

DATA STRUCTURES AND
PROBLEM SOLVING USING C++

Second Edition

MARK ALLEN WElSS
Florida International Universi~

Pearson Education International Inc., Upper Saddle River, N.J. 07458

If you purchased this book within the United States or Canada
you should be aware that it has been wrongfully imported
without the approval of the Publisher or the Author.

Acquisitions Editor: Susan Hartman
Project Editor: Katherine Harutunian
Production Management: Shepherd, Inc.
Composition: Shepherd. Inc.
Cover Design: Diana Coe
Cover Photo: O Mike ShepherdIPhoton~ca

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed in ~nitial caps or in all caps.

The programs and the applications presented In this book have been included for their instructional value. They have
been tested with care but are not guaranteed for any particular purpose. Neither the publisher or the author offers any
warranties or representations. nor do they accept any liabilities with respect to the programs or applications.

OCopyright 2003 Pearson Education International
Upper Saddle River. N.J. 04758

OCopyright 2002 by Addison Wesley Longman. Inc.

All rights reserved. No part of this publication may be reproduced. stored In a database or retr~eval system,
or transmitted in any form or by any means. electronic, mechanical. photocopying, record~ng, or any other
media embodiments now known or hereafter to become known. without the prior written permission of the
publisher. Printed in the United States of Amenca.

ISBN: 0321 205006

l 0 9 8 7 6 5 4 3 2 1

Additional C++ Class Features

3. A data member that is a reference variable (for instance an
istream &) must be initialized in the constructor.

2.3.2 Type Conversions

C++ has rules that allow the mixing of types. For instance, if i is an int and
d is a double, d=i is allowed. This is known as an implicit type conver-
sion because it is performed without the use of an explicit type conversion
operator. A temporary tmp is created from i and then is used as the right-
hand side of the assignment. Some languages do not allow implicit type con-
version because of the danger of accidental usage and weakening the notion
of strong typing. However, forcing all type conversions to be explicit tends
to load code with conversions, sometimes unnecessarily.

A type conversion creates a temporary object of a new type. In C++ the
rules for type conversion follow this general principle: If you can construct
an object of type tl by providing an object of another type t2, then a type
conversion from t2 to t l is guaranteed to follow the same semantics. In the
case of the Rational class, any appearance of an IntType object is
implicitly converted to a (temporary) Rational when needed, as in the pre-
viously cited examples in main (Figure 2.1 1 , lines 24 and 27). The tempo-
rary is created by executing the constructor. If you do not want implicit type
conversions, declare your one-parameter constructors to be explicit.

A technical point: In our case, even though a conversion is defined for
int to IntType and one is defined from IntType to Rational, transitiv-
ity does not hold. Thus these two conversions do not imply a third conver-
sion from int to Rational. This lack of transitivity is why the type
conversion from int to IntType is performed in Figure 2.1 1 at lines 24 and
27. We could attempt to provide a constructor for Rational that takes an
int, which would solve our problems by providing the third type conver-
sion. However, if IntType is an int, that approach provides two identical
constructors, and the compiler will complain about the ambiguity.

We can also define a type conversion by overloading operator () . For
instance, we can specify a type conversion from Rational to int by writ-
ing the member function

A type conversion
creates a temporary
object of a new type.

A constructor defines
an automatic type
conversion.

Conversions are not
transitive.

Conversions can also
be defined as member
functions, but do not
overdo them or
ambiguity can result.

operator int () const
{ return denom == 1 ? numer : int(longDecimal()) ;)

The Standard Template Library

searching because, once we have been presented with the items, we cannot
add or remove items. Suppose, however, that we do want to add and remove
items. The STL data structure that allows us to do so is the set.

The set is an The set is an ordered container that allows no duplicate^.^ We discuss
Ordered the underlying implementation in Chapter 19. In addition to the usual
that allows no
duplicates. begin, end, size, and empty, the set provides the following operations.

gair<iterator,bool> insert(const Object & element)

adds element to the set if it is not already present. The boo1 component of
the return value is true if the set did not already contain element;
otherwise, it is false. The iterator component of the return value is the
location of element in the set.

iterator find(const Object & element) const

returns an iterator containing the location of element in the set or
end () if element is not in the set.

int erase(const Object & element)

removes element from the set if it is present. Returns the number of
elements removed (either 0 or 1).

By default, ordering uses the less<Obj ect> function object, which
itself is implemented by calling operator< for the Object. An alternative
ordering can be specified by instantiating the set template with a function
object type.6 As an example, Figure 7.13 illustrates how a set that stores
strings in decreasing order is constructed. The call to printcollection
will output elements in decreasing sorted order.

We are hoping that the worst-case cost of the find, insert, and
erase operations is O(log N) because that would match the bound
obtained for the static binary search. Unfortunately, for the simplest imple-
mentation of the set, that is not the case. The average case is logarithmic,
but the worst case is O(N) and occurs frequently. However, by applying
some algorithmic tricks, we can obtain a more complex structure that does
indeed have O(1og N) cost per operation. The STL set is guaranteed to
have this performance, and in Chapter 19 we discuss how to obtain it using
the binary search tree and its variants, and provide an implementation of
the set, with a forward iterator.

5. The multiset allows duplicates, but we do not discuss it here.
6. Some compilers do not support default template parameters. For those compilers, the

function object type must be explicitly provided. In this text we always explicitly provide
a function object type.

#include <iostream>
#include <set>
#include <functional>
#include <string>
using namespace std;

int main()

i
set<string, greater<string> > S; / / Use reverse order

s.insert("joe") ;

s.insert("bob" 1 ;
printcollection(s 1 ; / / Figure 7.6

return 0;
1

Figure 7.13 Illustration of set, using reverse order.

We mention in closing that the iterator returned by the set is not a ran-
dom access iterator. However, it is possible to make the set iterator a slightly
slow O(log N) random access iterator, while preserving the running time of
the other operations. In other words, by careful modification of the binary
search tree, we can access the Kth smallest item in logarithmic time.

7.8 Maps

A map is used to store a collection of ordered entries that consists of keys
and their values and maps keys to values. Keys must be unique, but several
keys can be mapped to the same values.' Thus values need not be unique.

A map behaves like a set instantiated with a pair (see Section 5.51,
whose comparison function refers only to the key.8 Thus it supports begin,
end, size, and empty, but the underlying iterator is a (key, value) pair.
Thus for an iterator itr, *itr is of type pair<KeyType,ValueType>. The
map also supports insert, find, and erase. For insert, we must provide
a pair<KeyType, ValueType> object. Although find requires only a
key, the iterator it returns references a pair. Using only these operations is
hardly worthwhile because the syntactic baggage can be excessive.

Using a binary search
tree, we can access
the Kth smallest item.
The cost is logarith-
mic average-case
time for a simple
implementation and
logarithmic worst-
case time for a more
careful
implementation.

A map is used to
store a collection of
ordered entries that
consists of keys and
their values and maps
keys to values.

7. The mu1 timap allows duplicate keys, but we do not discuss it here.
8. Like a set, an optional template parameter can be used to specify a comparison function

that differs from less<KeyType>.

	Book Cover
	Contents
	Preface
	Part I: Objects & C++
	Chapter 1: Arrays, Pointers & Structures
	1.1 What are Pointers, Arrays & Structures?
	1.2 Arrays & Strings
	1.2.1 First-Class Versus Second-Class Objects
	1.2.2 Using the vector
	1.2.3 Resizing a vector
	1.2.4 push_back, size & capacity
	1.2.5 Parameter-Passing Mechanisms
	1.2.6 Primitive Arrays of Constants
	1.2.7 Multidimensional Arrays
	1.2.8 The Standard Library string Type

	1.3 Pointer Syntax in C++
	1.4 Dynamic Memory Management
	1.4.1 The new Operator
	1.4.2 Garbage Collection & delete
	1.4.3 Stale Pointers, Double Deletion, and More

	1.5 Reference Variables
	1.6 Structures
	1.6.1 Pointers to Structures
	1.6.2 Exogenous Versus Indigenous Data and Shallow Versus Deep Copying
	1.6.3 Noncontigious Lists: Linked Lists

	Summary, Exercises etc

	Chapter 2: Objects & Classes
	2.1 What is Object Oriented Programming?
	2.2 Basic class Syntax
	2.3 Additional C++ Class Features
	2.4 Some Common Idioms
	2.5 Exceptions
	2.6 A string Class
	2.7 Recap: What Gets Called and What Are the Defaults?
	2.8 Composotion
	Summary, Exercises etc

	Chapter 3: Templates
	Chapter 4: Inheritance
	Chapter 5: Design Patterns

	Part II: Algorithms & Building Blocks
	Chapter 6: Algorithm Analysis
	Chapter 7: The Standard Template Library
	Chapter 8: Recursion
	Chapter 9: Sorting Algorithms
	Chapter 10: Randomization

	Part III: Applications
	Chapter 11: Fun & Games
	Chapter 12: Stacks & Compilers
	Chapter 13: Utilities
	Chapter 14: Simulation
	Chapter 15: Graphs & Paths

	Part IV: Implementations
	Chapter 16: Stacks & Queues
	Chapter 17: Linked Lists
	Chapter 18: Trees
	Chapter 19: Binary Search Trees
	Chapter 20: Hash Tables
	Chapter 21: A Priority Queue: The Binary Heap

	Part V: Advanced Data Structures
	Chapter 22: Splay Trees
	Chapter 23: Merging Priority Queues
	Chapter 24: The Disjoint Set Class

	Appendices
	Appendix A: Miscellaneous C++ Details
	Appendix B: Operators
	Appendix C: Some Library Routines
	Appendix D: Primitive Arrays in C++

	Index
	Back Cover

