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Samples	in	a	Family	Undergoing	NGS

Two	or	More		

Affected	Individuals

One	Affected	

Individual

Affected	&	Unaffected	

Individuals		

Exclude	variants	which	are	not	shared	by	affected	

individuals	&	(present	in	unaffected	individuals	)	

Exclude	non-coding	variants	and	&	coding	variants	which	are	found	

in	databases	(ExAC)	or	are	not	rare	e.g.	>0.5%	

Analysis	of	Family	Data	Via	Filtering	Strategies

Test	for	segregation	of	identified	variants	with	disease	phenotype	

&	sequence	variants	in	ethnically	matched	controls

D

This Strategy	can	Fail!
None of	the	variants	completely	segregate	with	

disease	status

Ø Affected individuals	are	phenocopies	or	incorrectly	diagnosed

Ø Unaffected individuals	are	disease	variant	carriers	(reduced	
penetrance)

Ø Sample swaps	have	occurred	
Ø Locus heterogeneity	within	the	pedigree	

D+++ D+

D+

++

++

Phenocopy Reduced	Penetrance Sample	Swaps

Performing	Linkage	Analysis
• DNA samples from all informative pedigree 

members are genotyped using arrays
• Parametric two-point and multipoint linkage 

analysis performed
• For consanguineous pedigrees segregating 

autosomal recessive traits 
– Homozygosity mapping can also be used
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Trouble	Shooting	Using	Linkage	Analysis
• Linkage	analysis	can	be	performed	using	
genotyping	arrays	or	sequence	data	

• Observed	LOD	scores	compared	to	
– Expected	maximum	LOD	(EMLOD)
– Maximum	LOD	(MLOD)

• Deflated	LOD	scores	can	be	due	to
– Incorrect	phenotype	information
– Locus	heterogeneity	within	the	pedigree	

• Genotypes	can	also	aid	in	detection	of	incorrect	
familial	relationships

Benefits	of	Performing	Linkage	Analysis	
Using	Genotyping	Arrays

• Aids	in	selection	of	individuals	for	sequencing

• Maps	the	disease	locus	to	specific	genomic	
region(s)

• Filtering	can	be	performed	within	several	Mb,	i.e.	
linkage	region,	instead	of	the	entire	genome
– Reducing	the	number	of	variants	which	need	to	be	
followed-up
• Testing	for	segregation	in	pedigrees
• Evaluating	frequencies	in	ethnically	matched	controls
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Non-syndromic	Hearing	Impairment	(NSHI)

• 893	NSHI	families	ascertained	
– Pakistan,	USA,	Switzerland,	Turkey,	Jordan,	Hungry	
(Roma),	Poland	&	Germany

• Intra-familial	heterogeneity	in	the	collection
• 15.3%	(95%	CI	11.9	- 19.9%)		Santos-Cortez	et	al.	2015	EJHG

• Linkage	analysis	followed	by	exome	sequencing	led	
to	the	identification	of	a	number	of	NSHI	genes
– KARS	(Santos-Cortez	et	al.	2013	AJHG)
– ADCY1 (Santos-Cortez	et	al.	2014	Hum	Mol	Genet)
– TBC1D24 (Rehman	et	al.	2014	AJHG)

REPORT

Mutations in KARS, Encoding Lysyl-tRNA
Synthetase, Cause Autosomal-Recessive
Nonsyndromic Hearing Impairment DFNB89

Regie Lyn P. Santos-Cortez,1,8 Kwanghyuk Lee,1,8 Zahid Azeem,2,3 Patrick J. Antonellis,4,5

Lana M. Pollock,4,6 Saadullah Khan,2 Irfanullah,2 Paula B. Andrade-Elizondo,1

Ilene Chiu,1 Mark D. Adams,6 Sulman Basit,2 Joshua D. Smith,7 University of Washington
Center for Mendelian Genomics, Deborah A. Nickerson,7 Brian M. McDermott, Jr.,4,5,6

Wasim Ahmad,2 and Suzanne M. Leal1,*

Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromo-

somal region 16q21–q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing-

impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase

(KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other

two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the

nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched

controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across

all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells

of zebrafish, chickens, andmice.Moreover, KARS has strong localization to the spiral ligament region of the cochlea, as well as to Deiters’

cells, the sulcus epithelium, the basilar membrane, and the surface of the spiral limbus. It is hypothesized that KARS variants affect ami-

noacylation in inner-ear cells by interfering with binding activity to tRNA or p38 and with tetramer formation. The identification of rare

KARS variants in ARNSHI-affected families defines a gene that is associated with ARNSHI.

Hearing impairment (HI) affects nearly 300 million people
of all ages globally and increases in prevalence per decade
of life.1 Children and adults with bilateral, moderate-to-
profound HI have a poorer quality of life, which encom-
passes not only problems in physical function but also
socioemotional, mental, and cognitive difficulties.2,3 In
particular, children with congenital HI must be identified
and habilitated within the first 6 months of life so that de-
lays in the acquisition of speech, language, and reading
skills can be prevented.4

Among children with congenital sensorineural HI, more
than 80% do not display syndromic features and ~60%
have a family history of HI or a confirmed genetic etiol-
ogy.5 Because of the complex cellular organization of the
inner ear, hundreds of genes and proteins are predicted
to influence auditory mechanisms. To date, for nonsyn-
dromic HI (NSHI), about 170 loci have been localized
and mutations in ~75 genes have been identified in hu-
mans (Hereditary Hearing Loss Homepage). Of the gene
variants that have been implicated in NSHI, almost 60%
are autosomal recessive (AR) in inheritance, and 95% of
the genes that harbor mutations that cause ARNSHI were
initially mapped and identified in consanguineous fam-

ilies. The knowledge that has been gained from functional,
expression, and localization studies after the identification
of genes with mutations that cause NSHI has immensely
expanded our understanding of inner-ear physiology.
Previously, an ARNSHI-associated locus, DFNB89, was

mapped to chromosomal region 16q21–q23.2 in two unre-
lated, consanguineous Pakistani families.6 The two fam-
ilies, 4338 and 4406 (Figures 1A and 1B), had maximum
multipoint LOD scores of 6.0 and 3.7, respectively. The ho-
mozygosity regions that overlap in the two families led to
the identification of a 16.1 Mb locus (chr16: 63.6–79.7 Mb)
that includes 180 genes. Additionally, a third consanguin-
eous Pakistani family, 4284 (Figure 1C), was identified, and
showed suggestive linkage to the DFNB89 region with a
maximum multipoint parametric LOD score of 1.93. For
family 4284, linkage analysis was performed for ~6,000
SNP markers that were genotyped across the genome
with the Illumina Linkage Panel IVb.
Consanguineous families 4284, 4338, and 4406 from

Pakistan are affected by ARNSHI, which was found to
segregate with unique haplotypes within the DFNB89 lo-
cus (Figures 1A–1C). From the medical history, no other
risk factors were identified as a possible cause of HI. For

1Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2Department of
Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; 3Department of Biochemistry, Azad Jammu Kashmir
Medical College, Muzaffarabad, Azad Jammu and Kashmir 13100, Pakistan; 4Department of Otolaryngology Head and Neck Surgery, Case Western Reserve
University, Cleveland, OH 44106, USA; 5Department of Biology, CaseWestern Reserve University, Cleveland, OH 44106, USA; 6Department of Genetics and
Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; 7Department of Genome Sciences, University of Washington, Seattle, WA
98195, USA
8These authors contributed equally to this work
*Correspondence: sleal@bcm.edu
http://dx.doi.org/10.1016/j.ajhg.2013.05.018. !2013 by The American Society of Human Genetics. All rights reserved.
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DFNB89	Locus	(16q21-q23.2)

Basit	et	al.,	Hum.	Genet.	2010

4338	(LOD	6.0)

4406	(LOD	3.7)

4284	(LOD	1.9)

One	individual	 from	each	family	
selected	for	exome	sequencing
based	upon	region	of	homozygosity

Bilateral	symmetric	moderate-to-profound	
hearing	 impairment	across	all	frequencies

SNP	genotyping	 (Illumina	 linkage	panel)
Region	of		homozygosity	 16.1	Mb:
Containing	~180	genes	

Rare	Homozygous	Variants	in	the	
DFNB89	Region	

Family Gene Variant Frequency

ExAC

Damaging*

4406 COG4 p.Ile271Val 0.0005 MT,	LRT
4406 ZFHX3 p.Pro1929Ser 0.0005 None
4406,4284 KARS p.Tyr173His 0.00002 All

4338 KARS p.Asp377Asn 0 All

4338 CNTNAP
4

p.Ala1235Thr 0.00002 MT,	LRT

*Bioinformatics	Tools:	CADD,	LRT,	MutationAssessor,	MutationTaster	(MT),	PolyPhen-2,	SIFT
All	variant	sites	were	deemed	to	be	conserved	(PhyloP&	GERP)

KARS	Variants	Segregate	with	HI	in	
DFNB89	Families

p.Try173His	&	pAsp377Asn	not	
observed	in	750	ethnically	
matched	Pakistani	chromosomes

KARS	encodes	lysyl-
tRNA	synthetase

Analysis	of	 Family	Based	Data	(Mendelian)

Investigate	Functionality	using	Bioinformatic	Tools

Determine	if	Variant	Segregates	with	Phenotype

Genotype	Informative	family	Pedigree	Members

Perform	Linkage	Analysis

Select	Pedigree	Member(s)	for	Sequencing

Remove	Variants	Which	are	not	Rare	in	ExAC,	e.g.	MAF>	0.5%	

Population	Specific	Frequencies	for	Variant

Acquire	Additional	Families	with	Variants	with	the	Same	Gene
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Goal	of	Linkage	Studies

§ To	localize	disease/trait/susceptibility	loci	to	a	

unique	position	on	the	genome

§ Only	family	data	can	be	used	to	carry	out	linkage	

studies

§ Extend	families

§ Pedigrees	with	multiple	branches	and/or	multigenerational

§ Nuclear	Families

§ Parents	and	offspring	

§ Trios	(parents	and	proband)	cannot	be	used	for	

linkage	studies

§ Suitable	for	association	studies

Types	of	families	for	Linkage	Analysis	
Extended	Pedigrees	

Nuclear	Pedigrees	

Trios

Linkage	Analysis	&	Homozygosity Mapping	

• Can	be	used	to	reduce	the	region	to	be	followed	

up	with	sequencing

– Thus	greatly	reducing	the	number	of	variants

– May	lead	to	identification	of	the	causal	variant	where	

other	approaches	have	failed

• Genotype	all	available	informative	families	

member	to	perform	linkage	analysis/homozygosity	

mapping	

Chromosome	in	meiosis	with	two	crossovers

Two homologous
chromosomes, each
with two chromatids

Two
crossovers

Four gametic
products (egg,
sperm cells)

Parametric	Linkage	Analysis

• For	Mendelian traits

– Mode	of	inheritance	must	be	known

– Autosomal	Recessive

– Autosomal	Dominant

– X-linked

– Trait	can	have	reduced	penetrance	or	phenocopies
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Linkage	Analysis	– Allele	Sharing	Methods

• Also	known	as		nonparametric	or	model	free	

method

– Neither	nonparametric	or	model	free	

– Mode	of	Inheritance	does	not	need	to	be	known

• Complex	traits

– Underlying	genetic	model	is	not	specified	in	the	analysis	

Parametric	Linkage	- Analysis

• Goal	

– To	test	whether	there	is	linkage	between	a	

disease	locus	and	a	marker	or	set	of	marker	loci

–Null	hypothesis

• No	linkage	- recombination	fraction	(θ=0.5)

– Recombination	rate	50%

» Disease	locus	and	marker	locus/loci	far	apart		

– Loci	on	two	different	chromosomes

Parametric	Linkage	- Analysis

• Alternative	hypothesis	

• linkage	θ<0.5
–Wish	to	reject	the	null	hypothesis	of	no	

linkage

• Use	a	LOD	score	criterion	of	3.3	(p<0.05)

– Estimate	the	recombination	fraction	

(genetic	distance)	between	the	disease	and	

the	marker	loci

Linkage	Analysis	- Allele	Sharing	Methods

§ Compare	the	amount	of	allele	sharing	

between

§ Affected	Sibling
§ Other	affected	relative	pairs

§ Avuncular

§ e.g.	uncle-Niece

§ Cousins	

Linkage	Analysis	- Allele	Sharing	Methods

§ Variety	of	tests	to	elucidate	if	there	is	an	
excess	of	allele	sharing

§ Mean	test

§Null	hypothesis

§ Under	no	linkage	

§ Affected	siblings	share	50%	of	their	alleles

§ Alternative	Hypothesis

§ Under	linkage	

§ Affected	siblings	share	>	50%	of	their	alleles

Polymorphisms	&	Variants	

§ Polymorphism

§ A	region	of	the	genome	that	varies	between	individual	

members	of	a	population

§ Usually	with	a	frequency	of	at	least	1	or	5%	

§ Variant	or	mutation

§ An	alteration	in	a	genome	compared	to	some	reference	

state

§ Does not have to be causal or functional

§ Types	of	Variants

§ Pathogenic

§ Of	unknown	significance

§ Benign	
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Loci	&	Alleles

§ Locus:		A	specific	position	on	the	genome

§ For	the	autosomes	2	alleles	are	observed	at	each	

locus

§ Alleles:	Are	alternative	forms	of	DNA	

sequence	that	occur	at	a	locus

§ e.g.	the	A,	B,	0	alleles	of	the	AB0	gene

Loci	&	Alleles

§ Codominant

§ Both	alleles	are	expressed	in	the	heterozygous	state

§ Dominant

§ Expression	is	the	same	in	heterozygous	as	in	the	

homozygous	state		

§ The homozygous state can sometimes produce a more severe 
phenotype than the heterozygous state
§ Homozygous lethal

§ Recessive

§ Homozygous	state	is	necessary	for	expression

Hardy	Weinberg	Equilibrium	(HWE)

• For	the	autosomes	the	proportion	of	each	

genotype	follows	the	laws	of	HWE	

– p2,	2pq	&	q2

• Which	is	based	upon	the	observed	allele	

frequencies

HWE

• The	organism	is	diploid

• Reproduction	is	sexual

• Generations	are	non-overlapping

• Mating	is	random

• Population	size	is	very	large

• Migration	is	negligible

• Mutation	can	be	ignored	

• Natural	selection	does	not	affect	the	alleles	under	

consideration

HWE

Example	2	allelic	system (e.g.	SNP	marker)

Allele	1	frequency	p=	(2N11 +	N12)/2N

Allele 2	frequency q=	(2N22 +	N12)/2N

Expected	proportions	of	heterozygotes	and	

homozygotes	under	HWE

1	1=	p2

1	2	=	2pq

2	2	=	q2

HWE

The	following	genotype	counts	are	observed

Observed Expected

1		1			 300 ?

1		2 500 ?

2		2 200 ?

Allele	frequencies

1	allele:	p=(600+500)/2000=0.55

2	allele:	q=(500+400)/2000=0.45

Note	q=(1-p)	
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HWE

Expected	genotype	frequencies	under	HWE

11	 p2=0.3025

12	 2pq=0.495	

22	 q2=	0.2025

Expected	number	of	genotypes	under	HWE*

11 302.5

12 495

22 202.5

*For	a	sample	size	of	1,000	individuals

HWE

Χ2
=Σ(observed-Expected)

2

Expected

Observed Expected

1	1			 300 302.5

1	2 500 495.0

2	2 200 202.5

Χ2=	(300-302.5)2/302.5+(500-495)2/495+(200-202.5)2/202.5=0.102	 			

Χ2	= 0.102 p=0.75 1	df

Testing	for	deviations	in	HWE

• Chi-square	tests

• Exact	tests

• Likelihood	ratio	tests

Reasons	for	Deviation	from	HWE

• Population	Admixture

• Heterozygous	Advantage

• Copy	number	variants

• Genotyping	Error

• Chance

Loci,	Genotypes	&	Haplotypes

§ Multiple	marker	on	a	chromosome

§ Microsatellites

§ Single	nucleotide	polymorphisms	(SNPs)	

§ Single	nucleotide	variants	(SNVs)

§ Genotype

§ The	two	alleles	at	a	locus	comprise	a	genotype

§ Haplotype

§ The	alleles	on	each	chromosome

Locus,	Genotype	&	Haplotype

Chromosome1

Locus A  1 1
Locus  B 2 2
Locus C  1              2
Locus D  1 2

Genotypes are known

Genotype for 
Locus A: 1 1
Locus B: 2 2

The haplotype for each 
chromosome of a pair 
usually needs to be 
reconstructed

Haplotypes for  

Locus A & B: 1 2, 1 2

Locus C & D: 1 1, 2 2
or 1 2, 2 1 
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Linkage	Studies-Genetic	Maps	

• A	map	provides	the	position	and	order	of	marker	

loci

• Physical position
• Genetic position 

– Based upon interpolation for SNV (single nucleotide variant) 
and SNP (single nucleotide polymorphism

• Genetic	position	necessary	to	perform	multipoint	

linkage	analysis

Genetic	Maps

• Map	distance	given	in	Centimorgans (cM)

• Recombination	(Θ)	fractions	cannot	be	
added

– Except	in	the	case	of	complete	interference	

x=Θ
• Under complete interference multiple crossovers 

between two loci can be excluded
– It	can	also	be	assumed	there	is	complete	interference	

when	two	loci	are	closely	linked	(θ<0.05)
» Then	recombination	fractions	can	be	added

Genetic	Maps

• Can	convert	Θ to	map	distances	using

– Map	functions

• Haldane
• Kosombi
• Sturt

– The	distances	can	then	be	summed

• No		one-to-one	correspondence	between	map	

distance	and	number	of	base	pairs

– Recombination	events	variable	across	the	genome

Haldane	Map	Function	(Haldane	1919)

• Assumption	that	crossovers	in	different	intervals	

occur	according	to	a	Poisson	probability	law

– Note	x	is	given	in	Morgans

• X  = {-1/2 ln(1-2θ)   if   0 < θ < ½
• infinity                           otherwise,

• The	Inverse	is

θ = ½[1-exp(-2|x|)]

Genetic	Maps

• Most	SNP	and	SNVs	are	not	on	genetic	maps

• Physical	position	and	order	known

– Unknown	genetic	map	distance

• Using	Genetic	Maps	such	as		

• Rutgers	Combined	Linkage-Physical	Map

– http://compgen.rutgers.edu/mapinterpolator

• Interpolation	can	be	used	to	estimate	the	

genetic	distance	of	markers	to	perform	linkage	

analysis

Genome	Scan	Data	(Marker	Loci)	for	

Linkage	Analysis

• Microsatellite	Marker	loci

– Not	currently	usually	used

• Genotyping	Arrays

• SNP and SNV marker Loci
• Exome and	whole	genome	sequence	data

• SNV and SNP marker loci 
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Microsatellite	Markers

§ For	the	most	part	have	been	replaced	by	
SNP	marker	loci

§ Microsatellite	markers	have	many	alleles

§ Heterozygosity >0.71

§ Usually	denoted	by	a	D#

§ Linkage	whole	genome	scans

§ 10	cM scan

§ ~400	marker	loci

§ 5	cM whole	genome	scan

§ ~800	marker	loci

Heterozygosity (H)
§ Provides	information	on	what	proportion	

of	individuals	that	will	be	heterozygous	for	

a	particular	marker	locus

§ Assumption	Hardy	Weinberg	Equilibrium

H=1-Σp
i
2

SNP	and	SNV	Marker	loci

• Most	commonly	used	markers	for	linkage	

analysis	are	SNP	loci

–Base	change	at	a	single	nucleotide

• Most have only two alleles (diallelic)
– But can have up to four alleles

• Those	which	have	more	than	two	alleles	are	not	used

• Heterozygosity <0.5

SNP	and	SNV	Marker	loci

• Denoted	by	an	rs#
• SNP	have	a	minor	allele	frequency	(MAF)	of	>5%

– Can	also	be	defined	as	having	a	MAF	>1%

• SNVs	have	a	MAF	<	1%

– Usually	diallelic but	can	have	up	to	four	alleles

Genotyping	Arrays		SNP/SNV	Marker	Loci*

§ Illumina HumanCore-24	Bead	Chip

§ ~300,000	SNP	marker	loci

§ Up to a additional 300,000 custom markers

§ Illumina HumCoreExome-24	Bead	Chip

§ ~300,000	SNP	marker	loci

§ ~240,000	Exome marker	loci

§ Up to an additional 100,000 custom markers

§ Illumina HumanOmni5-Quad	

§ ~4.2	Million	SNP/SNV	marker	loci

§ Up to an additional 500,000 custom markers

§ Illumina HumanOmni5Exome

§ ~4.5	Million	SNP/SNV	marker	(including	exome content)

§ Up	to	an	additional	additional	200,000	custom	markers

*These	arrays	were	all	developed	for	association	studies- the	Illumina linkage	

array	has	been	discontinued	

Genotyping	Arrays

• Higher	density	arrays	are	overkill	for	linkage	

analysis

– A	subset	of	informative	markers	can	be	used

• e.g. ~0.20cM
• Once linkage has been established denser maps of markers 

can be analyzed within the linkage region

• Using	entire	set	of	markers	extremely	slow	to	

analyze

– May	not	be	able	to	complete	linkage	analysis	within	a	

reasonable	amount	of	time
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Features	of	Mendelian Traits

• Non-Allelic/Locus/Linkage	Heterogeneity

• Allelic	heterogeneity

• Phenocopies

• Reduced	penetrance

• Age	specific	reduced	penetrance

Heterogeneity

• Allelic	Heterogeneity

–Multiple	separate	alleles	at	the	same	locus	are	

responsible	for	the	disease	phenotype

• Cystic	fibrosis

• Non-allelic/Locus/Linkage	Heterogeneity

– Different	individual	genes	are	responsible	for	disease	

etiology

• Charcot-Marie-tooth	disease

• Adult	polycystic	kidney	disease	(APKD)

• Non-syndromic hearing	loss	

Phenocopies

§ Traditional	definition
§ An	environmentally	induced	phenotype	that	

resembles	the	phenotype	produced	by	a	

mutation

§ Examples

§ Individuals	taking	meperidien which	is	tainted	

with	its	by	product	MPTP

§ Causes	the	destruction	of	dopaminergic	neurons	and	

produces	a Parkinson	disease	phenotype

§ Epilepsy	due	to	traumatic	brain	injury

Phenocopies

§ The	term	phenocopy (although	used	

incorrectly)	is	also	used	to	describe	

§ Genetic	heterogeneity
§ An	individual(s)	within	a	pedigree	which	is	affected	
due	to	a	different	gene	than	the	other	pedigree	

members

§ E.g.	BRCA1	families	with	breast	cancer	patients	with	out	a	BRCA1	

variant

§ Misdiagnosed	cases	within	a	pedigree

§ Alzheimer’s disease pedigrees with cases of dementia which 
are not Alzheimer’s disease

Reduced	Penetrance

§ Age	specific
§ Sex	specific/Sex	limited

§ Exposure	specific
§ Incomplete	penetrance	

§ A	proportion	of	disease	gene	carriers	never	
develop	the	phenotype

§ Can	reduce	the	power	of	detecting	linkage
§ Unaffected	individuals	below	the	age	of	
onset	provide	no	linkage	information

Familial	&	Founder	Effect

• Familial

– Any	trait	which	is	more	common	in	relatives	of	an	

affected	individual	than	in	the	general	population

– Can	be	genetic	or	environmental	or	both

• Prion disease Kuru

• Founder	Effect

– A	high	frequency	of	a	disease	allele	in	a	population	

founded	by	a	small	ancestral	group	due	to	one	or	more	

founders	being	carriers	of	this	allele
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Assortative Mating

• Selection	of	mate	with	preference	to	a	certain	

phenotype/genotype	(that	is	non-random	mating)

– Positive

• preference	for	a	mate	with	the	same	phenotype

– Negative

• Preference	for	a	mate	with	a	different	phenotype

Epistasis	&	Pleiotropy

• Epistasis

– Interaction	between	alleles	at	two	different	loci	

• Pleiotropy

– Multiple	phenotype	effects	of	a	single	gene

• Example Marfans Syndrome 

Mendelian Traits

§ Modes	of	Inheritance

§ Autosomal	Dominant	Inheritance

§ Autosomal	Recessive	Inheritance

§ X-linked	Inheritance
§Dominant
§Recessive

Pedigree	Drawings	-Symbols	

  

 

Affected male

unaffected female

Sex	unknown	affected

Deceased affected female 

Affected	male	proband

  

Male affected with two traits

Pedigree	Drawings

founder

Non	founder

Dizygotic twins Monozygotic	twins	

Phenotype	Quantitative	&	Qualitative	Traits

• Quantitative	trait

–Continuous
–Dichotomizing	based	upon	an	arbitrary	or	

clinical	cut-off	

• Can	lead	to	loss	of	power	(due	to	misclassification)

• Qualitative	– binary	disease	trait

–Affected	or	unaffected

 10 



Quantitative	Trait	- Example	BMI Autosomal	Dominant	Pedigree

Autosomal	Dominant	Mode	of	Inheritance

• If	trait	is	fully	penetrant	with	no	phenocopies the	

following	is	true:

• Each	affected individual	carries	at	least	one	copy	

of	the	disease/trait	allele

• Each	unaffected individual	must	be	homozygous	

wild	type

• If	an	affected	individual	has	an	unaffected	parent	

they	must	by	heterozygous	for	the	disease/trait	

allele

Autosomal	Dominant	Mode	of	Inheritance

§ On	average	50%	of	the	children	from	an	

heterozygous	affected	individual	will	also	be	

heterozygous	for	the	disease	allele	and	affected		

§ 100%	of	all	children	of	an	affected	homozygous	

individual	will	be	affected

§ Equal	number	of	males	and	females	affected:	

§ There	are	exceptions

§ e.g. sex limited traits 

§ Affected	(heterozygous)	and	unaffected	individuals	

provide	equal	linkage	information

Consanguineous Autosomal	Recessive	

Pedigree	

Autosomal	Recessive	Pedigree	with	

Unrelated	Parents

D	+

D	D D	DD	+	or	+	+ D	+	or	+	+D	+	or	+	+D	+	or	+	+

D	+
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Autosomal	Recessive	Mode	of	Inheritance	

§ The	following	hold	true	for	fully	penetrant	diseases	

with	with	no	phenocopies

§ Each	affected	individual	must	be	either	

homozygous	or	a	compound	heterozygous	for	the	

pathogenic	variant(s)

Autosomal	Recessive	Mode	of	Inheritance	

§ Unaffected	individuals	can	either	by	homozygous	

wild	type	or	carry	one	copy	(heterozygous)	of	the	

pathogenic	variant

§ 1/3	homozygous	wild	type

§ 2/3	carriers,	heterozygous	for	the	pathogenic	variant

§ Approximately	25%	of	all	children	whose	parents	

are	carriers	will	be	affected

Autosomal	Recessive	Mode	of	Inheritance

§ Offspring	of	two	affected	individuals	will	all	be	

affected

§ If	both	parents	have	the	same	pathogenic	variant	or	

pathogenic	variants	within	the	same	gene	

§ If	pathogenic	variant(s)	are	rare	

§ Usually	only	nuclear	families	are	observed,	with	both	

parents	unaffected.

§ Exceptions are
§ For consanguineous kindreds where multiple 

affected sibships can be observed in the pedigree. 
§Quasidominant/ Pseudodominant Inheritance

X-Linked	Recessive	Pedigree

 

X-linked	Recessive	Mode	of	Inheritance	

• No	male	to	male	transmission

• For	fully	penetrant	traits	disease	with	no	

phenocopies the	following	is	true	

– 50%	female	children	of	female	carriers	will	also	be	

carriers

– 50%	of	male	children	of	carriers	females	will	be	affected

– All	female	children	of	affected	males	will	be	carriers

• In	some	circumstances	carrier	females	are	also	

affected	

– But	have	a	milder	phenotype	than	affected	males		
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Pedigree	Drawing	with	Marker	Loci

1 2

1	3	

2	3 1	2

1	3

2	2

1	22	3

Informative	Individuals	for	Linkage	

§ An	individual	to	be	informative	

§ Most	be	heterozgyous at	the	marker	locus	&

§ And	a	second	locus

§ Disease	locus
§ Marker	locus

§ In	order	to	observe	whether	a	recombination	

event	occurred	or	not	between	the	two	loci	

Autosomal	Dominant	Pedigree

Phase	Known

1 2

2	1	

2	2

NR

2	2

NR

1	1

2	2

1 2

NR

1	2

NR

Phase
2 1
D +

Autosomal	Dominant	Pedigree

Phase	Known

1 2

2	1	

2	2

NR

1	2

R

1 1

2	2

1	2

NR

1	2

NR

Phase
2 1
D  +

31
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=
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H0: Θ = ½
H1: Θ <½

Autosomal Dominant - Phase 
Unknown

Phase I  Phase II
2  1         2  1
D +         + D

2 21	2

1	2

NR

R

1	2

NR

R

1	2

NR

R

1	2

NR

R

1	2

NR

R

2	2

NR

R

2	2

NR

R

1	2

R

NR

2	2

NR

R

2	2

NR

R

P  
I

P 
II
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Autosomal	Dominant	

Phase	Unknown

1010

1991

10 ½            ½
)1()1(

log)(
+

−+−
=

θθθθ
θZ

Maximum	LOD	Score	occurs	at	1.3	at	Θ=0.1

H0:	Θ =	½

H1:	Θ <½

LOD Scores

§ LOD	Scores	can	be	added	across	families

§ Must	be	summed	at	the	same	theta	value	or	map	distance

§ If	all	members	of	the	family	are	genotyped

§ The	genotype	frequencies	are	not	used	in	the	LOD	score	

calculation

§ Misspecification of allele frequencies will not bias the LOD score

§ When	genotype	data	is	not	available	for	all	family	

members

§ Misspecification	of	allele	frequencies	can	increase	type	I	

error

Linkage	Analysis

• For	traits	which	are	fully	penetrant	with	no	

phenocopies

– When	θ=0	and	there	are	not	recombination	events

– When	the	marker	is	fully	informative

• Autosomal	dominant	traits		(phase-known	

pedigrees)

– Each	affected	and	unaffected	individuals	adds	0.3	to	

the	LOD	score

LOD score
Z(x) = log10[L(x)/L(∞)] is the 
logarithm of the likelihood 
ratio, with the numerator  
being calculated under the 
assumption of linkage and the 
denominator under no linkage. 
A LOD score of 3.3 or higher 
has been shown to correspond 
to a genome-wide significance 
level of 0.05.

even all markers on a given chromosome. For multipoint 
analysis, the LOD score, Z(x) = log10[L(x)/L(∞)], is com-
puted as the logarithm of the likelihood ratio, with 
the numerator specifying a position, x, of the putative 
disease locus on the marker map. For the denomina-
tor, one assumes the disease locus to be off the map 
— that is, infinitely far away from the markers (FIG. 2). 
The multipoint LOD score can furnish a curve over 
all markers on a chromosome (FIG. 3); the maximum of 
this curve, over all chromosomes, then represents the 
estimated position of the disease locus on the human 
gene map provided that the maximum LOD score is at 
least equal to 3.3 (REF. 101). Evidence for linkage can be 
obtained from a single pedigree or multiple pedigrees 
with LOD scores summed at the same θ or map position. 
When linkage analysis was previously performed with 

marker loci and the individual genes within a region had 
to be sequenced using, for example, Sanger sequencing, 
false-positive regions would not be followed up owing 
to reasons of time and cost, so it was important for a 
pedigree or a group of pedigrees to meet the genome-
wide significance level. There is less concern now with 
meeting this criterion because it is quick and relatively 
inexpensive to follow by WGS of associated regions. 
Smaller pedigrees with suggestive LOD scores can still 
be followed up with WGS, although there may be mul-
tiple linkage regions that could potentially harbour the 
causative variant. If a putative causal variant is identi-
fied in a small pedigree, it is imperative that additional 
families are identified that segregate either the same 
variant or another putatively causal variant within the 
same gene. If a variant is identified that segregates with a 

Nature Reviews | Genetics

Total pedigree LOD score = 1.925

Generation I

Generation II

Generation III
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Figure 2 | Linkage information for a first-cousin 
mating for an autosomal recessive trait and a 
phase-known autosomal dominant trait. The disease 
is fully penetrant without phenocopies and has a minor 
allele frequency of 0.0001. Circles represent females 
and squares males. Individuals represented by solid 
black symbols are affected, and individuals represented 
by white symbols are unaffected. Shown below each 
individual in generation IV are the possible underlying 
disease genotypes. a | An autosomal recessive trait 
pedigree in which the affected children are offspring  
of first-cousin parents is shown. Consanguinity is 
indicated by the double horizontal line. The affected 
individuals are homozygous for a variant that is either 
causal or in perfect linkage disequilibrium with the 
causal variant. The unaffected sibling is homozygous 
wild type. The arrows show each informative meiosis 
and the contribution to the LOD score. For this 
pedigree configuration, the rare variant must have 
entered the pedigree through one of the great-
grandparents. The meiosis events from the 
great-grandparents to their children do not contribute 
to the LOD score; however, the meiosis events from the 
affected children’s grandparents to their parents and 
from the parents to the first affected child each 
contribute 0.3 to the LOD score, yielding a total LOD 
score of 1.2. The second affected child only adds 0.6 to 
the LOD score for the family because only the meioses 
from her parents yield new linkage information. Each 
additional unaffected child only yields an additional 
LOD score of 0.125 because for unaffected children it is 
not possible to elucidate whether they are homozygous 
wild type or causal-variant carriers; each of these 
possibilities have a probability of 1/3 and 2/3, 
respectively. These two probabilities are incorporated 
into the calculation of the LOD score, and linkage 
information is therefore lost. b | A phase-known 
autosomal dominant pedigree with five children is 
shown. This pedigree with five offspring for which there 
are no recombination events will lead to a maximum 
LOD score of 1.5 at θ = 0, where Z(θ) = log

10
=
� Ũ θ)5/(½)5]. 

However, if no genotype information is available for  
the grandparents (shown in generation I), making the 
pedigree phase-unknown, the pedigree will yield a 
maximum LOD score of 1.2 at θ = 0, where 
Z(θ) = log

10
=

� Ũ θ)5 + θ5)/((½)5 + (½)5)]. 
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LOD score
Z(x) = log10[L(x)/L(∞)] is the 
logarithm of the likelihood 
ratio, with the numerator  
being calculated under the 
assumption of linkage and the 
denominator under no linkage. 
A LOD score of 3.3 or higher 
has been shown to correspond 
to a genome-wide significance 
level of 0.05.

even all markers on a given chromosome. For multipoint 
analysis, the LOD score, Z(x) = log10[L(x)/L(∞)], is com-
puted as the logarithm of the likelihood ratio, with 
the numerator specifying a position, x, of the putative 
disease locus on the marker map. For the denomina-
tor, one assumes the disease locus to be off the map 
— that is, infinitely far away from the markers (FIG. 2). 
The multipoint LOD score can furnish a curve over 
all markers on a chromosome (FIG. 3); the maximum of 
this curve, over all chromosomes, then represents the 
estimated position of the disease locus on the human 
gene map provided that the maximum LOD score is at 
least equal to 3.3 (REF. 101). Evidence for linkage can be 
obtained from a single pedigree or multiple pedigrees 
with LOD scores summed at the same θ or map position. 
When linkage analysis was previously performed with 

marker loci and the individual genes within a region had 
to be sequenced using, for example, Sanger sequencing, 
false-positive regions would not be followed up owing 
to reasons of time and cost, so it was important for a 
pedigree or a group of pedigrees to meet the genome-
wide significance level. There is less concern now with 
meeting this criterion because it is quick and relatively 
inexpensive to follow by WGS of associated regions. 
Smaller pedigrees with suggestive LOD scores can still 
be followed up with WGS, although there may be mul-
tiple linkage regions that could potentially harbour the 
causative variant. If a putative causal variant is identi-
fied in a small pedigree, it is imperative that additional 
families are identified that segregate either the same 
variant or another putatively causal variant within the 
same gene. If a variant is identified that segregates with a 
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Figure 2 | Linkage information for a first-cousin 
mating for an autosomal recessive trait and a 
phase-known autosomal dominant trait. The disease 
is fully penetrant without phenocopies and has a minor 
allele frequency of 0.0001. Circles represent females 
and squares males. Individuals represented by solid 
black symbols are affected, and individuals represented 
by white symbols are unaffected. Shown below each 
individual in generation IV are the possible underlying 
disease genotypes. a | An autosomal recessive trait 
pedigree in which the affected children are offspring  
of first-cousin parents is shown. Consanguinity is 
indicated by the double horizontal line. The affected 
individuals are homozygous for a variant that is either 
causal or in perfect linkage disequilibrium with the 
causal variant. The unaffected sibling is homozygous 
wild type. The arrows show each informative meiosis 
and the contribution to the LOD score. For this 
pedigree configuration, the rare variant must have 
entered the pedigree through one of the great-
grandparents. The meiosis events from the 
great-grandparents to their children do not contribute 
to the LOD score; however, the meiosis events from the 
affected children’s grandparents to their parents and 
from the parents to the first affected child each 
contribute 0.3 to the LOD score, yielding a total LOD 
score of 1.2. The second affected child only adds 0.6 to 
the LOD score for the family because only the meioses 
from her parents yield new linkage information. Each 
additional unaffected child only yields an additional 
LOD score of 0.125 because for unaffected children it is 
not possible to elucidate whether they are homozygous 
wild type or causal-variant carriers; each of these 
possibilities have a probability of 1/3 and 2/3, 
respectively. These two probabilities are incorporated 
into the calculation of the LOD score, and linkage 
information is therefore lost. b | A phase-known 
autosomal dominant pedigree with five children is 
shown. This pedigree with five offspring for which there 
are no recombination events will lead to a maximum 
LOD score of 1.5 at θ = 0, where Z(θ) = log

10
=
� Ũ θ)5/(½)5]. 

However, if no genotype information is available for  
the grandparents (shown in generation I), making the 
pedigree phase-unknown, the pedigree will yield a 
maximum LOD score of 1.2 at θ = 0, where 
Z(θ) = log

10
=

� Ũ θ)5 + θ5)/((½)5 + (½)5)]. 
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Linkage	Information	Obtained	from	an	

Autosomal	Dominant	Pedigree

• Each	offspring	both	affected	and	

unaffected	adds	0.3	to	the	Lod

score

– LOD	Score	1.5	for	displayed	

pedigree

• The	only	informative	meioses in	

this	example	are	from	the	father	to	

his	offspring	

• What	is	the	LOD	score	if	parental	

genotype	data	was	not	available?	

Linkage	Analysis

• Autosomal	recessive	traits

– First	affected	individual	is	not	informative	for	linkage

– Except	if	parental	mating	is	consanguineous

• How	much	information	the	first	affect	individual	provides	

depends	on	the	frequency	of	the	haplotype/marker

• How	distantly	related	are	the	parents

– The	more	distantly	related	the	parents	and	the	lower	the	frequency	of	

the	haplotype/variant	the	higher	the	LOD	score

» Maximum	LOD	score	first	cousin	mating	one	affected	LOD=1.2

» Maximum	LOD	score	second	cousin	matting	one	affected	LOD=1.8

– Each	additional	affected	individual	adds

• Adds 0.6 to the LOD score
– Each	additional	unaffected	individual	

• Adds 0.125 to the LOD score

LOD score
Z(x) = log10[L(x)/L(∞)] is the 
logarithm of the likelihood 
ratio, with the numerator  
being calculated under the 
assumption of linkage and the 
denominator under no linkage. 
A LOD score of 3.3 or higher 
has been shown to correspond 
to a genome-wide significance 
level of 0.05.

even all markers on a given chromosome. For multipoint 
analysis, the LOD score, Z(x) = log10[L(x)/L(∞)], is com-
puted as the logarithm of the likelihood ratio, with 
the numerator specifying a position, x, of the putative 
disease locus on the marker map. For the denomina-
tor, one assumes the disease locus to be off the map 
— that is, infinitely far away from the markers (FIG. 2). 
The multipoint LOD score can furnish a curve over 
all markers on a chromosome (FIG. 3); the maximum of 
this curve, over all chromosomes, then represents the 
estimated position of the disease locus on the human 
gene map provided that the maximum LOD score is at 
least equal to 3.3 (REF. 101). Evidence for linkage can be 
obtained from a single pedigree or multiple pedigrees 
with LOD scores summed at the same θ or map position. 
When linkage analysis was previously performed with 

marker loci and the individual genes within a region had 
to be sequenced using, for example, Sanger sequencing, 
false-positive regions would not be followed up owing 
to reasons of time and cost, so it was important for a 
pedigree or a group of pedigrees to meet the genome-
wide significance level. There is less concern now with 
meeting this criterion because it is quick and relatively 
inexpensive to follow by WGS of associated regions. 
Smaller pedigrees with suggestive LOD scores can still 
be followed up with WGS, although there may be mul-
tiple linkage regions that could potentially harbour the 
causative variant. If a putative causal variant is identi-
fied in a small pedigree, it is imperative that additional 
families are identified that segregate either the same 
variant or another putatively causal variant within the 
same gene. If a variant is identified that segregates with a 
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Figure 2 | Linkage information for a first-cousin 
mating for an autosomal recessive trait and a 
phase-known autosomal dominant trait. The disease 
is fully penetrant without phenocopies and has a minor 
allele frequency of 0.0001. Circles represent females 
and squares males. Individuals represented by solid 
black symbols are affected, and individuals represented 
by white symbols are unaffected. Shown below each 
individual in generation IV are the possible underlying 
disease genotypes. a | An autosomal recessive trait 
pedigree in which the affected children are offspring  
of first-cousin parents is shown. Consanguinity is 
indicated by the double horizontal line. The affected 
individuals are homozygous for a variant that is either 
causal or in perfect linkage disequilibrium with the 
causal variant. The unaffected sibling is homozygous 
wild type. The arrows show each informative meiosis 
and the contribution to the LOD score. For this 
pedigree configuration, the rare variant must have 
entered the pedigree through one of the great-
grandparents. The meiosis events from the 
great-grandparents to their children do not contribute 
to the LOD score; however, the meiosis events from the 
affected children’s grandparents to their parents and 
from the parents to the first affected child each 
contribute 0.3 to the LOD score, yielding a total LOD 
score of 1.2. The second affected child only adds 0.6 to 
the LOD score for the family because only the meioses 
from her parents yield new linkage information. Each 
additional unaffected child only yields an additional 
LOD score of 0.125 because for unaffected children it is 
not possible to elucidate whether they are homozygous 
wild type or causal-variant carriers; each of these 
possibilities have a probability of 1/3 and 2/3, 
respectively. These two probabilities are incorporated 
into the calculation of the LOD score, and linkage 
information is therefore lost. b | A phase-known 
autosomal dominant pedigree with five children is 
shown. This pedigree with five offspring for which there 
are no recombination events will lead to a maximum 
LOD score of 1.5 at θ = 0, where Z(θ) = log

10
=
� Ũ θ)5/(½)5]. 

However, if no genotype information is available for  
the grandparents (shown in generation I), making the 
pedigree phase-unknown, the pedigree will yield a 
maximum LOD score of 1.2 at θ = 0, where 
Z(θ) = log

10
=

� Ũ θ)5 + θ5)/((½)5 + (½)5)]. 
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Linkage	Information	obtained	from	a	

Consanguineous	Autosomal	Recessive	Pedigree
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Lod Score Curve for Autosomal Dominant 
Pedigree -Phase Known

10 fully informative meioses
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For	50%	of	the	meioses a	recombination	event	

occurred	–maximum	LOD	score	0.0	at	θ=0.5

For	10	fully	informative	meioses one	

recombination	event	occurred	–

maximum	LOD	1.2	score	at	θ=0.1

Size	of	Mapped	Regions

• For	Mendelian	disease/traits	

– Where	a	large	sample	(many	informative	meiosis	~200)	

are	available

• Highly unusual that a disease locus can be mapped to a region 
which is < 1cM (~ < 1 Mb)

– However the genetic/physical region is usually much larger  

– For	consanguineous	kindreds

• Even when linkage can be established
– A limited number of informative meiosis

» Large genetic region of homozygosity with many genes

The	Effect	of	Using	Incorrect	Marker	

Allele	Frequencies	on	LOD	Scores

• If	there	are	pedigree	members	with	missing	

genotype	data

• Using	incorrect	marker	allele	frequencies

– Can	increase	type	I	error

• Important	to	obtain	accurate	population	specific

estimates	of	allele	frequencies

• If	there	is	missing	genotype	data	it	is	advisable	

not	to	use	equal	allele	frequencies	for	marker	loci

Obtaining	Allele	Frequencies

• Estimate	from	pedigree	founders

–Must	have	a	sufficient	number	of	founders

• Obtain	from	the	manufacture	of	genotype	

array

–Usually	allele	frequencies	provided	for	

Europeans,	African	Americans	and	Asians

• For e.g. Illumina HumanOmni5-Quad
–

http://support.illumina.com/array/array_kits/humanomni
5-4-beadchip-kit/downloads.html

Obtaining	Allele	Frequencies

• Alohomora

– Provides	frequencies	for	Europeans,	African	Americans	

and	Asians	for	popular	SNP	arrays

• Creates datafile with allele frquencies
• http://gmc.mdc-berlin.de/alohomora/maps/ 

Obtaining	Allele	Frequencies

• UCSC	Genome	Binoinformatics

– For	customized	SNP	arrays	& population	specific	allele	

frequencies

– Use	Table	browser

• http://genome.ucsc.edu/cgi-bin/hgTables
– Populations		specific	allele	frequencies	can	be	downloaded	

using

• HapMap project or 
• HGDP (Human Genome Diversity Project). 

– Select	‘Variation’	in	group	menu	

– Select	‘HapMap SNPs’	or	‘HGDP	Allele	Freq’	in	track	menu

– Then	SNP	list	can	be	pasted	or	uploaded	to	appropriate	file
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Two-point	Linkage	Analysis

• Can	be	performed	between	the	disease	and	

marker	loci	for	parametric	linkage	analysis

• For	SNP	data	two-point	linkage	analysis	is	not	

very	informative

• Can	be	used	to	elucidate	linked	regions

– Which	can	be	followed-up	with	multipoint	analysis

Multipoint-point	Linkage	Analysis

• Can	increase	the	informativeness	of	markers	

within	the	region

– Extremely	important	when	SNP	marker	loci	are	

analyzed

• Helps	to	fine	map	a	locus	to	a	smaller	region

– Compared	to	two-point	linkage	analysis

Multipoint-point	Linkage	Analysis

• Incorrect	specified	genetic	map

– Can	bias	LOD scores

– Bias	the	position	of	the	genetic	locus

• For	parametric	linkage	analysis	when	the	genetic	

model	is	mis-specified	and	a	susceptibility	locus	is	

placed	between	two	flanking	markers:

– Can	result	in	false	negative	results

– Pushes	the	disease	locus	outside	of	the	map	of	

markers

Multipoint-point	Linkage	Analysis

• Intermarker linkage	disequilibrium	(LD)

– Can	increase	type	I	error

• When	parental	genotypes	are	missing

• For	consanguineous	pedigrees	

– when	parental,	grandparent,	etc.	genotypes	are	

missing

Examples

• Affected	sibpairs

– Without	parental	genotype	data

– Without	parental	genotype	data	and	genotype	data	

from	one	unaffected	sibling

– Missing	genotype	data	from	one	parent

• Consanguineous	pedigree	– first	cousin	mating

– Parents	genotypes

• Various relative missing genotype data

ASP, no parents

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1
D'

EM
LO

D

EMLOD model-free
EMLOD parametric

Huang et al. 2004
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ASP, one unaffected sib 
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ASP, one parent
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ASP, two parents
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Pedigree Structure- Indicating 
Individuals with Missing Genotype data

Married-in 
Grandparents

Sibling 
Grandparents

Great	Grandparents

Parents of the Proband Genotyped Avoiding	Inflation	of	LOD	Scores	due	to	

Inter-marker	LD

• Trim	marker	loci	so	that	LD	is	weak	between	

marker	loci		e.g.	r2<	0.5

– Can	lead	to	a	loss	of	power

• Analyze	data	using	programs	that	incorporate	

haplotype	frequencies

– e.g.	Merlin
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Advantages	of	Two-point	Linkage	Analysis

• Not	influenced	by	intermaker-LD

– Therefore	no	inflation	of	the	LOD	score

• Not	influenced	by	incorrect	genetic	maps

– Which	can	cause	incorrect	map	position	and	deflation	

of	the	LOD	score

Error	Detection	in	Pedigree	data

• First	need	to	remove	markers	which	are	missing	a	

large	number	of	genotypes	

– e.g.	>5%

• A	more	stringent	criterion	can	be	used	for	SNPs	

with	MAF<5%

– e.g.	>1%

• These	markers	can	have	higher	genotyping	error	

rates for	the	non-missing	genotypes

Error	Detection	in	Pedigree	data

• Check	for	Mendelian	errors

–Marker	should	be	removed	for	the	entire	

pedigree

• Do not just remove individuals involved in the 
Mendelian inconsistency

– PedCheck

• Useful program to detect Mendelian inconsistencies
– https://watson.hgen.pitt.edu/register/docs/pedcheck.html

Error	Detection	in	Pedigree	data

• SNP	markers	are	not	very	informative	and	

therefore	often	not	possible	to	detect	errors	

through	Mendelian	inconsistencies

– Those	markers	which	are	most	informative	(H=0.5)	

produce	the	least	number	of	Mendelian	

inconsistencies

• Can	check	for	double	recombination	events	over	short	

genetic	distances

• This is an indication that a genotyping error has occurred
• Merlin (Abecasis et al. 2002 Nat Genet)

– Can be used to detect double recombination events
– http://csg.sph.umich.edu//abecasis/Merlin/

Type	I	error

§ Reject	the	null	hypothesis	even	when	it	is	true

§ e.g.	reject	the	null	hypothesis	of	no	linkage	even	

when	it	is	true

§ The	null	hypothesis	of	no	linkage	should	have	
not	been	rejected

Type	I	error

§ If	a	nominal	criterion	of	p=0.05	is	use	as	the	

criterion	to	reject	the	null	hypothesis

§ One	test	performed	1	out	of	20	chance	null	hypothesis	

rejected	when	it	should	not	have	been

§ False positive
§ If	1,000	tests	are	performed

§By chance for ~50 tests the null will be rejected
§ Even though the null hypothesis is true
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Type	I	error-Parametric	Linkage	Analysis

§ If	many	tests	are	performed	must	adjust	for	multiple	

testing

§ Family	wise	error	rate

§ LOD	score	criterion	takes	into	consideration

§ Multiple	testing

§ Size	of	the	genome

§ Number	of	chromosomes

Type	I	error-Parametric	Linkage	Analysis

§ A	LOD	Score	of	0.59

§ Nominal	p-value	0.05	[one	sided])

§ Is	not used	to	reject	the	null	hypothesis	of	no	linkage

§ For	parametric	linkage	analysis	a	LOD	score	of	3.3*	is	

used	to	reject	the	null	hypothesis

§ Nominal	one	sided	p-value		0.000049

§ Genome	wide	p-value	0.05

*Lander	E,	Kruglyak L	(1995)	Genetic	dissection	of	complex	traits:	guidelines	

for	interpreting	and	reporting	linkage	results.	Nat	Genet	11:241-247

Type	II	error		(Power)

• Type	II	error

– When	the	null	hypothesis	is	false	and	it	is	not	rejected

– Represented	by	β

• Power

– The	ability	to	reject	the	null	hypothesis	when	it	is	false

– Most	studies	require	a	power	(1-β)	of	at	least	0.8

False positive

False	negativeTrue	

negative

true positive
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Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015 

Cloud Computing 

Outline 

•  Motivation 

•  Basic idea 

•  Providers 

•  Costs 

•  Advantages vs. disadvantages 

•  Concerns 

Motivation 

•  Own IT infrastructure is expensive to set up, maintain and
 update 
–  Projects may be one-time endeavors  
–  Not cost-efficient for single, short-time projects 

•  Urgent need for immediate access to computing power 
–  IT resources may not be present at location 
–  Promised/Planned setup is delayed 

•  Setup of an IT infrastructure serving high demand in
 computing, storage and archiving requires substantial
 expertise 
–  Limited pool of personnel  
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Instant, demand-driven access to a network of pooled 
configurable resources for computing and storage without or 

with minimal management effort by the service provider 

Types of cloud services 

IaaS PaaS SaaS 

Infrastructure  
as a service 

(“cloud foundation”) 

Platform 
 as a service 

Software  
as a service 

Own administration 
of virtual servers, 

complete access to 
instance 

Running own 
application within the 

cloud, no 
administration 

Use of an exisiting 
application offered by 

the cloud 

Amazon’s Web 
Services (Elastic 

Compute Cloud, Simple 
Storage Service S3) 

Microsoft’s Windows 
Azure, Goolge’s App 

Engine 

Apple’s iCloud, 
Google’s Drive, 

Microsoft’s oneDrive, 
ownCloud, DropBox  

Levels of cloud computing 
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Location of clouds 

•  Public cloud 
–  Access to virtual IT infrastructure via the internet 
–  Commercial service providers 

•  Private cloud 
–  Access to virtual IT infrastructure within an organization 
–  Usually located within the same country as the users 
–  Protected against outside access 
–  Increasingly used at high-performance computing (HPC) centers,

 e.g. at universities, by provision of virtual computers to users
 instead of real ones 

•  Hybrid & Community clouds 

Providers 

•  Amazon 
–  EC2 cor computing 
–  S3 for storage (Web services) 

•  Google 
–  Compute Engine 

•  IBM 
–  Focus on businesses  

•  T Systems (Deutsche Telekom) 
–  Focus in businesses 

•  There are many more providers.  

Amazon 

•  Amazon’s EC2 for elastic web-based computing 

•  Virtual servers (“instances”) with  
–  look & feel of a real server, with own IP address 
–  root privileges 
–  choice of operating system 
–  flexible configuration of working memory, cores (CPUs), hard disk

 space 

•  Storage of data using Amazon’s S3 

•  Booking as: 
–  On-demand instance: payment by the hour, extremely flexible 
–  Reserved instance: reservation of computing capacity for one or

 three years, less expensive than on-demand 
–  Spot instance: bidding for unused EC2 capacity, execution of

 instance as long as bid is above actual spot price 

Costs for Amazon: storage 

AWS S3 Frankfurt (Germany): prices per GB per month 

e.g. 3 TB per month: ~ $ 35-100 

(August 2015) 

Additional fees apply for access and data transfer. 

Costs for Amazon: computing 

Single server in Frankfurt (Germany), some data: price per month 

(August 2015) 

Costs for Amazon: computing 

Single server in Frankfurt (Germany), lots of data: price per month 

e.g. 3 TB per month: ~ $ 35-100 

(August 2015) 
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Costs for Google: storage 

AWS S3 Frankfurt (Germany): prices per GB per month 

e.g. 3 TB per month: ~ $ 120-510 

(August 2015) 

Additional fees apply. 

Costs for Google: computing 

Single server in Europe/APAC: price per hour 

(August 2015) e.g. per month: ~ $185 

Costs for Google: computing 

(August 2015) e.g. per month: ~ $95 

OS for single server in Europe/APAC: price per hour 

Advantages vs. disadvantages 

•  Scalability both 
–  by computational demand 
–  by storage demand 

•  Costs  
–  proportional to usage 
–  occur at time of usage 

•  Immediate availability 
–  No need to wait for that new

 HPC cluster for another six
 months 

•  Data backup 
–  Usually automatically

 provided 

•  Limited bandwidth: 
–  NGS datasets can be huge

 (up to several TB),
 depending on the type of
 transmitted file (fastq, bam,
 vcf) 

–  Transfer can last several
 days or even weeks, with
 risks of interruption 

•  Costs: 
–  No “flatrate” for usage 

•  Potential lock-in effect with
 provider when using more
 cloud-specific elements 

Concerns: data privacy 

•  Security during transfer between client and server 
–  Known and unknown but potentially exploited bugs in encryption

 software (e.g. SSL/TSL) 

•  Security at server 
–  encryption of databases and file systems 

•  Profiling based on user data (Google) 

•  NSA and other secret services 

•  Account hijacking 

Concerns: data protection 

•  >90% of all cloud infrastructure is located in the USA. 
•  National laws may prohibit transfer to another country or

 outside the European Union. 

•  Germany: Regular checks for compliance of used cloud
 with standards set by law (“Bundesdatenschutzgesetz”) at
 physical location are mandatory for personalized data
 (genetic identifiably!). 

•  Some US providers have set up computing centers within
 the European Union.  
–  Ireland & Germany (Amazon), Denmark (Google)  
–  They are still required under the US Patriot Act to transfer data to

 the US government if requested. 
–  Big Brother Award 2012 for cloud computing as a technology

 awarded by digitalcourage, Chaos Computer Club e.V., and others 
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Literature on cloud computing 

•  Cloud computing security risk assessment by the
 European Union: 
http://www.enisa.europa.eu/activities/risk-management
/files/deliverables/cloud-computing-risk-assessment 

•  Cloud Security Alliance: Top Threats 
https://cloudsecurityalliance.org/topthreats
/csathreats.v1.0.pdf 
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Elementary	Usage	of	the	Affection	Status	Locus	Type

• Penetrance:	Probability(Phenotype	|genotype)

• Autosomal	dominant	- Complete	penetrance		no	
phenocopies

1/1               1/2                  2/2
P(affected|genotype) 0 1                     1
P(unaffected|genotype) 1 0                     0

Note: 2 denotes the disease allele

All unaffected individuals must be 1/1
Affected individuals can be either 1/2 or 2/2

Elementary	Usage	of	the	Affection	Status	Locus	Type

• Penetrance:	Probability(Phenotype	|genotype)

• Autosomal	recessive	- Complete	penetrance	no	
phenocopies

1/1               1/2                  2/2
P(affected|genotype) 0 0                     1
P(unaffected|genotype) 1 1                     0

Note: 2 denotes the disease allele

All affected individuals must be 2/2
Unaffected individuals can be either 1/1 or 1/2

Elementary	Usage	of	the	Affection	Status	Locus	Type

§ X-linked	recessive	- Complete	penetrance	no	
phenocopies
§ Specify	separate	penetrances for	males	& females

1/1               1/2                  2/2
P(affected female|genotype) 0 0                     1
P(unaffected female|genotype) 1 1                     0

1 2
P(affected male|genotype 0 1
P(unaffected male|genotype 1 0

Note: 2 denotes the disease allele

All affected females must be 2/2 and affected males hemizygous 2

Elementary	Usage	of	the	Affection	Status	Locus	Type

§ X-linked	dominant	or	X-linked	recessive	with	
milder	expression	in	females	- Complete	
penetrance	no	phenocopies
§ Specify	separate	penetrances for	males	& females

1/1               1/2                  2/2
P(affected female|genotype) 0 0                     1
P(unaffected female|genotype) 1 1                     0

1 2
P(affected male|genotype 0 1
P(unaffected male|genotype 1 0

Note: 2 denotes the disease allele

Affected females are either 1/2 or 2/2 & affected males are hemizygous 2

Use	of	Affection	Status	Locus

• Do	not	get	confused	by	thinking	the	following	is	
always	true

– 2	for	affected	individuals

– 1	for	unaffected	individuals

• Code	2
– Use	penetrances as	denoted	in	the	datafile

• Code	1

– 1-penetrances	are	used		
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Use	of	Affection	Status	Locus	- Example	
Autosomal	Dominant

1/1															1/2																		2/2
Coded	 in	datafile 0 1																					1

Penetrance	for	individuals	coded	with	a	2

1/1															1/2																		2/2
0 1																					1

Penetrance	for	individuals	coded	with	a	1.

1/1															1/2																		2/2
1-0 1-1																		1-1

→ 1 0																					0

Multiple	Liability	Classes
• Used	when	penetrance	is	not	the	same	for	all	
individuals	due	to	reduced	penetrance	and	
phenocopies
– Age	of	onset

– Different	penetrance	for	males	and	females

• In	pedigree	file
– First	column	�affection	status�

– Second	column	liability	class

ä liability class
1 0 0 1   2 1   5 6
2 0 0 2   2 2   4 4
3 1 2 2   2 3   5 4
4 1 2 1   2 3   5 4
5 1 2 1   2 4   6 4

�Affection�
status    ã

Pedfile.pre

Examples
§ The	ratios	between	genotypes	are	the	most	important	
factor	in	any	penetrance	model.
§ A	risk	ratio	of	1:1	gives	no	linkage	information	at	the	disease	
locus.	

§ Can	be	used	for	an	individual	whose	phenotype	is	unknown
Example 1/1 1/2 2/2

0.5 0.5 0.5
§ In	the	cases	where	the	risk	ratio	is	∞:1	the	individual	either	
does	or	does	not	carry	a	copy	of	the	disease	allele.		In	the	
example	below	all	individuals	assigned	to	this	penetrance	
class	must	be	2/2	at	the	disease	locus.	

Example 1/1 1/2 2/2
0.0 0.0 1.0

Example
§ Autosomal	dominant	disease	with	reduced	
penetrance	and	no	phenocopies.	

Codes	in	Pedigree	File
Aff.	Ind. Unaff Ind.

1/1 1/2 2/2
0.0 0.6 0.6 2	1 1	1
0.0 0.8 0.8 2	2 1	2
0.0 1.0 1.0 2	3 1	3

1.)	Does	it	matter	which	liability	class	an	affected	
individual	is	assigned	to?	Why?

Example
§ Autosomal	dominant	disease	with	reduced	
penetrance	and	phenocopies

Codes	in	Pedigree	File
Aff.	Ind. Unaff Ind.

1/1 1/2 2/2
0-10	yrs 0.01 0.6 0.6 2	1 1	1
11-25	yrs 0.02 0.8 0.8 2	2 1	2
>25	yrs 0.05					1.0							1.0 2	3 1	3

How	would	the	following	be	coded?
§ An	unaffected	15	year	old
§ An	unaffected	9	year	old
§ An	affected	25	year	old
§ An	affected	10	year	old

Do	the	Penetrances make	Sense	on	a	
Population	Level?

• If	the	population	prevalence	of	a	disease	Φ is	
known	then	the	disease	gene	frequency	p	and	
penetrances f	for	an	autosomal	trait	should	
satisfy:

Φ =fDDp2 +2fDdp(1-p) + fdd(1-p)2 

• For	sex-linked	recessive	traits

Φ =pfd +(1-p)f+
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Do	the	Penetrances make	Sense	on	a	
Population	Level?

§ If	the	population	prevalence	of	a	disease	Φ is	
known	then	the	disease	gene	frequency	p	and	
penetrances f	for	an	autosomal	trait	should	satisfy:

Φ =fDDp2	+2fDdp(1-p)	+	fdd(1-p)2	

§ The	population	frequency	for	genetic	cases	for	an	
autosomal	dominant	trait:
§ A=	fDDp2	+2fDdp(1-p)

Do	the	Penetrances make	Sense	on	a	
Population	Level?

§ The	frequency	of	phenocopies is	given	by:
§ C=fdd(1-p)2	

§ If	the	disease	is	rare	then
§ A≈ 2pfDd
§ C	≈ (1-2p)	fdd

§ The	phenocopy rate

§ The	proportion	of	phenocopies amongst	all	affected	
individuals	is

§ equal	to	C/(A+C).

§ Calculate	the	population	prevalence	and	phenocopy

rate	for	an	autosomal	dominant	trait	where:	

§ fDD=fDd =0.8

§ fdd=0.02	

§ p=0.001

§ Φ =fDDp2		(0.0000008)	+2fDdp(1-p)	(0.00160)	+	fdd(1-p)2	

(0.01996)	

§ Φ =0.0216

§ The	phenocopy rate	equals	0.926

Example How	can	Penetrance	Data	be	Obtained

§ From	the	literature
§ All	necessary	information	not	always	available

§ Estimate	it	from	the	data
§ Usually	biased	due	to	way	data	was	ascertained

§ May	not	have	enough	data	for	reliable	estimates
§ Linkage	programs

§ Ageon (SAGE	3.1)

§ Approximate	methods
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Frequent!QuesHons!

•  Why!are!you!telling!me!about!so!many!programs?!
– Please!just!let!me!know!the!best!one!

•  Unfortunately!not!so!easy!
– No!single!program!works!equally!well!in!all!situaHons!

•  Some!programs!can!handle!
– Large!pedigrees!but!not!many!markers!
– Many!markers!but!not!large!pedigrees!
– Both!large!pedigrees!and!many!markers!but!does!not!
provide!exact!LOD!scores!

•  Here!is!an!abbreviated!list!of!linkage!programs!

LINKAGE(Lathrop!et!al.!1984)/!
FASTLINK!(Cocngham!et!al.!1993)!

•  Parametric!analysis!only!!
•  Suitable!for!relaHvely!large!pedigrees!
•  Limited!in!the!number!of!loci!for!mulHpoint!
analysis!
– LINKAGE!can!allow!for!slightly!more!alleles/markers!
but!slower!than!FASTLINK!

•  ElstonMStewart!Algorithm!scales!exponenHally!
with!the!number!of!loci!and!linearly!with!the!
number!of!nonMfounders!

LINKAGE(Lathrop!et!al.!1984)/!
FASTLINK!(Cocngham!et!al.!1993)!

•  QuanHtaHve!and!QualitaHve!analysis!
•  Allows!for!esHmaHon!of!various!parameters:!theta,!
penetrance,!allele!frequencies!
–  ILINK!

•  TwoMpoint!linkage!can!be!performed!using!
– MLINK!
–  ILINK!

•  Can!esHmate!haplotype!frequencies!and!
incorporate!them!in!the!analysis!
– MLINK!
– LINKMAP!

LINKMAP!
LINKAGE/FASTLINK!

•  LINKMAP!can!be!used!to!calculate!mulHpoint!LOD!
scores!

•  Due!to!ElstonMStewart!algorithm!can!calculate!LOD!
scores!for!large!pedigrees!but!very!limited!in!the!
number!marker!loci!
– Number!of!marker!loci!dependent!on!number!of!alleles!
•  Maxhap 

–  Product of the allele frequencies including disease locus 

•  For SNP marker loci can only perform multipoint analysis 
using ~7 marker loci 

– Can!use!sliding!window!

Sliding!the!Disease!Locus!Across!a!
Map!of!Marker!Loci!

 
 1.)  1___2___3___4 

 
  2.)  2___1____3____4 
 
         3.) 1__ _3____4___5   (only one step) 
 
         4.) 3____1____4___5 
 
         5.) 1____4____5___6 (only one step) 

  
          6.) 4____1____5___6 
 
          7.) 4____5____1___6 
 
         8.) 4____5____6___1 
 
 

1-Disease Locus 
2, 3, 4, 5 and 6-Marker 
Loci 
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Superlink!(Silberstein!et!al.!2006)!
•  Can!analyze!complex!pedigrees!quickly!
–  Parametric!linkage!analysis!

•  Computes exact LOD scores 

–  Ideal!for!pedigrees!with!many!loops!(marriage!or!
consanguinity)!
•  In particular animal pedigrees 

–  Dogs 

–  Cattle 

•  Can!perform!mulHpoint!linkage!analysis!
–  Limited!in!the!number!of!marker!loci!2M4!
–  Implements!Bayesian!networks!

Superlink!(Silberstein!et!al.!2006)!
•  Can!quickly!calculate!genome!wide!twoM
point!LOD!scores!
•  MulHpoint!linkage!analysis!
– Use!sliding!window!to!calculate!LOD!scores!for!>~3!
marker!loci!

– Not!suitable!for!genomeMwide!mulHpoint!linkage!
analysis!

•  Efficient!use!of!parallelizaHon!of!the!
algorithm!
•  No!need!to!install!program!
– Use!of!Superlink!is!available!free!online!

Genehunter!(Kruglyak!et!al.!1996)!

•  Parametric!and!NonMparametric!linkage!analysis!

•  Provides!exact!rapid!calculaHon!of!mulHpoint!
LOD!scores!through!the!implementaHon!of!
hidden!Markov!Models!

– This!approach!scales!linearly!with!the!number!of!loci,!
but!exponenHally!with!the!number!of!nonMfounders!

–  Implements!the!Lander!&!Green!Algorithm!

!

Genehunter!(Kruglyak!et!al.!1996)!

•  Handles!a!large!number!of!marker!loci!
– But!only!pedigrees!of!small!to!moderate!to!moderate!
size!
•  Maxbit (2n-f)≤21 

•  QualitaHve!Traits!
•  NPL!counts!the!numbers!of!alleles!shared!IBD!
amongst!2!or!more!affected!relaHves!
– Calculates!pMvalues!using!either!exact!distribuHon!or!
normal!approximaHon!

Genehunter!2.0!(Daly!et!al.!1998)!

•  Performs!variance!component!analysis!for!mapping!
quanHtaHve!traits!

•  Performs!all!sibMpair!analysis!contained!in!the!
Mapmaker/sib!so8ware!

•  Constructs!Haplotypes!
•  Implements!a!large!pedigree!approximaHon!for!the!
computaHon!of!a!nonMparametric!allele!sharing!
staHsHc!on!extended!pedigrees!of!arbitrary!size!and!
complexity!

•  Computes!tradiHonal!and!mulHlocus!Transmission!
Disequilibrium!Test!(TDT)!

!
Allegro!(Gudbjartsson!et!al.!2000)!

!•  Allegro!has!the!same!basic!funcHonality!as!Genehunter!
–  !Includes!the!features!of!Genehunter!plus!

•  Supported!features!
–  Parametric!and!nonparametric!LOD!scores!
– Nonparametric!NPL!scores,!!
–  InformaHon!
–  Exact!pMvalues!
–  Expected!crossover!rate!
–  Constructs!Haplotypes!!
–  SimulaHon!!
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!
Allegro!(Gudbjartsson!et!al.!2000)!

!•  Typical!speedup!compared!to!Genehunter!is!30M
fold.!!

•  On!a!computer!with!four!Gb!of!memory!the!
program!can!handle!pedigrees!with!up!to!about!
28!bits!

•  Same!data!format!as!Genehunter!
•  ALLEGRO2!can!handle!even!larger!pedigrees!

MERLIN!(Abecasis!et!al.!2002)!

•  Handles!small!to!medium!sized!pedigrees!
–  Implements!Lander!&!Green!Algorithm!

•  Parametric!analysis!

•  NonMparametric!analysis!!

•  Variance!Components!Analysis!

•  Regression!based!linkage!analysis!(quanHtaHve!traits)!

•  Incorporates!LD!in!analysis!

•  Error!checking!–!double!recombinaHon!events!over!
small!geneHc!distances!

SIMWALK2!(Sobel!and!Lange!1996)!

•  A!Markov!Chain!Monte!Carlo!(MCMC)!algorithm!is!
implemented!in!order!to!transverse!the!space!of!
inheritance!vectors!for!each!pedigree!!

•  The!iniHal!legal!descent!state!is!found!for!using!an!
iteraHve!genotype!eliminaHon!technique.!!!
– Simulated!annealing!is!then!performed!to!search!for!find!
the!single!most!likely!descent!graph.!!!

Simwalk2!
•  The!MCMC!random!walk!proceeds!to!sample!the!
possible!underlying!configuraHons!in!proporHon!to!
their!likelihood!
– A!sample!average!is!then!used!to!give!esHmated!
results!for!the!pedigree!

!
•  Can!analyze!large!families!with!complex!structures!
– >1000!individuals!!

•  Handles!a!large!number!of!markers!!
– >30!markers!

•  Performs!!
– Constructs!Haplotypes!!
– Parametric!Analysis!
– Nonparametric!analysis!

Integrated!Suites!for!Linkage!Analysis!M!
Alohmora!

•  Facilitates!Analysis!of!a!large!number!of!markers!!
–  IncorporaHng!geneHc!mappings!
– Allows!for!Analysis!of!a!subset!of!markers!

•  Error!Checking!
– Pedcheck!
– Merlin!

•  Linkage!Analysis!
– Allegro!!
– Merlin!
– Genehunter!
– Simwalk2!

 

Integrated!SuitesMEasy!Linkage!

•  Runs!on!windows!
•  Data!preparaHon!
– Allows!for!analysis!of!a!subset!of!markers!

•  Calls!!
– Genehunter!
– Allegro,!etc!

•  Graphical!representaHon!of!results!
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Haplotypes/3MUnit!Support!Interval!

•  A8er!compleHon!of!linkage!analysis!
– Haplotypes!should!be!constructed!
•  e.g Allegro, SimWalk2 

•  AddiHonally!a!3Munit!support!interval!should!be!
obtained!

•  !If!linkage!was!established!the!causal!variant!should!
lie!within!the!haplotype!and/or!3Munit!support!
interval!!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!

! ! !! ! ! ! !! ! ! !!! ! ! !!!

In!Summary!

Error!DetecHon!in!Pedigree!data!

•  PedCheck!
– Mendelian!errors!

•  Merlin!
– Double!recombinaHon!events!over!short!geneHc!
distances!

Analysis!Programs!

•  ElstonMStewart!Algorithm!
– Large!Pedigrees!
–  limited!number!of!markers!
•  Linkage!
•  Fastlink!
•  Vitesse!
•  Superlink!
 

Analysis!Programs!

•  LanderMGreen!Algorithm!
– SmallMmedium!sized!pedigrees!
– Large!number!of!Marker!loci!
•  Genehunter 
•  Allegro 
•  Merlin  

Analysis!Programs!

•  Other!methods!–!Bayesian!networks!
– Superlink!
•  Suited for pedigrees with many inbreeding or marriage 

loops 

•  Approximate!methods!M!MCMC!
– Simwalk2!
– LOKI!!
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Pedigree!Drawing!Programs!

•  Haplopainter!
– Can!draw!pedigrees!and!haplotypes!

!
•  Pelican!!

Integrated!Suites!

•  Easy!Linkage!

•  Alohomora!
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Genotyping Error Detection
 Using MERLIN  

–  Introduction  – 

Sources of error in genetic data 

•  Genotyping errors 
•  False paternities 

•  Probes mix-up 

•  Data mix-up 

•  Wrong model  
(e.g. marker distances) 

•  Wrong phenotype definition 

•  ... 

Appear as: 

•  Mendelian errors 

•  Unlikely genotypes 

•  Double recombinants 
over short genetic 
distances  

The MERLIN software 

•  „Multipoint Engine for Rapid Likelihood INference“ 
•  „Works like magic!� (G. Abecasis) 
•  Available for Linux, Solaris , MacOS X, Windows 
•  Efficient data storage through sparse binary trees for modelling gene

 flow in pedigrees and corresponding algorithms 
•  Used via command line mode  
•  Reference:  

–  Abecasis et al. (2002) Merlin-rapid analysis of dense genetic maps using
 sparse gene flow trees. Nat Genet 30:97-101.   

•  Download & Docs:  
      http://www.sph.umich.edu/csg/abecasis/Merlin/  

•  Current version: 1.1.2 

What can MERLIN be used for? 

MERLIN 

IBD calculations  

Non-parametric linkage  

Variance components linkage  

Haplotyping  

Pedigree regression  

Error detection  

...  

(linkage / QTDT / [PLINK] format ) 

X.ped 

X.dat 

X.map 

Pedigree file 

Marker file 

Marker map 

Unlikely genotypes (I) 

Sibs are identical at all markers  
 ! sibs very likely share this stretch 

of the chromosome  
(identity-by-descent [IBD] = 2) 

Sib-ship 2 

One marker contradicts sharing 
information from all other markers  
 ! very unlikely case ! check! 

Sib-ship 1 

(from MERLIN online tutorial) 

double 
recombination 

event 

Unlikely genotypes (II) 

Question:  Do a particular marker with genotype g and its neighboring 
markers (G\g) provide consistent information?  

Ratio of likelihood ratios (LR) for two marker map models: 

L(G\g|θ) 
L(G|θ) 

L(G\g|θ=0.5) 
L(G|θ=0.5) 

LRlinked 

LRunlinked 

r = = 

Likelihood for: 

all markers 

g set to 
unknown  using  

model map 
distances  

all markers 

g set to 
unknown  

assuming 
unlinked 
markers  

g consistent with G\g under θ  !  r << 1  

g inconsistent with G\g under θ  !  r >> 1  
MERLIN reports 1/r  
as mistyping score!! 
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Running MERLIN 

merlin –p X.ped –d X.dat [–m X.map] <options> 

•  pedstats 
•  pedwipe  
… 

Other programs in bundle: 

Pedigree file Marker file Marker map file 
(optional) 

Analysis options 
(listed whenever MERLIN starts)  

•   General: --error [ON], --information, … 
•   IBD States: --ibd, --kinship, --matrices, … 
•   NPL Linkage: --npl, --pairs, --qtl, … 
… 

At the command line: 

Error detection using MERLIN 

2.  Are reported errors simply due to chance? 
! Estimation of the false-positive rate for error detection 
  merlin –p … –d … --error –-simulate –r <seed>  
                  --reruns <reps> 

1.  Are there genotype errors in the data? 
! Detection of Mendelian errors / unlikely genotypes: 

 merlin –p … –d … --error 

3.  „Wipe� errors from data! 
! Erase problematic genotypes (requires error file merlin.err) 
  pedwipe –p … –d … 

Other programs 

•  Other multipoint error detection methods implemented in: 
–  SimWalk2  

(Sobel & Lange. Am J Hum Genet 1996;58:1323–1337) 
https://www.genetics.ucla.edu/software/simwalk 

–  Mendel v14.4.2  
(Sobel E, et al. Am J Hum Genet 2002;70:496–508, 
Lange K, et al. Bioinformatics 2013;29:1568-1570) 
https://www.genetics.ucla.edu/software/mendel 

–  Sibmed  
(Douglas JA, et al. Am J Hum Genet 2000; 66:1287–1297) 
http://csg.sph.umich.edu/boehnke/sibmed.php 

•  Performance comparison in: 
–  Mukhopadhyay, et al. Comparative study of multipoint methods for

 genotype error detection. Hum Hered 2004;58:175-189. 
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Homozygosity	Mapping	- Concept

• Useful	tool	to	map	autosomal	recessive	traits

– Particularly	for	consanguineous	pedigrees

• Surrounding	the	pathogenic	variant,	multiple	

markers	will	be	homozygous

– Pointing	to	one	or	several	regions	of	the	genome	

where	the	pathogenic	variant	occurs

Homozygosity	Mapping	- Concept

• Can	look	at	homozygosity	within	a	single	

individuals

• However	information	from	several	affected	

individuals

– Usually	but	not	necessarily	from	the	same	pedigree

• Can help to reduce the number of regions
–And the size of the region containing the putative causal 

variant 
V:5 V:7

I:1 I:2

II:3II:2II:1 II:4

III:1 III:2 III:3

IV:1

III:4

IV:2

V:2V:1 V:3 V:4 V:6

D3S3045 
D3S2496 
D3S4018
D3S1278
D3S4523
D3S1765
D3S3720
D3S2453
D3S1764

D3S3045 
D3S2496 
D3S4018
D3S1278
D3S4523
D3S1765
D3S3720
D3S2453
D3S1764

1 2
1 1
1 1
1 1
1 1
1 1
1 1
1 2
1 2

2 1
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 3

1 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 3

1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 1
1 1

1 2
1 1
1 1
1 1
1 1
1 1
1 1
1 2
1 3

1 1
1 2
1 2
1 2
1 1
1 1
1 1
1 1
1 3

1 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 3

1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 1
1 1

Concept

• Two	segments	of	the	chromosome	are	inherited	

from	a	common	ancestor

– Sharing	is	identical-by-descent	(IBD)

• Often	occurs	in	consanguineous	pedigrees

• Two	different	haplotypes,	surrounding	the	

pathogenic	variant,	in	affected	individuals	who	are	

offspring	of	a		consanguineous	mating

– Disease	variant(s)	entered	the	pedigree	more	than	once	

in	order	to	observe	this	phenomenon

• Highly unusual

Identify	by	Descent	(IBD)/Identify	by	State	(IBS)

1/1 1/3

1/2 1/3

1/2 1/2

1/2 1/3

1/3 1/2

1/2 1/3

IBD=0		IBS=1 IBD=1		IBS=1 IBD=2		IBS=2
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Concept

• Can	also	observe	regions	of	homozygosity	in	

“outbreed”	populations

– Small	breeding	pool	

• Individuals,	although	not	known	to	be,	
related		(1st or	2nd cousins)	

–Are	in	reality	quite	closely	related
–Often	inbreeding	coefficients	can	be	high	due	to	
generations	of	intermarriage

Concept

• Can	occur	in	small	populations

– Geographically	isolated

• Mountains,	Island	populations

– Socially	isolated

• An	individual	can	also	inherit	two	copies	of	
the	same	variant	by	“chance”

– Usually	parents	are	distantly	related	but	this	

relationship	is	unknown

Performing	Homozygosity	Mapping

• In	a	single	individual
• Often	more	than	one	run	of	homozygosity

• Difficult	to	determine	which	run	of	

homozygosity	contains	the	causal	variant

Performing	Homozygosity	Mapping

• Information	can	be	used	from	multiple	

individuals	affected	individuals	(same	

phenotype)	who	may	or	may	not	related

– If	multiple	individuals	are	homozygous	for	an	

overlapping	interval	on	the	chromosomes

– Can	lead	to	identifying	the	correct	regions	of	
homozygosity

• Also aids in reducing the size of the interval

Performing	Homozygosity	Mapping

• Can	determine	that	two	individuals	are	

distantly	related	because	they	are	

homozygous	for	the	same	haplotype

• Examine	the	region	of	homozygosity	across	

individuals	in	order	to	obtain	the	smallest	

region	in	common

– Likely	to	contain	the	pathogenic	variant

Performing	Homozygosity	Mapping

• Even	if	two	or	more	individuals	are	not	

homozygous	for	the	same	haplotypes

• Can	still	examine	the	haplotypes	to	determine	

the	smallest	interval	containing	the	causal	gene

• Caveat	it	can	be	possible	that	not	all	individuals	

have	the	same	phenotype	due	to	the	same	gene

– Unusual	but	can	occur	when	there	are	multiple	

genes	responsible	for	the	same	phenotype	within	a	

small	genetic	region

• Nonsyndromic hearing impairment
– 13q11-13q12
»GJB2 and GJB6 
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Performing	Homozygosity	Mapping

• In	this	situation	by	examining	the	region	of	

overlap	between	individuals

• Can	accidently	exclude	region	containing	
the	causal	variant

• This	can	also	occur	when	examining	

smallest	region	of	homozygosity	between	

families	

– i.e.	when	analyzing	families	which	do	not	have	the	

same	haplotype	within	the	region	of	homozygosity

Performing	Homozygosity	Mapping

• Most	beneficial	in	consanguineous	pedigrees

• If	pedigree	is	sufficiently	large
– Can	usually	map	the	causal	variant	to	one	region

• Caution	should	be	used	when	trying	to	refine	
interval	using	unaffected	individuals

–May	not have	disease	phenotype	due	to	reduced	

penetrance

• Carrying	two	copies	of	causal	variant	and	thus	are	
homozygous	where	the	disease	variant	lies

Performing	Homozygosity	Mapping

• May	be	advantageous	to	only	use	affected	

individuals

• Dependent	on	disease	etiology
• Likewise	phenocopies	can	cause	rejection	
of	true	region

• Phenotyping	is	extremely	important

Performing	Homozygosity	Mapping

• Can	help	to	quickly	zoom	in	on	the	region	

containing	the	causal	variant

• For	homozygosity	mapping	analyzing	thousands	of	

marker	loci	takes	seconds

– Can	use	a	wide	variety	of	genotyping	arrays

• Illumina HumCoreExome-24 Bead Chip
– Also	can	use	exome	or	whole	genome	data

• Multipoint	linkage	analysis	can	be	time	consuming

– Homozygositymapping	can	be	used	to	elucidate	the	

region	where	initial	linkage	analysis	should	be	carried	

out

– And	most	likely	contains	the	pathogenic	variant

Performing	Homozygosity Mapping

• Region	of	homozygosity	and	3-unit	linkage	

support	interval	usually	perfectly	overlap

• Performing	multipoint	linkage	analysis	not	

correcting	for	intermarker	linkage	disequilibrium	

can	inflate	LOD	scores

– This	can	occur	if	family	members	are	missing	genotype	

data

• e.g. parental genotypes
– For  consanguineous pedigrees missing grandparental data can also 

cause  an increase in false positive LOD scores 

Performing	Homozygosity	Mapping

• Regions	of	homozygosity	can	give	

additional	support	to	a	linkage	finding	for	

autosomal	recessive	traits	when	analysis	is	

performed	in	consanguineous	pedigrees

–Robust	to	intermarker	linkage	disequilibrium	
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Programs

• HomozygosityMapper	(Seelow	et	al.	2009)

– http://www.homozygositymapper.org/

• IBDfinder (Carr	et	al.	2009)

– http://dna.leeds.ac.uk/ibdfinder/

• AutoSNPa	(Carr	et	al.	2006)

– http://dna.leeds.ac.uk/autosnpa/

• PLINK	(Purcell	et	al.	2008)

– http://pngu.mgh.harvard.edu/~purcell/plink/
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File formats for sequence data 

Outline 

•  NGS technologies 

•  Workflow and corresponding data files 

•  FASTQ files: reads fresh from the sequencer 

•  SAM/BAM files: read mapping 

•  VCF files: variants, genotypes and more 

Whole-genome sequencing (WGS) 

modified'from'Bamshad'et'al.'(2011)'Nat'Rev'Genet'

Genomic'
DNA'

Flanked'
fragments'

DNA'
sequencing'

Mapping,'
alignment,'

variant'calling'

Random'shearing,'flanking'of'
fragments'by'adaptors'

amplificaIon'

WholeKgenome'sequencing'(WGS)'does'not'cover'the'whole'genome.'
WGS'is'cheap'on'a'perKbase'basis,'but'sIll'expensive'in'total'costs.'

Sequencing'allows'assessment'of'geneIc'variaIon'that'is'unknown'in'
advance'(must'be'known'for'genotyping).''

Whole-exome sequencing (WES) 
Exons'as'prime'funcIonal'candidates'represent'1K2%'of'total'sequence'

Genomic'
DNA'

Flanked'
fragments'

DNA'
sequencing'

Mapping,'
alignment,'

variant'calling'

Random'shearing,'flanking'of'
fragments'by'adaptors'

amplificaIon'

Vendors'for'exome'capture'kits:'Agilent,'Illimuna,'Nimblegen,'and'others.'
WES'does'not'cover'the'whole'exome.'Covered'regions'depend'on'the'used'library.'

Hybridized'
fragments'

HybridizaIon' Pulldown'

Exonic'
fragments'

Pulldown'&'
washing'

modified'from'Bamshad'et'al.'(2011)'Nat'Rev'Genet'

Jobling, et al. (2014) 

Bioinformatic workflow Next-Generation Sequencing (NGS) 

•  Aim: 
–  Full sequences, rare variants 
–  Direct assessment of genetic variation directly 

•  'Generations': 
–  First: Sanger sequencing 
–  Second: 'next-generation sequencing' 
–  Third and Fourth are coming 

•  Platforms: 
–  Roche 454 
–  Illumina / Solexa / Sequenom 
–  Applied Biosystems (ABI) SOLiD 
–  Helicos BioSciences 
–  Pacific Biosciences 
–  Ion Torrent, … 
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NGS: Roche 454 

1. Emulsion PCR 

2. Pyrosequencing 

Metzker (2010) Nat Rev Genet 

NGS: Illumina/Solexa 

Metzker (2010) Nat Rev Genet 

1. Bridge amplification of DNA fragments 

2. Sequencing by labeled reversible 
  terminators 

NGS: Applied Biosystems (ABI) SOLiD 

1. Emulsion PCR 

2. Sequencing by ligation 

Metzker (2010) Nat Rev Genet 

NGS: read length 

Metzker (2010) Nat Rev Genet 

Capacity of sequencing instruments 

Mardis (2011) Nature 

Data generation throughput 

Stratton, et al. (2009) Nature 
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NGS: sequenced individuals back then 

Metzker (2010) Nat Rev Genet 

Sequencing costs 

http://www.genome.gov/SequencingCosts/ 

per Megabase (Mb) per genome 

Moore’s law (1965, co-founder of Intel) 
“The number of transistors in a dense integrated 
circuit doubles approximately every two years” 

In-silico storage of NGS data 

Stein (2010) Genome Biology 

Disk space per $ 

Base pairs per $ (NGS) 

Base pairs per $ (before NGS) 

Output of sequencers 

Strachan, et al. (2015) 

Read length vs. throughput 

Lex Nederbragt (2013): developments in NGS. figshare. http://dx.doi.org/10.6084/m9.figshare.100940. 

Illumina HiSeq X for WGS 

http://www.illumina.com/systems/hiseq-x-sequencing-system/ 

All information has been obtained from the Illumina web site. 
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FASTQ file format 

… 
@SEQ_ID 
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 
+ 
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 
… 

Contains all unaligned reads obtained from the sequencer 

en.wikipedia.org 

Sequence identifier 
(optionally some more description) Sequence letters 

Plain text file, four lines per sequence 

“+” 
(optionally some more description) 

Quality code for respective letter 

!"#$%&'()*+,-./0123456789:;<=>@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 

low high 

Q =  - 10 log10  
p 

1-p 

Base quality: Phred score Q (I) 

Q =  - 10 log10p 

Sanger sequencing: 

Illumina/Solexa have used a slightly 
different quality score in the past: 

p – probability of an incorrect base call  

Ewing & Green (1998) 
Genome Res 

Quality: Phred score Q (II) 

Quality 
score Q 

p=10-(Q/10) Probability of incorrect 
base call  

Proportion of 
accurate base calls 

10 10-1 = 0.1 1 in 10  90% 
20 10-2 = 0.01 1 in 100  99% 
30 10-3 = 0.001 1 in 1,000  99.9% 
40 10-4 = 0.0001 1 in 10,000  99.99% 
50 10-5 = 0.00001 1 in 100,000 99.999% 
60 10-6 = 0.000001 1 in 1,000,000  99.9999% 

Quality shows a trend of decreasing towards the end of a read.  

Sanger sequencing: 

Phred score 0 1 … 20 … 50 … 92 93 
ASCII coding 33 34 … 53 … 83 … 125 126 

FASTQ symbol ! “ … 5 … S … } ~ 

An example: the Tyrolean Iceman (“Ötzi”) 

•  Discovery in Sept. 1991 off a 
mountain pass (3210m) near 
Tisenjoch (Ötztal Alps) by hiking 
German couple  
(92 m inside Italy, off Austria) 

•  Ötzi died ~5250 YBP during the 
Copper Age (Chalcolithic) 

•  First genetic study in 1994 (Handt 
et al., Science; on mtDNA 
variation) 

•  Full nuclear sequencing (WGS) in 
2012 (Keller, Graefen, Ball, et al., 
Nat Comm) 

Google Earth & Helmut Simon (en.wikipedia.org) 

Data deposited at European Nucleotide Archive (ENA): 
http://www.ebi.ac.uk/ena;  accession number: ERP001144  

Ötzi’s sequence data 
http://www.ebi.ac.uk/ena/data/view/ERP001144 

A FASTQ file from Ötzi 

@ERR069107.83594103 61_656_767/1 
GGCTGAGGCAGGAGAATTGCTTGAACCCAGGACACGGAGGTTGTG 
+ 
IIIIIIIIIIIIIIGIHHIIIII:HI.,,(AI1(((F)&BIIIIE 
@ERR069107.83594104 1361_1032_197/1 
TGGAATGGAATGGAATGGAATGGAATGGAAC 
+ 
IIGIIICEIIICCIIIIIIIICAI((D2IF; 
@ERR069107.83594105 2174_789_1143/2 
TGTGTGTGTGTGTGTGTGTGTGTGT 
+ 
IIIIIIIIIIIIIIIIIIIIIIII@ 
@ERR069107.83594106 744_1322_1870/1 
TCTCCACTTCATTCCATTCCATTTCATCCTATTCCA 
+ 
IIIIIIIIIIIIIIIIIIIIIIIIIIB>I??IIIII 
@ERR069107.83594107 533_1805_480/1 
TCTCAAAAGAAGACATTTATGCAGCCAAAAAATACATGAAAAAATGCTCA 
+ 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1 
@ERR069107.83594108 997_1205_1612/1 
CATTCCATTGCATTCCATTCCATTCCATTAGTTTCCATTCCATTC 
+ 
IIIIIIIIIIIIIIIIIIIIIIIIIIII"""ABIIIIIIIIIIII 
@ERR069107.83594109 1010_363_607/1 
CGCAATGGCATTCCTAATGCTTACCGAACGAAAAAT 
+ 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHII 
: 

Sequence identifier 

Sequence (31 bases) 

Quality 

I  ! Q=73  ! p=10-73/10=5.0x10-8  

(  ! Q=40  ! p=10-40/10=1.0x10-4  

;  ! Q=59  ! p=10-59/10=1.3x10-6 

probability of incorrect base call  
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Jobling, et al. (2014) 

Bioinformatic workflow Sequence alignment 

…G T G A C G A A C T G A C A C C A T G A C G A T T C G A T T A G T A C C A T G A T … ' '

Reads&

Reference&sequence&
(or'de#novo'assembly)'

Sequence&
alignment&

A C A C C A T G A C G A '

C A T C A C G A T T C G '

A C C A T G A C G A T T '

C C A T C A C G A T T C '

A C C A T G A C G A T T '

Read'length'

Sequence alignment 

•  Matching single sequences/reads (pairwise alignment) or
 multiple sequences/reads (multiple alignment) to a
 reference 

•  Local alignment; multitude of approaches, many NP
-complete (classical algorithm: Smith-Waterman algorithm) 

•  Frequently used software for WGS/WES: BWA, bowtie 
•  Many others available, often for specialized tasks (or

 outdated):  
ELAND (Illumina), MAQ, Partek, VelociMapper, GEM,
 SOAP/SOAP2/SOAP3, … 

•  Memory-consuming!! (>2 GB) 
•  Repetitive and pseudo-autosomal regions are hard to align

 and therefore barely accessible to NGS 

BWA & bowtie 

•  Aligner using Burrows-Wheeler Transform (approach for
 data compression, published 1994) 

•  Mapping low-divergent sequences against a large
 reference genome 

•  BWA:  three algorithms: 
–  BWA-backtrack: short reads up to 100bp (previous Illumina) 
–  BWA-MEM: longer reads (70bp-1Mb) 
–  BWA-SW: like BWA-MEM, but better for frequent alignment gaps 
–  Li & Durbin (2009, 2010) Bioinformatics 
–  Extensions: BarraCUDA, UGENE (visual interface) 

•  bowtie/bowtie 2: 
–  Very fast, memory-efficient 
–  Alignment of short reads 
–  Langmead, et al. (2009) Genome Biol 

Mapping of reads to a reference genome 

https://www.broadinstitute.org/gatk/guide/best-practices 

Read mapping is complicated mismatches (errors or variants), InDels, 
duplications, insertions, etc. 

Mapping quality score MAPQ 

MAPQ = - 10 log10(1-p) Li, Ruan, Durbin (2008) 
Genome Res 

Probability (on a log scale) of a read being misplaced 

p – probability of the read coming from the correct position 

This probability is approximately modeled using a Bayesian approach, 
assuming that sequencing errors at different sites of read are independent 

of each other.  

p(z|x,..)=10-(ΣQi)/10 

sum of single-base phred Q 
values at mismatch positions 

best alignment 

all possible alignments 

e.g. two mismatches with Q=20 and Q=10: 
p(z|x,..)=10-(20+10)/10=0.001 
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SAM/BAM file format 

Sequence Alignment/Map format 

BAM format stores the same data in a compressed, indexed, binary form. 

Plain text file containing the reads that could be aligned/mapped 

reference 

aligned 
reads 

clipped from the 
alignment 

SAM file: 

split alignment 

header (format version, sorting, …) 
reference sequence dictionary (length, …) 

query template combination of descriptive flags 

position 

mapping quality (MAPQ) 

sequence 

Phred score (* - missing) 

ht
tp

s:
//g

ith
ub

.c
om

/s
am

to
ol

s/
ht

s-
sp

ec
s 

A BAM file from Ötzi 

Genetic sample of Ötzi 

Jobling, et al. (2014) 

Sequencing errors, sample contamination, and other factors 
can lead to unmapped reads. 

Jobling, et al. (2014) 

Bioinformatic workflow 

Types of variation 

InDels SVs SNVs 

•  Single-base or 
small insertions 
and deletions 

•  Structural variants 
•  Copy number 

variants (CNVs) 
•  Inversions, 

translocations 

•  Single-nucleotide 
variants 

Jobling, et al. (2014) 

Variant calling for SNVs and InDels 

…G T G A C G A A C T G A C A C C A T G A C G A T T C G A T T A G T A C C A T G A T … ' '

Reads&

Reference&sequence&
(or'de#novo'assembly)'

Read&depth/Coverage'
(e.g.'5x)'

Sequence&
alignment&

G / C &

A C A C C A T G A C G A '

C A T C A C G A T T C G '

A C C A T G A C G A T T '

C C A T C A C G A T T C '

A C C A T G A C G A T T '

Single:nucleo;de&variant&&(SNV)&

Read'length'
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Variant calling for SNVs and InDels 

Unified Genotyper 

No software is optimal for every task.  
Different callers are used for different sorts of variants.  

Haplotype Caller 

•  SNVs and InDels are called 
separately 

•  aka Consensus Calling (in 
MAP software) 

•  Bayesian approach; the 
likelihood for each genotype is 
expressed depending on the Q 
and MAPQ error probabilities 

•  The genotype with highest 
posterior probability is selected 

•  First implemented in MAQ 
(Li, et al., 2008, Genome Biol) 

•  Faster, any ploidy 

•  SNVs and InDels are called 
simultaneously (in local 
neighborhood) 

•  Re-assembly of genomic 
regions with large variation; 
identification of possible 
haplotypes per region 

•  Calculation of haplotype 
likelihood for given data 

•  Bayesian approach as with 
consensus calling 

•  Implemented in GATK 
•  More accurate (for InDels) 

Variant calling 

•  SAMtools 
–  Outgrew from the 1000 Genomes project 
–  mpileup for calling SNVs and InDels 
–  Li, et al. (2009) Bioinformatics 25, 2078-9;  

Li, et al. (2011) Bioinformatics 27:2987-93 
–  http://samtools.sourceforge.net/ 

•  GATK 
–  Genome Analysis ToolKit; developed at the Broad Institute 
–  Requires Java 
–  McKanna, et al. (2010) Genome Res 20:1297-303; 

DePristo, et al. (2011) Nat Genet 43:491-498; 
Van der Auwera, et al. (2013) Curr Protocols Bioinformatics
 43:11.10.1-11.10.33  

–  https://www.broadinstitute.org/gatk/ 
•  MAQ, FreeBayes, … 

VCF/BCF file format 

Variant Call Format 

BCF format stores the same data in a compressed, binary form. 

##fileformat=VCFv4.2 
##fileDate=20090805 
##source=myImputationProgramV3.1 
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta 
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x> 
##phasing=partial 
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> 
: 
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> 
##FILTER=<ID=q10,Description="Quality below 10"> 
##FILTER=<ID=s50,Description="Less than 50% of samples have data"> 
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 
: 
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> 
#CHROM POS  ID  REF ALT  QUAL  FILTER INFO  FORMAT  NA00001  NA00002 
20  14370  rs6054257 G  A  29  PASS  NS=3;DP=14;AF=0.5;DB;H2  GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51. 
20  17330  .  T  A  3  q10  NS=3;DP=11;AF=0.017  GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 
20  1230237  .  T  .  47  PASS  NS=3;DP=13;AA=T  GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 
20  1234567  microsat1 GTC G,GTCT 50  PASS  NS=3;DP=9;AA=G  GT:GQ:DP  0/1:35:4  0/2:17:2 
: 

meta information (field description, filter criteria, etc.) 

header 

samples variant information variant quality 
called variants  

mandatory columns 

VCF: variant information 

#CHROM POS  ID  REF ALT  QUAL FILTER INFO   
20  14370  rs6054257 G  A  29  PASS  NS=3;DP=14;AF=0.5;DB;H2 
20  17330  .  T  A  3  q10  NS=3;DP=11;AF=0.017   
20  1230237 .  T  .  47  PASS  NS=3;DP=13;AA=T   
20  1234567 microsat1 GTC G,GTCT 50  PASS  NS=3;DP=9;AA=G 

chromosome identifier (RefSeq 
number etc.) 

reference 
allele 

alternative 
allele 

MAPQ 
value 

no call is made 
(MAQ<10) 

number of 
samples with 

data 

combined depth 
(coverage) 

across samples 

allele frequency 
of ALT 

ancestral 
allele 

in HapMap2 

physical position 

in dbSNP 
call is made 

(variant has passed all filters) 

See https://github.com/samtools/hts-specs for a specification of entries. 
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data”> 

Genotypes in REF and ALT columns 

…  REF  ALT  … 

…  G  A  … 

…  G  A,T  … 

…  T  .  … 

…  GTC  G  … 

…  G  GTCT  … 

…  T  <DEL>  … 

substitution (SNV), 2 alleles 

substitution (SNV), 3 alleles 

monomorphic (no variant) 

deletion, 2 bp 

insertion, 3 bp 

large deletion (1 kb) 

VCF: sample information 

 …  FORMAT  NA00001  NA00002 
 …  GT:GQ:DP:HQ  0|0:48:1:51,51  1|0:48:8:51,51 
 …  GT:GQ:DP:HQ  0|0:49:3:58,50  0|1:3:5:65,3 
 …  GT:GQ:DP:HQ  0|0:54:7:56,60  0|0:48:4:51,51 
 …  GT:GQ:DP  0/1:35:4  0/2:17:2 

Data format: 

Individual NA00002: 

GT:  inferred genotype 
GQ:  conditional genotype quality (phred scale) 
DP:  read depth (coverage) 

1|0:  genotype phased, heterozygous 
48:  probability of 10-4.8=0.000016  for 

an erroneous call 
8:  read depth (coverage) 

  

Sample information: 

0/2: genotype unphased, hetero-
zygous for second allele in ALT 

17:  probability of 10-1.7=0.02 for an 
erroneous call 

2:  read depth (coverage)  

VCF uses a general syntax system and flexible for coding different information. 

(described in 
VCF header!) 

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype”> 
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Technical information 

AA:  ancestral allele 
AC:  allele count in genotypes,

 respectively for each ALT
 allele 

BQ:  base quality Q at this site 
DB:  dbSNP membership 
DP:  combined read depth cross

 samples 
H2/3:  HapMap2/3 membership 
MQ:  mapping quality MAPQ 
MQ0:  number of reads with

 MAPQ=0 covering this site 
1000G: 1000 genomes

 membership 
and more 
 

GT:  genotype: / or |  un/phased 
0-REF, 1,2,..-ALT allele 

DP:  read depth at this site 
GL:  log10 genotype likelihoods: 

GT:GL 0/1:-323.0,-99.1,-802.5 
!  L(G=0,0)=10-323.0 

 L(G=0,1)=10-99.1 
 L(G=1,1)=10-802.5 

PL:  10*log10 (phred-scaled)
 genotype likelihoods 

GP:  phred-scaled genotype
 posterior probabilities 

PQ:  phasing quality 
MQ: mapping quality MAPQ 
and more 

Variant information Genotype information 

A VCF file from Ötzi 
##fileformat=VCFv4.1 
##FILTER=<ID=LowQual,Description="Low quality"> 
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order 
listed"> 
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad 
mates are filtered)"> 
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype Quality"> 
: 
 
: 
##contig=<ID=1,length=249250621,assembly=b37> 
##contig=<ID=10,length=135534747,assembly=b37> 
##contig=<ID=11,length=135006516,assembly=b37> 
: 
 
: 
#CHROM POS  ID  REF  ALT  QUAL  FILTER  INFO … 
1  10002  .  A  C  116.55 PASS  ABHom=0.87;AC=2;AF=1.00;AN=2;BaseCounts=0,7,0,1;DP=8;Dels=0.00; … 
1  10003  .  A  T  49.02  PASS  ABHet=0.13;AC=1;AF=0.50;AN=2;BaseCounts=1,0,0,7; … 
1  233571 .  G  A  11.34  LowQual ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=2,0,0,0;DP=2;Dels=0.00; … 
1  234466 .  C  T  13.41  LowQual ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=0,0,0,2;DP=2;Dels=0.00; … 
1  546897 .  G  T  14.49  LowQual ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=0,0,0,2;DP=2;Dels=0.00; … 
1  546900 .  G  A  14.49  LowQual ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=2,0,0,0;DP=2;Dels=0.00; … 
1  565286 .  C  T  131.66 PASS  ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=0,0,0,40;DP=40;Dels=0.0 … 
1  567493 .  C  T  25.63  LowQual ABHet=0.70;AC=1;AF=0.50;AN=2;BaseCounts=0,7,0,3;BaseQRankSum=-  … 
1  569492 .  T  C  157.27 PASS  ABHom=0.93;AC=2;AF=1.00;AN=2;BaseCounts=1,14,0,0;DP=15;DS;Dels= … 
1  800383 .  C  T  14.58  LowQual ABHom=1.00;AC=2;AF=1.00;AN=2;BaseCounts=0,0,0,2;DP=2;Dels=0.00 … 
: 
 
: 
 
: 
 

Genomic VCF (gVCF) file format 

•  VCF file with 
–  a record for every position (also for non-called variants) 
–  per-sample reference confidence estimation for invariant sites 

•  Produced by Haplotype Caller 
•  Developed at the Broad Institute 

VCFtools 

•  Software for manipulating VCF files 
•  Possible tasks: 

–  Filter and summarize variants, create
 intersections and subsets 

–  Compare, validate and merge VCF files 
–  Convert to different formats (e.g. PLINK,

 IMPUTE, BEAGLE) 
–  Perform some analyses: 

•  Calculation of population-genetic parameters
 (nucleotide diversity, FST, Tajima’s D, Hardy
-Weinberg proportions & test, etc.) 

•  Linkage disequilibrium calculation (r2) 
•  SNP density, sample relatedness, etc. 

•  Danecek, et al. (2011) Bioinformatics 

https://vcftools.github.io/ 

Jobling, et al. (2014) 

Bioinformatic workflow 

FASTQ 

SAM/BAM 

VCF/gVCF 

genotype files 

This is a simplified picture. 
There are more steps that 

are taken to produce 
genotype calls. 

GATK Best Practice 
https://www.broadinstitute.org/gatk/guide/best-practices 
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Exome pipeline at the CCG Visualization: Integrated Genome Viewer (IGV) 

•  Interactive visualization tool for large integrated datasets 

•  Many supported file formats,  
including SAM/BAM and VCF files 

•  http://www.broadinstitute.org/software/igv/ 

•  Robinson, et al. (2011) Nat Biotech 29, 24–26;  
Thorvaldsdóttir, et al. (2013) Brief Bioinf 14, 178-192 

IGV: view of aligned sequence reads 

Jobling, et al. (2014) 

Ötzi’s mtDNA in IGV 

variants from VCF file 

reads from BAM file 

reference 

coverage 

non-reference 
alleles (errors, 

variants?) 

Cautionary notes on variant calling 

•  Models for variant calling are tuned for sensitivity 
–  Project-specific trade-off between between sensitivity and

 specificity 

•  Variant calls are error-prone 
–  Substantial proportions of false-positives are to be expected (!) 

•  Variant calling quality depends on the experiment 
–  Raw DNA isolation 
–  Library preparation 
–  Sequencing (inter-lane differences) 

•  Variant calls require subsequent filtering before meaningful
 analyses can be conducted 

Estimated proportions of false SNV detections 

  NA12878 (CEU) NA19240 (YRI) 

 [%] All  
SNVs 

Consensus 
only P All  

SNVs 
Consensus 

only P 

454 FLXTM  6.3 
(6.1-6.5) 

0.7 
(0.5-3.6) <10-4 2.9 

(2.7-3.2) 
2.6 

(1.2-4.7) 0.08 

GA IIxTM  8.4 
(8.0-8.7) 

3.5 
(3.1-3.9) <10-4 11.1 

(10.9-11.3) 
3.9 

(3.5-4.3) <10-4 

SOLiDTM  17.1 
(16.9-17.4) 

0.8 
(0.1-2.6) <10-4 7.3 

(6.8-7.8) 
4.0 

(3.1-4.8) <10-4 

1000 Genomes, Pilot 2, chromosomes 1-22 

P values obtained from a permutation test. 

Nothnagel, Herrmann, et al. (2011) Hum Genet 
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Literature on file formats (& Ötzi) 

•  Metzker ML (2010) Sequencing technologies - the next 
generation. Nat Rev Genet 11:31-46. 

•  https://github.com/samtools/hts-specs  

•  https://www.broadinstitute.org/gatk/guide 

•  http://www.ebi.ac.uk/ena 
•  Keller & Graefen & Ball, et al. (2012) New insights into the

 Tyrolean Iceman’s origin and phenotype as inferred by
 whole-genome sequencing. Nat Comm 3:698. 

Ötzi’s museum 

South Tyrolean Archeological Museum, Bozen, Italy 

Hubert Berberich (de.wikipedia.org) 

 48 



Suzanne	M.	Leal
sleal@bcm.edu	

Copyrighted © S.M. Leal 2015

Filtering	Approaches	for	the	
Analysis	of	NGS	Data

A	Few	Words	About	Next	
Generation	Sequencing	

Generation of NGS Data

• Capture	arrays	can	be	used	with	sequencing	
to	generate	data	on		

• Exomes
–Aligent SureSelect 38MB
–Aligent SureSelect 50Mb
–Illumina TrueSeq Exome Enrichment  (62Mb)

• Targeted regions
• Genes

Whole	Exome	Sequencing

• Not	really	whole	exome
– Not	all	genes	are	targeted

• Great variability between capture arrays
– Different arrays capture different proportions of the exome

– Not	all	targeted	genes	are	captured
– Not	all	targeted	sequences	call	be	aligned
– Not	all	aligned	sequences	can	be	accurately	called
– Not	all	captured	regions	have	sufficient	depth	to	call	
variants	

NGS	Data
• For	exome	sequencing	high	quality	data	consists	of	
of	a	median	depth	of	>80X

• With	>90%	of	the	exome	covered	with	a	depth	of	
>10X

• Whole	Genome	sequencing	(good	quality)	~30X	
coverage
– Not	necessary	to	use	such	high	depth	for	whole	genome	
as	for	exome sequencing
• Reads are distributed more evenly across genome

• Sequence	data	for	an	exome	is	~1/15th of	the	data	
for	a	genome

Why	is	Exome Sequencing	Currently	Used	
More	Frequently	than	Whole	Genome?

• Number	1		Reason	- Cost!
– An	exome	is	~1/3rd of	the	cost	of	a	genome

• Easier	interpretation	of	the	data
– Focuses	on	regions	of	the	genome	we	understand	best	

• Ideal	for	the	study	of	highly	penetrant	diseases
• Exome sequencing	a	stop-gap	measure	until	the	
price	of	whole	genome	sequencing	becomes	more	
reasonable

• Already	starting	to	see	a	switch
– More	studies	performing	whole	genome	sequencing
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Genetic linkage
A phenomenon whereby two 
alleles, one each at two 
different loci, are transmitted 
together from parents to 
offspring more often than 
expected by chance. It leads  
to a recombination fraction 
smaller than 0.5. 

Phenocopies
Individuals that exhibit the 
phenotype of a Mendelian  
trait but that are not carriers  
of a susceptible genotype. 
Phenocopies were thought to 
result from non-genetic factors, 
but genes at locations other 
than those under current 
consideration can also lead  
to (genetic) phenocopies.

Penetrance
The conditional probability of 
being affected given one of the 
genotypes at the disease locus, 
‘++’, ‘+d’ or ‘dd’, where ‘d’ is 
the disease allele and ‘+’ the 
non-disease (wild-type) allele. 
More generally, penetrance is 
the conditional probability of a 
phenotype given a genotype.

Recombination
Two alleles, one from each of 
two loci, can be inherited from 
one parent but originate from 
two different grandparents.  
If the two marker loci are on 
the same chromosome, a 
recombination is the result of 
an odd number of crossovers 
between the markers.

Crossing over
A cytogenetic phenomenon 
that occurs during the 
formation of human gametes 
(egg or sperm cells). The salient 
feature of crossing over is that 
it occurs semi-randomly along 
chromosomes, with at least 
one crossover occurring on 
each chromosome in meiosis.

Recombination fraction
(θ). The expected proportion  
of recombinant children 
divided by the total number  
of recombinant and 
non-recombinant children. For 
two loci in close proximity to 
each other, θ is small owing to 
the randomness of crossing 
over, but it increases to 0.5 for 
loci that are far apart.

that have been followed up by sequencing10 across entire 
families. However, it should be noted that although link-
age analysis provides statistical evidence that a variant is 
involved in disease aetiology, false positives can occur 
when the variant that is tested is only in linkage disequi-
librium with the causal variant. When filter approaches 
are used, pheno copies11,12 and reduced penetrance can 
inhibit the ability to elucidate the causal variant but, 
because parametric linkage analysis incorporates a 
penetrance model, even under these circumstances  
the causal variant can usually be mapped.

Association analysis versus linkage analysis
Pertinent reviews of family-based association analysis 
have previously been published13–15, and only high-
lights are therefore presented here. Genetic linkage 
and association between two loci are both related to 
recombination — in the former, recombination events 
are scored over a limited number of observed genera-
tions, whereas the latter relies on large numbers of 
unobserved recombination events in past generations. 
As generations go by after an initial disease mutation 
has occurred, recombination events (crossing over) 
with surrounding markers tend to occur closer and 
closer to the disease locus so that measurable asso-
ciation between disease and marker loci extends only 
over short distances of up to 100 kb16,17, corresponding 
approximately to a recombination fraction (represented 
by θ) of 0.001, given 1 Mb ≈ 1 cM. Most differences 
between association and linkage analysis are due to 
this difference in the number of generations.

Association analysis using common variants gen-
erally allows for finer mapping than linkage analy-
sis using SNP loci, but one potentially problematic 
aspect of association analysis is population stratifica-
tion, which can lead to an increased number of false-
positive results if not properly accounted for18. This is 
not a problem in linkage analysis because children’s 
genotypes depend on those of their parents and not 
on population genotype frequencies. However, if some 
parental genotype data are missing, using incorrect 
marker allele frequencies can increase type I and II 
errors. It has thus been tempting to combine posi-
tive aspects of linkage and association analysis, which 
may be achieved by using family-based rather than 
population-based control individuals. Consider an 
affected individual and his or her parents. At a given 
marker locus, the alleles inherited by the child may be 
contrasted with the alleles that are not inherited19,20, 
where the latter can be shown to be representative of 
the alleles in the population21. The most well-known 
use of such family-based controls is probably the 
transmission disequilibrium test (TDT)22. For this to 
apply to multiple offspring, the null hypothesis of the  
TDT must include absence of linkage (θ = 0.5), so  
the TDT is a test for linkage that is only powerful when 
there is both linkage and association21. The TDT has 
been extended (the rare variant-TDT (RV-TDT))23 for 
use with WGS data incorporating several rare vari-
ant association tests and has been implemented in the 
Family-Based Association Test Toolkit (FBAT) suite of 
programs24. Some rare variant association tests25 ana-
lyse variants in aggregate (usually across a genomic 
region such as a gene) instead of analysing individual 
rare variants. It has been shown that analysing rare 
variants in aggregate is much more powerful than the 
individual analysis of rare variants25,26.

Approaches for linkage analysis
LOD scores. Linkage analysis can be carried out between 
a putative disease locus and a single marker locus (two-
point linkage) or across a set of markers (multipoint 
analysis) consisting of a small number of markers or 

Figure 1 | Workflow for the whole-genome 
sequencing filtering approach in human family 
data. Usually, one, two or more affected individuals, or 
affected and unaffected individuals, in a family have 
their genomes or exomes sequenced. Variants that are 
not predicted to be nonsense, missense or splice-site 
variants are usually excluded from further analyses 
because it is unlikely that they are causal. When the 
mode of inheritance of a disease is known, this 
information can be used to aid the selection of variants. 
For example, for an autosomal dominant disease, the 
affected pedigree member’s sequence data should 
display a heterozygous causal variant. Sequence data on 
additional pedigree members can help to reduce the 
number of variants that could potentially be disease 
causing. A final filtering step is performed in which 
those variants that are present in the databases dbSNP, 
1000 Genomes, ExAC and Exome Variant Server are 
excluded. Additionally, bioinformatic tools, such as 
Polyphen-2 (REF. 102), and measures of conservation, for 
example, PhyloP103, are often used to predict whether a 
variant is deleterious and therefore likely to be disease 
causing. Even after filtering steps, there may be many 
variants that need to be followed up in the remaining 
family members to elucidate whether the variant (or 
variants) segregate with the disease phenotype. If the 
family is from a population that is not represented in 
databases, then ethnically matched controls need to  
be sequenced to evaluate the frequency of the variant 
(or variants).
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Family	Based	Sequencing	 (Exome or	Whole	Genome)

Filtering	 to	Identify	Pathogenic	Variants Identifying	Casual	Genes	Using	
Exome/Whole	Genome	Sequencing

• Information	on	mode	of	inheritance	may	give	clues	
to	type	of	variants	which	you	are	looking	for
– Autosomal	recessive	phenotype	for	consanguineous	
pedigree	

• Homozygous variants
– Autosomal	recessive	phenotype	from	outbreed	pedigree

• Compound heterozygous variants
• Homozygous variants

– Suspected	de	Novo	event
• Heterozygous variant –which is absent in parents

– Autosomal	Dominant
• Heterozygous variant 

Genetic linkage
A phenomenon whereby two 
alleles, one each at two 
different loci, are transmitted 
together from parents to 
offspring more often than 
expected by chance. It leads  
to a recombination fraction 
smaller than 0.5. 

Phenocopies
Individuals that exhibit the 
phenotype of a Mendelian  
trait but that are not carriers  
of a susceptible genotype. 
Phenocopies were thought to 
result from non-genetic factors, 
but genes at locations other 
than those under current 
consideration can also lead  
to (genetic) phenocopies.

Penetrance
The conditional probability of 
being affected given one of the 
genotypes at the disease locus, 
‘++’, ‘+d’ or ‘dd’, where ‘d’ is 
the disease allele and ‘+’ the 
non-disease (wild-type) allele. 
More generally, penetrance is 
the conditional probability of a 
phenotype given a genotype.

Recombination
Two alleles, one from each of 
two loci, can be inherited from 
one parent but originate from 
two different grandparents.  
If the two marker loci are on 
the same chromosome, a 
recombination is the result of 
an odd number of crossovers 
between the markers.

Crossing over
A cytogenetic phenomenon 
that occurs during the 
formation of human gametes 
(egg or sperm cells). The salient 
feature of crossing over is that 
it occurs semi-randomly along 
chromosomes, with at least 
one crossover occurring on 
each chromosome in meiosis.

Recombination fraction
(θ). The expected proportion  
of recombinant children 
divided by the total number  
of recombinant and 
non-recombinant children. For 
two loci in close proximity to 
each other, θ is small owing to 
the randomness of crossing 
over, but it increases to 0.5 for 
loci that are far apart.

that have been followed up by sequencing10 across entire 
families. However, it should be noted that although link-
age analysis provides statistical evidence that a variant is 
involved in disease aetiology, false positives can occur 
when the variant that is tested is only in linkage disequi-
librium with the causal variant. When filter approaches 
are used, pheno copies11,12 and reduced penetrance can 
inhibit the ability to elucidate the causal variant but, 
because parametric linkage analysis incorporates a 
penetrance model, even under these circumstances  
the causal variant can usually be mapped.

Association analysis versus linkage analysis
Pertinent reviews of family-based association analysis 
have previously been published13–15, and only high-
lights are therefore presented here. Genetic linkage 
and association between two loci are both related to 
recombination — in the former, recombination events 
are scored over a limited number of observed genera-
tions, whereas the latter relies on large numbers of 
unobserved recombination events in past generations. 
As generations go by after an initial disease mutation 
has occurred, recombination events (crossing over) 
with surrounding markers tend to occur closer and 
closer to the disease locus so that measurable asso-
ciation between disease and marker loci extends only 
over short distances of up to 100 kb16,17, corresponding 
approximately to a recombination fraction (represented 
by θ) of 0.001, given 1 Mb ≈ 1 cM. Most differences 
between association and linkage analysis are due to 
this difference in the number of generations.

Association analysis using common variants gen-
erally allows for finer mapping than linkage analy-
sis using SNP loci, but one potentially problematic 
aspect of association analysis is population stratifica-
tion, which can lead to an increased number of false-
positive results if not properly accounted for18. This is 
not a problem in linkage analysis because children’s 
genotypes depend on those of their parents and not 
on population genotype frequencies. However, if some 
parental genotype data are missing, using incorrect 
marker allele frequencies can increase type I and II 
errors. It has thus been tempting to combine posi-
tive aspects of linkage and association analysis, which 
may be achieved by using family-based rather than 
population-based control individuals. Consider an 
affected individual and his or her parents. At a given 
marker locus, the alleles inherited by the child may be 
contrasted with the alleles that are not inherited19,20, 
where the latter can be shown to be representative of 
the alleles in the population21. The most well-known 
use of such family-based controls is probably the 
transmission disequilibrium test (TDT)22. For this to 
apply to multiple offspring, the null hypothesis of the  
TDT must include absence of linkage (θ = 0.5), so  
the TDT is a test for linkage that is only powerful when 
there is both linkage and association21. The TDT has 
been extended (the rare variant-TDT (RV-TDT))23 for 
use with WGS data incorporating several rare vari-
ant association tests and has been implemented in the 
Family-Based Association Test Toolkit (FBAT) suite of 
programs24. Some rare variant association tests25 ana-
lyse variants in aggregate (usually across a genomic 
region such as a gene) instead of analysing individual 
rare variants. It has been shown that analysing rare 
variants in aggregate is much more powerful than the 
individual analysis of rare variants25,26.

Approaches for linkage analysis
LOD scores. Linkage analysis can be carried out between 
a putative disease locus and a single marker locus (two-
point linkage) or across a set of markers (multipoint 
analysis) consisting of a small number of markers or 

Figure 1 | Workflow for the whole-genome 
sequencing filtering approach in human family 
data. Usually, one, two or more affected individuals, or 
affected and unaffected individuals, in a family have 
their genomes or exomes sequenced. Variants that are 
not predicted to be nonsense, missense or splice-site 
variants are usually excluded from further analyses 
because it is unlikely that they are causal. When the 
mode of inheritance of a disease is known, this 
information can be used to aid the selection of variants. 
For example, for an autosomal dominant disease, the 
affected pedigree member’s sequence data should 
display a heterozygous causal variant. Sequence data on 
additional pedigree members can help to reduce the 
number of variants that could potentially be disease 
causing. A final filtering step is performed in which 
those variants that are present in the databases dbSNP, 
1000 Genomes, ExAC and Exome Variant Server are 
excluded. Additionally, bioinformatic tools, such as 
Polyphen-2 (REF. 102), and measures of conservation, for 
example, PhyloP103, are often used to predict whether a 
variant is deleterious and therefore likely to be disease 
causing. Even after filtering steps, there may be many 
variants that need to be followed up in the remaining 
family members to elucidate whether the variant (or 
variants) segregate with the disease phenotype. If the 
family is from a population that is not represented in 
databases, then ethnically matched controls need to  
be sequenced to evaluate the frequency of the variant 
(or variants).
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Family	Based	Sequencing	 (Exome or	Whole	Genome)

Filtering	 to	Identify	Pathogenic	Variants Screening	Databases
• Databases	of	Exome and	genome	Data

– Contain	individuals	who	have	not	been	phenotyped
• e.g. 1000 Genome data

– Were	ascertained	because	of	disease	phenotype
• Coronary heart disease

– Several	databases	available
• 1000 Genomes

– http://www.1000genomes.org/
• Exome Variant Server

– http://evs.gs.washington.edu/EVS/
• ExAC

– http://exac.broadinstitute.org/

• Most	extensive	database	with	data	on	60,706	individuals
• Provides	break-downs	by	different	ethnic	groups
• Although	 contains	individuals	with	disease,	e.g.	schizophrenia

• No	individuals	 with	diagnosed	 early	onset	disease	included
• Information	on	allele	frequencies

• Numbers	of	heterozyous and	homozygous	 individuals	 for	a	variant
• Can	evaluate	read	depth	to	determine	if	variant	site	of	interest	is	covered	

with	adequate	read	depth	and	in	how	many	individuals

Contributing	Projects
• 1000	Genomes
• Bulgarian	Trios
• Finland-United	States	Investigation	of	NIDDM	Genetics	(FUSION)
• GoT2D
• Inflammatory	Bowel	Disease
• METabolic Syndrome	In	Men	(METSIM)
• Jackson	Heart	Study
• Myocardial	Infarction	Genetics	Consortium:
• Italian	Atherosclerosis,	Thrombosis,	and	Vascular	Biology	Working	Group
• Ottawa	Genomics	Heart	Study
• Pakistan	Risk	of	Myocardial	Infarction	Study	(PROMIS)
• Precocious	Coronary	Artery	Disease	Study	 (PROCARDIS)
• Registre Gironi del	COR	(REGICOR)
• NHLBI-GO	Exome Sequencing	Project	(ESP)
• National	Institute	of	Mental	Health	(NIMH)	Controls
• SIGMA-T2D
• Sequencing	in	Suomi (SISu)
• Swedish	Schizophrenia	&	Bipolar	Studies
• T2D-GENES
• Schizophrenia	Trios	from	Taiwan
• The	Cancer	Genome	Atlas	(TCGA)
• Tourette	Syndrome	Association	International	Consortium	for	Genomics	(TSAICG)
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Avoid	0%	Cut-off	When	Filtering
• Databases	do	not	consist	of	disease	free	
individuals

• Mendelian variants	may	not	be	100%	penetrant
• For	autosomal	recessive	traits

– Carriers	may	be	present	in	databases
• Frequency	cut-offs	should	be	disease	specific

– Unlikely	pathogenic	variants	will	have	a	frequency	of	
>0.5%
• There are rare exceptions

– GJB2 35delG variant for nonsydromic hearing impairment

Genetic linkage
A phenomenon whereby two 
alleles, one each at two 
different loci, are transmitted 
together from parents to 
offspring more often than 
expected by chance. It leads  
to a recombination fraction 
smaller than 0.5. 

Phenocopies
Individuals that exhibit the 
phenotype of a Mendelian  
trait but that are not carriers  
of a susceptible genotype. 
Phenocopies were thought to 
result from non-genetic factors, 
but genes at locations other 
than those under current 
consideration can also lead  
to (genetic) phenocopies.

Penetrance
The conditional probability of 
being affected given one of the 
genotypes at the disease locus, 
‘++’, ‘+d’ or ‘dd’, where ‘d’ is 
the disease allele and ‘+’ the 
non-disease (wild-type) allele. 
More generally, penetrance is 
the conditional probability of a 
phenotype given a genotype.

Recombination
Two alleles, one from each of 
two loci, can be inherited from 
one parent but originate from 
two different grandparents.  
If the two marker loci are on 
the same chromosome, a 
recombination is the result of 
an odd number of crossovers 
between the markers.

Crossing over
A cytogenetic phenomenon 
that occurs during the 
formation of human gametes 
(egg or sperm cells). The salient 
feature of crossing over is that 
it occurs semi-randomly along 
chromosomes, with at least 
one crossover occurring on 
each chromosome in meiosis.

Recombination fraction
(θ). The expected proportion  
of recombinant children 
divided by the total number  
of recombinant and 
non-recombinant children. For 
two loci in close proximity to 
each other, θ is small owing to 
the randomness of crossing 
over, but it increases to 0.5 for 
loci that are far apart.

that have been followed up by sequencing10 across entire 
families. However, it should be noted that although link-
age analysis provides statistical evidence that a variant is 
involved in disease aetiology, false positives can occur 
when the variant that is tested is only in linkage disequi-
librium with the causal variant. When filter approaches 
are used, pheno copies11,12 and reduced penetrance can 
inhibit the ability to elucidate the causal variant but, 
because parametric linkage analysis incorporates a 
penetrance model, even under these circumstances  
the causal variant can usually be mapped.

Association analysis versus linkage analysis
Pertinent reviews of family-based association analysis 
have previously been published13–15, and only high-
lights are therefore presented here. Genetic linkage 
and association between two loci are both related to 
recombination — in the former, recombination events 
are scored over a limited number of observed genera-
tions, whereas the latter relies on large numbers of 
unobserved recombination events in past generations. 
As generations go by after an initial disease mutation 
has occurred, recombination events (crossing over) 
with surrounding markers tend to occur closer and 
closer to the disease locus so that measurable asso-
ciation between disease and marker loci extends only 
over short distances of up to 100 kb16,17, corresponding 
approximately to a recombination fraction (represented 
by θ) of 0.001, given 1 Mb ≈ 1 cM. Most differences 
between association and linkage analysis are due to 
this difference in the number of generations.

Association analysis using common variants gen-
erally allows for finer mapping than linkage analy-
sis using SNP loci, but one potentially problematic 
aspect of association analysis is population stratifica-
tion, which can lead to an increased number of false-
positive results if not properly accounted for18. This is 
not a problem in linkage analysis because children’s 
genotypes depend on those of their parents and not 
on population genotype frequencies. However, if some 
parental genotype data are missing, using incorrect 
marker allele frequencies can increase type I and II 
errors. It has thus been tempting to combine posi-
tive aspects of linkage and association analysis, which 
may be achieved by using family-based rather than 
population-based control individuals. Consider an 
affected individual and his or her parents. At a given 
marker locus, the alleles inherited by the child may be 
contrasted with the alleles that are not inherited19,20, 
where the latter can be shown to be representative of 
the alleles in the population21. The most well-known 
use of such family-based controls is probably the 
transmission disequilibrium test (TDT)22. For this to 
apply to multiple offspring, the null hypothesis of the  
TDT must include absence of linkage (θ = 0.5), so  
the TDT is a test for linkage that is only powerful when 
there is both linkage and association21. The TDT has 
been extended (the rare variant-TDT (RV-TDT))23 for 
use with WGS data incorporating several rare vari-
ant association tests and has been implemented in the 
Family-Based Association Test Toolkit (FBAT) suite of 
programs24. Some rare variant association tests25 ana-
lyse variants in aggregate (usually across a genomic 
region such as a gene) instead of analysing individual 
rare variants. It has been shown that analysing rare 
variants in aggregate is much more powerful than the 
individual analysis of rare variants25,26.

Approaches for linkage analysis
LOD scores. Linkage analysis can be carried out between 
a putative disease locus and a single marker locus (two-
point linkage) or across a set of markers (multipoint 
analysis) consisting of a small number of markers or 

Figure 1 | Workflow for the whole-genome 
sequencing filtering approach in human family 
data. Usually, one, two or more affected individuals, or 
affected and unaffected individuals, in a family have 
their genomes or exomes sequenced. Variants that are 
not predicted to be nonsense, missense or splice-site 
variants are usually excluded from further analyses 
because it is unlikely that they are causal. When the 
mode of inheritance of a disease is known, this 
information can be used to aid the selection of variants. 
For example, for an autosomal dominant disease, the 
affected pedigree member’s sequence data should 
display a heterozygous causal variant. Sequence data on 
additional pedigree members can help to reduce the 
number of variants that could potentially be disease 
causing. A final filtering step is performed in which 
those variants that are present in the databases dbSNP, 
1000 Genomes, ExAC and Exome Variant Server are 
excluded. Additionally, bioinformatic tools, such as 
Polyphen-2 (REF. 102), and measures of conservation, for 
example, PhyloP103, are often used to predict whether a 
variant is deleterious and therefore likely to be disease 
causing. Even after filtering steps, there may be many 
variants that need to be followed up in the remaining 
family members to elucidate whether the variant (or 
variants) segregate with the disease phenotype. If the 
family is from a population that is not represented in 
databases, then ethnically matched controls need to  
be sequenced to evaluate the frequency of the variant 
(or variants).
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Family	Based	Sequencing	 (Exome or	Whole	Genome)

Filtering	 to	Identify	Pathogenic	Variants

Test	for	Segregation	with	Disease	
Phenotype

• Is	a	variant	ruled	out	if	it	does	not	completely	
segregate	with	the	disease	phenotype?

• What	are	reasons	for	incomplete	segregation?
– Variant	was	a	false	positive	call
– Not	pathogenic
– Locus	heterogeneity	within	the	pedigree
– “Phenocopies”	within	the	pedigree
– Reduced	penetrance
– Incorrect	pedigree	structure
– Sample	swaps

Screening	Control	Individuals
• Is	it	not	always	necessary	to	screen	controls	given	
the	large	available	databases

• Depends	if	the	study	population	is	well	
represented	in	the	public	databases

• For	under	represented	populations	variant	
frequencies	should	be	examined	in	controls
– Or	individuals	from	the	same	populations	who	were	
ascertained	for	another	phenotype

A	Few	Examples	of	Successful	NGS	
Studies	Using	Filtering	Approaches	 Exome sequencing identifies the cause of a Mendelian disorder

Sarah B. Ng1,*, Kati J. Buckingham2,*, Choli Lee1, Abigail W. Bigham2, Holly K. Tabor2,
Karin M. Dent3, Chad D. Huff4, Paul T. Shannon5, Ethylin Wang Jabs6,7, Deborah A.
Nickerson1, Jay Shendure1,†, and Michael J. Bamshad1,2,8,†

1Department of Genome Sciences, University of Washington, Seattle, Washington, USA
2Department of Pediatrics, University of Washington, Seattle, Washington, USA 3Department of
Pediatrics, University of Utah, Salt Lake City, Utah, USA 4Department of Human Genetics,
University of Utah, Salt Lake City, Utah, USA 5Institute of Systems Biology, Seattle WA, USA
6Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York,
New York, USA 7Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
8Seattle Children’s Hospital, Seattle, Washington, USA

Abstract
We demonstrate the first successful application of exome sequencing to discover the gene for a
rare, Mendelian disorder of unknown cause, Miller syndrome (OMIM %263750). For four
affected individuals in three independent kindreds, we captured and sequenced coding regions to a
mean coverage of 40X, and sufficient depth to call variants at ~97% of each targeted exome.
Filtering against public SNP databases and a small number of HapMap exomes for genes with two
novel variants in each of the four cases identified a single candidate gene, DHODH, which
encodes a key enzyme in the pyrimidine de novo biosynthesis pathway. Sanger sequencing
confirmed the presence of DHODH mutations in three additional families with Miller syndrome.
Exome sequencing of a small number of unrelated, affected individuals is a powerful, efficient
strategy for identifying the genes underlying rare Mendelian disorders and will likely transform
the genetic analysis of monogenic traits.

Rare monogenic diseases are of substantial interest because identification of their genetic
basis provides important knowledge about disease mechanisms, biological pathways, and
potential therapeutic targets. However, to date, allelic variants underlying fewer than half of
all monogenic disorders have been discovered. This is because the identification of allelic
variants for many rare disorders is fundamentally limited by factors such as the availability
of only a small number of cases/families, locus heterogeneity, or substantially reduced
reproductive fitness, each of which lessens the power of traditional positional cloning
strategies and often restricts the analysis to a priori identified candidate genes. In contrast,
deep resequencing of all human genes for discovery of allelic variants could potentially
identify the gene underlying any given rare monogenic disease. Massively parallel DNA
sequencing technologies1 have rendered the whole genome resequencing of individual

†Corresponding authors: Mike Bamshad, MD, Department of Pediatrics, University of Washington School of Medicine, Box 356320,
1959 NE Pacific Street, Seattle, WA 98195, Jay Shendure, MD, PhD, Department of Genome Sciences, University of Washington
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D.A.N., and J.S.
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Figure 2. Genomic structure of the exons encoding the open reading frame of DHODH
DHODH is composed of 9 exons that encode untranslated regions (orange) and protein
coding sequence (blue). Arrows indicate the locations of 11 different mutations found in 6
families with Miller syndrome.
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DHODH	is	composed	of	9	exons	that	encode	the	untranslated region	 (orange)	and	protein	coding	
region	 (blue).	 	Arrows	indicate	the	location	of	11	different	variants	found	 in	six	Miller	families

DHODH Gene	Identified
• Four	individuals	with	Miller	syndrome	
underwent	exome sequencing
– From	three	families

• An	additional	three	Miller	families	where	
followed	up	with	Sanger	Sequencing

From	Ng	et	al.	2010

Exome sequencing identifies MLL2 mutations as a cause of
Kabuki syndrome

Sarah B. Ng1,*, Abigail W. Bigham2,*, Kati J. Buckingham2, Mark C. Hannibal2,3, Margaret
McMillin2, Heidi Gildersleeve2, Anita E. Beck2,3, Holly K. Tabor2,3, Greg M. Cooper1,
Heather C. Mefford2, Choli Lee1, Emily H. Turner1, Josh D. Smith1, Mark J. Rieder1, Koh-
ichiro Yoshiura4, Naomichi Matsumoto5, Tohru Ohta6, Norio Niikawa6, Deborah A.
Nickerson1, Michael J. Bamshad1,2,3,†, and Jay Shendure1,†
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2Department of Pediatrics, University of Washington, Seattle, Washington, USA
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Abstract
We demonstrate the successful application of exome sequencing1–3 to discover a gene for an
autosomal dominant disorder, Kabuki syndrome (OMIM %147920). The exomes of ten unrelated
probands were subjected to massively parallel sequencing. After filtering against SNP databases,
there was no compelling candidate gene containing novel variants in all affected individuals. Less
stringent filtering criteria permitted modest genetic heterogeneity or missing data, but identified
multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, a
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Kabuki	Syndrome

• Exome sequenced	
– 10	unrelated	probands with	Kabuki	syndrome

Kabuki	Syndrome

• Dysmorphic,	skeletal,	immunologic	&	mild	intellectual	disabilities
• 1/30,000	to	1/50,0000
• Most	cases	simplex	

– Very	few	cases	of	parental	transmission

From	
Ng	et	al.	2010

Kabuki	Syndrome

• Could	have	tackled	problem	by	sequencing	trios
– Suspected	to	be	de	Novo

• Article	describes	how	initial	strategy	failed	since	not	
all	children	have	Kabuki	syndrome due	to	variants	in	
the	same	gene	(locus	heterogeneity)

Kabuki	Syndrome

Not	the	
correct	
gene

From	Ng	et	al.	2010

Kabuki	Syndrome

• After	failure	to	identify	gene
• Clinicians	ranked	the	patients	from	typical	Kabuki	
syndrome	to	atypical

• Predicted	functional	assessment	of	variants
• Manual	review	of	data	highlighted	previously	
unidentified	nonsense	variant	in	MLL2 gene
– Identified	in	the	four	highest	ranked	cases	1,	2,	3	&	4
– Additional	found	in	patients	6,	7	&	9
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Kabuki	Syndrome

• Additional	Kabuki	cases	identified	to	have	MLL2
gene	mutations
– 26/43	cases

• 12/12	patients	with	available	parents	had	de	Novo	
variants

ARTICLE
doi:10.1038/nature13908

The contribution of de novo coding
mutations to autism spectrum disorder
Ivan Iossifov1*, Brian J. O’Roak2,3*, Stephan J. Sanders4,5*, Michael Ronemus1*, Niklas Krumm2, Dan Levy1, Holly A. Stessman2,
Kali T. Witherspoon2, Laura Vives2, Karynne E. Patterson2, Joshua D. Smith2, Bryan Paeper2, Deborah A. Nickerson2,
Jeanselle Dea4, Shan Dong5,6, Luis E. Gonzalez7, Jeffrey D. Mandell4, Shrikant M. Mane8, Michael T. Murtha7,
Catherine A. Sullivan7, Michael F. Walker4, Zainulabedin Waqar7, Liping Wei6,9, A. Jeremy Willsey4,5, Boris Yamrom1,
Yoon-ha Lee1, Ewa Grabowska1,10, Ertugrul Dalkic1,11, Zihua Wang1, Steven Marks1, Peter Andrews1, Anthony Leotta1,
Jude Kendall1, Inessa Hakker1, Julie Rosenbaum1, Beicong Ma1, Linda Rodgers1, Jennifer Troge1, Giuseppe Narzisi1,10,
Seungtai Yoon1, Michael C. Schatz1, Kenny Ye12, W. Richard McCombie1, Jay Shendure2, Evan E. Eichler2,13,
Matthew W. State4,5,7,14 & Michael Wigler1

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease.
Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By com-
paring affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-
disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding
de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur
opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence
quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about
400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar
number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published
targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes
and embryonically expressed genes. Most of the significance for the latter comes from affected females.

Autism spectrum disorder (ASD) is characterized by impaired social
interaction and communication, repetitive behaviour and restricted inter-
ests. It has a strong male bias, especially in high-functioning affected
individuals. The contribution from transmission has long been suspected
from increased sibling risk1, but more recently the role of germline de
novo (DN) mutation has been established, first from large-scale copy
number variation in simplex families2–5, and subsequently from exome
sequencing. The smaller DN variants observed by DNA sequencing pin-
point candidate gene targets6–8. These developments have promoted a
new model for causation, and re-evaluation of sibling risk9,10.

Here we report whole exome sequencing of the Simons Simplex Col-
lection (SSC)11 and an extensive list of DN mutated targets, including
27 recurrent LGD (nonsense, frameshift and splice site) targets. The size
and uniformity of this study allow an unprecedented evaluation of gen-
etic vulnerability to ASD. We subdivide target sets by mutation type
(missense and LGD) and affected child status (gender and non-verbal
IQ, to which we refer throughout as ‘IQ’), and explore the overlap be-
tween target sets and their enrichment for certain gene categories. We
make estimates of the number of genes vulnerable to a given mutation
type and the proportion of simplex autism resulting from DN mutation
for each affected subpopulation.

SSC sequencing and validation
We report on 2,517 of ,2,800 SSC families including ,800 that were
previously published6–8. We sequenced 2,508 affected children, 1,911

unaffected siblings and the parents of each family. Within the SSC, the
overall gender bias in affected individuals, 7 males to 1 female, is nearly
twice that typically reported. Exomes were analysed at Cold Spring Har-
bor Laboratory (CSHL), Yale School of Medicine, and University of
Washington (Extended Data Figs 1 and 2 and Supplementary Table 1).
Pipelines were blind with respect to affected status. For uniformity, all
data were reanalysed with the CSHL pipeline, allowing comparison of
analysis tools. All calls were validated or strongly supported, as listed
(Supplementary Table 2) and described (Methods).

Rates and targets of DN mutation
For greatest precision we measured DN rates in quad families (one affec-
ted and one unaffected child) over genomic positions at which all family
members had $403 sequence coverage (Methods and Supplementary
Table 3). This ‘joint 403 region’ in the SSC was 32 gigabases (Gb) in total,
or 48% of the targeted exome, from 1,867 quads. DN events were shared
by siblings 1% of the time (Supplementary Table 2); and 1% of mutations
had nearby nucleotide positions altered, presumably by single mutagenic
events12–14 (Supplementary Table 4). The overall rate of base substitu-
tion is 1.8 3 1028 (61029) per base pair (Supplementary Table 5).

Rates of DN synonymous mutation in affected (0.34 per child) and
unaffected (0.33 per child) siblings do not differ significantly (Fig. 1).
By contrast, LGD mutations occur at significantly higher rates in affec-
ted versus unaffected siblings (Fig. 1 and Extended Data Fig. 3). The
rate of LGD mutations is 0.12 in unaffected siblings and 0.21 in affected

*These authors contributed equally to this work.
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Discover	of	de	novo	events	using	Exome
Sequence	Data	for	Autism

• Exome sequence	data	from	2,517	simplex	families	from	the	
Simons	Simplex	Collection	(SSC)	was	analyzed
– Probands with	autism	spectrum	disorder	and	their	parents	
sequenced

– 1,911	families	also	had	sequence	data	on	an	unaffected	sibling

Nature

probands, an ‘ascertainment differential’ of 0.21 2 0.12 5 0.09 (P 5
2 3 1025). Thus, we estimate ,43% (0.09 out of 0.21) of LGD events
in probands contribute to ASD diagnoses. For DN missense, the rate is
0.82 for unaffected siblings and 0.94 for affected probands, an ascer-
tainment differential of 0.12 (P 5 0.01). We estimate only ,13% (0.12
out of 0.94) of DN missense events in probands contribute to ASD
diagnoses. There is a wide confidence interval for the missense ascer-
tainment differential (Supplementary Table 6); for this reason, we con-
sider primarily the LGD events for our analysis and look on missense
data as supporting.

To identify gene targets for DN mutation, we examined all family
data including trios. We provide a complete list of all mutations (Sup-
plementary Table 2) along with the number of mutations of each type
in each gene (Supplementary Table 7). A total of 391 DN LGD muta-
tions in 353 target genes were identified and validated in autism pro-
bands. Of these, 27 target genes were recurrent (Fig. 2). Among 1,500
missense targets in probands, 145 were recurrent.

We examined all alleles transmitted opposite a DN LGD target. We
saw no instance in 391 observations in which the allele opposite an
LGD target carried a rare transmitted LGD variant (in ,1% of parental
exomes), and only four in which such an allele carried a rare missense
variant. Thus, the DN mutations do not generally cause homozygous
loss-of-function of their target (Supplementary Table 8).

Confirming previous results7,8,15, observed DN mutations arise three
times as often in the paternal background, and mutation rates rise with
age of either parent (Extended Data Fig. 4 and Methods). The latter may
provide a partial explanation for increased autism rates in children born
of older parents.

Functional clustering in target genes
Previous studies presented evidence of functional clustering in targets
of DN LGD mutation in affected individuals6–8,16. Our larger data set
was examined with an improved null ‘length model’ for mutation in
which the probability of DN mutation in a gene is proportional to its
length (Methods and Extended Data Fig. 5). We tested for enrichment
within DN LGD and missense targets in probands and siblings for the
following six classes: (1) FMRP target genes, with transcripts bound by
the fragile X mental retardation protein8,17; (2) genes encoding chromatin
modifiers; (3) genes expressed preferentially in embryos18,19; (4) genes
encoding postsynaptic density proteins20; (5) essential genes21; and (6)
genes identified as Mendelian disease genes22 (Table 1, Supplementary
Table 6 and Methods). These data provide the strongest evidence yet for

overlap of DN LGD targets in affected probands with FMRP targets (55
observed versus 34.1 expected; P 5 4 3 1024) and chromatin modifiers
(26 observed versus 11.8 expected; P 5 3 3 1024). We also observed sig-
nal from mutation in genes expressed in embryonic development23 (65
observed versus 45.0 expected; P 5 2 3 1023). The latter signal comes
mainly from the small number of female affected individuals (23 ob-
served versus 8.5 expected from 67 LGD targets; P 5 5 3 1026). The 27
genes with recurrent LGDs show strong enrichment for FMRP targets
(14 observed versus 2.6 expected; P 5 4 3 1028) and chromatin modi-
fiers (6 observed versus 0.9 expected; P 5 2 3 1024). By contrast, no
significant enrichment for these gene sets is seen for the DN LGD tar-
gets in unaffected siblings.

The 1,500 DN missense targets in probands are also enriched for
FMRP targets and embryonically expressed genes. We observe 171
FMRP targets (144.8 expected; P 5 0.03), and 220 embryonically ex-
pressed genes (191.4 expected; P 5 0.03). As before, the signal for em-
bryonically expressed genes comes almost entirely from the small number
of female affected individuals (48 observed, 31.1 expected from 244 tar-
gets; P 5 0.002). With the exception of chromatin modifiers, contrib-
utory DN missense and LGD mutations tend to strike similar functional
classes of genes.

De novo mutation and IQ
Higher IQ probands are heavily skewed towards males24. For further
analyses, we chose to divide the affected male population roughly in
half into higher and lower IQ sets. We investigated whether higher IQ
(.90) males comprise a population with a distinguishable genetic sig-
nature. There is a decreased ascertainment differential for DN LGD
mutations in male children with higher IQ relative to other affected
individuals (Extended Data Fig. 3 and Supplementary Table 6). This is
not statistically significant over the joint 403 region. However, over
the entire data set, the drop in IQ is 5 points for males with DN LGD
mutation compared to those without mutation (P 5 0.01; Fig. 2). The
mean IQ of affected males with recurrent DN LGDs drops 20 points
(P 5 0.00001, Fig. 2). Significance is also evident as we examine targets
by functional class. Males with LGD mutations in FMRP targets have
an average 14-point drop (P 5 0.001). This trend continues with LGD
targets in the other functional classes—chromatin modifiers and embry-
onically expressed genes—but with reduced significance. We observe
little signal from DN missense mutation, even in recurrent targets, either
because these events are less likely to contribute or because they are less
severe. Female probands show the same trends as males, but as they
comprise a smaller population, the significance is weak (Fig. 2).

Further evidence for a distinguishable signature among the higher
IQ comes from the functional enrichment within DN target gene sets.
LGD targets in females are enriched for all three functional gene classes.
LGD targets in lower IQ affected males are significantly enriched for
the FMRP-associated and chromatin-modifier gene classes (Supplemen-
tary Table 6). However, for LGD targets in higher IQ males we see no
statistically significant enrichment for any of the gene categories.

Target overlaps in children and mutation-type groups
We partitioned children into four primary groups: unaffected siblings,
affected females, affected males with higher IQ, and affected males
with lower IQ. We analysed these and various combinations for three
types of DN mutations: LGDs, missense and synonymous (Supplemen-
tary Table 6). Targets of synonymous mutations in all children and
targets of LGD and missense mutations in unaffected siblings have no
significant overlap with targets from any other group. We see no signi-
ficant overlap between targets in higher IQ males with targets from other
groups. In strong contrast, the 67 LGD targets from affected females
overlap significantly with the 166 LGD targets from lower IQ affected
males (10 observed, 1.3 expected, P 5 7 3 1027). We therefore refer to
the group of lower IQ males and affected females as a ‘joint’ class. In this
class, the 874 missense and 223 LGD targets also overlap significantly (39
observed, 22.1 expected, P 5 0.0008). Thus, not only do missense and
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Figure 1 | Rates of de novo events by mutational type in the SSC. Rates
per child are estimated from the 403 joint coverage target region, then
extrapolated for the entire exome. Mutation types are displayed by class,
and the combined rate for all LGDs is shown at the bottom right. For each event
type, the significance between probands and unaffected siblings is given.
Sib, unaffected siblings. The errors bar represent 95% confidence interval for
the mean rates.
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Rates	of	de	novo	Events	by	Variant	Type

Likely	gene	disruptive	 	(LGD)

From	Iossitov et	al.	2014

LGD mutation target genes with shared functionality, the same genes
are sometimes targeted.

Number of vulnerable genes
Our analysis of functional clustering and overlaps within target classes
suggests that the mutations ascertained in probands target restricted

sets of vulnerable genes. We next sought evidence for excess recurrence
of targets. We first examined synonymous mutations and mutations in
unaffected children. Among the 647 synonymous events in probands,
there are 25 gene targets found in more than one child, close to the null
expectation of 19.9 (P 5 0.13). Recurrent LGD (n 5 3 out of 179 events)
or missense targets (70 out of 1,143 events) in unaffected siblings are

Table 1 | Enrichment of DN mutations in six gene classes
rDN LGD (ASD) DN LGD (ASD) DN miss (ASD) DN LGD (sib) DN miss (sib)

No. of genes Overlap (27) Overlap (353) Overlap (1,513) Overlap (176) Overlap (1,066)

Gene class Obs Exp P Obs Exp P Obs Exp P Obs Exp P Obs Exp P

FMRP 842 14 2.6 4 3 1028 55 34.1 4 3 1024 171 144.8 0.03 14 17.0 0.52 117 102.9 0.15
Chromatin 428 6 0.9 2 3 1024 26 11.8 3 3 1024 57 50.0 0.31 5 5.9 1.00 37 35.6 0.80
Embryonic 1,912 6 3.4 0.15 65 45.0 2 3 1023 220 191.4 0.03 20 22.5 0.65 142 136.0 0.58
PSD 1,445 4 2.5 0.31 34 32.5 0.78 159 138.1 0.07 22 16.2 0.15 113 98.1 0.12
Essential 1,750 7 3.2 0.04 50 42.4 0.22 201 180.3 0.10 20 21.2 0.91 127 128.1 0.96
Mendelian 256 0 0.6 1.00 3 8.0 0.07 31 34.0 0.66 5 4.0 0.61 20 24.1 0.47
DN LGD (Scz) 93 2 0.3 0.03 9 3.7 0.01 16 15.7 0.90 2 1.8 0.71 8 11.2 0.45
DN LGD (ID) 30 3 0.1 1 3 1024 8 1.2 3 3 1025 10 4.9 0.04 0 0.6 1.00 5 3.5 0.41

We tested eight classes (Methods) for enrichment against five lists of targets of DN mutations. These include genes with (1) recurrent DN LGD mutations in probands (rDN LGD (ASD)); (2) DN LGD mutations in
probands (DN LGD (ASD)); (3) DN missense mutations in probands (DN miss (ASD)); (4) DN LGDs in siblings (DN LGD (sib)); and (5) DN missense mutations in siblings (DN miss (sib)). Observed (obs) and
expected (exp) numbers are shown with P values obtained from two-sided binomial tests. Expected numbers and P values are based on a length model in which DN mutations occur randomly in all genes,
proportional to length.
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Figure 2 | Recurrently hit genes and non-verbal IQ. Affected females
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a mean IQ of 86 (top, P 5 1027 by Student’s t-test). Vertical dashed line
indicates an IQ of 90. Middle (left) shows IQ for affected children with LGD
mutations in genes hit recurrently (right). Recurrently mutated genes are
clustered into four categories as shown. The last four columns give overall
numbers of DN LGD and missense (MS) mutations. Bottom, eight classes of

DN mutations are considered: all LGDs, recurrent LGDs, LGDs in FMRP
targets (FXG), LGDs in chromatin modifiers (CHM), LGDs in embryonically
expressed genes (EMB), all missense mutations, recurrent missense mutations
and synonymous mutations. Probands are divided by the presence of DN
mutations and gender. Means, 95% confidence intervals and P values
(Student’s t-test) are shown.

RESEARCH ARTICLE

2 1 8 | N A T U R E | V O L 5 1 5 | 1 3 N O V E M B E R 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Genes	with	Recurrent	Hits	and	Non-Verbal	IQ

From	Iossitov et	al.	2014

Short	List	of	Genes	Identified	Using	Exome	
Sequencing

How	Many	Variants	will	be	Identified	
Using	Filtering	Approaches?

• Depends	on
–Mode	of	inheritance
–Number	of	individuals	sequenced
– Type	of	sequence	data	

• Exome
• Whole genome
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Is	it	possible	to	identify	the	causal	gene	using	
exome	or	genome	sequencing?

Pathogenic	Variant	Identification	Using	
Data	from	a	Trio	or	a	Single	individual

• Assume	complete	penetrance
– Removing	those	variants	with	>0.5%	which	are	in	
databases
• ExAC

• Limiting	analysis	to	protein	coding	mutations
– Missense
– Nonsense
– Splice	sites

How	Many	Variants	will	be	Identified	on	
Average	for	an	Exome of	Single	Individual?

Recessive	phenotypes
Rare	compound	heterozygous	and	homozygous	variants

§ 0-5	compound	heterozygous	SNVs
§ Data	from	parents	must	be	available

§ To	determine	if	variants	are	compound	heterozygous
§ 1-2	homozygous	SNVs	

§ A	much	larger	number	of	homozygous	sites	will	be	observed	
when	the	child	is	an	offspring	of	a	consanguineous	mating

Autosomal	Dominant	Mode	of	Inheritance

~200-300	variants	

De	novo	mutations

0-3*	coding	non-synonymous	mutation	per	individual
Exome data	must	be	available	from	parents

*More	may	be	observed	due	to	false	positive	variant	calls

Mode	of	Inheritance

• If	Mode	of	Inheritance	is	unknown	can	try	more	
than	one	model

• Filtering	a	single	individual	often	leads	to	many	
variants	that	can	reasonably	be	followed-up	by
– Testing	for	segregation

• If family members are available
– Functional	studies

• NGS	data	from	additional	family	members	can	be	
helpful	in	narrowing	down	the	number	of	variants
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Selection	of	Additional	Family	Members	to	
Reduce	the	Number	of	Variants

• Avoid	performing	NGS	on	unaffected family	
members
–Variant	frequencies	can	be	obtained	from	
databases
• ExAC

–Unaffected	individuals	can	also	be	pathogenic	
variant	carriers	due	to	reduce	penetrance
• Can lead to exclusion of the causal variant

Selection	of	Additional	Family	Members	to	
Reduce	the	Number	of	Variants

• Do	not	sequence	parents	of	affected	individuals
– Except	for	the	study	

• de novo events
– Offspring	will	always	inherit	one	parental	allele

• More	distantly	related	family	members	are	the	
most	informative	
– e.g.	cousins	

Selection	of	Additional	Family	Members	to	
Reduce	the	Number	of	Variants

• Who	to	select	can	be	guided	by	basic	linkage	
principals
– Those	sets	of	individuals	providing	the	highest	“LOD”	
scores	should	be	selected

Siblings 1st Cousins 2nd Cousins Avuncular

Maximum	LOD	scores	- Autosomal	
Dominant	Pedigree

• If	two	affected	Individuals	from	an	a	pedigree	are	
sequenced	what	are	the	maximum	LOD	scores	
which	can	be	obtained?

Autosomal Dominant	Pedigrees
Maximum	LOD scores

Parent-Child	 0.00
Siblings 0.176
Avuncular 0.301
1st Cousins 0.602
2nd Cousins 1.201

Selecting	Individuals	for	NGS

• Which	individuals	should	be	selected	can	be	
evaluated	by	simulations	studies
– SLINK/MSIM
– Calculating	maximum	LOD	score

• If	genotype	array	data	is	available
– GIGI- Pick	(Chueng et	al	2014	AJHG)

• https://faculty.washington.edu/wijsman/progdists/gigi/software/
GIGI-Pick/GIGI-Pick.html

– ExomePick
• http://genome.sph.umich.edu/wiki/ExomePicks

Reducing	the	Number	of	Variants	For	
Follow-up

• Sequence	multiple	unrelated	individuals	with	
the	same	phenotype	
– Look	for	rare	variants	which	are	predicted	to	be	
functional	that	occur	within	the	same	gene
• Due to allelic heterogeneity not all affected 

individuals will share the same variant

 55 



Reducing	the	Number	of	Variants	For	
Follow-up

• If	there	is	locus	heterogeneity
– There	may	be	no	single	gene	for	which	all	affected	
individuals	have	a	pathogenic	variant	

• For	extreme	locus	heterogeneity
– None	of	the	individuals	may	share	pathogenic	variants	
within	the	same	gene
• Particularly if the sample size is small

– Therefore	not	possible	to	narrow	down	results	to	a	
single	gene

Selection	of	Individuals	for	NGS	
de	Novo

• If	it	is	of	interest	to	detect	de	Novo	variants
– Child	and	both	parents	should	be	sequenced

• Would	not	expect	to	find	de	Novo variants	in	
families	with	more	than	one	affected	individual
– Can	occur	if	de	novo	variant	occurs	in	a	founder	that	is	
passed	to	offspring

de	Novo	Events
• A	single	validated	LGD	de	novo	event	is	not	sufficient	
to	implement	a	gene	in	disease	etiology

• Multiple	LGD	de	novo	events	must	be	observed	within	
a	gene	region
– The	number	which	must	be	observed	to	be	significant	is

• Dependent on the sample size
• The mutation rate within the gene region

• Significance	can	be	evaluated
– By	comparing	the	de	novo	variant	rate	in	controls

• e.g. unaffected siblings of probands
– Iossitov et al. 2014 Nature

– Estimating	the	gene	specific	mutation	rates
• Neale et al. 2012 Nature

What	are	the	Success	Rates	of	NGS	Studies

What	are	the	Success	Rates	of	NGS	
Studies?

Data	Dependent

Clinical Whole-Exome Sequencing for the Diagnosis of 
Mendelian Disorders

Yaping Yang, Ph.D, Donna M. Muzny, M.Sc, Jeffrey G. Reid, Ph.D, Matthew N. Bainbridge, 
Ph.D, Alecia Willis, Ph.D, Patricia A. Ward, M.S, Alicia Braxton, M.S, Joke Beuten, Ph.D, 
Fan Xia, Ph.D, Zhiyv Niu, Ph.D, Matthew Hardison, Ph.D, Richard Person, Ph.D, Mir Reza 
Bekheirnia, M.D, Magalie S. Leduc, Ph.D, Amelia Kirby, M.D, Peter Pham, M.Sc, Jennifer 
Scull, Ph.D, Min Wang, Ph.D, Yan Ding, M.D, Sharon E. Plon, M.D., Ph.D, James R. Lupski, 
M.D., Ph.D, Arthur L. Beaudet, M.D, Richard A. Gibbs, Ph.D, and Christine M. Eng, M.D
Departments of Molecular and Human Genetics (Y.Y., A.W., P.A.W., A.B., J.B., F.X., Z.N., M.H., 
R.P., M.R.B., M.S.L., A.K., J.S., S.E.P., J.R.L., A.L.B., C.M.E.) and Pediatrics (S.E.P., J.R.L.) and 
the Human Genome Sequencing Center (D.M.M., J.G.R., M.N.B., P.P., M.W., Y.D., J.R.L., 
R.A.G.), Baylor College of Medicine, Houston.

Abstract
BACKGROUND—Whole-exome sequencing is a diagnostic approach for the identification of 
molecular defects in patients with suspected genetic disorders.

METHODS—We developed technical, bioinformatic, interpretive, and validation pipelines for 
whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying 
disease phenotypes in patients.

RESULTS—We present data on the first 250 probands for whom referring physicians ordered 
whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential 
genetic causes. Approximately 80% were children with neurologic pheno-types. Insurance 
coverage was similar to that for established genetic tests. We identified 86 mutated alleles that 
were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic 
rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant 
disease, 16 had auto-somal recessive disease, and 9 had X-linked disease. A total of 4 probands 
received two nonoverlapping molecular diagnoses, which potentially challenged the clinical 
diagnosis that had been made on the basis of history and physical examination. A total of 83% of 
the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. 
Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be 
causative in the same genes and in different genes responsible for genetically heterogeneous 
disorders.

Copyright © 2013 Massachusetts Medical Society.
Address reprint requests to Dr. Eng at the Department of Molecular and Human Genetics, NAB 2015, Baylor College of Medicine, 
Houston, TX 77030, or at ceng@bcm.edu.. 
Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.
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In	a	clinical	setting	
~25%	of	Mendelian disoders	solved	

REVIEW

Disease gene identification strategies for exome
sequencing

Christian Gilissen*,1, Alexander Hoischen1, Han G Brunner1 and Joris A Veltman1

Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire
protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst
thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The
choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance,
the severity of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease
gene identification by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian
disease genes in approximately 60% of the projects. Improvements in bioinformatics as well as in sequencing technology will
likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian
disease gene identification for the coming years.
European Journal of Human Genetics (2012) 20, 490–497; doi:10.1038/ejhg.2011.258; published online 18 January 2012

Keywords: Mendelian disease; gene identification; strategies; next generation sequencing; exome sequencing

INTRODUCTION
The number of rare monogenic diseases is estimated to be 45000 and
for half of these the underlying genes are unknown.1 In addition, an
increasing proportion of common diseases, such as intellectual dis-
ability, schizophrenia, and autism, previously thought to be due to
complex multifactorial inheritance, are now thought to represent a
heterogeneous collection of rare monogenic disorders,2–5 the large
majority of which is still unknown. The identification of genes
responsible for these diseases enables molecular diagnosis of patients,
as well as testing gene carriers and prenatal testing. Gene identification
represents the first step to a better understanding of the physiological
role of the underlying protein and disease pathways, which in turn
serves as a starting point for developing therapeutic interventions.6

Recent advances in next generation sequencing technologies have
dramatically changed the process of disease gene identification, in
particular by using exome sequencing in which the protein-coding
part of the genome of a patient can be studied in a single experiment
(see Majewski et al7 for an overview of exome sequencing technology
and its applications). As tens of thousands of genomic variants can be
identified in each exome, it is important to carefully consider strategies
for efficiently and robustly prioritizing pathogenic variants. In order
to do so, much can be learned from traditional disease gene identi-
fication approaches, but also novel strategies need to be established.

TRADITIONAL DISEASE GENE IDENTIFICATION
Past identification of Mendelian disease genes was carried out by
Sanger sequencing of candidate genes. Candidate genes can be selected
because they resemble genes associated with similar diseases, because
the predicted protein function seems relevant to the physiology of the
disease, or because a positional mapping approach pointed to these

genes in a genomic region.8 This last approach has been most
successful as it does not rely on prior biological or medical knowledge
and can be applied in an unbiased fashion. The most important
genetic mapping approaches rely on karyotyping,9 linkage analysis,10

homozygosity mapping,11 copy number variation analysis,12 and SNP-
based association analysis.13 One problem associated with using
genetic mapping approaches is that it is difficult, if not impossible,
to predict whether a disease is caused by a single nucleotide mutation
or by structural genomic variation. Without family information it is
also often difficult to predict whether a disease is dominantly or
recessively inherited. Therefore, different mapping approaches often
need to be applied in a sequential order before a disease locus is
identified. In addition, these mapping approaches commonly do not
reduce the number of candidate genes sufficiently for follow-up by
Sanger sequencing, when the disease locus remains very large. This is
especially the case if these mapping approaches are applied to only a
single patient or family with a limited number of informative relatives.
Combining data from multiple unrelated but phenotypically similar
patients or families is useful to reduce this to a manageable number,
but carries a risk that patients with similar phenotypes are affected by
mutations in different genes. Alternatively, a candidate gene approach
can be used to select the best candidate genes from the large disease
locus for Sanger sequencing. Many bioinformatics tools have been
developed to prioritize candidate disease genes from disease gene
loci.14–16 Candidate gene selection is however critically dependent on
prior knowledge and only few disease genes have been identified by
specifically using these bioinformatics tools.17 A particular category of
diseases that has remained largely unresolved is that of the rare genetic
disorders that occur sporadically, and for which neither a family-based
approach nor an association-based approach can be used. These
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• 24	families	of	which	14	lead	to	a	novel	gene	identification
• 58%	success	rate	95%	CI		36%-78%

• Three	families	segregated	known	disease	genes
• Overall	success	rate	of	71%	95	CI	51%-85%
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Using	Genotype	Array	Data,	Linkage	
Analysis	and	Homozygosity

Mapping	to	Increase	Success	of	
Gene/Pathogenic	Variant	

Identification	

Benefits	of	Obtaining	Genotype	Array	
Data

• If	multiple	family	members	are	available	
– Advantageous	to	perform	SNP	genotyping	using	one	
of	the	current	microarrays

– All	informative	individuals	should	be	genotyped
• Can	also	aid	in	accessing	the	quality	of	DNA	
samples
– Help	to	ensure	NGS	data	will	successfully	be	
generated	

Benefits	of	Obtain	Genotype	Array	Data
• Can	be	used	to	validate	the	pedigree	structure
• Help	to	ensure	that	samples	have	not	been	swapped
• A	variety	of	programs	have	been	developed	to	provide	probabilities	on	

relationships	within	pedigrees
– GRR	

• Abecasis et al. 2001 Bioinformatics
– RELATIVE	

• Goring and Ott, 1997 Eur J Hum Genet
– SIBPAIR	

• Ehm and Wagner 1998 AJHG 
– RELCHECK	

• Broman and Weber 1998 AJHG
– RELPAIR	

• Boehnke and Cox 1997 AJHG
• Pedigree	data	can	also	be	reconstructed

from	genotype	data
– PRIMUS

• Staples et al. 2014 AJHG
Sample	Swaps

D+++ D+

D+

++

++

Phenocopy Reduced	Penetrance

Benefits	of	Linkage	Analysis
• Can	identify	problems	with	pedigrees

– Incorrect	phenotype	information
• Affected individuals labeled and unaffected
• Unaffected individuals labeled as affected

• Collaborators	and	Families	can	be	re-contacted
– To	correct	errors

• Errors	which	can	not	be	resolved
– Should	be	removed	from	analysis

ARTICLE

Challenges and solutions for gene identification
in the presence of familial locus heterogeneity
Atteeq U Rehman1,12, Regie Lyn P Santos-Cortez2,12, Meghan C Drummond1, Mohsin Shahzad3,4,
Kwanghyuk Lee2, Robert J Morell1, Muhammad Ansar2,5, Abid Jan5, Xin Wang2, Abdul Aziz5,
Saima Riazuddin3,4, Joshua D Smith6, Gao T Wang2, Zubair M Ahmed4, Khitab Gul3, A Eliot Shearer7,
Richard J H Smith7, Jay Shendure6, Michael J Bamshad6, Deborah A Nickerson6, University of Washington
Center for Mendelian Genomics13, John Hinnant8,14, Shaheen N Khan3, Rachel A Fisher9, Wasim Ahmad5,
Karen H Friderici9,10, Sheikh Riazuddin3,11, Thomas B Friedman1, Ellen S Wilch10 and Suzanne M Leal*,2

Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian
phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25%
for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus
heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples
of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing
impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which
hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with
syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been
identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus
heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate
novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees),
which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and
homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants
and thereby increase the success rate of gene identification.
European Journal of Human Genetics (2015) 23, 1207–1215; doi:10.1038/ejhg.2014.266; published online 10 December 2014

INTRODUCTION
Identification of genetic variants that cause Mendelian disorders,
which segregate in large families, has been facilitated through linkage
analysis coupled with Sanger sequencing.1–3 In the past few years,
next-generation sequencing (NGS) has supplanted this experimental
strategy for variant detection for monogenic traits,4 and many articles
report successful gene identification.5–7 Failures are rarely published.
Estimates of the success rate for gene identification of Mendelian traits
using NGS in clinical settings is as low as 25%.8 However, for studies
using large pedigrees with Mendelian segregation, the gene identifica-
tion success rate can be much higher, for example, in a study of 24
families with multiple affected individuals the success rate was 60%
(95% confidence interval (CI): 36%, 78%).9

A frequent strategy used for Mendelian trait gene identification is
to select DNA samples from one or more affected or both affected

and unaffected family members and perform NGS. If multiple
family members have undergone NGS, filtering is then performed
based upon variant sharing in affected family members and lack of
sharing in unaffected family members. Additional filtering is
performed using variant databases such as Exome Variant Server
or 1000 Genomes retaining low-frequency variants (eg, o0.1%)
that are predicted to be deleterious by bioinformatics tools. The
selected variants are then tested for co-segregation with the
phenotype in the entire family. However, this approach is based
on the assumptions that clinical information is reliable, the disease
is fully penetrant, no phenocopies exist and there is locus homo-
geneity. If these conditions do not hold, identification of the causal
variant can be problematic, because segregation with disease will
not be observed. In our cohort of pedigrees segregating hearing
impairment (HI), initially unrecognized locus heterogeneity was

1Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA; 2Center for Statistical
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*Correspondence: Professor SM Leal, Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza 700D, Houston,
TX 77030, USA. Tel: +1 713 798 4011; Fax: +1 713 798 4012; E-mail: sleal@bcm.edu
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www.nature.com/ejhg

§ Can	be	used	to	detect	locus	heterogeneity	within	pedigrees
§ Linkage	analysis/	homozygous	mapping	can	resolve	which	

branches/individuals	are	segregating	the	same	pathogenic	variant
§ Aid	in	selection	of	individuals	for	NGS

Benefits	of	Linkage	Analysis Inter-sibship Locus	Heterogeneity

Family	8

MLOD LOD Region

Family	8 5.73 1.48 7q21.11-q21.3 (HGF)

Branch	1 3.59 3.59 7q21.11-q22.2	(HGF)

Branch	2 2.53 2.53 9q21.12-q21.13	(TMC1)

MLOD LOD Region

Family	9 6.27 1.65 4q21.21

Branch	1 2.53 1.60 7q22.3-q31.1	(SLC26A4)

Branch	2 2.53 2.41 15q24.1-q26.1	(CIB2)

WES

Family	9
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Intra-Familial	Locus	Heterogeneity	is	not	Rare

• 15.3%	of	the	families	in	a	study	of	nonsydromic
hearing	impairment	
– 95%	Confidence	Interval	(11.9	- 19.9%)
– These	families	segregate	at	least	one	published	HI	gene
Classification	based	on	variants	
identified	and	tests	performed

Families	with	
locus	

heterogeneity

Families	
without	 locus	
heterogeneity

Total

Variant	identified	 via	screening GJB2	
(exon	2),	CIB2	(p.Phe91Ser)	or	HGF	(del	3)	

19 98 117

Variants identified	in	other	known	HI	genes
Linkage	analysis	+	Sanger sequencing 8 87 95
Linkage	analysis	+	NGS	 18 64 82
Total 45 249 294

Benefits	of	Linkage	Analysis

• Unlike	filtering	approaches	linkage	analysis	can	
incorporate	reduced	penetrance	and	
phenocopies in	the	analysis
– Allowing	for	success	identification	of	a	gene	region
– Even	for	pedigrees	where	there	is	phenocopies
and/or	reduced	penetrance	

Benefits	of	Linkage	analysis	
• Linkage	analysis/homozygosity mapping	can	
identify	a	small	genomic	region	where	the	
causal	variant	lies
– Filtering	can	be	applied	within	the	
linkage/homozygous	region
• Greatly reduce the number of variants which need to 

be followed-up
– Test identified variant(s) for segregation within pedigree

• This is particularly true for whole genome data where
– Even a small genomic regions can contain hundreds of rare 

variants

Benefits	of	Linkage	analysis	
• Information	on	haplotypes	can	be	used	to	select	
pedigree	member(s)	for	NGS

• Selecting	those	individuals	with	the	smallest	
possible	haplotype

• Individuals	which	are	phenocopies can	be	
excluded	from	selection	for	NGS

Benefits	of	Linkage	Analysis
• Examining	haplotypes	can	also	give	clues	if	two	or	
more	families	are	segregating	the	same	disease	
gene	or	variant
– Overlapping	haplotype	which	are	not	the	same

• Potentially disease phenotype due to the same disease gene
• But unlikely due to the same pathogenic variant

– Disease	haplotype	is	identical	– although	not	of	the	
same	length	
• Likely the two families are segregating the same causal 

variant

Benefits	of	Linkage	Analysis

• If	multiple	families	linked	to	same	locus	are	
available	 	
– Sequencing	individual(s)	from	more	than	one	family	
can	aid	in	gene	identification

– When	they	share	variants	in	the	same	gene
• Provide	additional	evidence	of	genes	
involvement	in	disease	etiology
– Compared	to	a	single	family			
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Selection	of	Family	Members	for	NGS	
Autosomal	Dominant	Pedigrees

• Sequence	>2	individuals	from	each	family
– Two	individuals	are	often	sufficient
– Distantly	related	as	possible

• i.e.	from	two	different	branches
– Choose	those	affected	individuals	within	the	pedigree	which	
segregate	the	same	haplotypes

• Helps	to	exclude	individuals	who	are	potentially	phenocopies
– i.e.	have	the	phenotype	due	to	different	causal	variants

– Select	>2	individuals	with	smallest	overlapping	haplotypes
• Reduces	the	size	of	the	interval	in	which	the	pathogenic	variant	lies

Selection	of	Family	Members	for	NGS	
Autosomal	Recessive	Pedigrees

• A	single	individual	can	be	selected
– With	the	smallest	homozygous	region
– With	overlapping	haplotypes	which	span	the	smallest	
region
• If compound heterozygous

• Sequencing	additional	affected	family	members	
may	aid	in	gene	identification
– Can	greatly	increase	cost
– Usually	not	necessary

Selection	of	Family	Members	for	NGS	
Autosomal	Recessive	Pedigrees

• For	compound	heterozygous	individuals
–Variants	identified	within	a	gene	region

• Can be sequenced in parents, e.g. Sanger
– To determine if compound heterozygous

» Or lay on the same haplotype
• Parents can also undergo NGS

– Currently not as cost effective

Prioritize	Families	for	Study	Using	NGS	

• Prioritize	families	with	multiple	affected	individuals
– 1.)	Significant	linkage	LOD	>3.3	
– 2.)	Suggestive	linkage	3.3	<LOD	< 2.0
– 3.)	Weak	linkage	2.0<LOD>1.2
– 4.)	Small	families	with	only	1-2	affected	individuals	LOD	
<1.2

• Single	affected	individuals	can	also	be	studied
– 5.)	Trios

– Highest priority if looking for de Novo events

– 6.)	Single	affected	individuals	with	family	history

Data	Quality	Control	
• Extremely	important	when	testing	for	association	for	
complex	traits

• Also	important	for	Mendelian	traits
– Many	false	positive	variant	sites	if	data	is	not	cleaned

• Data	cleaning	for	exome sequence	data	is	data	
specific
– e.g.	remove	variant	sites	that

• Fail Variant Quality Score Recalibration (VQSR)
• Fail HWE p<5 X 10-8

– e.g.	remove	variants	with	
• a read depth of <10x
• GQ score <20

Data	Quality	Control
• Proceed	with	caution	it	is	possible	to	remove	true	
variant	sites	including	causal	variants	when	
filtering	data
– May	wish	to	loosen	stringency	of	filtering/cleaning	if	
unable	to	identify	causal	variant

• Working	with	“dirty	data”	can	lead	to	many	false	
positive	variant	sites/genotype
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[1] The upper panel with vertical gray bars shows depth of coverage per variant site. Pointing the mouse 
arrow on each bar will open a pop-up box that shows the actual depth of coverage (number of reads) at 
the specific site, and the number and percentage of reads with a specific allele (see screenshot on page 3). 
The black bar below the vertical gray bars indicates sites where reads have been downsampled. 
[2] An insertion was detected in a single read, as indicated by purple ‘ƚ’. When the mouse arrow is 
pointed on the insertion, a pop-up box shows the inserted bases. In this example, a single base A was 
inserted in the specific read. 
[3] When the arrow is pointed at a specific read, a pop-up box appears with details on the specific read, 
e.g. read name, alignment start, mapping quality, base phred quality, insert size, etc. 
[4] At high resolution the specific base or variant site that falls at the center of the IGV window is marked 
by two vertical dashed lines. When a variant site has an allele that is different from reference in more than 
25% of reads, the alternate allele is indicated in a different color. 
[5] A deletion is indicated by a black horizontal bar within gaps in a read.  
[6] An insert size that is smaller than expected is represented as a blue bar. 
[7] An insert size that is bigger than expected is represented as a red bar. 
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Integrative	Genomic	Viewer	(IGV)		
• Can	be	used	to	investigate	variant	calls

– To	determine	if	a	variant	is	a	false	positive	call
– Before	following-up	of	variants

• e.g. testing for segregation

Robinson	et	al	Nat	Biotechnology	 2011
http://www.broadinstitute.org/igv/

Software	to	Perform	Variant	Annotation	
and	Filtering	

• FamAnn
– Yao	et	al.	2014	Bioinformatics
– https://sites.google.com/site/famannotation/docu
mentation

• Gemini		
– Paili et	al.	2013	PLoS Comput Biol
– https://gemini.readthedocs.org/en/latest/

• Jannovar
– Jaeger	et	al.	2014	Hum	Mutation
– http://jannovar.readthedocs.org/en/master/install.
html

Software	to	Perform	Variant	Annotation	
and	Filtering	

• VAAST
– Hu	et	al.	2013	Genet	Epidemiol
– http://www.hufflab.org/software/vaast/

• Variant	Mendelian Tools
– http://varianttools.sourceforge.net/VMT/VMT

• VARank
– Geoffroy et	al.	2015		PeerJ
– http://www.lbgi.fr/VaRank/#requirements

Data	Analysis	Using	Filtering
An	Additional	Note

• If	multiple	samples	are	analyzed	
• Multisample calling	should	be	used	to	identify	
variants

• A multisample VCF	file	should	be	analyzed
• If	variant	is	calling	is	performed	on	single	
samples
– No	information	on	read	depth,	etc for	variant	sites	
where	there	is	no	alternative	allele	

Steps	After	Variant	Identification
• Additional	families	with	same	phenotype	and	
putatively	pathogenic	variants	in	the	same	gene
– Help	support	involvement	of	the	gene	in	disease	etiology

• Form	collaborations	to	identify	additional	families
• Matchmaker	Exchange

– http://www.matchmakerexchange.org/	
– Can	help	to	identify	investigators	who	have	families	with	
the	same	phenotype	and	variants	within	the	same	gene		

Expression	and	Functional	Studies
• Can	aid	in	implicating	a	variant/gene	in	disease	
etiology
– Particularly		important	if	the	variant/gene	is	found	in	
a	single	family
• Identified variant may be in LD with functional mutation

• Brings	about	a	better	understanding	of	disease	
etiology	and	the	role	the	identified	gene	plays

 60 



Reasons	for	Failure	of	NGS
• Insufficient	samples	for	gene	identification

– e.g.	single	individual	with	no	additional	family	members
• Locus	heterogeneity
• Phenocopies, misdiagnosed	or	mislabeled	individuals	
within	a	pedigree

• Sample	swaps
• Variant	not	captured	

– Can	be	potentially	be	resolved	by	whole	genome	sequencing
• Inadequate	depth	of	coverage	to	call	variant
• Indel/Copy	number	variants

– Difficult	to	accurately	call	
• Sensitivity can be low

Steps	When	NGS	Does	not	Reveal	
Putatively	Causal	Variant

• When	linkage	region	is	known
– Examine	the	region	to	determine	which	genes	have	not	

• been captured
• missing data due to poor read depth coverage or 
• Variants have not been called

– Examine	regions	with	IGV
• Follow-up with Sanger Sequencing if 

– Missing regions
– Poor quality variants

• If	exome sequencing	was	perform	proceed	to	whole	
genome	sequencing
– The	causal	variant	could	lie	outside	of	the	coding	region	

An	Example	of	Using	Linkage	
Analysis	and	NGS	to	Identify	

Pathogenic	Variants	
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Clinical	Features	of	Two	TAA	Families	with	TGFB2	Variants

Pedigree	ID

Phenotypic	Information TAA288 MS239
Number affected	pedigree	members	 7	TAA 6	TAA

Age	at diagnosis	(years) 5	– 41	(median	32) 27	– 53	(median	36)

Surgical Intervention 1	TAA 1	TAA,	1	MVP*

Arterial	tortuosity No Yes

Other	cardiac disease 2	MVP 1	MVP*

Lens	dislocation No 1/6	minor

Flat	cornea Unknown 2/6

Pectus deformity 3/7 mild 2/6	definite,	1/6	mild

Scoliosis 2/7	definite,	1/7	mild 1/6	mild

Flat	feet 5/7 6/7

Joint	hyperflexibility 5/7 3/6

High-arched	palate 6/7 3/6

Striae atrophicae 4/7 4/6

*Mitral	valve	prolapse

Analysis	of	Two	TAA	Pedigrees	with	Mild	
Systemic	Features	of	Marfan Syndrome

• Whole	genome	linkage	analysis	performed
– Pedigree	TAA288

• Affymetrix 50k SNP Array
– Samples from 9 informative pedigree members genotyped 

– Pedigree	MS239
• 1,056 microsatellite markers (deCode array)

– Samples from 14 informative pedigree members genotyped  

 61 



Analysis	of	Two	TAA	Pedigrees	with	Mild	
Systemic	Features	of	Marfan Syndrome

• Multipoint	and	two-point	analysis	performed
– Autosomal	dominant	mode	of	inheritance

• 90% Penetrance
• Disease allele frequency 0.0001

• Computer	Software
– Pedcheck
– Merlin,	Superlink &	SimWalk2

• Both	pedigrees	mapped	to	1q41
– TAA288	

• Multipoint LOD score 2.4
– MS239

• Multipoint LOD score 1.6

Pedigree	TAA288

Multipoint	 LOD	score	2.4	at	1q41
*Individuals	underwent	whole	genome	genotyping
Circled	individuals	 underwent	exome sequencing

Pedigree	MS239

Multipoint	 LOD	score	1.6	at	1q41	

*Individuals	genotyped	 for	whole	genome	scan
Circled	individuals	 underwent	exome sequencing

Exome Sequencing	

• Family	TAA288
– Two	affected	individuals	selected	for	exome sequencing

• 16 variants shared by affected pedigree members
• Family	MA239

– Three	affected	and	one	unaffected	individuals	selected	
for	exome sequencing
• 5 variants shared by affected pedigree members

• In	family	TAA288	two	variants	within	linkage	region	
and	in	family	MA239	only	one	variant

• Both	families	only	had	TGFB2	variants in	common

Identification	of	TGFB2 variants

• Family	TAA288
– 5-bp	deletion	c.1021_1025del-TACAA	in	exon	6	which	
leads	to	a	premature	stop	codon	p.Try341Cysfs*25

• Two-point LOD score 3.3

• Family	MS239
– Stop-gain	variant	in	exon	4	p.Cys229*
– Two-point	LOD	score	4.4

• Neither	variant	found	in	ExAC database
– 61,486	“control”	individuals

• In	both	pedigrees	all	affected	individuals	were	
heterozygotes	for	respective	variants

• In	both	pedigrees	there	was	reduced	penetrance

Additional	Screening	of	TGFB2
• French	probands from	a	Marfan referral	clinic

– 62	familial	cases
– 74	sporadic	cases	

• USA	probands with	thoracic	aortic	disease
– 214	familial	cases
– 57	sporadic	cases

• In	the	French	familial	probands two	variants	were	
found
– p.Glu102*
– Frameshift duplication	c.873_888dup	leading	to	p.Asn297*

• Both	probands had	TAAD
• Neither	variant	was	observed	in	ExAC

– 60,706	“controls”	individuals

 62 



Association	Analysis	for	Mendelian Traits
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Association	Analysis	of	Rare	Variants
• Analysis	of	single	rare	variants	are	very	poorly	
powered

• Many	methods	have	been	developed	specifically	to	
test	for	rare	variant	associations
– To	overcome	the	low	power	of	testing	for	associations	
with	individual	rare	variants

• Rare	variant	association	methods	are	frequently	
referred	to	as	
– Aggregate
– Burden	
– Collapsing

Association	Analysis	of	Rare	Variants

• Generally	only	Rare	variants	are	analyzed,	e.g.	
MAF<	0.5%

• Which	are
– Missense	variants	
– Stop	loss,	gain	variant	
– Spice	site	variants

Association	Analysis		- Mendelian
• If	pedigree	data	are	available	

– Linkage	analysis	and	filtering	approaches	should	be	used	
for	data	analysis

• When	only	the	proband is	available	for	study
– Or	a	limited	number	of	family	members

• e.g. unaffected family members, a single affected sibling

• If	the	proband has	a	family	history	or	
• It	is	suspected	that	the	disease	is	due	to	a	de	novo
variant
– No	parental	data	is	available	

• Association	analysis	can	aid	in	finding	genes	which	
harbor	pathogenic	variants	

Association	Analysis	- Mendelian

• Rare	variant	association	analysis	can	be	used	in	
these	situations

• Affected	probands are	compared	to	control	
individuals

• Care	must	be	used	in	selecting	controls
• Sequencing	conditions	should	be	the	same	for	
both	cases	and	controls
– Read	depth
– Capture	array,	etc

Controls
• If	convenience	controls	are	used

– BAM	files	should	be	obtained	and	variants	called	for	
both	cases	and	controls	together

• Although	frequencies	for	individual	variants	can	
be	obtained	from	databases	such	as	ExAC
– These	frequencies/counts	should	not	be	used	to	
perform	rare	variant	association	analysis
• Can lead to an increase in type I
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Data	Quality	Control
• Unlike	for	filtering	approached	stringent	data	
quality	control	should	be	performed
– Removing	variant	sites	which	

• Fail variant quality score recalibration  [ (VQSR) GATK]
• High rates of missing variant calls, e.g. >10%
• Fail Hardy Weinberg equilibrium , e.g. p < 10-7

– Removing	variant	genotypes		with
• Low read depth e.g < 10X
• Low GQ scores e.g. <  20

• The	quality	control	is	data	specific
• A		balance	must	be	met	

– between	removal	of	data	&	false	positive	calls	

Sample	Size	&	Power	

• For	complex	traits	extremely	large	sample	sizes	
are	necessary
– Tens	of	thousands	of	individuals

• Due to low effect sizes of disease susceptibility variants

• For	Mendelian diseases	many	fewer	cases	are	
necessary	to	detect	an	association
– For	some	studies	<50	cases	may	be	necessary
– To	increase	power	large	numbers	of	controls	can	be	
used
• Although there is a diminishing return when the ratio of 

control to case is > 3:1

Influences	on	Power
• Mode	of	Inheritance
• Locus	heterogeneity

– Increasing	locus	heterogeneity	leads	to	a	decrease	
in	power

• Allelic	heterogeneity
– Will	not	impact	power

• Unless benign variants are included in association test.

Types of Aggregate Analyses

• Frequency	cut	offs	used	to	determine	which	variants	to	
include	in	the	analysis	
– Rare	Variants	(e.g.	<1%	frequency)
– Rare	and	low	(1-5%)	frequency	variants	

• Maximization	approaches

• Tests	developed	to	detection	associations	when	
variants	effects	are	bidirectional	e.g.	protective	and	
detrimental

• Incorporate	weights	based	upon	– frequency or	
functionality	

Misclassification
• When	performing	aggregate	analysis

– Misclassification	of	variants	within	a	region	can	reduce	
power

• Exclusion	of	causal	variants
– Variants	which	are	causal	are	erroneously	not	included	
in	the	analysis

• Inclusion	of	non-causal	variants
– Variants	which	are	non-causal	are	included	in	the	
analysis

Caveats

• For	exome	data	natural	regions	to	aggregate	rare	
variants	are
– Genes
– Genes	within	pathways

• Analysis	of	genome	sequence	data	outside	of	
exonic	regions	is	problematic
– Unlikely	a	sliding	window	approach	will	work

• Size of window unknown and will differ across the genome
– A better	understanding	functionality	outside	the	
coding	regions	is	necessary
• Predicted functional regions, enhancer regions, transcription 

factors, DNase I hypersensitivity sites, etc.
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A	Few	Rare	Variant	Association	Tests

• Combined	Multivariate	Collapsing	(CMC)
– Li	and	Leal	AJHG	2008

• Burden	of	Rare	Variants	(BRV)
– Auer,	Wang,	Leal		Genet	Epidemiol	2013

• Weighted	Sum	Statistic	(WSS)
– Madsen	and	Browning	PloS	Genet	2009

• Kernel	based	adaptive	cluster		(KBAC)
– Liu	and	Leal	PloS	Genet	2010

• Variable	Threshold	(VT)
– Price	et	al.	AJHG	2010

• Sequence	Kernel	Association	Test	(SKAT)
– Wu	et	al.	AJHG	2011

Fixed	Effect	
Tests

Random	Effect
Test

A	Few	Rare	Variant	Association	Tests

• Combined	Multivariate	Collapsing	(CMC)
– Li	and	Leal	AJHG	2008

• Burden	of	Rare	Variants	(BRV)
– Auer,	Wang,	Leal		Genet	Epidemiol	2013

• Weighted	Sum	Statistic	(WSS)
– Madsen	and	Browning	PloS	Genet	2009

• Kernel	based	adaptive	cluster		(KBAC)
– Liu	and	Leal	PloS	Genet	2010

• Variable	Threshold	(VT)
– Price	et	al.	AJHG	2010

Fixed	Effect	
Tests

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

• Combined	multivariate	&	collapsing	(CMC)
– Li	&	Leal,	AJHG	2008

• Collapsing	scheme	which	can	be	used	in	the	
regression	framework
– Can	use	various	criteria	to	determine	which	variants	to	
collapse	into	subgroups
• Variant	frequency
• Predicted	functionality

CMC
• Define covariate Χj for individual j as

• Compute Fisher exact test for 2x2 table

X=1 X=0

cases

controls

Number	of	cases	for	
which	one	or	more	rare	
variants	are	observed	
e.g.	nonsynonymous
variants	freq.	<1%

Number	of	 	
controls	without	a	
rare	variant

Number	of	controls	for	
which	one	or	more	rare	
variants	are	observed

Number	of	cases	
without	a	rare	
variant

Can	also	use	same	coding	in	a	regression	framework

CMC
• Example	of	coding	used	in	regression	framework:

– Binary	coding	

Gene	region	with	5	variant	sites	

1 1

2 1

3 0

Rare	Variant	Sites
Green	bars:	Major	allele	is	observed	 in	the	study	subject	
Red	bars:	Minor	allele	has	been	observed

Individual	 Coding	 	

Methods to Detect Rare Variant Associations
Using Variant Frequency Cut-offs

• Gene-or	Region-based	Analysis	of	 Variants	of	
Intermediate	and	Low	frequency	(GRANVIL)
– Aggregate	number	of	rare	variants	used	as	regressors	
in	a	linear	regression	model

– Can	be	extended	to	case-control	studies
• Morris	&	Zeggini	2010	Genet.	Epidemiol

– Test	also	referred	to	as	MZ
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GRANVIL

• Example	of	coding	used	in	regression	framework
– Gene	region	with	5	variant	sites	– data	available	on	all	sites

• Gene	region	with	5	variant	sites	but	missing	data	on	three	variant	sites

Coded	2/5	(0.4)		Note	same	coding	 for	
heterozygous	and	homozygous	
genotypes

Coded	2/5	(0.4)

Coded	1/2	(0.5)

Individual	1

Individual	2

Individual	3

Burden	Rare	Variant		(BRV)	extension	 (Auer	et	al.	2013	Genet	Epidemiol)	
Individual	1:		Coded	2
Individual	2:	Coded	3
Individual	3:	Coded	1

• Group-wise	association	test	for	rare	variants	using	
the	Weighted	Sum	Statistic	(WSS)
– Variants	are	weighted	inversely	by	their	frequency	in	
controls	(rare	variants	are	up-weighted)
• Madsen	&	Browning,	PLoS	Genet	2009

• Kernel	based	adaptive	cluster	(KBAC)
– Adaptive	weighting	based	on	multilocus genotype	

• Liu	&	Leal,	PLoS Genet	2010	

Methods to Detect Rare Variant Associations
Weighted Approaches

• Variable	Threshold	(VT)	method	
– Uses	variable	allele	frequency	thresholds	and	
maximizes	the	test	statistic

– Also	can	incorporate	weighting	based	on	functional	
information
• Price	et	al.	AJHG	2010

• RareCover
– Maximizes	the	test	statistic	over	all	variants	with	a	
region	using	a	greedy	heuristic	algorithm
• Bhatia	et	al.	2010	PLoS Computational	Biology

Methods to Detect Rare Variant Associations
Maximization Approaches

Significance	Level	for	Rare	Variant	
Association	Tests

• For	exome	data	where	individual	genes	are	
analyzed	usually	a	Bonferroni correction	for	the	
number	of	genes	tested	is	used.
– There	is	very	little	to	no	linkage	disequilibrium	between	
genes

• A	Bonferroni correction	for	testing	20,000	genes	is	
often	used	as	the	significance	level	cut-off
– 2.5	x	10-6

Rare	Variant	Aggregate	Methods		

• Ideally	should	be	performed	in	a	regression	
analysis	framework
– Logistic	
– Linear	regression	

• Almost	all	methods	have	been	extended	to	be	
implemented	within	a	regression	framework
– Can	control	for	covariates	which	are	potential	
confounders

– Age	
– Sex
– Population	substructure/admixture

Rare	Variant	Aggregate	Methods		

– If	the	proportion	of	cases	and	controls	sampled	
from	each	populations	is	different
• Can	occur	due	to

– Disease	frequency	is	different	between	populations	
– Sloppy	sampling	

– Population	substructure\admixture	can	cause	
detection	of	differences	in	variant	frequencies	
within	a	gene	which	is	due	to	sampling	and	not	
disease	status
• False	positive	findings	can	be		increased		
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Rare	Variant	Aggregate	Methods		

• Population	substructure\admixture	is	often	a	
confounder	for	genetic	studies	
– A	particular	problem	for	rare	variants

• Currently	Principal		Components	Analysis	(PCA)	
or	Multidimensionality	Scaling	(MDS)	is	used	to	
control	for	population	substructure\admixture
– For	both	studies	of	common	&	rare	variants	

Related	Individuals

• Remove	related	individuals	from	the	analysis
–Only	retain	one	member	of	a	related	pair/group	
in	the	analysis

• Perform	analysis	using	mixed	models
• Ignoring	that	related	individuals	are	included	
in	the	analysis	can	increase	type	I	error

Software	to	Perform	Rare	Variant	
Association	Testing	using	NGS	Data

• PLINK/SEQ
– Developed	by	Shaun	Purcell

• https://atgu.mgh.harvard.edu/plinkseq/tutorial.shtml

• Variant	Association	Tools	(VAT)
– Reference	Wang,	Peng &	Leal,	2014

• http://varianttools.sourceforge.net/Association/HomePage

Testing	for	Associations	using	Trio	Data

• Trio	data	are	often	sequenced	to	detect	de	novo	
events.

• However,	transmitted	as	well	de	novo	events	
can	be	analyzed

• The	transmission	disequilibrium	test	(TDT)	is	a	
natural	choice	to	analyze	trio	data

• The	TDT	design	can	also	be	used	to	analyze	
Mendelian traits

Controlling	for	Population	Admixture	
and	Substructure	Using	the	Trio	Design

• The	trio	(two	parents	and	an	affected	child)	
approach	was	developed	to	control	for	
population	substructure	and	admixture	
– Falk	and	Rubinstein	1987	Ann	Hum	Genet	
– Many	additional	trio	methods	have	been	described

• The	Transmission	Disequilibrium	Test	(TDT)	is	
currently	the	mostly	widely	used	trio	method
– Spielman	et	al.	1993	AJHG

TDT

Case	Alleles	
•Transmitted	parental	alleles	1	and	2
Control	Alleles
•Non-transmitted	parental	alleles	3	and	4	

1	2

1	3 4	2

*Phenotype	information	from	parents	is	not	used	in	the	analysis

Case	Alleles

Control	Alleles
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TDT

Not	Transmitted

1	allele 2	allele

1	allele a b

2	allele c d

(McNemar’s	Test)

Tr
an
sm

itt
ed

Only	transmission	events	from	heterozygous	parents	are	informative,	
i.e.	quadrants	b	&	c

11

1	2 12

TDT-Aggregate	Analysis

• The	TDT	was	extended	to	incorporate	rare	variant	
association	methods	
– Combined	Multivariate	Collapsing	(CMC)

• RV-TDT-CMC

– Burden	of	Rare	Variants	(BRV)
• RV-TDT-BRV

– Weighted	Sum	Statistic	(WSS)
• RV-TDT-WSS

– Variable	Threshold	(VT)
• RV-TDT-VT

RV-TDT-CMC	&	RV-TDT-WSS

• RV-TDT-CMC
– Collapse	transmissions	within		a	region

• For	parent	j
– b=0	and	c=1

• RV-TDT-BRV
– Aggregate	transmissions	within	a	region

• For	parent	j
– b=0	and	c=3

RV-TDT-WSS		&	RV-TDT-VT

• RV-TDT-WSS
– Aggregate	transmissions	within		a	region	weighted	by	the	
frequency	of	non-transmitted	(“control”)	alleles
• For	parent	j

– b=0	and	c=

• RV-TDT-VT
– Maximizes	the	test	statistic	over	minor	allele	frequencies	
using	either	CMC	or	BRV	coding	
• For	parent	j

– b=0	and	c=1	or	3

Evaluating	Significance	

• Analytical
– (one-sided	test)
– CMC	method	only

• Empirical
– Haplotype	permutation

• Shuffle	parental	haplotypes

– All	methods

Haplotype	Permutation

What	are	the	Necessary	Sample	Sizes	for	
the	Trio	Design	for	a	Mendelian Trait

• Assuming	No	Locus	Heterogeneity
• Power	0.80

Number	of	Trios
Mode	of	Inheritance Alpha

0.05 2.5 x	10-6

Autosomal Recessive	 4 15
Autosomal	Dominant 13 59

References
He	et	al.	2014	AJHG
Krumm et	al.	2015	Nature	Genetic

RV-TDT	Software
http://bioinformatics.org/rv-tdt/
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The!Collapsed!Haplotype!Pa0ern!(CHP)!
Method!for!Performing!Linkage!Analysis!

Using!Sequence!Data!
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Performing!Linkage!Analysis!!
Using!Exome!and!Genome!Sequence!Data!
•  As!cost!of!performing!sequencing!falls!
– DNA!samples!from!all!informaGve!pedigree!members!
can!undergoing!sequencing!

•  Several!studies!have!generated!exome!and!genome!
sequence!data!on!all!informaGve!family!members!
– T2DMGenes!(type!2!diabetes!study)!

•  Genome!sequence!data!on!20!Mexican!families!(1,043!Individuals)!

•  Caveat!performing!linkage!analysis!on!individual!
rare!variants!is!not!a!powerful!approach!

Collapsed!Haplotype!Pa0ern!(CHP)!Method!!
!•  MoGvated!by!rare!variant!aggregate!associaGon!

methods!
– Analysis!of!regions,!usually!genes!
•  Instead!of!analyzing!individual!rare!variants!

•  Rare!variant!aggregate!associaGons!methods!are!
more!powerfully!than!analyzing!individual!variants!

 

CHP!Method!

•  LanderMGreen!algorithm!is!used!for!geneGc!phasing!
and!reconstrucGon!of!haplotypes!

•  Missing!genotypes!are!imputed!!
– CondiGonal!on!family!members!genotypes!and!!

– PopulaGon!allele!frequencies!
•  Obtained!from!founders!if!sample!size!is!sufficiently!large!or!

•  Frequencies!are!obtained!from!databases!(e.g.!ExAC)!

CHP!Method!

•  For!each!pedigree!variants!on!a!regional!
haplotypes,!e.g.!LD!blocks!
– Are!assigned!a!single!numeric!value!e.g.!!!
•  0!no!minor!alleles!

•  1!at!least!one!minor!allele!

•  Each!regional!haplotype!within!a!family!is!uniquely!
represented!

! These!two!pedigrees!both!have!rare!variants!in!the!same!gene!region!!!
! Although!they!segregate!a!different!rare!variant!and!haplotype!
!  The!same!coding!can!be!used!without!a!lost!of!informaGon!

ExampleMCHP!
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! A!unique!coding!is!provided!for!each!haplotype!!!
!  To!avoid!lost!of!informaGon!

ExampleMCHP! CHP!method!

•  Each!pedigree!is!analyzed!separately!
– Using!allele!frequencies!that!are!correct!for!the!
haplotypes!segregaGng!in!the!pedigree!

•  Parametric!LOD!score!results!are!summed!across!
families!by!gene!region!!
– At!the!same!Θ!value,!e.g.!Θ=0.0!

EvaluaGon!of!the!CHP!Method!

•  Data!was!generated!for!four!nonsyndromic!hearing!
impairment!genes!
– Autosomal!recessive!mode!of!inheritance!
•  GJB2,!SLC26A4.

– Autosomal!dominant!mode!of!inheritance!
•  MYO7A!and!MYH9!

•  All!variants!were!generated!based!upon!their!
frequency!in!EuropeanMAmericans!
– Using!data!from!Exome!Sequencing!Project!

•  Causal!status!of!variants!obtain!from!NCBIMClinVar!

EvaluaGon!of!the!CHP!Method!
•  Families!were!generated!with!3M8!children!
– Based on the number of children per family in the United 

States in 2012, rescaled to sum to 100%  
•  3 children: 69.34% 
•  4 children: 20.52%,  
•  5 children: 6.84 
•  6 children: 2.28% 
•  7 children 0.76%, 
•  8 children 0.26% 

•  RarePedSim was used to generate the pedigree data 
– http://bioinformatics.org/simped/rare/ 

EvaluaGon!of!the!CHP!Method!

•  Pedigrees!were!generated!with!varying!degrees!of!
locus!heterogeneity!
–  e.g.!20%!of!families!linked!to!GJB2!and!80%!to!SLC26A4.

•  Families!with!>2!affected!children!were!“ascertained”!

•  Variants!with!a!MAF<0.01%!analyzed!

•  Power!was!evaluated!using!500!replicates!!
–  For!a!genomeMwide!α!level!of!<!0.05!

•  LOD!>!3.3!
•  HLOD!>!3.6!

•  The!CHP!method!was!compared!to!single!variant!
analysis!!

Results!Autosomal!Recessive!Model!
Genes!SLC26A4!and!GJB2..

Pr
op

or
Go

n!
of
!li
nk
ed

!fa
m
ili
es
!!

Pr
op

or
Go

n!
of
!li
nk
ed

!fa
m
ili
es
!!

!Single!variant!Analysis!!
!CHP!method! Power!is!displayed!in!curves!!
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Results!Autosomal!Dominant!Model!
!Gene!MYH9.!

!Single!variant!Analysis!!
!CHP!method! Power!is!displayed!in!curves!!

Analysis!under!locus!homogeneity!! Analysis!under!locus!heterogeneity!!

Linkage!Analysis!
•  Unlike!filtering!approaches,!linkage!can!provides!
staGsGcal!evidence!of!a!variant’s!“involvement”!in!
trait!eGology!
– CauGon!should!be!used,!variant!may!only!be!in!LD!with!
the!pathological!variant!

•  Because!linkage!incorporates!mode!of!inheritance!
informaGon!and!penetrance!models!!
– Less!likely!than!filtering!to!exclude!causal!variants!in!the!
presents!of!phenocopies!and/or!reduced!penetrance!!
!References!

Wang!et!al.!2015!EJHG!
O0,!Wang,!Leal!2015!NRG!

So+ware!
CHP!incorporated!in!SEQLinkage!
h0p://bioinformaGcs.org/seqlink!
!
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Simula1on!

•  Simulation studies are used in many situations 
– Predict traffic jams 
– Flow from volcano eruptions, etc. 

•  For genetic studies simulation can be used for a 
variety of situations  
– Estimate the power to detect linkage for a given data 

set 
– Estimate empirical p-values 
– Compare various analysis methods 

Example!Genera1ng!Genotype!Data!

I.1 I.2

II.1 II.2

Genera1ng!Genotypes!for!a!Pedigree!

•  A marker the following allele frequencies will 
be generated 
– 1=0.4 
– 2=0.1 
– 3=0.45 
– 4=0.05 

 

Genera1ng!Genotypes!for!a!Pedigree!

•  A!random!number!generator!is!used!
– Random!numbers!between!0!and!1!are!generated!

•  The!numbers!are!generated!according!to!a!
uniform!distribu1on!
– Each!number!has!equal!probability!of!occurring!

•  Random!number!generators!are!in!actuality!
pseudoJrandom!number!generators!
–  If!a!simula1on!is!carried!our!using!the!same!star1ng!
seed!the!same!results!will!be!obtained.!!

Genera1ng!Genotypes!

•  If!the!random!number!selected!!is!between!<0.4!!
–  Then!the!1!allele!is!chosen!!

•  If!the!random!number!selected!is!between!>0.4!and!<!0.5!
–  Then!the!2!allele!is!chosen!

•  Etc!
   
0     0.4   0.5         0.95     1   
|_______1______|__2__|___________3__________|_4__| 
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Genera1ng!Genotypes!

•  Since!each!individual!needs!two!alleles!to!construct!
their!genotype!J!two!random!numbers!are!generated!!

•  Father!
–  0.84!

•  Assign!a!3!allele!
–  0.31!

•  Assign!a!1!allele!

•  Mother!
–  0.44!

•  Assign!a!2!allele!
–  0.63!

•  Assign!a!3!allele!

0! !!!!!!!!!!!!!0.4!!!!!!!!0.5 ! ! !!!!!!0.95!!!!!1
!!

|_______1______|__2__|___________3__________|_4__|!

Genera1ng!Parental!Genotypes!

I.1 I.2

II.1 II.2

1! 3! 2 3!

Genera1ng!Offspring!Genotypes!

I.1 I.2

II.1 II.2

1! 3! 2 3!

Should!the!random!number!generator!be!used!to!generate!two!
more!genotypes!for!!the!children?!

Genera1ng!Offspring!Genotypes!

•  No!the!alleles!must!segregate!from!the!parents.!
•  It!must!be!determined!which!of!the!two!parental!
alleles!each!offspring!�inherits�!
– With!50%!probability!
!

!!0!!child!receives!first!parental!allele!!0.5!!child!receives!second!parental!allele!!!1!
!|_______________________________|___________________________________| 

 
 

Random!Numbers!are!Generated!
!
•  For!child!II.1!
–  Random!#!0.21!!

•  From!father!!first!allele!
–  obtains!a!1!allele!

–  Random!#!0.11!
•  From!mother!first!allele!!

–  obtains!a!2!allele!!
•  For!child!II.2!
–  Random!#!0.76!

•  From!father!second!allele!!
–  obtains!a!3!allele!

–  Random!#!0.31!!
•  From!mother!first!allele!!

–  obtains!a!2!allele!

Genera1ng!Offspring!Genotypes!

I.1 I.2

II.1 II.2

1! 3! 2 3!

1! 2! 3!2!
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Genera1ng!Genotypes!for!Pedigrees!

•  The!genotypes!in!the!previous!example!were!
generated!uncondi1onal!(unlinked)!to!the!disease!
phenotype!

•  Next!marker!will!be!generated!linked!to!the!
disease!locus!

•  Assump1on!!
– The!disease!phenotype!is!autosomal!dominant!
•  No!phenocopies!
•  No!reduced!penetrance!

– The!marker!and!the!disease!locus!are!linked!!
•  ϴ=0.04!

Genera1ng!Genotypes!Condi1onal!on!
Disease!Locus!

I.1 I.2

II.1 II.2

1! 3! 2 3!

D!!+! +!+!

+!+!D!!+!

Genera1ng!Genotypes!Condi1onal!on!
the!Disease!Locus!

•  Need!to!Generate!offspring!genotypes!condi1onal!
on!parental!genotypes!and!underlying!disease!
genotype!

•  Since!the!pedigree!is!phase!unknown!
– Do!not!know!grandparental!genotypes!

•  Have!to!determine!phase!
•  Assump1on!the!disease!the!disease!and!marker!
loci!are!in!linkage!equilibrium!
– Each!phase!has!50%!probability 

Genera1ng!Genotypes!Condi1onal!on!
Disease!Locus!

I.1 I.2

II.1 II.2

1! 3! 2 3!

Phase!I!
D!!!+!
1!!!!3!

+!+!Phase!II!
D!!!+!
3!!!!1!

Each!with!probability!50%!

Father�s!Phase!is!Determined!

•  A!random!number!generator!is!used!to!
determine!the!phase!for!the!father!

!!!
!!!!!!!0!!!!!!Phase!I!for!the!father!!!!!!!!!!!!!!!!!!!!!0.5!!!!!Phase!II!for!the!father!!!!!!!!!!!!!!!!!!!!!1!
!!!!!!!|_____________________________!_|_______________________________|!

•  The!random!#!generated!is!0.76!
–  The!father�s!phase!is!II!

Genera1ng!Genotypes!Condi1onal!on!the!
Disease!Locus!

I.1 I.2

II.1 II.2

1! 3! 2 3!

D!!+! +!+!

+!+!D!!+!

Phase!II!
D!!!+!
3!!!!1!
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Genera1ng!the!Offspring!Genotypes!
•  The!genotypes!must!be!assigned!condi1onal!on!
the!disease!genotypes!and!whether!or!not!a!
recombina1on!event!has!occurred!

•  Whether!or!not!a!recombina1on!has!occurred!
will!be!determined!by!genera1ng!a!random!
number!

Determining!Offspring!Genotypes!

•  The!first!child!II.1!is!affected!!
•  He!either!receives!from!his!father!!
–  A!3!allele!with!probability!1JΘ!!

•  For!this!example!1J0.04!
–  Or!a!1!allele!with!probability!Θ!!

•  For!this!example!0.04!!!
•  The!second!child!II.2!is!unaffected!
•  She!either!receives!from!her!father!!
–  A!!1!allele!with!probability!1JΘ!!
–  Or!with!probability!Θ!receives!a!3!allele!

!
!0!!!!!!!!!!Θ!(0.04)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!
|_____|_______________________________________| 
  

Determining!Offspring!Genotypes!

•  Child!II.1!(affected)!!
– Random!#!0.88!is!generated!
• He!is!assigned!the!3!allele!from!his!father!!
!

•  Child!II.2!(unaffected)!
•  Random!#!0.01!is!generated!
– She!is!assigned!the!3!allele!from!her!father!
 

 
 0!!!!!!!!!!Θ!(0.04)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!1!
|_____|_______________________________________| 
  

Determining!the!Offspring!Genotypes!

•  The!mother!provides!no!linkage!informa1on!
– Each!child!can!be!assigned!either!a!2!or!a!3!allele!
• With!probability!0.5!

•  Two!Random!numbers!are!generated!
– For!Child!II.1!
•  The!random!#!0.32!is!generated!
– The!2!allele!is!assigned!from!the!mother!

– For!Child!II.2!
•  The!random!#!0.43!is!generated!
– The!2!allele!is!assigned!from!the!mother!

 
 0!!!child!receives!first!parental!allele!!!0.5!!child!receives!second!parental!allele!!!!!!!1!
|_______________________________|___________________________________| 
  

Genera1ng!Genotypes!Condi1onal!on!the!
Disease!Locus!

I.1 I.2

II.1 II.2

1! 3! 2 3!

D!!+! +!+!

+!+!D!!+!

3! 3!2 2

Genera1ng!Haplotype!Data!

•  Instead!of!genera1ng!and!assigning!individuals!
alleles!!
– Haplotypes!are!generated!!

•  When!haplotypes!are!generated!uncondi1onal!
on!disease!phenotype!or!quan1ta1ve!trait!

•  Based!upon!haplotype!frequencies!two!
haplotypes!are!assigned!to!each!individual!in!
the!parental!genera1on!
– Random!numbers!are!used!to!determine!which!two!
haplotypes!are!assigned!
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Genera1ng!Haplotype!Data!
 
•  For!each!offspring!recombina1on!events!between!
the!two!parental!haplotypes!are!determined!by!
gene1c!maps!
–  Posi1ons!of!recombina1on!events!are!determined!by!
random!numbers!

•  One!paternal!and!one!maternal!�new�!haplotypes!
is!assigned!to!the!offspring!from!each!of!their!
parents!
–  Each!of!the!two!parental!haplotype!has!equal!
probability!of!beginning!assigned!to!the!offspring!
•  Which!haplotypes!are!assigned is determined by random 

numbers  

Genera1ng!Sequence!Data!for!Pedigrees!

•  Haplotype!data!can!be!!generated!using!
popula1on!demographic!models!!

•  Data!generated!on!16,568!genes!
•  Simula1ng!variant!data!using!
reference!sequence!data!a!European!
popula1on!demographic!model!
–  Gazave!et!al.!2013!
–  Haplotype!pool!generated!for!each!
gene!
•  Each!pool!contains!1,308,000!haplotypes!
!

!

!

Genera1ng!Sequence!Data!for!Pedigrees!

•  Variant!data!frequencies!can!also!be!used!from!
databases!
–  e.g.!ExAC!

•  Cau1on!should!be!used!that!a!sufficient!large!
sample!sizes!is!used!to!obtain!variant!frequencies!
– Otherwise!very!rare!variants!will!be!underJrepresented!

•  Too few singletons, doubletons etc. 

•  Determine!which!variants!are!pathogenic!using!
clinical!databases!
–  e.g.!ClinVar!

Genera1ng!Sequence!data!for!
Pedigrees!!

•  To!then!generate!the!variant!data!
condi1onal!on!the!disease!phenotypes!
– To!generate!data!under!the!alterna1ve!!
• A penetrance model is used 
• The penetrance model should mimic the mode of 

inheritance in the pedigree 
– Autosomal dominant, Autosomal Recessive or X-linked 
– Fully penetrant or  
– Reduced penetrance and phenocopies 

Genera1ng!Sequence!data!for!
Pedigrees!!

•  Variants!can!be!generated!uncondi1onal!on!the!
disease!phenotype!
–  !To!generate!data!under!the!null!

•  Variants!are!only!generated!for!pedigree!members!
which!are!available!for!study!

Family ID
Phenotype
maxLOD

ED201
Ichthyosis
5.91

12 3

151611 131412

96 87 10

5 4

BD32
Polydactyly
4.05

51 6

4 83 72

ED112
Skin Ichthyosis
2.65

4 173 6

5 2

ED129
Skin Ichthyosis
6.04

1 92

10 124 67 113 135

8

AP216
Woolly Hairs on Scalp
1.33

435 6

12

BD210
PostAxial Polydactyly
2.66

3 2 1

5109 874 6

ED173
Cutaneous Syndactyly
2.86

42 3

657

1

ED104
Pure hair and nail ectodermal dysplasia
1.88

6 110119 4

27

ED205
Skin Ichthyosis
2.05

4 36 5

1 2

ED212
Skin Ichthyosis
2.91

1 2

35 6 4

First!Step!JGenera1ng!Pedigree!Data!
•  Empirical!pJvalues!
– Data!is!generated!under!the!null!hypothesis!
•  Markers!and!disease!are!unlinked!

– Not!necessary!to!know!the!underlying!gene1c!
model!
•  Can!be!used!for!Mendelian!and!nonJMendelian!traits!!

•  Power!
– Marker(s)!are!generated!linked!(ϴ<0.5)!to!the!
disease!locus!

– Must!know!underlying!gene1c!model!
•  For!pedigree!data!can!only!be!used!for!Mendelian!traits!

!
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Second!Step!Analyzing!Data!
Power,!ELOD!&!EMLOD!!

•  Must!know!underlying!disease!model!
•  Simulated!data!is!analyzed!using!the!same!
model!as!was!used!for!data!genera1on!
– Allele!frequencies!(marker!and!disease)!
– Penetrances!

•  Can!evaluate!the!informa1veness!of!pedigree!
data!using!several!measures!
– Power!
– ELOD!(Expected!LOD!Score)!
– EMLOD!(Expected!Maximum!LOD!Score)!
– Maximum!LOD!score!

Second!Step!Analyzing!Data!
Power,!ELOD!&!EMLOD!!

•  Power!
–  The!propor1on!of!replicates!where!the!null!hypothesis!of!
no!linkage!is!rejected!based!upon!a!LOD!score!criterion!
(e.g.!LOD!score!>3.3)!

•  ELOD!
–  Is!es1mated!by!the!average!LOD!score!across!at!the!
recombina1on!frac1on!the!data!was!generated!at!across!
all!replicates!

•  EMLOD!
•  Is!es1mated!by!the!average!of!the!maximum!LOD!score!
across!all!replicates!

•  Maximum!LOD!score!
•  Largest!LOD!score!observed!for!all!replicates!

•  Only valid for fully penetrant disease without phenocopies 

How!Many!Replicates!Should!be!Generated?!
•  Depends!on!how!accurate!of!an!es1mate!is!
necessary.!

•  When!es1ma1ng!empirical!pJvalues!will!be!
dependent!on!how!small!of!a!pJvalue!is!being!
es1mated.!!
–  The!smaller!the!pJvalues!the!more!replicates!

•  For!example!if!the!pJvalue!is!in!the!range!of!0.00001!
need!to!generate!many!more!than!1,000!replicates!
–  Since!by!chanced!under!the!null!my!never!observe!a!pJ
value!of!!<0.00001!

•  If!only!interested!in!es1ma1ng!if!an!empirical!pJ
value!is!<0.05!
–  ~5,000!replicates!may!be!sufficient!

How!Many!Replicates!Should!be!Generated?!
•  Power!
•  Usually!need!fewer!replicates!
•  ~500!replicates!
•  But!is!some!instances!there!can!be!great!variability!
and!many!more!replicates!are!necessary!for!
accurate!power!es1mates!

Exercises!!
•  Simulate!pedigree!data!using!SLINK!
– Generate!marker!data!

•  !Analyze!data!with!using!MSIM!
– Perform!parametric!twoJpoint!linkage!analysis!

•  Simulate!rare!variant!data!using!RareSimPed!
– Simulates!sequence!data!
•  Generates a VCF file  

•  Analysis!data!using!SEQLinkage!
– Performs!the!Collapsed!Haplotype!Parern!(CHP)!
method!

Simula1on!Programs!
•  SLINK 
–  Generates genotype and haplotype data conditional or 

unconditional on affection status or quantitative trait 
–  Generates phenotype data  

•  Quantitative 
•  Qualitative  

–  Large and complex pedigree structures 
–  Small number of marker loci ~< 7 can be generated 

•  SIMULATE 
–  Generates genotype data unconditional on affection status 
–  Large and complex pedigree structures 
–  Large number of marker loci can be generated 
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•  SIMLINK!
–  Generates!genotype!data!condi1onal!and!uncondi1onal!on!
affec1on!status!or!quan1ta1ve!trait!

–  Large!pedigree!structure!
–  Small!number!of!marker!loci!can!be!generated!

•  One!disease!and!one!marker!locus!
–  Must!modify!the!program!in!order!to!have!it!supply!generated!
pedigree!structures!

!
•  MERLIN!
–  Generates!genotypes!data!uncondi1onal!on!affec1on!status!or!
quan1ta1ve!trait!

–  Large!and!complex!pedigree!structures!
–  Large!number!of!marker!loci!can!be!generated!

•  SOLAR!
–  Generate!genotypes!uncondi1onal!on!affec1on!status!or!
quan1ta1ve!trait!

–  Large!and!complex!pedigree!structures!
–  Large!number!of!marker!loci!can!be!generated!

 
•  GASP 
– Generates quantitative and qualitative phenotype data 
• Gene-gene and gene-environmental interaction 

– Generates genotype data conditional on generated 
phenotype data 

– Limited in size and structure of pedigrees 
• At most three generations 

– Can generate up to 400 marker loci 

•  SimPed 
–  Pedigrees of virtually any size or complexity 
–  Generation of >10,000 diallelic or multiallelic marker loci 

•  Generates data for the autosomes and X chromosome 
– Haplotype data 

» Markers in linkage disequilibrium 
– Genotype data  

» Markers in linkage equilibrium 

 

 
•  SIMLA 
–  Generates qualitative phenotype data 

•  Gene-gene and gene-environmental interaction 
•  Assigns affection status to pedigree members 

–  Limited in pedigree structures that can be generated 
•  user cannot provide pedigree structure 

–  Large number of marker loci can be generated 
–  Can also generate sequence data 
 

•  RareSimPed 
–  Generates sequence data for Mendelian and Complex traits 

(qualitative and quantitative) regardless of pedigree structure 
•  Using population based frequencies or demographic models 

– Generates genotype data conditional and unconditional 
on the phenotype  

– Generates phenotype data conditional on the generated 
genotype data 
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REPORT

Mutations in KARS, Encoding Lysyl-tRNA
Synthetase, Cause Autosomal-Recessive
Nonsyndromic Hearing Impairment DFNB89

Regie Lyn P. Santos-Cortez,1,8 Kwanghyuk Lee,1,8 Zahid Azeem,2,3 Patrick J. Antonellis,4,5

Lana M. Pollock,4,6 Saadullah Khan,2 Irfanullah,2 Paula B. Andrade-Elizondo,1

Ilene Chiu,1 Mark D. Adams,6 Sulman Basit,2 Joshua D. Smith,7 University of Washington
Center for Mendelian Genomics, Deborah A. Nickerson,7 Brian M. McDermott, Jr.,4,5,6

Wasim Ahmad,2 and Suzanne M. Leal1,*

Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromo-

somal region 16q21–q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing-

impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase

(KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other

two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the

nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched

controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across

all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells

of zebrafish, chickens, andmice.Moreover, KARS has strong localization to the spiral ligament region of the cochlea, as well as to Deiters’

cells, the sulcus epithelium, the basilar membrane, and the surface of the spiral limbus. It is hypothesized that KARS variants affect ami-

noacylation in inner-ear cells by interfering with binding activity to tRNA or p38 and with tetramer formation. The identification of rare

KARS variants in ARNSHI-affected families defines a gene that is associated with ARNSHI.

Hearing impairment (HI) affects nearly 300 million people
of all ages globally and increases in prevalence per decade
of life.1 Children and adults with bilateral, moderate-to-
profound HI have a poorer quality of life, which encom-
passes not only problems in physical function but also
socioemotional, mental, and cognitive difficulties.2,3 In
particular, children with congenital HI must be identified
and habilitated within the first 6 months of life so that de-
lays in the acquisition of speech, language, and reading
skills can be prevented.4

Among children with congenital sensorineural HI, more
than 80% do not display syndromic features and ~60%
have a family history of HI or a confirmed genetic etiol-
ogy.5 Because of the complex cellular organization of the
inner ear, hundreds of genes and proteins are predicted
to influence auditory mechanisms. To date, for nonsyn-
dromic HI (NSHI), about 170 loci have been localized
and mutations in ~75 genes have been identified in hu-
mans (Hereditary Hearing Loss Homepage). Of the gene
variants that have been implicated in NSHI, almost 60%
are autosomal recessive (AR) in inheritance, and 95% of
the genes that harbor mutations that cause ARNSHI were
initially mapped and identified in consanguineous fam-

ilies. The knowledge that has been gained from functional,
expression, and localization studies after the identification
of genes with mutations that cause NSHI has immensely
expanded our understanding of inner-ear physiology.
Previously, an ARNSHI-associated locus, DFNB89, was

mapped to chromosomal region 16q21–q23.2 in two unre-
lated, consanguineous Pakistani families.6 The two fam-
ilies, 4338 and 4406 (Figures 1A and 1B), had maximum
multipoint LOD scores of 6.0 and 3.7, respectively. The ho-
mozygosity regions that overlap in the two families led to
the identification of a 16.1 Mb locus (chr16: 63.6–79.7 Mb)
that includes 180 genes. Additionally, a third consanguin-
eous Pakistani family, 4284 (Figure 1C), was identified, and
showed suggestive linkage to the DFNB89 region with a
maximum multipoint parametric LOD score of 1.93. For
family 4284, linkage analysis was performed for ~6,000
SNP markers that were genotyped across the genome
with the Illumina Linkage Panel IVb.
Consanguineous families 4284, 4338, and 4406 from

Pakistan are affected by ARNSHI, which was found to
segregate with unique haplotypes within the DFNB89 lo-
cus (Figures 1A–1C). From the medical history, no other
risk factors were identified as a possible cause of HI. For

1Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2Department of
Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; 3Department of Biochemistry, Azad Jammu Kashmir
Medical College, Muzaffarabad, Azad Jammu and Kashmir 13100, Pakistan; 4Department of Otolaryngology Head and Neck Surgery, Case Western Reserve
University, Cleveland, OH 44106, USA; 5Department of Biology, CaseWestern Reserve University, Cleveland, OH 44106, USA; 6Department of Genetics and
Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; 7Department of Genome Sciences, University of Washington, Seattle, WA
98195, USA
8These authors contributed equally to this work
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Describes!the!iden<fica<on!of!KARS!for!nonsyndromic!hearing!!
impairment!and!func<onal!studies!which!were!performed!

KARS*Variants!Segregate!with!HI!in!
DFNB89!Families!

*

325!Pakistani!controls!nega<ve!for!both!
variants!

DFNB89!Hearing!Impairment!

Bilateral!symmetric!moderateNtoNprofound!!
hearing!impairment!across!all!frequencies!

(+)!ABR!waveforms!
Absent!OAE!
Normal!EMGNNCV!

Ruling!out!auditory!neuropathy!and!
suppor<ng!occurrence!!of!cochlear!
pathology,!par<cularly!!of!the!!outer!
hair!cells!

For!individual!VN6!all!motor!and!sensory!ac<on!
poten<als!were!normal!

KARS*Variants!at!Conserved!Residues!

p.Asp377!iden<cal!in!165!species!
p.Tyr173!conserved!in!162!species!

From!primates!to!fungi!

KARS*Variants!Predicted!to!Lower!
Cataly<c!Ac<vity!

Loss!of!βN2!strand!!

Interfere!with!tRNA!binding!

Decreased(cataly,c(ac,vity(

Loss!of!αNhelix!9!

Affect!tetramer!binding!
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KARS*is!Expressed!in!Chicken!Hair!Cells!

Expression!of!KARS!in!purified!chicken!hair!cells!
was!detected!by!RNANseq!

KARS*is!Expressed!in!Zebrafish!and!
Mouse!Hair!Cells!and!Maculae!

HC!=!Hair!Cell!
M!=!Macula!
WF!=!Whole!Fish!
(5)!=!Control!

Zebrafish! Mouse!

KARS*Localized!to!Cochlear!Duct!

spiral!
ligament!
fibrocytes!

hair!cells!
spiral!
limbus!

inner!
sulcus!
cells!

outer!sulcus!
cells!

Mouse!!

KARS*Localized!to!Cochlear!and!
Ves<bular!Hair!Cells!in!the!Mouse!

outer!
hair!cells!

inner!
hair!cell!

*!=!hair!cell!nuclei!!

Deiters’!cells! basilar!
membrane!

Cochlea! Ves<bule!

hair!cells!

Labeling!with!KARS!polyclonal!an<body!(green)!&!phalloidin!(red)!

Conclusions!KARS!

•  KARS*muta<ons!define!both!a!novel!NSHI!
gene!and!a!novel!phenotype!for!KARS*
•  KARS*is!expressed!in!inner!ears!and!hair!
cells!of!chicken,!zebrafish!and!mouse!
•  KARS!strongly!localizes!to!o<c!fibrocytes,!
hair!cells!and!cochlear!suppor<ng!cells!

Adenylate cyclase 1 (ADCY1) mutations cause
recessive hearing impairment in humans and defects
in hair cell function and hearing in zebrafish
Regie Lyn P. Santos-Cortez1, Kwanghyuk Lee1, Arnaud P. Giese3,4, Muhammad Ansar1,5,

Muhammad Amin-Ud-Din6, Kira Rehn4, Xin Wang1, Abdul Aziz5, Ilene Chiu2, Raja Hussain Ali5,

Joshua D. Smith7, University of Washington Center for Mendelian Genomics, Jay Shendure7,

Michael Bamshad7, Deborah A. Nickerson7, Zubair M. Ahmed3, Wasim Ahmad5, Saima Riazuddin4

and Suzanne M. Leal1,∗

1Department of Molecular and Human Genetics, Center for Statistical Genetics and 2Bobby R. Alford Department of
Otolaryngology—Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA, 3Division of Pediatric
Ophthalmology and 4Division of Pediatric Otolaryngology—Head and Neck Surgery, Cincinnati Children’s Hospital
Research Foundation, University of Cincinnati, Cincinnati, OH 45221, USA, 5Department of Biochemistry, Faculty
of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan, 6Dera Ghazi Khan Campus, University of
Education, Lahore 32200, Pakistan and 7Department of Genome Sciences, University of Washington, Seattle,
WA 98195, USA

Received October 16, 2013; Revised and Accepted January 27, 2014

Cyclic AMP (cAMP) production, which is important for mechanotransduction within the inner ear, is catalyzed by
adenylate cyclases (AC). However, knowledge of the role of ACs in hearing is limited. Previously, a novel auto-
somal recessive non-syndromic hearing impairment locus DFNB44 was mapped to chromosome 7p14.1-q11.22
in a consanguineous family from Pakistan. Through whole-exome sequencing of DNA samples from hearing-
impaired family members, a nonsense mutation c.3112C>T (p.Arg1038∗) within adenylate cyclase 1 (ADCY1)
was identified. This stop-gained mutation segregated with hearing impairment within the family and was not
identified in ethnically matched controls or within variant databases. This mutation is predicted to cause the
loss of 82 amino acids from the carboxyl tail, including highly conserved residues within the catalytic domain,
plus a calmodulin-stimulation defect, both of which are expected to decrease enzymatic efficiency.
Individuals who are homozygous for this mutation had symmetric, mild-to-moderate mixed hearing impairment.
Zebrafish adcy1bmorphants had noFM1-43 dye uptakeand lacked startle response, indicating hair cell dysfunc-
tion and gross hearing impairment. In the mouse, Adcy1 expression was observed throughout inner ear devel-
opment and maturation. ADCY1 was localized to the cytoplasm of supporting cells and hair cells of the cochlea
and vestibule and also to cochlear hair cell nuclei and stereocilia. Ex vivo studies in COS-7 cells suggest that the
carboxyl tail of ADCY1 is essential for localization to actin-based microvilli. These results demonstrate that
ADCY1 has an evolutionarily conserved role in hearing and that cAMP signaling is important to hair cell function
within the inner ear.

∗ To whom correspondence should be addressed at: Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of
Medicine, 1 Baylor Plaza 700D, Houston, TX 77030, USA. Tel: +1 7137984011; Fax: +1 7137984012; Email: sleal@bcm.edu

# The Author 2014. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Human Molecular Genetics, 2014, Vol. 23, No. 12 3289–3298
doi:10.1093/hmg/ddu042
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Describes!the!iden<fica<on!of!ADCY1!for!nonsyndromic!hearing!!
impairment!and!func<onal!studies!which!were!performed!
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Family!4009!N!DFNB44!Mapped!to!7p14.1Nq11.22!!

Ansar!et!al.!!

Anar!et!al.!2004!
Mapped!with!STR!Markers!
Maximum!Mul<point!LOD!Score!5.0!
!!

Nonsense*Variant*c.311C>T*p.ARG1038**in*
ADCY1!Iden<fied!through!exome!sequencing!!!

Missense*variant*in***
HECW1!(chr!7p14N13)!
also!iden<fied!in!both!
individuals!predicted!
mostly!likely!to!be!
benign!and!did!not!
segregate!in!pedigree!!
!

ADCY1!chr!7p12.3!
LOD!score!of!5.8!
obtained!with!
p.ARG1038*!variant!
for!all!family!
members!with!DNA!
samples!!

Bilateral!symmetric!mildNtoNmoderate!mixed!hearing!
impairment!in!5!of!6!!family!members!of!4009!

Predicted!loss!of!two!terminal!betaNsheets!
due!to!ADCY1!p.Arg1038*!

Predicted!to!cause!loss!of!82!amino!acids!from!the!!cytoplasmic!
carboxyl!tail!and!include!highly!conserved!residues!of!the!C2!
domain!

Failure!of!FM1N43!dye!uptake!and!lack!of!startle!
response!in!adcy1b*but!not!adcy1a*morphant!

zebrafish!

ADCY1!is!expressed!in!mouse!inner!ear!at!
various!developmental!stages,!with!highest!

expression!at!P16!
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ADCY1!is!localized!to!cochlear!outer!and!inner!
hair!cell!bodies!and!nuclei!with!weaker!staining!

in!suppor<ng!cells!
Mouse!

ADCY1!localizes!to!the!ves<bular!hair!cell!bodies!
and!also!in!suppor<ng!cells!but!no!nuclei!

labeling!was!observed!

ADCY1!is!localized!to!the!adult!rat!inner!hair!cell!
bodies!and!along!the!length!of!the!stereocilia!of!

both!inner!and!outer!hair!cells!

ConclusionsNADCY1*

•  ADCY1*p.Arg1038*!causes!bilateral!mildNtoN
moderate!mixed!hearing!impairment!in!
humans!

•  This!muta<on!is!predicted!to!decrease!
enzyma<c!efficiency!and!localiza<on!of!
ADCY1!to!stereocilia!

•  ADCY1!has!an!evolu<onarily!conserved!role!
in!hearing!

!

Conclusions!–ADCY1*

•  ADCY1*is!expressed!throughout!inner!ear!
development!and!matura<on!

•  ADCY1*is!localized!to!cytoplasm!of!inner!ear!
hair!cells!and!suppor<ng!cells!and!also!to!
nuclei!and!stereocilia!of!cochlear!hair!cell!

*

•  Zebrafish!adcy1b!morphants!had!hair!cell!
dysfunc<on!and!gross!hearing!impairment!

!

ConclusionsN!overall!

•  With!fast!pace!of!NGS!gene!discovery,!func<onal!
studies!can!be!the!rateNlimi<ng!step!to!
publica<on!

•  Design!of!func<onal!study!depends!on!hypothesis!
for!gene’s!role!in!target!organ!

•  For!inner!ear,!expression!and!localiza<on!within!
various!cell!types!in!rodent!inner!ear!is!usually!
performed!as!ini<al!study!

•  If!hair!cells!are!involved!zebrafish!morphants!can!
be!studied!

!
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Conclusions!N!Overall!
Expression!and!Func<onal!Studies!

•  Can!aid!in!implica<ng!a!variant/gene!in!disease!
e<ology!
– Par<cularly!!important!if!the!variant/gene!is!found!in!a!
single!family!
•  Identified variant may be in LD with functional mutation 

•  Brings!about!a!beqer!understanding!of!disease!
e<ology!and!the!role!the!iden<fied!gene!plays!
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Michael Nothnagel, michael.nothnagel@uni-koeln.de, 2015 

Variant Annotation 

Outline 

•  Forms of variant annotation 

•  Databases for annotation 

•  Software for annotation 

•  Notes of caution 

Forms of variant annotation 

Technical information 

Functional annotation 

Database annotation 

Multiple layers annotation 

•  Sequencing instrument 
•  Quality metrics for filtering 

  

•  Prediction of functionality, 
pathogenicity etc. of variant 

•  Inference based on various  

•  What is already known about 
the variant? 

•  Retrieval of information from 
databases  

•  Overlap with others sorts of 
genomic information, e.g. 
expression levels, transcription 
factors 

Jobling, et al. (2014) 

Bioinformatic workflow 

Database annotation 

•  A wealth of information is already available from public
 databases for many variants 
–  RefSeq numbers and other identifiers 
–  Population frequencies (both global and population-specific) 
–  Type of variant for coding regions (missense, stop, etc.) 
–  Implication in human Mendelian diseases 
–  Implication in human inherited diseases 
–  Implication in human diseases and traits (GWAS?) 
–  Literature 

•  Database annotation involves scripted or web-based
 analyses for 
–  querying of public databases 
–  storing retrieved information 

Potential effects of small-scale gene mutations 

Jobling, et al. (2014) 
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(Human) genomic databases (I) 

dbSNP, dbVar 
•  SNPs, indels, SV 
•  Global and population-specific frequencies 

1000 Genomes 
•  SNPs, indels, SV 
•  Global and population-specific frequencies 

HapMap 
•  SNPs, indels 
•  Global and population-specific frequencies 

GoNL 
•  SNPs, indels 
•  Dutch population frequencies 

www.ncbi.nlm.nih.gov/SNP 

www.1000genomes.org 

www.hapmap.org 

www.nlgenome.nl 

(Human) genomic databases (II) 

Genomic Variants Archive 
•  SNPs, indels www.ebi.ac.uk/dgva 

UCSC Genome Browser 
•  the reference sequence and working draft 

assemblies for a large collection of genomes 
•  portal to ENCODE data at UCSC (2003-12) 

and to the Neanderthal project 

genome.ucsc.edu 

Ensemble  
•  European Bioinformatics Institute 
•  SNPs, indels www.ensembl.org 

ExAC 
•  Exome Aggregation Consortium 
•  Exome data (including variants) for >60,000 

unrelated individuals 

exac.broadinstitute.org 

Human disease databases (I) 

OMIM 
•  Online Mendelian Inheritance in Men 
•  Catalog of human genes/disorders/traits 
•  Focus on molecular relationship between 

genetic variation and phenotypic expression 

www.ncbi.nlm.nih.gov/omim 

HGMD 
•  Human Gene Mutation Database 
•  Collate known (published) gene lesions 

responsible for human inherited disease 

www.hgmd.cf.ac.uk 

GWAS catalog 
•  QC-ed, manually curated, literature-derived 

collection of all published GWAS assaying 
>100,000 SNPs; all SNPs with p<10-5 

www.ebi.ac.uk/gwas 

PubMed 
•  >24 million citations for biomedical literature 

from MEDLINE, journals, and online books www.ncbi.nlm.nih.gov/pubmed 

HGMD 
Cooper & Krawczak (1993), Cooper, et al. (1998), Krawczak, et al. (2000), 

Stenson, et al. (2003), Stenson, et al. (2014)  

Free access to mutations included >=3 years ago for registered 
academic users; otherwise professional version for up-to-date access 

Manually curated collection of published gene lesions responsible for 
human inherited disease; includes the first example of all mutations 

causing or associated with human inherited disease plus functional studies 

Human disease databases (II) 

ClinVar 
•  Public archive of reports on relationships 

among human variations and phenotypes 
•  Supporting evidence and submitter visible 
•  Focus in medical genetics 

www.ncbi.nlm.nih.gov/clinvar 

The Cancer Genome Atlas (TCGA) 
•  Public catalog of genomic changes in tumors  
•  Search, download, and analysis of data sets 

generated by TCGA 

cancergenome.nih.gov 

COSMIC 
•  Public catalog of genomic changes in tumors  
•  Search, download, and analysis of data sets 

generated by TCGA 

cancer.sanger.ac.uk/cosmic 

There are (many) more databases. 

Number of genic SNPs per genome 

Jobling, et al. (2014) 
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Motivation for functional annotation 

•  Each individual carries multiple deleterious mutations: 
–  On average 2% of all individuals carry a missense mutation in any

 given gene. (Andrews, et al., 2013, Trends Immunol) 
–  For a given disease, multiple missense mutations will by chance be

 present in those genes that seemingly relate to the disease in an
 affected individual. 

•  Do these missense mutations 
–  actually alter gene function or, more precise,  
–  actually cause the disease/phenotype at hand? 

•  Functional assays or model organism experiments are 
–  too costly for all observed missense mutations 
–  too time-consuming  
–  may raise ethical issues 

•  Computational inference may address some of these issues. 
–  Trade-off between sensitivity and specificity 

Approaches to functional annotation 

Coding sequence Non-coding sequence 

•  Focus on proteins 
•  Primarily applied with exome 

data 
•  Possible analyses 

•  Protein sequence 
conservation 

•  Protein features  
•  Gene relationships, 

interaction 
•  Pathway analysis 
•  … 

•  Focus on regulation 
•  Primarily applied with whole-

genome data 
•  Possible analyses: 

•  Methylation, epigenetic 
alterations 

•  Transcription-factor (TF) 
binding sites 

•  RNA interference 
•  Expression 
•  … 

Variant is located in … 

•  Selection, reduced nucleotide diversity, etc. 

Homology: sequence divergence by evolution 

Sequences( Sequence(divergence(

ACCAGGTACACAATGAGT---CAGC 

ACC---TACACATTGAGTCCGCAGC 

evolu0on(

dele0on( inser0on(

subs0tu0on((“muta0on”)(

ACCAGGTACACAATGAGTCAGC 

ACCAGGAGGTACACAATGAGTCAGC 

ACCAGGTACACAATGAGTAGGCAGC 

ACCGGATACACAATGAGTCAGC 

duplica0on(

transloca0on(

inversion(

phylogeny(

Physicochemical properties of proteins 

•  Chemical composition and biophysical characteristics 
–  Solubility in water, polarity, charge,  
–  Cyclic, sulfur-containing 
–  Molecular volume 

•  Structure 
–  Primary: amino acid chain 
–  Secondary: chain folding (mainly a and b helixes) 
–  Tertiary: spatial arrangement through folding and coiling,

 sometimes including molecular chaperones 
–  Quaternary: complex of two more polypeptide chains 

•  Sequence conservation 
•  … 

Fixation of mutations with dissimilar amino acids is rare.  
(Grantham, 1974, Science) 

Cozzone((2002)(Encyclopedia(of(Life(Sciences;(www.els.net(

Conservation through selection 

Thioredoxin(of(E.#coli#and(15(homologs(

Lesk((2014)(

active site with highest conservation 

Transcriptional regulation 

Wasserman(&(Sandelin((2004)(Nat(Rev(Genet(

TFBS: 
TF binding site 

CRM: 
cis-regulatory module (set of TFs) 

Places of action for transcription factors (TF) 
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Epigenetic changes 

hQp://commonfund.nih.gov/epigenomics/(

RNA interference 

Robinson((2004)(PLoS(Biol(

Silencing of gene expression by targeted degradation of mRNA 

Data basis for functional annotation UniProt database 

•  Universal Protein Resource 
•  http://www.uniprot.org/ 
•  Comprehensive catalog of  

–  protein sequence  
–  functional information

 (annotation data) 
•  Several databases: 

–  UniProtKB: Knowledgebase
 (annotation) 

–  UniRef: Reference Clusters
 (sequences for UniProtKB) 

–  UniParc: Archive (all sequences) 
–  UniMES: metagenomes 

•  Merger of previous Swiss-Prot
 and TrEMBL databases 

PANTHER 

•  Protein ANalysis THrough Evolutionary Relationships 
•  http://www.pantherdb.org/ 
•  Classification system of proteins and their genes 
•  Classification by: 

–  Family (evolutionarily related proteins) and subfamily (related
 proteins that have the same function) 

–  Molecular protein function (e.g. kinase) 
–  Biological protein function (e.g. mitosis) 
–  Pathway relationships 

•  Compilation by human curation as well as bioinformatic
 algorithms 

•  >11,900 protein families, >83,000 subfamilies in 2015 

Thomas, et al. (2003) Genome Res 13:2129-41;  
Thomas & Kejariwal (2004) PNAS 101:15398–15403. 

PANTHER 

http://www.pantherdb.org 

Information types stored in PANTHER 
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PFAM database 

Punta, et al. (2012) Nucleic Acids Res 40:D290-D301; 
Finn, et al. (2014) Nucleic Acids Res 42:D222-D230 

•  Protein families 
•  http://pfam.xfam.org/ 
•  Database of protein families 

(>16,200 in 2015) 
•  Contains, for each family,

 multiple sequence
 alignments and Hidden
 Markov models (HMMs) for
 seed alignment 

•  Contains information about
 protein domains 

•  Grouping of families into clans 

Ensemble database 

•  http://www.ensembl.org 
•  Genomic interpretation system 
•  Annotations, querying tools, access

 methods for chordates and key
 model organisms 

•  Annotation includes: 
–  Gene annotation (GENCODE gene set) 
–  Regulatory region / epigenetic annotation 
–  Variation annotation (germline &

 somatic), also including 1000G,
 HapMap, EVS and other data 

–  Comparative annotation (mutation age,
 multiple sequence alignment, secondary
 protein structures, …) 

•  Web-based queries and API 

Cunningham, et al. (2015) Nucleic Acids Res 43:D662-D669 

JASPAR database 

•  http://jaspar.genereg.net/ 
•  Collection of databases: 

–  JASPAR CORE:
 database of
 transcription factor
 binding motifs 

–  JASPAR
 COLLECTIONS:
 databases for splice
 forms, meta-models,
 and others 

Portales-Casamar, et al. (2010) Nucleic Acids Res 38:D105–D110; 
Mathelier, et al. (2014) Nucleic Acids Res 42:D142-D147 

ENCODE database 

The ENCODE Project Consortium (2012) Nature 489:57–74 

•  Encyclopedia of DNA
 Elements 

•  https://www.encodeproject.org/ 
•  Projects aims to build a

 comprehensive catalog of all
 functional elements in the
 human genome 

•  International collaboration
 funded by the National Human
 Genome Research Institute
 (NHGRI 

ENCODE: author list 

The ENCODE Project Consortium (2012) Nature  

ENCODE: annotations 

•  Candidate enhancers and promoters for DNase hypersensitivity 
•  Gene expression over ~60 cell types  
•  Transcription start sites (TSS) 
•  Peaks (sites of transcription factor binding or DNase hypersensitivity) 
•  Amount of RNA for different types of RNA and in various cell lines  
•  Promoter regions 
•  Predicted enhancers 
•  Semi-automated genome annotation (SAGA); summarization of

 chromatin accessibility, patterns of histone modifications, transcription
 factor binding, … 

•  High Occupancy of Target (HOT) regions (regions in which a large
 number of different transcription-related factors bind) 

•  Connectivity of transcription factors 
•  Motifs (DNA binding sites) for transcription related factors 
•  and more … 

https://www.encodeproject.org/ 
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ENCODE 
Co-association between transcription factors 

The ENCODE Project Consortium (2012) Nature  

FANTOM5 database 

•  Functional Annotation of the
 Mammalian Genome 

•  http://fantom.gsc.riken.jp/5/ 
•  Annotation of regulation, expression

 and function of mammalian genes  
•  Promotor atlas, cell-type-specific TF 
•  Tools for visualization and

 exploration 
•  Based on systematic sampling of the

 distinct mammalian cell types (975
 human and 399 mouse samples,
 including primary cells), tissues and
 cancer cell lines 

•  RIKEN-led consortium 

FANTOM Cons., RIKEN PMI & CLST, et al. (2014) Nature 507:462-70 

FANTOM5 
Collapsed co-expression network of 4882 co-expression groups  

[124,090 promoters across all primary cell types, tissues & cell lines] 

FANTOM Consortium, et al. (2014) Nature  

Human epigenome 

•  http://www.roadmapepigenomics.org/ 
•  Map of  

–  DNA methylation 
–  Histone modifications 
–  Chromatin accessibility  
–  Small RNA transcripts  

•  Considered locations: 
–  Stem cells  
–  Primary ex vivo tissues  

•  Sites selected to represent the normal
 counterparts of tissues and organ
 systems frequently involved in human
 disease 
! Convenience control for such studies 

Roadmap Epigenomics Consortium, et al. (2015) Nature 518:317-30 

Human epigenome 
Profiled tissues and cell types 

Roadmap Epigenomics Consortium (2015) Nature  

Human epigenome 
Chromatin state annotation in 127 epigenomes 

Roadmap Epigenomics Consortium (2015) Nature  
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STRING database 

•  http://string-db.org/ 
•  Database of known and predicted  

protein-protein interactions  
(both direct [physical] and indirect
 [functional] associations) 

•  Based on: 
–  Genomic context 
–  High-throughput experiments 
–  Co-expression 
–  Previous knowledge 

•  Builds upon numerous other
 databases 

•  >9,600,000 proteins from >2000
 organisms in 2015 

Franceschini, et al. (2012) Nucleic Acids Res 41:D808-D815 

COSMIC database 

•  http://cancer.sanger.ac.uk/cosmic 
•  Catalog of somatic mutations in

 cancer 
•  Two types of data:  

–  Manual curation data from peer
 reviewed publications by
 COSMIC expert curators (aka
 non-systematic/targeted
 screen data) 

–  Systematic screen data:
 uploads from large scale
 genome screening
 publications and from other
 databases (TCGA, ICGC); 
 unbiased molecular profiling of
 diseases 

Forbes, et al. (2015) Nucleic Acids Res 43: D805-D811 

GenomeRNAi database 

Horn, et al. (2007) Nucleic Acids Res 35:D492-7; 
Gilsdorf, et al. (2010) Nucleic Acids Res 38:D448-52; 
Schmidt, et al. (2013) Nucleic Acids Res 41:D1021-6 

•  http://www.genomernai.org/GenomeRNAi/ 
•  Database containing phenotypes from

 RNA interference screens in Drosophila
 and Homo sapiens 

•  Provision of RNAi reagents and their
 predicted quality.  

There are more databases… 

Software 

Schiffahrtsmuseum Brake, Germany 

MAPP 

•  Multivariate Analysis of Protein Polymorphism 
•  http://mendel.stanford.edu/sidowlab/downloads

/MAPP 
•  Steps: 

1.  Multiple alignment of homologous
 sequences, phylogeny-weighted scores 

2.  Interpretation of scores by quantified
 physicochemical properties, yielding
 constraints on these properties for each
 variant 

3.  Create new feature space by PCA of all
 physicochemical properties  

4.  MAPP score: distance to the origin of the
 new feature space 

Stone & Sidow (2005) Genome Res 15:978-86 
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GERP/GERP++ 

•  Genomic Evolutionary Rate Profiling 
•  http://mendel.stanford.edu/sidowlab/downloads/gerp 
•  Identification of constrained elements by a deficit of

 substitution events due to purifying selection 
•  Comparison of estimated evolutionary rates between 

–  individual alignment column (residue/variant)  and  
–  a tree describing neutral substitution rates (ML-based phylogenic

 inference) 

•  Constraint regions exhibit fewer than expected changes 
•  RS score (metric of constraint): rejected substitutions 
•  GERP++: additional aggregation of constrained sites into

 constrained sequences 

Cooper, et al. (2005) Genome Res 15:901-13;  
Davydov, et al. (2010) PLoS Comp Biol 6:e1001025. 

PhastCons 

•  Part of the PHAST (Phylogenetic Analysis with Space
/Time Models) package:  
–  http://compgen.bscb.cornell.edu/phast/ 
–  Engine behind the Conservation tracks in the UCSC Genome

 Browser 

•  Aims at conservation scoring and identification of
 conserved elements from multiple sequence alignment 

•  Predicting sequences as being conserved / not conserved  
–  using a phylogenetic Hidden Markov Model (HMM)  
–  different values for branch length scaling parameter (average

 substitution rate) in phylogenetic tree between both types 
–  Unsupervised learning without use of external information 

•  Calculation of conservation score 

Siepel, et al. (2005) Genome Res 15:1034-1050 

PhastCons 

Siepel, et al. (2005) Genome Res 

Assumed tree topologies and branch length 

PhastCons: conservation score 

Siepel, et al. (2005) Genome Res 

Conservation track in UCSC Genome Browser: 

Conservation score: posterior probability that each site was generated from 
a conserved state in the phylo-HMM 

LOD score: log-ratio of the likelihoods for a region under the conserved 
phylogenetic model compared to the nonconserved model 

Note 1: LOD – logarithm of the odds 
Note 2: This is not the LOD score from linkage analysis (although scaled in a similar way). 

PhyloP 

•  phylogenetic P-values 
•  http://compgen.bscb.cornell.edu/phast/ 
•  Aims at detecting deviations from the

 neutral rate of substitutions 
–  Conservation: less than under drift 
–  Acceleration: more than under drift 

•  Additionally allows for clade-specific
 differences in the phylogeny 

•  Software implementation of four tests,
 including likelihood-ratio and score tests,
 a number-of-substitutions test (SPH), and
 GERP 

•  The conservation track of the UCSC
 genome browser contains PhyloP scores
 (SPH p-values for deviation from drift). 

Pollard, et al. (2010) Genome Res 20:110-121 

LogRE 

•  http://lpgws.nci.nih.gov/cgi-bin/GeneViewer.cgi 
•  Prediction whether amino acid (AA) changes in conserved

 domains are likely to affect protein function 
•  Based on output of the HMMER/2/3 software (multiple

 sequence alignment using HMMs and profiles) and Pfam
 profiles (conservation in protein families) 

•  E-value in sequence alignment: expected number of
 sequences with an alignment score equal to or even more
 extreme than that of the observed sequence 

•  LogRE value:   
                 log10 of ratio E(deviant AA) / E(canonical AA) 

Clifford, et al. (2004) Bioinformatics 20:1006-14 
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SIFT 

•  Sorting Tolerant From Intolerant 
•  http://sift.jcvi.org/ 
•  Protein function prediction due to an AA substitution (nsSNP) 
•  Based on  

–  Multiple sequence alignment 
–  Conservation with respect to functionally related protein sequences 
–  Similarity between the alternate amino acids 
–  No incorporation of protein structure 

•  Output 
–  Score: probability of substitution for being tolerated  

(i.e. values near 0 imply high probability for being deleterious) 
–  Qualitative prediction of being ‘tolerated’ or ’deleterious’ by

 thresholding 

Kumar, et al. (2009) Nat Protoc 4:1073-81, and others 

SIFT: workflow 

Kumar, et al. (2009) Nat Protoc  

High sequence conservation in functionally related protein sequences 
! nsSNP unlikely to be tolerated 

SIFT score 
Multiple sequence alignment of homologous amino acid (AA) sequences 

SIFT score close to 0: 

The observed AA almost never occurs at this position in the homologous 
sequences, indicating high conservation and a probably deleterious effect. 

Kumar, et al. (2009) Nat Protoc  

For a given position, calculation of the relative frequencies of the 20 AA at 
this position in the alignment, normalized by the maximum relative 

frequency  

SIFT score: 
normalized probability of the observed AA 

(i.e. frequency of the observed AA relative to the  
most common AA at this position in the alignment)  

SIFT score 

Thioredoxin(of(E.#coli#and(15(homologs(

Lesk((2014)(

f(G)=2/16 f(L)=1/16 f(K)=10/16 f(E)=1/16 f(Q)=2/16 

S(G)=2/10 S(L)=1/10 S(K)=10/10 S(E)=1/10 S(Q)=2/10 

Relative 
frequency 

SIFT 

PolyPhen-2 

•  http://genetics.bwh.harvard.edu/pph2/ 
•  Prediction of the functional effects of an amino acid

 substitution on the structure and function of a protein 
•  Naïve Bayes classifier based on  

–  Sequence conservation 
–  Chemical properties of amino acids 
–  Protein structure 
–  Sequence context 

•  Output 
–  Score: probability of substitution for being deleterious  

(i.e. values near 1 imply high probability) 
–  Qualitative prediction of being ‘probably damaging', 'possibly

 damaging', 'benign’ or 'unknown' 

Adzhubei, et al. (2010) Nat Methods 7(4):248-249 

PolyPhen-2: workflow 

Adzhubei, et al. (2010) Nat Methods  
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SNP Effect Predictor (SEP) 

•  Annotation of SNVs in
 transcripts (i.e. coding
 sequence) 

•  Part of Ensemble; annotation
 based on Ensemble
 databases 

•  Web-based tool and
 Application Programme
 Interface (API, written in Perl)
 available 

•  http://www.ensembl.org/info
/docs/api/ 

McLaren, et al. (2010) Bioinformatics 26:2069-70. 

Predicted consequences 

ANNOVAR (I) 

•  http://annovar.openbioinformatics.org/ 
•  Widely used tool; builds upon numerous databases and

 many other tools 
•  Annotation of SNVs, InDels and CNVs 
•  Conversion utilities for numerous file types (including VCF) 
•  Perl command line tool 
•  Web-based access to some functionality via wANNOVAR

 (http://wannovar.usc.edu/) 
•  Gene-based annotation:  

–  Identification of protein-coding changes 
–  Flexible use of many gene definition systems (RefSeq, UCSC,

 ENSEMBL, GENCODE, AceView, and others) 

Wang, et al. (2010) Nucleic Acids Res 38:e164. 

ANNOVAR (II) 

•  Region-based annotation: 
–  Identification of conserved regions among 44 species,  
–  Prediction of transcription factor binding sites, segmental

 duplication regions, GWAS hits, database of genomic variants,
 ENCODE sites, ChIP-Seq peaks, RNA-Seq peaks, … 

•  Filter-based annotation: 
–  Presence (and reported frequency) in specific databases (dbSNP,

 1000 Genome, NHLBI-ESP 6500 exomes, ExAC, and others) 
–  Calculation of scores (e.g. SIFT, PolyPhen-2, LRT, MutationTaster,

 MutationAssessor, FATHMM, MetaSVM, MetaLR, GERP++)  

•  Other functionalities: 
–  Retrieval of nucleotide sequence in any user-specific genomic

 positions in batch 
–  Candidate gene list for Mendelian diseases from exome data  
–  and more 

SnpEff 

•  SNP Effect 
•  http://SnpEff.sourceforge.net/ 
•  Annotation of SNVs, InDels, MNP (multiple nucleotide

 polymorphism) in coding sequence 
•  Multiple input file formats (VCF, mpileup, text) 
•  Gene annotation has similar scope as in ANNOVAR 
•  Integration with computational biology platform Galaxy

 (http://gmod.org/wiki/Galaxy) and GATK 
•  Superseded ANNOVAR when integrated in GATK 
•  Tool SnpSift for VCF file manipulaitn and filtering 

Cingolani, et al. (2012) Fly 6:1-3 

Condel 

•  Consensus deleteriousness score of missense mutations 
•  http://bg.upf.edu/condel 
•  Mulitple sequence alignment of homolous sequences 
•  Weighted combination of five predictors: Logre, MAPP,

 Mutation Assessor, PolyPhen-2 and SIFT 
•  Definition of different simple and averaged scores for the

 0/1 prediction and the normalized scores of each of the
 five predictors 

•  Combinations these derived scores used for classification
 of a variant being deleterious or neutral 

González-Pérez & López-Bigas (2011) Am J Hum Genet 88:400-9 

FATHMM, FATHMM-MKL 

•  Functional Analysis through Hidden Markov Models 
•  http://fathmm.biocompute.org.uk/ 
•  Prediction of functional consequences for both coding and

 non-coding SNVs 
•  Web service 
•  Based on  

–  conservation of homologous sequences, protein domain
 functionality and pathogenicity (inferred from relative frequencies
 of disease-associated variants) 

–  SVM using functional annotation from numerous ENCODE tracks  

•  Incorporates numerous databases, e.g. HGMD, UniProt,
 VariBench and SwissVar 

Shihab, et al. (2013) Hum Mutat 34:57-65; Shihab, et al. (2015) Bioinform. 
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Mutalyzer 

•  https://mutalyzer.nl/ 
•  Checking sequence variant nomenclature according to the

 guidelines of HGVSt (Human Genome Variation Society) 
•  Some automated extraction of variant annotation 
•  Web-based service 

Wideman, et al. (2008) Hum Mutat 29:6-13 

Mutation Assessor 

•  http://mutationassessor.org/ 
•  Functionality predicted from inter-species conservation and

 known 3D structures 
•  Somatic cancer mutations are additionally evaluated for

 recurrence, multiplicity and annotation based on the
 COSMIC database  

Reva, et al. (2011) Nucleic Acids Res 39:e118 

Mutation Assessor: functional impact score (FIS) 
Multiple sequence alignment of a large number of homologs for both 

protein families and subfamilies 

Reva, et al. (2011) Nucleic Acids Res  

residues conserved 
across entire family 

residues conserved  with subfamily, 
vary between subfamilies 

Strength of residue conservation: distributional entropy of alignment column 

Conservation score: effect of mutation described as difference in residue 
conservation 

Specificity score:  conservation score within data-defined sequence 
subfamily 

MutationTaster / MutationTaster2 

•  http://www.mutationtaster.org/ 
•  Web-based service, upload of VCF files 
•  Prediction of functional consequences for amino acid

 substitutions (nsSNVs), intronic and synonymous SNVs
 and InDels and exon-intron border variants 

•  Bayes classifier trained on 1000G and HGMD Professional 
•  Integration of: 1000G, HapMap, ClinVar, HGMD Public,

 ENCODE, JASPAR, PhyloP/PhastCons [conservation],
 NNSplice [splicing], … 

Schwarz, et al. (2010) Nat Methods 7:575-6;  
Schwarz, et al. (2014) Nat Methods 11:361-2 

VAAST 

•  Variant Annotation, Analysis, and
 Search Tool 

•  Annotation of amino acid
 substitutions (coding sequence)
 and non-coding 

•  Likelihood-ratio test for disease
 association; aggregation of rare
 variants (similar to CMC
 approach) 

•  Severity of SNVs assessed by
 comparison to OMIM 

•  Scoring of non-coding and
 synonymous variants by use of
 sequence conservation, OMIM,
 1000 Genomes, ENCODE,  

Yandell, et al. (2011) Genome Res 21:1529-42 

Search procedure 

controls cases 

VAT 

•  Variant Analysis Tools 
•  http://varianttools.sourceforge.net/ 
•  Different gene set references 
•  Presence in dbSNP, ExAC, 1000G, HapMap, database of

 genomic variants, catalog of somatic mutations in cancer 
•  Prediction scores from dbNSFP database (SIFT,

 PolyPhen, MutationTaster, and others) 
•  Conserved or duplicated regions 
•  Automatic annotation using ANNOVAR and SnpEff 
•  Many more tasks possible; coded in Python 

Wang, et al. (2014) Am J Hum Genet 94:770-83 

 95 



PROVEAN 

•  Protein Variation Effect Analyzer 
•  http://provean.jcvi.org/ 
•  Annotation of the functional impact

 based on conservation of
 homologous protein sequences 

•  Focus on InDels, multiple
 substitutions 

•  Impact measured by Delta Score Δ: 
–  defined as the difference in the

 alignment scores for the given
 protein and a homologous
 sequence, average over many
 homologous sequences 

–  Thresholding Δ for prediction 

Choi, et al. (2012) PLoS ONE 7: e46688 

CADD 

•  Combined Annotation - Dependent Depletion 
•  http://cadd.gs.washington.edu/ 
•  Annotation of SNVs and InDels 
•  Based on 63 partially different annotations (VEP,

 ENCODE, GERP, phyloP, TF binding, SIFT, PolyPhen,
 …) 

•  Integration of numerous annotations into a single C score 
•  Assessment of the “deleteriousness” of a variant by

 simulation 
–  Genome-wide simulation of de-novo germline variation without

 selection 
–  Comparison against fixed or nearly fixed derived alleles in humans

 (as compared to chimpanzee) with respect to annotation 

Kircher, et al. (2014) Nat Genet 46:310-5 

CADD: C score 

Kircher, et al. (2014) Nat Genet 

Support-vector machine (SVM) for distinguishing nearly fixed variation 
from simulated neutral variation (14.7x106 vs. 14.7x106) 

Application to all 8.6 billion possible substitutions in GRCh37, yielding the 
distribution of the combined score from the SVM (C-score) for variants in 

the human reference genome  

SVM trained on 63 annotations and some selected interaction terms  
(but 949 features in the model due to dummy coding of categorical variables!) 

Phred-scaling of the rank of the score (scaled C-sore): 
−10log10 (rank/total number of substitutions).   

Comparison of the scaled C-score of a variant at hand against this distribution  

Example: A variant with a scaled C-score of 20 indicates that it is rank at 
1% of the most deleterious substitutions in the human genome 

CADD: typical C scores for SNVs 

Kircher, et al. (2014) Nat Genet 

GWAVA 

•  Genome-wide annotation of variants 
•  https://www.sanger.ac.uk/resources/software/gwava/ 
•  Functional annotation of non-coding sequence variants 
•  Integration of genomic and epigenomic annotations

 (1000G frequencies and ancestral allele calls, GERP
 scores [conservation], several ENCODE tracks, TF
 binding motifs) 

•  Classification of variants having a pathogenic effect or not
 via random forest, trained on HGMD and 1000G 

•  Validation by application to the COSMIC database 

Ritchie, et al. (2014) Nat Methods 11:294-6 

SuRFR 

•  SNP Ranking by Function R package 
•  http://www.cgem.ed.ac.uk/resources/ 
•  Annotation of non-coding variants 
•  Incorporation of 1000G, ENCODE, FANTOM5, Epigenome

 Roadmap 
•  Prioritization of variants by a rank-of-ranks approach: 

 
 
rij – ranks within annotation category, wj – weight for category, R – overall rank 

•  Three pre-trained weighting schemes available 
•  Implemented as package for the R statistical language 

Ryan, et al. (2014) Genome Med 6:79 
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There are more annotation tools… 

http://omictools.com/variant-annotation-c104-p1.html 

Performance of prediction 

Comparison of methods 

Schwarz, et al. (2014) Nat Methods 

Comparison of 1,100 common polymorphisms (1000G) and 
1,100 known disease mutations (HGMD)  

Comparison of methods 

Knecht & Krawczak (2014) Hum Genet 

Comparison of methods 

McCarthy, et al. (2014) Genome Med 

[~81 million variant calls from 276 samples of immune disease & cancer cases;  
from the WGS500 project (University of Oxford)] 

Ensembl annotation 

Same software (ANNOVAR), different annotation databases 

log10 number of 
variants 

RefSeq annotation 

Comparison of methods 

McCarthy, et al. (2014) Genome Med 

[~81 million variant calls from 276 samples of immune disease & cancer cases;  
from the WGS500 project (University of Oxford)] 

Same annotation database (Ensembl), different annotation software 
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Correlation between different annotations 

Kircher, et al. (2014) Nat Genet 

14.7 millions human-derived alleles with ≥95% population frequency 

Limits of in-silico functional prediction 

Miosge et al. (2015) PNAS 

Do these missense mutations 
actually cause the disease/

phenotype at hand? 

Back to square one: motivation for in-silico prediction 
Model organism experiments are 

too costly for all observed 
missense mutations. 

(A) Generation of random mutations in mouse pedigrees using ENU; 
Breeding to homozygosity and phenotyping of mice with 1 of 33 potentially 
disruptive de-novo points mutations in 23 essential immune system genes 

[already known to produce a fully penetrant detectable phenotype] 

(B) In vitro phenotyping (translational activity) of all possible TP53 mutations 

Prediction by PolyPhen-2, CADD, SIFT, GERP, MutAssessor &PANTHER 

Limits of in-silico functional prediction 
Predicted damage vs. experimentally measured activity for TP53 

Miosge et al. (2015) PNAS 

Limits of in-silico functional prediction 

Miosge(et(al.((2015)(PNAS(

“The discordance between the predicted and actual effect of 
missense mutations revealed here creates the potential for 
many FP conclusions in clinical whole genome sequencing.  

…  
Hence, for interpretation of a clinical genome sequence at 

present, it is essential to measure experimentally the 
consequence of any missense mutation thought to be causal.” 

… We conclude that for de novo or low-frequency missense 
mutations found by genome sequencing, half those inferred as 
deleterious correspond to nearly neutral mutations that have 
little impact on the clinical phenotype of individual cases but 

will nevertheless become subject to purifying selection. 

That’s it! 
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