

Casting a wider net: New applications for wireless sensing

Steve Hodges

Sensors and Devices Group Microsoft Research Cambridge, UK

Casting a wider net: New applications for wireless sensing

Presentation overview

- Background of Sensors and Devices group
- What *are* wireless sensor networks?
- Prototyping sensor network applications

A X 30 W0 100 WINDER X 10 40

Sensors and Devices at MSR Cambridge

- Applied research into embedded hardware

 Sensors, actuators, displays & wireless comms
 Ubiquitous, mobile & peripheral devices
 - Linucual porchactive and context
- Unusual perspective and context
 - Technological expertise
 - Sensitivities to and insights into usage
- Develop technology and applications together
 - Consider the complete system
 - Particularly relevant to wireless sensor networking

The importance of hardware

"People who are really serious about software should make their own hardware."

– Alan Kay

The importance of hardware

"People who are really serious about software should make their own hardware." Steve Hodges intimately understand — Alan Kay

The importance of hardware

"People who are really serious about software should make their own hardware." Steve Hodges intimately understand — Alan Kay

- 'Hardware' is becoming increasingly diverse

 Communications, power consumption, form factor
 - Input and output modalities
- Especially true for wireless sensor networking

Casting a wider net: New applications for wireless sensing

Presentation overview

- Background of Sensors and Devices group
- What *are* wireless sensor networks?
- Prototyping sensor network applications

• Example applications

• Example applications

Understanding wildlife

Great Duck Island ZebraNet

Disaster detection/recovery

Flood detection Avalanche Forest fire Evacuation

Smart environment

Building management Cold chain

Health

Physiological conditions Patient and doctor location

Learning about the environment Pollution Vineyards Glaciers

• Properties that characterise WSN technology

• Properties that characterise WSN technology

Radio communications

Low power

Redundant

Ad-hoc topology

Peer to peer

Multi-hop

Autonomous

Spatially distributed

Small

Embedded

Example #1

• Properties that characterise WSN technology

Radio communications

Low power

Redundant

Ad-hoc topology

Peer to peer

Multi-hop

Autonomous

Spatially distributed

Small

Embedded

• Properties that characterise WSN technology

• Example applications

Understanding wildlife

Great Duck Island ZebraNet

Disaster detection/recovery

Flood detection Avalanche Forest fire Evacuation

Smart environment

Building management Cold chain

Health

Physiological conditions Patient and doctor location

Learning about the environment Pollution Vineyards Glaciers

• Example applications

Toys and games

Understanding wildlife Great Duck Island ZebraNet

Disaster detection/recoveryFlood detectionAvalancheForest fireEvacuation

Smart environment Building management Cold chain

Health Physiological conditions Patient and doctor location

Learning about the environment Pollution Vineyards Glaciers

Example #2

Whereabouts clock

Whereabouts clock – trial outcome

- Coordination
 - 'Put the kettle on' moments
 - Messaging
- Connectedness
 - Those inside the home and those outside
 - Across different homes
- Reassurance
 - Telling family members what they already know
 - Chimes communicating routine
- Identity
 - Labelling activities

- Social touch
 - Explicit messaging

• Properties that characterise WSN technology

• Example applications

Toys and games

Understanding wildlife

Great Duck Island ZebraNet

Disaster detection/recovery

Flood detection Avalanche Forest fire Evacuation

Smart environment

Building management Cold chain

Health

Physiological conditions Patient and doctor location

Learning about the environment Pollution Vineyards Glaciers

• Example applications

Toys and games

Understanding wildlife Great Duck Island ZebraNet

Disaster detection/recoveryFlood detectionAvalancheForest fireEvacuation

Smart environment Building management Cold chain

Health Physiological conditions Patient and doctor location

Learning about the environment Pollution Vineyards Glaciers

Social connectivity

Example #3

Casting a wider net: New applications for wireless sensing

Presentation overview

- Background of Sensors and Devices group
- What *are* wireless sensor networks?
- Prototyping sensor network applications

Prototyping sensor networking applications

• Exploring applications through deployment is valuable...

... but building prototypes is hard

- Especially true for wireless sensor networks

 Small
 Low-power
 - Multiple instances

WD 100

× 30

Microsoft[®]

Research

- Hardware platforms
 - Motes (x n), scatterweb, Smart-its, Particles,
 BTnodes, Sun SPOT, Fleck, ...
- Software
 - TinyOS, AwareCon, embOS, Salvo, Contiki, Tiny PLUS, uC/OS-II...
- Each provides different pros and cons

 Largely target mobile ad-hoc (MANET) WSNs

Prototyping sensor networking applications

Radio communications

Low power

Embedded

Radio communications

Low power

Embedded

Microsoft[®]

a wider range of Prototyping sensor networking ess. applications

100

× 90

LD)

Microsoft[®]

Research

- A new wireless actuator and sensor platform
 - Maintain flexibility, size, power consumption, robustness
 - Proof-of-concept and beyond, multiple instances
- Modular approach to hardware
 - Modules small, but different sizes
 - Flexibility of physical arrangement tile, stack etc.
 - Electrical and physical interconnect

a wider range of Prototyping, sensor networking, ess. applications

100

W

× 30

Microsoft[®]

Research

- Modular approach (contd)
 - SPI-based bus (10MHz), few wires
 - In line with modular nature of peripherals
- Large range of modules possible
 - Base, processor module ARM7, USB, power mgmt
 - Wireless BT, GSM/GPRS, Zigbee, other...
 - Sensors tilt, touch, light, temp, e-compass, etc
 - I/O displays, LEDs, buttons, touch, vibrate, sounder

- Plug together hardware, then develop firmware
- New possibilities for development
 - Initial coding on PC only
 - Communicate with real hardware via USB proxy
 - Transition to embedded tools late in development
 - Simplified monitoring of I/O communications

Summary

- Reflect on what we mean by 'wireless sensor networking'
- Think about applications and technology hand-in-hand
- Make it easier to prototype ideas

steve.hodges@microsoft.com

Shameless plug – opportunities at MSR Cambridge

- 3 month internships
 - <u>http://research.microsoft.com/aboutmsr/jobs/inte</u> <u>rnships/about_uk.aspx</u>
- 2 year post-doc positions
 - <u>http://research.microsoft.com/aboutmsr/jobs/fullt</u>
 <u>ime/about_postdocs_UK.aspx</u>

