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ABSTRACT 14 

While the effects of wind farms on bats are widely studied, effects of small wind turbines 15 

(SWTs, here <25m hub height) remain understudied. SWTs are installed in a wider range of 16 

habitats compared to wind farms and their effect on wildlife can therefore be different. While 17 

single SWTs can adversely affect bat activity in their immediate vicinity, they are often installed 18 

in clusters, and to date no data are available on whether installation of more than one turbine 19 

increases the likelihood of adverse effects on bats.  20 

Here, we test whether (1) SWT installations affect the activity of two species of bat (the common 21 

pipistrelle Pipistrellus pipistrellus and soprano pipistrelle P. pygmaeus) on a landscape scale 22 

(here defined as up to 500m from SWTs) and (2) such an effect is stronger when multiple (2-4) 23 

SWTs are installed. We show that, after accounting for potentially confounding effects (e.g. 24 

variation in habitat and weather), (1) mean P. pipistrellus activity is lower at 0-100m compared 25 

to 200-500m from SWTs, and (2) the effect on P. pygmaeus activity tends to be similar and 26 

stronger in multiple SWT sites, although evidence for the latter is limited. 27 

We conclude that in some cases, adverse effects of SWTs on bat activity may be measurable 28 

over longer spatial scales (within 100m) than previously thought. However, combined with 29 

earlier findings, it is likely that the bulk of such effects operate within relative close proximity of 30 

SWTs (<25m). Moreover, although these effects may be species-specific, with e.g. P. pygmaeus 31 

potentially more strongly affected by multiple SWT sites, this requires further data. These 32 

findings are highly relevant to decision-making aimed at minimizing any adverse effects of wind 33 

turbines, specifically single- vs. multiple SWT developments, on wildlife. 34 

 35 
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KEY WORDS: cumulative effects, microturbines, domestic turbines, renewables, renewable 36 

energy, conservation, planning 37 

INTRODUCTION 38 

Understanding and predicting how wildlife is affected by disturbance or habitat loss is becoming 39 

increasingly important as anthropogenic pressures on the natural world continue to grow 40 

(Tuomainen & Candolin 2011). This is particularly pertinent where incremental changes or 41 

disturbances could combine to produce disproportionally greater (adverse) effects. For example, 42 

whilst the rapid growth of the wind energy sector worldwide provides a vital contribution to 43 

sustainable energy production, a growing number of studies show that wind farms can have 44 

adverse effects on wildlife (Kuvlesky et al. 2007, Zwart et al. 2015), both directly through 45 

collision mortality (e.g. Rydell et al. 2010) and indirectly through disturbance or displacement 46 

effects (e.g. Pearce-Higgins et al. 2009). Moreover, wind farms with larger numbers of turbines 47 

installed can have greater effects on wildlife compared to smaller sites, even if e.g. collision risk 48 

per turbine is relatively low (Langston & Pullan 2003, Zwart et al. 2015).  49 

By contrast, similar effects of small wind turbines (SWTs) on wildlife remain relatively 50 

unknown. These turbines are not only much smaller in size (in the UK, typical units are between 51 

6 and 25m hub height) than those in wind farms, they are also commonly installed in a much 52 

wider range of habitats. Thus, their impacts on wildlife are likely to be different to that of large 53 

turbines, but up until recently this had not been quantified systematically. In addition to direct 54 

mortality (Minderman et al. 2014), our previous work found evidence for adverse effects of 55 

SWTs on bat activity (e.g. avoidance behaviour, Minderman et al. 2012). Whilst this is likely to 56 

lower the risk of collision, such avoidance behaviour could have important population-level 57 

consequences in itself, as it can amount to effective habitat loss (Minderman et al. 2012). 58 
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However, these previous studies focused on a relatively limited spatial scale (e.g. within 25m of 59 

installed SWTs) and on single SWTs only. Crucially, it is therefore unclear whether any such 60 

adverse effects of SWTs on wildlife could be greater at sites with more than one turbine 61 

installed, i.e. whether the installation of multiple SWTs causes a disproportionally greater effect.  62 

This lack of understanding of the potential disproportionate effects of sites with multiple SWTs 63 

is particularly important for two reasons. First, the number of SWTs installed is growing rapidly 64 

with over 900,000 units installed worldwide by 2014 (compared to 656,000 in 2010) and this 65 

growth is set to continue (Pitteloud and Gsänger 2016). Secondly, SWTs are increasingly being 66 

installed in groups, for example between two and four turbines in close proximity. Indeed, some 67 

companies specifically promote the installation of multiple SWTs to maximize yield and 68 

eligibility for government grants or payback schemes. As a result, where SWT installation 69 

requires planning permission (Park, Turner & Minderman 2013), decision makers are 70 

increasingly asked to decide whether multiple-turbine installations would have greater effects on 71 

wildlife, or if limiting the number of SWTs to be installed would be an effective mitigation 72 

option. Currently, the evidence base for such decisions for SWTs specifically is entirely lacking. 73 

Here, we aim to (1) quantify the effect of SWTs on bat activity (and thus concomitant habitat 74 

loss) on a wider landscape scale, up to 500m from installed turbines (as opposed to 25m in 75 

Minderman et al. 2014), and (2) to test whether this effect is different between single- and 76 

multiple (2-4) turbine installations.  Using data collected at 34 SWT sites throughout the UK we 77 

test the following predictions: (1) bat activity is systematically lower in closer proximity (e.g. 0-78 

100m from SWTs compared to 100-200m, 200-300m, etc.) of operating SWTs, controlling for 79 

the effects of habitat and environmental conditions; and (2) the effect of SWT proximity on bat 80 

activity is stronger in sites with multiple (2-4) SWTs installed compared to single SWT sites. 81 
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 82 

METHODS 83 

Sites 84 

Data were collected at 34 SWT sites in central and eastern Scotland. Sites were selected from an 85 

existing database of owners (Minderman et al. 2012; Park, Turner & Minderman 2013) based on 86 

how representative they were of common UK SWT installation settings in terms of habitat, 87 

turbine models and size. All turbines studied here were free-standing and between 6 and 25m 88 

(mean 16m, 75% of sites had turbines between 15 and 18m; including hub height in the analyses 89 

presented here does not affect results or conclusions – see Supplementary Material) in hub 90 

height, and all were in rural settings but specific habitat in the surrounding area varied (see 91 

Habitat data and variable selection). The number of SWTs installed in each site varied between 92 

one and four (median 1.6) and the distance between individual turbines in a site was between 12 93 

and 90m (with only one site >62m and a mean of 46.4m). SWTs installed in individual sites were 94 

the same size and specification with the exception of one site. More than two SWTs were 95 

installed in only five sites in our sample. We therefore restricted the analyses presented here to a 96 

comparison of single and multiple turbine sites; hence we here refer to sites with 2-4 SWTs 97 

installed as “multiple turbine” sites throughout the remainder of this manuscript. Although this 98 

limits possible inference from our findings somewhat, we are confident that this reflects the 99 

current distribution of numbers of turbines per site in the UK; i.e. the majority of sites have one 100 

or two SWTs installed (pers. obs.).  101 

Bat data and transects 102 
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Bat activity data were collected between 28 May and 1 September 2013 and 7 July and 4 103 

September 2014. This period reflects the seasonal activity of the species studied here (Swift 104 

2009). The time of data collection varied but started 30 minutes after sunset at the earliest and 105 

finished at least 60 minutes before sunrise in all cases. 106 

Bat activity was measured along transects by 1-2 observers walking the length of each transect at 107 

a slow (approximately 2.5 km h
-1
) and constant pace, using EchoMeter EM3+ bat detectors 108 

(WildLife Acoustics, Mass., USA). A target of four transects was planned for all sites, running 109 

out from the turbine (or the central point between turbines in the case of multiple turbine sites) in 110 

four directions. However, because of physical constraints (e.g. walls, impassable fences or 111 

ditches, houses or buildings) the actual number of transects per site as well as their length varied 112 

(3-4 transects, mean 3.7 per site, length: 300-500m). All transects were placed using a 113 

combination of GIS-based planning and on-site assessment of landscape variation, so that (1) the 114 

combination of all transects within each site covered all major habitats present, and (2) the 115 

overall distance separating each transect was maximized. Transects were divided into 100m 116 

sections running out from the turbine centre point, giving up to five distance bands running away 117 

from the turbine. See Figure A1 for an example transect and transect section layout. 118 

One measure of ground level wind speed was taken at the end of each section (i.e. in each 119 

distance band) on each survey visit using handheld anemometers. Minimum daily temperature 120 

measures for each survey visit were obtained from the UK MIDAS weather station data at 121 

Grangemouth (N 56° 1' 5.15, W 3° 43' 5.88, between 5.5 and 92.6 km, average 52.4km, from the 122 

sites) (UK Meteorological Office 2006). 123 

Habitat data and variable selection 124 
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To account for expected confounding effects of habitat variation on bat activity we collated 125 

measurements of habitat availability per transect section. To do this, we placed 50m buffers 126 

around digital maps of each transect route, resulting in approximately 100m x 100m transect 127 

sections. The exact area of each section varied because of non-linear transect sections, but this 128 

was accounted for in the analysis, see Statistical analysis and Figure A1. All habitat variables 129 

were quantified in each transect section using 1:1250 UK Ordnance Survey MasterMap 130 

Topography digital maps, using QGIS v. 1.8 (http://www.qgis.org/en/site/). We focused on two 131 

key measures of habitat variability in each transect section. These two variables were selected on 132 

the basis of a preliminary analysis (See Supplementary Material) of the effect of a full set of 10 133 

habitat variables on bat activity. This was done to avoid both overparameterisation of the models, 134 

as well as the inclusion of highly collinear habitat metrics. First, we used edge density (m m
-2
) 135 

as a measure of the density of "edge" habitat (defined as woodland and water edges, hedgerows, 136 

roads and tracks, roadsides, field boundaries and building edges), calculated as the total length of 137 

all such features divided by the area of the transect section. Although the specific effect of these 138 

pooled habitat features on bat activity may vary, all tend to be associated with high levels of bat 139 

activity relative to open and/or homogenous habitat (e.g. through their use as commuting routes) 140 

(Walsh & Harris 1996). Second, we used the proportion of woodland calculated as the sum of 141 

all tree coverage (m
2
) (coniferous, non-coniferous and unclassified trees) divided by the transect 142 

section area.  143 

Data analysis and statistics 144 

Bat activity: probability of a pass per hectare surveyed 145 

Bat activity was initially quantified as the number of bat passes (defined as a sequence of at least 146 

two “search-phase” echolocation calls separated by less than a second) per transect section. 147 
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However, we chose to analyse our data as bat activity presence or absence per transect section, 148 

per survey visit, because the distribution of observed counts was highly skewed (many zeros and 149 

excessive variation) so that count-based statistical models did not provide any reasonable fit. 150 

Thus, throughout the remainder of this paper, bat activity is measured as the probability of at 151 

least one bat pass per unit area. Foraging calls (“buzzes”) were recorded in some cases, but in too 152 

small numbers to be included in the analysis presented here. In addition, because the area 153 

covered by each transect section varied slightly (see Bat data and transects), we here model the 154 

probability of detecting bat activity per hectare surveyed within each section. 155 

Statistical analysis 156 

We used generalized linear mixed effects models (GLMMs) (Gelman & Hill 2007) to analyse 157 

our data. 158 

Model structure 159 

We constructed two models for bat activity; one P. pipistrellus and one for P. pygmaeus activity. 160 

The structure of both models was the same. In each case, activity was modelled as the probability 161 

of a bat pass per unit area on a given survey visit as the response variable with a GLMM with 162 

binomial errors and a complementary log-log link function (clog-log). This link function allowed 163 

us to include transect section area as an offset in the model on the appropriate scale (Agresti 164 

2013). In turn, this offset accounts for slight variation in the size of each transect section (see Bat 165 

data and transects and Figure A1), modelling probability of a bat pass per unit area. To account 166 

for the non-independence of repeated measurements from the same site and transect sections, all 167 

models included transect nested within site as a random effect. To test our two predictions (see 168 

Introduction), we included two focal fixed factors; (1) transect section (distance bands; 0-100m, 169 

100-200m, 200-300m, 300-400m and 400-500m from the SWTs) and (2) turbine number (single 170 
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or multiple SWTs), as well as the interaction between the two. In addition to these focal factors 171 

we included the two selected habitat variables (edge density and proportion of woodland; see 172 

Habitat data and variable selection) as continuous covariates. Moreover, because bat activity is 173 

known to vary with weather conditions (particularly temperature and wind speed), across the 174 

season and through the night, we also included covariates for the minimum temperature over 24 175 

hours (°C), wind speed (m s
-1
), day number (1 January = 1), time to midnight (minutes, with 176 

negative and positive values indicating before and after midnight respectively) and time to 177 

midnight
2
 (to account for potential non-linear effects of the latter). Finally we included year as a 178 

factorial predictor to account for potentially systematic differences in bat activity between the 179 

two years of the study. Thus, accounting for any confounding effects of habitat and 180 

environmental conditions, a transect section effect would indicate a systematic difference in bat 181 

activity as a function of distance from SWTs (Prediction 1), and an interaction between this and 182 

turbine number would indicate that the strength of this effect depends on the number of SWTs 183 

installed (Prediction 2).  184 

To avoid overparameterisation of the models, interactions other than those specified 185 

above (i.e. between confounding effects) were not considered. All inputs were standardised 186 

(centred to 0 and scaled to 1 SD) to improve performance of parameter estimation and to allow 187 

direct interpretation of relative effect sizes. Marginal and conditional R
2
 were presented as 188 

measures of model fit (Nakagawa & Schielzeth 2013). We calculated and presented model 189 

predictions on the response (measured) scale. Summary statistics of unstandardised model inputs 190 

are given in Table A1. 191 

Model predictions and interpretation 192 
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We chose to present full models only, to avoid issues with any form of model simplification 193 

(Cade 2015, Whittingham et al. 2006). We interpreted the model outputs through assessment of 194 

(1) relative effect sizes using standardised inputs, and (2) 95% quantiles of predictions of the 195 

response at each of the levels of interest (specifically the number of turbines and distance band) 196 

at average values for the remaining coviariates. The 95% quantiles of predicted distributions 197 

were made using N = 1000 bootstrap simulations (generating new values of both the “spherical” 198 

random effects and the independent errors in each run) of parameter estimates of each model.  199 

We used R version 3.1.3 (http://cran.r-project.org/) for all statistical analyses including, in 200 

particular package lme4 (Bates et al. 2014), to fit GLMMs, and its bootMer() function to produce 201 

parametric bootstrap samples.. 202 

 203 

RESULTS 204 

Over the two years of the study, we collected bat activity data in N = 1395 transect sections, 205 

during 78 survey visits. Most sites (N = 30) were surveyed on at least two occasions (2-6 surveys 206 

per site), but four sites were only visited once. Within this sample, N = 20 were single-turbine 207 

sites, and N = 14 were multiple-turbine sites (2-4 turbines). In total, we recorded N = 1867 bat 208 

passes, of which 98.4% (N = 1838) were Pipistrellus spp. (N = 969 [51.9%] Pipistrellus 209 

pipistrellus, N = 714 [38.2%] P. pygmaeus, and N = 155 [8.3%] Pipistrellus sp.). The remaining 210 

1.6% of total calls recorded were a mixture of Nyctalus noctula, Plecotus auritus Linnaeus and 211 

Myotis spp., but because these species combined comprised N = 29 calls, here we focus on 212 

analyses of Pipistrellus spp. activity. Overall, Pipistrellus bat activity was detected on 466 213 

section surveys. 214 
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Parameter estimates for the models for P. pipistrellus and P. pygmaeus are presented in Table 1. 215 

In terms of confounding effects, there were strong non-zero effects of wind speed (negative), 216 

edge density (positive) on the activity of both species, as well as an effect of time to midnight 217 

(linearly negative for P. pipistrellus and quadratic for P. pygmaeus). In addition, both the 218 

proportion of woodland present and day number affected P. pygmaeus activity positively, and P. 219 

pipistrellus activity was higher in 2014 compared to 2013.  220 

Accounting for these effects of environmental and habitat variables, we find some evidence for 221 

an effect of turbine proximity. Specifically, this effect is strongest for P. pipistrellus (Table 1a), 222 

for which activity in distance band 1 (0-100m, intercept in Table 1a) is lower than the activity in 223 

distance bands 2-5 (100-500m). Based on parameter estimates and their errors, no such effect of 224 

turbine proximity is evident in the model for P. pygmaeus activity (Table 1b). Moreover, again 225 

based on parameter estimates alone, there is no evidence for an interaction between distance 226 

band and number of turbines installed.  227 

This interpretation of coefficient estimates above is largely mirrored by assessment of the 228 

predicted levels of activity, although a strong suggestion of an interaction with the number of 229 

turbines installed is evident (Figure 1). Predicted activity is lowest for both species in distance 230 

band 1 (0-100m). In particular, for both species, at multiple SWT sites the predicted mean 231 

activity (measured as the probability of a bat pass per unit area) in the first distance bands (P. 232 

pipistrellus (Figure 1a): 0.057; P. pygmaeus (Figure 1b): 0.109) falls outside the 95% quantiles 233 

of point estimates for all other distance bands (combined 95% quantiles for bands 2-5, P. 234 

pipistrellus: 0.062-0.248; P. pygmaeus: 0.113-0.399), whereas the means of the distance bands 2-235 

5 all fall within each other’s 95% quantiles. There is no such difference for single SWT sites: the 236 

predicted means in all distance bands fall within each other’s 95% quantiles, although in the case 237 
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of P. pipistrellus activity tends to be lower in the first distance band as well (Figure 1a, single 238 

SWT).  239 

 240 

DISCUSSION 241 

We show that, when accounting for confounding effects of habitat and environmental conditions, 242 

activity of P. pipistrellus activity is lower at 0-100m from installed SWTs, compared to 200-243 

500m. Although not apparent in estimated model parameters, assessment of predictions suggests 244 

that this may also be the case for P. pygmaeus activity but this effect was weaker. Similarly, the 245 

distribution of model predictions suggest that the negative effect of SWT presence in the 246 

“closest” distance band is particularly prominent in sites with multiple SWTs installed, with an 247 

apparent absence of any difference between distance bands in the activity of P. pygmaeus in 248 

single SWT sites.  249 

On this basis, we conclude that the adverse effect of SWTs on Pipistrellus bat activity shown 250 

previously (Minderman et al. 2012) may in some cases persist over longer distances in the 251 

landscape. Although here we show that differences in average predicted activity may be 252 

measured when comparing 0-100m to 200-500m distance bands from SWTs, it should be 253 

stressed that this does not show that adverse effects would remain evident at 100m from SWTs. 254 

Indeed, our previous study (Minderman et al. 2012) showed a potential drop in average activity 255 

of up to 50% within 25m from operating SWTs. Even in the absence of strong effects beyond 256 

25m, this alone could explain the difference between 0-100m and 200-500m shown in the 257 

current study. Nevertheless, the present findings do suggest that Pipistrellus bats may avoid 258 

SWTs on a wider (landscape) scale than previously demonstrated. 259 
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Although the mechanism for any avoidance behaviour is unclear, experimental studies in a 260 

laboratory setting have shown that the return of echolocation pulses off spinning turbine blades 261 

may be erratic, potentially causing navigational problems for bats (Long, Flint & Lepper 2010). 262 

Alternatively, some bats may avoid foraging in noisy environments (Schaub, Ostwald & Siemers 263 

2008) but whether noise generated by turbines (including SWTs) has this effect has not been 264 

tested. In either case, it would be reasonable to assume that the strength of such interference 265 

would dissipate with distance, especially if it involves high-frequency noise (which attenuates 266 

quickly over distance), limiting the spatial scale of any adverse effect of the turbine. However, 267 

neither the extent of acoustic noise generated by SWTs nor how this operates over any distance 268 

has been studied, so it is unclear to what extent this could explain the results show here. 269 

Furthermore, although the model parameter estimates provide no evidence that such avoidance is 270 

stronger in sites with multiple SWTs installed for either species, model predictions of activity 271 

suggest that the decrease in activity in the “near” distance bands tends to be stronger in multiple 272 

SWT sites, particularly for P. pygmaeus activity (Figure 1b). Given known local avoidance of 273 

individual turbines (e.g. Minderman et al. 2012), it is possible that clusters of SWTs installed in 274 

relatively close proximity (in our sample between 12 and 90m apart with mean 46.4m and only 275 

one site >62m and <25m respectively) to each other have adverse effects over longer distances. 276 

For example, while local avoidance of single turbines may cause local changes of commuting 277 

routes, multiple SWTs may cause the loss of such routes altogether (similar to the effect of 278 

lighting on bat activity; Stone et al. 2009). However, given the mixed evidence for the interactive 279 

effect between number of turbines and proximity in the current study, this suggestion needs 280 

further study. Moreover, the possibility of cumulative effects (i.e. the combined effect of 281 

multiple wind farm sites in a wider area, “regionally cumulative effects”) is often raised for 282 
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larger turbines and wind farms (Masden et al. 2010; SNH 2012). Here we aimed to answer a 283 

slightly different question, namely whether the installation of a larger number of SWTs installed 284 

in a single site increases the effect on bats (i.e. “locally cumulative effects”). The findings 285 

reported here should thus not be used to draw conclusions on whether the effects of multiple 286 

SWT sites developed in a wider area could combine into a “regional cumulative effect”.  Finally, 287 

it should be stressed that in accordance with our previous findings (Minderman et al. 2012) we 288 

do not find any evidence for the hypothesis that the species studied here are attracted to small 289 

wind turbines, as suggested for other species by Cryan et al. (2014). The suggestion that the 290 

interactive effect between SWT proximity and the number of SWTs installed is stronger for P. 291 

pygmaeus activity is in itself interesting, as it highlights the possibility that different species vary 292 

in their response to SWT presence. Although morphologically similar, the two species 293 

considered here are different in a number of key ecological aspects, including habitat preferences 294 

(Vaughan 1997, Nicholls and Racey 2006, Lintott et al 2015). Although our own findings reflect 295 

this (e.g. strong positive effects of proportion of woodland on P. pygmaeus, but not P. 296 

pipistrellus), whether such ecological differences between these species affect their response to 297 

SWT presence remains to be tested, and unfortunately we did not have sufficient statistical 298 

power to do so here.  299 

There are a number of important caveats with our findings. First of all, these data should not be 300 

generalized to species other than Pipistrellus spp. Although Pipistrellus bats are by far the 301 

commonest species in both our wider study area as well as in the specific habitats we studied 302 

(Middleton 2006), it is likely that the collection of sufficient data to draw further species-specific 303 

conclusions would require targeted surveys. The need to collect data at a wide range of sites 304 

prevented us from doing this here. However, the effect of larger turbines in wind farms can vary 305 
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between species (e.g. collision mortality can vary between species depending on environmental 306 

conditions, Baerwald & Barclay 2011) and we therefore consider this to be a research priority for 307 

SWTs. Secondly, the limited number of sites with more than two turbines in our sample means 308 

that we cannot exclude the possibility that a larger number of turbines would cause stronger 309 

effects; indeed modelling studies in birds (Schaub 2012) suggest that this may well be the case. 310 

However, based on our own experience and anecdotal data collected during the construction of 311 

our SWT owner database (e.g. Park, Turner & Minderman 2013), we feel that our sample of sites 312 

fairly represents the usual number of SWTs installed per site; sites with more than two and in 313 

particular more than three SWTs remain relatively rare in the UK. Finally, the combination of 314 

recording bat activity over a relatively large scale (up to 500m from SWTs) along transects, and 315 

a distance-based approach to turbine effects, required that we analysed our data in distance 316 

bands. As noted previously, our choice of relatively 'coarse' 100m distance bands may limit our 317 

ability to draw conclusions on the exact distance over which avoidance behaviour might operate, 318 

but small scale effects have already been studied (Minderman et al. 2012) and we here chose to 319 

focus on wider-scale effects. In addition, to allow us to generalise our sampling regime across 320 

sites with single and multiple SWTs, we chose to use single starting locations for all transects. 321 

As a result, in some cases where multiple SWTs were present, this may have caused some 322 

imprecision in the allocation of individual passes to distance bands (as exact distance to 323 

individual turbines would differ by a small amount). However, our choice of transect placement 324 

minimised any such possible bias: in multiple SWT sites, transects were oriented in such a way 325 

that they were as close to perpendicular to the orientation of the SWT “line”. In cases where this 326 

was impossible, e.g. one of the transects would pass within 50m of another turbine, the transect 327 

in question was excluded from the analyses presented here (i.e. leading to some sites with <4 328 
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transects, see Methods). Moreover, accurately allocating bat passes to even more narrow distance 329 

bands is likely to introduce false precision. Thus, collecting data on behavioural responses to 330 

turbines on a finer scale would require alternative methods. 331 

In conclusion, we suggest that adverse effects of SWTs on Pipistrellus bat activity may be 332 

measurable over a greater spatial scale than previously thought (0-100m), although combined 333 

with our previous work it is likely that much of such avoidance behaviour occurs in relatively 334 

close proximity to turbines (<25m). It appears that such effects are stronger when multiple SWTs 335 

are installed, particularly for P. pygmaeus, but this requires further study. Finally, it should be 336 

stressed that the effects reported here are on bat activity only. Although they may reflect changes 337 

in habitat use, and this may in turn lead to population-level effects, direct effects of SWT 338 

developments on the latter remain to be studied and the conclusions drawn here cannot be thus 339 

extrapolated. 340 

The SWT sector is expanding rapidly worldwide, and as a result planners and decision makers 341 

are increasingly faced with having to advise or decide on planned developments of multiple 342 

SWTs in clusters. To date, there were no data to inform such decisions, and the findings 343 

presented here are therefore vital and timely. We reiterate our recommendation that individual 344 

SWTs within the range of sizes considered here (6-25m hub height) should be sited away from 345 

potentially valuable bat habitat (at least >25m, Minderman et al. 2012), but based on the current 346 

findings we further stress that particular care should be taken in landscapes where limited 347 

alternative habitats are available. This would include known roost, commuting and foraging 348 

sites. In addition, on the basis of the potential for wider landscape scale effects on some species, 349 

we suggest that the (at least the potential for) presence of particularly vulnerable or locally rare 350 
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species is assessed within 100m from proposed sites, particularly when more than one turbine is 351 

planned.  352 
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Table 1. Parameter estimates (b) and their standard errors (S.E.) from Generalized Linear Mixed 437 

Effects Models (GLMMs) for the activity (probability of a pass ha
-1
) of (a) P. Pipistrellus and 438 

(b) P. pygmaeus. All models included site and transect within site as a nested random effect 439 

structure (variance estimates at the bottom of the table), had binomial errors and were fitted with 440 

a complimentary log-log link. All coefficients are parameter estimates based on model fits using 441 

standardised (centered and scaled to 1 SD) inputs. Instances where the point estimate ± 2*S.E. 442 

does not overlap zero are highlighted in bold, indicating evidence that the parameter is different 443 

from zero. 444 

  
(a) P. pipistrellus 

 
(b) P. pygmaeus 

Fixed effects  b S.E.  b S.E. 

(Intercept) 
 

-2.203 0.197 
 

-1.864 0.198 

Distance band 2 (100-200m) 
 

0.521 0.208 
 

0.174 0.203 

Distance band 3 (200-300m) 
 

0.730 0.207 
 

0.253 0.205 

Distance band 4 (300-400m) 
 

0.596 0.213 
 

0.232 0.210 

Distance band 5 (400-500m) 
 

0.489 0.223 
 

0.306 0.211 

No. turbines (multiple) 
 

-0.080 0.367 
 

-0.263 0.363 

Min 24h. Temperature 
 

-0.041 0.150 
 

-0.099 0.162 

Day number 
 

0.124 0.203 
 

0.739 0.195 

Year (2014) 
 

0.826 0.252 
 

-0.602 0.301 

Time to midnight 
 

-0.536 0.156 
 

0.294 0.175 

Time to midnight
2
 

 
-0.472 0.287 

 
-1.208 0.332 

Wind speed (m s
-1
) 

 
-0.549 0.172 

 
-0.759 0.191 

Edge density (m m
-2
) 

 
0.670 0.132 

 
0.620 0.144 

Proportion woodland 
 

-0.067 0.141 
 

0.493 0.125 

D. band 2 * no. turbines 
 

0.260 0.428 
 

0.693 0.412 

D. band 3 * no. turbines 
 

0.433 0.422 
 

0.421 0.405 

D. band 4 * no. turbines 
 

-0.379 0.424 
 

0.461 0.411 

D. band 5 * no. turbines  -0.018 0.443  0.781 0.412 

Random effects σ
2
  

Transect / Site  0.374  0.579 

Site  0.377  0.447 

Model fit  

Marginal R
2
  0.304  0.255 

Conditional R
2
  0.451  0.507 

FIGURE CAPTIONS 445 
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Figure 1. Observed (small grey points, average per site visit) and predicted (dark grey and black 446 

points, and lines) of (a) P. pipistrellus, and (b) P. pygmaeus activity (probability of a pass ha
-1
) 447 

in five distance bands from single- and multiple SWT installations. Predictions are based on 448 

model fits using standardized (scaled and centered) bat activity from Generalized Linear Mixed 449 

Effects Models (GLMMs, Table 1), in each of five distance bands around small wind turbines. 450 

Dark grey circles and their corresponding lines are predicted median levels for single-turbine 451 

sites, and black circles and their corresponding lines are median levels for multiple-turbine sites. 452 

Small grey dots are the observed mean probabilities of obtaining a bat pass across all 453 

observations in each distance class, for each site. The error bars (lines) are the 95% quantiles of 454 

predictions calculated from N = 1000 bootstrap samples of estimated parameter distributions.  455 
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Figure 1. 457 
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Supplementary material 4 

 5 

Preliminary habitat data analysis and additional tables 6 

A total of 10 habitat variables were quantified in each transect section in all sites (Table A2), 7 

using 1:1250 UK Ordnance Survey MasterMap Topography digital map (OS) data and QGIS v. 8 

1.8. These variables were chosen on the basis of their known potential effect on bat activity. The 9 

five proportion land cover variables (proportion buildings, road or tracks, rough grassland, 10 

roadside, and woodland) were calculated from the OS polygon area data and were calculated as 11 

the sum of each of these five land cover types in each transect section, divided by the size of the 12 

transect section. These were defined as the total area size of all polygons listed as (1) "Buildings" 13 

in the Theme field; (2) "Road Tracks and Paths" in the Theme field; (3) "Rough grassland" 14 

(including all lower classifications) in the descrTerm field; (4) "Roadside" in the descrGroup 15 

field and (5) "Coniferous or Nonconiferous trees"" in the descrGroup field. The four distance 16 

variables (distance to buildings, linear features, trees and water) were calculated by overlaying 17 

the OS data with a 1x1m 'raster' of grid cells, calculating the distance (m) between each raster 18 

cell and the nearest raster cell containing each of the four land cover types (respectively, 19 

buildings as defined above, any linear feature as contained in the OS "line" data, any woodland 20 

as defined above and any water polygon), and averaging these distances for all cells within the 21 

transect sections. 22 
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Finally, edge density (m m
-2
) was expressed as the total length of all line features contained in 23 

the OS Linear data per transect section, divided by the transect section area. Line features 24 

include e.g. building-, woodland and water edges, hedgerows, roads and tracks, roadsides, and 25 

field boundaries. 26 

To identify a subset of habitat variables that were most descriptive of bat activity (see main text), 27 

we ran an initial model selection procedure on a Generalized Linear Mixed Effects (GLMM) 28 

model for the probability of a bat pass per hectare as a function of all 10 habitat variables only. 29 

In addition to these habitat variables this model included transect within site as a random effect, 30 

a binomial error distribution with a log-log link function and transect section size (ha) as an 31 

offset. To avoid problems with collinearity, we limited the full model set to include only one of 32 

the five 'proportion' habitat variables (because these represent proportion cover, lower cover of 33 

one automatically implies greater cover of another, leading to high collinearity). We further 34 

excluded all models including (1) both proportion of woodland and distance to trees, (2) both 35 

proportion buildings and distance to buildings, (3) both edge density and distance to linear 36 

features or proportion of roads or tracks. Again, these latter exclusions were to avoid high 37 

collinearity. For example, a greater proportion of woodland in a given transect section naturally 38 

implies shorter distances to trees; edge density includes linear features such roads and tracks; etc. 39 

Thus, these variables effectively measured very similar things but in slightly different ways. All 40 

model fitting procedures and analyses followed the methodology described in the main text. 41 

The resulting full model set comprised of a total of 112 models. The candidate set (ΔAICc<4) 42 

contained 4 models. The 'top' model retained three of the ten habitat variables: distance to water, 43 

edge density and the proportion of woodland (Table A3). Distance to water was only included in 44 

two out of the four models in the top set, however. By contrast, edge density and the proportion 45 
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of woodland were retained in all four models in the candidate set. Thus, we chose to use edge 46 

density and the proportion of woodland as the key two habitat variables explaining bat activity. 47 

As discussed, we chose to limit the number of explanatory variables for the models for bat 48 

activity in this way to avoid problems with overparameterisation. However, we did test whether 49 

the inclusion of distance to water (because of the known importance of riparian habitats to P. 50 

pygmaeus in particular) made any difference to the models presented in Table 1 in the main text 51 

or whether it would change their interpretation. The estimated effect of distance to water was not 52 

significantly different from zero in either the model for P. pipistrellus (-0.259 +/- 0.151) or the 53 

model for P. pygmaeus (-0.043 +/- 0.181, although convergence of the estimates of this model 54 

was poor, presumably due to overparameterisation), neither was the interpretation or significance 55 

of any of the other parameters changed by its inclusions.  56 

Similarly, we tested whether the inclusion of turbine hub height as an extra predictor, as well as 57 

its interaction with distance from turbines, affected our results. As per the addition of distance to 58 

water, this did lead to estimation problems for some of the models under consideration. Bearing 59 

this in mind, none of the interaction terms between hub height and distance from turbine were 60 

different from zero for either the P. pipistrellus or P. pygmaeus models, and when this 61 

interaction term was further dropped from both models, the effect of hub height was not different 62 

from zero in either model (P. pipistrellus: -0.119 +/- 0.231; P. pygmaeus: -0.124 +/- 0.268). The 63 

remaining parameter estimates and their interpretation also remain qualitatively unchanged.  64 

 65 

 66 

  67 
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Table A1. Descriptive statistics of predictor variables in the Generalized Linear Mixed Model 68 

(GLMM) for Pipistrellus sp. bat activity (Table 1), on their original (unstandardised) scale. 69 

 Mean Median Std. dev Min. Max. 

Minimum 24h temperature (°C) 11.76 12.00 2.75 5.00 17.60 

Julian day number 196.59 195.00 28.85 147.00 246.00 

Time to midnight (min) -26.07 -41.00 82.54 -202.30 197.77 

Time to midnight
2
 7487.47 4669.44 8375.13 0.00 40925.29 

Wind speed (m s
-1

) 1.07 0.40 1.46 0.00 9.80 

Edge density (m m
-2

) 0.04 0.03 0.02 0.00 0.13 

Proportion woodland 0.05 0.00 0.13 0.00 0.92 

 70 
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Table A2. Descriptive statistics of all ten original habitat variables as predictors for bat activity on their original (unstandardised) 71 

scale, split by single- and multiple SWT sites. 72 

 73 

 Single turbines 
 

Multiple turbines (2-4) 

 Mean Median SD Min. Max. 
 

Mean Median SD Min. Max. 

Distance to buildings (m) 174.48 152.02 114.83 13.65 596.93 
 
222.76 209.89 135.88 9.2 623.77 

Distance to linear features (m) 24.67 17.92 21.86 5.9 132.37 
 
21.09 18.5 16.5 5.37 190.97 

Distance to trees (m) 144.88 125.65 110.28 0.19 519.74 
 
211.45 196.33 150.86 1.89 646.47 

Distance to water (m) 218.3 174 166.43 13.2 689.27 
 
186.47 153.42 142.33 17.88 652.74 

Edge density (m m
-2
) 0.04 0.03 0.03 0.00 0.13 

 
0.04 0.04 0.02 0.00 0.13 

Proportion of buildings 0.01 0.00 0.03 0.00 0.20 
 

0.01 0.00 0.04 0.00 0.29 

Proportion of roads or tracks 0.02 0.01 0.03 0.00 0.26 
 

0.02 0.01 0.03 0.00 0.15 

Proportion of rough grassland 0.07 0.00 0.18 0.00 1.00 
 

0.02 0.00 0.07 0.00 0.49 

Proportion of roadsides 0.02 0.00 0.04 0.00 0.26 
 

0.02 0.00 0.03 0.00 0.14 

Proportion of woodland 0.07 0.00 0.15 0.00 0.92 
 

0.04 0.00 0.12 0.00 0.77 
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Table A3. Candidate set of Generalized Linear Mixed Models for bat activity (probability of bat 74 

activity ha
-1
, binomial errors, complementary log-log link) within 4 AICc points of the “top” 75 

model, as a function of ten candidate habitat predictors only. Coefficients are parameter 76 

estimates based on models fit using standardized (centered and scaled to 1 SD) inputs. K is the 77 

number of parameters in the models. All models included site and transect within site as a nested 78 

random effect structure. 79 

 80 
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AICc ∆ AICc M
o
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ei
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1 -1.146  -0.305 0.523 0.41 6 -824.8 1661.7 0.000 0.541 

2 -1.146 0.028 -0.301 0.532 0.408 7 -824.8 1663.7 1.962 0.203 

3 -1.139   0.549 0.445 5 -826.9 1663.9 2.184 0.181 

4 -1.138 0.059  0.568 0.438 6 -826.8 1665.7 3.957 0.075 
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 82 

Figure A1. Conceptual example of a bat transect layout. The turbine is at the intersection of the 83 

transects. The dashed lines show the transects walked, whereas the solid line represents the area 84 

for which The habitat surrounding the turbines varied significantly between sites, and this was 85 

reflected in transect placement, so that (1) the combination of all transects within each site 86 

covered all major habitats present, and (2) overall distance separating each transect was 87 

maximized.88 
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