, to generate

selecte d data.In setting up the experiment, the researcher decides what

is ro be included and what is to be excluded, as well as what is to be held

constant (if he or she has that much control). The experimenter does

much to organuze the data merely by organizing the conditions of the

experiment.

Cas present substantial problems when it comes to extractittg and
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organizrng data. As with astronomy, the experimenter cannot stop the
system in order to run it again under different conditions. He or she
may even be constrained in the ways the system can be probed. An
economist may be reasonably sure that high interest rates discourage
long-h or:rzon investments, but it is not an experiment that will be tried
under controlled conditions, even if the economist has the power to
carry it off. A11 too often cds seem to adhere to a version of the "Third
Harvard Law of Biology": with a careful research plan, under con-
trolled conditions, using selected agents, complex adaptive systems do
pretfy much as they damn please.

At the start of this book, I emphasized that, in building models, we
must distill pervasive characteristics from idiosyn cratic features. This
point holds a fortiori when we are tryirg to develop models rhat are
relevant for all. cas.It is a more than usually difticult task for cas,because
these idiosyncratic features are often a fascinating and diverting subject
in themselves. Flowever, our hope for ageneral understanding depends
on setting them aside. We need the distillate-simpler models rhat
supply guidelines for the study of all, cas.

Computer-based models help because they can be started, stopped,
and manipulated to one's heart's content. This very flexibiliry is a source
of difficulry though. A computer-based model is already an abstraction
from data, even when it is designed to carefully mimic a specific system.
Of course, this is also more or less true of a carefully designed physical
experiment-such an experiment does deal directly with physical
objects, but many influential factors have been deliberately damped
down or excluded. The computer-based model goes farther down this
path- At no point is it automatically constrained by physical realiry. The
experimenter can impose any computable laws, and they can be as
fanciful as desired or accidentally permitted. Caution and insight are rhe
watchwords if the compurer-based model is to be helpful.

Even a model designed for thought experiments must still attend to
data or laws derived from data. The designer must still carefully select
the setting, lS with a physical experiment. But there is the added
constraint that the setting must be physically plausible, a condition
automatrcalTy met in the physical experiment. A model does organrze
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data, and in this it is like the table Brahe used for that purpose; but a

computer-based model does more. When the model is run, it rig-

orously unfolds the consequences of its design (Brahe's tables become

active!). This activiry turns the computer-based model into a halfway

house between experiment and theory. Looking back to data, we can

see if the consequences are plausible; lookirg forward to theory we can

see if general principles are suggested.

Discovering lever points and other critical cas phenomena is partic-

ularly di{ficult because contexts and activities are continually changing

as the agents adapt. It is rare that we can even determine the utiliuy of a

given activiry. The utiliry of the various activities of a given agent

depends too much on the changing context provided by other agents.

In mimtct\, symbiosis, and other properties, the welfare of one agent

depends critically on the presence of other, different agents. Fitness

(reward, payoffl ir implicitly defined in such cases. We cannot assign a

fixed fitness to a chromosome because that fitness, however defined, is

context dependent and changing. So it is for all cas. Our first order of

business, then, is to provide a class of models in which the welfare of an

adaptive agent stems from its interactions rather than from some prede-

termined fitness function.

We are entering new territory Few models exist that exhibit this

implicit approach to fitness, even in quite simple situations. There

is more of a mystery to the origin of the pin factory that Adam

Smith (177 6) discusses in his Wealth of Nations than is generally

reahzed. This factory was one of the first examples of a production

line; one craftsman drew the wire, another clipped it to size, another

sharpened the point, and so on. The result was a tenfold increase in

production over the efforts of the same number of craftsmen working

individually. Smith and later commentators discuss relevant factors:

specialtzation, more efficient learning, mass purchasing, and so on.

But we do not have any models that demonstrate the transition that

enables individual skilled craftsmen to organrze into a factory.'!7hat

actions and interactions between these individual agents produced an

organi zed aggregate that persisted? 
'What 

were the adaptive mecha-

nisms that favored the emergence of this aggregate? It makes little
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sense, and it helps
a priori fitness to
the context.

our understanding not at ail, to assign a high
the pin factory. That fitness must emerge from

The Criteria fo, Echo
At this point, we need a concrete example of the kind of model I've
been describitg. To that end, I'11 devote the rest of this chapter to the
formulation of such a model, really 

" 
class of models, called Echo.Ry

illustrating both the possibiliry and the possibilities of a unifting model,
Echo gives us a way of rephrasing the questions we've encountered so
that they apply to all cas. Echo has been formulated with several criteria
in mind:

(1) Echo should be as simple as possible, consistent with the other
criteria. It is meant for thought experiments rather than for emulation
of real systems. (Despite the simpliciry, it can actually be used to model
some real experiments, a case in point being Brown , 1994-data about
the ongoing changes in an ecosystem in Arizona when a major preda-
tor, the kangaro o rat, is excluded from the system.) This simpliciry is
attained, in part, by substantially restricting the latitude of the adaptive
agents in Echo. Interactions are carefully constrained, and the agents
have only primitive internal models.

(2) Echo should be designed so that the actions of its agents are
interpretable in a wide range of cas settings. [n particular, the model
should provide for the study ofinteractions of agents that are distributed
in space (a "geography") and are mobile. It should be possible to assign
different inputs (stimuli and resources) to different sites in the space
when desired.

(3) Echo should facilitate experiments on the evolution offitness. To
this end, fitness in Echo should not be fixed at the outset as something
outside the system (rtt exogenous factor). Rather, fitness should de-
pend on the context provided by the site and other agents at that site
(endogenous factors). The fitness of an agent should change as the
system evolves,

(4) The primitive mechanisms in Echo should have rcady counter-
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parts in all cas. Two advantages follow. Interpretations of the results are

constrained to be consistent with the ready-made interpretations of the

mechanisms. Simulations , after afr., are simply manipulations of num-

bers and symbols. It is all too easy to label output in factle, even fanciful,

ways, thereby givingan "eye-of-the-beholder" distortion to the inter-

pretation. The grounding provided by the interpretations of the primi-

tive mechanisms counters this tendency by constraining the labeling. A

second advantage accrues because, with the help of the interpretations,

selected mechanisms can be shown to be sufficient to generate the

phenomena of interest. In evolutionary bioloW, for example, there has

been an extended discussion about the sufficiency of standard Darwin-

ian mechanisms as a means ofgenerating the saltations that appear in the

paleontological record (see Gould , 1,994). While simulations cannot

establish that a given mechanism is actually present-only observation

can do that-they can establish the sufficiency or plausibiliry of the

mechanism.
(5) The Echo models should be designed to incorporate well-known

models of particular cas wherever possible. This is a version of the

Correspondence Principle that Niels Bohr applied so effectively to the

development of quantum physics (see Pais, 1'991). There are well-

studied mathematical models that apply to all cas when suitably trans-

lated: biological arms races (Figure 1.I2 and Dawkins, I97 6) and

survival of mimics (Brower, 1988) in ecology; 
-Wicksell's 

Tiiangle

(Marimon, McGratten, and Sargent, 1,990), and Overlapping Genera-

tion models (Boldrin, 1938) in economics; the Prisoner's Dilemma

game (Axelrod, 1984) in political science; Two-Armed Bandits (Hol-

land, 1992) in operations research; and antigen-antibody matching in

immunolory (Perelson, 1.994). If we can incorporate these translations

in the Echo framework as special cases, we gain several advantages. 
'We

make bridges to paradigm atic models that have undergone intense

scruriny in the disciplines in which they originated-th.y have already

been adjudged to be useful abstractions of critical problems. 
'W'hen

Echo incorporates these abstractions as special cases, it benefits from the

thought and selection that went into them. As another benefit, Echo

becomes more accessible, and more open to critical inspection, in the
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originating disciplines. Also, as with the interprered primitive mecha-
nisms, these abstractions ground Echo more firmly, constraining eye-
of-the-b eholder interpretarions .

(6) As many aspects of Echo as possible should be amenable ro
mathematical analysis, the surest route for arriving at valid generaltza-
tions from specific simulations. The Bohr-like correspondences should
supply mathematical landmarks that we can link into a more complete
map, under the guidance of simulations.

In developing a version of Echo that meets these six criterra, I've
taken a step-by-step approach rather than try to go directly ro a single
overarching model. Each step adds one additional mechanism, or
modification, then describes what is gained thereby. Even the first
model in the progression meets all the criteria to some degree. It
places particular emphasis on avoiding an overt fitness criterion:
agents live or die in terms of their abiliry to collect critical resources.
As further mechanisms are added, the means for collectirg critical
resources expand. Counterparts of predation, trade, scavenging, spe-
crahzation, and so on all can arise and evolve significantly as the agents
evolve. Aty combination of the primitive mechanisms that provides
adequate amounts of resources for the agent, however btzarce, is
passed on and becomes a buildirg block for future generations. The
last model in the sequence looks to the changing fitness of agents
having increasingly diverse organizations, including structures that
develop from seedlike founders.

Only the first model in this sequence has undergone extensive
testing, though relevant parts of the others have been simulated. It will
be easier to discuss what has been left out, and what remains to be done,
after I have described the models. The last section of this chapter
provides a scenario of the interactions that the most sophisticated
model is designed to exhibit. As various levels are tested, we should gain
useful guidelines for investigatirg real cas, even if only a few of the
anticipated interactions show up. In this the models have a role similar
to mathematical theory shearin g ^way detail and illuminating crucial
features in a rigorous context. They di{fer from mathematics in that
they do not rigorously establish generahzattons.
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The Organization of Echo

RnsouRcES AND Srrus

Echo's foundation is laid by specifying a set of "renewable" resonrces,

which are treated quite abstractly. They c^nbe represented by letters so

that, for example, we might have four resources symbohzed by the

lerters {o,b,c,d!. Euerything tn Echo is constructed by combining these

resources into strings. The resources are treated much like atoms, being

combined into "molecular" strings. However, no sophisticated bond-

irg properties are associated with the resources; all strings are admis-

sible. Thus, with lo,b,c,d\ as resources, any string based on these four

resources, such as db, or Ada, or abcdabcd, would be an admissible

structure in Echo. We'll see shortly how agents are constructed from

these strings.

Echo's "geography" is specified by t set of interconnecte d sites (see

Figure 3.1). The neighborhood relation between sites-the pattern of

juxtapositions-can be quite arbttrary and irregular, as if one were

lookin g at neighboring peaks in a mountain chain. Each site is charac-

tertzed by ^ resource fountain, an upwelling of the basic resources at

that site. Ifwe think of time as divided into discrete steps, as in a digital

clock, then the fountain specifies the amount of each resource that

appears at that site on each time-step. The amount varies from site to

site and rnay range from 0 upward. One site rrtay have no input of arry

resource, a "desert," while another rnay specialuze Ln a high input of

resource b, a "water spring," and still another may have a moderate

input of all resources, a "pond." Agents interact at sites and a site can

hold many agents.

MOpru t: OrrnNSE, DETnNSE, AND A RESERVOIR

In model 1 , an agent has only two components: a reservoir for containing

resources it has collected, and a single " chromosome" string, constructed

ofresource letters, that specifies its capabilities (see Figure 3.2)- Let me

emphasize that this so-called chromosome has only a few ofthe charac-

teristics of a real chromosome. The terminology is suggestive, and there
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are similarities (more in later models than here), but real chromosomes
stand in a much more complex relation to an organism's overall struc-
ture. Two critical characteristics are retained: (1) the chromosome is the
agent's genetic material, and (2) the chromosome determines the
agent's capabilities. In particular, in this model, xo agenr's abiliry to
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Figure 3.1 Echo Overview.
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interact with other agents depends on tags specified by segments of the

chromosome string. The mode of interaction is reminiscent of the way

antibodies and antigens interact, although it can encompass a broad

range of interactions of other real agents.

The crux of the Echo models is the requirement that an agent can

reproduce only when it has acquired enough resources to make a copy

of its chromosome string. The agent's fitness, its abiliry to produce

offspring, is thus implicit in its abiliry to collect resources. Again, there

are differences from real organisms. Here the chromosome stands in for

all ofthe agent's structure, both cytoplasmic and nuclear. This represen-

tation buys a considerable simplification in the definition of structure

and fitness. An agent can acquire resources either from the site it

occupies or through interaction with other agents at the site.

In this first, simple model, each agent has a chromosome that does

nothing other than specify two tags, an ffinse tag and a defense tag. All

interactions in the model are mediated by these tags. 
'When 

two agents

encounter each other at a site, the offense tag of one agent is matched

Intate

fresources from site
and interactions)

b

afl

&p:eduction
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enough resources to mate
copies of tqgs)
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a a
b b b b
c c c

Reservoir

Figure i .2 An Agent in Echo.
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against the defense tag of the other agent, and vice versa. The object is
to use the closeness of the matches to determine how resources are
exchanged between the agents (see Figure 3.3). For example, if the
offense tag of one agent is well matched to the defense tag of the other,
it will acquire most of the other agent's resources, perhaps even re-
sources tied up in its chromosome (thereby "killing" it). On the other
hand, if the offense tag is poorly matched to the other's defense tag, the
agent will receive only some surplus from the other's reservoir, or
perhaps nothirg at all.

To determine how well the offensestring of one agent matches the
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defense string of the other, the tag strings are first lined up so that their

left ends are coincident. Then, a match score LS determined by going

down the strings position by position. At each position a value is

assigned from a table that gives a value for each possible pair of letters

(see the Locus Score line in Figure 3.3). For example, a b matched

against a b might add 2 points, while a b rnatched against a d rntght

subtract2 pornts. If one tag is longer than the other, then each position

without a paired letter counts for a fixed number of points (positive or

negative). The overall match score is simply the sum obtained by adding

these points.
In this model the possibilities for a given agent depend entirely on

the pair of tags it carries. We can even extend this construct to interac-

tions with the site itself, by assigning defense tags to the site. The agent

acquires resources in proportion to the abiliry ofits offense tag to match

defense tags in other agents or sites. It avoids losses of resources in

proportion to the abiliry ofits defense tag to avoid matches with offense

tags of other agents.

At first glance, it might seem that this version could be further

simplified by allowing only one tag per agent. However, a bit more

consideration shows that we would lose a vital properfy of cas tnterac-

tions thereby. A single tag for each agent would force transitivity of

interactions: if agent A can "eat" agent B and agentB can eat agent C,

then with a singl e tag it would follow, under transitiviry that agent A

caneat agent C. Cas interactions do notusually satisfy this property. In a

real ecosystem hawks eat rabbits and rabbits eat grass, but hawks do not

eat grass. The use of two tags allows us to avoid this constraint (see

Figure 3.3).
Even this simple version of Echo offers interesting relationships

between agents, once we set aside transitiviry. For example, there is an

interesting triangular relation, described by Holldobler and 
'Wilson

(1990) in their monumental work, The Ants, that can be imitated in

Echo (see Figure 3.4). One corner of the interaction triangle is occu-

pied by ^ caterpillar that exudes a kind of nectar on its skin. Another

corner is occupied by ^ fly that lays its eggs on the caterpillar, thereby

becoming a predator through its larva. The third corner is occupied by

a species ofant that is a ferocious predator on the fly. The ant is attracted
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to and consumes the caterpillar's nectar, but it is not a predator on the
caterpillar. When the caterpillar is surrounded by ants it, of course,
suffers much less predation by the fly. In effect, the caterpillar trades
some of its resources for protection. This triangle is a stable relationship
that changes drastically if one of the elemenrs is removed.

.CATERPILLAR'

f,t
IHAJ}E

t
.FLY'

f

Figure 3 .4 Echo Simulation of the Caterpillar-Ant-Fly Triangle.
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This triangle provides an interesting test of Echo in several ways.

First, there is an "existence" question: can we design tags for three

different kinds of agents that allow trading between two of the agents,

while retaining the predation relations among the three? The answer is

yes (see Figure 3.4). Second, can we set Echo running with populations

of these agents, and observe a persistent triangular relationship? The

answer agarn is yes, though there are sometimes surprisitg develop-

ments over long periods of time. It is even possible for the top predator,

the ant, to die out, leaving an oscillatory predator-prey relationship

between the fly and the caterpiTlar-r relationship of the kind de-

scribed by the Lotka-Volterra equations (Lotka , 1956). Finally, can we

observe the evolution of such a triangle from a simpler starting point?

At this point we don't know. The experiment has not yet been tried.

Extending the Basic Model

'Although we canlearn more from the basic model, that model is only a

step toward modelirg the complexities of a full-fledged cas.In particu-

Lar, the basic model does not provide enough apparatus for a broad

study of the way in which complex hierarchical structures emerge. Yet

hierarchical structures are a pervasive feature of all cas. This section

describes extensions that broaden Echo to the point where such phe-

nomena can be examined.
In trying to model phenomena as broadly described as "complex

hierarchical structures," we need to have one or more well-described

examples in mind. The example that has guided much ofmy own work

in this area is the embryogenesis of rnetazoans-the process whereby ^

fertrltzed egg progressively divides until it yields a mature many-celled

organism that reproduces by producitg another fenlhzed egg. The

structure of a mature met azoan, such as a mammal, is incredibly com-

plex, containirg such complex hierarchical by-products as nerve net-

works, immune systems, eyes, and so on. An anatomist will tell you that

such structures can really only be understood in terms of their origin

and development in the maturing mettzoan. And so it is with other cas.

We canonly understand one ofthese "patterns in time," be it New York
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Ciry or a tropical forest, if we can understand its origin and the way in
which it has developed.

Just what happens as a fertthzed egg develops into a complicated
metazoan, say a tiger? A tiger has a hundred billion cells, more or less,
organized in ways that make our most complicated computers look
absurdly simple. Much ofthe development process is obscure even now
but we do have an outline of the main events. The process begins with
the fertrhzed egg dividing into two cells, followed by further divisions
that provide further doublings. These doublings cause a raprd increase
in the number of cells (thirry doublings is enough to provide a billion
cells). The offspring cells do not wander off as free-livirg entities;
instead they adhere to their parent cells and to each other. Soon the
number of cells increases sufficiently that there is a ball of cells with an
interior and an exterior. The concentration of various metabolites-
biochemical products of cell reactions-begins to vary from cell to cell.
Some metabolites diffuse away from the exterior cells, while remainirg
in high concentration in the inner cells, and so on.

It is well known that changing concentrations of metabolites in a cell
can cause different genes in the cell's chromosomes to be turned on and
off, That is, the cell can respond to certarn metabolites by starting up
new activities while shutting down others. Cells with exactly the same
chromosomes thus can have very different activities and forms. In a
rnetazoan such as a tiger, this factor, more than any other, accounts for
the immense differences among its constituent cells, A tiger's nerve cells
are very different from its skin cells, even though both carry the same
chromosomes. As the cells in the developing embryo increase in num-
ber, different genes turn on and of{ causing even greater variation in
the concentrations of metabolites in different cells. This change, in
turn, alters the way the cells adhere to each other, giving rise to changes
in the shape of cell ^ggregates. The initial ball of cells goes through an
increasingly intricate set of transformations, eventually leading to local
structures that become organs, networks, and the like.

My object, then, is to extend Echo so that it can mimic the process of
producing a complex well-organtzed aggregate from a single "seed."
Although the short pr6cis just given does not do justice to the subtleties
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of the process of embryogenesis, it does suggest some mechanisms that

Echo should include:

'We 
need to add some means whereby agents can adhere to one

another. It should include a provision for the formation of

boundaries that enable the resultin g aggregates to form func-

tionally distinguished parts.

We need to enable an agent to transform resources, to mimic a

cell's abiliry to transform abundant resources, at a cost, into

needed resources in short supply.

We need to extend the definition of the chromosome string,

so that parts ofit carr be turned on and off in a way that affects

the interactions of the agents involved. Moreover, the process

of turni^g parts on and off must be made sensitive to the

activities ofthe agents, mimicking the efrect of the metabolites

in biological cells.

In adding capabilities to the Echo model, we want to retain the

simple format of the agents in the basic model. In particular we want to

retain three features: (1) the simple string-specified structure, (2) repro-

duction limited by resource acquisition (implicit fitness), and (3) inter-

action mediated by tags. The only way I can see to provide a

chromosome with "switchable" genes, while retaining this format, is to

treat the agents as organelles or compartments in a more complex, cell-

like entity. That is, the agents, with their fixed structure, would be

aggregated into a more complex variable structure, which I'11 call a

multiagent. With care, we can supply the multiagent with a chromo-

some that will be passed on to its offipring, while allowing the set of

primitive agents (organelles) to vary from parent to offspring. That is,

the multiagent chromosome describes the range of agents (organelles)

the multiagent can contain, but the multiagent's o{fspring will contain

only some of these agents. if we make the agents contained in the

offspring dependent on activities within the parent multiagent, we get

the effect of turnirg genes on and o{f. Then these cell-like multiagents

I .

2 .

3 .
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can reproduce and aggregate into variegated, hierarchical structures

that mimic metazoans. That, in brief, is the line we shall follow.

The simplest implementation I've been able to conceive within these

constraints requires that the primitive agent be supplied with an addi-

tional five mechanisms, over and beyond the tag-mediated interaction

and reproduction provided by the basic model:

A mechanism that allows selective interaction. An interaction

condition checks a tag rn the other agent to determine whether

or not an interaction takes place (much as the condition in a

rule checks a message).

A mechanism that permits resource transformation. An agent

is provided the capabiliry of transforming one resource into

another, at the cost of gathering the resources necessary to

define a transformation segmenr in its chromosome string. For

example, with an appropriate transformation segment, an

agent may transform an abundant resource into one it needs

for reproduction. This process opens avenues for specialtzation

of the agents in a multiagent.

A mechanism that determines adhesion between agents. This

mechanism is implemented in terms of an adhesion tag. The

amount of adhesion between two agents is determined by the

degree of match between their adhesion tags.

A mechanism that allows selective mating. Implementation is

by means of a mating condition that checks the interaction tag of

a potential mate. A pair of agents having enough resources to

reproduce will produce offspring by crossover if their mating

conditions are mutually satisfied. This mechanism is not di-

rectly implied by the embryogenesis pr6cis, but it makes the

emergence of species possible.

A mechanism for conditional replication. A replication condition

checks the activify of other agents that belong to the same

multiagent aggregate. Even after an agent has collected enough

resources to make a copy of its chromosome string, it only

1 .

2 .

3.

4 .
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reproduces ifits replication condition is satisfied by the activiry

of some other agent in the multiagent. This mechanism is the

one that has the effect of turnitg genes on and off.

In the next section, by adding one of these mechanisms at a time, I

produce a sequence of increasingly sophisticated versions ofEcho. As I

add each mechanism, I use the syntax provided by Echo to redescribe

the additional capabilities. Ifmy conjectures are correct, the final model

in the sequence should enable us to mimic the embryogenesis of

multicellular organisms, or the origins ofmultiagent organizations such

as Adam Smithb pin factory.

Each of these mechanisms is surprisingly easy to implement in a

computer, though the verbal descriptions that follow are at times

intricate. 
'While 

the details do show that the mechanisms fit within the

Echo framework, they do not enter much into the discussions that

follow. Ifyou, the reader, are willing to accept on faith the fit between

the added mechanisms and Echo, then you can skip the next section,

where the details are given, without substantially jeopardrzing your

abiliry to follow subsequent sections.

The Extensions

As promised, each model in this sequence extends the previous model

by addi.g a single mechanism. The last model in the sequence imple-

ments the pr6cis given above.

Mopnr 2z CotvurroNAr, ExcHANcE

The object now is to give each agent the possibility of rejecting

exchanges with other agents. To accomplish this, we retain a single

"chromosome" for the agent, but that chromosome is now divided into

two parts, ̂  control segment and a tag segment (see Figure 3.5). The

control segment provides an exchange condition that checks the ofrense

tag in the other interactant's chromosome; the exchange condition

treats that tag much as a rule treats messages in a rule-based agent.

Because tags are defined over the resource alphabet, the exchange
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condition responds to strings over the resource alphabet, rather than to
the binary strings used for messages in the rule-based system. To define
the exchange condition, we use a "don'tcare" symbol, as in Chaptet2.
We can avoid adding a new symbol to the resource alphabet by simply
designating one of the symbols already in the alphabet as the don't care
symbol. That is, in our earlier example using the alphab et [a,b,c,d], we
would restrict the definition of tags to the subalphabet {o,b,c}, construct-
itg strings over the full alphabet {a,b,c, #(:d)} to define conditions.

Ttgt may be of difGrent lengths, unlike the standardized length of
messages, so let's alter the definition of a condition accordingly. To
accommodate arbitrary lengths, we treat the last specified letter in the
condition string as if it were followed by an indefinite number of don't

[f ggtrhange condition of Egent 0 matches offense tag of qgent A ,
and viceyErsE then calculation of offenseldefense match scores proceeds:

offnnre trg
erch*nge

cond.

acuntS

acuur @
olfrenre rhg .l"nHO

Figure 3.5 Agent Chromosome with Added Exchange Condition.
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care symbols. That is, the conditicin b+b (:bdb) is treated as if it were

the condi t ion b+b++++. . . .  F lere are a couple of  examples:  The

condition d accepts for resource exchange arrly agent having an offense

tag that starts with an a. That is, it accepts any offense tag from the set {4,
Aa, Ab, ac, dad, aab, aac, aba, abb, l Similarly, the condition bcb accepts

any offense tag that starts with bcb. The condition b+b is a bit more

complicated, acceptirg any offense tag that has a b at the first and third

positions, namely, the set {bab, bbb, bcb, baba, babb, babc, babaa,. . }
The condition is used as follows. When two agents encounter each

other, the exchange condition of each agent is first checked against the

other agentt offense tag. If the conditions of both agents are satisfied,

then the exchange takes place. If neither condition is satisfied, then the

interaction is aborted. If the condition of one agent is satisfied but not

the other, then the agent with the unsatisfied condition has a chance of
"fleeing" the interaction. In the simplest case, it does so by aborting the

interaction with some fixed probabiliry.

MorrEr 3: RssouRcE TnaNSFoRMATToN

The ability of cells or factories to transform resources into new forms

is a valuable property worth capturirg in Echo. As we will see, this

option can be critical for certain agents tf a particular resource is in

short supply. In particular, when we get to layered multiagents, re-

source transformation offers interesting opportunities for specialuz -

tion. Again, I'll take the simplest possible approach, leaving

elaborations for future models.

Consider the "renewable" resources that underpin the agent struc-

tures in Echo. We can think of each of these resources as a molecule

having an interior structure. LIsing cellular biology as a guide, we can

think of transforming one resource into another by rearrar\ging the
"molecular" structure. In a biological cell such transformations are

controlled by enzymes (the potent biologrcal catalysts that carr speed a

reaction by afactor of 10,000 or more). Our object is to provide agents

with counterparts of enzymes.
Because I am trying to avoid questions concerning the metabolism of

assembly, I prefer not to become concerned with the details of resource
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structure. Rather, my objective is to provide agents with a direct way of
transforming resource letters, {a,b,c,d} in our running example, into
other resource letters. The simplest way to do so is to add a subsegment
to the chromosome for each transformation desired. It is important that
there be a o'cost" to this operation; otherwise, resources would be freely
interchangeable, and we would have no way to study the effects of
shortages or resource bottlenecks. The cost, as in earlier models, will be
a requirement that agents use resource letters to build the enzyme
subsegment specification. For each transformation there must be an
enzynrre subsegment of the control segment, and the cost is the effort
required to collect the additional letters needed to specift these trans-
formation subsegments.

The transformation subsegment must, at a minimum, specify the
letter to be transformed and the letter that will result from the transfor-
mation (see Figure 3.6). The simplest designation would use just the
two letters involved. If a is to be transformed into b, then the transfor-
mation subsegment would be the substring ab.If the transformation is
to be made more costly, then additional letters are required, so that, for
example, the transformation segment for the transformation of a to b
would be the substring abcccc. We can think of the a and b in this
substring as specifti.g the "active sites" of the enzyme, and the cccc as
speciftirg the structural part of the enzyrne, the part that places the
active sites in a proper three-dimensional configuration.

There is still the matter of the "rate" of the transformation invoked
by ^ transformation subsegment. How much awrll.be transformed into

reNeffotr

chromorome
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Figure 3.5 Resource Tiansformation.
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b if the ab subsegment is present? It seems reasonable to confine the
transformation to resources the agent has collected in its reservoir. That
is, the transformation can only take place if there are copies of the letter
a in the agent's reservoir. A transformation will pay off if (1) the
definition of the agent's chromosome requires several copies of a target
letter that is in short supply, and (2) the rate of transformation is fast
enough that several copies of the resource letter can be transformed
during the agent's life span. Othenvise, the investment of resources to
define the transfqrmation subsegment cannever "p^y off," For instance,
it takes one inrt/rr.e of the letter b just to define the ab transformation
subsegment, so the investment cannot under any circumstances pay
unless at least fwo copies ofthe letter b canbe obtained by transforming
a rnto b during the agent's life span. Because the shortest life span is one
time-step, let's set the rate at fwo letters per time-step. Then even short-
lived agents can benefit from a transformation subsegment.

It seems natural to adopt the convention that multiple copies of the
transformation segment multiply the transformation rate. If an agent
has rwo copies of the a to b transformation segment in its chromosome,
it will transform four copies of a into b per time-step, given four or
more copies of a in its reservoir. It will pay to have multiple copies of
the transformation segment if the target lett er b is in short supply, the
letter a rs regularly in surplus, and the agent uses b extensively in its
chromosome.

Clearly, we are free to choose different transformation rates in difrer-
ent models, and we can even choose different rates for different letters
in the same model. The relation between these transformation rates and
the site input rates for the basic resources will certainly affect the
evolution of the model. Evolution, by workirg on the transformations,
should "flatten" di{ferences caused by different site input rates.

Moonr 4: AprrssroN

Adhesion provides a way of formirg multiagent aggregates. These
aggregates are reminiscent of colonial organisms (sponges andjellyfish)
and rnetazoan organisms (plants and animals). Agents selectively adhere
to each other and even form "layers." As a result, they move and interact
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as units. Individual agents in the aggregate can adapt, over successive

generations, to take advantage of the specific environment provided by

the other agents in the aggregate. One agent in the aggregate might

::,H:::ff nT:fi 3,:1T:'**i?;:::*#:l;Jffifiil:
resources, then the aggregate and the agents therein will collect and

protect resources more efficiently, and therefore reproduce more

rapidly.

It is as if the ants in our caterpillar-ant-fly triangle were permanently

attached to the caterpillars, instead ofbeing independently mobile. The

caterpillars can reduce to a minimum the resources committed to

offense tags, while the ants can specialize their tags to efficient o{fense

without concern for resource acquisition.

Once aggregates start to form and survive, interactions and ex-

changes can evolve into ever more sophisticated configurations. One

kind of agent, by collectirg and supplyirg a particular resource, can

induce a second kind of agent to specialrze by taking advantage of an

assured supply of that resource. Some kinds of agents may also garn a

competence for resisting such inducements. The interplay of induction

and competence is a major aspect of developmental biology (see, for

example, Buss, 1987).

How can we implement conditional adhesion in Echo? Once again

tags, and the matchirg of tags, will play a key role. The procedure will

be much like the procedure for resource exchange. 
'!Vh 

en agents come

into contact they will be checked for adhesion, as in the Chapter 1

example of the sticky billiard balls. To implement this operation, a new

tag that mediates adhesion is added to the tag segment of the chromo-

some. We can think of this tag as a kind of cell adhesion molecule (see

Edelman, 1988).

The interaction proceeds as follows. A pair of agents is selected for

interaction as in resource exchange. For adhesion it is often useful to

pair a parent with its offspring; this coupling facilitates an aggregate that

grows from a single agent, much like the growth of a rnetazoan organ-

ism from a fertiltzed egg. It is important to allow agents of the same

kind, as is often the case for parent and offspring, to have less than
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perfect adhesion. To accomplish this, the adhesion tag is not matched to

the adhesion tag on the other chromosome; if this were done, agents of

the same kind would always match perfectly, producing maximal adhe-

sion. Instead, the adhesio n tag of each agent is matched to the ffinse tag

on the chromosome of the other agent (see Figure 3.7).

Match scores are then calculated. If each agent has a score close to

zero, then no adhesion takes place between the two agents. If at least

one of two match scores is not close to zero, then adhesion does take

place. The configuration induced by the adhesion depends on an

additional mechanism, boun darv formation.

Boundaries

Boundaries provide a simple way of aggregating agents into layers

somewhat like those of an onion, and they are used to constrain agent

interactions. Each agent, at the time of its formation, is assigned to

exactly one bound ary. Even an isolated agent that adheres to no other

agents is assigned to a unique boundary that contains that single agent.

chromosone

aarnr@

acrxr @
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Figure j.7 Agent Chromosome with Added Adhesion Tag.
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However, a boun d^ry can contain many agents. The simplest nontrivial
aggregate is an aggregate that has only one boundtry, with all agents in
the aggregate belonging to that bound ary.

It is useful to arcay boundaries into configurations a bit more
complicated than simple layering. Rather than constraining each
boundary to contain a single interior boundary as in the case of the
onion, we allow a boun d^ry to contain seueral boundaries at the next
level inward, like an egg with multiple yolks. The simplest example of
this configuration is an outer boundary that contains two interior
boundaries side by side (see Figure 3.8).'We can describe the progres-
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Figure 3.8 Boundaries and Tiee Representation of Boundaries.
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sive, possibly multiple, inclusions by using a kind of family tree. The

outermost bou ndary is represented by t node at the root of the tree.

Each of the boundaries directly included within the outermost

boundary is represented by r node connected to the root. An included

boundary can, in turn, contain further boundaries. A new node is

added for each "deeper," second-level bound arf, and it is connected

to the node representing the boundary containing it. This process is

repeated until we reach the innermost boundaries. Those are repre-

sented by nodes that constitute the "leaves" of the tree (tto further

connections).
Boundaries constrain agent interactions as follows. An agent can

only interact with agents belongirg to the same boundtrY, or with

agents belongirg to adjacent boundaries. A boundary is adjacent to a

given boundary rf tt is directly exterior to (toward the root of the tree),

or directly interior to (toward the leaves of the tree), ot resides alongside

(at the same level as, hence directly connected to the same node as) the

given boundary (see Figure 3.9). The set of agents with which a given

agent can interact is called its domain of interaction. It is convenient to

think of the site itself, with its supply of renewable resources, as a

boundary exterior to all the agents the site contains. Only agents on the

outermost boundary of an aggregate have a domain of interaction that

includes other aggregates at the site. This domain of interaction in-

cludes solitary single-agent ̂ ggregates, as well as the renewable re-

sources offered by the site.

The boundary to which an agent belongs is decided, via the

adhesion match scores, at the time it is formed from its parent.

Generally, each newly produced offspring undergoes an adhesion

interaction with its parent, but it also is useful to give the offspring a

kind of mobiliry, so that adhesion sometimes involves an agent other

than the parent. To simulate this mobilify, another agent is sometimes

selected at random from within the parent's domain of interaction;

this choice occurs with a probabiliry that is a fixed parallrreter of the

model. Match scores are calculated for the pair consistitg of the newly

formed o{fspring and the parent or selected agent, and the outcome is

determined as follows:
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1,. If both match scores are low; then (as mentioned earlier) the

agents do not adhere. If the parent belongs to an aggregate, the

offspring is ejected from the aggregate and becomes a new

one-boundary, one-agent aggregate. This ejected offspring, if

it has an appropriate structure, can become the seed of a new

aggregate similar to the one containirg the parent.

If the two match scores are close to each other in value and not

close to zero, the offipring is placed in the boundary of the

selected agent.

3. If the match score of the selected agent is substantially higher
than that of the offspring, the offspring is placed in the bound-
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ary immediately interior to the selected agent's bound^ry. If

the parent's boundary has no interior bound^ry, then one is

formed to contain the offspring; this way an aggregate de-

velops additional boundaries as its agents reproduce. The result

is a kind of developmental induction on the part of the parent,

where the offspring is forced to occupy a position it might not

otherwise occupy.

4. If the net score is high negative,

parent is forced to the interior

Options and Tbsts

then the effect is reversed; the

of the boundary tt occupies.

If desired, adhesion interactions can take place at times other than the

formation of o{fspring. (Jnder such an arrangement the interactions

can occur on a "random contact" basis, as in the exchange interac-

tions. Agents in the same domain of interaction are paired, xs for

resource exchange, and the scoring scheme just described is used to

determine the outcome. 
'W'ith 

this provision an aggregate changes at a

rate determined by the frequency of the adhesion pairings. Adhesions

already in place may be changed by these interactions. For instance,

free agents could collect to form an aggregate, somewhat in the way

the amoeboid individual cells of slime mold aggregate to form a stalk-

like aggregate (a surprisirg sequence nicely described in Bonner,

1988). Or an agent in arl aggregate may be expelled as a free agent,

to become a seed for a new aggregate, if it has an aPpropriate

chromosome.

Possible effects of conditional adhesion can be tested by setting up

designed aggregates in Echo (one could set up an aggregation imitating

Adam Smith's pin factory). Ar with the caterpillar-ant-fly triangle, the

aggregate is tested for stabiliry and for its ability to reproduce under the

laws of Echo. A more severe test, and a more interesting one, would be

to see iffree agents canaggregate to become more efficient at collecting

and processing some resource. Such a study would move us in the

direction of understanding how Adam Smith's pin factory first origi-

nated from an aggregation of individual craftsmen.
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MonEr 5: SErscrrvE MerrNG

Selective mating provides a way for agents to choose among poten-
tial mates, so that crossover occurs only with selected kinds of
individuals-the origin of species within Echo. As with resource
exchange and conditional adhesion, this interaction is tag mediated.

Selective matitg is implemented by adding a mating condition to the
control segment of the chromosome (see Figure 3.10). This condition
is specified in the same way as the exchange condition, and it is matched
against the already extant offense tag of the potential mare. (W. could,
of course, provide a completely new tag for this purpose. But it seems
that many of the effects of selective mating can be attained without
adding another t^g to the chromosome.)

Selective mating is initiated once art agent has collected enough
resources to make a copy of itself. It then iiritiates a search for a mate
with which it can exchange chromosomal mate nal. There arc many
ways to do this, one ofthe simpler ofwhich is to randomly select the
potential mate from the set ofagents that are (1) ready to reproduce, and
(2) within the domain of interaction of the given agent. If the tag-
mediated selective mating conditions of both agents are satisfied, mating
proceeds. Copies of the parents' chromosomes ate made, using the
resources in their reservoirs. The copied chromosomes are crossed,
mutations take place, and the two resulting offipring are added to the
population at the site. This procedure is a bit like conjugation between
diflbrent matitg rypes of paramecia (a process described in any standard
genetics text such as Srb et al. , 1965). If one or both of the mating
conditions are not satisfied, the mating is aborted.

Note that an agent may be more or less selective concerning the
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agent it will accept as a mare, depending on the specificity of the mating

condition. Some agents may accept almost any other agent, while

others may be quite selective. This distinction gives considerable scope

to the evolutionary processes in Echo. It will be interesting to see what

environmental conditions favor the tight mating criteria typical of

mammals, and to contrast these with environmental conditions favor-

irg the more relaxed criteria rypical of plants.

There is still one problem that must be resolved in implementing

selective mating. 
'We 

want to study complex adaptive systems where

there are limitations on the number of agents a site can sustain. Earlier,

when we were dealing only with free agents, we did so by having the

offspring replace an agent drawn at random from the site, thereby

imposing a death rare that balanced the birth rate. This procedure

makes less sense now that agents, because of adhesion, have locations

within an aggregate. When a new agent is formed within an aggregate,

which agent, if any, should be deleted? There are many options, but a

simple one is to set a random death rate for all agents, decoupling death

from birth. That is, all agents have an average life span, and agents are

removed from their boundaries whenever chance, determined by the

random death rate, decrees. Subsequent replacement is indirect- Each

offspring formed is immediately tested for adhesion and is placed in the

boundary so deterrnined. The offspring is immediately added to the

bound tty,without replacirg any agents there. Only the overall random

death rate will eventually balance the process.

MopEr 6: CowPITToNAL RnPucATroN

With conditional replication we can, finally, constru ct a simple model

of met azo^n embryogenesis within the Echo framework. Metazoans

accomplish the quite remarkable feat of developing from a single cell, a

ferttyzed egg, inro a multicelled organism with a great diversity of cell

rypes. Yet all the cell rypes within this organism (with a few exceptions,

such as germ cells and some cells in the immune system) contain the

same chromosomes. How is this possible?

It is not just this question that impels me to add morphogenetic

processes to Echo. All cas exhibit phases of increasi.g organization as
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they evolve, but we have little that connects cas mechanisms to this
increasitg organi zation. The dynamic in most cas rs so intricate that it
beggars standard scientific techniques for treating dynamics. The math-
ematical models we have simply do not encompass the dynamics of
morphogenetic processes, and controlled experiments with the systems
themselves are drfficult or impossible.

One of the difficulties centers on the symmetry breaking rhar goes
on in these morphogenetic processes. A met azoan grows from a single
fettrhzed cell via successive generations of cell division. However, this
cluster of cells soon loses its spherical symme try, for it goes through a
series of stages where physical symmetries are lost, one after another.
And this is only the outward appearance. We know that the chemical
constitution ofthese cells becomes progressively more diverse, breaking
even more symmetries. It is difficult to treat such processes with parttal
differential equations (PDE's), our traditional mathematical tool for
understandin g dynamic processes.

Turing (1952) did manage to use PDE's to desi gn amodel that starred
from symmetric initial conditions, but produced an asymmetric varie-
gated pattern, much like the color pattern of a Holstein cow. Even this
simple formulation was mathematically intractable: Turing could ob-
serve specific examples ofthe dynamics, but he could derive no general
consequences from the mathematical model. In fact, he depended on a
computer-based version of the model to exhibit the dynamics ofasym-
metric pattern formation. Little has been done mathematically since
then, and the problem remains much as it was.

As an aside, I note that part of the overall difficulry that atrends
attempts to model morphogenesis is inadvertent and unnecessary. From
training, habit, and previous success, physicists and mathematicians
usually describe dynamic processes in terms of PDE'5. Maxwell's
nineteenth-century description of electromagnetic dynamics and Ein-
stein's fwentieth-century theory ofrelativiry both use simple, beautifully
symmetric sets of PDE's. Those two triumphs of theoretical physics
underpin most present-day technology. The advent of the cornputer
did little to change this approach. Models of dynamic processes are firsr
written in (continuous) PDE's, then these equations are translated to
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(discrete) computational routines. However, this labored approach is

not necessary. Models can be directly written in terms of conditional

actions, as in our description of adaptive agents, and other combina-

torial operations such as crossover. These condittonall combinatorial

operations are only awkwardly captured by PDE's, so a direct approach

substantially enlarges the scope of rigorous modelitg.

My own view is that a move toward computer-based models that are

directly described, rather than PDE-derived, will give handsome re-

turns in the study of cas. I do not think we will understand mor-

phogenesis, or the emergence of organtzations like Adam Smith's pin

factorf, or the richness of interactions in a tropical forest, without the

help of such models. Our experience to this point with direct models

suggesrs rhar they canexhibit the combinatorial complexities of devel-

opmental processes. If this is true, such models offer the possibility of

controlled experiments that cansuggest both guidelines for examining

real organi zational processes and guidelines for mathematical abstrac-

tions of organuzational dynamics.

In building direct computer-based models ofmorphogenesis, we can

be guided by the now-extensive knowledge of the mechanisms em-

ployed by met azoans in morphogenesis. This knowledge, hard won by

molecular geneticists, involves intricate pathways; but there is a simple

statement that summarizes the basic idea. Metazoans exhibit increasing

organi zation and diversity as they develop because the genes in their

chromosomes can be turned on and off (there is a good discussion in the

text of Srb et al. ,1,965, in the section titled "The Modulation of Gene

Action"). To give a little more detail, genes that are on are expressed by

the cell's construction of the enzymes they encod e. Enzymes are such

effective catalysts that they redirect the reactions in the cell. 
'When

different genes are on, different enzyrnes and different reactions result,

leading to different structures. As a result, a single organism has cells as

difrerent as nerve cells, muscle cells, and blood cells-even though all

the cells have the same chromosomes.

This outlook takes us part of the way, but it leaves us with a further

question. How are the genes turned on and ofP Again, molecular

genetics has something to tell us. Strings ofgenes in a chromosome often
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have "heade15"-g3gs agarn-that are sensitive to the biomolecules
present in the cell (see Srb et al. , 1965). Ifone ofthese molecules artaches
to the header, rt can interfere with the expression of genes downstream
from the header. The genes arc repressed (turned off). Other molecules
can clear the header, derepressing the genes (turnirg them on).

The genes themselves car7, through the enzymes, favor or disfavor
the production of a wide variefy of biomolecules. This fact opens the
possibiliry of intricate feedbacks whereby one gene, through its bio-
tnolecular by-product(s) , cart turn other sets of genes on or off. In
e{fect, the chromosome encodes a computer program with all sorts of
conditionals. Perhaps we can directly construct a relatively simple
computer-based model, ifwe canset aside some ofthe metabolic details
without losing the essence of the process.

Multiagents and Agent- Compartments

\Mith these guidelines the question concerning mechanisms for mor-
phogenesis becomes: How can we imitate the repression and de-
repression of genes within Echo's limited format? So far we have
attempted to keep the individual agents quite simple, so the chromo-
some of a given agent does not offer an array of "genes" (conditions
and specifications for tags) that can be turned on and, off. In biological
terms the agents come closer to representing the organelles in a cell,
with their fixed functions, rather than the flexible organi zation of a
whole cell.

We need to try to aggregate the simple agents into somethirg that
comes closer to a whole cell, with its multiple functions. This coming
together is reminiscent of Margulis' theory of the origin of eu-
karyotes, the advanced cells that give rise to metazoans (see, for
example, Sagan and Margulis, 1988). According to this theory an
eukaryote is a symbiotic amalgam of simpler, originally free-livirg,
precursor cells. The arnalgam is formed when one precursor engulfr
another but fails to digest it. An aggregate at this level, call it a
multiagent (short for multicompartment agent), would have its struc-
ture determined by . chromosome that amounts to a concatenation of
the chromosomes of the component agents (see Figure 3.11). tf
properly done, the multiagent would accumulate an a1^y of genes
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that could be turned on and off. The multiagents could then further

aggregate, playing the role of cells in a metazoan.

Followirg this line, I will retain the agents so far defined as the

primitives of the system. They will serve as organelles or compartments

in the multiagent. To emphasize this aspect, I'11 call the primitive agents

agent-compartments. We have to distinguish carefully between the multi-

agent's chromosome and the compartments that chromosome de-

scribes. On the one hand, we want to define the multiagent's

chromosome as the concatenation of the chromosomes of its compo-

nent agent-compartments. On the other hand, we want successive

generations of the multiagent's offrpring to have different arrays of

agenr-compartments (ro that the multiagent can catry out di{ferent

functions). But then the multiagent's chromosome must not depend

directly on the agent-compartments present within it; othenvise the

multiagent's chromosome would change from one generation to the

next as its comparrment-agents changed. The multiagent can retain

Complex
Aggregate

mutiagtil boundary

drarttl rlmrltuir

(coiltril of rt*erlvuirr U' V' !V)

---

conrilcnilcd chmmntomt

Figure 3 .11 Characteristics of a Multiagent.
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hard-won adaptations from one generation to the next only if its
chromosome remains invariant under these changes.

Tic resolve this quan d^ry, we have to designate an initial or basic form
for the multiagent, an ur-form, much like the fertilized egg from which
the rest of a metazoan develops. This ur-form will have a chromosome
that describes the full range ofagent-compartments that the multiagent
may exhibit under various conditions, and that chromosome will be
carried from generation to generation.

conditional Replication of Agent- compartments

Our objective, then, is to design an aggregation procedure that (1) acts
as a single chromosome for the multiagent, and (2) allows differenr parts
ofthis chromosome to be active in different versions ofthe multiagents.
The guiding biological analogy can carry us a bit further. It suggests rhat
we think ofa given agent-compartment as producing a key biochemical

CHROM OS OME F OR R.EPLICATING AGENT-C OMPAB.TMENT:
t f

tqg region control region -i
1 lr l

i
dglenrr adhcrion i erchrng: cond. meling cond. rrplic. cond. furnriorm !

mEtch

CHB.OM OS OMES F ON, OTHEN. AGENT-C OMPARTMENTS

merker for tr{irficd
ruplicdion cond.

IN MI,JLTIAGEhIT:
I

I

I

€ = active-qgentlcompartment: arr qgent-compartment beconrc$ rcttre
vhen it participates in an interaction (erchangp or adhesion).

Figure 3. 12 Agent Chromosome with Added Replication Condition.
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when it enters into an interaction. Let's call such an agent-compartment

actiue.

We can irnplement this suggestion by settitg up conditions, similar

to the headers mentioned earlier, that make the replication of an agent-

compartment dependent on the activiry of other agent-compartments

in the multiagent. That is, we replace the

repression / enzyme / new biochemical

agent_compartrnent /condi t ion/newact iveagent-compartment>

sequence. Under this setup the replication of an agent-compartment is

determined by ^replication condition located in the control segment of

the part of the multiagent's chromosome that specifies the agent-

compartment. The agent-compartment can replicate only if that con-

dition is satisfied by the activiry of some other agent-compartment in

the multiagent. In this way a multiagent can have an offspring multi-

agent in which some compartments are missing because their replica-

tion conditions were not satisfied (the corresponding genes were

repressed). Note that the offspring multiagent's chromosome is un-

changed, even though the set of compartments is di{ferent. Because the

offspring multiagent can have a different arcay of agent-compartments

from its parent, it can have different interaction capabilities, thus the

multiagent mimics the flexibiliry of a metazoan cell.

Specifi cally, this process comes down to adding a replication con-

dition to the control region of each agent-compartment (see Figure

3.1,2). This condition looks to the offense tags of the other active

agent-compartments in the multiagent. The replication condition is

satisfied only tf at least one active agent-compartment in the multi-

agent has an offense tag that meets the condition's requirements (see

Figure 3.1,3).

At the time the multiagent replicates, each agent-compartment rep-

lication condition that is satisfied is marked. That is, each replication

condition has an added marker bit which is set to 1 ("marked") if that

condition is satisfied at replication time; otherwise it is set to 0 ("not

marked"). Agent-compartments with (replication condition) markers

set to 1, are considered to be "present" in the ofhpring; those with

markers set to 0 are considered to be "absent," even though coded for in
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the chromosome (see Figure 3.I3). An offspring multiagent can then
differ from its parent in the number ofmarked conditions, even though
it and its parent have the same (concatenated) chromosome. Only
agent-compartments with marked replication conditions ("present")
enter into interactions.

Multiagent Interaction

Finally, we have to be more specific about the relation berween agent-
compartment capabtlities for interaction and multiagent capabtlities for
interaction. For example, what determines a multiagent's adhesion
capabilities?

Here I invoke a simple principle that uses agent-compartment capa-
bilities directly: all interactions between multiagents are mediated by

gsarnFle:

Replication Condition
of Agent
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Figure 3 ,13 Conditional Replication of a Multiagent.
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their marked agent-compartments. It is easy to implement this princi-

ple if we follow our earlier approach for individual agents. There we

selected two agents at random for each interaction. Now we select two

aggregates in place of individual agents. In effect, aggregates move

about the site as units. If one (or both) of these aggregates is a multi-

agent, we must determine the form and outcome of the interaction. To

do this, w€ go one step further, randomly selecting one of the agent-

compartments in the multiagent's outermost boundary (see Figure

3.I4). Only agent-compartments having markers set to 1 are eligible

for selection. The selected agent-compartments serve as the "point of

contact" for the given multiagent interaction. A new selection is made

each time multiagents come into contact. Once the point-of-contact

agent-compartments have been selected, the interaction is carried out

as described for individual agents in the previous models.

Interactions within a site center on the multiagents, but the details of

the interactions still depend on the point-of-contact agent-compart-

ments. Accordingly, the possibilities for interaction remain those

described in the previous five models. The agent-compartments are

still the primitives that mediate adhesion and the accumulation of

resources.

The accumulation of resources within the reservoirs of the compo-

nent agent-compartments brings up an additional question: how are

the resources in these reservoirs distributed for reproduction of the

multiagent? Several conventions could be followed here, but one seems

particulrtly interesting. It treats a multiagent as an organLzation with

shared resources (see Figure 3.I1). With this convention, the contents

muftingtrd mutingfi

Onrc muhiagrilt ilD pdrtil foririlerartiorU rn agtril-gompartmtrd inthr e$trnal
boundary od-ea*h mufrngcil fu ranilomly rdtcted- ar th: l'pufun of cordart. " lfu
r dr ot o ril igt m - c o mp art mr rn r unil ergo nn agt rd -t o - agt rd iril e rnrtio n

Figure 3 .14 Multiagent Interaction.
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of the individual agent-compartment reservoirs are available for repro-
duction of all parts of the multiagent chromosome, in contrast with
using the content of each agent-compartment reservoir only for repro-
duction of the part of the chromosome that describes that agent-
compartment. This convention allows a wide variery of spectaltzattons,
akin to the permanentlyjoined caterpillar-ant discussed in model 4. For
example, one agent-compartment might specialLze rn accumulating, or
producitg, resource b, even though it uses few &'s in its own (portion of
the) chromosome. Under the shared reservoir convention, many paths
lead to enhanced reproduction rates, encouraging continued diver-
sification of the multiagents.

As with agents in the earlier models, multiagents continually
interact-even the multiagents within a larger aggregate. Each interac-
tion typically changes the content of the reservoirs of the agent-
compartments involved. Because of the sharing, a multiagent's pos-
bilities for reproduction are modified. As in earlier models, the
ultiagent reproduces when it has enough resources in the reservoirs of
its agent-compartments to make a copy of its chromosome.

Distinguishing Multiagents from Other Aggngates

One last question about multiagents remains: 
'tVhen 

a multiagent re-
sides within alarger aggregate, how do we distinguish it from the rest of
the aggregate? This distinction must be made in order to determine
which agent reservoirs are shared in reproduction. A closer look at
the organi zation of boundaries within an aggregate gives us ^ direct
approach. Obviously a multiagent, being an aggregate of agent-
compartments, must have an outermost bound ary. So the question
becomes; How do we mark the boundary of an aggregation of agent-
compartments as the boundary of a multiagent? Once we make this
provisior, we can define the chromosome ofthe multiagent and we can
provide for further layerirg and boundaries involving multiagents,

In thinking about ways to mark a multiagent's bound atf, we must
also think about how that marking can originate and evolve. It is helpful
to return to the convention that an independent single agent is treated
as one-agent/one-boun d^ry aggregate. 

'Within 
this convention, we
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might as well treat an independent single agent as a one-agent/one-

boundary multiagent. That is, we treat an independent agent as the

simplest multiagent. 
'We 

can then think of startitg Echo with only the

simplest multiagents (the independent single agents), leaving it to evo-

lution to provide more complicated versions.

Of the many possibilities for increasing the complexity of multi-

agents, one of the simpler ones is the following. Occasionally, "pto-

mote" an aggregate of the simplest multiagents to the status of a single

multiagent, demotirg the components to agent-compartments. To

implement this idea, add a multiagent boundary rnarker bit to the bound-

ary specifications. 
'When 

the marker is 1 ("ott"), the boundary is the

boundary of a multiagent; otherwise, the boundary plays its usual role

(see Figure 3.11). Then, when a pa:r of multiagents adhere to each

other, we occasionally carry out the promotion / dernotion procedure.

That is, the marker for the boundary that contains the fwo multiagents

is set to 1, and the markers for the boundaries ofthe two multiagents are

set to 0 (see Figure 3.15). The result is a kind ofmutation that produces

alarger multiagent composed of the original pair ofmultiagents. Some

care must be exercised so that the multiagent will not contain other

multiagents. It is easy to invoke this constraint at the time the

promotion/demotion procedure is executed.

We now have a way that complex multiagents can evolve in Echo,

and we need onb tidy up one detail concerning the multiagent's

chromosome. The whole objective of adding multiagents to Echo is to

facilitate the common-chromosom e/varrable-structure feature of

rnetazoan cells. We know that we derive the multiagent's chromosome

by concatenating the chromosomes of the component agent-

compartments. In Echo we literally string the agent-compartment

chromosomes together to form one long chromosome. This simple

convention is the reason that we do not want a multiagent to contain

other multiagents-the concatenation convention would become am-

biguous. The multiagent reproduces when it accumulates enough re-

sources in the reservoirs of its agent-compartments to copy the long

chromosome. It is this chromosome that undergoes crossover and

mutation and is then passed on to the ofBpring multiagent.
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Summarizing

There certainly are other mechanisms that could be added to model 6,
and there are modifications that could be made to the steps leading to
this model, but model 6 gives a farr indication of the scope andinrent of
the Echo models. Let me summanze.

t Echo has a geography represented by r network of sites. Each
site contains resources and agents.

r The resources are represented as a set of letters {o,b,c,d, . . .1.
Each site may have an upwelling or fountain that provides a
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selection of resources on each time-step, though some or

most sites may be barren. In e{fect, the resources are renew-

able.

r The agents, called agent-compartments in model 6, have struc-

tures represented by stringing resource letters together. The

strings are called chromosomes. (Again, I emphasize that these

chromosomes are far removed, in both complexity and func-

tion, from biological chromosomes, though there are some

similarities.) In addition, each agent has a reservoir for storing

resources acquired through interactions with the site and other

agents at the site. An agent has no other parts. In order to

reproduce, an agent must collect enough resources through

interactions to make a copy of its chromosome.

I The chromosome of an agent in model 6 consists of a tag

segment and a control segment. This chromosome provides the

agent with three tags, three interaction conditions, a capabiliry

for resource modification, and a means of makittg an agent

active or inactive. (I have tried to reduce this ^rcay, but so far

have found no way to do so and still allow the scope and

examples I have in mind.)

r The tag segment contains three tags, an ffinse ta;g, a defense tag,

and an adhesion tag.'When two agents interact, the offense tag

of each agent is matched to the defense tag of the other to

determine the amount of resource exchange between the two

(rs in model 1); the ofil'ense tag is also used to constrain the

conditional exchange, mate selection, and conditional replica-

tion interactions (models 2, 5, and 6). The adhesion tag deter-

mines the degree of adherence between two interacting agents

(model 4).

1,. The adhesion tag has some accompanying apparatus

that plays a rnajor role in the formation and evolution of

organizations within Echo. 
'When 

agents aggtegate,

they form extra-agent structures called boundaries.

A treelike structure records boundaries and hence the

135
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relative position of each component agent within an

aggregate (model 4).

2. Sometimes aggregation results in a particular structure

called a multiagent. Such a unit treats the chromosome of
its component agents as a single chromosome, and it

shares all the resources in their reservoirs for purposes of
replication of the whole. Nodes in the tree structure that

represent the boundary of a multiagent are marked ac-

cordingly (model 4).

I The control segment contains three kinds of objects: condi-

tions, resource transformations, and an activiry marker.

1. There are three conditions: att exchange condition, a

mating condition, and a replication condition (models 2,

5, and 6, respectively). 
'Whenever 

agents are paired for

interaction, each condition checks the ofense tag of the

::T:, 
til:'ffH:L 

::'ffi,"r,*.: 
d e t e r min e wh e th e r

There can be any number of resource transformations.

Each designates a source resource and a target resource;

when source is available in the reservoir, the resource

transformation transforms it to the target at a fixed rate
(model 3).

There is one marker in the control segment. If the

marker is set to L, then the multiagent uses the agent's

tags to mediate its interactions; otherwise the rnultiagent

acts as if the agent were not present in its aggregate
(model 6).

What Has Been Left Out?

Echo is kind of a cancature because I have kept the mechanisms few and
quite primitive. My bias is that simplicity, and elegance ifyou will, help

2 .

3 .
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us to describe complexities, as they do in mathematics. Equally impor-

tant, keeping the mechanisms primitive helps us avoid "unw'rapping,"

the b6te noir ofcomputer-based investigations ofcomplexiry LJnwrap-

ping occurs when the "solution" is explicitly built into the pro grarn

from the start. Consider a program that is supposed to discover a simple

description ofthe movements of "the wanderers" (the planets) bV using

a compilation of their successive positions in the night sky () la Kepler

using Tycho Brahe's dxs-see Lodge, 1950). Ifthe program is explicitly

given ellipses centered on the sun as one of a few possibilities, we will

learn little. We will have jumped over the complex reasoning that led

from the wanderers' two-dimensional, S-shaped movements in the

night sky to planets moving in three-dimensional space on sun-

centered elliptic orbits. 
'With 

unwrapping, the simulation reveals little

that is new or unexpected.
Given this deliberate attempt at cartcature, it is important to know

what has been left out of Echo. In this respect, understanding Echo is

not so diftbrent from understanding the relevance of a good political

cartoon. We have to know what has been emphasized (or exaggerated)

to make a point, and what has been left out as distracting from that

point. Echo's design uses three major shortcuts:

I Details of metabolism, and assembly of resources into the

agent's structure, have been omitted. Once the resources are

acquired, they are autom attcally assembled into the required

structure-the chromosome string-with no attempt to sim-

ulate the chemistry involved. (By progressively adding resource

transformation capabilities to agents, the evolution of metabo-

lism can be modeled with increasirg verisimilitude.)

I The agent's internal structure-the phenorypic detail-is
represented on the string that provides the agent's genetic

legacy-the genotype. The agent does have a phenocype

because it exhibits tags, and it conditions its interactions on

the tags presented by other agents. In a biologtcal cell these
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phenoTpic characteristics would be biomolecules attached to
organelles that are generated by decoding the genes. In Echo,
however, these characteristics are presented on a string that
plays the role of both the organelles and the chromosome that
specifies them. (It would not be difficult to separate these
functions, decoding a "chromosome" string to produce "or-
ganelle" strings, but considerable progress has been made with
the simplified version. The present arcangement lets us deter-
mine the stage at which "coding" becomes a major issue.)

I Echo's agents have less capabilicy than the adaptive agents de-
scribed in Chapter 2. Individual agents in Echo do have
stimulus-response reactions, implemented by conditions, and
they do make extensive use of tags. Individual agents do not
have the message-passing capabilities required for sophisticated
internal models such as default hierarchies. Moreover, the tags
control interactions in a much more direct and concrete fash-
ion. Because they are not attached to messages, they do not
exhibit the subtle, protosymbolic functions of messages. These
simplifications should force the agents in Echo to develop
information-processing capacities through more primitive
mechanisms. I would like to see the agents evolve program-
*itg "languages," rather than supply them with a full-fledged
language (the classifier system) at the outset.

If all works well, we will see multiagents in Echo develop detectors
and eft^ectors-means of encoding the environment-in coordination
with the means for processing this information-programming capa-
biliry. Each capacity should increase to take advantage of opportunities
offered by the other. I would expect to see these capacities exploited by
increases in the complexity ofinterior boundaries in multiagents. Mul-
tiagent structure, as defined here, is quite explicit and easy to observe.
In a full-fledged classifier system the structure is implicit in the clusters
ofrules triggered by the di{ferent tagged messages. For many cas rnvesti-
gations, the more sophisticated internal models possible with a classifier
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system may be critical; however, Echo's agents o{fer a simpler approach

to questions of diversiry and the emergence of organtzation. Experi-

ments with multiagents have not been run, but the next chapter

discusses the possibilities and connects them to experiments that have

been performed.
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Simulating Echo

f\r rHIS poINT we have ^ description of the mechanisms and

interactions that are the foundations for the advanced Echo models. I

have two objectives in this chapter. I want to present a speculative

scenario that suggests how single free agents can evolve into multi-

agents, and then into specific aggregates of multiagents generated from

^ single seed multiagent. Afterward I will discuss the procedure for

turning model 6 into a coherent simulation.

A Scenario for the Emergence of Organization

The scenario begins with multiple copies ofa free agent that reproduces

upon collectirg su{ficient resources (see Figure 4.1). The agent has

neither conditions nor the tags they consult. lJnder the conventions

adopted in Echo, lack of conditions implies a "dort't care" (accepts all)

condition and lack of tags implies a zero match score, so the agents will

still interact. It is up to subsequent crossovers and mutations to originate

conditions and generate tags. Thus, the question ofwhether conditions

and tags are useful is still open. If tags and tag-based interactions appear

and persist, we will have established a role for them in the emergence of

organi zation, at least in the context provided by Echo.

The first step toward greater diversify would be a mutation giving

1,41
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rise to a conditional mating frame. Crossover and recombination then

would have an enhanced role, to exploit the increasirg range of combi-

nations possible as mutations accumulate. (-We canaugment this process

by takitg another page from the book of genetics, introducing intra-

chromosomal duplication In its simplest form, this process simply takes a

portion of the chromosome and duplicates it, producirg a new chro-

mosome with some part doubled. The added part provides fodder for

subsequent recombinations and mutations that extend the agent's capa-

bilit ies.)

More complex organtzations begin to emerge when crossover and

mutation give rise to conditional adhesion tags. 
'When 

one of these tags
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Figure 4.1 Scenario for the Evolution of Multiagents.
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is such that the agent's offspring adhere to it, we have the start of a kind

of colonial aggregate (like the sponges) that arises from a single agent.

Further modifications can produce adhesion scores that force some

offspring to form interior boundaries, which cause layering and further

organi zational complexities. Because agents in the interior face a differ-

ent environment from agents on the exterior, opportunities for special-

tzatton occur. For example, the exterior agents carr concentrate on

offense, defense, and trade, while the interior agents can specialrze Ln

transforming abundant resources into others that are in short supply.

Once such aggregates begin to form, a mutation can move the

multiagent boundary marker "upward" in the aggtegate, to form a

multiagent that includes several agents. The "chromosome" of the

multiagent then describes an organi zation where the included agents

serve as component compartments ("organelles"). The shared re-

sources of the agent-compartments provide further opportunities for

special rzation and reproductive advantage.

At this point recombination and mutation can cause enough differ-

ences that, under conditional replication, the offspring of multiagents

contain different operational agent-compartments. Thus we obtain an

aggregate with di{ferentiated multiagents, even though all the multi-

agents in this aggregate have the same chromosome. These variations

can lead to di{ferences in adhesion. It is even possible for one of the

offspring to lose all adhesion to members of the aggregate and be

expelled as a free multiagent.

If such art expelled multiagent has the same structure (the same

chromosome and active agent-compartments) as the parent that

founded the aggreg ate, the cycle is closed. The evicted free agent

becomes a seed that produces adherent offspring that aggregate to yield

a new copy of the original aggregate. This process is similar to the one

whereby r metazoan is generated by successive divisions of a fertihzed

egg, ultimately producirg a new fertlhzed egg that can repeat the

process.

The appearance of new levels of organrzation in this evolution

depends on one critical abiliry: each new level must collect and protect

resources in a way that outweighs the increased cost of a more complex
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structure. If the seeded aggregate collects resources rapidly enough to
"p^y" for the structural complexiry, the seed will spread. In Echo, we
see new possibilities for further evolutionary modification of the aggre-
gate, through modifications of the seed.

If evolution in Echo were to proceed at all along the lines of this
scenario, we would have a rigorous exhibit of the emergence of organi-
zation. There is no guarantee tha t any real system evolves in this way,
yet it offers an advantage similar to von Neumann's (1966) rigorous
demonstration of a self-reproducing machine. Prior to his work, the
possibiliry of such a machine had been debated for cenruries. Von
Neumann settled the matter by demonstrating a machine (albeit a
simulated machine) that could reproduce itself, Similarly, rf some ver-
sion of this scenario emerges from our simulation, Echo could show
that the mechanisms it employs are sufficient to generate sophisticated
morphogenesis.

Because the mechanisms at the base of this scenario are few and
designed to apply to all complex adaptive systems, we gain a great deal
more than just a demonstration of morphogenesis. Tests already com-
pleted make diversity an almost certain consequence. That offers an
explanation, using common mechanisms, of the pervasiveness of diver-
sify in cas, More than that, we gain a uniform description of the
processes of learning and adaptation, which brings us much closer to a
rigorous framework for describing salient cas phenomena.

Just what are the chances of observing this whole scenario, or
somethitg like it, in a computer implementation ofEcho? Frankly, I do
not know. But the scenario is not a naive guess. Many parts of the Echo
models have already been tested, and portions of this scenario have
been observed. Let us now examine ways of embodying Echo's mecha-
nisms in computer simulations, includirg those that yield the tests and
observations so far completed.

The Nature of Simulation

It will be useful, I think, to start with a bit ofstage serting. Most ofus are
familiar with the use of computers for word processing, spreadsheets,
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tax calculations, and the like. The less-familiar use of computers for

simulation actually goes back to their origin. In a classic paper still

worth reading, Tbring (1937) shows how to construct a computer, a

uniuersal computer, that can imitate any other computing machine or

computation. The use of computers as devices for imitating other

devices is central to the concept of computer-based thought ex-

periments, so it is impor tant to distinguish this use from "number

crunching."
The word "simulation" (Latin, "to feign," o'to look or act like") itself

provides a clue. The heart of a simulation is a map that links parts of the

process being simulated to parts of the calculation called subroutines.

The map has two pieces: (1) r fixed correspondence that relates states of

the process to numbers in the calculation, and (2) a set of "laws" that

relate the dynamics of the process to the progress of the calculation. A

closer look at these two pieces will pay dividends when we come to the

specifics of the Echo simulation.

The usual approach to simulation is to divide the process being

simulated into components. Then a fixed correspondence is set uP,

linking the possible states of each part to a range of numbers, as with

mathematrcalmodels. For example, if we were trying to ascertain the

current state of an automobile or airplane, we would ask questions such

as, F{ow much fuel is in the tank? 
'W.hat 

is the rate of fuel use?-What is

the currenr velocity? 
'What 

is the air resistance at this velocity? All of

these numbers, and others, would be pertinent to the simulation-
'W'hen 

the collection of numbers is sufficient to describe all releuant

aspects of the process, we say the collection describes the state of the

process. This piece ofthe map, then, links the collection of numbers that

describes the state of the process to a corresponding collection of

numbers in the comPuter.

The second piece of the map provides the pivotal characteristic of a

simulation: it describes how the state of the process changes over time.

The computation still uses numbers, but now they relate to a dynamic

process. Changes in the numbers reflect changes in the process being

simulated. In setting down the laws that determine this part of the map,

we take advantage of the computer's abiliry to execute conditional
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Note that a contact do es not mean that an interaction will necessarily
take place-that depends on the conditions and match scores involved.
contacts only set the stage for interaction.

This notion of con tact has to be extended to allow for interactions
between aggregates. The general principle, enunciated earlier, is that all
interactions are ultimately between the individual agents in the aggre-
gate- The easiest way to make this extension is to select one agent at
random from the list ofall agents at the site, then select the second agent
at random from within the domain of interaction of the first ,g.nr.

It is useful conceptually to divide all contacts into rwo fypes. One
tYpe, which I'll call exchange contacf, involves exchange interactions and
adhesion interactions that are not between parent and offipring. The
pairs used in exch ange contacts are drawn at random from the general
population, subject only to conditions ser by agent boundaries. The
second rype ofcontact,which I'll call mating contact,involves mating and
the adhesion of offipring. The list of candidares in this second case is
restricted to those members of the population that have collected
enough resources to reproduce. That is, the list of matirg candidates
consists of multiagents with enough resources to reproduce the whole
of the multiagent's chromosome (recalling that a freeprimitive agent is,
fotmalTy, a single- agent, single-bound ary multiagent). As with ex-
change contacts, the pairs arc drawn with due attention to the domains
of interaction imposed by boundaries.

The simulation checks all exchange contacts, then it checks all
mating contacts. we'll look at each in turn.

ExcrrANGE CoNracrs

For contacts of the first type, exchange conditions are checked first. By
the procedures detailed in model 2 (Conditional Exchange), the ex-
change condition of each agentis checked against the offense tag of the
other- If the exchange conditions ofboth agents are satisfied, then each
offense tag is match ed against the defense tag of the other agenr and
match scores ate calculated. Resources are exchanged accordirg to the
specifications of model 1 (Ofense, Defense, and a Reseruoir). If one
condition, but not the other, is satisfied, then the agent with the

I
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unsatisfied condition has a chance of aborting the interaction; other-

wise the interaction proceeds as when both conditions are satisfied. If

neither exchange condition is satisfied, the exchange interaction is

aborted.

Once the exchange interactions are completed, some of the pairs,

chosen at random from the set of executed exchanges, undergo a test

for adhesion. The proportion of pairs so chosen is open to the experi-

menter; it is a paramerer of the model. (Adhesion under these circum-

stances allows formation of aggregates from members-at-large in the

population, in contrast to adhesion that occurs between o{fspring and

parents under mating contacts.) For each chosen pair, the adhesion tag

of each agent is matched against the offense tag of the other agent in the

pair. Net match scores are calculated and boundaries are adjusted

accordirg to the result, as detailed under model 4 (Adhesion).
'W.hen 

an exchange contact results in resource exchange or adhesion

between agent-compartments, then those agent-compartments are

marked actiye for later use with conditional replication (see below).

MarrNc CoNracrs

Mating contacts are restricted to multiagents that have accumulated

enough resources in the reservoirs of their compartment-agents to

allow replication of all their compartment-agents.

Because mating contacts are centered on multiagents, we need to

determine which mating condition to use when the multiagent has

more than one agent-compartment. Intuitively, it would seem natural

to restrict mate detection to agents in the outer boundary of the

multiagent. The simplest resolution apparently is to select one of these

agents lt random , tt each contact, as a determiner of the mating

condition. That is, each time there is a rnating contact between two

multiagents, one of the agents in each of the outer boundaries is used to

determine whether or not a mating interaction follows the contact-

Note that the multiagent can present different "faces" on successive

contacts if there are several agents in the outer boundary with different

mating conditions.

Once the determini ng agents have been selected in each multiagent,
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the procedure detailed in model 5 (Setectiue Mating) is used ro derermine
whether or not a mating interaction ensues. The mating condition of
each agent is checked against the interaction complement substring in
the other agent's tag segment. The contact turns into a mating interac-
tion only if the mating conditions of both agents are sarisfied.

A mating interaction proceeds in the usual manner for genetic
algorithms, with a patr of offspring being produced from the parents.
The chromosomes of the two parent multiagents are copied, crossed,
and mutated, producing two ofhpring. (This is only vaguely similar to
the real biological process, but it does exploit recombination of discov-
ered building blocks, a vital feature of cas. Itis easy to bring the process
closer to biological realtty, but at the cost of additional complexiry in
computation.)

Once the offtpri ng arc produced, each is "assigned" to one of the
parents to test for mutual adhesion. Then the adhesion tags, specified in
the control segments ofparent and oft3pring, are matched and scored, as
detailed in model 4 (Adhesion). This step makes possible a kind of
morphogenesis, producitg aggregates through adhesion of successive
generations of offspring. As successive generations are produced, the
complexiry of the aggregate can increase through two mechanisms:

(1) The calculated match score can force the offspring, or the parent,
to move interior to the boundary containirg the parent; if no interior
boundary exists, it can force the forrnatr.on of a new boundary.

(2) The conditional replication conditions, discussed in model 6
(Conditional Replication), rnay dictate that certain agent-comparrments
in the offspring multiagent be " off" (effectively absent). It is at this
point that the actle/inactive status of compartments, set during the
exchange contacts, comes into play. The conditional replication condi-
tion of each agent-compartment in the multiagent is checked against
the interaction tags of the multiagent's active agent-compartments. An
agent-compartment is "on" (present) in the offspring only if the repli-
cation condition is satisfied, as detailed under model 6. Because only
agents that are on can interact, conditional replication can substantially
alter the patterns of exchange andadhesion as successive generations are
produced. This is the stage at which some multiagent offspring can be
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set free from the aggregate, through lack of adhesion, and we have the

possibiliry of producing a seed that will generate a whole new copy of

the aggregate.

A Frow DrecnAM

The foregoirg interactions between agents constitute the heart of

Echo, but there are still some "housekeepin g" activities. They include

absorption of resources from the site, resource transformation, agent

death, and migration from site to site. I'll fit each of them into the flow

diagram for the Echo simulation (Figure 4.2).

Absorption of resources from the site is most easily handled if we

consider the site itself to be an agent with a tag. Then a conventional

agent residin g at that site can interact with the site, if it has an appropri-

ate offense tag and exchange condition. under this arrangement, the

ability ofan agent to absorb resources from the site can evolve through

changes in its tag and condition, and the whole process simply becomes

part of the exchange contact section of the simulation.

Resource transformation is contingent on the presence of an appro-

priate section in the agent's chromosome (details under model 3). It can

be executed at the end of the exchange contacts as a precursor to the

mating contacts.

Agent migration is most easily executed at the end of all contacts. In

the simulation, each agent is assigned a site label (coordinate), and

migration consists of changing that label to the label of an adjacent site.

In the simplest case a few agents are selected at random to have their site

labels changed. A more realistic version would have the probabiliry of

selection for migration increase if the agent's reservoir were low in

critical resources. (There are many variations on this theme.)

Agent death (as outlined in model 5 , Selectiue Mating) carr be the last

activiry of each time-step. In the simplest case each agent has a fixed

probabiliry of deletion. This process can be made more realistic by

charging each agent a "rnaintenance cost" on each time-step, say one

unit of each resource that it uses in its chromosome. If the agent's

reservoir is devoid of all such resources after the charge, then it has an

increased probabiliry of deletion. (Again, there are many variations on
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this theme. Note that when maintenance costs are charged, there is an

advantage if the parent passes some of the resources in its reservoir on to

its offspring.)

Tbsts: A Population-Blsed Prisoner's Dilemma

At the time ofthis writing, only Echo model t has undergone extensive

tests. There is sophisticated software with good provision for interac-

tion and flexible means of displayirg the action, much as one would

expect of a flight simulator (to be discussed later in this chapter). We

have observed biological arms races (see Figure 1.I2), and situations

such as the caterpillar-ant-fly triangle have been tested.

Extensive tests of the other models lie in the future. We do have

results, from an Echo-like simulation, on the effects of tags in breaking

symmetries; these are interesting enough to warrant discussion.

At the end of Chapter 2, I introduced the Prisoner's Dilernma to

illustrate the ways in which an adaptive agent improves its strategy. That

example can be extended easily to a population of agents in an Echo-

like environment. As in a billiard ball model, agents come into contact

at random and each has a strategy that it acquires from its parents

through recombination and mutation. 
'W'hen 

two agents corne into

contact, they execute one play of the Prisoner's Dilemma, each acting

as dictated by its strategy (see Figure 4.3). Over successive plays each

agent accumulates the payofh it receives, and it produces offsprin g at a

rate proportional to its rate of accumulation. (This is a sirnplified

version of the Echo format in that the agents have an explicit fitness

function, with no need to collect resources to "spell out" their strate-

gies.) The object is to observe what strategies the agents evolve over

time as they adapt to each other.
'Within 

this format let's look at two experiments. In one experiment,

each agent has a chromosome that specifies its strategy, but it has no

means of distinguishi.g agents from one another. It is as if the agents

were all cue balls on ^ billiard table, with hidden internal models

(strategies). In the other experiment, each agent has a chromosome that

specifies afi exterior tag and a condition for interaction, as well as a
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strategy. There is no necessary connection between the tag, the condi-

tion, and the strategy.All are separate parts of the chromosome, and all

are open to separate adaptations. The experiments, then, present two

worlds, one with tags and one without.
'Will 

there be consistent differences in the strategies that evolve in

these two worlds? From our earlier discussions, we would expect an

advantage from the symmetry breaking provided by the tags. For

example, an agent developing a condition that identifies tags associated

with "cooperators" will prosper from the increased payoff that results.

We'll see that experiment does indeed bear out this conjecture, even as

it reveals some additional twists.

Some earlier experiments on selective mating (Perry 1984) bear on

this process. Consider a population with a variety of randomly assigned

tags, and selective mating conditions that examine those tags. The

number ofways of combining tags with conditions grows rapidly as the

Eech agent hns e *trategy determined by e ret of nrler.

IF tol THEN coop.For example, otre of l's rules could

r At eech random contect ( * ), the pair of agent* involved
pleyr orre round of the Pritoner'* Dilemmn.

. AgenE e,ccurnulate the peyoff thet rrenrlt* from succer*ive
pla]rr of the game -

r Sl'hen en egent'B accumulated peyoff exceedt e predeter-
mined threchold, it reproducer itself {*ith mutation}.

Figure 4. j A Population-Based Version of the Prisoner's Dilemma.

,/\n n *c +
/ \ r * \

,^,'--11 ).



1 5 1 HIDDEN ORDER

number of tags and conditions increases. Even with modest numbers, it
is likely that some tag/ condition combination will confer a slight
reproductive advantage. For example, a combination can restrict mat-
ing to "compatible" individuals that have building blocks that work

well together, thereby producirg fewer ill-adapted offspring under

crossover. Aty early, accidental association of a tag with a trait that
confers a reproductive advantage will spread rapidly because of the
higher reproduction rate. Thgr that are originally meaningless, because

of the random assignment, then acquire meanirg. They come to stand
for particular kinds of compatibiliry. Evolution ary processes refine se-
lective mating conditions based on these tags, so that agents can react to
this compatibiliry and thereby increase their fitness. In Perry's experi-

ments different sites offered different possibilities for building blocks
and compatibilities. The amplification of tags and tuning of conditions,

under a genetic algorithm, led to well-defined, site-specific species that
did not crossbreed.

We would expect similar advantages to accrue to agents using tags in

the population-based Prisoner's Dilemma experiment: an agent devel-
oping a condition that identifies tags associated with cooperators
should prosper from the increased payoff that results. As in the selective
mating experiments, there is strong selection for combinations of tags
and conditions that favor profitable interactions. In effect, the agents

develop tacrt models, anticipating the effects of interacting with agents
that have certain kinds of tags.

Rick Riolo, at the l-Jniversiry of Michigan, has executed experi-
ments along the lines just described. They confirm the expectation that
tags provide an advantrge, and they yield sorne interesting insights.

Consider first the agents without tags. At each contact between a
pair of agents, one play of the Prisoner's Dilemma is executed. Because

the pairing is random, the opponents are random and unidentified.
There is no basis for implementing conditional interactions. In this
evolving population, the productive tit-for-tat strategy never establishes
itself for any extended period. Interactions are Iargely of the minimax
defect-defect kind, clearly disadvantageous relative to cooperate-

cooperate interactions.

Agents with tags evolve along an entirely different path. At some
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point, as the strategies evolve, an agent appears that (1) employs tit for

tat, and (2) has a conditional interaction rule based on a tag carried by ^

subpopulation that is susceptible to tit for tat. That is, the agent restricts

its interactions to agents having strategies that (often) produce a

cooperate-cooperate result under tit for tat. The resulting higher repro-

duction rate causes both this agent and its cooperating partners to

spread through the population. Subsequent recombinations provide tit-

for-tat agents that restrict their interactions to other agents playing tit

for tat. Once established, such a subpopulation is highly resistant to

invasion by other strategies. In biological terms, these agents, with their

conditional tag-mediated interactions, have found somethitg close to

an evolutionarily stable strategy. (The notion of an evolutionarily stable

strategy, ESS, was introduced by Maynard Smith, 1978. Such a strateg,

once established in a population, resists the invasion of all other strate-

gies that might be introduced, in small numbers, by evolution.)

Even in the limited confines of the population-based Prisonert

Dilemm^, the evolutionary opportunities for adaptive agents with tags

go considerably beyond the ESS just mentioned. For example, mimrcry

becomes possible. 
'While 

pursuing a diftbrent strateg, an agent can

present the tag associated with tit for tat. The presence of an agent with

a tag that has a well-defined functional meaning-tit for tat in this

case-opens new niches for other agents. These niches are usually

constrained in size, depending as they do on the continued presence of

the "founding" agetTt. In mimicry, biological studies suggest, the mimic

can only occupy a small proportion of the overall population relative to

the agents being mimicked. This is so because the other agents begin to

adjust to the deception as the proportion of mimics increases. Negative

feedback sets a limit on the mimic's expansion. It is rypical that tags

provide niches of limited "carryirg capacrtyl' leading to highly diverse

systems with no "superindividual" that can outcompete all comers.

Future [/ses

There are fvvo broad lines of development open to Echo. One involves

increasingly sophisticated thought experiments aimed at an under-

standing of the mechanisms and principles of cds evolution. The other
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adds more realistic elements to Echo so that it can be used as a "flight

simulator" for policies directed at complex adaptive systems.

TrroucHT ExpnRTMENTS

The scenario for the emergence of organtzation (at the beginning of
this chapter) is an example of what we can expect from thought

experiments based on Echo. Results already obtained with model 1.,
and partial tests of some of the other mechanisms such as conditional

exchange, give credence to that scenario. But the outcome is far from

assured, and there is much to learn along the way.

It is worth emphasizing agaun that such computer-based thought
experiments are not attempts to match data. They are, rather, an
attempt to discover the adequacy of particular mechanisms. It is not

easy to come up with any explanations for cas phenomena, let alone
candidates that can be reduced to rigorous models. (Ar C. S. Pierce

would say, they are not so plentiful as blueberries; see'Wiener, 1958.) So
it is an advance just to locate possibilities. It is useful to know how far
we can go with specific mechanisms, and the details of our failures may

suggest new mechanisms.
'When 

mechanisms do prove adequate to generate parts of the sce-
nario, then it is worthwhile to see if they exist and play similar roles in
rcal cas. Successful thought experiments suggest where to look in the
complex tangle ofpossibilities and data, and they provide guidelines for
new experiments. 

.When 
we reach this stage, the thought experiment

approach begins to merge with the flight simulator approach.

Frrcnr SrnnurAToRS

The copilot of a large commercial arrcraftmay have less than an hour of
actual flight time on that particular class ofplane (say a747) at the time
of his or her first flight with passengers. What the copilot does have is
many, many hours on a flight simulator for that class. It might seem that
the balance of time should be the other way around, but I prefer it the
way it is. In a simulator, a pilot can experiment in a way that would be
infeasible with real arrcraft let alone an aircraft with passengers. The
pilot can test performance with a fwo-engine flameout, or recovery
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from inverted flight. There have been cases where such experience has

saved lives, as a few years tgo, when all the control sudaces on a

passenger plane became disconnected. The plane was landed by 
" 

pilot

who had tested, on a simulator, the ability to maneuver a plane on

thrust changes alone

Of course, the value of simulator experience hinges on the simula-

tor's faithfulness to the arrcraft it models. To be useful, the flight

simulator must successfully mimic the real plane under the full range of

events that car- occur. Solid theories of aerodynamics and control, a

natural cockpit-like interface, and superb programming are vital ingre-

dients ofan acceptable flight simulator. Given this complex mix, how is

one to validate the resulting sirnulator? Even relatively simple programs

have subtle bugs, and flight simulator programs are far from simple.

Enter the experienced pilot. The pilot "takes the simulator out" fot a

series of test flights, performing the maneuvers suggested by long

experience with real aucraft In particular, the pilot "pushes the enve-

lope," taking the simulated plane close to the edges of its design

parameters. If the simulator performs as the pilot expects, we have a

realiry check; if not, back to the drawing board. It's possible that there is

some unusual, untested pocket where the simulator departs from real

performance (similar surprises are possible with real arrcraft), but it is

unlikely that the simulator is system attcally wrong if it passes such a

"wringittg out."

This means of attaining a reality check sets a goal for simulations that

mimic real systems. Individuals experienced with true cas should be

able to observe familiar results when executitg familiar actions in the

simulator. This puts a requirement not only on the programming, but

also on the interface provided. 
-We 

should not expect the tester to

becom e an expert in the simulation program, any more than we expect

the pilor ro be an expert in the programming behind the flight simula-

ror. The pilot was provided with a cockpit and display that enabled him

to take familiar actions and observe the results in a familiar way. An

expert ecologist, or econornrst, or politician should have similar advan-

rages when dealing with a simulation like Echo, when it is to be used to

mimic reality.
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Providitg a realistic interface is a difficult and unusual task when
we're dealing with cas,butthe interfaces ofsome ofthe more interesting
"politi cal" video games point the way. For example, SimCiry ('Wright,
1989) provides intuitive, natural ways of lookirg at, and responding to,
an urban situation that involves taxation, zonrng, crime, votes for
oflice, and so on. The game itself greatly simplifies urban dynamics, but
the interface is substantially more sophisticated than that provided for
extant simulations in the cds arena.

The end point, a cds simulation with a realistic intedace, is highly
desirable, because it enables an ecologist, or economist, or politician to
try out alternatives that could not possibly be tried in real systems.
Intuition can be augmented by detailed exploration of the effects of
alternative courses of action. As for the pilot, ways of controlling
disaster scenarios can be tested. 

'With 
sufficient forethought, disasters

can even be used in a positive way to change habits. In the aftermath of
the 1994 San Francisco earthquake, as much as 80 percent of the local
population started using the public transportation system. After a few
months ridership slacked offto somethitg close to previous levels, but it
need not have. The increase in ridership was a predictable consequence
of the disaster, and a tremendous opportuniry. Some prior thought
about reinforcing the change would certainly have made it possible to
retain a large proportion of the increased ridership.

EIow Far Elaue We Come?

We now have a way of modeling adaptive agents, and we have a way of
investigating their interactions. The models proposed are by no means
the only ones that could have been set up. Different ways of looking at
cas rnevitably lead to different emphases and different models. For all of
that, the models here are not arbitr ary.

The most important constraint is a requirement that the computer-
based model be something more than a programming language that can
define all agent strategies. Just because a language has the power to
describe a phenomenon does not mean that it will provide useful
insights. TWo languages that have the same formal capabilities r112ry
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provide very different insights. The model , and the language it uses,

must be tuned to the phenome na and questions of interest.

To better understand this, we need to take a closer look at what we

mean when we say that two sets of assumptions, say rwo axiom systems

for geometry, areformalty equivalent. They are formally equivalent when

all the logical consequences, the theorems, of one system are identical to

those ofthe other. It is often possible to establish the formal equivalence

of two systems without knowing much about the theorems they entail.

This canbe of considerable advant age in showitg us that our formaltza-

tion has not undershot the mark by being insufficiently powerfi,rl. Yet it

is not enough for present purposes. Di{ferent formally equivalent sys-

rems can pose substantially different di{ficulties when it comes to

deriving k.y theorems. They rnay have quite different "accessible"

expressiveness.
Consider two formally equivalent formulations (axiom systems) for

Euclidian geometry. In one, the shortest proof of some important

theorem, say the Pythagorean, requires less than twenfy steps, while in

the other the same theorem requires at least a billion steps (ot ^ny

number you care to choose). We know that such differences exist in

formally equivalent systems because of theoretical work done in the

first third of the twentieth century (see Mostowski, 1'952). Certainly

these rwo systems will o{fer difGrent insights into Euclidian geometry

for any feasible amount of effort. That is, formally equivalent does not

mean "equivalent with respect to accessible insights." If we have se-

lected questions in mind, it is not enough to establish that a formalism is

formally adequate for answerirg those questions. A close look at the

questions is indispensable for arriving at a rigorous presentation that

will aid, rather than hinder, the investigation-

Applied to adaptive agents, these strictures validate the point made at

the start of this section. 
'We 

require more than a programming langu^ge

that has the formal power to express all adaptive agent interactions-

Adaptive agents come in startling variety, and their strategies are corre-

spondingly diverse, so we need a language powerful enough to define

the feasible straregies for these agents. But that is just a begin-

ning. Models that can advance our understanding of questions about
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diversiry internal models, lever points, and the like, must satisft addi-
tional strong constraints. We must look at the activities of the adaptive
agents-performance, credit assignment, and rule discovery-and tai-
lor the model for a direct investigation of the interactions that arise
from these activities. And we must provide well-defined evolutionary
procedures that enable agents to acquire learned anticipations and
innovations. These constraints are so powerfi-rl that it is not easy to
come up with any rigorous model that exhibits these capacities, let
alone one that is plausible.

Echo does satisft these constraints and it is, to a degree, plausible.
Simulator runs with the simpler Echo models have exhibited the kinds
of evolution and interaction that we observe rn rcal cas. Prelimi nary
runs that utlhze some of the more sophisticated mechanisms have also
shown the enhancements we would expect from those mechanisms.
And several prqects, some simple, some complex, are modiftirg Echo
to use real data. But there is a long way to go.

On a broader scale, I have no doubt that thought experiments,
guided by simulations such as Echo, are vital to a general understanding
of complex adaptive systems. We need the halfway house provided by
such simulations. The traditional direct bridge between theory and
controlled experiment is all but impossible in this situation. We cannot
follow the traditional experimental path, varying selected variables
under repeated runs, while holditg most variables fixed, because con-
trolled restarts are not possible with most cAs, and because some cas
operate over long time spans. The computer-based models can give us
this possibility if they capture the "right" aspects of real cas. In this the
models are no different from the designed experiments: Selection
guided by taste and experience is crucial. In the end, simulations such as
Echo will be productive only if they suggest patterns and building
blocks that can be turned into the stu ff of mathe rnatical theorv.



Toward Theory

ALMosr  ALL oF ouR EFFoRT to  th is  po in t  has  been spent  in

getting to, and designirg, the half*ty house represented by Echo. Now

we look to the destination-general principles. Although that destina-

tion is still on the horizon, there are useful landmarks, and those of us

who have been studying cas at the Santa Fe Institute are optimistic

about the way ahead. We believe that there are general. principles that

will deepen our understanding of all complex adaptive systems. At

present we can only see fragments of those principles, and the focus

shifts from time to time; but we can see outlines, and we can make

useful conjectures. Just what can we see and imagine?

Mathematics is our sine qua non on this part of the journey. For-

tunately, we need not delve into the details to describe the form of the

mathematics and what it can contribute; the details will probably

change anyhow, as we close in on the destination. Mathematics has a

critical role because it alone enables us to formulate rigorous generahza-

tions, or principles. Neither physical experiments nor computer-based

experiments, on their own , can provide such generalizations. Physical

experiments usually are limited to supplying input and constraints for

rigorous models, because the experiments themselves are rarely de-

scribed in a language that permits deductive exploration. Computer-

based experiments have rigorous descriptions, but they deal only in

161
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specifics. A well-designed mathematical model, or the other hand,
generalizes the particulars revealed by physical experimefats, computer-
based models, and interdisciplin ary comparisons. Furthermore, the
tools of mathematics provide rigorous derivations and predictions ap-
plicable to all, cas. Only mathematics can take us the full distance.

The Separation between Obseruation and Theory

To see more clearly the distance between observation and theory for cas,
let's look again at an example-this time concerning sustainabiliry.

Ettly in this century the supposedly inexhaustible forests of the
Upper Peninsula ofMichigan were cut down, reducing most ofthe area
to a barren stumpland. Then, during the depression of the 1930's, the
Civilian Conservation Corps (CCC) was formed to reduce the devas-
tating effects of unemployment in the cities. Over several years, at a
surprisingly low cost to the government, the CCC (rnany of whose
members in this region were drawn from Detroit) planted seedlings
throughout vast tracts of the Upper Peninsula. Now, half a century
later, the land is once again forested, to the great benefit of tourism and
the lumber industry (more cautious this time around). Extensive inter-
views of former CCC members several decades later show that almost
all of them look on this period as a turning point in their lives.

We would seem to have here a prime example of a lever point in a
political-economic context. But questions abound. Would this pro-
cedure be repeatable , at least in outline, if we replaced I)etroit and the
Upper Peninsula with Los Angeles and the forests of the Northwest? ls
this an example of a broader class ofsymbiotic solutions coupling inner-
clty problems with resource sustainabiliry? More generally, what com-
bined circumstances in economics and politics make such long-horizon
investments possible? Must they always be centered on some disaster, as
in our earlier example of the San Francisco earthquake and public
transport? 

'Why 
do those working with renewable resources, such as

forests and fish, exhaust those resources when they know (as they do)
that the action destroys their livelihood? Is this somehow connected
with the downside of the Prisoner's Dilemma?
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The last two of these questions have anecdotal answers. We talk of

the "tragedy of the commons," where some common resource is

overrapidly exploited by everyone, because each person mistrusts the

moderation of others. That is indeed reminiscent of the defect-defect

solution of the Prisoner's Dilemma. And we talk of the "mobility of

capital," where the investors in an industry are distinct from the "locals"

(the workers and owners), so the investors simply reinvest in some other

industry when the local industry collapses. The investors don't suffer

the consequences of the collaps e, at least in the short run, so they show

little concern. These answers have more substance than, Say, the pun-

dits'reasons for the rise or fall of today's stock market, but we have no

firm basis for knowing when, or if, they apply.

We could, with substantial effort, model situations like this in Echo.

A flight simulator version would be particul^f,y helpful, letting

the politician or economist observe the short-term and long-term

outcomes of policies they consider feasible. Still, that is not really

enough. We would do much better with guidelines that suggest

where to look. We need some way of searchitg beyond familiar

policies, which may ofrer little or rnay be caught in a legislative

deadlock. The space of possible policies is large, and there rrray be

some that exploit lever points, if we can just uncover them. But lever

points, at least in our examples, are often obscure and not easily

located by trial-and-error exploration. In these cases, theoretical

guidelines relating lever points to specifics of the problem would be an

invaluable help.

Two-Tiered Models

The first step in movirg toward an appropriate theory is, once more,

careful selection of mechanisms and properties from a multitude of

possibilities. It is helpful to recast the problem in a framework, such as

Echo, that relies on selected rnechanisms common to all cas. It is

particulrrly helpful if the model is kept simple, while retaining salient

features of the problem that aim at thought experiments rather than a

full flight simulator. We can stiil keep looking toward theory, favoring
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elements that can be mathemattcrzed, where this can be done without
j eop ar dtzrng relevanc e.

Consider the CCC example. A major part of the simulation in Echo

would center on the action of one set of agents (inner-cify workers) as

catalysts for the recovery of another set of agents (the trees), after the

first set had moved from one site (Detroit) to another (the Upper

Peninsula). Here we are dealing with the consequences of flows (Chap-

ter 1).W. are also dealingwith differing timescales. The workers move

and act on one timescale, call tta"fast dynamic," while the trees recover

on a much longer timescale, a "slow dynamic."
'With 

the help ofEcho, we canrecast the problem in terms offlows of

resources between di{Grent kinds of agents, as is true of most cas

problems. We can make solid contact with mathematical models if we

make two simplifting assumptions: (1) the agents canbe usefully aggre-

gated into species or kinds, and (2) there is a rapid mixing of resources

among agents of like kind. 
'With 

respect to the first assumption, the

hierarchical organi zatton typical of cas usually makes aggregation easy

and natural. (See, for example, the discussion of default hierarchies in

Chapter 2.) The second assumption assures that the consequences of

interactions are npidly distributed within each aggregate. Rapid distri-

bution, in turn, assures that we can assign average resource levels to

aggregates at each instant, without being srymied by nonlinear effects

within the aggregate. LJnder these assumptions we can treatEcho-based

models (and complex adaptive systems) in a kind of two-tiered format.

THs Lowsn Trcn

The lower tier concerns itself with the flow of resources between

agents of different kinds. The combination of rapid mixing within

each kind, and random contact between kinds, makes possible a

mathernatical model much like the billiard ball model discussed in the

first chapter. That is, we carr treat each kind of agent as a kind of

billiard ball, and for each pair we can determine a reaction rate. The

rate is directly determined by the exchange condition and the ex-

change scoring mechanism specified for each agent in Echo (see

model 2 in Chapter 3). The result is an array of reaction rates (see

IJonlinearity rn Chapter 1).
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Once this arcay has been computed, we are close to havinga mathe-

matical model that describes changes in flow over time. In particular,

we are close to describing mathematically the change in the proportion

of each kind of agent at asite, as time elapses. The relevant vehicle is the

version of the Lotka-Volterra equations discussed in the nonlineariry

example. Those equations let us determine the changes in proportion of

each agent-kind by using the reaction rates for various possible pairs.

However, we face a problem. The flow model gives the total resources

held by each agent-kind, but the equations require the proportion of each

agent-kind. Different kinds of agents use different amounts ofresources

in their structures, so aggregate resource totals do not directly deter-

mine agent-kind proportions. To derive the proportions, we must

divide the aggregate resource totals by the amounts of each resource

required to make a copy of that kind of agent.

The rapid mixing assumption now lets us treat the resource totals as

equally shared by the individuals in each aggregate. Specifically, the

rapid mixing assumption ensures that all reservoirs in the aggregate hold

similar amounts of each resource. Knowing this, we can determine the

number of agenrs in the aggregate by dividing the total resources held

by the number of each kind of resource required to build that agent's

chromosome. Then, knowirg the number of individuals of each kind,

we can determine theur proplrtions in the total of all individuals. Having

determined the proportion, we can use the Lotka-Volterra equations as

a mathematical description of the changing resource flows mediated by

the agents.

Even at this prelimrnary level, some theoretical progress can be made

concerning lever points. Because agents can have surpluses of some

resources, only certain resources held by the aggregate "count" toward

the number of any given agent-kind. The notion of a "bottleneck

resource" emerges. A close look at the flow model shows that a change

in the bottleneck resource-say a new interaction greatly increases its

level- canhave much the e{fect of a mutation. It carr open a cascade of

new interactions. Changes in a bottleneck resource often give rise to

efrects far out of proportion to the change.

To ado pt a term from physics, the lower tier gives us a mathematical

model of the fast dynamics of the system.
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Tun LIppEn TrEn

For a mathematical theo ry of ca.s to be effective, the fast dynamics of the
flows must be successfully coupled to the slow dynamics of long-term
adaptation and evolution. In this two-tiered model, it is the upper tier
that specifies the evolution of the agents. It uses a genetic algorithm to
change the structures of offspring, as described at the end of Chapter 2.
In Echo the resulting agent structures precisely determine the amounts
ofresource exchanged, so the reaction rates ofthe lower tier are directly
coupled to the results of actions in the upper tier. Note that a change in
the definition of the agent-kinds (aggregations) used in the lower tier
will result in different couplings to the upper rier.

In selecting the aggregations and couplings to the lower tier, we want
to make it easy to see how the network changes when the genetic
algorithm causes given building blocks (schem ata) to spread and re-
combine. One extreme would be to allow one node in the network for
every distinct agent. Then the lower tier would be formally correct, but
the patterns of change would be spread over large numbers of nodes. At
best, the patterns would be difficult to discern. The lower tier only
becomes useful, both computationally and theoretically, when we can
aggtegate agents into kinds based on the presence or absence of the
chosen building blocks. Then the patterns of change relative to these
building blocks will be manifest. This is the burden ofthe earlier "useful

aggregation" assumption (look back agaun at Chapter 1).
Aggregation of agents, however, raises a problem similar to our

earlier difficulry with aggregation of resources. For a given pair of
agents, we can directly determine a flow of resources and a reaction rate
(as detailed in Chapter 3). However, this is not necessarily an appropri-
ate reaction rate for the parr of aggregates to which these agents belong.
Agents of a given kind will not generally exchange resources in identi-
cal fashion; after all, we only collected them into z common kind
because they had some building blocks in common. So two agents ofthe
same kind may have different associated reaction rates. This puts us
squarely into the difficulry discussed under the ropic of nonlinearity in
Chapter 1. 

'We 
cannot simply average the reaction rates ofindividuals of
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a given kind to get areacti.on ratefor the aggregate agent-kind. That is,

reaction rates associated with the flow network are not simply related to

reaction rates associated with agent pairs.
-We 

cdn determine a useful reaction rate for an agent-kind if the

constituent agents are not too different from one another relative to

their abiliry to exchange the resources of interest. In this instance the

individual reaction rates are close to one another, so that the flow

calculated with the average rate will not differ greatly from the actual

flow. (The actualflow is determined by summing the individual flows

of individual agents.) At worst, we can establish that no agent has a

reaction rate slower (larger) than a determined amount, allowitg us to

determine bounds on the flow rates of reproduction, and the like.

Keeping the individual reaction rates in an aggregate close to one

another actually ir largely under the control of the theorist setting up

the two-tiered model. That person selects the characteristics that group

the agents into aggregates. By selecting appropriate characteristics, the

theoris t can limit the variation in the individual reaction rates within

each aggregate. The building blocks of the exchange conditions and the

interaction rags are central to this purpose. By aggregating agents with

the same alleles for these building blocks, the theorist can assure close-

ness of reaction rates, while benefiting from a simplified lower tier.

In sum, one way ro generate a useful couplitg of the upper tier to the

lower tier is to aggregate agents with similar building blocks in the parts

of the chromosome devoted to the offense tag, the defense tag, and the

exchange condition. If we further constrain these aggregates by condi-

tional replication, we achieve somethitg much like biological specia-

tion. Patterns should be sharpened because aggregates cannot blend

into one another. In any case, the upper tier has the effect of continually

changing the flow network of the lower tier, as the agents evolve and

adapt under the genetic algorithm.

A TrrnoRv oF Two Trnns

The relevant theory for the upper tier starts with the schema theorem

for genetic algorithms because that theorem tells us about the spread

and decline of building blocks. However, the version of the theorem
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given at the end of Chapter 3 is only a beginning. We need a version of
the schema theorem that holds for the implicit fitness of the Echo
models- And the theorem should tell us about the spread of sche rnata
across kinds, with particular attention to the effects of selective mating.
This element is important ifwe are to understand the spread ofbuilding
blocks in real cas,strch as the spread ofthe Krebs energy transformation
cycle throughout the vast range of aerobic organisms or the spread of
computer chips throughout machines ranging from automotive en-
gines to cameras.

Given the perpetual novelry of agents in the Echo models, we need
still more from a satisfactory theory. The unfoldirg development of an
Echo world is a trajectory through a space of multiple possibilities; we
need to know somethitg of the form of this trajectory particularly
because cas rarely reach end points or equilibria. We are likely to
understand a cds process only ifwe know what the trajectory looks like
along the way.

It will be difficult, perhaps impossible, ro predicr details of the
tralectory but surely it is far from a random walk. At worst, we may face
a phenomenon similar to the day-to -d^y, month-to-month changes in
weather, though I think cas are more predictable than that. Even with
the weather, there are building blocks-fronts, highs and lows, jet
streams, and so on-and our overall understanding of changes in
weather has been much advanced by theory based on those building
blocks. It is still difficult to predict detailed weather changes, paftrc.
ularly over an extended period. Nonetheless, theory provides guide-
lines that lead us through the complexity of atmospheric phenomena.
We understand the larger patterns and (many ofl their causes, though
the detailed trajectory through the space of weather possibilities is
perpetually novel. As a result, we can do far better than the old standby:
predict that "tomorrow's weather will be like today's" and you stand a
60 percent probabiliry ofbeing correct. A relevant theory for cas should
do at least as well.

Complex adaptive systems exhibit more regularities than weather for
at least two reasons. First, there is the persistence of favored building
blocks- (Itt biological systems, the Krebs cycle is pervasive in both space
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and time; in economies, taxes too are pervasive in space and time.)

Second, there is the phenomenon known in biology as conuergence,

which imposes further predictable regularities. Convergence in this

sense should not be confused with the attainment of end points (fixed

points), the subject of mathematical convergence. Here convergence

refers to the similariry of agents occupyitg similar niches. With some

knowledge of the niche, we can say something of the form of the agent

thar will occupy it. As an example, biologists recently discovered a

tropical flower with a throat of unprecedented depth, a flower belong-

irg to a genus invariably pollinated by moths. The niche provided by

this flower led the scientists confidently to predict the existence of a

moth, yet to be found, with a proboscis of equally unprecedented

length.

The regularities provided by building blocks and (biological) conver-

gence imply regularities in the development of the flow network.

These, in turn, imply that agents attain high concentrations at certain

kinds of nodes. New variants are most likely to arise where there are

1r1any agents; more samples mean more possibilities for variation. Ac-

cordin g\y, the generation of new agent-kinds (nodes) should center on

these well-populated nodes, a kind of adaptiue radiation. So we have

some hints about how the network would grow. If the fast dynamic is

modeled by a set of equations of the Lotka-Volterra form, this growth

means adding new equations to the set. The added equations produce

corresponding changes in the dynamics. To couple this growth to the

upper tier, we need a version of the schema theorem that takes selective

mating into account, while using only endogenous fitness. Such a

theorem would let us determine somethirg of the form of the ttajec-

tory through the space of lower-tier flow nefworks. It could give us

some idea of what convergence means in this general settin 8, 7 setting

that holds for all complex adaptive systems.

A Broader View

This two-tiered model undoubtedly captures a substantial portion of

what is going on rn cas. Yet we are only starting to give it the precision
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required for mathematical theory. Two advances in mathematics would
help provide a theory of this two-tiered model. One is an organi zed
theory of a dynamics based on sets of equations that change in number
(cardinality) over time. Another is a theory that relates generarors

ftuilding blocks) to hierarchical structure (for example, default hier-
archies), strategies (classes of moves in games), and the "values" associ-
ated with those straregies (game payoff).

Now an aside, for those conversant with mathematics. Such a mathe-
matics would resemble the use of generating functions to estimate
parutneters of stochastic processes (see Feller, 1950). Its combinatorial
aspect would have the flavor of the work on "autom atic" (automaton)
groups (see Baumsl^g, 1994). The stochastic aspect can be studied with
the help ofMarkov processes, but the usual treatment ofsuch processes,
which concentrates on eigenvectors and fixed points, will not be of
much help. Instead, we need to know what happens ro aggregates
during the transient part ofthe process. Aggregation of states of the full
process encounters the usual difficulties with nonlinearities; still, there
are ways around this that trray enable us to deal with perpetual novelry
(see, for example, Holland, 1986). A successful approach combining
generating functions, automatic groups, and a revised use of Markov
processes should charactenze some of the persistent features of the far-
from-equilibrium, evolutionary trajectories generated by recombina-
tion.

'Whatever 
our mathe rnatical approach to cAs, the objective remains to

determine common causes of common characteristics. 
'When 

we em-
barked, I listed three mechanisms-tags, internal models, and building
blocks-and four properties-a ggregation, nonlin eanr1y, flows, and
diversify-that have become the prime candidates for causes and char-
acters in my own search. Other researchers will have other candidates.
Nevertheless, at the Santa Fe Institute I think we would all agree on the
followitg broad requirements for a successful approach to theory:

1 - Interdisciplinarity. Different cas show diflerent chancteristics of
the class to adva ntage, so that clues come from differe nt cas rn
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,Cifferent disciplines. In this exposition we've seen many com-

parisons and the uses to which they can be put.

2. Computer-based thought experiments.' Computer-based models

allow complex explorations not possible with the real system. I

have pointed out that it is no more feasible to isolate and

repeatedly rest artparts ofa real cas thanit is to test flameouts on

^ real jet airplane carrying passellgers- Computer-based

models make counterpart experiments possible. Such models

can provide existence proofs, which show that given mecha-

nisms are sufficient to generate a given phenomenon- They

can also suggest critical patterns and interesting hypotheses to

the prepared observer, such as conditions for the existence of

lever points.

3. A correspondence principle.Bohr's famous principle, translated to

cas, r11eans that our models should encompass standard models

from prior studies in relevant disciplines. Two advantages ac-

crue. Bohr's principle assures relevance of the resulting cas

theory by requiring it to incorporate hard-won distillations

and absrractions from well-established disciplines. It also fore-

stalls what I call ".y. of the beholder" errors. Those errors

occur when the mapping befween a simulation and the phe-

nomena being investigated is insu{ficiently constrained, allow-

irg the researcher too much freedom in assigning labels to

what are, after all, simply number streams in a computer'

Standard models from well-established disciplines constrain

this freedom because they have been developed with a stan-

dard mapping in mind.

4. A mathematics of competitiue processes based on recombination Ulti-

mately, we need rigorous gen erultzations that define the trajec-

tories produced by the interaction of competition and

recombination, something computer-based experiments can-

not provide on their own. An appropriate mathematics must

depart from traditional approaches to emphasize persistent
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features of the far-from-equilibrium evolutionary trajectories
generated by recombination.

I believe this amalgam, appropriately cornpounded, oflers hope for a
unified approach to the difficult problems of complex adaptive sysrems
that stretch our resources and place our world in jeop ardy.It is an effort
that carT hardly fail. At worst, it will disclose new sights and perspec-
tives. At best, rt will reveal the general principles we seek.
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Eye-oGthe-beholder error, in modeling,

9 9 , 1 7 1

Ey., structure,2T

Farmer, Doyne, xuiii, 94
"Fast dynamrc," 7.64, 165,166,769
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Gould, S. J., 99

Hebb, D.O., 90

Hierarchical organization of cas. See also

Default hierarchies

aggregation and, 72, 1,64

modelin g, 1,07
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r82 Index

Mathematical theories, cas

broader view, 169-72

observation vs. theory, 162-63
nature of, 1 61-62
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mating contacts , 1,49-51,
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in condition replication, 150

internal models and, 31-32

mathematical theory of cas, 1,66-69

standing wave, compared to cas,29

Payoff, 53, 80-81, 83, 89, 1 52-53

Perelson , fvlan, 99

Performance system. See also Adapta-
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Recombination. See also Building

blocks; Crossover

genetic algorithms, 70, 72-80

mathematics of competitive Processes
and, I7I-72

Recycling effec t, 25-27 , 26f , 29-30, 31,

90

Renewable resources. See Resources

Repche ck, Jack, xu

Replacement step, genetic algorithms,

70,  78-80

Replication condition. See Conditional

replication

Repressed genes, define d, 1'26
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IB4 Index
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122,  I29, I37-38.  See also Tags and
tagging

Selective mating (Echo model 5), 1 10,
122 -23 ,136 ,  150

SimCity (video game), 158

Simon, Carl, xuii

Simulating Echo. See Echo simulation

Simulation. See also Eye-of-the-

beholder-error
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