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Figure 1: We propose a novel technique for image extrapolation by editing in the semantic label space. Our method not only extrapolates
the objects present in the input but also generates new objects. As shown above, the input image is extrapolated on all the 4 sides to double
both the dimensions. Our method not only adds new objects to the outpainted region, but also maintains the texture consistency giving a
realistic outlook to the generated image.

Abstract

We propose a semantically-aware novel paradigm to per-
form image extrapolation that enables the addition of new
object instances. All previous methods are limited in their
capability of extrapolation to merely extending the already
existing objects in the image. However, our proposed ap-
proach focuses not only on (i) extending the already present
objects but also on (ii) adding new objects in the extended
region based on the context. To this end, for a given im-
age, we first obtain an object segmentation map using a
state-of-the-art semantic segmentation method. The, thus,
obtained segmentation map is fed into a network to com-

pute the extrapolated semantic segmentation and the cor-
responding panoptic segmentation maps. The input image
and the obtained segmentation maps are further utilized to
generate the final extrapolated image. We conduct exper-
iments on Cityscapes and ADE20K bedroom datasets and
show that our method outperforms all baselines in terms of
FID, and similarity object co-occurrence statistics.

1. Introduction

Image extrapolation or out-painting refers to the prob-
lem of extending an input image beyond its boundaries.
While the problem has applications in virtual reality, verti-

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#9939

CVPR
#9939

CVPR 2021 Submission #9939. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

cally filmed video expansion, sharing photos on social me-
dia like Instagram, and even generating scenes during game
development especially if the scenes are repetitive, it is rel-
atively under-explored compared to the image inpainting
counterpart which has been extensively researched in re-
cent years. Image in-painting solutions based on deep net-
works and generative adversarial networks (GANs), when
applied to the out-painting problem, have been shown to
yield poor results [30]. This has led to researchers explor-
ing and proposing new solutions to the out-painting prob-
lem [41, 35, 32]. However, the solutions have been mainly
restricted to images that involve outdoor domains like nat-
ural scenes where the problem is limited to just extending
the existing textures for ’stuff’ classes like mountains, wa-
ter, trees. These methods are not suitable to other domains
like traffic scenes and indoor scenes where the image ex-
trapolation involves 1) extending not only the ’stuff’ classes
but also the ’things’ classes like cars, persons, beds, tables
that have very definite structure and 2) adding new objects
that were not present in the original image. The current
techniques, however, fail to address the above two require-
ments and are, therefore, limited in their ability to perform
satisfactory image extrapolation.

To this end, we address the shortcomings of the previous
works in image out-painting by extrapolating the image in
the semantic label map space. We first use a state-of-the-art
object segmentation algorithm to obtain dense pixel-wise
object label maps for the input image. We, then, extrapo-
late the thus obtained label map using a generative adver-
sarial network [10] framework. Using label map enables us
to extend the existing objects in semantically aware fash-
ion to the extent that is required as well as adding new ob-
jects based on the context. However, label maps can only
encode pixel-wise class information and cannot distinguish
between different instances of the same class. In order to
create multiple instances of the same class, we generate
panoptic label map from the segmentation map. This pro-
vides us with the capability to have control over each in-
stance separately. The input image and the extrapolated la-
bel maps (class segmentation and panoptic) are fed to an-
other GAN based network to obtain the final out-painted
image. We believe our method, due to its ability to lever-
age semantic label space for extrapolation, is a significant
departure from the general methods that are used for image
extrapolation which mainly operate in pixel domain.

Our contributions can be summarized below:

• We propose a novel paradigm for image out-painting
by extrapolating the image in the semantic label space.

• We show how one can generate novel objects by gen-
erating the extrapolated semantic label map.

• We propose the generation of panoptic label maps from

the extrapolated semantic label maps to facilitate the
generation of multiple instances of the same class.

• Through extensive experiments, we show that our
method outperforms all previous state-of-the-art meth-
ods in image out-painting in terms of FID and similar-
ity in object co-occurrence metrics. We further show
in our method, the effect of using the generate panop-
tic label maps to generate crisp object boundaries in
the final extrapolated image.

2. Related Work
Prior works in image synthesis have had great break-

throughs in Image inpainting [21, 36, 38] , conditional im-
age synthesis [12, 22, 26, 31, 33], and unconditional image
synthesis [1, 24, 7]. On the contrary, image extrapolation
models have been relatively less successful. The works on
image extrapolation can be broadly classified on whether
they use non-parametric methods or are learning based i.e.
parametric methods. Several non-parametric methods [8, 9]
have been able to perform only a limited peripheral texture
extension. Furthermore, their heuristics don’t capture the
variation in color, texture and the information of shape and
structure of an object. These methods [9] limit themselves
to simple pattern extrapolation and are very brittle to in-
creasing extrapolation. Other classical approaches [3] use
patch matching and try to extrapolate on the basis of the in-
put image. Considering the fact that the extrapolated section
of the image in a general case can be different to the input
image section in terms of texture and objects, these methods
have an inherent limit of information. Moreover, since they
fetch information from the input images and are unable to fit
in the non-linearity with the simple heuristics, these works
tend to replicate the internal patches for complex sections
creating artifacts in the extrapolated regions.

With the advent of GAN [10] based approaches, sig-
nificant progress has been made in image extrapolation.
[41, 35, 30, 32] use a single stage method to extrapolate the
input image. Most of these works deal with scene comple-
tion using object completion or merely extending the signif-
icant texture near the image boundary. Consequently, they
quickly breakdown upon further extrapolation of the input.
As we increase the section to be extrapolated, the relative
volume information in input reduces. Relatively reduced
prior information in input, results in generation of substan-
dard extrapolation. Moreover, all of these approaches cur-
rently lack the semantic understanding of the scene. This
limits their ability to merely repeating a continuous scene
in the extrapolated region, without generating concomitant
novel objects.

Conditional Image Synthesis: In our work, we make
use of the advances in conditional image synthesis for the
last stage of our algorithm as discussed later. Pix2Pix [12],

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#9939

CVPR
#9939

CVPR 2021 Submission #9939. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

pix2pixHD [31] and SPADE [26] use conditional GANs to
synthesize images from their semantic label maps. We also
draw inspirations from conditional image synthesis to our
semantic label map extrapolation stage conditioned on the
input semantic label map.

Object generation: Only a few works have focused on
the creation of novel objects in the edited image. Azadi et al.
[2] concentrate on synthesizing images using semantic label
space but in an unconditional setting, where the semantic
label space is generated from scratch from a random seed.
For a given sparse scene, [17] focus on adding objects of
similar class in the scene to densely populate the scene.

3. Our Method
Image out-painting methods based on deep networks

have leveraged image-to-image translation approach. This
approach leads to a mere extension of the peripheral tex-
tures in the image. We argue that direct image-to-image
translation is the reason for their limited success. Instead,
we take a different approach to the past works and incor-
porate the usage of semantic label map for extrapolation.
Label maps lie on a much lower manifold as compared to
natural images. This gives a hint that it might be easier to
tackle the image extrapolation problem in the semantic label
space and quickly learn object semantics, class information,
and definitive shapes of objects as opposed to the previous
works. Working in this solution space enables us to extract
essential features in form of segmentation maps and panop-
tic maps.

Our goal is to extrapolate a given image X(∈ Rh×w×c)
on its periphery using a deep generative neural network
based pipeline. The generated image is Y (∈ Rh1×w1×c)
where h1 ≥ h and w1 ≥ w. Here, c represents the num-
ber of channels corresponding to the image, which is 3 for
a colored image. The pipeline involves four major stages:

• Image segmentation: Generation of the segmentation
map corresponding to the input image.

• Semantic label map extrapolation: Generation of the
peripheral extended region in the semantic label map
space.

• Panoptic label generation: The semantic label map is
further segmented to create multiple instances of the
same object class.

• Instance-aware image synthesis: Conversion of the ex-
trapolated semantic label map to the corresponding
colored image.

3.1. Image Segmentation

Given an image X(∈ Rh×w×c), corresponding one-
hot vector for semantic label map L(∈ {0, 1}h×w×c1)

is obtained using state-of-the-art segmentation techniques
[42, 29, 4, 40, 37]. The resultant semantic label map gener-
ated contains c1 channels where each channel corresponds
to one class. The semantic label map, thus generated, is
extrapolated in the next stage.

3.2. Semantic Label Extrapolation

We use the semantic label map obtained from the pre-
vious stage to synthesise a new extrapolated label map.
The label map L, obtained from the previous stage is zero-
padded to form a new label map L1(∈ {0, 1}h1×w1×c1).
This label map L1 is extrapolated to the final label map
L2(∈ {0, 1}h1×w1×c2), where c2 = c1 + 1. The obtained
label map contains an extra channel that corresponds to the
boundary map of the extrapolated label map.
Generator
We used SPADE [26] residual blocks for each of the layers
in the generator. These residual blocks tend to retain more
information from the input image and thereby empower the
network. Further the input image is fed to each of the layer
along with the computed values of the previous layer in the
network. We use spectral normalization [25] for each of the
generator layer.

With the first c1 channels, the model had the semantic
label map information only. Segmentation maps do not dis-
tinguish between two objects of the same class, occurring
adjacent to each other. This poses a difficulty for the net-
work while inferring shape information from the segmenta-
tion map. While training, the ground truth label map of the
image is concatenated with an extra channel correspond-
ing to the object instance boundary map. Adding the extra
boundary map channel ensures that the generated segmen-
tation map corresponds to the ground truth boundary and
incorporate better object shape information.

At this stage, we use LS-GAN loss [23] (LGAN ), Fea-
ture matching loss [31] based on the discriminator (LFM ).
We use focal loss [20] (LFL) between the generated label
map and ground truth label map to penalize discrepancy be-
tween them as shown below. We use an additional cross en-
tropy loss (LCE) between the ground truth instance bound-
ary map and the boundary map channel of the generated
semantic image, as shown below.

l(z, y) = −y × log(z)

LCE(z, y) = Σh,w,cl(z, y)

LFL(z, y) = Σh,w,cl(z, y)× (1− z)γ

We use the following training objective for semantic label
map extrapolation:

min
G

(LGAN + LFM + λFLLFL + λCELCE) (1)
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Figure 2: Overview of our pipeline: The input image is fed into a pre-trained segmentation network to obtain a label map. The label map
is fed into our semantic extrapolation generator to obtain a label map that is four times the input image. The extrapolated label map is
input into another network to obtain panoptic label map to create instance map. The extrapolated label map, the panoptic label are used in
conjunction with our instance-aware context normalization to obtain the final image extrapolated image.

Discriminator
Our method involves generation of high resolution im-
age. Thus, a single scale discriminator fails to capture
both the low frequency and high frequency details in
the image to differentiate between synthesized and real
image. Thus, we use a multi-scale discriminator, as used in
pix2pixHD [31], which efficiently discriminates between
real and fake generations in high-resolution images. The
multi-scale discriminator works at three different scales
of the image. Each of the scale differs by a factor of 2.
While the discriminator at the finest scale operates on the
high frequency details in the image, the low frequency
details are operated on by the highest scale discriminator.
This helps the model generate images at a higher resolution.

3.3. Panoptic Label Map Generation

One of the key ingredients of a good image extrapolator
is to generate crisp and precise boundaries between object
instances of the same class. To this end, we generate object
instance maps from the extrapolated segmentation maps.
[4] proposed to generate panoptic label maps from natural
images. However, we do not have the extrapolated image to
be able to generate the panoptic labels. We circumvent this
by adapting the method elucidated in [4] by predicting the
class-agnostic instance centers and pixel-wise offsets from
the centers of the instances they belong to. Specifically, we
train a generator-only network that takes in the extrapolated
segmentation map and produces heat maps for instance cen-
ters and the pixel-wise offsets from the nearest instance cen-
ter. The center heat-maps and the offset outputs are further
processed along with the segmentation map to obtain the
instance maps. The details of training of the network and
post-processing are provided in the supplementary material.

3.4. Instance Aware Image Synthesis

This is the final stage which converts the extrapolated
semantic label map back into a colored image. This stage
takes in input X ′(∈ Rh1×w1×c′) (Figure 2), which is a
concatenation of the extrapolated semantic label map ob-
tained from the second stage, the cropped (input) image,
the boundary map obtained using the panoptic label map
obtained from the previous stage and the feature map ob-
tained using Instance-aware Context Normalization, dis-
cussed later. Hence, c′ = c1 + 3 + 1 + 3 = c1 + 7, where
c1 is the number of classes in the corresponding semantic
label map. The output is an RGB image Y ∈ Rh1×w1×3

This is different from prior conditional GANs problems
[12, 22, 26, 31] since they synthesize RGB images from
semantic label maps, but we have to synthesize RGB im-
ages from semantic label maps, given some pixel informa-
tion of the to-be-synthesized RGB image, in this case it is
the cropped image. Here, we have to take care of texture
consistency of the synthesized image while maintaining an
identity mapping from the cropped image to the final im-
age. To maintain this texture consistency, we concatenate
the feature maps to the input, which are generated using
Instance-aware Context Normalisation module, discussed
in the subsequent sections.
Generator
We used SPADE [26] normalization residual blocks for
each of the layers in the generator. We use similar learning
objective functions, as used in SPADE [26] and pix2pixHD
[31]; GAN loss with hinge-term [19, 25, 39] (LGAN ), Fea-
ture matching loss [31] based on the discriminator (LFM )
and VGGNet [28] for perceptual losses [6, 13] (LV GG)
Instance-aware Context Normalization
Outpainting-SRN [32] proposed Context Normalization
(CN) to maintain texture consistency between the inside
(cropped) region and the outside (outpainted) region. It in-

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#9939

CVPR
#9939

CVPR 2021 Submission #9939. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

volves transferring the mean feature or color from the inside
region to the outside region. However, we believe that trans-
ferring this input mean color directly to the outside region
is not for suitable images which have very diverse object
instances (like outdoor images, street images).

To this end, we propose Instance-aware Context Normal-
ization (IaCN) module (Figure 2), which takes as input the
input cropped image and the instance map. IaCN module
computes the mean color using the input (cropped) image
for all the partial instances. Partial instances refer to the
instances which get extrapolated in the final image. Since
the problem with texture consistency occurs only for par-
tial instances, therefore we compute features only for partial
instances. These computed feature maps are then concate-
nated to the input.
Image Discriminators
We propose to use two discriminators, i) a traditional im-
age discriminator (multi-scale discriminator) that attempts
to differentiate between the real and the fake image, ii) a
patch co-occurrence discriminator similar to swapping au-
toencoder [27]. Park et al. employed a co-occurrence patch
discriminator to ensure texture transfer [14, 34] from an in-
put image to the target image to be edited. We employ a
similar idea wherein the region in the image that needs to be
extrapolated takes the role of the target image (equation 2).
This facilitates the consistent texture transfer consistently
from the inside region to the extrapolated region (illustrated
in Figure 3).

LCooccurGAN (G,Dpatch) =

Ex,y[−log(Dpatch(crop(G(x)), crop(y), crops(y)))]
(2)

Here x is the input and y is the corresponding ground-truth
image. crop(y) function takes random patches of 64 × 64
from image y and crops(y) takes 4 random patches from
image y, which serve as the reference patches. The details
of the network architectures for all generators and discrimi-
nators for the various stages are provided in the supplemen-
tary material.
Variational Autoencoder
To ensure appropriate style transfer, we use an encoder that
processes the cropped image, which is then fed to the gener-
ator. We use the encoder used in SPADE [26]. This encoder
forms a VAE [16] with the generator. In the objective func-
tion, we add a KL-Divergence Loss term [16] (LKLD).
Final Objective
The training objective is as shown below in equation 3:

min
G

(LGAN + λFMLFM + λV GGLV GG+

λKLDLKLD + LCooccurGAN )
(3)

Fake
Patch

Real
Patch

Reference
Patches

Real Image

Fake Image

Dpatch Real
Fake

Figure 3: Patch Discriminator: Dpatch takes in input 4 refer-
ence patches, a fake patch and a real patch. The reference patches
are randomly selected from the real image. The fake patch and
real patch are the same patches, randomly selected but made sure
that some part of them is inside while other part is outside, from
fake image and real image respectively. The discriminator tries to
distinguish between fake patch and the real patch, making use of
the reference patches. All the patches are of size 64× 64.

4. Experiments

We evaluate the proposed approach on two different
datasets which have a sufficient disparity between each
other to show that our approach is fairly robust and is ap-
plicable to diverse scenes. We utilize the publicly avail-
able Cityscapes [5] and ADE20K [43] bedroom subset both
of which were originally proposed for semantic segmena-
tion. While Cityscapes comprises of outdoor street images,
ADE20K bedroom subset consists of bedroom scenes. To
obtain the processed subset, we contacted the authors of
[17]. The processed subset consists of 31 classes includ-
ing bed, lamp, wall, floor and table. Cityscapes consists of
2975 training images and 500 validation images. Each im-
age has its corresponding semantic label map and instance
label map along with the original image. The bedroom sub-
set of ADE20K [43] has 1389 images in the training set and
139 in the validation set. In order to limit the size of our
model, we downsample the images in Cityscapes to a reso-
lution of 256 × 512 and the ADE20K bedroom by resizing
all its images to a standard size of 384×512 while training.

Implementation details As discussed, we used the stan-
dard semantic segmentation models for our first stage which
involves generation of semantic map of the input image. We
train PSPNet [42] on Cityscapes as well as ADE20K bed-
room subset at the resolution discussed earlier and use them
to generate segmentation maps of the input (cropped) im-
ages.
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Figure 4: Stage-wise results for Cityscapes and ADE20K dataset. The input (cropped) image is converted to semantic label map in stage-
1, which is then extrapolated in stage-2 to form a new (outpainted) semantic label map. Instance maps are generated from this semantic
label map in stage-3. The input image, the (outpainted) semantic label map and the instance map are used to synthesize the final image in
stage-4.

For the training of stage-2, in our final objective (Equa-
tion 1), we use λFL = 5, λCE = 5 and γ = 5. For the train-
ing of stage-4, we use the same weighting for loss terms as
SPADE [26], i.e. λFM = 10, λV GG = 10 and λKLD =
0.05 in Eq 3. We use ADAM solver [15] with β1 = 0 and
β2 = 0.9 for both the stages. The training is done for 200
epochs.

Baselines We compare our method with various baselines
both in quantitative (with FID and Similarity in Object Co-
Occurrence metrics) and qualitative terms. We compare the
proposed approach with three baselines ‘Outpainting-SRN’
[32], ‘Boundless’ [30] and partial convolutions (‘PConv’)
[21]. For [32], we adapt the official public code repo made
available by the authors. Although, ‘PConv’ [21] was origi-
nally proposed for image in-painting, like in [30], we adapt
it for the image out-painting. We also note that none of
these baselines are trained on our kind of input-crop (25%
of the original image), thus we train all of them using sim-
ilar inputs and outputs as in our method. For each of the
baseline, we evaluate their ability to generate the complete
image from the central part consisting of 25% area of the
actual size of the image. The hyper-parameter details for
each one of these baselines is provided in the supplemen-
tary material.

Evaluation Metrics We evaluate our model and compare
against baselines on two metrics - Frêchet Inception dis-
tance (FID) [11], and similarity in object co-occurrence
(SOCC) statistics [18].

FID: It is a standard metric used to calculate the fidelity
of the GAN generated images and provides a measure of the
distance between the generated images and the real images
in the dataset. Such distance is calculated in the feature

Method Cityscapes ADE20k
Pconv 86.82 147.14
Boundless 77.36 136.98
Outpainting-SRN 66.89 140.98
Ours 47.67 90.45

Table 1: Results: FID scores (lower is better) for our method vs
the baselines on Cityscapes and ADE20K-bedroom dataset. Our
method outperforms other baselines by a significant margin in both
the datasets.

space of the Inception network output. The pretrained In-
ception model is used to produce the features correspond-
ing to each image - real as well as generated. The dis-
tance is then calculated using the Frêchet distance formula
||mr −mg||2 + Tr(Cr + Cg − 2

√
CrCg)

SOCC: Since our method is aimed at incorporating the
object co-occurrences to generate new objects while extrap-
olating, we test this ability with the help of similarity co-
occurrence measure as proposed in [18]. The co-occurence
measure for two classes ca and cb can be calculated as the
ratio of the number of times they occur together to the total
number of times one of them occurs in the entire dataset.
Let Nca represent the frequency of a class ca in the input
image, and Ncab

be the number of times there is atleast one
instance of class cb present in the extrapolated region given
ca is present in the input. The probability of co-occurrence
p(ca, cb) of the two classes can be calculated as Ncab

Nca
. The

similarity in co-occurrence probability of a pair of classes
between generated outputs and the training set, therefore,
reflects the extent of faithful emulation of scene distribu-
tion. The similarity in co-occurrence for class c2 in the out-
put to the training set given c1 is present in the output is

6
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Figure 5: Visual comparison between our model and baselines on the cityscapes dataset. Our method is able to add objects in the outpainted
image, a black car (left part of the image) in the first row, and a black car (right part of the image) in the last row. While Boundless [30]
tries to create new objects, our method creates far detailed and accurate object Pconv [21] and Outpainting srn [32] don’t produce new
objects in the extrapolated image.

Figure 6: Visual comparison between our model and baselines on the ADE20K-bedroom dataset. Our method generates new objects
(bedside lamps) in all 3 images and produces more realistic results compared to baseline methods. Pconv [21] tries to smoothen the input
image whereas, Boundless [30] and Outpainting srn [32] generate lots of artifacts in the outpainted image.

defined as s(ca, ca) = 1 − |ptrain(ca, cb) − pgen(ca, cb)|.
The closer is this score to 1, the greater is the similarity be-
tween the outputs of the model and the training set images.

4.1. Qualitative performance

In figure 4, we show the various stages of our pipeline.
The dense label map obtained by feeding the image into
PSPNet is shown in column 2. The thus obtained label map
is fed into the proposed semantic label extrapolation net-
work as shown in column 3. In row 1, the presence of a
sequence of cars in the input label maps results in more cars

being added and thus guarantees the continuity in the label
space. Similarly in row 2, our semantic label extrapolation
network exploits the presence of the bed in the input and
generates a side-table and a table lamp, thus ensuring se-
mantic continuity. We further obtain instance maps from
the extrapolated label maps using our instance map gener-
ator. This enables to generates definitive object boundaries
as well facilitates rich and diverse texture composition when
there are more instances of the same class. The effect of this
is pronounced in row 1, wherein multiple instances of cars
are generated from big blobs in the extrapolated label maps.

In figure 5, we compare our results with the baselines for
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Method (Parking, Car) (Person, Person) (Pole, Traffic Light) (Person, Rider) (Car,Sidewalk) Average
Outpainting-SRN 0.85 0.89 0.68 0.91 0.85 0.94
Boundless 0.82 0.89 0.99 0.94 0.82 0.95
Pconv 0.83 0.88 0.57 0.9 0.83 0.92
Ours 0.96 0.92 0.96 0.96 0.94 0.97

Table 2: Results: Similarity in object co-occurrence scores (higher is better) for our method vs the baselines on Cityscapes dataset. We
calculated SOCC scores for all class labels in the dataset. Out of the 34 different class labels in the dataset, we picked 5 random pairs for
display purposes. For most of them, our method achieves better SOCC scores compared to baselines.

the cityscapes dataset. It can be seen that our method most
closely resemble the ground truth. Our methd not extrap-
olates the existing objects ensuring texture and structural
continuity but is capable of adding very precise novel ob-
jects. However, all the other baselines generally are unable
to add any new objects and struggle with ensuring continu-
ity.

Similarly in figure 6, we show visual comparisons of our
method with the baselines for ADE20K bedroom dataset.
Our method clearly is able to add novel objects in each of
the images shown, while the baselines merely extrapolate
the existing objects.

4.2. Quantitative performance

Table 1 shows the FID scores and Table 2 shows the Sim-
ilarity in object co-occurrence of our method compared to
the baselines on the two datasets. Note that all these scores
are on the validation split of the two datasets. We out-
perform all the baselines by very significant margins. Our
method obtains 20 and 50 points improvements over the
nearest baselines on Cityscapes and ADE20K respectively.

Table 2 shows the SOCC scores for different pairs of ob-
ject classes in the cityscapes dataset. It can be seen that our
method is able to generate results that consistently resemble
the object co-occurrence statistics for most class pairs in the
dataset.

4.3. Effect of instance maps

We do ablation study on the proposed method to analyze
the effect of instance maps in our final stage. To this we
train our own baseline method wherein the image genera-
tor takes only the extrapolated label map as input. Figure 7
shows the visual comparison between the proposed method
that uses instance maps and the baseline without instance
maps (and hence also the feature maps). We show that the
generated instance maps aid in generating crisp boundaries
between instances of the same class and also in generating
feature maps using the IaCN module. This shows the supe-
riority of our approach over the baseline that does not take
into account the instance maps.

With Instance Map Without Instance Map

Figure 7: Our method w/ instance maps produce better object dis-
tinction of objects in the white dotted marked region in the out-
painted image(cars in the first and second row, pillows in the third
row).

5. Discussion and Conclusion
We propose a new solution for image extrapolation that

is amenable for adding novel objects as well extending the
existing objects and textures. Our solution distinguishes it-
self from all previous works in the image extrapolation by
extrapolating the image in semantic label space. We show in
the paper that this helps us achieve our objective of adding
new objects. We also propose the generation of panoptic
label maps from just segmentation maps, which enables
us to create multiple instances of the same classes and as
well allow us to have control over the instances thus cre-
ated. We show in our supplementary video how our method
can be recursively applied to generate image extrapolations
of arbitrary dimensions. We hope our work encourages re-
searchers to develop solutions for image editing in semantic
label space.
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1. Network Architectures

The stage-1 uses PSPnet [11] to obtain the semantic la-
bel maps from the input images. The generators used in
stage-2 (semantic extrapolation) and stage-4 (image genera-
tor) are inspired from SPADE [6] generator and consist of 9
spade residual blocks. The multiscale Discriminators used
in stage-2 and stage-4 are similar to that of pix2pixHD’s
[9]. The encoder of stage-4 (that forms VAE [4] with the
generator) is inspired from the encoder used in SPADE
[6]. The co-occurrence patch discriminator of stage-4 is
inspired from the one used in swapping autoEncoders [7].
Our stage-3 which is used to convert the semantic label map
into class-agnostic center predictors and center off-sets is a
pure-generator network. For this stage, again our network
architecture is similar to stage-1 and stage-4.
Instance-aware Context Normalization (IaCN)
This module takes in input the cropped RGB image and the
instance map. The instance map is used to get the partial
instances. Partial instances refer to the instances which are
part of the input image and need to be completed in the
final out-painted image. The mean colors for all these in-
stances are calculated using the input cropped image and
then, the instance-aware context normalization feature map
or the output of the IaCN module is obtained by putting
these mean colors in the extrapolated part of the instances
in the outside region. Figure 1 shows some of the input-
output pairs for IaCN module.

2. Panoptic Map generation (stage-3)

The stage-2 of our pipeline extrapolates the semantic la-
bel maps. However, in order to differentiate between mul-
tiple instances of the same class, we need to generate the
panoptic label map from the thus extrapolated semantic la-
bel maps. In a typical panoptic label segmentation set-up,
we have access to the full image. Instead, in our case,
what we have access to the full semantic label maps ob-
tained as outputs from stage-2. To obtain the panoptic label
maps, we take inspiration from [1] that converts the image
into two parallel branches 1. semantic label maps and 2.
pixel-wise instance center maps and x and y off-set maps

from the instance centers. The center maps and the off-set
maps thus predicted are used in conjunction with the se-
mantic label maps to obtain the final panoptic label map.
For the panoptic segmentation branch, Cheng et al. [1] ob-
tain class-agnostic instance centers and off-sets from the in-
stance center for every location. Class-agnostic centers re-
fer to center locations for the different instances that belong
to the ‘things’ categories. In addition, for every pixel that
belongs to the ‘things’ categories, we define the x-offsets
and y-offsets as δx and δy, respectively, of that pixel lo-
cation from the center of the instance the pixel belongs to.
Here, instead of having the above mentioned two parallel
branches, we train a network to obtain the center maps and
the x and y offset maps from the semantically extrapolated
label maps that are the outputs of stage-2. The ground-truth
center maps are represented by Gaussian blobs of standard
deviation of 8 pixels, centered at the instance centers. We
use a simple L2 loss to compute the instance center loss
and L1 loss to compute the offset losses. The final loss for
stage-3 is the weighted sum of the center loss and the offset
losses.

During the test time, we adapt the procedure mentioned
by [1] to group the pixels based on the predicted centers and
off-sets to form instance masks. The instance masks and
the semantic label map (the input to stage-3) are combined
by majority voting to obtain the panoptic label map. For
more details, the readers are encouraged to refer to [1]. The
thus obtaine panoptic label map is used in stage-4 for our
instance-aware context normalization as well as to obtain
the instance boundary maps.

3. Detailed Training and Testing algorithms
The detailed training algorithms for stage-2 and stage-4

are given in Algorithm 1 and 2
In Algorithm 1, we use the Ground Truth segmentation

map Y ′, Ground Truth Instance Map X and Cropped Seg-
mentation L as the inputs. We obtain a segmentation map,
L1, of desired resolution by zero padding it at the periph-
ery. An instance Boundary map, B1 is created from X. Y is
generated using the SPADE[6] generator which has an extra
output channel (apart from the input classes) for the bound-
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Figure 1: Input-Ouput for IaCN: (a) Input cropped image (b) Instance map for ground truth (c) Feature map obtained by IaCN. IaCN
computes the mean colors for all the partial instances from the cropped image and pastes them at the location of those respective instances.
For all the other instances, it outputs black.

ary map. We use an additional cross entropy loss between
this extra channel of Y andB1. The Multiscale Discrimina-
tor, Dmultiscale distinguishes between the generated segmen-
tation map (Y ) and the ground truth segmentation map (Y ′).
The model tries to minimize the train objective function for
semantic label map extrapolation (Equation 1 in the main
paper). Finally, the parameters of G, Dmultiscale are updated
accordingly.

In Algorithm 2, we obtain X ′ by concatenating Ground
Truth segmentation map (L), input cropped image (X),
boundary map obtained from ground truth instance map and
the feature map obtained using Instance-aware Context Nor-
malization (IaCN) module. The out-painted image (Y ) is
generated using generator G, which takes in X ′ and the
encoded input image (E(X)). The Multiscale Discrimi-
nator Dmultiscale tries to distinguish between the generated
image (Y ) and the ground truth image (Z ′). The Patch Dis-
criminator (Dpatch) tries to distinguish between fake patch
(crop(Y )) and real patch (crop(Z ′)) obtained from the fake
image and real images respectively. For each pair of fake
patch and real patch, the patch discriminator takes 4 ref-
erence patches (crops(Z ′)) from the real image. We take
a total of 4 fake patch, real patch and reference patches
combination for one image. All the patches are of size

Algorithm 1: Training algorithm for stage-2
Input:
Ground Truth Seg Map: Y ′ ∈ {0, 1}2h×2w×c,
Ground Truth Instance Map: X ∈ 2h× 2w × 1,
Cropped Segmentation Map: L ∈ {0, 1}h×w×c

1 Generate L1 ∈ {0, 1}2h×2w×c by zero-padding L at
the periphery

2 Generate Boundary Map
B1 ←− GetBoundary(Y )

3 for epoch in maxEpochs do
4 Y ←− G(L1)
5 Dmultiscale distinguishes between Y and Y ′

6 Minimize the objective function (Eqn. 1 in the
main paper)

7 Update the parameters of G,Dmultiscale

8 return G

64 × 64. We, then, minimize the final objective function
(Equation 3 in the main paper) to update the parameters of
G, E, Dmultiscale and Dpatch.

The detailed testing algorithm is given in Algorithm 3

2
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Method FID
Ours w/o Dpatch 48.72
Ours w/o IaCN 47.76
Ours 47.67

Table 1: FID scores (lower is better) for our method with and
without IaCN and Dpatch on Cityscapes dataset.

Algorithm 2: Training algorithm for stage-4
Input:
Cropped Image: X ∈ Rh×w×3,
Ground Truth: Z ′ ∈ R2h×2w×3,
Ground Truth Seg Map: L ∈ {0, 1}2h×2w×c,
Ground Truth Instance Map: I ∈ R2h×2w×1

1 X ′ ←− L⊕X ⊕GetBoundary(I)⊕ IaCN(X, I)
2 for epoch in maxEpochs do
3 Y ←− G(X ′, E(X))
4 Dmultiscale distinguishes between Y and Z ′

5 Dpatch distinguishes between crop(Y ) and
crop(Z ′), taking crops(Z ′) as the reference
patches

6 Minimize the objective function (Eqn. 3 in the
main paper)

7 Update the parameters of G,E,Dmultiscale, Dpatch

8 return E, G

Algorithm 3: Testing algorithm

Input: Cropped Image: X ∈ Rh×w×3

Output: Outpainted Image: Y ∈ R2h×2w×3

1 L←− PSPNet(X) // Stage-1

2

3 L1 ←− stage2(L) // Stage-2

4

5 I ←− PanopticLabelMap(L1) // Stage-3

6

7 X ′ ←− L⊕X ⊕GetBoundary(I)⊕ IaCN(X, I)
8 Y ←− stage4(X ′)

4. Additional Implementation details

We trained and tested our model on Cityscapes [2] and
ADE-20K bedroom subset [12] datasets. For stage-2 we
used a batch size of 8, while for stage-4 we used a batch
size of 16. All the experiments were run on 4 16GB V100
GPUs. Both the datasets were trained for 200 epochs. We
used the TTUR [3] update rule.

Figure 2: Fraction of images present in periphery is the ratio of
number of instances outside the input crop with that inside the in-
put crop. For k = 0.25, the peak occurs around 50%, for k = 0.5,
the peak occurs around 25% and for k = 0.75, the peak occurs
around 10%.

5. Different crop analysis

We analyzed different crop sizes. For given images
X0(∈ Rh×w×c) in the dataset, we tried 3 different crop ra-
tios k = {0.25, 0.5, 0.75}. We, thus, obtain the cropped
images X(∈ Rk.h×k.w×c). We calculated the number of
instances outside the crop region with respect to those in-
side. If the number of instances outside is high compared
to those inside, the training information decreases, while if
the number of instances outside is low compared to the in-
put crop, the number of new instances to be learned by the
model decreases. After analyzing the results (Figure 2), we
chose an optimal value of k = 0.5.
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Method (Bed, Lamp) (Wall, Window) (Bed, Curtain) (Floor, Table) (Wall, Painting)
Outpainting-SRN 0.66 0.82 0.94 0.77 0.64
Boundless 0.79 0.82 0.87 0.75 0.76
Pconv 0.75 0.85 0.83 0.77 0.83
Ours 0.82 0.90 0.84 0.87 0.84

Table 2: SOCC scores (greater is better) on ADE20K bedroom subset dataset. The baselines include results from Partial Convolutions
(PConv) [5], Boundless [8] and OutPainting-SRN [10]

6. Infinite Zoom
Our model has ideally an infinite zooming potential. We

can zoom out an image infinitely by recursively passing the
image through our model, without the model breaking upto
a good extent. We experimented this by training on mod-
ified Cityscapes dataset, made by removing the Mercedes
at the bottom and then upsampling the images to the origi-
nal dimension. We did this since if we ”infinitely” zoomed
the original images, then there would have been Mercedes
recursively at the bottom in the zoomed out image. The
images were recursively passed 4 times to our model. In
every pass, it is zoomed out by 4 times, so we zoomed the
given image 64 times. The Supplementary video contains
the zooming-out video.

7. Human Evaluation
We further compare our method with the baselines

via human subjective study. The baselines included re-
sults from Partial Convolutions (PConv), Boundless and
OutPainting-SRN. About hundred random people were
given a set of 20 randomly selected images from the
Cityscapes and the ADE20K-bedroom dataset. They were
given unlimited time to make the selection. They were
asked to rank the images each of the image based on two
parameters, viz. Realistic appearance and New object gen-
eration.
Graph 3 shows the evaluation results. We found that our
results were strongly favoured by all the people on both the
datasets.

8. Additional Quantitative study
Table 2 shows the Similarity in Object Co-occurrence

(SOCC) scores for ours and baselines on ADE20K bedroom
subset dataset.

9. Additional Ablation study
9.1. Use of extra boundary map in stage-2

We justify using extra boundary map for the training of
stage-2. This extra boundary map channel helps in creat-
ing instances with better shapes since the model now knows

Figure 3: User preference study on the rank of various baselines.
Lower rank means better.

about the boundaries of each instance. Figure 4 shows the
visual comparison between the semantic label maps ob-
tained from stage-2 with and without using boundary map
channels.

9.2. Importance of IaCN and Dpatch

We studied the importance of Instance-aware Context
Normalization module and Co-occurrence Patch discrimi-
nator in our pipeline on Cityscapes dataset. Table 1 shows
the FID scores for the three methods. Though there isn’t
much FID difference between with and without IaCN but
there is a significant visual difference between the two (Fig-
ure 5).

9.3. Failure of single stage approaches

All the baseline methods are based on direct image-to-
image translation in a single stage. To analyse the strength
of our approach and the failure of single stage approaches,
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Figure 4: Visual comparison between with and without extra boundary map concatenation in the ground truth for the stage-two training: (a)
Input segmentation map (b) The resulting segmentation map without using the extra boundary map channel (c) The resulting segmentation
map with the boundary map channel.
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Figure 5: Visual comparison between with and without IaCN: (a) Input cropped image (b) Output image without IaCN (c) Output image
with IaCN. The mean colors of the partial instances are transferred to the final extrapolated instances in the case of IaCN.

we try direct image extrapolation by image-to-image trans-
lation. For this, during the training time, we used the RGB
cropped input image and extrapolated it to the final RGB
image using the stage-4 (Instance-aware image synthesis
stage), without IaCN and Dpatch, directly (Figure 6). We
observed that the images are generated with mere texture
extension at the periphery with minimal to no new object
generation.

10. More results and comparisons
Figures 7, 8, 9 shows some more comparison of our

method with the baselines.
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Figure 6: Comparison between ours and single stage approach: (a) Input cropped image (b) Extrapolated image using our single stage
approach (c) Extrapolated image using our current approach.
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Figure 7: Visual comparison between our model and the baselines on Cityscapes dataset. The baselines include results from Partial
Convolutions (PConv) [5], Boundless [8] and OutPainting-SRN [10]
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Figure 8: Visual comparison between our model and the baselines on Cityscapes dataset. The baselines include results from Partial
Convolutions (PConv) [5], Boundless [8] and OutPainting-SRN [10]
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Figure 9: Visual comparison between our model and the baselines on ADE20K-bedroom dataset. The baselines include results from
Partial Convolutions (PConv) [5], Boundless [8] and OutPainting-SRN [10]
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