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Abstract

We present a series of programming assign-
ments, adaptable to a range of experience lev-
els from advanced undergraduate to PhD, to
teach students design and implementation of
modern NLP systems. These assignments
build from the ground up and emphasize full-
stack understanding of machine learning mod-
els: initially, students implement inference and
gradient computation by hand, then use Py-
Torch to build nearly state-of-the-art neural
networks using current best practices. Topics
are chosen to cover a wide range of model-
ing and inference techniques that one might
encounter, ranging from linear models suit-
able for industry applications to state-of-the-
art deep learning models used in NLP research.
The assignments are customizable, with con-
strained options to guide less experienced stu-
dents or open-ended options giving advanced
students freedom to explore. All of them can
be deployed in a fully autogradable fashion,
and have collectively been tested on over 300
students across several semesters.1

1 Introduction

This paper presents a series of assignments de-
signed to give a survey of modern NLP through the
lens of system-building. These assignments pro-
vide hands-on experience with concepts and imple-
mentation practices that we consider critical for stu-
dents to master, ranging from linear feature-based
models to cutting-edge deep learning approaches.
The assignments are as follows:

A1. Sentiment analysis with linear models (Pang
et al., 2002) on the Stanford Sentiment Tree-
bank (Socher et al., 2013).

∗Corresponding author. Subsequent authors listed alpha-
betically.

1See https://cs.utexas.edu/~gdurrett for
past offerings and static versions of these assignments; con-
tact Greg Durrett for access to the repository with instructor
solutions.

A2. Sentiment analysis with feedforward “deep
averaging” networks (Iyyer et al., 2015) using
GloVe embeddings (Pennington et al., 2014).

A3. Hidden Markov Models and linear-chain con-
ditional random fields (CRFs) for named en-
tity recognition (NER) (Tjong Kim Sang and
De Meulder, 2003), using features similar to
those from Zhang and Johnson (2003).

A4. Character-level RNN language modeling
(Mikolov et al., 2010).

A5. Semantic parsing with seq2seq models (Jia
and Liang, 2016) on the GeoQuery dataset
(Zelle and Mooney, 1996).

A6. Reading comprehension on SQuAD (Ra-
jpurkar et al., 2016) using a simplified ver-
sion of the DrQA model (Chen et al., 2017),
similar to BiDAF (Seo et al., 2016).

A1-A5 come with autograders. These train each
student’s model from scratch and evaluate perfor-
mance on the development set of each task, verify-
ing whether their code behaves as intended. The
autograders are bundled to be deployable on Grade-
scope using their Docker framework.2 These cod-
ing assignments can also be supplemented with con-
ceptual questions for hybrid assignments, though
we do not distribute those as part of this release.

Other Courses and Materials Several other
widely-publicized courses like Stanford CS224N
and CMU CS 11-747 are much more “neural-first”
views of NLP: their assignments delve more heav-
ily into word embeddings and low-level neural
implementation like backpropagation. By con-
trast, this course is designed to be a survey that

2For the CRF and seq2seq modeling assignments, a custom
framework must be used, as Gradescope autograders cannot
handle these. We grade these in a batch fashion on a single
instructional machine, which poses some logistical challenges.

https://cs.utexas.edu/~gdurrett
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Assignment Main Concepts Output Components
Linear FFNN Enc Dec Attn

A1: Sentiment (Linear) Classification, SGD, bag-of-words Binary �
A2: Sentiment (FFNNs) PyTorch, word embeddings Binary � �
A3: HMMs and CRFs for NER Structured prediction, dyn. prog. Tags �
A4: Language Modeling Neural sequence modeling Token seq � � � �
A5: Seq2seq Semantic Parsing Encoder-decoder, attention Token seq � � � � �
A6: Reading Comprehension QA, domain adaptation Span � � � �

Table 1: Breakdown of assignments. The concepts and model components in each are designed to build on one
another. A gray square indicates partial engagement with a concept, typically when students are already given the
needed component or it isn’t a focus of the assignment.

also covers topics like linear classification, genera-
tive modeling (HMMs), and structured inference.
Other hands-on courses discussed in prior Teach-
ing NLP papers (Klein, 2005; Madnani and Dorr,
2008; Baldridge and Erk, 2008) make some simi-
lar choices about how to blend linguistics and CS
concepts, but our desire to integrate deep learning
as a primary (but not the sole) focus area guides us
towards a different set of assignment topics.

2 Design Principles

This set of assignments was designed after we
asked ourselves, what should a student taking NLP
know how to build? NLP draws on principles from
machine learning, statistics, linguistics, algorithms,
and more, and we set out to expose students to a
range of ideas from these disciplines through the
lens of implementation. This choice follows the
“text processing first” (Bird, 2008) or “core tools”
(Klein, 2005) views of the field, with the idea that
students can study undertake additional study of
particular topic areas and quickly get up to speed
on modeling approaches given the building blocks
presented here.

2.1 Covering Model Types

There are far too many NLP tasks and models to
cover in a single course. Rather than focus on ex-
posing students to the most important applications,
we instead designed these assignments to feature
a range of models along the following typological
dimensions.

Output space The prediction spaces of models
considered here include binary/multiclass (A1, A2),
structured (sequence in A3, span in A6), and natu-
ral language (sequence of words in A4, executable
query in A5). While structured models have fallen
out of favor with the advent of neural networks,
we view tagging and parsing as fundamental ped-

agogical tools for getting students to think about
linguistic structure and ambiguity, and these are
emphasized in our courses.

Modeling framework We cover generative mod-
els with categorical distributions (A3), linear
feature-based models including logistic regression
(A1) and CRFs (A3), and neural networks (A2, A4,
A5, A6). These particularly highlight differences
in training, optimization, and inference required
for these different techniques.

Neural architectures We cover feedforward net-
works (A2), recurrent neural encoders (A4, A5,
A6), seq2seq models (A5), and attention (A5, A6).
From these, Transformers (Vaswani et al., 2017)
naturally emerge even though they are not explic-
itly implemented in an assignment.

2.2 Other Desiderata

A major consideration in designing these assign-
ments was to enable understanding without
large-scale computational resources. Maintain-
ing simplicity and tractability is the major reason
we do not feature more exploration of pre-trained
models (Devlin et al., 2019). These factors are also
why we choose character-level language model-
ing (rather than word-level) and seq2seq semantic
parsing (rather than translation): training large au-
toregressive models to perform well when output
vocabularies are in the tens of thousands requires
significant engineering expertise. While we teach
students skills like debugging and testing models
on simplified settings, we still found it less painful
to build our projects around these more tractable
tasks where students can iterate quickly.

Another core goal was to allow students to build
systems from the ground-up using simple, un-
derstandable code. We build on PyTorch prim-
itives (Paszke et al., 2019), but otherwise avoid
using frameworks like Keras, Huggingface, or Al-
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lenNLP. The code is also somewhat “underengi-
neered:” we avoid an overly heavy reliance on
Pythonic constructs like list comprehensions or
generators as not all students come in with a high
level of familiarity with Python.

What’s missing Parsing is notably absent from
these assignments; we judged that both chart
parsers and transition-based parsers involved too
many engineering details specific to these settings.
All of our classes do cover parsing and in some
cases have other hands-on components that engage
with parsing, but students do not actually build a
parser. Instead, sequence models are taken as an
example of structured inference, and other classifi-
cation tasks are used instead of transition systems.

From a system-building perspective, the biggest
omissions are pre-training and Transformers.
These can be explored in the context of final
projects, as we describe in the next section.

Finally, our courses integrate additional discus-
sion around ethics, with specific discussions sur-
rounding bias in word embeddings (Bolukbasi
et al., 2016; Gonen and Goldberg, 2019) and eth-
ical considerations of pre-trained models (Bender
et al., 2021), as well as an open-ended discussion
surrounding social impact and ethical considera-
tions of NLP, deep learning, and machine learn-
ing. These are not formally assessed at present, but
we are considering this for future iterations of the
course given these topics’ importance.

3 Deployment

These assignments have been used in four differ-
ent versions of an NLP survey course: an upper-
level undergraduate course, a masters level course
(delivered online), and two PhD-level courses. In
the online MS course, these constitute the only
assessment. For courses delivered in a tradi-
tional classroom format, we recommend choos-
ing a subset of the assignments and supplement-
ing with additional written assignments testing
conceptual understanding.

Our undergrad courses use A1, A2, A4, and a
final project based on A6. We use additional writ-
ten assignments covering word embedding tech-
niques, syntactic parsing, machine translation, and
pre-trained models. Our PhD-level courses use
A1, A2, A3, A5, and an independent final project.
The assignments also support further “extension”
options: for example, in A3, beam search is pre-
sented as optional and students can also explore

Assignment Eisenstein Jurafsky + Martin

A1 2, 4 4, 5
A2 3 7
A3 7 8
A4 6 7, 9
A5 12, 18 11, 15
A6 17.5 23.2

Table 2: Book chapters associated with each assign-
ment; gray indicates an imperfect match. Our courses
use a combination of Eisenstein, ad hoc lecture notes
on certain topics, and academic papers.

parallel decoding for the CRF or features for NER
to work better on German. For the seq2seq model,
they could experiment with Transformers or imple-
ment constrained decoding to always produce valid
logical forms.

We believe that A1 and A2 could be adapted
to use in a wide range of courses, but A3-A6 are
most appropriate for advanced undergraduates or
graduate students.

Syllabus Table 2 pairs these assignments with
readings in texts by Jurafsky and Martin (2021)
and Eisenstein (2019). See Greg Durrett’s course
pages for complete sets of readings.

Logistics We typically provide students around
2 weeks per assignment. Their submission either
consists of just the code or a code with a brief
report, depending on the course format. Students
collaborate on assignments through a discussion
board on Piazza as well as in person. We have
relatively low incidence of students copying code,
assessed using Moss over several semesters.

Pain Points Especially on A3, A4, and A5, we
come across students who find debugging to be a
major challenge. In the assignments, we suggest
strategies to verify parts of inference code indepen-
dently of training, as well as simplified tasks to test
models on, but some students find it challenging or
are unwilling to pursue these avenues. On a similar
note, students often do not have a prior on what
the system should do. It might not raise a red flag
that their code takes an hour per epoch, or gets 3%
accuracy on the development set, and they end up
getting stuck as a result. Understanding what these
failures mean is something we emphasize. Finally,
students sometimes have (real or perceived) lack of
background on either coding or the mathematical
fundamentals of the course; however, many such
students end up doing well in these courses as their
first ML/NLP courses.
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