
Alan Beaulieu

Learning
SQL
Generate, Manipulate, and Retrieve Data

Third
Edition

Alan Beaulieu

Learning SQL
Generate, Manipulate, and Retrieve Data

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

Learning SQL
by Alan Beaulieu

Copyright © 2020 Alan Beaulieu. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Jeff Bleiel
Production Editor: Deborah Baker
Copyeditor: Charles Roumeliotis
Proofreader: Chris Morris

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2005: First Edition
April 2009: Second Edition
April 2020: Third Edition

Revision History for the Third Edition
2020-03-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492057611 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning SQL, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-05761-1

[MBP]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492057611

Table of Contents

Preface. xi

1. A Little Background. 1
Introduction to Databases 1

Nonrelational Database Systems 2
The Relational Model 5
Some Terminology 7

What Is SQL? 8
SQL Statement Classes 9
SQL: A Nonprocedural Language 10
SQL Examples 11

What Is MySQL? 13
SQL Unplugged 14
What’s in Store 15

2. Creating and Populating a Database. 17
Creating a MySQL Database 17
Using the mysql Command-Line Tool 18
MySQL Data Types 20

Character Data 20
Numeric Data 23
Temporal Data 25

Table Creation 27
Step 1: Design 27
Step 2: Refinement 28
Step 3: Building SQL Schema Statements 30

Populating and Modifying Tables 33
Inserting Data 33

iii

Updating Data 38
Deleting Data 38

When Good Statements Go Bad 39
Nonunique Primary Key 39
Nonexistent Foreign Key 39
Column Value Violations 40
Invalid Date Conversions 40

The Sakila Database 41

3. Query Primer. 45
Query Mechanics 45
Query Clauses 47
The select Clause 48

Column Aliases 50
Removing Duplicates 51

The from Clause 53
Tables 53
Table Links 56
Defining Table Aliases 57

The where Clause 58
The group by and having Clauses 60
The order by Clause 61

Ascending Versus Descending Sort Order 63
Sorting via Numeric Placeholders 64

Test Your Knowledge 65
Exercise 3-1 65
Exercise 3-2 65
Exercise 3-3 65
Exercise 3-4 65

4. Filtering. 67
Condition Evaluation 67

Using Parentheses 68
Using the not Operator 69

Building a Condition 70
Condition Types 71

Equality Conditions 71
Range Conditions 73
Membership Conditions 77
Matching Conditions 79

Null: That Four-Letter Word 82
Test Your Knowledge 85

iv | Table of Contents

Exercise 4-1 86
Exercise 4-2 86
Exercise 4-3 86
Exercise 4-4 86

5. Querying Multiple Tables. 87
What Is a Join? 87

Cartesian Product 88
Inner Joins 89
The ANSI Join Syntax 91

Joining Three or More Tables 93
Using Subqueries as Tables 95
Using the Same Table Twice 96

Self-Joins 98
Test Your Knowledge 99

Exercise 5-1 99
Exercise 5-2 99
Exercise 5-3 100

6. Working with Sets. 101
Set Theory Primer 101
Set Theory in Practice 104
Set Operators 105

The union Operator 106
The intersect Operator 108
The except Operator 109

Set Operation Rules 111
Sorting Compound Query Results 111
Set Operation Precedence 112

Test Your Knowledge 114
Exercise 6-1 114
Exercise 6-2 114
Exercise 6-3 114

7. Data Generation, Manipulation, and Conversion. 115
Working with String Data 115

String Generation 116
String Manipulation 121

Working with Numeric Data 129
Performing Arithmetic Functions 129
Controlling Number Precision 131
Handling Signed Data 133

Table of Contents | v

Working with Temporal Data 134
Dealing with Time Zones 134
Generating Temporal Data 136
Manipulating Temporal Data 140

Conversion Functions 144
Test Your Knowledge 145

Exercise 7-1 145
Exercise 7-2 145
Exercise 7-3 145

8. Grouping and Aggregates. 147
Grouping Concepts 147
Aggregate Functions 150

Implicit Versus Explicit Groups 151
Counting Distinct Values 152
Using Expressions 153
How Nulls Are Handled 153

Generating Groups 155
Single-Column Grouping 155
Multicolumn Grouping 156
Grouping via Expressions 157
Generating Rollups 157

Group Filter Conditions 159
Test Your Knowledge 160

Exercise 8-1 160
Exercise 8-2 160
Exercise 8-3 160

9. Subqueries. 161
What Is a Subquery? 161
Subquery Types 163
Noncorrelated Subqueries 163

Multiple-Row, Single-Column Subqueries 164
Multicolumn Subqueries 169

Correlated Subqueries 171
The exists Operator 173
Data Manipulation Using Correlated Subqueries 174

When to Use Subqueries 175
Subqueries as Data Sources 176
Subqueries as Expression Generators 182

Subquery Wrap-Up 184
Test Your Knowledge 185

vi | Table of Contents

Exercise 9-1 185
Exercise 9-2 185
Exercise 9-3 185

10. Joins Revisited. 187
Outer Joins 187

Left Versus Right Outer Joins 190
Three-Way Outer Joins 191

Cross Joins 192
Natural Joins 198
Test Your Knowledge 199

Exercise 10-1 200
Exercise 10-2 200
Exercise 10-3 (Extra Credit) 200

11. Conditional Logic. 201
What Is Conditional Logic? 201
The case Expression 202

Searched case Expressions 202
Simple case Expressions 204

Examples of case Expressions 205
Result Set Transformations 205
Checking for Existence 206
Division-by-Zero Errors 208
Conditional Updates 209
Handling Null Values 210

Test Your Knowledge 211
Exercise 11-1 211
Exercise 11-2 211

12. Transactions. 213
Multiuser Databases 213

Locking 214
Lock Granularities 214

What Is a Transaction? 215
Starting a Transaction 217
Ending a Transaction 218
Transaction Savepoints 219

Test Your Knowledge 222
Exercise 12-1 222

Table of Contents | vii

13. Indexes and Constraints. 223
Indexes 223

Index Creation 224
Types of Indexes 229
How Indexes Are Used 231
The Downside of Indexes 232

Constraints 233
Constraint Creation 234

Test Your Knowledge 237
Exercise 13-1 237
Exercise 13-2 237

14. Views. 239
What Are Views? 239
Why Use Views? 242

Data Security 242
Data Aggregation 243
Hiding Complexity 244
Joining Partitioned Data 244

Updatable Views 245
Updating Simple Views 246
Updating Complex Views 247

Test Your Knowledge 249
Exercise 14-1 249
Exercise 14-2 250

15. Metadata. 251
Data About Data 251
information_schema 252
Working with Metadata 257

Schema Generation Scripts 257
Deployment Verification 260
Dynamic SQL Generation 261

Test Your Knowledge 265
Exercise 15-1 265
Exercise 15-2 265

16. Analytic Functions. 267
Analytic Function Concepts 267

Data Windows 268
Localized Sorting 269

Ranking 270

viii | Table of Contents

Ranking Functions 271
Generating Multiple Rankings 274

Reporting Functions 277
Window Frames 279
Lag and Lead 281
Column Value Concatenation 283

Test Your Knowledge 284
Exercise 16-1 284
Exercise 16-2 285
Exercise 16-3 285

17. Working with Large Databases. 287
Partitioning 287

Partitioning Concepts 288
Table Partitioning 288
Index Partitioning 289
Partitioning Methods 289
Partitioning Benefits 297

Clustering 297
Sharding 298
Big Data 299

Hadoop 299
NoSQL and Document Databases 300
Cloud Computing 300
Conclusion 301

18. SQL and Big Data. 303
Introduction to Apache Drill 303
Querying Files Using Drill 304
Querying MySQL Using Drill 306
Querying MongoDB Using Drill 309
Drill with Multiple Data Sources 315
Future of SQL 317

A. ER Diagram for Example Database. 319

B. Solutions to Exercises. 321

Index. 349

Table of Contents | ix

Preface

Programming languages come and go constantly, and very few languages in use today
have roots going back more than a decade or so. Some examples are COBOL, which
is still used quite heavily in mainframe environments; Java, which was born in the
mid-1990s and has become one of the most popular programming languages; and C,
which is still quite popular for operating systems and server development and for
embedded systems. In the database arena, we have SQL, whose roots go all the way
back to the 1970s.

SQL was initially created to be the language for generating, manipulating, and retriev‐
ing data from relational databases, which have been around for more than 40 years.
Over the past decade or so, however, other data platforms such as Hadoop, Spark, and
NoSQL have gained a great deal of traction, eating away at the relational database
market. As will be discussed in the last few chapters of this book, however, the SQL
language has been evolving to facilitate the retrieval of data from various platforms,
regardless of whether the data is stored in tables, documents, or flat files.

Why Learn SQL?
Whether you will be using a relational database or not, if you are working in data sci‐
ence, business intelligence, or some other facet of data analysis, you will likely need to
know SQL, along with other languages/platforms such as Python and R. Data is
everywhere, in huge quantities, and arriving at a rapid pace, and people who can
extract meaningful information from all this data are in big demand.

Why Use This Book to Do It?
There are plenty of books out there that treat you like a dummy, idiot, or some other
flavor of simpleton, but these books tend to just skim the surface. At the other end of
the spectrum are reference guides that detail every permutation of every statement in
a language, which can be useful if you already have a good idea of what you want to

xi

do but just need the syntax. This book strives to find the middle ground, starting with
some background of the SQL language, moving through the basics, and then pro‐
gressing into some of the more advanced features that will allow you to really shine.
Additionally, this book ends with a chapter showing how to query data in nonrela‐
tional databases, which is a topic rarely covered in introductory books.

Structure of This Book
This book is divided into 18 chapters and 2 appendixes:

Chapter 1, A Little Background
Explores the history of computerized databases, including the rise of the rela‐
tional model and the SQL language.

Chapter 2, Creating and Populating a Database
Demonstrates how to create a MySQL database, create the tables used for the
examples in this book, and populate the tables with data.

Chapter 3, Query Primer
Introduces the select statement and further demonstrates the most common
clauses (select, from, where).

Chapter 4, Filtering
Demonstrates the different types of conditions that can be used in the where
clause of a select, update, or delete statement.

Chapter 5, Querying Multiple Tables
Shows how queries can utilize multiple tables via table joins.

Chapter 6, Working with Sets
This chapter is all about data sets and how they can interact within queries.

Chapter 7, Data Generation, Manipulation, and Conversion
Demonstrates several built-in functions used for manipulating or converting
data.

Chapter 8, Grouping and Aggregates
Shows how data can be aggregated.

Chapter 9, Subqueries
Introduces subqueries (a personal favorite) and shows how and where they can
be utilized.

Chapter 10, Joins Revisited
Further explores the various types of table joins.

xii | Preface

Chapter 11, Conditional Logic
Explores how conditional logic (i.e., if-then-else) can be utilized in select,
insert, update, and delete statements.

Chapter 12, Transactions
Introduces transactions and shows how to use them.

Chapter 13, Indexes and Constraints
Explores indexes and constraints.

Chapter 14, Views
Shows how to build an interface to shield users from data complexities.

Chapter 15, Metadata
Demonstrates the utility of the data dictionary.

Chapter 16, Analytic Functions
Covers functionality used to generate rankings, subtotals, and other values used
heavily in reporting and analysis.

Chapter 17, Working with Large Databases
Demonstrates techniques for making very large databases easier to manage and
traverse.

Chapter 18, SQL and Big Data
Explores the transformation of the SQL language to allow retrieval of data from
nonrelational data platforms.

Appendix A, ER Diagram for Example Database
Shows the database schema used for all examples in the book.

Appendix B, Solutions to Exercises
Shows solutions to the chapter exercises.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Preface | xiii

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Indicates a tip, suggestion, or general note. For example, I use notes
to point you to useful new features in Oracle9i.

Indicates a warning or caution. For example, I’ll tell you if a certain
SQL clause might have unintended consequences if not used care‐
fully.

Using the Examples in This Book
To experiment with the data used for the examples in this book, you have two
options:

• Download and install the MySQL server version 8.0 (or later) and load the Sakila
example database from https://dev.mysql.com/doc/index-other.html.

• Go to https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox to
access the MySQL Sandbox, which has the Sakila sample database loaded in a
MySQL instance. You’ll have to set up a (free) Katacoda account. Then, click the
Start Scenario button.

If you choose the second option, once you start the scenario, a MySQL server is
installed and started, and then the Sakila schema and data are loaded. When it’s ready,
a standard mysql> prompt appears, and you can then start querying the sample data‐
base. This is certainly the easiest option, and I anticipate that most readers will
choose this option; if this sounds good to you, feel free to skip ahead to the next
section.

If you prefer to have your own copy of the data and want any changes you have made
to be permanent, or if you are just interested in installing the MySQL server on your
own machine, you may prefer the first option. You may also opt to use a MySQL
server hosted in an environment such as Amazon Web Services or Google Cloud. In
either case, you will need to perform the installation/configuration yourself, as it is
beyond the scope of this book. Once your database is available, you will need to fol‐
low a few steps to load the Sakila sample database.

xiv | Preface

https://dev.mysql.com/doc/index-other.html
https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox

First, you will need to launch the mysql command-line client and provide a password,
and then perform the following steps:

1. Go to https://dev.mysql.com/doc/index-other.html and download the files for
“sakila database” under the Example Databases section.

2. Put the files in a local directory such as C:\temp\sakila-db (used for the next two
steps, but overwrite with your directory path).

3. Type source c:\temp\sakila-db\sakila-schema.sql; and press Enter.
4. Type source c:\temp\sakila-db\sakila-data.sql; and press Enter.

You should now have a working database populated with all the data needed for the
examples in this book.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional informa‐
tion. You can access this page at https://oreil.ly/Learning_SQL3.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

Preface | xv

https://dev.mysql.com/doc/index-other.html
http://oreilly.com
http://www.oreilly.com
https://oreil.ly/Learning_SQL3
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank my editor, Jeff Bleiel, for helping to make this third edition a
reality, along with Thomas Nield, Ann White-Watkins, and Charles Givre, who were
kind enough to review the book for me. Thanks also go to Deb Baker, Jess Haberman,
and all the other folks at O’Reilly Media who were involved. Lastly, I thank my wife,
Nancy, and my daughters, Michelle and Nicole, for their encouragement and
inspiration.

xvi | Preface

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

A Little Background

Before we roll up our sleeves and get to work, it would be helpful to survey the his‐
tory of database technology in order to better understand how relational databases
and the SQL language evolved. Therefore, I’d like to start by introducing some basic
database concepts and looking at the history of computerized data storage and
retrieval.

For those readers anxious to start writing queries, feel free to skip
ahead to Chapter 3, but I recommend returning later to the first
two chapters in order to better understand the history and utility of
the SQL language.

Introduction to Databases
A database is nothing more than a set of related information. A telephone book, for
example, is a database of the names, phone numbers, and addresses of all people liv‐
ing in a particular region. While a telephone book is certainly a ubiquitous and fre‐
quently used database, it suffers from the following:

• Finding a person’s telephone number can be time consuming, especially if the tel‐
ephone book contains a large number of entries.

• A telephone book is indexed only by last/first names, so finding the names of the
people living at a particular address, while possible in theory, is not a practical
use for this database.

• From the moment the telephone book is printed, the information becomes less
and less accurate as people move into or out of a region, change their telephone
numbers, or move to another location within the same region.

1

The same drawbacks attributed to telephone books can also apply to any manual data
storage system, such as patient records stored in a filing cabinet. Because of the cum‐
bersome nature of paper databases, some of the first computer applications developed
were database systems, which are computerized data storage and retrieval mecha‐
nisms. Because a database system stores data electronically rather than on paper, a
database system is able to retrieve data more quickly, index data in multiple ways, and
deliver up-to-the-minute information to its user community.

Early database systems managed data stored on magnetic tapes. Because there were
generally far more tapes than tape readers, technicians were tasked with loading and
unloading tapes as specific data was requested. Because the computers of that era had
very little memory, multiple requests for the same data generally required the data to
be read from the tape multiple times. While these database systems were a significant
improvement over paper databases, they are a far cry from what is possible with
today’s technology. (Modern database systems can manage petabytes of data, accessed
by clusters of servers each caching tens of gigabytes of that data in high-speed mem‐
ory, but I’m getting a bit ahead of myself.)

Nonrelational Database Systems

This section contains some background information about pre-
relational database systems. For those readers eager to dive into
SQL, feel free to skip ahead a couple of pages to the next section.

Over the first several decades of computerized database systems, data was stored and
represented to users in various ways. In a hierarchical database system, for example,
data is represented as one or more tree structures. Figure 1-1 shows how data relating
to George Blake’s and Sue Smith’s bank accounts might be represented via tree
structures.

2 | Chapter 1: A Little Background

Figure 1-1. Hierarchical view of account data

George and Sue each have their own tree containing their accounts and the transac‐
tions on those accounts. The hierarchical database system provides tools for locating
a particular customer’s tree and then traversing the tree to find the desired accounts
and/or transactions. Each node in the tree may have either zero or one parent and
zero, one, or many children. This configuration is known as a single-parent hierarchy.

Another common approach, called the network database system, exposes sets of
records and sets of links that define relationships between different records.
Figure 1-2 shows how George’s and Sue’s same accounts might look in such a system.

Introduction to Databases | 3

Figure 1-2. Network view of account data

In order to find the transactions posted to Sue’s money market account, you would
need to perform the following steps:

1. Find the customer record for Sue Smith.
2. Follow the link from Sue Smith’s customer record to her list of accounts.
3. Traverse the chain of accounts until you find the money market account.
4. Follow the link from the money market record to its list of transactions.

One interesting feature of network database systems is demonstrated by the set of
product records on the far right of Figure 1-2. Notice that each product record
(Checking, Savings, etc.) points to a list of account records that are of that product
type. Account records, therefore, can be accessed from multiple places (both cus
tomer records and product records), allowing a network database to act as a multi‐
parent hierarchy.

Both hierarchical and network database systems are alive and well today, although
generally in the mainframe world. Additionally, hierarchical database systems have

4 | Chapter 1: A Little Background

enjoyed a rebirth in the directory services realm, such as Microsoft’s Active Directory
and the open source Apache Directory Server. Beginning in the 1970s, however, a
new way of representing data began to take root, one that was more rigorous yet easy
to understand and implement.

The Relational Model
In 1970, Dr. E. F. Codd of IBM’s research laboratory published a paper titled “A Rela‐
tional Model of Data for Large Shared Data Banks” that proposed that data be repre‐
sented as sets of tables. Rather than using pointers to navigate between related
entities, redundant data is used to link records in different tables. Figure 1-3 shows
how George’s and Sue’s account information would appear in this context.

Figure 1-3. Relational view of account data

Introduction to Databases | 5

The four tables in Figure 1-3 represent the four entities discussed so far: customer,
product, account, and transaction. Looking across the top of the customer table in
Figure 1-3, you can see three columns: cust_id (which contains the customer’s ID
number), fname (which contains the customer’s first name), and lname (which con‐
tains the customer’s last name). Looking down the side of the customer table, you can
see two rows, one containing George Blake’s data and the other containing Sue Smith’s
data. The number of columns that a table may contain differs from server to server,
but it is generally large enough not to be an issue (Microsoft SQL Server, for example,
allows up to 1,024 columns per table). The number of rows that a table may contain is
more a matter of physical limits (i.e., how much disk drive space is available) and
maintainability (i.e., how large a table can get before it becomes difficult to work
with) than of database server limitations.

Each table in a relational database includes information that uniquely identifies a row
in that table (known as the primary key), along with additional information needed to
describe the entity completely. Looking again at the customer table, the cust_id col‐
umn holds a different number for each customer; George Blake, for example, can be
uniquely identified by customer ID 1. No other customer will ever be assigned that
identifier, and no other information is needed to locate George Blake’s data in the
customer table.

Every database server provides a mechanism for generating unique
sets of numbers to use as primary key values, so you won’t need to
worry about keeping track of what numbers have been assigned.

While I might have chosen to use the combination of the fname and lname columns
as the primary key (a primary key consisting of two or more columns is known as a
compound key), there could easily be two or more people with the same first and last
names who have accounts at the bank. Therefore, I chose to include the cust_id col‐
umn in the customer table specifically for use as a primary key column.

In this example, choosing fname/lname as the primary key would
be referred to as a natural key, whereas the choice of cust_id
would be referred to as a surrogate key. The decision whether to
employ natural or surrogate keys is up to the database designer, but
in this particular case the choice is clear, since a person’s last name
may change (such as when a person adopts a spouse’s last name),
and primary key columns should never be allowed to change once
a value has been assigned.

6 | Chapter 1: A Little Background

Some of the tables also include information used to navigate to another table; this is
where the “redundant data” mentioned earlier comes in. For example, the account
table includes a column called cust_id, which contains the unique identifier of the
customer who opened the account, along with a column called product_cd, which
contains the unique identifier of the product to which the account will conform.
These columns are known as foreign keys, and they serve the same purpose as the
lines that connect the entities in the hierarchical and network versions of the account
information. If you are looking at a particular account record and want to know more
information about the customer who opened the account, you would take the value
of the cust_id column and use it to find the appropriate row in the customer table
(this process is known, in relational database lingo, as a join; joins are introduced in
Chapter 3 and probed deeply in Chapters 5 and 10).

It might seem wasteful to store the same data many times, but the relational model is
quite clear on what redundant data may be stored. For example, it is proper for the
account table to include a column for the unique identifier of the customer who
opened the account, but it is not proper to include the customer’s first and last names
in the account table as well. If a customer were to change her name, for example, you
want to make sure that there is only one place in the database that holds the custom‐
er’s name; otherwise, the data might be changed in one place but not another, causing
the data in the database to be unreliable. The proper place for this data is the cus
tomer table, and only the cust_id values should be included in other tables. It is also
not proper for a single column to contain multiple pieces of information, such as a
name column that contains both a person’s first and last names, or an address column
that contains street, city, state, and zip code information. The process of refining a
database design to ensure that each independent piece of information is in only one
place (except for foreign keys) is known as normalization.

Getting back to the four tables in Figure 1-3, you may wonder how you would use
these tables to find George Blake’s transactions against his checking account. First,
you would find George Blake’s unique identifier in the customer table. Then, you
would find the row in the account table whose cust_id column contains George’s
unique identifier and whose product_cd column matches the row in the product
table whose name column equals “Checking.” Finally, you would locate the rows in the
transaction table whose account_id column matches the unique identifier from the
account table. This might sound complicated, but you can do it in a single command,
using the SQL language, as you will see shortly.

Some Terminology
I introduced some new terminology in the previous sections, so maybe it’s time for
some formal definitions. Table 1-1 shows the terms we use for the remainder of the
book along with their definitions.

Introduction to Databases | 7

Table 1-1. Terms and definitions

Term Definition
Entity Something of interest to the database user community. Examples include customers, parts, geographic

locations, etc.

Column An individual piece of data stored in a table.

Row A set of columns that together completely describe an entity or some action on an entity. Also called a record.

Table A set of rows, held either in memory (nonpersistent) or on permanent storage (persistent).

Result set Another name for a nonpersistent table, generally the result of an SQL query.

Primary key One or more columns that can be used as a unique identifier for each row in a table.

Foreign key One or more columns that can be used together to identify a single row in another table.

What Is SQL?
Along with Codd’s definition of the relational model, he proposed a language called
DSL/Alpha for manipulating the data in relational tables. Shortly after Codd’s paper
was released, IBM commissioned a group to build a prototype based on Codd’s ideas.
This group created a simplified version of DSL/Alpha that they called SQUARE.
Refinements to SQUARE led to a language called SEQUEL, which was, finally, short‐
ened to SQL. While SQL began as a language used to manipulate data in relational
databases, it has evolved (as you will see toward the end of this book) to be a language
for manipulating data across various database technologies.

SQL is now more than 40 years old, and it has undergone a great deal of change along
the way. In the mid-1980s, the American National Standards Institute (ANSI) began
working on the first standard for the SQL language, which was published in 1986.
Subsequent refinements led to new releases of the SQL standard in 1989, 1992, 1999,
2003, 2006, 2008, 2011, and 2016. Along with refinements to the core language, new
features have been added to the SQL language to incorporate object-oriented func‐
tionality, among other things. The later standards focus on the integration of related
technologies, such as extensible markup language (XML) and JavaScript object nota‐
tion (JSON).

SQL goes hand in hand with the relational model because the result of an SQL query
is a table (also called, in this context, a result set). Thus, a new permanent table can be
created in a relational database simply by storing the result set of a query. Similarly, a
query can use both permanent tables and the result sets from other queries as inputs
(we explore this in detail in Chapter 9).

One final note: SQL is not an acronym for anything (although many people will insist
it stands for “Structured Query Language”). When referring to the language, it is
equally acceptable to say the letters individually (i.e., S. Q. L.) or to use the word
sequel.

8 | Chapter 1: A Little Background

SQL Statement Classes
The SQL language is divided into several distinct parts: the parts that we explore in
this book include SQL schema statements, which are used to define the data structures
stored in the database; SQL data statements, which are used to manipulate the data
structures previously defined using SQL schema statements; and SQL transaction
statements, which are used to begin, end, and roll back transactions (concepts covered
in Chapter 12). For example, to create a new table in your database, you would use
the SQL schema statement create table, whereas the process of populating your
new table with data would require the SQL data statement insert.

To give you a taste of what these statements look like, here’s an SQL schema statement
that creates a table called corporation:

CREATE TABLE corporation
 (corp_id SMALLINT,
 name VARCHAR(30),
 CONSTRAINT pk_corporation PRIMARY KEY (corp_id)
);

This statement creates a table with two columns, corp_id and name, with the corp_id
column identified as the primary key for the table. We probe the finer details of this
statement, such as the different data types available with MySQL, in Chapter 2. Next,
here’s an SQL data statement that inserts a row into the corporation table for Acme
Paper Corporation:

INSERT INTO corporation (corp_id, name)
VALUES (27, 'Acme Paper Corporation');

This statement adds a row to the corporation table with a value of 27 for the corp_id
column and a value of Acme Paper Corporation for the name column.

Finally, here’s a simple select statement to retrieve the data that was just created:

mysql< SELECT name
 -> FROM corporation
 -> WHERE corp_id = 27;
+------------------------+
| name |
+------------------------+
| Acme Paper Corporation |
+------------------------+

All database elements created via SQL schema statements are stored in a special set of
tables called the data dictionary. This “data about the database” is known collectively
as metadata and is explored in Chapter 15. Just like tables that you create yourself,
data dictionary tables can be queried via a select statement, thereby allowing you to
discover the current data structures deployed in the database at runtime. For exam‐
ple, if you are asked to write a report showing the new accounts created last month,

What Is SQL? | 9

you could either hardcode the names of the columns in the account table that were
known to you when you wrote the report, or query the data dictionary to determine
the current set of columns and dynamically generate the report each time it is
executed.

Most of this book is concerned with the data portion of the SQL language, which con‐
sists of the select, update, insert, and delete commands. SQL schema statements
are demonstrated in Chapter 2, which will lead you through the design and creation
of some simple tables. In general, SQL schema statements do not require much dis‐
cussion apart from their syntax, whereas SQL data statements, while few in number,
offer numerous opportunities for detailed study. Therefore, while I try to introduce
you to many of the SQL schema statements, most chapters in this book concentrate
on the SQL data statements.

SQL: A Nonprocedural Language
If you have worked with programming languages in the past, you are used to defining
variables and data structures, using conditional logic (i.e., if-then-else) and looping
constructs (i.e., do while ... end), and breaking your code into small, reusable pieces
(i.e., objects, functions, procedures). Your code is handed to a compiler, and the exe‐
cutable that results does exactly (well, not always exactly) what you programmed it to
do. Whether you work with Java, Python, Scala, or some other procedural language,
you are in complete control of what the program does.

A procedural language defines both the desired results and the
mechanism, or process, by which the results are generated. Non‐
procedural languages also define the desired results, but the pro‐
cess by which the results are generated is left to an external agent.

With SQL, however, you will need to give up some of the control you are used to,
because SQL statements define the necessary inputs and outputs, but the manner in
which a statement is executed is left to a component of your database engine known
as the optimizer. The optimizer’s job is to look at your SQL statements and, taking
into account how your tables are configured and what indexes are available, decide
the most efficient execution path (well, not always the most efficient). Most database
engines will allow you to influence the optimizer’s decisions by specifying optimizer
hints, such as suggesting that a particular index be used; most SQL users, however,
will never get to this level of sophistication and will leave such tweaking to their data‐
base administrator or performance expert.

Therefore, with SQL, you will not be able to write complete applications. Unless you
are writing a simple script to manipulate certain data, you will need to integrate SQL
with your favorite programming language. Some database vendors have done this for

10 | Chapter 1: A Little Background

you, such as Oracle’s PL/SQL language, MySQL’s stored procedure language, and
Microsoft’s Transact-SQL language. With these languages, the SQL data statements
are part of the language’s grammar, allowing you to seamlessly integrate database
queries with procedural commands. If you are using a non-database-specific lan‐
guage such as Java or Python, however, you will need to use a toolkit/API to execute
SQL statements from your code. Some of these toolkits are provided by your database
vendor, whereas others have been created by third-party vendors or by open source
providers. Table 1-2 shows some of the available options for integrating SQL into a
specific language.

Table 1-2. SQL integration toolkits

Language Toolkit
Java JDBC (Java Database Connectivity)

C# ADO.NET (Microsoft)

Ruby Ruby DBI

Python Python DB

Go Package database/sql

If you only need to execute SQL commands interactively, every database vendor pro‐
vides at least a simple command-line tool for submitting SQL commands to the data‐
base engine and inspecting the results. Most vendors provide a graphical tool as well
that includes one window showing your SQL commands and another window show‐
ing the results from your SQL commands. Additionally, there are third-party tools
such as SQuirrel, which will connect via a JDBC connection to many different data‐
base servers. Since the examples in this book are executed against a MySQL database,
I use the mysql command-line tool that is included as part of the MySQL installation
to run the examples and format the results.

SQL Examples
Earlier in this chapter, I promised to show you an SQL statement that would return
all the transactions against George Blake’s checking account. Without further ado,
here it is:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM individual i
 INNER JOIN account a ON i.cust_id = a.cust_id
 INNER JOIN product p ON p.product_cd = a.product_cd
 INNER JOIN transaction t ON t.account_id = a.account_id
WHERE i.fname = 'George' AND i.lname = 'Blake'
 AND p.name = 'checking account';

+--------+-------------+---------------------+--------+
| txn_id | txn_type_cd | txn_date | amount |

What Is SQL? | 11

+--------+-------------+---------------------+--------+
| 11 | DBT | 2008-01-05 00:00:00 | 100.00 |
+--------+-------------+---------------------+--------+
1 row in set (0.00 sec)

Without going into too much detail at this point, this query identifies the row in the
individual table for George Blake and the row in the product table for the “check‐
ing” product, finds the row in the account table for this individual/product
combination, and returns four columns from the transaction table for all transac‐
tions posted to this account. If you happen to know that George Blake’s customer ID
is 8 and that checking accounts are designated by the code 'CHK', then you can sim‐
ply find George Blake’s checking account in the account table based on the customer
ID and use the account ID to find the appropriate transactions:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM account a
 INNER JOIN transaction t ON t.account_id = a.account_id
WHERE a.cust_id = 8 AND a.product_cd = 'CHK';

I cover all of the concepts in these queries (plus a lot more) in the following chapters,
but I wanted to at least show what they would look like.

The previous queries contain three different clauses: select, from, and where. Almost
every query that you encounter will include at least these three clauses, although
there are several more that can be used for more specialized purposes. The role of
each of these three clauses is demonstrated by the following:

SELECT /* one or more things */ ...
FROM /* one or more places */ ...
WHERE /* one or more conditions apply */ ...

Most SQL implementations treat any text between the /* and */
tags as comments.

When constructing your query, your first task is generally to determine which table
or tables will be needed and then add them to your from clause. Next, you will need
to add conditions to your where clause to filter out the data from these tables that you
aren’t interested in. Finally, you will decide which columns from the different tables
need to be retrieved and add them to your select clause. Here’s a simple example
that shows how you would find all customers with the last name “Smith”:

SELECT cust_id, fname
FROM individual
WHERE lname = 'Smith';

12 | Chapter 1: A Little Background

This query searches the individual table for all rows whose lname column matches
the string 'Smith' and returns the cust_id and fname columns from those rows.

Along with querying your database, you will most likely be involved with populating
and modifying the data in your database. Here’s a simple example of how you would
insert a new row into the product table:

INSERT INTO product (product_cd, name)
VALUES ('CD', 'Certificate of Depysit')

Whoops, looks like you misspelled “Deposit.” No problem. You can clean that up with
an update statement:

UPDATE product
SET name = 'Certificate of Deposit'
WHERE product_cd = 'CD';

Notice that the update statement also contains a where clause, just like the select
statement. This is because an update statement must identify the rows to be modified;
in this case, you are specifying that only those rows whose product_cd column
matches the string 'CD' should be modified. Since the product_cd column is the pri‐
mary key for the product table, you should expect your update statement to modify
exactly one row (or zero, if the value doesn’t exist in the table). Whenever you execute
an SQL data statement, you will receive feedback from the database engine as to how
many rows were affected by your statement. If you are using an interactive tool such
as the mysql command-line tool mentioned earlier, then you will receive feedback
concerning how many rows were either:

• Returned by your select statement
• Created by your insert statement
• Modified by your update statement
• Removed by your delete statement

If you are using a procedural language with one of the toolkits mentioned earlier, the
toolkit will include a call to ask for this information after your SQL data statement
has executed. In general, it’s a good idea to check this info to make sure your state‐
ment didn’t do something unexpected (like when you forget to put a where clause on
your delete statement and delete every row in the table!).

What Is MySQL?
Relational databases have been available commercially for more than three decades.
Some of the most mature and popular commercial products include:

What Is MySQL? | 13

• Oracle Database from Oracle Corporation
• SQL Server from Microsoft
• DB2 Universal Database from IBM

All these database servers do approximately the same thing, although some are better
equipped to run very large or very high throughput databases. Others are better at
handling objects or very large files or XML documents, and so on. Additionally, all
these servers do a pretty good job of complying with the latest ANSI SQL standard.
This is a good thing, and I make it a point to show you how to write SQL statements
that will run on any of these platforms with little or no modification.

Along with the commercial database servers, there has been quite a bit of activity in
the open source community in the past two decades with the goal of creating a viable
alternative. Two of the most commonly used open source database servers are Post‐
greSQL and MySQL. The MySQL server is available for free, and I have found it to be
extremely simple to download and install. For these reasons, I have decided that all
examples for this book be run against a MySQL (version 8.0) database, and that the
mysql command-line tool be used to format query results. Even if you are already
using another server and never plan to use MySQL, I urge you to install the latest
MySQL server, load the sample schema and data, and experiment with the data and
examples in this book.

However, keep in mind the following caveat:

This is not a book about MySQL’s SQL implementation.

Rather, this book is designed to teach you how to craft SQL statements that will run
on MySQL with no modifications, and will run on recent releases of Oracle Database,
DB2, and SQL Server with few or no modifications.

SQL Unplugged
A great deal has happened in the database world during the decade between the sec‐
ond and third editions of this book. While relational databases are still heavily used
and will continue to be for some time, new database technologies have emerged to
meet the needs of companies like Amazon and Google. These technologies include
Hadoop, Spark, NoSQL, and NewSQL, which are distributed, scalable systems typi‐
cally deployed on clusters of commodity servers. While it is beyond the scope of this
book to explore these technologies in detail, they do all share something in common
with relational databases: SQL.

Since organizations frequently store data using multiple technologies, there is a need
to unplug SQL from a particular database server and provide a service that can span
multiple databases. For example, a report may need to bring together data stored in

14 | Chapter 1: A Little Background

Oracle, Hadoop, JSON files, CSV files, and Unix log files. A new generation of tools
have been built to meet this type of challenge, and one of the most promising is
Apache Drill, which is an open source query engine that allows users to write queries
that can access data stored in most any database or filesystem. We will explore
Apache Drill in Chapter 18.

What’s in Store
The overall goal of the next four chapters is to introduce the SQL data statements,
with a special emphasis on the three main clauses of the select statement. Addition‐
ally, you will see many examples that use the Sakila schema (introduced in the next
chapter), which will be used for all examples in the book. It is my hope that familiar‐
ity with a single database will allow you to get to the crux of an example without hav‐
ing to stop and examine the tables being used each time. If it becomes a bit tedious
working with the same set of tables, feel free to augment the sample database with
additional tables or to invent your own database with which to experiment.

After you have a solid grasp on the basics, the remaining chapters will drill deep into
additional concepts, most of which are independent of each other. Thus, if you find
yourself getting confused, you can always move ahead and come back later to revisit a
chapter. When you have finished the book and worked through all of the examples,
you will be well on your way to becoming a seasoned SQL practitioner.

For readers interested in learning more about relational databases, the history of
computerized database systems, or the SQL language than was covered in this short
introduction, here are a few resources worth checking out:

• Database in Depth: Relational Theory for Practitioners by C. J. Date (O’Reilly)
• An Introduction to Database Systems, Eighth Edition, by C. J. Date (Addison-

Wesley)
• The Database Relational Model: A Retrospective Review and Analysis, by C. J. Date

(Addison-Wesley)
• Wikipedia subarticle on definition of “Database Management System”

What’s in Store | 15

http://oreilly.com/catalog/9780596100124/
https://oreil.ly/sj2xR

CHAPTER 2

Creating and Populating a Database

This chapter provides you with the information you need to create your first database
and to create the tables and associated data used for the examples in this book. You
will also learn about various data types and see how to create tables using them.
Because the examples in this book are executed against a MySQL database, this chap‐
ter is somewhat skewed toward MySQL’s features and syntax, but most concepts are
applicable to any server.

Creating a MySQL Database
If you want the ability to experiment with the data used for the examples in this book,
you have two options:

• Download and install the MySQL server version 8.0 (or later) and load the Sakila
example database from https://dev.mysql.com/doc/index-other.html.

• Go to https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox to
access the MySQL Sandbox, which has the Sakila sample database loaded in a
MySQL instance. You’ll have to set up a (free) Katacoda account. Then, click the
Start Scenario button.

If you choose the second option, once you start the scenario, a MySQL server is
installed and started, and then the Sakila schema and data are loaded. When it’s ready,
a standard mysql> prompt appears, and you can then start querying the sample data‐
base. This is certainly the easiest option, and I anticipate that most readers will
choose this option; if this sounds good to you, feel free to skip ahead to the next
section.

If you prefer to have your own copy of the data and want any changes you have made
to be permanent, or if you are just interested in installing the MySQL server on your

17

https://dev.mysql.com/doc/index-other.html
https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox

own machine, you may prefer the first option. You may also opt to use a MySQL
server hosted in an environment such as Amazon Web Services or Google Cloud. In
either case, you will need to perform the installation/configuration yourself, as it is
beyond the scope of this book. Once your database is available, you will need to fol‐
low a few steps to load the Sakila sample database.

First, you will need to launch the mysql command-line client and provide a password,
and then perform the following steps:

1. Go to https://dev.mysql.com/doc/index-other.html and download the files for
“sakila database” under the Example Databases section.

2. Put the files in a local directory such as C:\temp\sakila-db (used for the next two
steps, but overwrite with your directory path).

3. Type source c:\temp\sakila-db\sakila-schema.sql; and press Enter.
4. Type source c:\temp\sakila-db\sakila-data.sql; and press Enter.

You should now have a working database populated with all the data needed for the
examples in this book.

The Sakila sample database is made available by MySQL and is
licensed via the New BSD license. Sakila contains data for a ficti‐
tious movie rental company, and includes tables such as store,
inventory, film, customer, and payment. While actual movie rental
stores are largely a thing of the past, with a little imagination we
could rebrand it as a movie-streaming company by ignoring the
staff and address tables and renaming store to streaming_ser
vice. However, the examples in this book will stick to the original
script (pun intended).

Using the mysql Command-Line Tool
Unless you are using a temporary database session (the second option in the previous
section), you will need to start the mysql command-line tool in order to interact with
the database. To do so, you will need to open a Windows or Unix shell and execute
the mysql utility. For example, if you are logging in using the root account, you would
do the following:

mysql -u root -p;

You will then be asked for your password, after which you will see the mysql>
prompt. To see all of the available databases, you can use the following command:

18 | Chapter 2: Creating and Populating a Database

https://dev.mysql.com/doc/index-other.html

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sakila |
| sys |
+--------------------+
5 rows in set (0.01 sec)

Since you will be using the Sakila database, you will need to specify the database you
want to work with via the use command:

mysql> use sakila;
Database changed

Whenever you invoke the mysql command-line tool, you can specify both the user‐
name and database to use, as in the following:

mysql -u root -p sakila;

This will save you from having to type use sakila; every time you start up the tool.
Now that you have established a session and specified the database, you will be able to
issue SQL statements and view the results. For example, if you want to know the cur‐
rent date and time, you could issue the following query:

mysql> SELECT now();
+---------------------+
| now() |
+---------------------+
| 2019-04-04 20:44:26 |
+---------------------+
1 row in set (0.01 sec)

The now() function is a built-in MySQL function that returns the current date and
time. As you can see, the mysql command-line tool formats the results of your quer‐
ies within a rectangle bounded by +, -, and | characters. After the results have been
exhausted (in this case, there is only a single row of results), the mysql command-line
tool shows how many rows were returned, along with how long the SQL statement
took to execute.

About Missing from Clauses
With some database servers, you won’t be able to issue a query without a from clause
that names at least one table. Oracle Database is a commonly used server for which
this is true. For cases when you only need to call a function, Oracle provides a table
called dual, which consists of a single column called dummy that contains a single row
of data. In order to be compatible with Oracle Database, MySQL also provides a dual

Using the mysql Command-Line Tool | 19

table. The previous query to determine the current date and time could therefore be
written as:

mysql> SELECT now()
 FROM dual;
+---------------------+
| now() |
+---------------------+
| 2019-04-04 20:44:26 |
+---------------------+
1 row in set (0.01 sec)

If you are not using Oracle and have no need to be compatible with Oracle, you can
ignore the dual table altogether and use just a select clause without a from clause.

When you are done with the mysql command-line tool, simply type quit; or exit;
to return to the Unix or Windows command shell.

MySQL Data Types
In general, all the popular database servers have the capacity to store the same types
of data, such as strings, dates, and numbers. Where they typically differ is in the spe‐
cialty data types, such as XML and JSON documents or spatial data. Since this is an
introductory book on SQL and since 98% of the columns you encounter will be sim‐
ple data types, this chapter covers only the character, date (a.k.a. temporal), and
numeric data types. The use of SQL to query JSON documents will be explored in
Chapter 18.

Character Data
Character data can be stored as either fixed-length or variable-length strings; the dif‐
ference is that fixed-length strings are right-padded with spaces and always consume
the same number of bytes, and variable-length strings are not right-padded with
spaces and don’t always consume the same number of bytes. When defining a charac‐
ter column, you must specify the maximum size of any string to be stored in the col‐
umn. For example, if you want to store strings up to 20 characters in length, you
could use either of the following definitions:

char(20) /* fixed-length */
varchar(20) /* variable-length */

The maximum length for char columns is currently 255 bytes, whereas varchar col‐
umns can be up to 65,535 bytes. If you need to store longer strings (such as emails,
XML documents, etc.), then you will want to use one of the text types (mediumtext
and longtext), which I cover later in this section. In general, you should use the char
type when all strings to be stored in the column are of the same length, such as state

20 | Chapter 2: Creating and Populating a Database

abbreviations, and the varchar type when strings to be stored in the column are of
varying lengths. Both char and varchar are used in a similar fashion in all the major
database servers.

An exception is made in the use of varchar for Oracle Database.
Oracle users should use the varchar2 type when defining variable-
length character columns.

Character sets
For languages that use the Latin alphabet, such as English, there is a sufficiently small
number of characters such that only a single byte is needed to store each character.
Other languages, such as Japanese and Korean, contain large numbers of characters,
thus requiring multiple bytes of storage for each character. Such character sets are
therefore called multibyte character sets.

MySQL can store data using various character sets, both single- and multibyte. To
view the supported character sets in your server, you can use the show command, as
shown in the following example:

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+--------+
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
ascii	US ASCII	ascii_general_ci	1
big5	Big5 Traditional Chinese	big5_chinese_ci	2
binary	Binary pseudo charset	binary	1
cp1250	Windows Central European	cp1250_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
cp850	DOS West European	cp850_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
cp866	DOS Russian	cp866_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
euckr	EUC-KR Korean	euckr_korean_ci	2
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
greek	ISO 8859-7 Greek	greek_general_ci	1
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
hp8	HP West European	hp8_english_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1

MySQL Data Types | 21

koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
swe7	7bit Swedish	swe7_swedish_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8	UTF-8 Unicode	utf8_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+----------+---------------------------------+---------------------+--------+
41 rows in set (0.04 sec)

If the value in the fourth column, maxlen, is greater than 1, then the character set is a
multibyte character set.

In prior versions of the MySQL server, the latin1 character set was automatically
chosen as the default character set, but version 8 defaults to utf8mb4. However, you
may choose to use a different character set for each character column in your data‐
base, and you can even store different character sets within the same table. To choose
a character set other than the default when defining a column, simply name one of
the supported character sets after the type definition, as in:

varchar(20) character set latin1

With MySQL, you may also set the default character set for your entire database:

create database european_sales character set latin1;

While this is as much information regarding character sets as is appropriate for an
introductory book, there is a great deal more to the topic of internationalization than
what is shown here. If you plan to deal with multiple or unfamiliar character sets, you
may want to pick up a book such as Jukka Korpela’s Unicode Explained: International‐
ize Documents, Programs, and Web Sites (O’Reilly).

Text data

If you need to store data that might exceed the 64 KB limit for varchar columns, you
will need to use one of the text types.

Table 2-1 shows the available text types and their maximum sizes.

22 | Chapter 2: Creating and Populating a Database

Table 2-1. MySQL text types

Text type Maximum number of bytes

tinytext 255

text 65,535

mediumtext 16,777,215

longtext 4,294,967,295

When choosing to use one of the text types, you should be aware of the following:

• If the data being loaded into a text column exceeds the maximum size for that
type, the data will be truncated.

• Trailing spaces will not be removed when data is loaded into the column.
• When using text columns for sorting or grouping, only the first 1,024 bytes are

used, although this limit may be increased if necessary.
• The different text types are unique to MySQL. SQL Server has a single text type

for large character data, whereas DB2 and Oracle use a data type called clob, for
Character Large Object.

• Now that MySQL allows up to 65,535 bytes for varchar columns (it was limited
to 255 bytes in version 4), there isn’t any particular need to use the tinytext or
text type.

If you are creating a column for free-form data entry, such as a notes column to hold
data about customer interactions with your company’s customer service department,
then varchar will probably be adequate. If you are storing documents, however, you
should choose either the mediumtext or longtext type.

Oracle Database allows up to 2,000 bytes for char columns and
4,000 bytes for varchar2 columns. For larger documents you may
use the clob type. SQL Server can handle up to 8,000 bytes for both
char and varchar data, but you can store up to 2 GB of data in a
column defined as varchar(max).

Numeric Data
Although it might seem reasonable to have a single numeric data type called
“numeric,” there are actually several different numeric data types that reflect the vari‐
ous ways in which numbers are used, as illustrated here:

A column indicating whether a customer order has been shipped
This type of column, referred to as a Boolean, would contain a 0 to indicate false
and a 1 to indicate true.

MySQL Data Types | 23

A system-generated primary key for a transaction table
This data would generally start at 1 and increase in increments of one up to a
potentially very large number.

An item number for a customer’s electronic shopping basket
The values for this type of column would be positive whole numbers between 1
and, perhaps, 200 (for shopaholics).

Positional data for a circuit board drill machine
High-precision scientific or manufacturing data often requires accuracy to eight
decimal points.

To handle these types of data (and more), MySQL has several different numeric data
types. The most commonly used numeric types are those used to store whole num‐
bers, or integers. When specifying one of these types, you may also specify that the
data is unsigned, which tells the server that all data stored in the column will be
greater than or equal to zero. Table 2-2 shows the five different data types used to
store whole-number integers.

Table 2-2. MySQL integer types

Type Signed range Unsigned range

tinyint −128 to 127 0 to 255

smallint −32,768 to 32,767 0 to 65,535

mediumint −8,388,608 to 8,388,607 0 to 16,777,215

int −2,147,483,648 to 2,147,483,647 0 to 4,294,967,295

bigint −2^63 to 2^63 - 1 0 to 2^64 - 1

When you create a column using one of the integer types, MySQL will allocate an
appropriate amount of space to store the data, which ranges from one byte for a
tinyint to eight bytes for a bigint. Therefore, you should try to choose a type that
will be large enough to hold the biggest number you can envision being stored in the
column without needlessly wasting storage space.

For floating-point numbers (such as 3.1415927), you may choose from the numeric
types shown in Table 2-3.

Table 2-3. MySQL floating-point types

Type Numeric range

float(p , s) −3.402823466E+38 to −1.175494351E-38
and 1.175494351E-38 to 3.402823466E+38

double(p , s) −1.7976931348623157E+308 to −2.2250738585072014E-308
and 2.2250738585072014E-308 to 1.7976931348623157E+308

24 | Chapter 2: Creating and Populating a Database

When using a floating-point type, you can specify a precision (the total number of
allowable digits both to the left and to the right of the decimal point) and a scale (the
number of allowable digits to the right of the decimal point), but they are not
required. These values are represented in Table 2-3 as p and s. If you specify a preci‐
sion and scale for your floating-point column, remember that the data stored in the
column will be rounded if the number of digits exceeds the scale and/or precision of
the column. For example, a column defined as float(4,2) will store a total of four
digits, two to the left of the decimal and two to the right of the decimal. Therefore,
such a column would handle the numbers 27.44 and 8.19 just fine, but the number
17.8675 would be rounded to 17.87, and attempting to store the number 178.375 in
your float(4,2) column would generate an error.

Like the integer types, floating-point columns can be defined as unsigned, but this
designation only prevents negative numbers from being stored in the column rather
than altering the range of data that may be stored in the column.

Temporal Data
Along with strings and numbers, you will almost certainly be working with informa‐
tion about dates and/or times. This type of data is referred to as temporal, and some
examples of temporal data in a database include:

• The future date that a particular event is expected to happen, such as shipping a
customer’s order

• The date that a customer’s order was shipped
• The date and time that a user modified a particular row in a table
• An employee’s birth date
• The year corresponding to a row in a yearly_sales fact table in a data

warehouse
• The elapsed time needed to complete a wiring harness on an automobile assem‐

bly line

MySQL includes data types to handle all of these situations. Table 2-4 shows the tem‐
poral data types supported by MySQL.

Table 2-4. MySQL temporal types

Type Default format Allowable values

date YYYY-MM-DD 1000-01-01 to 9999-12-31

datetime YYYY-MM-DD HH:MI:SS 1000-01-01 00:00:00.000000

to 9999-12-31 23:59:59.999999

MySQL Data Types | 25

Type Default format Allowable values

timestamp YYYY-MM-DD HH:MI:SS 1970-01-01 00:00:00.000000

to 2038-01-18 22:14:07.999999

year YYYY 1901 to 2155

time HHH:MI:SS −838:59:59.000000

to 838:59:59.000000

While database servers store temporal data in various ways, the purpose of a format
string (second column of Table 2-4) is to show how the data will be represented when
retrieved, along with how a date string should be constructed when inserting or
updating a temporal column. Thus, if you wanted to insert the date March 23, 2020,
into a date column using the default format YYYY-MM-DD, you would use the string
'2020-03-23'. Chapter 7 fully explores how temporal data is constructed and
displayed.

The datetime, timestamp, and time types also allow fractional seconds of up to 6
decimal places (microseconds). When defining columns using one of these data
types, you may supply a value from 0 to 6; for example, specifying datetime(2)
would allow your time values to include hundredths of a second.

Each database server allows a different range of dates for temporal
columns. Oracle Database accepts dates ranging from 4712 BC to
9999 AD, while SQL Server only handles dates ranging from 1753
AD to 9999 AD (unless you are using SQL Server 2008’s datetime2
data type, which allows for dates ranging from 1 AD to 9999 AD).
MySQL falls in between Oracle and SQL Server and can store dates
from 1000 AD to 9999 AD. Although this might not make any dif‐
ference for most systems that track current and future events, it is
important to keep in mind if you are storing historical dates.

Table 2-5 describes the various components of the date formats shown in Table 2-4.

Table 2-5. Date format components

Component Definition Range
YYYY Year, including century 1000 to 9999

MM Month 01 (January) to 12 (December)

DD Day 01 to 31

HH Hour 00 to 23

HHH Hours (elapsed) −838 to 838

MI Minute 00 to 59

SS Second 00 to 59

26 | Chapter 2: Creating and Populating a Database

Here’s how the various temporal types would be used to implement the examples
shown earlier:

• Columns to hold the expected future shipping date of a customer order and an
employee’s birth date would use the date type, since it is unrealistic to schedule a
future shipment down to the second and unnecessary to know at what time a
person was born.

• A column to hold information about when a customer order was actually
shipped would use the datetime type, since it is important to track not only the
date that the shipment occurred but the time as well.

• A column that tracks when a user last modified a particular row in a table would
use the timestamp type. The timestamp type holds the same information as the
datetime type (year, month, day, hour, minute, second), but a timestamp column
will automatically be populated with the current date/time by the MySQL server
when a row is added to a table or when a row is later modified.

• A column holding just year data would use the year type.
• Columns that hold data regarding the length of time needed to complete a task

would use the time type. For this type of data, it would be unnecessary and con‐
fusing to store a date component, since you are interested only in the number of
hours/minutes/seconds needed to complete the task. This information could be
derived using two datetime columns (one for the task start date/time and the
other for the task completion date/time) and subtracting one from the other, but
it is simpler to use a single time column.

Chapter 7 explores how to work with each of these temporal data types.

Table Creation
Now that you have a firm grasp on what data types may be stored in a MySQL data‐
base, it’s time to see how to use these types in table definitions. Let’s start by defining
a table to hold information about a person.

Step 1: Design
A good way to start designing a table is to do a bit of brainstorming to see what kind
of information would be helpful to include. Here’s what I came up with after thinking
for a short time about the types of information that describe a person:

• Name
• Eye color
• Birth date

Table Creation | 27

• Address
• Favorite foods

This is certainly not an exhaustive list, but it’s good enough for now. The next step is
to assign column names and data types. Table 2-6 shows my initial attempt.

Table 2-6. Person table, first pass

Column Type Allowable values

name varchar(40)

eye_color char(2) BL, BR, GR

birth_date date

address varchar(100)

favorite_foods varchar(200)

The name, address, and favorite_foods columns are of type varchar and allow for
free-form data entry. The eye_color column allows two characters that should equal
only BR, BL, or GR. The birth_date column is of type date, since a time component is
not needed.

Step 2: Refinement
In Chapter 1, you were introduced to the concept of normalization, which is the pro‐
cess of ensuring that there are no duplicate (other than foreign keys) or compound
columns in your database design. In looking at the columns in the person table a sec‐
ond time, the following issues arise:

• The name column is actually a compound object consisting of a first name and a
last name.

• Since multiple people can have the same name, eye color, birth date, and so forth,
there are no columns in the person table that guarantee uniqueness.

• The address column is also a compound object consisting of street, city, state/
province, country, and postal code.

• The favorite_foods column is a list containing zero, one, or more independent
items. It would be best to create a separate table for this data that includes a for‐
eign key to the person table so that you know to which person a particular food
may be attributed.

After taking these issues into consideration, Table 2-7 gives a normalized version of
the person table.

28 | Chapter 2: Creating and Populating a Database

Table 2-7. Person table, second pass

Column Type Allowable values

person_id smallint (unsigned)

first_name varchar(20)

last_name varchar(20)

eye_color char(2) BR, BL, GR

birth_date date

street varchar(30)

city varchar(20)

state varchar(20)

country varchar(20)

postal_code varchar(20)

Now that the person table has a primary key (person_id) to guarantee uniqueness,
the next step is to build a favorite_food table that includes a foreign key to the
person table. Table 2-8 shows the result.

Table 2-8. favorite_food table

Column Type

person_id smallint (unsigned)

food varchar(20)

The person_id and food columns comprise the primary key of the favorite_food
table, and the person_id column is also a foreign key to the person table.

How Much Is Enough?
Moving the favorite_foods column out of the person table was definitely a good
idea, but are we done yet? What happens, for example, if one person lists “pasta” as a
favorite food while another person lists “spaghetti”? Are they the same thing? In order
to prevent this problem, you might decide that you want people to choose their favor‐
ite foods from a list of options, in which case you should create a food table with
food_id and food_name columns and then change the favorite_food table to con‐
tain a foreign key to the food table. While this design would be fully normalized, you
might decide that you simply want to store the values that the user has entered, in
which case you may leave the table as is.

Table Creation | 29

Step 3: Building SQL Schema Statements
Now that the design is complete for the two tables holding information about people
and their favorite foods, the next step is to generate SQL statements to create the
tables in the database. Here is the statement to create the person table:

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
 fname VARCHAR(20),
 lname VARCHAR(20),
 eye_color CHAR(2),
 birth_date DATE,
 street VARCHAR(30),
 city VARCHAR(20),
 state VARCHAR(20),
 country VARCHAR(20),
 postal_code VARCHAR(20),
 CONSTRAINT pk_person PRIMARY KEY (person_id)
);

Everything in this statement should be fairly self-explanatory except for the last item;
when you define your table, you need to tell the database server what column or col‐
umns will serve as the primary key for the table. You do this by creating a constraint
on the table. You can add several types of constraints to a table definition. This con‐
straint is a primary key constraint. It is created on the person_id column and given
the name pk_person.

While on the topic of constraints, there is another type of constraint that would be
useful for the person table. In Table 2-6, I added a third column to show the allowa‐
ble values for certain columns (such as 'BR' and 'BL' for the eye_color column).
Another type of constraint called a check constraint constrains the allowable values for
a particular column. MySQL allows a check constraint to be attached to a column
definition, as in the following:

eye_color CHAR(2) CHECK (eye_color IN ('BR','BL','GR')),

While check constraints operate as expected on most database servers, the MySQL
server allows check constraints to be defined but does not enforce them. However,
MySQL does provide another character data type called enum that merges the check
constraint into the data type definition. Here’s what it would look like for the
eye_color column definition:

eye_color ENUM('BR','BL','GR'),

Here’s how the person table definition looks with an enum data type for the eye_color
column:

30 | Chapter 2: Creating and Populating a Database

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
 fname VARCHAR(20),
 lname VARCHAR(20),
 eye_color ENUM('BR','BL','GR'),
 birth_date DATE,
 street VARCHAR(30),
 city VARCHAR(20),
 state VARCHAR(20),
 country VARCHAR(20),
 postal_code VARCHAR(20),
 CONSTRAINT pk_person PRIMARY KEY (person_id)
);

Later in this chapter, you will see what happens if you try to add data to a column that
violates its check constraint (or, in the case of MySQL, its enumeration values).

You are now ready to run the create table statement using the mysql command-
line tool. Here’s what it looks like:

mysql> CREATE TABLE person
 -> (person_id SMALLINT UNSIGNED,
 -> fname VARCHAR(20),
 -> lname VARCHAR(20),
 -> eye_color ENUM('BR','BL','GR'),
 -> birth_date DATE,
 -> street VARCHAR(30),
 -> city VARCHAR(20),
 -> state VARCHAR(20),
 -> country VARCHAR(20),
 -> postal_code VARCHAR(20),
 -> CONSTRAINT pk_person PRIMARY KEY (person_id)
 ->);
Query OK, 0 rows affected (0.37 sec)

After processing the create table statement, the MySQL server returns the message
“Query OK, 0 rows affected,” which tells me that the statement had no syntax errors.

If you want to make sure that the person table does, in fact, exist, you can use the
describe command (or desc for short) to look at the table definition:

mysql> desc person;
+-------------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------------------+------+-----+---------+-------+
person_id	smallint(5) unsigned	NO	PRI	NULL	
fname	varchar(20)	YES		NULL	
lname	varchar(20)	YES		NULL	
eye_color	enum('BR','BL','GR')	YES		NULL	
birth_date	date	YES		NULL	
street	varchar(30)	YES		NULL	
city	varchar(20)	YES		NULL	
state	varchar(20)	YES		NULL	

Table Creation | 31

| country | varchar(20) | YES | | NULL | |
| postal_code | varchar(20) | YES | | NULL | |
+-------------+----------------------+------+-----+---------+-------+
10 rows in set (0.00 sec)

Columns 1 and 2 of the describe output are self-explanatory. Column 3 shows
whether a particular column can be omitted when data is inserted into the table. I
purposefully left this topic out of the discussion for now (see the following sidebar for
a short discourse), but we explore it fully in Chapter 4. The fourth column shows
whether a column takes part in any keys (primary or foreign); in this case, the per
son_id column is marked as the primary key. Column 5 shows whether a particular
column will be populated with a default value if you omit the column when inserting
data into the table. The sixth column (called “Extra”) shows any other pertinent infor‐
mation that might apply to a column.

What Is Null?
In some cases, it is not possible or applicable to provide a value for a particular col‐
umn in your table. For example, when adding data about a new customer order, the
ship_date column cannot yet be determined. In this case, the column is said to be
null (note that I do not say that it equals null), which indicates the absence of a value.
Null is used for various cases where a value cannot be supplied, such as:

• Not applicable
• Unknown
• Empty set

When designing a table, you may specify which columns are allowed to be null (the
default) and which columns are not allowed to be null (designated by adding the key‐
words not null after the type definition).

Now that you have created the person table, your next step will be to then create the
favorite_food table:

mysql> CREATE TABLE favorite_food
 -> (person_id SMALLINT UNSIGNED,
 -> food VARCHAR(20),
 -> CONSTRAINT pk_favorite_food PRIMARY KEY (person_id, food),
 -> CONSTRAINT fk_fav_food_person_id FOREIGN KEY (person_id)
 -> REFERENCES person (person_id)
 ->);
Query OK, 0 rows affected (0.10 sec)

This should look very similar to the create table statement for the person table,
with the following exceptions:

32 | Chapter 2: Creating and Populating a Database

• Since a person can have more than one favorite food (which is the reason this
table was created in the first place), it takes more than just the person_id column
to guarantee uniqueness in the table. This table, therefore, has a two-column pri‐
mary key: person_id and food.

• The favorite_food table contains another type of constraint which is called a
foreign key constraint. This constrains the values of the person_id column in the
favorite_food table to include only values found in the person table. With this
constraint in place, I will not be able to add a row to the favorite_food table
indicating that person_id 27 likes pizza if there isn’t already a row in the person
table having a person_id of 27.

If you forget to create the foreign key constraint when you first cre‐
ate the table, you can add it later via the alter table statement.

describe shows the following after executing the create table statement:

mysql> desc favorite_food;
+-----------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+----------------------+------+-----+---------+-------+
| person_id | smallint(5) unsigned | NO | PRI | NULL | |
| food | varchar(20) | NO | PRI | NULL | |
+-----------+----------------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Now that the tables are in place, the next logical step is to add some data.

Populating and Modifying Tables
With the person and favorite_food tables in place, you can now begin to explore
the four SQL data statements: insert, update, delete, and select.

Inserting Data
Since there is not yet any data in the person and favorite_food tables, the first of the
four SQL data statements to be explored will be the insert statement. There are three
main components to an insert statement:

• The name of the table into which to add the data
• The names of the columns in the table to be populated

Populating and Modifying Tables | 33

• The values with which to populate the columns

You are not required to provide data for every column in the table (unless all the col‐
umns in the table have been defined as not null). In some cases, those columns that
are not included in the initial insert statement will be given a value later via an
update statement. In other cases, a column may never receive a value for a particular
row of data (such as a customer order that is canceled before being shipped, thus ren‐
dering the ship_date column inapplicable).

Generating numeric key data

Before inserting data into the person table, it would be useful to discuss how values
are generated for numeric primary keys. Other than picking a number out of thin air,
you have a couple of options:

• Look at the largest value currently in the table and add one.
• Let the database server provide the value for you.

Although the first option may seem valid, it proves problematic in a multiuser envi‐
ronment, since two users might look at the table at the same time and generate the
same value for the primary key. Instead, all database servers on the market today pro‐
vide a safe, robust method for generating numeric keys. In some servers, such as the
Oracle Database, a separate schema object is used (called a sequence); in the case of
MySQL, however, you simply need to turn on the auto-increment feature for your pri‐
mary key column. Normally, you would do this at table creation, but doing it now
provides the opportunity to learn another SQL schema statement, alter table,
which is used to modify the definition of an existing table:

ALTER TABLE person MODIFY person_id SMALLINT UNSIGNED AUTO_INCREMENT;

This statement essentially redefines the person_id column in the person table. If you
describe the table, you will now see the auto-increment feature listed under the
“Extra” column for person_id:

mysql> DESC person;
+-------------+------------------------+------+-----+---------+-----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------------+------+-----+---------+-----------------+
person_id	smallint(5) unsigned	NO	PRI	NULL	auto_increment
.					
.					
.					

When you insert data into the person table, you simply provide a null value for the
person_id column, and MySQL will populate the column with the next available
number (by default, MySQL starts at 1 for auto-increment columns).

34 | Chapter 2: Creating and Populating a Database

The insert statement
Now that all the pieces are in place, it’s time to add some data. The following state‐
ment creates a row in the person table for William Turner:

mysql> INSERT INTO person
 -> (person_id, fname, lname, eye_color, birth_date)
 -> VALUES (null, 'William','Turner', 'BR', '1972-05-27');
Query OK, 1 row affected (0.22 sec)

The feedback (“Query OK, 1 row affected”) tells you that your statement syntax was
proper and that one row was added to the database (since it was an insert state‐
ment). You can look at the data just added to the table by issuing a select statement:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.06 sec)

As you can see, the MySQL server generated a value of 1 for the primary key. Since
there is only a single row in the person table, I neglected to specify which row I am
interested in and simply retrieved all the rows in the table. If there were more than
one row in the table, however, I could add a where clause to specify that I want to
retrieve data only for the row having a value of 1 for the person_id column:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person
 -> WHERE person_id = 1;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

While this query specifies a particular primary key value, you can use any column in
the table to search for rows, as shown by the following query, which finds all rows
with a value of 'Turner' for the lname column:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person
 -> WHERE lname = 'Turner';
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

Populating and Modifying Tables | 35

Before moving on, a couple of things about the earlier insert statement are worth
mentioning:

• Values were not provided for any of the address columns. This is fine, since nulls
are allowed for those columns.

• The value provided for the birth_date column was a string. As long as you
match the required format shown in Table 2-4, MySQL will convert the string to
a date for you.

• The column names and the values provided must correspond in number and
type. If you name seven columns and provide only six values or if you provide
values that cannot be converted to the appropriate data type for the correspond‐
ing column, you will receive an error.

William Turner has also provided information about his favorite three foods, so here
are three insert statements to store his food preferences:

mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'pizza');
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'cookies');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (1, 'nachos');
Query OK, 1 row affected (0.01 sec)

Here’s a query that retrieves William’s favorite foods in alphabetical order using an
order by clause:

mysql> SELECT food
 -> FROM favorite_food
 -> WHERE person_id = 1
 -> ORDER BY food;
+---------+
| food |
+---------+
| cookies |
| nachos |
| pizza |
+---------+
3 rows in set (0.02 sec)

The order by clause tells the server how to sort the data returned by the query.
Without the order by clause, there is no guarantee that the data in the table will be
retrieved in any particular order.

So that William doesn’t get lonely, you can execute another insert statement to add
Susan Smith to the person table:

36 | Chapter 2: Creating and Populating a Database

mysql> INSERT INTO person
 -> (person_id, fname, lname, eye_color, birth_date,
 -> street, city, state, country, postal_code)
 -> VALUES (null, 'Susan','Smith', 'BL', '1975-11-02',
 -> '23 Maple St.', 'Arlington', 'VA', 'USA', '20220');
 Query OK, 1 row affected (0.01 sec)

Since Susan was kind enough to provide her address, we included five more columns
than when William’s data was inserted. If you query the table again, you will see that
Susan’s row has been assigned the value 2 for its primary key value:

mysql> SELECT person_id, fname, lname, birth_date
 -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname | lname | birth_date |
+-----------+---------+--------+------------+
| 1 | William | Turner | 1972-05-27 |
| 2 | Susan | Smith | 1975-11-02 |
+-----------+---------+--------+------------+
2 rows in set (0.00 sec)

Can I Get That in XML?
If you will be working with XML data, you will be happy to know that most database
servers provide a simple way to generate XML output from a query. With MySQL, for
example, you can use the --xml option when invoking the mysql tool, and all your
output will automatically be formatted using XML. Here’s what the favorite-food data
looks like as an XML document:

C:\database> mysql -u lrngsql -p --xml bank
Enter password: xxxxxx
Welcome to the MySQL Monitor...

Mysql> SELECT * FROM favorite_food;
<?xml version="1.0"?>

<resultset statement="select * from favorite_food"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <row>
 <field name="person_id">1</field>
 <field name="food">cookies</field>
 </row>
 <row>
 <field name="person_id">1</field>
 <field name="food">nachos</field>
 </row>
 <row>
 <field name="person_id">1</field>
 <field name="food">pizza</field>
 </row>

Populating and Modifying Tables | 37

</resultset>
3 rows in set (0.00 sec)

With SQL Server, you don’t need to configure your command-line tool; you just need
to add the for xml clause to the end of your query, as in:

SELECT * FROM favorite_food
FOR XML AUTO, ELEMENTS

Updating Data
When the data for William Turner was initially added to the table, data for the vari‐
ous address columns was not included in the insert statement. The next statement
shows how these columns can be populated at a later time via an update statement:

mysql> UPDATE person
 -> SET street = '1225 Tremont St.',
 -> city = 'Boston',
 -> state = 'MA',
 -> country = 'USA',
 -> postal_code = '02138'
 -> WHERE person_id = 1;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The server responded with a two-line message: the “Rows matched: 1” item tells you
that the condition in the where clause matched a single row in the table, and the
“Changed: 1” item tells you that a single row in the table has been modified. Since the
where clause specifies the primary key of William’s row, this is exactly what you would
expect to have happen.

Depending on the conditions in your where clause, it is also possible to modify more
than one row using a single statement. Consider, for example, what would happen if
your where clause looked as follows:

WHERE person_id < 10

Since both William and Susan have a person_id value less than 10, both of their rows
would be modified. If you leave off the where clause altogether, your update state‐
ment will modify every row in the table.

Deleting Data
It seems that William and Susan aren’t getting along very well together, so one of
them has got to go. Since William was there first, Susan will get the boot courtesy of
the delete statement:

38 | Chapter 2: Creating and Populating a Database

mysql> DELETE FROM person
 -> WHERE person_id = 2;
Query OK, 1 row affected (0.01 sec)

Again, the primary key is being used to isolate the row of interest, so a single row is
deleted from the table. Like the update statement, more than one row can be deleted
depending on the conditions in your where clause, and all rows will be deleted if the
where clause is omitted.

When Good Statements Go Bad
So far, all of the SQL data statements shown in this chapter have been well formed
and have played by the rules. Based on the table definitions for the person and favor
ite_food tables, however, there are lots of ways that you can run afoul when inserting
or modifying data. This section shows you some of the common mistakes that you
might come across and how the MySQL server will respond.

Nonunique Primary Key
Because the table definitions include the creation of primary key constraints, MySQL
will make sure that duplicate key values are not inserted into the tables. The next
statement attempts to bypass the auto-increment feature of the person_id column
and create another row in the person table with a person_id of 1:

mysql> INSERT INTO person
 -> (person_id, fname, lname, eye_color, birth_date)
 -> VALUES (1, 'Charles','Fulton', 'GR', '1968-01-15');
ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

There is nothing stopping you (with the current schema objects, at least) from creat‐
ing two rows with identical names, addresses, birth dates, and so on, as long as they
have different values for the person_id column.

Nonexistent Foreign Key
The table definition for the favorite_food table includes the creation of a foreign
key constraint on the person_id column. This constraint ensures that all values of
person_id entered into the favorite_food table exist in the person table. Here’s what
would happen if you tried to create a row that violates this constraint:

mysql> INSERT INTO favorite_food (person_id, food)
 -> VALUES (999, 'lasagna');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint
fails ('sakila'.'favorite_food', CONSTRAINT 'fk_fav_food_person_id' FOREIGN KEY
('person_id') REFERENCES 'person' ('person_id'))

When Good Statements Go Bad | 39

In this case, the favorite_food table is considered the child and the person table is
considered the parent, since the favorite_food table is dependent on the person
table for some of its data. If you plan to enter data into both tables, you will need to
create a row in parent before you can enter data into favorite_food.

Foreign key constraints are enforced only if your tables are created
using the InnoDB storage engine. We discuss MySQL’s storage
engines in Chapter 12.

Column Value Violations
The eye_color column in the person table is restricted to the values 'BR' for brown,
'BL' for blue, and 'GR' for green. If you mistakenly attempt to set the value of the
column to any other value, you will receive the following response:

mysql> UPDATE person
 -> SET eye_color = 'ZZ'
 -> WHERE person_id = 1;
ERROR 1265 (01000): Data truncated for column 'eye_color' at row 1

The error message is a bit confusing, but it gives you the general idea that the server
is unhappy about the value provided for the eye_color column.

Invalid Date Conversions
If you construct a string with which to populate a date column and that string does
not match the expected format, you will receive another error. Here’s an example that
uses a date format that does not match the default date format of YYYY-MM-DD:

mysql> UPDATE person
 -> SET birth_date = 'DEC-21-1980'
 -> WHERE person_id = 1;
ERROR 1292 (22007): Incorrect date value: 'DEC-21-1980' for column 'birth_date'
at row 1

In general, it is always a good idea to explicitly specify the format string rather than
relying on the default format. Here’s another version of the statement that uses the
str_to_date function to specify which format string to use:

mysql> UPDATE person
 -> SET birth_date = str_to_date('DEC-21-1980' , '%b-%d-%Y')
 -> WHERE person_id = 1;
Query OK, 1 row affected (0.12 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Not only is the database server happy, but William is happy as well (we just made him
eight years younger, without the need for expensive cosmetic surgery!).

40 | Chapter 2: Creating and Populating a Database

Earlier in the chapter, when I discussed the various temporal data
types, I showed date-formatting strings such as YYYY-MM-DD. While
many database servers use this style of formatting, MySQL uses %Y
to indicate a four-character year. Here are a few more formatters
that you might need when converting strings to datetimes in
MySQL:

%a The short weekday name, such as Sun, Mon, ...
%b The short month name, such as Jan, Feb, ...
%c The numeric month (0..12)
%d The numeric day of the month (00..31)
%f The number of microseconds (000000..999999)
%H The hour of the day, in 24-hour format (00..23)
%h The hour of the day, in 12-hour format (01..12)
%i The minutes within the hour (00..59)
%j The day of year (001..366)
%M The full month name (January..December)
%m The numeric month
%p AM or PM
%s The number of seconds (00..59)
%W The full weekday name (Sunday..Saturday)
%w The numeric day of the week (0=Sunday..6=Saturday)
%Y The four-digit year

The Sakila Database
For the remainder of the book, most examples will use a sample database called
Sakila, which is made available by the nice people at MySQL. This database models a
chain of DVD rental stores, which is a bit outdated, but with a bit of imagination it
can be rebranded as a video-streaming company. Some of the tables include cus
tomer, film, actor, payment, rental, and category. The entire schema and example
data should have been created when you followed the final steps at the beginning of
the chapter for loading the MySQL server and generating the sample data. For a dia‐
gram of the tables and their columns and relationships, see Appendix A.

Table 2-9 shows some of the tables used in the Sakila schema, along with short defini‐
tions of each.

Table 2-9. Sakila schema definitions

Table name Definition

film A movie that has been released and can be rented

actor A person who acts in films

customer A person who watches films

category A genre of films

payment A rental of a film by a customer

The Sakila Database | 41

Table name Definition

language A language spoken by the actors of a film

film_actor An actor in a film

inventory A film available for rental

Feel free to experiment with the tables as much as you want, including adding your
own tables to expand the business functions. You can always drop the database and
re-create it from the downloaded file if you want to make sure your sample data is
intact. If you are using the temporary session, any changes you make will be lost
when the session closes, so you may want to keep a script of your changes so you can
re-create any changes you have made.

If you want to see the tables available in your database, you can use the show tables
command, as in:

mysql> show tables;
+----------------------------+
| Tables_in_sakila |
+----------------------------+
| actor |
| actor_info |
| address |
| category |
| city |
| country |
| customer |
| customer_list |
| film |
| film_actor |
| film_category |
| film_list |
| film_text |
| inventory |
| language |
| nicer_but_slower_film_list |
| payment |
| rental |
| sales_by_film_category |
| sales_by_store |
| staff |
| staff_list |
| store |
+----------------------------+
23 rows in set (0.02 sec)

Along with the 23 tables in the Sakila schema, your table listing may also include the
two tables created in this chapter: person and favorite_food. These tables will not
be used in later chapters, so feel free to drop them by issuing the following set of
commands:

42 | Chapter 2: Creating and Populating a Database

mysql> DROP TABLE favorite_food;
Query OK, 0 rows affected (0.56 sec)
mysql> DROP TABLE person;
Query OK, 0 rows affected (0.05 sec)

If you want to look at the columns in a table, you can use the describe command.
Here’s an example of the describe output for the customer table:

mysql> desc customer;
+-------------+--------------+------+-----+-------------+----------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+-------------+----------------------+
| customer_id | smallint(5) | NO | PRI | NULL | auto_increment |
 unsigned
| store_id | tinyint(3) | NO | MUL | NULL | |
 unsigned
first_name	varchar(45)	NO		NULL	
last_name	varchar(45)	NO	MUL	NULL	
email	varchar(50)	YES		NULL	
address_id	smallint(5)	NO	MUL	NULL	
 unsigned
| active | tinyint(1) | NO | | 1 | |
| create_date | datetime | NO | | NULL | |
| last_update | timestamp | YES | | CURRENT_ | DEFAULT_GENERATED on
 TIMESTAMP update CURRENT_
 TIMESTAMP |
+-------------+--------------+------+-----+-------------+----------------------+

The more comfortable you are with the example database, the better you will under‐
stand the examples and, consequently, the concepts in the following chapters.

The Sakila Database | 43

CHAPTER 3

Query Primer

So far, you have seen a few examples of database queries (a.k.a. select statements)
sprinkled throughout the first two chapters. Now it’s time to take a closer look at the
different parts of the select statement and how they interact. After finishing this
chapter, you should have a basic understanding of how data is retrieved, joined, fil‐
tered, grouped, and sorted; these topics will be covered in detail in Chapters 4
through 10.

Query Mechanics
Before dissecting the select statement, it might be interesting to look at how queries
are executed by the MySQL server (or, for that matter, any database server). If you are
using the mysql command-line tool (which I assume you are), then you have already
logged in to the MySQL server by providing your username and password (and pos‐
sibly a hostname if the MySQL server is running on a different computer). Once the
server has verified that your username and password are correct, a database connec‐
tion is generated for you to use. This connection is held by the application that
requested it (which, in this case, is the mysql tool) until the application releases the
connection (i.e., as a result of typing quit) or the server closes the connection (i.e.,
when the server is shut down). Each connection to the MySQL server is assigned an
identifier, which is shown to you when you first log in:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 11
Server version: 8.0.15 MySQL Community Server - GPL

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

45

owners.
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

In this case, my connection ID is 11. This information might be useful to your data‐
base administrator if something goes awry, such as a malformed query that runs for
hours, so you might want to jot it down.

Once the server has verified your username and password and issued you a connec‐
tion, you are ready to execute queries (along with other SQL statements). Each time a
query is sent to the server, the server checks the following things prior to statement
execution:

• Do you have permission to execute the statement?
• Do you have permission to access the desired data?
• Is your statement syntax correct?

If your statement passes these three tests, then your query is handed to the query opti‐
mizer, whose job it is to determine the most efficient way to execute your query. The
optimizer looks at such things as the order in which to join the tables named in your
from clause and what indexes are available, and then it picks an execution plan, which
the server uses to execute your query.

Understanding and influencing how your database server chooses
execution plans is a fascinating topic that many of you will want to
explore. For those readers using MySQL, you might consider read‐
ing Baron Schwartz et al.’s High Performance MySQL (O’Reilly).
Among other things, you will learn how to generate indexes, ana‐
lyze execution plans, influence the optimizer via query hints, and
tune your server’s startup parameters. If you are using Oracle Data‐
base or SQL Server, dozens of tuning books are available.

Once the server has finished executing your query, the result set is returned to the
calling application (which is, once again, the mysql tool). As I mentioned in Chap‐
ter 1, a result set is just another table containing rows and columns. If your query fails
to yield any results, the mysql tool will show you the message found at the end of the
following example:

mysql> SELECT first_name, last_name
 -> FROM customer
 -> WHERE last_name = 'ZIEGLER';
Empty set (0.02 sec)

If the query returns one or more rows, the mysql tool will format the results by
adding column headers and constructing boxes around the columns using the -, |,
and + symbols, as shown in the next example:

46 | Chapter 3: Query Primer

http://oreilly.com/catalog/9780596101718

mysql> SELECT *
 -> FROM category;
+-------------+-------------+---------------------+
| category_id | name | last_update |
+-------------+-------------+---------------------+
1	Action	2006-02-15 04:46:27
2	Animation	2006-02-15 04:46:27
3	Children	2006-02-15 04:46:27
4	Classics	2006-02-15 04:46:27
5	Comedy	2006-02-15 04:46:27
6	Documentary	2006-02-15 04:46:27
7	Drama	2006-02-15 04:46:27
8	Family	2006-02-15 04:46:27
9	Foreign	2006-02-15 04:46:27
10	Games	2006-02-15 04:46:27
11	Horror	2006-02-15 04:46:27
12	Music	2006-02-15 04:46:27
13	New	2006-02-15 04:46:27
14	Sci-Fi	2006-02-15 04:46:27
15	Sports	2006-02-15 04:46:27
16	Travel	2006-02-15 04:46:27
+-------------+-------------+---------------------+
16 rows in set (0.02 sec)

This query returns all three columns for of all the rows in the category table. After
the last row of data is displayed, the mysql tool displays a message telling you how
many rows were returned, which, in this case, is 16.

Query Clauses
Several components or clauses make up the select statement. While only one of
them is mandatory when using MySQL (the select clause), you will usually include
at least two or three of the six available clauses. Table 3-1 shows the different clauses
and their purposes.

Table 3-1. Query clauses

Clause name Purpose

select Determines which columns to include in the query’s result set

from Identifies the tables from which to retrieve data and how the tables should be joined

where Filters out unwanted data

group by Used to group rows together by common column values

having Filters out unwanted groups

order by Sorts the rows of the final result set by one or more columns

All of the clauses shown in Table 3-1 are included in the ANSI specification. The fol‐
lowing sections delve into the uses of the six major query clauses.

Query Clauses | 47

The select Clause
Even though the select clause is the first clause of a select statement, it is one of the
last clauses that the database server evaluates. The reason for this is that before you
can determine what to include in the final result set, you need to know all of the pos‐
sible columns that could be included in the final result set. In order to fully under‐
stand the role of the select clause, therefore, you will need to understand a bit about
the from clause. Here’s a query to get started:

mysql> SELECT *
 -> FROM language;
+-------------+----------+---------------------+
| language_id | name | last_update |
+-------------+----------+---------------------+
1	English	2006-02-15 05:02:19
2	Italian	2006-02-15 05:02:19
3	Japanese	2006-02-15 05:02:19
4	Mandarin	2006-02-15 05:02:19
5	French	2006-02-15 05:02:19
6	German	2006-02-15 05:02:19
+-------------+----------+---------------------+
6 rows in set (0.03 sec)

In this query, the from clause lists a single table (language), and the select clause
indicates that all columns (designated by *) in the language table should be included
in the result set. This query could be described in English as follows:

Show me all the columns and all the rows in the language table.

In addition to specifying all the columns via the asterisk character, you can explicitly
name the columns you are interested in, such as:

mysql> SELECT language_id, name, last_update
 -> FROM language;
+-------------+----------+---------------------+
| language_id | name | last_update |
+-------------+----------+---------------------+
1	English	2006-02-15 05:02:19
2	Italian	2006-02-15 05:02:19
3	Japanese	2006-02-15 05:02:19
4	Mandarin	2006-02-15 05:02:19
5	French	2006-02-15 05:02:19
6	German	2006-02-15 05:02:19
+-------------+----------+---------------------+
6 rows in set (0.00 sec)

The results are identical to the first query, since all the columns in the language table
(language_id, name, and last_update) are named in the select clause. You can
choose to include only a subset of the columns in the language table as well:

48 | Chapter 3: Query Primer

mysql> SELECT name
 -> FROM language;
+----------+
| name |
+----------+
| English |
| Italian |
| Japanese |
| Mandarin |
| French |
| German |
+----------+
6 rows in set (0.00 sec)

The job of the select clause, therefore, is as follows:

The select clause determines which of all possible columns should be included in the
query’s result set.

If you were limited to including only columns from the table or tables named in the
from clause, things would be rather dull. However, you can spice things up in your
select clause by including things such as:

• Literals, such as numbers or strings
• Expressions, such as transaction.amount * −1
• Built-in function calls, such as ROUND(transaction.amount, 2)
• User-defined function calls

The next query demonstrates the use of a table column, a literal, an expression, and a
built-in function call in a single query against the employee table:

mysql> SELECT language_id,
 -> 'COMMON' language_usage,
 -> language_id * 3.1415927 lang_pi_value,
 -> upper(name) language_name
 -> FROM language;
+-------------+----------------+---------------+---------------+
| language_id | language_usage | lang_pi_value | language_name |
+-------------+----------------+---------------+---------------+
1	COMMON	3.1415927	ENGLISH
2	COMMON	6.2831854	ITALIAN
3	COMMON	9.4247781	JAPANESE
4	COMMON	12.5663708	MANDARIN
5	COMMON	15.7079635	FRENCH
6	COMMON	18.8495562	GERMAN
+-------------+----------------+---------------+---------------+
6 rows in set (0.04 sec)

We cover expressions and built-in functions in detail later, but I wanted to give you a
feel for what kinds of things can be included in the select clause. If you only need to

The select Clause | 49

execute a built-in function or evaluate a simple expression, you can skip the from
clause entirely. Here’s an example:

mysql> SELECT version(),
 -> user(),
 -> database();
+-----------+----------------+------------+
| version() | user() | database() |
+-----------+----------------+------------+
| 8.0.15 | root@localhost | sakila |
+-----------+----------------+------------+
1 row in set (0.00 sec)

Since this query simply calls three built-in functions and doesn’t retrieve data from
any tables, there is no need for a from clause.

Column Aliases
Although the mysql tool will generate labels for the columns returned by your quer‐
ies, you may want to assign your own labels. While you might want to assign a new
label to a column from a table (if it is poorly or ambiguously named), you will almost
certainly want to assign your own labels to those columns in your result set that are
generated by expressions or built-in function calls. You can do so by adding a column
alias after each element of your select clause. Here’s the previous query against the
language table, which included column aliases for three of the columns:

mysql> SELECT language_id,
 -> 'COMMON' language_usage,
 -> language_id * 3.1415927 lang_pi_value,
 -> upper(name) language_name
 -> FROM language;
+-------------+----------------+---------------+---------------+
| language_id | language_usage | lang_pi_value | language_name |
+-------------+----------------+---------------+---------------+
1	COMMON	3.1415927	ENGLISH
2	COMMON	6.2831854	ITALIAN
3	COMMON	9.4247781	JAPANESE
4	COMMON	12.5663708	MANDARIN
5	COMMON	15.7079635	FRENCH
6	COMMON	18.8495562	GERMAN
+-------------+----------------+---------------+---------------+
6 rows in set (0.04 sec)

If you look at the select clause, you can see how the column aliases language_usage,
lang_pi_value, and language_name are added after the second, third, and fourth col‐
umns. I think you will agree that the output is easier to understand with column
aliases in place, and it would be easier to work with programmatically if you were
issuing the query from within Java or Python rather than interactively via the mysql

50 | Chapter 3: Query Primer

tool. In order to make your column aliases stand out even more, you also have the
option of using the as keyword before the alias name, as in:

mysql> SELECT language_id,
 -> 'COMMON' AS language_usage,
 -> language_id * 3.1415927 AS lang_pi_value,
 -> upper(name) AS language_name
 -> FROM language;

Many people feel that including the optional as keyword improves readability,
although I have chosen not to use it for the examples in this book.

Removing Duplicates
In some cases, a query might return duplicate rows of data. For example, if you were
to retrieve the IDs of all actors who appeared in a film, you would see the following:

mysql> SELECT actor_id FROM film_actor ORDER BY actor_id;
+----------+
| actor_id |
+----------+
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
...
| 200 |
| 200 |
| 200 |
| 200 |
| 200 |
| 200 |
| 200 |
| 200 |
| 200 |
+----------+
5462 rows in set (0.01 sec)

Since some actors appeared in more than one film, you will see the same actor ID
multiple times. What you probably want in this case is the distinct set of actors,
instead of seeing the actor IDs repeated for each film in which they appeared. You can
achieve this by adding the keyword distinct directly after the select keyword, as
demonstrated by the following:

The select Clause | 51

mysql> SELECT DISTINCT actor_id FROM film_actor ORDER BY actor_id;
+----------+
| actor_id |
+----------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
...
| 192 |
| 193 |
| 194 |
| 195 |
| 196 |
| 197 |
| 198 |
| 199 |
| 200 |
+----------+
200 rows in set (0.01 sec)

The result set now contains 200 rows, one for each distinct actor, rather than 5,462
rows, one for each film appearance by an actor.

If you simply want a list of all actors, you can query the actor table
rather than reading through all the rows in film_actor and remov‐
ing duplicates.

If you do not want the server to remove duplicate data or you are sure there will be
no duplicates in your result set, you can specify the all keyword instead of specifying
distinct. However, the all keyword is the default and never needs to be explicitly
named, so most programmers do not include all in their queries.

Keep in mind that generating a distinct set of results requires the
data to be sorted, which can be time consuming for large result
sets. Don’t fall into the trap of using distinct just to be sure there
are no duplicates; instead, take the time to understand the data you
are working with so that you will know whether duplicates are
possible.

52 | Chapter 3: Query Primer

The from Clause
Thus far, you have seen queries whose from clauses contain a single table. Although
most SQL books define the from clause as simply a list of one or more tables, I would
like to broaden the definition as follows:

The from clause defines the tables used by a query, along with the means of linking the
tables together.

This definition is composed of two separate but related concepts, which we explore in
the following sections.

Tables
When confronted with the term table, most people think of a set of related rows
stored in a database. While this does describe one type of table, I would like to use the
word in a more general way by removing any notion of how the data might be stored
and concentrating on just the set of related rows. Four different types of tables meet
this relaxed definition:

• Permanent tables (i.e., created using the create table statement)
• Derived tables (i.e., rows returned by a subquery and held in memory)
• Temporary tables (i.e., volatile data held in memory)
• Virtual tables (i.e., created using the create view statement)

Each of these table types may be included in a query’s from clause. By now, you
should be comfortable with including a permanent table in a from clause, so I will
briefly describe the other types of tables that can be referenced in a from clause.

Derived (subquery-generated) tables
A subquery is a query contained within another query. Subqueries are surrounded by
parentheses and can be found in various parts of a select statement; within the from
clause, however, a subquery serves the role of generating a derived table that is visible
from all other query clauses and can interact with other tables named in the from
clause. Here’s a simple example:

mysql> SELECT concat(cust.last_name, ', ', cust.first_name) full_name
 -> FROM
 -> (SELECT first_name, last_name, email
 -> FROM customer
 -> WHERE first_name = 'JESSIE'
 ->) cust;
+---------------+
| full_name |
+---------------+

The from Clause | 53

| BANKS, JESSIE |
| MILAM, JESSIE |
+---------------+
2 rows in set (0.00 sec)

In this example, a subquery against the customer table returns three columns, and
the containing query references two of the three available columns. The subquery is
referenced by the containing query via its alias, which, in this case, is cust. The data
in cust is held in memory for the duration of the query and is then discarded. This is
a simplistic and not particularly useful example of a subquery in a from clause; you
will find detailed coverage of subqueries in Chapter 9.

Temporary tables
Although the implementations differ, every relational database allows the ability to
define volatile, or temporary, tables. These tables look just like permanent tables, but
any data inserted into a temporary table will disappear at some point (generally at the
end of a transaction or when your database session is closed). Here’s a simple example
showing how actors whose last names start with J can be stored temporarily:

mysql> CREATE TEMPORARY TABLE actors_j
 -> (actor_id smallint(5),
 -> first_name varchar(45),
 -> last_name varchar(45)
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO actors_j
 -> SELECT actor_id, first_name, last_name
 -> FROM actor
 -> WHERE last_name LIKE 'J%';
Query OK, 7 rows affected (0.03 sec)
Records: 7 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM actors_j;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
119	WARREN	JACKMAN
131	JANE	JACKMAN
8	MATTHEW	JOHANSSON
64	RAY	JOHANSSON
146	ALBERT	JOHANSSON
82	WOODY	JOLIE
43	KIRK	JOVOVICH
+----------+------------+-----------+
7 rows in set (0.00 sec)

54 | Chapter 3: Query Primer

These seven rows are held in memory temporarily and will disappear after your ses‐
sion is closed.

Most database servers also drop the temporary table when the ses‐
sion ends. The exception is Oracle Database, which keeps the defi‐
nition of the temporary table available for future sessions.

Views
A view is a query that is stored in the data dictionary. It looks and acts like a table, but
there is no data associated with a view (this is why I call it a virtual table). When you
issue a query against a view, your query is merged with the view definition to create a
final query to be executed.

To demonstrate, here’s a view definition that queries the employee table and includes
four of the available columns:

mysql> CREATE VIEW cust_vw AS
 -> SELECT customer_id, first_name, last_name, active
 -> FROM customer;
Query OK, 0 rows affected (0.12 sec)

When the view is created, no additional data is generated or stored: the server simply
tucks away the select statement for future use. Now that the view exists, you can
issue queries against it, as in:

mysql> SELECT first_name, last_name
 -> FROM cust_vw
 -> WHERE active = 0;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
SANDRA	MARTIN
JUDITH	COX
SHEILA	WELLS
ERICA	MATTHEWS
HEIDI	LARSON
PENNY	NEAL
KENNETH	GOODEN
HARRY	ARCE
NATHAN	RUNYON
THEODORE	CULP
MAURICE	CRAWLEY
BEN	EASTER
CHRISTIAN	JUNG
JIMMIE	EGGLESTON
TERRANCE	ROUSH
+------------+-----------+
15 rows in set (0.00 sec)

The from Clause | 55

Views are created for various reasons, including to hide columns from users and to
simplify complex database designs.

Table Links
The second deviation from the simple from clause definition is the mandate that if
more than one table appears in the from clause, the conditions used to link the tables
must be included as well. This is not a requirement of MySQL or any other database
server, but it is the ANSI-approved method of joining multiple tables, and it is the
most portable across the various database servers. We explore joining multiple tables
in depth in Chapters 5 and 10, but here’s a simple example in case I have piqued your
curiosity:

mysql> SELECT customer.first_name, customer.last_name,
 -> time(rental.rental_date) rental_time
 -> FROM customer
 -> INNER JOIN rental
 -> ON customer.customer_id = rental.customer_id
 -> WHERE date(rental.rental_date) = '2005-06-14';
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
JEFFERY	PINSON	22:53:33
ELMER	NOE	22:55:13
MINNIE	ROMERO	23:00:34
MIRIAM	MCKINNEY	23:07:08
DANIEL	CABRAL	23:09:38
TERRANCE	ROUSH	23:12:46
JOYCE	EDWARDS	23:16:26
GWENDOLYN	MAY	23:16:27
CATHERINE	CAMPBELL	23:17:03
MATTHEW	MAHAN	23:25:58
HERMAN	DEVORE	23:35:09
AMBER	DIXON	23:42:56
TERRENCE	GUNDERSON	23:47:35
SONIA	GREGORY	23:50:11
CHARLES	KOWALSKI	23:54:34
JEANETTE	GREENE	23:54:46
+------------+-----------+-------------+
16 rows in set (0.01 sec)

The previous query displays data from both the customer table (first_name,
last_name) and the rental table (rental_date), so both tables are included in the
from clause. The mechanism for linking the two tables (referred to as a join) is the
customer ID stored in both the customer and rental tables. Thus, the database
server is instructed to use the value of the customer_id column in the customer table
to find all of the customer’s rentals in the rental table. Join conditions for the two
tables are found in the on subclause of the from clause; in this case, the join condition

56 | Chapter 3: Query Primer

is ON customer.customer_id = rental.customer_id. The where clause is not part
of the join and is only included to keep the result set fairly small, since there are more
than 16,000 rows in the rental table. Again, please refer to Chapter 5 for a thorough
discussion of joining multiple tables.

Defining Table Aliases
When multiple tables are joined in a single query, you need a way to identify which
table you are referring to when you reference columns in the select, where, group
by, having, and order by clauses. You have two choices when referencing a table out‐
side the from clause:

• Use the entire table name, such as employee.emp_id.
• Assign each table an alias and use the alias throughout the query.

In the previous query, I chose to use the entire table name in the select and on clau‐
ses. Here’s what the same query looks like using table aliases:

SELECT c.first_name, c.last_name,
 time(r.rental_date) rental_time
FROM customer c
 INNER JOIN rental r
 ON c.customer_id = r.customer_id
WHERE date(r.rental_date) = '2005-06-14';

If you look closely at the from clause, you will see that the customer table is assigned
the alias c, and the rental table is assigned the alias r. These aliases are then used in
the on clause when defining the join condition as well as in the select clause when
specifying the columns to include in the result set. I hope you will agree that using
aliases makes for a more compact statement without causing confusion (as long as
your choices for alias names are reasonable). Additionally, you may use the as key‐
word with your table aliases, similar to what was demonstrated earlier for column
aliases:

SELECT c.first_name, c.last_name,
 time(r.rental_date) rental_time
FROM customer AS c
 INNER JOIN rental AS r
 ON c.customer_id = r.customer_id
WHERE date(r.rental_date) = '2005-06-14';

I have found that roughly half of the database developers I have worked with use the
as keyword with their column and table aliases, and half do not.

The from Clause | 57

The where Clause
In some cases, you may want to retrieve all rows from a table, especially for small
tables such as language. Most of the time, however, you will not want to retrieve
every row from a table but will want a way to filter out those rows that are not of
interest. This is a job for the where clause.

The where clause is the mechanism for filtering out unwanted rows from your result set.

For example, perhaps you are interested in renting a film but you are only interested
in movies rated G that can be kept for at least a week. The following query employs a
where clause to retrieve only the films meeting these criteria:

mysql> SELECT title
 -> FROM film
 -> WHERE rating = 'G' AND rental_duration >= 7;
+-------------------------+
| title |
+-------------------------+
| BLANKET BEVERLY |
| BORROWERS BEDAZZLED |
| BRIDE INTRIGUE |
| CATCH AMISTAD |
| CITIZEN SHREK |
| COLDBLOODED DARLING |
| CONTROL ANTHEM |
| CRUELTY UNFORGIVEN |
| DARN FORRESTER |
| DESPERATE TRAINSPOTTING |
| DIARY PANIC |
| DRACULA CRYSTAL |
| EMPIRE MALKOVICH |
| FIREHOUSE VIETNAM |
| GILBERT PELICAN |
| GRADUATE LORD |
| GREASE YOUTH |
| GUN BONNIE |
| HOOK CHARIOTS |
| MARRIED GO |
| MENAGERIE RUSHMORE |
| MUSCLE BRIGHT |
| OPERATION OPERATION |
| PRIMARY GLASS |
| REBEL AIRPORT |
| SPIKING ELEMENT |
| TRUMAN CRAZY |
| WAKE JAWS |
| WAR NOTTING |
+-------------------------+
29 rows in set (0.00 sec)

58 | Chapter 3: Query Primer

In this case, the where clause filtered out 971 of the 1000 rows in the film table. This
where clause contains two filter conditions, but you can include as many conditions as
are required; individual conditions are separated using operators such as and, or, and
not (see Chapter 4 for a complete discussion of the where clause and filter
conditions).

Let’s see what would happen if you change the operator separating the two conditions
from and to or:

mysql> SELECT title
 -> FROM film
 -> WHERE rating = 'G' OR rental_duration >= 7;
+---------------------------+
| title |
+---------------------------+
| ACE GOLDFINGER |
| ADAPTATION HOLES |
| AFFAIR PREJUDICE |
| AFRICAN EGG |
| ALAMO VIDEOTAPE |
| AMISTAD MIDSUMMER |
| ANGELS LIFE |
| ANNIE IDENTITY |
|... |
| WATERSHIP FRONTIER |
| WEREWOLF LOLA |
| WEST LION |
| WESTWARD SEABISCUIT |
| WOLVES DESIRE |
| WON DARES |
| WORKER TARZAN |
| YOUNG LANGUAGE |
+---------------------------+
340 rows in set (0.00 sec)

When you separate conditions using the and operator, all conditions must evaluate to
true to be included in the result set; when you use or, however, only one of the con‐
ditions needs to evaluate to true for a row to be included, which explains why the
size of the result set has jumped from 29 to 340 rows.

So, what should you do if you need to use both and and or operators in your where
clause? Glad you asked. You should use parentheses to group conditions together.
The next query specifies that only those films that are rated G and are available for 7
or more days, or are rated PG-13 and are available 3 or fewer days, be included in the
result set:

mysql> SELECT title, rating, rental_duration
 -> FROM film
 -> WHERE (rating = 'G' AND rental_duration >= 7)
 -> OR (rating = 'PG-13' AND rental_duration < 4);

The where Clause | 59

+-------------------------+--------+-----------------+
| title | rating | rental_duration |
+-------------------------+--------+-----------------+
ALABAMA DEVIL	PG-13	3
BACKLASH UNDEFEATED	PG-13	3
BILKO ANONYMOUS	PG-13	3
BLANKET BEVERLY	G	7
BORROWERS BEDAZZLED	G	7
BRIDE INTRIGUE	G	7
CASPER DRAGONFLY	PG-13	3
CATCH AMISTAD	G	7
CITIZEN SHREK	G	7
COLDBLOODED DARLING	G	7
...		
TREASURE COMMAND	PG-13	3
TRUMAN CRAZY	G	7
WAIT CIDER	PG-13	3
WAKE JAWS	G	7
WAR NOTTING	G	7
WORLD LEATHERNECKS	PG-13	3
+-------------------------+--------+-----------------+
68 rows in set (0.00 sec)

You should always use parentheses to separate groups of conditions when mixing dif‐
ferent operators so that you, the database server, and anyone who comes along later
to modify your code will be on the same page.

The group by and having Clauses
All the queries thus far have retrieved raw data without any manipulation. Some‐
times, however, you will want to find trends in your data that will require the data‐
base server to cook the data a bit before you retrieve your result set. One such
mechanism is the group by clause, which is used to group data by column values. For
example, let’s say you wanted to find all of the customers who have rented 40 or more
films. Rather than looking through all 16,044 rows in the rental table, you can write
a query that instructs the server to group all rentals by customer, count the number of
rentals for each customer, and then return only those customers whose rental count is
at least 40. When using the group by clause to generate groups of rows, you may also
use the having clause, which allows you to filter grouped data in the same way the
where clause lets you filter raw data.

Here’s what the query looks like:

mysql> SELECT c.first_name, c.last_name, count(*)
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> GROUP BY c.first_name, c.last_name
 -> HAVING count(*) >= 40;

60 | Chapter 3: Query Primer

+------------+-----------+----------+
| first_name | last_name | count(*) |
+------------+-----------+----------+
TAMMY	SANDERS	41
CLARA	SHAW	42
ELEANOR	HUNT	46
SUE	PETERS	40
MARCIA	DEAN	42
WESLEY	BULL	40
KARL	SEAL	45
+------------+-----------+----------+
7 rows in set (0.03 sec)

I wanted to briefly mention these two clauses so that they don’t catch you by surprise
later in the book, but they are a bit more advanced than the other four select clauses.
Therefore, I ask that you wait until Chapter 8 for a full description of how and when
to use group by and having.

The order by Clause
In general, the rows in a result set returned from a query are not in any particular
order. If you want your result set to be sorted, you will need to instruct the server to
sort the results using the order by clause:

The order by clause is the mechanism for sorting your result set using either raw col‐
umn data or expressions based on column data.

For example, here’s another look at an earlier query that returns all customers who
rented a film on June 14, 2005:

mysql> SELECT c.first_name, c.last_name,
 -> time(r.rental_date) rental_time
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14';
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
JEFFERY	PINSON	22:53:33
ELMER	NOE	22:55:13
MINNIE	ROMERO	23:00:34
MIRIAM	MCKINNEY	23:07:08
DANIEL	CABRAL	23:09:38
TERRANCE	ROUSH	23:12:46
JOYCE	EDWARDS	23:16:26
GWENDOLYN	MAY	23:16:27
CATHERINE	CAMPBELL	23:17:03
MATTHEW	MAHAN	23:25:58
HERMAN	DEVORE	23:35:09
AMBER	DIXON	23:42:56

The order by Clause | 61

TERRENCE	GUNDERSON	23:47:35
SONIA	GREGORY	23:50:11
CHARLES	KOWALSKI	23:54:34
JEANETTE	GREENE	23:54:46
+------------+-----------+-------------+
16 rows in set (0.01 sec)

If you would like the results to be in alphabetical order by last name, you can add the
last_name column to the order by clause:

mysql> SELECT c.first_name, c.last_name,
 -> time(r.rental_date) rental_time
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY c.last_name;
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
DANIEL	CABRAL	23:09:38
CATHERINE	CAMPBELL	23:17:03
HERMAN	DEVORE	23:35:09
AMBER	DIXON	23:42:56
JOYCE	EDWARDS	23:16:26
JEANETTE	GREENE	23:54:46
SONIA	GREGORY	23:50:11
TERRENCE	GUNDERSON	23:47:35
CHARLES	KOWALSKI	23:54:34
MATTHEW	MAHAN	23:25:58
GWENDOLYN	MAY	23:16:27
MIRIAM	MCKINNEY	23:07:08
ELMER	NOE	22:55:13
JEFFERY	PINSON	22:53:33
MINNIE	ROMERO	23:00:34
TERRANCE	ROUSH	23:12:46
+------------+-----------+-------------+
16 rows in set (0.01 sec)

While it is not the case in this example, large customer lists will often contain multi‐
ple people having the same last name, so you may want to extend the sort criteria to
include the person’s first name as well.

You can accomplish this by adding the first_name column after the last_name col‐
umn in the order by clause:

mysql> SELECT c.first_name, c.last_name,
 -> time(r.rental_date) rental_time
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY c.last_name, c.first_name;

62 | Chapter 3: Query Primer

+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
DANIEL	CABRAL	23:09:38
CATHERINE	CAMPBELL	23:17:03
HERMAN	DEVORE	23:35:09
AMBER	DIXON	23:42:56
JOYCE	EDWARDS	23:16:26
JEANETTE	GREENE	23:54:46
SONIA	GREGORY	23:50:11
TERRENCE	GUNDERSON	23:47:35
CHARLES	KOWALSKI	23:54:34
MATTHEW	MAHAN	23:25:58
GWENDOLYN	MAY	23:16:27
MIRIAM	MCKINNEY	23:07:08
ELMER	NOE	22:55:13
JEFFERY	PINSON	22:53:33
MINNIE	ROMERO	23:00:34
TERRANCE	ROUSH	23:12:46
+------------+-----------+-------------+
16 rows in set (0.01 sec)

The order in which columns appear in your order by clause does make a difference
when you include more than one column. If you were to switch the order of the two
columns in the order by clause, Amber Dixon would appear first in the result set.

Ascending Versus Descending Sort Order
When sorting, you have the option of specifying ascending or descending order via the
asc and desc keywords. The default is ascending, so you will need to add the desc
keyword if you want to use a descending sort. For example, the following query
shows all customers who rented films on June 14, 2005, in descending order of rental
time:

mysql> SELECT c.first_name, c.last_name,
 -> time(r.rental_date) rental_time
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY time(r.rental_date) desc;
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
JEANETTE	GREENE	23:54:46
CHARLES	KOWALSKI	23:54:34
SONIA	GREGORY	23:50:11
TERRENCE	GUNDERSON	23:47:35
AMBER	DIXON	23:42:56
HERMAN	DEVORE	23:35:09
MATTHEW	MAHAN	23:25:58

The order by Clause | 63

CATHERINE	CAMPBELL	23:17:03
GWENDOLYN	MAY	23:16:27
JOYCE	EDWARDS	23:16:26
TERRANCE	ROUSH	23:12:46
DANIEL	CABRAL	23:09:38
MIRIAM	MCKINNEY	23:07:08
MINNIE	ROMERO	23:00:34
ELMER	NOE	22:55:13
JEFFERY	PINSON	22:53:33
+------------+-----------+-------------+
16 rows in set (0.01 sec)

Descending sorts are commonly used for ranking queries, such as “show me the top
five account balances.” MySQL includes a limit clause that allows you to sort your
data and then discard all but the first X rows.

Sorting via Numeric Placeholders
If you are sorting using the columns in your select clause, you can opt to reference
the columns by their position in the select clause rather than by name. This can be
especially helpful if you are sorting on an expression, such as in the previous example.
Here’s the previous example one last time, with an order by clause specifying a
descending sort using the third element in the select clause:

mysql> SELECT c.first_name, c.last_name,
 -> time(r.rental_date) rental_time
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY 3 desc;
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
JEANETTE	GREENE	23:54:46
CHARLES	KOWALSKI	23:54:34
SONIA	GREGORY	23:50:11
TERRENCE	GUNDERSON	23:47:35
AMBER	DIXON	23:42:56
HERMAN	DEVORE	23:35:09
MATTHEW	MAHAN	23:25:58
CATHERINE	CAMPBELL	23:17:03
GWENDOLYN	MAY	23:16:27
JOYCE	EDWARDS	23:16:26
TERRANCE	ROUSH	23:12:46
DANIEL	CABRAL	23:09:38
MIRIAM	MCKINNEY	23:07:08
MINNIE	ROMERO	23:00:34
ELMER	NOE	22:55:13
JEFFERY	PINSON	22:53:33

64 | Chapter 3: Query Primer

+------------+-----------+-------------+
16 rows in set (0.01 sec)

You might want to use this feature sparingly, since adding a column to the select
clause without changing the numbers in the order by clause can lead to unexpected
results. Personally, I may reference columns positionally when writing ad hoc queries,
but I always reference columns by name when writing code.

Test Your Knowledge
The following exercises are designed to strengthen your understanding of the select
statement and its various clauses. Please see Appendix B for solutions.

Exercise 3-1
Retrieve the actor ID, first name, and last name for all actors. Sort by last name and
then by first name.

Exercise 3-2
Retrieve the actor ID, first name, and last name for all actors whose last name equals
'WILLIAMS' or 'DAVIS'.

Exercise 3-3
Write a query against the rental table that returns the IDs of the customers who ren‐
ted a film on July 5, 2005 (use the rental.rental_date column, and you can use the
date() function to ignore the time component). Include a single row for each distinct
customer ID.

Exercise 3-4
Fill in the blanks (denoted by <#>) for this multitable query to achieve the following
results:

mysql> SELECT c.email, r.return_date
 -> FROM customer c
 -> INNER JOIN rental <1>
 -> ON c.customer_id = <2>
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY <3> <4>;
+---------------------------------------+---------------------+
| email | return_date |
+---------------------------------------+---------------------+
DANIEL.CABRAL@sakilacustomer.org	2005-06-23 22:00:38
TERRANCE.ROUSH@sakilacustomer.org	2005-06-23 21:53:46
MIRIAM.MCKINNEY@sakilacustomer.org	2005-06-21 17:12:08

Test Your Knowledge | 65

GWENDOLYN.MAY@sakilacustomer.org	2005-06-20 02:40:27
JEANETTE.GREENE@sakilacustomer.org	2005-06-19 23:26:46
HERMAN.DEVORE@sakilacustomer.org	2005-06-19 03:20:09
JEFFERY.PINSON@sakilacustomer.org	2005-06-18 21:37:33
MATTHEW.MAHAN@sakilacustomer.org	2005-06-18 05:18:58
MINNIE.ROMERO@sakilacustomer.org	2005-06-18 01:58:34
SONIA.GREGORY@sakilacustomer.org	2005-06-17 21:44:11
TERRENCE.GUNDERSON@sakilacustomer.org	2005-06-17 05:28:35
ELMER.NOE@sakilacustomer.org	2005-06-17 02:11:13
JOYCE.EDWARDS@sakilacustomer.org	2005-06-16 21:00:26
AMBER.DIXON@sakilacustomer.org	2005-06-16 04:02:56
CHARLES.KOWALSKI@sakilacustomer.org	2005-06-16 02:26:34
CATHERINE.CAMPBELL@sakilacustomer.org	2005-06-15 20:43:03
+---------------------------------------+---------------------+
16 rows in set (0.03 sec)

66 | Chapter 3: Query Primer

CHAPTER 4

Filtering

Sometimes you will want to work with every row in a table, such as:

• Purging all data from a table used to stage new data warehouse feeds
• Modifying all rows in a table after a new column has been added
• Retrieving all rows from a message queue table

In cases like these, your SQL statements won’t need to have a where clause, since you
don’t need to exclude any rows from consideration. Most of the time, however, you
will want to narrow your focus to a subset of a table’s rows. Therefore, all the SQL
data statements (except the insert statement) include an optional where clause con‐
taining one or more filter conditions used to restrict the number of rows acted on by
the SQL statement. Additionally, the select statement includes a having clause in
which filter conditions pertaining to grouped data may be included. This chapter
explores the various types of filter conditions that you can employ in the where clau‐
ses of select, update, and delete statements; I demonstrate the use of filter condi‐
tions in the having clause of a select statement in Chapter 8.

Condition Evaluation
A where clause may contain one or more conditions, separated by the operators and
and or. If multiple conditions are separated only by the and operator, then all the
conditions must evaluate to true for the row to be included in the result set. Consider
the following where clause:

WHERE first_name = 'STEVEN' AND create_date > '2006-01-01'

Given these two conditions, only rows where the first name is Steven and the creation
date was after January 1, 2006, will be included in the result set. Though this example

67

uses only two conditions, no matter how many conditions are in your where clause, if
they are separated by the and operator, they must all evaluate to true for the row to
be included in the result set.

If all conditions in the where clause are separated by the or operator, however, only
one of the conditions must evaluate to true for the row to be included in the result
set. Consider the following two conditions:

WHERE first_name = 'STEVEN' OR create_date > '2006-01-01'

There are now various ways for a given row to be included in the result set:

• The first name is Steven, and the creation date was after January 1, 2006.
• The first name is Steven, and the creation date was on or before January 1, 2006.
• The first name is anything other than Steven, but the creation date was after Jan‐

uary 1, 2006.

Table 4-1 shows the possible outcomes for a where clause containing two conditions
separated by the or operator.

Table 4-1. Two-condition evaluation using or

Intermediate result Final result

WHERE true OR true true

WHERE true OR false true

WHERE false OR true true

WHERE false OR false false

In the case of the preceding example, the only way for a row to be excluded from the
result set is if the person’s first name was not Steven and the creation date was on or
before January 1, 2006.

Using Parentheses
If your where clause includes three or more conditions using both the and and or
operators, you should use parentheses to make your intent clear, both to the database
server and to anyone else reading your code. Here’s a where clause that extends the
previous example by checking to make sure that the first name is Steven or the last
name is Young, and the creation date is after January 1, 2006:

WHERE (first_name = 'STEVEN' OR last_name = 'YOUNG')
 AND create_date > '2006-01-01'

68 | Chapter 4: Filtering

There are now three conditions; for a row to make it to the final result set, either the
first or second condition (or both) must evaluate to true, and the third condition
must evaluate to true. Table 4-2 shows the possible outcomes for this where clause.

Table 4-2. Three-condition evaluation using and, or

Intermediate result Final result

WHERE (true OR true) AND true true

WHERE (true OR false) AND true true

WHERE (false OR true) AND true true

WHERE (false OR false) AND true false

WHERE (true OR true) AND false false

WHERE (true OR false) AND false false

WHERE (false OR true) AND false false

WHERE (false OR false) AND false false

As you can see, the more conditions you have in your where clause, the more combi‐
nations there are for the server to evaluate. In this case, only three of the eight combi‐
nations yield a final result of true.

Using the not Operator
Hopefully, the previous three-condition example is fairly easy to understand. Con‐
sider the following modification, however:

WHERE NOT (first_name = 'STEVEN' OR last_name = 'YOUNG')
 AND create_date > '2006-01-01'

Did you spot the change from the previous example? I added the not operator before
the first set of conditions. Now, instead of looking for people with the first name of
Steven or the last name of Young whose record was created after January 1, 2006, I
am retrieving only rows where the first name is not Steven or the last name is not
Young whose record was created after January 1, 2006. Table 4-3 shows the possible
outcomes for this example.

Table 4-3. Three-condition evaluation using and, or, and not

Intermediate result Final result

WHERE NOT (true OR true) AND true false

WHERE NOT (true OR false) AND true false

WHERE NOT (false OR true) AND true false

WHERE NOT (false OR false) AND true true

WHERE NOT (true OR true) AND false false

Condition Evaluation | 69

Intermediate result Final result

WHERE NOT (true OR false) AND false false

WHERE NOT (false OR true) AND false false

WHERE NOT (false OR false) AND false false

While it is easy for the database server to handle, it is typically difficult for a person to
evaluate a where clause that includes the not operator, which is why you won’t
encounter it very often. In this case, you can rewrite the where clause to avoid using
the not operator:

WHERE first_name <> 'STEVEN' AND last_name <> 'YOUNG'
 AND create_date > '2006-01-01'

While I’m sure that the server doesn’t have a preference, you probably have an easier
time understanding this version of the where clause.

Building a Condition
Now that you have seen how the server evaluates multiple conditions, let’s take a step
back and look at what comprises a single condition. A condition is made up of one or
more expressions combined with one or more operators. An expression can be any of
the following:

• A number
• A column in a table or view
• A string literal, such as 'Maple Street'
• A built-in function, such as concat('Learning', ' ', 'SQL')
• A subquery
• A list of expressions, such as ('Boston', 'New York', 'Chicago')

The operators used within conditions include:

• Comparison operators, such as =, !=, <, >, <>, like, in, and between
• Arithmetic operators, such as +, −, *, and /

The following section demonstrates how you can combine these expressions and
operators to manufacture the various types of conditions.

70 | Chapter 4: Filtering

Condition Types
There are many different ways to filter out unwanted data. You can look for specific
values, sets of values, or ranges of values to include or exclude, or you can use various
pattern-searching techniques to look for partial matches when dealing with string
data. The next four subsections explore each of these condition types in detail.

Equality Conditions
A large percentage of the filter conditions that you write or come across will be of the
form 'column = expression' as in:

title = 'RIVER OUTLAW'
fed_id = '111-11-1111'
amount = 375.25
film_id = (SELECT film_id FROM film WHERE title = 'RIVER OUTLAW')

Conditions such as these are called equality conditions because they equate one
expression to another. The first three examples equate a column to a literal (two
strings and a number), and the fourth example equates a column to the value
returned from a subquery. The following query uses two equality conditions, one in
the on clause (a join condition) and the other in the where clause (a filter condition):

mysql> SELECT c.email
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) = '2005-06-14';
+---------------------------------------+
| email |
+---------------------------------------+
| CATHERINE.CAMPBELL@sakilacustomer.org |
| JOYCE.EDWARDS@sakilacustomer.org |
| AMBER.DIXON@sakilacustomer.org |
| JEANETTE.GREENE@sakilacustomer.org |
| MINNIE.ROMERO@sakilacustomer.org |
| GWENDOLYN.MAY@sakilacustomer.org |
| SONIA.GREGORY@sakilacustomer.org |
| MIRIAM.MCKINNEY@sakilacustomer.org |
| CHARLES.KOWALSKI@sakilacustomer.org |
| DANIEL.CABRAL@sakilacustomer.org |
| MATTHEW.MAHAN@sakilacustomer.org |
| JEFFERY.PINSON@sakilacustomer.org |
| HERMAN.DEVORE@sakilacustomer.org |
| ELMER.NOE@sakilacustomer.org |
| TERRANCE.ROUSH@sakilacustomer.org |
| TERRENCE.GUNDERSON@sakilacustomer.org |
+---------------------------------------+
16 rows in set (0.03 sec)

Condition Types | 71

This query shows all email addresses of every customer who rented a film on June 14,
2005.

Inequality conditions
Another fairly common type of condition is the inequality condition, which asserts
that two expressions are not equal. Here’s the previous query with the filter condition
in the where clause changed to an inequality condition:

mysql> SELECT c.email
 -> FROM customer c
 -> INNER JOIN rental r
 -> ON c.customer_id = r.customer_id
 -> WHERE date(r.rental_date) <> '2005-06-14';

+-----------------------------------+
| email |
+-----------------------------------+
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
| MARY.SMITH@sakilacustomer.org |
...
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
+-----------------------------------+
16028 rows in set (0.03 sec)

This query returns all email addresses for films rented on any other date than June 14,
2005. When building inequality conditions, you may choose to use either the != or <>
operator.

Data modification using equality conditions
Equality/inequality conditions are commonly used when modifying data. For exam‐
ple, let’s say that the movie rental company has a policy of removing old account rows

72 | Chapter 4: Filtering

once per year. Your task is to remove rows from the rental table where the rental
date was in 2004. Here’s one way to tackle it:

DELETE FROM rental
WHERE year(rental_date) = 2004;

This statement includes a single equality condition; here’s an example that uses two
inequality conditions to remove any rows where the rental date was not in 2005 or
2006:

DELETE FROM rental
WHERE year(rental_date) <> 2005 AND year(rental_date) <> 2006;

When crafting examples of delete and update statements, I try to
write each statement such that no rows are modified. That way,
when you execute the statements, your data will remain
unchanged, and your output from select statements will always
match that shown in this book.
Since MySQL sessions are in auto-commit mode by default (see
Chapter 12), you would not be able to roll back (undo) any changes
made to the example data if one of my statements modified the
data. You may, of course, do whatever you want with the example
data, including wiping it clean and rerunning the scripts to popu‐
late the tables, but I try to leave it intact.

Range Conditions
Along with checking that an expression is equal to (or not equal to) another expres‐
sion, you can build conditions that check whether an expression falls within a certain
range. This type of condition is common when working with numeric or temporal
data. Consider the following query:

mysql> SELECT customer_id, rental_date
 -> FROM rental
 -> WHERE rental_date < '2005-05-25';
+-------------+---------------------+
| customer_id | rental_date |
+-------------+---------------------+
130	2005-05-24 22:53:30
459	2005-05-24 22:54:33
408	2005-05-24 23:03:39
333	2005-05-24 23:04:41
222	2005-05-24 23:05:21
549	2005-05-24 23:08:07
269	2005-05-24 23:11:53
239	2005-05-24 23:31:46
+-------------+---------------------+
8 rows in set (0.00 sec)

Condition Types | 73

This query finds all film rentals prior to May 25, 2005. As well as specifying an upper
limit for the rental date, you may also want to specify a lower range:

mysql> SELECT customer_id, rental_date
 -> FROM rental
 -> WHERE rental_date <= '2005-06-16'
 -> AND rental_date >= '2005-06-14';
+-------------+---------------------+
| customer_id | rental_date |
+-------------+---------------------+
416	2005-06-14 22:53:33
516	2005-06-14 22:55:13
239	2005-06-14 23:00:34
285	2005-06-14 23:07:08
310	2005-06-14 23:09:38
592	2005-06-14 23:12:46
...	
148	2005-06-15 23:20:26
237	2005-06-15 23:36:37
155	2005-06-15 23:55:27
341	2005-06-15 23:57:20
149	2005-06-15 23:58:53
+-------------+---------------------+
364 rows in set (0.00 sec)

This version of the query retrieves all films rented on June 14 or 15 of 2005.

The between operator
When you have both an upper and lower limit for your range, you may choose to use
a single condition that utilizes the between operator rather than using two separate
conditions, as in:

mysql> SELECT customer_id, rental_date
 -> FROM rental
 -> WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16';
+-------------+---------------------+
| customer_id | rental_date |
+-------------+---------------------+
416	2005-06-14 22:53:33
516	2005-06-14 22:55:13
239	2005-06-14 23:00:34
285	2005-06-14 23:07:08
310	2005-06-14 23:09:38
592	2005-06-14 23:12:46
...	
148	2005-06-15 23:20:26
237	2005-06-15 23:36:37
155	2005-06-15 23:55:27
341	2005-06-15 23:57:20
149	2005-06-15 23:58:53

74 | Chapter 4: Filtering

+-------------+---------------------+
364 rows in set (0.00 sec)

When using the between operator, there are a couple of things to keep in mind. You
should always specify the lower limit of the range first (after between) and the upper
limit of the range second (after and). Here’s what happens if you mistakenly specify
the upper limit first:

mysql> SELECT customer_id, rental_date
 -> FROM rental
 -> WHERE rental_date BETWEEN '2005-06-16' AND '2005-06-14';
Empty set (0.00 sec)

As you can see, no data is returned. This is because the server is, in effect, generating
two conditions from your single condition using the <= and >= operators, as in:

SELECT customer_id, rental_date
 -> FROM rental
 -> WHERE rental_date >= '2005-06-16'
 -> AND rental_date <= '2005-06-14'
Empty set (0.00 sec)

Since it is impossible to have a date that is both greater than June 16, 2005, and less
than June 14, 2005, the query returns an empty set. This brings me to the second pit‐
fall when using between, which is to remember that your upper and lower limits are
inclusive, meaning that the values you provide are included in the range limits. In this
case, I want to return any films rented on June 14 or 15, so I specify 2005-06-14 as
the lower end of the range and 2005-06-16 as the upper end. Since I am not specify‐
ing the time component of the date, the time defaults to midnight, so the effective
range is 2005-06-14 00:00:00 to 2005-06-16 00:00:00, which will include any rentals
made on June 14 or 15.

Along with dates, you can also build conditions to specify ranges of numbers.
Numeric ranges are fairly easy to grasp, as demonstrated by the following:

mysql> SELECT customer_id, payment_date, amount
 -> FROM payment
 -> WHERE amount BETWEEN 10.0 AND 11.99;
+-------------+---------------------+--------+
| customer_id | payment_date | amount |
+-------------+---------------------+--------+
2	2005-07-30 13:47:43	10.99
3	2005-07-27 20:23:12	10.99
12	2005-08-01 06:50:26	10.99
13	2005-07-29 22:37:41	11.99
21	2005-06-21 01:04:35	10.99
29	2005-07-09 21:55:19	10.99
...		
571	2005-06-20 08:15:27	10.99
572	2005-06-17 04:05:12	10.99
573	2005-07-31 12:14:19	10.99

Condition Types | 75

591	2005-07-07 20:45:51	11.99
592	2005-07-06 22:58:31	11.99
595	2005-07-31 11:51:46	10.99
+-------------+---------------------+--------+
114 rows in set (0.01 sec)

All payments between $10 and $11.99 are returned. Again, make sure that you specify
the lower amount first.

String ranges
While ranges of dates and numbers are easy to understand, you can also build condi‐
tions that search for ranges of strings, which are a bit harder to visualize. Say, for
example, you are searching for customers whose last name falls within a range. Here’s
a query that returns customers whose last name falls between FA and FR:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE last_name BETWEEN 'FA' AND 'FR';
+------------+------------+
| last_name | first_name |
+------------+------------+
FARNSWORTH	JOHN
FENNELL	ALEXANDER
FERGUSON	BERTHA
FERNANDEZ	MELINDA
FIELDS	VICKI
FISHER	CINDY
FLEMING	MYRTLE
FLETCHER	MAE
FLORES	JULIA
FORD	CRYSTAL
FORMAN	MICHEAL
FORSYTHE	ENRIQUE
FORTIER	RAUL
FORTNER	HOWARD
FOSTER	PHYLLIS
FOUST	JACK
FOWLER	JO
FOX	HOLLY
+------------+------------+
18 rows in set (0.00 sec)

While there are five customers whose last name starts with FR, they are not included
in the results, since a name like FRANKLIN is outside of the range. However, we can
pick up four of the five customers by extending the righthand range to FRB:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE last_name BETWEEN 'FA' AND 'FRB';
+------------+------------+
| last_name | first_name |

76 | Chapter 4: Filtering

+------------+------------+
FARNSWORTH	JOHN
FENNELL	ALEXANDER
FERGUSON	BERTHA
FERNANDEZ	MELINDA
FIELDS	VICKI
FISHER	CINDY
FLEMING	MYRTLE
FLETCHER	MAE
FLORES	JULIA
FORD	CRYSTAL
FORMAN	MICHEAL
FORSYTHE	ENRIQUE
FORTIER	RAUL
FORTNER	HOWARD
FOSTER	PHYLLIS
FOUST	JACK
FOWLER	JO
FOX	HOLLY
FRALEY	JUAN
FRANCISCO	JOEL
FRANKLIN	BETH
FRAZIER	GLENDA
+------------+------------+
22 rows in set (0.00 sec)

To work with string ranges, you need to know the order of the characters within your
character set (the order in which the characters within a character set are sorted is
called a collation).

Membership Conditions
In some cases, you will not be restricting an expression to a single value or range of
values but rather to a finite set of values. For example, you might want to locate all
films that have a rating of either 'G' or 'PG':

mysql> SELECT title, rating
 -> FROM film
 -> WHERE rating = 'G' OR rating = 'PG';
+---------------------------+--------+
| title | rating |
+---------------------------+--------+
ACADEMY DINOSAUR	PG
ACE GOLDFINGER	G
AFFAIR PREJUDICE	G
AFRICAN EGG	G
AGENT TRUMAN	PG
ALAMO VIDEOTAPE	G
ALASKA PHANTOM	PG
ALI FOREVER	PG
AMADEUS HOLY	PG

Condition Types | 77

...
WEDDING APOLLO	PG
WEREWOLF LOLA	G
WEST LION	G
WIZARD COLDBLOODED	PG
WON DARES	PG
WONDERLAND CHRISTMAS	PG
WORDS HUNTER	PG
WORST BANGER	PG
YOUNG LANGUAGE	G
+---------------------------+--------+
372 rows in set (0.00 sec)

While this where clause (two conditions or’d together) wasn’t too tedious to generate,
imagine if the set of expressions contained 10 or 20 members. For these situations,
you can use the in operator instead:

SELECT title, rating
FROM film
WHERE rating IN ('G','PG');

With the in operator, you can write a single condition no matter how many expres‐
sions are in the set.

Using subqueries

Along with writing your own set of expressions, such as ('G','PG'), you can use a
subquery to generate a set for you on the fly. For example, if you can assume that any
film whose title includes the string 'PET' would be safe for family viewing, you could
execute a subquery against the film table to retrieve all ratings associated with these
films and then retrieve all films having any of these ratings:

mysql> SELECT title, rating
 -> FROM film
 -> WHERE rating IN (SELECT rating FROM film WHERE title LIKE '%PET%');
+---------------------------+--------+
| title | rating |
+---------------------------+--------+
ACADEMY DINOSAUR	PG
ACE GOLDFINGER	G
AFFAIR PREJUDICE	G
AFRICAN EGG	G
AGENT TRUMAN	PG
ALAMO VIDEOTAPE	G
ALASKA PHANTOM	PG
ALI FOREVER	PG
AMADEUS HOLY	PG
...	
WEDDING APOLLO	PG
WEREWOLF LOLA	G
WEST LION	G

78 | Chapter 4: Filtering

WIZARD COLDBLOODED	PG
WON DARES	PG
WONDERLAND CHRISTMAS	PG
WORDS HUNTER	PG
WORST BANGER	PG
YOUNG LANGUAGE	G
+---------------------------+--------+
372 rows in set (0.00 sec)

The subquery returns the set 'G' and 'PG', and the main query checks to see whether
the value of the rating column can be found in the set returned by the subquery.

Using not in
Sometimes you want to see whether a particular expression exists within a set of
expressions, and sometimes you want to see whether the expression does not exist
within the set. For these situations, you can use the not in operator:

SELECT title, rating
FROM film
WHERE rating NOT IN ('PG-13','R', 'NC-17');

This query finds all accounts that are not rated 'PG-13' ,'R', or 'NC-17', which will
return the same set of 372 rows as the previous queries.

Matching Conditions
So far, you have been introduced to conditions that identify an exact string, a range of
strings, or a set of strings; the final condition type deals with partial string matches.
You may, for example, want to find all customers whose last name begins with Q. You
could use a built-in function to strip off the first letter of the last_name column, as in
the following:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE left(last_name, 1) = 'Q';
+-------------+------------+
| last_name | first_name |
+-------------+------------+
QUALLS	STEPHEN
QUINTANILLA	ROGER
QUIGLEY	TROY
+-------------+------------+
3 rows in set (0.00 sec)

While the built-in function left() does the job, it doesn’t give you much flexibility.
Instead, you can use wildcard characters to build search expressions, as demonstrated
in the next section.

Condition Types | 79

Using wildcards
When searching for partial string matches, you might be interested in:

• Strings beginning/ending with a certain character
• Strings beginning/ending with a substring
• Strings containing a certain character anywhere within the string
• Strings containing a substring anywhere within the string
• Strings with a specific format, regardless of individual characters

You can build search expressions to identify these and many other partial string
matches by using the wildcard characters shown in Table 4-4.

Table 4-4. Wildcard characters

Wildcard character Matches

_ Exactly one character

% Any number of characters (including 0)

The underscore character takes the place of a single character, while the percent sign
can take the place of a variable number of characters. When building conditions that
utilize search expressions, you use the like operator, as in:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE last_name LIKE '_A_T%S';
+-----------+------------+
| last_name | first_name |
+-----------+------------+
MATTHEWS	ERICA
WALTERS	CASSANDRA
WATTS	SHELLY
+-----------+------------+
3 rows in set (0.00 sec)

The search expression in the previous example specifies strings containing an A in
the second position and a T in the fourth position, followed by any number of char‐
acters and ending in S. Table 4-5 shows some more search expressions and their
interpretations.

Table 4-5. Sample search expressions

Search expression Interpretation

F% Strings beginning with F

%t Strings ending with t

%bas% Strings containing the substring 'bas'

80 | Chapter 4: Filtering

Search expression Interpretation

_ _t_ Four-character strings with a t in the third position

_ _ _-_ _-_ _ _ _ 11-character strings with dashes in the fourth and seventh positions

The wildcard characters work fine for building simple search expressions; if your
needs are a bit more sophisticated, however, you can use multiple search expressions,
as demonstrated by the following:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE last_name LIKE 'Q%' OR last_name LIKE 'Y%';
+-------------+------------+
| last_name | first_name |
+-------------+------------+
QUALLS	STEPHEN
QUIGLEY	TROY
QUINTANILLA	ROGER
YANEZ	LUIS
YEE	MARVIN
YOUNG	CYNTHIA
+-------------+------------+
6 rows in set (0.00 sec)

This query finds all customers whose last name begins with Q or Y.

Using regular expressions
If you find that the wildcard characters don’t provide enough flexibility, you can use
regular expressions to build search expressions. A regular expression is, in essence, a
search expression on steroids. If you are new to SQL but have coded using program‐
ming languages such as Perl, then you might already be intimately familiar with regu‐
lar expressions. If you have never used regular expressions, then you may want to
consult Jeffrey E. F. Friedl’s Mastering Regular Expressions (O’Reilly), since it is far too
large a topic to try to cover in this book.

Here’s what the previous query (find all customers whose last name starts with Q or
Y) would look like using the MySQL implementation of regular expressions:

mysql> SELECT last_name, first_name
 -> FROM customer
 -> WHERE last_name REGEXP '^[QY]';
+-------------+------------+
| last_name | first_name |
+-------------+------------+
YOUNG	CYNTHIA
QUALLS	STEPHEN
QUINTANILLA	ROGER
YANEZ	LUIS
YEE	MARVIN
QUIGLEY	TROY

Condition Types | 81

http://oreilly.com/catalog/9780596528126/

+-------------+------------+
6 rows in set (0.16 sec)

The regexp operator takes a regular expression ('^[QY]' in this example) and applies
it to the expression on the lefthand side of the condition (the column last_name).
The query now contains a single condition using a regular expression rather than two
conditions using wildcard characters.

Both Oracle Database and Microsoft SQL Server also support regular expressions.
With Oracle Database, you would use the regexp_like function instead of the
regexp operator shown in the previous example, whereas SQL Server allows regular
expressions to be used with the like operator.

Null: That Four-Letter Word
I put it off as long as I could, but it’s time to broach a topic that tends to be met with
fear, uncertainty, and dread: the null value. null is the absence of a value; before an
employee is terminated, for example, her end_date column in the employee table
should be null. There is no value that can be assigned to the end_date column that
would make sense in this situation. null is a bit slippery, however, as there are vari‐
ous flavors of null:

Not applicable
Such as the employee ID column for a transaction that took place at an ATM
machine

Value not yet known
Such as when the federal ID is not known at the time a customer row is created

Value undefined
Such as when an account is created for a product that has not yet been added to
the database

Some theorists argue that there should be a different expression to
cover each of these (and more) situations, but most practitioners
would agree that having multiple null values would be far too con‐
fusing.

When working with null, you should remember:

• An expression can be null, but it can never equal null.
• Two nulls are never equal to each other.

82 | Chapter 4: Filtering

To test whether an expression is null, you need to use the is null operator, as
demonstrated by the following:

mysql> SELECT rental_id, customer_id
 -> FROM rental
 -> WHERE return_date IS NULL;
+-----------+-------------+
| rental_id | customer_id |
+-----------+-------------+
11496	155
11541	335
11563	83
11577	219
11593	99
...	
15867	505
15875	41
15894	168
15966	374
+-----------+-------------+
183 rows in set (0.01 sec)

This query finds all film rentals that were never returned. Here’s the same query using
= null instead of is null:

mysql> SELECT rental_id, customer_id
 -> FROM rental
 -> WHERE return_date = NULL;
Empty set (0.01 sec)

As you can see, the query parses and executes but does not return any rows. This is a
common mistake made by inexperienced SQL programmers, and the database server
will not alert you to your error, so be careful when constructing conditions that test
for null.

If you want to see whether a value has been assigned to a column, you can use the is
not null operator, as in:

mysql> SELECT rental_id, customer_id, return_date
 -> FROM rental
 -> WHERE return_date IS NOT NULL;
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date |
+-----------+-------------+---------------------+
1	130	2005-05-26 22:04:30
2	459	2005-05-28 19:40:33
3	408	2005-06-01 22:12:39
4	333	2005-06-03 01:43:41
5	222	2005-06-02 04:33:21
6	549	2005-05-27 01:32:07
7	269	2005-05-29 20:34:53
...

Null: That Four-Letter Word | 83

16043	526	2005-08-31 03:09:03
16044	468	2005-08-25 04:08:39
16045	14	2005-08-25 23:54:26
16046	74	2005-08-27 18:02:47
16047	114	2005-08-25 02:48:48
16048	103	2005-08-31 21:33:07
16049	393	2005-08-30 01:01:12
+-----------+-------------+---------------------+
15861 rows in set (0.02 sec)

This version of the query returns all rentals that were returned, which is the majority
of the rows in the table (15,861 out of 16,044).

Before putting null aside for a while, it would be helpful to investigate one more
potential pitfall. Suppose that you have been asked to find all rentals that were not
returned during May through August of 2005. Your first instinct might be to do the
following:

mysql> SELECT rental_id, customer_id, return_date
 -> FROM rental
 -> WHERE return_date NOT BETWEEN '2005-05-01' AND '2005-09-01';
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date |
+-----------+-------------+---------------------+
15365	327	2005-09-01 03:14:17
15388	50	2005-09-01 03:50:23
15392	410	2005-09-01 01:14:15
15401	103	2005-09-01 03:44:10
15415	204	2005-09-01 02:05:56
...		
15977	550	2005-09-01 22:12:10
15982	370	2005-09-01 21:51:31
16005	466	2005-09-02 02:35:22
16020	311	2005-09-01 18:17:33
16033	226	2005-09-01 02:36:15
16037	45	2005-09-01 02:48:04
16040	195	2005-09-02 02:19:33
+-----------+-------------+---------------------+
62 rows in set (0.01 sec)

While it is true that these 62 rentals were returned outside of the May to August win‐
dow, if you look carefully at the data, you will see that all of the rows returned have a
non-null return date. But what about the 183 rentals that were never returned? One
might argue that these 183 rows were also not returned between May and August, so
they should also be included in the result set. To answer the question correctly, there‐
fore, you need to account for the possibility that some rows might contain a null in
the return_date column:

mysql> SELECT rental_id, customer_id, return_date
 -> FROM rental
 -> WHERE return_date IS NULL

84 | Chapter 4: Filtering

 -> OR return_date NOT BETWEEN '2005-05-01' AND '2005-09-01';
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date |
+-----------+-------------+---------------------+
11496	155	NULL
11541	335	NULL
11563	83	NULL
11577	219	NULL
11593	99	NULL
...		
15939	382	2005-09-01 17:25:21
15942	210	2005-09-01 18:39:40
15966	374	NULL
15971	187	2005-09-02 01:28:33
15973	343	2005-09-01 20:08:41
15977	550	2005-09-01 22:12:10
15982	370	2005-09-01 21:51:31
16005	466	2005-09-02 02:35:22
16020	311	2005-09-01 18:17:33
16033	226	2005-09-01 02:36:15
16037	45	2005-09-01 02:48:04
16040	195	2005-09-02 02:19:33
+-----------+-------------+---------------------+
245 rows in set (0.01 sec)

The result set now includes the 62 rentals that were returned outside of the May to
August window, along with the 183 rentals that were never returned, for a total of 245
rows. When working with a database that you are not familiar with, it is a good idea
to find out which columns in a table allow nulls so that you can take appropriate
measures with your filter conditions to keep data from slipping through the cracks.

Test Your Knowledge
The following exercises test your understanding of filter conditions. Please see
Appendix B for solutions.

You’ll need to refer to the following subset of rows from the payment table for the first
two exercises:

+------------+-------------+--------+--------------------+
| payment_id | customer_id | amount | date(payment_date) |
+------------+-------------+--------+--------------------+
101	4	8.99	2005-08-18
102	4	1.99	2005-08-19
103	4	2.99	2005-08-20
104	4	6.99	2005-08-20
105	4	4.99	2005-08-21
106	4	2.99	2005-08-22
107	4	1.99	2005-08-23
108	5	0.99	2005-05-29
109	5	6.99	2005-05-31

Test Your Knowledge | 85

110	5	1.99	2005-05-31
111	5	3.99	2005-06-15
112	5	2.99	2005-06-16
113	5	4.99	2005-06-17
114	5	2.99	2005-06-19
115	5	4.99	2005-06-20
116	5	4.99	2005-07-06
117	5	2.99	2005-07-08
118	5	4.99	2005-07-09
119	5	5.99	2005-07-09
120	5	1.99	2005-07-09
+------------+-------------+--------+--------------------+

Exercise 4-1
Which of the payment IDs would be returned by the following filter conditions?

customer_id <> 5 AND (amount > 8 OR date(payment_date) = '2005-08-23')

Exercise 4-2
Which of the payment IDs would be returned by the following filter conditions?

customer_id = 5 AND NOT (amount > 6 OR date(payment_date) = '2005-06-19')

Exercise 4-3
Construct a query that retrieves all rows from the payments table where the amount
is either 1.98, 7.98, or 9.98.

Exercise 4-4
Construct a query that finds all customers whose last name contains an A in the sec‐
ond position and a W anywhere after the A.

86 | Chapter 4: Filtering

CHAPTER 5

Querying Multiple Tables

Back in Chapter 2, I demonstrated how related concepts are broken into separate
pieces through a process known as normalization. The end result of this exercise was
two tables: person and favorite_food. If, however, you want to generate a single
report showing a person’s name, address, and favorite foods, you will need a mecha‐
nism to bring the data from these two tables back together again; this mechanism is
known as a join, and this chapter concentrates on the simplest and most common
join, the inner join. Chapter 10 demonstrates all of the different join types.

What Is a Join?
Queries against a single table are certainly not rare, but you will find that most of
your queries will require two, three, or even more tables. To illustrate, let’s look at the
definitions for the customer and address tables and then define a query that retrieves
data from both tables:

mysql> desc customer;
+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
customer_id	smallint(5) unsigned	NO	PRI	NULL
store_id	tinyint(3) unsigned	NO	MUL	NULL
first_name	varchar(45)	NO		NULL
last_name	varchar(45)	NO	MUL	NULL
email	varchar(50)	YES		NULL
address_id	smallint(5) unsigned	NO	MUL	NULL
active	tinyint(1)	NO		1
create_date	datetime	NO		NULL
last_update	timestamp	YES		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

mysql> desc address;

87

+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
address_id	smallint(5) unsigned	NO	PRI	NULL
address	varchar(50)	NO		NULL
address2	varchar(50)	YES		NULL
district	varchar(20)	NO		NULL
city_id	smallint(5) unsigned	NO	MUL	NULL
postal_code	varchar(10)	YES		NULL
phone	varchar(20)	NO		NULL
location	geometry	NO	MUL	NULL
last_update	timestamp	NO		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

Let’s say you want to retrieve the first and last names of each customer, along with
their street address. Your query will therefore need to retrieve the cus

tomer.first_name, customer.last_name, and address.address columns. But how
can you retrieve data from both tables in the same query? The answer lies in the cus
tomer.address_id column, which holds the ID of the customer’s record in the
address table (in more formal terms, the customer.address_id column is the foreign
key to the address table). The query, which you will see shortly, instructs the server to
use the customer.address_id column as the transportation between the customer
and address tables, thereby allowing columns from both tables to be included in the
query’s result set. This type of operation is known as a join.

A foreign key constraint can optionally be created to verify that the
values in one table exist in another table. For the previous example,
a foreign key constraint could be created on the customer table to
ensure that any values inserted into the customer.address_id col‐
umn can be found in the address.address_id column. Please note
that it is not necessary to have a foreign key constraint in place in
order to join two tables.

Cartesian Product
The easiest way to start is to put the customer and address tables into the from clause
of a query and see what happens. Here’s a query that retrieves the customer’s first and
last names along with the street address, with a from clause naming both tables sepa‐
rated by the join keyword:

mysql> SELECT c.first_name, c.last_name, a.address
 -> FROM customer c JOIN address a;
+------------+-----------+----------------------+
| first_name | last_name | address |
+------------+-----------+----------------------+
| MARY | SMITH | 47 MySakila Drive |
| PATRICIA | JOHNSON | 47 MySakila Drive |

88 | Chapter 5: Querying Multiple Tables

LINDA	WILLIAMS	47 MySakila Drive
BARBARA	JONES	47 MySakila Drive
ELIZABETH	BROWN	47 MySakila Drive
JENNIFER	DAVIS	47 MySakila Drive
MARIA	MILLER	47 MySakila Drive
SUSAN	WILSON	47 MySakila Drive
...		
SETH	HANNON	1325 Fukuyama Street
KENT	ARSENAULT	1325 Fukuyama Street
TERRANCE	ROUSH	1325 Fukuyama Street
RENE	MCALISTER	1325 Fukuyama Street
EDUARDO	HIATT	1325 Fukuyama Street
TERRENCE	GUNDERSON	1325 Fukuyama Street
ENRIQUE	FORSYTHE	1325 Fukuyama Street
FREDDIE	DUGGAN	1325 Fukuyama Street
WADE	DELVALLE	1325 Fukuyama Street
AUSTIN	CINTRON	1325 Fukuyama Street
+------------+-----------+----------------------+
361197 rows in set (0.03 sec)

Hmmm...there are only 599 customers and 603 rows in the address table, so how did
the result set end up with 361,197 rows? Looking more closely, you can see that many
of the customers seem to have the same street address. Because the query didn’t spec‐
ify how the two tables should be joined, the database server generated the Cartesian
product, which is every permutation of the two tables (599 customers x 603 addresses
= 361,197 permutations). This type of join is known as a cross join, and it is rarely
used (on purpose, at least). Cross joins are one of the join types that we study in
Chapter 10.

Inner Joins
To modify the previous query so that only a single row is returned for each customer,
you need to describe how the two tables are related. Earlier, I showed that the
customer.address_id column serves as the link between the two tables, so this infor‐
mation needs to be added to the on subclause of the from clause:

mysql> SELECT c.first_name, c.last_name, a.address
 -> FROM customer c JOIN address a
 -> ON c.address_id = a.address_id;
+-------------+--------------+--+
| first_name | last_name | address |
+-------------+--------------+--+
MARY	SMITH	1913 Hanoi Way
PATRICIA	JOHNSON	1121 Loja Avenue
LINDA	WILLIAMS	692 Joliet Street
BARBARA	JONES	1566 Inegl Manor
ELIZABETH	BROWN	53 Idfu Parkway
JENNIFER	DAVIS	1795 Santiago de Compostela Way
MARIA	MILLER	900 Santiago de Compostela Parkway
SUSAN	WILSON	478 Joliet Way

What Is a Join? | 89

| MARGARET | MOORE | 613 Korolev Drive |
...
TERRANCE	ROUSH	42 Fontana Avenue
RENE	MCALISTER	1895 Zhezqazghan Drive
EDUARDO	HIATT	1837 Kaduna Parkway
TERRENCE	GUNDERSON	844 Bucuresti Place
ENRIQUE	FORSYTHE	1101 Bucuresti Boulevard
FREDDIE	DUGGAN	1103 Quilmes Boulevard
WADE	DELVALLE	1331 Usak Boulevard
AUSTIN	CINTRON	1325 Fukuyama Street
+-------------+--------------+--+
599 rows in set (0.00 sec)

Instead of 361,197 rows, you now have the expected 599 rows due to the addition of
the on subclause, which instructs the server to join the customer and address tables
by using the address_id column to traverse from one table to the other. For example,
Mary Smith’s row in the customer table contains a value of 5 in the address_id col‐
umn (not shown in the example). The server uses this value to look up the row in the
address table having a value of 5 in its address_id column and then retrieves the
value '1913 Hanoi Way' from the address column in that row.

If a value exists for the address_id column in one table but not the other, then the
join fails for the rows containing that value, and those rows are excluded from the
result set. This type of join is known as an inner join, and it is the most commonly
used type of join. To clarify, if a row in the customer table has the value 999 in the
address_id column and there’s no row in the address table with a value of 999 in the
address_id column, then that customer row would not be included in the result set.
If you want to include all rows from one table or the other regardless of whether a
match exists, you need to specify an outer join, but this will be explored Chapter 10.

In the previous example, I did not specify in the from clause which type of join to use.
However, when you wish to join two tables using an inner join, you should explicitly
specify this in your from clause; here’s the same example, with the addition of the join
type (note the keyword inner):

SELECT c.first_name, c.last_name, a.address
FROM customer c INNER JOIN address a
 ON c.address_id = a.address_id;

If you do not specify the type of join, then the server will do an inner join by default.
As you will see later in the book, however, there are several types of joins, so you
should get in the habit of specifying the exact type of join that you require, especially
for the benefit of any other people who might use/maintain your queries in the
future.

If the names of the columns used to join the two tables are identical, which is true in
the previous query, you can use the using subclause instead of the on subclause, as in:

90 | Chapter 5: Querying Multiple Tables

SELECT c.first_name, c.last_name, a.address
FROM customer c INNER JOIN address a
 USING (address_id);

Since using is a shorthand notation that you can use in only a specific situation, I
prefer always to use the on subclause to avoid confusion.

The ANSI Join Syntax
The notation used throughout this book for joining tables was introduced in the
SQL92 version of the ANSI SQL standard. All the major databases (Oracle Database,
Microsoft SQL Server, MySQL, IBM DB2 Universal Database, and Sybase Adaptive
Server) have adopted the SQL92 join syntax. Because most of these servers have been
around since before the release of the SQL92 specification, they all include an older
join syntax as well. For example, all these servers would understand the following
variation of the previous query:

mysql> SELECT c.first_name, c.last_name, a.address
 -> FROM customer c, address a
 -> WHERE c.address_id = a.address_id;
+------------+------------+------------------------------------+
| first_name | last_name | address |
+------------+------------+------------------------------------+
MARY	SMITH	1913 Hanoi Way
PATRICIA	JOHNSON	1121 Loja Avenue
LINDA	WILLIAMS	692 Joliet Street
BARBARA	JONES	1566 Inegl Manor
ELIZABETH	BROWN	53 Idfu Parkway
JENNIFER	DAVIS	1795 Santiago de Compostela Way
MARIA	MILLER	900 Santiago de Compostela Parkway
SUSAN	WILSON	478 Joliet Way
MARGARET	MOORE	613 Korolev Drive
...		
TERRANCE	ROUSH	42 Fontana Avenue
RENE	MCALISTER	1895 Zhezqazghan Drive
EDUARDO	HIATT	1837 Kaduna Parkway
TERRENCE	GUNDERSON	844 Bucuresti Place
ENRIQUE	FORSYTHE	1101 Bucuresti Boulevard
FREDDIE	DUGGAN	1103 Quilmes Boulevard
WADE	DELVALLE	1331 Usak Boulevard
AUSTIN	CINTRON	1325 Fukuyama Street
+------------+------------+------------------------------------+
599 rows in set (0.00 sec)

This older method of specifying joins does not include the on subclause; instead,
tables are named in the from clause separated by commas, and join conditions are
included in the where clause. While you may decide to ignore the SQL92 syntax in
favor of the older join syntax, the ANSI join syntax has the following advantages:

What Is a Join? | 91

• Join conditions and filter conditions are separated into two different clauses (the
on subclause and the where clause, respectively), making a query easier to
understand.

• The join conditions for each pair of tables are contained in their own on clause,
making it less likely that part of a join will be mistakenly omitted.

• Queries that use the SQL92 join syntax are portable across database servers,
whereas the older syntax is slightly different across the different servers.

The benefits of the SQL92 join syntax are easier to identify for complex queries that
include both join and filter conditions. Consider the following query, which returns
only those customers whose postal code is 52137:

mysql> SELECT c.first_name, c.last_name, a.address
 -> FROM customer c, address a
 -> WHERE c.address_id = a.address_id
 -> AND a.postal_code = 52137;
+------------+-----------+------------------------+
| first_name | last_name | address |
+------------+-----------+------------------------+
| JAMES | GANNON | 1635 Kuwana Boulevard |
| FREDDIE | DUGGAN | 1103 Quilmes Boulevard |
+------------+-----------+------------------------+
2 rows in set (0.01 sec)

At first glance, it is not so easy to determine which conditions in the where clause are
join conditions and which are filter conditions. It is also not readily apparent which
type of join is being employed (to identify the type of join, you would need to look
closely at the join conditions in the where clause to see whether any special characters
are employed), nor is it easy to determine whether any join conditions have been mis‐
takenly left out. Here’s the same query using the SQL92 join syntax:

mysql> SELECT c.first_name, c.last_name, a.address
 -> FROM customer c INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> WHERE a.postal_code = 52137;
+------------+-----------+------------------------+
| first_name | last_name | address |
+------------+-----------+------------------------+
| JAMES | GANNON | 1635 Kuwana Boulevard |
| FREDDIE | DUGGAN | 1103 Quilmes Boulevard |
+------------+-----------+------------------------+
2 rows in set (0.00 sec)

With this version, it is clear which condition is used for the join and which condition
is used for filtering. Hopefully, you will agree that the version using SQL92 join syn‐
tax is easier to understand.

92 | Chapter 5: Querying Multiple Tables

Joining Three or More Tables
Joining three tables is similar to joining two tables, but with one slight wrinkle. With
a two-table join, there are two tables and one join type in the from clause, and a single
on subclause to define how the tables are joined. With a three-table join, there are
three tables and two join types in the from clause, and two on subclauses.

To illustrate, let’s change the previous query to return the customer’s city rather than
their street address. The city name, however, is not stored in the address table but is
accessed via a foreign key to the city table. Here are the table definitions:

mysql> desc address;
+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
address_id	smallint(5) unsigned	NO	PRI	NULL
address	varchar(50)	NO		NULL
address2	varchar(50)	YES		NULL
district	varchar(20)	NO		NULL
city_id	smallint(5) unsigned	NO	MUL	NULL
postal_code	varchar(10)	YES		NULL
phone	varchar(20)	NO		NULL
location	geometry	NO	MUL	NULL
last_update	timestamp	NO		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

mysql> desc city;
+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
city_id	smallint(5) unsigned	NO	PRI	NULL
city	varchar(50)	NO		NULL
country_id	smallint(5) unsigned	NO	MUL	NULL
last_update	timestamp	NO		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

To show each customer’s city, you will need to traverse from the customer table to the
address table using the address_id column and then from the address table to the
city table using the city_id column. The query would look like the following:

mysql> SELECT c.first_name, c.last_name, ct.city
 -> FROM customer c
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id;
+-------------+--------------+----------------------------+
| first_name | last_name | city |
+-------------+--------------+----------------------------+
| JULIE | SANCHEZ | A Corua (La Corua) |
| PEGGY | MYERS | Abha |

Joining Three or More Tables | 93

TOM	MILNER	Abu Dhabi
GLEN	TALBERT	Acua
LARRY	THRASHER	Adana
SEAN	DOUGLASS	Addis Abeba
...		
MICHELE	GRANT	Yuncheng
GARY	COY	Yuzhou
PHYLLIS	FOSTER	Zalantun
CHARLENE	ALVAREZ	Zanzibar
FRANKLIN	TROUTMAN	Zaoyang
FLOYD	GANDY	Zapopan
CONSTANCE	REID	Zaria
JACK	FOUST	Zeleznogorsk
BYRON	BOX	Zhezqazghan
GUY	BROWNLEE	Zhoushan
RONNIE	RICKETTS	Ziguinchor
+-------------+--------------+----------------------------+
599 rows in set (0.03 sec)

For this query, there are three tables, two join types, and two on subclauses in the
from clause, so things have gotten quite a bit busier. At first glance, it might seem like
the order in which the tables appear in the from clause is important, but if you switch
the table order, you will get the exact same results. All three of these variations return
the same results:

SELECT c.first_name, c.last_name, ct.city
FROM customer c
 INNER JOIN address a
 ON c.address_id = a.address_id
 INNER JOIN city ct
 ON a.city_id = ct.city_id;

SELECT c.first_name, c.last_name, ct.city
FROM city ct
 INNER JOIN address a
 ON a.city_id = ct.city_id
 INNER JOIN customer c
 ON c.address_id = a.address_id;

SELECT c.first_name, c.last_name, ct.city
FROM address a
 INNER JOIN city ct
 ON a.city_id = ct.city_id
 INNER JOIN customer c
 ON c.address_id = a.address_id;

The only difference you may see would be the order in which the rows are returned,
since there is no order by clause to specify how the results should be ordered.

94 | Chapter 5: Querying Multiple Tables

Does Join Order Matter?
If you are confused about why all three versions of the customer/address/city query
yield the same results, keep in mind that SQL is a nonprocedural language, meaning
that you describe what you want to retrieve and which database objects need to be
involved, but it is up to the database server to determine how best to execute your
query. Using statistics gathered from your database objects, the server must pick one
of three tables as a starting point (the chosen table is thereafter known as the driving
table) and then decide in which order to join the remaining tables. Therefore, the
order in which tables appear in your from clause is not significant.

If, however, you believe that the tables in your query should always be joined in a par‐
ticular order, you can place the tables in the desired order and then specify the key‐
word straight_join in MySQL, request the force order option in SQL Server, or
use either the ordered or the leading optimizer hint in Oracle Database. For exam‐
ple, to tell the MySQL server to use the city table as the driving table and to then join
the address and customer tables, you could do the following:

SELECT STRAIGHT_JOIN c.first_name, c.last_name, ct.city
FROM city ct
 INNER JOIN address a
 ON a.city_id = ct.city_id
 INNER JOIN customer c
 ON c.address_id = a.address_id

Using Subqueries as Tables
You have already seen several examples of queries that include multiple tables, but
there is one variation worth mentioning: what to do if some of the data sets are gener‐
ated by subqueries. Subqueries are the focus of Chapter 9, but I already introduced
the concept of a subquery in the from clause in the previous chapter. The following
query joins the customer table to a subquery against the address and city tables:

mysql> SELECT c.first_name, c.last_name, addr.address, addr.city
 -> FROM customer c
 -> INNER JOIN
 -> (SELECT a.address_id, a.address, ct.city
 -> FROM address a
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id
 -> WHERE a.district = 'California'
 ->) addr
 -> ON c.address_id = addr.address_id;
+------------+-----------+------------------------+----------------+
| first_name | last_name | address | city |
+------------+-----------+------------------------+----------------+
| PATRICIA | JOHNSON | 1121 Loja Avenue | San Bernardino |

Joining Three or More Tables | 95

BETTY	WHITE	770 Bydgoszcz Avenue	Citrus Heights
ALICE	STEWART	1135 Izumisano Parkway	Fontana
ROSA	REYNOLDS	793 Cam Ranh Avenue	Lancaster
RENEE	LANE	533 al-Ayn Boulevard	Compton
KRISTIN	JOHNSTON	226 Brest Manor	Sunnyvale
CASSANDRA	WALTERS	920 Kumbakonam Loop	Salinas
JACOB	LANCE	1866 al-Qatif Avenue	El Monte
RENE	MCALISTER	1895 Zhezqazghan Drive	Garden Grove
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

The subquery, which starts on line 4 and is given the alias addr, finds all addresses
that are in California. The outer query joins the subquery results to the customer
table to return the first name, last name, street address, and city of all customers who
live in California. While this query could have been written without the use of a sub‐
query by simply joining the three tables, it can sometimes be advantageous from a
performance and/or readability aspect to use one or more subqueries.

One way to visualize what is going on is to run the subquery by itself and look at the
results. Here are the results of the subquery from the prior example:

mysql> SELECT a.address_id, a.address, ct.city
 -> FROM address a
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id
 -> WHERE a.district = 'California';
+------------+------------------------+----------------+
| address_id | address | city |
+------------+------------------------+----------------+
6	1121 Loja Avenue	San Bernardino
18	770 Bydgoszcz Avenue	Citrus Heights
55	1135 Izumisano Parkway	Fontana
116	793 Cam Ranh Avenue	Lancaster
186	533 al-Ayn Boulevard	Compton
218	226 Brest Manor	Sunnyvale
274	920 Kumbakonam Loop	Salinas
425	1866 al-Qatif Avenue	El Monte
599	1895 Zhezqazghan Drive	Garden Grove
+------------+------------------------+----------------+
9 rows in set (0.00 sec)

This result set consists of all nine California addresses. When joined to the customer
table via the address_id column, your result set will contain information about the
customers assigned to these addresses.

Using the Same Table Twice
If you are joining multiple tables, you might find that you need to join the same table
more than once. In the sample database, for example, actors are related to the films in
which they appeared via the film_actor table. If you want to find all of the films in

96 | Chapter 5: Querying Multiple Tables

which two specific actors appear, you could write a query such as this one, which
joins the film table to the film_actor table to the actor table:

mysql> SELECT f.title
 -> FROM film f
 -> INNER JOIN film_actor fa
 -> ON f.film_id = fa.film_id
 -> INNER JOIN actor a
 -> ON fa.actor_id = a.actor_id
 -> WHERE ((a.first_name = 'CATE' AND a.last_name = 'MCQUEEN')
 -> OR (a.first_name = 'CUBA' AND a.last_name = 'BIRCH'));
+----------------------+
| title |
+----------------------+
| ATLANTIS CAUSE |
| BLOOD ARGONAUTS |
| COMMANDMENTS EXPRESS |
| DYNAMITE TARZAN |
| EDGE KISSING |
...
| TOWERS HURRICANE |
| TROJAN TOMORROW |
| VIRGIN DAISY |
| VOLCANO TEXAS |
| WATERSHIP FRONTIER |
+----------------------+
54 rows in set (0.00 sec)

This query returns all movies in which either Cate McQueen or Cuba Birch appeared.
However, let’s say that you want to retrieve only those films in which both of these
actors appeared. To accomplish this, you will need to find all rows in the film table
that have two rows in the film_actor table, one of which is associated with Cate
McQueen, and the other associated with Cuba Birch. Therefore, you will need to
include the film_actor and actor tables twice, each with a different alias so that the
server knows which one you are referring to in the various clauses:

mysql> SELECT f.title
 -> FROM film f
 -> INNER JOIN film_actor fa1
 -> ON f.film_id = fa1.film_id
 -> INNER JOIN actor a1
 -> ON fa1.actor_id = a1.actor_id
 -> INNER JOIN film_actor fa2
 -> ON f.film_id = fa2.film_id
 -> INNER JOIN actor a2
 -> ON fa2.actor_id = a2.actor_id
 -> WHERE (a1.first_name = 'CATE' AND a1.last_name = 'MCQUEEN')
 -> AND (a2.first_name = 'CUBA' AND a2.last_name = 'BIRCH');
+------------------+
| title |
+------------------+

Joining Three or More Tables | 97

| BLOOD ARGONAUTS |
| TOWERS HURRICANE |
+------------------+
2 rows in set (0.00 sec)

Between them, the two actors appeared in 52 different films, but there are only two
films in which both actors appeared. This is one example of a query that requires the
use of table aliases, since the same tables are used multiple times.

Self-Joins
Not only can you include the same table more than once in the same query, but you
can actually join a table to itself. This might seem like a strange thing to do at first,
but there are valid reasons for doing so. Some tables include a self-referencing foreign
key, which means that it includes a column that points to the primary key within the
same table. While the sample database doesn’t include such a relationship, let’s imag‐
ine that the film table includes the column prequel_film_id, which points to the
film’s parent (e.g., the film Fiddler Lost II would use this column to point to the parent
film Fiddler Lost). Here’s what the table would look like if we were to add this addi‐
tional column:

mysql> desc film;
+----------------------+-----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+----------------------+-----------------------+------+-----+-------------------+
film_id	smallint(5) unsigned	NO	PRI	NULL
title	varchar(255)	NO	MUL	NULL
description	text	YES		NULL
release_year	year(4)	YES		NULL
language_id	tinyint(3) unsigned	NO	MUL	NULL
original_language_id	tinyint(3) unsigned	YES	MUL	NULL
rental_duration	tinyint(3) unsigned	NO		3
rental_rate	decimal(4,2)	NO		4.99
length	smallint(5) unsigned	YES		NULL
replacement_cost	decimal(5,2)	NO		19.99
rating	enum('G','PG','PG-13',			
 'R','NC-17') | YES | | G |
| special_features | set('Trailers',...,
 'Behind the Scenes')| YES | | NULL |
| last_update | timestamp | NO | | CURRENT_
 TIMESTAMP |
| prequel_film_id | smallint(5) unsigned | YES | MUL | NULL |
+----------------------+-----------------------+------+-----+-------------------+

Using a self-join, you can write a query that lists every film that has a prequel, along
with the prequel’s title:

mysql> SELECT f.title, f_prnt.title prequel
 -> FROM film f
 -> INNER JOIN film f_prnt

98 | Chapter 5: Querying Multiple Tables

 -> ON f_prnt.film_id = f.prequel_film_id
 -> WHERE f.prequel_film_id IS NOT NULL;
+-----------------+--------------+
| title | prequel |
+-----------------+--------------+
| FIDDLER LOST II | FIDDLER LOST |
+-----------------+--------------+
1 row in set (0.00 sec)

This query joins the film table to itself using the prequel_film_id foreign key, and
the table aliases f and f_prnt are assigned in order to make it clear which table is
used for which purpose.

Test Your Knowledge
The following exercises are designed to test your understanding of inner joins. Please
see Appendix B for the solutions to these exercises.

Exercise 5-1
Fill in the blanks (denoted by <#>) for the following query to obtain the results that
follow:

mysql> SELECT c.first_name, c.last_name, a.address, ct.city
 -> FROM customer c
 -> INNER JOIN address <1>
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = <2>
 -> WHERE a.district = 'California';
+------------+-----------+------------------------+----------------+
| first_name | last_name | address | city |
+------------+-----------+------------------------+----------------+
PATRICIA	JOHNSON	1121 Loja Avenue	San Bernardino
BETTY	WHITE	770 Bydgoszcz Avenue	Citrus Heights
ALICE	STEWART	1135 Izumisano Parkway	Fontana
ROSA	REYNOLDS	793 Cam Ranh Avenue	Lancaster
RENEE	LANE	533 al-Ayn Boulevard	Compton
KRISTIN	JOHNSTON	226 Brest Manor	Sunnyvale
CASSANDRA	WALTERS	920 Kumbakonam Loop	Salinas
JACOB	LANCE	1866 al-Qatif Avenue	El Monte
RENE	MCALISTER	1895 Zhezqazghan Drive	Garden Grove
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

Exercise 5-2
Write a query that returns the title of every film in which an actor with the first name
JOHN appeared.

Test Your Knowledge | 99

Exercise 5-3
Construct a query that returns all addresses that are in the same city. You will need to
join the address table to itself, and each row should include two different addresses.

100 | Chapter 5: Querying Multiple Tables

CHAPTER 6

Working with Sets

Although you can interact with the data in a database one row at a time, relational
databases are really all about sets. This chapter explores how you can combine multi‐
ple result sets using various set operators. After a quick overview of set theory, I’ll
demonstrate how to use the set operators union, intersect, and except to blend
multiple data sets together.

Set Theory Primer
In many parts of the world, basic set theory is included in elementary-level math cur‐
riculums. Perhaps you recall looking at something like what is shown in Figure 6-1.

Figure 6-1. The union operation

The shaded area in Figure 6-1 represents the union of sets A and B, which is the com‐
bination of the two sets (with any overlapping regions included only once). Is this

101

starting to look familiar? If so, then you’ll finally get a chance to put that knowledge
to use; if not, don’t worry, because it’s easy to visualize using a couple of diagrams.

Using circles to represent two data sets (A and B), imagine a subset of data that is
common to both sets; this common data is represented by the overlapping area
shown in Figure 6-1. Since set theory is rather uninteresting without an overlap
between data sets, I use the same diagram to illustrate each set operation. There is
another set operation that is concerned only with the overlap between two data sets;
this operation is known as the intersection and is demonstrated in Figure 6-2.

Figure 6-2. The intersection operation

The data set generated by the intersection of sets A and B is just the area of overlap
between the two sets. If the two sets have no overlap, then the intersection operation
yields the empty set.

The third and final set operation, which is demonstrated in Figure 6-3, is known as
the except operation.

Figure 6-3 shows the results of A except B, which is the whole of set A minus any
overlap with set B. If the two sets have no overlap, then the operation A except B
yields the whole of set A.

102 | Chapter 6: Working with Sets

Figure 6-3. The except operation

Using these three operations, or by combining different operations together, you can
generate whatever results you need. For example, imagine that you want to build a set
demonstrated by Figure 6-4.

Figure 6-4. Mystery data set

The data set you are looking for includes all of sets A and B without the overlapping
region. You can’t achieve this outcome with just one of the three operations shown
earlier; instead, you will need to first build a data set that encompasses all of sets A
and B, and then utilize a second operation to remove the overlapping region. If the
combined set is described as A union B, and the overlapping region is described as A
intersect B, then the operation needed to generate the data set represented by
Figure 6-4 would look as follows:

(A union B) except (A intersect B)

Set Theory Primer | 103

Of course, there are often multiple ways to achieve the same results; you could reach
a similar outcome using the following operation:

(A except B) union (B except A)

While these concepts are fairly easy to understand using diagrams, the next sections
show you how these concepts are applied to a relational database using the SQL set
operators.

Set Theory in Practice
The circles used in the previous section’s diagrams to represent data sets don’t convey
anything about what the data sets comprise. When dealing with actual data, however,
there is a need to describe the composition of the data sets involved if they are to be
combined. Imagine, for example, what would happen if you tried to generate the
union of the customer table and the city table, whose definitions are as follows:

mysql> desc customer;
+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
customer_id	smallint(5) unsigned	NO	PRI	NULL
store_id	tinyint(3) unsigned	NO	MUL	NULL
first_name	varchar(45)	NO		NULL
last_name	varchar(45)	NO	MUL	NULL
email	varchar(50)	YES		NULL
address_id	smallint(5) unsigned	NO	MUL	NULL
active	tinyint(1)	NO		1
create_date	datetime	NO		NULL
last_update	timestamp	YES		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

mysql> desc city;
+-------------+----------------------+------+-----+-------------------+
| Field | Type | Null | Key | Default |
+-------------+----------------------+------+-----+-------------------+
city_id	smallint(5) unsigned	NO	PRI	NULL
city	varchar(50)	NO		NULL
country_id	smallint(5) unsigned	NO	MUL	NULL
last_update	timestamp	NO		CURRENT_TIMESTAMP
+-------------+----------------------+------+-----+-------------------+

When combined, the first column in the result set would include both the
customer.customer_id and city.city_id columns, the second column would be
the combination of the customer.store_id and city.city columns, and so forth.
While some column pairs are easy to combine (e.g., two numeric columns), it is
unclear how other column pairs should be combined, such as a numeric column with
a string column or a string column with a date column. Additionally, the fifth
through ninth columns of the combined tables would include data from only the

104 | Chapter 6: Working with Sets

customer table’s fifth through ninth columns, since the city table has only four col‐
umns. Clearly, there needs to be some commonality between two data sets that you
wish to combine.

Therefore, when performing set operations on two data sets, the following guidelines
must apply:

• Both data sets must have the same number of columns.
• The data types of each column across the two data sets must be the same (or the

server must be able to convert one to the other).

With these rules in place, it is easier to envision what “overlapping data” means in
practice; each column pair from the two sets being combined must contain the same
string, number, or date for rows in the two tables to be considered the same.

You perform a set operation by placing a set operator between two select statements,
as demonstrated by the following:

mysql> SELECT 1 num, 'abc' str
 -> UNION
 -> SELECT 9 num, 'xyz' str;
+-----+-----+
| num | str |
+-----+-----+
| 1 | abc |
| 9 | xyz |
+-----+-----+
2 rows in set (0.02 sec)

Each of the individual queries yields a data set consisting of a single row having a
numeric column and a string column. The set operator, which in this case is union,
tells the database server to combine all rows from the two sets. Thus, the final set
includes two rows of two columns. This query is known as a compound query because
it comprises multiple, otherwise-independent queries. As you will see later, com‐
pound queries may include more than two queries if multiple set operations are
needed to attain the final results.

Set Operators
The SQL language includes three set operators that allow you to perform each of the
various set operations described earlier in the chapter. Additionally, each set operator
has two flavors, one that includes duplicates and another that removes duplicates (but
not necessarily all of the duplicates). The following subsections define each operator
and demonstrate how they are used.

Set Operators | 105

The union Operator
The union and union all operators allow you to combine multiple data sets. The dif‐
ference between the two is that union sorts the combined set and removes duplicates,
whereas union all does not. With union all, the number of rows in the final data
set will always equal the sum of the number of rows in the sets being combined. This
operation is the simplest set operation to perform (from the server’s point of view),
since there is no need for the server to check for overlapping data. The following
example demonstrates how you can use the union all operator to generate a set of
first and last names from multiple tables:

mysql> SELECT 'CUST' typ, c.first_name, c.last_name
 -> FROM customer c
 -> UNION ALL
 -> SELECT 'ACTR' typ, a.first_name, a.last_name
 -> FROM actor a;
+------+------------+-------------+
| typ | first_name | last_name |
+------+------------+-------------+
CUST	MARY	SMITH
CUST	PATRICIA	JOHNSON
CUST	LINDA	WILLIAMS
CUST	BARBARA	JONES
CUST	ELIZABETH	BROWN
CUST	JENNIFER	DAVIS
CUST	MARIA	MILLER
CUST	SUSAN	WILSON
CUST	MARGARET	MOORE
CUST	DOROTHY	TAYLOR
CUST	LISA	ANDERSON
CUST	NANCY	THOMAS
CUST	KAREN	JACKSON
...		
ACTR	BURT	TEMPLE
ACTR	MERYL	ALLEN
ACTR	JAYNE	SILVERSTONE
ACTR	BELA	WALKEN
ACTR	REESE	WEST
ACTR	MARY	KEITEL
ACTR	JULIA	FAWCETT
ACTR	THORA	TEMPLE
+------+------------+-------------+
799 rows in set (0.00 sec)

The query returns 799 names, with 599 rows coming from the customer table and the
other 200 coming from the actor table. The first column, which has the alias typ, is
not necessary, but was added to show the source of each name returned by the query.

106 | Chapter 6: Working with Sets

Just to drive home the point that the union all operator doesn’t remove duplicates,
here’s another version of the previous example, but with two identical queries against
the actor table:

mysql> SELECT 'ACTR' typ, a.first_name, a.last_name
 -> FROM actor a
 -> UNION ALL
 -> SELECT 'ACTR' typ, a.first_name, a.last_name
 -> FROM actor a;
+------+-------------+--------------+
| typ | first_name | last_name |
+------+-------------+--------------+
ACTR	PENELOPE	GUINESS
ACTR	NICK	WAHLBERG
ACTR	ED	CHASE
ACTR	JENNIFER	DAVIS
ACTR	JOHNNY	LOLLOBRIGIDA
ACTR	BETTE	NICHOLSON
ACTR	GRACE	MOSTEL
...		
ACTR	BURT	TEMPLE
ACTR	MERYL	ALLEN
ACTR	JAYNE	SILVERSTONE
ACTR	BELA	WALKEN
ACTR	REESE	WEST
ACTR	MARY	KEITEL
ACTR	JULIA	FAWCETT
ACTR	THORA	TEMPLE
+------+-------------+--------------+
400 rows in set (0.00 sec)

As you can see by the results, the 200 rows from the actor table are included twice,
for a total of 400 rows.

While you are unlikely to repeat the same query twice in a compound query, here is
another compound query that returns duplicate data:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
 -> UNION ALL
 -> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
JENNIFER	DAVIS
JENNIFER	DAVIS
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH

Set Operators | 107

+------------+-----------+
5 rows in set (0.00 sec)

Both queries return the names of people having the initials JD. Of the five rows in the
result set, one of them is a duplicate (Jennifer Davis). If you would like your com‐
bined table to exclude duplicate rows, you need to use the union operator instead of
union all:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
 -> UNION
 -> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
JENNIFER	DAVIS
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH
+------------+-----------+
4 rows in set (0.00 sec)

For this version of the query, only the four distinct names are included in the result
set, rather than the five rows returned when using union all.

The intersect Operator
The ANSI SQL specification includes the intersect operator for performing inter‐
sections. Unfortunately, version 8.0 of MySQL does not implement the intersect
operator. If you are using Oracle or SQL Server 2008, you will be able to use inter
sect; since I am using MySQL for all examples in this book, however, the result sets
for the example queries in this section are fabricated and cannot be executed with any
versions up to and including version 8.0. I also refrain from showing the MySQL
prompt (mysql>), since the statements are not being executed by the MySQL server.

If the two queries in a compound query return nonoverlapping data sets, then the
intersection will be an empty set. Consider the following query:

SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'D%' AND c.last_name LIKE 'T%'
INTERSECT
SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'D%' AND a.last_name LIKE 'T%';
Empty set (0.04 sec)

108 | Chapter 6: Working with Sets

While there are both actors and customers having the initials DT, these sets are com‐
pletely nonoverlapping, so the intersection of the two sets yields the empty set. If we
switch back to the initials JD, however, the intersection will yield a single row:

SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
INTERSECT
SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JENNIFER | DAVIS |
+------------+-----------+
1 row in set (0.00 sec)

The intersection of these two queries yields Jennifer Davis, which is the only name
found in both queries’ result sets.

Along with the intersect operator, which removes any duplicate rows found in the
overlapping region, the ANSI SQL specification calls for an intersect all operator,
which does not remove duplicates. The only database server that currently imple‐
ments the intersect all operator is IBM’s DB2 Universal Server.

The except Operator
The ANSI SQL specification includes the except operator for performing the except
operation. Once again, unfortunately, version 8.0 of MySQL does not implement the
except operator, so the same rules apply for this section as for the previous section.

If you are using Oracle Database, you will need to use the non-
ANSI-compliant minus operator instead.

The except operator returns the first result set minus any overlap with the second
result set. Here’s the example from the previous section, but using except instead of
intersect, and with the order of the queries reversed:

SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
EXCEPT
SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';

Set Operators | 109

+------------+-----------+
| first_name | last_name |
+------------+-----------+
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH
+------------+-----------+
3 rows in set (0.00 sec)

In this version of the query, the result set consists of the three rows from the first
query minus Jennifer Davis, who is found in the result sets from both queries. There
is also an except all operator specified in the ANSI SQL specification, but once
again, only IBM’s DB2 Universal Server has implemented the except all operator.

The except all operator is a bit tricky, so here is an example that demonstrates how
duplicate data is handled. Let’s say you have two data sets that look like the following:

Set A
+----------+
| actor_id |
+----------+
| 10 |
| 11 |
| 12 |
| 10 |
| 10 |
+----------+

Set B
+----------+
| actor_id |
+----------+
| 10 |
| 10 |
+----------+

The operation A except B yields the following:

+----------+
| actor_id |
+----------+
| 11 |
| 12 |
+----------+

If you change the operation to A except all B, you will see the following:

110 | Chapter 6: Working with Sets

+----------+
| actor_id |
+----------+
| 10 |
| 11 |
| 12 |
+----------+

Therefore, the difference between the two operations is that except removes all
occurrences of duplicate data from set A, whereas except all removes only one
occurrence of duplicate data from set A for every occurrence in set B.

Set Operation Rules
The following sections outline some rules that you must follow when working with
compound queries.

Sorting Compound Query Results
If you want the results of your compound query to be sorted, you can add an order
by clause after the last query. When specifying column names in the order by clause,
you will need to choose from the column names in the first query of the compound
query. Frequently, the column names are the same for both queries in a compound
query, but this does not need to be the case, as demonstrated by the following:

mysql> SELECT a.first_name fname, a.last_name lname
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
 -> UNION ALL
 -> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
 -> ORDER BY lname, fname;
+----------+-----------+
| fname | lname |
+----------+-----------+
JENNIFER	DAVIS
JENNIFER	DAVIS
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH
+----------+-----------+
5 rows in set (0.00 sec)

The column names specified in the two queries are different in this example. If you
specify a column name from the second query in your order by clause, you will see
the following error:

Set Operation Rules | 111

mysql> SELECT a.first_name fname, a.last_name lname
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
 -> UNION ALL
 -> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
 -> ORDER BY last_name, first_name;
ERROR 1054 (42S22): Unknown column 'last_name' in 'order clause'

I recommend giving the columns in both queries identical column aliases in order to
avoid this issue.

Set Operation Precedence
If your compound query contains more than two queries using different set opera‐
tors, you need to think about the order in which to place the queries in your com‐
pound statement to achieve the desired results. Consider the following three-query
compound statement:

mysql> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
 -> UNION ALL
 -> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
 -> UNION
 -> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
JENNIFER	DAVIS
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH
MARY	TANDY
MENA	TEMPLE
+------------+-----------+
6 rows in set (0.00 sec)

This compound query includes three queries that return sets of nonunique names;
the first and second queries are separated with the union all operator, while the sec‐
ond and third queries are separated with the union operator. While it might not seem
to make much difference where the union and union all operators are placed, it
does, in fact, make a difference. Here’s the same compound query with the set opera‐
tors reversed:

112 | Chapter 6: Working with Sets

mysql> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
 -> UNION
 -> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
 -> UNION ALL
 -> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
JENNIFER	DAVIS
JUDY	DEAN
JODIE	DEGENERES
JULIANNE	DENCH
MARY	TANDY
MENA	TEMPLE
JENNIFER	DAVIS
+------------+-----------+
7 rows in set (0.00 sec)

Looking at the results, it’s obvious that it does make a difference how the compound
query is arranged when using different set operators. In general, compound queries
containing three or more queries are evaluated in order from top to bottom, but with
the following caveats:

• The ANSI SQL specification calls for the intersect operator to have precedence
over the other set operators.

• You may dictate the order in which queries are combined by enclosing multiple
queries in parentheses.

MySQL does not yet allow parentheses in compound queries, but if you are using a
different database server, you can wrap adjoining queries in parentheses to override
the default top-to-bottom processing of compound queries, as in:

SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
UNION
(SELECT a.first_name, a.last_name
 FROM actor a
 WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
 UNION ALL
 SELECT c.first_name, c.last_name
 FROM customer c
 WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
)

Set Operation Rules | 113

For this compound query, the second and third queries would be combined using the
union all operator, then the results would be combined with the first query using
the union operator.

Test Your Knowledge
The following exercises are designed to test your understanding of set operations. See
Appendix B for the answers to these exercises.

Exercise 6-1
If set A = {L M N O P} and set B = {P Q R S T}, what sets are generated by the follow‐
ing operations?

• A union B

• A union all B

• A intersect B

• A except B

Exercise 6-2
Write a compound query that finds the first and last names of all actors and custom‐
ers whose last name starts with L.

Exercise 6-3
Sort the results from Exercise 6-2 by the last_name column.

114 | Chapter 6: Working with Sets

CHAPTER 7

Data Generation, Manipulation,
and Conversion

As I mentioned in the preface, this book strives to teach generic SQL techniques that
can be applied across multiple database servers. This chapter, however, deals with the
generation, conversion, and manipulation of string, numeric, and temporal data, and
the SQL language does not include commands covering this functionality. Rather,
built-in functions are used to facilitate data generation, conversion, and manipula‐
tion, and while the SQL standard does specify some functions, the database vendors
often do not comply with the function specifications.

Therefore, my approach for this chapter is to show you some of the common ways in
which data is generated and manipulated within SQL statements and then demon‐
strate some of the built-in functions implemented by Microsoft SQL Server, Oracle
Database, and MySQL. Along with reading this chapter, I strongly recommend you
download a reference guide covering all the functions implemented by your server. If
you work with more than one database server, there are several reference guides that
cover multiple servers, such as Kevin Kline et al.’s SQL in a Nutshell and Jonathan
Gennick’s SQL Pocket Guide, both from O’Reilly.

Working with String Data
When working with string data, you will be using one of the following character data
types:

CHAR

Holds fixed-length, blank-padded strings. MySQL allows CHAR values up to 255
characters in length, Oracle Database permits up to 2,000 characters, and SQL
Server allows up to 8,000 characters.

115

http://shop.oreilly.com/product/9780596518851.do
http://shop.oreilly.com/product/9780596526887.do

varchar

Holds variable-length strings. MySQL permits up to 65,535 characters in a var
char column, Oracle Database (via the varchar2 type) allows up to 4,000 charac‐
ters, and SQL Server allows up to 8,000 characters.

text (MySQL and SQL Server) or clob (Oracle Database)
Holds very large variable-length strings (generally referred to as documents in
this context). MySQL has multiple text types (tinytext, text, mediumtext, and
longtext) for documents up to 4 GB in size. SQL Server has a single text type
for documents up to 2 GB in size, and Oracle Database includes the clob data
type, which can hold documents up to a whopping 128 TB. SQL Server 2005 also
includes the varchar(max) data type and recommends its use instead of the text
type, which will be removed from the server in some future release.

To demonstrate how you can use these various types, I use the following table for
some of the examples in this section:

CREATE TABLE string_tbl
 (char_fld CHAR(30),
 vchar_fld VARCHAR(30),
 text_fld TEXT
);

The next two subsections show how you can generate and manipulate string data.

String Generation
The simplest way to populate a character column is to enclose a string in quotes, as in
the following examples:

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
 -> VALUES ('This is char data',
 -> 'This is varchar data',
 -> 'This is text data');
Query OK, 1 row affected (0.00 sec)

When inserting string data into a table, remember that if the length of the string
exceeds the maximum size for the character column (either the designated maximum
or the maximum allowed for the data type), the server will throw an exception.
Although this is the default behavior for all three servers, you can configure MySQL
and SQL Server to silently truncate the string instead of throwing an exception. To
demonstrate how MySQL handles this situation, the following update statement
attempts to modify the vchar_fld column, whose maximum length is defined as 30,
with a string that is 46 characters in length:

mysql> UPDATE string_tbl
 -> SET vchar_fld = 'This is a piece of extremely long varchar data';
ERROR 1406 (22001): Data too long for column 'vchar_fld' at row 1

116 | Chapter 7: Data Generation, Manipulation, and Conversion

Since MySQL 6.0, the default behavior is now “strict” mode, which means that excep‐
tions are thrown when problems arise, whereas in older versions of the server the
string would have been truncated and a warning issued. If you would rather have the
engine truncate the string and issue a warning instead of raising an exception, you
can opt to be in ANSI mode. The following example shows how to check which mode
you are in and then how to change the mode using the set command:

mysql> SELECT @@session.sql_mode;
+--+
| @@session.sql_mode |
+--+
| STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+--+
1 row in set (0.00 sec)

mysql> SET sql_mode='ansi';
Query OK, 0 rows affected (0.08 sec)

mysql> SELECT @@session.sql_mode;
+--+
| @@session.sql_mode |
+--+
| REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI |
+--+
1 row in set (0.00 sec)

If you rerun the previous update statement, you will find that the column has been
modified, but the following warning is generated:

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'vchar_fld' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

If you retrieve the vchar_fld column, you will see that the string has indeed been
truncated:

mysql> SELECT vchar_fld
 -> FROM string_tbl;
+--------------------------------+
| vchar_fld |
+--------------------------------+
| This is a piece of extremely l |
+--------------------------------+
1 row in set (0.05 sec)

As you can see, only the first 30 characters of the 46-character string made it into the
vchar_fld column. The best way to avoid string truncation (or exceptions, in the

Working with String Data | 117

case of Oracle Database or MySQL in strict mode) when working with varchar col‐
umns is to set the upper limit of a column to a high enough value to handle the
longest strings that might be stored in the column (keeping in mind that the server
allocates only enough space to store the string, so it is not wasteful to set a high upper
limit for varchar columns).

Including single quotes
Since strings are demarcated by single quotes, you will need to be alert for strings that
include single quotes or apostrophes. For example, you won’t be able to insert the fol‐
lowing string because the server will think that the apostrophe in the word doesn’t
marks the end of the string:

UPDATE string_tbl
SET text_fld = 'This string doesn't work';

To make the server ignore the apostrophe in the word doesn’t, you will need to add an
escape to the string so that the server treats the apostrophe like any other character in
the string. All three servers allow you to escape a single quote by adding another sin‐
gle quote directly before, as in:

mysql> UPDATE string_tbl
 -> SET text_fld = 'This string didn''t work, but it does now';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Oracle Database and MySQL users may also choose to escape a sin‐
gle quote by adding a backslash character immediately before, as
in:

UPDATE string_tbl SET text_fld =
 'This string didn\'t work, but it does now'

If you retrieve a string for use in a screen or report field, you don’t need to do any‐
thing special to handle embedded quotes:

mysql> SELECT text_fld
 -> FROM string_tbl;
+--+
| text_fld |
+--+
| This string didn't work, but it does now |
+--+
1 row in set (0.00 sec)

However, if you are retrieving the string to add to a file that another program will
read, you may want to include the escape as part of the retrieved string. If you are
using MySQL, you can use the built-in function quote(), which places quotes around

118 | Chapter 7: Data Generation, Manipulation, and Conversion

the entire string and adds escapes to any single quotes/apostrophes within the string.
Here’s what our string looks like when retrieved via the quote() function:

mysql> SELECT quote(text_fld)
 -> FROM string_tbl;
+---+
| QUOTE(text_fld) |
+---+
| 'This string didn\'t work, but it does now' |
+---+
1 row in set (0.04 sec)

When retrieving data for data export, you may want to use the quote() function for
all non-system-generated character columns, such as a customer_notes column.

Including special characters
If your application is multinational in scope, you might find yourself working with
strings that include characters that do not appear on your keyboard. When working
with the French and German languages, for example, you might need to include
accented characters such as é and ö. The SQL Server and MySQL servers include the
built-in function char() so that you can build strings from any of the 255 characters
in the ASCII character set (Oracle Database users can use the chr() function). To
demonstrate, the next example retrieves a typed string and its equivalent built via
individual characters:

mysql> SELECT 'abcdefg', CHAR(97,98,99,100,101,102,103);
+---------+--------------------------------+
| abcdefg | CHAR(97,98,99,100,101,102,103) |
+---------+--------------------------------+
| abcdefg | abcdefg |
+---------+--------------------------------+
1 row in set (0.01 sec)

Thus, the 97th character in the ASCII character set is the letter a. While the charac‐
ters shown in the preceding example are not special, the following examples show the
location of the accented characters along with other special characters, such as cur‐
rency symbols:

mysql> SELECT CHAR(128,129,130,131,132,133,134,135,136,137);
+---+
| CHAR(128,129,130,131,132,133,134,135,136,137) |
+---+
| Çüéâäàåçêë |
+---+
1 row in set (0.01 sec)

mysql> SELECT CHAR(138,139,140,141,142,143,144,145,146,147);
+---+
| CHAR(138,139,140,141,142,143,144,145,146,147) |

Working with String Data | 119

+---+
| èïîìÄÅÉæÆô |
+---+
1 row in set (0.01 sec)

mysql> SELECT CHAR(148,149,150,151,152,153,154,155,156,157);
+---+
| CHAR(148,149,150,151,152,153,154,155,156,157) |
+---+
| öòûùÿÖÜø£Ø |
+---+
1 row in set (0.00 sec)

mysql> SELECT CHAR(158,159,160,161,162,163,164,165);
+---------------------------------------+
| CHAR(158,159,160,161,162,163,164,165) |
+---------------------------------------+
| ×ƒáíóúñÑ |
+---------------------------------------+
1 row in set (0.01 sec)

I am using the utf8mb4 character set for the examples in this sec‐
tion. If your session is configured for a different character set, you
will see a different set of characters than what is shown here. The
same concepts apply, but you will need to familiarize yourself with
the layout of your character set to locate specific characters.

Building strings character by character can be quite tedious, especially if only a few of
the characters in the string are accented. Fortunately, you can use the concat() func‐
tion to concatenate individual strings, some of which you can type while others you
can generate via the char() function. For example, the following shows how to build
the phrase danke schön using the concat() and char() functions:

mysql> SELECT CONCAT('danke sch', CHAR(148), 'n');
+-------------------------------------+
| CONCAT('danke sch', CHAR(148), 'n') |
+-------------------------------------+
| danke schön |
+-------------------------------------+
1 row in set (0.00 sec)

120 | Chapter 7: Data Generation, Manipulation, and Conversion

Oracle Database users can use the concatenation operator (||)
instead of the concat() function, as in:

SELECT 'danke sch' || CHR(148) || 'n'
FROM dual;

SQL Server does not include a concat() function, so you will need
to use the concatenation operator (+), as in:

SELECT 'danke sch' + CHAR(148) + 'n'

If you have a character and need to find its ASCII equivalent, you can use the
ascii() function, which takes the leftmost character in the string and returns a
number:

mysql> SELECT ASCII('ö');
+------------+
| ASCII('ö') |
+------------+
| 148 |
+------------+
1 row in set (0.00 sec)

Using the char(), ascii(), and concat() functions (or concatenation operators),
you should be able to work with any Roman language even if you are using a key‐
board that does not include accented or special characters.

String Manipulation
Each database server includes many built-in functions for manipulating strings. This
section explores two types of string functions: those that return numbers and those
that return strings. Before I begin, however, I reset the data in the string_tbl table to
the following:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
 -> VALUES ('This string is 28 characters',
 -> 'This string is 28 characters',
 -> 'This string is 28 characters');
Query OK, 1 row affected (0.00 sec)

String functions that return numbers
Of the string functions that return numbers, one of the most commonly used is the
length() function, which returns the number of characters in the string (SQL Server
users will need to use the len() function). The following query applies the length()
function to each column in the string_tbl table:

Working with String Data | 121

mysql> SELECT LENGTH(char_fld) char_length,
 -> LENGTH(vchar_fld) varchar_length,
 -> LENGTH(text_fld) text_length
 -> FROM string_tbl;
+-------------+----------------+-------------+
| char_length | varchar_length | text_length |
+-------------+----------------+-------------+
| 28 | 28 | 28 |
+-------------+----------------+-------------+
1 row in set (0.00 sec)

While the lengths of the varchar and text columns are as expected, you might have
expected the length of the char column to be 30, since I told you that strings stored in
char columns are right-padded with spaces. The MySQL server removes trailing
spaces from char data when it is retrieved, however, so you will see the same results
from all string functions regardless of the type of column in which the strings are
stored.

Along with finding the length of a string, you might want to find the location of a
substring within a string. For example, if you want to find the position at which the
string 'characters' appears in the vchar_fld column, you could use the
position() function, as demonstrated by the following:

mysql> SELECT POSITION('characters' IN vchar_fld)
 -> FROM string_tbl;
+-------------------------------------+
| POSITION('characters' IN vchar_fld) |
+-------------------------------------+
| 19 |
+-------------------------------------+
1 row in set (0.12 sec)

If the substring cannot be found, the position() function returns 0.

For those of you who program in a language such as C or C++,
where the first element of an array is at position 0, remember when
working with databases that the first character in a string is at posi‐
tion 1. A return value of 0 from instr() indicates that the sub‐
string could not be found, not that the substring was found at the
first position in the string.

If you want to start your search at something other than the first character of your
target string, you will need to use the locate() function, which is similar to the posi
tion() function except that it allows an optional third parameter, which is used to
define the search’s start position. The locate() function is also proprietary, whereas
the position() function is part of the SQL:2003 standard. Here’s an example asking

122 | Chapter 7: Data Generation, Manipulation, and Conversion

for the position of the string 'is' starting at the fifth character in the vchar_fld
column:

mysql> SELECT LOCATE('is', vchar_fld, 5)
 -> FROM string_tbl;
+----------------------------+
| LOCATE('is', vchar_fld, 5) |
+----------------------------+
| 13 |
+----------------------------+
1 row in set (0.02 sec)

Oracle Database does not include the position() or locate()
function, but it does include the instr() function, which mimics
the position() function when provided with two arguments and
mimics the locate() function when provided with three argu‐
ments. SQL Server also doesn’t include a position() or locate()
function, but it does include the charindx() function, which also
accepts either two or three arguments similar to Oracle’s instr()
function.

Another function that takes strings as arguments and returns numbers is the string
comparison function strcmp(). strcmp(), which is implemented only by MySQL and
has no analog in Oracle Database or SQL Server, takes two strings as arguments and
returns one of the following:

• −1 if the first string comes before the second string in sort order
• 0 if the strings are identical
• 1 if the first string comes after the second string in sort order

To illustrate how the function works, I first show the sort order of five strings using a
query and then show how the strings compare to one another using strcmp(). Here
are the five strings that I insert into the string_tbl table:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO string_tbl(vchar_fld)
 -> VALUES ('abcd'),
 -> ('xyz'),
 -> ('QRSTUV'),
 -> ('qrstuv'),
 -> ('12345');
Query OK, 5 rows affected (0.05 sec)
Records: 5 Duplicates: 0 Warnings: 0

Here are the five strings in their sort order:

Working with String Data | 123

mysql> SELECT vchar_fld
 -> FROM string_tbl
 -> ORDER BY vchar_fld;
+-----------+
| vchar_fld |
+-----------+
| 12345 |
| abcd |
| QRSTUV |
| qrstuv |
| xyz |
+-----------+
5 rows in set (0.00 sec)

The next query makes six comparisons among the five different strings:

mysql> SELECT STRCMP('12345','12345') 12345_12345,
 -> STRCMP('abcd','xyz') abcd_xyz,
 -> STRCMP('abcd','QRSTUV') abcd_QRSTUV,
 -> STRCMP('qrstuv','QRSTUV') qrstuv_QRSTUV,
 -> STRCMP('12345','xyz') 12345_xyz,
 -> STRCMP('xyz','qrstuv') xyz_qrstuv;
+-------------+----------+-------------+---------------+-----------+------------+
| 12345_12345 | abcd_xyz | abcd_QRSTUV | qrstuv_QRSTUV | 12345_xyz | xyz_qrstuv |
+-------------+----------+-------------+---------------+-----------+------------+
| 0 | −1 | −1 | 0 | −1 | 1 |
+-------------+----------+-------------+---------------+-----------+------------+
1 row in set (0.00 sec)

The first comparison yields 0, which is to be expected since I compared a string to
itself. The fourth comparison also yields 0, which is a bit surprising, since the strings
are composed of the same letters, with one string all uppercase and the other all low‐
ercase. The reason for this result is that MySQL’s strcmp() function is case-
insensitive, which is something to remember when using the function. The other four
comparisons yield either −1 or 1 depending on whether the first string comes before
or after the second string in sort order. For example, strcmp('abcd','xyz') yields
−1, since the string 'abcd' comes before the string 'xyz'.

Along with the strcmp() function, MySQL also allows you to use the like and
regexp operators to compare strings in the select clause. Such comparisons will
yield 1 (for true) or 0 (for false). Therefore, these operators allow you to build
expressions that return a number, much like the functions described in this section.
Here’s an example using like:

mysql> SELECT name, name LIKE '%y' ends_in_y
 -> FROM category;
+-------------+-----------+
| name | ends_in_y |
+-------------+-----------+
| Action | 0 |
| Animation | 0 |

124 | Chapter 7: Data Generation, Manipulation, and Conversion

Children	0
Classics	0
Comedy	1
Documentary	1
Drama	0
Family	1
Foreign	0
Games	0
Horror	0
Music	0
New	0
Sci-Fi	0
Sports	0
Travel	0
+-------------+-----------+
16 rows in set (0.00 sec)

This example retrieves all the category names, along with an expression that returns 1
if the name ends in “y” or 0 otherwise. If you want to perform more complex pattern
matches, you can use the regexp operator, as demonstrated by the following:

mysql> SELECT name, name REGEXP 'y$' ends_in_y
 -> FROM category;
+-------------+-----------+
| name | ends_in_y |
+-------------+-----------+
Action	0
Animation	0
Children	0
Classics	0
Comedy	1
Documentary	1
Drama	0
Family	1
Foreign	0
Games	0
Horror	0
Music	0
New	0
Sci-Fi	0
Sports	0
Travel	0
+-------------+-----------+
16 rows in set (0.00 sec)

The second column of this query returns 1 if the value stored in the name column
matches the given regular expression.

Working with String Data | 125

Microsoft SQL Server and Oracle Database users can achieve simi‐
lar results by building case expressions, which I describe in detail
in Chapter 11.

String functions that return strings
In some cases, you will need to modify existing strings, either by extracting part of
the string or by adding additional text to the string. Every database server includes
multiple functions to help with these tasks. Before I begin, I once again reset the data
in the string_tbl table:

mysql> DELETE FROM string_tbl;
Query OK, 5 rows affected (0.00 sec)

mysql> INSERT INTO string_tbl (text_fld)
 -> VALUES ('This string was 29 characters');
Query OK, 1 row affected (0.01 sec)

Earlier in the chapter, I demonstrated the use of the concat() function to help build
words that include accented characters. The concat() function is useful in many
other situations, including when you need to append additional characters to a stored
string. For instance, the following example modifies the string stored in the text_fld
column by tacking an additional phrase on the end:

mysql> UPDATE string_tbl
 -> SET text_fld = CONCAT(text_fld, ', but now it is longer');
Query OK, 1 row affected (0.03 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The contents of the text_fld column are now as follows:

mysql> SELECT text_fld
 -> FROM string_tbl;
+---+
| text_fld |
+---+
| This string was 29 characters, but now it is longer |
+---+
1 row in set (0.00 sec)

Thus, like all functions that return a string, you can use concat() to replace the data
stored in a character column.

Another common use for the concat() function is to build a string from individual
pieces of data. For example, the following query generates a narrative string for each
customer:

mysql> SELECT concat(first_name, ' ', last_name,
 -> ' has been a customer since ', date(create_date)) cust_narrative
 -> FROM customer;

126 | Chapter 7: Data Generation, Manipulation, and Conversion

+---+
| cust_narrative |
+---+
| MARY SMITH has been a customer since 2006-02-14 |
| PATRICIA JOHNSON has been a customer since 2006-02-14 |
| LINDA WILLIAMS has been a customer since 2006-02-14 |
| BARBARA JONES has been a customer since 2006-02-14 |
| ELIZABETH BROWN has been a customer since 2006-02-14 |
| JENNIFER DAVIS has been a customer since 2006-02-14 |
| MARIA MILLER has been a customer since 2006-02-14 |
| SUSAN WILSON has been a customer since 2006-02-14 |
| MARGARET MOORE has been a customer since 2006-02-14 |
| DOROTHY TAYLOR has been a customer since 2006-02-14 |
...
| RENE MCALISTER has been a customer since 2006-02-14 |
| EDUARDO HIATT has been a customer since 2006-02-14 |
| TERRENCE GUNDERSON has been a customer since 2006-02-14 |
| ENRIQUE FORSYTHE has been a customer since 2006-02-14 |
| FREDDIE DUGGAN has been a customer since 2006-02-14 |
| WADE DELVALLE has been a customer since 2006-02-14 |
| AUSTIN CINTRON has been a customer since 2006-02-14 |
+---+
599 rows in set (0.00 sec)

The concat() function can handle any expression that returns a string and will even
convert numbers and dates to string format, as evidenced by the date column (cre
ate_date) used as an argument. Although Oracle Database includes the concat()
function, it will accept only two string arguments, so the previous query will not
work on Oracle. Instead, you would need to use the concatenation operator (||)
rather than a function call, as in:

SELECT first_name || ' ' || last_name ||
 ' has been a customer since ' || date(create_date)) cust_narrative
FROM customer;

SQL Server does not include a concat() function, so you would need to use the same
approach as the previous query, except that you would use SQL Server’s concatena‐
tion operator (+) instead of ||.

While concat() is useful for adding characters to the beginning or end of a string,
you may also have a need to add or replace characters in the middle of a string. All
three database servers provide functions for this purpose, but all of them are differ‐
ent, so I demonstrate the MySQL function and then show the functions from the
other two servers.

MySQL includes the insert() function, which takes four arguments: the original
string, the position at which to start, the number of characters to replace, and the
replacement string. Depending on the value of the third argument, the function may
be used to either insert or replace characters in a string. With a value of 0 for the third

Working with String Data | 127

argument, the replacement string is inserted, and any trailing characters are pushed
to the right, as in:

mysql> SELECT INSERT('goodbye world', 9, 0, 'cruel ') string;
+---------------------+
| string |
+---------------------+
| goodbye cruel world |
+---------------------+
1 row in set (0.00 sec)

In this example, all characters starting from position 9 are pushed to the right, and
the string 'cruel' is inserted. If the third argument is greater than zero, then that
number of characters is replaced with the replacement string, as in:

mysql> SELECT INSERT('goodbye world', 1, 7, 'hello') string;
+-------------+
| string |
+-------------+
| hello world |
+-------------+
1 row in set (0.00 sec)

For this example, the first seven characters are replaced with the string 'hello'. Ora‐
cle Database does not provide a single function with the flexibility of MySQL’s
insert() function, but Oracle does provide the replace() function, which is useful
for replacing one substring with another. Here’s the previous example reworked to
use replace():

SELECT REPLACE('goodbye world', 'goodbye', 'hello')
FROM dual;

All instances of the string 'goodbye' will be replaced with the string 'hello', result‐
ing in the string 'hello world'. The replace() function will replace every instance
of the search string with the replacement string, so you need to be careful that you
don’t end up with more replacements than you anticipated.

SQL Server also includes a replace() function with the same functionality as Ora‐
cle’s, but SQL Server also includes a function called stuff() with similar functional‐
ity to MySQL’s insert() function. Here’s an example:

SELECT STUFF('hello world', 1, 5, 'goodbye cruel')

When executed, five characters are removed starting at position 1, and then the string
'goodbye cruel' is inserted at the starting position, resulting in the string 'goodbye
cruel world'.

Along with inserting characters into a string, you may have a need to extract a sub‐
string from a string. For this purpose, all three servers include the substring() func‐
tion (although Oracle Database’s version is called substr()), which extracts a

128 | Chapter 7: Data Generation, Manipulation, and Conversion

specified number of characters starting at a specified position. The following example
extracts five characters from a string starting at the ninth position:

mysql> SELECT SUBSTRING('goodbye cruel world', 9, 5);
+--+
| SUBSTRING('goodbye cruel world', 9, 5) |
+--+
| cruel |
+--+
1 row in set (0.00 sec)

Along with the functions demonstrated here, all three servers include many more
built-in functions for manipulating string data. While many of them are designed for
very specific purposes, such as generating the string equivalent of octal or hexadeci‐
mal numbers, there are many other general-purpose functions as well, such as func‐
tions that remove or add trailing spaces. For more information, consult your server’s
SQL reference guide, or a general-purpose SQL reference guide such as SQL in a Nut‐
shell (O’Reilly).

Working with Numeric Data
Unlike string data (and temporal data, as you will see shortly), numeric data genera‐
tion is quite straightforward. You can type a number, retrieve it from another column,
or generate it via a calculation. All the usual arithmetic operators (+, -, *, /) are avail‐
able for performing calculations, and parentheses may be used to dictate precedence,
as in:

mysql> SELECT (37 * 59) / (78 - (8 * 6));
+----------------------------+
| (37 * 59) / (78 - (8 * 6)) |
+----------------------------+
| 72.77 |
+----------------------------+
1 row in set (0.00 sec)

As I mentioned in Chapter 2, the main concern when storing numeric data is that
numbers might be rounded if they are larger than the specified size for a numeric col‐
umn. For example, the number 9.96 will be rounded to 10.0 if stored in a column
defined as float(3,1).

Performing Arithmetic Functions
Most of the built-in numeric functions are used for specific arithmetic purposes, such
as determining the square root of a number. Table 7-1 lists some of the common
numeric functions that take a single numeric argument and return a number.

Working with Numeric Data | 129

http://shop.oreilly.com/product/9780596518851.do
http://shop.oreilly.com/product/9780596518851.do

Table 7-1. Single-argument numeric functions

Function name Description

acos(x) Calculates the arc cosine of x

asin(x) Calculates the arc sine of x

atan(x) Calculates the arc tangent of x

cos(x) Calculates the cosine of x

cot(x) Calculates the cotangent of x

exp(x) Calculates ex

ln(x) Calculates the natural log of x

sin(x) Calculates the sine of x

sqrt(x) Calculates the square root of x

tan(x) Calculates the tangent of x

These functions perform very specific tasks, and I refrain from showing examples for
these functions (if you don’t recognize a function by name or description, then you
probably don’t need it). Other numeric functions used for calculations, however, are a
bit more flexible and deserve some explanation.

For example, the modulo operator, which calculates the remainder when one number
is divided into another number, is implemented in MySQL and Oracle Database via
the mod() function. The following example calculates the remainder when 4 is divi‐
ded into 10:

mysql> SELECT MOD(10,4);
+-----------+
| MOD(10,4) |
+-----------+
| 2 |
+-----------+
1 row in set (0.02 sec)

While the mod() function is typically used with integer arguments, with MySQL you
can also use real numbers, as in:

mysql> SELECT MOD(22.75, 5);
+---------------+
| MOD(22.75, 5) |
+---------------+
| 2.75 |
+---------------+
1 row in set (0.02 sec)

130 | Chapter 7: Data Generation, Manipulation, and Conversion

SQL Server does not have a mod() function. Instead, the operator %
is used for finding remainders. The expression 10 % 4 will there‐
fore yield the value 2.

Another numeric function that takes two numeric arguments is the pow() function
(or power() if you are using Oracle Database or SQL Server), which returns one
number raised to the power of a second number, as in:

mysql> SELECT POW(2,8);
+----------+
| POW(2,8) |
+----------+
| 256 |
+----------+
1 row in set (0.03 sec)

Thus, pow(2,8) is the MySQL equivalent of specifying 28. Since computer memory is
allocated in chunks of 2x bytes, the pow() function can be a handy way to determine
the exact number of bytes in a certain amount of memory:

mysql> SELECT POW(2,10) kilobyte, POW(2,20) megabyte,
 -> POW(2,30) gigabyte, POW(2,40) terabyte;
+----------+----------+------------+---------------+
| kilobyte | megabyte | gigabyte | terabyte |
+----------+----------+------------+---------------+
| 1024 | 1048576 | 1073741824 | 1099511627776 |
+----------+----------+------------+---------------+
1 row in set (0.00 sec)

I don’t know about you, but I find it easier to remember that a gigabyte is 230 bytes
than to remember the number 1,073,741,824.

Controlling Number Precision
When working with floating-point numbers, you may not always want to interact
with or display a number with its full precision. For example, you may store mone‐
tary transaction data with a precision to six decimal places, but you might want to
round to the nearest hundredth for display purposes. Four functions are useful when
limiting the precision of floating-point numbers: ceil(), floor(), round(), and trun
cate(). All three servers include these functions, although Oracle Database includes
trunc() instead of truncate(), and SQL Server includes ceiling() instead of
ceil().

The ceil() and floor() functions are used to round either up or down to the closest
integer, as demonstrated by the following:

Working with Numeric Data | 131

mysql> SELECT CEIL(72.445), FLOOR(72.445);
+--------------+---------------+
| CEIL(72.445) | FLOOR(72.445) |
+--------------+---------------+
| 73 | 72 |
+--------------+---------------+
1 row in set (0.06 sec)

Thus, any number between 72 and 73 will be evaluated as 73 by the ceil() function
and 72 by the floor() function. Remember that ceil() will round up even if the
decimal portion of a number is very small, and floor() will round down even if the
decimal portion is quite significant, as in:

mysql> SELECT CEIL(72.000000001), FLOOR(72.999999999);
+--------------------+---------------------+
| CEIL(72.000000001) | FLOOR(72.999999999) |
+--------------------+---------------------+
| 73 | 72 |
+--------------------+---------------------+
1 row in set (0.00 sec)

If this is a bit too severe for your application, you can use the round() function to
round up or down from the midpoint between two integers, as in:

mysql> SELECT ROUND(72.49999), ROUND(72.5), ROUND(72.50001);
+-----------------+-------------+-----------------+
| ROUND(72.49999) | ROUND(72.5) | ROUND(72.50001) |
+-----------------+-------------+-----------------+
| 72 | 73 | 73 |
+-----------------+-------------+-----------------+
1 row in set (0.00 sec)

Using round(), any number whose decimal portion is halfway or more between two
integers will be rounded up, whereas the number will be rounded down if the decimal
portion is anything less than halfway between the two integers.

Most of the time, you will want to keep at least some part of the decimal portion of a
number rather than rounding to the nearest integer; the round() function allows an
optional second argument to specify how many digits to the right of the decimal place
to round to. The next example shows how you can use the second argument to round
the number 72.0909 to one, two, and three decimal places:

mysql> SELECT ROUND(72.0909, 1), ROUND(72.0909, 2), ROUND(72.0909, 3);
+-------------------+-------------------+-------------------+
| ROUND(72.0909, 1) | ROUND(72.0909, 2) | ROUND(72.0909, 3) |
+-------------------+-------------------+-------------------+
| 72.1 | 72.09 | 72.091 |
+-------------------+-------------------+-------------------+
1 row in set (0.00 sec)

132 | Chapter 7: Data Generation, Manipulation, and Conversion

Like the round() function, the truncate() function allows an optional second argu‐
ment to specify the number of digits to the right of the decimal, but truncate() sim‐
ply discards the unwanted digits without rounding. The next example shows how the
number 72.0909 would be truncated to one, two, and three decimal places:

mysql> SELECT TRUNCATE(72.0909, 1), TRUNCATE(72.0909, 2),
 -> TRUNCATE(72.0909, 3);
+----------------------+----------------------+----------------------+
| TRUNCATE(72.0909, 1) | TRUNCATE(72.0909, 2) | TRUNCATE(72.0909, 3) |
+----------------------+----------------------+----------------------+
| 72.0 | 72.09 | 72.090 |
+----------------------+----------------------+----------------------+
1 row in set (0.00 sec)

SQL Server does not include a truncate() function. Instead, the
round() function allows for an optional third argument that, if
present and nonzero, calls for the number to be truncated rather
than rounded.

Both truncate() and round() also allow a negative value for the second argument,
meaning that numbers to the left of the decimal place are truncated or rounded. This
might seem like a strange thing to do at first, but there are valid applications. For
example, you might sell a product that can be purchased only in units of 10. If a cus‐
tomer were to order 17 units, you could choose from one of the following methods to
modify the customer’s order quantity:

mysql> SELECT ROUND(17, −1), TRUNCATE(17, −1);
+---------------+------------------+
| ROUND(17, −1) | TRUNCATE(17, −1) |
+---------------+------------------+
| 20 | 10 |
+---------------+------------------+
1 row in set (0.00 sec)

If the product in question is thumbtacks, then it might not make much difference to
your bottom line whether you sold the customer 10 or 20 thumbtacks when only 17
were requested; if you are selling Rolex watches, however, your business may fare bet‐
ter by rounding.

Handling Signed Data
If you are working with numeric columns that allow negative values (in Chapter 2, I
showed how a numeric column may be labeled unsigned, meaning that only positive
numbers are allowed), several numeric functions might be of use. Let’s say, for exam‐
ple, that you are asked to generate a report showing the current status of a set of bank
accounts using the following data from the account table:

Working with Numeric Data | 133

+------------+--------------+---------+
| account_id | acct_type | balance |
+------------+--------------+---------+
123	MONEY MARKET	785.22
456	SAVINGS	0.00
789	CHECKING	-324.22
+------------+--------------+---------+

The following query returns three columns useful for generating the report:

mysql> SELECT account_id, SIGN(balance), ABS(balance)
 -> FROM account;
+------------+---------------+--------------+
| account_id | SIGN(balance) | ABS(balance) |
+------------+---------------+--------------+
123	1	785.22
456	0	0.00
789	-1	324.22
+------------+---------------+--------------+
3 rows in set (0.00 sec)

The second column uses the sign() function to return −1 if the account balance is
negative, 0 if the account balance is zero, and 1 if the account balance is positive. The
third column returns the absolute value of the account balance via the abs()
function.

Working with Temporal Data
Of the three types of data discussed in this chapter (character, numeric, and tempo‐
ral), temporal data is the most involved when it comes to data generation and manip‐
ulation. Some of the complexity of temporal data is caused by the myriad ways in
which a single date and time can be described. For example, the date on which I
wrote this paragraph can be described in all the following ways:

• Wednesday, June 5, 2019
• 6/05/2019 2:14:56 P.M. EST
• 6/05/2019 19:14:56 GMT
• 1562019 (Julian format)
• Star date [−4] 97026.79 14:14:56 (Star Trek format)

While some of these differences are purely a matter of formatting, most of the com‐
plexity has to do with your frame of reference, which we explore in the next section.

Dealing with Time Zones
Because people around the world prefer that noon coincides roughly with the sun’s
peak at their location, there has never been a serious attempt to coerce everyone to

134 | Chapter 7: Data Generation, Manipulation, and Conversion

use a universal clock. Instead, the world has been sliced into 24 imaginary sections,
called time zones; within a particular time zone, everyone agrees on the current time,
whereas people in different time zones do not. While this seems simple enough, some
geographic regions shift their time by one hour twice a year (implementing what is
known as daylight saving time) and some do not, so the time difference between two
points on Earth might be four hours for one-half of the year and five hours for the
other half of the year. Even within a single time zone, different regions may or may
not adhere to daylight saving time, causing different clocks in the same time zone to
agree for one-half of the year but be one hour different for the rest of the year.

While the computer age has exacerbated the issue, people have been dealing with
time zone differences since the early days of naval exploration. To ensure a common
point of reference for timekeeping, fifteenth-century navigators set their clocks to the
time of day in Greenwich, England. This became known as Greenwich Mean Time, or
GMT. All other time zones can be described by the number of hours’ difference from
GMT; for example, the time zone for the Eastern United States, known as Eastern
Standard Time, can be described as GMT −5:00, or five hours earlier than GMT.

Today, we use a variation of GMT called Coordinated Universal Time, or UTC, which
is based on an atomic clock (or, to be more precise, the average time of 200 atomic
clocks in 50 locations worldwide, which is referred to as Universal Time). Both SQL
Server and MySQL provide functions that will return the current UTC timestamp
(getutcdate() for SQL Server and utc_timestamp() for MySQL).

Most database servers default to the time zone setting of the server on which it
resides and provide tools for modifying the time zone if needed. For example, a data‐
base used to store stock exchange transactions from around the world would gener‐
ally be configured to use UTC time, whereas a database used to store transactions at a
particular retail establishment might use the server’s time zone.

MySQL keeps two different time zone settings: a global time zone and a session time
zone, which may be different for each user logged in to a database. You can see both
settings via the following query:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | SYSTEM |
+--------------------+---------------------+
1 row in set (0.00 sec)

A value of system tells you that the server is using the time zone setting from the
server on which the database resides.

Working with Temporal Data | 135

If you are sitting at a computer in Zurich, Switzerland, and you open a session across
the network to a MySQL server situated in New York, you may want to change the
time zone setting for your session, which you can do via the following command:

mysql> SET time_zone = 'Europe/Zurich';
Query OK, 0 rows affected (0.18 sec)

If you check the time zone settings again, you will see the following:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM | Europe/Zurich |
+--------------------+---------------------+
1 row in set (0.00 sec)

All dates displayed in your session will now conform to Zurich time.

Oracle Database users can change the time zone setting for a ses‐
sion via the following command:

ALTER SESSION TIMEZONE = 'Europe/Zurich'

Generating Temporal Data
You can generate temporal data via any of the following means:

• Copying data from an existing date, datetime, or time column
• Executing a built-in function that returns a date, datetime, or time
• Building a string representation of the temporal data to be evaluated by the server

To use the last method, you will need to understand the various components used in
formatting dates.

String representations of temporal data
Table 2-4 in Chapter 2 presented the more popular date components; to refresh your
memory, Table 7-2 shows these same components.

Table 7-2. Date format components

Component Definition Range
YYYY Year, including century 1000 to 9999

MM Month 01 (January) to 12 (December)

DD Day 01 to 31

136 | Chapter 7: Data Generation, Manipulation, and Conversion

Component Definition Range
HH Hour 00 to 23

HHH Hours (elapsed) −838 to 838

MI Minute 00 to 59

SS Second 00 to 59

To build a string that the server can interpret as a date, datetime, or time, you need
to put the various components together in the order shown in Table 7-3.

Table 7-3. Required date components

Type Default format

date YYYY-MM-DD

datetime YYYY-MM-DD HH:MI:SS

timestamp YYYY-MM-DD HH:MI:SS

time HHH:MI:SS

Thus, to populate a datetime column with 3:30 P.M. on September 17, 2019, you will
need to build the following string:

'2019-09-17 15:30:00'

If the server is expecting a datetime value, such as when updating a datetime col‐
umn or when calling a built-in function that takes a datetime argument, you can
provide a properly formatted string with the required date components, and the
server will do the conversion for you. For example, here’s a statement used to modify
the return date of a film rental:

UPDATE rental
SET return_date = '2019-09-17 15:30:00'
WHERE rental_id = 99999;

The server determines that the string provided in the set clause must be a datetime
value, since the string is being used to populate a datetime column. Therefore, the
server will attempt to convert the string for you by parsing the string into the six
components (year, month, day, hour, minute, second) included in the default date
time format.

String-to-date conversions

If the server is not expecting a datetime value or if you would like to represent the
datetime using a nondefault format, you will need to tell the server to convert the
string to a datetime. For example, here is a simple query that returns a datetime
value using the cast() function:

Working with Temporal Data | 137

mysql> SELECT CAST('2019-09-17 15:30:00' AS DATETIME);
+---+
| CAST('2019-09-17 15:30:00' AS DATETIME) |
+---+
| 2019-09-17 15:30:00 |
+---+
1 row in set (0.00 sec)

We cover the cast() function at the end of this chapter. While this example demon‐
strates how to build datetime values, the same logic applies to the date and time
types as well. The following query uses the cast() function to generate a date value
and a time value:

mysql> SELECT CAST('2019-09-17' AS DATE) date_field,
 -> CAST('108:17:57' AS TIME) time_field;
+------------+------------+
| date_field | time_field |
+------------+------------+
| 2019-09-17 | 108:17:57 |
+------------+------------+
1 row in set (0.00 sec)

You might, of course, explicitly convert your strings even when the server is expecting
a date, datetime, or time value, rather than allowing the server to do an implicit
conversion.

When strings are converted to temporal values—whether explicitly or implicitly—
you must provide all the date components in the required order. While some servers
are quite strict regarding the date format, the MySQL server is quite lenient about the
separators used between the components. For example, MySQL will accept all of the
following strings as valid representations of 3:30 P.M. on September 17, 2019:

'2019-09-17 15:30:00'
'2019/09/17 15:30:00'
'2019,09,17,15,30,00'
'20190917153000'

Although this gives you a bit more flexibility, you may find yourself trying to generate
a temporal value without the default date components; the next section demonstrates
a built-in function that is far more flexible than the cast() function.

Functions for generating dates
If you need to generate temporal data from a string and the string is not in the proper
form to use the cast() function, you can use a built-in function that allows you to
provide a format string along with the date string. MySQL includes the
str_to_date() function for this purpose. Say, for example, that you pull the string
'September 17, 2019' from a file and need to use it to update a date column. Since

138 | Chapter 7: Data Generation, Manipulation, and Conversion

the string is not in the required YYYY-MM-DD format, you can use str_to_date()
instead of reformatting the string so that you can use the cast() function, as in:

UPDATE rental
SET return_date = STR_TO_DATE('September 17, 2019', '%M %d, %Y')
WHERE rental_id = 99999;

The second argument in the call to str_to_date() defines the format of the date
string, with, in this case, a month name (%M), a numeric day (%d), and a four-digit
numeric year (%Y). While there are more than 30 recognized format components,
Table 7-4 defines the dozen or so of the most commonly used components.

Table 7-4. Date format components

Format component Description

%M Month name (January to December)

%m Month numeric (01 to 12)

%d Day numeric (01 to 31)

%j Day of year (001 to 366)

%W Weekday name (Sunday to Saturday)

%Y Year, four-digit numeric

%y Year, two-digit numeric

%H Hour (00 to 23)

%h Hour (01 to 12)

%i Minutes (00 to 59)

%s Seconds (00 to 59)

%f Microseconds (000000 to 999999)

%p A.M. or P.M.

The str_to_date() function returns a datetime, date, or time value depending on
the contents of the format string. For example, if the format string includes only %H,
%i, and %s, then a time value will be returned.

Oracle Database users can use the to_date() function in the same
manner as MySQL’s str_to_date() function. SQL Server includes
a convert() function that is not quite as flexible as MySQL and
Oracle Database; rather than supplying a custom format string,
your date string must conform to one of 21 predefined formats.

If you are trying to generate the current date/time, then you won’t need to build a
string, because the following built-in functions will access the system clock and
return the current date and/or time as a string for you:

Working with Temporal Data | 139

mysql> SELECT CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP();
+----------------+----------------+---------------------+
| CURRENT_DATE() | CURRENT_TIME() | CURRENT_TIMESTAMP() |
+----------------+----------------+---------------------+
| 2019-06-05 | 16:54:36 | 2019-06-05 16:54:36 |
+----------------+----------------+---------------------+
1 row in set (0.12 sec)

The values returned by these functions are in the default format for the temporal type
being returned. Oracle Database will include current_date() and current_time
stamp() but not current_time(), and Microsoft SQL Server includes only the
current_timestamp() function.

Manipulating Temporal Data
This section explores the built-in functions that take date arguments and return
dates, strings, or numbers.

Temporal functions that return dates
Many of the built-in temporal functions take one date as an argument and return
another date. MySQL’s date_add() function, for example, allows you to add any kind
of interval (e.g., days, months, years) to a specified date to generate another date.
Here’s an example that demonstrates how to add five days to the current date:

mysql> SELECT DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY);
+--+
| DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY) |
+--+
| 2019-06-10 |
+--+
1 row in set (0.06 sec)

The second argument is composed of three elements: the interval keyword, the
desired quantity, and the type of interval. Table 7-5 shows some of the commonly
used interval types.

Table 7-5. Common interval types

Interval name Description

second Number of seconds

minute Number of minutes

hour Number of hours

day Number of days

month Number of months

year Number of years

minute_second Number of minutes and seconds, separated by “:”

140 | Chapter 7: Data Generation, Manipulation, and Conversion

Interval name Description

hour_second Number of hours, minutes, and seconds, separated by “:”

year_month Number of years and months, separated by “-”

While the first six types listed in Table 7-5 are pretty straightforward, the last three
types require a bit more explanation since they have multiple elements. For example,
if you are told that a film was actually returned 3 hours, 27 minutes, and 11 seconds
later than what was originally specified, you can fix it via the following:

UPDATE rental
SET return_date = DATE_ADD(return_date, INTERVAL '3:27:11' HOUR_SECOND)
WHERE rental_id = 99999;

In this example, the date_add() function takes the value in the return_date column
and adds 3 hours, 27 minutes, and 11 seconds to it. Then it uses the value that results
to modify the return_date column.

Or, if you work in HR and found out that employee ID 4789 claimed to be older than
he actually is, you could add 9 years and 11 months to his birth date, as in:

UPDATE employee
SET birth_date = DATE_ADD(birth_date, INTERVAL '9-11' YEAR_MONTH)
WHERE emp_id = 4789;

SQL Server users can accomplish the previous example using the
dateadd() function:

UPDATE employee
SET birth_date =
 DATEADD(MONTH, 119, birth_date)
WHERE emp_id = 4789

SQL Server doesn’t have combined intervals (i.e., year_month), so I
converted 9 years and 11 months to 119 months.
Oracle Database users can use the add_months() function for this
example, as in:

UPDATE employee
SET birth_date = ADD_MONTHS(birth_date, 119)
WHERE emp_id = 4789;

There are some cases where you want to add an interval to a date, and you know
where you want to arrive but not how many days it takes to get there. For example,
let’s say that a bank customer logs on to the online banking system and schedules a
transfer for the end of the month. Rather than writing some code that figures out the
current month and then looks up the number of days in that month, you can call the
last_day() function, which does the work for you (both MySQL and Oracle Data‐
base include the last_day() function; SQL Server has no comparable function). If

Working with Temporal Data | 141

the customer asks for the transfer on September 17, 2019, you could find the last day
of September via the following:

mysql> SELECT LAST_DAY('2019-09-17');
+------------------------+
| LAST_DAY('2019-09-17') |
+------------------------+
| 2019-09-30 |
+------------------------+
1 row in set (0.10 sec)

Whether you provide a date or datetime value, the last_day() function always
returns a date. Although this function may not seem like an enormous time-saver,
the underlying logic can be tricky if you’re trying to find the last day of February and
need to figure out whether the current year is a leap year.

Temporal functions that return strings
Most of the temporal functions that return string values are used to extract a portion
of a date or time. For example, MySQL includes the dayname() function to determine
which day of the week a certain date falls on, as in:

mysql> SELECT DAYNAME('2019-09-18');
+-----------------------+
| DAYNAME('2019-09-18') |
+-----------------------+
| Wednesday |
+-----------------------+
1 row in set (0.00 sec)

Many such functions are included with MySQL for extracting information from date
values, but I recommend that you use the extract() function instead, since it’s easier
to remember a few variations of one function than to remember a dozen different
functions. Additionally, the extract() function is part of the SQL:2003 standard and
has been implemented by Oracle Database as well as MySQL.

The extract() function uses the same interval types as the date_add() function (see
Table 7-5) to define which element of the date interests you. For example, if you want
to extract just the year portion of a datetime value, you can do the following:

mysql> SELECT EXTRACT(YEAR FROM '2019-09-18 22:19:05');
+--+
| EXTRACT(YEAR FROM '2019-09-18 22:19:05') |
+--+
| 2019 |
+--+
1 row in set (0.00 sec)

142 | Chapter 7: Data Generation, Manipulation, and Conversion

SQL Server doesn’t include an implementation of extract(), but it
does include the datepart() function. Here’s how you would
extract the year from a datetime value using datepart():

SELECT DATEPART(YEAR, GETDATE())

Temporal functions that return numbers
Earlier in this chapter, I showed you a function used to add a given interval to a date
value, thus generating another date value. Another common activity when working
with dates is to take two date values and determine the number of intervals (days,
weeks, years) between the two dates. For this purpose, MySQL includes the function
datediff(), which returns the number of full days between two dates. For example, if
I want to know the number of days that my kids will be out of school this summer, I
can do the following:

mysql> SELECT DATEDIFF('2019-09-03', '2019-06-21');
+--------------------------------------+
| DATEDIFF('2019-09-03', '2019-06-21') |
+--------------------------------------+
| 74 |
+--------------------------------------+
1 row in set (0.00 sec)

Thus, I will have to endure 74 days of poison ivy, mosquito bites, and scraped knees
before the kids are safely back at school. The datediff() function ignores the time of
day in its arguments. Even if I include a time of day, setting it to one second until
midnight for the first date and to one second after midnight for the second date,
those times will have no effect on the calculation:

mysql> SELECT DATEDIFF('2019-09-03 23:59:59', '2019-06-21 00:00:01');
+--+
| DATEDIFF('2019-09-03 23:59:59', '2019-06-21 00:00:01') |
+--+
| 74 |
+--+
1 row in set (0.00 sec)

If I switch the arguments and have the earlier date first, datediff() will return a neg‐
ative number, as in:

mysql> SELECT DATEDIFF('2019-06-21', '2019-09-03');
+--------------------------------------+
| DATEDIFF('2019-06-21', '2019-09-03') |
+--------------------------------------+
| -74 |
+--------------------------------------+
1 row in set (0.00 sec)

Working with Temporal Data | 143

SQL Server also includes the datediff() function, but it is more
flexible than the MySQL implementation in that you can specify
the interval type (i.e., year, month, day, hour) instead of counting
only the number of days between two dates. Here’s how SQL Server
would accomplish the previous example:

SELECT DATEDIFF(DAY, '2019-06-21', '2019-09-03')

Oracle Database allows you to determine the number of days
between two dates simply by subtracting one date from another.

Conversion Functions
Earlier in this chapter, I showed you how to use the cast() function to convert a
string to a datetime value. While every database server includes a number of propri‐
etary functions used to convert data from one type to another, I recommend using
the cast() function, which is included in the SQL:2003 standard and has been imple‐
mented by MySQL, Oracle Database, and Microsoft SQL Server.

To use cast(), you provide a value or expression, the as keyword, and the type to
which you want the value converted. Here’s an example that converts a string to an
integer:

mysql> SELECT CAST('1456328' AS SIGNED INTEGER);
+-----------------------------------+
| CAST('1456328' AS SIGNED INTEGER) |
+-----------------------------------+
| 1456328 |
+-----------------------------------+
1 row in set (0.01 sec)

When converting a string to a number, the cast() function will attempt to convert
the entire string from left to right; if any nonnumeric characters are found in the
string, the conversion halts without an error. Consider the following example:

mysql> SELECT CAST('999ABC111' AS UNSIGNED INTEGER);
+---------------------------------------+
| CAST('999ABC111' AS UNSIGNED INTEGER) |
+---------------------------------------+
| 999 |
+---------------------------------------+
1 row in set, 1 warning (0.08 sec)

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect INTEGER value: '999ABC111' |
+---------+------+--+
1 row in set (0.07 sec)

144 | Chapter 7: Data Generation, Manipulation, and Conversion

In this case, the first three digits of the string are converted, whereas the rest of the
string is discarded, resulting in a value of 999. The server did, however, issue a warn‐
ing to let you know that not all the string was converted.

If you are converting a string to a date, time, or datetime value, then you will need
to stick with the default formats for each type, since you can’t provide the cast()
function with a format string. If your date string is not in the default format (i.e.,
YYYY-MM-DD HH:MI:SS for datetime types), then you will need to resort to using
another function, such as MySQL’s str_to_date() function described earlier in the
chapter.

Test Your Knowledge
These exercises are designed to test your understanding of some of the built-in func‐
tions shown in this chapter. See Appendix B for the answers.

Exercise 7-1
Write a query that returns the 17th through 25th characters of the string 'Please
find the substring in this string'.

Exercise 7-2
Write a query that returns the absolute value and sign (−1, 0, or 1) of the number
−25.76823. Also return the number rounded to the nearest hundredth.

Exercise 7-3
Write a query to return just the month portion of the current date.

Test Your Knowledge | 145

CHAPTER 8

Grouping and Aggregates

Data is generally stored at the lowest level of granularity needed by any of a database’s
users; if Chuck in accounting needs to look at individual customer transactions, then
there needs to be a table in the database that stores individual transactions. That
doesn’t mean, however, that all users must deal with the data as it is stored in the
database. The focus of this chapter is on how data can be grouped and aggregated to
allow users to interact with it at some higher level of granularity than what is stored
in the database.

Grouping Concepts
Sometimes you will want to find trends in your data that will require the database
server to cook the data a bit before you can generate the results you are looking for.
For example, let’s say that you are in charge of sending coupons for free rentals to
your best customers. You could issue a simple query to look at the raw data:

mysql> SELECT customer_id FROM rental;
+-------------+
| customer_id |
+-------------+
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
| 1 |
...
| 599 |
| 599 |
| 599 |
| 599 |

147

| 599 |
| 599 |
+-------------+
16044 rows in set (0.01 sec)

With 599 customers spanning more than 16,000 rental records, it isn’t feasible to
determine which customers have rented the most films by looking at the raw data.
Instead, you can ask the database server to group the data for you by using the group
by clause. Here’s the same query but employing a group by clause to group the rental
data by customer ID:

mysql> SELECT customer_id
 -> FROM rental
 -> GROUP BY customer_id;
+-------------+
| customer_id |
+-------------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
...
| 594 |
| 595 |
| 596 |
| 597 |
| 598 |
| 599 |
+-------------+
599 rows in set (0.00 sec)

The result set contains one row for each distinct value in the customer_id column,
resulting in 599 rows instead of the full 16,044 rows. The reason for the smaller result
set is that some of the customers rented more than one film. To see how many films
each customer rented, you can use an aggregate function in the select clause to count
the number of rows in each group:

mysql> SELECT customer_id, count(*)
 -> FROM rental
 -> GROUP BY customer_id;
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
1	32
2	27
3	26
4	22
5	38
6	28

148 | Chapter 8: Grouping and Aggregates

...
594	27
595	30
596	28
597	25
598	22
599	19
+-------------+----------+
599 rows in set (0.01 sec)

The aggregate function count() counts the number of rows in each group, and the
asterisk tells the server to count everything in the group. Using the combination of a
group by clause and the count() aggregate function, you are able to generate exactly
the data needed to answer the business question without having to look at the raw
data.

Looking at the results, you can see that 32 films were rented by customer ID 1, and 25
films were rented by the customer ID 597. In order to determine which customers
have rented the most films, simply add an order by clause:

mysql> SELECT customer_id, count(*)
 -> FROM rental
 -> GROUP BY customer_id
 -> ORDER BY 2 DESC;
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
148	46
526	45
236	42
144	42
75	41
...	
248	15
110	14
281	14
61	14
318	12
+-------------+----------+
599 rows in set (0.01 sec)

Now that the results are sorted, you can easily see that customer ID 148 has rented
the most films (46), while customer ID 318 has rented the fewest films (12).

When grouping data, you may need to filter out undesired data from your result set
based on groups of data rather than based on the raw data. Since the group by clause
runs after the where clause has been evaluated, you cannot add filter conditions to
your where clause for this purpose. For example, here’s an attempt to filter out any
customers who have rented fewer than 40 films:

Grouping Concepts | 149

mysql> SELECT customer_id, count(*)
 -> FROM rental
 -> WHERE count(*) >= 40
 -> GROUP BY customer_id;
ERROR 1111 (HY000): Invalid use of group function

You cannot refer to the aggregate function count(*) in your where clause, because
the groups have not yet been generated at the time the where clause is evaluated.
Instead, you must put your group filter conditions in the having clause. Here’s what
the query would look like using having:

mysql> SELECT customer_id, count(*)
 -> FROM rental
 -> GROUP BY customer_id
 -> HAVING count(*) >= 40;
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
75	41
144	42
148	46
197	40
236	42
469	40
526	45
+-------------+----------+
7 rows in set (0.01 sec)

Because those groups containing fewer than 40 members have been filtered out via
the having clause, the result set now contains only those customers who have rented
40 or more films.

Aggregate Functions
Aggregate functions perform a specific operation over all rows in a group. Although
every database server has its own set of specialty aggregate functions, the common
aggregate functions implemented by all major servers include:

max()

Returns the maximum value within a set

min()

Returns the minimum value within a set

avg()

Returns the average value across a set

sum()

Returns the sum of the values across a set

150 | Chapter 8: Grouping and Aggregates

count()

Returns the number of values in a set

Here’s a query that uses all of the common aggregate functions to analyze the data on
film rental payments:

mysql> SELECT MAX(amount) max_amt,
 -> MIN(amount) min_amt,
 -> AVG(amount) avg_amt,
 -> SUM(amount) tot_amt,
 -> COUNT(*) num_payments
 -> FROM payment;
+---------+---------+----------+----------+--------------+
| max_amt | min_amt | avg_amt | tot_amt | num_payments |
+---------+---------+----------+----------+--------------+
| 11.99 | 0.00 | 4.200667 | 67416.51 | 16049 |
+---------+---------+----------+----------+--------------+
1 row in set (0.09 sec)

The results from this query tell you that, across the 16,049 rows in the payment table,
the maximum amount paid to rent a film was $11.99, the minimum amount was $0,
the average payment was $4.20, and the total of all rental payments was $67,416.51.
Hopefully, this gives you an appreciation for the role of these aggregate functions; the
next subsections further clarify how you can utilize these functions.

Implicit Versus Explicit Groups
In the previous example, every value returned by the query is generated by an aggre‐
gate function. Since there is no group by clause, there is a single, implicit group (all
rows in the payment table).

In most cases, however, you will want to retrieve additional columns along with col‐
umns generated by aggregate functions. What if, for example, you wanted to extend
the previous query to execute the same five aggregate functions for each customer,
instead of across all customers? For this query, you would want to retrieve the cus
tomer_id column along with the five aggregate functions, as in:

SELECT customer_id,
 MAX(amount) max_amt,
 MIN(amount) min_amt,
 AVG(amount) avg_amt,
 SUM(amount) tot_amt,
 COUNT(*) num_payments
FROM payment;

However, if you try to execute the query, you will receive the following error:

ERROR 1140 (42000): In aggregated query without GROUP BY,
 expression #1 of SELECT list contains nonaggregated column

Aggregate Functions | 151

While it may be obvious to you that you want the aggregate functions applied to each
customer found in the payment table, this query fails because you have not explicitly
specified how the data should be grouped. Therefore, you will need to add a group by
clause to specify over which group of rows the aggregate functions should be applied:

mysql> SELECT customer_id,
 -> MAX(amount) max_amt,
 -> MIN(amount) min_amt,
 -> AVG(amount) avg_amt,
 -> SUM(amount) tot_amt,
 -> COUNT(*) num_payments
 -> FROM payment
 -> GROUP BY customer_id;
+-------------+---------+---------+----------+---------+--------------+
| customer_id | max_amt | min_amt | avg_amt | tot_amt | num_payments |
+-------------+---------+---------+----------+---------+--------------+
1	9.99	0.99	3.708750	118.68	32
2	10.99	0.99	4.767778	128.73	27
3	10.99	0.99	5.220769	135.74	26
4	8.99	0.99	3.717273	81.78	22
5	9.99	0.99	3.805789	144.62	38
6	7.99	0.99	3.347143	93.72	28
...					
594	8.99	0.99	4.841852	130.73	27
595	10.99	0.99	3.923333	117.70	30
596	6.99	0.99	3.454286	96.72	28
597	8.99	0.99	3.990000	99.75	25
598	7.99	0.99	3.808182	83.78	22
599	9.99	0.99	4.411053	83.81	19
+-------------+---------+---------+----------+---------+--------------+
599 rows in set (0.04 sec)

With the inclusion of the group by clause, the server knows to group together rows
having the same value in the customer_id column first and then to apply the five
aggregate functions to each of the 599 groups.

Counting Distinct Values
When using the count() function to determine the number of members in each
group, you have your choice of counting all members in the group or counting only
the distinct values for a column across all members of the group.

For example, consider the following query, which uses the count() function with the
customer_id column in two different ways:

mysql> SELECT COUNT(customer_id) num_rows,
 -> COUNT(DISTINCT customer_id) num_customers
 -> FROM payment;
+----------+---------------+
| num_rows | num_customers |
+----------+---------------+

152 | Chapter 8: Grouping and Aggregates

| 16049 | 599 |
+----------+---------------+
1 row in set (0.01 sec)

The first column in the query simply counts the number of rows in the payment table,
whereas the second column examines the values in the customer_id column and
counts only the number of unique values. By specifying distinct, therefore, the
count() function examines the values of a column for each member of the group in
order to find and remove duplicates, rather than simply counting the number of val‐
ues in the group.

Using Expressions
Along with using columns as arguments to aggregate functions, you can use expres‐
sions as well. For example, you may want to find the maximum number of days
between when a film was rented and subsequently returned. You can achieve this via
the following query:

mysql> SELECT MAX(datediff(return_date,rental_date))
 -> FROM rental;
+--+
| MAX(datediff(return_date,rental_date)) |
+--+
| 33 |
+--+
1 row in set (0.01 sec)

The datediff function is used to compute the number of days between the return
date and the rental date for every rental, and the max function returns the highest
value, which in this case is 33 days.

While this example uses a fairly simple expression, expressions used as arguments to
aggregate functions can be as complex as needed, as long as they return a number,
string, or date. In Chapter 11, I show you how you can use case expressions with
aggregate functions to determine whether a particular row should or should not be
included in an aggregation.

How Nulls Are Handled
When performing aggregations, or, indeed, any type of numeric calculation, you
should always consider how null values might affect the outcome of your calculation.
To illustrate, I will build a simple table to hold numeric data and populate it with the
set {1, 3, 5}:

mysql> CREATE TABLE number_tbl
 -> (val SMALLINT);
Query OK, 0 rows affected (0.01 sec)

Aggregate Functions | 153

mysql> INSERT INTO number_tbl VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (3);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (5);
Query OK, 1 row affected (0.00 sec)

Consider the following query, which performs five aggregate functions on the set of
numbers:

mysql> SELECT COUNT(*) num_rows,
 -> COUNT(val) num_vals,
 -> SUM(val) total,
 -> MAX(val) max_val,
 -> AVG(val) avg_val
 -> FROM number_tbl;
+----------+----------+-------+---------+---------+
| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
| 3 | 3 | 9 | 5 | 3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.08 sec)

The results are as you would expect: both count(*) and count(val) return the value
3, sum(val) returns the value 9, max(val) returns 5, and avg(val) returns 3. Next, I
will add a null value to the number_tbl table and run the query again:

mysql> INSERT INTO number_tbl VALUES (NULL);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT COUNT(*) num_rows,
 -> COUNT(val) num_vals,
 -> SUM(val) total,
 -> MAX(val) max_val,
 -> AVG(val) avg_val
 -> FROM number_tbl;
+----------+----------+-------+---------+---------+
| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
| 4 | 3 | 9 | 5 | 3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.00 sec)

Even with the addition of the null value to the table, the sum(), max(), and avg()
functions all return the same values, indicating that they ignore any null values
encountered. The count(*) function now returns the value 4, which is valid since the
number_tbl table contains four rows, while the count(val) function still returns the
value 3. The difference is that count(*) counts the number of rows, whereas

154 | Chapter 8: Grouping and Aggregates

count(val) counts the number of values contained in the val column and ignores
any null values encountered.

Generating Groups
People are rarely interested in looking at raw data; instead, people engaging in data
analysis will want to manipulate the raw data to better suit their needs. Examples of
common data manipulations include:

• Generating totals for a geographic region, such as total European sales
• Finding outliers, such as the top salesperson for 2020
• Determining frequencies, such as the number of films rented in each month

To answer these types of queries, you will need to ask the database server to group
rows together by one or more columns or expressions. As you have seen already in
several examples, the group by clause is the mechanism for grouping data within a
query. In this section, you will see how to group data by one or more columns, how to
group data using expressions, and how to generate rollups within groups.

Single-Column Grouping
Single-column groups are the simplest and most-often-used type of grouping. If you
want to find the number of films associated with each actor, for example, you need
only group on the film_actor.actor_id column, as in:

mysql> SELECT actor_id, count(*)
 -> FROM film_actor
 -> GROUP BY actor_id;
+----------+----------+
| actor_id | count(*) |
+----------+----------+
1	19
2	25
3	22
4	22
...	
197	33
198	40
199	15
200	20
+----------+----------+
200 rows in set (0.11 sec)

This query generates 200 groups, one for each actor, and then sums the number of
films for each member of the group.

Generating Groups | 155

Multicolumn Grouping
In some cases, you may want to generate groups that span more than one column.
Expanding on the previous example, imagine that you want to find the total number
of films for each film rating (G, PG, ...) for each actor. The following example shows
how you can accomplish this:

mysql> SELECT fa.actor_id, f.rating, count(*)
 -> FROM film_actor fa
 -> INNER JOIN film f
 -> ON fa.film_id = f.film_id
 -> GROUP BY fa.actor_id, f.rating
 -> ORDER BY 1,2;
+----------+--------+----------+
| actor_id | rating | count(*) |
+----------+--------+----------+
1	G	4
1	PG	6
1	PG-13	1
1	R	3
1	NC-17	5
2	G	7
2	PG	6
2	PG-13	2
2	R	2
2	NC-17	8
...		
199	G	3
199	PG	4
199	PG-13	4
199	R	2
199	NC-17	2
200	G	5
200	PG	3
200	PG-13	2
200	R	6
200	NC-17	4
+----------+--------+----------+
996 rows in set (0.01 sec)

This version of the query generates 996 groups, one for each combination of actor
and film rating found by joining the film_actor table with the film table. Along with
adding the rating column to the select clause, I also added it to the group by
clause, since rating is retrieved from a table and is not generated via an aggregate
function such as max or count.

156 | Chapter 8: Grouping and Aggregates

Grouping via Expressions
Along with using columns to group data, you can build groups based on the values
generated by expressions. Consider the following query, which groups rentals by year:

mysql> SELECT extract(YEAR FROM rental_date) year,
 -> COUNT(*) how_many
 -> FROM rental
 -> GROUP BY extract(YEAR FROM rental_date);
+------+----------+
| year | how_many |
+------+----------+
| 2005 | 15862 |
| 2006 | 182 |
+------+----------+
2 rows in set (0.01 sec)

This query employs a fairly simple expression that uses the extract() function to
return only the year portion of a date to group the rows in the rental table.

Generating Rollups
In “Multicolumn Grouping” on page 156, I showed an example that counts the num‐
ber of films for each actor and film rating. Let’s say, however, that along with the total
count for each actor/rating combination, you also want total counts for each distinct
actor. You could run an additional query and merge the results, you could load the
results of the query into a spreadsheet, or you could build a Python script, Java pro‐
gram, or some other mechanism to take that data and perform the additional calcula‐
tions. Better yet, you could use the with rollup option to have the database server
do the work for you. Here’s the revised query using with rollup in the group by
clause:

mysql> SELECT fa.actor_id, f.rating, count(*)
 -> FROM film_actor fa
 -> INNER JOIN film f
 -> ON fa.film_id = f.film_id
 -> GROUP BY fa.actor_id, f.rating WITH ROLLUP
 -> ORDER BY 1,2;
+----------+--------+----------+
| actor_id | rating | count(*) |
+----------+--------+----------+
NULL	NULL	5462
1	NULL	19
1	G	4
1	PG	6
1	PG-13	1
1	R	3
1	NC-17	5
2	NULL	25
2	G	7

Generating Groups | 157

2	PG	6
2	PG-13	2
2	R	2
2	NC-17	8
...		
199	NULL	15
199	G	3
199	PG	4
199	PG-13	4
199	R	2
199	NC-17	2
200	NULL	20
200	G	5
200	PG	3
200	PG-13	2
200	R	6
200	NC-17	4
+----------+--------+----------+
1197 rows in set (0.07 sec)

There are now 201 additional rows in the result set, one for each of the 200 distinct
actors and one for the grand total (all actors combined). For the 200 actor rollups, a
null value is provided for the rating column, since the rollup is being performed
across all ratings. Looking at the first line for actor_id 200, for example, you will see
that a total of 20 films are associated with the actor; this equals the sum of the counts
for each rating (4 NC-17 + 6 R + 2 PG-13 + 3 PG + 5 G). For the grand total row in
the first line of the output, a null value is provided for both the actor_id and rating
columns; the total for the first line of output equals 5,462, which is equal to the num‐
ber of rows in the film_actor table.

If you are using Oracle Database, you need to use a slightly differ‐
ent syntax to indicate that you want a rollup performed. The group
by clause for the previous query would look as follows when using
Oracle:

GROUP BY ROLLUP(fa.actor_id, f.rating)

The advantage of this syntax is that it allows you to perform rollups
on a subset of the columns in the group_by clause. If you are
grouping by columns a, b, and c, for example, you could indicate
that the server should perform rollups on only columns b and c via
the following:

GROUP BY a, ROLLUP(b, c)

If in addition to totals by actor you also want to calculate totals per rating, then you
can use the with cube option, which will generate summary rows for all possible
combinations of the grouping columns. Unfortunately, with cube is not available in
version 8.0 of MySQL, but it is available with SQL Server and Oracle Database.

158 | Chapter 8: Grouping and Aggregates

Group Filter Conditions
In Chapter 4, I introduced you to various types of filter conditions and showed how
you can use them in the where clause. When grouping data, you also can apply filter
conditions to the data after the groups have been generated. The having clause is
where you should place these types of filter conditions. Consider the following
example:

mysql> SELECT fa.actor_id, f.rating, count(*)
 -> FROM film_actor fa
 -> INNER JOIN film f
 -> ON fa.film_id = f.film_id
 -> WHERE f.rating IN ('G','PG')
 -> GROUP BY fa.actor_id, f.rating
 -> HAVING count(*) > 9;
+----------+--------+----------+
| actor_id | rating | count(*) |
+----------+--------+----------+
137	PG	10
37	PG	12
180	PG	12
7	G	10
83	G	14
129	G	12
111	PG	15
44	PG	12
26	PG	11
92	PG	12
17	G	12
158	PG	10
147	PG	10
14	G	10
102	PG	11
133	PG	10
+----------+--------+----------+
16 rows in set (0.01 sec)

This query has two filter conditions: one in the where clause, which filters out any
films rated something other than G or PG, and another in the having clause, which
filters out any actors who appeared in less than 10 films. Thus, one of the filters acts
on data before it is grouped, and the other filter acts on data after the groups have
been created. If you mistakenly put both filters in the where clause, you will see the
following error:

Group Filter Conditions | 159

mysql> SELECT fa.actor_id, f.rating, count(*)
 -> FROM film_actor fa
 -> INNER JOIN film f
 -> ON fa.film_id = f.film_id
 -> WHERE f.rating IN ('G','PG')
 -> AND count(*) > 9
 -> GROUP BY fa.actor_id, f.rating;
ERROR 1111 (HY000): Invalid use of group function

This query fails because you cannot include an aggregate function in a query’s where
clause. This is because the filters in the where clause are evaluated before the grouping
occurs, so the server can’t yet perform any functions on groups.

When adding filters to a query that includes a group by clause,
think carefully about whether the filter acts on raw data, in which
case it belongs in the where clause, or on grouped data, in which
case it belongs in the having clause.

Test Your Knowledge
Work through the following exercises to test your grasp of SQL’s grouping and aggre‐
gating features. Check your work with the answers in Appendix B.

Exercise 8-1
Construct a query that counts the number of rows in the payment table.

Exercise 8-2
Modify your query from Exercise 8-1 to count the number of payments made by each
customer. Show the customer ID and the total amount paid for each customer.

Exercise 8-3
Modify your query from Exercise 8-2 to include only those customers who have
made at least 40 payments.

160 | Chapter 8: Grouping and Aggregates

CHAPTER 9

Subqueries

Subqueries are a powerful tool that you can use in all four SQL data statements. In
this chapter, I’ll show you how subqueries can be used to filter data, generate values,
and construct temporary data sets. After a little experimentation, I think you’ll agree
that subqueries are one of the most powerful features of the SQL language.

What Is a Subquery?
A subquery is a query contained within another SQL statement (which I refer to as
the containing statement for the rest of this discussion). A subquery is always enclosed
within parentheses, and it is usually executed prior to the containing statement. Like
any query, a subquery returns a result set that may consist of:

• A single row with a single column
• Multiple rows with a single column
• Multiple rows having multiple columns

The type of result set returned by the subquery determines how it may be used and
which operators the containing statement may use to interact with the data the sub‐
query returns. When the containing statement has finished executing, the data
returned by any subqueries is discarded, making a subquery act like a temporary
table with statement scope (meaning that the server frees up any memory allocated to
the subquery results after the SQL statement has finished execution).

You already saw several examples of subqueries in earlier chapters, but here’s a simple
example to get started:

mysql> SELECT customer_id, first_name, last_name
 -> FROM customer
 -> WHERE customer_id = (SELECT MAX(customer_id) FROM customer);

161

+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
| 599 | AUSTIN | CINTRON |
+-------------+------------+-----------+
1 row in set (0.27 sec)

In this example, the subquery returns the maximum value found in the customer_id
column in the customer table, and the containing statement then returns data about
that customer. If you are ever confused about what a subquery is doing, you can run
the subquery by itself (without the parentheses) to see what it returns. Here’s the sub‐
query from the previous example:

mysql> SELECT MAX(customer_id) FROM customer;
+------------------+
| MAX(customer_id) |
+------------------+
| 599 |
+------------------+
1 row in set (0.00 sec)

The subquery returns a single row with a single column, which allows it to be used as
one of the expressions in an equality condition (if the subquery returned two or more
rows, it could be compared to something but could not be equal to anything, but more
on this later). In this case, you can take the value the subquery returned and substi‐
tute it into the righthand expression of the filter condition in the containing query, as
in the following:

mysql> SELECT customer_id, first_name, last_name
 -> FROM customer
 -> WHERE customer_id = 599;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
| 599 | AUSTIN | CINTRON |
+-------------+------------+-----------+
1 row in set (0.00 sec)

The subquery is useful in this case because it allows you to retrieve information about
the customer with the highest ID in a single query, rather than retrieving the maxi‐
mum customer_id using one query and then writing a second query to retrieve the
desired data from the customer table. As you will see, subqueries are useful in many
other situations as well and may become one of the most powerful tools in your SQL
toolkit.

162 | Chapter 9: Subqueries

Subquery Types
Along with the differences noted previously regarding the type of result set returned
by a subquery (single row/column, single row/multicolumn, or multiple columns),
you can use another feature to differentiate subqueries; some subqueries are com‐
pletely self-contained (called noncorrelated subqueries), while others reference col‐
umns from the containing statement (called correlated subqueries). The next several
sections explore these two subquery types and show the different operators that you
can employ to interact with them.

Noncorrelated Subqueries
The example from earlier in the chapter is a noncorrelated subquery; it may be exe‐
cuted alone and does not reference anything from the containing statement. Most
subqueries that you encounter will be of this type unless you are writing update or
delete statements, which frequently make use of correlated subqueries (more on this
later). Along with being noncorrelated, the example from earlier in the chapter also
returns a result set containing a single row and column. This type of subquery is
known as a scalar subquery and can appear on either side of a condition using the
usual operators (=, <>, <, >, <=, >=). The next example shows how you can use a scalar
subquery in an inequality condition:

mysql> SELECT city_id, city
 -> FROM city
 -> WHERE country_id <>
 -> (SELECT country_id FROM country WHERE country = 'India');
+---------+----------------------------+
| city_id | city |
+---------+----------------------------+
1	A Corua (La Corua)
2	Abha
3	Abu Dhabi
4	Acua
5	Adana
6	Addis Abeba
...	
595	Zapopan
596	Zaria
597	Zeleznogorsk
598	Zhezqazghan
599	Zhoushan
600	Ziguinchor
+---------+----------------------------+
540 rows in set (0.02 sec)

This query returns all cities that are not in India. The subquery, which is found on the
last line of the statement, returns the country ID for India, and the containing query

Subquery Types | 163

returns all cities that do not have that country ID. While the subquery in this example
is quite simple, subqueries may be as complex as you need them to be, and they may
utilize any and all the available query clauses (select, from, where, group by, having,
and order by).

If you use a subquery in an equality condition but the subquery returns more than
one row, you will receive an error. For example, if you modify the previous query
such that the subquery returns all countries except for India, you will receive the fol‐
lowing error:

mysql> SELECT city_id, city
 -> FROM city
 -> WHERE country_id <>
 -> (SELECT country_id FROM country WHERE country <> 'India');
ERROR 1242 (21000): Subquery returns more than 1 row

If you run the subquery by itself, you will see the following results:

mysql> SELECT country_id FROM country WHERE country <> 'India';
+------------+
| country_id |
+------------+
| 1 |
| 2 |
| 3 |
| 4 |
...
| 106 |
| 107 |
| 108 |
| 109 |
+------------+
108 rows in set (0.00 sec)

The containing query fails because an expression (country_id) cannot be equated to
a set of expressions (country_ids 1, 2, 3, ..., 109). In other words, a single thing can‐
not be equated to a set of things. In the next section, you will see how to fix the prob‐
lem by using a different operator.

Multiple-Row, Single-Column Subqueries
If your subquery returns more than one row, you will not be able to use it on one side
of an equality condition, as the previous example demonstrated. However, there are
four additional operators that you can use to build conditions with these types of
subqueries.

164 | Chapter 9: Subqueries

The in and not in operators
While you can’t equate a single value to a set of values, you can check to see whether a
single value can be found within a set of values. The next example, while it doesn’t use
a subquery, demonstrates how to build a condition that uses the in operator to search
for a value within a set of values:

mysql> SELECT country_id
 -> FROM country
 -> WHERE country IN ('Canada','Mexico');
+------------+
| country_id |
+------------+
| 20 |
| 60 |
+------------+
2 rows in set (0.00 sec)

The expression on the lefthand side of the condition is the country column, while the
righthand side of the condition is a set of strings. The in operator checks to see
whether either of the strings can be found in the country column; if so, the condition
is met, and the row is added to the result set. You could achieve the same results using
two equality conditions, as in:

mysql> SELECT country_id
 -> FROM country
 -> WHERE country = 'Canada' OR country = 'Mexico';
+------------+
| country_id |
+------------+
| 20 |
| 60 |
+------------+
2 rows in set (0.00 sec)

While this approach seems reasonable when the set contains only two expressions, it
is easy to see why a single condition using the in operator would be preferable if the
set contained dozens (or hundreds, thousands, etc.) of values.

Although you will occasionally create a set of strings, dates, or numbers to use on one
side of a condition, you are more likely to generate the set using a subquery that
returns one or more rows. The following query uses the in operator with a subquery
on the righthand side of the filter condition to return all cities that are in Canada or
Mexico:

mysql> SELECT city_id, city
 -> FROM city
 -> WHERE country_id IN
 -> (SELECT country_id
 -> FROM country
 -> WHERE country IN ('Canada','Mexico'));

Noncorrelated Subqueries | 165

+---------+----------------------------+
| city_id | city |
+---------+----------------------------+
179	Gatineau
196	Halifax
300	Lethbridge
313	London
383	Oshawa
430	Richmond Hill
565	Vancouver
...	
452	San Juan Bautista Tuxtepec
541	Torren
556	Uruapan
563	Valle de Santiago
595	Zapopan
+---------+----------------------------+
37 rows in set (0.00 sec)

Along with seeing whether a value exists within a set of values, you can check the
converse using the not in operator. Here’s another version of the previous query
using not in instead of in:

mysql> SELECT city_id, city
 -> FROM city
 -> WHERE country_id NOT IN
 -> (SELECT country_id
 -> FROM country
 -> WHERE country IN ('Canada','Mexico'));
+---------+----------------------------+
| city_id | city |
+---------+----------------------------+
1	A Corua (La Corua)
2	Abha
3	Abu Dhabi
5	Adana
6	Addis Abeba
...	
596	Zaria
597	Zeleznogorsk
598	Zhezqazghan
599	Zhoushan
600	Ziguinchor
+---------+----------------------------+
563 rows in set (0.00 sec)

This query finds all cities that are not in Canada or Mexico.

166 | Chapter 9: Subqueries

The all operator

While the in operator is used to see whether an expression can be found within a set
of expressions, the all operator allows you to make comparisons between a single
value and every value in a set. To build such a condition, you will need to use one of
the comparison operators (=, <>, <, >, etc.) in conjunction with the all operator. For
example, the next query finds all customers who have never gotten a free film rental:

mysql> SELECT first_name, last_name
 -> FROM customer
 -> WHERE customer_id <> ALL
 -> (SELECT customer_id
 -> FROM payment
 -> WHERE amount = 0);
+-------------+--------------+
| first_name | last_name |
+-------------+--------------+
MARY	SMITH
PATRICIA	JOHNSON
LINDA	WILLIAMS
BARBARA	JONES
...	
EDUARDO	HIATT
TERRENCE	GUNDERSON
ENRIQUE	FORSYTHE
FREDDIE	DUGGAN
WADE	DELVALLE
AUSTIN	CINTRON
+-------------+--------------+
576 rows in set (0.01 sec)

The subquery returns the set of IDs for customers who have paid $0 for a film rental,
and the containing query returns the names of all customers whose ID is not in the
set returned by the subquery. If this approach seems a bit clumsy to you, you are in
good company; most people would prefer to phrase the query differently and avoid
using the all operator. To illustrate, the previous query generates the same results as
the next example, which uses the not in operator:

SELECT first_name, last_name
FROM customer
WHERE customer_id NOT IN
 (SELECT customer_id
 FROM payment
 WHERE amount = 0)

It’s a matter of preference, but I think that most people would find the version that
uses not in to be easier to understand.

Noncorrelated Subqueries | 167

When using not in or <> all to compare a value to a set of values,
you must be careful to ensure that the set of values does not con‐
tain a null value, because the server equates the value on the left‐
hand side of the expression to each member of the set, and any
attempt to equate a value to null yields unknown. Thus, the follow‐
ing query returns an empty set:

mysql> SELECT first_name, last_name
 -> FROM customer
 -> WHERE customer_id NOT IN (122, 452, NULL);
Empty set (0.00 sec)

Here’s another example using the all operator, but this time the subquery is in the
having clause:

mysql> SELECT customer_id, count(*)
 -> FROM rental
 -> GROUP BY customer_id
 -> HAVING count(*) > ALL
 -> (SELECT count(*)
 -> FROM rental r
 -> INNER JOIN customer c
 -> ON r.customer_id = c.customer_id
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id
 -> INNER JOIN country co
 -> ON ct.country_id = co.country_id
 -> WHERE co.country IN ('United States','Mexico','Canada')
 -> GROUP BY r.customer_id
 ->);
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
| 148 | 46 |
+-------------+----------+
1 row in set (0.01 sec)

The subquery in this example returns the total number of film rentals for all custom‐
ers in North America, and the containing query returns all customers whose total
number of film rentals exceeds any of the North American customers.

The any operator

Like the all operator, the any operator allows a value to be compared to the members
of a set of values; unlike all, however, a condition using the any operator evaluates to
true as soon as a single comparison is favorable. This example will find all customers
whose total film rental payments exceed the total payments for all customers in Boli‐
via, Paraguay, or Chile:

168 | Chapter 9: Subqueries

mysql> SELECT customer_id, sum(amount)
 -> FROM payment
 -> GROUP BY customer_id
 -> HAVING sum(amount) > ANY
 -> (SELECT sum(p.amount)
 -> FROM payment p
 -> INNER JOIN customer c
 -> ON p.customer_id = c.customer_id
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id
 -> INNER JOIN country co
 -> ON ct.country_id = co.country_id
 -> WHERE co.country IN ('Bolivia','Paraguay','Chile')
 -> GROUP BY co.country
 ->);
+-------------+-------------+
| customer_id | sum(amount) |
+-------------+-------------+
137	194.61
144	195.58
148	216.54
178	194.61
459	186.62
526	221.55
+-------------+-------------+
6 rows in set (0.03 sec)

The subquery returns the total film rental fees for all customers in Bolivia, Paraguay,
and Chile, and the containing query returns all customers who outspent at least one
of these three countries (if you find yourself outspending an entire country, perhaps
you need to cancel your Netflix subscription and book a trip to Bolivia, Paraguay, or
Chile...).

Although most people prefer to use in, using = any is equivalent to
using the in operator.

Multicolumn Subqueries
So far, the subquery examples in this chapter have returned a single column and one
or more rows. In certain situations, however, you can use subqueries that return two
or more columns. To show the utility of multicolumn subqueries, it might help to
look first at an example that uses multiple, single-column subqueries:

mysql> SELECT fa.actor_id, fa.film_id
 -> FROM film_actor fa

Noncorrelated Subqueries | 169

 -> WHERE fa.actor_id IN
 -> (SELECT actor_id FROM actor WHERE last_name = 'MONROE')
 -> AND fa.film_id IN
 -> (SELECT film_id FROM film WHERE rating = 'PG');
+----------+---------+
| actor_id | film_id |
+----------+---------+
120	63
120	144
120	414
120	590
120	715
120	894
178	164
178	194
178	273
178	311
178	983
+----------+---------+
11 rows in set (0.00 sec)

This query uses two subqueries to identify all actors with the last name Monroe and
all films rated PG, and the containing query then uses this information to retrieve all
cases where an actor named Monroe appeared in a PG film. However, you could
merge the two single-column subqueries into one multicolumn subquery and com‐
pare the results to two columns in the film_actor table. To do so, your filter condi‐
tion must name both columns from the film_actor table surrounded by parentheses
and in the same order as returned by the subquery, as in:

mysql> SELECT actor_id, film_id
 -> FROM film_actor
 -> WHERE (actor_id, film_id) IN
 -> (SELECT a.actor_id, f.film_id
 -> FROM actor a
 -> CROSS JOIN film f
 -> WHERE a.last_name = 'MONROE'
 -> AND f.rating = 'PG');
+----------+---------+
| actor_id | film_id |
+----------+---------+
120	63
120	144
120	414
120	590
120	715
120	894
178	164
178	194
178	273
178	311
178	983

170 | Chapter 9: Subqueries

+----------+---------+
11 rows in set (0.00 sec)

This version of the query performs the same function as the previous example, but
with a single subquery that returns two columns instead of two subqueries that each
return a single column. The subquery in this version uses a type of join called a cross
join, which will be explored in the next chapter. The basic idea is to return all combi‐
nations of actors named Monroe (2) and all films rated PG (194) for a total of 388
rows, 11 of which can be found in the film_actor table.

Correlated Subqueries
All of the subqueries shown thus far have been independent of their containing state‐
ments, meaning that you can execute them by themselves and inspect the results. A
correlated subquery, on the other hand, is dependent on its containing statement from
which it references one or more columns. Unlike a noncorrelated subquery, a correla‐
ted subquery is not executed once prior to execution of the containing statement;
instead, the correlated subquery is executed once for each candidate row (rows that
might be included in the final results). For example, the following query uses a corre‐
lated subquery to count the number of film rentals for each customer, and the con‐
taining query then retrieves those customers who have rented exactly 20 films:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE 20 =
 -> (SELECT count(*) FROM rental r
 -> WHERE r.customer_id = c.customer_id);
+------------+-------------+
| first_name | last_name |
+------------+-------------+
LAUREN	HUDSON
JEANETTE	GREENE
TARA	RYAN
WILMA	RICHARDS
JO	FOWLER
KAY	CALDWELL
DANIEL	CABRAL
ANTHONY	SCHWAB
TERRY	GRISSOM
LUIS	YANEZ
HERBERT	KRUGER
OSCAR	AQUINO
RAUL	FORTIER
NELSON	CHRISTENSON
ALFREDO	MCADAMS
+------------+-------------+
15 rows in set (0.01 sec)

Correlated Subqueries | 171

The reference to c.customer_id at the very end of the subquery is what makes the
subquery correlated; the containing query must supply values for c.customer_id for
the subquery to execute. In this case, the containing query retrieves all 599 rows from
the customer table and executes the subquery once for each customer, passing in the
appropriate customer ID for each execution. If the subquery returns the value 20,
then the filter condition is met, and the row is added to the result set.

One word of caution: since the correlated subquery will be exe‐
cuted once for each row of the containing query, the use of correla‐
ted subqueries can cause performance issues if the containing
query returns a large number of rows.

Along with equality conditions, you can use correlated subqueries in other types of
conditions, such as the range condition illustrated here:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE
 -> (SELECT sum(p.amount) FROM payment p
 -> WHERE p.customer_id = c.customer_id)
 -> BETWEEN 180 AND 240;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
RHONDA	KENNEDY
CLARA	SHAW
ELEANOR	HUNT
MARION	SNYDER
TOMMY	COLLAZO
KARL	SEAL
+------------+-----------+
6 rows in set (0.03 sec)

This variation on the previous query finds all customers whose total payments for all
film rentals are between $180 and $240. Once again, the correlated subquery is exe‐
cuted 599 times (once for each customer row), and each execution of the subquery
returns the total account balance for the given customer.

Another subtle difference in the previous query is that the sub‐
query is on the lefthand side of the condition, which may look a bit
odd but is perfectly valid.

172 | Chapter 9: Subqueries

The exists Operator
While you will often see correlated subqueries used in equality and range conditions,
the most common operator used to build conditions that utilize correlated subqueries
is the exists operator. You use the exists operator when you want to identify that a
relationship exists without regard for the quantity; for example, the following query
finds all the customers who rented at least one film prior to May 25, 2005, without
regard for how many films were rented:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE EXISTS
 -> (SELECT 1 FROM rental r
 -> WHERE r.customer_id = c.customer_id
 -> AND date(r.rental_date) < '2005-05-25');
+------------+-------------+
| first_name | last_name |
+------------+-------------+
CHARLOTTE	HUNTER
DELORES	HANSEN
MINNIE	ROMERO
CASSANDRA	WALTERS
ANDREW	PURDY
MANUEL	MURRELL
TOMMY	COLLAZO
NELSON	CHRISTENSON
+------------+-------------+
8 rows in set (0.03 sec)

Using the exists operator, your subquery can return zero, one, or many rows, and
the condition simply checks whether the subquery returned one or more rows. If you
look at the select clause of the subquery, you will see that it consists of a single literal
(1); since the condition in the containing query only needs to know how many rows
have been returned, the actual data the subquery returned is irrelevant. Your sub‐
query can return whatever strikes your fancy, as demonstrated next:

mysql> SELECT c.first_name, c.last_name
 -> FROM customer c
 -> WHERE EXISTS
 -> (SELECT r.rental_date, r.customer_id, 'ABCD' str, 2 * 3 / 7 nmbr
 -> FROM rental r
 -> WHERE r.customer_id = c.customer_id
 -> AND date(r.rental_date) < '2005-05-25');
+------------+-------------+
| first_name | last_name |
+------------+-------------+
CHARLOTTE	HUNTER
DELORES	HANSEN
MINNIE	ROMERO
CASSANDRA	WALTERS

Correlated Subqueries | 173

ANDREW	PURDY
MANUEL	MURRELL
TOMMY	COLLAZO
NELSON	CHRISTENSON
+------------+-------------+
8 rows in set (0.03 sec)

However, the convention is to specify either select 1 or select * when using
exists.

You may also use not exists to check for subqueries that return no rows, as demon‐
strated by the following:

mysql> SELECT a.first_name, a.last_name
 -> FROM actor a
 -> WHERE NOT EXISTS
 -> (SELECT 1
 -> FROM film_actor fa
 -> INNER JOIN film f ON f.film_id = fa.film_id
 -> WHERE fa.actor_id = a.actor_id
 -> AND f.rating = 'R');
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JANE | JACKMAN |
+------------+-----------+
1 row in set (0.00 sec)

This query finds all actors who have never appeared in an R-rated film.

Data Manipulation Using Correlated Subqueries
All of the examples thus far in the chapter have been select statements, but don’t
think that means that subqueries aren’t useful in other SQL statements. Subqueries
are used heavily in update, delete, and insert statements as well, with correlated
subqueries appearing frequently in update and delete statements. Here’s an example
of a correlated subquery used to modify the last_update column in the customer
table:

UPDATE customer c
SET c.last_update =
 (SELECT max(r.rental_date) FROM rental r
 WHERE r.customer_id = c.customer_id);

This statement modifies every row in the customer table (since there is no where
clause) by finding the latest rental date for each customer in the rental table. While it
seems reasonable to expect that every customer will have at least one film rental, it
would be best to check before attempting to update the last_update column; other‐
wise, the column will be set to null, since the subquery would return no rows. Here’s

174 | Chapter 9: Subqueries

another version of the update statement, this time employing a where clause with a
second correlated subquery:

UPDATE customer c
SET c.last_update =
 (SELECT max(r.rental_date) FROM rental r
 WHERE r.customer_id = c.customer_id)
WHERE EXISTS
 (SELECT 1 FROM rental r
 WHERE r.customer_id = c.customer_id);

The two correlated subqueries are identical except for the select clauses. The sub‐
query in the set clause, however, executes only if the condition in the update
statement’s where clause evaluates to true (meaning that at least one rental was found
for the customer), thus protecting the data in the last_update column from being
overwritten with a null.

Correlated subqueries are also common in delete statements. For example, you may
run a data maintenance script at the end of each month that removes unnecessary
data. The script might include the following statement, which removes rows from the
customer table where there have been no film rentals in the past year:

DELETE FROM customer
WHERE 365 < ALL
 (SELECT datediff(now(), r.rental_date) days_since_last_rental
 FROM rental r
 WHERE r.customer_id = customer.customer_id);

When using correlated subqueries with delete statements in MySQL, keep in mind
that, for whatever reason, table aliases are not allowed when using delete, which is
why I had to use the entire table name in the subquery. With most other database
servers, you could provide an alias for the customer table, such as:

DELETE FROM customer c
WHERE 365 < ALL
 (SELECT datediff(now(), r.rental_date) days_since_last_rental
 FROM rental r
 WHERE r.customer_id = c.customer_id);

When to Use Subqueries
Now that you have learned about the different types of subqueries and the different
operators that you can employ to interact with the data returned by subqueries, it’s
time to explore the many ways in which you can use subqueries to build powerful
SQL statements. The next three sections demonstrate how you may use subqueries to
construct custom tables, to build conditions, and to generate column values in result
sets.

When to Use Subqueries | 175

Subqueries as Data Sources
Back in Chapter 3, I stated that the from clause of a select statement contains the
tables to be used by the query. Since a subquery generates a result set containing rows
and columns of data, it is perfectly valid to include subqueries in your from clause
along with tables. Although it might, at first glance, seem like an interesting feature
without much practical merit, using subqueries alongside tables is one of the most
powerful tools available when writing queries. Here’s a simple example:

mysql> SELECT c.first_name, c.last_name,
 -> pymnt.num_rentals, pymnt.tot_payments
 -> FROM customer c
 -> INNER JOIN
 -> (SELECT customer_id,
 -> count(*) num_rentals, sum(amount) tot_payments
 -> FROM payment
 -> GROUP BY customer_id
 ->) pymnt
 -> ON c.customer_id = pymnt.customer_id;
+-------------+--------------+-------------+--------------+
| first_name | last_name | num_rentals | tot_payments |
+-------------+--------------+-------------+--------------+
MARY	SMITH	32	118.68
PATRICIA	JOHNSON	27	128.73
LINDA	WILLIAMS	26	135.74
BARBARA	JONES	22	81.78
ELIZABETH	BROWN	38	144.62
...			
TERRENCE	GUNDERSON	30	117.70
ENRIQUE	FORSYTHE	28	96.72
FREDDIE	DUGGAN	25	99.75
WADE	DELVALLE	22	83.78
AUSTIN	CINTRON	19	83.81
+-------------+--------------+-------------+--------------+
599 rows in set (0.03 sec)

In this example, a subquery generates a list of customer IDs along with the number of
film rentals and the total payments. Here’s the result set generated by the subquery:

mysql> SELECT customer_id, count(*) num_rentals, sum(amount) tot_payments
 -> FROM payment
 -> GROUP BY customer_id;
+-------------+-------------+--------------+
| customer_id | num_rentals | tot_payments |
+-------------+-------------+--------------+
1	32	118.68
2	27	128.73
3	26	135.74
4	22	81.78
...		
596	28	96.72
597	25	99.75

176 | Chapter 9: Subqueries

1 Actually, depending on which database server you are using, you might be able to include correlated subquer‐
ies in your from clause by using cross apply or outer apply, but these features are beyond the scope of this
book.

| 598 | 22 | 83.78 |
| 599 | 19 | 83.81 |
+-------------+-------------+--------------+
599 rows in set (0.03 sec)

The subquery is given the name pymnt and is joined to the customer table via the
customer_id column. The containing query then retrieves the customer’s name from
the customer table, along with the summary columns from the pymnt subquery.

Subqueries used in the from clause must be noncorrelated;1 they are executed first,
and the data is held in memory until the containing query finishes execution. Subqu‐
eries offer immense flexibility when writing queries, because you can go far beyond
the set of available tables to create virtually any view of the data that you desire and
then join the results to other tables or subqueries. If you are writing reports or gener‐
ating data feeds to external systems, you may be able to do things with a single query
that used to demand multiple queries or a procedural language to accomplish.

Data fabrication
Along with using subqueries to summarize existing data, you can use subqueries to
generate data that doesn’t exist in any form within your database. For example, you
may wish to group your customers by the amount of money spent on film rentals, but
you want to use group definitions that are not stored in your database. For example,
let’s say you want to sort your customers into the groups shown in Table 9-1.

Table 9-1. Customer payment groups

Group name Lower limit Upper limit
Small Fry 0 $74.99

Average Joes $75 $149.99

Heavy Hitters $150 $9,999,999.99

To generate these groups within a single query, you will need a way to define these
three groups. The first step is to define a query that generates the group definitions:

mysql> SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name | low_limit | high_limit |

When to Use Subqueries | 177

+---------------+-----------+------------+
Small Fry	0	74.99
Average Joes	75	149.99
Heavy Hitters	150	9999999.99
+---------------+-----------+------------+
3 rows in set (0.00 sec)

I have used the set operator union all to merge the results from three separate quer‐
ies into a single result set. Each query retrieves three literals, and the results from the
three queries are put together to generate a result set with three rows and three col‐
umns. You now have a query to generate the desired groups, and you can place it into
the from clause of another query to generate your customer groups:

mysql> SELECT pymnt_grps.name, count(*) num_customers
 -> FROM
 -> (SELECT customer_id,
 -> count(*) num_rentals, sum(amount) tot_payments
 -> FROM payment
 -> GROUP BY customer_id
 ->) pymnt
 -> INNER JOIN
 -> (SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit
 ->) pymnt_grps
 -> ON pymnt.tot_payments
 -> BETWEEN pymnt_grps.low_limit AND pymnt_grps.high_limit
 -> GROUP BY pymnt_grps.name;
+---------------+---------------+
| name | num_customers |
+---------------+---------------+
Average Joes	515
Heavy Hitters	46
Small Fry	38
+---------------+---------------+
3 rows in set (0.03 sec)

The from clause contains two subqueries; the first subquery, named pymnt, returns
the total number of film rentals and total payments for each customer, while the sec‐
ond subquery, named pymnt_grps, generates the three customer groupings. The two
subqueries are joined by finding which of the three groups each customer belongs to,
and the rows are then grouped by the group name in order to count the number of
customers in each group.

Of course, you could simply decide to build a permanent (or temporary) table to hold
the group definitions instead of using a subquery. Using that approach, you would
find your database to be littered with small special-purpose tables after a while, and
you wouldn’t remember the reason for which most of them were created. Using

178 | Chapter 9: Subqueries

subqueries, however, you will be able to adhere to a policy where tables are added to a
database only when there is a clear business need to store new data.

Task-oriented subqueries
Let’s say that you want to generate a report showing each customer’s name, along with
their city, the total number of rentals, and the total payment amount. You could
accomplish this by joining the payment, customer, address, and city tables, and then
grouping on the customer’s first and last names:

mysql> SELECT c.first_name, c.last_name, ct.city,
 -> sum(p.amount) tot_payments, count(*) tot_rentals
 -> FROM payment p
 -> INNER JOIN customer c
 -> ON p.customer_id = c.customer_id
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id
 -> GROUP BY c.first_name, c.last_name, ct.city;
+-------------+------------+-----------------+--------------+-------------+
| first_name | last_name | city | tot_payments | tot_rentals |
+-------------+------------+-----------------+--------------+-------------+
MARY	SMITH	Sasebo	118.68	32
PATRICIA	JOHNSON	San Bernardino	128.73	27
LINDA	WILLIAMS	Athenai	135.74	26
BARBARA	JONES	Myingyan	81.78	22
...				
TERRENCE	GUNDERSON	Jinzhou	117.70	30
ENRIQUE	FORSYTHE	Patras	96.72	28
FREDDIE	DUGGAN	Sullana	99.75	25
WADE	DELVALLE	Lausanne	83.78	22
AUSTIN	CINTRON	Tieli	83.81	19
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

This query returns the desired data, but if you look at the query closely, you will see
that the customer, address, and city tables are needed only for display purposes and
that the payment table has everything needed to generate the groupings (customer_id
and amount). Therefore, you could separate out the task of generating the groups into
a subquery and then join the other three tables to the table generated by the subquery
to achieve the desired end result. Here’s the grouping subquery:

mysql> SELECT customer_id,
 -> count(*) tot_rentals, sum(amount) tot_payments
 -> FROM payment
 -> GROUP BY customer_id;
+-------------+-------------+--------------+
| customer_id | tot_rentals | tot_payments |
+-------------+-------------+--------------+
| 1 | 32 | 118.68 |

When to Use Subqueries | 179

2	27	128.73
3	26	135.74
4	22	81.78
...		
595	30	117.70
596	28	96.72
597	25	99.75
598	22	83.78
599	19	83.81
+-------------+-------------+--------------+
599 rows in set (0.03 sec)

This is the heart of the query; the other tables are needed only to provide meaningful
strings in place of the customer_id value. The next query joins the previous data set
to the other three tables:

mysql> SELECT c.first_name, c.last_name,
 -> ct.city,
 -> pymnt.tot_payments, pymnt.tot_rentals
 -> FROM
 -> (SELECT customer_id,
 -> count(*) tot_rentals, sum(amount) tot_payments
 -> FROM payment
 -> GROUP BY customer_id
 ->) pymnt
 -> INNER JOIN customer c
 -> ON pymnt.customer_id = c.customer_id
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id;
+-------------+------------+-----------------+--------------+-------------+
| first_name | last_name | city | tot_payments | tot_rentals |
+-------------+------------+-----------------+--------------+-------------+
MARY	SMITH	Sasebo	118.68	32
PATRICIA	JOHNSON	San Bernardino	128.73	27
LINDA	WILLIAMS	Athenai	135.74	26
BARBARA	JONES	Myingyan	81.78	22
...				
TERRENCE	GUNDERSON	Jinzhou	117.70	30
ENRIQUE	FORSYTHE	Patras	96.72	28
FREDDIE	DUGGAN	Sullana	99.75	25
WADE	DELVALLE	Lausanne	83.78	22
AUSTIN	CINTRON	Tieli	83.81	19
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

I realize that beauty is in the eye of the beholder, but I find this version of the query to
be far more satisfying than the big, flat version. This version may execute faster as
well, because the grouping is being done on a single numeric column (customer_id)

180 | Chapter 9: Subqueries

instead of multiple lengthy string columns (customer.first_name,
customer.last_name, city.city).

Common table expressions
Common table expressions (a.k.a. CTEs), which are new to MySQL in version 8.0,
have been available in other database servers for quite some time. A CTE is a named
subquery that appears at the top of a query in a with clause, which can contain mul‐
tiple CTEs separated by commas. Along with making queries more understandable,
this feature also allows each CTE to refer to any other CTE defined above it in the
same with clause. The following example includes three CTEs, where the second
refers to the first, and the third refers to the second:

mysql> WITH actors_s AS
 -> (SELECT actor_id, first_name, last_name
 -> FROM actor
 -> WHERE last_name LIKE 'S%'
 ->),
 -> actors_s_pg AS
 -> (SELECT s.actor_id, s.first_name, s.last_name,
 -> f.film_id, f.title
 -> FROM actors_s s
 -> INNER JOIN film_actor fa
 -> ON s.actor_id = fa.actor_id
 -> INNER JOIN film f
 -> ON f.film_id = fa.film_id
 -> WHERE f.rating = 'PG'
 ->),
 -> actors_s_pg_revenue AS
 -> (SELECT spg.first_name, spg.last_name, p.amount
 -> FROM actors_s_pg spg
 -> INNER JOIN inventory i
 -> ON i.film_id = spg.film_id
 -> INNER JOIN rental r
 -> ON i.inventory_id = r.inventory_id
 -> INNER JOIN payment p
 -> ON r.rental_id = p.rental_id
 ->) -- end of With clause
 -> SELECT spg_rev.first_name, spg_rev.last_name,
 -> sum(spg_rev.amount) tot_revenue
 -> FROM actors_s_pg_revenue spg_rev
 -> GROUP BY spg_rev.first_name, spg_rev.last_name
 -> ORDER BY 3 desc;
+------------+-------------+-------------+
| first_name | last_name | tot_revenue |
+------------+-------------+-------------+
NICK	STALLONE	692.21
JEFF	SILVERSTONE	652.35
DAN	STREEP	509.02
GROUCHO	SINATRA	457.97

When to Use Subqueries | 181

SISSY	SOBIESKI	379.03
JAYNE	SILVERSTONE	372.18
CAMERON	STREEP	361.00
JOHN	SUVARI	296.36
JOE	SWANK	177.52
+------------+-------------+-------------+
9 rows in set (0.18 sec)

This query calculates the total revenues generated from PG-rated film rentals where
the cast includes an actor whose last name starts with S. The first subquery
(actors_s) finds all actors whose last name starts with S, the second subquery
(actors_s_pg) joins that data set to the film table and filters on films having a PG
rating, and the third subquery (actors_s_pg_revenue) joins that data set to the pay
ment table to retrieve the amounts paid to rent any of these films. The final query
simply groups the data from actors_s_pg_revenue by first/last names and sums the
revenues.

Those who tend to utilize temporary tables to store query results
for use in subsequent queries may find CTEs an attractive alterna‐
tive.

Subqueries as Expression Generators
For this last section of the chapter, I finish where I began: with single-column, single-
row scalar subqueries. Along with being used in filter conditions, scalar subqueries
may be used wherever an expression can appear, including the select and order by
clauses of a query and the values clause of an insert statement.

In “Task-oriented subqueries” on page 179, I showed you how to use a subquery to
separate out the grouping mechanism from the rest of the query. Here’s another ver‐
sion of the same query that uses subqueries for the same purpose, but in a different
way:

mysql> SELECT
 -> (SELECT c.first_name FROM customer c
 -> WHERE c.customer_id = p.customer_id
 ->) first_name,
 -> (SELECT c.last_name FROM customer c
 -> WHERE c.customer_id = p.customer_id
 ->) last_name,
 -> (SELECT ct.city
 -> FROM customer c
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct
 -> ON a.city_id = ct.city_id

182 | Chapter 9: Subqueries

 -> WHERE c.customer_id = p.customer_id
 ->) city,
 -> sum(p.amount) tot_payments,
 -> count(*) tot_rentals
 -> FROM payment p
 -> GROUP BY p.customer_id;
+-------------+------------+-----------------+--------------+-------------+
| first_name | last_name | city | tot_payments | tot_rentals |
+-------------+------------+-----------------+--------------+-------------+
MARY	SMITH	Sasebo	118.68	32
PATRICIA	JOHNSON	San Bernardino	128.73	27
LINDA	WILLIAMS	Athenai	135.74	26
BARBARA	JONES	Myingyan	81.78	22
...				
TERRENCE	GUNDERSON	Jinzhou	117.70	30
ENRIQUE	FORSYTHE	Patras	96.72	28
FREDDIE	DUGGAN	Sullana	99.75	25
WADE	DELVALLE	Lausanne	83.78	22
AUSTIN	CINTRON	Tieli	83.81	19
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

There are two main differences between this query and the earlier version using a
subquery in the from clause:

• Instead of joining the customer, address, and city tables to the payment data,
correlated scalar subqueries are used in the select clause to look up the custom‐
er’s first/last names and city.

• The customer table is accessed three times (once in each of the three subqueries)
rather than just once.

The customer table is accessed three times because scalar subqueries can return only
a single column and row, so if we need three columns related to the customer, it is
necessary to use three different subqueries.

As previously noted, scalar subqueries can also appear in the order by clause. The
following query retrieves an actor’s first and last names and sorts by the number of
films in which the actor appeared:

mysql> SELECT a.actor_id, a.first_name, a.last_name
 -> FROM actor a
 -> ORDER BY
 -> (SELECT count(*) FROM film_actor fa
 -> WHERE fa.actor_id = a.actor_id) DESC;
+----------+-------------+--------------+
| actor_id | first_name | last_name |
+----------+-------------+--------------+
107	GINA	DEGENERES
102	WALTER	TORN
198	MARY	KEITEL

When to Use Subqueries | 183

| 181 | MATTHEW | CARREY |
...
71	ADAM	GRANT
186	JULIA	ZELLWEGER
35	JUDY	DEAN
199	JULIA	FAWCETT
148	EMILY	DEE
+----------+-------------+--------------+
200 rows in set (0.01 sec)

The query uses a correlated scalar subquery in the order by clause to return just the
number of film appearances, and this value is used solely for sorting purposes.

Along with using correlated scalar subqueries in select statements, you can use non‐
correlated scalar subqueries to generate values for an insert statement. For example,
let’s say you are going to generate a new row in the film_actor table, and you’ve been
given the following data:

• The first and last name of the actor
• The name of the film

You have two choices for how to go about it: execute two queries to retrieve the pri‐
mary key values from film and actor and place those values into an insert state‐
ment or use subqueries to retrieve the two key values from within an insert
statement. Here’s an example of the latter approach:

INSERT INTO film_actor (actor_id, film_id, last_update)
VALUES (
 (SELECT actor_id FROM actor
 WHERE first_name = 'JENNIFER' AND last_name = 'DAVIS'),
 (SELECT film_id FROM film
 WHERE title = 'ACE GOLDFINGER'),
 now()
);

Using a single SQL statement, you can create a row in the film_actor table and look
up two foreign key column values at the same time.

Subquery Wrap-Up
I covered a lot of ground in this chapter, so it might be a good idea to review it. The
examples in this chapter demonstrate subqueries that:

• Return a single column and row, a single column with multiple rows, and multi‐
ple columns and rows

• Are independent of the containing statement (noncorrelated subqueries)

184 | Chapter 9: Subqueries

• Reference one or more columns from the containing statement (correlated
subqueries)

• Are used in conditions that utilize comparison operators as well as the special-
purpose operators in, not in, exists, and not exists

• Can be found in select, update, delete, and insert statements
• Generate result sets that can be joined to other tables (or subqueries) in a query
• Can be used to generate values to populate a table or to populate columns in a

query’s result set
• Are used in the select, from, where, having, and order by clauses of queries

Obviously, subqueries are a very versatile tool, so don’t feel bad if all these concepts
haven’t sunk in after reading this chapter for the first time. Keep experimenting with
the various uses for subqueries, and you will soon find yourself thinking about how
you might utilize a subquery every time you write a nontrivial SQL statement.

Test Your Knowledge
These exercises are designed to test your understanding of subqueries. Please see
Appendix B for the solutions.

Exercise 9-1
Construct a query against the film table that uses a filter condition with a noncorre‐
lated subquery against the category table to find all action films (category.name =
'Action').

Exercise 9-2
Rework the query from Exercise 9-1 using a correlated subquery against the category
and film_category tables to achieve the same results.

Exercise 9-3
Join the following query to a subquery against the film_actor table to show the level
of each actor:

SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
UNION ALL
SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
UNION ALL
SELECT 'Newcomer' level, 1 min_roles, 19 max_roles

Test Your Knowledge | 185

The subquery against the film_actor table should count the number of rows for each
actor using group by actor_id, and the count should be compared to the
min_roles/max_roles columns to determine which level each actor belongs to.

186 | Chapter 9: Subqueries

CHAPTER 10

Joins Revisited

By now, you should be comfortable with the concept of the inner join, which I intro‐
duced in Chapter 5. This chapter focuses on other ways in which you can join tables,
including the outer join and the cross join.

Outer Joins
In all the examples thus far that have included multiple tables, we haven’t been con‐
cerned that the join conditions might fail to find matches for all the rows in the
tables. For example, the inventory table contains a row for every film available for
rental, but of the 1,000 rows in the film table, only 958 have one or more rows in the
inventory table. The other 42 films are not available for rental (perhaps they are new
releases due to arrive in a few days), so these film IDs cannot be found in the inven
tory table. The following query counts the number of available copies of each film by
joining these two tables:

mysql> SELECT f.film_id, f.title, count(*) num_copies
 -> FROM film f
 -> INNER JOIN inventory i
 -> ON f.film_id = i.film_id
 -> GROUP BY f.film_id, f.title;
+---------+-----------------------------+------------+
| film_id | title | num_copies |
+---------+-----------------------------+------------+
1	ACADEMY DINOSAUR	8
2	ACE GOLDFINGER	3
3	ADAPTATION HOLES	4
4	AFFAIR PREJUDICE	7
...		
13	ALI FOREVER	4
15	ALIEN CENTER	6
...

187

997	YOUTH KICK	2
998	ZHIVAGO CORE	2
999	ZOOLANDER FICTION	5
1000	ZORRO ARK	8
+---------+-----------------------------+------------+
958 rows in set (0.02 sec)

While you may have expected 1,000 rows to be returned (one for each film), the
query returns only 958 rows. This is because the query uses an inner join, which only
returns rows that satisfy the join condition. The film Alice Fantasia (film_id 14)
doesn’t appear in the results, for example, because it doesn’t have any rows in the
inventory table.

If you want the query to return all 1,000 films, regardless of whether or not there are
rows in the inventory table, you can use an outer join, which essentially makes the
join condition optional:

mysql> SELECT f.film_id, f.title, count(i.inventory_id) num_copies
 -> FROM film f
 -> LEFT OUTER JOIN inventory i
 -> ON f.film_id = i.film_id
 -> GROUP BY f.film_id, f.title;
+---------+-----------------------------+------------+
| film_id | title | num_copies |
+---------+-----------------------------+------------+
1	ACADEMY DINOSAUR	8
2	ACE GOLDFINGER	3
3	ADAPTATION HOLES	4
4	AFFAIR PREJUDICE	7
...		
13	ALI FOREVER	4
14	ALICE FANTASIA	0
15	ALIEN CENTER	6
...		
997	YOUTH KICK	2
998	ZHIVAGO CORE	2
999	ZOOLANDER FICTION	5
1000	ZORRO ARK	8
+---------+-----------------------------+------------+
1000 rows in set (0.01 sec)

As you can see, the query now returns all 1,000 rows from the film table, and 42 of
the rows (including Alice Fantasia) have a value of 0 in the num_copies column,
which indicates that there are no copies in inventory.

Here’s a description of the changes from the prior version of the query:

188 | Chapter 10: Joins Revisited

• The join definition was changed from inner to left outer, which instructs the
server to include all rows from the table on the left side of the join (film, in this
case) and then include columns from the table on the right side of the join (inven
tory) if the join is successful.

• The num_copies column definition was changed from count(*) to
count(i.inventory_id), which will count the number of non-null values of the
inventory.inventory_id column.

Next, let’s remove the group by clause and filter out most of the rows in order to
clearly see the differences between inner and outer joins. Here’s a query using an
inner join and a filter condition to return rows for just a few films:

mysql> SELECT f.film_id, f.title, i.inventory_id
 -> FROM film f
 -> INNER JOIN inventory i
 -> ON f.film_id = i.film_id
 -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+--------------+--------------+
| film_id | title | inventory_id |
+---------+--------------+--------------+
13	ALI FOREVER	67
13	ALI FOREVER	68
13	ALI FOREVER	69
13	ALI FOREVER	70
15	ALIEN CENTER	71
15	ALIEN CENTER	72
15	ALIEN CENTER	73
15	ALIEN CENTER	74
15	ALIEN CENTER	75
15	ALIEN CENTER	76
+---------+--------------+--------------+
10 rows in set (0.00 sec)

The results show that there are four copies of Ali Forever and six copies of Alien Cen‐
ter in inventory. Here’s the same query, but using an outer join:

mysql> SELECT f.film_id, f.title, i.inventory_id
 -> FROM film f
 -> LEFT OUTER JOIN inventory i
 -> ON f.film_id = i.film_id
 -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+
| film_id | title | inventory_id |
+---------+----------------+--------------+
13	ALI FOREVER	67
13	ALI FOREVER	68
13	ALI FOREVER	69
13	ALI FOREVER	70
14	ALICE FANTASIA	NULL

Outer Joins | 189

15	ALIEN CENTER	71
15	ALIEN CENTER	72
15	ALIEN CENTER	73
15	ALIEN CENTER	74
15	ALIEN CENTER	75
15	ALIEN CENTER	76
+---------+----------------+--------------+
11 rows in set (0.00 sec)

The results are the same for Ali Forever and Alien Center, but there’s one new row for
Alice Fantasia, with a null value for the inventory.inventory_id column. This
example illustrates how an outer join will add column values without restricting the
number of rows returned by the query. If the join condition fails (as in the case of
Alice Fantasia), any columns retrieved from the outer-joined table will be null.

Left Versus Right Outer Joins
In each of the outer join examples in the previous section, I specified left outer
join. The keyword left indicates that the table on the left side of the join is responsi‐
ble for determining the number of rows in the result set, whereas the table on the
right side is used to provide column values whenever a match is found. However, you
may also specify a right outer join, in which case the table on the right side of the
join is responsible for determining the number of rows in the result set, whereas the
table on the left side is used to provide column values.

Here’s the last query from the previous section rearranged to use a right outer join
instead of a left outer join:

mysql> SELECT f.film_id, f.title, i.inventory_id
 -> FROM inventory i
 -> RIGHT OUTER JOIN film f
 -> ON f.film_id = i.film_id
 -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+
| film_id | title | inventory_id |
+---------+----------------+--------------+
13	ALI FOREVER	67
13	ALI FOREVER	68
13	ALI FOREVER	69
13	ALI FOREVER	70
14	ALICE FANTASIA	NULL
15	ALIEN CENTER	71
15	ALIEN CENTER	72
15	ALIEN CENTER	73
15	ALIEN CENTER	74
15	ALIEN CENTER	75
15	ALIEN CENTER	76
+---------+----------------+--------------+
11 rows in set (0.00 sec)

190 | Chapter 10: Joins Revisited

Keep in mind that both versions of the query are performing outer joins; the key‐
words left and right are there just to tell the server which table is allowed to have
gaps in the data. If you want to outer-join tables A and B and you want all rows from
A with additional columns from B whenever there is matching data, you can specify
either A left outer join B or B right outer join A.

Since you will rarely (if ever) encounter right outer joins, and since
not all database servers support them, I recommend that you
always use left outer joins. The outer keyword is optional, so you
may opt for A left join B instead, but I recommend including
outer for the sake of clarity.

Three-Way Outer Joins
In some cases, you may want to outer-join one table with two other tables. For exam‐
ple, the query from a prior section can be expanded to include data from the rental
table:

mysql> SELECT f.film_id, f.title, i.inventory_id, r.rental_date
 -> FROM film f
 -> LEFT OUTER JOIN inventory i
 -> ON f.film_id = i.film_id
 -> LEFT OUTER JOIN rental r
 -> ON i.inventory_id = r.inventory_id
 -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+---------------------+
| film_id | title | inventory_id | rental_date |
+---------+----------------+--------------+---------------------+
13	ALI FOREVER	67	2005-07-31 18:11:17
13	ALI FOREVER	67	2005-08-22 21:59:29
13	ALI FOREVER	68	2005-07-28 15:26:20
13	ALI FOREVER	68	2005-08-23 05:02:31
13	ALI FOREVER	69	2005-08-01 23:36:10
13	ALI FOREVER	69	2005-08-22 02:12:44
13	ALI FOREVER	70	2005-07-12 10:51:09
13	ALI FOREVER	70	2005-07-29 01:29:51
13	ALI FOREVER	70	2006-02-14 15:16:03
14	ALICE FANTASIA	NULL	NULL
15	ALIEN CENTER	71	2005-05-28 02:06:37
15	ALIEN CENTER	71	2005-06-17 16:40:03
15	ALIEN CENTER	71	2005-07-11 05:47:08
15	ALIEN CENTER	71	2005-08-02 13:58:55
15	ALIEN CENTER	71	2005-08-23 05:13:09
15	ALIEN CENTER	72	2005-05-27 22:49:27
15	ALIEN CENTER	72	2005-06-19 13:29:28
15	ALIEN CENTER	72	2005-07-07 23:05:53
15	ALIEN CENTER	72	2005-08-01 05:55:13
15	ALIEN CENTER	72	2005-08-20 15:11:48
15	ALIEN CENTER	73	2005-07-06 15:51:58

Outer Joins | 191

15	ALIEN CENTER	73	2005-07-30 14:48:24
15	ALIEN CENTER	73	2005-08-20 22:32:11
15	ALIEN CENTER	74	2005-07-27 00:15:18
15	ALIEN CENTER	74	2005-08-23 19:21:22
15	ALIEN CENTER	75	2005-07-09 02:58:41
15	ALIEN CENTER	75	2005-07-29 23:52:01
15	ALIEN CENTER	75	2005-08-18 21:55:01
15	ALIEN CENTER	76	2005-06-15 08:01:29
15	ALIEN CENTER	76	2005-07-07 18:31:50
15	ALIEN CENTER	76	2005-08-01 01:49:36
15	ALIEN CENTER	76	2005-08-17 07:26:47
+---------+----------------+--------------+---------------------+
32 rows in set (0.01 sec)

The results include all rentals of all films in inventory, but the film Alice Fantasia has
null values for the columns from both outer-joined tables.

Cross Joins
Back in Chapter 5, I introduced the concept of a Cartesian product, which is essen‐
tially the result of joining multiple tables without specifying any join conditions. Car‐
tesian products are used fairly frequently by accident (e.g., forgetting to add the join
condition to the from clause) but are not so common otherwise. If, however, you do
intend to generate the Cartesian product of two tables, you should specify a cross join,
as in:

mysql> SELECT c.name category_name, l.name language_name
 -> FROM category c
 -> CROSS JOIN language l;
+---------------+---------------+
| category_name | language_name |
+---------------+---------------+
Action	English
Action	Italian
Action	Japanese
Action	Mandarin
Action	French
Action	German
Animation	English
Animation	Italian
Animation	Japanese
Animation	Mandarin
Animation	French
Animation	German
...	
Sports	English
Sports	Italian
Sports	Japanese
Sports	Mandarin
Sports	French

192 | Chapter 10: Joins Revisited

Sports	German
Travel	English
Travel	Italian
Travel	Japanese
Travel	Mandarin
Travel	French
Travel	German
+---------------+---------------+
96 rows in set (0.00 sec)

This query generates the Cartesian product of the category and language tables,
resulting in 96 rows (16 category rows × 6 language rows). But now that you know
what a cross join is and how to specify it, what is it used for? Most SQL books will
describe what a cross join is and then tell you that it is seldom useful, but I would like
to share with you a situation in which I find the cross join to be quite helpful.

In Chapter 9, I discussed how to use subqueries to fabricate tables. The example I
used showed how to build a three-row table that could be joined to other tables.
Here’s the fabricated table from the example:

mysql> SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
 -> UNION ALL
 -> SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
 -> UNION ALL
 -> SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name | low_limit | high_limit |
+---------------+-----------+------------+
Small Fry	0	74.99
Average Joes	75	149.99
Heavy Hitters	150	9999999.99
+---------------+-----------+------------+
3 rows in set (0.00 sec)

While this table was exactly what was needed for placing customers into three groups
based on their total film payments, this strategy of merging single-row tables using
the set operator union all doesn’t work very well if you need to fabricate a large
table.

Say, for example, that you want to create a query that generates a row for every day in
the year 2020 but you don’t have a table in your database that contains a row for every
day. Using the strategy from the example in Chapter 9, you could do something like
the following:

SELECT '2020-01-01' dt
UNION ALL
SELECT '2020-01-02' dt
UNION ALL
SELECT '2020-01-03' dt
UNION ALL
...

Cross Joins | 193

...

...
SELECT '2020-12-29' dt
UNION ALL
SELECT '2020-12-30' dt
UNION ALL
SELECT '2020-12-31' dt

Building a query that merges together the results of 366 queries is a bit tedious, so
maybe a different strategy is needed. What if you generate a table with 366 rows (2020
is a leap year) with a single column containing a number between 0 and 366 and then
add that number of days to January 1, 2020? Here’s one possible method to generate
such a table:

mysql> SELECT ones.num + tens.num + hundreds.num
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL
 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL
 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds;
+------------------------------------+
| ones.num + tens.num + hundreds.num |
+------------------------------------+
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |

194 | Chapter 10: Joins Revisited

| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
...
...
...
| 391 |
| 392 |
| 393 |
| 394 |
| 395 |
| 396 |
| 397 |
| 398 |
| 399 |
+------------------------------------+
400 rows in set (0.00 sec)

If you take the Cartesian product of the three sets {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {0, 10, 20,
30, 40, 50, 60, 70, 80, 90}, and {0, 100, 200, 300} and add the values in the three col‐
umns, you get a 400-row result set containing all numbers between 0 and 399. While
this is more than the 366 rows needed to generate the set of days in 2020, it’s easy
enough to get rid of the excess rows, and I’ll show you how shortly.

The next step is to convert the set of numbers to a set of dates. To do this, I will use
the date_add() function to add each number in the result set to January 1, 2020.
Then I’ll add a filter condition to throw away any dates that venture into 2021:

mysql> SELECT DATE_ADD('2020-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL
 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL

Cross Joins | 195

 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds
 -> WHERE DATE_ADD('2020-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) < '2021-01-01'
 -> ORDER BY 1;
+------------+
| dt |
+------------+
| 2020-01-01 |
| 2020-01-02 |
| 2020-01-03 |
| 2020-01-04 |
| 2020-01-05 |
| 2020-01-06 |
| 2020-01-07 |
| 2020-01-08 |
...
...
...
| 2020-02-26 |
| 2020-02-27 |
| 2020-02-28 |
| 2020-02-29 |
| 2020-03-01 |
| 2020-03-02 |
| 2020-03-03 |
...
...
...
| 2020-12-24 |
| 2020-12-25 |
| 2020-12-26 |
| 2020-12-27 |
| 2020-12-28 |
| 2020-12-29 |
| 2020-12-30 |
| 2020-12-31 |
+------------+
366 rows in set (0.03 sec)

The nice thing about this approach is that the result set automatically includes the
extra leap day (February 29) without your intervention, since the database server fig‐
ures it out when it adds 59 days to January 1, 2020.

Now that you have a mechanism for fabricating all the days in 2020, what should you
do with it? Well, you might be asked to generate a report that shows every day in 2020

196 | Chapter 10: Joins Revisited

along with the number of film rentals on that day. The report needs to include every
day of the year, including days when no films are rented. Here’s what the query might
look like (using the year 2005 to match the data in the rental table):

mysql> SELECT days.dt, COUNT(r.rental_id) num_rentals
 -> FROM rental r
 -> RIGHT OUTER JOIN
 -> (SELECT DATE_ADD('2005-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
 -> FROM
 -> (SELECT 0 num UNION ALL
 -> SELECT 1 num UNION ALL
 -> SELECT 2 num UNION ALL
 -> SELECT 3 num UNION ALL
 -> SELECT 4 num UNION ALL
 -> SELECT 5 num UNION ALL
 -> SELECT 6 num UNION ALL
 -> SELECT 7 num UNION ALL
 -> SELECT 8 num UNION ALL
 -> SELECT 9 num) ones
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 10 num UNION ALL
 -> SELECT 20 num UNION ALL
 -> SELECT 30 num UNION ALL
 -> SELECT 40 num UNION ALL
 -> SELECT 50 num UNION ALL
 -> SELECT 60 num UNION ALL
 -> SELECT 70 num UNION ALL
 -> SELECT 80 num UNION ALL
 -> SELECT 90 num) tens
 -> CROSS JOIN
 -> (SELECT 0 num UNION ALL
 -> SELECT 100 num UNION ALL
 -> SELECT 200 num UNION ALL
 -> SELECT 300 num) hundreds
 -> WHERE DATE_ADD('2005-01-01',
 -> INTERVAL (ones.num + tens.num + hundreds.num) DAY)
 -> < '2006-01-01'
 ->) days
 -> ON days.dt = date(r.rental_date)
 -> GROUP BY days.dt
 -> ORDER BY 1;
+------------+-------------+
| dt | num_rentals |
+------------+-------------+
2005-01-01	0
2005-01-02	0
2005-01-03	0
2005-01-04	0
...	
2005-05-23	0

Cross Joins | 197

2005-05-24	8
2005-05-25	137
2005-05-26	174
2005-05-27	166
2005-05-28	196
2005-05-29	154
2005-05-30	158
2005-05-31	163
2005-06-01	0
...	
2005-06-13	0
2005-06-14	16
2005-06-15	348
2005-06-16	324
2005-06-17	325
2005-06-18	344
2005-06-19	348
2005-06-20	331
2005-06-21	275
2005-06-22	0
...	
2005-12-27	0
2005-12-28	0
2005-12-29	0
2005-12-30	0
2005-12-31	0
+------------+-------------+
365 rows in set (8.99 sec)

This is one of the more interesting queries thus far in the book, in that it includes
cross joins, outer joins, a date function, grouping, set operations (union all), and an
aggregate function (count()). It is also not the most elegant solution to the given
problem, but it should serve as an example of how, with a little creativity and a firm
grasp on the language, you can make even a seldom-used feature like cross joins a
potent tool in your SQL toolkit.

Natural Joins
If you are lazy (and aren’t we all), you can choose a join type that allows you to name
the tables to be joined but lets the database server determine what the join conditions
need to be. Known as the natural join, this join type relies on identical column names
across multiple tables to infer the proper join conditions. For example, the rental
table includes a column named customer_id, which is the foreign key to the cus
tomer table, whose primary key is also named customer_id. Thus, you could try to
write a query that uses natural join to join the two tables:

198 | Chapter 10: Joins Revisited

mysql> SELECT c.first_name, c.last_name, date(r.rental_date)
 -> FROM customer c
 -> NATURAL JOIN rental r;
Empty set (0.04 sec)

Because you specified a natural join, the server inspected the table definitions and
added the join condition r.customer_id = c.customer_id to join the two tables.
This would have worked fine, but in the Sakila schema all of the tables include the
column last_update to show when each row was last modified, so the server is also
adding the join condition r.last_update = c.last_update, which causes the query
to return no data.

The only way around this issue is to use a subquery to restrict the columns for at least
one of the tables:

mysql> SELECT cust.first_name, cust.last_name, date(r.rental_date)
 -> FROM
 -> (SELECT customer_id, first_name, last_name
 -> FROM customer
 ->) cust
 -> NATURAL JOIN rental r;
+------------+-----------+---------------------+
| first_name | last_name | date(r.rental_date) |
+------------+-----------+---------------------+
MARY	SMITH	2005-05-25
MARY	SMITH	2005-05-28
MARY	SMITH	2005-06-15
MARY	SMITH	2005-06-15
MARY	SMITH	2005-06-15
MARY	SMITH	2005-06-16
MARY	SMITH	2005-06-18
MARY	SMITH	2005-06-18
...		
AUSTIN	CINTRON	2005-08-21
AUSTIN	CINTRON	2005-08-21
AUSTIN	CINTRON	2005-08-21
AUSTIN	CINTRON	2005-08-23
AUSTIN	CINTRON	2005-08-23
AUSTIN	CINTRON	2005-08-23
+------------+-----------+---------------------+
16044 rows in set (0.03 sec)

So, is the reduced wear and tear on the old fingers from not having to type the join
condition worth the trouble? Absolutely not; you should avoid this join type and use
inner joins with explicit join conditions.

Test Your Knowledge
The following exercises test your understanding of outer and cross joins. Please see
Appendix B for solutions.

Test Your Knowledge | 199

Exercise 10-1
Using the following table definitions and data, write a query that returns each cus‐
tomer name along with their total payments:

 Customer:
Customer_id Name
----------- ---------------
1 John Smith
2 Kathy Jones
3 Greg Oliver

 Payment:
Payment_id Customer_id Amount
---------- ----------- --------
101 1 8.99
102 3 4.99
103 1 7.99

Include all customers, even if no payment records exist for that customer.

Exercise 10-2
Reformulate your query from Exercise 10-1 to use the other outer join type (e.g., if
you used a left outer join in Exercise 10-1, use a right outer join this time) such that
the results are identical to Exercise 10-1.

Exercise 10-3 (Extra Credit)
Devise a query that will generate the set {1, 2, 3, ..., 99, 100}. (Hint: use a cross join
with at least two from clause subqueries.)

200 | Chapter 10: Joins Revisited

CHAPTER 11

Conditional Logic

In certain situations, you may want your SQL logic to branch in one direction or
another depending on the values of certain columns or expressions. This chapter
focuses on how to write statements that can behave differently depending on the data
encountered during statement execution. The mechanism used for conditional logic
in SQL statements is the case expression, which can be utilized in select, insert,
update, and delete statements.

What Is Conditional Logic?
Conditional logic is simply the ability to take one of several paths during program
execution. For example, when querying customer information, you might want to
include the customer.active column, which stores 1 to indicate active and 0 to indi‐
cate inactive. If the query results are being used to generate a report, you may want to
translate the value to improve readability. While every database includes built-in
functions for these types of situations, there are no standards, so you would need to
remember which functions are used by which database. Fortunately, every database’s
SQL implementation includes the case expression, which is useful in many situa‐
tions, including simple translations:

mysql> SELECT first_name, last_name,
 -> CASE
 -> WHEN active = 1 THEN 'ACTIVE'
 -> ELSE 'INACTIVE'
 -> END activity_type
 -> FROM customer;
+-------------+--------------+---------------+
| first_name | last_name | activity_type |
+-------------+--------------+---------------+
| MARY | SMITH | ACTIVE |
| PATRICIA | JOHNSON | ACTIVE |

201

LINDA	WILLIAMS	ACTIVE
BARBARA	JONES	ACTIVE
ELIZABETH	BROWN	ACTIVE
JENNIFER	DAVIS	ACTIVE
...		
KENT	ARSENAULT	ACTIVE
TERRANCE	ROUSH	INACTIVE
RENE	MCALISTER	ACTIVE
EDUARDO	HIATT	ACTIVE
TERRENCE	GUNDERSON	ACTIVE
ENRIQUE	FORSYTHE	ACTIVE
FREDDIE	DUGGAN	ACTIVE
WADE	DELVALLE	ACTIVE
AUSTIN	CINTRON	ACTIVE
+-------------+--------------+---------------+
599 rows in set (0.00 sec)

This query includes a case expression to generate a value for the activity_type col‐
umn, which returns the string “ACTIVE” or “INACTIVE” depending on the value of
the customer.active column.

The case Expression
All of the major database servers include built-in functions designed to mimic the if-
then-else statement found in most programming languages (examples include Ora‐
cle’s decode() function, MySQL’s if() function, and SQL Server’s coalesce()
function). case expressions are also designed to facilitate if-then-else logic but enjoy
two advantages over built-in functions:

• The case expression is part of the SQL standard (SQL92 release) and has been
implemented by Oracle Database, SQL Server, MySQL, PostgreSQL, IBM UDB,
and others.

• case expressions are built into the SQL grammar and can be included in select,
insert, update, and delete statements.

The next two subsections introduce the two different types of case expressions. This
is followed by some examples of case expressions in action.

Searched case Expressions
The case expression demonstrated earlier in the chapter is an example of a searched
case expression, which has the following syntax:

CASE
 WHEN C1 THEN E1
 WHEN C2 THEN E2
 ...

202 | Chapter 11: Conditional Logic

 WHEN CN THEN EN
 [ELSE ED]
END

In the previous definition, the symbols C1, C2, ..., CN represent conditions, and the
symbols E1, E2, ..., EN represent expressions to be returned by the case expression. If
the condition in a when clause evaluates to true, then the case expression returns the
corresponding expression. Additionally, the ED symbol represents the default expres‐
sion, which the case expression returns if none of the conditions C1, C2, ..., CN evalu‐
ate to true (the else clause is optional, which is why it is enclosed in square
brackets). All the expressions returned by the various when clauses must evaluate to
the same type (e.g., date, number, varchar).

Here’s an example of a searched case expression:

CASE
 WHEN category.name IN ('Children','Family','Sports','Animation')
 THEN 'All Ages'
 WHEN category.name = 'Horror'
 THEN 'Adult'
 WHEN category.name IN ('Music','Games')
 THEN 'Teens'
 ELSE 'Other'
END

This case expression returns a string that can be used to classify films depending on
their category. When the case expression is evaluated, the when clauses are evaluated
in order from top to bottom; as soon as one of the conditions in a when clause evalu‐
ates to true, the corresponding expression is returned, and any remaining when clau‐
ses are ignored. If none of the when clause conditions evaluates to true, then the
expression in the else clause is returned.

Although the previous example returns string expressions, keep in mind that case
expressions may return any type of expression, including subqueries. Here’s another
version of the query from earlier in the chapter that uses a subquery to return the
number of rentals, but only for active customers:

mysql> SELECT c.first_name, c.last_name,
 -> CASE
 -> WHEN active = 0 THEN 0
 -> ELSE
 -> (SELECT count(*) FROM rental r
 -> WHERE r.customer_id = c.customer_id)
 -> END num_rentals
 -> FROM customer c;
+-------------+--------------+-------------+
| first_name | last_name | num_rentals |
+-------------+--------------+-------------+
| MARY | SMITH | 32 |

The case Expression | 203

PATRICIA	JOHNSON	27
LINDA	WILLIAMS	26
BARBARA	JONES	22
ELIZABETH	BROWN	38
JENNIFER	DAVIS	28
...		
TERRANCE	ROUSH	0
RENE	MCALISTER	26
EDUARDO	HIATT	27
TERRENCE	GUNDERSON	30
ENRIQUE	FORSYTHE	28
FREDDIE	DUGGAN	25
WADE	DELVALLE	22
AUSTIN	CINTRON	19
+-------------+--------------+-------------+
599 rows in set (0.01 sec)

This version of the query uses a correlated subquery to retrieve the number of rentals
for each active customer. Depending on the percentage of active customers, using this
approach may be more efficient than joining the customer and rental tables and
grouping on the customer_id column.

Simple case Expressions
The simple case expression is quite similar to the searched case expression but is a bit
less flexible. Here’s the syntax:

CASE V0
 WHEN V1 THEN E1
 WHEN V2 THEN E2
 ...
 WHEN VN THEN EN
 [ELSE ED]
END

In the preceding definition, V0 represents a value, and the symbols V1, V2, ..., VN rep‐
resent values that are to be compared to V0. The symbols E1, E2, ..., EN represent
expressions to be returned by the case expression, and ED represents the expression
to be returned if none of the values in the set V1, V2, ..., VN matches the V0 value.

Here’s an example of a simple case expression:

CASE category.name
 WHEN 'Children' THEN 'All Ages'
 WHEN 'Family' THEN 'All Ages'
 WHEN 'Sports' THEN 'All Ages'
 WHEN 'Animation' THEN 'All Ages'
 WHEN 'Horror' THEN 'Adult'
 WHEN 'Music' THEN 'Teens'
 WHEN 'Games' THEN 'Teens'

204 | Chapter 11: Conditional Logic

 ELSE 'Other'
END

Simple case expressions are less flexible than searched case expressions because you
can’t specify your own conditions, whereas searched case expressions may include
range conditions, inequality conditions, and multipart conditions using and/or/not,
so I would recommend using searched case expressions for all but the simplest logic.

Examples of case Expressions
The following sections present a variety of examples illustrating the utility of condi‐
tional logic in SQL statements.

Result Set Transformations
You may have run into a situation where you are performing aggregations over a
finite set of values, such as days of the week, but you want the result set to contain a
single row with one column per value instead of one row per value. As an example,
let’s say you have been asked to write a query that shows the number of film rentals
for May, June, and July of 2005:

mysql> SELECT monthname(rental_date) rental_month,
 -> count(*) num_rentals
 -> FROM rental
 -> WHERE rental_date BETWEEN '2005-05-01' AND '2005-08-01'
 -> GROUP BY monthname(rental_date);
+--------------+-------------+
| rental_month | num_rentals |
+--------------+-------------+
May	1156
June	2311
July	6709
+--------------+-------------+
3 rows in set (0.01 sec)

However, you have also been instructed to return a single row of data with three col‐
umns (one for each of the three months). To transform this result set into a single
row, you will need to create three columns and, within each column, sum only those
rows pertaining to the month in question:

mysql> SELECT
 -> SUM(CASE WHEN monthname(rental_date) = 'May' THEN 1
 -> ELSE 0 END) May_rentals,
 -> SUM(CASE WHEN monthname(rental_date) = 'June' THEN 1
 -> ELSE 0 END) June_rentals,
 -> SUM(CASE WHEN monthname(rental_date) = 'July' THEN 1
 -> ELSE 0 END) July_rentals
 -> FROM rental
 -> WHERE rental_date BETWEEN '2005-05-01' AND '2005-08-01';

Examples of case Expressions | 205

+-------------+--------------+--------------+
| May_rentals | June_rentals | July_rentals |
+-------------+--------------+--------------+
| 1156 | 2311 | 6709 |
+-------------+--------------+--------------+
1 row in set (0.01 sec)

Each of the three columns in the previous query are identical, except for the month
value. When the monthname() function returns the desired value for that column, the
case expression returns the value 1; otherwise, it returns a 0. When summed over all
rows, each column returns the number of accounts opened for that month. Obvi‐
ously, such transformations are practical for only a small number of values; generat‐
ing one column for each year since 1905 would quickly become tedious.

Although it is a bit advanced for this book, it is worth pointing out
that both SQL Server and Oracle Database include pivot clauses
specifically for these types of queries.

Checking for Existence
Sometimes you will want to determine whether a relationship exists between two
entities without regard for the quantity. For example, you might want to know
whether an actor has appeared in at least one G-rated film, without regard for the
actual number of films. Here’s a query that uses multiple case expressions to generate
three output columns, one to show whether the actor has appeared in G-rated films,
another for PG-rated films, and a third for NC-17-rated films:

mysql> SELECT a.first_name, a.last_name,
 -> CASE
 -> WHEN EXISTS (SELECT 1 FROM film_actor fa
 -> INNER JOIN film f ON fa.film_id = f.film_id
 -> WHERE fa.actor_id = a.actor_id
 -> AND f.rating = 'G') THEN 'Y'
 -> ELSE 'N'
 -> END g_actor,
 -> CASE
 -> WHEN EXISTS (SELECT 1 FROM film_actor fa
 -> INNER JOIN film f ON fa.film_id = f.film_id
 -> WHERE fa.actor_id = a.actor_id
 -> AND f.rating = 'PG') THEN 'Y'
 -> ELSE 'N'
 -> END pg_actor,
 -> CASE
 -> WHEN EXISTS (SELECT 1 FROM film_actor fa
 -> INNER JOIN film f ON fa.film_id = f.film_id
 -> WHERE fa.actor_id = a.actor_id
 -> AND f.rating = 'NC-17') THEN 'Y'

206 | Chapter 11: Conditional Logic

 -> ELSE 'N'
 -> END nc17_actor
 -> FROM actor a
 -> WHERE a.last_name LIKE 'S%' OR a.first_name LIKE 'S%';
+------------+-------------+---------+----------+------------+
| first_name | last_name | g_actor | pg_actor | nc17_actor |
+------------+-------------+---------+----------+------------+
JOE	SWANK	Y	Y	Y
SANDRA	KILMER	Y	Y	Y
CAMERON	STREEP	Y	Y	Y
SANDRA	PECK	Y	Y	Y
SISSY	SOBIESKI	Y	Y	N
NICK	STALLONE	Y	Y	Y
SEAN	WILLIAMS	Y	Y	Y
GROUCHO	SINATRA	Y	Y	Y
SCARLETT	DAMON	Y	Y	Y
SPENCER	PECK	Y	Y	Y
SEAN	GUINESS	Y	Y	Y
SPENCER	DEPP	Y	Y	Y
SUSAN	DAVIS	Y	Y	Y
SIDNEY	CROWE	Y	Y	Y
SYLVESTER	DERN	Y	Y	Y
SUSAN	DAVIS	Y	Y	Y
DAN	STREEP	Y	Y	Y
SALMA	NOLTE	Y	N	Y
SCARLETT	BENING	Y	Y	Y
JEFF	SILVERSTONE	Y	Y	Y
JOHN	SUVARI	Y	Y	Y
JAYNE	SILVERSTONE	Y	Y	Y
+------------+-------------+---------+----------+------------+
22 rows in set (0.00 sec)

Each case expression includes a correlated subquery against the film_actor and
film tables; one looks for films with a G rating, the second for films with a PG rating,
and the third for films with a NC-17 rating. Since each when clause uses the exists
operator, the conditions evaluate to true as long as the actor has appeared in at least
one film with the proper rating.

In other cases, you may care how many rows are encountered, but only up to a point.
For example, the next query uses a simple case expression to count the number of
copies in inventory for each film and then returns either 'Out Of Stock', 'Scarce',
'Available', or 'Common':

mysql> SELECT f.title,
 -> CASE (SELECT count(*) FROM inventory i
 -> WHERE i.film_id = f.film_id)
 -> WHEN 0 THEN 'Out Of Stock'
 -> WHEN 1 THEN 'Scarce'
 -> WHEN 2 THEN 'Scarce'
 -> WHEN 3 THEN 'Available'
 -> WHEN 4 THEN 'Available'

Examples of case Expressions | 207

 -> ELSE 'Common'
 -> END film_availability
 -> FROM film f
 -> ;
+-----------------------------+-------------------+
| title | film_availability |
+-----------------------------+-------------------+
ACADEMY DINOSAUR	Common
ACE GOLDFINGER	Available
ADAPTATION HOLES	Available
AFFAIR PREJUDICE	Common
AFRICAN EGG	Available
AGENT TRUMAN	Common
AIRPLANE SIERRA	Common
AIRPORT POLLOCK	Available
ALABAMA DEVIL	Common
ALADDIN CALENDAR	Common
ALAMO VIDEOTAPE	Common
ALASKA PHANTOM	Common
ALI FOREVER	Available
ALICE FANTASIA	Out Of Stock
...	
YOUNG LANGUAGE	Scarce
YOUTH KICK	Scarce
ZHIVAGO CORE	Scarce
ZOOLANDER FICTION	Common
ZORRO ARK	Common
+-----------------------------+-------------------+
1000 rows in set (0.01 sec)

For this query, I stopped counting after 5, since every other number greater than 5
will be given the 'Common' label.

Division-by-Zero Errors
When performing calculations that include division, you should always take care to
ensure that the denominators are never equal to zero. Whereas some database
servers, such as Oracle Database, will throw an error when a zero denominator is
encountered, MySQL simply sets the result of the calculation to null, as demon‐
strated by the following:

mysql> SELECT 100 / 0;
+---------+
| 100 / 0 |
+---------+
| NULL |
+---------+
1 row in set (0.00 sec)

208 | Chapter 11: Conditional Logic

To safeguard your calculations from encountering errors or, even worse, from being
mysteriously set to null, you should wrap all denominators in conditional logic, as
demonstrated by the following:

mysql> SELECT c.first_name, c.last_name,
 -> sum(p.amount) tot_payment_amt,
 -> count(p.amount) num_payments,
 -> sum(p.amount) /
 -> CASE WHEN count(p.amount) = 0 THEN 1
 -> ELSE count(p.amount)
 -> END avg_payment
 -> FROM customer c
 -> LEFT OUTER JOIN payment p
 -> ON c.customer_id = p.customer_id
 -> GROUP BY c.first_name, c.last_name;
+------------+------------+-----------------+--------------+-------------+
| first_name | last_name | tot_payment_amt | num_payments | avg_payment |
+------------+------------+-----------------+--------------+-------------+
MARY	SMITH	118.68	32	3.708750
PATRICIA	JOHNSON	128.73	27	4.767778
LINDA	WILLIAMS	135.74	26	5.220769
BARBARA	JONES	81.78	22	3.717273
ELIZABETH	BROWN	144.62	38	3.805789
...				
EDUARDO	HIATT	130.73	27	4.841852
TERRENCE	GUNDERSON	117.70	30	3.923333
ENRIQUE	FORSYTHE	96.72	28	3.454286
FREDDIE	DUGGAN	99.75	25	3.990000
WADE	DELVALLE	83.78	22	3.808182
AUSTIN	CINTRON	83.81	19	4.411053
+------------+------------+-----------------+--------------+-------------+
599 rows in set (0.07 sec)

This query computes the average payment amount for each customer. Since some
customers may be new and have yet to rent a film, it is best to include the case
expression to ensure that the denominator is never zero.

Conditional Updates
When updating rows in a table, you sometimes need conditional logic to generate a
value for a column. For example, let’s say that you run a job every week that will set
the customer.active column to 0 for any customers who haven’t rented a film in the
last 90 days. Here’s a statement that will set the value to either 0 or 1 for every
customer:

UPDATE customer
SET active =
 CASE
 WHEN 90 <= (SELECT datediff(now(), max(rental_date))
 FROM rental r
 WHERE r.customer_id = customer.customer_id)

Examples of case Expressions | 209

 THEN 0
 ELSE 1
 END
WHERE active = 1;

This statement uses a correlated subquery to determine the number of days since the
last rental date for each customer and compares the value to 90; if the number
returned by the subquery is 90 or higher, the customer is marked as inactive.

Handling Null Values
While null values are the appropriate thing to store in a table if the value for a col‐
umn is unknown, it is not always appropriate to retrieve null values for display or to
take part in expressions. For example, you might want to display the word unknown
on a data entry screen rather than leaving a field blank. When retrieving the data, you
can use a case expression to substitute the string if the value is null, as in:

SELECT c.first_name, c.last_name,
 CASE
 WHEN a.address IS NULL THEN 'Unknown'
 ELSE a.address
 END address,
 CASE
 WHEN ct.city IS NULL THEN 'Unknown'
 ELSE ct.city
 END city,
 CASE
 WHEN cn.country IS NULL THEN 'Unknown'
 ELSE cn.country
 END country
FROM customer c
 LEFT OUTER JOIN address a
 ON c.address_id = a.address_id
 LEFT OUTER JOIN city ct
 ON a.city_id = ct.city_id
 LEFT OUTER JOIN country cn
 ON ct.country_id = cn.country_id;

For calculations, null values often cause a null result, as demonstrated by the follow‐
ing example:

mysql> SELECT (7 * 5) / ((3 + 14) * null);
+-----------------------------+
| (7 * 5) / ((3 + 14) * null) |
+-----------------------------+
| NULL |
+-----------------------------+
1 row in set (0.08 sec)

210 | Chapter 11: Conditional Logic

When performing calculations, case expressions are useful for translating a null
value into a number (usually 0 or 1) that will allow the calculation to yield a non-null
value.

Test Your Knowledge
Challenge your ability to work through conditional logic problems with the examples
that follow. When you’re done, compare your solutions with those in Appendix B.

Exercise 11-1
Rewrite the following query, which uses a simple case expression, so that the same
results are achieved using a searched case expression. Try to use as few when clauses
as possible.

SELECT name,
 CASE name
 WHEN 'English' THEN 'latin1'
 WHEN 'Italian' THEN 'latin1'
 WHEN 'French' THEN 'latin1'
 WHEN 'German' THEN 'latin1'
 WHEN 'Japanese' THEN 'utf8'
 WHEN 'Mandarin' THEN 'utf8'
 ELSE 'Unknown'
 END character_set
FROM language;

Exercise 11-2
Rewrite the following query so that the result set contains a single row with five col‐
umns (one for each rating). Name the five columns G, PG, PG_13, R, and NC_17.

mysql> SELECT rating, count(*)
 -> FROM film
 -> GROUP BY rating;
+--------+----------+
| rating | count(*) |
+--------+----------+
PG	194
G	178
NC-17	210
PG-13	223
R	195
+--------+----------+
5 rows in set (0.00 sec)

Test Your Knowledge | 211

CHAPTER 12

Transactions

All of the examples thus far in this book have been individual, independent SQL
statements. While this may be the norm for ad hoc reporting or data maintenance
scripts, application logic will frequently include multiple SQL statements that need to
execute together as a logical unit of work. This chapter explores transactions, which
are the mechanism used to group a set of SQL statements together such that either all
or none of the statements succeed.

Multiuser Databases
Database management systems allow a single user to query and modify data, but in
today’s world there may be thousands of people making changes to a database simul‐
taneously. If every user is only executing queries, such as might be the case with a
data warehouse during normal business hours, then there are very few issues for the
database server to deal with. If some of the users are adding and/or modifying data,
however, the server must handle quite a bit more bookkeeping.

Let’s say, for example, that you are running a report that sums up the current week’s
film rental activity. At the same time you are running the report, however, the follow‐
ing activities are occurring:

• A customer rents a film.
• A customer returns a film after the due date and pays a late fee.
• Five new films are added to inventory.

While your report is running, therefore, multiple users are modifying the underlying
data, so what numbers should appear on the report? The answer depends somewhat
on how your server handles locking, which is described in the next section.

213

Locking
Locks are the mechanism the database server uses to control simultaneous use of data
resources. When some portion of the database is locked, any other users wishing to
modify (or possibly read) that data must wait until the lock has been released. Most
database servers use one of two locking strategies:

• Database writers must request and receive from the server a write lock to modify
data, and database readers must request and receive from the server a read lock to
query data. While multiple users can read data simultaneously, only one write
lock is given out at a time for each table (or portion thereof), and read requests
are blocked until the write lock is released.

• Database writers must request and receive from the server a write lock to modify
data, but readers do not need any type of lock to query data. Instead, the server
ensures that a reader sees a consistent view of the data (the data seems the same
even though other users may be making modifications) from the time her query
begins until her query has finished. This approach is known as versioning.

There are pros and cons to both approaches. The first approach can lead to long wait
times if there are many concurrent read and write requests, and the second approach
can be problematic if there are long-running queries while data is being modified. Of
the three servers discussed in this book, Microsoft SQL Server uses the first approach,
Oracle Database uses the second approach, and MySQL uses both approaches
(depending on your choice of storage engine, which we’ll discuss a bit later in the
chapter).

Lock Granularities
There are also a number of different strategies that you may employ when deciding
how to lock a resource. The server may apply a lock at one of three different levels, or
granularities:

Table locks
Keep multiple users from modifying data in the same table simultaneously

Page locks
Keep multiple users from modifying data on the same page (a page is a segment
of memory generally in the range of 2 KB to 16 KB) of a table simultaneously

Row locks
Keep multiple users from modifying the same row in a table simultaneously

Again, there are pros and cons to these approaches. It takes very little bookkeeping to
lock entire tables, but this approach quickly yields unacceptable wait times as the
number of users increases. On the other hand, row locking takes quite a bit more

214 | Chapter 12: Transactions

bookkeeping, but it allows many users to modify the same table as long as they are
interested in different rows. Of the three servers discussed in this book, Microsoft
SQL Server uses page, row, and table locking, Oracle Database uses only row locking,
and MySQL uses table, page, or row locking (depending, again, on your choice of
storage engine). SQL Server will, under certain circumstances, escalate locks from
row to page, and from page to table, whereas Oracle Database will never escalate
locks.

To get back to your report, the data that appears on the pages of the report will mirror
either the state of the database when your report started (if your server uses a ver‐
sioning approach) or the state of the database when the server issues the reporting
application a read lock (if your server uses both read and write locks).

What Is a Transaction?
If database servers enjoyed 100% uptime, if users always allowed programs to finish
executing, and if applications always completed without encountering fatal errors that
halt execution, then there would be nothing left to discuss regarding concurrent data‐
base access. However, we can rely on none of these things, so one more element is
necessary to allow multiple users to access the same data.

This extra piece of the concurrency puzzle is the transaction, which is a device for
grouping together multiple SQL statements such that either all or none of the state‐
ments succeed (a property known as atomicity). If you attempt to transfer $500 from
your savings account to your checking account, you would be a bit upset if the money
were successfully withdrawn from your savings account but never made it to your
checking account. Whatever the reason for the failure (the server was shut down for
maintenance, the request for a page lock on the account table timed out, etc.), you
want your $500 back.

To protect against this kind of error, the program that handles your transfer request
would first begin a transaction, then issue the SQL statements needed to move the
money from your savings to your checking account, and, if everything succeeds, end
the transaction by issuing the commit command. If something unexpected happens,
however, the program would issue a rollback command, which instructs the server
to undo all changes made since the transaction began. The entire process might look
something like the following:

START TRANSACTION;

 /* withdraw money from first account, making sure balance is sufficient */
UPDATE account SET avail_balance = avail_balance - 500
WHERE account_id = 9988
 AND avail_balance > 500;

IF <exactly one row was updated by the previous statement> THEN

What Is a Transaction? | 215

 /* deposit money into second account */
 UPDATE account SET avail_balance = avail_balance + 500
 WHERE account_id = 9989;

 IF <exactly one row was updated by the previous statement> THEN
 /* everything worked, make the changes permanent */
 COMMIT;
 ELSE
 /* something went wrong, undo all changes in this transaction */
 ROLLBACK;
 END IF;
ELSE
 /* insufficient funds, or error encountered during update */
 ROLLBACK;
END IF;

While the previous code block may look similar to one of the pro‐
cedural languages provided by the major database companies, such
as Oracle’s PL/SQL or Microsoft’s Transact-SQL, it is written in
pseudocode and does not attempt to mimic any particular
language.

The previous code block begins by starting a transaction and then attempts to remove
$500 from the checking account and add it to the savings account. If all goes well, the
transaction is committed; if anything goes awry, however, the transaction is rolled
back, meaning that all data changes since the beginning of the transaction are
undone.

By using a transaction, the program ensures that your $500 either stays in your sav‐
ings account or moves to your checking account, without the possibility of it falling
into a crack. Regardless of whether the transaction was committed or was rolled back,
all resources acquired (e.g., write locks) during the execution of the transaction are
released when the transaction completes.

Of course, if the program manages to complete both update statements but the server
shuts down before a commit or rollback can be executed, then the transaction will be
rolled back when the server comes back online. (One of the tasks that a database
server must complete before coming online is to find any incomplete transactions
that were underway when the server shut down and roll them back.) Additionally, if
your program finishes a transaction and issues a commit but the server shuts down
before the changes have been applied to permanent storage (i.e., the modified data is
sitting in memory but has not been flushed to disk), then the database server must
reapply the changes from your transaction when the server is restarted (a property
known as durability).

216 | Chapter 12: Transactions

Starting a Transaction
Database servers handle transaction creation in one of two ways:

• An active transaction is always associated with a database session, so there is no
need or method to explicitly begin a transaction. When the current transaction
ends, the server automatically begins a new transaction for your session.

• Unless you explicitly begin a transaction, individual SQL statements are automat‐
ically committed independently of one another. To begin a transaction, you must
first issue a command.

Of the three servers, Oracle Database takes the first approach, while Microsoft SQL
Server and MySQL take the second approach. One of the advantages of Oracle’s
approach to transactions is that, even if you are issuing only a single SQL command,
you have the ability to roll back the changes if you don’t like the outcome or if you
change your mind. Thus, if you forget to add a where clause to your delete state‐
ment, you will have the opportunity to undo the damage (assuming you’ve had your
morning coffee and realize that you didn’t mean to delete all 125,000 rows in your
table). With MySQL and SQL Server, however, once you press the Enter key, the
changes brought about by your SQL statement will be permanent (unless your DBA
can retrieve the original data from a backup or from some other means).

The SQL:2003 standard includes a start transaction command to be used when
you want to explicitly begin a transaction. While MySQL conforms to the standard,
SQL Server users must instead issue the command begin transaction. With both
servers, until you explicitly begin a transaction, you are in what is known as autocom‐
mit mode, which means that individual statements are automatically committed by
the server. You can, therefore, decide that you want to be in a transaction and issue a
start/begin transaction command, or you can simply let the server commit individual
statements.

Both MySQL and SQL Server allow you to turn off autocommit mode for individual
sessions, in which case the servers will act just like Oracle Database regarding trans‐
actions. With SQL Server, you issue the following command to disable autocommit
mode:

SET IMPLICIT_TRANSACTIONS ON

MySQL allows you to disable autocommit mode via the following:

SET AUTOCOMMIT=0

Once you have left autocommit mode, all SQL commands take place within the scope
of a transaction and must be explicitly committed or rolled back.

What Is a Transaction? | 217

A word of advice: shut off autocommit mode each time you log in,
and get in the habit of running all of your SQL statements within a
transaction. If nothing else, it may save you the embarrassment of
having to ask your DBA to reconstruct data that you have inadver‐
tently deleted.

Ending a Transaction
Once a transaction has begun, whether explicitly via the start transaction com‐
mand or implicitly by the database server, you must explicitly end your transaction
for your changes to become permanent. You do this by way of the commit command,
which instructs the server to mark the changes as permanent and release any resour‐
ces (i.e., page or row locks) used during the transaction.

If you decide that you want to undo all the changes made since starting the transac‐
tion, you must issue the rollback command, which instructs the server to return the
data to its pre-transaction state. After the rollback has been completed, any resour‐
ces used by your session are released.

Along with issuing either the commit or rollback command, there are several other
scenarios by which your transaction can end, either as an indirect result of your
actions or as a result of something outside your control:

• The server shuts down, in which case your transaction will be rolled back auto‐
matically when the server is restarted.

• You issue an SQL schema statement, such as alter table, which will cause the
current transaction to be committed and a new transaction to be started.

• You issue another start transaction command, which will cause the previous
transaction to be committed.

• The server prematurely ends your transaction because the server detects a dead‐
lock and decides that your transaction is the culprit. In this case, the transaction
will be rolled back, and you will receive an error message.

Of these four scenarios, the first and third are fairly straightforward, but the other
two merit some discussion. As far as the second scenario is concerned, alterations to
a database, whether it be the addition of a new table or index or the removal of a col‐
umn from a table, cannot be rolled back, so commands that alter your schema must
take place outside a transaction. If a transaction is currently underway, therefore, the
server will commit your current transaction, execute the SQL schema statement com‐
mand(s), and then automatically start a new transaction for your session. The server
will not inform you of what has happened, so you should be careful that the state‐
ments that comprise a unit of work are not inadvertently broken up into multiple
transactions by the server.

218 | Chapter 12: Transactions

The fourth scenario deals with deadlock detection. A deadlock occurs when two dif‐
ferent transactions are waiting for resources that the other transaction currently
holds. For example, transaction A might have just updated the account table and is
waiting for a write lock on the transaction table, while transaction B has inserted a
row into the transaction table and is waiting for a write lock on the account table. If
both transactions happen to be modifying the same page or row (depending on the
lock granularity in use by the database server), then they will each wait forever for the
other transaction to finish and free up the needed resource. Database servers must
always be on the lookout for these situations so that throughput doesn’t grind to a
halt; when a deadlock is detected, one of the transactions is chosen (either arbitrarily
or by some criteria) to be rolled back so that the other transaction may proceed. Most
of the time, the terminated transaction can be restarted and will succeed without
encountering another deadlock situation.

Unlike the second scenario discussed earlier, the database server will raise an error to
inform you that your transaction has been rolled back due to deadlock detection.
With MySQL, for example, you will receive error 1213, which carries the following
message:

Message: Deadlock found when trying to get lock; try restarting transaction

As the error message suggests, it is a reasonable practice to retry a transaction that
has been rolled back due to deadlock detection. However, if deadlocks become fairly
common, then you may need to modify the applications that access the database to
decrease the probability of deadlocks (one common strategy is to ensure that data
resources are always accessed in the same order, such as always modifying account
data before inserting transaction data).

Transaction Savepoints
In some cases, you may encounter an issue within a transaction that requires a roll‐
back, but you may not want to undo all of the work that has transpired. For these
situations, you can establish one or more savepoints within a transaction and use
them to roll back to a particular location within your transaction rather than rolling
all the way back to the start of the transaction.

Choosing a Storage Engine
When using Oracle Database or Microsoft SQL Server, a single set of code is respon‐
sible for low-level database operations, such as retrieving a particular row from a table
based on primary key value. The MySQL server, however, has been designed so that
multiple storage engines may be utilized to provide low-level database functionality,
including resource locking and transaction management. As of version 8.0, MySQL
includes the following storage engines:

What Is a Transaction? | 219

MyISAM
A nontransactional engine employing table locking

MEMORY
A nontransactional engine used for in-memory tables

CSV
A transactional engine that stores data in comma-separated files

InnoDB
A transactional engine employing row-level locking

Merge
A specialty engine used to make multiple identical MyISAM tables appear as a
single table (a.k.a. table partitioning)

Archive
A specialty engine used to store large amounts of unindexed data, mainly for
archival purposes

Although you might think that you would be forced to choose a single storage engine
for your database, MySQL is flexible enough to allow you to choose a storage engine
on a table-by-table basis. For any tables that might take part in transactions, however,
you should choose the InnoDB engine, which uses row-level locking and versioning
to provide the highest level of concurrency across the different storage engines.

You may explicitly specify a storage engine when creating a table, or you can change
an existing table to use a different engine. If you do not know what engine is assigned
to a table, you can use the show table command, as demonstrated by the following:

mysql> show table status like 'customer' \G;
*************************** 1. row ***************************
 Name: customer
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 599
 Avg_row_length: 136
 Data_length: 81920
Max_data_length: 0
 Index_length: 49152
 Data_free: 0
 Auto_increment: 599
 Create_time: 2019-03-12 14:24:46
 Update_time: NULL
 Check_time: NULL
 Collation: utf8_general_ci
 Checksum: NULL
 Create_options:
 Comment:
1 row in set (0.16 sec)

220 | Chapter 12: Transactions

Looking at the second item, you can see that the customer table is already using the
InnoDB engine. If it were not, you could assign the InnoDB engine to the transaction
table via the following command:

ALTER TABLE customer ENGINE = INNODB;

All savepoints must be given a name, which allows you to have multiple savepoints
within a single transaction. To create a savepoint named my_savepoint, you can do
the following:

SAVEPOINT my_savepoint;

To roll back to a particular savepoint, you simply issue the rollback command fol‐
lowed by the keywords to savepoint and the name of the savepoint, as in:

ROLLBACK TO SAVEPOINT my_savepoint;

Here’s an example of how savepoints may be used:

START TRANSACTION;

UPDATE product
SET date_retired = CURRENT_TIMESTAMP()
WHERE product_cd = 'XYZ';

SAVEPOINT before_close_accounts;

UPDATE account
SET status = 'CLOSED', close_date = CURRENT_TIMESTAMP(),
 last_activity_date = CURRENT_TIMESTAMP()
WHERE product_cd = 'XYZ';

ROLLBACK TO SAVEPOINT before_close_accounts;
COMMIT;

The net effect of this transaction is that the mythical XYZ product is retired but none
of the accounts are closed.

When using savepoints, remember the following:

• Despite the name, nothing is saved when you create a savepoint. You must even‐
tually issue a commit if you want your transaction to be made permanent.

• If you issue a rollback without naming a savepoint, all savepoints within the
transaction will be ignored, and the entire transaction will be undone.

If you are using SQL Server, you will need to use the proprietary command save
transaction to create a savepoint and rollback transaction to roll back to a save‐
point, with each command being followed by the savepoint name.

What Is a Transaction? | 221

Test Your Knowledge
Test your understanding of transactions by working through the following exercise.
When you’re done, compare your solution with that in Appendix B.

Exercise 12-1
Generate a unit of work to transfer $50 from account 123 to account 789. You will
need to insert two rows into the transaction table and update two rows in the
account table. Use the following table definitions/data:

 Account:
account_id avail_balance last_activity_date
---------- ------------- ------------------
123 500 2019-07-10 20:53:27
789 75 2019-06-22 15:18:35

 Transaction:
txn_id txn_date account_id txn_type_cd amount
--------- ------------ ----------- ----------- --------
1001 2019-05-15 123 C 500
1002 2019-06-01 789 C 75

Use txn_type_cd = 'C' to indicate a credit (addition), and use txn_type_cd = 'D'
to indicate a debit (subtraction).

222 | Chapter 12: Transactions

CHAPTER 13

Indexes and Constraints

Because the focus of this book is on programming techniques, the first 12 chapters
concentrated on elements of the SQL language that you can use to craft powerful
select, insert, update, and delete statements. However, other database features
indirectly affect the code you write. This chapter focuses on two of those features:
indexes and constraints.

Indexes
When you insert a row into a table, the database server does not attempt to put the
data in any particular location within the table. For example, if you add a row to the
customer table, the server doesn’t place the row in numeric order via the
customer_id column or in alphabetical order via the last_name column. Instead, the
server simply places the data in the next available location within the file (the server
maintains a list of free space for each table). When you query the customer table,
therefore, the server will need to inspect every row of the table to answer the query.
For example, let’s say that you issue the following query:

mysql> SELECT first_name, last_name
 -> FROM customer
 -> WHERE last_name LIKE 'Y%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
LUIS	YANEZ
MARVIN	YEE
CYNTHIA	YOUNG
+------------+-----------+
3 rows in set (0.09 sec)

223

To find all customers whose last name begins with Y, the server must visit each row in
the customer table and inspect the contents of the last_name column; if the last name
begins with Y, then the row is added to the result set. This type of access is known as
a table scan.

While this method works fine for a table with only three rows, imagine how long it
might take to answer the query if the table contains three million rows. At some num‐
ber of rows larger than three and smaller than three million, a line is crossed where
the server cannot answer the query within a reasonable amount of time without addi‐
tional help. This help comes in the form of one or more indexes on the customer
table.

Even if you have never heard of a database index, you are certainly aware of what an
index is (e.g., this book has one). An index is simply a mechanism for finding a spe‐
cific item within a resource. Each technical publication, for example, includes an
index at the end that allows you to locate a specific word or phrase within the publi‐
cation. The index lists these words and phrases in alphabetical order, allowing the
reader to move quickly to a particular letter within the index, find the desired entry,
and then find the page or pages on which the word or phrase may be found.

In the same way that a person uses an index to find words within a publication, a
database server uses indexes to locate rows in a table. Indexes are special tables that,
unlike normal data tables, are kept in a specific order. Instead of containing all of the
data about an entity, however, an index contains only the column (or columns) used
to locate rows in the data table, along with information describing where the rows are
physically located. Therefore, the role of indexes is to facilitate the retrieval of a subset
of a table’s rows and columns without the need to inspect every row in the table.

Index Creation
Returning to the customer table, you might decide to add an index on the email col‐
umn to speed up any queries that specify a value for this column, as well as any
update or delete operations that specify a customer’s email address. Here’s how you
can add such an index to a MySQL database:

mysql> ALTER TABLE customer
 -> ADD INDEX idx_email (email);
Query OK, 0 rows affected (1.87 sec)
Records: 0 Duplicates: 0 Warnings: 0

This statement creates an index (a B-tree index to be precise, but more on this
shortly) on the customer.email column; furthermore, the index is given the name
idx_email. With the index in place, the query optimizer (which we discussed in
Chapter 3) can choose to use the index if it is deemed beneficial to do so. If there is
more than one index on a table, the optimizer must decide which index will be the
most beneficial for a particular SQL statement.

224 | Chapter 13: Indexes and Constraints

MySQL treats indexes as optional components of a table, which is
why in earlier versions you would use the alter table command
to add or remove an index. Other database servers, including SQL
Server and Oracle Database, treat indexes as independent schema
objects. For both SQL Server and Oracle, therefore, you would gen‐
erate an index using the create index command, as in:

CREATE INDEX idx_email
ON customer (email);

As of MySQL version 5, a create index command is available,
although it is mapped to the alter table command. You must still
use the alter table command to create primary key indexes,
however.

All database servers allow you to look at the available indexes. MySQL users can use
the show command to see all of the indexes on a specific table, as in:

mysql> SHOW INDEX FROM customer \G;
*************************** 1. row ***************************
 Table: customer
 Non_unique: 0
 Key_name: PRIMARY
 Seq_in_index: 1
 Column_name: customer_id
 Collation: A
 Cardinality: 599
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
...
*************************** 2. row ***************************
 Table: customer
 Non_unique: 1
 Key_name: idx_fk_store_id
 Seq_in_index: 1
 Column_name: store_id
 Collation: A
 Cardinality: 2
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
...
*************************** 3. row ***************************
 Table: customer
 Non_unique: 1
 Key_name: idx_fk_address_id
 Seq_in_index: 1
 Column_name: address_id

Indexes | 225

 Collation: A
 Cardinality: 599
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
...
*************************** 4. row ***************************
 Table: customer
 Non_unique: 1
 Key_name: idx_last_name
 Seq_in_index: 1
 Column_name: last_name
 Collation: A
 Cardinality: 599
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
...
*************************** 5. row ***************************
 Table: customer
 Non_unique: 1
 Key_name: idx_email
 Seq_in_index: 1
 Column_name: email
 Collation: A
 Cardinality: 599
 Sub_part: NULL
 Packed: NULL
 Null: YES
 Index_type: BTREE
...
5 rows in set (0.06 sec)

The output shows that there are five indexes on the customer table: one on the cus
tomer_id column called PRIMARY, and four others on the store_id, address_id,
last_name, and email columns. If you are wondering where these indexes came
from, I created the index on the email column, and the rest were installed as part of
the sample Sakila database. Here’s the statement used to create the table:

CREATE TABLE customer (
 customer_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 store_id TINYINT UNSIGNED NOT NULL,
 first_name VARCHAR(45) NOT NULL,
 last_name VARCHAR(45) NOT NULL,
 email VARCHAR(50) DEFAULT NULL,
 address_id SMALLINT UNSIGNED NOT NULL,
 active BOOLEAN NOT NULL DEFAULT TRUE,
 create_date DATETIME NOT NULL,
 last_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (customer_id),

226 | Chapter 13: Indexes and Constraints

 KEY idx_fk_store_id (store_id),
 KEY idx_fk_address_id (address_id),
 KEY idx_last_name (last_name),
 ...

When the table was created, the MySQL server automatically generated an index on
the primary key column, which in this case is customer_id, and gave the index the
name PRIMARY. This is a special type of index used with a primary key constraint, but
I will cover constraints later in this chapter.

If, after creating an index, you decide that the index is not proving useful, you can
remove it via the following:

mysql> ALTER TABLE customer
 -> DROP INDEX idx_email;
Query OK, 0 rows affected (0.50 sec)
Records: 0 Duplicates: 0 Warnings: 0

SQL Server and Oracle Database users must use the drop index
command to remove an index, as in:

DROP INDEX idx_email; (Oracle)

DROP INDEX idx_email ON customer; (SQL Server)

MySQL now also supports the drop index command, although it
is also mapped to the alter table command.

Unique indexes
When designing a database, it is important to consider which columns are allowed to
contain duplicate data and which are not. For example, it is allowable to have two
customers named John Smith in the customer table since each row will have a differ‐
ent identifier (customer_id), email, and address to help tell them apart. You would
not, however, want to allow two different customers to have the same email address.
You can enforce a rule against duplicate values by creating a unique index on the
customer.email column.

A unique index plays multiple roles; along with providing all the benefits of a regular
index, it also serves as a mechanism for disallowing duplicate values in the indexed
column. Whenever a row is inserted or when the indexed column is modified, the
database server checks the unique index to see whether the value already exists in
another row in the table. Here’s how you would create a unique index on the
customer.email column:

mysql> ALTER TABLE customer
 -> ADD UNIQUE idx_email (email);
Query OK, 0 rows affected (0.64 sec)
Records: 0 Duplicates: 0 Warnings: 0

Indexes | 227

SQL Server and Oracle Database users need only add the unique
keyword when creating an index, as in:

CREATE UNIQUE INDEX idx_email
ON customer (email);

With the index in place, you will receive an error if you try to add a new customer
with an email address that already exists:

mysql> INSERT INTO customer
 -> (store_id, first_name, last_name, email, address_id, active)
 -> VALUES
 -> (1,'ALAN','KAHN', 'ALAN.KAHN@sakilacustomer.org', 394, 1);
ERROR 1062 (23000): Duplicate entry 'ALAN.KAHN@sakilacustomer.org'
 for key 'idx_email'

You should not build unique indexes on your primary key column(s), since the server
already checks uniqueness for primary key values. You may, however, create more
than one unique index on the same table if you feel that it is warranted.

Multicolumn indexes
Along with the single-column indexes demonstrated thus far, you may also build
indexes that span multiple columns. If, for example, you find yourself searching for
customers by first and last names, you can build an index on both columns together,
as in:

mysql> ALTER TABLE customer
 -> ADD INDEX idx_full_name (last_name, first_name);
Query OK, 0 rows affected (0.35 sec)
Records: 0 Duplicates: 0 Warnings: 0

This index will be useful for queries that specify the first and last names or just the
last name, but it would not be useful for queries that specify only the customer’s first
name. To understand why, consider how you would find a person’s phone number; if
you know the person’s first and last names, you can use a phone book to find the
number quickly, since a phone book is organized by last name and then by first name.
If you know only the person’s first name, you would need to scan every entry in the
phone book to find all the entries with the specified first name.

When building multiple-column indexes, therefore, you should think carefully about
which column to list first, which column to list second, and so on, to help make the
index as useful as possible. Keep in mind, however, that there is nothing stopping you
from building multiple indexes using the same set of columns but in a different order
if you feel that it is needed to ensure adequate response time.

228 | Chapter 13: Indexes and Constraints

Types of Indexes
Indexing is a powerful tool, but since there are many different types of data, a single
indexing strategy doesn’t always do the job. The following sections illustrate the dif‐
ferent types of indexing available from various servers.

B-tree indexes
All the indexes shown thus far are balanced-tree indexes, which are more commonly
known as B-tree indexes. MySQL, Oracle Database, and SQL Server all default to B-
tree indexing, so you will get a B-tree index unless you explicitly ask for another type.
As you might expect, B-tree indexes are organized as trees, with one or more levels of
branch nodes leading to a single level of leaf nodes. Branch nodes are used for navigat‐
ing the tree, while leaf nodes hold the actual values and location information. For
example, a B-tree index built on the customer.last_name column might look some‐
thing like Figure 13-1.

Figure 13-1. B-tree example

If you were to issue a query to retrieve all customers whose last name starts with G,
the server would look at the top branch node (called the root node) and follow the
link to the branch node that handles last names beginning with A through M. This
branch node would, in turn, direct the server to a leaf node containing last names
beginning with G through I. The server then starts reading the values in the leaf node
until it encounters a value that doesn’t begin with G (which, in this case, is
Hawthorne).

As rows are inserted, updated, and deleted from the customer table, the server will
attempt to keep the tree balanced so that there aren’t far more branch/leaf nodes on
one side of the root node than the other. The server can add or remove branch nodes
to redistribute the values more evenly and can even add or remove an entire level of

Indexes | 229

branch nodes. By keeping the tree balanced, the server is able to traverse quickly to
the leaf nodes to find the desired values without having to navigate through many
levels of branch nodes.

Bitmap indexes
Although B-tree indexes are great at handling columns that contain many different
values, such as a customer’s first/last names, they can become unwieldy when built on
a column that allows only a small number of values. For example, you may decide to
generate an index on the customer.active column so that you can quickly retrieve
all active or inactive accounts. Because there are only two different values (stored as 1
for active and 0 for inactive), however, and because there are far more active custom‐
ers, it can be difficult to maintain a balanced B-tree index as the number of customers
grows.

For columns that contain only a small number of values across a large number of
rows (known as low-cardinality data), a different indexing strategy is needed. To han‐
dle this situation more efficiently, Oracle Database includes bitmap indexes, which
generate a bitmap for each value stored in the column. If you were to build a bitmap
index on the customer.active column, the index would maintain two bitmaps: one
for the value 0 and another for the value 1. When you write a query to retrieve all
inactive customers, the database server can traverse the 0 bitmap and quickly retrieve
the desired rows.

Bitmap indexes are a nice, compact indexing solution for low-cardinality data, but
this indexing strategy breaks down if the number of values stored in the column
climbs too high in relation to the number of rows (known as high-cardinality data),
since the server would need to maintain too many bitmaps. For example, you would
never build a bitmap index on your primary key column, since this represents the
highest possible cardinality (a different value for every row).

Oracle users can generate bitmap indexes by simply adding the bitmap keyword to
the create index statement, as in:

CREATE BITMAP INDEX idx_active ON customer (active);

Bitmap indexes are commonly used in data warehousing environments, where large
amounts of data are generally indexed on columns containing relatively few values
(e.g., sales quarters, geographic regions, products, salespeople).

Text indexes
If your database stores documents, you may need to allow users to search for words
or phrases in the documents. You certainly don’t want the server to peruse each
document and scan for the desired text each time a search is requested, but tradi‐
tional indexing strategies don’t work for this situation. To handle this situation,

230 | Chapter 13: Indexes and Constraints

MySQL, SQL Server, and Oracle Database include specialized indexing and search
mechanisms for documents; both SQL Server and MySQL include what they call full-
text indexes, and Oracle Database includes a powerful set of tools known as Oracle
Text. Document searches are specialized enough that it is not practical to show an
example, but it is useful to at least know what is available.

How Indexes Are Used
Indexes are generally used by the server to quickly locate rows in a particular table,
after which the server visits the associated table to extract the additional information
requested by the user. Consider the following query:

mysql> SELECT customer_id, first_name, last_name
 -> FROM customer
 -> WHERE first_name LIKE 'S%' AND last_name LIKE 'P%';
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
84	SARA	PERRY
197	SUE	PETERS
167	SALLY	PIERCE
+-------------+------------+-----------+
3 rows in set (0.00 sec)

For this query, the server can employ any of the following strategies:

• Scan all rows in the customer table.
• Use the index on the last_name column to find all customers whose last name

starts with P; then visit each row of the customer table to find only rows whose
first name starts with S.

• Use the index on the last_name and first_name columns to find all customers
whose last name starts with P and whose first name starts with S.

The third choice seems to be the best option, since the index will yield all of the rows
needed for the result set, without the need to revisit the table. But how do you know
which of the three options will be utilized? To see how MySQL’s query optimizer
decides to execute the query, I use the explain statement to ask the server to show
the execution plan for the query rather than executing the query:

mysql> EXPLAIN
 -> SELECT customer_id, first_name, last_name
 -> FROM customer
 -> WHERE first_name LIKE 'S%' AND last_name LIKE 'P%' \G;
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 partitions: NULL

Indexes | 231

 type: range
possible_keys: idx_last_name,idx_full_name
 key: idx_full_name
 key_len: 274
 ref: NULL
 rows: 28
 filtered: 11.11
 Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

Each database server includes tools to allow you to see how the
query optimizer handles your SQL statement. SQL Server allows
you to see an execution plan by issuing the statement set show
plan_text on before running your SQL statement. Oracle Data‐
base includes the explain plan statement, which writes the
execution plan to a special table called plan_table.

Looking at the query results, the possible_keys column tells you that the server
could decide to use either the idx_last_name or the idx_full_name index, and the
key column tells you that the idx_full_name index was chosen. Furthermore, the
type column tells you that a range scan will be utilized, meaning that the database
server will be looking for a range of values in the index, rather than expecting to
retrieve a single row.

The process that I just led you through is an example of query tun‐
ing. Tuning involves looking at an SQL statement and determining
the resources available to the server to execute the statement. You
can decide to modify the SQL statement, to adjust the database
resources, or to do both in order to make a statement run more
efficiently. Tuning is a detailed topic, and I strongly urge you to
either read your server’s tuning guide or pick up a good tuning
book so that you can see all the different approaches available for
your server.

The Downside of Indexes
If indexes are so great, why not index everything? Well, the key to understanding why
more indexes are not necessarily a good thing is to keep in mind that every index is a
table (a special type of table but still a table). Therefore, every time a row is added to
or removed from a table, all indexes on that table must be modified. When a row is
updated, any indexes on the column or columns that were affected need to be
modified as well. Therefore, the more indexes you have, the more work the server
needs to do to keep all schema objects up-to-date, which tends to slow things down.

232 | Chapter 13: Indexes and Constraints

Indexes also require disk space as well as some amount of care from your administra‐
tors, so the best strategy is to add an index when a clear need arises. If you need an
index for only special purposes, such as a monthly maintenance routine, you can
always add the index, run the routine, and then drop the index until you need it
again. In the case of data warehouses, where indexes are crucial during business
hours as users run reports and ad hoc queries but are problematic when data is being
loaded into the warehouse overnight, it is a common practice to drop the indexes
before data is loaded and then re-create them before the warehouse opens for
business.

In general, you should strive to have neither too many indexes nor too few. If you
aren’t sure how many indexes you should have, you can use this strategy as a default:

• Make sure all primary key columns are indexed (most servers automatically cre‐
ate unique indexes when you create primary key constraints). For multicolumn
primary keys, consider building additional indexes on a subset of the primary
key columns or on all the primary key columns but in a different order than the
primary key constraint definition.

• Build indexes on all columns that are referenced in foreign key constraints. Keep
in mind that the server checks to make sure there are no child rows when a par‐
ent is deleted, so it must issue a query to search for a particular value in the col‐
umn. If there’s no index on the column, the entire table must be scanned.

• Index any columns that will frequently be used to retrieve data. Most date col‐
umns are good candidates, along with short (2- to 50-character) string columns.

After you have built your initial set of indexes, try to capture actual queries against
your tables, look at the server’s execution plan, and modify your indexing strategy to
fit the most common access paths.

Constraints
A constraint is simply a restriction placed on one or more columns of a table. There
are several different types of constraints, including:

Primary key constraints
Identify the column or columns that guarantee uniqueness within a table

Foreign key constraints
Restrict one or more columns to contain only values found in another table’s pri‐
mary key columns (may also restrict the allowable values in other tables if update
cascade or delete cascade rules are established)

Constraints | 233

Unique constraints
Restrict one or more columns to contain unique values within a table (primary
key constraints are a special type of unique constraint)

Check constraints
Restrict the allowable values for a column

Without constraints, a database’s consistency is suspect. For example, if the server
allows you to change a customer’s ID in the customer table without changing the
same customer ID in the rental table, then you will end up with rental data that no
longer points to valid customer records (known as orphaned rows). With primary and
foreign key constraints in place, however, the server will either raise an error if an
attempt is made to modify or delete data that is referenced by other tables or propa‐
gate the changes to other tables for you (more on this shortly).

If you want to use foreign key constraints with the MySQL server,
you must use the InnoDB storage engine for your tables.

Constraint Creation
Constraints are generally created at the same time as the associated table via the cre
ate table statement. To illustrate, here’s an example from the schema generation
script for the Sakila sample database:

CREATE TABLE customer (
 customer_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 store_id TINYINT UNSIGNED NOT NULL,
 first_name VARCHAR(45) NOT NULL,
 last_name VARCHAR(45) NOT NULL,
 email VARCHAR(50) DEFAULT NULL,
 address_id SMALLINT UNSIGNED NOT NULL,
 active BOOLEAN NOT NULL DEFAULT TRUE,
 create_date DATETIME NOT NULL,
 last_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (customer_id),
 KEY idx_fk_store_id (store_id),
 KEY idx_fk_address_id (address_id),
 KEY idx_last_name (last_name),
 CONSTRAINT fk_customer_address FOREIGN KEY (address_id)
 REFERENCES address (address_id) ON DELETE RESTRICT ON UPDATE CASCADE,
 CONSTRAINT fk_customer_store FOREIGN KEY (store_id)
 REFERENCES store (store_id) ON DELETE RESTRICT ON UPDATE CASCADE
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

234 | Chapter 13: Indexes and Constraints

The customer table includes three constraints: one to specify that the customer_id
column serves as the primary key for the table, and two more to specify that the
address_id and store_id columns serve as foreign keys to the address and store
table. Alternatively, you could create the customer table without foreign key con‐
straints and add the foreign key constraints later via alter table statements:

ALTER TABLE customer
ADD CONSTRAINT fk_customer_address FOREIGN KEY (address_id)
REFERENCES address (address_id) ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE customer
ADD CONSTRAINT fk_customer_store FOREIGN KEY (store_id)
REFERENCES store (store_id) ON DELETE RESTRICT ON UPDATE CASCADE;

Both of these statements include several on clauses:

• on delete restrict, which will cause the server to raise an error if a row is
deleted in the parent table (address or store) that is referenced in the child table
(customer)

• on update cascade, which will cause the server to propagate a change to the pri‐
mary key value of a parent table (address or store) to the child table (customer)

The on delete restrict clause protects against orphaned records when rows are
deleted from the parent table. To illustrate, let’s pick a row in the address table and
show the data from both the address and customer tables that share this value:

mysql> SELECT c.first_name, c.last_name, c.address_id, a.address
 -> FROM customer c
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> WHERE a.address_id = 123;
+------------+-----------+------------+----------------------------------+
| first_name | last_name | address_id | address |
+------------+-----------+------------+----------------------------------+
| SHERRY | MARSHALL | 123 | 1987 Coacalco de Berriozbal Loop |
+------------+-----------+------------+----------------------------------+
1 row in set (0.00 sec)

The results show that there is a single customer row (for Sherry Marshall) whose
address_id column contains the value 123.

Here’s what happens if you try to remove this row from the parent (address) table:

mysql> DELETE FROM address WHERE address_id = 123;
ERROR 1451 (23000): Cannot delete or update a parent row:
 a foreign key constraint fails (`sakila`.`customer`,
 CONSTRAINT `fk_customer_address` FOREIGN KEY (`address_id`)
 REFERENCES `address` (`address_id`)
 ON DELETE RESTRICT ON UPDATE CASCADE)

Constraints | 235

Because at least one row in the child table contains the value 123 in the address_id
column, the on delete restrict clause of the foreign key constraint caused the
statement to fail.

The on update cascade clause also protects against orphaned records when a pri‐
mary key value is updated in the parent table using a different strategy. Here’s what
happens if you modify a value in the address.address_id column:

mysql> UPDATE address
 -> SET address_id = 9999
 -> WHERE address_id = 123;
Query OK, 1 row affected (0.37 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The statement executed without error, and one row was modified. But what hap‐
pened to Sherry Marshall’s row in the customer table? Does it still point to address ID
123, which no longer exists? To find out, let’s run the last query again, but substitute
the new value 9999 for the previous value of 123:

mysql> SELECT c.first_name, c.last_name, c.address_id, a.address
 -> FROM customer c
 -> INNER JOIN address a
 -> ON c.address_id = a.address_id
 -> WHERE a.address_id = 9999;
+------------+-----------+------------+----------------------------------+
| first_name | last_name | address_id | address |
+------------+-----------+------------+----------------------------------+
| SHERRY | MARSHALL | 9999 | 1987 Coacalco de Berriozbal Loop |
+------------+-----------+------------+----------------------------------+
1 row in set (0.00 sec)

As you can see, the same results are returned as before (other than the new address
ID value), which means that the value 9999 was automatically updated in the cus
tomer table. This is known as a cascade, and it’s the second mechanism used to pro‐
tect against orphaned rows.

Along with restrict and cascade, you can also choose set null, which will set the
foreign key value to null in the child table when a row is deleted or updated in the
parent table. Altogether, there are six different options to choose from when defining
foreign key constraints:

• on delete restrict

• on update cascade

• on delete set null

• on update restrict

• on update cascade

236 | Chapter 13: Indexes and Constraints

• on update set null

These are optional, so you can choose zero, one, or two (one on delete and one on
update) of these when defining your foreign key constraints.

Finally, if you want to remove a primary or foreign key constraint, you can use the
alter table statement again, except that you specify drop instead of add. While it is
unusual to drop a primary key constraint, foreign key constraints are sometimes
dropped during certain maintenance operations and then reestablished.

Test Your Knowledge
Work through the following exercises to test your knowledge of indexes and con‐
straints. When you’re done, compare your solutions with those in Appendix B.

Exercise 13-1
Generate an alter table statement for the rental table so that an error will be
raised if a row having a value found in the rental.customer_id column is deleted
from the customer table.

Exercise 13-2
Generate a multicolumn index on the payment table that could be used by both of the
following queries:

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime);

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime)
 AND amount < 5;

Test Your Knowledge | 237

CHAPTER 14

Views

Well-designed applications generally expose a public interface while keeping imple‐
mentation details private, thereby enabling future design changes without impacting
end users. When designing your database, you can achieve a similar result by keeping
your tables private and allowing your users to access data only through a set of views.
This chapter strives to define what views are, how they are created, and when and
how you might want to use them.

What Are Views?
A view is simply a mechanism for querying data. Unlike tables, views do not involve
data storage; you won’t need to worry about views filling up your disk space. You cre‐
ate a view by assigning a name to a select statement and then storing the query for
others to use. Other users can then use your view to access data just as though they
were querying tables directly (in fact, they may not even know they are using a view).

As a simple example, let’s say that you want to partially obscure the email address in
the customer table. The marketing department, for example, may need access to
email addresses in order to advertise promotions, but otherwise your company’s pri‐
vacy policy dictates that this data be kept secure. Therefore, instead of allowing direct
access to the customer table, you define a view called customer_vw and mandate that
all nonmarketing personnel use it to access customer data. Here’s the view definition:

CREATE VIEW customer_vw
 (customer_id,
 first_name,
 last_name,
 email
)
AS
SELECT

239

 customer_id,
 first_name,
 last_name,
 concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer;

The first part of the statement lists the view’s column names, which may be different
from those of the underlying table. The second part of the statement is a select state‐
ment, which must contain one expression for each column in the view. The email
column is generated by taking the first two characters of the email address, concaten‐
ated with '*****', and then concatenated with the last four characters of the email
address.

When the create view statement is executed, the database server simply stores the
view definition for future use; the query is not executed, and no data is retrieved or
stored. Once the view has been created, users can query it just like they would a table,
as in:

mysql> SELECT first_name, last_name, email
 -> FROM customer_vw;
+-------------+--------------+-------------+
| first_name | last_name | email |
+-------------+--------------+-------------+
MARY	SMITH	MA*****.org
PATRICIA	JOHNSON	PA*****.org
LINDA	WILLIAMS	LI*****.org
BARBARA	JONES	BA*****.org
ELIZABETH	BROWN	EL*****.org
...		
ENRIQUE	FORSYTHE	EN*****.org
FREDDIE	DUGGAN	FR*****.org
WADE	DELVALLE	WA*****.org
AUSTIN	CINTRON	AU*****.org
+-------------+--------------+-------------+
599 rows in set (0.00 sec)

Even though the customer_vw view definition includes four columns of the customer
table, the previous query retrieves only three of the four. As you’ll see later in the
chapter, this is an important distinction if some of the columns in your view are
attached to functions or subqueries.

From the user’s standpoint, a view looks exactly like a table. If you want to know what
columns are available in a view, you can use MySQL’s (or Oracle’s) describe com‐
mand to examine it:

mysql> describe customer_vw;
+-------------+----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+----------------------+------+-----+---------+-------+
| customer_id | smallint(5) unsigned | NO | | 0 | |

240 | Chapter 14: Views

first_name	varchar(45)	NO		NULL	
last_name	varchar(45)	NO		NULL	
email	varchar(11)	YES		NULL	
+-------------+----------------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

You are free to use any clauses of the select statement when querying through a
view, including group by, having, and order by. Here’s an example:

mysql> SELECT first_name, count(*), min(last_name), max(last_name)
 -> FROM customer_vw
 -> WHERE first_name LIKE 'J%'
 -> GROUP BY first_name
 -> HAVING count(*) > 1
 -> ORDER BY 1;
+------------+----------+----------------+----------------+
| first_name | count(*) | min(last_name) | max(last_name) |
+------------+----------+----------------+----------------+
| JAMIE | 2 | RICE | WAUGH |
| JESSIE | 2 | BANKS | MILAM |
+------------+----------+----------------+----------------+
2 rows in set (0.00 sec)

In addition, you can join views to other tables (or even to other views) within a query,
as in:

mysql> SELECT cv.first_name, cv.last_name, p.amount
 -> FROM customer_vw cv
 -> INNER JOIN payment p
 -> ON cv.customer_id = p.customer_id
 -> WHERE p.amount >= 11;
+------------+-----------+--------+
| first_name | last_name | amount |
+------------+-----------+--------+
KAREN	JACKSON	11.99
VICTORIA	GIBSON	11.99
VANESSA	SIMS	11.99
ALMA	AUSTIN	11.99
ROSEMARY	SCHMIDT	11.99
TANYA	GILBERT	11.99
RICHARD	MCCRARY	11.99
NICHOLAS	BARFIELD	11.99
KENT	ARSENAULT	11.99
TERRANCE	ROUSH	11.99
+------------+-----------+--------+
10 rows in set (0.01 sec)

This query joins the customer_vw view to the payment table in order to find custom‐
ers who have paid $11 or more for a film rental.

What Are Views? | 241

Why Use Views?
In the previous section, I demonstrated a simple view whose sole purpose was to
mask the contents of the customer.email column. While views are often employed
for this purpose, there are many reasons for using views, as detailed in the following
subsections.

Data Security
If you create a table and allow users to query it, they will be able to access every col‐
umn and every row in the table. As I pointed out earlier, however, your table may
include some columns that contain sensitive data, such as identification numbers or
credit card numbers; not only is it a bad idea to expose such data to all users, but also
it might violate your company’s privacy policies, or even state or federal laws, to do
so.

The best approach for these situations is to keep the table private (i.e., don’t grant
select permission to any users) and then to create one or more views that either
omit or obscure (such as the '*****' approach taken with the customer_vw.email
column) the sensitive columns. You may also constrain which rows a set of users may
access by adding a where clause to your view definition. For example, the next view
definition excludes inactive customers:

CREATE VIEW active_customer_vw
 (customer_id,
 first_name,
 last_name,
 email
)
AS
SELECT
 customer_id,
 first_name,
 last_name,
 concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer
WHERE active = 1;

If you provide this view to your marketing department, they will be able to avoid
sending information to inactive customers, because the condition in the view’s where
clause will always be included in their queries.

242 | Chapter 14: Views

1 This view definition is included in the Sakila sample database, along with six others, several of which will be
used in upcoming examples.

Oracle Database users have another option for securing both rows
and columns of a table: Virtual Private Database (VPD). VPD
allows you to attach policies to your tables, after which the server
will modify a user’s query as necessary to enforce the policies. For
example, if you enact a policy that members of the sales and mar‐
keting departments can see only active customers, then the condi‐
tion active = 1 will be added to all of their queries against the
customer table.

Data Aggregation
Reporting applications generally require aggregated data, and views are a great way to
make it appear as though data is being preaggregated and stored in the database. As
an example, let’s say that an application generates a report each month showing the
total sales for each film category so that the managers can decide what new films to
add to inventory. Rather than allowing the application developers to write queries
against the base tables, you could provide them with the following view:1

CREATE VIEW sales_by_film_category
AS
SELECT
 c.name AS category,
 SUM(p.amount) AS total_sales
FROM payment AS p
 INNER JOIN rental AS r ON p.rental_id = r.rental_id
 INNER JOIN inventory AS i ON r.inventory_id = i.inventory_id
 INNER JOIN film AS f ON i.film_id = f.film_id
 INNER JOIN film_category AS fc ON f.film_id = fc.film_id
 INNER JOIN category AS c ON fc.category_id = c.category_id
GROUP BY c.name
ORDER BY total_sales DESC;

Using this approach gives you a great deal of flexibility as a database designer. If you
decide at some point in the future that query performance would improve dramati‐
cally if the data were preaggregated in a table rather than summed using a view, you
could create a film_category_sales table, load it with aggregated data, and modify
the sales_by_film_category view definition to retrieve data from this table. After‐
ward, all queries that use the sales_by_film_category view will retrieve data from
the new film_category_sales table, meaning that users will see a performance
improvement without needing to modify their queries.

Why Use Views? | 243

Hiding Complexity
One of the most common reasons for deploying views is to shield end users from
complexity. For example, let’s say that a report is created each month showing infor‐
mation about all of the films, along with the film category, the number of actors
appearing in the film, the total number of copies in inventory, and the number of
rentals for each film. Rather than expecting the report designer to navigate six differ‐
ent tables to gather the necessary data, you could provide a view that looks as follows:

CREATE VIEW film_stats
AS
SELECT f.film_id, f.title, f.description, f.rating,
 (SELECT c.name
 FROM category c
 INNER JOIN film_category fc
 ON c.category_id = fc.category_id
 WHERE fc.film_id = f.film_id) category_name,
 (SELECT count(*)
 FROM film_actor fa
 WHERE fa.film_id = f.film_id
) num_actors,
 (SELECT count(*)
 FROM inventory i
 WHERE i.film_id = f.film_id
) inventory_cnt,
 (SELECT count(*)
 FROM inventory i
 INNER JOIN rental r
 ON i.inventory_id = r.inventory_id
 WHERE i.film_id = f.film_id
) num_rentals
FROM film f;

This view definition is interesting because even though data from six different tables
can be retrieved through the view, the from clause of the query has only one table
(film). Data from the other five tables is generated using scalar subqueries. If some‐
one uses this view but does not reference the category_name, num_actors, inven
tory_cnt, or num_rentals column, then none of the subqueries will be executed.
This approach allows the view to be used for supplying descriptive information from
the film table without unnecessarily joining five other tables.

Joining Partitioned Data
Some database designs break large tables into multiple pieces in order to improve
performance. For example, if the payment table became large, the designers may
decide to break it into two tables: payment_current, which holds the latest six
months of data, and payment_historic, which holds all data up to six months ago. If
a customer wants to see all the payments for a particular customer, you would need to

244 | Chapter 14: Views

query both tables. By creating a view that queries both tables and combines the
results together, however, you can make it look like all payment data is stored in a
single table. Here’s the view definition:

CREATE VIEW payment_all
 (payment_id,
 customer_id,
 staff_id,
 rental_id,
 amount,
 payment_date,
 last_update
)
AS
SELECT payment_id, customer_id, staff_id, rental_id,
 amount, payment_date, last_update
FROM payment_historic
UNION ALL
SELECT payment_id, customer_id, staff_id, rental_id,
 amount, payment_date, last_update
FROM payment_current;

Using a view in this case is a good idea because it allows the designers to change the
structure of the underlying data without the need to force all database users to modify
their queries.

Updatable Views
If you provide users with a set of views to use for data retrieval, what should you do if
the users also need to modify the same data? It might seem a bit strange, for example,
to force the users to retrieve data using a view but then allow them to directly modify
the underlying table using update or insert statements. For this purpose, MySQL,
Oracle Database, and SQL Server all allow you to modify data through a view, as long
as you abide by certain restrictions. In the case of MySQL, a view is updatable if the
following conditions are met:

• No aggregate functions are used (max(), min(), avg(), etc.).
• The view does not employ group by or having clauses.
• No subqueries exist in the select or from clause, and any subqueries in the
where clause do not refer to tables in the from clause.

• The view does not utilize union, union all, or distinct.
• The from clause includes at least one table or updatable view.
• The from clause uses only inner joins if there is more than one table or view.

Updatable Views | 245

To demonstrate the utility of updatable views, it might be best to start with a simple
view definition and then to move to a more complex view.

Updating Simple Views
The view at the beginning of the chapter is about as simple as it gets, so let’s start
there:

CREATE VIEW customer_vw
 (customer_id,
 first_name,
 last_name,
 email
)
AS
SELECT
 customer_id,
 first_name,
 last_name,
 concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer;

The customer_vw view queries a single table, and only one of the four columns is
derived via an expression. This view definition doesn’t violate any of the restrictions
listed earlier, so you can use it to modify data in the customer table. Let’s use the view
to update Mary Smith’s last name to Smith-Allen:

mysql> UPDATE customer_vw
 -> SET last_name = 'SMITH-ALLEN'
 -> WHERE customer_id = 1;
Query OK, 1 row affected (0.11 sec)
Rows matched: 1 Changed: 1 Warnings: 0

As you can see, the statement claims to have modified one row, but let’s check the
underlying customer table just to be sure:

mysql> SELECT first_name, last_name, email
 -> FROM customer
 -> WHERE customer_id = 1;
+------------+-------------+-------------------------------+
| first_name | last_name | email |
+------------+-------------+-------------------------------+
| MARY | SMITH-ALLEN | MARY.SMITH@sakilacustomer.org |
+------------+-------------+-------------------------------+
1 row in set (0.00 sec)

While you can modify most of the columns in the view in this fashion, you will not
be able to modify the email column, since it is derived from an expression:

246 | Chapter 14: Views

mysql> UPDATE customer_vw
 -> SET email = 'MARY.SMITH-ALLEN@sakilacustomer.org'
 -> WHERE customer_id = 1;
ERROR 1348 (HY000): Column 'email' is not updatable

In this case, it may not be a bad thing, since the main reason for creating the view was
to obscure the email addresses.

If you want to insert data using the customer_vw view, you are out of luck; views that
contain derived columns cannot be used for inserting data, even if the derived col‐
umns are not included in the statement. For example, the next statement attempts to
populate only the customer_id, first_name, and last_name columns using the
customer_vw view:

mysql> INSERT INTO customer_vw
 -> (customer_id,
 -> first_name,
 -> last_name)
 -> VALUES (99999,'ROBERT','SIMPSON');
ERROR 1471 (HY000): The target table customer_vw of the INSERT
is not insertable-into

Now that you have seen the limitations of simple views, the next section will demon‐
strate the use of a view that joins multiple tables.

Updating Complex Views
While single-table views are certainly common, many of the views that you come
across will include multiple tables in the from clause of the underlying query. The
next view, for example, joins the customer, address, city, and country tables so that
all the data for customers can be easily queried:

CREATE VIEW customer_details
AS
SELECT c.customer_id,
 c.store_id,
 c.first_name,
 c.last_name,
 c.address_id,
 c.active,
 c.create_date,
 a.address,
 ct.city,
 cn.country,
 a.postal_code
FROM customer c
 INNER JOIN address a
 ON c.address_id = a.address_id
 INNER JOIN city ct
 ON a.city_id = ct.city_id

Updatable Views | 247

 INNER JOIN country cn
 ON ct.country_id = cn.country_id;

You may use this view to update data in either the customer or address table, as the
following statements demonstrate:

mysql> UPDATE customer_details
 -> SET last_name = 'SMITH-ALLEN', active = 0
 -> WHERE customer_id = 1;
Query OK, 1 row affected (0.10 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE customer_details
 -> SET address = '999 Mockingbird Lane'
 -> WHERE customer_id = 1;
Query OK, 1 row affected (0.06 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The first statement modifies the customer.last_name and customer.active col‐
umns, whereas the second statement modifies the address.address column. You
might be wondering what happens if you try to update columns from both tables in a
single statement, so let’s find out:

mysql> UPDATE customer_details
 -> SET last_name = 'SMITH-ALLEN',
 -> active = 0,
 -> address = '999 Mockingbird Lane'
 -> WHERE customer_id = 1;
ERROR 1393 (HY000): Can not modify more than one base table
 through a join view 'sakila.customer_details'

As you can see, you are allowed to modify both of the underlying tables separately,
but not within a single statement. Next, let’s try to insert data into both tables for
some new customers (customer_id = 9998 and 9999):

mysql> INSERT INTO customer_details
 -> (customer_id, store_id, first_name, last_name,
 -> address_id, active, create_date)
 -> VALUES (9998, 1, 'BRIAN', 'SALAZAR', 5, 1, now());
Query OK, 1 row affected (0.23 sec)

This statement, which only populates columns from the customer table, works fine.
Let’s see what happens if we expand the column list to also include a column from the
address table:

mysql> INSERT INTO customer_details
 -> (customer_id, store_id, first_name, last_name,
 -> address_id, active, create_date, address)
 -> VALUES (9999, 2, 'THOMAS', 'BISHOP', 7, 1, now(),
 -> '999 Mockingbird Lane');
ERROR 1393 (HY000): Can not modify more than one base table
 through a join view 'sakila.customer_details'

248 | Chapter 14: Views

This version, which includes columns spanning two different tables, raises an excep‐
tion. In order to insert data through a complex view, you would need to know from
where each column is sourced. Since many views are created to hide complexity from
end users, this seems to defeat the purpose if the users need to have explicit knowl‐
edge of the view definition.

Oracle Database and SQL Server also allow data to be inserted and
updated through views, but, like MySQL, there are many restric‐
tions. If you are willing to write some PL/SQL or Transact-SQL,
however, you can use a feature called instead-of triggers, which
allows you to essentially intercept insert, update, and delete
statements against a view and write custom code to incorporate the
changes. Without this type of feature, there are usually too many
restrictions to make updating through views a feasible strategy for
nontrivial applications.

Test Your Knowledge
Test your understanding of views by working through the following exercises. When
you’re done, compare your solutions with those in Appendix B.

Exercise 14-1
Create a view definition that can be used by the following query to generate the given
results:

SELECT title, category_name, first_name, last_name
FROM film_ctgry_actor
WHERE last_name = 'FAWCETT';

+---------------------+---------------+------------+-----------+
| title | category_name | first_name | last_name |
+---------------------+---------------+------------+-----------+
ACE GOLDFINGER	Horror	BOB	FAWCETT
ADAPTATION HOLES	Documentary	BOB	FAWCETT
CHINATOWN GLADIATOR	New	BOB	FAWCETT
CIRCUS YOUTH	Children	BOB	FAWCETT
CONTROL ANTHEM	Comedy	BOB	FAWCETT
DARES PLUTO	Animation	BOB	FAWCETT
DARN FORRESTER	Action	BOB	FAWCETT
DAZED PUNK	Games	BOB	FAWCETT
DYNAMITE TARZAN	Classics	BOB	FAWCETT
HATE HANDICAP	Comedy	BOB	FAWCETT
HOMICIDE PEACH	Family	BOB	FAWCETT
JACKET FRISCO	Drama	BOB	FAWCETT
JUMANJI BLADE	New	BOB	FAWCETT
LAWLESS VISION	Animation	BOB	FAWCETT
LEATHERNECKS DWARFS	Travel	BOB	FAWCETT

Test Your Knowledge | 249

OSCAR GOLD	Animation	BOB	FAWCETT
PELICAN COMFORTS	Documentary	BOB	FAWCETT
PERSONAL LADYBUGS	Music	BOB	FAWCETT
RAGING AIRPLANE	Sci-Fi	BOB	FAWCETT
RUN PACIFIC	New	BOB	FAWCETT
RUNNER MADIGAN	Music	BOB	FAWCETT
SADDLE ANTITRUST	Comedy	BOB	FAWCETT
SCORPION APOLLO	Drama	BOB	FAWCETT
SHAWSHANK BUBBLE	Travel	BOB	FAWCETT
TAXI KICK	Music	BOB	FAWCETT
BERETS AGENT	Action	JULIA	FAWCETT
BOILED DARES	Travel	JULIA	FAWCETT
CHISUM BEHAVIOR	Family	JULIA	FAWCETT
CLOSER BANG	Comedy	JULIA	FAWCETT
DAY UNFAITHFUL	New	JULIA	FAWCETT
HOPE TOOTSIE	Classics	JULIA	FAWCETT
LUKE MUMMY	Animation	JULIA	FAWCETT
MULAN MOON	Comedy	JULIA	FAWCETT
OPUS ICE	Foreign	JULIA	FAWCETT
POLLOCK DELIVERANCE	Foreign	JULIA	FAWCETT
RIDGEMONT SUBMARINE	New	JULIA	FAWCETT
SHANGHAI TYCOON	Travel	JULIA	FAWCETT
SHAWSHANK BUBBLE	Travel	JULIA	FAWCETT
THEORY MERMAID	Animation	JULIA	FAWCETT
WAIT CIDER	Animation	JULIA	FAWCETT
+---------------------+---------------+------------+-----------+
40 rows in set (0.00 sec)

Exercise 14-2
The film rental company manager would like to have a report that includes the name
of every country, along with the total payments for all customers who live in each
country. Generate a view definition that queries the country table and uses a scalar
subquery to calculate a value for a column named tot_payments.

250 | Chapter 14: Views

CHAPTER 15

Metadata

Along with storing all of the data that various users insert into a database, a database
server also needs to store information about all of the database objects (tables, views,
indexes, etc.) that were created to store this data. The database server stores this
information, not surprisingly, in a database. This chapter discusses how and where
this information, known as metadata, is stored, how you can access it, and how you
can use it to build flexible systems.

Data About Data
Metadata is essentially data about data. Every time you create a database object, the
database server needs to record various pieces of information. For example, if you
were to create a table with multiple columns, a primary key constraint, three indexes,
and a foreign key constraint, the database server would need to store all the following
information:

• Table name
• Table storage information (tablespace, initial size, etc.)
• Storage engine
• Column names
• Column data types
• Default column values
• not null column constraints
• Primary key columns
• Primary key name
• Name of primary key index

251

• Index names
• Index types (B-tree, bitmap)
• Indexed columns
• Index column sort order (ascending or descending)
• Index storage information
• Foreign key name
• Foreign key columns
• Associated table/columns for foreign keys

This data is collectively known as the data dictionary or system catalog. The database
server needs to store this data persistently, and it needs to be able to quickly retrieve
this data in order to verify and execute SQL statements. Additionally, the database
server must safeguard this data so that it can be modified only via an appropriate
mechanism, such as the alter table statement.

While standards exist for the exchange of metadata between different servers, every
database server uses a different mechanism to publish metadata, such as:

• A set of views, such as Oracle Database’s user_tables and all_constraints
views

• A set of system-stored procedures, such as SQL Server’s sp_tables procedure or
Oracle Database’s dbms_metadata package

• A special database, such as MySQL’s information_schema database

Along with SQL Server’s system-stored procedures, which are a vestige of its Sybase
lineage, SQL Server also includes a special schema called information_schema that is
provided automatically within each database. Both MySQL and SQL Server provide
this interface to conform with the ANSI SQL:2003 standard. The remainder of this
chapter discusses the information_schema objects that are available in MySQL and
SQL Server.

information_schema
All of the objects available within the information_schema database (or schema, in
the case of SQL Server) are views. Unlike the describe utility, which I used in several
chapters of this book as a way to show the structure of various tables and views, the
views within information_schema can be queried and, thus, used programmatically
(more on this later in the chapter). Here’s an example that demonstrates how to
retrieve the names of all of the tables in the Sakila database:

252 | Chapter 15: Metadata

mysql> SELECT table_name, table_type
 -> FROM information_schema.tables
 -> WHERE table_schema = 'sakila'
 -> ORDER BY 1;
+----------------------------+------------+
| TABLE_NAME | TABLE_TYPE |
+----------------------------+------------+
actor	BASE TABLE
actor_info	VIEW
address	BASE TABLE
category	BASE TABLE
city	BASE TABLE
country	BASE TABLE
customer	BASE TABLE
customer_list	VIEW
film	BASE TABLE
film_actor	BASE TABLE
film_category	BASE TABLE
film_list	VIEW
film_text	BASE TABLE
inventory	BASE TABLE
language	BASE TABLE
nicer_but_slower_film_list	VIEW
payment	BASE TABLE
rental	BASE TABLE
sales_by_film_category	VIEW
sales_by_store	VIEW
staff	BASE TABLE
staff_list	VIEW
store	BASE TABLE
+----------------------------+------------+
23 rows in set (0.00 sec)

As you can see, the information_schema.tables view includes both tables and
views; if you want to exclude the views, simply add another condition to the where
clause:

mysql> SELECT table_name, table_type
 -> FROM information_schema.tables
 -> WHERE table_schema = 'sakila'
 -> AND table_type = 'BASE TABLE'
 -> ORDER BY 1;
+---------------+------------+
| TABLE_NAME | TABLE_TYPE |
+---------------+------------+
actor	BASE TABLE
address	BASE TABLE
category	BASE TABLE
city	BASE TABLE
country	BASE TABLE
customer	BASE TABLE
film	BASE TABLE

information_schema | 253

film_actor	BASE TABLE
film_category	BASE TABLE
film_text	BASE TABLE
inventory	BASE TABLE
language	BASE TABLE
payment	BASE TABLE
rental	BASE TABLE
staff	BASE TABLE
store	BASE TABLE
+---------------+------------+
16 rows in set (0.00 sec)

If you are only interested in information about views, you can query informa
tion_schema.views. Along with the view names, you can retrieve additional infor‐
mation, such as a flag that shows whether a view is updatable:

mysql> SELECT table_name, is_updatable
 -> FROM information_schema.views
 -> WHERE table_schema = 'sakila'
 -> ORDER BY 1;
+----------------------------+--------------+
| TABLE_NAME | IS_UPDATABLE |
+----------------------------+--------------+
actor_info	NO
customer_list	YES
film_list	NO
nicer_but_slower_film_list	NO
sales_by_film_category	NO
sales_by_store	NO
staff_list	YES
+----------------------------+--------------+
7 rows in set (0.00 sec)

Column information for both tables and views is available via the columns view. The
following query shows column information for the film table:

mysql> SELECT column_name, data_type,
 -> character_maximum_length char_max_len,
 -> numeric_precision num_prcsn, numeric_scale num_scale
 -> FROM information_schema.columns
 -> WHERE table_schema = 'sakila' AND table_name = 'film'
 -> ORDER BY ordinal_position;
+----------------------+-----------+--------------+-----------+-----------+
| COLUMN_NAME | DATA_TYPE | char_max_len | num_prcsn | num_scale |
+----------------------+-----------+--------------+-----------+-----------+
film_id	smallint	NULL	5	0
title	varchar	255	NULL	NULL
description	text	65535	NULL	NULL
release_year	year	NULL	NULL	NULL
language_id	tinyint	NULL	3	0
original_language_id	tinyint	NULL	3	0
rental_duration	tinyint	NULL	3	0
rental_rate	decimal	NULL	4	2

254 | Chapter 15: Metadata

length	smallint	NULL	5	0
replacement_cost	decimal	NULL	5	2
rating	enum	5	NULL	NULL
special_features	set	54	NULL	NULL
last_update	timestamp	NULL	NULL	NULL
+----------------------+-----------+--------------+-----------+-----------+
13 rows in set (0.00 sec)

The ordinal_position column is included merely as a means to retrieve the col‐
umns in the order in which they were added to the table.

You can retrieve information about a table’s indexes via the information_schema.sta
tistics view as demonstrated by the following query, which retrieves information
for the indexes built on the rental table:

mysql> SELECT index_name, non_unique, seq_in_index, column_name
 -> FROM information_schema.statistics
 -> WHERE table_schema = 'sakila' AND table_name = 'rental'
 -> ORDER BY 1, 3;
+---------------------+------------+--------------+--------------+
| INDEX_NAME | NON_UNIQUE | SEQ_IN_INDEX | COLUMN_NAME |
+---------------------+------------+--------------+--------------+
idx_fk_customer_id	1	1	customer_id
idx_fk_inventory_id	1	1	inventory_id
idx_fk_staff_id	1	1	staff_id
PRIMARY	0	1	rental_id
rental_date	0	1	rental_date
rental_date	0	2	inventory_id
rental_date	0	3	customer_id
+---------------------+------------+--------------+--------------+
7 rows in set (0.02 sec)

The rental table has a total of five indexes, one of which has three columns
(rental_date) and one of which is a unique index (PRIMARY) used for the primary
key constraint.

You can retrieve the different types of constraints (foreign key, primary key, unique)
that have been created via the information_schema.table_constraints view. Here’s
a query that retrieves all of the constraints in the Sakila schema:

mysql> SELECT constraint_name, table_name, constraint_type
 -> FROM information_schema.table_constraints
 -> WHERE table_schema = 'sakila'
 -> ORDER BY 3,1;
+---------------------------+---------------+-----------------+
| constraint_name | table_name | constraint_type |
+---------------------------+---------------+-----------------+
fk_address_city	address	FOREIGN KEY
fk_city_country	city	FOREIGN KEY
fk_customer_address	customer	FOREIGN KEY
fk_customer_store	customer	FOREIGN KEY
fk_film_actor_actor	film_actor	FOREIGN KEY

information_schema | 255

fk_film_actor_film	film_actor	FOREIGN KEY
fk_film_category_category	film_category	FOREIGN KEY
fk_film_category_film	film_category	FOREIGN KEY
fk_film_language	film	FOREIGN KEY
fk_film_language_original	film	FOREIGN KEY
fk_inventory_film	inventory	FOREIGN KEY
fk_inventory_store	inventory	FOREIGN KEY
fk_payment_customer	payment	FOREIGN KEY
fk_payment_rental	payment	FOREIGN KEY
fk_payment_staff	payment	FOREIGN KEY
fk_rental_customer	rental	FOREIGN KEY
fk_rental_inventory	rental	FOREIGN KEY
fk_rental_staff	rental	FOREIGN KEY
fk_staff_address	staff	FOREIGN KEY
fk_staff_store	staff	FOREIGN KEY
fk_store_address	store	FOREIGN KEY
fk_store_staff	store	FOREIGN KEY
PRIMARY	film	PRIMARY KEY
PRIMARY	film_actor	PRIMARY KEY
PRIMARY	staff	PRIMARY KEY
PRIMARY	film_category	PRIMARY KEY
PRIMARY	store	PRIMARY KEY
PRIMARY	actor	PRIMARY KEY
PRIMARY	film_text	PRIMARY KEY
PRIMARY	address	PRIMARY KEY
PRIMARY	inventory	PRIMARY KEY
PRIMARY	customer	PRIMARY KEY
PRIMARY	category	PRIMARY KEY
PRIMARY	language	PRIMARY KEY
PRIMARY	city	PRIMARY KEY
PRIMARY	payment	PRIMARY KEY
PRIMARY	country	PRIMARY KEY
PRIMARY	rental	PRIMARY KEY
idx_email	customer	UNIQUE
idx_unique_manager	store	UNIQUE
rental_date	rental	UNIQUE
+---------------------------+---------------+-----------------+
41 rows in set (0.02 sec)

Table 15-1 shows many of the information_schema views that are available in
MySQL version 8.0.

Table 15-1. information_schema views

View name Provides information about...

schemata Databases

tables Tables and views

columns Columns of tables and views

statistics Indexes

user_privileges Who has privileges on which schema objects

256 | Chapter 15: Metadata

View name Provides information about...

schema_privileges Who has privileges on which databases

table_privileges Who has privileges on which tables

column_privileges Who has privileges on which columns of which tables

character_sets What character sets are available

collations What collations are available for which character sets

collation_character_set_applicability Which character sets are available for which collation

table_constraints The unique, foreign key, and primary key constraints

key_column_usage The constraints associated with each key column

routines Stored routines (procedures and functions)

views Views

triggers Table triggers

plugins Server plug-ins

engines Available storage engines

partitions Table partitions

events Scheduled events

processlist Running processes

referential_constraints Foreign keys

parameters Stored procedure and function parameters

profiling User profiling information

While some of these views, such as engines, events, and plugins, are specific to
MySQL, many of these views are available in SQL Server as well. If you are using Ora‐
cle Database, please consult the online Oracle Database Reference Guide for informa‐
tion about the user_, all_, and dba_ views, as well as the dbms_metadata package.

Working with Metadata
As I mentioned earlier, having the ability to retrieve information about your schema
objects via SQL queries opens up some interesting possibilities. This section shows
several ways in which you can make use of metadata in your applications.

Schema Generation Scripts
While some project teams include a full-time database designer who oversees the
design and implementation of the database, many projects take the “design-by-
committee” approach, allowing multiple people to create database objects. After sev‐
eral weeks or months of development, you may need to generate a script that will
create the various tables, indexes, views, and so on, that the team has deployed.

Working with Metadata | 257

https://oreil.ly/qV7sE

Although a variety of tools and utilities will generate these types of scripts for you,
you can also query the information_schema views and generate the script yourself.

As an example, let’s build a script that will create the sakila.category table. Here’s
the command used to build the table, which I extracted from the script used to build
the example database:

CREATE TABLE category (
 category_id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (category_id)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

Although it would certainly be easier to generate the script with the use of a proce‐
dural language (e.g., Transact-SQL or Java), since this is a book about SQL, I’m going
to write a single query that will generate the create table statement. The first step is
to query the information_schema.columns table to retrieve information about the
columns in the table:

mysql> SELECT 'CREATE TABLE category (' create_table_statement
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(' ',column_name, ' ', column_type,
 -> CASE
 -> WHEN is_nullable = 'NO' THEN ' not null'
 -> ELSE ''
 -> END,
 -> CASE
 -> WHEN extra IS NOT NULL AND extra LIKE 'DEFAULT_GENERATED%'
 -> THEN concat(' DEFAULT ',column_default,substr(extra,18))
 -> WHEN extra IS NOT NULL THEN concat(' ', extra)
 -> ELSE ''
 -> END,
 -> ',') txt
 -> FROM information_schema.columns
 -> WHERE table_schema = 'sakila' AND table_name = 'category'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT ')';
+---+
| create_table_statement |
+---+
| CREATE TABLE category (|
| category_id tinyint(3) unsigned not null auto_increment, |
| name varchar(25) not null , |
| last_update timestamp not null DEFAULT CURRENT_TIMESTAMP |
| on update CURRENT_TIMESTAMP, |

258 | Chapter 15: Metadata

|) |
+---+
5 rows in set (0.00 sec)

Well, that got us pretty close; we just need to add queries against the table_con
straints and key_column_usage views to retrieve information about the primary
key constraint:

mysql> SELECT 'CREATE TABLE category (' create_table_statement
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(' ',column_name, ' ', column_type,
 -> CASE
 -> WHEN is_nullable = 'NO' THEN ' not null'
 -> ELSE ''
 -> END,
 -> CASE
 -> WHEN extra IS NOT NULL AND extra LIKE 'DEFAULT_GENERATED%'
 -> THEN concat(' DEFAULT ',column_default,substr(extra,18))
 -> WHEN extra IS NOT NULL THEN concat(' ', extra)
 -> ELSE ''
 -> END,
 -> ',') txt
 -> FROM information_schema.columns
 -> WHERE table_schema = 'sakila' AND table_name = 'category'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT concat(' constraint primary key (')
 -> FROM information_schema.table_constraints
 -> WHERE table_schema = 'sakila' AND table_name = 'category'
 -> AND constraint_type = 'PRIMARY KEY'
 -> UNION ALL
 -> SELECT cols.txt
 -> FROM
 -> (SELECT concat(CASE WHEN ordinal_position > 1 THEN ' ,'
 -> ELSE ' ' END, column_name) txt
 -> FROM information_schema.key_column_usage
 -> WHERE table_schema = 'sakila' AND table_name = 'category'
 -> AND constraint_name = 'PRIMARY'
 -> ORDER BY ordinal_position
 ->) cols
 -> UNION ALL
 -> SELECT ')'
 -> UNION ALL
 -> SELECT ')';
+---+
| create_table_statement |
+---+
| CREATE TABLE category (|
| category_id tinyint(3) unsigned not null auto_increment, |

Working with Metadata | 259

| name varchar(25) not null , |
| last_update timestamp not null DEFAULT CURRENT_TIMESTAMP |
| on update CURRENT_TIMESTAMP, |
| constraint primary key (|
| category_id |
|) |
|) |
+---+
8 rows in set (0.02 sec)

To see whether the statement is properly formed, I’ll paste the query output into the
mysql tool (I’ve changed the table name to category2 so that it won’t step on our
existing table):

mysql> CREATE TABLE category2 (
 -> category_id tinyint(3) unsigned not null auto_increment,
 -> name varchar(25) not null ,
 -> last_update timestamp not null DEFAULT CURRENT_TIMESTAMP
 -> on update CURRENT_TIMESTAMP,
 -> constraint primary key (
 -> category_id
 ->)
 ->);
Query OK, 0 rows affected (0.61 sec)

The statement executed without errors, and there is now a category2 table in the
Sakila database. For the query to generate a well-formed create table statement for
any table, more work is required (such as handling indexes and foreign key con‐
straints), but I’ll leave that as an exercise.

If you are using a graphical development tool such as Toad, Oracle
SQL Developer, or MySQL Workbench, you will be able to easily
generate these types of scripts without writing your own queries.
But, just in case you are stuck on a deserted island with only the
MySQL command-line client...

Deployment Verification
Many organizations allow for database maintenance windows, wherein existing data‐
base objects may be administered (such as adding/dropping partitions) and new
schema objects and code can be deployed. After the deployment scripts have been
run, it’s a good idea to run a verification script to ensure that the new schema objects
are in place with the appropriate columns, indexes, primary keys, and so forth. Here’s
a query that returns the number of columns, number of indexes, and number of pri‐
mary key constraints (0 or 1) for each table in the Sakila schema:

mysql> SELECT tbl.table_name,
 -> (SELECT count(*) FROM information_schema.columns clm
 -> WHERE clm.table_schema = tbl.table_schema

260 | Chapter 15: Metadata

 -> AND clm.table_name = tbl.table_name) num_columns,
 -> (SELECT count(*) FROM information_schema.statistics sta
 -> WHERE sta.table_schema = tbl.table_schema
 -> AND sta.table_name = tbl.table_name) num_indexes,
 -> (SELECT count(*) FROM information_schema.table_constraints tc
 -> WHERE tc.table_schema = tbl.table_schema
 -> AND tc.table_name = tbl.table_name
 -> AND tc.constraint_type = 'PRIMARY KEY') num_primary_keys
 -> FROM information_schema.tables tbl
 -> WHERE tbl.table_schema = 'sakila' AND tbl.table_type = 'BASE TABLE'
 -> ORDER BY 1;
+---------------+-------------+-------------+------------------+
| TABLE_NAME | num_columns | num_indexes | num_primary_keys |
+---------------+-------------+-------------+------------------+
actor	4	2	1
address	9	3	1
category	3	1	1
city	4	2	1
country	3	1	1
customer	9	7	1
film	13	4	1
film_actor	3	3	1
film_category	3	3	1
film_text	3	3	1
inventory	4	4	1
language	3	1	1
payment	7	4	1
rental	7	7	1
staff	11	3	1
store	4	3	1
+---------------+-------------+-------------+------------------+
16 rows in set (0.01 sec)

You could execute this statement before and after the deployment and then verify any
differences between the two sets of results before declaring the deployment a success.

Dynamic SQL Generation
Some languages, such as Oracle’s PL/SQL and Microsoft’s Transact-SQL, are supersets
of the SQL language, meaning that they include SQL statements in their grammar
along with the usual procedural constructs, such as “if-then-else” and “while.” Other
languages, such as Java, include the ability to interface with a relational database but
do not include SQL statements in the grammar, meaning that all SQL statements
must be contained within strings.

Therefore, most relational database servers, including SQL Server, Oracle Database,
and MySQL, allow SQL statements to be submitted to the server as strings. Submit‐
ting strings to a database engine rather than utilizing its SQL interface is generally
known as dynamic SQL execution. Oracle’s PL/SQL language, for example, includes an
execute immediate command, which you can use to submit a string for execution,

Working with Metadata | 261

while SQL Server includes a system stored procedure called sp_executesql for exe‐
cuting SQL statements dynamically.

MySQL provides the statements prepare, execute, and deallocate to allow for
dynamic SQL execution. Here’s a simple example:

mysql> SET @qry = 'SELECT customer_id, first_name, last_name FROM customer';
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE dynsql1 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> EXECUTE dynsql1;
+-------------+-------------+--------------+
| customer_id | first_name | last_name |
+-------------+-------------+--------------+
505	RAFAEL	ABNEY
504	NATHANIEL	ADAM
36	KATHLEEN	ADAMS
96	DIANA	ALEXANDER
...		
31	BRENDA	WRIGHT
318	BRIAN	WYMAN
402	LUIS	YANEZ
413	MARVIN	YEE
28	CYNTHIA	YOUNG
+-------------+-------------+--------------+
599 rows in set (0.02 sec)

mysql> DEALLOCATE PREPARE dynsql1;
Query OK, 0 rows affected (0.00 sec)

The set statement simply assigns a string to the qry variable, which is then submitted
to the database engine (for parsing, security checking, and optimization) using the
prepare statement. After executing the statement by calling execute, the statement
must be closed using deallocate prepare, which frees any database resources (e.g.,
cursors) that have been utilized during execution.

The next example shows how you could execute a query that includes placeholders so
that conditions can be specified at runtime:

mysql> SET @qry = 'SELECT customer_id, first_name, last_name
 FROM customer WHERE customer_id = ?';
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE dynsql2 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> SET @custid = 9;
Query OK, 0 rows affected (0.00 sec)

262 | Chapter 15: Metadata

mysql> EXECUTE dynsql2 USING @custid;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
| 9 | MARGARET | MOORE |
+-------------+------------+-----------+
1 row in set (0.00 sec)

mysql> SET @custid = 145;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql2 USING @custid;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
| 145 | LUCILLE | HOLMES |
+-------------+------------+-----------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql2;
Query OK, 0 rows affected (0.00 sec)

In this sequence, the query contains a placeholder (the ? at the end of the statement)
so that the customer ID value can be submitted at runtime. The statement is prepared
once and then executed twice, once for customer ID 9 and again for customer ID 145,
after which the statement is closed.

What, you may wonder, does this have to do with metadata? Well, if you are going to
use dynamic SQL to query a table, why not build the query string using metadata
rather than hardcoding the table definition? The following example generates the
same dynamic SQL string as the previous example, but it retrieves the column names
from the information_schema.columns view:

mysql> SELECT concat('SELECT ',
 -> concat_ws(',', cols.col1, cols.col2, cols.col3, cols.col4,
 -> cols.col5, cols.col6, cols.col7, cols.col8, cols.col9),
 -> ' FROM customer WHERE customer_id = ?')
 -> INTO @qry
 -> FROM
 -> (SELECT
 -> max(CASE WHEN ordinal_position = 1 THEN column_name
 -> ELSE NULL END) col1,
 -> max(CASE WHEN ordinal_position = 2 THEN column_name
 -> ELSE NULL END) col2,
 -> max(CASE WHEN ordinal_position = 3 THEN column_name
 -> ELSE NULL END) col3,
 -> max(CASE WHEN ordinal_position = 4 THEN column_name
 -> ELSE NULL END) col4,
 -> max(CASE WHEN ordinal_position = 5 THEN column_name
 -> ELSE NULL END) col5,

Working with Metadata | 263

 -> max(CASE WHEN ordinal_position = 6 THEN column_name
 -> ELSE NULL END) col6,
 -> max(CASE WHEN ordinal_position = 7 THEN column_name
 -> ELSE NULL END) col7,
 -> max(CASE WHEN ordinal_position = 8 THEN column_name
 -> ELSE NULL END) col8,
 -> max(CASE WHEN ordinal_position = 9 THEN column_name
 -> ELSE NULL END) col9
 -> FROM information_schema.columns
 -> WHERE table_schema = 'sakila' AND table_name = 'customer'
 -> GROUP BY table_name
 ->) cols;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT @qry;
+--+
| @qry |
+--+
| SELECT customer_id,store_id,first_name,last_name,email,
 address_id,active,create_date,last_update
 FROM customer WHERE customer_id = ? |
+--+
1 row in set (0.00 sec)

mysql> PREPARE dynsql3 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> SET @custid = 45;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql3 USING @custid;
+-------------+----------+------------+-----------+
| customer_id | store_id | first_name | last_name
+-------------+----------+------------+-----------+
| 45 | 1 | JANET | PHILLIPS
+-------------+----------+------------+-----------+

 +-----------------------------------+------------+--------
 | email | address_id | active
 +-----------------------------------+------------+--------
 | JANET.PHILLIPS@sakilacustomer.org | 49 | 1
 +-----------------------------------+------------+--------

 +---------------------+---------------------+
 | create_date | last_update |
 +---------------------+---------------------+
 | 2006-02-14 22:04:36 | 2006-02-15 04:57:20 |
 +---------------------+---------------------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql3;
Query OK, 0 rows affected (0.00 sec)

264 | Chapter 15: Metadata

The query pivots the first nine columns in the customer table, builds a query string
using the concat and concat_ws functions, and assigns the string to the qry variable.
The query string is then executed as before.

Generally, it would be better to generate the query using a proce‐
dural language that includes looping constructs, such as Java, PL/
SQL, Transact-SQL, or MySQL’s Stored Procedure Language. How‐
ever, I wanted to demonstrate a pure SQL example, so I had to limit
the number of columns retrieved to some reasonable number,
which in this example is nine.

Test Your Knowledge
The following exercises are designed to test your understanding of metadata. When
you’re finished, see Appendix B for the solutions.

Exercise 15-1
Write a query that lists all of the indexes in the Sakila schema. Include the table
names.

Exercise 15-2
Write a query that generates output that can be used to create all of the indexes on the
sakila.customer table. Output should be of the form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"

Test Your Knowledge | 265

CHAPTER 16

Analytic Functions

Data volumes have been growing at a staggering pace, and organizations are having
difficulty storing all of it, not to mention trying to make sense of it. While data analy‐
sis has traditionally occurred outside of the database server, using specialized tools or
languages such as Excel, R, and Python, the SQL language includes a robust set of
functions useful for analytical processing. If you need to generate rankings to identify
the top 10 salespeople in your company or if you are generating a financial report for
your customer and need to calculate three-month rolling averages, you can use SQL’s
built-in analytic functions to perform these types of calculations.

Analytic Function Concepts
After the database server has completed all of the steps necessary to evaluate a query,
including joining, filtering, grouping, and sorting, the result set is complete and ready
to be returned to the caller. Imagine if you could pause the query execution at this
point and take a walk through the result set while it is still held in memory; what
types of analysis might you want to do? If your result set contains sales data, perhaps
you might want to generate rankings for salespeople or regions, or calculate percent‐
age differences between one time period and another. If you are generating results for
a financial report, perhaps you would like to calculate subtotals for each report sec‐
tion, and a grand total for the final section. Using analytic functions, you can do all of
these things and more. Before diving into the details, the following subsections
describe the mechanisms used by several of the most commonly used analytic
functions.

267

Data Windows
Let’s say you have written a query that generates monthly sales totals for a given time
period. For example, the following query sums up the total monthly payments for
film rentals for the period May through August 2005:

mysql> SELECT quarter(payment_date) quarter,
 -> monthname(payment_date) month_nm,
 -> sum(amount) monthly_sales
 -> FROM payment
 -> WHERE year(payment_date) = 2005
 -> GROUP BY quarter(payment_date), monthname(payment_date);
+---------+----------+---------------+
| quarter | month_nm | monthly_sales |
+---------+----------+---------------+
2	May	4824.43
2	June	9631.88
3	July	28373.89
3	August	24072.13
+---------+----------+---------------+
4 rows in set (0.13 sec)

Looking at the results, you can see that July had the highest monthly total across all
four months and that June had the highest monthly total for quarter 2. In order to
determine the highest values programmatically, however, you will need to add addi‐
tional columns to each row showing the maximum values per quarter and over the
entire time period. Here’s the previous query but with two new columns to calculate
these values:

mysql> SELECT quarter(payment_date) quarter,
 -> monthname(payment_date) month_nm,
 -> sum(amount) monthly_sales,
 -> max(sum(amount))
 -> over () max_overall_sales,
 -> max(sum(amount))
 -> over (partition by quarter(payment_date)) max_qrtr_sales
 -> FROM payment
 -> WHERE year(payment_date) = 2005
 -> GROUP BY quarter(payment_date), monthname(payment_date);
+---------+----------+---------------+-------------------+----------------+
| quarter | month_nm | monthly_sales | max_overall_sales | max_qrtr_sales |
+---------+----------+---------------+-------------------+----------------+
2	May	4824.43	28373.89	9631.88
2	June	9631.88	28373.89	9631.88
3	July	28373.89	28373.89	28373.89
3	August	24072.13	28373.89	28373.89
+---------+----------+---------------+-------------------+----------------+
4 rows in set (0.09 sec)

The analytic functions used to generate these additional columns group rows into
two different sets: one set containing all rows in the same quarter and another set

268 | Chapter 16: Analytic Functions

containing all of the rows. To accommodate this type of analysis, analytic functions
include the ability to group rows into windows, which effectively partition the data for
use by the analytic function without changing the overall result set. Windows are
defined using the over clause combined with an optional partition by subclause. In
the previous query, both analytic functions include an over clause, but the first one is
empty, indicating that the window should include the entire result set, whereas the
second one specifies that the window should include only rows within the same quar‐
ter. Data windows may contain anywhere from a single row to all of the rows in the
result set, and different analytic functions can define different data windows.

Localized Sorting
Along with partitioning your result set into data windows for your analytic functions,
you may also specify a sort order. For example, if you want to define a ranking num‐
ber for each month, where the value 1 is given to the month having the highest sales,
you will need to specify which column (or columns) to use for the ranking:

mysql> SELECT quarter(payment_date) quarter,
 -> monthname(payment_date) month_nm,
 -> sum(amount) monthly_sales,
 -> rank() over (order by sum(amount) desc) sales_rank
 -> FROM payment
 -> WHERE year(payment_date) = 2005
 -> GROUP BY quarter(payment_date), monthname(payment_date)
 -> ORDER BY 1, month(payment_date);
+---------+----------+---------------+------------+
| quarter | month_nm | monthly_sales | sales_rank |
+---------+----------+---------------+------------+
2	May	4824.43	4
2	June	9631.88	3
3	July	28373.89	1
3	August	24072.13	2
+---------+----------+---------------+------------+
4 rows in set (0.00 sec)

This query includes a call to the rank function, which will be covered in the next sec‐
tion, and specifies that the sum of the amount column be used to generate the rank‐
ings, with the values sorted in descending order. Thus, the month having the highest
sales (July, in this case) will be given a ranking of 1.

Analytic Function Concepts | 269

Multiple order by Clauses

The previous example contains two order by clauses, one at the
end of the query to determine how the result set should be sorted
and another within the rank function to determine how the rank‐
ings should be allocated. While it is unfortunate that the same
clause is used for different purposes, keep in mind that even if you
are using analytic functions with one or more order by clauses,
you will still need an order by clause at the end of your query if
you want the result set to be sorted in a particular way.

In some cases, you will want to use both the partition by and order by subclauses
in the same analytic function call. For example, the previous example can be modified
to provide a different set of rankings per quarter, rather than a single ranking across
the entire result set:

mysql> SELECT quarter(payment_date) quarter,
 -> monthname(payment_date) month_nm,
 -> sum(amount) monthly_sales,
 -> rank() over (partition by quarter(payment_date)
 -> order by sum(amount) desc) qtr_sales_rank
 -> FROM payment
 -> WHERE year(payment_date) = 2005
 -> GROUP BY quarter(payment_date), monthname(payment_date)
 -> ORDER BY 1, month(payment_date);
+---------+----------+---------------+----------------+
| quarter | month_nm | monthly_sales | qtr_sales_rank |
+---------+----------+---------------+----------------+
2	May	4824.43	2
2	June	9631.88	1
3	July	28373.89	1
3	August	24072.13	2
+---------+----------+---------------+----------------+
4 rows in set (0.00 sec)

While these examples were designed to illustrate the use of the over clause, the fol‐
lowing sections will describe in detail the various analytic functions.

Ranking
People love to rank things. If you visit your favorite news/sports/travel sites, you’ll see
headlines similar to the following:

• Top 10 Vacation Values
• Best Mutual Fund Returns
• Preseason College Football Rankings

270 | Chapter 16: Analytic Functions

• Top 100 Songs of All Time

Companies also like to generate rankings, but for more practical purposes. Knowing
which products are the best/worst sellers or which geographic regions generate the
least/most revenue helps organizations make strategic decisions.

Ranking Functions
There are multiple ranking functions available in the SQL standard, with each one
taking a different approach to how ties are handled:

row_number

Returns a unique number for each row, with rankings arbitrarily assigned in case
of a tie

rank

Returns the same ranking in case of a tie, with gaps in the rankings

dense_rank

Returns the same ranking in case of a tie, with no gaps in the rankings

Let’s look at an example to help illustrate the differences. Say that the marketing
department wants to identify the top 10 customers so they can be offered a free film
rental. The following query determines the number of film rentals for each customer
and sorts the results in descending order:

mysql> SELECT customer_id, count(*) num_rentals
 -> FROM rental
 -> GROUP BY customer_id
 -> ORDER BY 2 desc;
+-------------+-------------+
| customer_id | num_rentals |
+-------------+-------------+
148	46
526	45
236	42
144	42
75	41
469	40
197	40
137	39
468	39
178	39
459	38
410	38
5	38
295	38
257	37
366	37
176	37

Ranking | 271

198	37
267	36
439	36
354	36
348	36
380	36
29	36
371	35
403	35
21	35
...	
136	15
248	15
110	14
281	14
61	14
318	12
+-------------+-------------+
599 rows in set (0.16 sec)

Looking at the results, the third and fourth customers in the result set both rented 42
films; should they both receive the same ranking of 3? And if so, should the customer
with 41 rentals be given the ranking 4, or should we skip one and assign ranking 5?
To see how each function handles ties when assigning rankings, the next query adds
three more columns, each one employing a different ranking function:

mysql> SELECT customer_id, count(*) num_rentals,
 -> row_number() over (order by count(*) desc) row_number_rnk,
 -> rank() over (order by count(*) desc) rank_rnk,
 -> dense_rank() over (order by count(*) desc) dense_rank_rnk
 -> FROM rental
 -> GROUP BY customer_id
 -> ORDER BY 2 desc;
+-------------+-------------+----------------+----------+----------------+
| customer_id | num_rentals | row_number_rnk | rank_rnk | dense_rank_rnk |
+-------------+-------------+----------------+----------+----------------+
148	46	1	1	1
526	45	2	2	2
144	42	3	3	3
236	42	4	3	3
75	41	5	5	4
197	40	6	6	5
469	40	7	6	5
468	39	10	8	6
137	39	8	8	6
178	39	9	8	6
5	38	11	11	7
295	38	12	11	7
410	38	13	11	7
459	38	14	11	7
198	37	16	15	8
257	37	17	15	8

272 | Chapter 16: Analytic Functions

366	37	18	15	8
176	37	15	15	8
348	36	21	19	9
354	36	22	19	9
380	36	23	19	9
439	36	24	19	9
29	36	19	19	9
267	36	20	19	9
50	35	26	25	10
506	35	37	25	10
368	35	32	25	10
91	35	27	25	10
371	35	33	25	10
196	35	28	25	10
373	35	34	25	10
204	35	29	25	10
381	35	35	25	10
273	35	30	25	10
21	35	25	25	10
403	35	36	25	10
274	35	31	25	10
66	34	42	38	11
...				
136	15	594	594	30
248	15	595	594	30
110	14	597	596	31
281	14	598	596	31
61	14	596	596	31
318	12	599	599	32
+-------------+-------------+----------------+----------+----------------+
599 rows in set (0.01 sec)

The third column uses the row_number function to assign a unique ranking to each
row, without regard to ties. Each of the 599 rows is assigned a number from 1 to 599,
with the ranking value arbitrarily assigned for customers who have the same number
of film rentals. The next two columns, however, assign the same ranking in case of a
tie, but the difference lies in whether or not a gap is left in the ranking values after a
tie. Looking at row 5 of the result set, you can see that the rank function skips the
value 4 and assigns the value 5, whereas the dense_rank function assigns the value 4.

To get back to the original request, how would you identify the top 10 customers?
There are three possible solutions:

• Use the row_number function to identify customers ranked from 1 to 10, which
results in exactly 10 customers in this example, but in other cases might exclude
customers having the same number of rentals as the 10th ranked customer.

• Use the rank function to identify customers ranked 10 or less, which also results
in exactly 10 customers.

Ranking | 273

• Use the dense_rank function to identify customers ranked 10 or less, which
yields a list of 37 customers.

If there are no ties in your result set, then any of these functions will suffice, but for
many situations the rank function may be the best option.

Generating Multiple Rankings
The example in the previous section generates a single ranking across the entire set of
customers, but what if you want to generate multiple sets of rankings within the same
result set? To extend the prior example, let’s say the marketing department decides to
offer free film rentals to the top five customers every month. To generate the data, the
rental_month column can be added to the previous query:

mysql> SELECT customer_id,
 -> monthname(rental_date) rental_month,
 -> count(*) num_rentals
 -> FROM rental
 -> GROUP BY customer_id, monthname(rental_date)
 -> ORDER BY 2, 3 desc;
+-------------+--------------+-------------+
| customer_id | rental_month | num_rentals |
+-------------+--------------+-------------+
119	August	18
15	August	18
569	August	18
148	August	18
141	August	17
21	August	17
266	August	17
418	August	17
410	August	17
342	August	17
274	August	16
...		
281	August	2
318	August	1
75	February	3
155	February	2
175	February	2
516	February	2
361	February	2
269	February	2
208	February	2
53	February	2
...		
22	February	1
472	February	1
148	July	22
102	July	21

274 | Chapter 16: Analytic Functions

236	July	20
75	July	20
91	July	19
30	July	19
64	July	19
137	July	19
...		
339	May	1
485	May	1
116	May	1
497	May	1
180	May	1
+-------------+--------------+-------------+
2466 rows in set (0.02 sec)

In order to create a new set of rankings for each month, you will need to add some‐
thing to the rank function to describe how to divide the result set into different data
windows (months, in this case). This is done using the partition by clause, which is
added to the over clause:

mysql> SELECT customer_id,
 -> monthname(rental_date) rental_month,
 -> count(*) num_rentals,
 -> rank() over (partition by monthname(rental_date)
 -> order by count(*) desc) rank_rnk
 -> FROM rental
 -> GROUP BY customer_id, monthname(rental_date)
 -> ORDER BY 2, 3 desc;
+-------------+--------------+-------------+----------+
| customer_id | rental_month | num_rentals | rank_rnk |
+-------------+--------------+-------------+----------+
569	August	18	1
119	August	18	1
148	August	18	1
15	August	18	1
141	August	17	5
410	August	17	5
418	August	17	5
21	August	17	5
266	August	17	5
342	August	17	5
144	August	16	11
274	August	16	11
...			
164	August	2	596
318	August	1	599
75	February	3	1
457	February	2	2
53	February	2	2
354	February	2	2

| 352 | February | 1 | 24 |

Ranking | 275

373	February	1	24
148	July	22	1
102	July	21	2
236	July	20	3
75	July	20	3
91	July	19	5
354	July	19	5
30	July	19	5
64	July	19	5
137	July	19	5
526	July	19	5
366	July	19	5
595	July	19	5
469	July	18	13
...			
457	May	1	347
356	May	1	347
481	May	1	347
10	May	1	347
+-------------+--------------+-------------+----------+
2466 rows in set (0.03 sec)

Looking at the results, you can see that the rankings are reset to 1 for each month. In
order to generate the desired results for the marketing department (top five custom‐
ers from each month), you can simply wrap the previous query in a subquery and add
a filter condition to exclude any rows with a ranking higher than five:

SELECT customer_id, rental_month, num_rentals,
 rank_rnk ranking
FROM
 (SELECT customer_id,
 monthname(rental_date) rental_month,
 count(*) num_rentals,
 rank() over (partition by monthname(rental_date)
 order by count(*) desc) rank_rnk
 FROM rental
 GROUP BY customer_id, monthname(rental_date)
) cust_rankings
WHERE rank_rnk <= 5
ORDER BY rental_month, num_rentals desc, rank_rnk;

Since analytic functions can be used only in the SELECT clause, you will often need to
nest queries if you need to do any filtering or grouping based on the results from the
analytic function.

276 | Chapter 16: Analytic Functions

Reporting Functions
Along with generating rankings, another common use for analytic functions is to find
outliers (e.g., min or max values) or to generate sums or averages across an entire
data set. For these types of uses, you will be using aggregate functions (min, max, avg,
sum, count), but instead of using them with a group by clause, you will pair them
with an over clause. Here’s an example that generates monthly and grand totals for all
payments of $10 or higher:

mysql> SELECT monthname(payment_date) payment_month,
 -> amount,
 -> sum(amount)
 -> over (partition by monthname(payment_date)) monthly_total,
 -> sum(amount) over () grand_total
 -> FROM payment
 -> WHERE amount >= 10
 -> ORDER BY 1;
+---------------+--------+---------------+-------------+
| payment_month | amount | monthly_total | grand_total |
+---------------+--------+---------------+-------------+
August	10.99	521.53	1262.86
August	11.99	521.53	1262.86
August	10.99	521.53	1262.86
August	10.99	521.53	1262.86
...			
August	10.99	521.53	1262.86
August	10.99	521.53	1262.86
August	10.99	521.53	1262.86
July	10.99	519.53	1262.86
July	10.99	519.53	1262.86
July	10.99	519.53	1262.86
July	10.99	519.53	1262.86
...			
July	10.99	519.53	1262.86
July	10.99	519.53	1262.86
July	10.99	519.53	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	11.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86
June	10.99	165.85	1262.86

Reporting Functions | 277

May	10.99	55.95	1262.86
May	10.99	55.95	1262.86
May	10.99	55.95	1262.86
May	10.99	55.95	1262.86
May	11.99	55.95	1262.86
+---------------+--------+---------------+-------------+
114 rows in set (0.01 sec)

The grand_total column contains the same value ($1,262.86) for every row because
the over clause is empty, which specifies that the summation be done over the entire
result set. The monthly_total column, however, contains a different value for each
month, since there is a partition by clause specifying that the result set be split into
multiple data windows (one for each month).

While it may seem of little value to include a column such as grand_total with the
same value for every row, these types of columns can also be used for calculations, as
shown in the following query:

mysql> SELECT monthname(payment_date) payment_month,
 -> sum(amount) month_total,
 -> round(sum(amount) / sum(sum(amount)) over ()
 -> * 100, 2) pct_of_total
 -> FROM payment
 -> GROUP BY monthname(payment_date);
+---------------+-------------+--------------+
| payment_month | month_total | pct_of_total |
+---------------+-------------+--------------+
May	4824.43	7.16
June	9631.88	14.29
July	28373.89	42.09
August	24072.13	35.71
February	514.18	0.76
+---------------+-------------+--------------+
5 rows in set (0.04 sec)

This query calculates the total payments for each month by summing the amount col‐
umn, and then calculates the percentage of the total payments for each month by
summing the monthly sums to use as the denominator in the calculation.

Reporting functions may also be used for comparisons, such as the next query, which
uses a case expression to determine whether a monthly total is the max, min, or
somewhere in the middle:

mysql> SELECT monthname(payment_date) payment_month,
 -> sum(amount) month_total,
 -> CASE sum(amount)
 -> WHEN max(sum(amount)) over () THEN 'Highest'
 -> WHEN min(sum(amount)) over () THEN 'Lowest'
 -> ELSE 'Middle'
 -> END descriptor
 -> FROM payment

278 | Chapter 16: Analytic Functions

 -> GROUP BY monthname(payment_date);
+---------------+-------------+------------+
| payment_month | month_total | descriptor |
+---------------+-------------+------------+
May	4824.43	Middle
June	9631.88	Middle
July	28373.89	Highest
August	24072.13	Middle
February	514.18	Lowest
+---------------+-------------+------------+
5 rows in set (0.04 sec)

The descriptor column acts as a quasi-ranking function, in that it helps identify the
top/bottom values across a set of rows.

Window Frames
As described earlier in the chapter, data windows for analytic functions are defined
using the partition by clause, which allows you to group rows by common values.
But what if you need even finer control over which rows to include in a data window?
For example, perhaps you want to generate a running total starting from the begin‐
ning of the year up to the current row. For these types of calculations, you can include
a “frame” subclause to define exactly which rows to include in the data window.
Here’s a query that sums payments for each week and includes a reporting function to
calculate the rolling sum:

mysql> SELECT yearweek(payment_date) payment_week,
 -> sum(amount) week_total,
 -> sum(sum(amount))
 -> over (order by yearweek(payment_date)
 -> rows unbounded preceding) rolling_sum
 -> FROM payment
 -> GROUP BY yearweek(payment_date)
 -> ORDER BY 1;
+--------------+------------+-------------+
| payment_week | week_total | rolling_sum |
+--------------+------------+-------------+
200521	2847.18	2847.18
200522	1977.25	4824.43
200524	5605.42	10429.85
200525	4026.46	14456.31
200527	8490.83	22947.14
200528	5983.63	28930.77
200530	11031.22	39961.99
200531	8412.07	48374.06
200533	10619.11	58993.17
200534	7909.16	66902.33
200607	514.18	67416.51
+--------------+------------+-------------+
11 rows in set (0.04 sec)

Reporting Functions | 279

The rolling_sum column expression includes the rows unbounded preceding sub‐
clause to define a data window from the beginning of the result set up to and includ‐
ing the current row. The data window consists of a single row for the first row in the
result set, two rows for the second row, etc. The value for the last row is the summa‐
tion of the entire result set.

Along with rolling sums, you can calculate rolling averages. Here’s a query that calcu‐
lates a three-week rolling average of total payments:

mysql> SELECT yearweek(payment_date) payment_week,
 -> sum(amount) week_total,
 -> avg(sum(amount))
 -> over (order by yearweek(payment_date)
 -> rows between 1 preceding and 1 following) rolling_3wk_avg
 -> FROM payment
 -> GROUP BY yearweek(payment_date)
 -> ORDER BY 1;
+--------------+------------+-----------------+
| payment_week | week_total | rolling_3wk_avg |
+--------------+------------+-----------------+
200521	2847.18	2412.215000
200522	1977.25	3476.616667
200524	5605.42	3869.710000
200525	4026.46	6040.903333
200527	8490.83	6166.973333
200528	5983.63	8501.893333
200530	11031.22	8475.640000
200531	8412.07	10020.800000
200533	10619.11	8980.113333
200534	7909.16	6347.483333
200607	514.18	4211.670000
+--------------+------------+-----------------+
11 rows in set (0.03 sec)

The rolling_3wk_avg column defines a data window consisting of the current row,
the prior row, and the next row. The data window will therefore consist of three rows,
except for the first and last rows, which will have a data window consisting of just two
rows (since there is no prior row for the first row and no next row for the last row).

Specifying a number of rows for your data window works fine in many cases, but if
there are gaps in your data, you might want to try a different approach. In the previ‐
ous result set, for example, there is data for weeks 200521, 200522, and 200524, but
no data for week 200523. If you want to specify a date interval rather than a number
of rows, you can specify a range for your data window, as shown in the following
query:

mysql> SELECT date(payment_date), sum(amount),
 -> avg(sum(amount)) over (order by date(payment_date)
 -> range between interval 3 day preceding
 -> and interval 3 day following) 7_day_avg

280 | Chapter 16: Analytic Functions

 -> FROM payment
 -> WHERE payment_date BETWEEN '2005-07-01' AND '2005-09-01'
 -> GROUP BY date(payment_date)
 -> ORDER BY 1;
+--------------------+-------------+-------------+
| date(payment_date) | sum(amount) | 7_day_avg |
+--------------------+-------------+-------------+
2005-07-05	128.73	1603.740000
2005-07-06	2131.96	1698.166000
2005-07-07	1943.39	1738.338333
2005-07-08	2210.88	1766.917143
2005-07-09	2075.87	2049.390000
2005-07-10	1939.20	2035.628333
2005-07-11	1938.39	2054.076000
2005-07-12	2106.04	2014.875000
2005-07-26	160.67	2046.642500
2005-07-27	2726.51	2206.244000
2005-07-28	2577.80	2316.571667
2005-07-29	2721.59	2388.102857
2005-07-30	2844.65	2754.660000
2005-07-31	2868.21	2759.351667
2005-08-01	2817.29	2795.662000
2005-08-02	2726.57	2814.180000
2005-08-16	111.77	1973.837500
2005-08-17	2457.07	2123.822000
2005-08-18	2710.79	2238.086667
2005-08-19	2615.72	2286.465714
2005-08-20	2723.76	2630.928571
2005-08-21	2809.41	2659.905000
2005-08-22	2576.74	2649.728000
2005-08-23	2523.01	2658.230000
+--------------------+-------------+-------------+
24 rows in set (0.03 sec)

The 7_day_avg column specifies a range of +/-3 days and will include only those rows
whose payment_date values fall within that range. For the 2005-08-16 calculation, for
example, only the values for 08-16, 08-17, 08-18, and 08-19 are included, since there
are no rows for the three prior dates (08-13 through 08-15).

Lag and Lead
Along with computing sums and averages over a data window, another common
reporting task involves comparing values from one row to another. For example, if
you are generating monthly sales totals, you may be asked to create a column show‐
ing the percentage difference from the prior month, which will require a way to
retrieve the monthly sales total from the previous row. This can be accomplished
using the lag function, which will retrieve a column value from a prior row in the
result set, or the lead function, which will retrieve a column value from a following
row. Here’s an example using both functions:

Reporting Functions | 281

mysql> SELECT yearweek(payment_date) payment_week,
 -> sum(amount) week_total,
 -> lag(sum(amount), 1)
 -> over (order by yearweek(payment_date)) prev_wk_tot,
 -> lead(sum(amount), 1)
 -> over (order by yearweek(payment_date)) next_wk_tot
 -> FROM payment
 -> GROUP BY yearweek(payment_date)
 -> ORDER BY 1;
+--------------+------------+-------------+-------------+
| payment_week | week_total | prev_wk_tot | next_wk_tot |
+--------------+------------+-------------+-------------+
200521	2847.18	NULL	1977.25
200522	1977.25	2847.18	5605.42
200524	5605.42	1977.25	4026.46
200525	4026.46	5605.42	8490.83
200527	8490.83	4026.46	5983.63
200528	5983.63	8490.83	11031.22
200530	11031.22	5983.63	8412.07
200531	8412.07	11031.22	10619.11
200533	10619.11	8412.07	7909.16
200534	7909.16	10619.11	514.18
200607	514.18	7909.16	NULL
+--------------+------------+-------------+-------------+
11 rows in set (0.03 sec)

Looking at the results, the weekly total of 8,490.43 for week 200527 also appears in
the next_wk_tot column for week 200525, as well as in the prev_wk_tot column for
week 200528. Since there is no row prior to 200521 in the result set, the value gener‐
ated by the lag function is null for the first row; likewise, the value generated by the
lead function is null for the last row in the result set. Both lag and lead allow for an
optional second parameter (which defaults to 1) to describe the number of rows
prior/following from which to retrieve the column value.

Here’s how you could use the lag function to generate the percentage difference from
the prior week:

mysql> SELECT yearweek(payment_date) payment_week,
 -> sum(amount) week_total,
 -> round((sum(amount) - lag(sum(amount), 1)
 -> over (order by yearweek(payment_date)))
 -> / lag(sum(amount), 1)
 -> over (order by yearweek(payment_date))
 -> * 100, 1) pct_diff
 -> FROM payment
 -> GROUP BY yearweek(payment_date)
 -> ORDER BY 1;
+--------------+------------+----------+
| payment_week | week_total | pct_diff |
+--------------+------------+----------+
| 200521 | 2847.18 | NULL |

282 | Chapter 16: Analytic Functions

200522	1977.25	-30.6
200524	5605.42	183.5
200525	4026.46	-28.2
200527	8490.83	110.9
200528	5983.63	-29.5
200530	11031.22	84.4
200531	8412.07	-23.7
200533	10619.11	26.2
200534	7909.16	-25.5
200607	514.18	-93.5
+--------------+------------+----------+
11 rows in set (0.07 sec)

Comparing values from different rows in the same result set is a common practice in
reporting systems, so you will likely find many uses for the lag and lead functions.

Column Value Concatenation
Although not technically an analytic function, there is one more important function
to demonstrate since it works with groups of rows within a data window. The
group_concat function is used to pivot a set of column values into a single delimited
string, which is a handy way to denormalize your result set for generating XML or
JSON documents. Here’s an example of how this function could be used to generate a
comma-delimited list of actors for each film:

mysql> SELECT f.title,
 -> group_concat(a.last_name order by a.last_name
 -> separator ', ') actors
 -> FROM actor a
 -> INNER JOIN film_actor fa
 -> ON a.actor_id = fa.actor_id
 -> INNER JOIN film f
 -> ON fa.film_id = f.film_id
 -> GROUP BY f.title
 -> HAVING count(*) = 3;
+------------------------+--------------------------------+
| title | actors |
+------------------------+--------------------------------+
ANNIE IDENTITY	GRANT, KEITEL, MCQUEEN
ANYTHING SAVANNAH	MONROE, SWANK, WEST
ARK RIDGEMONT	BAILEY, DEGENERES, GOLDBERG
ARSENIC INDEPENDENCE	ALLEN, KILMER, REYNOLDS
...	
WHISPERER GIANT	BAILEY, PECK, WALKEN
WIND PHANTOM	BALL, DENCH, GUINESS
ZORRO ARK	DEGENERES, MONROE, TANDY
+------------------------+--------------------------------+
119 rows in set (0.04 sec)

This query groups rows by film title and only includes films in which exactly three
actors appear. The group_concat function acts like a special type of aggregate

Reporting Functions | 283

function that pivots all of the last names of all actors appearing in each film into a
single string. If you are using SQL Server, you can use the string_agg function to
generate this type of output, and Oracle users can use the listagg function.

Test Your Knowledge
The following exercises are designed to test your understanding of analytic functions.
When you’re finished, see Appendix B for the solutions.

For all exercises in this section, use the following data set from the Sales_Fact table:

Sales_Fact
+---------+----------+-----------+
| year_no | month_no | tot_sales |
+---------+----------+-----------+
2019	1	19228
2019	2	18554
2019	3	17325
2019	4	13221
2019	5	9964
2019	6	12658
2019	7	14233
2019	8	17342
2019	9	16853
2019	10	17121
2019	11	19095
2019	12	21436
2020	1	20347
2020	2	17434
2020	3	16225
2020	4	13853
2020	5	14589
2020	6	13248
2020	7	8728
2020	8	9378
2020	9	11467
2020	10	13842
2020	11	15742
2020	12	18636
+---------+----------+-----------+
24 rows in set (0.00 sec)

Exercise 16-1
Write a query that retrieves every row from Sales_Fact, and add a column to gener‐
ate a ranking based on the tot_sales column values. The highest value should
receive a ranking of 1, and the lowest a ranking of 24.

284 | Chapter 16: Analytic Functions

Exercise 16-2
Modify the query from the previous exercise to generate two sets of rankings from 1
to 12, one for 2019 data and one for 2020.

Exercise 16-3
Write a query that retrieves all 2020 data, and include a column that will contain the
tot_sales value from the previous month.

Test Your Knowledge | 285

CHAPTER 17

Working with Large Databases

In the early days of relational databases, hard drive capacity was measured in mega‐
bytes, and databases were generally easy to administer simply because they couldn’t
get very large. Today, however, hard drive capacity has ballooned to 15 TB, a modern
disk array can store more than 4 PB of data, and storage in the cloud is essentially
limitless. While relational databases face various challenges as data volumes continue
to grow, there are strategies such as partitioning, clustering, and sharding that allow
companies to continue to utilize relational databases by spreading data across multi‐
ple storage tiers and servers. Other companies have decided to move to big data plat‐
forms such as Hadoop in order to handle huge data volumes. This chapter looks at
some of these strategies, with an emphasis on techniques for scaling relational
databases.

Partitioning
When exactly does a database table become “too big”? If you ask this question to 10
different data architects/administrators/developers, you will likely get 10 different
answers. Most people, however, would agree that the following tasks become more
difficult and/or time consuming as a table grows past a few million rows:

• Query execution requiring full table scans
• Index creation/rebuild
• Data archival/deletion
• Generation of table/index statistics
• Table relocation (e.g., move to a different tablespace)
• Database backups

287

These tasks can start as routine when a database is small, then become time consum‐
ing as more data accumulates, and then become problematic/impossible due to limi‐
ted administrative time windows. The best way to prevent administrative issues from
occurring in the future is to break large tables into pieces, or partitions, when the
table is first created (although tables can be partitioned later, it is easier to do so ini‐
tially). Administrative tasks can be performed on individual partitions, often in paral‐
lel, and some tasks can skip one or more partitions entirely.

Partitioning Concepts
Table partitioning was introduced in the late 1990s by Oracle, but since then every
major database server has added the ability to partition tables and indexes. When a
table is partitioned, two or more table partitions are created, each having the exact
same definition but with nonoverlapping subsets of data. For example, a table con‐
taining sales data could be partitioned by month using the column containing the sale
date, or it could be partitioned by geographic region using the state/province code.

Once a table has been partitioned, the table itself becomes a virtual concept; the parti‐
tions hold the data, and any indexes are built on the data in the partitions. However,
the database users can still interact with the table without knowing that the table had
been partitioned. This is similar in concept to a view, in that the users interact with
schema objects that are interfaces rather than actual tables. While every partition
must have the same schema definition (columns, column types, etc.), there are several
administrative features that can differ for each partition:

• Partitions may be stored on different tablespaces, which can be on different phys‐
ical storage tiers.

• Partitions can be compressed using different compression schemes.
• Local indexes (more on this shortly) can be dropped for some partitions.
• Table statistics can be frozen on some partitions, while being periodically

refreshed on others.
• Individual partitions can be pinned into memory or stored in the database’s flash

storage tier.

Thus, table partitioning allows for flexibility with data storage and administration,
while still presenting the simplicity of a single table to your user community.

Table Partitioning
The partitioning scheme available in most relational databases is horizontal partition‐
ing, which assigns entire rows to exactly one partition. Tables may also be partitioned
vertically, which involves assigning sets of columns to different partitions, but this
must be done manually. When partitioning a table horizontally, you must choose a

288 | Chapter 17: Working with Large Databases

partition key, which is the column whose values are used to assign a row to a particu‐
lar partition. In most cases, a table’s partition key consists of a single column, and a
partitioning function is applied to this column to determine in which partition each
row should reside.

Index Partitioning
If your partitioned table has indexes, you will get to choose whether a particular
index should stay intact, known as a global index, or be broken into pieces such that
each partition has its own index, which is called a local index. Global indexes span all
partitions of the table and are useful for queries that do not specify a value for the
partition key. For example, let’s say your table is partitioned on the sale_date col‐
umn, and a user executes the following query:

SELECT sum(amount) FROM sales WHERE geo_region_cd = 'US'

Since this query does not include a filter condition on the sale_date column, the
server will need to search every partition in order to find the total US sales. If a global
index is built on the geo_region_cd column, however, then the server could use this
index to quickly find all of the rows containing US sales.

Partitioning Methods
While each database server has its own unique partitioning features, the next three
sections describe the common partitioning methods available across most servers.

Range partitioning
Range partitioning was the first partitioning method to be implemented, and it is still
one of the most widely used. While range partitioning can be used for several differ‐
ent column types, the most common usage is to break up tables by date ranges. For
example, a table named sales could be partitioned using the sale_date column such
that data for each week is stored in a different partition:

mysql> CREATE TABLE sales
 -> (sale_id INT NOT NULL,
 -> cust_id INT NOT NULL,
 -> store_id INT NOT NULL,
 -> sale_date DATE NOT NULL,
 -> amount DECIMAL(9,2)
 ->)
 -> PARTITION BY RANGE (yearweek(sale_date))
 -> (PARTITION s1 VALUES LESS THAN (202002),
 -> PARTITION s2 VALUES LESS THAN (202003),
 -> PARTITION s3 VALUES LESS THAN (202004),
 -> PARTITION s4 VALUES LESS THAN (202005),
 -> PARTITION s5 VALUES LESS THAN (202006),
 -> PARTITION s999 VALUES LESS THAN (MAXVALUE)

Partitioning | 289

 ->);
Query OK, 0 rows affected (1.78 sec)

This statement creates six different partitions, one for each of the first five weeks of
2020 and a sixth partition named s999 to hold any rows beyond week five of year
2020. For this table, the yearweek(sale_date) expression is used as the partitioning
function, and the sale_date column serves as the partitioning key. To see the meta‐
data about your partitioned tables, you can use the partitions table in the informa
tion_schema database:

mysql> SELECT partition_name, partition_method, partition_expression
 -> FROM information_schema.partitions
 -> WHERE table_name = 'sales'
 -> ORDER BY partition_ordinal_position;
+----------------+------------------+-------------------------+
| PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION |
+----------------+------------------+-------------------------+
s1	RANGE	yearweek(`sale_date`,0)
s2	RANGE	yearweek(`sale_date`,0)
s3	RANGE	yearweek(`sale_date`,0)
s4	RANGE	yearweek(`sale_date`,0)
s5	RANGE	yearweek(`sale_date`,0)
s999	RANGE	yearweek(`sale_date`,0)
+----------------+------------------+-------------------------+
6 rows in set (0.00 sec)

One of the administrative tasks that will need to be performed on the sales table
involves generating new partitions to hold future data (to keep data from being added
to the maxvalue partition). Different databases handle this in different ways, but in
MySQL you could use the reorganize partition clause of the alter table com‐
mand to split the s999 partition into three pieces:

ALTER TABLE sales REORGANIZE PARTITION s999 INTO
 (PARTITION s6 VALUES LESS THAN (202007),
 PARTITION s7 VALUES LESS THAN (202008),
 PARTITION s999 VALUES LESS THAN (MAXVALUE)
);

If you execute the previous metadata query again, you will now see eight partitions:

mysql> SELECT partition_name, partition_method, partition_expression
 -> FROM information_schema.partitions
 -> WHERE table_name = 'sales'
 -> ORDER BY partition_ordinal_position;
+----------------+------------------+-------------------------+
| PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION |
+----------------+------------------+-------------------------+
s1	RANGE	yearweek(`sale_date`,0)
s2	RANGE	yearweek(`sale_date`,0)
s3	RANGE	yearweek(`sale_date`,0)
s4	RANGE	yearweek(`sale_date`,0)
s5	RANGE	yearweek(`sale_date`,0)

290 | Chapter 17: Working with Large Databases

s6	RANGE	yearweek(`sale_date`,0)
s7	RANGE	yearweek(`sale_date`,0)
s999	RANGE	yearweek(`sale_date`,0)
+----------------+------------------+-------------------------+
8 rows in set (0.00 sec)

Next, let’s add a couple of rows to the table:

mysql> INSERT INTO sales
 -> VALUES
 -> (1, 1, 1, '2020-01-18', 2765.15),
 -> (2, 3, 4, '2020-02-07', 5322.08);
Query OK, 2 rows affected (0.18 sec)
Records: 2 Duplicates: 0 Warnings: 0

The table now has two rows, but into which partitions were they inserted? To find
out, let’s use the partition subclause of the from clause to count the number of rows
in each partition:

mysql> SELECT concat('# of rows in S1 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s1) UNION ALL
 -> SELECT concat('# of rows in S2 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s2) UNION ALL
 -> SELECT concat('# of rows in S3 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s3) UNION ALL
 -> SELECT concat('# of rows in S4 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s4) UNION ALL
 -> SELECT concat('# of rows in S5 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s5) UNION ALL
 -> SELECT concat('# of rows in S6 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s6) UNION ALL
 -> SELECT concat('# of rows in S7 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s7) UNION ALL
 -> SELECT concat('# of rows in S999 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (s999);
+-----------------------+
| partition_rowcount |
+-----------------------+
| # of rows in S1 = 0 |
| # of rows in S2 = 1 |
| # of rows in S3 = 0 |
| # of rows in S4 = 0 |
| # of rows in S5 = 1 |
| # of rows in S6 = 0 |
| # of rows in S7 = 0 |
| # of rows in S999 = 0 |
+-----------------------+
8 rows in set (0.00 sec)

The results show that one row was inserted into partition S2, and the other row was
inserted into the S5 partition. The ability to query a specific partition involves
knowing the partitioning scheme, so it is unlikely that your user community will be

Partitioning | 291

executing these types of queries, but they are commonly used for administrative types
of activities.

List partitioning
If the column chosen as the partitioning key contains state codes (e.g., CA, TX, VA,
etc.), currencies (e.g., USD, EUR, JPY, etc.), or some other enumerated set of values,
you may want to utilize list partitioning, which allows you to specify which values
will be assigned to each partition. For example, let’s say that the sales table includes
the column geo_region_cd, which contains the following values:

+---------------+--------------------------+
| geo_region_cd | description |
+---------------+--------------------------+
US_NE	United States North East
US_SE	United States South East
US_MW	United States Mid West
US_NW	United States North West
US_SW	United States South West
CAN	Canada
MEX	Mexico
EUR_E	Eastern Europe
EUR_W	Western Europe
CHN	China
JPN	Japan
IND	India
KOR	Korea
+---------------+--------------------------+
13 rows in set (0.00 sec)

You could group these values into geographic regions and create a partition for each
one, as in:

mysql> CREATE TABLE sales
 -> (sale_id INT NOT NULL,
 -> cust_id INT NOT NULL,
 -> store_id INT NOT NULL,
 -> sale_date DATE NOT NULL,
 -> geo_region_cd VARCHAR(6) NOT NULL,
 -> amount DECIMAL(9,2)
 ->)
 -> PARTITION BY LIST COLUMNS (geo_region_cd)
 -> (PARTITION NORTHAMERICA VALUES IN ('US_NE','US_SE','US_MW',
 -> 'US_NW','US_SW','CAN','MEX'),
 -> PARTITION EUROPE VALUES IN ('EUR_E','EUR_W'),
 -> PARTITION ASIA VALUES IN ('CHN','JPN','IND')
 ->);
Query OK, 0 rows affected (1.13 sec)

The table has three partitions, where each partition includes a set of two or more
geo_region_cd values. Next, let’s add a few rows to the table:

292 | Chapter 17: Working with Large Databases

mysql> INSERT INTO sales
 -> VALUES
 -> (1, 1, 1, '2020-01-18', 'US_NE', 2765.15),
 -> (2, 3, 4, '2020-02-07', 'CAN', 5322.08),
 -> (3, 6, 27, '2020-03-11', 'KOR', 4267.12);
ERROR 1526 (HY000): Table has no partition for value from column_list

It looks like there was a problem, and the error message indicates that one of the geo‐
graphic region codes was not assigned to a partition. Looking at the create table
statement, I see that I forgot to add Korea to the asia partition. This can be fixed
using an alter table statement:

mysql> ALTER TABLE sales REORGANIZE PARTITION ASIA INTO
 -> (PARTITION ASIA VALUES IN ('CHN','JPN','IND', 'KOR'));
Query OK, 0 rows affected (1.28 sec)
Records: 0 Duplicates: 0 Warnings: 0

That seemed to do the trick, but let’s check the metadata just to be sure:

mysql> SELECT partition_name, partition_expression,
 -> partition_description
 -> FROM information_schema.partitions
 -> WHERE table_name = 'sales'
 -> ORDER BY partition_ordinal_position;
+----------------+----------------------+---------------------------------+
| PARTITION_NAME | PARTITION_EXPRESSION | PARTITION_DESCRIPTION |
+----------------+----------------------+---------------------------------+
NORTHAMERICA	`geo_region_cd`	'US_NE','US_SE','US_MW','US_NW',
		'US_SW','CAN','MEX'
EUROPE	`geo_region_cd`	'EUR_E','EUR_W'
ASIA	`geo_region_cd`	'CHN','JPN','IND','KOR'
+----------------+----------------------+---------------------------------+
3 rows in set (0.00 sec)

Korea has indeed been added to the asia partition, and the data insertion will now
proceed without any issues:

mysql> INSERT INTO sales
 -> VALUES
 -> (1, 1, 1, '2020-01-18', 'US_NE', 2765.15),
 -> (2, 3, 4, '2020-02-07', 'CAN', 5322.08),
 -> (3, 6, 27, '2020-03-11', 'KOR', 4267.12);
Query OK, 3 rows affected (0.26 sec)
Records: 3 Duplicates: 0 Warnings: 0

While range partitioning allows for a maxvalue partition to catch any rows that don’t
map to any other partition, it’s important to keep in mind that list partitioning doesn’t
provide for a spillover partition. Thus, any time you need to add another column
value (e.g., the company starts selling products in Australia), you will need to modify
the partitioning definition before rows with the new value can be added to the table.

Partitioning | 293

Hash partitioning
If your partition key column doesn’t lend itself to range or list partitioning, there is a
third option that endeavors to distribute rows evenly across a set of partitions. The
server does this by applying a hashing function to the column value, and this type of
partitioning is (not surprisingly) called hash partitioning. Unlike list partitioning,
where the column chosen as the partitioning key should contain only a small number
of values, hash partitioning works best when the partitioning key column contains a
large number of distinct values. Here’s another version of the sales table but with
four hash partitions generated by hashing the values in the cust_id column:

mysql> CREATE TABLE sales
 -> (sale_id INT NOT NULL,
 -> cust_id INT NOT NULL,
 -> store_id INT NOT NULL,
 -> sale_date DATE NOT NULL,
 -> amount DECIMAL(9,2)
 ->)
 -> PARTITION BY HASH (cust_id)
 -> PARTITIONS 4
 -> (PARTITION H1,
 -> PARTITION H2,
 -> PARTITION H3,
 -> PARTITION H4
 ->);
Query OK, 0 rows affected (1.50 sec)

When rows are added to the sales table, they will be evenly distributed across the
four partitions, which I named H1, H2, H3, and H4. In order to see how good a job it
does, let’s add 16 rows, each with a different value for the cust_id column:

mysql> INSERT INTO sales
 -> VALUES
 -> (1, 1, 1, '2020-01-18', 1.1), (2, 3, 4, '2020-02-07', 1.2),
 -> (3, 17, 5, '2020-01-19', 1.3), (4, 23, 2, '2020-02-08', 1.4),
 -> (5, 56, 1, '2020-01-20', 1.6), (6, 77, 5, '2020-02-09', 1.7),
 -> (7, 122, 4, '2020-01-21', 1.8), (8, 153, 1, '2020-02-10', 1.9),
 -> (9, 179, 5, '2020-01-22', 2.0), (10, 244, 2, '2020-02-11', 2.1),
 -> (11, 263, 1, '2020-01-23', 2.2), (12, 312, 4, '2020-02-12', 2.3),
 -> (13, 346, 2, '2020-01-24', 2.4), (14, 389, 3, '2020-02-13', 2.5),
 -> (15, 472, 1, '2020-01-25', 2.6), (16, 502, 1, '2020-02-14', 2.7);
Query OK, 16 rows affected (0.19 sec)
Records: 16 Duplicates: 0 Warnings: 0

If the hashing function does a good job of distributing the rows evenly, we should
ideally see four rows in each of the four partitions:

mysql> SELECT concat('# of rows in H1 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (h1) UNION ALL
 -> SELECT concat('# of rows in H2 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (h2) UNION ALL

294 | Chapter 17: Working with Large Databases

 -> SELECT concat('# of rows in H3 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (h3) UNION ALL
 -> SELECT concat('# of rows in H4 = ', count(*)) partition_rowcount
 -> FROM sales PARTITION (h4);
+---------------------+
| partition_rowcount |
+---------------------+
| # of rows in H1 = 4 |
| # of rows in H2 = 5 |
| # of rows in H3 = 3 |
| # of rows in H4 = 4 |
+---------------------+
4 rows in set (0.00 sec)

Given that only 16 rows were inserted, this is a pretty good distribution, and as the
number of rows increases, each partition should contain close to 25% of the rows as
long as there are a reasonably large number of distinct values for the cust_id
column.

Composite partitioning
If you need finer-grained control of how data is allocated to your partitions, you can
employ composite partitioning, which allows you to use two different types of parti‐
tioning for the same table. With composite partitioning, the first partitioning method
defines the partitions, and the second partitioning method defines the subpartitions.
Here’s an example, again using the sales table, utilizing both range and hash
partitioning:

mysql> CREATE TABLE sales
 -> (sale_id INT NOT NULL,
 -> cust_id INT NOT NULL,
 -> store_id INT NOT NULL,
 -> sale_date DATE NOT NULL,
 -> amount DECIMAL(9,2)
 ->)
 -> PARTITION BY RANGE (yearweek(sale_date))
 -> SUBPARTITION BY HASH (cust_id)
 -> (PARTITION s1 VALUES LESS THAN (202002)
 -> (SUBPARTITION s1_h1,
 -> SUBPARTITION s1_h2,
 -> SUBPARTITION s1_h3,
 -> SUBPARTITION s1_h4),
 -> PARTITION s2 VALUES LESS THAN (202003)
 -> (SUBPARTITION s2_h1,
 -> SUBPARTITION s2_h2,
 -> SUBPARTITION s2_h3,
 -> SUBPARTITION s2_h4),
 -> PARTITION s3 VALUES LESS THAN (202004)
 -> (SUBPARTITION s3_h1,
 -> SUBPARTITION s3_h2,
 -> SUBPARTITION s3_h3,

Partitioning | 295

 -> SUBPARTITION s3_h4),
 -> PARTITION s4 VALUES LESS THAN (202005)
 -> (SUBPARTITION s4_h1,
 -> SUBPARTITION s4_h2,
 -> SUBPARTITION s4_h3,
 -> SUBPARTITION s4_h4),
 -> PARTITION s5 VALUES LESS THAN (202006)
 -> (SUBPARTITION s5_h1,
 -> SUBPARTITION s5_h2,
 -> SUBPARTITION s5_h3,
 -> SUBPARTITION s5_h4),
 -> PARTITION s999 VALUES LESS THAN (MAXVALUE)
 -> (SUBPARTITION s999_h1,
 -> SUBPARTITION s999_h2,
 -> SUBPARTITION s999_h3,
 -> SUBPARTITION s999_h4)
 ->);
Query OK, 0 rows affected (9.72 sec)

There are 6 partitions, each having 4 subpartitions, for a total of 24 subpartitions.
Next, let’s reinsert the 16 rows from the earlier example for hash partitioning:

mysql> INSERT INTO sales
 -> VALUES
 -> (1, 1, 1, '2020-01-18', 1.1), (2, 3, 4, '2020-02-07', 1.2),
 -> (3, 17, 5, '2020-01-19', 1.3), (4, 23, 2, '2020-02-08', 1.4),
 -> (5, 56, 1, '2020-01-20', 1.6), (6, 77, 5, '2020-02-09', 1.7),
 -> (7, 122, 4, '2020-01-21', 1.8), (8, 153, 1, '2020-02-10', 1.9),
 -> (9, 179, 5, '2020-01-22', 2.0), (10, 244, 2, '2020-02-11', 2.1),
 -> (11, 263, 1, '2020-01-23', 2.2), (12, 312, 4, '2020-02-12', 2.3),
 -> (13, 346, 2, '2020-01-24', 2.4), (14, 389, 3, '2020-02-13', 2.5),
 -> (15, 472, 1, '2020-01-25', 2.6), (16, 502, 1, '2020-02-14', 2.7);
Query OK, 16 rows affected (0.22 sec)
Records: 16 Duplicates: 0 Warnings: 0

When you query the sales table, you can retrieve data from one of the partitions, in
which case you retrieve data from the four subpartitions associated with the partition:

mysql> SELECT *
 -> FROM sales PARTITION (s3);
+---------+---------+----------+------------+--------+
| sale_id | cust_id | store_id | sale_date | amount |
+---------+---------+----------+------------+--------+
5	56	1	2020-01-20	1.60
15	472	1	2020-01-25	2.60
3	17	5	2020-01-19	1.30
7	122	4	2020-01-21	1.80
13	346	2	2020-01-24	2.40
9	179	5	2020-01-22	2.00
11	263	1	2020-01-23	2.20
+---------+---------+----------+------------+--------+
7 rows in set (0.00 sec)

296 | Chapter 17: Working with Large Databases

Because the table is subpartitioned, you may also retrieve data from a single
subpartition:

mysql> SELECT *
 -> FROM sales PARTITION (s3_h3);
+---------+---------+----------+------------+--------+
| sale_id | cust_id | store_id | sale_date | amount |
+---------+---------+----------+------------+--------+
| 7 | 122 | 4 | 2020-01-21 | 1.80 |
| 13 | 346 | 2 | 2020-01-24 | 2.40 |
+---------+---------+----------+------------+--------+
2 rows in set (0.00 sec)

This query retrieves data only from the s3_h3 subpartition of the s3 partition.

Partitioning Benefits
One major advantage to partitioning is that you may only need to interact with as few
as one partition, rather than the entire table. For example, if your table is range-
partitioned on the sales_date column and you execute a query that includes a filter
condition such as WHERE sales_date BETWEEN '2019-12-01' AND '2020-01-15',
the server will check the table’s metadata to determine which partitions actually need
to be included. This concept is called partition pruning, and it is one of the biggest
advantages of table partitioning.

Similarly, if you execute a query that includes a join to a partitioned table and the
query includes a condition on the partitioning column, the server can exclude any
partitions that do not contain data pertinent to the query. This is known as partition-
wise joins, and it is similar to partition pruning in that only those partitions that con‐
tain data needed by the query will be included.

From an administrative standpoint, one of the main benefits to partitioning is the
ability to quickly delete data that is no longer needed. For example, financial data may
need to be kept online for seven years; if a table has been partitioned based on trans‐
action dates, any partitions holding data greater than seven years old can be dropped.
Another administrative advantage to partitioned tables is the ability to perform
updates on multiple partitions simultaneously, which can greatly reduce the time
needed to touch every row in a table.

Clustering
With enough storage combined with a reasonable partitioning strategy, you can store
a great deal of data in a single relational database. But what happens if you need to
handle thousands of concurrent users or generate tens of thousands of reports during
a nightly cycle? Even if you have sufficient data storage, you may not have enough

Clustering | 297

CPU, memory, or network bandwidth within a single server. One potential answer is
clustering, which allows multiple servers to act as a single database.

Although there are several different clustering architectures, for the purposes of this
discussion I am referring to shared-disk/shared-cache configurations, where every
server in the cluster has access to all disks, and data cached in one server can be
accessed by any other server in the cluster. With this type of architecture, an applica‐
tion server could attach to any one of the database servers in the cluster, with connec‐
tions automatically failing over to another server in the cluster in case of failure. With
an eight-server cluster, you should be able to handle a very large number of concur‐
rent users and associated queries/reports/jobs.

Of the commercial database vendors, Oracle is the leader in this space, with many of
the world’s biggest companies using the Oracle Exadata platform to host extremely
large databases accessed by thousands of concurrent users. However, even this plat‐
form fails to meet the needs of the biggest companies, which led Google, Facebook,
Amazon, and other companies to blaze new trails.

Sharding
Let’s say you have been hired as the data architect for a new social media company.
You are told to expect approximately one billion users, each of whom will generate
3.7 messages per day on average, and the data must be available indefinitely. After
performing a few calculations, you determine that you would exhaust the biggest
available relational database platform in less than a year. One possibility would be to
partition not just individual tables but the entire database. Known as sharding, this
approach partitions the data across multiple databases (called shards), so it is similar
to table partitioning but on a larger scale and with far more complexity. If you were to
employ this strategy for the social media company, you might decide to implement
100 separate databases, each one hosting the data for approximately 10 million users.

Sharding is a complex topic, and since this is an introductory book, I will refrain
from going into detail, but here are a few of the issues that would need to be
addressed:

• You will need to choose a sharding key, which is the value used to determine to
which database to connect.

• While large tables will be divided into pieces, with individual rows assigned to a
single shard, smaller reference tables may need to be replicated to all shards, and
a strategy needs to be defined for how reference data can be modified and
changes propagated to all shards.

298 | Chapter 17: Working with Large Databases

• If individual shards become too large (e.g., the social media company now has
two billion users), you will need a plan for adding more shards and redistributing
data across the shards.

• When you need to make schema changes, you will need to have a strategy for
deploying the changes across all of the shards so that all schemas stay in sync.

• If application logic needs to access data stored in two or more shards, you need to
have a strategy for how to query across multiple databases and also how to imple‐
ment transactions across multiple databases.

If this seems complicated, that’s because it is, and by the late 2000s many companies
began looking for new approaches. The next section looks at other strategies for han‐
dling very large data sets completely outside the realm of relational databases.

Big Data
After spending some time weighing the pros and cons of sharding, let’s say that you
(the data architect of the social media company) decide to investigate other
approaches. Rather than attempting to forge your own path, you might benefit from
reviewing the work done by other companies that deal with massive amounts of data:
companies like Amazon, Google, Facebook, and Twitter. Together, the set of technol‐
ogies pioneered by these companies (and others) has been branded as big data, which
has become an industry buzzword but has several possible definitions. One way to
define the boundaries of big data is with the “3 Vs”:

Volume
In this context, volume generally means billions or trillions of data points.

Velocity
This is a measure of how quickly data arrives.

Variety
This means that data is not always structured (as in rows and columns in a rela‐
tional database) but can also be unstructured (e.g., emails, videos, photos, audio
files, etc.).

So, one way to characterize big data is any system designed to handle a huge amount
of data of various formats arriving at a rapid pace. The following sections offer a
quick description of some of the big data technologies that have evolved over the past
15 years or so.

Hadoop
Hadoop is best described as an ecosystem, or a set of technologies and tools that work
together. Some of the major components of Hadoop include:

Big Data | 299

Hadoop Distributed File System (HDFS)
Like the name implies, HDFS enables file management across a large number of
servers.

MapReduce
This technology processes large amounts of structured and unstructured data by
breaking a task into many small pieces that can be run in parallel across many
servers.

YARN
This is a resource manager and job scheduler for HDFS.

Together, these technologies allow for the storage and processing of files across hun‐
dreds or even thousands of servers acting as a single logical system. While Hadoop is
widely used, querying the data using MapReduce generally requires a programmer,
which has led to the development of several SQL interfaces, including Hive, Impala,
and Drill.

NoSQL and Document Databases
In a relational database, data must generally conform to a predefined schema consist‐
ing of tables made up of columns holding numbers, strings, dates, etc. What happens,
however, if the structure of the data isn’t known beforehand or if the structure is
known but changes frequently? The answer for many companies is to combine both
the data and schema definition into documents using a format such as XML or JSON
and then store the documents in a database. By doing so, various types of data can be
stored in the same database without the need to make schema modifications, which
makes storage easier but puts the burden on query and analytic tools to make sense of
the data stored in the documents.

Document databases are a subset of what are called NoSQL databases, which typically
store data using a simple key-value mechanism. For example, using a document data‐
base such as MongoDB, you could utilize the customer ID as the key to store a JSON
document containing all of the customer’s data, and other users can read the schema
stored within the document to make sense of the data stored within.

Cloud Computing
Prior to the advent of big data, most companies had to build their own data centers to
house the database, web, and application servers used across the enterprise. With the
advent of cloud computing, you can choose to essentially outsource your data center
to platforms such as Amazon Web Services (AWS), Microsoft Azure, or Google
Cloud. One of the biggest benefits to hosting your services in the cloud is instant scal‐
ability, which allows you to quickly dial up or down the amount of computing power
needed to run your services. Startups love these platforms because they can start

300 | Chapter 17: Working with Large Databases

writing code without spending any money up front for servers, storage, networks, or
software licenses.

As far as databases are concerned, a quick look at AWS’s database and analytics offer‐
ings yields the following options:

• Relational databases (MySQL, Aurora, PostgreSQL, MariaDB, Oracle, and SQL
Server)

• In-memory database (ElastiCache)
• Data warehousing database (Redshift)
• NoSQL database (DynamoDB)
• Document database (DocumentDB)
• Graph database (Neptune)
• Time-series database (TimeStream)
• Hadoop (EMR)
• Data lakes (Lake Formation)

While relational databases dominated the landscape up until the mid-2000s, it’s pretty
easy to see that companies are now mixing and matching various platforms and that
relational databases may become less popular over time.

Conclusion
Databases are getting larger, but at the same time storage, clustering, and partitioning
technologies are becoming more robust. Working with huge amounts of data can be
quite challenging, regardless of the technology stack. Whether you use relational
databases, big data platforms, or a variety of database servers, SQL is evolving to facil‐
itate data retrieval from various technologies. This will be the subject of the last chap‐
ter in this book, where I will demonstrate the use of a SQL engine to query data
stored in multiple formats.

Big Data | 301

CHAPTER 18

SQL and Big Data

While most of the content in this book covers the various features of the SQL lan‐
guage when using a relational database such as MySQL, the data landscape has
changed quite a bit over the past decade, and SQL is changing to meet the needs of
today’s rapidly evolving environments. Many organizations that had used relational
databases exclusively just a few years ago are now also housing data in Hadoop clus‐
ters, data lakes, and NoSQL databases. At the same time, companies are struggling to
find ways to gain insights from the ever-growing volumes of data, and the fact that
this data is now spread across multiple data stores, perhaps both on-site and in the
cloud, makes this a daunting task.

Because SQL is used by millions of people and has been integrated into thousands of
applications, it makes sense to leverage SQL to harness this data and make it actiona‐
ble. Over the past several years, a new breed of tools has emerged to enable SQL
access to structured, semi-structured, and unstructured data: tools such as Presto,
Apache Drill, and Toad Data Point. This chapter explores one of these tools, Apache
Drill, to demonstrate how data in different formats and stored on different servers
can be brought together for reporting and analysis.

Introduction to Apache Drill
There have been numerous tools and interfaces developed to allow SQL access to data
stored in Hadoop, NoSQL, Spark, and cloud-based distributed filesystems. Examples
include Hive, which was one of the first attempts to allow users to query data stored
in Hadoop, and Spark SQL, which is a library used to query data stored in various
formats from within Spark. One relative newcomer is the open source Apache Drill,
which first hit the scene in 2015 and has the following compelling features:

303

• Facilitates queries across multiple data formats, including delimited data, JSON,
Parquet, and log files

• Connects to relational databases, Hadoop, NoSQL, HBase, and Kafka, as well as
specialized data formats such as PCAP, BlockChain, and others

• Allows creation of custom plug-ins to connect to most any other data store
• Requires no up-front schema definitions
• Supports the SQL:2003 standard
• Works with popular business intelligence (BI) tools like Tableau and Apache

Superset

Using Drill, you can connect to any number of data sources and begin querying,
without the need to first set up a metadata repository. While it is beyond the scope of
this book to discuss the installation and configuration options for Apache Drill, if you
are interested in learning more, I highly recommend Learning Apache Drill by
Charles Givre and Paul Rogers (O’Reilly).

Querying Files Using Drill
Let’s start by using Drill to query data in a file. Drill understands how to read several
different file formats, including packet capture (PCAP) files, which are in binary for‐
mat and contain information about packets traveling over a network. All I have to do
when I want to query a PCAP file is to configure Drill’s dfs (distributed filesystem)
plug-in to include the path to the directory containing my files, and I’m ready to
write queries.

The first thing I’d like to do is find out what columns are available in the file I will be
querying. Drill includes partial support for information_schema (covered in Chap‐
ter 15), so you can find out high-level information about the data files in your
workspace:

apache drill> SELECT file_name, is_directory, is_file, permission
. > FROM information_schema.`files`
. > WHERE schema_name = 'dfs.data';
+-------------------+--------------+---------+------------+
| file_name | is_directory | is_file | permission |
+-------------------+--------------+---------+------------+
| attack-trace.pcap | false | true | rwxrwx--- |
+-------------------+--------------+---------+------------+
1 row selected (0.238 seconds)

The results show that I have a single file named attack-trace.pcap in my data work‐
space, which is useful information, but I can’t query information_schema.columns to

304 | Chapter 18: SQL and Big Data

https://learning.oreilly.com/library/view/learning-apache-drill/9781492032786/

1 These results show the columns in the file based on Drill’s understanding of the PCAP file structure. If you
query a file whose format is not known to Drill, the result set will contain an array of strings with a single
column named columns.

find out what columns are available in the file. However, executing a query that
returns no rows against the file will show the set of available columns:1

apache drill> SELECT * FROM dfs.data.`attack-trace.pcap`
. > WHERE 1=2;
+------+---------+-----------+-----------------+--------+--------+
| type | network | timestamp | timestamp_micro | src_ip | dst_ip |
+------+---------+-----------+-----------------+--------+--------+
 ----------+----------+-----------------+-----------------+-------------+
 src_port | dst_port | src_mac_address | dst_mac_address | tcp_session |
 ----------+----------+-----------------+-----------------+-------------+
 ---------+-----------+--------------+---------------+----------------+
 tcp_ack | tcp_flags | tcp_flags_ns | tcp_flags_cwr | tcp_flags_ece |
 ---------+-----------+--------------+---------------+----------------+
 ---------------------------+--------------------------------------+
 tcp_flags_ece_ecn_capable | tcp_flags_ece_congestion_experienced |
 ---------------------------+--------------------------------------+
 ---------------+---------------+---------------+---------------+
 tcp_flags_urg | tcp_flags_ack | tcp_flags_psh | tcp_flags_rst |
 ---------------+---------------+---------------+---------------+
 ---------------+---------------+------------------+---------------+
 tcp_flags_syn | tcp_flags_fin | tcp_parsed_flags | packet_length |
 ---------------+---------------+------------------+---------------+
 ------------+------+
 is_corrupt | data |
 ------------+------+

No rows selected (0.285 seconds)

Now that I know the names of the columns in a PCAP file, I’m ready to write queries.
Here’s a query that counts the number of packets sent from each IP address to each
destination port:

apache drill> SELECT src_ip, dst_port,
. > count(*) AS packet_count
. > FROM dfs.data.`attack-trace.pcap`
. > GROUP BY src_ip, dst_port;
+----------------+----------+--------------+
| src_ip | dst_port | packet_count |
+----------------+----------+--------------+
98.114.205.102	445	18
192.150.11.111	1821	3
192.150.11.111	1828	17
98.114.205.102	1957	6
192.150.11.111	1924	6
192.150.11.111	8884	15
98.114.205.102	36296	12

Querying Files Using Drill | 305

| 98.114.205.102 | 1080 | 159 |
| 192.150.11.111 | 2152 | 112 |
+----------------+----------+--------------+
9 rows selected (0.254 seconds)

Here’s another query that aggregates packet information for each second:

apache drill> SELECT trunc(extract(second from `timestamp`)) as packet_time,
. > count(*) AS num_packets,
. > sum(packet_length) AS tot_volume
. > FROM dfs.data.`attack-trace.pcap`
. > GROUP BY trunc(extract(second from `timestamp`));
+-------------+-------------+------------+
| packet_time | num_packets | tot_volume |
+-------------+-------------+------------+
28.0	15	1260
29.0	12	1809
30.0	13	4292
31.0	3	286
32.0	2	118
33.0	15	1054
34.0	35	14446
35.0	29	16926
36.0	25	16710
37.0	25	16710
38.0	26	17788
39.0	23	15578
40.0	25	16710
41.0	23	15578
42.0	30	20052
43.0	25	16710
44.0	22	7484
+-------------+-------------+------------+
17 rows selected (0.422 seconds)

In this query, I needed to put backticks (`) around timestamp because it is a reserved
word.

You can query files stored locally, on your network, in a distributed filesystem, or in
the cloud. Drill has built-in support for many file types, but you can also build your
own plug-in to allow Drill to query any type of file. The next two sections will explore
querying data stored in a database.

Querying MySQL Using Drill
Drill can connect to any relational database via a JDBC driver, so the next logical step
is to show how Drill can query the Sakila sample database used for the examples in
this book. All you need to do to get started is to load the JDBC driver for MySQL and
configure Drill to connect to the MySQL database.

306 | Chapter 18: SQL and Big Data

At this point, you may be wondering, “Why would I use Drill to
query MySQL?” One reason is that (as you will see at the end of
this chapter) you can write queries using Drill that combine data
from different sources, so you might write a query that joins data
from MySQL, Hadoop, and comma-delimited files, for example.

The first step is to choose a database:

apache drill (information_schema)> use mysql.sakila;
+------+--+
| ok | summary |
+------+--+
| true | Default schema changed to [mysql.sakila] |
+------+--+
1 row selected (0.062 seconds)

After choosing the database, you can issue the show tables command to see all of
the tables available in the chosen schema:

apache drill (mysql.sakila)> show tables;
+--------------+----------------------------+
| TABLE_SCHEMA | TABLE_NAME |
+--------------+----------------------------+
mysql.sakila	actor
mysql.sakila	address
mysql.sakila	category
mysql.sakila	city
mysql.sakila	country
mysql.sakila	customer
mysql.sakila	film
mysql.sakila	film_actor
mysql.sakila	film_category
mysql.sakila	film_text
mysql.sakila	inventory
mysql.sakila	language
mysql.sakila	payment
mysql.sakila	rental
mysql.sakila	sales
mysql.sakila	staff
mysql.sakila	store
mysql.sakila	actor_info
mysql.sakila	customer_list
mysql.sakila	film_list
mysql.sakila	nicer_but_slower_film_list
mysql.sakila	sales_by_film_category
mysql.sakila	sales_by_store
mysql.sakila	staff_list
+--------------+----------------------------+
24 rows selected (0.147 seconds)

I will start by executing a few queries demonstrated in earlier chapters. Here’s a sim‐
ple two-table join from Chapter 5:

Querying MySQL Using Drill | 307

apache drill (mysql.sakila)> SELECT a.address_id, a.address, ct.city
.)> FROM address a
.)> INNER JOIN city ct
.)> ON a.city_id = ct.city_id
.)> WHERE a.district = 'California';
+------------+------------------------+----------------+
| address_id | address | city |
+------------+------------------------+----------------+
6	1121 Loja Avenue	San Bernardino
18	770 Bydgoszcz Avenue	Citrus Heights
55	1135 Izumisano Parkway	Fontana
116	793 Cam Ranh Avenue	Lancaster
186	533 al-Ayn Boulevard	Compton
218	226 Brest Manor	Sunnyvale
274	920 Kumbakonam Loop	Salinas
425	1866 al-Qatif Avenue	El Monte
599	1895 Zhezqazghan Drive	Garden Grove
+------------+------------------------+----------------+
9 rows selected (3.523 seconds)

The next query comes from Chapter 8 and includes both a group by clause and a
having clause:

apache drill (mysql.sakila)> SELECT fa.actor_id, f.rating,
.)> count(*) num_films
.)> FROM film_actor fa
.)> INNER JOIN film f
.)> ON fa.film_id = f.film_id
.)> WHERE f.rating IN ('G','PG')
.)> GROUP BY fa.actor_id, f.rating
.)> HAVING count(*) > 9;
+----------+--------+-----------+
| actor_id | rating | num_films |
+----------+--------+-----------+
137	PG	10
37	PG	12
180	PG	12
7	G	10
83	G	14
129	G	12
111	PG	15
44	PG	12
26	PG	11
92	PG	12
17	G	12
158	PG	10
147	PG	10
14	G	10
102	PG	11
133	PG	10
+----------+--------+-----------+
16 rows selected (0.277 seconds)

308 | Chapter 18: SQL and Big Data

Finally, here is a query from Chapter 16 that includes three different ranking
functions:

apache drill (mysql.sakila)> SELECT customer_id, count(*) num_rentals,
.)> row_number()
.)> over (order by count(*) desc)
.)> row_number_rnk,
.)> rank()
.)> over (order by count(*) desc) rank_rnk,
.)> dense_rank()
.)> over (order by count(*) desc)
.)> dense_rank_rnk
.)> FROM rental
.)> GROUP BY customer_id
.)> ORDER BY 2 desc;
+-------------+-------------+----------------+----------+----------------+
| customer_id | num_rentals | row_number_rnk | rank_rnk | dense_rank_rnk |
+-------------+-------------+----------------+----------+----------------+
148	46	1	1	1
526	45	2	2	2
144	42	3	3	3
236	42	4	3	3
75	41	5	5	4
197	40	6	6	5
...				
248	15	595	594	30
61	14	596	596	31
110	14	597	596	31
281	14	598	596	31
318	12	599	599	32
+-------------+-------------+----------------+----------+----------------+
599 rows selected (1.827 seconds)

These few examples demonstrate Drill’s ability to execute reasonably complex queries
against MySQL, but you will need to keep in mind that Drill works with many rela‐
tional databases, not just MySQL, so some features of the language may differ (e.g.,
data conversion functions). For more information, read Drill’s documentation about
their SQL implementation.

Querying MongoDB Using Drill
After using Drill to query the sample Sakila data in MySQL, the next logical step is to
convert the Sakila data to another commonly used format, store it in a nonrelational
database, and use Drill to query the data. I decided to convert the data to JSON and
store it in MongoDB, which is one of the more popular NoSQL platforms for docu‐
ment storage. Drill includes a plug-in for MongoDB and also understands how to
read JSON documents, so it was relatively easy to load the JSON files into Mongo and
begin writing queries.

Querying MongoDB Using Drill | 309

https://oreil.ly/d2JSe
https://oreil.ly/d2JSe

Before diving into the queries, let’s take a look at the structure of the JSON files, since
they aren’t in normalized form. The first of the two JSON files is films.json:

{"_id":1,
 "Actors":[
 {"First name":"PENELOPE","Last name":"GUINESS","actorId":1},
 {"First name":"CHRISTIAN","Last name":"GABLE","actorId":10},
 {"First name":"LUCILLE","Last name":"TRACY","actorId":20},
 {"First name":"SANDRA","Last name":"PECK","actorId":30},
 {"First name":"JOHNNY","Last name":"CAGE","actorId":40},
 {"First name":"MENA","Last name":"TEMPLE","actorId":53},
 {"First name":"WARREN","Last name":"NOLTE","actorId":108},
 {"First name":"OPRAH","Last name":"KILMER","actorId":162},
 {"First name":"ROCK","Last name":"DUKAKIS","actorId":188},
 {"First name":"MARY","Last name":"KEITEL","actorId":198}],
 "Category":"Documentary",
 "Description":"A Epic Drama of a Feminist And a Mad Scientist
 who must Battle a Teacher in The Canadian Rockies",
 "Length":"86",
 "Rating":"PG",
 "Rental Duration":"6",
 "Replacement Cost":"20.99",
 "Special Features":"Deleted Scenes,Behind the Scenes",
 "Title":"ACADEMY DINOSAUR"},
{"_id":2,
 "Actors":[
 {"First name":"BOB","Last name":"FAWCETT","actorId":19},
 {"First name":"MINNIE","Last name":"ZELLWEGER","actorId":85},
 {"First name":"SEAN","Last name":"GUINESS","actorId":90},
 {"First name":"CHRIS","Last name":"DEPP","actorId":160}],
 "Category":"Horror",
 "Description":"A Astounding Epistle of a Database Administrator
 And a Explorer who must Find a Car in Ancient China",
 "Length":"48",
 "Rating":"G",
 "Rental Duration":"3",
 "Replacement Cost":"12.99",
 "Special Features":"Trailers,Deleted Scenes",
 "Title":"ACE GOLDFINGER"},
...
{"_id":999,
 "Actors":[
 {"First name":"CARMEN","Last name":"HUNT","actorId":52},
 {"First name":"MARY","Last name":"TANDY","actorId":66},
 {"First name":"PENELOPE","Last name":"CRONYN","actorId":104},
 {"First name":"WHOOPI","Last name":"HURT","actorId":140},
 {"First name":"JADA","Last name":"RYDER","actorId":142}],
 "Category":"Children",
 "Description":"A Fateful Reflection of a Waitress And a Boat
 who must Discover a Sumo Wrestler in Ancient China",
 "Length":"101",
 "Rating":"R",

310 | Chapter 18: SQL and Big Data

 "Rental Duration":"5",
 "Replacement Cost":"28.99",
 "Special Features":"Trailers,Deleted Scenes",
 "Title":"ZOOLANDER FICTION"}
{"_id":1000,
 "Actors":[
 {"First name":"IAN","Last name":"TANDY","actorId":155},
 {"First name":"NICK","Last name":"DEGENERES","actorId":166},
 {"First name":"LISA","Last name":"MONROE","actorId":178}],
 "Category":"Comedy",
 "Description":"A Intrepid Panorama of a Mad Scientist And a Boy
 who must Redeem a Boy in A Monastery",
 "Length":"50",
 "Rating":"NC-17",
 "Rental Duration":"3",
 "Replacement Cost":"18.99",
 "Special Features":
 "Trailers,Commentaries,Behind the Scenes",
 "Title":"ZORRO ARK"}

There are 1,000 documents in this collection, and each document contains a number
of scalar attributes (Title, Rating, _id) but also includes a list called Actors, which
contains 1 to N elements consisting of the actor ID, first name, and last name
attributes for every actor appearing in the film. Therefore, this file contains all of the
data found in the actor, film, and film_actor tables within the MySQL Sakila
database.

The second file is customer.json, which combines data from the customer, address,
city, country, rental, and payment tables from the MySQL Sakila database:

{"_id":1,
 "Address":"1913 Hanoi Way",
 "City":"Sasebo",
 "Country":"Japan",
 "District":"Nagasaki",
 "First Name":"MARY",
 "Last Name":"SMITH",
 "Phone":"28303384290",
 "Rentals":[
 {"rentalId":1185,
 "filmId":611,
 "staffId":2,
 "Film Title":"MUSKETEERS WAIT",
 "Payments":[
 {"Payment Id":3,"Amount":5.99,"Payment Date":"2005-06-15 00:54:12"}],
 "Rental Date":"2005-06-15 00:54:12.0",
 "Return Date":"2005-06-23 02:42:12.0"},
 {"rentalId":1476,
 "filmId":308,
 "staffId":1,
 "Film Title":"FERRIS MOTHER",

Querying MongoDB Using Drill | 311

 "Payments":[
 {"Payment Id":5,"Amount":9.99,"Payment Date":"2005-06-15 21:08:46"}],
 "Rental Date":"2005-06-15 21:08:46.0",
 "Return Date":"2005-06-25 02:26:46.0"},
...
 {"rentalId":14825,
 "filmId":317,
 "staffId":2,
 "Film Title":"FIREBALL PHILADELPHIA",
 "Payments":[
 {"Payment Id":30,"Amount":1.99,"Payment Date":"2005-08-22 01:27:57"}],
 "Rental Date":"2005-08-22 01:27:57.0",
 "Return Date":"2005-08-27 07:01:57.0"}
]
}

This file contains 599 entries (only one was shown here), which are loaded into
Mongo as 599 documents in the customers collection. Each document contains the
information about a single customer, along with all of the rentals and associated pay‐
ments made by that customer. Furthermore, the documents contain nested lists, since
each rental in the Rentals list also contains a list of Payments.

After the JSON files have been loaded, the Mongo database contains two collections
(films and customers), and the data in these collections spans nine different tables
from the MySQL Sakila database. This is a fairly typical scenario, since application
programmers typically work with collections and generally prefer not to deconstruct
their data for storage into normalized relational tables. The challenge from an SQL
perspective is to determine how to flatten this data so that it behaves as if it were
stored in multiple tables.

To illustrate, let’s construct the following query against the films collection: find all
actors who have appeared in 10 or more films rated either G or PG. Here’s what the
raw data looks like:

apache drill (mongo.sakila)> SELECT Rating, Actors
.)> FROM films
.)> WHERE Rating IN ('G','PG');
+--------+--+
| Rating | Actors |
+--------+--+
| PG |[{"First name":"PENELOPE","Last name":"GUINESS","actorId":"1"},
 {"First name":"FRANCES","Last name":"DAY-LEWIS","actorId":"48"},
 {"First name":"ANNE","Last name":"CRONYN","actorId":"49"},
 {"First name":"RAY","Last name":"JOHANSSON","actorId":"64"},
 {"First name":"PENELOPE","Last name":"CRONYN","actorId":"104"},
 {"First name":"HARRISON","Last name":"BALE","actorId":"115"},
 {"First name":"JEFF","Last name":"SILVERSTONE","actorId":"180"},
 {"First name":"ROCK","Last name":"DUKAKIS","actorId":"188"}] |
| PG |[{"First name":"UMA","Last name":"WOOD","actorId":"13"},
 {"First name":"HELEN","Last name":"VOIGHT","actorId":"17"},

312 | Chapter 18: SQL and Big Data

 {"First name":"CAMERON","Last name":"STREEP","actorId":"24"},
 {"First name":"CARMEN","Last name":"HUNT","actorId":"52"},
 {"First name":"JANE","Last name":"JACKMAN","actorId":"131"},
 {"First name":"BELA","Last name":"WALKEN","actorId":"196"}] |
...
| G |[{"First name":"ED","Last name":"CHASE","actorId":"3"},
 {"First name":"JULIA","Last name":"MCQUEEN","actorId":"27"},
 {"First name":"JAMES","Last name":"PITT","actorId":"84"},
 {"First name":"CHRISTOPHER","Last name":"WEST","actorId":"163"},
 {"First name":"MENA","Last name":"HOPPER","actorId":"170"}] |
+--------+--+
372 rows selected (0.432 seconds)

The Actors field is a list of one or more actor documents. In order to interact with
this data as if it were a table, the flatten command can be used to turn the list into a
nested table containing three fields:

apache drill (mongo.sakila)> SELECT f.Rating, flatten(Actors) actor_list
.)> FROM films f
.)> WHERE f.Rating IN ('G','PG');
+--------+--+
| Rating | actor_list |
+--------+--+
PG	{"First name":"PENELOPE","Last name":"GUINESS","actorId":"1"}
PG	{"First name":"FRANCES","Last name":"DAY-LEWIS","actorId":"48"}
PG	{"First name":"ANNE","Last name":"CRONYN","actorId":"49"}
PG	{"First name":"RAY","Last name":"JOHANSSON","actorId":"64"}
PG	{"First name":"PENELOPE","Last name":"CRONYN","actorId":"104"}
PG	{"First name":"HARRISON","Last name":"BALE","actorId":"115"}
PG	{"First name":"JEFF","Last name":"SILVERSTONE","actorId":"180"}
PG	{"First name":"ROCK","Last name":"DUKAKIS","actorId":"188"}
PG	{"First name":"UMA","Last name":"WOOD","actorId":"13"}
PG	{"First name":"HELEN","Last name":"VOIGHT","actorId":"17"}
PG	{"First name":"CAMERON","Last name":"STREEP","actorId":"24"}
PG	{"First name":"CARMEN","Last name":"HUNT","actorId":"52"}
PG	{"First name":"JANE","Last name":"JACKMAN","actorId":"131"}
PG	{"First name":"BELA","Last name":"WALKEN","actorId":"196"}
...	
G	{"First name":"ED","Last name":"CHASE","actorId":"3"}
G	{"First name":"JULIA","Last name":"MCQUEEN","actorId":"27"}
G	{"First name":"JAMES","Last name":"PITT","actorId":"84"}
G	{"First name":"CHRISTOPHER","Last name":"WEST","actorId":"163"}
G	{"First name":"MENA","Last name":"HOPPER","actorId":"170"}
+--------+--+
2,119 rows selected (0.718 seconds) |

This query returns 2,119 rows, rather than the 372 rows returned by the previous
query, which indicates that on average 5.7 actors appear in each G or PG film. This
query can then be wrapped in a subquery and used to group the data by rating and
actor, as in:

Querying MongoDB Using Drill | 313

apache drill (mongo.sakila)> SELECT g_pg_films.Rating,
.)> g_pg_films.actor_list.`First name` first_name,
.)> g_pg_films.actor_list.`Last name` last_name,
.)> count(*) num_films
.)> FROM
.)> (SELECT f.Rating, flatten(Actors) actor_list
.)> FROM films f
.)> WHERE f.Rating IN ('G','PG')
.)>) g_pg_films
.)> GROUP BY g_pg_films.Rating,
.)> g_pg_films.actor_list.`First name`,
.)> g_pg_films.actor_list.`Last name`
.)> HAVING count(*) > 9;
+--------+------------+-------------+-----------+
| Rating | first_name | last_name | num_films |
+--------+------------+-------------+-----------+
PG	JEFF	SILVERSTONE	12
G	GRACE	MOSTEL	10
PG	WALTER	TORN	11
PG	SUSAN	DAVIS	10
PG	CAMERON	ZELLWEGER	15
PG	RIP	CRAWFORD	11
PG	RICHARD	PENN	10
G	SUSAN	DAVIS	13
PG	VAL	BOLGER	12
PG	KIRSTEN	AKROYD	12
G	VIVIEN	BERGEN	10
G	BEN	WILLIS	14
G	HELEN	VOIGHT	12
PG	VIVIEN	BASINGER	10
PG	NICK	STALLONE	12
G	DARYL	CRAWFORD	12
PG	MORGAN	WILLIAMS	10
PG	FAY	WINSLET	10
+--------+------------+-------------+-----------+
18 rows selected (0.466 seconds)

The inner query uses the flatten command to create one row for every actor who
has appeared in a G or PG movie, and the outer query simply performs a grouping on
this data set.

Next, let’s write a query against the customers collection in Mongo. This is a bit more
challenging since each document contains a list of film rentals, each of which con‐
tains a list of payments. To make it a little more interesting, let’s also join to the films
collection in order to see how Drill handles joins. The query should return all cus‐
tomers who have spent more than $80 to rent films rated either G or PG. Here’s what
it looks like:

apache drill (mongo.sakila)> SELECT first_name, last_name,
.)> sum(cast(cust_payments.payment_data.Amount
.)> as decimal(4,2))) tot_payments

314 | Chapter 18: SQL and Big Data

.)> FROM

.)> (SELECT cust_data.first_name,

.)> cust_data.last_name,

.)> f.Rating,

.)> flatten(cust_data.rental_data.Payments)

.)> payment_data

.)> FROM films f

.)> INNER JOIN

.)> (SELECT c.`First Name` first_name,

.)> c.`Last Name` last_name,

.)> flatten(c.Rentals) rental_data

.)> FROM customers c

.)>) cust_data

.)> ON f._id = cust_data.rental_data.filmID

.)> WHERE f.Rating IN ('G','PG')

.)>) cust_payments

.)> GROUP BY first_name, last_name

.)> HAVING

.)> sum(cast(cust_payments.payment_data.Amount

.)> as decimal(4,2))) > 80;
+------------+-----------+--------------+
| first_name | last_name | tot_payments |
+------------+-----------+--------------+
ELEANOR	HUNT	85.80
GORDON	ALLARD	85.86
CLARA	SHAW	86.83
JACQUELINE	LONG	86.82
KARL	SEAL	89.83
PRISCILLA	LOWE	95.80
MONICA	HICKS	85.82
LOUIS	LEONE	95.82
JUNE	CARROLL	88.83
ALICE	STEWART	81.82
+------------+-----------+--------------+
10 rows selected (1.658 seconds)

The innermost query, which I named cust_data, flattens the Rentals list so that the
cust_payments query can join to the films collection and also flatten the Payments
list. The outermost query groups the data by customer name and applies a having
clause to filter out customers who spent $80 or less on films rated G or PG.

Drill with Multiple Data Sources
So far, I have used Drill to join multiple tables stored in the same database, but what if
the data is stored in different databases? For example, let’s say the customer/rental/
payment data is stored in MongoDB but the catalog of film/actor data is stored in
MySQL. As long as Drill is configured to connect to both databases, you just need to
describe where to find the data. Here’s the query from the previous section, but

Drill with Multiple Data Sources | 315

instead of joining to the films collection stored in MongoDB, the join specifies the
film table stored in MySQL:

apache drill (mongo.sakila)> SELECT first_name, last_name,
.)> sum(cast(cust_payments.payment_data.Amount
.)> as decimal(4,2))) tot_payments
.)> FROM
.)> (SELECT cust_data.first_name,
.)> cust_data.last_name,
.)> f.Rating,
.)> flatten(cust_data.rental_data.Payments)
.)> payment_data
.)> FROM mysql.sakila.film f
.)> INNER JOIN
.)> (SELECT c.`First Name` first_name,
.)> c.`Last Name` last_name,
.)> flatten(c.Rentals) rental_data
.)> FROM mongo.sakila.customers c
.)>) cust_data
.)> ON f.film_id =
.)> cast(cust_data.rental_data.filmID as integer)
.)> WHERE f.rating IN ('G','PG')
.)>) cust_payments
.)> GROUP BY first_name, last_name
.)> HAVING
.)> sum(cast(cust_payments.payment_data.Amount
.)> as decimal(4,2))) > 80;
+------------+-----------+--------------+
| first_name | last_name | tot_payments |
+------------+-----------+--------------+
LOUIS	LEONE	95.82
JACQUELINE	LONG	86.82
CLARA	SHAW	86.83
ELEANOR	HUNT	85.80
JUNE	CARROLL	88.83
PRISCILLA	LOWE	95.80
ALICE	STEWART	81.82
MONICA	HICKS	85.82
GORDON	ALLARD	85.86
KARL	SEAL	89.83
+------------+-----------+--------------+
10 rows selected (1.874 seconds)

Since I’m using multiple databases in the same query, I specified the full path to each
table/collection to make it clear as to where the data is being sourced. This is where
Drill really shines, since I can combine data from multiple sources in the same query
without having to transform and load the data from one source to another.

316 | Chapter 18: SQL and Big Data

Future of SQL
The future of relational databases is somewhat unclear. It is possible that the big data
technologies of the past decade will continue to mature and gain market share. It’s
also possible that a new set of technologies will emerge, overtaking Hadoop and
NoSQL, and taking additional market share from relational databases. However, most
companies still run their core business functions using relational databases, and it
should take a long time for this to change.

The future of SQL seems a bit clearer, however. While the SQL language started out
as a mechanism for interacting with data in relational databases, tools like Apache
Drill act more like an abstraction layer, facilitating the analysis of data across various
database platforms. In this author’s opinion, this trend will continue, and SQL will
remain a critical tool for data analysis and reporting for many years.

Future of SQL | 317

APPENDIX A

ER Diagram for Example Database

Figure A-1 is an entity-relationship (ER) diagram for the example database used in
this book. As the name suggests, the diagram depicts the entities, or tables, in the
database along with the foreign-key relationships between the tables. Here are a few
tips to help you understand the notation:

• Each rectangle represents a table, with the table name above the upper-left corner
of the rectangle. The primary-key column(s) are listed first, followed by nonkey
columns.

• Lines between tables represent foreign key relationships. The markings at either
end of the lines represent the allowable quantity, which can be zero (0), one (1),
or many (<). For example, if you look at the relationship between the customer
and rental tables, you would say that a rental is associated with exactly one cus‐
tomer, but a customer may have zero, one, or many rentals.

For more information on entity-relationship modeling, please see the Wikipedia
entry on this topic.

319

https://oreil.ly/hLEeq
https://oreil.ly/hLEeq

Figure A-1. ER diagram

320 | Appendix A: ER Diagram for Example Database

APPENDIX B

Solutions to Exercises

Chapter 3
Exercise 3-1
Retrieve the actor ID, first name, and last name for all actors. Sort by last name and
then by first name.

mysql> SELECT actor_id, first_name, last_name
 -> FROM actor
 -> ORDER BY 3,2;
+----------+-------------+--------------+
| actor_id | first_name | last_name |
+----------+-------------+--------------+
58	CHRISTIAN	AKROYD
182	DEBBIE	AKROYD
92	KIRSTEN	AKROYD
118	CUBA	ALLEN
145	KIM	ALLEN
194	MERYL	ALLEN
...		
13	UMA	WOOD
63	CAMERON	WRAY
111	CAMERON	ZELLWEGER
186	JULIA	ZELLWEGER
85	MINNIE	ZELLWEGER
+----------+-------------+--------------+
200 rows in set (0.02 sec)

Exercise 3-2
Retrieve the actor ID, first name, and last name for all actors whose last name equals
'WILLIAMS' or 'DAVIS'.

321

mysql> SELECT actor_id, first_name, last_name
 -> FROM actor
 -> WHERE last_name IN ('WILLIAMS','DAVIS');
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
4	JENNIFER	DAVIS
101	SUSAN	DAVIS
110	SUSAN	DAVIS
72	SEAN	WILLIAMS
137	MORGAN	WILLIAMS
172	GROUCHO	WILLIAMS
+----------+------------+-----------+
6 rows in set (0.03 sec)

Exercise 3-3
Write a query against the rental table that returns the IDs of the customers who ren‐
ted a film on July 5, 2005 (use the rental.rental_date column, and you can use the
date() function to ignore the time component). Include a single row for each distinct
customer ID.

mysql> SELECT DISTINCT customer_id
 -> FROM rental
 -> WHERE date(rental_date) = '2005-07-05';
+-------------+
| customer_id |
+-------------+
| 8 |
| 37 |
| 60 |
| 111 |
| 114 |
| 138 |
| 142 |
| 169 |
| 242 |
| 295 |
| 296 |
| 298 |
| 322 |
| 348 |
| 349 |
| 369 |
| 382 |
| 397 |
| 421 |
| 476 |
| 490 |
| 520 |
| 536 |

322 | Appendix B: Solutions to Exercises

| 553 |
| 565 |
| 586 |
| 594 |
+-------------+
27 rows in set (0.22 sec)

Exercise 3-4
Fill in the blanks (denoted by <#>) for this multitable query to achieve the following
results:

mysql> SELECT c.email, r.return_date
 -> FROM customer c
 -> INNER JOIN rental <1>
 -> ON c.customer_id = <2>
 -> WHERE date(r.rental_date) = '2005-06-14'
 -> ORDER BY <3> <4>;
+---------------------------------------+---------------------+
| email | return_date |
+---------------------------------------+---------------------+
DANIEL.CABRAL@sakilacustomer.org	2005-06-23 22:00:38
TERRANCE.ROUSH@sakilacustomer.org	2005-06-23 21:53:46
MIRIAM.MCKINNEY@sakilacustomer.org	2005-06-21 17:12:08
GWENDOLYN.MAY@sakilacustomer.org	2005-06-20 02:40:27
JEANETTE.GREENE@sakilacustomer.org	2005-06-19 23:26:46
HERMAN.DEVORE@sakilacustomer.org	2005-06-19 03:20:09
JEFFERY.PINSON@sakilacustomer.org	2005-06-18 21:37:33
MATTHEW.MAHAN@sakilacustomer.org	2005-06-18 05:18:58
MINNIE.ROMERO@sakilacustomer.org	2005-06-18 01:58:34
SONIA.GREGORY@sakilacustomer.org	2005-06-17 21:44:11
TERRENCE.GUNDERSON@sakilacustomer.org	2005-06-17 05:28:35
ELMER.NOE@sakilacustomer.org	2005-06-17 02:11:13
JOYCE.EDWARDS@sakilacustomer.org	2005-06-16 21:00:26
AMBER.DIXON@sakilacustomer.org	2005-06-16 04:02:56
CHARLES.KOWALSKI@sakilacustomer.org	2005-06-16 02:26:34
CATHERINE.CAMPBELL@sakilacustomer.org	2005-06-15 20:43:03
+---------------------------------------+---------------------+
16 rows in set (0.03 sec)

<1> is replaced by r.

<2> is replaced by r.customer_id.

<3> is replaced by 2.

<4> is replaced by desc.

Solutions to Exercises | 323

Chapter 4
The following subset of rows from the payment table are used as an example for the
first two exercises:

+------------+-------------+--------+--------------------+
| payment_id | customer_id | amount | date(payment_date) |
+------------+-------------+--------+--------------------+
101	4	8.99	2005-08-18
102	4	1.99	2005-08-19
103	4	2.99	2005-08-20
104	4	6.99	2005-08-20
105	4	4.99	2005-08-21
106	4	2.99	2005-08-22
107	4	1.99	2005-08-23
108	5	0.99	2005-05-29
109	5	6.99	2005-05-31
110	5	1.99	2005-05-31
111	5	3.99	2005-06-15
112	5	2.99	2005-06-16
113	5	4.99	2005-06-17
114	5	2.99	2005-06-19
115	5	4.99	2005-06-20
116	5	4.99	2005-07-06
117	5	2.99	2005-07-08
118	5	4.99	2005-07-09
119	5	5.99	2005-07-09
120	5	1.99	2005-07-09
+------------+-------------+--------+--------------------+

Exercise 4-1
Which of the payment IDs would be returned by the following filter conditions?

customer_id <> 5 AND (amount > 8 OR date(payment_date) = '2005-08-23')

Payment IDs 101 and 107.

Exercise 4-2
Which of the payment IDs would be returned by the following filter conditions?

customer_id = 5 AND NOT (amount > 6 OR date(payment_date) = '2005-06-19')

Payment IDs 108, 110, 111, 112, 113, 115, 116, 117, 118, 119, and 120.

Exercise 4-3
Construct a query that retrieves all rows from the payment table where the amount is
either 1.98, 7.98, or 9.98.

324 | Appendix B: Solutions to Exercises

mysql> SELECT amount
 -> FROM payment
 -> WHERE amount IN (1.98, 7.98, 9.98);
+--------+
| amount |
+--------+
| 7.98 |
| 9.98 |
| 1.98 |
| 7.98 |
| 7.98 |
| 7.98 |
| 7.98 |
+--------+
7 rows in set (0.01 sec)

Exercise 4-4
Construct a query that finds all customers whose last name contains an A in the sec‐
ond position and a W anywhere after the A.

mysql> SELECT first_name, last_name
 -> FROM customer
 -> WHERE last_name LIKE '_A%W%';
+------------+------------+
| first_name | last_name |
+------------+------------+
KAY	CALDWELL
JOHN	FARNSWORTH
JILL	HAWKINS
LEE	HAWKS
LAURIE	LAWRENCE
JEANNE	LAWSON
LAWRENCE	LAWTON
SAMUEL	MARLOW
ERICA	MATTHEWS
+------------+------------+
9 rows in set (0.02 sec)

Chapter 5
Exercise 5-1
Fill in the blanks (denoted by <#>) for the following query to obtain the results that
follow:

mysql> SELECT c.first_name, c.last_name, a.address, ct.city
 -> FROM customer c
 -> INNER JOIN address <1>
 -> ON c.address_id = a.address_id
 -> INNER JOIN city ct

Solutions to Exercises | 325

 -> ON a.city_id = <2>
 -> WHERE a.district = 'California';
+------------+-----------+------------------------+----------------+
| first_name | last_name | address | city |
+------------+-----------+------------------------+----------------+
PATRICIA	JOHNSON	1121 Loja Avenue	San Bernardino
BETTY	WHITE	770 Bydgoszcz Avenue	Citrus Heights
ALICE	STEWART	1135 Izumisano Parkway	Fontana
ROSA	REYNOLDS	793 Cam Ranh Avenue	Lancaster
RENEE	LANE	533 al-Ayn Boulevard	Compton
KRISTIN	JOHNSTON	226 Brest Manor	Sunnyvale
CASSANDRA	WALTERS	920 Kumbakonam Loop	Salinas
JACOB	LANCE	1866 al-Qatif Avenue	El Monte
RENE	MCALISTER	1895 Zhezqazghan Drive	Garden Grove
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

<1> is replaced by a.

<2> is replaced by ct.city_id.

Exercise 5-2
Write a query that returns the title of every film in which an actor with the first name
JOHN appeared.

mysql> SELECT f.title
 -> FROM film f
 -> INNER JOIN film_actor fa
 -> ON f.film_id = fa.film_id
 -> INNER JOIN actor a
 -> ON fa.actor_id = a.actor_id
 -> WHERE a.first_name = 'JOHN';
+---------------------------+
| title |
+---------------------------+
| ALLEY EVOLUTION |
| BEVERLY OUTLAW |
| CANDLES GRAPES |
| CLEOPATRA DEVIL |
| COLOR PHILADELPHIA |
| CONQUERER NUTS |
| DAUGHTER MADIGAN |
| GLEAMING JAWBREAKER |
| GOLDMINE TYCOON |
| HOME PITY |
| INTERVIEW LIAISONS |
| ISHTAR ROCKETEER |
| JAPANESE RUN |
| JERSEY SASSY |
| LUKE MUMMY |
| MILLION ACE |

326 | Appendix B: Solutions to Exercises

| MONSTER SPARTACUS |
| NAME DETECTIVE |
| NECKLACE OUTBREAK |
| NEWSIES STORY |
| PET HAUNTING |
| PIANIST OUTFIELD |
| PINOCCHIO SIMON |
| PITTSBURGH HUNCHBACK |
| QUILLS BULL |
| RAGING AIRPLANE |
| ROXANNE REBEL |
| SATISFACTION CONFIDENTIAL |
| SONG HEDWIG |
+---------------------------+
29 rows in set (0.07 sec)

Exercise 5-3
Construct a query that returns all addresses that are in the same city. You will need to
join the address table to itself, and each row should include two different addresses.

mysql> SELECT a1.address addr1, a2.address addr2, a1.city_id
 -> FROM address a1
 -> INNER JOIN address a2
 -> WHERE a1.city_id = a2.city_id
 -> AND a1.address_id <> a2.address_id;
+----------------------+----------------------+---------+
| addr1 | addr2 | city_id |
+----------------------+----------------------+---------+
47 MySakila Drive	23 Workhaven Lane	300
28 MySQL Boulevard	1411 Lillydale Drive	576
23 Workhaven Lane	47 MySakila Drive	300
1411 Lillydale Drive	28 MySQL Boulevard	576
1497 Yuzhou Drive	548 Uruapan Street	312
587 Benguela Manor	43 Vilnius Manor	42
548 Uruapan Street	1497 Yuzhou Drive	312
43 Vilnius Manor	587 Benguela Manor	42
+----------------------+----------------------+---------+
8 rows in set (0.00 sec)

Chapter 6
Exercise 6-1
If set A = {L M N O P} and set B = {P Q R S T}, what sets are generated by the follow‐
ing operations?

• A union B

• A union all B

Solutions to Exercises | 327

• A intersect B

• A except B

1. A union B = {L M N O P Q R S T}
2. A union all B = {L M N O P P Q R S T}
3. A intersect B = {P}
4. A except B = {L M N O}

Exercise 6-2
Write a compound query that finds the first and last names of all actors and custom‐
ers whose last name starts with L.

mysql> SELECT first_name, last_name
 -> FROM actor
 -> WHERE last_name LIKE 'L%'
 -> UNION
 -> SELECT first_name, last_name
 -> FROM customer
 -> WHERE last_name LIKE 'L%';
+------------+--------------+
| first_name | last_name |
+------------+--------------+
MATTHEW	LEIGH
JOHNNY	LOLLOBRIGIDA
MISTY	LAMBERT
JACOB	LANCE
RENEE	LANE
HEIDI	LARSON
DARYL	LARUE
LAURIE	LAWRENCE
JEANNE	LAWSON
LAWRENCE	LAWTON
KIMBERLY	LEE
LOUIS	LEONE
SARAH	LEWIS
GEORGE	LINTON
MAUREEN	LITTLE
DWIGHT	LOMBARDI
JACQUELINE	LONG
AMY	LOPEZ
BARRY	LOVELACE
PRISCILLA	LOWE
VELMA	LUCAS
WILLARD	LUMPKIN
LEWIS	LYMAN
JACKIE	LYNCH

328 | Appendix B: Solutions to Exercises

+------------+--------------+
24 rows in set (0.01 sec)

Exercise 6-3
Sort the results from Exercise 6-2 by the last_name column.

mysql> SELECT first_name, last_name
 -> FROM actor
 -> WHERE last_name LIKE 'L%'
 -> UNION
 -> SELECT first_name, last_name
 -> FROM customer
 -> WHERE last_name LIKE 'L%'
 -> ORDER BY last_name;
+------------+--------------+
| first_name | last_name |
+------------+--------------+
MISTY	LAMBERT
JACOB	LANCE
RENEE	LANE
HEIDI	LARSON
DARYL	LARUE
LAURIE	LAWRENCE
JEANNE	LAWSON
LAWRENCE	LAWTON
KIMBERLY	LEE
MATTHEW	LEIGH
LOUIS	LEONE
SARAH	LEWIS
GEORGE	LINTON
MAUREEN	LITTLE
JOHNNY	LOLLOBRIGIDA
DWIGHT	LOMBARDI
JACQUELINE	LONG
AMY	LOPEZ
BARRY	LOVELACE
PRISCILLA	LOWE
VELMA	LUCAS
WILLARD	LUMPKIN
LEWIS	LYMAN
JACKIE	LYNCH
+------------+--------------+
24 rows in set (0.00 sec)

Solutions to Exercises | 329

Chapter 7
Exercise 7-1
Write a query that returns the 17th through 25th characters of the string 'Please
find the substring in this string'.

mysql> SELECT SUBSTRING('Please find the substring in this string',17,9);
+--+
| SUBSTRING('Please find the substring in this string',17,9) |
+--+
| substring |
+--+
1 row in set (0.00 sec)

Exercise 7-2
Write a query that returns the absolute value and sign (−1, 0, or 1) of the number
−25.76823. Also return the number rounded to the nearest hundredth.

mysql> SELECT ABS(-25.76823), SIGN(-25.76823), ROUND(-25.76823, 2);
+----------------+-----------------+---------------------+
| ABS(-25.76823) | SIGN(-25.76823) | ROUND(-25.76823, 2) |
+----------------+-----------------+---------------------+
| 25.76823 | −1 | −25.77 |
+----------------+-----------------+---------------------+
1 row in set (0.00 sec)

Exercise 7-3
Write a query to return just the month portion of the current date.

mysql> SELECT EXTRACT(MONTH FROM CURRENT_DATE());
+----------------------------------+
| EXTRACT(MONTH FROM CURRENT_DATE) |
+----------------------------------+
| 12 |
+----------------------------------+
1 row in set (0.02 sec)

(Your result will most likely be different, unless it happens to be December when you
try this exercise.)

Chapter 8
Exercise 8-1
Construct a query that counts the number of rows in the payment table.

330 | Appendix B: Solutions to Exercises

mysql> SELECT count(*) FROM payment;
+----------+
| count(*) |
+----------+
| 16049 |
+----------+
1 row in set (0.02 sec)

Exercise 8-2
Modify your query from Exercise 8-1 to count the number of payments made by each
customer. Show the customer ID and the total amount paid for each customer.

mysql> SELECT customer_id, count(*), sum(amount)
 -> FROM payment
 -> GROUP BY customer_id;
+-------------+----------+-------------+
| customer_id | count(*) | sum(amount) |
+-------------+----------+-------------+
1	32	118.68
2	27	128.73
3	26	135.74
4	22	81.78
5	38	144.62
...		
595	30	117.70
596	28	96.72
597	25	99.75
598	22	83.78
599	19	83.81
+-------------+----------+-------------+
599 rows in set (0.03 sec)

Exercise 8-3
Modify your query from Exercise 8-2 to include only those customers who have
made at least 40 payments.

mysql> SELECT customer_id, count(*), sum(amount)
 -> FROM payment
 -> GROUP BY customer_id
 -> HAVING count(*) >= 40;
+-------------+----------+-------------+
| customer_id | count(*) | sum(amount) |
+-------------+----------+-------------+
75	41	155.59
144	42	195.58
148	46	216.54
197	40	154.60
236	42	175.58
469	40	177.60
526	45	221.55

Solutions to Exercises | 331

+-------------+----------+-------------+
7 rows in set (0.03 sec)

Chapter 9
Exercise 9-1
Construct a query against the film table that uses a filter condition with a noncorre‐
lated subquery against the category table to find all action films (category.name =
'Action').

mysql> SELECT title
 -> FROM film
 -> WHERE film_id IN
 -> (SELECT fc.film_id
 -> FROM film_category fc INNER JOIN category c
 -> ON fc.category_id = c.category_id
 -> WHERE c.name = 'Action');
+-------------------------+
| title |
+-------------------------+
| AMADEUS HOLY |
| AMERICAN CIRCUS |
| ANTITRUST TOMATOES |
| ARK RIDGEMONT |
| BAREFOOT MANCHURIAN |
| BERETS AGENT |
| BRIDE INTRIGUE |
| BULL SHAWSHANK |
| CADDYSHACK JEDI |
| CAMPUS REMEMBER |
| CASUALTIES ENCINO |
| CELEBRITY HORN |
| CLUELESS BUCKET |
| CROW GREASE |
| DANCES NONE |
| DARKO DORADO |
| DARN FORRESTER |
| DEVIL DESIRE |
| DRAGON SQUAD |
| DREAM PICKUP |
| DRIFTER COMMANDMENTS |
| EASY GLADIATOR |
| ENTRAPMENT SATISFACTION |
| EXCITEMENT EVE |
| FANTASY TROOPERS |
| FIREHOUSE VIETNAM |
| FOOL MOCKINGBIRD |
| FORREST SONS |
| GLASS DYING |
| GOSFORD DONNIE |

332 | Appendix B: Solutions to Exercises

| GRAIL FRANKENSTEIN |
| HANDICAP BOONDOCK |
| HILLS NEIGHBORS |
| KISSING DOLLS |
| LAWRENCE LOVE |
| LORD ARIZONA |
| LUST LOCK |
| MAGNOLIA FORRESTER |
| MIDNIGHT WESTWARD |
| MINDS TRUMAN |
| MOCKINGBIRD HOLLYWOOD |
| MONTEZUMA COMMAND |
| PARK CITIZEN |
| PATRIOT ROMAN |
| PRIMARY GLASS |
| QUEST MUSSOLINI |
| REAR TRADING |
| RINGS HEARTBREAKERS |
| RUGRATS SHAKESPEARE |
| SHRUNK DIVINE |
| SIDE ARK |
| SKY MIRACLE |
| SOUTH WAIT |
| SPEAKEASY DATE |
| STAGECOACH ARMAGEDDON |
| STORY SIDE |
| SUSPECTS QUILLS |
| TRIP NEWTON |
| TRUMAN CRAZY |
| UPRISING UPTOWN |
| WATERFRONT DELIVERANCE |
| WEREWOLF LOLA |
| WOMEN DORADO |
| WORST BANGER |
+-------------------------+
64 rows in set (0.06 sec)

Exercise 9-2
Rework the query from Exercise 9-1 using a correlated subquery against the category
and film_category tables to achieve the same results.

mysql> SELECT f.title
 -> FROM film f
 -> WHERE EXISTS
 -> (SELECT 1
 -> FROM film_category fc INNER JOIN category c
 -> ON fc.category_id = c.category_id
 -> WHERE c.name = 'Action'
 -> AND fc.film_id = f.film_id);
+-------------------------+
| title |

Solutions to Exercises | 333

+-------------------------+
| AMADEUS HOLY |
| AMERICAN CIRCUS |
| ANTITRUST TOMATOES |
| ARK RIDGEMONT |
| BAREFOOT MANCHURIAN |
| BERETS AGENT |
| BRIDE INTRIGUE |
| BULL SHAWSHANK |
| CADDYSHACK JEDI |
| CAMPUS REMEMBER |
| CASUALTIES ENCINO |
| CELEBRITY HORN |
| CLUELESS BUCKET |
| CROW GREASE |
| DANCES NONE |
| DARKO DORADO |
| DARN FORRESTER |
| DEVIL DESIRE |
| DRAGON SQUAD |
| DREAM PICKUP |
| DRIFTER COMMANDMENTS |
| EASY GLADIATOR |
| ENTRAPMENT SATISFACTION |
| EXCITEMENT EVE |
| FANTASY TROOPERS |
| FIREHOUSE VIETNAM |
| FOOL MOCKINGBIRD |
| FORREST SONS |
| GLASS DYING |
| GOSFORD DONNIE |
| GRAIL FRANKENSTEIN |
| HANDICAP BOONDOCK |
| HILLS NEIGHBORS |
| KISSING DOLLS |
| LAWRENCE LOVE |
| LORD ARIZONA |
| LUST LOCK |
| MAGNOLIA FORRESTER |
| MIDNIGHT WESTWARD |
| MINDS TRUMAN |
| MOCKINGBIRD HOLLYWOOD |
| MONTEZUMA COMMAND |
| PARK CITIZEN |
| PATRIOT ROMAN |
| PRIMARY GLASS |
| QUEST MUSSOLINI |
| REAR TRADING |
| RINGS HEARTBREAKERS |
| RUGRATS SHAKESPEARE |
| SHRUNK DIVINE |
| SIDE ARK |

334 | Appendix B: Solutions to Exercises

| SKY MIRACLE |
| SOUTH WAIT |
| SPEAKEASY DATE |
| STAGECOACH ARMAGEDDON |
| STORY SIDE |
| SUSPECTS QUILLS |
| TRIP NEWTON |
| TRUMAN CRAZY |
| UPRISING UPTOWN |
| WATERFRONT DELIVERANCE |
| WEREWOLF LOLA |
| WOMEN DORADO |
| WORST BANGER |
+-------------------------+
64 rows in set (0.02 sec)

Exercise 9-3
Join the following query to a subquery against the film_actor table to show the level
of each actor:

SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
UNION ALL
SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
UNION ALL
SELECT 'Newcomer' level, 1 min_roles, 19 max_roles

The subquery against the film_actor table should count the number of rows for each
actor using group by actor_id, and the count should be compared to the
min_roles/max_roles columns to determine which level each actor belongs to.

mysql> SELECT actr.actor_id, grps.level
 -> FROM
 -> (SELECT actor_id, count(*) num_roles
 -> FROM film_actor
 -> GROUP BY actor_id
 ->) actr
 -> INNER JOIN
 -> (SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
 -> UNION ALL
 -> SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
 -> UNION ALL
 -> SELECT 'Newcomer' level, 1 min_roles, 19 max_roles
 ->) grps
 -> ON actr.num_roles BETWEEN grps.min_roles AND grps.max_roles;
+----------+----------------+
| actor_id | level |
+----------+----------------+
1	Newcomer
2	Prolific Actor
3	Prolific Actor
4	Prolific Actor

Solutions to Exercises | 335

5	Prolific Actor
6	Prolific Actor
7	Hollywood Star
...	
195	Prolific Actor
196	Hollywood Star
197	Hollywood Star
198	Hollywood Star
199	Newcomer
200	Prolific Actor
+----------+----------------+
200 rows in set (0.03 sec)

Chapter 10
Exercise 10-1
Using the following table definitions and data, write a query that returns each cus‐
tomer name along with their total payments:

 Customer:
Customer_id Name
----------- ---------------
1 John Smith
2 Kathy Jones
3 Greg Oliver

 Payment:
Payment_id Customer_id Amount
---------- ----------- --------
101 1 8.99
102 3 4.99
103 1 7.99

Include all customers, even if no payment records exist for that customer.

mysql> SELECT c.name, sum(p.amount)
 -> FROM customer c LEFT OUTER JOIN payment p
 -> ON c.customer_id = p.customer_id
 -> GROUP BY c.name;
+-------------+---------------+
| name | sum(p.amount) |
+-------------+---------------+
John Smith	16.98
Kathy Jones	NULL
Greg Oliver	4.99
+-------------+---------------+
3 rows in set (0.00 sec)

336 | Appendix B: Solutions to Exercises

Exercise 10-2
Reformulate your query from Exercise 10-1 to use the other outer join type (e.g., if
you used a left outer join in Exercise 10-1, use a right outer join this time) such that
the results are identical to Exercise 10-1.

MySQL> SELECT c.name, sum(p.amount)
 -> FROM payment p RIGHT OUTER JOIN customer c
 -> ON c.customer_id = p.customer_id
 -> GROUP BY c.name;
+-------------+---------------+
| name | sum(p.amount) |
+-------------+---------------+
John Smith	16.98
Kathy Jones	NULL
Greg Oliver	4.99
+-------------+---------------+
3 rows in set (0.00 sec)

Exercise 10-3 (Extra Credit)
Devise a query that will generate the set {1, 2, 3, ..., 99, 100}. (Hint: use a cross join
with at least two from clause subqueries.)

SELECT ones.x + tens.x + 1
FROM
 (SELECT 0 x UNION ALL
 SELECT 1 x UNION ALL
 SELECT 2 x UNION ALL
 SELECT 3 x UNION ALL
 SELECT 4 x UNION ALL
 SELECT 5 x UNION ALL
 SELECT 6 x UNION ALL
 SELECT 7 x UNION ALL
 SELECT 8 x UNION ALL
 SELECT 9 x
) ones
 CROSS JOIN
 (SELECT 0 x UNION ALL
 SELECT 10 x UNION ALL
 SELECT 20 x UNION ALL
 SELECT 30 x UNION ALL
 SELECT 40 x UNION ALL
 SELECT 50 x UNION ALL
 SELECT 60 x UNION ALL
 SELECT 70 x UNION ALL
 SELECT 80 x UNION ALL
 SELECT 90 x
) tens;

Solutions to Exercises | 337

Chapter 11
Exercise 11-1
Rewrite the following query, which uses a simple case expression, so that the same
results are achieved using a searched case expression. Try to use as few when clauses
as possible.

SELECT name,
 CASE name
 WHEN 'English' THEN 'latin1'
 WHEN 'Italian' THEN 'latin1'
 WHEN 'French' THEN 'latin1'
 WHEN 'German' THEN 'latin1'
 WHEN 'Japanese' THEN 'utf8'
 WHEN 'Mandarin' THEN 'utf8'
 ELSE 'Unknown'
 END character_set
FROM language;

SELECT name,
 CASE
 WHEN name IN ('English','Italian','French','German')
 THEN 'latin1'
 WHEN name IN ('Japanese','Mandarin')
 THEN 'utf8'
 ELSE 'Unknown'
 END character_set
FROM language;

Exercise 11-2
Rewrite the following query so that the result set contains a single row with five col‐
umns (one for each rating). Name the five columns G, PG, PG_13, R, and NC_17.

mysql> SELECT rating, count(*)
 -> FROM film
 -> GROUP BY rating;
+--------+----------+
| rating | count(*) |
+--------+----------+
PG	194
G	178
NC-17	210
PG-13	223
R	195
+--------+----------+
5 rows in set (0.00 sec)

mysql> SELECT
 -> sum(CASE WHEN rating = 'G' THEN 1 ELSE 0 END) g,

338 | Appendix B: Solutions to Exercises

 -> sum(CASE WHEN rating = 'PG' THEN 1 ELSE 0 END) pg,
 -> sum(CASE WHEN rating = 'PG-13' THEN 1 ELSE 0 END) pg_13,
 -> sum(CASE WHEN rating = 'R' THEN 1 ELSE 0 END) r,
 -> sum(CASE WHEN rating = 'NC-17' THEN 1 ELSE 0 END) nc_17
 -> FROM film;
+------+------+-------+------+-------+
| g | pg | pg_13 | r | nc_17 |
+------+------+-------+------+-------+
| 178 | 194 | 223 | 195 | 210 |
+------+------+-------+------+-------+
1 row in set (0.00 sec)

Chapter 12
Exercise 12-1
Generate a unit of work to transfer $50 from account 123 to account 789. You will
need to insert two rows into the transaction table and update two rows in the
account table. Use the following table definitions/data:

 Account:
account_id avail_balance last_activity_date
---------- ------------- ------------------
123 500 2019-07-10 20:53:27
789 75 2019-06-22 15:18:35

 Transaction:
txn_id txn_date account_id txn_type_cd amount
--------- ------------ ----------- ----------- --------
1001 2019-05-15 123 C 500
1002 2019-06-01 789 C 75

Use txn_type_cd = 'C' to indicate a credit (addition), and use txn_type_cd = 'D'
to indicate a debit (subtraction).

START TRANSACTION;

INSERT INTO transaction
 (txn_id, txn_date, account_id, txn_type_cd, amount)
VALUES
 (1003, now(), 123, 'D', 50);

INSERT INTO transaction
 (txn_id, txn_date, account_id, txn_type_cd, amount)
VALUES
 (1004, now(), 789, 'C', 50);

UPDATE account
SET avail_balance = available_balance - 50,
 last_activity_date = now()

Solutions to Exercises | 339

WHERE account_id = 123;

UPDATE account
SET avail_balance = available_balance + 50,
 last_activity_date = now()
WHERE account_id = 789;

COMMIT;

Chapter 13
Exercise 13-1
Generate an alter table statement for the rental table so that an error will be
raised if a row having a value found in the rental.customer_id column is deleted
from the customer table.

ALTER TABLE rental
ADD CONSTRAINT fk_rental_customer_id FOREIGN KEY (customer_id)
REFERENCES customer (customer_id) ON DELETE RESTRICT;

Exercise 13-2
Generate a multicolumn index on the payment table that could be used by both of the
following queries:

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime);

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime)
 AND amount < 5;

CREATE INDEX idx_payment01
ON payment (payment_date, amount);

Chapter 14
Exercise 14-1
Create a view definition that can be used by the following query to generate the given
results:

SELECT title, category_name, first_name, last_name
FROM film_ctgry_actor
WHERE last_name = 'FAWCETT';

340 | Appendix B: Solutions to Exercises

+---------------------+---------------+------------+-----------+
| title | category_name | first_name | last_name |
+---------------------+---------------+------------+-----------+
ACE GOLDFINGER	Horror	BOB	FAWCETT
ADAPTATION HOLES	Documentary	BOB	FAWCETT
CHINATOWN GLADIATOR	New	BOB	FAWCETT
CIRCUS YOUTH	Children	BOB	FAWCETT
CONTROL ANTHEM	Comedy	BOB	FAWCETT
DARES PLUTO	Animation	BOB	FAWCETT
DARN FORRESTER	Action	BOB	FAWCETT
DAZED PUNK	Games	BOB	FAWCETT
DYNAMITE TARZAN	Classics	BOB	FAWCETT
HATE HANDICAP	Comedy	BOB	FAWCETT
HOMICIDE PEACH	Family	BOB	FAWCETT
JACKET FRISCO	Drama	BOB	FAWCETT
JUMANJI BLADE	New	BOB	FAWCETT
LAWLESS VISION	Animation	BOB	FAWCETT
LEATHERNECKS DWARFS	Travel	BOB	FAWCETT
OSCAR GOLD	Animation	BOB	FAWCETT
PELICAN COMFORTS	Documentary	BOB	FAWCETT
PERSONAL LADYBUGS	Music	BOB	FAWCETT
RAGING AIRPLANE	Sci-Fi	BOB	FAWCETT
RUN PACIFIC	New	BOB	FAWCETT
RUNNER MADIGAN	Music	BOB	FAWCETT
SADDLE ANTITRUST	Comedy	BOB	FAWCETT
SCORPION APOLLO	Drama	BOB	FAWCETT
SHAWSHANK BUBBLE	Travel	BOB	FAWCETT
TAXI KICK	Music	BOB	FAWCETT
BERETS AGENT	Action	JULIA	FAWCETT
BOILED DARES	Travel	JULIA	FAWCETT
CHISUM BEHAVIOR	Family	JULIA	FAWCETT
CLOSER BANG	Comedy	JULIA	FAWCETT
DAY UNFAITHFUL	New	JULIA	FAWCETT
HOPE TOOTSIE	Classics	JULIA	FAWCETT
LUKE MUMMY	Animation	JULIA	FAWCETT
MULAN MOON	Comedy	JULIA	FAWCETT
OPUS ICE	Foreign	JULIA	FAWCETT
POLLOCK DELIVERANCE	Foreign	JULIA	FAWCETT
RIDGEMONT SUBMARINE	New	JULIA	FAWCETT
SHANGHAI TYCOON	Travel	JULIA	FAWCETT
SHAWSHANK BUBBLE	Travel	JULIA	FAWCETT
THEORY MERMAID	Animation	JULIA	FAWCETT
WAIT CIDER	Animation	JULIA	FAWCETT
+---------------------+---------------+------------+-----------+
40 rows in set (0.00 sec)

CREATE VIEW film_ctgry_actor
AS
SELECT f.title,
 c.name category_name,
 a.first_name,
 a.last_name

Solutions to Exercises | 341

FROM film f
 INNER JOIN film_category fc
 ON f.film_id = fc.film_id
 INNER JOIN category c
 ON fc.category_id = c.category_id
 INNER JOIN film_actor fa
 ON fa.film_id = f.film_id
 INNER JOIN actor a
 ON fa.actor_id = a.actor_id;

Exercise 14-2
The film rental company manager would like to have a report that includes the name
of every country, along with the total payments for all customers who live in each
country. Generate a view definition that queries the country table and uses a scalar
subquery to calculate a value for a column named tot_payments.

CREATE VIEW country_payments
AS
SELECT c.country,
 (SELECT sum(p.amount)
 FROM city ct
 INNER JOIN address a
 ON ct.city_id = a.city_id
 INNER JOIN customer cst
 ON a.address_id = cst.address_id
 INNER JOIN payment p
 ON cst.customer_id = p.customer_id
 WHERE ct.country_id = c.country_id
) tot_payments
FROM country c

Chapter 15
Exercise 15-1
Write a query that lists all of the indexes in the Sakila schema. Include the table
names.

mysql> SELECT DISTINCT table_name, index_name
 -> FROM information_schema.statistics
 -> WHERE table_schema = 'sakila';
+---------------+-----------------------------+
| TABLE_NAME | INDEX_NAME |
+---------------+-----------------------------+
actor	PRIMARY
actor	idx_actor_last_name
address	PRIMARY
address	idx_fk_city_id
address	idx_location

342 | Appendix B: Solutions to Exercises

category	PRIMARY
city	PRIMARY
city	idx_fk_country_id
country	PRIMARY
film	PRIMARY
film	idx_title
film	idx_fk_language_id
film	idx_fk_original_language_id
film_actor	PRIMARY
film_actor	idx_fk_film_id
film_category	PRIMARY
film_category	fk_film_category_category
film_text	PRIMARY
film_text	idx_title_description
inventory	PRIMARY
inventory	idx_fk_film_id
inventory	idx_store_id_film_id
language	PRIMARY
staff	PRIMARY
staff	idx_fk_store_id
staff	idx_fk_address_id
store	PRIMARY
store	idx_unique_manager
store	idx_fk_address_id
customer	PRIMARY
customer	idx_email
customer	idx_fk_store_id
customer	idx_fk_address_id
customer	idx_last_name
customer	idx_full_name
rental	PRIMARY
rental	rental_date
rental	idx_fk_inventory_id
rental	idx_fk_customer_id
rental	idx_fk_staff_id
payment	PRIMARY
payment	idx_fk_staff_id
payment	idx_fk_customer_id
payment	fk_payment_rental
payment	idx_payment01
+---------------+-----------------------------+
45 rows in set (0.00 sec)

Exercise 15-2
Write a query that generates output that can be used to create all of the indexes on the
sakila.customer table. Output should be of the form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"

Here’s one solution utilizing a with clause:

Solutions to Exercises | 343

mysql> WITH idx_info AS
 -> (SELECT s1.table_name, s1.index_name,
 -> s1.column_name, s1.seq_in_index,
 -> (SELECT max(s2.seq_in_index)
 -> FROM information_schema.statistics s2
 -> WHERE s2.table_schema = s1.table_schema
 -> AND s2.table_name = s1.table_name
 -> AND s2.index_name = s1.index_name) num_columns
 -> FROM information_schema.statistics s1
 -> WHERE s1.table_schema = 'sakila'
 -> AND s1.table_name = 'customer'
 ->)
 -> SELECT concat(
 -> CASE
 -> WHEN seq_in_index = 1 THEN
 -> concat('ALTER TABLE ', table_name, ' ADD INDEX ',
 -> index_name, ' (', column_name)
 -> ELSE concat(' , ', column_name)
 -> END,
 -> CASE
 -> WHEN seq_in_index = num_columns THEN ');'
 -> ELSE ''
 -> END
 ->) index_creation_statement
 -> FROM idx_info
 -> ORDER BY index_name, seq_in_index;
+--+
| index_creation_statement |
+--+
| ALTER TABLE customer ADD INDEX idx_email (email); |
| ALTER TABLE customer ADD INDEX idx_fk_address_id (address_id); |
| ALTER TABLE customer ADD INDEX idx_fk_store_id (store_id); |
| ALTER TABLE customer ADD INDEX idx_full_name (last_name |
| , first_name); |
| ALTER TABLE customer ADD INDEX idx_last_name (last_name); |
| ALTER TABLE customer ADD INDEX PRIMARY (customer_id); |
+--+
7 rows in set (0.00 sec)

After reading Chapter 16, however, you could use the following:

mysql> SELECT concat('ALTER TABLE ', table_name, ' ADD INDEX ',
 -> index_name, ' (',
 -> group_concat(column_name order by seq_in_index separator ', '),
 -> ');'
 ->) index_creation_statement
 -> FROM information_schema.statistics
 -> WHERE table_schema = 'sakila'
 -> AND table_name = 'customer'
 -> GROUP BY table_name, index_name;
+---+
| index_creation_statement |
+---+

344 | Appendix B: Solutions to Exercises

| ALTER TABLE customer ADD INDEX idx_email (email); |
| ALTER TABLE customer ADD INDEX idx_fk_address_id (address_id); |
| ALTER TABLE customer ADD INDEX idx_fk_store_id (store_id); |
| ALTER TABLE customer ADD INDEX idx_full_name (last_name, first_name); |
| ALTER TABLE customer ADD INDEX idx_last_name (last_name); |
| ALTER TABLE customer ADD INDEX PRIMARY (customer_id); |
+---+
6 rows in set (0.00 sec)

Chapter 16
For all exercises in this section, use the following data set from the Sales_Fact table:

Sales_Fact
+---------+----------+-----------+
| year_no | month_no | tot_sales |
+---------+----------+-----------+
2019	1	19228
2019	2	18554
2019	3	17325
2019	4	13221
2019	5	9964
2019	6	12658
2019	7	14233
2019	8	17342
2019	9	16853
2019	10	17121
2019	11	19095
2019	12	21436
2020	1	20347
2020	2	17434
2020	3	16225
2020	4	13853
2020	5	14589
2020	6	13248
2020	7	8728
2020	8	9378
2020	9	11467
2020	10	13842
2020	11	15742
2020	12	18636
+---------+----------+-----------+
24 rows in set (0.00 sec)

Exercise 16-1
Write a query that retrieves every row from Sales_Fact, and add a column to gener‐
ate a ranking based on the tot_sales column values. The highest value should
receive a ranking of 1, and the lowest a ranking of 24.

Solutions to Exercises | 345

mysql> SELECT year_no, month_no, tot_sales,
 -> rank() over (order by tot_sales desc) sales_rank
 -> FROM sales_fact;
+---------+----------+-----------+------------+
| year_no | month_no | tot_sales | sales_rank |
+---------+----------+-----------+------------+
2019	12	21436	1
2020	1	20347	2
2019	1	19228	3
2019	11	19095	4
2020	12	18636	5
2019	2	18554	6
2020	2	17434	7
2019	8	17342	8
2019	3	17325	9
2019	10	17121	10
2019	9	16853	11
2020	3	16225	12
2020	11	15742	13
2020	5	14589	14
2019	7	14233	15
2020	4	13853	16
2020	10	13842	17
2020	6	13248	18
2019	4	13221	19
2019	6	12658	20
2020	9	11467	21
2019	5	9964	22
2020	8	9378	23
2020	7	8728	24
+---------+----------+-----------+------------+
24 rows in set (0.02 sec)

Exercise 16-2
Modify the query from the previous exercise to generate two sets of rankings from 1
to 12, one for 2019 data and one for 2020.

mysql> SELECT year_no, month_no, tot_sales,
 -> rank() over (partition by year_no
 -> order by tot_sales desc) sales_rank
 -> FROM sales_fact;
+---------+----------+-----------+------------+
| year_no | month_no | tot_sales | sales_rank |
+---------+----------+-----------+------------+
2019	12	21436	1
2019	1	19228	2
2019	11	19095	3
2019	2	18554	4
2019	8	17342	5
2019	3	17325	6
2019	10	17121	7

346 | Appendix B: Solutions to Exercises

2019	9	16853	8
2019	7	14233	9
2019	4	13221	10
2019	6	12658	11
2019	5	9964	12
2020	1	20347	1
2020	12	18636	2
2020	2	17434	3
2020	3	16225	4
2020	11	15742	5
2020	5	14589	6
2020	4	13853	7
2020	10	13842	8
2020	6	13248	9
2020	9	11467	10
2020	8	9378	11
2020	7	8728	12
+---------+----------+-----------+------------+
24 rows in set (0.00 sec)

Exercise 16-3
Write a query that retrieves all 2020 data, and include a column that will contain the
tot_sales value from the previous month.

mysql> SELECT year_no, month_no, tot_sales,
 -> lag(tot_sales) over (order by month_no) prev_month_sales
 -> FROM sales_fact
 -> WHERE year_no = 2020;
+---------+----------+-----------+------------------+
| year_no | month_no | tot_sales | prev_month_sales |
+---------+----------+-----------+------------------+
2020	1	20347	NULL
2020	2	17434	20347
2020	3	16225	17434
2020	4	13853	16225
2020	5	14589	13853
2020	6	13248	14589
2020	7	8728	13248
2020	8	9378	8728
2020	9	11467	9378
2020	10	13842	11467
2020	11	15742	13842
2020	12	18636	15742
+---------+----------+-----------+------------------+
12 rows in set (0.00 sec)

Solutions to Exercises | 347

Index

Symbols
* (asterisk)

in aggregate functions, 149, 154
in select clause, 48

\ (backslash), as escape character, 118
() (parentheses)

enclosing subqueries, 53
grouping arithmetic operations, 129
grouping compound queries, 113
grouping filter conditions, 60, 68

% (percent sign), modulo operator, 131
+ (plus sign), concatenation operator, SQL

Server, 121
(see also arithmetic operators)

' ' (quotes, single)
enclosing strings, 116
escape sequence for, 118-119

|| (vertical bar, double), concatenation operator,
Oracle, 121

A
abs() function, 134
acos() function, 130
add constraint keywords, 235
add index keywords, 224
add unique keywords, 227
add_months() function, 141
ADO.NET, 11
aggregate functions, 148-155, 277-281

expressions in, 153
filtering based on, 149-150
list of, 150-151
null values with, 153-155

aggregated data, views for, 243

aliases
for columns, 50
for tables, 97, 99

all keyword, 52
all operator, 167-168
alter table statement, 34

adding constraints in, 235
adding indexes in, 224, 227
removing constraints in, 237
removing indexes in, 227
specifying storage engine, 221

Amazon Web Services (AWS), 300
analytic functions, 267-270

column value concatenation with, 283
data windows used by, 268-269, 275, 278,

279
localized sorting using, 269-270
ranking functions, 270-276
reporting functions, 277-284

and operator, 59, 67
ANSI mode, 117
ANSI SQL92 join syntax, 91-92
any operator, 168-169
Apache Drill, 15, 303-304

df (distributed filesystem) plug-in, 304
querying files, 304-306
querying MongoDB, 309-315
querying multiple databases, 315-316
querying MySQL, 306-309

Archive storage engine, 220
arithmetic functions, 129-131
arithmetic operators, 70, 129
as keyword, 51, 57
asc keyword, 63

349

ascii() function, 121
asin() function, 130
asterisk (*)

in aggregate functions, 149, 154
in select clause, 48

atan() function, 130
atomicity, 215
autocommit mode, 217
auto_increment keyword, 34
avg() function, 150, 277-281
AWS (Amazon Web Services), 300

B
B-tree (balanced-tree) indexes, 229
backslash (\), as escape character, 118
begin transaction command, 217
between operator, 74-76, 172
big data, 299-301

Apache Drill for, 303-304
(see also Apache Drill)

cloud computing, 300-301
future of, 317
Hadoop, 14, 299, 303
NoSQL and document databases, 14, 300,

303
bigint type, 24
bitmap indexes, 230
books and publications

Database in Depth (O’Reilly), 15
The Database Relational Model (Addison-

Wesley), 15
High Performance MySQL (O’Reilly), 46
An Introduction to Database Systems

(Addison-Wesley), 15
Learning Apache Drill (O’Reilly), 304
Mastering Regular Expressions (O’Reilly),

81
“A Relational Model of Data for Large

Shared Data Banks” (Codd), 5
SQL in a Nutshell (O’Reilly), 129
Unicode Explained (O’Reilly), 22

branch nodes, 229

C
C#, SQL integration toolkit for, 11
Cartesian product, 88-89, 192-198

(see also cross joins)
case expressions, 201-202

conditional updates using, 209-210

division-by-zero checks using, 208-209
existence checks using, 206-208
handling null values using, 210-211
result set transformations using, 205-206
searched case expressions, 202-204
simple case expressions, 204-205
subqueries in, 203-204, 210

cast() function, 137-138, 144-145
ceil() function, 131
char type, 20, 115
char() function, 119
character data (see strings; text types)
character sets, 21-22, 119
charindx() function, 123
check constraints, 30, 40, 233
chr() function, 119
clob type, 23, 116
cloud computing, 300-301
clustering, 297
coalesce() function, 202
Codd, E. F. (author), “A Relational Model of

Data for Large Shared Data Banks”, 5
code examples (see examples)
columns, 6, 8

aliases for, in select clause, 50
concatenating values of, 283
numeric placeholders for, 64
viewing information about, 254

commit command, 218
common table expressions (CTEs), 181-182
comparison operators, 70

(see also conditions)
composite partitioning, 295-297
compound keys, 6
compound queries, 105, 113

(see also sets)
concat() function, 120-121, 126-127
concatenation operator

|| (for Oracle Database), 121, 127
+ (for SQL Server), 121, 127

conditional logic, 201-202
(see also case expressions)

conditions, 70
(see also operators)
equality conditions, 71-73
evaluation of, 67-70
filter conditions, 59, 67
grouping with parentheses, 60, 68
join conditions, 56, 71, 91

350 | Index

matching conditions, 79-82, 124
membership conditions, 77-79, 165-169
with multicolumn subqueries, 169-171
multiple, 59, 67-70
with null values, 82-85
range conditions, 73-77, 172
regular expressions in, 81-82
with scalar subqueries, 163-164

connection ID, 45
consistency, 234
constraint clause, 30, 33
constraints, 233

check constraints, 30, 40
creating, 234-237
foreign key constraints, 33, 40, 88
on subclauses for, 235-237
primary key constraints, 30
removing, 237
types of, 233-234
viewing information about, 255

containing query or statement, 54, 161
conventions used in this book, xiii
conversion functions, 40, 137-139, 144-145
convert() function, 139
Coordinated Universal Time (UTC), 135
correlated subqueries, 171-175
cos() function, 130
cot() function, 130
count() function, 149, 150, 152-153, 189, 277
create index statement, 225
create table statement, 30-33, 234
create view statement, 55, 239
cross joins, 89, 192-198
CSV storage engine, 220
CTEs (common table expressions), 181-182
current_date() function, 139
current_time() function, 139
current_timestamp() function, 139

D
data dictionary, 9, 252

(see also metadata)
data security (see security)
data statements, 9, 10

(see also delete statement; insert statement;
select statement; update statement)

data types, 20-27
numeric, 23-25
strings, 20, 115-116

temporal, 25-27, 137
text, 22-23

data windows, 268-269, 275, 278, 279
database connection, 45
Database in Depth (Date), 15
The Database Relational Model (Date), 15
database servers, 13-14

(see also DB2 Universal Database; MySQL;
Oracle Database; SQL Server)

database systems, 2
databases, 1-7

big data, 299-301, 303-304, 317
clustering, 297
consistency of, 234
data types for, 20-27
hierarchical, 2-3
history of, 2-5
listing in MySQL, 18
metadata for (see metadata)
multiuser (see multiuser databases)
network, 3-5
new technologies for, 14
partitioning (see partitioning databases)
querying (see queries; SQL)
relational (see relational databases)
sharding, 298-299
specifying in MySQL, 19

date type, 25, 136, 137
Date, C. J. (author)

Database in Depth (O’Reilly), 15
The Database Relational Model (Addison-

Wesley), 15
An Introduction to Database Systems

(Addison-Wesley), 15
dateadd() function, 141
datediff() function, 143-144, 153
datepart() function, 143
dates (see temporal data)
datetime type, 25, 136, 137
date_add() function, 140-141
daylight saving time, 135
dayname() function, 142
DB2 Universal Database, 13

clob type, 23
except all implemented, 110
intersect all implemented, 109

deadlock detection, 219
deallocate statement, 262
decode() function, 202

Index | 351

delete statement, 38, 175
dense_rank() function, 271-274
deployment verification, 260
derived tables, 53
desc keyword, 63
describe command, 31, 43, 240
distinct keyword, 51, 152
division-by-zero error checking, 208-209
document databases, 300
double type, 24
drop constraint keywords, 237
drop index keywords (MySQL), 227
drop index statement (Oracle Database and

SQL Server), 227
drop table statement, 42
DSL/Alpha language, 8
dual table, 19
durability, 216
dynamic SQL execution, 261
dynamic SQL generation, 261-265

E
engine keyword, 221

(see also storage engines)
entities, 8
enum type, 30
equality conditions, 71-73
ER (entity-relationship) diagram for Sakila

database, 319
errors

column value, invalid, 40
date value, formatted incorrectly, 40
division-by-zero, checking for, 208-209
foreign key, nonexistent, 39
primary key, nonunique, 39

examples
MySQL used for, 14
Sakila database for, xv, 17, 18, 41-43

except and except all operators, 102, 109-111
execute immediate command, 262
execute statement, 262
execution plan, 46
exists operator, 173-174, 206-208
exit command, 20
exp() function, 130
explain statement, 231
explicit groups, 151-152
exponentiation, 131
expressions

arithmetic (see arithmetic functions; arith‐
metic operators)

in conditions, 70
(see also conditions)

extract() function, 142

F
files

querying with Apache Drill, 304-306
text types for, 22-23

filter conditions, 59, 67
(see also conditions; having clause; where

clause)
fixed-length strings, 20
float type, 24
floating-point numbers, 24, 131-133
floor() function, 131
for xml clause, 38
foreign key constraints, 33, 40, 88, 233
foreign keys, 7, 8

joins using, 88
nonexistant, error from, 39
self-referencing, 98

Friedl, Jeffrey E. F. (author), Mastering Regular
Expressions (O’Reilly), 81

from clause, 48, 53-57
older join syntax in, 91
omitting, 19, 49
subqueries in, 176-181
table aliases in, 57
table names in, 53-56

full-text indexes, 230
functions

aggregate (see aggregate functions)
analytic (see analytic functions)
arithmetic, 129-131
conversion, 40, 137-139, 144-145
string, 121-129

G
getutcdate() function, 135
Givre, Charles (author), Learning Apache Drill,

304
global index, 289
global.time_zone value, 135
GMT (Greenwich Mean Time), 135
Go, SQL integration toolkit for, 11
group by clause, 60-61, 148, 151-152
grouping, 147-150

352 | Index

(see also parentheses (()))
aggregate functions with, 148-155
based on expressions, 157-157
explicit groups, 151-152
filtering results of, 149-150, 159-160
implicit groups, 151
multicolumn grouping, 156
rollups with, 157-158
single-column grouping, 155
sorting results of, 149

group_concat() function, 283

H
Hadoop, 14, 299, 303
hash partitioning, 294-295
hashing function, 294
having clause, 60-61, 150, 159-160, 168

(see also conditions)
HDFS (Hadoop Distributed File System), 299
hierarchical database systems, 2-3
High Performance MySQL (Schwartz, et al.), 46
Hive, 303
horizontal partitioning, 288

I
IBM DB2 Universal Database (see DB2 Univer‐

sal Database)
ID, connection, 45
if() function, 202
implicit groups, 151
in operator, 78-79, 165-166
index partitioning, 289
indexes, 223-224

B-tree indexes, 229
bitmap indexes, 230
creating, 224-228
default type of, 229
disadvantages of, 232-233
displaying, 225
ideal number of, 233
multicolumn indexes, 228
query optimizer using, 224, 231-232
removing, 227
text indexes, 230
unique indexes, 227-228
viewing information about, 255

information_schema database, 252-257
(see also schema statements)
Apache Drill access to, 304

querying, 252-256
inner join keywords, 56-57, 90
inner joins, 89-91
InnoDB storage engine, 40, 220, 234
insert statement, 35-37, 184
insert() function, 127-128
instr() function, 123
int type, 24
integers, 24
intersect and intersect all operators, 102,

108-109
An Introduction to Database Systems (Date),

15
is not null operator, 83
is null operator, 83-85

J
Java, SQL integration toolkit for, 11
JDBC (Java Database Connectivity), 11
JDBC driver for MySQL, 306
join keyword, 88, 89

(see also on subclause; using subclause)
joins, 7, 56-57, 87-92

ANSI SQL92 syntax for, 91-92
conditions for, 56, 71, 91
cross joins, 89, 192-198
default type of, 90
inner joins, 89-91
multiple, constructing, 93-98
multiple, order of, 94
natural joins, 198-199
older syntax for, 91
outer joins, 90, 187-192
partition-wise joins, 297
same table joined multiple times in, 96-98
self-joins, 98-99
subqueries as tables in, 95-96
views using, 241, 244-245

JSON files
document databases using, 300
loading into MongoDB, 309-312

K
keys (see foreign keys; primary keys)
Korpela, Jukka (author), Unicode Explained

(O’Reilly), 22

Index | 353

L
lag() function, 281-283
last_day() function, 141
lead() function, 281-283
leaf nodes, 229
Learning Apache Drill (O’Reilly), 304
left outer joins, 188-190
len() function, 121
length() function, 121
like operator, 80, 124
list partitioning, 292-293
ln() function, 130
local index, 289
locate() function, 122
locking, 214-215

granularities of, 214-215
read lock, 214
storage engine determining, 219-221
versioning approach, 214
write lock, 214

logical operators
and operator, 59, 67
not operator, 69
or operator, 59, 68

longtext type, 22
low-cardinality data, 230

M
MapReduce, 299
Mastering Regular Expressions (O’Reilly), 81
matching conditions, 79-82, 124
max() function, 150, 277-279
mediumint type, 24
mediumtext type, 22
membership conditions, 77-79, 165-169
MEMORY storage engine, 220
Merge storage engine, 220
metadata, 251-252

about partitioned tables, 290
Apache Drill access to, 304
deployment verification using, 260
dynamic SQL generation using, 261-265
in information_schema database, 252-257
querying, 252-256
schema generation scripts from, 257-260

Microsoft SQL Server (see SQL Server)
min() function, 150, 277-279
minus operator, 109
mod() function, 130

MongoDB
document databases using, 300
querying with Apache Drill, 309-315

multi-parent hierarchy, 4
multibyte character sets, 21
multicolumn grouping, 156
multicolumn indexes, 228
multicolumn subqueries, 169-171
multiple-row, single-column subqueries,

164-169
multiuser databases, 213

locking for, 214-215, 219-221
transactions for, 215-221

MyISAM storage engine, 220
MySQL, 14

auto_increment keyword, 34
data types, 20-27
databases in, listing, 18
databases in, specifying, 19
date formats, 41
date ranges allowed, 26
default index type, 229
dual table in, 19
except operator not implemented, 109
full-text indexes, 230
if() function, 202
installing, 17
intersect operator not implemented, 108
JDBC driver for, 306
locking granularities, 215
metadata access, 252
parentheses not allowed in compound quer‐

ies, 113
query execution by, 45-47
querying with Apache Drill, 306-309
silent truncation of strings, 116-118
storage engines, 219-221
transaction approach, 217
updatable view restrictions, 245
utc_timestamp() function, 135

mysql command, 11, 18-20
feedback from, 13
query execution by, 45-47
--xml option, 37

MySQL stored procedure language, 10
MySQL Workbench, 260

N
natural joins, 198-199

354 | Index

natural keys, 6
network database systems, 3-5
NewSQL, 14
noncorrelated subqueries, 163-171
nonprocedural languages, 10
nonrelational databases, 2-5
normalization, 7, 28-29
NoSQL, 14, 300, 303
not in operator, 79, 165-166
not null keywords, 32
not operator, 69
now() function, 19
null values, 32

aggregate functions handling, 153-155
all operator handling, 168
case expressions handling, 210-211
comparisons with, 82-85
disallowing for a table column, 32
not in operator handling, 168
outer joins resulting in, 190

numeric data
arithmetic functions for, 129-131
arithmetic operators for, 70, 129
precision of, controlling, 131-133
signed, functions for, 133-134

numeric data types, 23-25

O
on delete clause, 235-237
on subclause, 56, 71, 89
on update clause, 235-237
online resources

Apache Drill's SQL implementation, 309
database management systems, 15
for this book, xv
MySQL, 17
Oracle Database Reference Guide, 257
Sakila database, xv, 17, 18

operators
between conditions (see logical operators)
for null values, 82-85
for sets (see set operators)
within conditions (see arithmetic operators;

comparison operators)
optimizer, 10
optimizer hints, 10
or operator, 59, 68
Oracle Database, 13

add_months() function, 141

bitmap indexes, 230
char, varchar2 and clob sizes, 23
chr() function, 119
clob type, 23, 116
concatenation operator (||), 121, 127
create index statement, 225
current date and time functions, 140
date ranges allowed, 26
decode() function, 202
default index type, 229
drop index statement, 227
execute immediate command, 262
from clause required in, 19
instr() function, 123
locking approach, 214
locking granularities, 215
metadata access, 252, 257
minus operator, 109
pivot clause, 206
plan_table table, 232
replace() function, 128
rollups, generating, 158
sequence object, 34
session time zone setting, 136
substr() function, 128
subtracting dates, 144
temporary tables, duration of, 55
to_date() function, 139
transaction approach, 217
unique keyword, 228
updatable view restrictions, 249
varchar2 data type, 21
VPD (Virtual Private Database), 243

Oracle Exadata platform, 298
Oracle SQL Developer, 260
Oracle Text, 230
order by clause, 61-65

in compound queries, 111-112
with grouping, 149
localized, 269-270
subqueries in, 183

outer joins, 90, 187-192
left outer joins, 188-190
right outer joins, 190-191
three-way outer joins, 191-192

over clause, 268, 275, 277

P
Package database/sql, 11

Index | 355

packet capture (PCAP) files, 304-306
page locks, 214
parentheses (())

enclosing subqueries, 53
grouping arithmetic operations, 129
grouping compound queries, 113
grouping filter conditions, 60, 68

partition by clause, 268, 270, 275, 278
partition by hash keywords, 294
partition by list keywords, 292
partition by range keywords, 289
partition function, 289
partition key, 289
partition pruning, 297
partition-wise joins, 297
partitioning databases, 287-288

benefits of, 297
composite partitioning, 295-297
hash partitioning, 294-295
index partitioning, 289
list partitioning, 292-293
metadata regarding, 290
range partitioning, 289-292
reasons for, 287
reorganizing partitions, 290
table partitioning, 288

PCAP (packet capture) files, 304-306
percent sign (%), modulo operator, 131
permissions, 46, 242, 304
pivot clause, 206
PL/SQL language, 10
plan_table table, 232
plus sign (+), concatenation operator, SQL

Server, 121
(see also arithmetic operators)

position() function, 122
PostgreSQL, 14
pow() function, 131
precision of floating-point types, 25
prepare statement, 262
Presto, 303
primary key constraints, 30, 233
primary keys, 6, 8, 30

generating values for, 34
nonunique, error from, 39

private tables, 242
procedural languages, 10
programming languages, integrating SQL with,

10

Python DB, 11
Python, SQL integration toolkit for, 11

Q
queries

aggregate functions in (see aggregate func‐
tions)

analytic functions in (see analytic functions)
with Apache Drill (see Apache Drill)
case expressions in (see case expressions)
clauses in, 12, 47

(see also from clause; group by clause;
having clause; order by clause; select
statement; where clause)

compound, 105, 113
(see also sets)

execution of, by MySQL, 45-47
on multiple databases, 315-316
on multiple tables (see joins)
permission to execute, 46
subqueries (see subqueries)
tuning, 232
XML output from, 37

query optimizer, 46, 224, 231-232
quit command, 20
quote() function, 118
quotes, single (' ')

enclosing strings, 116
escape sequence for, 118-119

R
range between subclause, 280
range conditions, 73-77, 172
range partitioning, 289-292
rank() function, 271-276
ranking functions, 270-276
read lock, 214
references keyword, 33, 234
regexp operator, 81, 125
regular expressions, 81-82
relational databases, 5-7

future of, 317
history of, xi, 5
querying (see queries; SQL)
relationship to SQL, 8
servers using, 13-14

(see also specific servers)
“A Relational Model of Data for Large Shared

Data Banks” (Codd), 5

356 | Index

reorganize partition keywords, 290
replace() function, 128
reporting functions, 277-284
resources (see books and publications; online

resources)
result sets, 8, 8, 46

analytic functions for (see analytic func‐
tions)

duplicates in, including, 52, 109, 110
duplicates in, removing, 51, 108, 152
sorting, 61-65

(see also order by clause)
sorting, for compound queries, 111-112
transforming, 205-206

right outer joins, 190-191
Rogers, Paul (author), Learning Apache Drill,

304
rollback command, 218
rollback to savepoint command, 221
rollback transaction command, 221
rollups, generating, 157-158
round() function, 132
row locks, 214
rows, 6, 8
rows between subclause, 280
rows unbounded preceding subclause, 280
row_number() function, 271-274
Ruby DBI, 11
Ruby, SQL integration toolkit for, 11

S
Sakila database, 41-43

downloading, xv, 17, 18
ER diagram for, 319

save transaction command, 221
savepoint command, 221
savepoints, 219-221
scalar subqueries, 163-164

in order by clause, 183
in select clause, 182
in values clause of insert statement, 184

scale of floating-point types, 25
schema statements, 9

(see also alter table statement; create table
statement; drop table statement)

metadata from (see metadata)
scripts generating, 257-260
transactions not used for, 218

Schwartz, Baron (author), High Performance
MySQL (O’Reilly), 46

search expressions, 80
(see also matching conditions)

searched case expressions, 202-204
security

permissions, 46, 242, 304
views for, 242
VPD (Virtual Private Database), 243

select statement, 48-52
(see also from clause; group by clause; hav‐

ing clause; order by clause; where clause)
all keyword in, 52
column aliases in, 50
column names in, 48
distinct keyword in, 51, 152
expressions in, 49

(see also expressions)
function calls in, 49

(see also functions)
literals in, 49
subqueries in, 182

(see also subqueries)
self-joins, 98-99
self-referencing foreign key, 98
SEQUEL language, 8
sequence object, 34
servers, 13-14

(see also DB2 Universal Database; MySQL;
Oracle Database; SQL Server)

session.time_zone value, 135
set autocommit command, 217
set command, 117
set implicit_transactions command, 217
set operators, 105-111

except and except all, 102, 109-111
intersect and intersect all, 102, 108-109
precedence of, 112-114
union and union all, 101, 106-108

set showplan_text on statement, 232
sets, 101-105

combining operations on, 103
operation precedence for, 112-114
sorting results of, 111-112
table requirements for operations, 105

sharding, 298-299
shared-disk/shared-cache clustering configura‐

tions, 298
show character set command, 21

Index | 357

show databases command, 18
show index command, 225
show table command, 220
show tables command, 42
sign() function, 134
simple case expressions, 204-205
sin() function, 130
single quotes (' ')

enclosing strings, 116
escape sequence for, 118-119

single-column grouping, 155
single-parent hierarchy, 3
smallint type, 24
sorting

localized, with analytic functions, 269-270
query results (see order by clause)

Spark, 14, 303
Spark SQL, 303
special characters in strings, 119-121
sp_executesql procedure, 262
SQL, 8-13

as nonprocedural, 10
conditions in (see conditions; expressions;

operators)
data statements, 9, 10

(see also delete statement; insert state‐
ment; select statement; update state‐
ment)

dynamic execution of, 261
dynamic generation of, 261-265
functions in (see functions)
future of, 317
history of, xi, 8
integrating with programming languages, 10
interactive execution of, 11
new technologies using, 14
prevalence of, xi
pronunciation of, 8
relational model used by, 8
schema statements, 9

(see also alter table statement; create
table statement; drop table statement)

sets (see sets)
statement classes, 9-10
transaction statements, 9, 215

(see also commit statement; rollback
statement; start statement)

SQL in a Nutshell (O’Reilly), 129
SQL integration toolkits, 11

SQL Server, 13
begin transaction command, 217
char and varchar sizes, 23
charindx() function, 123
coalesce() function, 202
concatenation operator (+), 121, 127
convert() function, 139
create index statement, 225
current date and time functions, 140
date ranges allowed, 26
dateadd() function, 141
datediff() function, 144
datepart() function, 143
default index type, 229
drop index statement, 227
for xml clause, 38
full-text indexes, 230
getutcdate() function, 135
information_schema schema, 252
len() function, 121
locking approach, 214
locking granularities, 215
metadata access, 252
modulo operator (%), 131
pivot clause, 206
replace() function, 128
round() function, 133
save transaction, 221
set implicit_transactions command, 217
set showplan_text on statement, 232
silent truncation of strings, 116-118
sp_executesql procedure, 262
transaction approach, 217
unique keyword, 228
updatable view restrictions, 249

sql_mode variable, 117
sqrt() function, 130
SQUARE language, 8
SQuirrel, 11
start transaction command, 217
statement scope, 161
storage engines

choosing, 219-221
InnoDB, 40, 234

straight_join keyword, 95
strcmp() function, 123-124
string functions, 121-129
string literals, 116-118
strings

358 | Index

appending characters to, 126
building from other data, 126
character sets for, 21-22
comparing, 123-126
concatenating, 120-121
converting to temporal values, 137-139
data types for, 20, 115-116
enum type, 30
escape sequence for, 118-119
extracting substrings from, 128-129
fixed-length, 20
generating, 116-121
length of, 121
silent truncation of, 116-118
special characters in, 119-121
substrings, adding or replacing in, 127-128
substrings, finding in, 122
temporal data represented in, 136-137
variable-length, 20

str_to_date() function, 138-139
subpartition by keywords, 295
subqueries, 53, 161-175

all operator with, 167-168
any operator with, 168-169
between operator with, 172
in case expressions, 203-204, 210
containing statement or query for, 54, 161
correlated, 171-175
data manipulation with, 174-175
equality conditions with, 163-164
exists operator with, 173-174
in from clause, 176-181
in having clause, 168
in and not in operators with, 165-166
as join tables, 95-96
multicolumn, 169-171
multiple-row, single-column, 164-169
named, in with clause, 181-182
noncorrelated, 163-171
null values handled with, 168
in order by clause, 183
scalar, 163-164, 182-184
scope of, 161
in select clause, 182
in values clause of insert statement, 184

substr() function, 128
substring() function, 128-129
sum() function, 150, 277-281
surrogate keys, 6

system catalog (see data dictionary; metadata)

T
table aliases, 57
table links, 56-57

(see also joins)
table locks, 214
table partitioning, 288
tables, 5, 8

aliases for, 97, 99
altering, 34
constraints on (see constraints)
creating, 27-33
deleting, 42
deleting rows from, 38, 175
designing, 27-29
indexes for (see indexes)
inserting data, 33-37
listing, 42
normalizing, 28-29
private, 242
schema statements for, 30-33
temporary, 54
types of, 53-56
updating, 38

(see also update statement)
viewing information about, 31, 43, 252

tan() function, 130
temporal data, 134

adding date or time intervals to, 140-141
conversions to and from, 144-145
converting strings to, 40, 137-139
current date or time, generating, 139
data types for, 25-27, 137
date formats, default, 26, 136-137
date formats, specifying in queries, 41
date formats, specifying in str_to_date(),

139
date ranges allowed, 25, 26
generating, 136-140
interval types for, 140
last day of month, finding, 141
returning number of intervals from,

143-144
returning strings from, 142
string representations of, 136-137
time zones, 134-136

temporary keyword, 54
text indexes, 230

Index | 359

text type, 22, 116
text types, 22-23
three-way outer joins, 191-192
time type, 25, 136, 137
time zones, 134-136
times (see temporal data)
timestamp type, 25, 137
tinyint type, 24
tinytext type, 22
Toad Data Point, 303
Toad development tool, 260
to_date() function, 139
Transact-SQL language, 10
transaction statements, 9, 215

(see also commit statement; rollback state‐
ment; start statement)

transactions, 215-216
autocommit mode for, 217
deadlock detection for, 219
ending, 218-219
savepoints for, 219-221
schema statements not using, 218
starting, 217-218

transforming result sets, 205-206
tree structures (see B-tree indexes; hierarchical

database systems)
truncate() function, 133
tuning queries, 232

U
Unicode Explained (Korpela), 22
union and union all operators, 101, 106-108
unique constraints, 233
unique indexes, 227-228
unique keyword, 228
Universal Time, 135
unsigned floating-point types, 25
unsigned integers, 24
updatable views, 245-249
update statement, 38

case expressions in, 209-210
date formats, specifying in, 40
subqueries in, 174

use command, 19
using subclause, 90
UTC (Coordinated Universal Time), 135
utc_timestamp() function, 135

V
values clause, 35-37, 184
varchar type, 20, 116
varchar2 data type, 21
variable-length strings, 20
versioning, 214
vertical bar, double (||), concatenation operator,

Oracle, 121
vertical partitioning, 288
views, 55, 239

complexity hidden by, 244
data aggregation from, 243
data security from, 242
displaying columns in, 240
in information_schema, list of, 256

(see also metadata)
joins with, 241, 244-245
reasons to use, 242-245
updatable, 245-249
viewing information about, 252

virtual tables, 55
(see also views)

VPD (Virtual Private Database), 243

W
website resources (see online resources)
where clause, 58-60

(see also conditions)
filter conditions in, 67
older join syntax in, 91

wildcards, for search expressions, 80
windows, 268-269, 275, 278, 279
with clause, 181-182
with cube keywords, 158
with rollup keywords, 157-158
write lock, 214

X
XML

document databases using, 300
output from queries, 37

--xml option, mysql command, 37

Y
YARN, 300
year type, 25

360 | Index

About the Author
Alan Beaulieu has been designing and building custom databases for over 30 years.
He runs his own consulting business specializing in the design, development, and
performance tuning of very large databases, mostly in the Financial Services sector. In
his free time, Alan enjoys spending time with his family, playing drums with his
band, strumming his tenor ukulele, or finding the perfect scenic lunch spot while hik‐
ing with his wife. He holds a BS in Engineering from Cornell University.

Colophon
The animal on the cover of Learning SQL, Third Edition, is an Andean marsupial tree
frog (Gastrotheca riobambae). As its name suggests, this crepuscular and nocturnal
frog is native to the western slopes of the Andes mountains and is widely distributed
from the Riobamba basin to Ibarra in the north.

During courtship, the male calls (“wraaack-ack-ack”) to attract a female. If a gravid
female is attracted to him, he climbs onto her back and performs a common frog
mating hold called the nuptial amplexus. As the eggs emerge from the female’s cloaca,
the male catches the eggs with his feet and fertilizes them while maneuvering them
into a pouch on the female’s back. A female may incubate an average of 130 eggs, and
development in the pouch lasts between 60 and 120 days. During incubation, swelling
becomes visible, and lumps appear beneath the skin on the female’s back. When the
tadpoles emerge from the pouch, the female tree frog deposits them into the water.
Within two or three months the tadpoles metamorphose into froglets, and at seven
months they are ready to mate (“wraaaack-ack-ack”).

Both the male and female tree frog have expanded digital discs on their fingers and
toes that help them climb vertical surfaces such as trees. Adult males are two inches
in length, while females reach two and a half inches, with coloration that naturally
varies between shades of green and brown. The color of the juveniles may change
from brown to green as they grow.

Populations of this frog have declined, and it is now classified on the IUCN Red List
as endangered. It is under threat from agriculture, invasive species and pathogens, cli‐
mate change, and pollution.

The color illustration on the cover is by Karen Montgomery, based on a black-and-
white engraving from The Dover Pictorial Archive. The cover fonts are Gilroy Semi‐
bold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	Why Learn SQL?
	Why Use This Book to Do It?
	Structure of This Book
	Conventions Used in This Book
	Using the Examples in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. A Little Background
	Introduction to Databases
	Nonrelational Database Systems
	The Relational Model
	Some Terminology

	What Is SQL?
	SQL Statement Classes
	SQL: A Nonprocedural Language
	SQL Examples

	What Is MySQL?
	SQL Unplugged
	What’s in Store

	Chapter 2. Creating and Populating a Database
	Creating a MySQL Database
	Using the mysql Command-Line Tool
	MySQL Data Types
	Character Data
	Numeric Data
	Temporal Data

	Table Creation
	Step 1: Design
	Step 2: Refinement
	Step 3: Building SQL Schema Statements

	Populating and Modifying Tables
	Inserting Data
	Updating Data
	Deleting Data

	When Good Statements Go Bad
	Nonunique Primary Key
	Nonexistent Foreign Key
	Column Value Violations
	Invalid Date Conversions

	The Sakila Database

	Chapter 3. Query Primer
	Query Mechanics
	Query Clauses
	The select Clause
	Column Aliases
	Removing Duplicates

	The from Clause
	Tables
	Table Links
	Defining Table Aliases

	The where Clause
	The group by and having Clauses
	The order by Clause
	Ascending Versus Descending Sort Order
	Sorting via Numeric Placeholders

	Test Your Knowledge
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4

	Chapter 4. Filtering
	Condition Evaluation
	Using Parentheses
	Using the not Operator

	Building a Condition
	Condition Types
	Equality Conditions
	Range Conditions
	Membership Conditions
	Matching Conditions

	Null: That Four-Letter Word
	Test Your Knowledge
	Exercise 4-1
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4

	Chapter 5. Querying Multiple Tables
	What Is a Join?
	Cartesian Product
	Inner Joins
	The ANSI Join Syntax

	Joining Three or More Tables
	Using Subqueries as Tables
	Using the Same Table Twice

	Self-Joins
	Test Your Knowledge
	Exercise 5-1
	Exercise 5-2
	Exercise 5-3

	Chapter 6. Working with Sets
	Set Theory Primer
	Set Theory in Practice
	Set Operators
	The union Operator
	The intersect Operator
	The except Operator

	Set Operation Rules
	Sorting Compound Query Results
	Set Operation Precedence

	Test Your Knowledge
	Exercise 6-1
	Exercise 6-2
	Exercise 6-3

	Chapter 7. Data Generation, Manipulation, and Conversion
	Working with String Data
	String Generation
	String Manipulation

	Working with Numeric Data
	Performing Arithmetic Functions
	Controlling Number Precision
	Handling Signed Data

	Working with Temporal Data
	Dealing with Time Zones
	Generating Temporal Data
	Manipulating Temporal Data

	Conversion Functions
	Test Your Knowledge
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3

	Chapter 8. Grouping and Aggregates
	Grouping Concepts
	Aggregate Functions
	Implicit Versus Explicit Groups
	Counting Distinct Values
	Using Expressions
	How Nulls Are Handled

	Generating Groups
	Single-Column Grouping
	Multicolumn Grouping
	Grouping via Expressions
	Generating Rollups

	Group Filter Conditions
	Test Your Knowledge
	Exercise 8-1
	Exercise 8-2
	Exercise 8-3

	Chapter 9. Subqueries
	What Is a Subquery?
	Subquery Types
	Noncorrelated Subqueries
	Multiple-Row, Single-Column Subqueries
	Multicolumn Subqueries

	Correlated Subqueries
	The exists Operator
	Data Manipulation Using Correlated Subqueries

	When to Use Subqueries
	Subqueries as Data Sources
	Subqueries as Expression Generators

	Subquery Wrap-Up
	Test Your Knowledge
	Exercise 9-1
	Exercise 9-2
	Exercise 9-3

	Chapter 10. Joins Revisited
	Outer Joins
	Left Versus Right Outer Joins
	Three-Way Outer Joins

	Cross Joins
	Natural Joins
	Test Your Knowledge
	Exercise 10-1
	Exercise 10-2
	Exercise 10-3 (Extra Credit)

	Chapter 11. Conditional Logic
	What Is Conditional Logic?
	The case Expression
	Searched case Expressions
	Simple case Expressions

	Examples of case Expressions
	Result Set Transformations
	Checking for Existence
	Division-by-Zero Errors
	Conditional Updates
	Handling Null Values

	Test Your Knowledge
	Exercise 11-1
	Exercise 11-2

	Chapter 12. Transactions
	Multiuser Databases
	Locking
	Lock Granularities

	What Is a Transaction?
	Starting a Transaction
	Ending a Transaction
	Transaction Savepoints

	Test Your Knowledge
	Exercise 12-1

	Chapter 13. Indexes and Constraints
	Indexes
	Index Creation
	Types of Indexes
	How Indexes Are Used
	The Downside of Indexes

	Constraints
	Constraint Creation

	Test Your Knowledge
	Exercise 13-1
	Exercise 13-2

	Chapter 14. Views
	What Are Views?
	Why Use Views?
	Data Security
	Data Aggregation
	Hiding Complexity
	Joining Partitioned Data

	Updatable Views
	Updating Simple Views
	Updating Complex Views

	Test Your Knowledge
	Exercise 14-1
	Exercise 14-2

	Chapter 15. Metadata
	Data About Data
	information_schema
	Working with Metadata
	Schema Generation Scripts
	Deployment Verification
	Dynamic SQL Generation

	Test Your Knowledge
	Exercise 15-1
	Exercise 15-2

	Chapter 16. Analytic Functions
	Analytic Function Concepts
	Data Windows
	Localized Sorting

	Ranking
	Ranking Functions
	Generating Multiple Rankings

	Reporting Functions
	Window Frames
	Lag and Lead
	Column Value Concatenation

	Test Your Knowledge
	Exercise 16-1
	Exercise 16-2
	Exercise 16-3

	Chapter 17. Working with Large Databases
	Partitioning
	Partitioning Concepts
	Table Partitioning
	Index Partitioning
	Partitioning Methods
	Partitioning Benefits

	Clustering
	Sharding
	Big Data
	Hadoop
	NoSQL and Document Databases
	Cloud Computing
	

	Chapter 18. SQL and Big Data
	Introduction to Apache Drill
	Querying Files Using Drill
	Querying MySQL Using Drill
	Querying MongoDB Using Drill
	Drill with Multiple Data Sources
	Future of SQL

	Appendix A. ER Diagram for Example Database
	Appendix B. Solutions to Exercises
	Chapter 3
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4

	Chapter 4
	Exercise 4-1
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4

	Chapter 5
	Exercise 5-1
	Exercise 5-2
	Exercise 5-3

	Chapter 6
	Exercise 6-1
	Exercise 6-2
	Exercise 6-3

	Chapter 7
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3

	Chapter 8
	Exercise 8-1
	Exercise 8-2
	Exercise 8-3

	Chapter 9
	Exercise 9-1
	Exercise 9-2
	Exercise 9-3

	Chapter 10
	Exercise 10-1
	Exercise 10-2
	Exercise 10-3 (Extra Credit)

	Chapter 11
	Exercise 11-1
	Exercise 11-2

	Chapter 12
	Exercise 12-1

	Chapter 13
	Exercise 13-1
	Exercise 13-2

	Chapter 14
	Exercise 14-1
	Exercise 14-2

	Chapter 15
	Exercise 15-1
	Exercise 15-2

	Chapter 16
	Exercise 16-1
	Exercise 16-2
	Exercise 16-3

	Index
	About the Author
	Colophon

