COVAX

Immune Correlates, SARS-CoV-2 variants and 'mix and match': How vaccine developer approaches might be impacted by emerging data

Clinical Development & Operations SWAT Team | Thursday February 25, 2020

Workshop Agenda

Time (CET)	Торіс	Speaker(s)					
15:00 – 15:15	Welcome, meeting objectives, and immune correlates introduction	Peter Dull Donna Ambrosino					
Part 1: Progress toward immune correlates for COVID-19 to enable accelerated vaccine development							
15:15 – 15:30	Overview: Establishing a correlate from imperfect evidence – a historical perspective	David Goldblatt					
15:30 – 15:40	Evidence for a serological correlate of protection from animal models and planned future studies	Cristina Cassetti					
15:40 – 15:55	Observed re-infections in longitudinal natural history studies and vaccine efficacy study placebo arms: impact of neutralizing titers, variant strains	Florian Krammer					
15:55 – 16:15	Approaches for correlates analyses based on breakthrough cases from vaccine efficacy studies	Stephen Lockhart Daniel Stieh					
16:15 – 16:30	Evidence of contribution of cell-mediated immunity to vaccine efficacy, and utility of T cell assays to correlates analyses	Julie McElrath					
16:30 – 17:05	Panel Discussion	Moderated by: Peter Dull					
17:05 – 17:10	Break						
	Part 2: Investigating the impact of new SARS-CoV-2 variants: Assays and available vac	ccines					
17:10 – 17:20	International standard for SARS-CoV-2 immunoglobulins: Use of the existing International Standard to address new variants	Paul Kristiansen					
17:20 – 17:30	Neutralizing antibody assays against new variants: Overview of current activities	William Dowling					
17:30 – 17:40	'Mix & Match': Heterologous primary vaccination and heterologous boosting regimens	Jakob Cramer					
17:40 – 18:25	Panel Discussion	Moderated by: Jakob Cramer					
18:25 – 18:30	Wrap Up & Next Steps Jakob Cramer						

Welcome & Meeting Objectives

Peter Dull, MD

Deputy Director,

Integrated Clinical Vaccine Development,

Bill & Melinda Gates Foundation (BMGF)

Context for today's workshop

Overall objectives:

PART 1: HOW CAN WE MAKE ADDITIONAL APPROPRIATE AND IMPACTUFL VACCINES AVAILABLE?

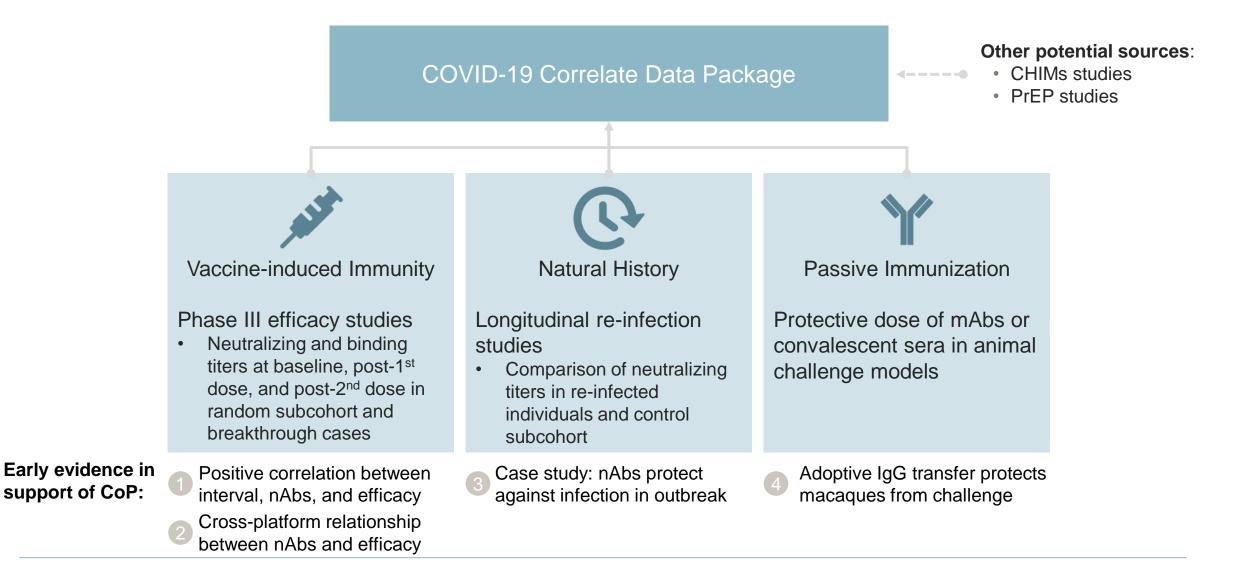
- Review the accumulating evidence that a neutralizing antibody response provides the primary contribution to protection against COVID-19 and discuss alternative supportive mechanisms
- Discuss past approaches to advancing vaccine development despite imperfect evidence and lessons to mitigating the risks through confirmatory studies.

PART 2: HOW CAN WE USE THE AVAILABLE VACCINES IN A BETTER WAY?

- Review the available international standard in the context of new variants
- Provide an overview on the development of neutralising antibody assays against new variants
- Introduce and discuss a practical approach for the assessment of vaccine 'mix & match' strategies
 - ➢ Heterologous primary vaccination
 - Heterologous boosting regimens

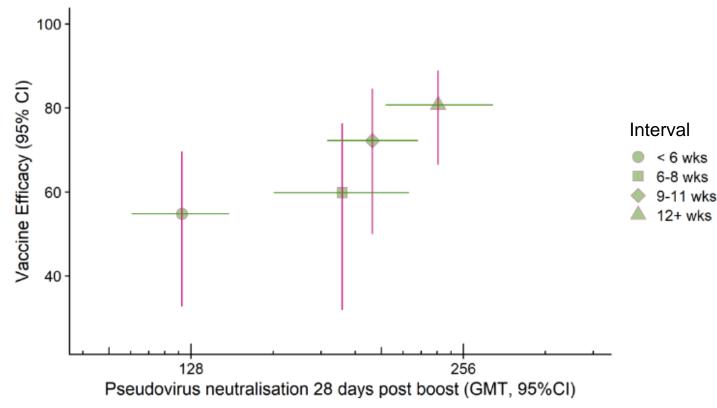
Part 1:

Progress toward immune correlates for COVID-19 to enable accelerated vaccine development


Peter Dull, MD

Deputy Director,

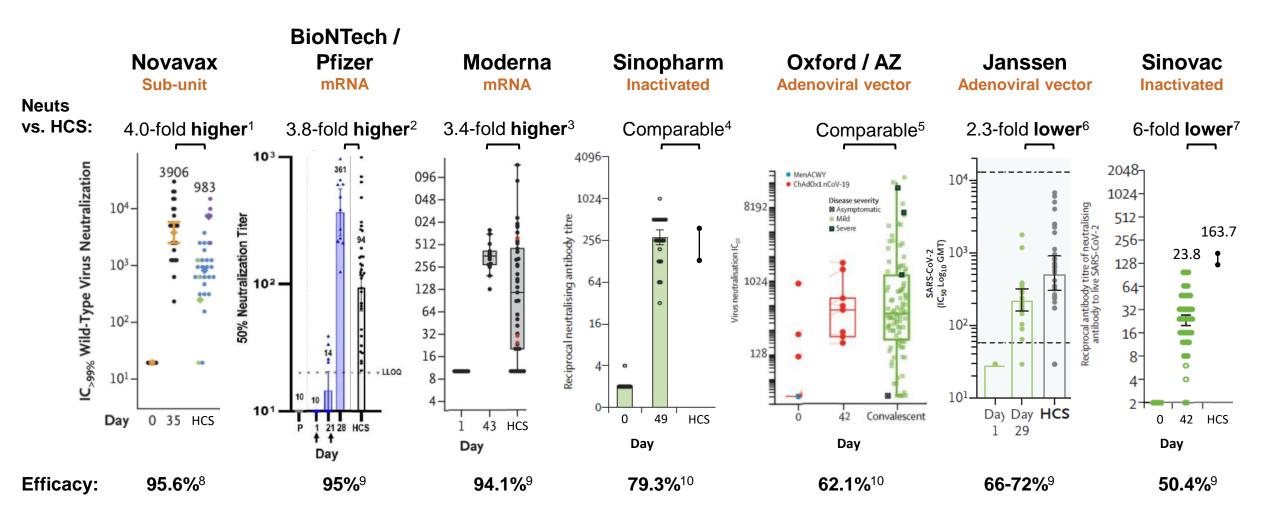
Integrated Clinical Vaccine Development,


Bill & Melinda Gates Foundation (BMGF)

Early evidence from multiple study types suggests a serological correlate of protection exists

In Neutralizing titers correlate with increased efficacy against symptomatic COVID-19 in the ChAdOx/AZ Phase III trial

Effect of interval between doses on immunogenicity and efficacy



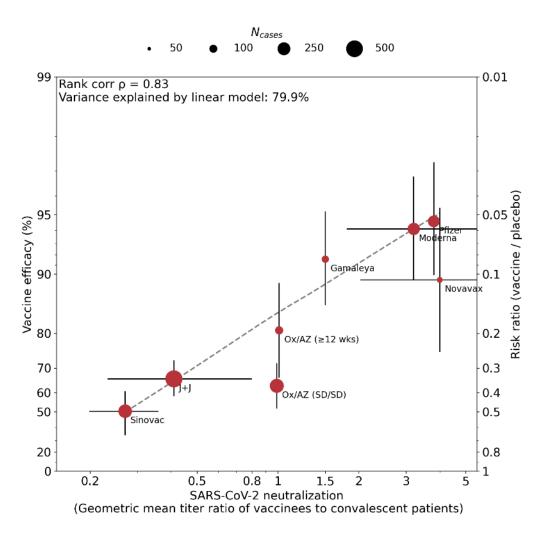
- As interval between doses increases:
- Neutralizing titers increase
- Efficacy point estimates increase

Source: Voysey et al. 2021. Single dose administration, and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine. *Lancet* pre-print. doi: https://ssrn.com/abstract=3777268

2 Preliminary data suggest this relationship persists across platforms

Elevated neutralization titers in Ph I/II correlate with efficacy against ancestral SARS-CoV-2 strains

1. wt MN titers in subjects aged 18-59, 14 days after 2nd 5µg dose; HCS: full range of disease severity. 2. wt VNA titers (NT₅₀) in subjects aged 18-55, 7 days following 2nd 30µg dose; HCS: n=38, across full range of disease severity. 3. Lentivirus PsVNA titers (ID₅₀) in subjects aged 18-55, 14 days after 2nd 100µg dose; HCS: n=42, across full range of disease severity. 4. wt VNA titers (50% CPE) in subjects aged 18-59, 28 days after 2nd 4µg dose; HCS range cited in supplement is plotted here for comparison, severity not specified. 5. Monogram lentivirus PsVNA titers in subjects aged 18-55, 14 days after 2nd 5x10¹⁰vp dose; HCS: n=146 hospitalized patients and 24 asymptomatic HCWs. 6. wt MN titers in subjects aged 18-55, 28 days following a single 5x10¹⁰ vp dose; HCS: n=32, mostly severe patients. 7. wt VNA titers in subjects aged 18-59, 28 days following 2nd 3µg dose; HCS: n=117 symptomatic patients across full range of disease severity. 8. Post hoc analysis. 9. Primary analysis. 10. Interim analysis

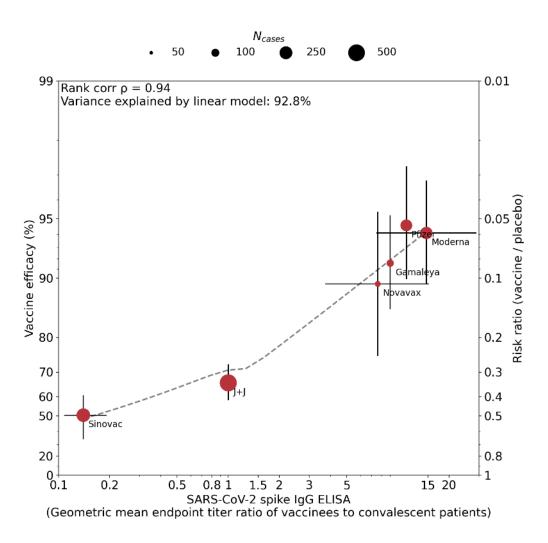

Analysis: Phase III efficacy highly correlated with Phase I/II neuts expressed relative to HCS panels

Strong correlation between Ph III efficacy and vaccinee / HCS GMT ratio ($\rho = 0.83$)

79.9% of variance in efficacy is explained by neut Abs

Methods / key:

- Includes all 7 vaccines for which Phase III efficacy and nAbs GMTs (run alongside HCS panels) are reported
- X-axis: Ratio of geometric mean neutralization titer (GMT, ND₅₀) at peak immunogenicity timepoint post-vaccination
- Error bars: 95% confidence interval, based on available data
- Marker size indicates number of cases underlying VE estimate
- Dashed line: non-parametric LOESS fit


Analysis: Phase III efficacy highly correlated with Phase I/II ELISA GMEPTs expressed relative to HCS panels

Strong correlation between Ph III efficacy and vaccinee / HCS GMEPT ratio ($\rho = 0.94$)

92.8% of variance in efficacy is explained by binding Abs

Methods / key:

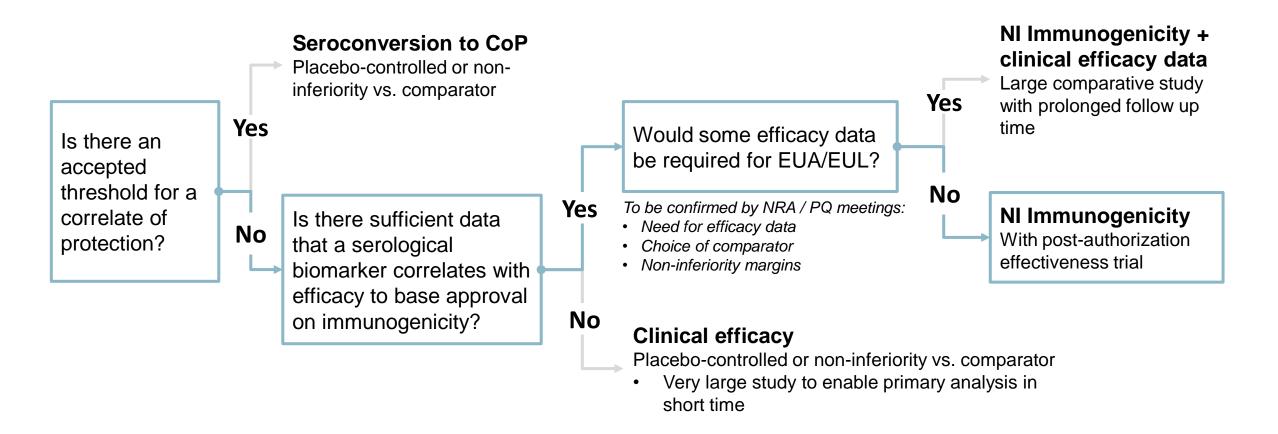
- Includes 6 vaccines for which Phase III efficacy and binding Ab GMEPTs (run alongside HCS panels) are reported
- X-axis: Ratio of geometric mean endpoint titer (GMEPT, ID₅₀) at peak immunogenicity timepoint post-vaccination
- Error bars: 95% confidence interval, based on available data
- Marker size indicates number of cases underlying VE estimate
- Dashed line: non-parametric LOESS fit

Conclusions

Strong correlation between both neutralizing ($\rho = 0.83$) and binding ($\rho = 0.94$) antibody responses and efficacy

In absence of International Units to compare across studies, calibration to a human convalescent sera panel is necessary

• Relationship between efficacy and reported neutralizing / binding titers is weak (r² = 0.24, 0.21 respectively)


Calibration to WHO International Standard may improve correlation

Nearly all variance is explained by antibody responses, leaving little room for impact of T cells on correlation

Determination of a threshold value for a protective correlate will require individual antibody distributions (i.e., reverse cumulative distribution function curves)

We believe that there is adequate evidence to support a non-inferior immunogenicity approach for Wave 2 EUAs

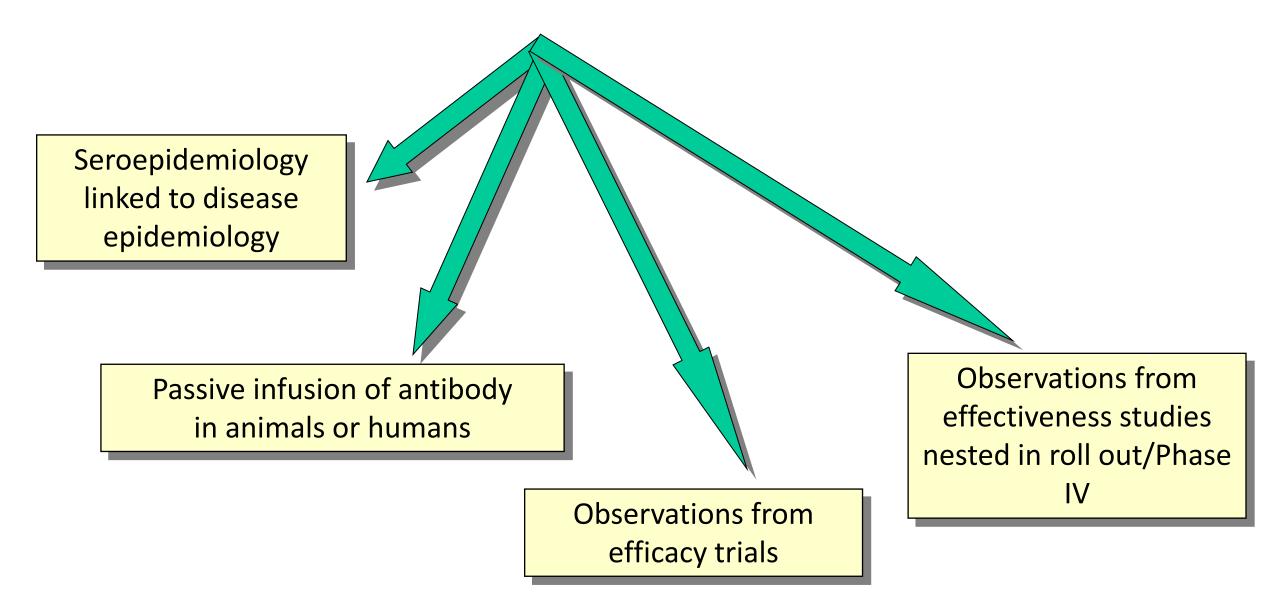
Rationale for this approach:

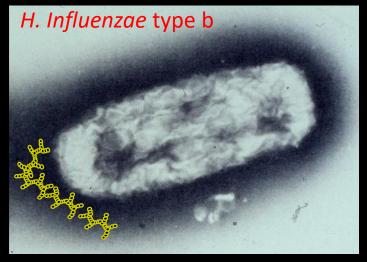
Overview: Establishing a correlate from imperfect evidence – a historical perspective

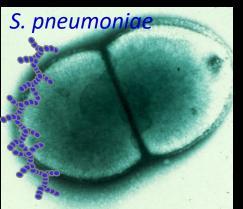
David Goldblatt, PhD Professor of Vaccinology and Immunology University College London February 2021

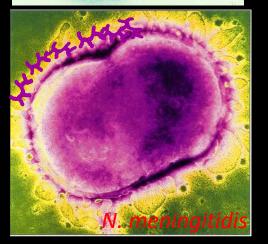
Overview: Taking action on a correlates despite imperfect evidence-a historical perspective

David Goldblatt

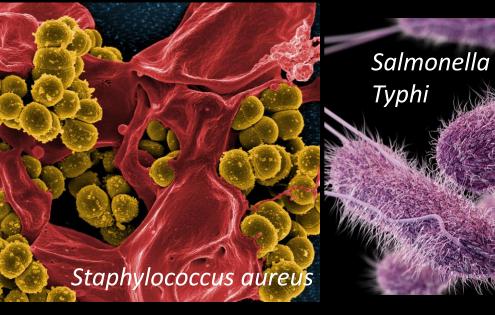

Professor of Vaccinology and Immunology

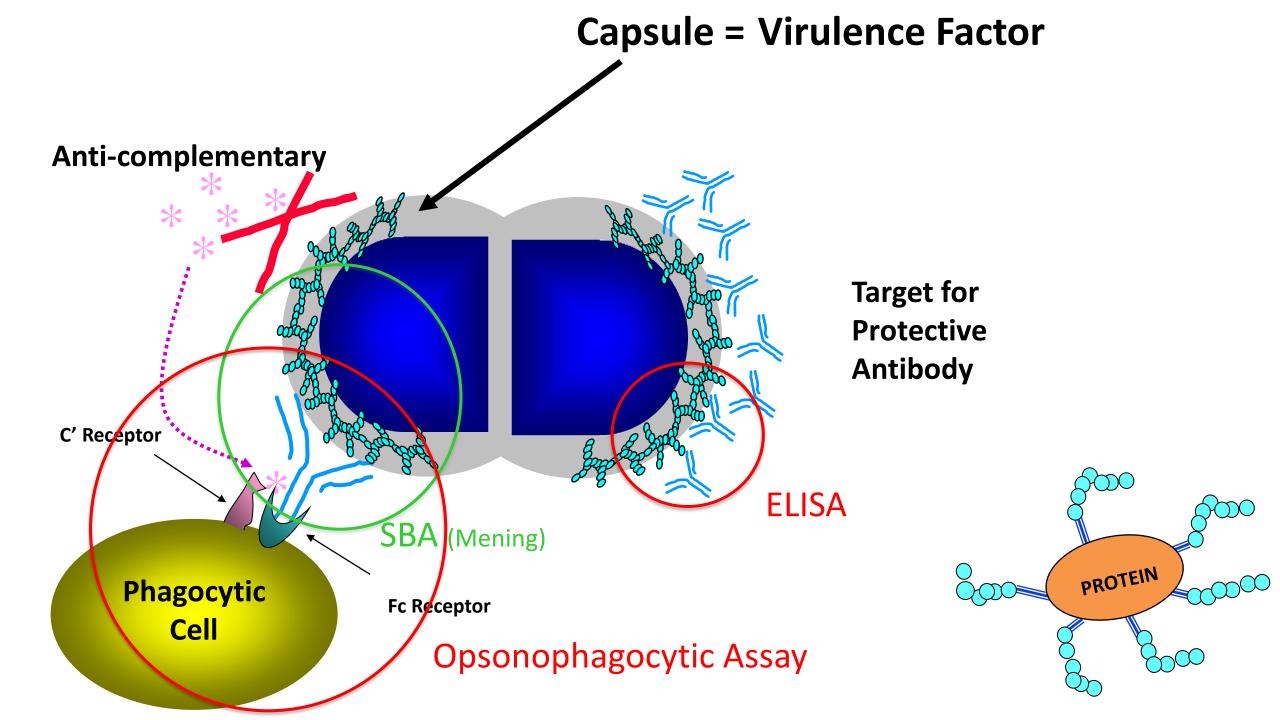


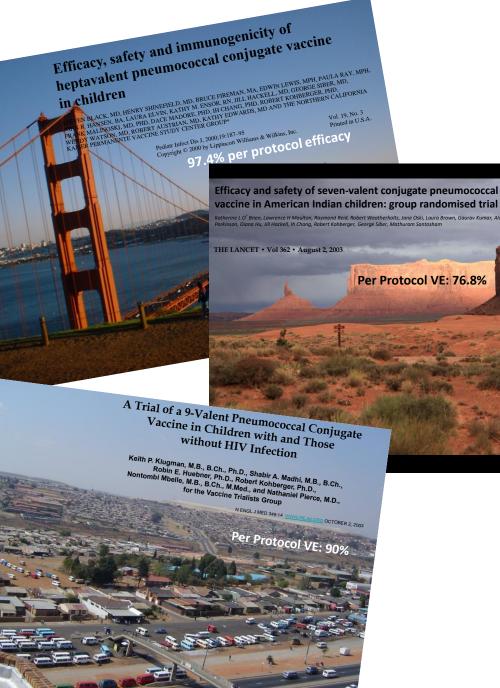

GREAT ORMOND STREET INSTITUTE OF CHILD HEALTH University College London

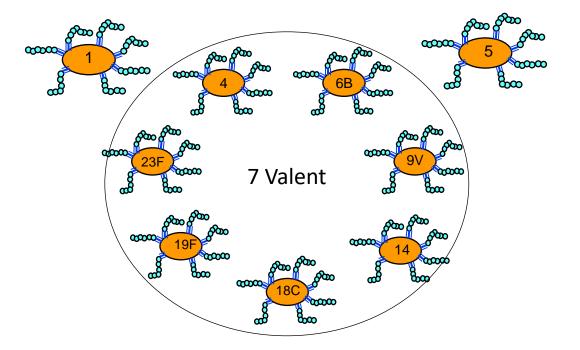

BILL & MELINDA GATES foundation

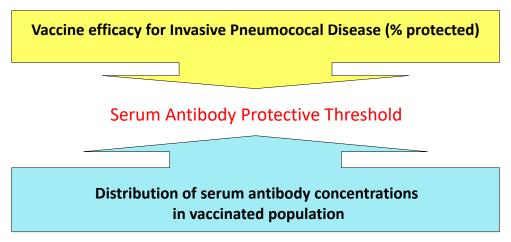
How to Define the Level of an <u>immune marker</u> that Is Protective?



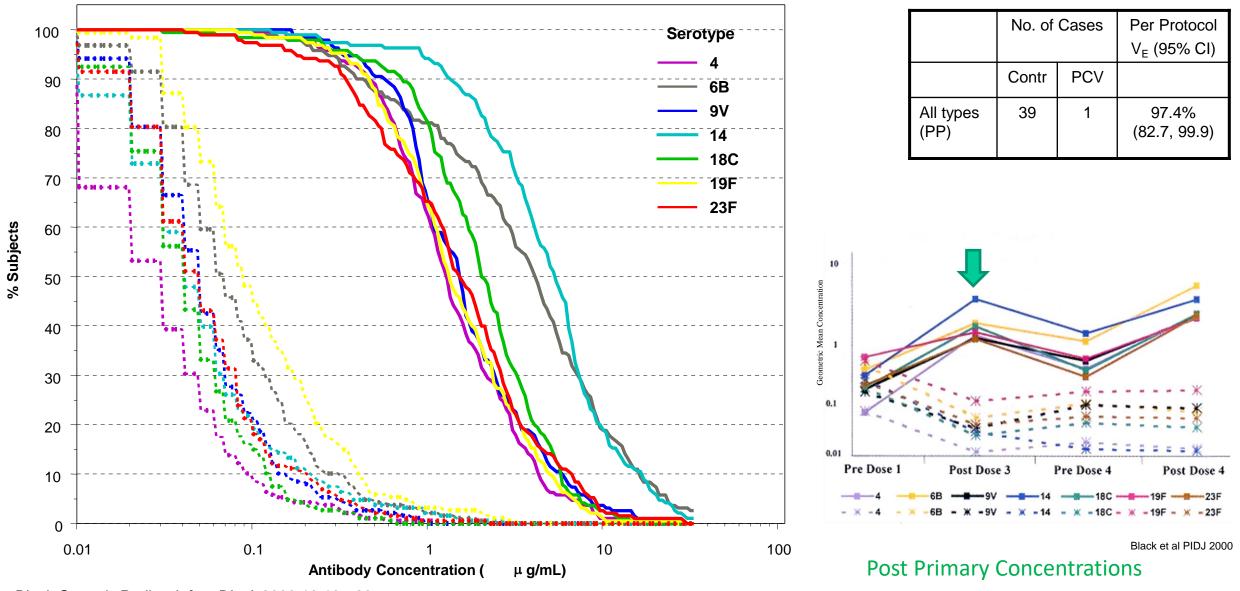








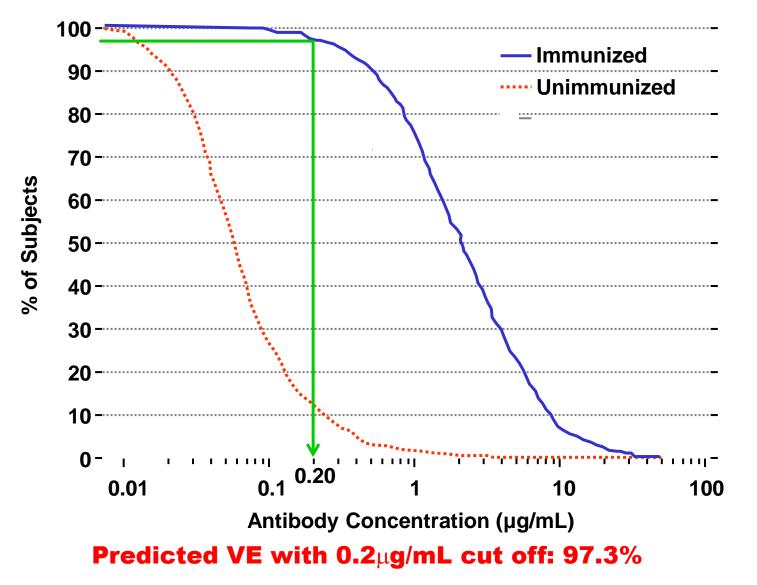
rav Kumar, Alan



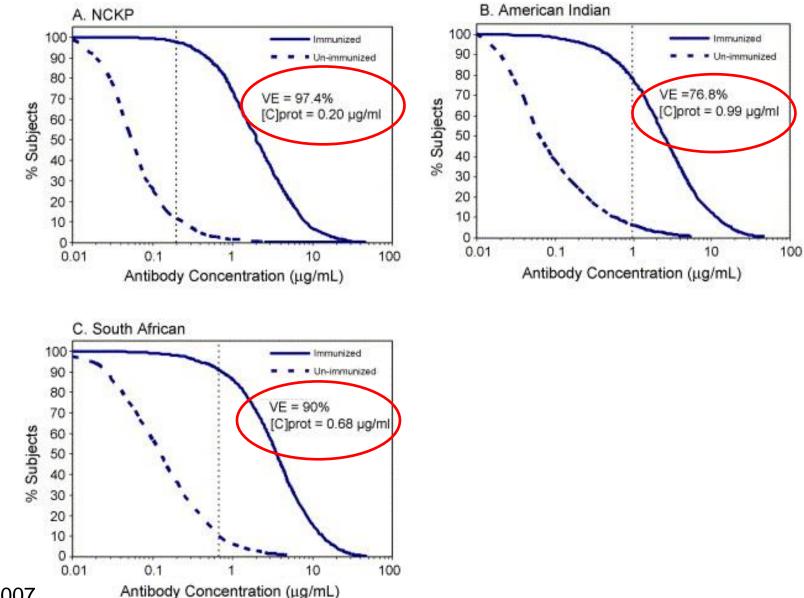
Serologic Correlate of Protection

Siber GR, et al. Vaccine. 2007;25:3816-3826.

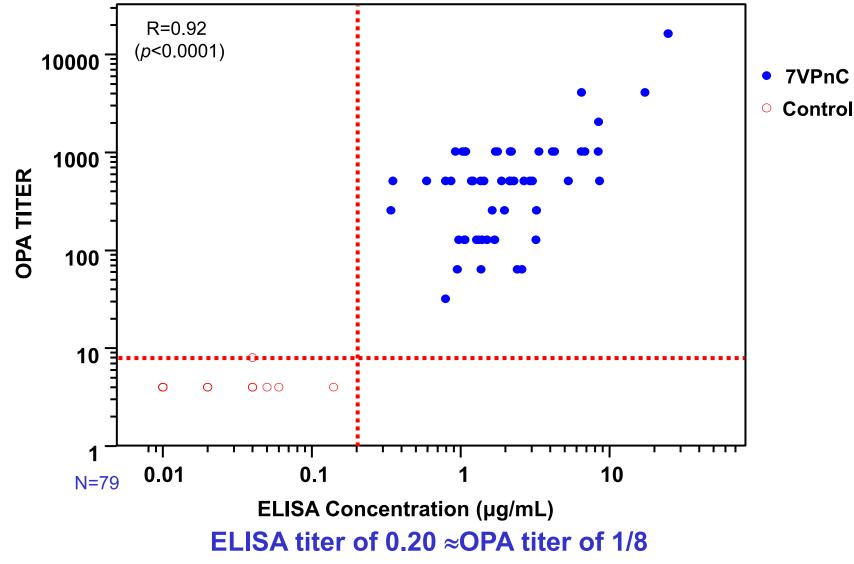
Reverse Cumulative Distribution Curves of Antibody Concentration: NCKP Trial



Black S, et al. Pediatr Infect Dis J. 2000;19:187-295.


Reverse Cumulative Distributions of Post-Dose 3 ELISA Antibody Concentrations in NCKP Population: 7 Serotype Aggregates

Per protocol VE: 97.4%



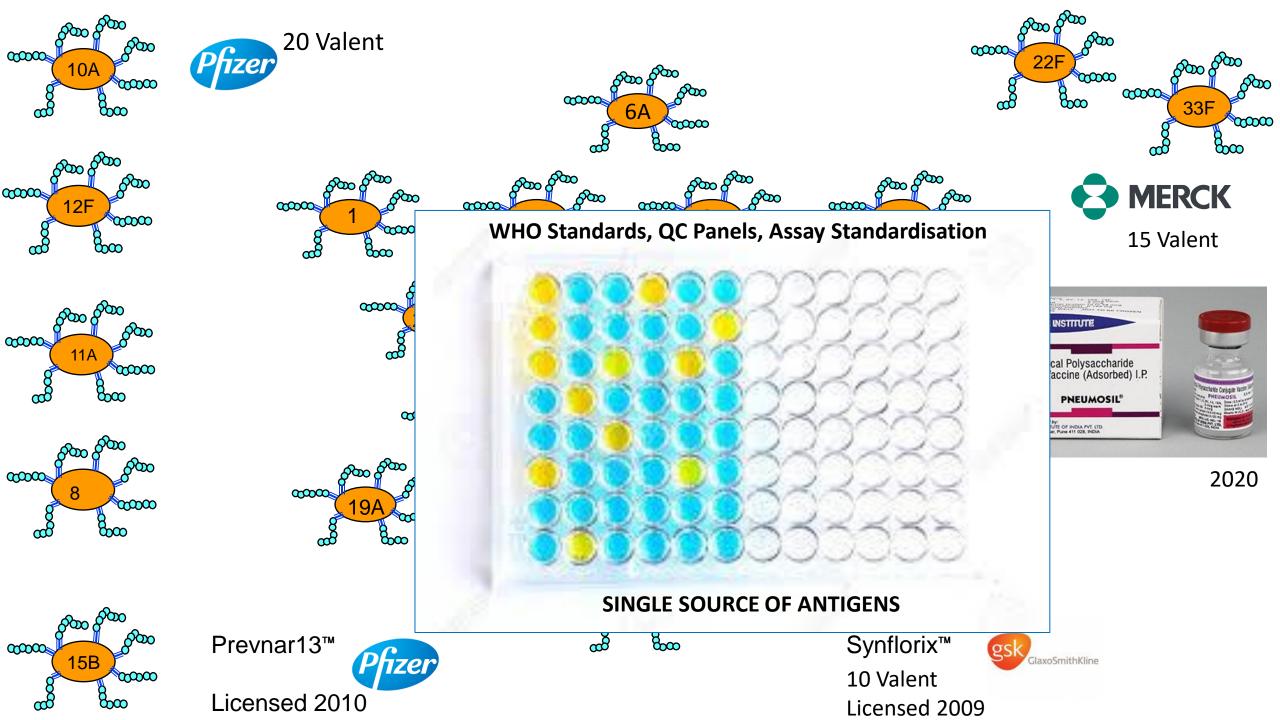
RCD's of IgG anti-pneumococcal capsular polysaccharide antibody concentrations **aggregated for the 7 vaccine types** in three controlled PnC efficacy studies and **the pooled studies** weighted for no. of study subjects.

Siber et al. Vaccine 2007

Post-Dose 3 OPA Response: Type 4 (Types 6B, 9V, 14, 18C and 23F Are Similar)

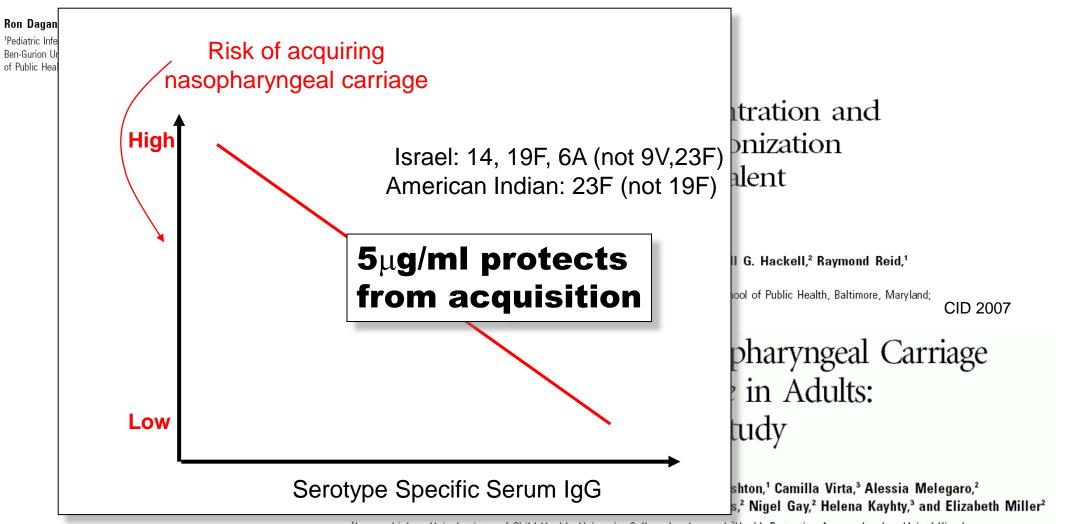
Jódar L, et al. Vaccine. 2003;23:3265-3272.

Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants ‡


Luis Jódar^{a, 1}, Jay Butler^b, George Carlone^c, Ron Dagan^d, David Goldblatt^e, Helena Käyhty^f, Keith Klugman^g, Brian Plikaytis^c, George Siber^h, Robert Kohberger^h, Ih Chang^h, Thomas Cherian^{a,*}

© World Health Organization WHO Technical Report Series, No. 927, 2005

Annex 2

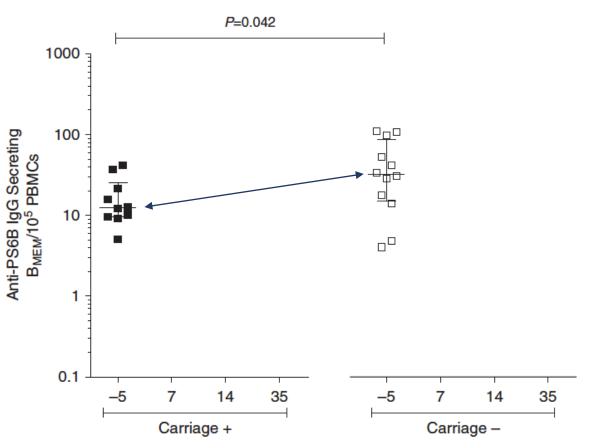

Recommendations for the production and control of pneumococcal conjugate vaccines

Non-inferiority at the serological correlate of protection 0.35μ g/ml

Are correlates developed with invasive disease endpoints relevant to mucosal carriage?

Serum Serotype-Specific Pneumococcal Anticapsular Immunoglobulin G Concentrations after Immunization with a 9-Valent Conjugate Pneumococcal Vaccine Correlate with Nasopharyngeal Acquisition of Pneumococcus

¹Immunobiology Unit, Institute of Child Health, University College London, and ²Health Protection Agency, London, United Kingdom; ³National Public Health Institute, Helsinki, Finland


JID 2005

ORIGINAL ARTICLE

Polysaccharide-Specific Memory B Cells Predict Protection against Experimental Human Pneumococcal Carriage

Shaun H. Pennington^{1,2}, Sherin Pojar¹, Elena Mitsi¹, Jenna F. Gritzfeld¹, Elissavet Nikolaou¹, Carla Solórzano¹, Jessica T. Owugha¹, Qasim Masood¹, Melita A. Gordon^{2,3}, Angela D. Wright¹, Andrea M. Collins¹, Eliane N. Miyaji⁴, Stephen B. Gordon^{1,3*}, and Daniela M. Ferreira^{1*}

"circulating IgG at time of pneumococcal exposure did not protect against carriage"

Am J Resp Crit Care Med 2016

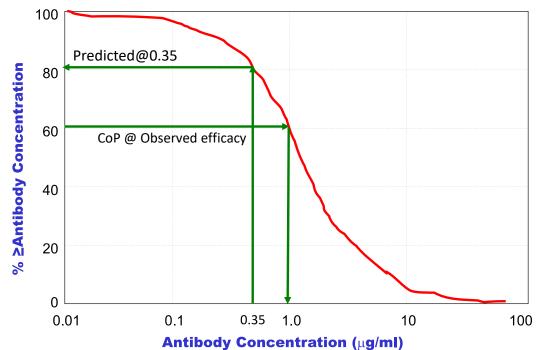
Is a single aggregate correlate (0.35) valid for all serotypes?

Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study

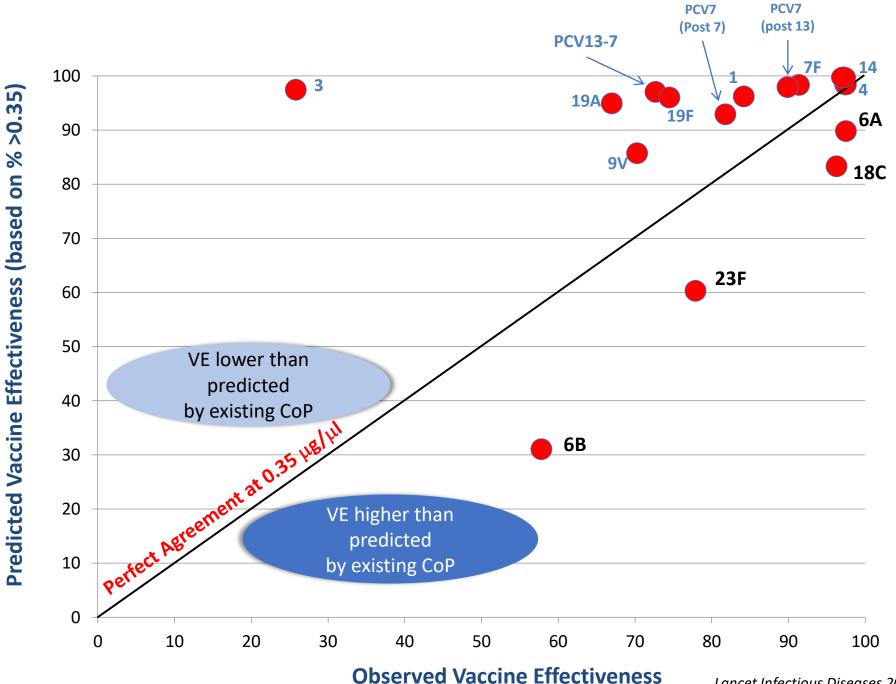
Nick J Andrews, Pauline A Waight, Polly Burbidge, Emma Pearce, Lucy Roalfe, Marta Zancolli, Mary Slack, Shamez N Ladhani, Elizabeth Miller, David Goldblatt

Summary

Background Efficacy of the 13-valent pneumococcal conjugate vaccine (PCV13) was inferred before licensure from an Lancet Infect Dis 2014 aggregate correlate of protection established for the seven-valent vaccine (PCV7). We did a postlicensure assessment of serotype-specific vaccine effectiveness and immunogenicity in England, Wales, and Northern Ireland to derive the correlates of protection for individual serotypes.

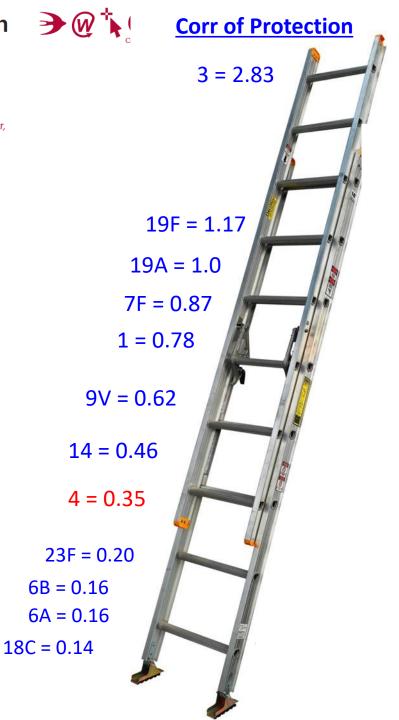

Published Online July 18, 2014 http://dx.doi.org/10.1016/ S1473-3099(14)70822-9

	Vaccine effectiveness (95% Cl)	Predicted vaccine effectiveness at 0·35 µg/mL ELISA cutoff*	Calculated correlate of protection in µg/ml for ELISA* (95% CI)	Calculated correlate of protection in titres for opsonophagocytic antibody* (95% Cl)
PCV13				
1	84% (54 to 95)			
3	26% (-69 to 68)			
6A†	98% (64 to 99·8)			
7F	91% (70 to 98)			
19A	67% (33 to 84)			
5				
Extra serotypes in PCV13 (plus 6C)	73% (55 to 84)			
Extra serotypes in PCV13 (plus 6C), excluding 3	80% (65 to 89)			
All PCV7 serotypes	90% (34 to 98)			
All PCV13 serotypes, (plus 6C)	75% (58 to 84)			
All PCV13 serotypes (plus 6C), excluding 3	82% (68 to 89)			
PCV7				
4	97% (65 to 99·8)			
6B	58% (3 to 82)			
9V	70% (–25 to 93)			
14	98% (88 to 99·5)			
18C	96% (81 to 99)			
19F	75% (37 to 90)			
23F	78% (23 to 94)			
All PCV7 serotypes	82% (72 to 89)		,	


Reverse Cumulative

Distribution

Predicted Efficacy @ 0.35 µg/ml for each serotype? **Correlate of Protection @ Observed UK Vaccine Efficacy?**



Lancet Infectious Diseases 2014

Serotype-specific effectiveness and correlates of protection $\rightarrow \mathcal{W}$ for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study

Nick J Andrews, Pauline A Waight, Polly Burbidge, Emma Pearce, Lucy Roalfe, Marta Zancolli, Mary Slack, Shamez N Ladhani, Elizabeth Miller, David Goldblatt

Lancet ID 2014

Prior Serum Bactericidal Activity (hSBA) against Meningococcal $C \ge 1$ in 4

Cases 3/54 (5.6%) hSBA \geq 1 in 4 Non-cases 444/540 (82.2%) hSBA \geq 1 in 4

INFECTION AND IMMUNITY, Mar. 2001, p. 1568–1573 0019-9567/01/\$04.00+0 DOI: 10.1128/IAI.69.3.1568–1573.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Vol. 69, No. 3

Serological Basis for Use of Meningococcal Serogroup C Conjugate Vaccines in the United Kingdom: Reevaluation of Correlates of Protection

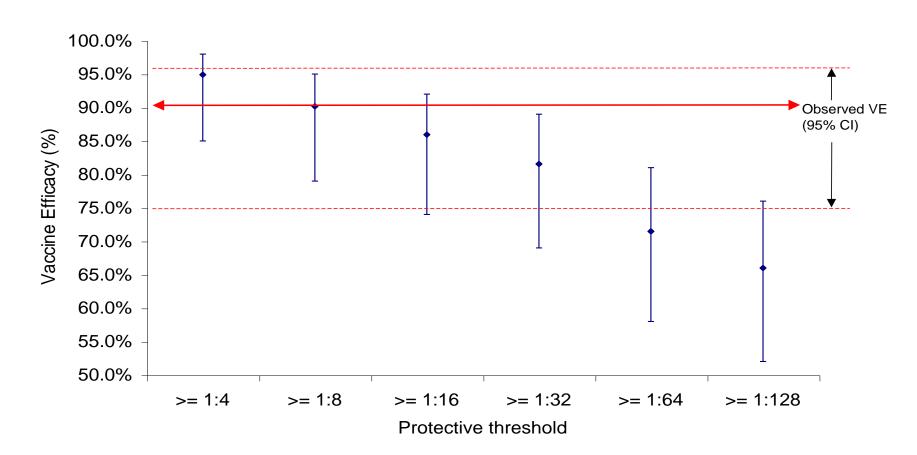
RAY BORROW,¹* NICK ANDREWS,² DAVID GOLDBLATT,³ AND ELIZABETH MILLER⁴

PHLS Meningococcal Reference Unit, Withington Hospital, Manchester M20 2LR,¹ PHLS Statistics Unit,² and Immunization Division, PHLS Communicable Disease Surveillance Centre,⁴ London NW9 5EQ, and Immunobiology Unit, Institute of Child Health, London WC1N 1EII,³ United Kingdom

Received 10 October 2000/Returned for modification 1 November 2000/Accepted 7 December 2000

Goldschneider et al 1969

SBA using HUMAN complement Polysaccharide immunogenicity Adult responses

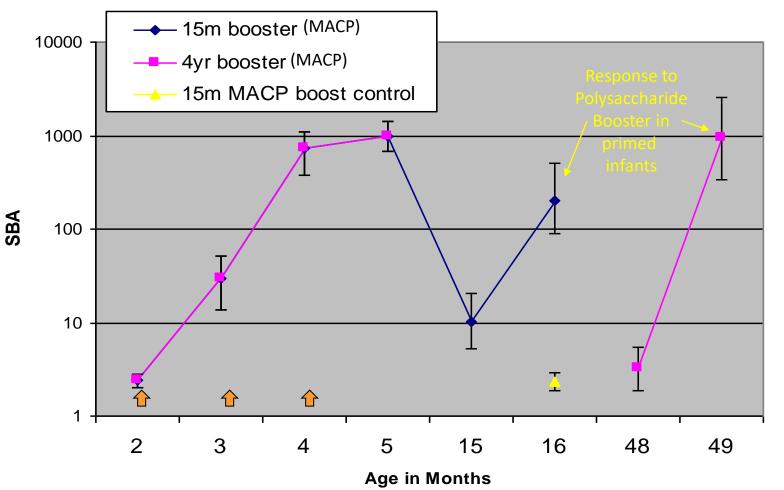


SBA using RABBIT complement Conjugate immunogenicity Infant and toddler responses

H

Validation of Serological Correlate of Protection for Meningococcal C Conjugate Vaccine by Using Efficacy Estimates from Postlicensure Surveillance in England

Nick Andrews,¹ Ray Borrow,² and Elizabeth Miller^{1*}



Toddlers (1 month post MCC)

An rSBA titre \geq 8 or 16 correlates closely with efficacy data.

Antibody Persistence and Immunological Memory at Age 4 Years after Meningococcal Group C Conjugate Vaccination in Children in the United Kingdom

Ray Borrow,¹ David Goldblatt,² Nick Andrews,³ Jo Southern,³ Lindsey Ashton,² Sarah Deane,¹ Rhonwen Morris,⁴ Keith Cartwright,⁴ and Elizabeth Miller³ ¹Public Health Laboratory Service Meningococcal Reference Unit, Withington Hospital, Manchester, ²Immunobiology Unit, Institute of Child Health, and ³Immunisation Division, Public Health Laboratory Service Communicable Disease Surveillance Centre, London, and ⁴Public Health Laboratory, Gloucester Royal Hospital, Gloucester, United Kingdom

Prime with Conjugate Vaccine Boost with Polysaccharide Vaccine

Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction

Caroline L Trotter, Nick J Andrews, Edward B Kaczmarski, Elizabeth Miller, Mary E Ramsay

	Age at vaccination	Doses scheduled*	Period of observation, by quarter year	n, Overall		Within 1 year of scheduled vaccination†		More than 1 year after scheduled vaccination†	
				Cases (vaccinated)	Vaccine effectiveness (95% CI)	Cases (vaccinated)	Vaccine effectiveness (95% CI)	Cases (vaccinated)	Vaccine effectiveness (95% CI)
Cohort									
Routine	2–4 months	3	Q1 2000-Q1 2004	28 (21)	66% (6 to 86)	9 (3)	93% (67 to 99)	19 (18)	-81% (-7430 to 71)
Infant catch-up	5–11 months	2	Q3 2000-Q1 2004	13 (5)	85% (46 to 96)	6 (2)	87% (11 to 99)	7 (3)	82% (-8 to 97)
Toddlers catch-up	1–2 years	1	Q3 2000-Q1 2004	2 <mark>5 (</mark> 10)	83% (60 to 93)	19 (6)	88% (65 to 95)	6 (4)	61% (-327 to 94)
Pre-school catch-up	3–4 years	1	Q3 2000-Q1 2004	37 (2)	98% (91 to 100)	45 (1)	98% (90 to 100)	19 (4)	93% (78 to 98)
Infant school catch-up	4–6 years	1	Q3 2000-Q1 2004	19 (0)	100% (71 to 100)				
Junior school catch-up	7–10 years	1	Q3 2000-Q1 2004	8 (3)	88% (38 to 98)				
Secondary school catch-up	11–16 years	1	Q2 2000-Q1 2004	40 (8)	96% (90 to 98)	45 (4)	96% (89 to 99)	39 (8)	90% (77 to 96)
Sixth form catch-up	17–18 years	1	Q1 2000-Q1 2004	44 (4)	93% (82 to 98)				
Total				214 (53)		124 (16)		90 (37)	

Q=quarter. *Vaccine effectiveness compares children eligible for complete vaccination who had received all scheduled doses versus no doses. Partly vaccinated children were excluded. †For the time change analysis, pre-school, infant, and junior cohorts were combined, as were the secondary school and sixth form cohorts.

Table: MCC vaccine effectiveness in immunised cohorts to end of March, 2004

Summary

- An aggregate threshold derived from aggregated efficacy data defined a CoP which led to the successful licensure of extended valency pneumococcal conjugate vaccines (n=3, soon n=5)
- All models are wrong but some are more useful than others
- Standardization of assays and reagents allowed multiple manufacturers to license using CoP and head to head non-inferiority trials
- There are lessons here for establishing correlates for the next generation of SARS CoV 2 vaccines

Evidence for serological correlate of protection from animal models and planned future studies

Cristina Cassetti, PhD

Deputy Director of NIAID's Division of Microbiology and Infectious Diseases NIAID at NIH

Immune correlates and SARS-CoV-2 variants: Mounting evidence for a serological CoP from animal models

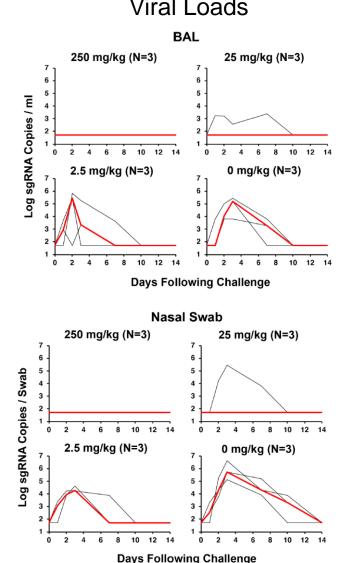
Cristina Cassetti, Ph.D. Deputy Director Division of Microbiology and Infectious Diseases National Institute of Allergy and Infectious Diseases, NIH <u>ccassetti@niaid.nih.gov</u>

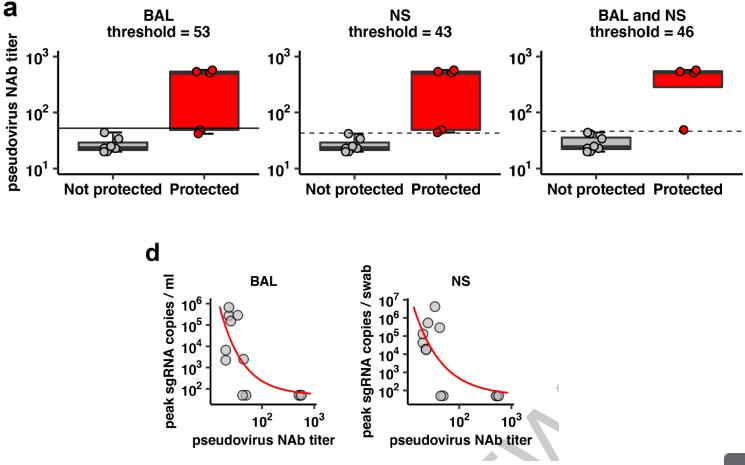
Advantage of animal models to elucidate CoPs

- Dose down the vaccine (or serum from vaccinated animals/humans) to allow for breakthrough infections
- Intensive sample collection (esp. PBMCs for T-cell analysis)
- Select challenge timing and strain
- Compare different vaccines in the same study
- Use validated assays from Phase 3 trials- compare data from clinical trials


Outline

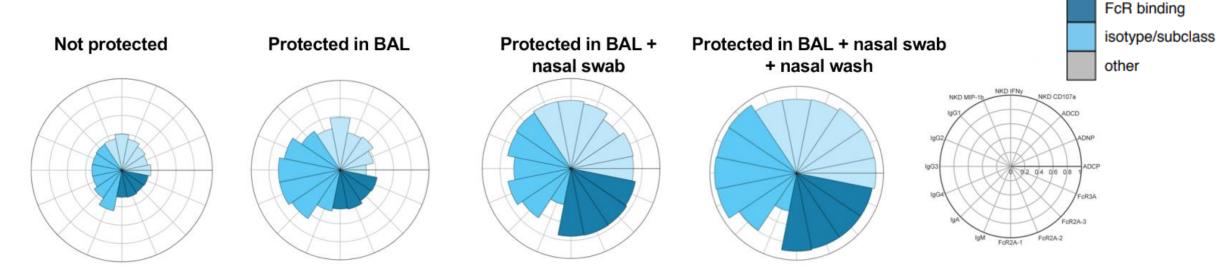
- Existing data in NHPs and hamsters
 - IgG passive transfer in NHPs/Dan Barouch
 - Novavax vaccine in NHPs/Galit Alter
 - Clover vaccine passive transfer in hamsters
 - Rockefeller U. mAbs in NHPs/ Michele Nussenzweig
- Ongoing study


- BARDA/NIAID/Battelle 4 vaccine study


Purified IgG protects macaques against SARS-CoV-2 in a dose-dependent fashion Viral Loads

Dan Barouch- https://www.nature.com/articles/s41586-020-03041-6

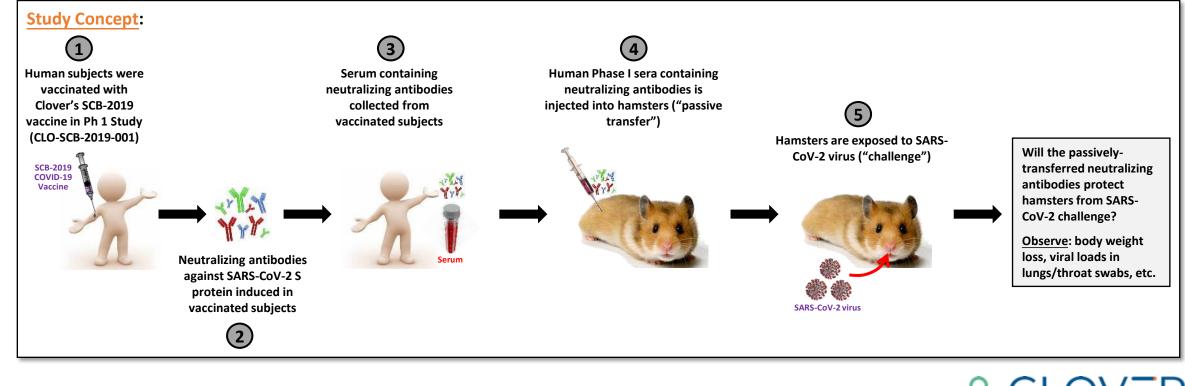
Logistical regression analysis defines Nab threshold titer of ~ 50 for protection


https://www.nature.com/articles/s41586-020-03041-6

National Institute of Allergy and Infectious Diseases

Novavax / Galit Alter-NHP and human CoP study

- System serology study of NHPs immunized with NVX-CoV2373
- Both neutralizing and Fc-effector functions contribute to protection, potentially through different mechanisms in the upper and lower respiratory tract
- Both macaque and human vaccine-induced antibodies exhibit altered Fc-receptor binding to emerging mutants.



M.J. Gorman at al. - https://www.biorxiv.org/content/10.1101/2021.02.05.429759v1

Clover Vaccine: Passive Transfer (Human Ph 1 Sera) + Challenge Study (Hamster)

Key Question: Are neutralizing antibodies induced in humans by Clover's COVID-19 vaccine protective against exposure to SARS-CoV-2 virus?

- Are higher levels of neutralizing antibodies more protective?
- What level of neutralizing antibodies confers protection (correlate of protection)?

Thanks to Joshua Liang for unpublished results

& & & & & & & &

& & &

& & &

& & &

& & & & & & & &

& & & & & & & & & & & & & & & & & & &

& & &

& & &

& & &

& & &

& & &

& & & & & & & &

& & &

& & &

<u>Correlation Analyses</u>: Immune Protection vs. Baseline Circulating VNTs

Higher Circulating Neutralizing Antibodies (Day 1) Correlated with <u>Better Protection</u> from SARS-COV-2 Challenge (Pending results for viral loads in throat swabs and lung tissue)

Note: Dpi (<u>days post-inoculation</u>). VNT (viral neutralization titer). Dots represent data for individual animals.

Represents data in 48 animals (body weight @ 5dpi) and 25 animals (relative lung weight @5dpi) passively transferred with pooled human sera from Phase 1 vaccinees (n=20) across three dilutions.

VNTs in negative control groups (NaCl and Naïve Human Sera) groups were all BLQ (below limit of quantification). Boxplot bars represent IQR, and whiskers represent min:max range.

(1) % of lung weight (g) in relation to body weight (g) upon necropsy.

& & &

& & & & & & & &

& & & & & & & & & & & &

& & &

& & &

& & & & & & & &

* * *

& & & & & & & &

& & &

& & & & & & & &

* & &

& & &

& & & & & & & &

& & & & & & & &

& & & & & & & &

& & & & & & & & & & & &

& & & & & & & & & & & &

* & &

& & &

* & &

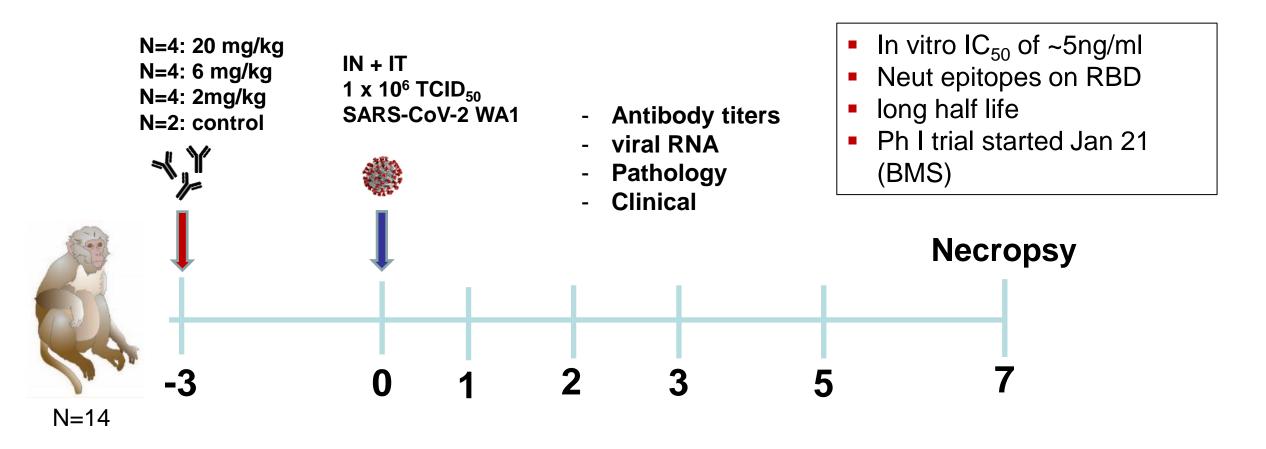
& & &

& & & & & & & &

* * *

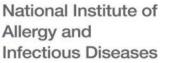
& & & & & & & & & & & &

& & &

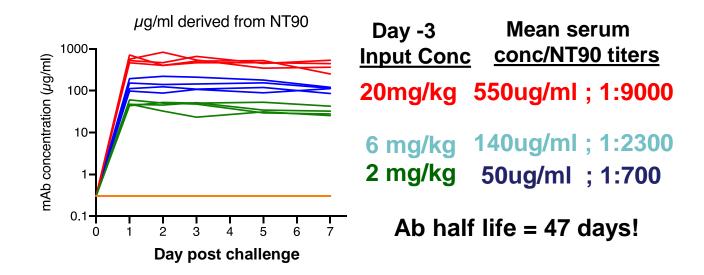

& & & & & & & &

ጵ & &

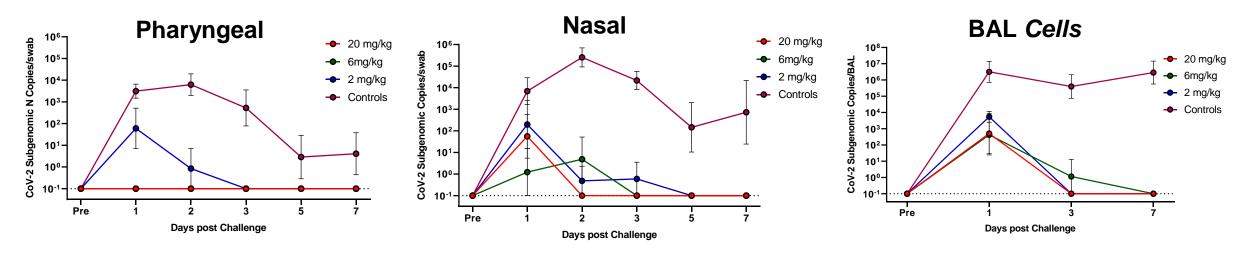
& & &


& & &

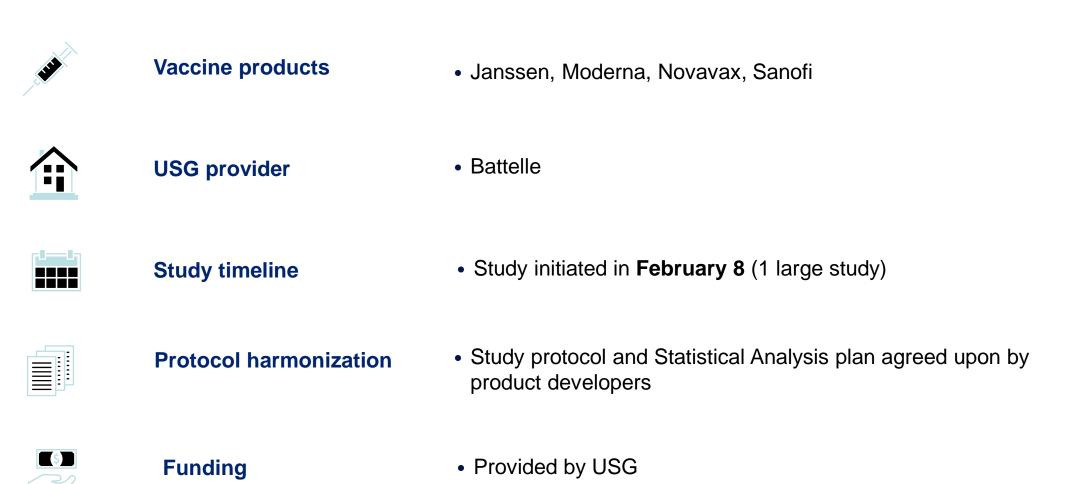
Passive Transfer of mAbs C144-LS + C135-LS into NHPs to Assess CoPs



Michel Nussenzweig, Rockefeller Univ, Chad Roy, TNPRC



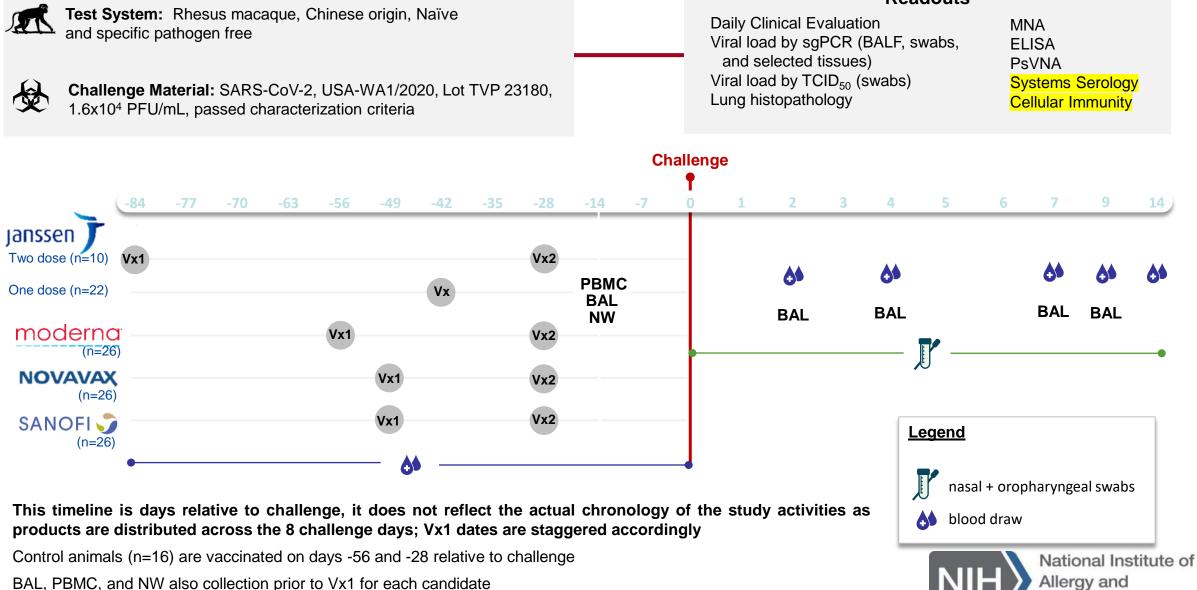
High mAb levels post challenge (pseudovirus neut. assay)



Prophylactic administration of 2 mAbs reduces viral shedding in URT and LRT

Unpublished results: Michel Nussenzweig, Rockefeller Univ, Chad Roy, TNPRC

One large, combined CoP NHP study sponsored by BARDA/NIAID



Study Design

Readouts

Infectious Diseases

Body Weights collected at least every 2 weeks

Summary

- Several pre-clinical studies suggest that neutralizing antibodies are sufficient to confer protection against SARS-CoV-2 infection
- Other immune responses (Fc-effector functions, CD8+) may contribute to protection, but their relative importance is still under investigation
- Ongoing study will compare CoPs in different vaccine platforms

Observed reinfections in longitudinal natural history studies and vaccine efficacy study placebo arms: impact of neutralizing titers, variant strains

Florian Krammer, PhD Professor of Microbiology Icahn School of Medicine at Mt. Sinai

Observed re-infections in longitudinal natural history studies and vaccine efficacy study placebo arms: impact of neutralizing titers, variant strains

Florian Krammer

Mount Sinai Professor in Vaccinology

Icahn School of Medicine at Mount Sinai

COVAX Workshop February 25th, 2020

A glimpse of evidence for protection by neutralizing antibodies from a fishing vessel

- 122 individuals on the ship
- 3 had neutralizing antibodies before going to sea
- Outbreak with 82.5% attack rate occurred

Individuals with neutralizing antibodies were not infected

Virology

Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with high attack rate

search

Amin Addetia, Katharine H. D. Crawford, Adam Dingens, Haiying Zhu, Pavitra Roychoudhury, Meei-Li Huang, Keith R. Jerome, Jesse D. Bloom, Alexander L. Greninger

This Trawler's Haul: Evidence That Antibodies Block the Coronavirus

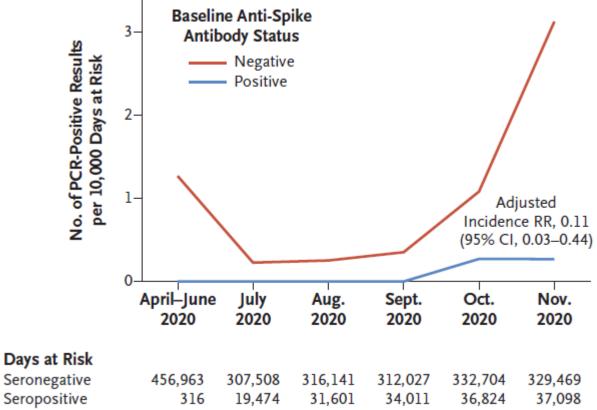
Three crew members aboard were spared when the virus spread through the boat. They were the only ones who had antibodies at the beginning of the trip.

nerican Dynasty, carrying 122 crew, returned to shore in May after 18 days at sea when a crew er became ill enough to need hospitalization. Michael Brunk/nwlens.com

By Apoorva Mandavill

Aug. 19, 2020

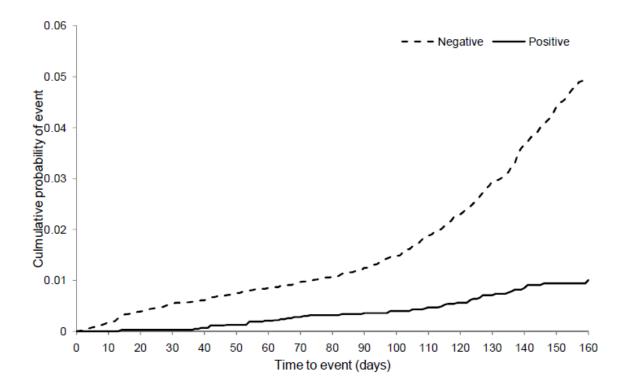
ORIGINAL ARTICLE


Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers

S.F. Lumley, D. O'Donnell, N.E. Stoesser, P.C. Matthews, A. Howarth, S.B. Hatch,
B.D. Marsden, S. Cox, T. James, F. Warren, L.J. Peck, T.G. Ritter, Z. de Toledo,
L. Warren, D. Axten, R.J. Cornall, E.Y. Jones, D.I. Stuart, G. Screaton, D. Ebner,
S. Hoosdally, M. Chand, D.W. Crook, A.-M. O'Donnell, C.P. Conlon,
K.B. Pouwels, A.S. Walker, T.E.A. Peto, S. Hopkins, T.M. Walker, K. Jeffery,
and D.W. Eyre, for the Oxford University Hospitals Staff Testing Group*

- 12 541 health care worker in the UK
 - 11 346 serologically negative
 - 1 265 serologically positive
 - Observation period 6 months
 - NAAT every two weeks

٠


- 223 of the negatives had a positive NAAT in observation period
 - 1.09 per 10,000 days at risk
- 2 of the spike serologically positives had a positive NAAT in observation period (asymptomatic)
 - 0.13 per 10,000 days at risk, adjusted 0.11 per 10,000 days at risk

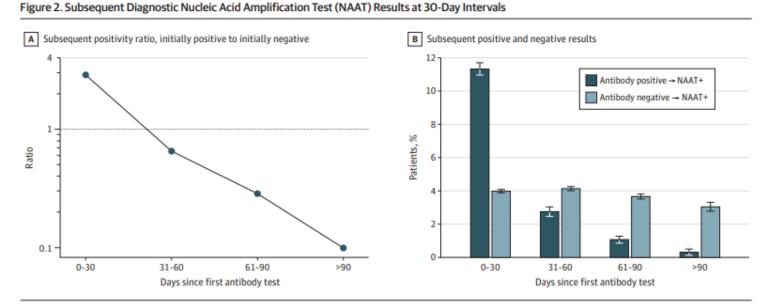
Do antibody positive healthcare workers have lower SARS-CoV-2
 infection rates than antibody negative healthcare workers? Large
 multi-centre prospective cohort study (the SIREN study), England:
 June to November 2020

- medRxiv
- 47 Interpretation: A prior history of SARS-CoV-2 infection was associated with an 83% lower
- 48 risk of infection, with median protective effect observed five months following primary
- 49 infection. This is the minimum likely effect as seroconversions were not included.

Figure 3: Time to PCR positive result by cohort in SIREN participants, detected up to 24 November 2020

6 AUTHORS:

4

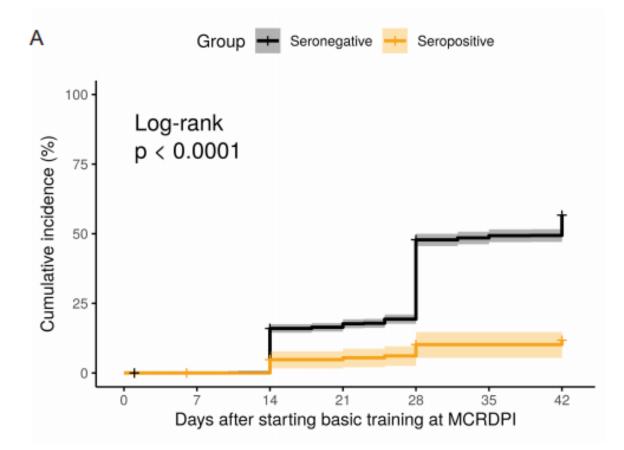

- 7 Hall V^{*01,2}, Foulkes S^{*1}, Charlett A¹, Atti A¹, Monk EJM¹, Simmons R¹, Wellington E¹, Cole
- 8 MJ¹, Saei A¹, Oguti B¹, Munro K¹, Wallace S¹, Kirwan PD¹, Shrotri M¹, Vusirikala A¹,
- 9 Rokadiya S¹, Kall M¹, Zambon M¹, Ramsay M¹, Brooks T¹, SIREN Study Group, Brown CS¹,
- 10 Chand MA¹, & Hopkins S^{1,2}.
- Health care workers in the UK
 - 14 173 serologically negative
 - 6 614 serologically positive
 - Observation period June to November 2020
 - NAAT every 2 to 4 weeks
- 318 of the negatives had a positive NAAT or in observation period (94 additional ones seroconverted)
- 44 of the serologically positives had a positive NAAT or in observation period

JAMA Internal Medicine | Original Investigation

Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection

Raymond A. Harvey, MPH; Jeremy A. Rassen, ScD; Carly A. Kabelac, BS; Wendy Turenne, MS; Sandy Leonard, MPH; Reyna Klesh, MS; William A. Meyer III, PhD, D(ABMM), MLS(ASCP)CM; Harvey W. Kaufman, MD, MBA; Steve Anderson, PhD; Oren Cohen, MD; Valentina I. Petkov, MD, MPH; Kathy A. Cronin, PhD; Alison L. Van Dyke, MD, PhD; Douglas R. Lowy, MD; Norman E. Sharpless, MD; Lynne T. Penberthy, MD, MPH

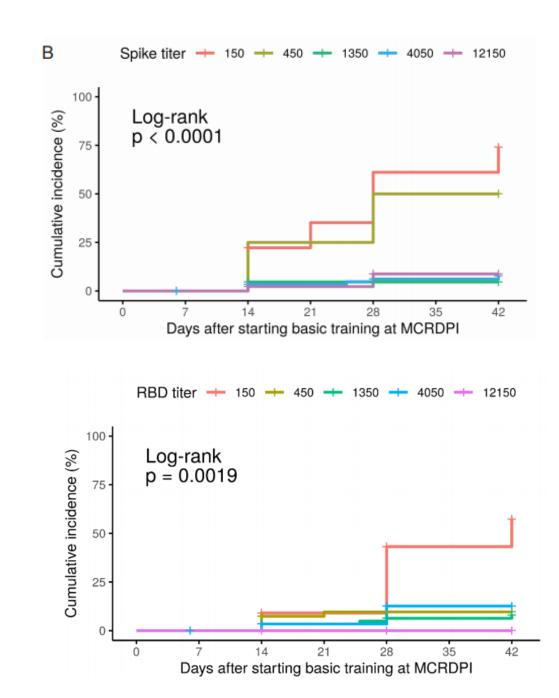
- 3.2 million individuals tested for antibodies
- 2 876 773 were negative
- 378 606 were positive
- PCR positives 90+ days after antibody test
 - 3% of negatives
 - 0.3% of positives


This figure shows the results of diagnostic NAAT after initial antibody testing. A, The line shows the ratio of positive diagnostic tests among those who initially tested positive for antibodies vs those who initially tested negative. B, Over each time period, the dark blue bars show the percent of patients who tested positive for the diagnostic test among those who initially tested positive for antibodies with corresponding confidence intervals. The light blue bars show the percent of patients who tested positive for the diagnostic test among those who initially tested negative for antibodies with corresponding confidence intervals.

SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study

Andrew G. Letizia*, Yongchao Ge*, Sindhu Vangeti*, Carl Goforth*, Dawn L Weir*, Natalia A. Kuzmina, Hua Wei Chen, Dan Ewing, Alessandra Soares-Schanoski, Mary-Catherine George, William D. Graham, Franca Jones, Preeti Bharaj, Rhonda A. Lizewski, Stephen A. Lizewski, Jan Marayag, Nada Marjanovic, Clare Miller, Sagie Mofsowitz, Venugopalan D. Nair, Edgar Nunez, Danielle M. Parent, Chad K. Porter, Ernesto Santa Ana, Megan Schilling, Daniel Stadlbauer, Victor Sugiharto, Michael Termini, Peifang Sun, Russell. P. Tracy, Florian Krammer, Alexander Bukreyev, Irene Ramos, Stuart C. Sealfon

- 3 249 eighteen to twenty year old marine recruits
- 2 week quarantine
- RBD/spike titers assessed
- Tested 3x biweekly by PCRs post quarantine in training
- Among 189 seropositive participants, 19 (10.1%) had at least one positive PCR test
- 1,079 (48.0%) of the 2,247 seronegative participants tested positive



SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study

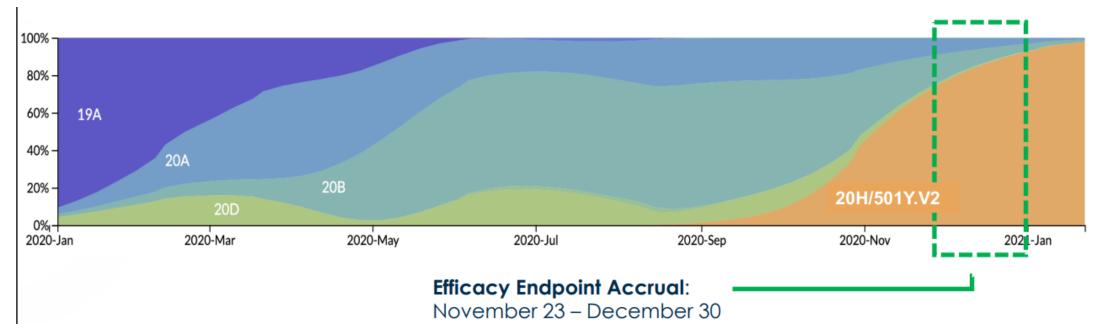
Andrew G. Letizia*, Yongchao Ge*, Sindhu Vangeti*, Carl Goforth*, Dawn L Weir*, Natalia A. Kuzmina, Hua Wei Chen, Dan Ewing, Alessandra Soares-Schanoski, Mary-Catherine George, William D. Graham, Franca Jones, Preeti Bharaj, Rhonda A. Lizewski, Stephen A. Lizewski, Jan Marayag, Nada Marjanovic, Clare Miller, Sagie Mofsowitz, Venugopalan D. Nair, Edgar Nunez, Danielle M. Parent, Chad K. Porter, Ernesto Santa Ana, Megan Schilling, Daniel Stadlbauer, Victor Sugiharto, Michael Termini, Peifang Sun, Russell. P. Tracy, Florian Krammer, Alexander Bukreyev, Irene Ramos, Stuart C. Sealfon

- 3 249 eighteen to twenty year old marine recruits
- 2 week quarantine
- RBD/spike titers assessed
- Tested 3x biweekly by PCRs post quarantine in training
- Among 189 seropositive participants, 19 (10.1%) had at least one positive PCR test
- 1,079 (48.0%) of the 2,247 seronegative participants tested positive

PARIS (SEM CIVIC)/SPARTA (CIVR)


Commonalities between all sites:

- Samples take every 2 months (most sites have shorter intervals)
 - Serum
 - Saliva
 - PBMCs (selected sites, but for several thousand subjects)
- Common serology (Mount Sinai ELISA)
- Nasal swap/nasopharyngeal sample take if somebody becomes symptomatic
 - SARS-CoV-2 PCR
 - Most sites also run a respiratory panel/Biofire
- Primary analysis at sites
- Secondary analysis: Sarah Cobey and Marc Lipsitch


PARIS

(Protection Associated with Rapid Immunity to SARS-CoV-2)

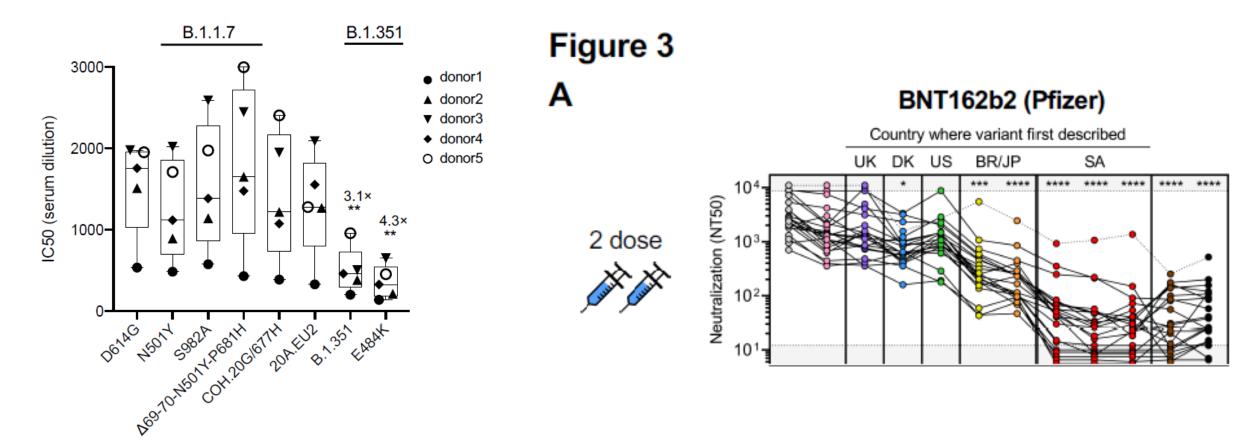
- Approximately 400 individuals enrolled
- Since April 2020
- Approximately half antibody positive, half antibody negative
- So far 5 symptomatic SARS-CoV-2 infections in sero-negative group
- 1 symptomatic infection in an individual that was sero-positive but sero-reverted
- Asymptomatic infections under investigation

Novavax Phase 2b in South Africa

- Placebo ITT population (7 days post-dose 1), symptomatic COVID
 - Seronegative: 3.9% (58/1494; 2.961; 4.990): 2.3% Mod/Severe (35/1494)
 - Seropositive: 3.9% (26/674; 2.535; 5.601); 2.4% Mod /Severe (16/674)

https://www.novavax.com/sites/default/files/2021-02/20210202-NYAS-Novavax-Final.pdf

Novavax Phase 2b in South Africa


Serostatus	NVX-CoV2373 % (n/N)	Placebo % (n/N)	Efficacy (95% CI)
-	1.1% (15/1357)	2.2% (29/1327)	49.4% (6.1, 72.8)
+	1.2% (6/500)	2.5% (13/514)	52.6% (-23.8, 81.8)
+/-	1.1% (21/1857)	2.3% (42/1841)	50.4% (16.6, 70.5)

https://www.novavax.com/sites/default/files/2021-02/20210202-NYAS-Novavax-Final.pdf

Impact of variants on neutralization of convalescent and vaccine serum

Variant	Convalescent sera	Sera from vaccinated individuals
B.1.1.7	Little impact	Little impact (most studies) to up to 9-fold reduction after AZ vaccination
B.1.351	Strong reduction, loss in a proportion of individuals	Moderate impact (4 to 9-fold reduction), in some papers even higher
P.1	Likely similar to B.1.351	Likely similar to B.1.351

Impact of variants on neutralization of convalescent and vaccine serum

Tada et al., bioRxiv, 2021

Garcia-Beltran et al., medRxiv, 2021

Efficacy of AZD1222 against ARS-COV-2 VOC B.1.1.7 and B.1.351

Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 VOC **B.1.1.7 and B.1.351** 202012/01 (B.1.1.7)

Katherine R. W. Emary¹*, Tanya Golubchik¹³*, Parvinder K. Aley¹, Cristina V.

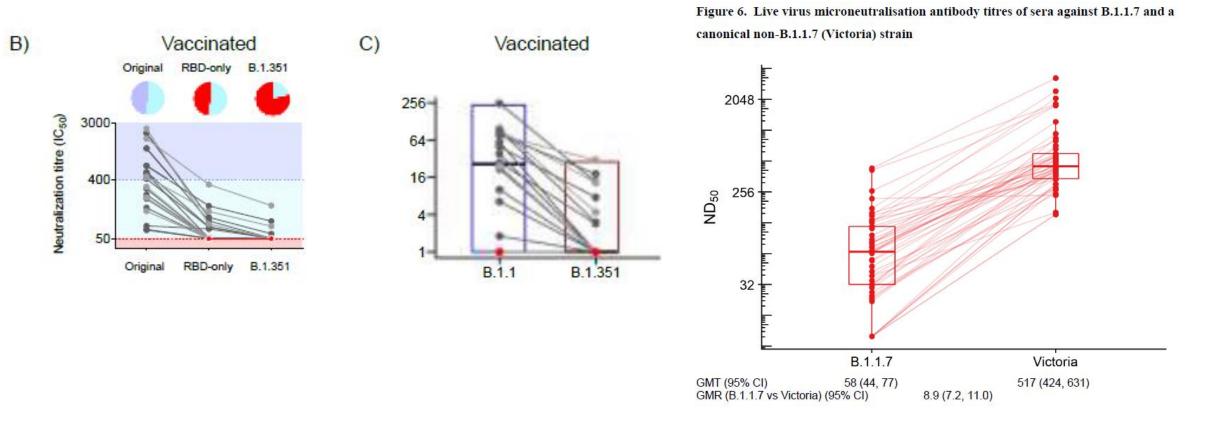
Ariani²⁹, Brian Angus², Sagida Bibi¹, Beth Blane²⁹, David Bonsall⁶, Paola Cicconi², Sue

Charlton³, Elizabeth A. Clutterbuck¹, Andrea M. Collins⁷, Tony Cox⁸, Thomas

	Variant	N (%)	ChAdOx1	Control	VE 95%CI
			nCoV-19		
Primary	Symptomatic COVID-19				
	B.1.1.7	34 (14%)	7/4236	27/47/0	74.6% (41.6%, 88.9%)
	Other variants	86 (34%)	12/4236	74/4270	84.1% (70.7%, 91.4%)
	No sequence result*	25 (10%)	5/4236	20/4270	75.4% (34.3%, 90.8%)
	Not sequenced**	105 (42%)	28/4236	77/4270	64.3% (44.9%, 76.8%)
	Total cases	250	52/4236	198/4270	74.2% (65.0%, 81.0%)
Asympto	omatic/Unknown infection	15	1	1	1
	B.1.1.7	14 (7%)	6/4236	8/4270	26.5% (-112.0%, 74.5%)
	Other variants	30 (14%)	6/4236	24/4270	75.4% (39.9%, 89.9%)
	No sequence result	37 (18%)	21/4236	16/4270	-28.7% (-146.6%, 32.8%)
	Not sequenced	127 (61%)	63/4236	64/4270	3.1% (-37.3%, 31.6%)
	Total cases	208	96/4236	112/4270	15.7% (-10.7%, 35.8%)
Any NA	AT+ infection†	1	1	1	1
	B.1.1.7	51 (10%)	13/4236	38/4270	66.5% (37.1%, 82.1%)
	Other variants	128 (26%)	21/4236	107/4270	80.7% (69.2%, 87.9%)
	No sequence result	69 (14%)	29/4236	40/4270	28.8% (-14.9%, 55.9%)
	Not sequenced	251 (50%)	101/4236	150/4270	33.8% (14.7%, 48.6%)

Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351

variant in South Africa

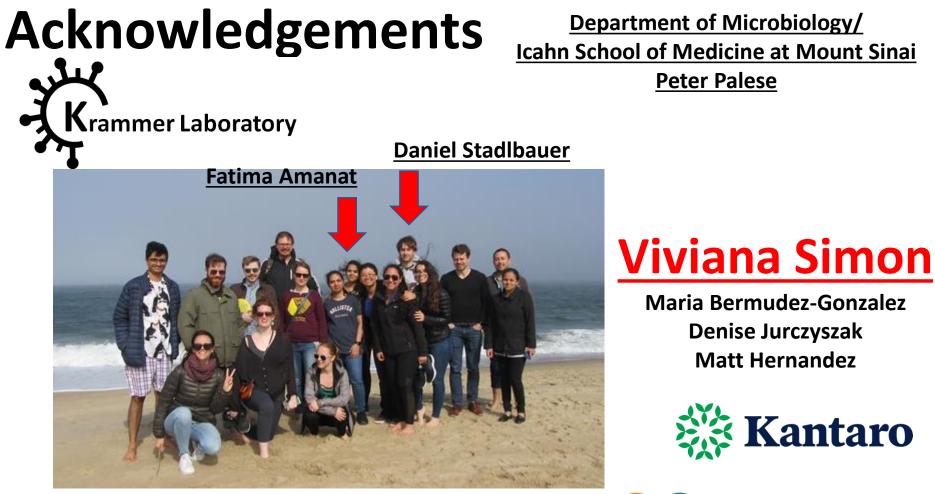

Shabir A. Madhi^{1,2}, Vicky Baillie^{1,2#}, Clare L. Cutland^{3#}, Merryn Voysey⁴, Anthonet L. Koen^{1,2*}, Lee Fairlie^{5*}, Sherman D. Padayachee^{6*}, Keertan Dheda^{7*}, Shaun L. Barnabas^{8*}, Qasim Ebrahim Bhorat^{9*}, Carmen Briner^{10*}, Gaurav Kwatra^{1,2}, NGS-SA¹¹, Wits-VIDA COVID team¹², Khatija Ahmed⁶, Parvinder Aley⁴, Sutika Bhikha^{1,2}, Jinal N. Bhiman^{15,16}, As'ad Ebrahim Bhorat⁹, Jeanine du Plessis¹, Aliasgar

			IR ^b per 1000			
	Total		person-		IR per 1000	
	number		years		person-years	Vaccine efficacy
Baseline	of	Placebo	(person-	Vaccine	(person-	(95%Confidence
serology ^a	cases	n/N (%)	days)	n/N (%)	days)	Interval)
Primary ou	Itcome: Al	l severity C	OVID-19 illness	s >14 days po	st-boost	
Sero-		23/717		19/750		
negative	42°	(3.2)	93.6 (89714)	(2.5)	73.1 (94881)	21.9% (-49.9 to 59.8
Sero-		20/714	81.6	19/750	lness >14 days	
	objective 39				Iness >14 days 73.1 (94881)	
Sero- negative	39	20/714 (2.8)	81.6 (89448)	19/750 (2.5)	73.1 (94881)	10.4% (-76.8; 54.8)
Sero- negative	39	20/714 (2.8) : All severit	81.6 (89448) ty COVID-19 clin	19/750 (2.5) nical disease		10.4% (-76.8; 54.8)
Sero- negative	39	20/714 (2.8)	81.6 (89448)	19/750 (2.5)	73.1 (94881)	10.4% (-76.8; 54.8)
Sero- negative Secondary Any	39 v objective 46	20/714 (2.8) : All severit 24/865 (2.8)	81.6 (89448) ty COVID-19 clin 81.9 (106898)	19/750 (2.5) nical disease 22/884 (2.5)	73.1 (94881) >14 days post-b 73.2 (109159)	10.4% (-76.8; 54.8) .ost 10.6% (-66.4 to 52.2
Sero- negative Secondary Any	39 objective 46 All severity (20/714 (2.8) : All severit 24/865 (2.8) Covid-19 dis	81.6 (89448) ty COVID-19 clin 81.9 (106898)	19/750 (2.5) nical disease 22/884 (2.5)	73.1 (94881) >14 days post-b 73.2 (109159)	10.4% (-76.8; 54.8)
Sero- negative Secondary Any Post hoc: A	39 objective 46 All severity (20/714 (2.8) : All severit 24/865 (2.8) Covid-19 dis	81.6 (89448) ty COVID-19 clin 81.9 (106898)	19/750 (2.5) nical disease 22/884 (2.5)	73.1 (94881) >14 days post-b 73.2 (109159)	10.4% (-76.8; 54.8) .ost 10.6% (-66.4 to 52.2

https://www.medrxiv.org/content/10.1101/2021.02.10.21251247v1.full.pdf

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3779160

Impact of variants on neutralization of convalescent and vaccine serum B.1.351 B.1.1.7


Emary et al., SSRN, 2021

Conclusions

Protection after natural infection is robust and as good or even better than after vaccination

Protection is correlated with antibody responses to spike

We urgently need studies that determine the impact of variants on neutralizing activity of post-vaccination sera side by side!

Department of Microbiology/ Icahn School of Medicine at Mount Sinai

Peter Palese

Ania Wajnberg (Mount Sinai Hospital)

Carlos Cordon-Cardo Adolfo Firpo (Mount Sinai Hospital)

> Harm van Bakel (ISMMS)

Mia Sordillo David Rich Judy Aberg (Mount Sinai Hospital)

Adolfo García-Sastre Lisa Miorin Teresa Aydillo

Tom Moran

Katherine Kedzierska (U Melbourne) Jussi Hepojoki (U Helsinki) Olli Vapalahti (U Helsinki)

florian.krammer@mssm.edu http://labs.icahn.mssm.edu/krammerlab/ Twitter: @florian_krammer

Denise Jurczyszak

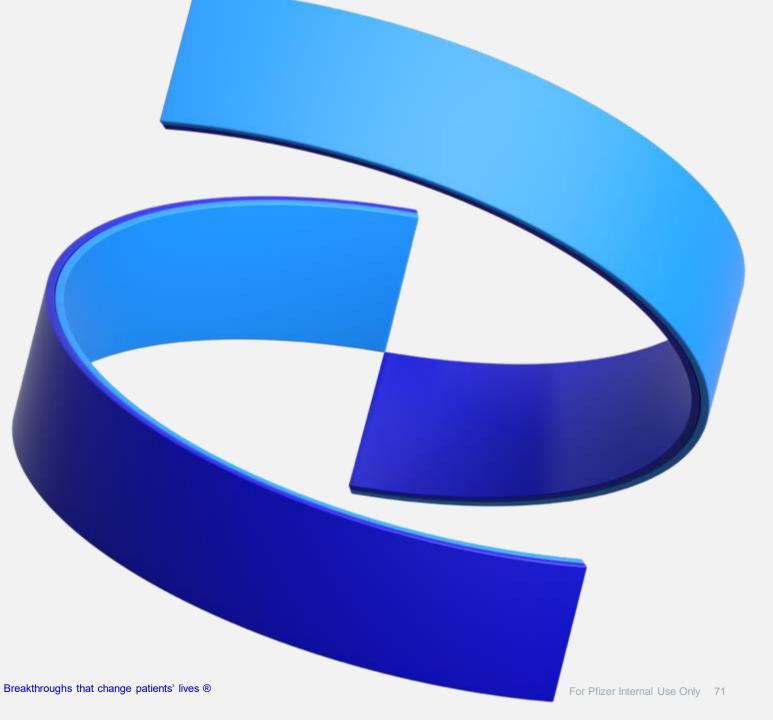
Matt Hernandez

Kantaro

Approaches for correlates analyses based on breakthrough cases from vaccine efficacy studies (Part 1)

Stephen Lockhart, PhD

Vice President, Vaccine Clinical R&D Europe and Asia-Pacific Head


Pfizer

Thoughts on correlates

Stephen Lockhart

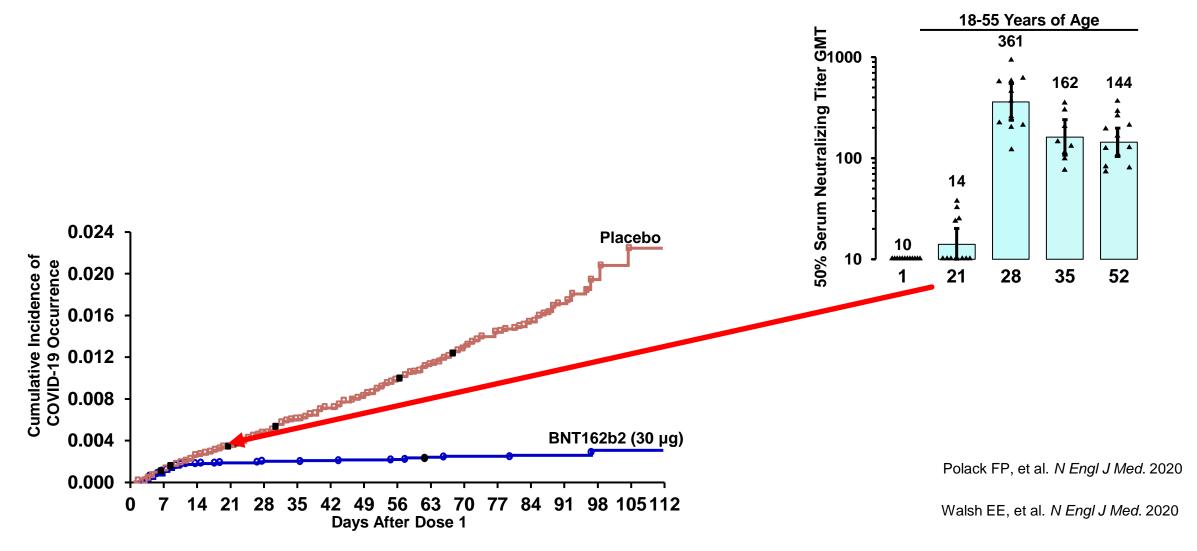
25 February 2021

Pilot work planned to assess cases in vaccine cohort

- 8 breakthrough cases without evidence of prior infection in November efficacy analysis for EUA¹
 - More cases likely to be identified following subsequent unblinding.
- Post dose 2 sera retained in all subjects²
 - In process of assessing post dose 2 neutralization titers
- PMBC not collected on subjects so T cell analysis cannot be performed²

¹ Polack et al 2020

² https://pfe-pfizercom-d8-prod.s3.amazonaws.com/2020-11/C4591001_Clinical_Protocol_Nov2020.pdf



Hypotheses to consider

- Neutralising antibody as mechanism or correlate of protection, pilot work can test this
 - Absence of neutralising activity post dose 2?
 - Lower neutralising activity post dose 2?
 - No relationship post dose 2?
- T-cell responses as mechanism or correlate of protection
 - Large scale pre-infection assessment of CMI challenging
- Host factors: comorbidities, health, race
- Viral factors: mutations in spike protein

Onset of protection while neutralizing titers are low

Approaches for correlates analyses based on breakthrough cases from vaccine efficacy studies (Part 2)

Daniel Stieh, PhD Senior HIV Biomarker Lead Janssen Pharmaceutical Companies of Johnson & Johnson

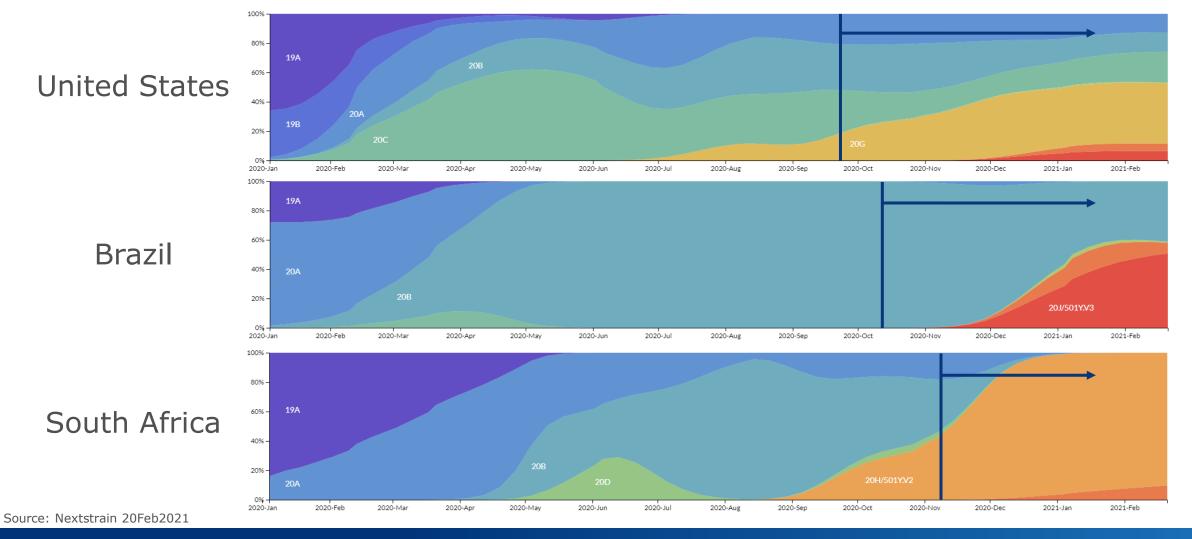
ENSEMBLE: Immune Correlates Considerations & Planning

Daniel J Stieh, Sr. Biomarker Lead 25 February 2021

Janssen Investigational COVID-19 Vaccine Phase 3 Study: COV3001

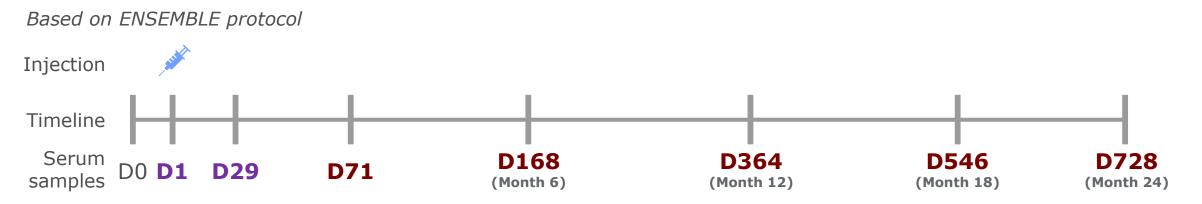
A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adults (ENSEMBLE)

- A multicenter, randomized, double-blind, placebo-controlled, phase 3 study evaluating the efficacy and safety of Ad26.COV2.S for the prevention of SARS-CoV-2-mediated COVID-19
- Locations: Argentina, Brazil, Chile, Colombia, Mexico, Peru, South Africa, and United States
- Continuous, sequential monitoring for safety and efficacy
- Full protocol openly accessible at https://www.jnj.com/coronavirus/covid-19-phase-3-study-clinical-protocol


⁺Moderate defined as one sign and one symptom from a list of signs, such as heart rate >90 bpm and symptoms such as shortness of breath or cough or 2 symptoms from a list of symptoms or Severe COVID-19 defined in FDA guidance. *NLM Identifier: NCT04505722

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

Variants assessed vary over time and by geography


Subset of countries participating in ENSEMBLE

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

Janssen Infectious Diseases & Vaccines

Overview of ENSEMBLE immune sampling plan

Stage 1 – for primary analysis

2 timepoints at D1 and D29 for both random subcohort and infected cases

Random subcohort

Infected cases are from vaccine group (baseline + and -) and placebo group (baseline + only)

Stage 2 – for durability study / more correlates analysis

5 additional timepoints through month \sim 24 for random subcohort; up to 7 timepoints total for additional infected cases

Same random subcohort

2 Additional infected cases from vaccine group (baseline + and -) and placebo group (baseline + only)

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

Janssen TInfectious Diseases & Vaccines

Randomly Sampled Sub-cohort:

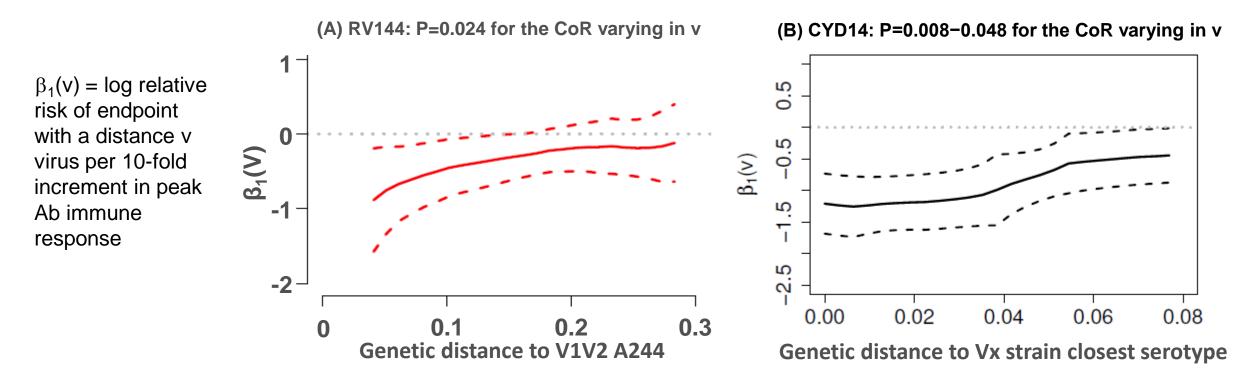
Antibody Assessments of Immunogenicity and Immune Marker CoRs and CoPs

	Numbers of Participants Sampled Into 64 Strata of Study Participants (Total N=1616)																															
	Baseline SARS-CoV-2 Seronegative ^b										Baseline SARS-CoV-2 Seropositive ^c																					
Baseline Demographic Covariate Strata ^a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Vaccine	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Placebo	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18

^aThe 16 baseline demographic covariate strata are as follows: 1 = underrepresented minority (URM) in U.S., age >= 60, presence of comorbidities; 2 = URM in U.S., age >= 60, absence of comorbidities; 3 = URM in U.S., age 18-59, presence of comorbidities; 4 = URM in U.S., age 18-59, absence of comorbidities; 5 = non-URM in U.S., age >= 60, presence of comorbidities; 6 = non-URM in U.S., age >= 60, absence of comorbidities; 7 = Latin America, age >= 60, presence of comorbidities; 8 = South Africa., age >= 60, presence of comorbidities; 9 = Latin America, age >= 60, absence of comorbidities; 10 = South Africa, age >= 60, absence of comorbidities; 11 = non-URM in U.S., age 18-59, presence of comorbidities; 12 = non-URM in U.S., age 18-59, absence of comorbidities; 13 = Latin America, age 18-59, presence of comorbidities; 14 = South Africa, age 18-59, presence of comorbidities; 15 = Latin America, age 18-59, absence of comorbidities; 16 = South Africa, age 18-59, absence

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

anssen Finfectious Diseases & Vaccines 80


Current Correlates SAP Focuses on bAb / nAb to the Vaccine Strain and the Endpoint COVID with Any Strain

- Plan to conduct the correlates analysis by each region separately (U.S., Central/South America, South Africa)
- Because the South African variant 501Y.V2 dominates the cases occurring in South Africa, the analysis assesses bAb / nAb to the vaccine strain as a CoR/CoP against the South African variant
- Combined study analyses evaluate bAb / nAb as CoR/CoP for COVID of different sets of circulating strains
- Comparing correlates results by region may give insights about whether the correlate may differ by viral lineage
 - E.g., does the nAb titer threshold for low risk differ depending on the circulating virus population?

Assessment of bAb / nAb to the Vaccine Strain as CoRs of AA Sequence-Specific COVID

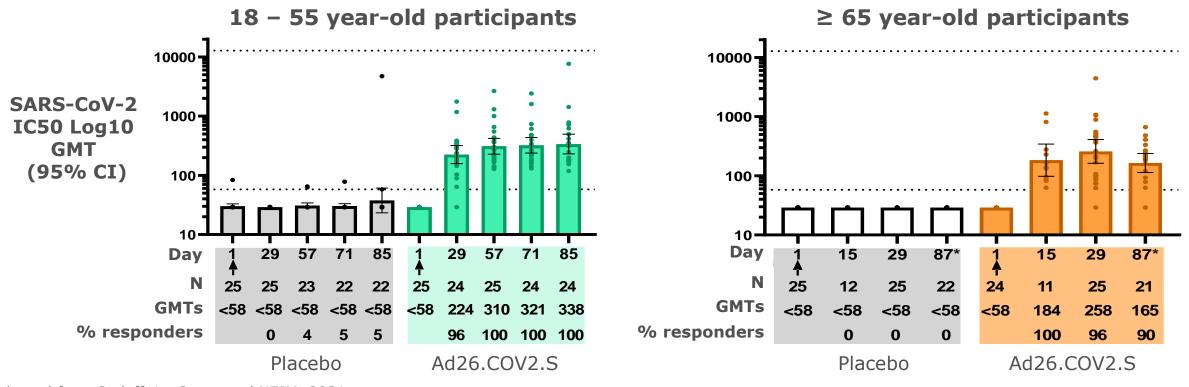
- Assess whether bAb/nAb to the vaccine strain is a weaker correlate of risk of COVID when the acquired virus is farther from the vaccine strain*
 - Farther defined by larger: (1) IC50; (2) AA-predicted IC50; AA-Hamming distance to vaccine strain

Precedents (A) RV144: IgG and IgG3 to V1V2 of the A244 vaccine strain were less correlated with HIV-1 acquisition for viruses with greater V1V2 Hamming distance to the A244 vaccine strain (Yang et al., 2017, *Stat Biosc*; Sun et al., 2018, *Biometrical Journal*). (B) CYD14 dengue VE trial for PRNT₅₀ nAb titer and Hamming distance to vaccine insert.

Status report of correlates planning

- Sufficient vaccine breakthrough cases exist for correlates analyses, sample selection and distribution are in process
- Partnering with COVID-19 response team (formerly OWS) biostatistics for correlates analyses
- Binding Ab (Spike, RBD, N), wtVNA (MN50) are being considered for Day 1 and 29 samples
- Correlates analyses will be done as soon as the data set is available from one of the assays
 - E.g., may do correlates for bAb first: highest throughput assay
 - Accelerates time to some correlates results

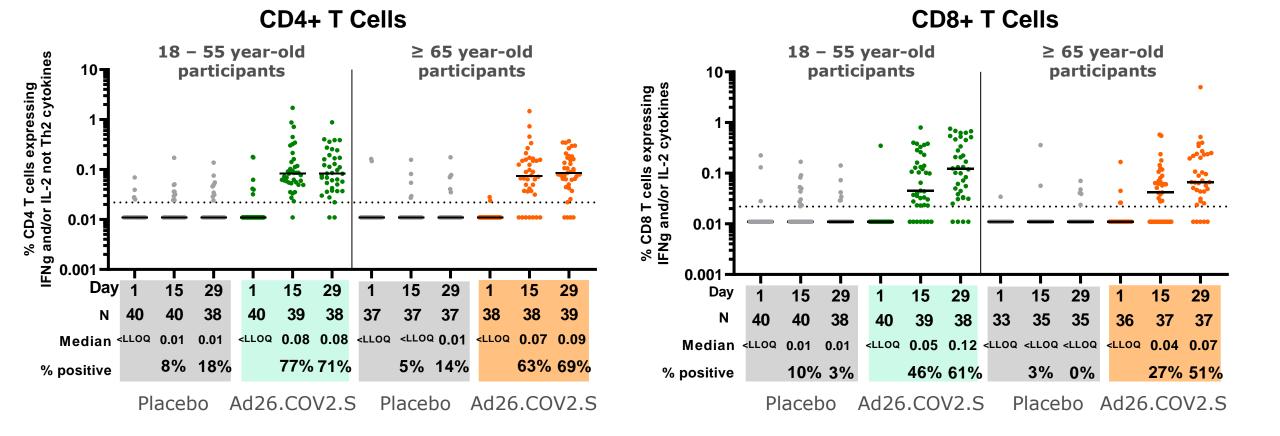
Can NAb titer be a CoP for ENSEMBLE?


- NAb response rate at Day 29 can be greater or less than the estimate of VE
- Potential explanations:
 - 1. nAb is sufficient for protection but not <u>necessary</u> (may be another mechanism)
 - 2. nAb is a 'perfect CoP' (<u>necessary</u> and <u>sufficient</u> for protection) but the assay was not sufficiently sensitive at the lower end
 - 3. nAb is sufficient for protection from exposing strain while cross protection may require sufficient breadth of nAb induction

Note: If 1. were true, then the CoP could still be quite good – e.g., mediating 80% of vaccine efficacy, not 100%

Similar and Durable Humoral Immune Responses After Single Dose 5×10^{10} vp Ad26.COV2.S in Adults 18-55 and ≥ 65 Years

- Observed neutralizing antibody response: 96% of Ad26.COV2.S group (Day 29)
 - Response lasted \geq 85 days in both age groups



Adapted from Sadoff, Le Gars, et al NEJM, 2021

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

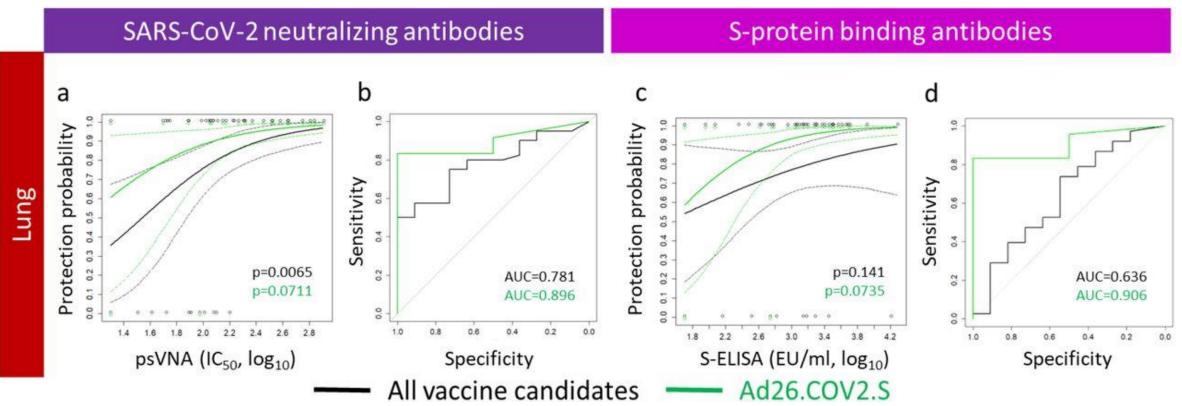
Ad26.COV2.S Elicits CD4+ and CD8+ T Cell Responses Th1:Th2 ratio well above 1 in all vaccine responders

% Positive responder defined by one-sided Fisher's exact test comparing non-stimulated versus S-peptide stimulated cells

The information provided herein, in connection with OTA No. HHSO100201700018C, is considered trade secrets, commercial or financial information that, JRD LLC, its Consortium Members, Affiliates, subcontractors and vendors customarily hold close and treat as confidential. The information is being provided under the assurance that the United States Government, including all its Departments, Agencies, Independent Establishments, Corporations, Organizations and Instrumentalities, including the U.S. Department of Health and Human Services and all of its agencies, including the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, will maintain the confidentiality of the information under the Trade Secrets Act, Procurement Integrity Act, other applicable statutes, regulations, rules, case law, contractual provisions, protective orders or otherwise and as such, the information provided herein is exempt from disclosure under Exemption 4 of the Freedom of Information Act ("FOIA").

Later Add 'By Variant' CoR and CoP Analysis

- Sequential correlates analyses will add data on bAb / nAb to panels of viral variants
- Assess bAb / nAb to a specific variant as a CoR / CoP against disease with the same variant
 - E.g., assess bAb / nAb against South African variant as CoR / CoP against South African variant COVID in the South Africa region
- May also study bAb / nAb against a specific variant as CoR/CoP against a vaccine-mismatched variant, to document weakening of the correlate


Challenge: Lack of the Same Set of Major Variants in the Same Region/Trial

- Currently, the B.1.351 variant can only be studied in the South Africa region (95% of South African cases with variant; few such cases outside of South Africa)
 - Thus, cannot infer whether different VE within South Africa is caused by the variant or by other regional factors
 - Baseline determinants of immunogenicity as well as mapping the presumed variant giving rise to baseline seropositivity on the observed efficacy may be able to disentangle these effects

Learning from NHP SARS-CoV-2 CoP analyses

- bAb and nAb are highly correlated, with both responses predicting protection in NHP for both Ad26.COV2.S and a range of Ad26-based vaccines
 - Similar responses induced in humans

Evidence of contribution of cell-mediated immunity to vaccine efficacy, and utility of T cell assays to correlates analyses

Julie McElrath, MD

Senior Vice President and Director Vaccine and Infectious Disease Division

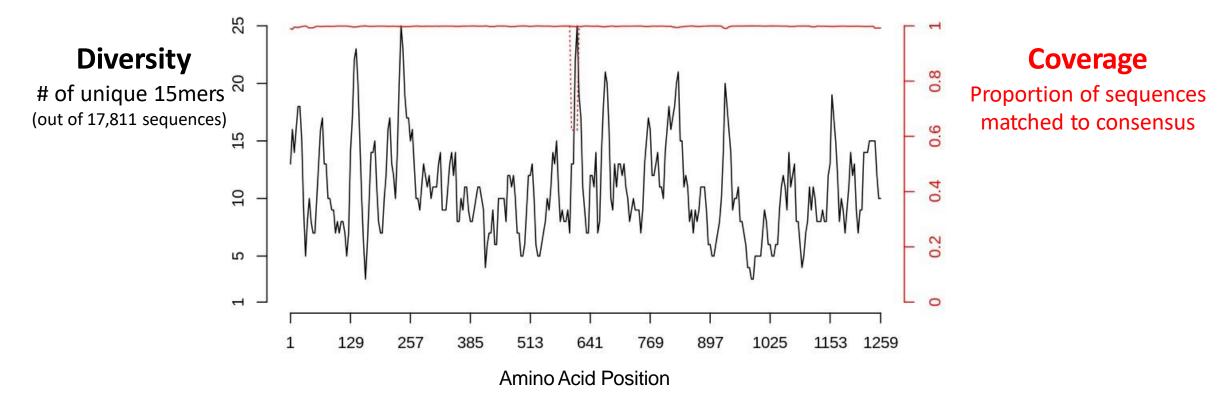
Fred Hutch Cancer Research

Contribution of cell-mediated immunity to vaccine efficacy

HVTN Laboratory Center Fred Hutchinson Cancer Research Center

Julie McElrath, Kristen Cohen, Steve De Rosa February 25, 2021

FRED HUTCH CURES START HERE®


Wide array of T cell immune assays for SARS-CoV-2 vaccine trials

Assay	Advantages	Disadvantages
1. IFN-γ ELISpot	 High sensitivity for IFN-γ Relatively low cell requirements Validated 	 Limited ability to multiplex cytokines Unknown sensitivity for Th2-type cytokines (e.g., IL-4) Validated assay does not distinguish CD4+ vs CD8+ T cells
2. Activation-induced marker (AIM)	 Multiplexed phenotypic, functional markers High sensitivity 	 Inability to distinguish Th1/Th2 Concern for lower specificity in comparison to other T cell assays
3. CyTOF	Highly multiplexed for cytokines, tetramers, phenotyping	Low throughputLow cell recovery
4. Antigen-stimulated PBMC or whole blood cytokine secretion assay	 High sensitivity (depending on cytokine) Multiplex capability Qualified (PBMC) 	 Bulk assay does not provide cell type (e.g., CD4 or CD8) and does not provide frequency of responding cells
5. Intracellular cytokine staining (ICS)	 Multiplexed phenotypic, functional markers High sensitivity for some key cytokines Validated for Th1 CD4+ and CD8+ T cells, standardized for Th2 	 Requires multiparameter flow cytometer instruments

Minimal 12-color ICS panel for high-throughput and/or tech transfer

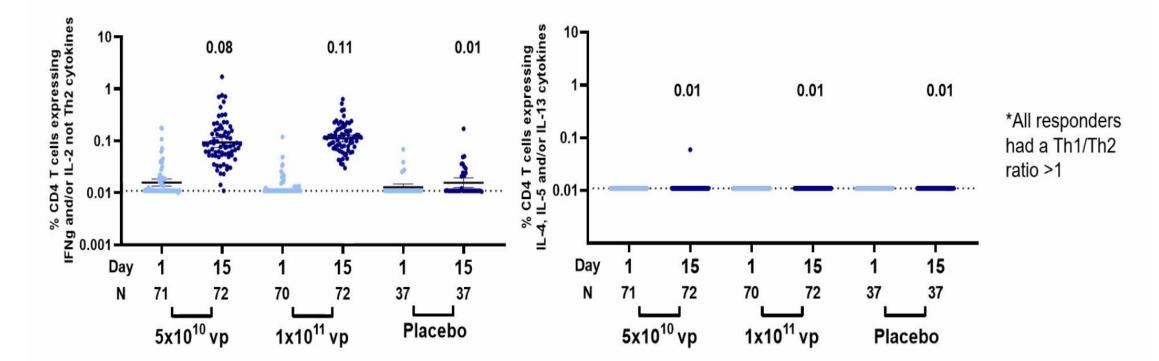
Antigen	Role	Antigen	Role	Antigen	Role
Viability	Live/Dead	IFN-γ	Th1	Granzyme B	Cytotoxicity
CD14	Monocytes	IL-2	_		
CD19	B cells	TNF-α	_	Perforin	
CD16	NK cells (FcgR)				
CD56	NK cells	IL-17a	Th17	CD32	FcgR
CD3	T cells	IL-4	Th2	CD64	
CD4		IL-5/IL-13		CXCR3	Th subsets
CD8		CD154	CD4	CCR6	
CD45RA	Memory T cells		response		
CCR7	-	CRTh2	Th2 (surface)	– Ki67	Activation
CD25	Tregs				
FoxP3					

Design of consensus spike SARS-CoV-2 peptides

- Generated consensus sequence from alignment of available SARS-CoV-2 spike global sequences (n= 17,811) from GISAID database in May 2020
- The consensus was a **perfect a.a. match** to the Wu-Han strain except for 614
- Designed variants to cover the diversity at position 614 (D/G variants) to bring overall coverage to >99%

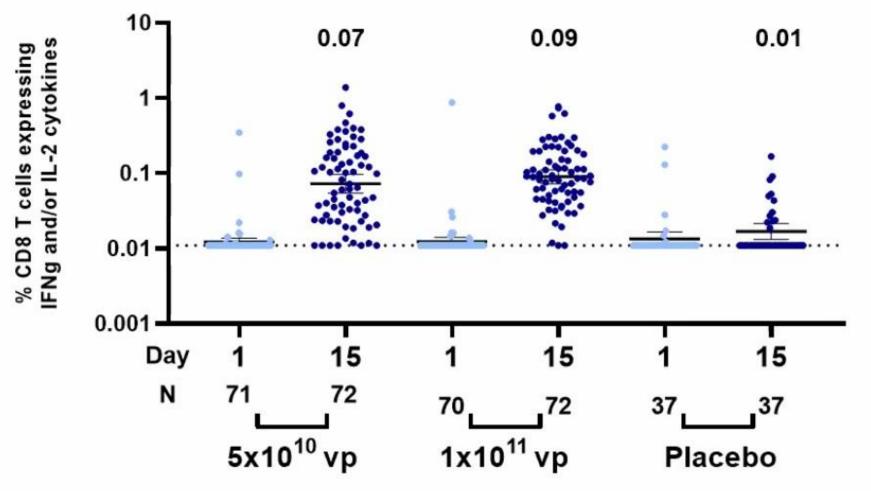
Peptide pools for spike for variant regions

Peptide pools to use for stimulation:

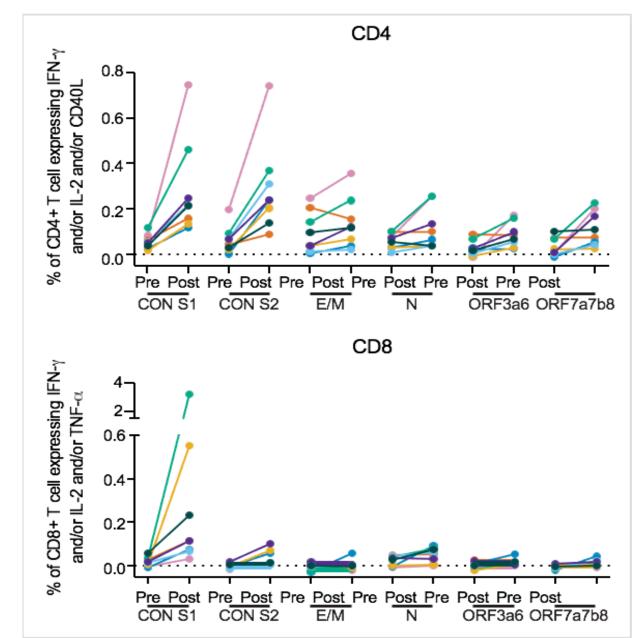

- 1. S1 Consensus without variant regions
- 2. S2 Consensus without variant regions
- 3. Variant regions: Consensus
- 4. B1.1.351 variant pool
- 5. Optional: B.1.1.7 variant pool

Janssen Ad26.CVO2.S Phase 1/2a Study

CD4 T cells – Th1

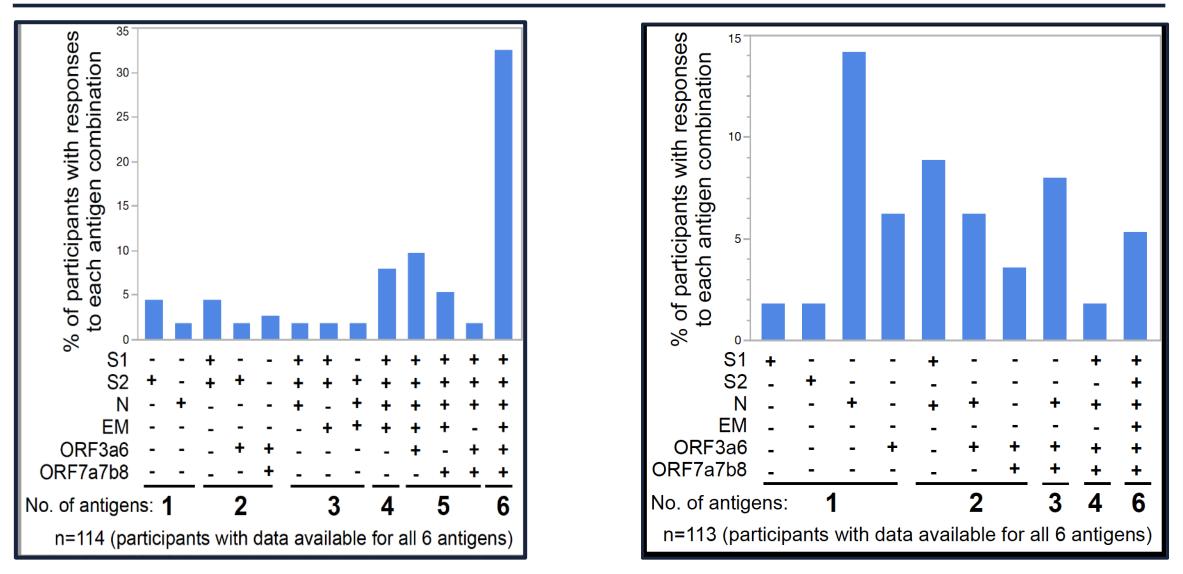

CD4 T cells – Th2

Sadoff et al, NEJM Jan 2021


Janssen Ad26.CVO2.S Phase 1/2a Study

CD8 T cells (IFNg and /or IL-2)

Sadoff et al, NEJM Jan 2021


T cell responses in SARS-CoV-2 infection post-mRNA vaccination

T cell specificities: % of COVID-19 patients recognizing SARS-CoV-2 antigens

CD4+ T Cells

CD8+ T Cells

Conclusions

- A wide array of T cell-based assays are being deployed in COVID-19 vaccine trials, which will illuminate differences in immune responses to various vaccine platforms
- 2. IFNy ELISpot and ICS are most widely used, but their correlation with efficacy is currently unknown
- 3. Lack of validated SARS-CoV-2-specific assays across the trials, and difficult sample collection remain challenges for the utility of T cell assay-based biomarkers in large scale trials
- 4. Requirement for T cell durability to be determined

Panel Discussion

Moderated By:

Peter Dull, MD

Deputy Director,

Integrated Clinical Vaccine Development,

Bill & Melinda Gates Foundation (BMGF)

Discussion Panel Members and Example Questions

Panel Members

- **George Siber,** Co-founder and Member of Board at Affinivax, Inc., United States
- Andy Pollard, University of Oxford, United Kingdom
- David Goldblatt, University College London, United Kingdom
- William Dowling, CEPI, United States
- Florian Krammer, Icahn School of Medicine at Mt. Sinai, United States
- Stephen Lockhart, Pfizer, United Kingdom
- Daniel Stieh, J&J, Netherlands
- Julie McElrath, Fred Hutch Cancer Research Center, United States

Potential Discussion Questions

- Where are we on the "road to a correlate" as we think about others that are currently licensed based on a biomarker? HPV? Polio? Pneumococcus? MenB?
- 2. Neutralizing antibody and binding antibody responses seem to correlate well across most vaccines studied. Why not focus on binding antibodies as a more robust and scalable assay readout?
- 3. What are the product development implications if there is a different biomarker associated with infection or with disease?
- 4. How can we support vaccine licensure where efficacy is no longer possible but the mechanism of protection is via mucosal antigen delivery with modest humoral immunity?
- 5. What is the status of the tools for reliably and consistently measuring T-cell biomarkers without the isolation of PBMCs

Break

Part 2:

Investigating the impact of new SARS-CoV-2 variants: Assays and available vaccines

Moderated By:

Jakob Cramer

Head of Clinical Development

Coalition for Epidemic Preparedness Innovations (CEPI)

International **Standard for** SARS-CoV-2 immunoglobulins: Use of the existing International Standard to address new variants

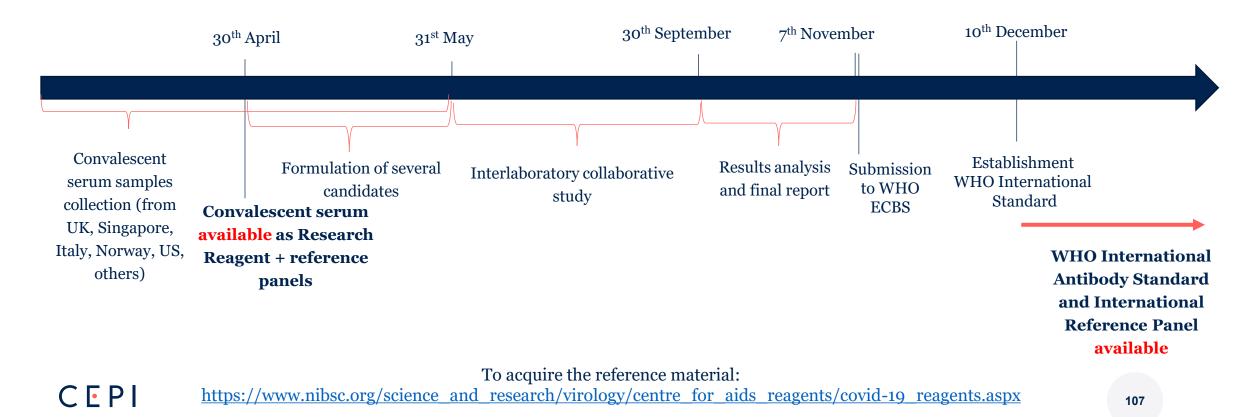
Paul Kristiansen, PhD Head of Standards and Assays, Preclinical and Immunology

CEPI

International Standard for SARS-CoV-2 immunoglobulins: Use of the existing International Standard to address new variants Paul Kristiansen

Enabling Sciences SWAT Team co-lead

CEPI - Head Biological Standards and Assays, Preclinical and Immunology



February 2021

C E P I

SARS-CoV-2 WHO International Antibody Standard

- Development of SARS-CoV-2 antibody reference material:
 - Convalescent serum as **Research Reagent** and **reference panel** available from April 2020
 - International antibody standard adopted by WHO ECBS in December 2020.

International Standard available at NIBSC

First WHO International Standard for anti-SARS-CoV-2 immunoglobulin, human (NIBSC code: 20/136)

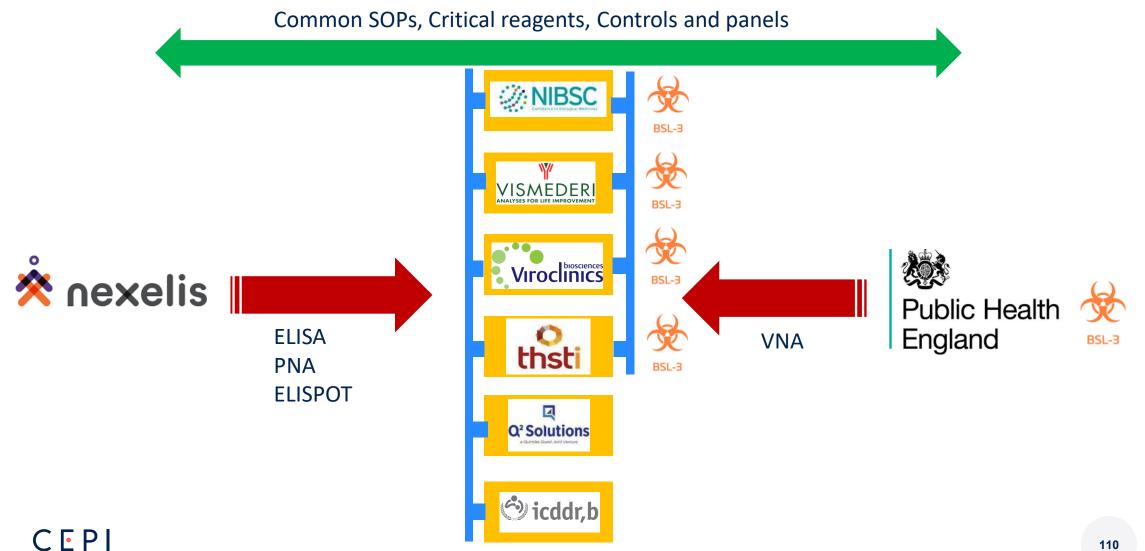
Material: Antibody, human, convalescent plasma, WHO IS Intended use: Primary calibrant for serological assays Description: Pool of convalescent plasma from recovered COVID-19 patients, containing high titre antibodies against SARS-CoV-2. Plasma has been solvent detergent treated to minimise the risk of presence of enveloped viruses. Enquiries: standards@nibsc.org

First WHO International Reference Panel for anti-SARS-CoV-2 immunoglobulin, human (<u>NIBSC code:</u> <u>20/268</u>)

Material: Antibody, human, convalescent plasma, WHO reference panel

Intended use: Serological assay development and evaluation, Vaccine evaluation, Research,

Description: comprises of 5 panel members; four pools of convalescent plasma from recovered COVID-19 patients, containing high, medium, low anti-S but relatively high anti-N, low antibodies against SARS-CoV-2, and a negative control, pool of plasma from healthy donors collected before 2019.


Enquiries: standards@nibsc.org

CEPI Centralized Laboratory Network

Sensitivity: CEPI Internal

Assay harmonization and tech transfer

CEPI Centralized Laboratory Network

2020 achievements in numbers

Laboratories worldwide

Nexelis (Canada), Q2 Solutions (US), PHE Porton Down (UK), NIBSC (UK), VisMederi Srl (Italy), Viroclinics (The Netherlands), icddr,b (Bangladesh),THSTI (India)

8

Samples requested for analysis

From Preclinical, Clinical Phase I and Clinical Phase II studies

21,6K

Available assays

6

S,RBD,N ELISA assay Pseudo virus neutralization assay Wild type virus neutralization assay IFNy, IL-5 ELISPOT assay

Covid-19 Vaccine developers engaged

41

In 4 continents among CEPIfunded and non CEPI-funded developers

USD invested Of the 16M USD total budget allocated to the program

4,7M

Concluding remarks

1. We have a tool for harmonizing the assessment of immunresponses to COVID-19 vaccine and to assess the impact of variants - use it!

- 2. Upcoming events:
 - Workshop on the Centralized Laboratory Network: 12. March
 - WHO Assays Working group on how to implement the International Standard: by end of March

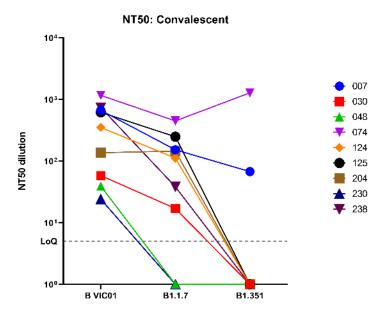
Neutralising Antibody assays against new variants: Overview of current activities

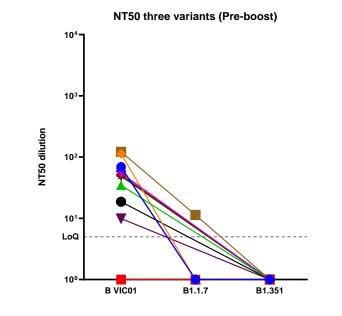
William Dowling, PhD Non-Clinical Vaccine Development Leader

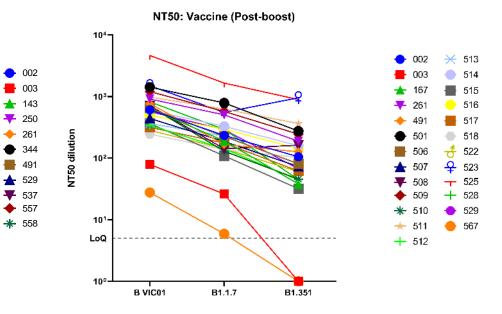
Neutralizing Antibody assays against new variants: Overview of current activities

William Dowling, CEPI

Live virus neutralization Assays

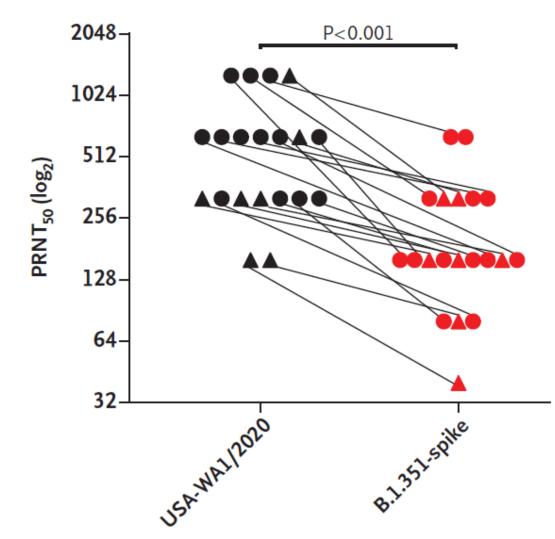

Assay	Virus	Institution	Reference
Microneutralizaion assay (MNA)	B.1.351: 501Y.V2.HV001 501Y.V2.HVdF002	African Health Research Institute (AHRI)	Cele et al 2021 Madhi et al 2021
Cytopathic effect (CPE) assay	B.1.351: GDPCC strain	Chinese Academy of Sciences (CAS)	Huang et al 2021
Plaque reduction neutralization test (PRNT)	B.1.1.7: hCoV- 19/India/20203522	National Institute of Virology, India (NIV)	Sapkal et al 2021
S-Fuse assay	B.1.1.7: Tours isolate B.1.351: CNR 202100078	Insitiut Pasteur (IP)	Planas et al 2021
Microneutralizaion assay (MNA)	B.1.17:201/501Y.V1.HMPP1 B.1.351: 501Y.V2HV001	Oxford University and Public Health England (Oxford/PHE)	Skelly et al 2021 Emary et al 2021
Focus Reduction Neutralization test (FRDT) Plaque reduction neutralization test (PRNT)	B.1.1.7: US CDC isolate Recombinant WA-1 with 69-70 del, E484K, N501Y or all B.1351 changes	University of Texas Medical Branch (UTMB)	Edara et al 2021 Xie et al 2021 Liu et al 2021


Neutralization of B.1.1.7 and B.1.351 by Convalescent and Pfizer vaccine sera

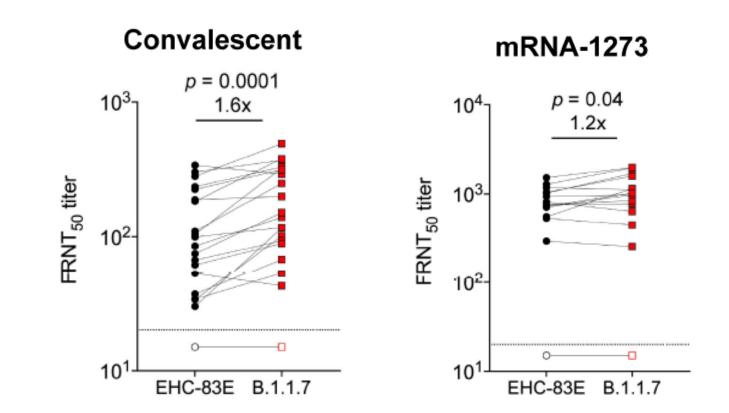

Convalescent

Pre-boost (V1+28) Pfizer vaccine

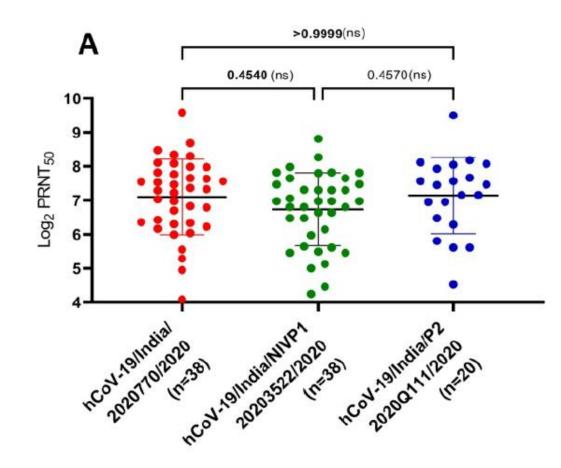
Post boost (V2+7) Pfizer vaccine



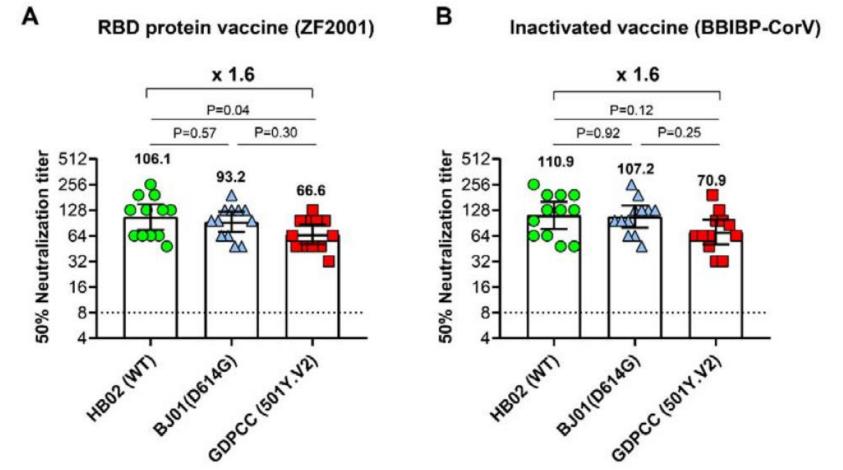
Skelly et al 2021


Neutralization of recombinant WA-1/B.1.351 Spike by Pfizer vaccine sera

CEPI


Liu et al 2021

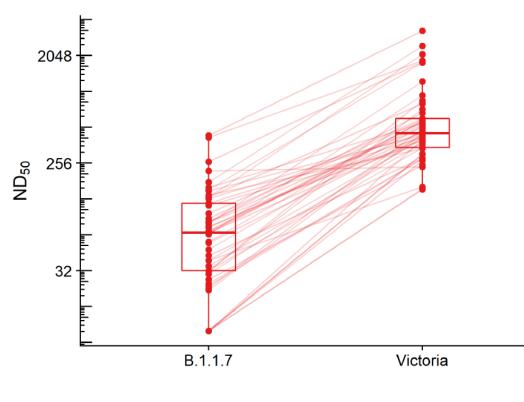
Neutralization of B.1.1.7 by Convalescent and Moderna Vaccine sera

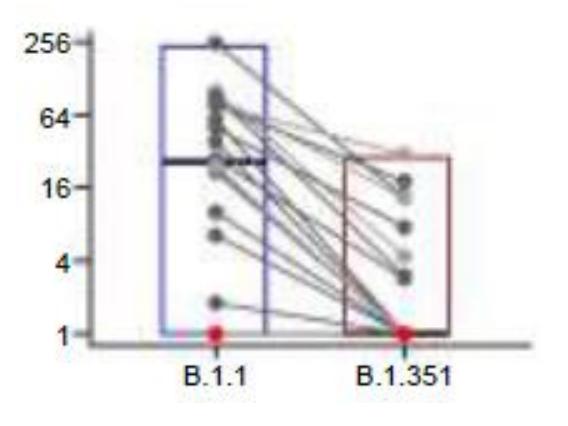


Edara et al 2021

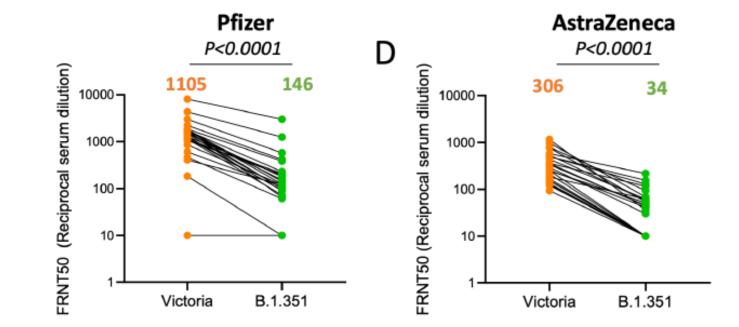
Bharat Biotech vaccine sera efficiently neutralized B.1.17

BBIBP-CorV and RBD ZF2001 vaccine sera both neutralized B.1.351

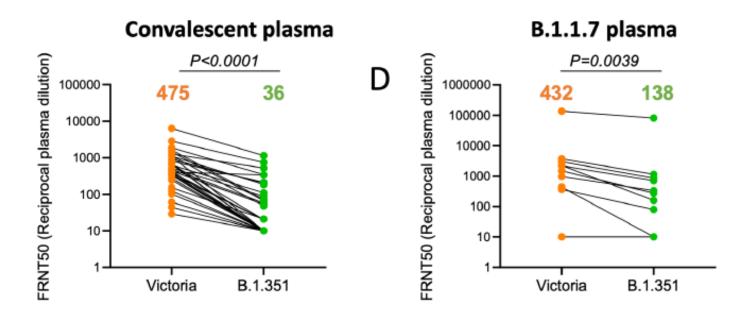



Huang et al 2020

Oxford/AstraZeneca vaccine neutralization affected by both variants


Figure 6. Live virus microneutralisation antibody titres of sera against B.1.1.7 and a

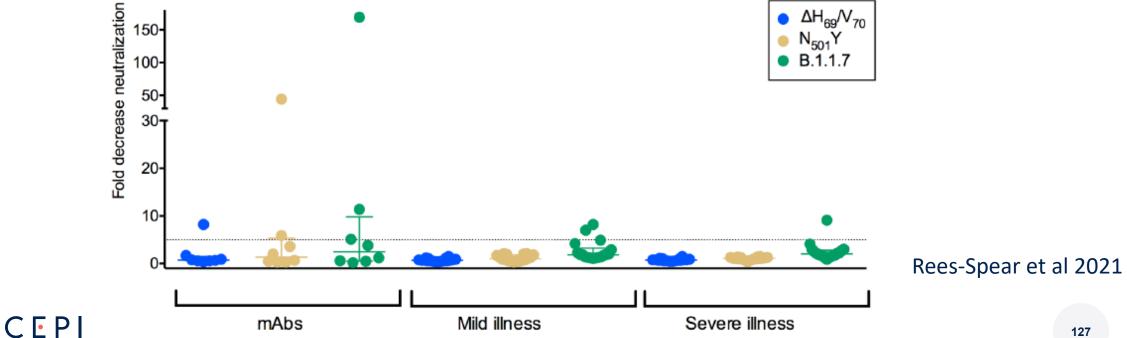
canonical non-B.1.1.7 (Victoria) strain



Oxford/AstraZenca and Pfizer vaccine sera neutralization

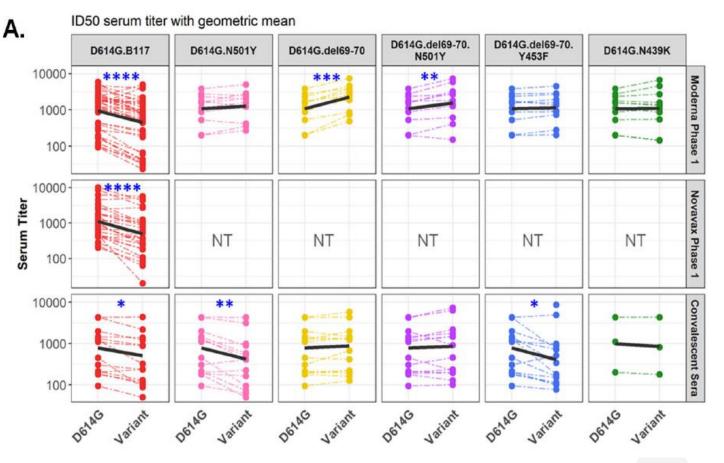
Convalescent plasma from B.1.1.7 patients neutralizes B.1.351 more efficiently than pre-B.1.1.7 plasma

CEPI

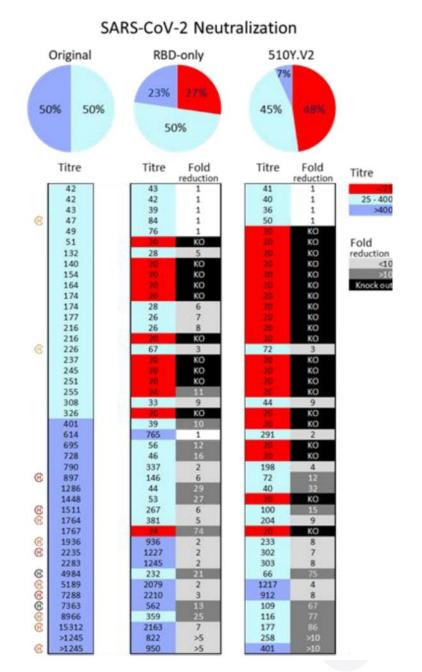

Zhou et al 2021

125

Pseudovirus neutralization


Neutralization with Variant B.1.1.7 pseudoviruses

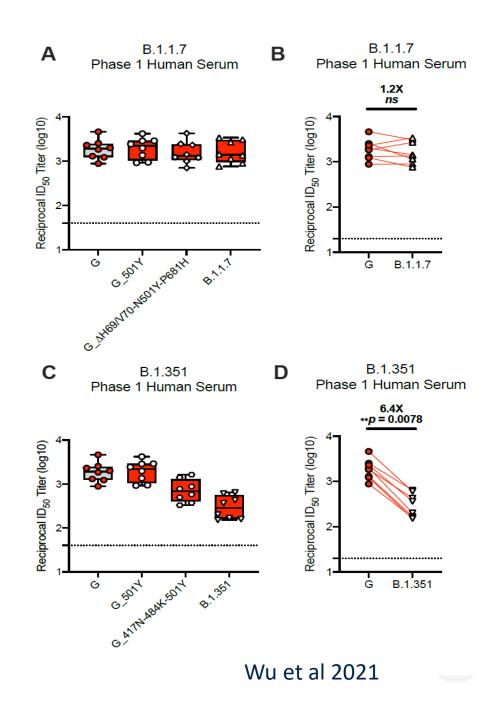
Full set of B.1.1.7 Spike mutations – little effect on convalescent sera; some effects on mAbs


Convalescent sera, Moderna and Novavax vaccine Phase I sera

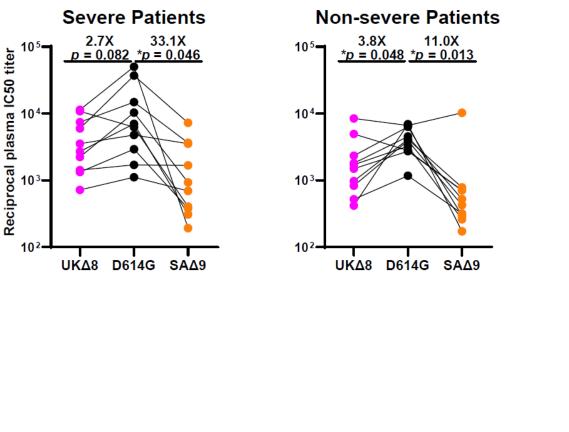
- Pseudovirus neutralization from Montefiori lab
- B.1.1.7 all mutations or individual
- Convalescent, Moderna and Novavax sera
- Modest effect on neutralization, 2 fold reduction

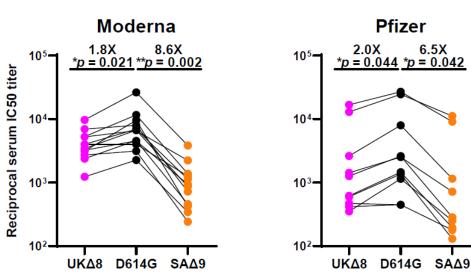
Convalescent sera poorly neutralize Variant B1.351 pseudovirus

- Key mutation in RBD or all Spike mutations
- Significant decrease in neutralization by convalescent sera
- Neutralization escape for class 1 and class 2 mAbs

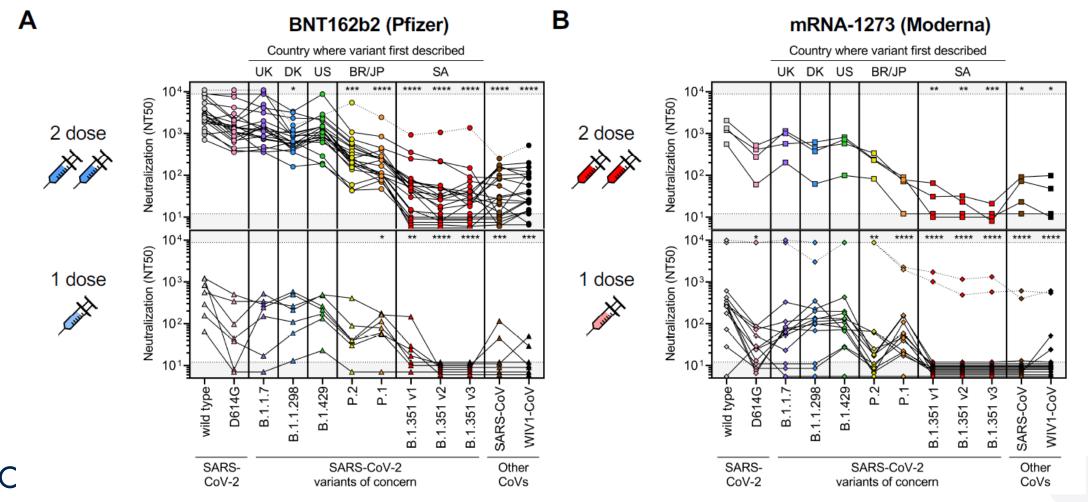

CEPI

Wibmer et al 2021


Moderna vaccine Phase I sera


Neutralization with pseudoviruses: Wu et al 2021

- No significant reduction neut by B.1.1.7
- Reduction in neut by B.1.351 6 fold


Convalescent sera, Moderna and Pfizer vaccines

Wang et al 2021

Moderna and Pfizer vaccine sera tested against a panel of pseudoviruses

Garcia-Beltran et al 2021

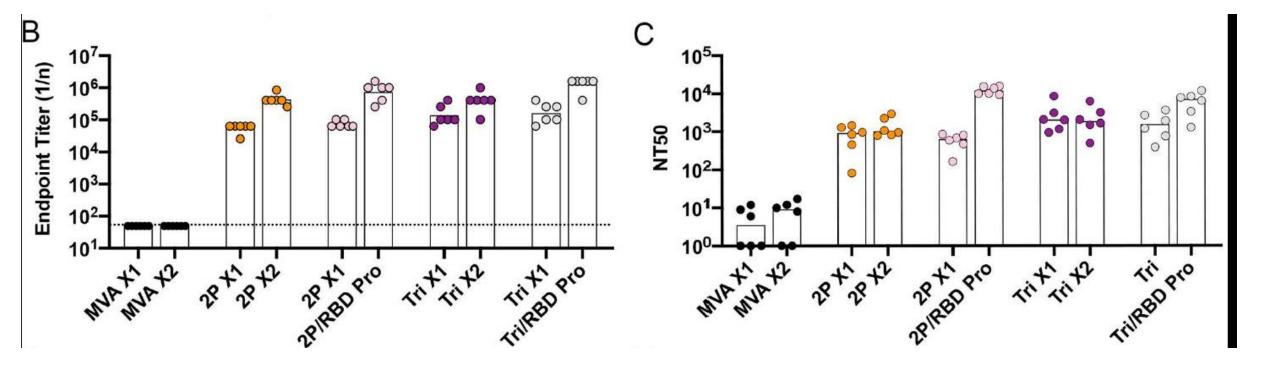
Summary

- Studies from different labs involving new variants have used distinct viral isolates or pseudoviruses and diverse assay formats, which makes direct comparison of the data difficult; use of the WHO International standard could be useful in this regard
- In general , there is a slight reduction in neutralization of convalescent or vaccine sera observed with VOC B.1.1.7 and more significant reductions in neutralization observed with VOC B.1.351. This was seen in both live virus and pseudovirus assays.
- VOC P.1 and P.2 have recently been used in pseudovirus assays and neutralizing titers fell between B.1.1.7 and B.1.351
- Neutralization of variants after a single dose is low versus post-second dose
- Convalescent plasma from B.1.1.7 patients neutralizes B.1.351 more efficiently than pre-B.1.1.7 plasma

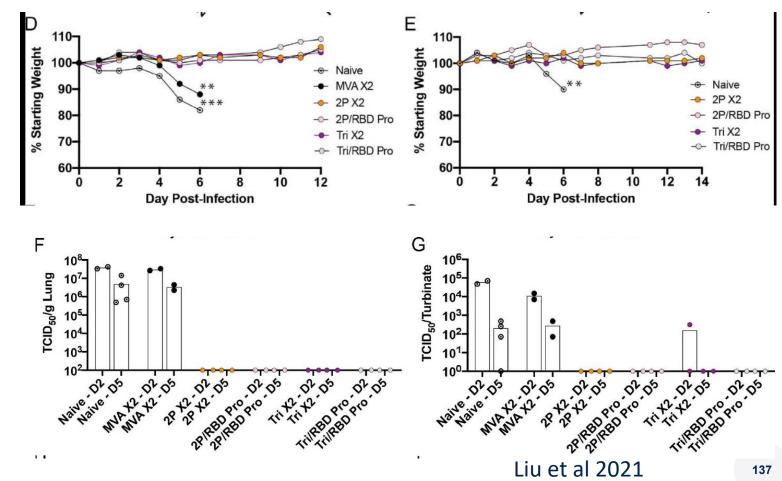
Heterologous Prime:Boost SARS-Co-2 vaccines

Pre-clinical studies

CEPI

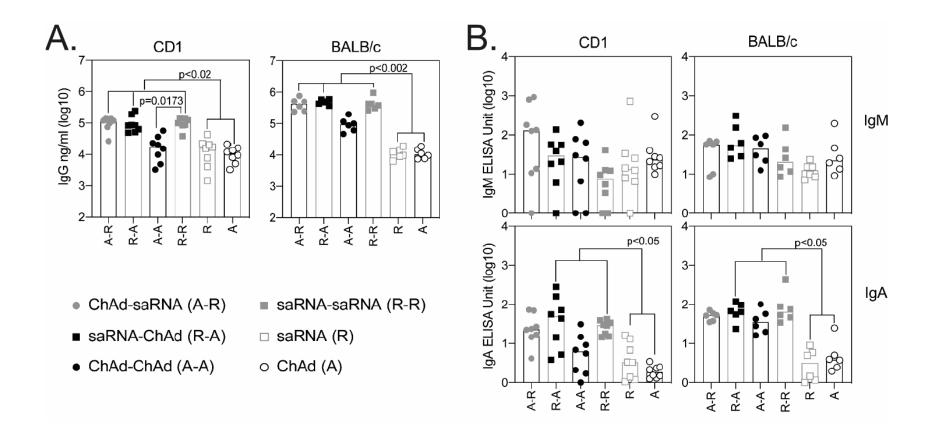

25 February 2021

- Heterologous prime: boost approaches:
 - Vaccinate with two different vectors or delivery system expressing the same antigen
 - Vaccinate with different antigens using the same delivery system (e.g boost with a new variant)

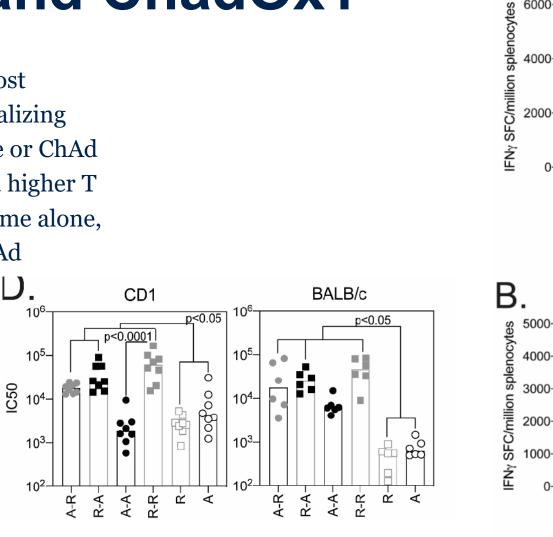

• Example of licensed ERVEBO Ebola vaccine – Ad26 prime, MVA boost

 For COVID-19, the Gam-COVID-Vac vaccine, consists of an Ad26 prime with an Ad5 boost, both expressing the full Spike protein. This vaccine is approved for Emergency use in several countries. Pre-clinical data on this
 C reprine, however, are not available.

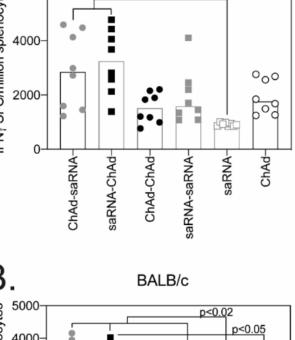
MVA prime and RBD protein boost produce higher ELISA and neutralizing Ab titers than a homologous boost



MVA prime with RBD boost protects K18:hACE2 mice from SARS-CoV-2 challenge


saRNA and ChadOx1 prime:boost

Heterologous
 prime:boost produces
 higher IgG titers than
 prime alone or ChAd
 homologous boost


saRNA and ChadOx1

Heterolgous prime:boost ٠ produces higher neutralizing titers than prime alone or ChAd homologous boost and higher T cell responses than prime alone, RNA prime:boost or rAd prime:boost

CEPI

Spencer et al 2021

ChAd-ChAd-

saRNA-saRNA

ChAd-saRNA

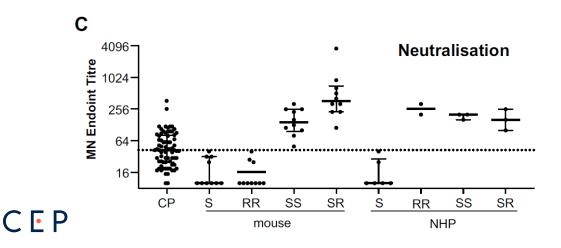
saRNA-ChAd

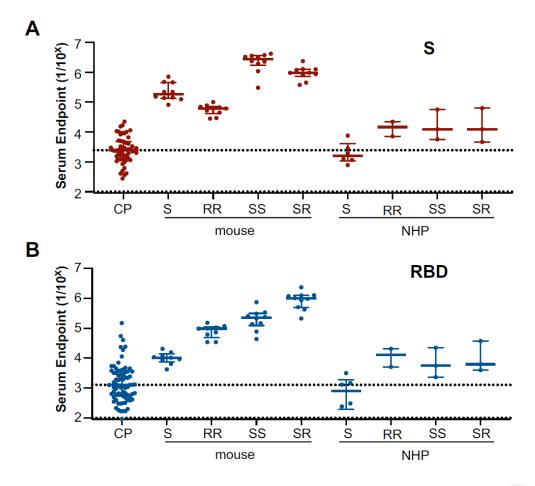
CD1

p<0.005

A.

6000


0 808


ChAd-

saRNA-

Spike and RBD proteins prime:boost

- In mice, Spike protein prime with RBD boost leads to high S titers, highest RBD titers and highest Neutralising titers, when compared to homolgous prime boosts (S-S or R-R)
- However, in NHPs, there is no advantage to the heterologous prime :boost.

Tan et al 2021

- Heterologous prime:boost is an approach that has been successful in other contexts, including the Gamalaya Gam-COVID-Vac vaccine.
- Heterologous prime:boost approaches for COVID-19 vaccines may lead to strengthening and broadening of immune responses
 - Binding and neutralizing Ab responses in mice were highest for MVA vectors with RBD protein boosts rather than MVA boosts
 - Heterologous prime boost with saRNA and ChadOx1 led to stronger T cell responses than homologous boosts with either ChAD or RNA and higher antibody responses than ChAd prime:boost.
 - Heterologous prime:boost of S and RBD proteins led to higher neutralizing Ab titers in mice; however, there was no advantage over homologous boost in NHPs

'Mix & Match': Heterologous primary vaccination and heterologous boosting regimens

Jakob Cramer Head of Clinical Development Coalition for Epidemic Preparedness Innovations (CEPI

CEPI

'Mix & Match': Heterologous Primary Vaccination and Heterologous Boosting Regimens

Jakob Cramer, MD

February 25th, 2021

Sensitivity: CEPI Internal

COVID-19 Vaccines Against New Strains: Options

1. Address new variants with currently approved vaccines

2. Vaccine adaptation against new variants

- a) Based on approved 'prototype' vaccines (against original strain)
- b) Licensure of new vaccines against new strains without approved 'prototype' / without availability of evidence supporting vaccine efficacy of the 'prototype'

3. Monovalent versus **bi-/multivalent vaccines**

COVID-19 Vaccines Against New Strains: Options

1. Address new variants with currently approved vaccines \rightarrow <u>'Mix & Match'</u>

2. Vaccine adaptation against new variants

- a) Based on approved 'prototype' vaccines (against original strain)
- b) Licensure of new vaccines against new strains without approved 'prototype' / without availability of evidence supporting vaccine efficacy of the 'prototype'

3. Monovalent versus **bi-/multivalent vaccines**

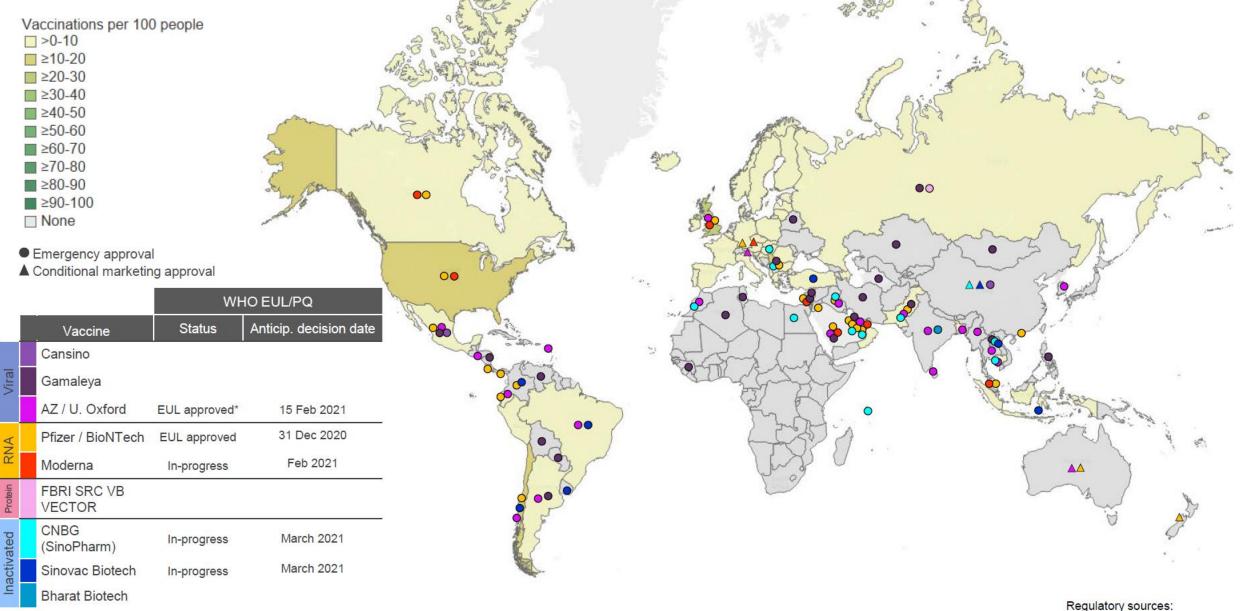
I. Available COVID-19 Vaccines: "Mix & Match"

Concepts:

- Heterologous primary vaccination*:
- Heterologous boosting:

<u>Aim:</u>

- Improve immune response*
 - a) Breadth of IR
 - b) Duration
- Address practical / operational aspects ('interchangeability' of vaccines)
- Adjuvant- / antigen-saving strategy?
- Anti-vector immunity?
- Improve tolerability (of the 2nd dose)?


→ Several trials covering different regions / populations, vaccine combinations, circulating SARS-CoV-2 variants

CEPI

Current COVID-19 Vaccine Approval Status

*Data for COVAX expected in March 2021

Potential "M&M" Options – Heterologous Priming

Two different vaccines given as 1st and 2nd dose for primary vaccination (e.g. 4-12 weeks apart)

Platform	1 st dose	2 nd dose	Considerations
VV - mRNA	 AZ/Oxford [ChadOx-1]; JnJ [Ad26]; CanSino [Ad5]; Gamaleya [Ad5, Ad26] 	 Pfizer/BNT; Moderna; CureVac 	• Enhance both CD4 and CD8 response, prolonged antigen presentation ?
VV – VV	• AZ/Oxford [ChadOx-1]	JnJ [Ad26];CanSino [Ad5];	Avoid anti-vector immunity ?
	JnJ [Ad26];Gamaleya [Ad26]	AZ/Oxford [ChadOx-1]Gamaleya [Ad5]	Avoid anti-vector immunity ?
VV – protein	 AZ/Oxford [ChadOx-1]; JnJ [Ad26]; CanSino [Ad5]; Gamaleya [Ad5, Ad26] 	 NVX (+ Matrix M); Clover (+ Al/CpG) 	 Tfh induction → more focused effect on B- cell differentiation and breadth of binding / neutralising antibody response ?
WIV – protein	Sinovac;Sinopharm	 NVX (+ Matrix M); Clover (+ Al/CpG) 	Tfh induction
mRNA – Protein	Pfizer/BNT;Moderna;CureVac	NVX (+ Matrix M);Clover (+ Al/CpG)	Strong Tfh priming ?
Protein - VV	 NVX (+ Matrix M); Clover (+ Al/CpG) 	 AZ/Oxford [ChadOx-1]; JnJ [Ad26]; CanSino [Ad5]; Gamaleya [Ad5, Ad26] 	Strong Tfh priming ?
mRNA - VV	 Pfizer/BNT; Moderna; CureVac 	 AZ/Oxford [ChadOx-1]; JnJ [Ad26]; CanSino [Ad5]; Gamaleya [Ad5, Ad26] 	• Strong Tfh priming ?

VV = viral vector; WIV = whole inactivated virus; Tfh = T follicular helper cells

Potential "M&M" Options – Heterologous Boosting

Different vaccine given e.g. 6-12 months after homologous primary vaccination

Platform	Priming	Single booster dose
VV → mRNA	 AZ/Oxford [ChadOx-1]; JnJ [Ad26] – single dose; CanSino [Ad5] – single dose; Gamaleya [Ad26, Ad5] 	 Pfizer/BNT; Moderna; CureVac
vv → vv	 AZ/Oxford [ChadOx-1] 	 JnJ [Ad26]; CanSino [Ad5]; Gamaleya [Ad26, Ad5]
	 JnJ [Ad26] – single dose 	 AZ/Oxford [ChadOx-1]; CanSino [Ad5]; Gamaleya [Ad5]
	 CanSino [Ad5] – single dose 	 AZ/Oxford [ChadOx-1]; JnJ [Ad26]; Gamaleya [Ad26]
VV → protein	 AZ/Oxford [ChadOx-1]; JnJ [Ad26] – single dose; CanSino [Ad5] – single dose; Gamaleya [Ad5, Ad26] 	 NVX (+ Matrix M); Clover (+ Al/CpG)
WIV → protein	Sinovac;Sinopharm	 NVX (+ Matrix M); Clover (+ Al/CpG)
mRNA → protein	 Pfizer/BNT; Moderna; CureVac 	 NVX (+ Matrix M); Clover (+ Al/CpG)

Potential Strategies to Investigate 'M&M'

• Plan prospective clinical trials

- Partnership between 2 different developers
- Recruit subjects that have received a 1st dose / full primary immunization and provide heterologous 2nd dose (heterologous priming) or booster dose (heterologous boosting)
- Speed: Flexibility necessary to allow timely start of a series of trials and release of IA data
- Core elements:
 - Align on overall trial design aspects / endpoints to allow comparability: Uo Oxford COM-CoV (protocol available here: <u>https://comcovstudy.org.uk/study-protocol)</u>
 - Use of WHO international reference standards in serologic assays (www.nibsc.org)
 - Consider plans to integrate immunological testing (of a comprehensive subset of samples) which would utilize CEPI's available Centralised Laboratory network (email: <u>centralizedlab@cepi.net</u>)
 - Site readiness initiative: BMGF / CEPI preparing operational readiness of trial sites in LMICs (<u>https://epi.tghn.org/covax-overview/clinical-science/clinical/#ref1</u>)
 - DSMB support offered as part of the Safety Platform for Emergency vACcines (SPEAC) project (<u>https://brightoncollaboration.us/speac/</u>)

CEPI

COVID-19 Clinical Development Call for Proposals

- <u>CfP CCT</u> launched by CEPI on 28 January 2021
- Aim: Rapidly expand access to and confidence in COVID-19 vaccines by
 - i) generating clinical evidence in **special / sub-populations / age groups** or
 - ii) addressing clinical development gaps.
- Clinical trials which expand access and capacity in LMICs are particularly encouraged
- Call open through 28 May 2021
- Applications will be reviewed on a rolling basis as received
- US \$140 million funding available
- CEPI prepared to respond quickly

https://cepi.net/get_involved/cfps/

CEPI

Panel Discussion

Moderated By:

Jakob Cramer

Head of Clinical Development

Coalition for Epidemic Preparedness Innovations (CEPI)

Discussion Panel Members and Example Questions (1 of 2)

William Dowling, CEPI, United States

Paul Kristiansen, CEPI, Norway

٠

٠

Panel Members		Potential Discussion Questions		
•	Helen Rees , University of the Witwatersrand, South Africa	1.	If 2 developers decide to partner to establish evidence on 'M&M', what data would likely be required for a label claim ?	
•	Farah Qamar, The Aga Khan University, Pakistan	2.	For most vaccines, it is unlikely that respective label claims will be sought. What would be a minimum data package that would allow NITAGs to allow a recommendation on vaccine 'interchangeability' ?	
•	Matthew Snape, Oxford Vaccine Group,			
	United Kingdom	3.	From a country perspective (rolling out vaccines), what are options and challenges to implement respective 'M&M' trials (using deployed vaccines,	
•	Arnaud Didierlaurent , University of Geneva, Switzerland		respecting existing recommendations in populations at risk)?	
•	Adam Hacker, CEPI, United Kingdom	4.	It has been observed that different vaccine (platforms) have been perceived differently in the population. Could this impact acceptability of heterologous vaccination regimens and what has to be taken into account?	

Different vaccines (platforms) are associated with different logistical challenges and contraindications. How will this increased complexity have to be balanced against potential benefits?

Discussion Panel Members and Example Questions (2 of 2)

Panel Members

- Helen Rees, University of the
 Witwatersrand, South Africa
- Farah Qamar, The Aga Khan University,
 Pakistan
- Matthew Snape, Oxford Vaccine Group, United Kingdom
- Arnaud Didierlaurent, University of Geneva, Switzerland
- Adam Hacker, CEPI, United Kingdom

- **Potential Discussion Questions**
- 6. Given the diversity of vaccine platforms being used, there is in theory numerous possible vaccine combinations. What are some key **immunologic** considerations that need to be taken into account re priming / boosting (strong priming effect, antigenic sin, Th1 bias re VMED, ...)?
- 7. For heterologous primary vaccination, what additional aspects need to be considered for selecting the appropriate 1st vaccine (relevant vaccine efficacy post 1st (single) dose, improve reactogenicity of the 2nd dose, ...)?
- 8. For heterologous boosting, vaccines adapted to new SARS-CoV-2 strains might be available in 6-9 months from now. For primed individuals, a single dose of an adapted vaccine may suffice. What are considerations re vaccines used for primary vaccinations as well as single booster?
- William Dowling, CEPI, United States
- Paul Kristiansen, CEPI, Norway

Wrap Up & Next Steps

Jakob Cramer Head of Clinical Development Coalition for Epidemic Preparedness Innovations (CEPI)

Closing remarks

- Thank you all for your participation and engagement today
- Workshop report distributed shortly to summarize today's conversation
- We will continue to share resources at the website here: <u>https://epi.tghn.org/covax-overview/clinical-science/</u>
- The COVAX Clinical SWAT Team plans to continue sharing learnings across developers as we pursue our common goal – a global supply of safe and effective vaccines

COVAX

Clinical Development & Operations SWAT Team

