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Linkage Analysis and Filter Approaches
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Analysis of Family Data Via Filtering Strategies

Samples in a Family Undergoing NGS

Two or More Affected & Unaffected One Affected
Affected Individuals Individuals Individual

v v

Exclude variants which are not shared by affected
individuals & (presentin unaffected individuals )

v

Exclude non-coding variants and & coding variants which are found
in databases (EXAC) or are not rare e.g. >0.5%

¥

Test for segregation of identified variants with disease phenotype
& sequence variants in ethnically matched controls

This Strategy can Fail!

None of the variants completely segregate with
disease status

» Affected individualsare phenocopiesor incorrectly diagnosed
» Unaffected individualsare disease variant carriers (reduced
penetrance)
» Sample swaps have occurred
» Locus heterogeneity within the pedigree
@
O =

++ D+

Phenocopy Reduced Penetrance Sample Swaps

Performing Linkage Analysis

* DNA samples from all informative pedigree
members are genotyped using arrays

* Parametric two-point and multipoint linkage
analysis performed

 For consanguineous pedigrees segregating
autosomal recessive traits ~

— Homozygosity mapping can also be used {

Homozygosity Mapping
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Trouble Shooting Using Linkage Analysis

* Linkage analysis can be performed using
genotyping arrays or sequence data

* Observed LOD scores compared to

— Expected maximum LOD (EMLOD)

— Maximum LOD (MLOD)

Deflated LOD scores can be due to

— Incorrect phenotype information
— Locus heterogeneity within the pedigree

* Genotypes can also aid in detection of incorrect
familial relationships

Benefits of Performing Linkage Analysis
Using Genotyping Arrays

* Aids in selection of individuals for sequencing

* Maps the disease locus to specific genomic
region(s)

¢ Filtering can be performed within several Mb, i.e.
linkage region, instead of the entire genome

— Reducing the number of variants which need to be

followed-up
* Testing for segregation in pedigrees
* Evaluating frequenciesin ethnically matched controls




Non-syndromic Hearing Impairment (NSHI)

* 893 NSHI families ascertained
— Pakistan, USA, Switzerland, Turkey, Jordan, Hungry
(Roma), Poland & Germany
Intra-familial heterogeneity in the collection
* 15.3% (95% CI 11.9 - 19.9%) Santos-Cortez et al. 2015 EJHG
Linkage analysis followed by exome sequencing led
to the identification of a number of NSHI genes
— KARS (Santos-Cortez et al. 2013 AJHG)
— ADCY1 (Santos-Cortez et al. 2014 Hum Mol Genet)
— TBC1D24 (Rehman et al. 2014 AJHG)

REPORT American Journal of Human Genetics

Mutations in KARS, Encoding Lysyl-tRNA
Synthetase, Cause Autosomal-Recessive
Nonsyndromic Hearing Impairment DFNB89

Regie Lyn P. Santos-Cortez,!® Kwanghyuk Lee, 8 Zahid Azeem,23 Patrick J. Antonellis,*5
Lana M. Pollock,+6 Saadullah Khan,2 Irfanullah,? Paula B. Andrade-Elizondo,!

Ilene Chiu,! Mark D. Adams,6 Sulman Basit,2 Joshua D. Smith,” University of Washington
Center for Mendelian Genomics, Deborah A. Nickerson,” Brian M. McDermott, Jr.,456
Wasim Ahmad,? and Suzanne M. Leall*

DFNB89 Locus (16g21-g23.2)

SNP genotyping (lllumina linkage panel)
Region of homozygosity 16.1 Mb:

Bilateral symmetric moderate-to-profound
hearing impairment across all frequencies

| [ :,I() 4338 (LOD 6.0) Containing ~180 genes
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Basit et al., Hum. Genet. 2010

One individual from each family
n, 3 selected for exome sequencing
based upon region of homozygosity

Rare Homozygous Variants in the
DFNB89 Region

Family Variant Frequency  Damaging*
ExAC

4406 COG4 p.lle271val 0.0005 MT, LRT

4406 ZFHX3 p.Pro1929Ser 0.0005 None

4406,4284 KARS p.Tyrl73His 0.00002 All

4338 KARS p.Asp377Asn 0 All

4338 CNTNAP  p.Alal235Thr 0.00002 MT, LRT
4

*Bioinformatics Tools: CADD, LRT, MutationAssessor, MutationTaster (MT), PolyPhen-2, SIFT
All variant sites were deemed to be conserved (PhyloP & GERP)

KARS Variants Segregate with HI in
DFNB89 Families
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p.Try173His & pAsp377Asn not
observed in 750 ethnically
matched Pakistani chromosomes

Analysis of Family Based Data (Mendelian)

Genotype Informative family Pedigree Members

Perform Linkage Analysis

Select Pedigree Member(s) for Sequencing

Remove Variants Which are not Rare in EXAC, e.g. MAF> 0.5%
Investigate Functionality using Bioinformatic Tools
Determine if Variant Segregates with Phenotype
Population Specific Frequencies for Variant

Acquire Additional Families with Variants with the Same Gene
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Goal of Linkage Studies

= To localize disease/trait/susceptibility loci to a
unique position on the genome

= Only family data can be used to carry out linkage
studies

= Extend families

= Pedigrees with multiple branches and/or multigenerational
= Nuclear Families

= Parents and offspring

= Trios (parents and proband) cannot be used for
linkage studies

= Suitable for association studies

Types of families for Linkage Analysis

Extended Pedigrees

Nuclear Pedigrees

T
—

Trios

Linkage Analysis & Homozygosity Mapping

* Can be used to reduce the region to be followed
up with sequencing

— Thus greatly reducing the number of variants

— May lead to identification of the causal variant where
other approaches have failed

* Genotype all available informative families

member to perform linkage analysis/homozygosity
mapping

Chromosome in meiosis with two crossovers

|

Two homologous Two Four gametic
chromosomes, each products (egg,
with two chromatids crossovers sperm cells)

Parametric Linkage Analysis

* For Mendelian traits

— Mode of inheritance must be known
— Autosomal Recessive
— Autosomal Dominant

— X-linked

— Trait can have reduced penetrance or phenocopies




Linkage Analysis — Allele Sharing Methods

* Also known as nonparametric or model free
method

— Neither nonparametric or model free

— Mode of Inheritance does not need to be known
* Complextraits

— Underlying genetic model is not specified in the analysis

Parametric Linkage - Analysis
* Goal

—To test whether there is linkage between a
disease locus and a marker or set of marker loci
— Null hypothesis
* No linkage - recombination fraction (6=0.5)
— Recombination rate 50%

» Disease locus and marker locus/loci far apart
— Loci on two different chromosomes

Parametric Linkage - Analysis

* Alternative hypothesis
* linkage 6<0.5

—Wish to reject the null hypothesis of no
linkage

* Use a LOD score criterion of 3.3 (p<0.05)

— Estimate the recombination fraction

(genetic distance) between the disease and
the marker loci

Linkage Analysis - Allele Sharing Methods

= Compare the amount of allele sharing
between

= Affected Sibling

= Other affected relative pairs
= Avuncular

= e.g. uncle-Niece
= Cousins

Linkage Analysis - Allele Sharing Methods

= Variety of tests to elucidate if there is an
excess of allele sharing

= Mean test

= Null hypothesis

= Under no linkage

= Affected siblings share 50% of their alleles
= Alternative Hypothesis
= Under linkage

= Affected siblings share > 50% of their alleles

= Variant or mutation

= Types of Variants

Polymorphisms & Variants
= Polymorphism

= Aregion of the genome that varies between individual
members of a population

= Usually with a frequency of at least 1 or 5%
= An alteration in a genome compared to some reference
state

= Does not have to be causal or functional

= Pathogenic

= Of unknown significance
= Benign




Loci & Alleles

= Locus: A specific position on the genome
= For the autosomes 2 alleles are observed at each
locus
= Alleles: Are alternative forms of DNA
sequence that occur at a locus
= e.g. the A, B, 0 alleles of the ABO gene

Loci & Alleles

= Codominant
= Both alleles are expressed in the heterozygous state
= Dominant

= Expression is the same in heterozygousas in the
homozygous state

= The homozygous state can sometimes produce a more severe
phenotype than the heterozygous state
= Homozygous lethal

= Recessive
= Homozygous state is necessary for expression

Hardy Weinberg Equilibrium (HWE)

* For the autosomes the proportion of each
genotype follows the laws of HWE
- p%2pq & q?

* Which is based upon the observed allele
frequencies

7 %k *
** %

HWE

* The organism is diploid

* Reproduction is sexual

* Generations are non-overlapping
* Mating is random

* Population size is very large

¢ Migration is negligible

* Mutation can be ignored

Natural selection does not affect the alleles under
consideration

HWE

Example 2 allelic system (e.g. SNP marker)

Allele 1 frequency p= (2N;; + N;,)/2N
Allele 2 frequency g=(2N,, + N;,)/2N

Expected proportions of heterozygotes and
homozygotes under HWE

11=p2
12=2pq
22=¢?

HWE
The following genotype counts are observed
Observed Expected
11 300 ?
12 500 ?
22 200 ?

Allele frequencies

1 allele: p=(600+500)/2000=0.55
2 allele: g=(500+400)/2000=0.45

Note g=(1-p)




HWE

Expected genotype frequencies under HWE

11  p2=0.3025
12 2pq=0.495
22 g2=0.2025

Expected number of genotypes under HWE*

11 3025
12 495
22 2025

*For a sample size of 1,000 individuals

HWE
2 2
—Y"(observed-Expected
X _2 E)(pectedt
Observed Expected
11 300 302.5
12 500 495.0
22 200 202.5

X2= (300-302.5)2/302.5+(500-495)2/495+(200-202.5)?/202.5=0.102

X?=0.102 p=0.75 1 df

Testing for deviations in HWE

* Chi-square tests
* Exact tests

¢ Likelihood ratio tests

Reasons for Deviation from HWE

* Population Admixture

* Heterozygous Advantage
* Copy number variants

* Genotyping Error

¢ Chance

Loci, Genotypes & Haplotypes

= Multiple marker on a chromosome

= Microsatellites

= Single nucleotide polymorphisms (SNPs)

= Single nucleotide variants (SNVs)
= Genotype

= The two alleles at a locus comprise a genotype
= Haplotype

= The alleles on each chromosome

Locus, Genotype & Haplotype

Genotypes are known Chromosomel
Genotype for | LocusA 1 1
Locus A: 11 Locus B|12—gF— 2
Locus B: 22 LocusC I—— 2
The haplotype for each Locus D —p§— 2
chromosome of a pair (I—

usually needs to be
reconstructed

Haplotypes for k {
LocusA&B:12,12

Locus C&D: 11,22
or 12,21




Linkage Studies-Genetic Maps

* A map provides the position and order of marker
loci
* Physical position
* Genetic position

— Based upon interpolation for SNV (single nucleotide variant)
and SNP (single nucleotide polymorphism

* Genetic position necessary to perform multipoint
linkage analysis

Genetic Maps

* Map distance given in Centimorgans (cM)
* Recombination (®) fractions cannot be
added
—Except in the case of complete interference
x=0
* Under complete interference multiple crossovers

between two loci can be excluded
— It can also be assumed there is completeinterference
when two loci are closely linked (6<0.05)
» Then recombination fractions can be added

Genetic Maps

* Can convert © to map distances using
— Map functions
» Haldane
* Kosombi
* Sturt
— The distances can then be summed
* No one-to-one correspondence between map
distance and number of base pairs
— Recombination events variable across the genome

Haldane Map Function (Haldane 1919)

* Assumption that crossovers in different intervals
occur according to a Poisson probability law

— Note x is given in Morgans

X = §-1/21n(1-20) if 0<0 <%

infinity otherwise,

* The Inverse is

6= Y[ 1-exp(-2/x))]

Genetic Maps

* Most SNP and SNVs are not on genetic maps
* Physical position and order known
— Unknown genetic map distance
* Using Genetic Maps such as
* Rutgers Combined Linkage-Physical Map
— http://compgen.rutgers.edu/mapinterpolator

* Interpolation can be used to estimate the
genetic distance of markers to perform linkage
analysis

Genome Scan Data (Marker Loci) for
Linkage Analysis

* Microsatellite Marker loci
— Not currently usually used

* Genotyping Arrays
¢ SNP and SNV marker Loci

* Exome and whole genome sequence data
* SNV and SNP marker loci




Microsatellite Markers

= For the most part have been replaced by
SNP marker loci

= Microsatellite markers have many alleles
= Heterozygosity >0.71
= Usually denoted by a D#

= Linkage whole genome scans

= 10 cM scan
= ~400 marker loci

= 5 cM whole genome scan
= ~800 marker loci

Heterozygosity (H)

= Provides information on what proportion
of individuals that will be heterozygous for
a particular marker locus
= Assumption Hardy Weinberg Equilibrium

H=1-2p 2
[

SNP and SNV Marker loci

* Most commonly used markers for linkage
analysis are SNP loci
—Base change at a single nucleotide
* Most have only two alleles (diallelic)
— But can have up to four alleles
* Those which have more than two alleles are not used

* Heterozygosity <0.5

SNP and SNV Marker loci

* Denoted by an rs#

* SNP have a minor allele frequency (MAF) of >5%
— Can also be defined as having a MAF >1%

* SNVs have a MAF< 1%

— Usually diallelic but can have up to four alleles

Genotyping Arrays SNP/SNV Marker Loci*

= |llumina HumanCore-24 Bead Chip
= ~300,000 SNP marker loci
= Up to a additional 300,000 custom markers

= [llumina HumCoreExome-24 Bead Chip
= ~300,000 SNP marker loci
= ~240,000 Exome marker loci
= Up to an additional 100,000 custom markers

= [[lumina HumanOmni5-Quad
= ~4.2 Million SNP/SNV marker loci
= Up to an additional 500,000 custom markers

= |llumina HumanOmni5Exome
= ~4.5 Million SNP/SNV marker (includingexome content)
= Up to an additional additional 200,000 custom markers

*These arrays were all developed for association studies- the lllumina linkage
array has been discontinued

Genotyping Arrays

* Higher density arrays are overkill for linkage
analysis
— A subset of informative markers can be used

* e.g. ~0.20cM

* Once linkage has been established denser maps of markers
can be analyzed within the linkage region

* Using entire set of markers extremely slow to
analyze

— May not be able to complete linkage analysis within a
reasonable amount of time




Features of Mendelian Traits

Non-Allelic/Locus/Linkage Heterogeneity
* Allelic heterogeneity

* Phenocopies

* Reduced penetrance

» Age specific reduced penetrance

Heterogeneity

* Allelic Heterogeneity

— Multiple separate alleles at the same locus are
responsible for the disease phenotype
* Cystic fibrosis

* Non-allelic/Locus/Linkage Heterogeneity

— Different individual genes are responsible for disease
etiology

* Charcot-Marie-tooth disease
* Adult polycystickidney disease (APKD)

* Non-syndromic hearing loss

Phenocopies

= Traditional definition
= An environmentally induced phenotype that

resembles the phenotype produced by a
mutation

= Examples

= Individuals taking meperidien which is tainted
with its by product MPTP

= Causes the destruction of dopaminergic neuronsand
produces a Parkinson disease phenotype

= Epilepsy due to traumatic brain injury

Phenocopies

= The term phenocopy (although used
incorrectly) is also used to describe

= Genetic heterogeneity

= An individual(s) within a pedigree which is affected
due to a differentgene than the other pedigree
members

= E.g. BRCA1families with breast cancer patients with outa BRCA1
variant

= Misdiagnosed cases within a pedigree

= Alzheimer’s disease pedigrees with cases of dementia which
are not Alzheimer’s disease

Reduced Penetrance

= Age specific

= Sex specific/Sex limited
= Exposure specific

® Incomplete penetrance

= A proportion of disease gene carriers never
develop the phenotype

= Can reduce the power of detecting linkage

= Unaffected individuals below the age of
onset provide no linkage information

Familial & Founder Effect

* Familial
— Any trait which is more common in relatives of an
affected individual than in the general population
— Can be genetic or environmental or both
* Prion disease Kuru

¢ Founder Effect

— A high frequency of a disease allele in a population
founded by a small ancestral group due to one or more
founders being carriers of this allele




Assortative Mating

* Selection of mate with preference to a certain
phenotype/genotype (that is non-random mating)
— Positive
* preference for a mate with the same phenotype
— Negative
* Preference for a mate with a different phenotype

Epistasis & Pleiotropy

* Epistasis

— Interaction between alleles at two differentloci
* Pleiotropy

— Multiple phenotype effects of a single gene

* Example Marfans Syndrome

Mendelian Traits

= Modes of Inheritance
= Autosomal Dominant Inheritance
= Autosomal Recessive Inheritance
= X-linked Inheritance

= Dominant
= Recessive

Pedigree Drawings -Symbols

. Affected male proband

/

/./ Deceased affected female

. Affected male
Q unaffected female

’ Sex unknown affected

Ei Male affected with two traits

Pedigree Drawings

founder

@

Non founder

Dizygotic twins Monozygotic twins

Phenotype Quantitative & Qualitative Traits

* Quantitative trait

—Continuous

— Dichotomizing based upon an arbitrary or
clinical cut-off

* Can lead to loss of power (due to misclassification)

* Qualitative — binary disease trait
—Affected or unaffected

10




Quantitative Trait - Example BMI

e
31| 24

o0 ¢ o
24| 2 2 20

29 31

29

»
-

Autosomal Dominant Pedigree

Autosomal Dominant Mode of Inheritance

* If trait is fully penetrant with no phenocopies the
following is true:

¢ Each affected individual carries at least one copy
of the disease/trait allele

* Each unaffected individual must be homozygous
wild type

* If an affected individual has an unaffected parent
they must by heterozygous for the disease/trait
allele

Autosomal Dominant Mode of Inheritance

= On average 50% of the children from an
heterozygous affected individual will also be
heterozygous for the disease allele and affected
= 100% of all children of an affected homozygous

individual will be affected

= Equal number of males and females affected:

= There are exceptions
= e.g. sex limited traits

= Affected (heterozygous)and unaffected individuals

provide equal linkage information

Consanguineous Autosomal Recessive
Pedigree

LT

o7

Autosomal Recessive Pedigree with
Unrelated Parents

—0

D+ D+

s 00 om0

D+or++D+or++ DD D+or++D+or++

1




Autosomal Recessive Mode of Inheritance

= The following hold true for fully penetrant diseases
with with no phenocopies

= Each affected individual must be either
homozygous or a compound heterozygous for the
pathogenic variant(s)

Autosomal Recessive Mode of Inheritance

= Unaffected individuals can either by homozygous

wild type or carry one copy (heterozygous) of the
pathogenic variant

= 1/3 homozygous wild type

= 2/3 carriers, heterozygous for the pathogenic variant

= Approximately 25% of all children whose parents
are carriers will be affected

Autosomal Recessive Mode of Inheritance

= Offspring of two affected individuals will all be
affected

= |f both parents have the same pathogenic variant or
pathogenic variants within the same gene

= |f pathogenic variant(s) are rare

= Usually only nuclear families are observed, with both
parents unaffected.

= Exceptions are

= For consanguineous kindreds where multiple
affected sibships can be observed in the pedigree.

= Quasidominant/ Pseudodominant Inheritance

X-Linked Recessive Pedigree

o d b4 .

6&&5E6-&0&&&&55

X-linked Recessive Mode of Inheritance
¢ No male to male transmission

* For fully penetrant traits disease with no
phenocopies the following is true

— 50% female children of female carriers will also be
carriers

— 50% of male children of carriers females will be affected
— All female children of affected males will be carriers

* |n some circumstances carrier females are also

affected

— But have a milder phenotype than affected males

12
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Pedigree Drawing with Marker Loci

12 13
40
13 22
23 23 12 12

Informative Individuals for Linkage

= An individual to be informative
= Most be heterozgyous at the marker locus &

= And a second locus
= Disease locus
= Marker locus

= |n order to observe whether a recombination
event occurred or not between the two loci

Autosomal Dominant Pedigree
Phase Known

12 11
Phase O
2 |1 21
D|+ 22

s 0 oe b

22 12
NR NR

22 12
NR  NR

Autosomal Dominant Pedigree
Phase Known

Hy:®="%
H;: 0<% 1o |11 6'(1-6)°
Z(0)=log,y —+—=
Phase g (1_/2)
—0
é) R 2[) «}» 21 22 Z(0)=0.227

22 12 12 12
NR NR R NR

0=0.25

—

Autosomal Dominant - Phase

Unknown
Phase I Phase II
21 21
D+ +D
O
12 22
O om0 0 o mow om0 0w
12 22 12 12 12 22 22 12 12 22
NR NR NR NR R NR NR NR NR NR

R R R R NR

R R R
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Autosomal Dominant
Phase Unknown

Ho: 0= %
Hi: 0 <)
0'(1-0) +6°(1-6)

1/210 + 1/210

Z(0) =log

Maximum LOD Score occurs at 1.3 at ©=0.1

LOD Scores

= LOD Scores can be added across families
= Must be summed at the same theta value or map distance
= |f all members of the family are genotyped

= The genotype frequencies are not used in the LOD score
calculation

= Misspecification of allele frequencies will not bias the LOD score
= When genotype data is not available for all family
members

= Misspecification of allele frequencies can increase type |
error

Linkage Analysis

* For traits which are fully penetrant with no
phenocopies
— When 6=0 and there are not recombination events
— When the marker is fully informative

* Autosomal dominant traits (phase-known
pedigrees)

— Each affected and unaffected individuals adds 0.3 to
the LOD score

Linkage Information Obtained from an
Autosomal Dominant Pedigree

* Each offspring both affected and

unaffected adds 0.3 to the Lod

score

— LOD Score 1.5 for displayed
pedigree

* The onlyinformative meiosesin

this example are from the father to

his Offspring Generation Il
¢ Whatis the LOD score if parental

genotype data was not available?

Generation |

Generation Il

Z(8)=log,[((1-0)°+89/((%)° + (%)°)]

Linkage Analysis
¢ Autosomal recessive traits

— First affected individual is not informative for linkage

— Except if parental mating is consanguineous
* How much information the first affect individual provides
dependson the frequency of the haplotype/marker
* How distantly related are the parents

— The more distantly related the parents and the lower the frequency of
the haplotype/variant the higher the LOD score

» Maximum LOD score first cousin matingone affected LOD=1.2
» Maximum LOD score second cousin matting one affected LOD=1.8

— Each additional affected individual adds
¢ Adds 0.6 to the LOD score

— Each additional unaffected individual
¢ Adds 0.125 to the LOD score

Linkage Information obtained from a
Consanguineous Autosomal Recessive Pedigree

Generation |

Generation Il

Generation IV r @
Underlying disease genotype [dd] [dd]

[Gb=04

Total pedigree LOD score = 1.925

14




Lod Score Curve for Autosomal Dominant
Pedigree -Phase Known

10 fully informative meioses

L
0 5 No Recombination Events -
D _“maximum LOD score 3.0 at 6=0.0
S 2 // For 10 fully informative meioses one
C / recombination event occurred —
g ! maximum LOD 1.2 score at 8=0.1
E
S o
.0.2., 0. 0.4, 0.5
bination Fractions’
————— For50% of the meioses a recombinationevent

occurred —maximum LOD score 0.0 at 6=0.5

Size of Mapped Regions

* For Mendelian disease/traits

— Where a large sample (many informative meiosis ~200)
are available
* Highly unusual that a disease locus can be mapped to a region
which is < 1cM (~ < 1 Mb)
— However the genetic/physical region is usually much larger
— For consanguineous kindreds
* Even when linkage can be established
— A limited number of informative meiosis
» Large genetic region of homozygosity with many genes

The Effect of Using Incorrect Marker
Allele Frequencies on LOD Scores

* If there are pedigree members with missing
genotype data

* Using incorrect marker allele frequencies
— Can increase type | error

* Important to obtain accurate population specific
estimates of allele frequencies

* If there is missing genotype data it is advisable
not to use equal allele frequencies for marker loci

Obtaining Allele Frequencies

* Estimate from pedigree founders
— Must have a sufficient number of founders

* Obtain from the manufacture of genotype
array
— Usually allele frequencies provided for
Europeans, African Americans and Asians

* For e.g. [llumina HumanOmni5-Quad

http://support.illumina.com/array/array kits/humanomni
5-4-beadchip-kit/downloads.html

Obtaining Allele Frequencies

* Alohomora

— Provides frequencies for Europeans, African Americans
and Asians for popular SNP arrays
* Creates datafile with allele frquencies
* http://gmc.mdc-berlin.de/alohomora/maps/

Obtaining Allele Frequencies

* UCSC Genome Binoinformatics
— For customized SNP arrays & population specific allele
frequencies
— Use Table browser
* http:/genome.ucsc.edu/cgi-bin/hgTables
— Populations specific allele frequencies can be downloaded
using
* HapMap project or
* HGDP (Human Genome Diversity Project).

— Select “Variation’ in group menu
— Select ‘HapMap SNPs’ or ‘HGDP Allele Freq’ in track menu
— Then SNP list can be pasted or uploaded to appropriate file
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Two-point Linkage Analysis

* Can be performed between the disease and
marker loci for parametric linkage analysis

* For SNP data two-point linkage analysis is not
very informative

* Can be used to elucidate linked regions

— Which can be followed-up with multipoint analysis

Multipoint-point Linkage Analysis

* Can increase the informativeness of markers
within the region

— Extremely important when SNP marker loci are
analyzed
* Helps to fine map a locus to a smaller region

— Compared to two-point linkage analysis

Multipoint-point Linkage Analysis

* Incorrect specified genetic map
— Can bias LOD scores

— Bias the position of the genetic locus

* For parametric linkage analysis when the genetic
model is mis-specified and a susceptibility locus is
placed between two flanking markers:

— Can result in false negative results

— Pushes the disease locus outside of the map of
markers

Multipoint-point Linkage Analysis

* Intermarker linkage disequilibrium (LD)
— Can increase type | error

* When parental genotypes are missing

* For consanguineous pedigrees

— when parental, grandparent, etc. genotypes are
missing

Examples

» Affected sibpairs
— Without parental genotype data

— Without parental genotype data and genotype data
from one unaffected sibling

— Missing genotype data from one parent
* Consanguineous pedigree — first cousin mating

— Parents genotypes

* Various relative missing genotype data

ASP, no parents —— EMLOD model-free

= EMLOD parametric

25

) /
) /]
. //
5 //

0 0.2 0.4 0.6 0.8 1

EMLOD

Huang et al. 2004
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EMLOD

ASP, one unaffected sib = EMLOD model-free

= EMLOD parametric

25

20

ASP, one parent — EMLOD model-free

= EMLOD parametric

25

20

15

EMLOD

10

Huang et al. 2004

Huang et al. 2004

EMLOD

ASP, two parents = EMLOD model-free

== EMLOD parametric

25

20

Huang et al. 2004

Pedigree Structure- Indicating
Individuals with Missing Genotype data

Sibling
Grandparents

Married-in
Grandparents

Parents of the Proband Genotyped

@

—e— only proband & parents
—&— great-grand parents
—+— sibling grandparents
—%— married-in grandparents
all grandparents
great-grand and married-in grandparents
#- great-grand and 4 grandparents o

20
1

10
o

HLOD
15
1
x

o

/é_’_’_,__#(’/' —
8

@ ———— @

o ®
T T T T T T T
0.0(.0) 0.2(04)  04(16)  06(36)  08(64)  1.0(1.0)

D)

Avoiding Inflation of LOD Scores due to
Inter-marker LD

* Trim marker loci so that LD is weak between
marker loci e.g. r’<0.5

—Can lead to a loss of power

* Analyze data using programs that incorporate
haplotype frequencies
—e.g. Merlin
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Advantages of Two-point Linkage Analysis

* Not influenced by intermaker-LD
—Therefore no inflation of the LOD score

* Not influenced by incorrect genetic maps

— Which can cause incorrect map position and deflation
of the LOD score

Error Detection in Pedigree data

* First need to remove markers which are missing a
large number of genotypes
—e.g. >5%

* A more stringent criterion can be used for SNPs
with MAF<5%
—e.g.>1%

* These markers can have higher genotyping error
rates for the non-missing genotypes

Error Detection in Pedigree data

* Check for Mendelian errors
— Marker should be removed for the entire
pedigree
* Do not just remove individuals involved in the
Mendelian inconsistency
—PedCheck

* Useful program to detect Mendelian inconsistencies
— https://watson.hgen.pitt.edu/register/docs/pedcheck.html

Error Detection in Pedigree data

* SNP markers are not very informative and
therefore often not possible to detect errors
through Mendelian inconsistencies
— Those markers which are most informative (H=0.5)

produce the least number of Mendelian
inconsistencies

* Can check for double recombination events over short
genetic distances
* This is an indication that a genotyping error has occurred

* Merlin (Abecasis et al. 2002 Nat Genet)
— Can be used to detect double recombination events
—http://csg.sph.umich.edu//abecasis/Merlin/

Type | error

= Reject the null hypothesis even when it is true
= e.g. reject the null hypothesis of no linkage even
when it is true
= The null hypothesis of no linkage should have
not been rejected

Type | error

= |f a nominal criterion of p=0.05 is use as the
criterion to reject the null hypothesis

= One test performed 1 out of 20 chance null hypothesis
rejected when it should not have been

= False positive
= If 1,000 tests are performed
= By chance for ~50 tests the null will be rejected
= Even though the null hypothesis is true
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Type | error-Parametric Linkage Analysis

= |f many tests are performed must adjust for multiple
testing
= Family wise error rate
= LOD score criterion takes into consideration
= Multiple testing
= Size of the genome
= Number of chromosomes

Type | error-Parametric Linkage Analysis

= A LOD Score of 0.59
= Nominal p-value 0.05 [one sided])
= |s not used to reject the null hypothesis of no linkage

= For parametric linkage analysis a LOD score of 3.3* is
used to reject the null hypothesis

= Nominal one sided p-value 0.000049
= Genome wide p-value 0.05

*Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines
for interpretingand reportinglinkage results. Nat Genet 11:241-247

Type Il error (Power)

* Type ll error

— When the null hypothesis is false and it is not rejected
— Represented by B

* Power

— The ability to reject the null hypothesis when it is false
— Most studies require a power (1-) of at least 0.8

False positive true positive
Statistical True |state of null hypothesis
decision Ho True Ho False
Reject Ho Type |' error Correct
Do not
reject HO Cor‘refct Type Il?er‘ror‘
True False negative
negative

19




Cloud Computing

Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015

Outline

» Motivation

» Basic idea

» Providers

+ Costs

» Advantages vs. disadvantages

+ Concerns

Motivation

« Own IT infrastructure is expensive to set up, maintain and

update

— Projects may be one-time endeavors
— Not cost-efficient for single, short-time projects

» Urgent need for immediate access to computing power

— IT resources may not be present at location

— Promised/Planned setup is delayed

» Setup of an IT infrastructure serving high demand in
computing, storage and archiving requires substantial

expertise

— Limited pool of personnel

Basic idea

s

Servers

Application
o

colaboraton -
Communcatin
Platform
)
uee
runtme

Infrastructure

Cloud Computing

Instant, demand-driven access to a network of pooled
configurable resources for computing and storage without or
with minimal management effort by the service provider

created by Sam Johnston, distributed
under a Creative Commons license

Types of cloud services

‘ laaS ‘ ‘ PaaS SaaS

Infrastructure Platform Software

as a service as a service as a service
(“cloud foundation”)
Own administration Running own Use of an exisiting

of virtual servers, application within the application offered by
complete access to cloud, no the cloud
instance administration
Amazon’s Web Microsoft's Windows Apple’s iCloud,

Services (Elastic
Compute Cloud, Simple
Storage Service S3)

Azure, Goolge’s App
Engine

Google’s Drive,
Microsoft’s oneDrive,
ownCloud, DropBox

Levels of cloud computing

Cloud Clients

Web browser, mobile app, thin client, terminal
emulator, ...

I

Saa$S
CRM, Email, virtual desktop, communication,
games, ...

PaaS
Execution runtime, database, web server,
development tools, ...

Platform  Application

laaS
Virtual machines, servers, storage, load
balancers, network, ...

www.wikipedia.org
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Location of clouds

« Public cloud
— Access to virtual IT infrastructure via the internet
— Commercial service providers

* Private cloud
— Access to virtual IT infrastructure within an organization
— Usually located within the same country as the users
— Protected against outside access
— Increasingly used at high-performance computing (HPC) centers,
e.g. at universities, by provision of virtual computers to users
instead of real ones

* Hybrid & Community clouds

Providers

Amazon
— EC2 cor computing
— S3 for storage (Web services)

Google

— Compute Engine

IBM

— Focus on businesses

T Systems (Deutsche Telekom)
— Focus in businesses

There are many more providers.

Amazon

* Amazon’s EC2 for elastic web-based computing

.

Virtual servers (“instances”) with
— look & feel of a real server, with own IP address
— root privileges
— choice of operating system
— flexible configuration of working memory, cores (CPUs), hard disk
space

« Storage of data using Amazon’s S3

« Booking as:
— On-demand instance: payment by the hour, extremely flexible
— Reserved instance: reservation of computing capacity for one or
three years, less expensive than on-demand
— Spot instance: bidding for unused EC2 capacity, execution of
instance as long as bid is above actual spot price

Costs for Amazon: storage

AWS 83 Frankfurt (Germany): prices per GB per month

Region: | EU (Frankfur) .

Standardspeicher Reduced Redundancy Storage Glacier-Speicherung
Erstes TB pro Monat $0.0324 pro GB $0.0260 pro GB $0.0120 pro G8
Nachate 49 TB pro Monat $0.0318 pro GB $0.0255 pro GB $0.0120 pro G8
Nachste 450 TB pro Monat $0.0314 pro GB $0.0251 pro GB $0.0120 pro G
Nichste 500 TB pro Monat $0.0308 pro GB $0.0247 pro GB $0.0120 pro G
Nachste 4 000 TB pro Monat $0.0303 peo GB $0.0242 pro GB $0.0120 pro G8
Ober § 000 T8 pro Monat $0.0297 peo GB $0.0238 pro GB $0.0120 pro G8

e.g. 3 TB per month: ~ $ 35-100

Additional fees apply for access and data transfer.

(August 2015)

Costs for Amazon: computing

Single server in Frankfurt (Germany), some data: price per month

oot Oa

3 s

(August 2015)

Costs for Amazon: computing

Traater 1

) 1 Gevetopers Amaron Elavec ook Store (€85 promsdes pevsster stivae 1o Amagen £C2 mutaoces B

Compute: Amaton €2 Tnstancsc
[

et Dot s by 4 L8 o oo B

Inances Unage Troe s Opion ey
o
] 0w tneman [ Unenon 1o © OnOumwna (voCoe @ ~
105 [snomer strage
a0y [ s G 40 0B e ot Serngn o

(August 2015)
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Costs for Google: storage

AWS S3 Frankfurt (Germany): prices per GB per month

anti September 1, 2015

Local SSD Pricing

Image Storage

Image storage $0.085 G8 £ mse

e.g. 3 TB per month: ~ $ 120-510

Additional fees apply.

(August 2015)

Costs for Google: computing

Single server in Europe/APAC: price per hour

Lowest price’ (USD)  Typieal Full prica* (USD) por  Proemptitie
perhourwithfull  price’ (USD)  hour without price’ (USD) per
sustained usage perhour  sustained use hour
sa097
0194
sa3s
5776

1552

Virtusd  Memory GCIU'  Lowestprice’ (USD)  Typical Full price* (USD)per  Preemptitle

s perhourwithfufl  price’ (USD)  hour witheut price’ (USO) per
sustained usage perhour  sustained use hour

0o 5% 0059 0064 0084 sa02

sais 50128 sa0

sa2%

rasce a8 472

% ammGe 8 sasu 10

1344 sa3%2

e.g. per month: ~ $185 (August 2015)

Costs for Google: computing

OS for single server in Europe/APAC: price per hour

Premium OS Pricing

¢ premium operating systems Sffer based on the machine type where the premium operating system image
jge. whie a0 n1-standarc & instance wil be charged 3011 per ho

 using 3 machine type.

e premium operating sysiems are the same workdwide and do not differ based on z0nes or regions, a5 machine type prices do

Rled Mat Enterprise Linux (RHEL) images

SUSt mages

Windowes server images

e.g. per month: ~ $95 (August 2015)

Advantages vs. disadvantages

Scalability both * Limited bandwidth:
— by computational demand — NGS datasets can be huge

— by storage demand

Costs
— proportional to usage
— occur at time of usage

(up to several TB),
depending on the type of
transmitted file (fastq, bam,
vcf)

— Transfer can last several

i o days or even weeks, with
Immediate availability risks of interruption
— No need to wait for that new

HPC cluster for another six ~ * COStS:

months — No “flatrate” for usage
Data backup + Potential lock-in effect with
— Usually automatically provider when using more

provided cloud-specific elements

Concerns: data privacy

« Security during transfer between client and server

— Known and unknown but potentially exploited bugs in encryption
software (e.g. SSL/TSL)

« Security at server
— encryption of databases and file systems

» Profiling based on user data (Google)
* NSA and other secret services
« Account hijacking

Concerns: data protection

>90% of all cloud infrastructure is located in the USA.

National laws may prohibit transfer to another country or
outside the European Union.

Germany: Regular checks for compliance of used cloud
with standards set by law (“Bundesdatenschutzgesetz”) at
physical location are mandatory for personalized data
(genetic identifiably!).

Some US providers have set up computing centers within

the European Union.

— lIreland & Germany (Amazon), Denmark (Google)

— They are still required under the US Patriot Act to transfer data to
the US government if requested.

— Big Brother Award 2012 for cloud computing as a technology
awarded by digitalcourage, Chaos Computer Club e.V., and others
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Literature on cloud computing

» Cloud computing security risk assessment by the
European Union:
http://www.enisa.europa.eu/activities/risk-management
[files/deliverables/cloud-computing-risk-assessment

» Cloud Security Alliance: Top Threats
https://cloudsecurityalliance.org/topthreats
/csathreats.v1.0.pdf
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Elementary Usage of the Affection Status Locus Type

* Penetrance: Probability(Phenotype |genotype)
* Autosomal dominant - Complete penetrance no

Penetrance phenocopies
1/1 1/2 2/2
Suzanne M. Leal P(affected|genotype) 0 1 1
sleal@bcm.edu P(unaffected|genotype) 1 0

Center for Statistical Genetic
Baylor College of Medicine
https://www.bcm.edu/research/labs/center-for-statistical-genetics
www.statgen.us

All unaffected individuals must be 1/1
Affected individuals can be either 1/2 or 2/2

Note: 2 denotes the disease allele

Copyrighted © S.M. Leal 2015

Elementary Usage of the Affection Status Locus Type Elementary Usage of the Affection Status Locus Type

= X-linked recessive - Complete penetrance no
phenocopies
= Specify separate penetrances for males & females

* Penetrance: Probability(Phenotype |genotype)

* Autosomal recessive - Complete penetrance no
phenocopies

1/1 1/2 2/2
P(affected female|genotype) 0 0 1
1/1 1/2 2/2 P(unaffected female|genotype) 1 1 0
P(affected|genotype) 0 0 1
P(unaffected|genotype) 1 1 0 1 2
P(affected male|genotype 1
All affected individuals must be 2/2 P(unaffected male|genotype 1 0

Unaffected individuals can be either 1/1 or 1/2

‘ All affected females must be 2/2 and affected males hemizygous 2

Note: 2 denotes the disease allele ‘ Note: 2 denotes the disease allele

El f the Affecti L T .
ementary Usage of the Affection Status Locus Type Use of Affection Status Locus

= X-linked dominant or X-linked recessive with
milder expression in females - Complete * Do not get confused by thinking the following is

penetrance no phenocopies always true

= Specify separate penetrances for males & females — 2 for affected individuals

1/1 1/2 2/2 — 1 for unaffected individuals
P(affected female|genotype) 0 0 1
P(unaffected female|genotype) 1 1 0 e Code?2

1 ) — Use penetrances as denoted in the datafile
P(affected male|genotype 0 1 C

* Codel
P(unaffected male|genotype 1 0
‘ Affected females are either 1/2 or 2/2 & affected males are hemizygous 2 — 1-penetrances are used

‘ Note: 2 denotes the disease allele




Use of Affection Status Locus - Example
Autosomal Dominant

Multiple Liability Classes

* Used when penetrance is not the same for all
individuals due to reduced penetrance and

1/1 1/2 2/2 .
Coded in datafile 0 1 1 phenocopies
— Age of onset
Penetrance for individuals coded with a 2 )
— Different penetrance for males and females
1/1 1/2 2/2
0 1 1 * In pedigree file “Affection"
— First column “affection status” status 7 hablhty class
Penetrance for individuals coded witha 1. o 100 1 2
o »” " — Second column liability class 2002 |2 , 4 4
10 1 1 3122 2 54
- 1 0 0 4121 |2 t 5 4
5121 (2 ‘
Pulf"lc re
Examples Example

= The ratios between genotypes are the most important
factor in any penetrance model.
= Arisk ratio of 1:1 gives no linkage information at the disease
locus.
= Can be used for an individual whose phenotype is unknown
Example /1 1/2  2/2
05 05 05
= |n the cases where the risk ratio is o:1 the individual either
does or does not carry a copy of the disease allele. Inthe
example below all individuals assigned to this penetrance
class must be 2/2 at the disease locus.
Example /1 1/2  2/2

0.0 00 1.0

= Autosomal dominant disease with reduced
penetrance and no phenocopies.
Codes in Pedigree File

Aff. Ind. Unaff Ind.
1/1 1/2  2/2
0.0 0.6 0.6 21 11
0.0 0.8 0.8 22 12
0.0 1.0 1.0 23 13

1.) Does it matter which liability class an affected
individual is assigned to? Why?

Example

= Autosomal dominant disease with reduced
penetrance and phenocopies
Codes in Pedigree File

Aff. Ind. Unaff Ind.
1/1 1/2 2/2
0-10yrs 0.01 0.6 0.6 21 11
11-25yrs0.02 0.8 0.8 22 12
>25yrs 0.05 1.0 1.0 23 13

How would the following be coded?
= An unaffected 15 year old

= An unaffected 9 year old

= An affected 25 year old

= An affected 10 year old

Do the Penetrances make Sense on a
Population Level?

* If the population prevalence of a disease @ is
known then the disease gene frequency p and
penetrances f for an autosomal trait should
satisfy:

@ =fppp? +2fp(1-p) + f44(1-p)?
* For sex-linked recessive traits

® —pf, +(1-p)f,
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Do the Penetrances make Sense on a
Population Level?

= |f the population prevalence of a disease @ is
known then the disease gene frequency p and

penetrances f for an autosomal trait should satisfy:

D =fpp? +2f4p(1-p) + fyy(1-p)?

= The population frequency for genetic cases for an
autosomal dominant trait:
= A= fppp? +2fpep(1-p)

Do the Penetrances make Sense on a
Population Level?

= The frequency of phenocopiesis given by:
» C=fyq(1-p)?

= |f the disease is rare then
" A= 2pfpy
= C~(1-2p)fdd

= The phenocopy rate

= The proportion of phenocopies amongst all affected
individuals is

= equal to C/(A+C).

Example

= Calculate the population prevalence and phenocopy
rate for an autosomal dominant trait where:
* fop=fpg =0.8
" f,,=0.02
= p=0.001
= @ =fpp? (0.0000008) +2fpyp(1-p) (0.00160) + fy4(1-p)?
(0.01996)

= ®=0.0216

= The phenocopy rate equals 0.926

How can Penetrance Data be Obtained

= From the literature
= All necessary information not always available
= Estimateit from the data
= Usually biased due to way data was ascertained
= May not have enough data for reliable estimates
= Linkage programs
= Ageon (SAGE 3.1)
= Approximate methods
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Software to Perform Linkage Analysis
Genotype Array Data

Suzanne M. Leal
sleal@bcm.edu
Center for Statistical Genetic
Baylor College of Medicine
https://www.bcm.edu/research/labs/center-for-statistical-genetics
www.statgen.us

Copyrighted © S.M. Leal 2015

Frequent Questions

Why are you telling me about so many programs?
— Please just let me know the best one

Unfortunately not so easy

— No single program works equally well in all situations
Some programs can handle

— Large pedigrees but not many markers

— Many markers but not large pedigrees

— Both large pedigrees and many markers but does not
provide exact LOD scores

Here is an abbreviated list of linkage programs

LINKAGE(Lathrop et al. 1984)/
__FASTLINK (Cottingham et al. 1993)

* Parametric analysis only
* Suitable for relatively large pedigrees

* Limited in the number of loci for multipoint
analysis
— LINKAGE can allow for slightly more alleles/markers
but slower than FASTLINK
* Elston-Stewart Algorithm scales exponentially
with the number of loci and linearly with the
number of non-founders

LINKAGE(Lathrop et al. 1984)/
FASTLINK (Cottingham et al. 1993)

Quantitative and Qualitative analysis

Allows for estimation of various parameters: theta,
penetrance, allele frequencies
— ILINK

Two-point linkage can be performed using
— MLINK
— ILINK

Can estimate haplotype frequencies and
incorporate them in the analysis

— MLINK

— LINKMAP

LINKMAP
LINKAGE/FASTLINK

* LINKMAP can be used to calculate multipoint LOD
scores

* Due to Elston-Stewart algorithm can calculate LOD

scores for large pedigrees but very limited in the
number marker loci
— Number of marker loci dependent on number of alleles
* Maxhap
— Product of the allele frequencies including disease locus

» For SNP marker loci can only perform multipoint analysis
using ~7 marker loci
— Can use sliding window

Sliding the Disease Locus Across a
Map of Marker Loci

1)1_2 3 4
2)2 13 4

1-Disease Locus
2, 3,4, 5 and 6-Marker

Loci
3)1__3 4 5 (only one step)
4)3 14 5
5)1_ 4 5 6(only one step)
6)4 15 6
704 5 16
8.)4 5 6 1
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Superlink (Silberstein et al. 2006)

* Can analyze complex pedigrees quickly

— Parametric linkage analysis
» Computes exact LOD scores

— |deal for pedigrees with many loops (marriage or
consanguinity)

* In particular animal pedigrees
— Dogs
— Cattle
* Can perform multipoint linkage analysis
— Limited in the number of marker loci 2-4
— Implements Bayesian networks

Superlink (Silberstein et al. 2006)

* Can quickly calculate genome wide two-
point LOD scores
* Multipoint linkage analysis
— Use sliding window to calculate LOD scores for >~3
marker loci

— Not suitable for genome-wide multipoint linkage
analysis

* Efficient use of parallelization of the
algorithm

* No need to install program
—Use of Superlink is available free online

Genehunter (Kruglyak et al. 1996)

¢ Parametric and Non-parametric linkage analysis

* Provides exact rapid calculation of multipoint
LOD scores through the implementation of
hidden Markov Models

— This approach scales linearly with the number of loci,
but exponentially with the number of non-founders

— Implements the Lander & Green Algorithm

Genehunter (Kruglyak et al. 1996)

* Handles a large number of marker loci
— But only pedigrees of small to moderate to moderate
size
* Maxbit (2n-f)=<21
* Qualitative Traits
* NPL counts the numbers of alleles shared IBD
amongst 2 or more affected relatives

— Calculates p-values using either exact distribution or
normal approximation

Genehunter 2.0 (Daly et al. 1998)

Performs variance component analysis for mapping
guantitative traits

Performs all sib-pair analysis contained in the
Mapmaker/sib software

Constructs Haplotypes

Implements a large pedigree approximation for the
computation of a non-parametric allele sharing
statistic on extended pedigrees of arbitrary size and
complexity

Computes traditional and multilocus Transmission
Disequilibrium Test (TDT)

Allegro (Gudbjartsson et al. 2000)

* Allegro has the same basic functionality as Genehunter
— Includes the features of Genehunter plus

* Supported features
— Parametric and nonparametric LOD scores
— Nonparametric NPL scores,
— Information
— Exact p-values
— Expected crossover rate
— Constructs Haplotypes

— Simulation
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Allegro (Gudbijartsson et al. 2000)

* Typical speedup compared to Genehunter is 30-
fold.

* On a computer with four Gb of memory the
program can handle pedigrees with up to about
28 bits

* Same data format as Genehunter

* ALLEGRO2 can handle even larger pedigrees

MERLIN (Abecasis et al. 2002)

Handles small to medium sized pedigrees

— Implements Lander & Green Algorithm

Parametric analysis

Non-parametric analysis

Variance Components Analysis

Regression based linkage analysis (quantitative traits)

Incorporates LD in analysis

Error checking — double recombination events over
small genetic distances

SIMWALK?2 (Sobel and Lange 1996)

* A Markov Chain Monte Carlo (MCMC) algorithm is
implemented in order to transverse the space of
inheritance vectors for each pedigree

* The initial legal descent state is found for using an
iterative genotype elimination technique.

— Simulated annealing is then performed to search for find
the single most likely descent graph.

Simwalk2

* The MCMC random walk proceeds to sample the

possible underlying configurations in proportion to
their likelihood

— A sample average is then used to give estimated
results for the pedigree

* Can analyze large families with complex structures

—>1000 individuals

* Handles a large number of markers

—>30 markers

¢ Performs

— Constructs Haplotypes
— Parametric Analysis
— Nonparametric analysis

Integrated Suites for Linkage Analysis -
Alohmora

* Facilitates Analysis of a large number of markers
— Incorporating genetic mappings
— Allows for Analysis of a subset of markers

* Error Checking
— Pedcheck
— Merlin

* Linkage Analysis
— Allegro
— Merlin
— Genehunter
— Simwalk2

Integrated Suites-Easy Linkage

* Runs on windows
* Data preparation

— Allows for analysis of a subset of markers
* Calls

— Genehunter

— Allegro, etc

* Graphical representation of results
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Haplotypes/3-Unit Support Interval

» After completion of linkage analysis
— Haplotypes should be constructed
* e.g Allegro, SimWalk2
* Additionally a 3-unit support interval should be
obtained
* If linkage was established the causal variant should

lie within the haplotype and/or 3-unit support
interval

In Summary

Error Detection in Pedigree data

* PedCheck
— Mendelian errors
* Merlin

— Double recombination events over short genetic
distances

Analysis Programs

* Elston-Stewart Algorithm
— Large Pedigrees
— limited number of markers
* Linkage
* Fastlink
* Vitesse
¢ Superlink

Analysis Programs

* Lander-Green Algorithm
— Small-medium sized pedigrees
— Large number of Marker loci
* Genehunter
* Allegro
* Merlin

Analysis Programs

* Other methods — Bayesian networks
— Superlink

* Suited for pedigrees with many inbreeding or marriage
loops

* Approximate methods - MCMC
— Simwalk2
— LOKI

31




Pedigree Drawing Programs

* Haplopainter
— Can draw pedigrees and haplotypes

* Pelican

Integrated Suites

* Easy Linkage

¢ Alohomora
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Genotyping Error Detection
Using MERLIN

— Introduction —

Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015

Sources of error in genetic data

Genotyping errors Appear as:

False paternities » Mendelian errors

Probes mix-up - Unlikely genotypes

Data mix-up + Double recombinants
Wrong model over short genetic
(e.g. marker distances) distances

Wrong phenotype definition

The MERLIN software

Merlin—rapid analysis of dense genetic maps using
sparse gene flow trees

Gongalo R. Abecasis', Stacey S. Cherny', William O. Cookson' & Lon R. Cardon'

Published online: 3 December 2001, DOI: 10.1038/ng786

+Multipoint Engine for Rapid Likelihood INference*

,Works like magic!“ (G. Abecasis)

Auvailable for Linux, Solaris , MacOS X, Windows

Efficient data storage through sparse binary trees for modelling gene
flow in pedigrees and corresponding algorithms

Used via command line mode

Reference:

— Abecasis et al. (2002) Merlin-rapid analysis of dense genetic maps using
sparse gene flow trees. Nat Genet 30:97-101.

Download & Docs:
http://www.sph.umich.edu/csg/abecasis/Merlin/
Current version: 1.1.2

What can MERLIN be used for?

Pedigree file
.ped
IBD calculations
Marker file Non-parametric linkage

Variance components linkage

Marker map /

X.map

Haplotyping
Pedigree regression

(linkage / QTDT / [PLINK] format )

Unlikely genotypes (I)

Sib-ship 1 Sib-ship 2

1

2

1

2 —

1 I I e —

1

2 double

1 recombination
1 event

Sibs are identical at all markers One marker contradicts sharing
- sibs very likely share this stretch  information from all other markers
of the chromosome -> very unlikely case - check!

(identity-by-descent [IBD] = 2) (from MERLIN online tutorial)

Unlikely genotypes (Il)

Question: Do a particular marker with genotype g and its neighboring
markers (G\g) provide consistent information?

Ratio of likelihood ratios (LR) for two marker map models:
Likelihood for:

L(G\9l6) - geetoo

unknown molcjiiilnr?'lap
LRIinked L(GI 9) T all markers distances
r= =
LRunlinked L(G\gl 6=0 5) N gsetto assuming
L(G|6=0.5 unknown unlinked
( | . ) 7 all markers markers

g consistent with G\gunder8 > r<<1 MERLIN reports 1/r

g inconsistent with G\g under 8 > r>>1 as mistyping score!!
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Running MERLIN

At the command line:

merlin -p X.ped -d X.dat [-m X.map] <options>

Pedigree file Marker file Marker map file
(optional)

Other programs in bundle: Analysis options

a (listed whenever MERLIN starts)
* pedstats

¢ pedwipe + General: --error [ON], —-information, ...

« IBD States: --ibd, --kinship, --matrices, ...
« NPL Linkage: --npl, --pairs, --qtl, ...

Error detection using MERLIN

. Are there genotype errors in the data?

- Detection of Mendelian errors / unlikely genotypes:
merlin -p .. -d .. --error

. Are reported errors simply due to chance?

-> Estimation of the false-positive rate for error detection
merlin -p .. -d .. --—error --simulate -r <seed>
--reruns <reps>

. »,Wipe* errors from data!

-> Erase problematic genotypes (requires error file merlin.err)
pedwipe -p .. =d ..

Other programs

¢ Other multipoint error detection methods implemented in:

— SimWalk2
(Sobel & Lange. Am J Hum Genet 1996;58:1323-1337)
https://www.genetics.ucla.edu/software/simwalk

— Mendel v14.4.2
(Sobel E, et al. Am J Hum Genet 2002;70:496-508,
Lange K, et al. Bioinformatics 2013;29:1568-1570)
https://www.genetics.ucla.edu/software/mendel

— Sibmed
(Douglas JA, et al. Am J Hum Genet 2000; 66:1287—1297)
http://csg.sph.umich.edu/boehnke/sibmed.php

« Performance comparison in:

— Mukhopadhyay, et al. Comparative study of multipoint methods for
genotype error detection. Hum Hered 2004;58:175-189.
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Homozygosity Mapping

Suzanne M. Leal
sleal@bcm.edu
Center for Statistical Genetic, Baylor College of Medicine
https://www.bcm.edu/research/labs/center-for-statistical-genetics
www.statgen.us

Copyrighted © S.M. Leal 2015

Homozygosity Mapping - Concept

* Useful tool to map autosomal recessive traits
— Particularly for consanguineous pedigrees

* Surrounding the pathogenic variant, multiple
markers will be homozygous

— Pointing to one or several regions of the genome
where the pathogenic variant occurs

Homozygosity Mapping - Concept

* Can look at homozygosity within a single
individuals

* However information from several affected
individuals
— Usually but not necessarily from the same pedigree
« Can help to reduce the number of regions

— And the size of the region containing the putative causal
variant

2
12
12
12

Concept

* Two segments of the chromosome are inherited
from a common ancestor
— Sharing is identical-by-descent (IBD)

» Often occurs in consanguineous pedigrees

* Two different haplotypes, surrounding the
pathogenic variant, in affected individuals who are
offspring of a consanguineous mating

— Disease variant(s) entered the pedigree more than once
in orderto observe this phenomenon

* Highly unusual

Identify by Descent (IBD)/Identify by State (IBS)

O—11 o0 O
1/2 | 1/3 1/2 | 1/3 1/2 | 1/3
1/3 12 /1 1/3 /2 12
IBD=0 1BS=1 IBD=1 IBS=1 IBD=2 1BS=2
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Concept

* Can also observe regions of homozygosity in
“outbreed” populations
—Small breeding pool

* Individuals, although not known to be,
related (1t or 2" cousins)
—Arein reality quite closely related

—Often inbreeding coefficients can be high due to
generations of intermarriage

Concept

* Can occur in small populations

— Geographically isolated
* Mountains, Island populations

— Socially isolated

* Anindividual can also inherit two copies of
the same variant by “chance”

— Usually parents are distantly related but this
relationship is unknown

Performing Homozygosity Mapping

* In a single individual
* Often more than one run of homozygosity

* Difficult to determine which run of
homozygosity contains the causal variant

Performing Homozygosity Mapping

* Information can be used from multiple
individuals affected individuals (same
phenotype) who may or may not related
—If multiple individuals are homozygous for an

overlapping interval on the chromosomes
—Can lead to identifying the correct regions of

homozygosity
* Also aids in reducing the size of the interval

Performing Homozygosity Mapping

* Can determine that two individuals are
distantly related because they are
homozygous for the same haplotype

* Examine the region of homozygosity across
individuals in order to obtain the smallest
region in common

— Likely to contain the pathogenic variant

Performing Homozygosity Mapping

¢ Even if two or more individuals are not
homozygous for the same haplotypes

* Can still examine the haplotypes to determine
the smallest interval containing the causal gene

* Caveat it can be possible that not all individuals
have the same phenotype due to the same gene
— Unusual but can occur when there are multiple

genes responsible for the same phenotype within a
small genetic region
* Nonsyndromic hearing impairment
—13ql1-13ql12
» GJB2 and GJB6
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Performing Homozygosity Mapping

* In this situation by examining the region of
overlap between individuals

* Can accidently exclude region containing
the causal variant

* This can also occur when examining
smallest region of homozygosity between
families

—i.e. when analyzing families which do not have the
same haplotype within the region of homozygosity

Performing Homozygosity Mapping

* Most beneficial in consanguineous pedigrees
* If pedigree is sufficiently large
—Can usually map the causal variant to one region
* Caution should be used when trying to refine
interval using unaffected individuals

— May not have disease phenotype due to reduced
penetrance

* Carrying two copies of causal variant and thus are
homozygous where the disease variant lies

Performing Homozygosity Mapping

* May be advantageous to only use affected
individuals

* Dependent on disease etiology

* Likewise phenocopies can cause rejection
of true region

* Phenotyping is extremely important

Performing Homozygosity Mapping

* Can help to quickly zoom in on the region
containing the causal variant

* For homozygosity mapping analyzing thousands of
marker loci takes seconds
— Can use a wide variety of genotyping arrays

¢ Illumina HumCoreExome-24 Bead Chip

— Also can use exome or whole genome data

* Multipoint linkage analysis can be time consuming
— Homozygosity mapping can be used to elucidate the

region where initial linkage analysis should be carried
out

— And most likely contains the pathogenic variant

Performing Homozygosity Mapping

* Region of homozygosity and 3-unit linkage
support interval usually perfectly overlap

* Performing multipoint linkage analysis not
correcting for intermarker linkage disequilibrium
can inflate LOD scores
— This can occur if family members are missing genotype

data

* e.g. parental genotypes

— For consanguineous pedigrees missing grandparental data can also
cause an increase in false positive LOD scores

Performing Homozygosity Mapping

* Regions of homozygosity can give
additional support to a linkage finding for
autosomal recessive traits when analysis is
performed in consanguineous pedigrees
—Robust to intermarker linkage disequilibrium
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Programs

HomozygosityMapper (Seelow et al. 2009)
— http://www.homozygositymapper.org/

IBDfinder (Carr et al. 2009)
— http://dna.leeds.ac.uk/ibdfinder/

AutoSNPa (Carr et al. 2006)
— http://dna.leeds.ac.uk/autosnpa/

PLINK (Purcell et al. 2008)
— http://pngu.mgh.harvard.edu/~purcell/plink/
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File formats for sequence data

g

AR

o QO W B, B

Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015

Outline

* NGS technologies

» Workflow and corresponding data files

+ FASTAQ files: reads fresh from the sequencer
+ SAM/BAM files: read mapping

» VCF files: variants, genotypes and more

Whole-genome sequencing (WGS)

Genomic Flanked DNA Mapping,
DNA fragments sequencing alignment,
variant calling

— AGGTCGTTACGTACGCTAC
= o == ) > GACCTACATCAGTACATAG
—_—— GCATGACAAAGCTAGETGT

Random shearing, flanking of amplification
fragments by adaptors

Whole-genome sequencing (WGS) does not cover the whole genome.
WGS is cheap on a per-base basis, but still expensive in total costs.
Sequencing allows assessment of genetic variation that is unknown in
advance (must be known for genotyping).

modified from Bamshad et al. (2011) Nat Rev Genet

Whole-exome sequencing (WES)

Exons as prime functional candidates represent 1-2% of total sequence

Genomic Flanked Hybridized Pulldown &
DNA fragments fragments washing
[——— ] < AN
_ = \x' NN
Random shearing, flanking of Hybridization Pulldown
fragments by adaptors
Exonic DNA Mapping,
fragments sequencing alignment,
o.q,:—,\—.:...o variant calling
o=\ =50 AGGTCGTTACGTACGCTAC
D e=—=%e = =» e
oo—=" >o

amplification

Vendors for exome capture kits: Agilent, Illimuna, Nimblegen, and others.

WES does not cover the whole exome. Covered regions depend on the used library.
modified from Bamshad et al. (2011) Nat Rev Genet

Bioinformatic workflow

Sequencing: image
analysis; base calling
Discard

Map reads against
reference sequence. | “"':;ﬂf'd

!

Call list of variants not
matching reference

4

Call genotypes of
sequenced individuals

d

Quality filtering
v N

Database annotation Functional
(GDSNP, 1000GP) annotation

v N ¢ N

Known | Novel Coding Noncoding
variants | variants | variants  varlants

Jobling, et al. (2014)

Next-Generation Sequencing (NGS)

* Aim:
— Full sequences, rare variants
— Direct assessment of genetic variation directly
» 'Generations":
— First: Sanger sequencing
— Second: 'next-generation sequencing'
— Third and Fourth are coming
+ Platforms:
— Roche 454
— lllumina / Solexa / Sequenom
— Applied Biosystems (ABI) SOLID
— Helicos BioSciences
— Pacific Biosciences
— lon Torrent, ...
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NGS: Roche 454

1. Emulsion PCR

One DN

mzﬂomllm beads

@@ -Arke- M’N il

e
dNTP 3nd, nked 10 gass s

2. Pyrosequencing

d flongam

TCAGGTTTTTTAACAATCAACTTTTTOOATTAAMATGTAGATANCTG
CATARATTAATAACATCACATTAGTCTGATCAGTGARTTTAT

; .
of B WD e

5

: Jime

3. t 3-mer

2 } 2-mer

ikl N bisade i idbg s ba aia j Hrmer

n

Metzker (2010) Nat Rev Genet

NGS: lllumina/Solexa

1. Bridge amplification of DNA fragments

ol phas smphcton
e Gk et pr cster

8 Hlumina/Solexa — Reversible terminators

Do
prm— = . o 0, 0, 0. % @ o
el
- koo, b D §
e ‘each ibel
Gttererndye
]
e sepuie
W D Q ofofo
2. Sequencing by labeled reversible colos magig

terminators

Repeatcycles =
€0 20 Top: CATCOT
7060 bortem coxeee

Metzker (2010) Nat Rev Genet

NGS: Applied Biosystems (ABI) SOLiIiD

1. Emulsion PCR

TE

B i,

200 iz beads

Tenplate
s dusacation

LM%«’ - g

Chemcaly cress
ked 1o g dee

2. Sequencing by ligation

Algrmer o clouepace e to
[Two-base encoding each target CIpaCe Rfanrn
s terrogated twice
Templte
sequence

ACGT)| eeoo0o
el =
s Yo

o0

Metzker (2010) Nat Rev Genet

NGS: read length

ToHi= | Comparison of next-generation sequencing platforms.
Plaorms  Ubrary/ NG [Resd |Run Gb Machine Pros Cons Biotogical Rets
tomplate  chemisiy longth |time per <ot applicatons
preparaten (buses) | (days) run (USS)
Rochelssts Fog P/ S 300 [035 045 500000 Lowgermads Highresgent Bocteiulandiniect  D.Muiny
GSRX  embck corthich  genemedenoro pers
Tiamoen meppingin ot m comm
repettheinbomo- scae (<3 \bjexcme.
regonsfast  poly coptu
e repests
Womina/ Frog M/ Rl o [0 1 340000 Corentythe Low Vot docovery O Muary.
SolensGA, sobdphse 100 35 mortwidely  multipiesing by whele-genene. o
Uiedplaiorm  capabileyof  rotequRcig o comm.
intheiid | sampies  whole-sxome coptue:
‘Gone docovery i
Uie/APGs  FragMP/  Clomoble| 50 718 30 395000 Twobwe  Longnm  Vaitdacowry .My
SOUD3 . enbCR peobesal o encodig  times by whele genme. pers
e <o
Chwrwmtomor haie-axome captur:
comoction ene o
Polontor  WPon( Mo |26 [8 13 170000 Lemm Usrsore  Bac )
GOOT ek P requkedto  resoquancingfor v,
probe s Plrtom:  maintan vaiantdiconery oo
opensource  and comm.
b Control
ageots.
SherstNGS
st
Melecos  fraa M/ T PP P
BoSciences
Heliscope moiscule
Pucic  Fragonk/  Redkcie| 964 [NA  NA
Bosciances sl
faget malecule
2010

Metzker (2010) Nat Rev Genet

Capacity of sequencing instruments

2007 2008

Output (kbp)

Mardis (2011) Nature

Data generation throughput

single
molecule?
1,000,000,000
o 100,000,000 Massively parallel
£ sequencing
§ 10,000,000 A
£ sequencers
5 1,000,000
Q
> - .
g 100,0000 Capillary sequencing Microwell
g 10000
Gel-based systems
§ 1,0004 Second-generation
8 Automated capillry sequencer
é 1009  Manual slab gel First-generation

i

10-

1980 1985 1990 1995 2000 2005 2010 Future
Year

Stratton, et al. (2009) Nature
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NGS: sequenced individuals back then

Tobie 1| Sequencing statistics on personal genome projects
Personal  Platform

Ganomic Noof  Read
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Metzker (2010) Nat Rev Genet

per Megabase (Mb)

Sequencing costs

per genome

SRR s s s R R U
iz 20 e s 2w 2o o T 200 200 0 90 8

Moore’s law (1965, co-founder of Intel)

“The number of transistors in a dense integrated
circuit doubles approximately every two years”

http://www.genome.gov/SequencingCosts/

In-silico storage of NGS data

Output of sequencers

1,000,000 100,000,000
NGS (bp'$)
Doubling tima § months 10,000,000
100,000
i TECHNOLOGY CLASS. SEQUENCING MACHINE READLENGTH  READS PER RUN RUNTIME
Base pairs per $ (NGS) 1,000,000 (NUCLEOTIOES)
@ 10,000 G ABIprsm. y seque 400-900 9 20 minutes to 3 howrs
Hard disk storage (MB'S)| 100,000 Sl
14
% Doubling time 14 months| g y g A
} 1,000 10,000 § 0 Iluming/Solexa HiSeq 2000 150% 2 many hundreds of milliors. | 2 days 1o 10days.
g ] ABISOLD 4 35-75 ‘undreds of mitions 7 days
g g 1000 a Lt Techenlogies fon Torrent 200 5 milion 4hours
g ively [ Jersces SMAT (sing} ~3000 P 1o 75,000 1 hour
o @ unamplihed (single-mclecule) DNAs | time) sequencing
1
10 Table 3.) Genetis ad Gemasc n Mediine (© Garland Scnce 2915)
10
1
1
o 0.1
1990 1992 1994 1996 1998 2000 2003 2004 2006 2008 2010 2012
Year
Stein (2010) Genome Biology Strachan, et al. (2015)
i = )
in High
1000 =) r -
Hisea 2000 J’ - ~
Al e .
100
Table 1: HiSeq X System Sequencing Capacity
HiSeq X Ten HiSeqXFive ||
10 System System
5 Minimum Number of Instruments 10 5
3 1 = Annual Genome Capacity > 18,000 >9000
2 Price per 30x Genome <$1000 <$1500
s Pactio RS
3 od Table 2: HiSeq X System Performance Parameters*
g Parameter Specification
3 oo Output per Run Dual flow celk: 1.6-1.8 Tb =
Single Reads Passing Filter Dual flow celk: 5.3-6 billion
i
0.001 Supported Read Length 2x 150 bp =
Run Time <3days
2 75% of bases above Q30 at
0.0001 Qually 2x150bp =
TruSeq DNA PCR-Free Library Prep Kit .
Supported Lirary Preparation 20 L% FELTIoe LT PO
0.00001
10 100 1,000 10,000

Read length (log scale)

Lex Nederbragt (2013): developments in NGS. figshare. http://dx.doi.org/10.6084/m9.figshare.100940.

All information has been obtained from the lllumina web site.

hitp://wwn

illumina
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FASTQ file format

Contains all unaligned reads obtained from the sequencer
Plain text file, four lines per sequence

Sequence identifier

(optionally some more description) Sequence letters

@SEQ 1D

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+

! WH ) $%5%++) ($%5%%) L 1x¥**—4* 1 1)) **55CCF>>>>>>CCCCCCCOn

_ + » Quality code for respective letter
(optionally some more description)

1"#$%8" () *+,-. /01234567891 ; <=>@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]~_"abcdefghijklmnopgrstuvwxyz (|}~

low high

Base quality: Phred score Q (I)

Sanger sequencing:

Ewing & Green (1998)
Genome Res

Q= -10logp

lllumina/Solexa have used a slightly
different quality score in the past:

Q= -10logq
1-p

p — probability of an incorrect base call

Quality: Phred score Q (ll)

Sanger sequencing:

Quality 0-(@10) Probability of incorrect Proportion of
score Q base call accurate base calls
10

10" =0.1 1in 10 90%
20 102 =0.01 1in 100 99%
30 10 =0.001 1in 1,000 99.9%
40 104 = 0.0001 1in 10,000 99.99%
50 105 =0.00001 1in 100,000 99.999%
60 106 = 0.000001 1in 1,000,000 99.9999%
Phred score 0 1 .. 20 .. 50 .. 92 93
ASCII coding 33 34 ... 53 .. 83 ... 1256 126
FASTQ symbol ! “ 5] 8 | } ~

Quality shows a trend of decreasing towards the end of a read.

An example: the Tyrolean Iceman (“Otzi”)

Discovery in Sept. 1991 off a
mountain pass (3210m) near
Tisenjoch (Otztal Alps) by hiking
German couple

(92 m inside Italy, off Austria)

Otzi died ~5250 YBP during the
Copper Age (Chalcolithic)

First genetic study in 1994 (Handt
et al., Science; on mtDNA
variation)

Full nuclear sequencing (WGS) in
2012 (Keller, Graefen, Ball, et al.,
Nat Comm)

Data deposited at European Nucleotide Archive (ENA):
http://www.ebi.ac.uk/ena; accession number: ERP001144

Otzi’s sequence data

http://www.ebi.ac.uk/ena/data/view/ERP001144

v Servees Research
European Nucleotide Archive »
3 Pessn subseri 0 ena-arounce maling It hre tsave.a6.¢ K/ matmanistn.t rceive st 3bot ENA srvice

Read Count 8a
806,822,360 41,261,824,967

Scentifc Instrument Ubrary Fasta  Fastq fles Submitted  Submitied
mame  modal | leyow Mes  (qulaxy) fles(N) Mes
o)

A FASTQ file from Otzi

@GERR069107.83594103 61_656_767/1
GGCTGAGGCAGGAGAATTGCTTGAACCCAGGACACGGAGGTTGTG . N
+ Sequence identifier

IITIIIIIIIITIIIGIHHIIIII:HI.,, (ATl (((F) II1E
@ERR069107.83594104 136171D327197/l‘
[ TGGAATGGAATGGAATGGAATGGAATGGAAC -w—i
R Sequence (31 bases)
IIGIIICEIIICCIITITITICAT ((D2IF; o
@ERR069107.83594105 2174_789_11437%

TGTGTGTGTGTGTGTGTGTGTGTGT

+ Quality
IIIIIIIIIIIIIIIIIIIIIIIIR

@ERR069107.83594106 7447132271870/1
TCTCCACTTCATTCCATTCCATTTCATCCTATTCCA

B

IITIITIIIIIITIIIIIIIIIITIIIBS>I??IIINL
@ERR069107.83594107 533_1805_480/1

TCT CATTTATGCAGC TACATGARAAAATGC
.
ITTTTTTITITITITITITITITITITITITITITIIIITIIIIIIT
@ERR069107.83594108 997712u571612/1
CATTCCATTGCATTCCATTCCATTCCATTAGTTTCCATTCCATTC
N

IIITIITITIITIIIITIIIITIITIIIN""ABITIIIITITIIIT
@ERR069107.83594109 1010_363_607/1
CGCAATGGCATTCCTAATGCTTACCGAACGARAAAT

¥
ITTIITIIITIIITTIIIIIIITIIIIIIITIIHIL

probability of incorrect base call
| > Q=73 > p=1073/10=5,0x108
(> Q=40 > p=104010=1.0x10*
; > Q=59 - p=10910=1.3x10¢
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Bioinformatic workflow

Sequencing: image
analysis; base calling

Map reads against
reference sequence

Call list of variants not
matching reference

4

Call genotypes of
sequenced individuals

Quality filtering

v N

Database annotation Functional
(GDSNP, 1000GP) annotation

¢ N ¢ N

Known  Novel Coding Noncoding
variants | varants variants  variants

Discard
unmapped
reads

Jobling, et al. (2014)

Sequence alignment

Read length
f — CATCACGATTCG
ACACCATGACGA Reads
ACCATGACGATT
ACCATGACGATT |
CCATCACGATTC
Sequence
alignment

Reference sequence
(or de novo assembly)

Sequence alignment

Matching single sequences/reads (pairwise alignment) or
multiple sequences/reads (multiple alignment) to a
reference

Local alignment; multitude of approaches, many NP
-complete (classical algorithm: Smith-Waterman algorithm)
Frequently used software for WGS/WES: BWA, bowtie
Many others available, often for specialized tasks (or
outdated):

ELAND (lllumina), MAQ, Partek, VelociMapper, GEM,
SOAP/SOAP2/SOAPS, ...

Memory-consuming!! (>2 GB)

Repetitive and pseudo-autosomal regions are hard to align
and therefore barely accessible to NGS

BWA & bowtie

« Aligner using Burrows-Wheeler Transform (approach for
data compression, published 1994)
* Mapping low-divergent sequences against a large
reference genome
« BWA: three algorithms:
— BWA-backtrack: short reads up to 100bp (previous lllumina)
— BWA-MEM: longer reads (70bp-1Mb)
— BWA-SW: like BWA-MEM, but better for frequent alignment gaps
— Li & Durbin (2009, 2010) Bioinformatics
— Extensions: BarraCUDA, UGENE (visual interface)
» bowtie/bowtie 2:
— Very fast, memory-efficient
— Alignment of short reads
— Langmead, et al. (2009) Genome Biol

Mapping of reads to a reference genome

Region 1 Region 2 Region 3

Enormous pile of
short reads from

[ —_—
NGS -
—t = —
—_— 1 & om0
e Easy ————
——— ——— a
—_— o = ]
> ——
_— o
_— o —_—
— o —_—
—_— o | f———c
[ p—
—
————— |
e — Region 1 Reglon 2A Reglon 28
e
—_—
—_— —c— < P
—_—— —_— /
— Harder = o Erad
e— | - — a —
—_— m——,—% — = m———
— E —
[r—
—_—

Read mapping is complicated mismatches (errors or variants), InDels,
duplications, insertions, etc.

https://www.broadinstitute.org/gatk/guide/best-practices

Mapping quality score MAPQ

Probability (on a log scale) of a read being misplaced

MAPQ =-10 Iog10(1-p) Li, Ruan, Durbin (2008)

Genome Res

p — probability of the read coming from the correct position

This probability is approximately modeled using a Bayesian approach,
assuming that sequencing errors at different sites of read are independent
of each other.

plzix,u) best alignment
pulx,2) = 74—

. zZ|x,v all possible alignments
Plzlx,..)=10-Ea10 2 Pl alpossile

sum of single-base phred Q e.g. two mismatches with Q=20 and Q=10:
values at mismatch positions p(z|x,..)=1020+10/10=0 001
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SAM/BAM file format

Sequence Alignment/Map format

Plain text file containing the reads that could be aligned/mapped

Coor
rot AGCATGT */‘ reference |
TTAGATAAAGGATA=CTG
A2aAGATAASGGATA
EECTaAGCTAA

T002
aligned
reads

ATAGCT .. ovennrannss Teace «— | split alignment

trtagctTAGGC
clipped from the CAGCGGCAT
alignment
SAM file:
‘ header (format version, sorting, ...) 1

F

PR I, ‘ reference sequence dictionary (length, ...) |

©SQ SN:iref LN:45 < it

001 99 ref 7 30 posmon 7 39 .

002 Oret 930 = - - .

003 O rer 9 mapping quality (MAPQ) . SA:7 .

X004 0 ref 16 ? 2 0 ™ o . Phred score (* - missing)
17 s . 79, ¥ 55N, 30,1}

003 2064 rof * 0 0 TAGGC

( 5
P T001 147 37 30 oM = 7 -39 CAGCGGCAT W11 :
query template H ion of d flags N
BAM format stores the same data in a compressed, indexed, binary form.

A BAM file from Otzi

¢ BC K)V[VU*36YRDCADD/!{i0pSht £2£°Q0LiDi, *!"301°a§" #BL?CeéBk
A!8Rpx>gyis01aad) Ix n|jazaté; S»8+*:3ub; ya®gOnu3#c3wef"NiJaVbFe * AIQE
\0Q3x¢, *P8¥NM) XU (HQ "B PF; OOGDAMT ¢ 6A90ANR+OBxXOB«b<#2 " =£D*D G *jm*«°1x
+J°B0B) 8Y,U; Q! | tU{KYO, CL2¥%¥>C7" 0d+1°X*S:8Xuf £r]bEbSVI ©axpirTie:
YOC (gkt | BFSVO® : y+ | ETP<iShdik<®; "O<ViPEca4
WBMOE+_~E+La+DY (* Prexf~; AAxaSO0A-80X1; %83 20K s 601¢ruGaA'S°°Ep a#A 1

-3
g4QAA “=A E?{01>;\»%adax>pDEIYoxkguradxixakien E: 18, tU0A 0" 6tadwT>!
»@1J50" ER#* 1667 6aaDaAS , AAlOYpE»+AW1 "D  T2oDbD -bH<Zit»

¥ -4usY\ya»0eallis pri!¥ @p={~L¢CA ¢An qixIv °h2z0 c +¢@2apal6Dim»xii(
i-"Box

(®\BRSAHONEDW} «BpO£i., - _gka¥a !4r¢ (TYixHkOYB+% 0°3aA?D:b+kg 131. Ou
COGTeAr :1uM (8D A'yn ««>+ OpPRtxa80v ©K0UZY5_hQ*BokRUC>dwe#¥;00" E£9 -
@°pt ¥ BC uMI*0o$iy'OB1puA&i&bWHOVAC : SHUUULID; M22EXa% Wislvpias

GIOR N*:1°V*~ai;¥1i0n{.o-0iilB?28\@z1p%{24°
tOb~S' 2 12VQSpBE+ax BLoyLIEPga/ v  yaed <d® | &l

&' wxwwa f1AACQ®»i07PB-ASing
Musyasuayd ??Ré-sii[; fay?

Genetic sample of Otzi

27.90%

0.16%

. H. sapiens . Other eukaryota
. Bacteria [:| Not assigned

. Clostridia
. Borrelia

[l Other bacteria

[ ———

Sequencing errors, sample contamination, and other factors
can lead to unmapped reads.

Jobling, et al. (2014)

Bioinformatic workflow

Sequencing: image
analysis; base calling
{

Map reads against
| reference sequence

Discard
—> unmapped
reads

Call list of variants not

Call genotypes of
sequenced individuals

4

Quality filtering
¢ N
Database annotation Functional |
(dBSNP. 1000GP) annotation
v N v N
variants | variants| variants  varlants

Jobling, et al. (2014)

Types of variation

SNVs || InDels | SVs
« Single-nucleotide + Single-base or « Structural variants
variants small insertions « Copy number

and deletions variants (CNVs)
* Inversions,

translocations

Single nucleotide polymorphisms (SNPs)

Base substitutions Single base Other small

indels indels
. .CCACGGTGCTGACTCCTGAGCYGACV"GGACCTGCICAGT',HGTCICACA

/ f
‘.‘ I |/ /1
TEANSITIONS  TRANSVERSIONS  CELETION INSERTION  DELETION  INSERTION

8] /
- .CCATGGTACTGAATCCTTAGCTGACGGACTCTGCTCTTGTCTGTCACAC

Jobling, et al. (2014)

Variant calling for SNVs and InDels

Read length
I

CATCACGATTCG
ACACCATGACGA i Reads

ACCATGACGATT
| ACCATGACGATT )
N ﬂ CCATCACGATTC

Sequence
alignment

Read depth/Coverage
(e.g. 5x)

G |

Reference sequence
(or de novo assembly)

G/cC Single-nucleotide variant (SNV)
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Variant calling for SNVs and InDels

Unified Genotyper

Haplotype Caller

« SNVs and InDels are called
separately

« aka Consensus Calling (in
MAP software)

« Bayesian approach; the
likelihood for each genotype is
expressed depending on the Q
and MAPQ error probabilities

« The genotype with highest
posterior probability is selected

« First implemented in MAQ
(Li, et al., 2008, Genome Biol)

« Faster, any ploidy

« SNVs and InDels are called
simultaneously (in local
neighborhood)

* Re-assembly of genomic
regions with large variation;
identification of possible
haplotypes per region

« Calculation of haplotype
likelihood for given data

« Bayesian approach as with
consensus calling

* Implemented in GATK

« More accurate (for InDels)

No software is optimal for every task.
Different callers are used for different sorts of variants.

Variant calling

* SAMtools
— Outgrew from the 1000 Genomes project
— mpileup for calling SNVs and InDels
Li, et al. (2009) Bioinformatics 25, 2078-9;
Li, et al. (2011) Bioinformatics 27:2987-93
— http://samtools.sourceforge.net/

+ GATK
— Genome Analysis ToolKit; developed at the Broad Institute
— Requires Java
— McKanna, et al. (2010) Genome Res 20:1297-303;
DePristo, et al. (2011) Nat Genet 43:491-498;
Van der Auwera, et al. (2013) Curr Protocols Bioinformatics
43:11.10.1-11.10.33

— https://www.broadinstitute.org/gatk/
* MAQ, FreeBayes, ...

VCF/BCEF file format

Variant Call Format

‘ meta information (field description, filter criteria, etc.)

variant information variant quality samples

>
mandatory columns

BCF format stores the same data in a compressed, binary form.

called variants

VCF: variant information

chromosome identifier (RefSeq
f number etc.)

physical position reference alternative MAPQ allele frequency
value of ALT
allele allele
L/ ; -
#CHROM POS ID REF ALT QUAL FILTER INFO
20 14370  rs6054257G A 29 _PASS  NS=3;DP=14;AF=0.5;DB;H2
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.01
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T
20 1234567 microsatl GTC G,6TCT § PASS  NS=3;DP=9;AA=G
« # A

i g number of / /
call is made samples with

(variant has passed all filters) data in dbSNP
/ I
no('(\:AalijéiT()a)de combined depth in HapMap2
(coverage) ancestral

across samples allele

See https://github.com/samtools/hts-specs for a specification of entries.

Genotypes in REF and ALT columns

G GTICT ~—— [

T <DEL> ~ [

substitution (SNV), 2 alleles
substitution (SNV), 3 alleles
monomorphic (no variant)
deletion, 2 bp

insertion, 3 bp

large deletion (1 kb)

VCF: sample information

Data format: GT: inferred genotype
— _____ GQ: conditional genotype quality (phred scale)

(described in DP: read depth (coverage)

VCF header!) Sample information:
. FORMAT NA0000I NA00002

.. GT:GQ:DP:HQ 010:48:1:51,51 110:48:8(51,51
.. GT:GQ:DP:HQ 010:49:3:58,50 011:3:5:65,3
. GT:GQ:DP:HQ 010:54:7:56,60 010:48:4:51,51

. GT:CQ:DP 0/1:35:4
Individual NAO0002:

1]0:  genotype phased, heterozygous 0/2: genotype unphased, hetero-
48:  probability of 1048=0.000016 for zygous for second allele in ALT
an erroneous call 17: probability of 10-'7=0.02 for an
8: read depth (coverage) erroneous call
2: read depth (coverage)

VCF uses a general syntax system and flexible for coding different information.
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Technical information

Variant information ‘ ‘ Genotype information

AA: ancestral allele GT: genotype: / or | un/phased
AC: allele count in genotypes, 0-REF, 1,2,..-ALT allele
respectively for each ALT DP: read depth at this site
allele GL: log,, genotype likelihoods:
BQ:  base quality Q at this site GT:GL 0/1:-323.0,-99.1,-802.5
DB:  dbSNP membership - L(G=0,0)=10-3230
DP:  combined read depth cross L(G=0,1)=10-%1
samples L(G=1,1)=10"8025
H2/3: HapMap2/3 membership PL: 10*logy, (phred-scaled)

MQ:  mapping quality MAPQ genotype likelihoods
MQO: number of reads with GP: phred-scaled genotype

MAPQ=0 covering this site posterior probabilities

1000G: 1000 genomes PQ: phasing quality
membership MQ: mapping quality MAPQ

and more and more

A VCF file from Otzi

Fvd.1
ual,Description="Low quality"
Type=Integer,Description="Allelic depths for the ref and alt alleles in the order

e=Integer, Description="Approximate read depth (reads with MQ=255 or with bad

#¥FORMAT=<1D=GQ, Number=1, Ty

e=Float, Description="Genotype Quality">

sembly=b3T>
nibly-b37>
ssenbly=b37>

#¥contig=<ID=1, length=2.
#4contig=<ID=10, leng

g
##contig=<ID=11, length=135/

11;DP=8;Dels=0.00;

Genomic VCF (gVCF) file format

« VCF file with

— arecord for every position (also for non-called variants)

— per-sample reference confidence estimation for invariant sites
* Produced by Haplotype Caller
« Developed at the Broad Institute

weover

HEADER

RECORDS

VCFtools

https://vcftools.github.io/

VCFtools + Software for manipulating VCF files
» Possible tasks:

A set of tools written in

Perl and C++ for — Filter and summarize variants, create
orking wits VCF: tes. intersections and subsets

Home — Compare, validate and merge VCF files
Documertaton — Convert to different formats (e.g. PLINK,

IMPUTE, BEAGLE)
— Perform some analyses:

Calculation of population-genetic parameters

9 View On GithD (nucleotide diversity, FST, Tajima’s D, Hardy
-Weinberg proportions & test, etc.)

« Linkage disequilibrium calculation (r2)

4 Downioad 2P

4 Downioad TAR

« SNP density, sample relatedness, etc.
» Danecek, et al. (2011) Bioinformatics

Bioinformatic workflow

FASTQ Sequencing: image

analysis; base calling

= Discard
SAM/BAM it | s

reads
!

Call list of variants not
matching reference

A This is a simplified picture.
Call genotypes of There are more steps that
sequenced individuals
are taken to produce
{ genotype calls.
Quality filtering
v N

Database annotation Functional
(GDSNP, 1000GP) annotation

v N ¢ N

Known  Novel  Coding Noncoding
variants | variants | variants  varlants

VCF/gVCF

genotype files

Jobling, et al. (2014)

GATK Best Practice

https://www.broadinstitute.org/gatk/guide/best-practices

Data Pre-processing >> Variant Discovery >> Preliminary Analyses

sty | _[ Var. Calling .| Anatysis-Ready sNPs

Raw Reads Reads |~ -I £***| Variants & indels
[Genotype Likelinoods | ||/ |
J
Genotype
P E 3 o | Refinement |
| doint Genotyping An:oumuo“n TR
T )

Lmvmnu ’ SNPs |

{indels |

< S | variant Evaluation |
Base Recalibration — ——)

iliadanasal Variant Recalibration |
Analysis-Ready | |||}
Reads - —
terpadng 1
‘ Variants [ SNPs || Indels J troubleshoot usein project
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Exome pipeline at the CCG

! M Run
Samole 2 b Tlanecna folder
Samginy - Papeand: | SAEESK - Fiowce 0518
=7 —— PE 2100 bp s
Samge§ | eonchment 2000 FASTO 25V caliing

NimloGen
SeqCap EZ L]
ExomeLib vz [EwreAsTAn
GATK {dupicates romoval, local
realgremect MAPQ rocatbraton T
4SNP + short INDEL calling - improved BAM file 5.CNV caing ) [T
anter
ExomeDeptn cnmoPs
WPILEUP
SAMTOOLS)
DeNovoGear
ALLEGRO
ROM
OINDEL
ey 7.COMBINE
'SNP-CODONCHECK
wf % | varbank
¥ 4 TFUNC
™ Cologne Center for s
Genomics -

Visualization: Integrated Genome Viewer (IGV)

« Interactive visualization tool for large integrated datasets
» Many supported file formats,

including SAM/BAM and VCF files

* http://www.broadinstitute.org/software/igv/
* Robinson, et al. (2011) Nat Biotech 29, 24-26;

Thorvaldsdéttir, et al. (2013) Brief Bioinf 14, 178-192

IGV: view of aligned sequence reads

e O B O o W

Mapoed

F=X
\\
. \,
: N
Sequence lwl-lll‘l\l-l\lulllll‘II\IIIIlljlll\lllllll‘lllll‘\\lzﬂvllllllllllIlllll'

P 43 Aaman Erehmniey Gons, o (€ Sk s 914

Jobling, et al. (2014)

Otzi’s mtDNA in IGV

T T T r—pp— ' T
|I variants from VCF file
coverage
» VIS
: . T == : = i
2 - = . -
7 non-reference £ ‘ - B = - =
alleles (errors, - = \ == .
variants?) —s —
s " ) % s reads from BAM file | *
£3 E = . - .
. - -
reference

Cautionary notes on variant calling

Models for variant calling are tuned for sensitivity
— Project-specific trade-off between between sensitivity and
specificity
Variant calls are error-prone
— Substantial proportions of false-positives are to be expected (!)

Variant calling quality depends on the experiment
— Raw DNA isolation

— Library preparation

— Sequencing (inter-lane differences)

Variant calls require subsequent filtering before meaningful
analyses can be conducted

Estimated proportions of false SNV detections

1000 Genomes, Pilot 2, chromosomes 1-22

NA12878 (CEU) NA19240 (YRI)
m | gL, O o | g o
A (e (s.?lg.S) (o.gl;.e) <10 (2.522.2) (1.52.7) 0.08
GAIlIXH (8.322.7) (3.?22.9) <104 (10.191-'111 3) (3.22?1.3) <10
SOLIDA (16.197-.117.4) (o.?ig.s) <10+ (6.;3.8) (3.‘1123.8) <10

P values obtained from a permutation test.

Nothnagel, Herrmann, et al. (2011) Hum Genet
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Literature on file formats (& Otzi)
Metzker ML (2010) Sequencing technologies - the next
generation. Nat Rev Genet 11:31-46.
https://github.com/samtools/hts-specs

https://www.broadinstitute.org/gatk/guide

http://www.ebi.ac.uk/ena

Keller & Graefen & Ball, et al. (2012) New insights into the
Tyrolean Iceman’s origin and phenotype as inferred by
whole-genome sequencing. Nat Comm 3:698.

Otzi’s museum

South Tyrolean Archeological Museum, Bozen, Italy
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Filtering Approaches for the
Analysis of NGS Data

Suzanne M. Leal
sleal@bcm.edu

Copyrighted © S.M. Leal 2015

A Few Words About Next
Generation Sequencing

Generation of NGS Data

* Capture arrays can be used with sequencing
to generate data on
* Exomes
—Aligent SureSelect 38MB
—Aligent SureSelect 50Mb
—Illumina TrueSeq Exome Enrichment (62Mb)
* Targeted regions
* Genes

Whole Exome Sequencing

* Not really whole exome
— Not all genes are targeted

* Great variability between capture arrays
— Different arrays capture different proportions of the exome

— Not all targeted genes are captured
— Not all targeted sequences call be aligned
— Not all aligned sequences can be accurately called

— Not all captured regions have sufficient depth to call
variants

NGS Data

* For exome sequencing high quality data consists of
of a median depth of >80X

* With >90% of the exome covered with a depth of
>10X

* Whole Genome sequencing (good quality) ~30X
coverage
— Not necessary to use such high depth for whole genome

as for exome sequencing
* Reads are distributed more evenly across genome

* Sequence data for an exome is ~1/15" of the data

for a genome

Why is Exome Sequencing Currently Used
More Frequently than Whole Genome?

Number 1 Reason - Cost!

— An exome is ~1/3" of the cost of a genome

Easier interpretation of the data

— Focuses on regions of the genome we understand best
Ideal for the study of highly penetrant diseases
Exome sequencing a stop-gap measure until the
price of whole genome sequencing becomes more
reasonable

Already starting to see a switch

— More studies performing whole genome sequencing
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Filtering to Identify Pathogenic Variants

Two or more Affected and One
affected unaffected affected
individuals individuals individual

| |

[Exclude variants that are not shared

by affected individuals and that are
present in unaffected individuals

|

{ Exclude non-coding variants and coding variants that

are found in databases (e.g. 1000 Genomes Project or
EXAC) or that are not rare (e.g. >0.5% frequency)

|

Test for segregation of identified genetic variants with
disease phenotype. Sequence variants in ethnically
matched controls.

Identifying Casual Genes Using
__Exome/Whole Genome Sequencing
* Information on mode of inheritance may give clues
to type of variants which you are looking for
— Autosomal recessive phenotype for consanguineous
pedigree
* Homozygous variants
— Autosomal recessive phenotype from outbreed pedigree
* Compound heterozygous variants
* Homozygous variants
— Suspected de Novo event
* Heterozygous variant —which is absent in parents
— Autosomal Dominant

* Heterozygous variant

Filtering to Identify Pathogenic Variants

Screening Databases

* Databases of Exome and genome Data
Two or more Affected and One — Contain individuals who have not been phenotyped
affected unaffected affected
individuals individuals individual ce.g. 1000 Genome data
J J — Were ascertained because of disease phenotype
Exclude variants that are not shared M Coronary heart disease
by affected individuals and that are .
present in unaffected individuals — Several databases available
l * 1000 Genomes
— http://www.1000genomes.org/
Exclude non-coding variants and coding variants that .
are found in databases (e.g. 1000 Genomes Project or ¢ Exome Variant Server
'EXAC) or that are not rare (e.g. >0.5% frequency) _ http://evs.gs.washington.edu/EVS/
} * ExAC
Test for segregation of identified genetic variants with = http://exac.broadinstitute.org/
disease phenotype. Sequence variants in ethnically
matched controls.
= ———— Contributing Projects
ExAC Browser (Beta) | Exome Aggregation Consortium
* 1000 Genomes
*  BulgarianTrios
*  Finland-United States Investigation of NIDDM Genetics (FUSION)
- ¢ GoT2D
« Inflammatory Bowel Disease
, About EXAC 2 ::‘e:m News «  METabolic Syndrome In Men (METSIM)
P acrtim (IXAG) 8 8 Conton of rowst GROFS Seekirg 13 20FWGS 33 Jarary 13,
vty koo et RS D i «  Jackson Heart Study
summary duts Svaleble for e wider aciensfc communty - *  Myocardial Infarction Genetics Consortium:
ittt epets o b el =, 2014 ‘ « Italian Atherosclerosis, Thrombosis, and Vascular Biology Working Group
Conmtated dna % the Cuent reesse as Fsted hern ‘_':ji‘r"‘? i "‘i"’:‘:";ﬁ“‘"‘ *  Ottawa Genomics Heart Study
AL ca here ave rebeased undera wot for the Benefit of the wide bicmadical “easa a"ncuncaments «  Pakistan Risk of Myocardial Infarction Study (PROMIS)
:?”:::r’o::”::v:‘:jnwm“mwn 2 October 20, 2014 *  Precocious Coronary Artery Disease Study (PROCARDIS)
. e It s of G4 Douae ) A + Registre Gironi del COR (REGICOR)
. . o Oetober1s. 2014 *  NHLBI-GO Exome Sequencing Project (ESP)
* Most extensive database with data on 60,706 individuals + National Institute of Mental Health (NIMH) Controls
* Provides break-downs by different ethnic groups «  SIGMA-T2D
« Although contains individuals with disease, e.g. schizophrenia «  Sequencing in Suomi (SISu)
* Noindividuals with diagnosed early onset disease included *  Swedish Schizophrenia & Bipolar Studies
« Information on allele frequencies + T2D-GENES .
«  Numbers of heterozyous and homozygous individuals for a variant S‘:‘h'mph'e“'a Trios f'°’|“ Taiwan
« Can evaluate read depth to determine if variant site of interest is covered . The Cancer Genome Atlas (TCGA)

with adequate read depth and in how many individuals

Tourette Syndrome Association International Consortium for Genomics (TSAICG)
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Avoid 0% Cut-off When Filtering

» Databases do not consist of disease free
individuals

* Mendelian variants may not be 100% penetrant
* For autosomal recessive traits

— Carriers may be presentin databases
* Frequency cut-offs should be disease specific

— Unlikely pathogenic variants will have a frequency of
>0.5%
* There are rare exceptions
— GIB2 35delG variant for nonsydromic hearing impairment

Filtering to Identify Pathogenic Variants
Two or more Affected and One
affected unaffected ted
individuals individuals |nd|wdual

|

{Exclude variants that are not sharedJ

by affected individuals and that are
present in unaffected individuals

are found in databases (e.g. 1000 Genomes Project or
EXAC) or that are not rare (e.g. >0.5% frequency)

{

Test for segregation of identified genetic variants with J

disease phenotype. Sequence variants in ethnically

[ Exclude non-codlng variants and coding variants that }
{ matched controls.

Test for Segregation with Disease
Phenotype

* Is a variant ruled out if it does not completely
segregate with the disease phenotype?
* What are reasons for incomplete segregation?
— Variant was a false positive call
— Not pathogenic
— Locus heterogeneity within the pedigree
— “Phenocopies” within the pedigree
— Reduced penetrance
— Incorrect pedigree structure
— Sample swaps

Screening Control Individuals

Is it not always necessary to screen controls given
the large available databases

Depends if the study population is well
representedin the public databases

For under represented populations variant
frequencies should be examined in controls

— Or individuals from the same populations who were
ascertained for another phenotype

A Few Examples of Successful NGS
Studies Using Filtering Approaches

Proof of Principal - Miller Syndrome

Nat Genet. 2010 January ; 42(1): 30-35. doi:10.1038/ng.499.

Exome sequencing identifies the cause of a Mendelian disorder

Sarah B. Ng'”, Kati J. Buckingham?"’, Choli Lee’, Abigail W. Bigham?, Holly K. Tabor2,
Karin M. Dent3 Chad D. Huff*, Paul T. Shannon®, Ethylln Wang Jabs®7, Deborah A.
Nickerson', Jay Shendure'-T, and Michael J. Bamshad'-

Department of Genome Sciences, University of Washington, Seattle, Washington, USA
2Department of Pediatrics, University of Washington, Seattle, Washington, USA 3Department of
Pediatrics, University of Utah, Salt Lake City, Utah, USA “Department of Human Genetics,
University of Utah, Salt Lake City, Utah, USA ®Institute of Systems Biology, Seattle WA, USA
6Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York,
New York, USA "Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
8Seattle Children’s Hospital, Seattle, Washington, USA
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DHODH Gene ldentified

* Fourindividuals with Miller syndrome
underwent exome sequencing

— From three families

* An additional three Miller families where
followed up wit3h Sadnger Squjen%ing \

ARRNAL

9

M Al 5.3 ) B
3 Y < ok w9
U“m & 3 ) 623 g 56 2
§ g 3 38z 2 a8 ¢
¢ 3 b $g% S S % =
© From Ng et al. 2010

DHODH is composed of 9 exons that encode the untranslated region (orange) and protein coding
region (blue). Arrows indicate the location of 11 different variants found in six Miller families

Kabuki Syndrome

Nat Genet. 2010 September ; 42(9): 790-793. doi:10.1038/ng.646.

Exome sequencing identifies MLL2 mutations as a cause of
Kabuki syndrome

Sarah B. Ng'", Abigail W. Bigham?", Kati J. Buckingham?, Mark C. Hannibal?3, Margaret
McMillin2, Heidi Gildersleeve?, Anita E. Beck?3, Holly K. Tabor23, Greg M. Cooper',
Heather C. Mefford2, Choli Lee', Emily H. Turner, Josh D. Smith', Mark J. Rieder!, Koh-

ichiro Yoshiura*, Naomichi Matsumoto®, Tohru Ohta®, Norio Niikawa®, Deborah A.
Nickerson', Michael J. Bamshad'-231, and Jay Shendure':t

* Exome sequenced
— 10 unrelated probands with Kabuki syndrome

Kabuki Syndrome

From

;_\:_H‘ j 7 B )l Vo g 10‘; m‘ Nget al. 2010
* Dysmorphic, skeletal, immunologic & mild intellectual disabilities

« 1/30,000 to 1/50,0000

* Most cases simplex

— Very few cases of parental transmission

Kabuki Syndrome

Could have tackled problem by sequencing trios

— Suspected to be de Novo

Article describes how initial strategy failed since not
all children have Kabuki syndrome due to variants in
the same gene (locus heterogeneity)

Kabuki Syndrome

Table 1 Number of genes

Sutaet aredysis
{aoy xof 10} 1 2 3 4 5 6 7 a 9 10

to any subset of x affected

NS 12082 8722 7084 6,049 5289 4,581 3940 3248 2486 1899

et In GRGNP] 29 or 7419 2697 1057 483 288 12 128 88 &0 34

1000 Geromes.

et I contrel exomes 1827 2 30 184 0 % 2 7 2

et In wither 6935 2,22 242 104 44 16 6 3 O

Is losy-at-hunctios (nan- 753 3 2 2 ] 0 o b\

wame o Sameshit! Indel

Not the
The sy of gones with ot baset cevs honmynorTyvaus swaant (NS, Spon 4o Scomptir o Ganiw ety (55) o
coding indel (1) are bated wider varioon Shers. Variawnts ware Stad by seasarnce i OSNE or 1000 Ganomes (ot i COTTECT
NP1 29 or 1000 gwwinres) and control escmas (not n control ssmas) or both (50t in atwr), conol wseses ivdee  gene
% those from 8 Napmap?, & F557, & Vller? and 10 (67 sampben. The number of ganes $nd uang the anion of the
wtarvection of £ indvedasls Is gren

From Ng et al. 2010

Kabuki Syndrome

After failure to identify gene

Clinicians ranked the patients from typical Kabuki
syndrome to atypical

Predicted functional assessment of variants
Manual review of data highlighted previously
unidentified nonsense variant in MLL2 gene

— Identified in the four highest ranked cases 1, 2,3 & 4
— Additional found in patients 6, 7 & 9
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Kabuki Syndrome

/,f "
N w'-.} )

P

* Additional Kabuki cases identified to have MLL2
gene mutations

— 26/43 cases

* 12/12 patients with available parents had de Novo
variants

Discover of de novo events using Exome
Sequence Data for Autism
ARTICLE

40110.1038/mature13908

The contribution of de novo coding

’ ; . " Nature
* Exome sequence data from 2,517 simplex families from the
Simons Simplex Collection (SSC) was analyzed

— Probands with autism spectrum disorder and their parents
sequenced

— 1,911 families also had sequence data on an unaffected sibling

Rates of de novo Events by Variant Type

1.5+
o
% 0.10
g 1.0
) 0.05
£ 054
o
&

0.0- 0.00-

Substitutions Synonymous Missense Nonsense  Splice site
P=1x10% P=0.56 P=0.01 P=9x10°% P=0.03

o 0.2+ 0.39
=
5} W ASD
g 027 W sib
% 0.14
£ 0.14
o
>
w

0.0-

0.0-
Likely gene disruptive (LGD)
P=2x10"°

Indels  No frameshift Frameshift
P=0.08 P=047 P=7x103

From lossitov et al. 2014

Genes with Recurrent Hits and Non-Verbal IQ
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From lossitov et al. 2014

Short List of Genes Identified Using Exome
Sequencing

Disease Model Sequencing scope  Reference  Disease Model

Sequencing scope  Reference

How Many Variants will be Identified
Using Filtering Approaches?
* Depends on

—Mode of inheritance
—Number of individuals sequenced
—Type of sequence data

* Exome

* Whole genome
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Pathogenic Variant Identification Using
Data f Iri Sinele individual

e

Is it possible to identify the causal gene using
exome or genome sequencing?

How Many Variants will be Identified on
Average for an Exome of Single Individual?

* Assume complete penetrance

— Removing those variants with >0.5% which are in
databases
* ExAC

* Limiting analysis to protein coding mutations
— Missense
— Nonsense
— Splice sites

Recessive phenotypes

Rare compound heterozygous and homozygous variants

A

= 0-5 compound heterozygous SNVs
= Data from parents must be available
= To determine if variants are compound heterozygous
= 1-2 homozygous SNVs
® A much larger number of homozygous sites will be observed
when the child is an offspring of a consanguineous mating

Autosomal Dominant Mode of Inheritance

A

~200-300 variants

De novo mutations

X

0-3* coding non-synonymous mutation per individual
Exome data must be available from parents

*More may be observed due to false positive variant calls

Mode of Inheritance

* If Mode of Inheritance is unknown can try more
than one model

* Filtering a single individual often leads to many
variants that can reasonably be followed-up by
— Testing for segregation
+ If family members are available
— Functional studies
* NGS data from additional family members can be
helpful in narrowing down the number of variants
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Selection of Additional Family Members to
Reduce the Number of Variants

* Avoid performing NGS on unaffected family
members
—Variant frequencies can be obtained from
databases
* ExAC

— Unaffected individuals can also be pathogenic
variant carriers due to reduce penetrance

* Can lead to exclusion of the causal variant

Selection of Additional Family Members to
Reduce the Number of Variants

* Do not sequence parents of affected individuals
— Except for the study
* de novo events
— Offspring will always inherit one parental allele
* More distantly related family members are the
most informative

— e.g. cousins

Selection of Additional Family Members to
Reduce the Number of Variants

* Who to select can be guided by basic linkage
principals
— Those sets of individuals providing the highest “LOD”
scores should be selected

Siblings 15t Cousins 2nd Cousins Avuncular
u [ | | [
me o N on [ I |
E e e = N
[ | ]

Maximum LOD scores - Autosomal
Dominant Pedigree

* If two affected Individuals from an a pedigree are
sequenced what are the maximum LOD scores
which can be obtained?

Autosomal Dominant Pedigrees

Maximum LOD scores
Parent-Child 0.00
Siblings 0.176
Avuncular 0.301
1st Cousins 0.602
2n Cousins 1.201

Selecting Individuals for NGS

* Which individuals should be selected can be
evaluated by simulations studies
— SLINK/MSIM
— Calculating maximum LOD score

* If genotype array data is available
— GIGI- Pick (Chueng et al 2014 AJHG)

* https://faculty.washington.edu/wijsman/progdists/gigi/software/
GIGI-Pick/GIGI-Pick.html

— ExomePick
* http://genome.sph.umich.edu/wiki/ExomePicks

Reducing the Number of Variants For
Follow-up
* Sequence multiple unrelated individuals with
the same phenotype

—Look for rare variants which are predicted to be
functional that occur within the same gene

* Due to allelic heterogeneity not all affected
individuals will share the same variant
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Reducing the Number of Variants For
Follow-up
If there is locus heterogeneity

— There may be no single gene for which all affected
individuals have a pathogenic variant

For extreme locus heterogeneity
— None of the individuals may share pathogenic variants
within the same gene
« Particularly if the sample size is small
— Therefore not possible to narrow down results to a
single gene

Selection of Individuals for NGS
de Novo

e If it is of interest to detect de Novo variants
— Child and both parents should be sequenced

* Would not expect to find de Novo variants in
families with more than one affected individual

— Can occur if de novo variant occurs in a founder that is
passed to offspring

de Novo Events

* Asingle validated LGD de novo eventis not sufficient
to implement a gene in disease etiology
* Multiple LGD de novo events must be observed within
a gene region
— The number which must be observed to be significant is
* Dependent on the sample size
* The mutation rate within the gene region
* Significance can be evaluated
— By comparing the de novo variant rate in controls

¢ e.g. unaffected siblings of probands
— lossitov et al. 2014 Nature

— Estimating the gene specific mutation rates
* Neale et al. 2012 Nature

What are the Success Rates of NGS
Studies?

Data Dependent

N Engl J Med. 2013 October 17; 369(16): 1502-1511. doi:10.1056/NEJMoal306555.

Clinical Whole-Exome Sequencing for the Diagnosis of
Mendelian Disorders

Yaping Yang, Ph.D, Donna M. Muzny, M.Sc, Jeffrey G. Reid, Ph.D, Matthew N. Bainbridge,
Ph.D, Alecia Willis, Ph.D, Patricia A. Ward, M.S, Alicia Braxton, M.S, Joke Beuten, Ph.D,
Fan Xia, Ph.D, Niu, Ph.D, Matthew Hardison, Ph.D, Richard Person, Ph.D, Mir Reza
Bekheirnia, M.D, Magalie S. Leduc, Ph.D, Amelia Kirby, M.D, Peter Pham, M.Sc, Jennifer
Scull, Ph.D, Min Wang, Ph.D, Yan Ding, M.D, Sharon E. Plon, M.D., Ph.D, James R. Lupski,
M.D., Ph.D, Arthur L. Beaudet, M.D, Richard A. Gibbs, Ph.D, and Christine M. Eng, M.D
Departments of Molecular and Human Genetics (Y.Y., AW., P.AW., AB., J.B,, F.X,, ZN., MH.,
RP.,MRB,MSL,AK,JS,SEP,JRL,ALB., CM.E.)and Pediatrics (S.E.P., J.R.L) and
the Human Genome Sequencing Center (D.M.M., J.G.R.,, M.N.B., P.P.,, MW., Y.D., J.R.L,,
R.A.G.), Baylor College of Medicine, Houston.

In a clinical setting
~25% of Mendelian disoders solved

® Euopean Joural of Human Genetis (2012) 20, 490-497
2012 Macmilan Publshers Limit Al rigns resened 1018481312
W nature.Comieig

Disease gene identification strategies for exome
sequencing

Christian Gilissen*!, Alexander Hoischen', Han G Brunner' and Joris A Veltman'

Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire
protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst
thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The
choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance,

of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease
ion by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian

i 60% of the projects. in ics as well as in sequencing technology will

likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian
disease gene identification for the coming years.
European Journal of Human Genetics (2012) 20, 490-497; doi:10.1038/ejhg. 2011.258; published online 18 January 2012

Keywords: Mendelian disease; gene identification; strategies; next generation sequencing; exome sequencing

¢ 24 families of which 14 lead to a novel gene identification
* 58% success rate 95% Cl 36%-78%

* Three families segregated known disease genes
* Overall success rate of 71% 95 Cl 51%-85%
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Using Genotype Array Data, Linkage
Analysis and Homozygosity
Mapping to Increase Success of
Gene/Pathogenic Variant
Identification

Benefits of Obtaining Genotype Array

Data
* If multiple family members are available

— Advantageous to perform SNP genotyping using one
of the current microarrays

— All informative individuals should be genotyped
* Can also aid in accessing the quality of DNA
samples

— Help to ensure NGS data will successfully be
generated

Benefits of Obtain Genotype Array Data

¢ Canbe used to validate the pedigree structure
* Help to ensurethat samples have not been swapped
* Avariety of programs have been developed to provide probabilities on
relationshipswithin pedigrees
— GRR
* Abecasis etal. 2001 Bioinformatics
— RELATIVE
* Goring and Ott, 1997 Eur ] Hum Genet
— SIBPAIR
* Ehm and Wagner 1998 ATHG
— RELCHECK
* Broman and Weber 1998 ATHG
— RELPAIR
* Boehnke and Cox 1997 ATHG
* Pedigree data can also be reconstructed

from genotype data
— PRIMUS
 Staplesetal. 2014 ATHG
Sample Swaps

Benefits of Linkage Analysis

* Can identify problems with pedigrees
— Incorrect phenotype information
* Affected individuals labeled and unaffected
 Unaffected individuals labeled as affected
* Collaborators and Families can be re-contacted
— To correct errors

¢ Errors which can not be resolved
— Should be removed from analysis

® U
++ D+ ++

++ D+

D+

Phenocopy Reduced Penetrance

Benefits of Linkage Analysis

Challenges and solutions for gene identification
in the presence of familial locus heterogeneity

Atteeq U Rehman''%, Regie Lyn P Santos-Cortez*'%, Meghan C Drummond', Mohsin Shahzad**,
J Morell', Muhamm: 22, Abid Jan®, Xi %, Abdul Aziz’,
Saima Riazu a D Smith®, A A Eliot Shearer’,
Vi of Washington
A Fisher”, Wasim Ahmad®,
h'” and Suzanne M Leal**

%, John Hinnant™'%, Shaheen N Khan’,
, Sheikh Riazuddin®!!, Thomas B Friedman', Ellen

Center for Mend
Karen H Frideri

= Can be used to detect locus heterogeneity within pedigrees

= Linkage analysis/homozygous mappingcan resolve which
branches/individuals are segregating the same pathogenicvariant

= Aid in selection of individuals for NGS

Inter-sibship Locus Heterogeneity

CIB2 p.Phe91Se
SLC26A4 p Val239Asp

1372Met

Family 8 1.0 HGF dei3 Family 9

16

++

bt
19 [20 2152 23&2]4&5*6

++ ++ ++ ++ -
R S T LRSI LA Sy
— WES
branch 1 branch 2 branch 1 branch 2
[ [wioo o]  Regon | wiop]iod | Regon |
Family8 573 148  7921.11-q21.3 (HGF) Family 9  6.27  1.65 4q21.21
Branch1 3.59 3.59 7921.11-q22.2 (HGF) Branch1 2.53 1.60 7q22.3-q31.1(SLC26A4)

Branch2 253 253 9g21.12-q21.13(TMC1) Branch2 2.53 241  15024.1-926.1(CIB2)

57




Intra-Familial Locus Heterogeneity is not Rare

¢ 15.3% of the families in a study of nonsydromic
hearing impairment
— 95% Confidence Interval (11.9 - 19.9%)
— These families segregate at least one published HI gene
PEE] jant Families with Families
dond :set onr\;anands locus without locus | Total
ed and testsperforme heterogeneit heterogeneit

98 117

Variantidentified via screening GJB2 19
(exon 2), CIB2 (p.Phe91Ser) or HGF (del 3)

Variants id in other known Hl genes
Linkage analysis + Sanger sequencing 8 87 95
Linkage analysis + NGS 18 64 82

Benefits of Linkage Analysis

* Unlike filtering approaches linkage analysis can

incorporate reduced penetrance and
phenocopies in the analysis
— Allowing for success identification of a gene region

— Even for pedigrees where there is phenocopies
and/or reduced penetrance

Benefits of Linkage analysis

* Linkage analysis/homozygosity mapping can
identify a small genomic region where the
causal variant lies
—Filtering can be applied within the

linkage/homozygous region
* Greatly reduce the number of variants which need to
be followed-up
— Test identified variant(s) for segregation within pedigree
« This is particularly true for whole genome data where

—Even a small genomic regions can contain hundreds of rare
variants

Benefits of Linkage analysis

* Information on haplotypes can be used to select

pedigree member(s) for NGS
* Selecting those individuals with the smallest
possible haplotype

* Individuals which are phenocopies can be
excluded from selection for NGS

Benefits of Linkage Analysis

¢ Examining haplotypes can also give clues if two or
more families are segregating the same disease
gene or variant
— Overlapping haplotype which are not the same
* Potentially disease phenotype due to the same disease gene
* But unlikely due to the same pathogenic variant
— Disease haplotype is identical — although not of the
same length

* Likely the two families are segregating the same causal
variant

Benefits of Linkage Analysis

* If multiple families linked to same locus are
available

— Sequencing individual(s) from more than one family
can aid in gene identification

— When they share variants in the same gene
* Provide additional evidence of genes

involvement in disease etiology

— Compared to a single family
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Selection of Family Members for NGS

* Sequence >2 individuals from each family
— Two individuals are often sufficient
— Distantly related as possible
* i.e. fromtwo differentbranches
— Choose those affected individuals within the pedigree which
segregate the same haplotypes
* Helps to excludeindividuals who are potentially phenocopies
—i.e. have the phenotype due to different causal variants
— Select >2 individuals with smallest overlapping haplotypes

« Reduces the size of the intervalin which the pathogenicvariantlies

Selection of Family Members for NGS
Autosomal Recessive Pedigrees
* Asingle individual can be selected
— With the smallest homozygous region

— With overlapping haplotypes which span the smallest
region

* If compound heterozygous
* Sequencing additional affected family members
may aid in gene identification
— Can greatly increase cost
— Usually not necessary

Selection of Family Members for NGS
Autosomal Recessive Pedigrees
* For compound heterozygous individuals
—Variants identified within a gene region

* Can be sequenced in parents, e.g. Sanger
— To determine if compound heterozygous

» Or lay on the same haplotype
* Parents can also undergo NGS

— Currently not as cost effective

Prioritize Families for Study Using NGS

* Prioritize families with multiple affected individuals
— 1.) Significant linkage LOD >3.3
— 2.) Suggestive linkage 3.3 <LOD < 2.0
— 3.) Weak linkage 2.0<LOD>1.2
— 4.) Small families with only 1-2 affected individuals LOD
<1.2
* Single affected individuals can also be studied
— 5.) Trios
— Highest priority if looking for de Novo events
— 6.) Single affected individuals with family history

Data Quality Control

* Extremely important when testing for association for
complex traits
* Also important for Mendelian traits
— Many false positive variant sites if data is not cleaned
* Data cleaning for exome sequence data is data
specific
— e.g. remove variant sites that
« Fail Variant Quality Score Recalibration (VQSR)
* Fail HWE p<5 X 10
— e.g. remove variants with
« aread depth of <10x
* GQ score <20

Data Quality Control

* Proceed with caution it is possible to remove true
variant sites including causal variants when
filtering data

— May wish to loosen stringency of filtering/cleaning if
unable to identify causal variant

* Working with “dirty data” can lead to many false
positive variant sites/genotype
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Integrative Genomic Viewer (IGV)

* Can be used to investigate variant calls
— To determine if a variant is a false positive call
— Before following-up of variants

* e.g. testing for segregation

Robinson et al Nat Biotechnology 2011
http://www.broadinstitute.org/igv/

Software to Perform Variant Annotation
and Filtering

* FamAnn
— Yao et al. 2014 Bioinformatics

— https://sites.google.com/site/famannotation/docu
mentation

* Gemini

— Paili et al. 2013 PLoS Comput Biol

— https://gemini.readthedocs.org/en/latest/
* Jannovar

— Jaeger et al. 2014 Hum Mutation

— http://jannovar.readthedocs.org/en/master/install.
html

Software to Perform Variant Annotation
and Filtering

* VAAST

— Hu et al. 2013 Genet Epidemiol

— http://www.hufflab.org/software/vaast/
* Variant Mendelian Tools

— http://varianttools.sourceforge.net/VMT/VMT
* VARank

— Geoffroyetal. 2015 Peer)

— http://www.lbgi.fr/VaRank/#requirements

Data Analysis Using Filtering
An Additional Note

* If multiple samples are analyzed

* Multisample calling should be used to identify
variants

* A multisample VCF file should be analyzed

* If variant is calling is performed on single
samples

— No information on read depth, etc for variant sites
where there is no alternative allele

Steps After Variant Identification

* Additional families with same phenotype and
putatively pathogenic variants in the same gene
— Help supportinvolvement of the gene in disease etiology
* Form collaborations to identify additional families
* Matchmaker Exchange
— http://www.matchmakerexchange.org/

— Can help to identify investigators who have families with
the same phenotype and variants within the same gene

Expression and Functional Studies

Can aid in implicating a variant/gene in disease
etiology
— Particularly important if the variant/gene is found in
a single family
* Identified variant may be in LD with functional mutation
Brings about a better understanding of disease
etiology and the role the identified gene plays
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Reasons for Failure of NGS

Insufficient samples for gene identification

— e.g. single individual with no additional family members
Locus heterogeneity

Phenocopies, misdiagnosed or mislabeled individuals
within a pedigree

Sample swaps

Variant not captured

— Can be potentially be resolved by whole genome sequencing
Inadequate depth of coverage to call variant
Indel/Copy number variants

— Difficult to accurately call
* Sensitivity can be low

Steps When NGS Does not Reveal
Putatively Causal Variant
* When linkage region is known

— Examine the region to determine which genes have not
* been captured

* missing data due to poor read depth coverage or
* Variants have not been called
— Examine regions with IGV

* Follow-up with Sanger Sequencing if
— Missing regions
— Poor quality variants

* If exome sequencing was perform proceed to whole
genome sequencing

— The causal variant could lie outside of the coding region

An Example of Using Linkage
Analysis and NGS to Identify
Pathogenic Variants

Nat Genet. ; 44(8): 916-921. doi:10.1038/ng.2348.

TGFB2 loss of function mutations cause familial thoracic aortic
aneurysms and acute aortic dissections associated with mild
systemic features of the Marfan syndrome

Catherine Boileau'234.14.15 Dong-Chuan Guo®'4, Nadine Hanna'-23, Ellen S. Regalado®,
Delphine Detaint'-26, Limin Gong®, Mathilde Varret', Siddharth Prakash® 12, Alexander H.
Li5, Hyacintha d’Indy'3, Alan C. Braverman’, Bernard Grandchamp?8, Callie S. Kwartler5,
Laurent Gouya?3#, Regie Lyn P. Santos-Cortez?, Marianne Abifadel’, Suzanne M. Leal°,
Christine Muti2, Jay Shendure'?, Marie-Sylvie Gross', Mark J. Rieder'?, Alec Vahanian®8,
Deborah A. Nickerson'?, Jean Baptiste Michel', National Heart Lung and Blood Institute
(NHLBI) Go Exome Project!, Gui Jondeau'-26:8.14 and Dianna M.
Milewicz5.12.13.14,15

Clinical Features of Two TAA Families with TGFB2 Variants

Number affected pedigree members 7 TAA 6 TAA

Age at diagnosis (years) 5—41 (median 32) 27 - 53 (median 36)
Surgical Intervention 1TAA 1TAA, 1 MVP*
Arterial tortuosity No Yes

Other cardiac disease 2 MVP 1 Mvp*

Lens dislocation No 1/6 minor

Flat cornea Unknown 2/6

Pectus deformity 3/7 mild 2/6 definite, 1/6 mild
Scoliosis 2/7 definite, 1/7 mild 1/6 mild

Flat feet 5/7 6/7

Joint hyperflexibility 5/7 3/6
High-arched palate 6/7 3/6

Striae atrophicae a4/7 4/6

*Mitral valve prolapse

Analysis of Two TAA Pedigrees with Mild
Systemic Features of Marfan Syndrome

* Whole genome linkage analysis performed

— Pedigree TAA288
» Affymetrix 50k SNP Array
— Samples from 9 informative pedigree members genotyped

— Pedigree MS239

* 1,056 microsatellite markers (deCode array)
— Samples from 14 informative pedigree members genotyped
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Analysis of Two TAA Pedigrees with Mild
Systemic Features of Marfan Syndrome

* Multipoint and two-point analysis performed
— Autosomal dominant mode of inheritance
* 90% Penetrance
* Disease allele frequency 0.0001
* Computer Software
— Pedcheck
— Merlin, Superlink & SimWalk2

* Both pedigrees mapped to 1q41
— TAA288
* Multipoint LOD score 2.4
— MS239
* Multipoint LOD score 1.6

Pedigree TAA288

M Thoracic aortic aneurysm

JZ———-Q’ @ Sudden death of unknown cause

2] [T & Cerebrovascular disease

1% aas

}’:,o‘" Z

a4 pé; 15-y ’n'u

*Individuals underwent whole genome genotyping

Circled individuals underwent exome sequencing Multipoint LOD score 2.4 at 1g41

Pedigree MS239

M Thoracic aortic aneurysm
I Sudden death of unknown cause

" B &) Cerebrovascular disease

*Individuals genotyped for whole genome scan

Circled individuals underwent exome sequencing Multipoint LOD score 1.6 at 141

Exome Sequencing

* Family TAA288
— Two affected individuals selected for exome sequencing
* 16 variants shared by affected pedigree members
* Family MA239
— Three affected and one unaffected individuals selected
for exome sequencing
* 5 variants shared by affected pedigree members
* In family TAA288 two variants within linkage region
and in family MA239 only one variant

* Both families only had TGFB2 variants in common

Identification of TGFB2 variants

* Family TAA288

— 5-bp deletion c.1021_1025del-TACAA in exon 6 which
leads to a premature stop codon p.Try341Cysfs*25
* Two-point LOD score 3.3
* Family MS239
— Stop-gain variant in exon 4 p.Cys229*
— Two-point LOD score 4.4
* Neither variant found in EXAC database
— 61,486 “control” individuals
* In both pedigrees all affected individuals were
heterozygotes for respective variants

* In both pedigrees there was reduced penetrance

Additional Screening of TGFB2

French probands from a Marfan referral clinic

— 62 familial cases

— 74 sporadic cases

USA probands with thoracic aortic disease

— 214 familial cases

— 57 sporadic cases

In the French familial probands two variants were
found

— p.Glu102*

— Frameshift duplication c.873_888dup leading to p.Asn297*
Both probands had TAAD

Neither variant was observed in EXAC

— 60,706 “controls” individuals
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Association Analysis for Mendelian Traits

Suzanne M. Leal
Center for Statistical Genetics
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sleal@bcm.edu

Copyrighted © S.M. Leal 2015

Association Analysis of Rare Variants

* Analysis of single rare variants are very poorly
powered

* Many methods have been developed specifically to
test for rare variant associations

— To overcome the low power of testing for associations
with individual rare variants

* Rare variant association methods are frequently
referred to as

— Aggregate
— Burden
— Collapsing

Association Analysis of Rare Variants

* Generally only Rare variants are analyzed, e.g.
MAF< 0.5%
* Which are
— Missense variants
— Stop loss, gain variant
— Spice site variants

Association Analysis - Mendelian

* If pedigree data are available

— Linkage analysis and filtering approaches should be used
for data analysis

* When only the proband is available for study

— Or a limited number of family members
« e.g. unaffected family members, a single affected sibling

* Ifthe proband has a family history or

* |tis suspectedthat the disease is due to a de novo
variant
— No parental data is available

* Association analysis can aid in finding genes which
harbor pathogenic variants

Association Analysis - Mendelian

* Rare variant association analysis can be used in
these situations

* Affected probands are compared to control
individuals

¢ Care must be used in selecting controls

* Sequencing conditions should be the same for
both cases and controls
— Read depth
— Capture array, etc

Controls

* If convenience controls are used
— BAM files should be obtained and variants called for
both cases and controls together
* Although frequencies for individual variants can
be obtained from databases such as ExAC

— These frequencies/counts should not be used to
perform rare variant association analysis
* Can lead to an increase in type I
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Data Quality Control

* Unlike for filtering approached stringent data
quality control should be performed
— Removingvariant sites which
* Fail variant quality score recalibration [ (VQSR) GATK]
* High rates of missing variant calls, e.g. >10%
* Fail Hardy Weinberg equilibrium , e.g. p < 10”7
— Removingvariant genotypes with
* Low read depth e.g < 10X
* Low GQ scores e.g. < 20

* The quality control is data specific
* A balance must be met
— between removal of data & false positive calls

Sample Size & Power

* For complextraits extremely large sample sizes
are necessary
— Tens of thousands of individuals
* Due to low effect sizes of disease susceptibility variants
* For Mendelian diseases many fewer cases are
necessary to detect an association
— For some studies <50 cases may be necessary

— To increase power large numbers of controls can be
used

* Although there is a diminishing return when the ratio of
control to case is > 3:1

Influences on Power

¢ Mode of Inheritance

* Locus heterogeneity
— Increasing locus heterogeneity leads to a decrease
in power
* Allelic heterogeneity

— Will not impact power
* Unless benign variants are included in association test.

Types of Aggregate Analyses

Frequency cut offs used to determine which variants to
include in the analysis

— Rare Variants (e.g. <1% frequency)

— Rare and low (1-5%) frequency variants

Maximization approaches
Tests developed to detection associations when

variants effects are bidirectional e.g. protective and
detrimental

Incorporate weights based upon — frequency or
functionality

Misclassification

* When performing aggregate analysis

— Misclassification of variants within a region can reduce
power

* Exclusion of causal variants

— Variants which are causal are erroneously not included
in the analysis

* Inclusion of non-causal variants

— Variants which are non-causal are included in the
analysis

Caveats

* For exome data natural regions to aggregate rare
variants are
— Genes
— Genes within pathways

* Analysis of genome sequence data outside of
exonic regions is problematic
— Unlikely a sliding window approach will work

* Size of window unknown and will differ across the genome
— A better understanding functionality outside the
coding regions is necessary

* Predicted functional regions, enhancer regions, transcription
factors, DNase I hypersensitivity sites, etc.
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A Few Rare Variant Association Tests

* Combined Multivariate Collapsing (CMC)
— Liand Leal AJHG 2008

* Burden of Rare Variants (BRV)
— Auer, Wang, Leal Genet Epidemiol 2013

* Weighted Sum Statistic (WSS) L Fixed Effect
— Madsen and Browning PloS Genet 2009 Tests

* Kernel based adaptive cluster (KBAC)
— Liu and Leal PloS Genet 2010

* Variable Threshold (VT)
— Price et al. AJHG 2010 -

* Sequence Kernel Association Test (SKAT) Random Effect
— Wu etal. AJHG 2011 Test

A Few Rare Variant Association Tests

* Combined Multivariate Collapsing (CMC)
— Li and Leal AJHG 2008
e Burden of Rare Variants (BRV)
— Auer, Wang, Leal Genet Epidemiol 2013
* Weighted Sum Statistic (WSS)
— Madsen and Browning PloS Genet 2009
* Kernel based adaptive cluster (KBAC)
— Liu and Leal PloS Genet 2010
* Variable Threshold (VT)
— Price et al. AJHG 2010

Fixed Effect
Tests

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

* Combined multivariate & collapsing (CMC)
— Li & Leal, AJHG 2008
* Collapsing scheme which can be used in the
regression framework
— Can use various criteria to determine which variants to
collapse into subgroups

* Variant frequency
* Predicted functionality

CMC

* Define covariate X; for individual j as
X = 1 if rare variants present
! {0 otherwise

* Compute Fisher exact test for 2x2 table

Number of cases for
which one or more rare
variants are observed
e.g. nonsynonymous
variants freq. <1%

Number of cases
withouta rare
variant

cases <

controls

Number of

Number of controls for
controls without a

which one or more rare|

variants are observed rare variant

Can also use same codingin a regression framework

CMC

* Example of coding used in regression framework:

. . 1 if rare variants present
— Binary coding X,={ P

0 otherwise
Gene region with 5 variant sites Individual Codin

| 1 | |
T T T ' 1 1
] 1 1 1 1
I 1 I I
| [ | |
T | T ' 2 1
| [l [l [l [l
I [ I I

} 3 ]

Rare Variant Sites
Green bars: Major allele is observed in the study subject
Red bars: Minor allele has been observed

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

* Gene-or Region-based Analysis of Variants of
Intermediate and Low frequency (GRANVIL)
— Aggregate number of rare variants used as regressors
in a linear regression model
— Can be extended to case-control studies
* Morris & Zeggini 2010 Genet. Epidemiol

—Test also referred to as MZ

65



GRANVIL

* Example of coding used in regression framework

— Gene region with 5 variant sites — data available on all sites
} } Individual 1

i i Coded 2/5 (0.4)

Individual 2

Coded 2/5 (0.4) Note same coding for
i heterozygous and homozygous
genotypes

. Geno]e region with 5 variant sites Ibut missing data on three variant sites
1 1

Individual 3
} i Coded 1/2 (0.5)
Burden Rare Variant (BRV) extension (Auer et al. 2013 Genet Epidemiol)
Individual 1: Coded 2
Individual 2: Coded 3
Individual 3: Coded 1

Methods to Detect Rare Variant Associations

—_ Weighted Approaches

* Group-wise association test for rare variants using
the Weighted Sum Statistic (WSS)
— Variants are weighted inversely by their frequencyin
controls (rare variants are up-weighted)
* Madsen & Browning, PLoS Genet 2009

* Kernel based adaptive cluster (KBAC)

— Adaptive weighting based on multilocus genotype
¢ Liu & Leal, PLoS Genet 2010

Methods to Detect Rare Variant Associations
Maximization Approaches

* Variable Threshold (VT) method
— Uses variable allele frequency thresholds and
maximizes the test statistic
— Also can incorporate weighting based on functional
information
* Price et al. AJHG 2010

* RareCover
— Maximizes the test statistic over all variants with a
region using a greedy heuristic algorithm
* Bhatia et al. 2010 PLoS Computational Biology

Significance Level for Rare Variant
Association Tests

* For exome data where individual genes are
analyzed usually a Bonferroni correction for the
number of genes tested is used.

— There is very little to no linkage disequilibrium between
genes

* A Bonferroni correction for testing 20,000 genes is
often used as the significance level cut-off
—2.5x10°

Rare Variant Aggregate Methods

* Ideally should be performed in a regression
analysis framework
— Logistic
— Linear regression

* Almost all methods have been extended to be
implemented within a regression framework

— Can control for covariates which are potential
confounders

— Age
— Sex
— Population substructure/admixture

Rare Variant Aggregate Methods

—If the proportion of cases and controls sampled
from each populations is different
* Can occur due to
— Disease frequency is different between populations
—Sloppy sampling
— Population substructure\admixture can cause
detection of differences in variant frequencies
within a gene which is due to sampling and not
disease status
* False positive findings can be increased
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Rare Variant Aggregate Methods

* Population substructure\admixtureis often a
confounder for genetic studies

— A particular problem for rare variants

* Currently Principal Components Analysis (PCA)
or Multidimensionality Scaling (MDS) is used to
control for population substructure\admixture
— For both studies of common & rare variants

Related Individuals

* Remove related individuals from the analysis

—Only retain one member of a related pair/group
in the analysis

* Perform analysis using mixed models

* Ignoring that related individuals are included
in the analysis can increase type | error

Software to Perform Rare Variant
Association Testing using NGS Data

* PLINK/SEQ
— Developed by Shaun Purcell
* https://atgu.mgh.harvard.edu/plinkseq/tutorial.shtml
* Variant Association Tools (VAT)
— Reference Wang, Peng & Leal, 2014
* http://varianttools.sourceforge.net/Association/HomePage

==

L
=
-

Testing for Associations using Trio Data

Trio data are often sequenced to detect de novo
events.

However, transmitted as well de novo events
can be analyzed

The transmission disequilibrium test (TDT) is a
natural choice to analyze trio data

The TDT design can also be used to analyze
Mendelian traits

Controlling for Population Admixture
and Substructure Using the Trio Design

* The trio (two parents and an affected child)
approach was developed to control for
population substructure and admixture
— Falk and Rubinstein 1987 Ann Hum Genet
— Many additional trio methods have been described

* The Transmission Disequilibrium Test (TDT) is
currently the mostly widely used trio method
— Spielman et al. 1993 AJHG

DT

Control Alleles

Case Alleles I:l

eTransmitted parental alleles 1 and 2

Control Alleles 13 |42

eNon-transmitted parental alleles 3 and 4

12

Case Alleles

*Phenotype information from parents is not used in the analysis
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TDT

Not Transmitted

- 1 allele 2 allele

[}

-4

'g 1 allele a b 12 Le
w

g

= | 2allele c d

b—c)® d
(McNemar’s Test) ( b:C) — \% 11

Only transmission events from heterozygous parents are informative,
i.e.quadrantsb & ¢

TDT-Aggregate Analysis

The TDT was extended to incorporate rare variant
association methods
— Combined Multivariate Collapsing (CMC)
* RV-TDT-CMC
— Burden of Rare Variants (BRV)
* RV-TDT-BRV
— Weighted Sum Statistic (WSS)
* RV-TDT-WSS
— Variable Threshold (VT)
* RV-TDT-VT

RV-TDT-CMC & RV-TDT-WSS

. Pparent j
- RV-TDT-CMC OO
— Collapse transmissions within a region Tl ovariants i
* For parentj llj g
—b=0andc=1

|é

1

* RV-TDT-BRV | B

— Aggregate transmissions within a region
¢ For parentj
—b=0andc=3

RV-TDT-WSS & RV-TDT-VT

* RV-TDT-WSS

— Aggregate transmissions within a region weighted by the
frequency of non-transmitted (“control”) alleles
* For parentj lei"
—b=0andc= S u; ‘ Zl Enrlantsl

* RV-TDT-VT
— Maximizes the test statistic over minor allele frequencies
using either CMC or BRV coding

* For parentj
— b=0andc=1o0r3

—_—
o

Evaluating Significance

* Analytical
— 7 (one-sided test)
— CMC method only

Haplotype Permutation

* Empirical

— Haplotype permutation
* Shuffle parental haplotypes
— All methods

What are the Necessary Sample Sizes for
the Trio Design for a Mendelian Trait

* Assuming No Locus Heterogeneity
* Power 0.80

Number of Trios

Mode of Inheritance Alpha
0.05 | 2.5x10°®
Autosomal Recessive 4 15
Autosomal Dominant 13 59
Ref
H: ::Zrll.czeéu AJHG RV-TDT Software

Krumm et al. 2015 Nature Genetic

http://bicinformatics.org/rv-tdt/
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The Collapsed Haplotype Pattern (CHP)
Method for Performing Linkage Analysis
Using Sequence Data

Suzanne M. Leal
sleal@bcm.edu
Center for Statistical Genetic
Baylor College of Medicine
https://www.bcm.edu/research/labs/center-for-statistical-genetics

Performing Linkage Analysis

Using Exome and Genome Sequence Data

¢ As cost of performing sequencing falls

— DNA samples from all informative pedigree members

can undergoing sequencing

» Several studies have generated exome and genome

sequence data on all informative family members

— T2D-Genes (type 2 diabetes study)

* Genome sequence data on 20 Mexican families (1,043 Individuals)

* Caveat performing linkage analysis on individual

rare variants is not a powerful approach

Collapsed Haplotype Pattern (CHP) Method

* Motivated by rare variant aggregate association
methods
— Analysis of regions, usually genes
* Instead of analyzing individual rare variants
* Rare variant aggregate associations methods are
more powerfully than analyzing individual variants

CHP Method

* Lander-Green algorithm is used for genetic phasing
and reconstruction of haplotypes

* Missing genotypes are imputed
— Conditional on family members genotypes and

— Population allele frequencies
* Obtained from founders if sample size is sufficiently large or
* Frequencies are obtained from databases (e.g. EXAC)

CHP Method

* For each pedigree variants on a regional
haplotypes, e.g. LD blocks
— Are assigned a single numeric value e.g.
* 0 no minor alleles

* 1 at least one minor allele

* Each regional haplotype within a family is uniquely
represented

Example-CHP

- [F——&

=

RN

ool

21

2 22 22 22
0 o0
| 1
o o0
0 o0
o 0
o o

» These two pedigrees both have rare variants in the same gene region
» Although they segregate a different rare variant and haplotype
» The same coding can be used without a lost of information

o
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Example-CHP
. ,

co0 =0~
ococooe
"~
OO
ococoooo

D) O
] (Y

CO00O0 =
coo =0 = W

» A unique coding is provided for each haplotype

> To avoid lost of information

CHP method

* Each pedigree is analyzed separately
— Using allele frequencies that are correct for the
haplotypes segregating in the pedigree
* Parametric LOD score results are summed across
families by gene region
— At the same O value, e.g. ©=0.0

Evaluation of the CHP Method

Data was generated for four nonsyndromic hearing
impairment genes
— Autosomal recessive mode of inheritance
* GJB2, SLC26A4
— Autosomal dominant mode of inheritance
* MYO7A and MYH9
All variants were generated based upon their
frequency in European-Americans
— Using data from Exome Sequencing Project

Causal status of variants obtain from NCBI-ClinVar

Evaluation of the CHP Method

* Families were generated with 3-8 children
— Based on the number of children per family in the United
States in 2012, rescaled to sum to 100%

* 3 children: 69.34%

* 4 children: 20.52%,

* 5 children: 6.84

* 6 children: 2.28%

* 7 children 0.76%,

* 8 children 0.26%

» RarePedSim was used to generate the pedigree data
— http://bioinformatics.org/simped/rare/

Evaluation of the CHP Method

Pedigrees were generated with varying degrees of
locus heterogeneity
— e.g. 20% of families linked to GJB2 and 80% to SLC26A4
Families with >2 affected children were “ascertained”
Variants with a MAF<0.01% analyzed
Power was evaluated using 500 replicates
— For a genome-wide a level of < 0.05

+ LOD>33

+ HLOD > 3.6
The CHP method was compared to single variant
analysis

Results Autosomal Recessive Model
—___GenesSILC26A4and GIB2

SLC26A4 [LOD >3.3] GJB2 [LOD >3.3]

Proportion of linked families
Proportion of linked families

Number of families Number of families
Single variant Analysis

CHP method Power is displayed in curves
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Locus heterogeneity

Results Autosomal Dominant Model
Gene MYH9

Analysis under locus homogeneity

MYH9 [LOD >3.3]

Number of families

Single variant Analysis
CHP method

Locus heterogeneity

Analysis under locus heterogeneity

MYH9 [HLOD >3.6]

Number of families

Power is displayed in curves

Linkage Analysis
* Unlike filtering approaches, linkage can provides
statistical evidence of a variant’s “involvement” in
trait etiology

— Caution should be used, variant may only be in LD with
the pathological variant

* Because linkage incorporates mode of inheritance
information and penetrance models
— Less likely than filtering to exclude causal variants in the
presents of phenocopies and/or reduced penetrance

References Software
Wang et al. 2015 EJHG CHP incorporated in SEQLinkage

Ott, Wang, Leal 2015 NRG http://bioinformatics.org/seqlink
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Evaluating Power Using Simulation Studies

Suzanne M. Leal
Center for Statistical Genetics
Baylor College of Medicine
sleal@bcm.edu

Copyrighted © S.M. Leal 2015

Simulation

» Simulation studies are used in many situations
— Predict traffic jams
— Flow from volcano eruptions, etc.

* For genetic studies simulation can be used for a
variety of situations

— Estimate the power to detect linkage for a given data
set

— Estimate empirical p-values
— Compare various analysis methods

Example Generating Genotype Data

Generating Genotypes for a Pedigree

* A marker the following allele frequencies will
be generated
—-1=0.4
—-2=0.1
—3=0.45
—4=0.05

Generating Genotypes for a Pedigree

* Arandom number generator is used
— Random numbers between 0 and 1 are generated

* The numbers are generated according to a
uniform distribution

— Each number has equal probability of occurring

* Random number generators are in actuality
pseudo-random number generators

— If a simulation is carried our using the same starting
seed the same results will be obtained.

Generating Genotypes

¢ If the random number selected is between <0.4
— Then the 1 allele is chosen

¢ If the random number selected is between >0.4 and < 0.5
— Then the 2 allele is chosen

* Etc

0 04 05 095 1
\ 1 |2 | 3 |4_|
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Generating Genotypes

* Since each individual needs two alleles to construct
their genotype - two random numbers are generated
« Father 0 04 05 095 1
- 0.84 |
* Assign a 3 allele
- 031
* Assignalallele
* Mother
—0.44
¢ Assign a2 allele
— 0.63

* Assign a 3 allele

Generating Parental Genotypes

1.1 1.2
13 2 3
1.1 1.2

Generating Offspring Genotypes

Should the random number generator be used to generate two
more genotypes for the children?

1.1 1.2
13 2 3
1.1 1.2

Generating Offspring Genotypes

* No the alleles must segregate from the parents.
* It must be determined which of the two parental
alleles each offspring “inherits”
— With 50% probability

0 child receives first parental allele 0.5 child receives second parental allele 1

Random Numbers are Generated

* Forchild Il.1

— Random #0.21
* From father first allele
— obtains a 1 allele
— Random #0.11
* From mother first allele
— obtains a 2 allele

* Forchild 1.2

— Random # 0.76
* From father second allele
— obtains a 3 allele
— Random #0.31
* From mother first allele
— obtains a 2 allele

Generating Offspring Genotypes
O

1.1 1.2
13 2 3
1.1 1.2
12 2 3
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Generating Genotypes for Pedigrees

* The genotypes in the previous example were
generated unconditional (unlinked) to the disease
phenotype

* Next marker will be generated linked to the
disease locus

* Assumption
— The disease phenotype is autosomal dominant

* No phenocopies
* No reduced penetrance

— The marker and the disease locus are linked
* 6=0.04

Generating Genotypes Conditional on
Disease L ocus

D + .__O ++

1.1 1.2
13 23
111 1.2

Generating Genotypes Conditional on
the Disease L ocus

* Need to Generate offspring genotypes conditional
on parental genotypes and underlying disease
genotype

* Since the pedigree is phase unknown
— Do not know grandparental genotypes

* Have to determine phase

* Assumption the disease the disease and marker
loci are in linkage equilibrium
— Each phase has 50% probability

Generating Genotypes Conditional on
Disease Locus

O .

Phasel Phaselll

D + D + 11 2
1 3 3 1 13 2 3
Each with probability 50%

1.1 1.2

Father’ s Phase is Determined

* Arandom number generator is used to
determine the phase for the father

0  Phase | for the father 0.5 Phase Il for the father 1
| _l |

* The random # generated is 0.76
— The father’ s phase is I

Generating Genotypes Conditional on the
Disease L ocus

D + .__O ++

11 1.2
Phase Il 13 23
D +
31

1.1 11.2
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Generating the Offspring Genotypes

* The genotypes must be assigned conditional on
the disease genotypes and whether or not a
recombination event has occurred

* Whether or not a recombination has occurred
will be determined by generating a random
number

Determining Offspring Genotypes

* The first child 1.1 is affected
* He either receives from his father
— A3 allele with probability 1-©
* For this example 1-0.04
— Or a1 allele with probability ®
* For this example 0.04

* The second child 1.2 is unaffected
* She either receives from her father
— A 1allele with probability 1-©
— Or with probability © receives a 3 allele

0  ©(0.04) 1
| I |

Determining Offspring Genotypes

* Child 1.1 (affected)
— Random # 0.88 is generated
* He is assigned the 3 allele from his father

* Child 1.2 (unaffected)
* Random # 0.01 is generated
—She is assigned the 3 allele from her father

0 © (0.04) 1
| | \

Determining the Offspring Genotypes

* The mother provides no linkage information
— Each child can be assigned either a 2 or a 3 allele
* With probability 0.5
* Two Random numbers are generated
— For Child II.1

e The random # 0.32 is generated
—The 2 allele is assigned from the mother

—For Child 11.2
* The random # 0.43 is generated
—The 2 allele is assigned from the mother

0 child receives first parental allele 0.5 child receives second parental allele 1

Generating Genotypes Conditional on the
Disease Locus

D + .__Q ++

1.1 1.2
13 2 3
111 1.2
2 3 23

Generating Haplotype Data

* Instead of generating and assigning individuals
alleles
— Haplotypes are generated

* When haplotypes are generated unconditional
on disease phenotype or quantitative trait

* Based upon haplotype frequencies two
haplotypes are assigned to each individual in
the parental generation

— Random numbers are used to determine which two
haplotypes are assigned
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Generating Haplotype Data

* For each offspring recombination events between
the two parental haplotypes are determined by
genetic maps

— Positions of recombination events are determined by
random numbers

* One paternal and one maternal “new” haplotypes
is assigned to the offspring from each of their
parents

— Each of the two parental haplotype has equal
probability of beginning assigned to the offspring
* Which haplotypes are assigned is determined by random
numbers

Generating Sequence Data for Pedigrees

* Haplotype data can be generated using
population demographic models

* Data generated on 16,568 genes o
¢ Simulating variant data using '
reference sequence data a European
population demographic model T 620
— Gazave et al. 2013 .
— Haplotype pool generated for each
gene
* Each pool contains 1,308,000 haplotypes \ 141
654,000 B

10,000

Generating Sequence Data for Pedigrees

* Variant data frequencies can also be used from
databases
—e.g. ExXAC

* Caution should be used that a sufficient large
sample sizes is used to obtain variant frequencies
— Otherwise very rare variants will be under-represented

* Too few singletons, doubletons etc.

* Determine which variants are pathogenic using
clinical databases
— e.g. Clinvar

Generating Sequence data for
Pedigrees

* To then generate the variant data
conditional on the disease phenotypes

—To generate data under the alternative
* A penetrance model is used
* The penetrance model should mimic the mode of
inheritance in the pedigree
— Autosomal dominant, Autosomal Recessive or X-linked
— Fully penetrant or
—Reduced penetrance and phenocopies

Generating Sequence data for
Pedigrees

* Variants can be generated unconditional on the
disease phenotype
— To generate data under the null

* Variants are only generated for pedigree members
which are available for study

First Step -Generating Pedigree Data

* Empirical p-values
— Data is generated under the null hypothesis
* Markers and disease are unlinked
— Not necessary to know the underlying genetic
model
* Can be used for Mendelian and non-Mendelian traits
* Power
— Marker(s) are generated linked (6<0.5) to the
disease locus
— Must know underlying genetic model
* For pedigree data can only be used for Mendelian traits
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Second Step Analyzing Data

* Must know underlying disease model
* Simulated data is analyzed using the same
model as was used for data generation
— Allele frequencies (marker and disease)
— Penetrances
* Can evaluate the informativeness of pedigree
data using several measures
— Power
— ELOD (Expected LOD Score)
— EMLOD (Expected Maximum LOD Score)
— Maximum LOD score

Second Step Analyzing Data
___Power,EIOD& EMIOD

* Power
— The proportion of replicates where the null hypothesis of
no linkage is rejected based upon a LOD score criterion
(e.g. LOD score >3.3)
* ELOD
— Is estimated by the average LOD score across at the
recombination fraction the data was generated at across
all replicates
* EMLOD
* |Is estimated by the average of the maximum LOD score
across all replicates
* Maximum LOD score

* Largest LOD score observed for all replicates
* Only valid for fully penetrant disease without phenocopies

How Many Replicates Should be Generated?

* Depends on how accurate of an estimate is
necessary.

* When estimating empirical p-values will be
dependent on how small of a p-value is being
estimated.

— The smaller the p-values the more replicates

* For example if the p-value is in the range of 0.00001

need to generate many more than 1,000 replicates

— Since by chanced under the null my never observe a p-
value of <0.00001

* If only interested in estimating if an empirical p-
value is <0.05

— ~5,000 replicates may be sufficient

How Many Replicates Should be Generated?

* Power
* Usually need fewer replicates
* ~500 replicates

* But is some instances there can be great variability
and many more replicates are necessary for
accurate power estimates

Exercises

* Simulate pedigree data using SLINK
— Generate marker data
* Analyze data with using MSIM
— Perform parametric two-point linkage analysis
* Simulate rare variant data using RareSimPed

— Simulates sequence data
* Generates a VCF file

* Analysis data using SEQLinkage

— Performs the Collapsed Haplotype Pattern (CHP)
method

Simulation Programs

* SLINK

— Generates genotype and haplotype data conditional or
unconditional on affection status or quantitative trait

— Generates phenotype data
* Quantitative
* Qualitative
— Large and complex pedigree structures
— Small number of marker loci ~< 7 can be generated

* SIMULATE
— Generates genotype data unconditional on affection status
— Large and complex pedigree structures
— Large number of marker loci can be generated
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* SIMLINK

— Generates genotype data conditional and unconditional on
affection status or quantitative trait

— Large pedigree structure

— Small number of marker loci can be generated
* One disease and one marker locus
— Must modify the program in order to have it supply generated
pedigree structures

* MERLIN

— Generates genotypes data unconditional on affection status or
quantitative trait

— Large and complex pedigree structures
— Large number of marker loci can be generated

* SOLAR

- Gener_ate,genot_\{pes unconditional on affection status or
quantitative trai

— Large and complex pedigree structures
— Large number of marker loci can be generated

* GASP

— Generates quantitative and qualitative phenotype data
* Gene-gene and gene-environmental interaction

— Generates genotype data conditional on generated
phenotype data

— Limited in size and structure of pedigrees
» At most three generations
— Can generate up to 400 marker loci

e SimPed

— Pedigrees of virtually any size or complexity

— Generation of >10,000 diallelic or multiallelic marker loci
* Generates data for the autosomes and X chromosome
— Haplotype data

» Markers in linkage disequilibrium
— Genotype data

» Markers in linkage equilibrium

* SIMLA

— Generates qualitative phenotype data
* Gene-gene and gene-environmental interaction
« Assigns affection status to pedigree members

— Limited in pedigree structures that can be generated
* user cannot provide pedigree structure

— Large number of marker loci can be generated

— Can also generate sequence data

¢ RareSimPed

— Generates sequence data for Mendelian and Complex traits
(qualitative and quantitative) regardless of pedigree structure
* Using population based frequencies or demographic models

— Generates genotype data conditional and unconditional
on the phenotype

— Generates phenotype data conditional on the generated
genotype data

79




Functional Studies for Two Autosomal
Recessive Nonsyndromic Hearing
Impairment Genes:

lysyl-tRNA synthetase (KARS)
& Adenylate cyclase 1 (ADCY1)

Suzanne M. Leal
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Copyrighted © S.M. Leal 2015

American Journal of Human Genetics

REPORT
Mutations in KARS, Encoding Lysyl-tRNA

Synthetase, Cause Autosomal-Recessive

Nonsyndromic Hearing Impairment DFNB89

Regie Lyn P. Santos-Cortez,!8 Kwanghyuk Lee,!8 Zahid Azeem,23 Patrick J. Antonellis,*5
Lana M. Pollock,+6 Saadullah Khan,2 Irfanullah,? Paula B. Andrade-Elizondo,!

Ilene Chiu,! Mark D. Adams,® Sulman Basit,2 Joshua D. Smith,” University of Washington

Center for Mendelian Genomics, Deborah A. Nickerson,” Brian M. McDermott, Jr., 456
Wasim Ahmad,? and Suzanne M. Leall*

Describes the identification of KARS for nonsyndromic hearing
impairment and functional studies which were performed

KARS Variants Segregate with Hl in
DFNB89 Families

4204 c S17T>C (p Tyr17204s)
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LERE ! variants

DFNB89 Hearing Impairment
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Frequency (Mz)
(+) ABR waveforms

Absent OAE

Normal EMG-NCV
Ruling out auditory neuropathy and
supporting occurrence of cochlear
pathology, particularly of the outer
hair cells

Bilateral symmetric moderate-to-profound
hearing impairment across all frequencies

For individual V-6 all motor and sensory action
potentials were normal

KARS Variants at Conserved Residues

p.Asp377 identical in 165 species
p.Tyr173 conserved in 162 species

From primates to fungi

KARS Variants Predicted to Lower
Catalytic Activity

Bl

Wy Loss of B-2 strand

(]
Interfere with tRNA binding

Affect tetramer binding

ey Loss of a-helix 9
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KARS is Expressed in Chicken Hair Cells

RNA-Seq Aligrment

ADATY

Expression of KARS in purified chicken hair cells
was detected by RNA-seq

KARS is Expressed in Zebrafish and
Mouse Hair Cells and Maculae

Zebrafish Mouse

HC M WF -

HC = Hair Cell

M = Macula

WF = Whole Fish
(-) = Control

KARS Localized to Cochlear Duct

Mouse

outer sulcus

cells
spiral
limbus
spiral inner
ligament B <ulcus
fibrocytes cells

KARS Localized to Cochlear and
Vestibular Hair Cells in the Mouse

Cochlea Vestibule

Deiters’ cells .
basilar

membrane hair cells

* = hair cell nuclei
Labeling with KARS polyclonal antibody (green) & phalloidin (red)

Conclusions KARS

* KARS mutations define both a novel NSHI
gene and a novel phenotype for KARS

* KARS is expressed in inner ears and hair
cells of chicken, zebrafish and mouse

* KARS strongly localizes to otic fibrocytes,
hair cells and cochlear supporting cells

2014, Vol. 23, No. 12 3289-3298

nuary 29, 2014

Adenylate cyclase 1 (ADCY1) mutations cause
recessive hearing impairment in humans and defects
in hair cell function and hearing in zebrafish

Regie Lyn P. Santos-Cortez!, Kwanghyuk Lee', Arnaud P. Giese®%, Muhammad Ansar'5,
Muhammad Amin-Ud-Din®, Kira Rehn, Xin Wang', Abdul Aziz5, llene Chiu?, Raja Hussain Ali®,
Joshua D. Smith?, Uni ity of i Center for i ics, Jay A
Michael Bamshad’, Deborah A. Nickerson?, Zubair M. Ahmed3, Wasim Ahmad®, Saima Riazuddin®
and Suzanne M. Leal'*

Describes the identification of ADCY1 for nonsyndromic hearing
impairment and functional studies which were performed
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Family 4009 - DFNB44 Mapped to 7p14.1-q11.22

Anar et al. 2004
- Mapped with STR Markers
. Q s Maximum Multipoint LOD Score 5.0

Nonsense Variant ¢.311C>T p.ARG1038%* in
ADCY1 |dentified through exome sequencing

| [Pranen] [Prancn 3] \/-—

' O
ADCY1 chr 7p12.3 s 4
LOD score of 5.8 = [} _..:‘S_PC),.‘{“
obtained with v TLY .
p.ARG1038* variant 1~

for all family
members with DNA
samples

Missense variant in
HECWI (chr 7p14-13)
also identified in both
individuals predicted
mostly likely to be
benign and did not
segregate in pedigree

i U’TO

Bilateral symmetric mild-to-moderate mixed hearing
impairment in 5 of 6 family members of 4009

§
)

Predicted loss of two terminal beta-sheets
due to ADCY1 p.Arg1038*

Wildtype ADCY1

ADCY1 p.Argl038*
Predicted to cause loss of 82 amino acids from the cytoplasmic
carboxyl tail and include highly conserved residues of the C,
domain

Failure of FM1-43 dye uptake and lack of startle
response in adcylb but not adcyla morphant
zebraﬁsh

adcy1b

(143) (118)

morphant morphant

1
J i
4

g

adcy1b

adcy1b
morphant

(146)

e

Control
morphant
adcy

ADCY1 is expressed in mouse inner ear at
various developmental stages, with highest
expression at P16

0

ANCT
— ~N w . o
< I
N
e
e
I
I
———
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ADCY1 is localized to cochlear outer and inner
hair cell bodies and nuclei with weaker staining
in supporting cells

ADCY1 localizes to the vestibular hair cell bodies
and also in supporting cells but no nuclei
labeling was observed

ADCY1 DAPI

ADCY1 is localized to the adult rat inner hair cell
bodies and along the length of the stereocilia of
both inner and outer halr ceIIs

Actin

Stereocilia level

Inner Hair cells| --
Outer Hair cells| - !

Cochlear hair cell stereocilia

Conclusions-ADCY1

* ADCY1 p.Argl1038* causes bilateral mild-to-
moderate mixed hearing impairment in
humans

* This mutation is predicted to decrease
enzymatic efficiency and localization of
ADCY1 to stereocilia

* ADCY1 has an evolutionarily conserved role
in hearing

Conclusions —ADCY1

* ADCY1 is expressed throughout inner ear
development and maturation

* ADCY1 is localized to cytoplasm of inner ear
hair cells and supporting cells and also to
nuclei and stereocilia of cochlear hair cell

* Zebrafish adcylb morphants had hair cell
dysfunction and gross hearing impairment

Conclusions- overall

* With fast pace of NGS gene discovery, functional
studies can be the rate-limiting step to
publication

* Design of functional study depends on hypothesis
for gene’s role in target organ

* For inner ear, expression and localization within
various cell types in rodent inner ear is usually
performed as initial study

* If hair cells are involved zebrafish morphants can
be studied

83




Conclusions - Overall
Expression and Functional Studies
* Can aid in implicating a variant/gene in disease
etiology
— Particularly important if the variant/gene is found in a

single family
* Identified variant may be in LD with functional mutation

* Brings about a better understanding of disease
etiology and the role the identified gene plays
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Variant Annotation

Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015

Outline

» Forms of variant annotation
» Databases for annotation
» Software for annotation

» Notes of caution

Forms of variant annotation

Technical information ‘ ‘ Database annotation
« Sequencing instrument * What is already known about
* Quality metrics for filtering the variant?
« Retrieval of information from
databases
Functional annotation ‘ ‘ Multiple layers annotation
« Prediction of functionality, « Overlap with others sorts of
pathogenicity etc. of variant genomic information, e.g.
« Inference based on various expression levels, transcription
factors

Bioinformatic workflow

Sequencing: image
analysis; base calling

{

> Discard
Map reads against
reference sequence md

reads
!

Call list of variants not
matching reference

!

Call genotypes of
sequenced individuals

l

Quality filtering

™

Database annotation Functional
(GDSNP, 1000GP) annotation

v N v N

Known | Novel | Coding Noncoding
ariants  variants  variants  variants

Jobling, et al. (2014)

Database annotation

* A wealth of information is already available from public
databases for many variants
— RefSeq numbers and other identifiers
— Population frequencies (both global and population-specific)
— Type of variant for coding regions (missense, stop, etc.)
— Implication in human Mendelian diseases
— Implication in human inherited diseases
— Implication in human diseases and traits (GWAS?)
— Literature

« Database annotation involves scripted or web-based
analyses for
— querying of public databases
— storing retrieved information

Potential effects of small-scale gene mutations

Gop Pyl additen
odon  sige

TAA/TAG/TGA AATAAA

Fipre 112 Womaa Erobssoney Genesi, 1 . (0 Cadand Scemce 1)

Jobling, et al. (2014)
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(Human) genomic databases (l)

dbSNP, dbVar

« SNPs, indels, SV
« Global and population-specific frequencies

www.ncbi.nlm.nih.gov/SNP

1000 Genomes 1000 Genomes
A Deep Catalog of Human Genetic Variation

www.1000genomes.org

* SNPs, indels, SV
« Global and population-specific frequencies

HapMap
* SNPs, indels
« Global and population-specific frequencies

GoNL

* SNPs, indels
« Dutch population frequencies

NOMEo(theNETHERL AND

www.nlgenome.nl

(Human) genomic databases (ll)

www.ebi.ac.uk/dgva

Genomic Variants Archive
+ SNPs, indels

‘UCSC Genome Bioinformatics ‘ UCSC Genome Browser

« the reference sequence and working draft
assemblies for a large collection of genomes

+ portal to ENCODE data at UCSC (2003-12)
and to the Neanderthal project

genome.ucsc.edu

Ensemble
bl + European Bioinformatics Institute
wnensembLorg - SNPs, indels
‘mc Browser (Beta) | Exome Aggregation Consortium ExAC

« Exome Aggregation Consortium
+ Exome data (including variants) for >60,000
unrelated individuals

exac.broadinstitute.org

Human disease databases (I)

OMIM &7& OMIM

. * Online Mendelian Inheritance in Men

« Catalog of human genes/disorders/traits

« Focus on molecular relationship between
genetic variation and phenotypic expression

www.hamd.cf ac.uk * Human Gene Mutation Database
-hgmd.ct.ac. « Collate known (published) gene lesions
responsible for human inherited disease

GWAS catalog

+ QC-ed, manually curated, literature-derived
collection of all published GWAS assaying
>100,000 SNPs; all SNPs with p<10-5

Puved B PubMed

« >24 million citations for biomedical literature
from MEDLINE, journals, and online books

www.ncbi.nlm.nih.gov/omim

www.ncbi.nlm.nih.gov/pubmed

HGMD

Cooper & Krawczak (1993), Cooper, et al. (1998), Krawczak, et al. (2000),
Stenson, et al. (2003), Stenson, et al. (2014)

' e o BIOBASE|
- =

seRip ERe 8

Manually curated collection of published gene lesions responsible for
human inherited disease; includes the first example of all mutations
causing or associated with human inherited disease plus functional studies

Free access to mutations included >=3 years ago for registered
academic users; otherwise professional version for up-to-date access

Human disease databases (ll)

ClinVar

« Public archive of reports on relationships

among human variations and phenotypes
« Supporting evidence and submitter visible
« Focus in medical genetics

www.ncbi.nlm.nih.gov/clinvar

| The Cancer Genome Atlas (TCGA)

« Public catalog of genomic changes in tumors

« Search, download, and analysis of data sets
generated by TCGA

| cosmic

« Public catalog of genomic changes in tumors

« Search, download, and analysis of data sets
generated by TCGA

cancergenome.nih.gov

cancer.sanger.ac.uk/cosmic

There are (many) more databases.

Number of genic SNPs per genome

Average number per genome

Synonymous 10,572-12,126°

Nonsynonymous (missense) 9966-10,819* =
Generation of stop codon (nonsense) 262(52)°

splice site variant n209P

Small indel causing frameshift 382(92°

Large deletion 283(6.2)°

Total number of Lof variants 103.9(225)° &

Data from the low-coverage dataset of 1000 Genomes Project Consortium (2010) Nature 467, 1061.

* Interquartile range of the number of variants per individual across the CEU, CHB, JPT, and YRI HapMap
samples (see Box 3.6 for I i fthe i

® Average number of variants in the CEU sample, with ber in tate i

from MacArthur DG et al. (2012) Science 335, 823.

LoF, loss of function.

Jobling, et al. (2014)
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Motivation for functional annotation

» Each individual carries multiple deleterious mutations:

— On average 2% of all individuals carry a missense mutation in any
given gene. (Andrews, et al., 2013, Trends Immunol)

— For a given disease, multiple missense mutations will by chance be
present in those genes that seemingly relate to the disease in an
affected individual.

» Do these missense mutations

— actually alter gene function or, more precise,

— actually cause the disease/phenotype at hand?

* Functional assays or model organism experiments are

— too costly for all observed missense mutations

— too time-consuming

— may raise ethical issues

» Computational inference may address some of these issues.

— Trade-off between sensitivity and specificity

Approaches to functional annotation

Variant is located in ...

‘ Coding sequence ‘ ‘

Non-coding sequence ‘

« Focus on proteins » Focus on regulation
* Primarily applied with exome * Primarily applied with whole-
data genome data
* Possible analyses * Possible analyses:
« Protein sequence « Methylation, epigenetic
conservation alterations
« Protein features + Transcription-factor (TF)
«  Gene relationships, binding sites
interaction * RNAinterference
« Pathway analysis « Expression

« Selection, reduced nucleotide diversity, etc.

Homology: sequence divergence by evolution

Sequences Sequence divergence

AC CAGGTACAGT ---CAGC

— evolutitf substitution (“mutation”)
l@ ACATTGA c
@ deletion insertion

duplication
phylogeny P ACCAGGAGGTACACAATGAGTCAGC
translocation
ACCAGGTACACAATGAGTCAGC = ACCAGGTACACAATGAGTAGGCAGC

inversion
ACCGGATACACAATGAGTCAGC

Physicochemical properties of proteins

* Chemical composition and biophysical characteristics
— Solubility in water, polarity, charge,
— Cyclic, sulfur-containing
— Molecular volume
+ Structure
— Primary: amino acid chain
— Secondary: chain folding (mainly a and b helixes)
— Tertiary: spatial arrangement through folding and coiling,
sometimes including molecular chaperones
Quaternary: complex of two more polypeptide chains

» Sequence conservation

=> Fixation of mutations with dissimilar amino acids is rare.
(Grantham, 1974, Science)

Cozzone (2002) Encyclopedia of Life Sciences; www.els.net

Conservation through selection

Thioredoxin of E. coli and 15 homologs

FWAPHCCPERNY 5 PYV

S

GPCEMIKZ P
SPCRNIEPPP
GPCENIRR T
CENIXPPY
GPCRNIKPFF
eV

YA THEGPCRENES T )

SpepEegTeEeanmy

A ABFEA

Lesk (2014)

Transcriptional regulation

Places of action for transcription factors (TF)

TEBS:
TF binding site

CRM:
cis-regulatory module (set of TFs)

Wasserman & Sandelin (2004) Nat Rev Genet
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Epigenetic changes

HEALTH ENDPOINTS.

« Autoimemune Ssease
« Mental disorcers
* Dinbotes

EPGENETIC
@) FAcToR

3 METHVLGROUP

HISTONE TAIL
\

HISTONE TAL

Histone modiication
The binding of epigenstic factars to histore “tails"

histones and the svailibidy of genes i the DNA

http://commonfund.nih.gov/epigenomics/

RNA interference

Silencing of gene expression by targeted degradation of mMRNA

nucleus

sRN?
mRNA
/ siRNA

Robinson (2004) PLoS Biol

Data basis for functional annotation

UniProt database

» Universal Protein Resource

PRiDE ) (_LHAWAP ) (Tomens )

= o * http://www.uniprot.org/
%""!ﬁ’ ,";‘.'," & + Comprehensive catalog of

— protein sequence
— functional information
(annotation data)
awenwed o Several databases:
— UniProtkB: Knowledgebase
(annotation)
— UniRef: Reference Clusters
(sequences for UniProtkB)
— UniParc: Archive (all sequences)
— UniMES: metagenomes
* Merger of previous Swiss-Prot
and TrEMBL databases

PANTHER

Thomas, et al. (2003) Genome Res 13:2129-41;
Thomas & Kejariwal (2004) PNAS 101:15398-15403.
Protein ANalysis THrough Evolutionary Relationships
http://www.pantherdb.org/
Classification system of proteins and their genes
Classification by:

— Family (evolutionarily related proteins) and subfamily (related
proteins that have the same function)

— Molecular protein function (e.g. kinase)

— Biological protein function (e.g. mitosis)

— Pathway relationships

Compilation by human curation as well as bioinformatic
algorithms

>11,900 protein families, >83,000 subfamilies in 2015

PANTHER
Information types stored in PANTHER

genes

—— orthologous genes
(— of each gene
- functional

classifications
of each gene o2 -

gene family trees
annotated with evolution of function
protain kinase aciviy

subfamily

- HMMs

subfamilies of genes

http://www.pantherdb.org
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PFAM database

Punta, et al. (2012) Nucleic Acids Res 40:D290-D301;
Finn, et al. (2014) Nucleic Acids Res 42:0222-D230

1=
H
3

Protein families
http://pfam.xfam.org/
Database of protein families
(>16,200 in 2015)

Contains, for each family,
multiple sequence
alignments and Hidden
Markov models (HMMs) for
seed alignment

Contains information about
protein domains

Grouping of families into clans

Ensemble database

Cunningham, et al. (2015) Nucleic Acids Res 43:D662-D669

A « http://www.ensembl.org
6.’ « Genomic interpretation system

N « Annotations, querying tools, access
methods for chordates and key
model organisms

« Annotation includes:
— Gene annotation (GENCODE gene set)
— Regulatory region / epigenetic annotation
— Variation annotation (germline &

somatic), also including 1000G,
HapMap, EVS and other data

— Comparative annotation (mutation age,
multiple sequence alignment, secondary
protein structures, ...)

« Web-based queries and API

ENCODE data in Ensembl

ENCODE|
]

Y

JASPAR database

Portales-Casamar, et al. (2010) Nucleic Acids Res 38:D105-D110;
Mathelier, et al. (2014) Nucleic Acids Res 42:D142-D147

iy g A1 AN St o AR R o |

pras— e resmonEs

* http://jaspar.genereg.net/
» Collection of databases:
— JASPAR CORE:
database of
transcription factor
binding motifs
- JASPAR
COLLECTIONS:
databases for splice
forms, meta-models,
and others

ENCODE database

The ENCODE Project Consortium (2012) Nature 489:57-74

« Encyclopedia of DNA
Elements
ke « https://www.encodeproject.org/
* Projects aims to build a
comprehensive catalog of all
functional elements in the
human genome
ey * International collaboration
» funded by the National Human
Genome Research Institute
(NHGRI

ENCODE: author list

The ENCODE Project Consortium (2012) Nature

ENCODE: annotations

Candidate enhancers and promoters for DNase hypersensitivity
Gene expression over ~60 cell types

Transcription start sites (TSS)

Peaks (sites of transcription factor binding or DNase hypersensitivity)
Amount of RNA for different types of RNA and in various cell lines
Promoter regions

Predicted enhancers

Semi-automated genome annotation (SAGA); summarization of
chromatin accessibility, patterns of histone modifications, transcription
factor binding, ...

High Occupancy of Target (HOT) regions (regions in which a large
number of different transcription-related factors bind)

Connectivity of transcription factors

Motifs (DNA binding sites) for transcription related factors

and more ...

https://www.encodeproject.org/
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ENCODE

Co-association between transcription factors

Whole genome

The ENCODE Project Consortium (2012) Nature

FANTOMS database

FANTOM Cons., RIKEN PMI & CLST, et al. (2014) Nature 507:462-70

» Functional Annotation of the
Mammalian Genome

{HFANTOM ===

;m..., P » http://fantom.gsc.riken.jp/5/

» Annotation of regulation, expression
and function of mammalian genes

« Promotor atlas, cell-type-specific TF
» Tools for visualization and
exploration

» Based on systematic sampling of the
distinct mammalian cell types (975

human and 399 mouse samples,
including primary cells), tissues and
cancer cell lines

» RIKEN-led consortium

FANTOMS

Collapsed co-expression network of 4882 co-expression groups
[124,090 promoters across all primary cell types, tissues & cell lines]

FANTOM Consortium, et al. (2014) Nature

Human epigenome

Roadmap Epigenomics Consortium, et al. (2015) Nature 518:317-30

o8

« http://www.roadmapepigenomics.org/
« Map of
— DNA methylation
— Histone modifications
— Chromatin accessibility
— Small RNA transcripts
Considered locations:
— Stem cells
— Primary ex vivo tissues
< Sites selected to represent the normal
counterparts of tissues and organ
systems frequently involved in human
disease
-> Convenience control for such studies

== ROADMAP |
epigenomics

PROJECT

Human epigenome

Profiled tissues and cell types

3 500035

Roadmap Epigenomics Consortium (2015) Nature

Human epigenome

Chromatin state annotation in 127 epigenomes

'S e
g
el

o
I UER B LB O ezt

Roadmap Epigenomics Consortium (2015) Nature
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STRING database

Franceschini, et al. (2012) Nucleic Acids Res 41:D808-D815

* http://string-db.org/

« Database of known and predicted
protein-protein interactions
(both direct [physical] and indirect
[functional] associations)

+ Basedon:
— Genomic context
— High-throughput experiments
— Co-expression
— Previous knowledge

* Builds upon numerous other
databases

+ >9,600,000 proteins from >2000
organisms in 2015

COSMIC database
Forbes, et al. (2015) Nucleic Acids Res 43: D805-D811

+ http://cancer.sanger.ac.uk/cosmic
@ cosmic + Catalog of somatic mutations in
cancer
* Two types of data:

— Manual curation data from peer
reviewed publications by
COSMIC expert curators (aka
non-systematic/targeted
screen data)

— Systematic screen data:
uploads from large scale
genome screening
publications and from other
databases (TCGA, ICGC);
unbiased molecular profiling of
diseases

GenomeRNAIi database

Horn, et al. (2007) Nucleic Acids Res 35:D492-7;
Gilsdorf, et al. (2010) Nucleic Acids Res 38:D448-52;
Schmidt, et al. (2013) Nucleic Acids Res 41:D1021-6

+ http://www.genomernai.org/GenomeRNAi/
‘5 « Database containing phenotypes from
Genome RNAI \’,\ RNA interference screens in Drosophila
NN YN / and Homo sapiens
! » Provision of RNAIi reagents and their
% predicted quality.

There are more databases...

Software

Schiffahrtsmuseum Brake, Germany

MAPP

Stone & Sidow (2005) Genome Res 15:978-86

[ ey S [
1?5:( - * Multivariate Analysis of Protein Polymorphism
==« http://mendel.stanford.edu/sidowlab/downloads
B S — IMAPP
: « Steps:

1. Multiple alignment of homologous
sequences, phylogeny-weighted scores

2. Interpretation of scores by quantified
physicochemical properties, yielding
constraints on these properties for each
variant

3. Create new feature space by PCA of all
physicochemical properties

4. MAPP score: distance to the origin of the
new feature space
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GERP/GERP++

Cooper, et al. (2005) Genome Res 15:901-13;

Davydoyv, et al. (2010) PLoS Comp Biol 6:e1001025.
Genomic Evolutionary Rate Profiling
http://mendel.stanford.edu/sidowlab/downloads/gerp
Identification of constrained elements by a deficit of
substitution events due to purifying selection
Comparison of estimated evolutionary rates between
— individual alignment column (residue/variant) and

— a tree describing neutral substitution rates (ML-based phylogenic
inference)

Constraint regions exhibit fewer than expected changes
RS score (metric of constraint): rejected substitutions

GERP++: additional aggregation of constrained sites into
constrained sequences

PhastCons

Siepel, et al. (2005) Genome Res 15:1034-1050

+ Part of the PHAST (Phylogenetic Analysis with Space
/Time Models) package:
— http://compgen.bscb.cornell.edu/phast/
— Engine behind the Conservation tracks in the UCSC Genome
Browser
» Aims at conservation scoring and identification of
conserved elements from multiple sequence alignment
Predicting sequences as being conserved / not conserved
— using a phylogenetic Hidden Markov Model (HMM)
— different values for branch length scaling parameter (average
substitution rate) in phylogenetic tree between both types
— Unsupervised learning without use of external information

Calculation of conservation score

PhastCons

Assumed tree topologies and branch length

Conserved Nonconserved

Vertebrate

Insect

Yeast

Siepel, et al. (2005) Genome Res

PhastCons: conservation score

Conservation score: posterior probability that each site was generated from
a conserved state in the phylo-HMM

LOD score: log-ratio of the likelihoods for a region under the conserved
phylogenetic model compared to the nonconserved model
Note 1: LOD — logarithm of the odds
Note 2: This is not the LOD score from linkage analysis (although scaled in a similar way).

Conservation track in UCSC Genome Browser:

Siepel, et al. (2005) Genome Res

PhyloP

Pollard, et al. (2010) Genome Res 20:110-121

« phylogenetic P-values
« http://compgen.bscb.cornell.edu/phast/
« Aims at detecting deviations from the
neutral rate of substitutions
— Conservation: less than under drift
— Acceleration: more than under drift
« Additionally allows for clade-specific
differences in the phylogeny

« Software implementation of four tests,
including likelihood-ratio and score tests,

a number-of-substitutions test (SPH), and
GERP

« The conservation track of the UCSC
genome browser contains PhyloP scores
(SPH p-values for deviation from drift).

LogRE

Clifford, et al. (2004) Bioinformatics 20:1006-14

* http://lpgws.nci.nih.gov/cgi-bin/GeneViewer.cgi

* Prediction whether amino acid (AA) changes in conserved
domains are likely to affect protein function

» Based on output of the HMMER/2/3 software (multiple
sequence alignment using HMMs and profiles) and Pfam
profiles (conservation in protein families)

» E-value in sequence alignment: expected number of
sequences with an alignment score equal to or even more
extreme than that of the observed sequence

* LogRE value:

log,, of ratio E(deviant AA) / E(canonical AA)
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SIFT
Kumar, et al. (2009) Nat Protoc 4:1073-81, and others

» Sorting Tolerant From Intolerant
* http://sift.jevi.org/
+ Protein function prediction due to an AA substitution (nsSNP)
» Based on
— Multiple sequence alignment
— Conservation with respect to functionally related protein sequences
— Similarity between the alternate amino acids
— No incorporation of protein structure
+ Output
— Score: probability of substitution for being tolerated
(i.e. values near 0 imply high probability for being deleterious)

— Qualitative prediction of being ‘tolerated’ or 'deleterious’ by
thresholding

SIFT: workflow

INPUT

Mutiple proteins
substiutons.

absKP

Ncai i number |
Substiutions.

protoin sequence +
substiutons

Single-protein tools.

Protein sequence |/
alignment

SIFT Toolbox

High sequence conservation in functionally related protein sequences

- nsSNP unlikely to be tolerated
Kumar, et al. (2009) Nat Protoc

SIFT score

Multiple sequence alignment of homologous amino acid (AA) sequences

For a given position, calculation of the relative frequencies of the 20 AA at
this position in the alignment, normalized by the maximum relative
frequency

SIFT score:
normalized probability of the observed AA
(i.e. frequency of the observed AA relative to the
most common AA at this position in the alignment)

SIFT score close to 0:

SIFT score
Thioredoxin of E. coli and 15 homologs
Escherichia coli WKAD |G/ ILVDFWAEWCGPCEMI
Porphyra purpurea [NND |LI/VLVDFWAPWCGPCRNMV
Thiobacillus ferrooxidans “KSS |KIlVLVDFWAEWCGPCKMI
Streptomyces clavuligerus WKSE |KIlVLVDFWAEWCGPCRQI
Cyanidioschyzon merolae “QSE |KI|VLVDFWAPWCGPCRMI
Human JAAGI|KI|VVVDFSATWCGPCKMI
Rhesus monkey IDAGI KI|VVVDFSATNCGPCKMI
Sheep ISAGIHKI|VVVDFSATWNCGPCKNMI
Rabbit )SAGIKIVVVDFSATWNCGPCEMI
Chicken CAAGHKI|VVVDFSATWCGPCKMI
Dictyostelium discoideum CHLRI!|EI|/VVVDFSAVWCGPCRAI
Dictyostelium discoideum CYLQI|Q}VVVDFSAEWCGPCRAI
Drosophila melanogaster EAADI KIIVLDFYATWCGPCKEM
Caenorhabditis elegans IQHP)|KIILDFYATWCGPCKAI
Ricinus communis IDTK |G| IVVDFTASWCGPCRFI
Neurospora crassa WNTT |Q)|VVADFYADWCGRPCEAX

The observed AA almost never occurs at this position in the homologous fReIative f(G)=2/16 f(L)=1/16 f(K)=10/16 f(E)=1/16 f(Q)=2/16
sequences, indicating high conservation and a probably deleterious effect. requency
SIFT S(G)=2/10 S(L)=1/10 S(K)=10/10S(E)=1/10S(Q)=2/10
Kumar, et al. (2009) Nat Protoc Lesk (2014)
PolyPhen-2 PolyPhen-2: workflow
Adzhubei, et al. (2010) Nat Methods 7(4):248-249
Input Analysis Prediction Interpretation
. S
« http://genetics.bwh.harvard.edu/pph2/ e YsA
MSA creation rofio-based scoms. H
« Prediction of the functional effects of an amino acid wmu“;:n( - gt : ‘
substitution on the structure and function of a protein g vt e
0 e mmm ACT. ngEoslmm
+ Naive Bayes classifier based on S o e e
— Sequence conservation ‘@ R S . \
— Chemical properties of amino acids oy
— Protein structure __S_tr'ug_u_ro;.__( A W
— Sequence context mm __.-—__._——__...7 Az l
« Output y ﬁ

— Score: probability of substitution for being deleterious
(i.e. values near 1 imply high probability)

— Qualitative prediction of being ‘probably damaging’, 'possibly
damaging', 'benign’ or 'unknown'

Adzhubei, et al. (2010) Nat Methods
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SNP Effect Predictor (SEP)

McLaren, et al. (2010) Bioinformatics 26:2069-70.

Predicted consequences « Annotation of SNVs in

| e transcripts (i.e. coding
gy sequence)

« Part of Ensemble; annotation
based on Ensemble
databases

* Web-based tool and

Application Programme
Interface (API, written in Perl)

ANNOVAR (1)

Wang, et al. (2010) Nucleic Acids Res 38:e164.

* http://annovar.openbioinformatics.org/
* Widely used tool; builds upon numerous databases and
many other tools

* Annotation of SNVs, InDels and CNVs
» Conversion utilities for numerous file types (including VCF)
* Perl command line tool

* Web-based access to some functionality via WANNOVAR
(http://wannovar.usc.edu/)

available » Gene-based annotation:
o ) « hitp://www.ensembl.org/info — ldentification of protein-coding changes
’ e /docs/api/ - Flexible use of many gene definition systems (RefSeq, UCSC,
ENSEMBL, GENCODE, AceView, and others)
ANNOVAR (II) SnpEff

* Region-based annotation:

— Identification of conserved regions among 44 species,

— Prediction of transcription factor binding sites, segmental
duplication regions, GWAS hits, database of genomic variants,
ENCODE sites, ChlP-Seq peaks, RNA-Seq peaks, ...

« Filter-based annotation:

— Presence (and reported frequency) in specific databases (dbSNP,
1000 Genome, NHLBI-ESP 6500 exomes, EXAC, and others)

— Calculation of scores (e.g. SIFT, PolyPhen-2, LRT, MutationTaster,

MutationAssessor, FATHMM, MetaSVM, MetaLR, GERP++)
« Other functionalities:
— Retrieval of nucleotide sequence in any user-specific genomic
positions in batch
— Candidate gene list for Mendelian diseases from exome data
— and more

Cingolani, et al. (2012) Fly 6:1-3

+ SNP Effect

* http://SnpEff.sourceforge.net/

» Annotation of SNVs, InDels, MNP (multiple nucleotide
polymorphism) in coding sequence

* Multiple input file formats (VCF, mpileup, text)

* Gene annotation has similar scope as in ANNOVAR

* Integration with computational biology platform Galaxy
(http://gmod.org/wiki/Galaxy) and GATK

» Superseded ANNOVAR when integrated in GATK
* Tool SnpSift for VCF file manipulaitn and filtering

Condel

Gonzalez-Pérez & Lopez-Bigas (2011) Am J Hum Genet 88:400-9

» Consensus deleteriousness score of missense mutations

 http://bg.upf.edu/condel

» Mulitple sequence alignment of homolous sequences

* Weighted combination of five predictors: Logre, MAPP,
Mutation Assessor, PolyPhen-2 and SIFT

» Definition of different simple and averaged scores for the
0/1 prediction and the normalized scores of each of the
five predictors

» Combinations these derived scores used for classification
of a variant being deleterious or neutral

FATHMM, FATHMM-MKL

Shihab, et al. (2013) Hum Mutat 34:57-65; Shihab, et al. (2015) Bioinform.

» Functional Analysis through Hidden Markov Models

* http://fathmm.biocompute.org.uk/

+ Prediction of functional consequences for both coding and
non-coding SNVs

* Web service

+ Based on
— conservation of homologous sequences, protein domain
functionality and pathogenicity (inferred from relative frequencies
of disease-associated variants)
— SVM using functional annotation from numerous ENCODE tracks
* Incorporates numerous databases, e.g. HGMD, UniProt,
VariBench and SwissVar
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Mutalyzer

Wideman, et al. (2008) Hum Mutat 29:6-13

* https://mutalyzer.nl/

* Checking sequence variant nomenclature according to the
guidelines of HGVSt (Human Genome Variation Society)

* Some automated extraction of variant annotation

* Web-based service

Syntax Checker Position SNP Converter Name Generator
Takes e compiet sequence Converter Alows you 1o coovert 8 Ausestriency inertace tat
srantdescoption ss rout ey @5 raato HOVS notation hea tomake 8 ald HOVS.
andchecks kg varan descroton
s W ot oty poseces e et
Description Reference File Batch Checkers Web Services
Ext ler inerfoces acospting s st of Provides inatructions for the
us hat conbe sed et ervres

Alows you o load and a0 o
yous omn refecence large quanties of checks.

swquence.

Mutation Assessor

Reva, et al. (2011) Nucleic Acids Res 39:e118

http://mutationassessor.org/

Functionality predicted from inter-species conservation and
known 3D structures

Somatic cancer mutations are additionally evaluated for
recurrence, multiplicity and annotation based on the
COSMIC database

= Which mutations are functional?
* Which mutations have implications for cancer progression?

* Mutations in evolutionarily conserved residues are likely functional
* Mutations in non-conserved residues are likely neutral
= Analysis of evolutionary conservation patterns can discriminate between functional and non-functional mutations

A = One-stop shop for protein mutation analysis
4/ mutationassessor.org * Rich annotations, pathways, 3D structure, binding sites, etc.
= WEBAPI allows batch submission, querying mutation functional
impact score and all annotations, linking to mutation views in MSA / 30

Mutation Assessor: functional impact score (FIS)

Multiple sequence alignment of a large number of homologs for both
protein families and subfamilies

subfamily 1

subfamily 2

residues conserved
conserved ; -
across entire family

Strength of residue conservation: distributional entropy of alignment column

EILHG
EILQG
EILNG
EILNG
NTTRG:
NITRG:
NITRG

» A

residues conserved with subfamily,

L specificit
vary between subfamilies P ¥

Conservation score: effect of mutation described as difference in residue

conservation
Specificity score:  conservation score within data-defined sequence
subfamily

Functional Impact Score = conservation score + specificity score

Reva, et al. (2011) Nucleic Acids Res

MutationTaster / MutationTaster2

Schwarz, et al. (2010) Nat Methods 7:575-6;
Schwarz, et al. (2014) Nat Methods 11:361-2

http://www.mutationtaster.org/

Web-based service, upload of VCF files

Prediction of functional consequences for amino acid
substitutions (nsSNVs), intronic and synonymous SNVs
and InDels and exon-intron border variants

Bayes classifier trained on 1000G and HGMD Professional
Integration of: 1000G, HapMap, ClinVar, HGMD Public,
ENCODE, JASPAR, PhyloP/PhastCons [conservation],
NNSplice [splicing], ...

VAAST

Yandell, et al. (2011) Genome Res 21:1529-42

Search procedure « Variant Annotation, Analysis, and
Toost Voot Pl (VGF o GVF | | Backreund Vair Fie (VGF o GVEY Search Tool
s o (GFF3) « Annotation of amino acid

cases controls

substitutions (coding sequence)
and non-coding

« Likelihood-ratio test for disease
association; aggregation of rare
variants (similar to CMC
approach)

« Severity of SNVs assessed by
comparison to OMIM

« Scoring of non-coding and
synonymous variants by use of
sequence conservation, OMIM,
1000 Genomes, ENCODE,

VAAST annot VAAST an ool

Condenser file Condenser file

VAAST disaase-gens finder

VAAST report

VAAST report viewer

VAT

Wang, et al. (2014) Am J Hum Genet 94:770-83

Variant Analysis Tools
http://varianttools.sourceforge.net/
Different gene set references

Presence in dbSNP, EXAC, 1000G, HapMap, database of
genomic variants, catalog of somatic mutations in cancer

Prediction scores from dbNSFP database (SIFT,
PolyPhen, MutationTaster, and others)

Conserved or duplicated regions
Automatic annotation using ANNOVAR and SnpEff
Many more tasks possible; coded in Python
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PROVEAN

Choi, et al. (2012) PLoS ONE 7: e46688

» Protein Variation Effect Analyzer

* http://provean.jcvi.org/

» Annotation of the functional impact
based on conservation of
homologous protein sequences

» Focus on InDels, multiple
substitutions

* Impact measured by Delta Score A:
— defined as the difference in the

alignment scores for the given
protein and a homologous
sequence, average over many

. homologous sequences

— Thresholding A for prediction

CADD

Kircher, et al. (2014) Nat Genet 46:310-5

Combined Annotation - Dependent Depletion

http://cadd.gs.washington.edu/

Annotation of SNVs and InDels

Based on 63 partially different annotations (VEP,

ENCODE, GERP, phyloP, TF binding, SIFT, PolyPhen,

=)

Integration of numerous annotations into a single C score

Assessment of the “deleteriousness” of a variant by

simulation

— Genome-wide simulation of de-novo germline variation without
selection

— Comparison against fixed or nearly fixed derived alleles in humans
(as compared to chimpanzee) with respect to annotation

CADD: C score

Support-vector machine (SVM) for distinguishing nearly fixed variation
from simulated neutral variation (14.7x108 vs. 14.7x108)

SVM trained on 63 annotations and some selected interaction terms
(but 949 features in the model due to dummy coding of categorical variables!)

Application to all 8.6 billion possible substitutions in GRCh37, yielding the
distribution of the combined score from the SVM (C-score) for variants in
the human reference genome

Phred-scaling of the rank of the score (scaled C-sore):
-10logy, (rank/total number of substitutions).
Comparison of the scaled C-score of a variant at hand against this distribution

Example: A variant with a scaled C-score of 20 indicates that it is rank at
1% of the most deleterious substitutions in the human genome

Kircher, et al. (2014) Nat Genet

CADD: typical C scores for SNVs

® Stoploss
(11:0-43)

m Spiice site
(7. 0-35)

o Intronic
(3 0-39)

O Regulatory
(5:0-37)

® Downstream

c Median nonsense C score (3,0-38)

3 UTR

| oo,
*rta.t
N

O Intergenic
(2 0-39)

0 10 15 20 25 30 35 40 45 50251

-338883

Disease  Essential  GWAS LoF Offactory  Other
(905) 74) (157) 5 @74) 500)

Kircher, et al. (2014) Nat Genet

GWAVA

Ritchie, et al. (2014) Nat Methods 11:294-6

+ Genome-wide annotation of variants

 https://www.sanger.ac.uk/resources/software/gwava/

» Functional annotation of non-coding sequence variants

* Integration of genomic and epigenomic annotations
(1000G frequencies and ancestral allele calls, GERP
scores [conservation], several ENCODE tracks, TF
binding motifs)

« Classification of variants having a pathogenic effect or not
via random forest, trained on HGMD and 1000G

» Validation by application to the COSMIC database

SuRFR

Ryan, et al. (2014) Genome Med 6:79

SNP Ranking by Function R package
http://www.cgem.ed.ac.uk/resources/
Annotation of non-coding variants

Incorporation of 1000G, ENCODE, FANTOMS5, Epigenome
Roadmap

Prioritization of variants by a rank-of-ranks approach:

R = rank; (Z(ruw,))
r;— ranks within annotation category, w; — weight for category, R — overall rank
Three pre-trained weighting schemes available
Implemented as package for the R statistical language
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There are more annotation tools...

http://omictools.com/variant-annotation-c104-p1.html

Performance of prediction

Comparison of methods

Comparison of 1,100 common polymorphisms (1000G) and

1,100 known disease mutations (HGMD)

Table 1 | Comparison between MutationTaster2 and other prediction tools

Tool n NPV PPV itivity Specificity acy
PPH2-var 2,200 0.808 0.875 0.789 0.887 0.838
PPH2-div 2,200 0.853 0.827 0858 0821 0.840
PROVEAN 2,200 0.798 0.865 0.778 0.878 0.828
SIFT 2,200 0.832 0.854 0.827 0.858 0.843
MutationTaster] 2,200 0.850 0.870 0.846 0.874 0.860
MutationTaster2 2,200 0.886 0.875 0.887 0.874 0.880

Details about the methods and further statistics are presented in Supplementary Methods and at http://www.
mutationtaster.org/info/statistics.html. n, number of cases; NPV, negative prediction value; PPV, positive prediction
value; PPH2-div, PolyPhen-2 with HumDiv classifier; PPH2-var, PolyPhen-2 with HumVar classifier.

Schwarz, et al. (2014) Nat Methods

Table | Chamcteristics of three sclected in silico prediction tools

Comparison of methods

Characteristic SIFT PolyPhen-2
Target SNV SNV
Algorithm Sequence aligament Bayes classifier
Features Amino acid sequence Amino aci sequence. secondary and
tertary strocture
Input Amino acid sequence or SwissProt 1D Amino acid sequence o SwissProe 1D
o s number or locatio, amino ackd ar v mumber o bocation, amino acid
subsitution subsitution
Classification Tolerated. dumaging Probably damaging, possibly damaging.
benign, unkoown
Additional output  Number and median conservation of  False and truc positive rale, protein
aligned sequences strwcture
URL bitp:! hitpfgenctis bwh harvard edu/pph/

Table 2 Performance of three selected in silico prediction tools

Tool SIFT  PolyPhen-2*
Sensitivity 0.68  0.73(0.86)
Specificity 0.62  0.70(0.51)
Matthews correlation coefficient ~ 0.30 0.43 (0.39)

Knecht & Krawczak (2014) Hum Genet

Comparison of methods

Same software (ANNOVAR), different annotation databases

[~81 million variant calls from 276 samples of immune disease & cancer cases;
from the WGS500 project (University of Oxford)]

log;, number of
variants

RefSeq annotation

Ensembl annotation

McCarthy, et al. (2014) Genome Med

Comparison of methods

Same annotation database (Ensembl), different annotation software

[~81 million variant calls from 276 samples of immune disease & cancer cases;
from the WGS500 project (University of Oxford)]

LOF tota
Fromeshft
Stopganed

Stoplost

ANV4VEP

ANV VEP  Exact Category
match  match

TIST 96761 68284 69373

ANVmatch  VEP match Overall
rate(%)  rate(%) categorymatch
rate (%)
808 7057 612
08
8886

%603

8635

e

6699

%84

9105

=08 7087 6612
%616 8691 8570
%13 8903 8723

rate (%)
6509
2017
%066
6129

2096

McCarthy, et al. (2014) Genome Med
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Correlation between different annotations

14.7 millions human-derived alleles with 295% population frequency

Kircher, et al. (2014) Nat Genet

Limits of in-silico functional prediction

Back to square one: motivation for in-silico prediction

Do these missense mutations
actually cause the disease/
phenotype at hand?

Model organism experiments are
too costly for all observed
missense mutations.

Comparison of predicted and actual consequences of
missense mutations

Lisa A. Miosge™', Matthew A. Field®", Yovina Sontani®, Vicky Cho™®, Simon Johnson™®, Anna Palkova®®,
Bhavani Balakishnan®, Rong Liang®, Yafei Zhang®, Stephen Lyon*, Bruce Beutler, Belinda Whittle®,
Edward M. Bertram®, Anselm Enders?, Christopher C. Goodnow™*?, and T. Daniel Andrews®**

(A) Generation of random mutations in mouse pedigrees using ENU;
Breeding to homozygosity and phenotyping of mice with 1 of 33 potentially
disruptive de-novo points mutations in 23 essential immune system genes

[already known to produce a fully penetrant detectable phenotype]

(B) In vitro phenotyping (translational activity) of all possible TP53 mutations
Prediction by PolyPhen-2, CADD, SIFT, GERP, MutAssessor &PANTHER

Miosge et al. (2015) PNAS

Limits of in-silico functional prediction

Predicted damage vs. experimentally measured activity for TP53
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Miosge et al. (2015) PNAS

Limits of in-silico functional prediction

“The discordance between the predicted and actual effect of
missense mutations revealed here creates the potential for
many FP conclusions in clinical whole genome sequencing.

Hence, for interpretation of a clinical genome sequence at
present, it is essential to measure experimentally the
consequence of any missense mutation thought to be causal.”

... We conclude that for de novo or low-frequency missense
mutations found by genome sequencing, half those inferred as
deleterious correspond to nearly neutral mutations that have
little impact on the clinical phenotype of individual cases but
will nevertheless become subject to purifying selection.

Miosge et al. (2015) PNAS

That’s it!
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