

02-M4363-DAS1.LaTeX: “fm” — 2007/11/29 — 12:31 — page i — #1

Operating Systems
A Concept-Based Approach

Dhananjay M. Dhamdhere
Professor of Computer Science & Engineering

Indian Institute of Technology, Bombay

02-M4363-DAS1.LaTeX: “fm” — 2007/11/29 — 12:31 — page ii — #2

OPERATING SYSTEMS: A CONCEPT-BASED APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York,
NY 10020. Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978–0–07–295769–3
MHID 0–07–295769–7

Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Freelance Developmental Editor: Melinda Bilecki
Project Coordinator: Melissa M. Leick
Lead Production Supervisor: Sandy Ludovissy
Designer: Laurie B. Janssen
(USE) Cover Image: S. Solum/PhotoLink/Getty Images, RF
Compositor: Newgen
Typeface: 10/12 Times
Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Dhamdhere, Dhananjay M.
Operating systems : a concept-based approach / Dhananjay M. Dhamdhere. – 1st ed.

p. cm.
Includes bibliographical references and index.
ISBN 978–0–07–295769–3 — ISBN 0–07–295769–7 (hard copy : alk. paper) 1. Operating systems

(Computers) I. Title.

QA76.76.O63D5 2009
005.4′3–dc22 2007041510

www.mhhe.com

http://www.mhhe.com

02-M4363-DAS1.LaTeX: “fm” — 2007/11/29 — 12:31 — page iii — #3

Dedication
•

To my wife Snehalata

02-M4363-DAS1.LaTeX: “fm” — 2007/11/29 — 12:31 — page iv — #4

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page v — #1

Brief Contents

Preface xvi
• Part 1 •
Overview 1

1 Introduction 5

2 The OS, the Computer, and User Programs 25

3 Overview of Operating Systems 51

4 Structure of Operating Systems 80

• Part 2 •
Process Management 107

5 Processes and Threads 111

6 Process Synchronization 165

7 Scheduling 228

8 Deadlocks 277

9 Message Passing 315

10 Synchronization and Scheduling in Multiprocessor Operating Systems 336

• Part 3 •
Memory Management 361
11 Memory Management 363

12 Virtual Memory 410

• Part 4 •
File Systems and I/O Management 477
13 File Systems 479

14 Implementation of File Operations 543

15 Security and Protection 605

• Part 5 •
Distributed Operating Systems 649
16 Distributed Operating Systems 653

17 Theoretical Issues in Distributed Systems 693

18 Distributed Control Algorithms 714

19 Recovery and Fault Tolerance 743

20 Distributed File Systems 760

21 Distributed System Security 785 v

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page vi — #2

Contents

Preface xvi

• Part 1 •
Overview 1

Chapter 1 •
Introduction 5
1.1 Abstract Views of an Operating System 5

1.2 Goals of an OS 8
1.2.1 Efficient Use 8
1.2.2 User Convenience 9
1.2.3 Noninterference 10

1.3 Operation of an OS 10
1.3.1 Program Management 12
1.3.2 Resource Management 12
1.3.3 Security and Protection 14

1.4 Preview of the Book 15
1.4.1 Introduction to Operating

Systems 16
1.4.2 Managing User

Computations 17
1.4.3 Management of Memory 19
1.4.4 Management of Files and I/O

Devices 20
1.4.5 Distributed Operating

Systems 21
1.5 Summary 22

Test Your Concepts 23

Exercises 23

Bibliography 24

Chapter 2 •
The OS, the Computer,
and User Programs 25
2.1 Fundamental Principles of OS

Operation 25

2.2 The Computer 26
2.2.1 The CPU 27
2.2.2 Memory Management Unit

(MMU) 30
2.2.3 Memory Hierarchy 30
2.2.4 Input/Output 34
2.2.5 Interrupts 36

2.3 OS Interaction with the Computer and
User Programs 39
2.3.1 Controlling Execution of

Programs 39
2.3.2 Interrupt Servicing 40
2.3.3 System Calls 44

2.4 Summary 47

Test Your Concepts 48

Exercises 49

Bibliography 49

Chapter 3 •
Overview of Operating Systems 51
3.1 Computing Environments and Nature of

Computations 51

3.2 Classes of Operating Systems 54

3.3 Efficiency, System Performance, and User
Service 56

3.4 Batch Processing Systems 58

vi

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page vii — #3

Contents vii

3.5 Multiprogramming Systems 59
3.5.1 Priority of Programs 61

3.6 Time-Sharing Systems 65
3.6.1 Swapping of Programs 67

3.7 Real-Time Operating Systems 68
3.7.1 Hard and Soft Real-Time

Systems 69
3.7.2 Features of a Real-Time Operating

System 70
3.8 Distributed Operating Systems 71

3.8.1 Special Techniques of Distributed
Operating Systems 72

3.9 Modern Operating Systems 73

3.10 Summary 74

Test Your Concepts 75

Exercises 76

Bibliography 78

Chapter 4 •
Structure of Operating Systems 80
4.1 Operation of an OS 80

4.2 Structure of an Operating System 82
4.2.1 Policies and Mechanisms 82
4.2.2 Portability and Extensibility of

Operating Systems 82
4.3 Operating Systems with Monolithic

Structure 84

4.4 Layered Design of Operating
Systems 85

4.5 Virtual Machine Operating Systems 88

4.6 Kernel-Based Operating Systems 92
4.6.1 Evolution of Kernel-Based

Structure of Operating
Systems 94

4.7 Microkernel-Based Operating
Systems 95

4.8 Case Studies 97
4.8.1 Architecture of Unix 98
4.8.2 The Kernel of Linux 99
4.8.3 The Kernel of Solaris 100
4.8.4 Architecture of Windows 101

4.9 Summary 102

Test Your Concepts 103

Exercises 104

Bibliography 104

• Part 2 •
Process Management 107

Chapter 5 •
Processes and Threads 111
5.1 Processes and Programs 111

5.1.1 What Is a Process? 111
5.1.2 Relationships between Processes

and Programs 113
5.1.3 Child Processes 114
5.1.4 Concurrency and

Parallelism 116
5.2 Implementing Processes 117

5.2.1 Process States and State
Transitions 119

5.2.2 Process Context and the Process
Control Block 123

5.2.3 Context Save, Scheduling, and
Dispatching 125

5.2.4 Event Handling 127
5.2.5 Sharing, Communication, and

Synchronization between
Processes 131

5.2.6 Signals 132
5.3 Threads 134

5.3.1 POSIX Threads 138
5.3.2 Kernel-Level, User-Level, and

Hybrid Threads 139

5.4 Case Studies of Processes and
Threads 146
5.4.1 Processes in Unix 146
5.4.2 Processes and Threads in

Linux 152
5.4.3 Threads in Solaris 154
5.4.4 Processes and Threads in

Windows 157

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page viii — #4

viii Contents

5.5 Summary 160

Test Your Concepts 161

Exercises 161

Class Project: Implementing a Shell 162

Bibliography 163

Chapter 6 •
Process Synchronization 165
6.1 What Is Process Synchronization? 165

6.2 Race Conditions 166

6.3 Critical Sections 170
6.3.1 Properties of a Critical Section

Implementation 172
6.4 Control Synchronization and Indivisible

Operations 172

6.5 Synchronization Approaches 175
6.5.1 Looping versus Blocking 175
6.5.2 Hardware Support for Process

Synchronization 177
6.5.3 Algorithmic Approaches,

Synchronization Primitives, and
Concurrent Programming
Constructs 180

6.6 Structure of Concurrent Systems 181

6.7 Classic Process Synchronization
Problems 183
6.7.1 Producers −− Consumers with

Bounded Buffers 183
6.7.2 Readers and Writers 186
6.7.3 Dining Philosophers 187

6.8 Algorithmic Approach to Implementing
Critical Sections 190
6.8.1 Two-Process Algorithms 190
6.8.2 n-Process Algorithms 194

6.9 Semaphores 197
6.9.1 Uses of Semaphores in Concurrent

Systems 198

6.9.2 Producers −− Consumers Using
Semaphores 201

6.9.3 Readers −− Writers Using
Semaphores 204

6.9.4 Implementation of
Semaphores 205

6.10 Monitors 208
6.10.1 Monitors in Java 213

6.11 Case Studies of Process
Synchronization 213
6.11.1 Synchronization of POSIX

Threads 213
6.11.2 Process Synchronization in

Unix 215
6.11.3 Process Synchronization in

Linux 216
6.11.4 Process Synchronization in

Solaris 217
6.11.5 Process Synchronization in

Windows 218
6.12 Summary 220

Test Your Concepts 221

Exercises 222

Class Project 1: Interprocess
Communication 224

Class Project 2: Disk Scheduler 225

Bibliography 226

Chapter 7 •
Scheduling 228
7.1 Scheduling Terminology and

Concepts 228
7.1.1 Fundamental Techniques of

Scheduling 231
7.1.2 The Role of Priority 232

7.2 Nonpreemptive Scheduling Policies 233
7.2.1 FCFS Scheduling 233
7.2.2 Shortest Request Next (SRN)

Scheduling 234
7.2.3 Highest Response Ratio Next

(HRN) Scheduling 236
7.3 Preemptive Scheduling Policies 236

7.3.1 Round-Robin Scheduling with
Time-Slicing (RR) 237

7.3.2 Least Completed Next (LCN)
Scheduling 240

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page ix — #5

Contents ix

7.3.3 Shortest Time to Go (STG)
Scheduling 241

7.4 Scheduling in Practice 242
7.4.1 Long-, Medium-, and Short-Term

Schedulers 243
7.4.2 Scheduling Data Structures and

Mechanisms 246
7.4.3 Priority-Based Scheduling 246
7.4.4 Round-Robin Scheduling with

Time-Slicing 247
7.4.5 Multilevel Scheduling 248
7.4.6 Fair Share Scheduling 249
7.4.7 Kernel Preemptibility 250
7.4.8 Scheduling Heuristics 250
7.4.9 Power Management 251

7.5 Real-Time Scheduling 252
7.5.1 Process Precedences and Feasible

Schedules 252
7.5.2 Deadline Scheduling 254
7.5.3 Rate Monotonic Scheduling 257

7.6 Case Studies 259
7.6.1 Scheduling in Unix 259
7.6.2 Scheduling in Solaris 262
7.6.3 Scheduling in Linux 263
7.6.4 Scheduling in Windows 264

7.7 Performance Analysis of Scheduling
Policies 266
7.7.1 Performance Analysis through

Implementation 266
7.7.2 Simulation 267
7.7.3 Mathematical Modeling 268

7.8 Summary 272

Test Your Concepts 272

Exercises 273

Bibliography 275

Chapter 8 •
Deadlocks 277
8.1 What is a Deadlock? 277

8.2 Deadlocks in Resource Allocation 279
8.2.1 Conditions for a Resource

Deadlock 280

8.2.2 Modeling the Resource Allocation
State 281

8.3 Handling Deadlocks 285

8.4 Deadlock Detection and Resolution 286
8.4.1 A Deadlock Detection

Algorithm 288
8.4.2 Deadlock Resolution 290

8.5 Deadlock Prevention 291
8.5.1 All Resources Together 293
8.5.2 Resource Ranking 294

8.6 Deadlock Avoidance 295

8.7 Characterization of Resource Deadlocks by
Graph Models 301
8.7.1 Single-Instance, Single-Request

(SISR) Systems 301
8.7.2 Multiple-Instance, Single-Request

(MISR) Systems 302
8.7.3 Single-Instance, Multiple-Request

(SIMR) Systems 303
8.7.4 Multiple-Instance,

Multiple-Request (MIMR)
Systems 304

8.7.5 Processes in Deadlock 305
8.8 Deadlock Handling in Practice 306

8.8.1 Deadlock Handling in Unix 307
8.8.2 Deadlock Handling in

Windows 308
8.9 Summary 309

Test Your Concepts 310

Exercises 310

Bibliography 313

Chapter 9 •
Message Passing 315
9.1 Overview of Message Passing 315

9.1.1 Direct and Indirect Naming 317
9.1.2 Blocking and Nonblocking

Sends 318
9.1.3 Exceptional Conditions in Message

Passing 319
9.2 Implementing Message Passing 320

9.2.1 Buffering of Interprocess
Messages 320

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page x — #6

x Contents

9.2.2 Delivery of Interprocess
Messages 321

9.3 Mailboxes 323

9.4 Higher-Level Protocols Using Message
Passing 325
9.4.1 The Simple Mail Transfer Protocol

(SMTP) 325
9.4.2 Remote Procedure Calls 326
9.4.3 Message Passing Standards for

Parallel Programming 327
9.5 Case Studies in Message Passing 328

9.5.1 Message Passing in Unix 328
9.5.2 Message Passing in

Windows 332
9.6 Summary 334

Test Your Concepts 334

Exercises 334

Bibliography 335

Chapter 10 •
Synchronization and Scheduling in
Multiprocessor Operating Systems 336
10.1 Architecture of Multiprocessor

Systems 336
10.1.1 SMP Architecture 341
10.1.2 NUMA Architecture 342

10.2 Issues in Multiprocessor Operating
Systems 343

10.3 Kernel Structure 345

10.4 Process Synchronization 347
10.4.1 Special Hardware for Process

Synchronization 350
10.4.2 A Scalable Software Scheme for

Process Synchronization 351
10.5 Process Scheduling 352

10.6 Case Studies 354
10.6.1 Mach 354
10.6.2 Linux 355
10.6.3 SMP Support in Windows 356

10.7 Summary 358

Test Your Concepts 358

Exercises 359

Bibliography 359

• Part 3 •
Memory Management 361

Chapter 11 •
Memory Management 363
11.1 Managing the Memory Hierarchy 363

11.2 Static and Dynamic Memory
Allocation 365

11.3 Execution of Programs 367
11.3.1 Relocation 369
11.3.2 Linking 371
11.3.3 Program Forms Employed in

Operating Systems 373

11.4 Memory Allocation to a Process 376
11.4.1 Stacks and Heaps 376
11.4.2 The Memory Allocation

Model 378
11.4.3 Memory Protection 380

11.5 Heap Management 380
11.5.1 Reuse of Memory 380

11.5.2 Buddy System and Power-of-2
Allocators 386

11.5.3 Comparing Memory
Allocators 389

11.5.4 Heap Management in
Windows 390

11.6 Contiguous Memory Allocation 390

11.7 Noncontiguous Memory Allocation 392
11.7.1 Logical Addresses, Physical

Addresses, and Address
Translation 393

11.7.2 Approaches to Noncontiguous
Memory Allocation 394

11.7.3 Memory Protection 395
11.8 Paging 396

11.9 Segmentation 398

11.10 Segmentation with Paging 399

11.11 Kernel Memory Allocation 400

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page xi — #7

Contents xi

11.12 Using Idle RAM Effectively 404

11.13 Summary 405

Test Your Concepts 406

Exercises 407

Bibliography 408

Chapter 12 •
Virtual Memory 410
12.1 Virtual Memory Basics 410

12.2 Demand Paging 413
12.2.1 Demand Paging

Preliminaries 414

12.2.2 Paging Hardware 423

12.2.3 Practical Page Table
Organizations 428

12.2.4 I/O Operations in a Paged
Environment 433

12.3 The Virtual Memory Manager 435
12.3.1 Overview of Operation of the

Virtual Memory Handler 437
12.4 Page Replacement Policies 438

12.4.1 Practical Page Replacement
Policies 444

12.5 Controlling Memory Allocation to a
Process 447

12.6 Shared Pages 451
12.6.1 Copy-on-Write 453

12.7 Memory-Mapped Files 454

12.8 Case Studies of Virtual Memory Using
Paging 456
12.8.1 Unix Virtual Memory 456
12.8.2 Linux Virtual Memory 459
12.8.3 Virtual Memory in Solaris 461
12.8.4 Virtual Memory in

Windows 462
12.9 Virtual Memory Using Segmentation 465

12.9.1 Management of Memory 466
12.9.2 Sharing and Protection 467
12.9.3 Segmentation with Paging 468

12.10 Summary 469

Test Your Concepts 470

Exercises 471

Class Project: Simulation of Virtual Memory
Manager 473

Bibliography 474

• Part 4 •
File Systems and I/O
Management 477

Chapter 13 •
File Systems 479
13.1 Overview of File Processing 479

13.1.1 File System and the IOCS 481
13.1.2 File Processing in a Program 482

13.2 Files and File Operations 483

13.3 Fundamental File Organizations and Access
Methods 484
13.3.1 Sequential File

Organization 485
13.3.2 Direct File Organization 485
13.3.3 Index Sequential File

Organization 486
13.3.4 Access Methods 488

13.4 Directories 488
13.4.1 Directory Trees 490
13.4.2 Directory Graphs 492
13.4.3 Operations on Directories 493
13.4.4 Organization of Directories 493

13.5 Mounting of File Systems 495

13.6 File Protection 497

13.7 Allocation of Disk Space 498
13.7.1 Linked Allocation 499
13.7.2 Indexed Allocation 500
13.7.3 Performance Issues 502

13.8 Interface Between File System and
IOCS 503

13.9 File Processing 506
13.9.1 File System Actions at open 506
13.9.2 File System Actions during a File

Operation 509

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page xii — #8

xii Contents

13.9.3 File System Actions at
close 509

13.10 File Sharing Semantics 510

13.11 File System Reliability 513
13.11.1 Loss of File System

Consistency 513
13.11.2 Approaches to File System

Reliability 515

13.12 Journaling File System 523

13.13 Virtual File System 524

13.14 Case Studies of File Systems 526
13.14.1 Unix File System 526
13.14.2 Linux File System 530
13.14.3 Solaris File System 531
13.14.4 Windows File System 531

13.15 Performance of File Systems 534
13.15.1 Log-Structured File System 536

13.16 Summary 537

Test Your Concepts 538

Exercises 539

Bibliography 541

Chapter 14 •
Implementation of File Operations 543
14.1 Layers of the Input-Output Control

System 543

14.2 Overview of I/O Organization 545

14.3 I/O Devices 547
14.3.1 Magnetic Tapes 550
14.3.2 Magnetic Disks 552
14.3.3 Data Staggering Techniques 554
14.3.4 Disk Attachment

Technologies 559
14.3.5 RAID 561
14.3.6 Optical Disks 565

14.4 Device-Level I/O 566
14.4.1 I/O Programming 567

14.5 The Physical IOCS 569
14.5.1 Logical Devices 569
14.5.2 Physical IOCS Data

Structures 570

14.5.3 Organization of Physical
IOCS 571

14.5.4 Implementation of Physical
IOCS 572

14.6 Device Drivers 574

14.7 Disk Scheduling 576

14.8 Buffering of Records 579

14.9 Blocking of Records 584

14.10 Access Methods 587

14.11 Disk and File Caches 588

14.12 Unified Disk Cache 591

14.13 Case Studies 592
14.13.1 Unix 592

14.13.2 Linux 595
14.13.3 File Processing in Windows 596

14.14 Summary 599

Test Your Concepts 600

Exercises 601

Bibliography 602

Chapter 15 •
Security and Protection 605
15.1 Overview of Security and Protection 605

15.1.1 Goals of Security and
Protection 609

15.1.2 Security and Protection
Threats 609

15.2 Security Attacks 610
15.2.1 Trojan Horses, Viruses, and

Worms 611
15.2.2 The Buffer Overflow

Technique 613
15.3 Formal Aspects of Security 615

15.4 Encryption 617
15.4.1 Attacks on Cryptographic

Systems 619
15.4.2 Encryption Techniques 620

15.5 Authentication and Password Security 623

15.6 Protection Structures 625
15.6.1 Granularity of Protection 626
15.6.2 Access Control Matrix 627

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page xiii — #9

Contents xiii

15.6.3 Access Control Lists (ACLs) 627
15.6.4 Capability Lists (C-lists) 628
15.6.5 Protection Domain 629

15.7 Capabilities 630
15.7.1 Capability-Based Computer

Systems 631
15.7.2 Software Capabilities 633
15.7.3 Problem Areas in the Use of

Capabilities 635
15.8 Classifications of Computer Security 636

15.9 Case Studies in Security and
Protection 638
15.9.1 MULTICS 638
15.9.2 Unix 639
15.9.3 Linux 640
15.9.4 Security and Protection in

Windows 641
15.10 Summary 643

Test Your Concepts 644

Exercises 644

Bibliography 645

• Part 5 •
Distributed Operating
Systems 649

Chapter 16 •
Distributed Operating Systems 653
16.1 Features of Distributed Systems 653

16.2 Nodes of Distributed Systems 655

16.3 Integrating Operation of Nodes of a
Distributed System 656

16.4 Reliable Interprocess Communication 659
16.4.1 Naming of Processes 660
16.4.2 IPC Semantics 661
16.4.3 IPC Protocols 662

16.5 Distributed Computation Paradigms 665
16.5.1 Client −− Server Computing 667
16.5.2 Remote Procedure Calls 668

16.5.3 Remote Evaluation 670
16.5.4 Case Studies 671

16.6 Networking 672
16.6.1 Types of Networks 672
16.6.2 Network Topology 674
16.6.3 Networking Technologies 675
16.6.4 Connection Strategies 678
16.6.5 Routing 680
16.6.6 Network Protocols 681
16.6.7 Network Bandwidth and

Latency 684
16.7 Model of a Distributed System 685

16.8 Design Issues in Distributed Operating
Systems 687

16.9 Summary 689

Test Your Concepts 690

Exercises 691

Bibliography 691

Chapter 17 •
Theoretical Issues in Distributed
Systems 693
17.1 Notions of Time and State 693

17.2 States and Events in a Distributed
System 694
17.2.1 Local and Global States 694
17.2.2 Events 695

17.3 Time, Clocks, and Event Precedences 695
17.3.1 Event Precedence 696
17.3.2 Logical Clocks 697
17.3.3 Vector Clocks 700

17.4 Recording the State of a Distributed
System 702
17.4.1 Properties of a Consistent State

Recording 703
17.4.2 An Algorithm for Consistent State

Recording 706
17.5 Summary 710

Test Your Concepts 711

Exercises 712

Bibliography 713

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page xiv — #10

xiv Contents

Chapter 18 •
Distributed Control Algorithms 714
18.1 Operation of Distributed Control

Algorithms 714

18.2 Correctness of Distributed Control
Algorithms 717

18.3 Distributed Mutual Exclusion 718
18.3.1 A Permission-Based

Algorithm 718
18.3.2 Token-Based Algorithms for

Mutual Exclusion 720
18.4 Distributed Deadlock Handling 723

18.4.1 Problems in Centralized Deadlock
Detection 724

18.4.2 Distributed Deadlock
Detection 724

18.4.3 Distributed Deadlock
Prevention 728

18.5 Distributed Scheduling Algorithms 728

18.6 Distributed Termination Detection 732

18.7 Election Algorithms 735

18.8 Practical Issues in Using Distributed Control
Algorithms 736
18.8.1 Resource Management 736
18.8.2 Process Migration 738

18.9 Summary 739

Test Your Concepts 740

Exercises 740

Bibliography 741

Chapter 19 •
Recovery and Fault Tolerance 743
19.1 Faults, Failures, and Recovery 743

19.1.1 Classes of Faults 745
19.1.2 Overview of Recovery

Techniques 746
19.2 Byzantine Faults and Agreement

Protocols 747

19.3 Recovery 748

19.4 Fault Tolerance Techniques 750

19.4.1 Logs, Forward Recovery, and
Backward Recovery 750

19.4.2 Handling Replicated Data 751
19.4.3 Handling Distributed Data 753

19.5 Resiliency 754

19.6 Summary 756

Test Your Concepts 757

Exercises 757

Bibliography 758

Chapter 20 •
Distributed File Systems 760
20.1 Design Issues in Distributed File

Systems 760
20.1.1 Overview of DFS Operation 762

20.2 Transparency 763

20.3 Semantics of File Sharing 764

20.4 Fault Tolerance 765
20.4.1 Availability 766
20.4.2 Client and Server Node

Failures 768
20.4.3 Stateless File Servers 769

20.5 DFS Performance 770
20.5.1 Efficient File Access 770
20.5.2 File Caching 771
20.5.3 Scalability 774

20.6 Case Studies 774
20.6.1 Sun Network File System 774
20.6.2 Andrew and Coda File

Systems 777
20.6.3 GPFS 779
20.6.4 Windows 781

20.7 Summary 781

Test Your Concepts 782

Exercises 783

Bibliography 783

Chapter 21 •
Distributed System Security 785
21.1 Issues in Distributed System Security 785

02-M4363-DAS1.LaTeX: “contents” — 2007/11/29 — 15:07 — page xv — #11

Contents xv

21.1.1 Security Mechanisms and
Policies 786

21.1.2 Security Attacks in Distributed
Systems 787

21.2 Message Security 788
21.2.1 Distribution of Encryption

Keys 791
21.2.2 Preventing Message Replay

Attacks 793
21.2.3 Mutual Authentication 794

21.3 Authentication of Data and Messages 795
21.3.1 Certification Authorities and

Digital Certificates 795

21.3.2 Message Authentication Codes and
Digital Signatures 796

21.4 Third-Party Authentication 797
21.4.1 Kerberos 797
21.4.2 Secure Sockets Layer (SSL) 801

21.5 Summary 803

Test Your Concepts 803

Exercises 804

Bibliography 805

02-M4363-DAS1.LaTeX: “preface” — 2007/11/29 — 15:16 — page xvi — #1

Preface

OBJECTIVE
•

The main objective of a first course in operating systems is to develop an
understanding of the fundamental concepts and techniques of operating systems.
Most of the students are already exposed to diverse information on operating sys-
tems as a result of practical exposure to operating systems and literature on the
Internet; such students have a lot of information but few concepts about oper-
ating systems. This situation makes teaching of operating systems concepts a
challenging task because it is necessary to retrofit some concepts to the informa-
tion possessed by these students without boring them, yet do it in a manner that
introduces concepts to first-time learners of operating systems without intimi-
dating them. This book presents operating system concepts and techniques in a
manner that incorporates these requirements.

GENERAL APPROACH
•

The book begins by building a core knowledge of what makes an operating system
tick. It presents an operating system as an intermediary between a computer
system and users that provides good service to users and also achieves efficient
use of the computer system. A discussion of interactions of an operating system
with the computer on one hand and with user computations on the other hand
consolidates this view and adds practical details to it. This approach demystifies
an operating system for a new reader, and also relates to the background of an
experienced reader. It also emphasizes key features of computer architecture that
are essential for a study of operating systems.

The rest of the book follows an analogous approach. Each chapter identi-
fies fundamental concepts involved in some functionality of an operating system,
describes relevant features in computer architecture, discusses relevant operat-
ing system techniques, and illustrates their operation through examples. The
highlights of this approach are:

• Fundamental concepts are introduced in simple terms.
• The associations between techniques and concepts are readily established.
• Numerous examples are included to illustrate concepts and techniques.
• Implementation details and case studies are organized as small capsules

spread throughout the text.

xvi

02-M4363-DAS1.LaTeX: “preface” — 2007/11/29 — 15:16 — page xvii — #2

Preface xvii

• Optional sections are devoted to advanced topics such as deadlock char-
acterization, kernel memory allocation, synchronization and scheduling in
multiprocessor systems, file sharing semantics, and file system reliability.

The key benefit of this approach is that concepts, techniques, and case studies
are well integrated, so many design and implementation details look “obvious” by
the time the reader encounters them. It emphasizes the most important message
an operating systems text can give to students: A concept-based study of operating
systems equips a computer professional to comprehend diverse operating system
techniques readily.

PEDAGOGICAL FEATURES
•

Preview of the Book The last section of the first chapter is a brief preview of the
book that motivates study of each chapter by describing its importance within
the overall scheme of the operating system, the topics covered in the chapter, and
its relationships with other chapters of the book.

Part Introduction Each part of the book begins with an introduction that des-
cribes its contents and provides a road map of the chapters in the part.

Chapter Introduction The chapter introduction motivates the reader by des-
cribing the objectives of the chapter and the topics covered in it.

Figures and Tables Each chapter has concept-based figures that illustrate fun-
damental concepts and techniques of a specific OS functionality. These figures
are a vital part of the book’s pedagogy. Other figures are used for traditional pur-
poses such as depicting practical arrangements or stepwise operation of specific
techniques. Tables play a crucial role in the pedagogy by providing overviews and
summaries of specific topics.

Examples Examples demonstrate the key issues concerning concepts and tech-
niques being discussed. Examples are typeset in a different style to set them apart
from the main body of the text, so a reader can skip an example if he does not
want the flow of ideas to be interrupted, especially while reading a chapter for
the first time.

Program Code Program code is presented in an easy-to-understand pseudocode
form.

Snapshots of Concurrent Systems Students have difficulty visualizing concur-
rent activities in a software system, which leads to an inadequate understanding
of process synchronization. A snapshot depicts the state of different activities and
their data to provide a holistic view of activities in a concurrent system.

Case Studies Case studies are included in a chapter to emphasize practical
issues, arrangements, and trade-offs in the design and implementation of a specific
OS functionality. We draw freely from operating systems of the Unix, Linux,
Solaris, and Windows families—we refer to them simply as Unix, Linux, Solaris,

02-M4363-DAS1.LaTeX: “preface” — 2007/11/29 — 15:16 — page xviii — #3

xviii Preface

and Windows, respectively, except when features of a specific version such as
Linux 2.6 or Windows Vista are being discussed.

Tests of Concepts A set of objective and multiple-choice questions is provided at
the end of each chapter so that the reader can test his grasp of concepts presented
in the chapter.

Exercises Exercises are included at the end of each chapter. These include
numerical problems based on material covered in the text, as well as challenging
conceptual questions that test understanding and also provide deeper insights.

Summaries The summary included at the end of each chapter highlights the
key topics covered and their interrelationships.

Instructor Resources A detailed solutions manual and slides for classroom
usage are provided.

ORGANIZATION OF THE BOOK
•

The study of conventional operating systems is organized into four parts. The
fifth part is devoted to distributed operating systems. The structure of the first
four parts and interdependency between chapters is shown overleaf. Details of
the parts are described in the following.

• Part 1: Overview Part 1 consists of four chapters. The introduction discusses
how user convenience, efficient use of resources, and security and protection
are the fundamental concerns of an operating system and describes the tasks
involved in implementing them. It also contains a preview of the entire book.
Chapter 2 describes how an OS uses features in a computer’s hardware to
organize execution of user programs and handle requests made by them.
Chapter 3 describes the different classes of operating systems, discusses the
fundamental concepts and techniques used by each of them, and lists those
of their techniques that are employed in modern operating systems as well.
Chapter 4 describes operating system design methodologies that enable an OS
to adapt to changes in computer architecture and the computing environment
in which it is used.

• Part 2: Process Management An operating system uses the concepts of
process and thread to manage execution of programs—informally, both pro-
cess and thread represent an execution of a program. The OS contains many
processes at any time and services them in an overlapped manner to provide
good user service and achieve efficient use of resources. Part 2 consists of six
chapters describing issues relating to management of processes and threads.
Chapter 5 describes how processes and threads are created, how they interact
with one another to jointly achieve a goal, and how they are controlled by
the operating system. The remaining five chapters deal with specifics in pro-
cess management—process synchronization, scheduling, deadlocks, message
passing, and synchronization and scheduling in multiprocessor operating
systems.

02-M4363-DAS1.LaTeX: “preface” — 2007/11/29 — 15:16 — page xix — #4

Preface xix

File

Systems

Implementation

of

File Operations

Security

and

Protection

Part 1
Overview

Introduction

The OS, the

Computer, and

User Programs

Overview of

Operating

Systems

Structure of

Operating

Systems

Part 3
Memory

Management

Memory

Management

Virtual

Memory

Part 4
File Systems

Part 2
Process Management

Processes

and Threads

Process

Synchronization
Scheduling

Synchronization

and Scheduling in

Multiprocessor OSs

Message

Passing
Deadlocks

• Part 3: Memory Management Two chapters are devoted to allocation and
sharing of memory between processes. Chapter 11 deals with the funda-
mentals of memory management—the problem of memory fragmentation,
which is a situation in which an area of memory is unusable because it is
too small, and techniques that address memory fragmentation. Chapter 12
discusses implementation of virtual memory, which overcomes the problem
of memory fragmentation and also supports execution of large programs.

• Part 4: File Systems This part consists of three chapters. Chapter 13
describes facilities for creation, access, sharing and reliable storage of files.
Chapter 14 discusses I/O devices and describes how operations on files are
implemented in an efficient manner. Chapter 15 discusses how security and
file protection techniques together prevent illegal forms of access to files.

• Part 5: Distributed Operating Systems A distributed operating system
differs from a conventional one in that the resources, processes and con-
trol operations of the OS are spread across individual computer systems
contained in the distributed system. This difference gives rise to a host of
issues concerning performance, reliability, and security of computations and
the OS itself. Part 5 contains six chapters that discuss these issues.

02-M4363-DAS1.LaTeX: “preface” — 2007/11/29 — 15:16 — page xx — #5

xx Preface

Distributed

System Security

Distributed

File Systems

Distributed

Control

Algorithms

Distributed

Operating

Systems

Theoretical Issues

in Distributed

Systems

Recovery and

Fault Tolerance

Part 5
Distributed Operating Systems

USING THIS BOOK
•

Apart from an introduction to computing, this book does not assume the reader
to possess any specific background, so instructors and students are likely to find
that it contains a lot of introductory material that students already know. This
material has been included for one very important reason: As mentioned at the
start of the preface, students know many things on their own, but often lack
concepts. So it is useful for students to read even familiar topics that are presented
in a concept-based manner. For the same reason, it is essential for instructors to
cover Chapters 2 and 3, particularly the following topics, in class:

• Section 2.2: Memory hierarchy, input/output and interrupts
• Section 2.3: Interrupt servicing and system calls
• Section 3.5: Multiprogramming systems, particularly program mix and

priority.

All topics included in this text cannot be covered in a quarter or semester
length course on operating systems. An instructor may wish to omit some of the
advanced topics or the chapters on structure of operating systems, message pass-
ing, and synchronization and scheduling in multiprocessor operating systems,
and some of the chapters devoted to distributed operating systems.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 1 — #1

p a r t 1
Overview

A
n operating system controls use of a computer system’s resources such
as CPUs, memory, and I/O devices to meet computational requirements
of its users. Users expect convenience, quality of service, and a guaran-

tee that other persons will not be able to interfere with their activities; whereas
system administrators expect efficient use of the computer’s resources and good
performance in executing user programs. These diverse expectations can be char-
acterized as user convenience, efficient use, and security and protection; they form
the primary goals of an operating system. The extent to which an operating system
provides user convenience or efficient use depends on its computing environment,
i.e., the computer system’s hardware, its interfaces with other computers, and the
nature of computations performed by its users.

Different classes of operating systems were developed for different computing
environments. We discuss the fundamental concepts and techniques used in each
class of operating systems, and the flavor of user convenience and efficient use
provided by it. A modern operating system has elements of several classes of
operating systems, so most of these concepts and techniques are found in modern
operating systems as well.

Road Map for Part 1

The OS, the
Computer, and
User Programs

Overview of
Operating
Systems

Structure of
Operating
Systems

Introduction

Schematic diagram showing the order in which chapters of this part should be covered in
a course.

1

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 2 — #2

2 Part 1 Overview

A modern operating system has to be used on computer systems with dif-
ferent architectures; it also has to keep pace with evolution of its computing
environment. We discuss operating system design methodologies that enable an
operating system to be implemented on different computer architectures, and to
evolve with its computing environment.

Chapter 1: Introduction
This chapter discusses how users perceive user convenience, how an operating sys-
tem achieves efficient use of resources, and how it ensures security and protection.
It introduces the notion of effective utilization of a computer system as the com-
bination of user convenience and efficient use that best suits a specific computing
environment. It also describes the fundamental tasks involved in management of
programs and resources, and in implementing security and protection. The last
section of this chapter is a preview of the entire book that describes the concepts
and techniques discussed in each chapter and their importance in the operating
system.

Chapter 2: The OS, the Computer, and User Programs
This chapter presents hardware features of a computer system that are relevant
for operation and performance of an operating system (OS). It describes how
an OS uses some of the hardware features to control execution of user programs
and perform I/O operations in them, and how user programs use features in the
hardware to interact with the OS and obtain the services they need.

Chapter 3: Overview of Operating Systems
This chapter deals with the fundamental principles of an operating system; it is
a key chapter in the book. It discusses the nature of computations in different
kinds of computing environments and features of operating systems used in these
environments, and follows up this discussion with the notions of efficiency, sys-
tem performance, and user service. Later sections discuss five classes of operating
systems—batch processing, multiprogramming, time-sharing, real-time, and dis-
tributed operating systems—and describe the principal concepts and techniques
they use to meet their goals. The last section discusses how a modern OS draws
upon the concepts and techniques used in these operating systems.

Chapter 4: Structure of Operating Systems
The structure of an operating system has two kinds of features—those that
contribute to simplicity of coding and efficiency of operation; and those that
contribute to the ease with which an OS can be implemented on different com-
puter systems, or can be enhanced to incorporate new functionalities. This chapter

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 3 — #3

Part 1 Overview 3

discusses three methods of structuring an operating system. The layered structure
of operating systems simplifies coding, the kernel-based structure provides ease of
implementation on different computer systems, and the microkernel-based struc-
ture permits modification of an operating system’s features to adapt to changes in
the computing environment and also provides ease of implementation on different
computer systems.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 4 — #4

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 5 — #5

C h a p t e r 1
Introduction

The way you would define an operating system probably depends on what
you expect from your computer system. Each user has his own personal
thoughts on what the computer system is for. In technical language, we

would say that an individual user has an abstract view of the computer system, a
view that takes in only those features that the user considers important.

The operating system, or OS, as we will often call it, is the intermediary
between users and the computer system. It provides the services and fea-
tures present in abstract views of all its users through the computer system.
It also enables the services and features to evolve over time as users’ needs
change.

People who design operating systems have to deal with three issues: effi-
cient use of the computer system’s resources, the convenience of users, and
prevention of interference with users’ activities. Efficient use is more impor-
tant when a computer system is dedicated to specific applications, and user
convenience is more important in personal computers, while both are equally
important when a computer system is shared by several users. Hence, the designer
aims for the right combination of efficient use and user convenience for the
operating system’s environment. Prevention of interference is mandatory in all
environments.

We will now take a broad look at what makes an operating system work—
we will see how its functions of program management and resource management
help to ensure efficient use of resources and user convenience, and how the
functions of security and protection prevent interference with programs and
resources.

1.1 ABSTRACT VIEWS OF AN OPERATING SYSTEM
•

A question such as “What is an OS?” is likely to evoke different answers, depend-
ing on the user’s interest. For example,

• To a school or college student, the OS is the software that permits access to
the Internet.

• To a programmer, the OS is the software that makes it possible to develop
programs on a computer system.

5

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 6 — #6

6 Part 1 Overview

• To a user of an application package, the OS is simply the software that makes
it possible to use the package.

• To a technician in, say, a computerized chemical plant, the OS is the invisible
component of a computer system that controls the plant.

A user perceives an OS as simply a means of achieving an intended use of
a computer system. For the student, the sole purpose of the computer system is
to get onto the Internet; the OS helps in achieving this. Hence the student thinks
of the operating system as the means for Internet browsing. The programmer,
the user of a package, and the technician similarly identify the OS with their
particular purposes in using the computer. Since their purposes are different,
their perceptions of the OS are also different.

Figure 1.1 illustrates the four views of an OS we have just considered. They
are abstract views, because each focuses on those characteristics considered essen-
tial from the perspective of the individual viewer—it includes some elements of
reality but ignores other elements. The student, the application user, and the tech-
nician are end users of the OS; their views do not contain any features of the OS.
The programmer’s view is that of a software developer. It includes features of the
OS for software development.

An OS designer has his own abstract view of the OS, which shows the struc-
ture of an OS and the relationship between its component parts. Figure 1.2

(a) (b)

(c) (d)

Internet

Stock quotes

Figure 1.1 Abstract views of an OS: a student’s, a programmer’s, an application user’s and a
technician’s.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 7 — #7

Chapter 1 Introduction 7

Computer hardware

Kernel

Nonkernel routines

User interface

User

Figure 1.2 A designer’s abstract view of an OS.

illustrates this view. Each part consists of a number of routines. The typical
functionalities of these parts are as follows:

• User interface: The user interface accepts commands to execute programs
and use resources and services provided by the operating system. It is either
a command line interface, as in Unix or Linux, which displays a command
prompt to the user and accepts a user command, or is a graphical user inter-
face (GUI), as in the Windows operating system, which interprets mouse
clicks on icons as user commands.

• Nonkernel routines: These routines implement user commands concerning
execution of programs and use of the computer’s resources; they are invoked
by the user interface.

• Kernel: The kernel is the core of the OS. It controls operation of the computer
and provides a set of functions and services to use the CPU, memory, and
other resources of the computer. The functions and services of the kernel are
invoked by the nonkernel routines and by user programs.

Two features of an OS emerge from the designer’s view of an OS shown in
Figure 1.2. The OS is actually a collection of routines that facilitate execution of
user programs and use of resources in a computer system. It contains a hierar-
chical arrangement of layers in which routines in a higher layer use the facilities
provided by routines in the layer below it. In fact, each layer takes an abstract
view of the layer below it, in which the next lower layer is a machine that can
understand certain commands. The fact that the lower layer is a set of routines
rather than a whole computer system makes no difference to the higher layer.
Each higher layer acts as a more capable machine than the layer below it. To the
user, the user interface appears like a machine that understands commands in the
command language of the OS.

Throughout this book, we will use abstract views to present the design of OS
components. This has two key benefits:

• Managing complexity: An abstract view of a system contains only selected
features of the system. This property is useful in managing complexity during
design or study of a system. For example, an abstract view of how an OS

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 8 — #8

8 Part 1 Overview

organizes execution of user programs (Figure 1.3 illustrates such a view later
in this chapter), focuses only on handling of programs; it simplifies a study
of this aspect of the OS by not showing how the OS handles other resources
like memory or I/O devices.

• Presenting a generic scheme: An abstraction is used to present a generic
scheme that has many variants in practice. We see two examples of this use
in the designer’s abstract view of Figure 1.2. The user interface is an abstrac-
tion, with a command line interface and a graphical user interface (GUI) as
two of its many variants. The kernel typically presents an abstraction of the
computer system to the nonkernel routines so that the diversity of hardware,
e.g., different models of CPUs and different ways of organizing and accessing
data in disks, is hidden from view of the nonkernel routines.

1.2 GOALS OF AN OS
•

The fundamental goals of an operating system are:

• Efficient use: Ensure efficient use of a computer’s resources.
• User convenience: Provide convenient methods of using a computer system.
• Noninterference: Prevent interference in the activities of its users.

The goals of efficient use and user convenience sometimes conflict. For exam-
ple, emphasis on quick service could mean that resources like memory have to
remain allocated to a program even when the program is not in execution; how-
ever, it would lead to inefficient use of resources. When such conflicts arise, the
designer has to make a trade-off to obtain the combination of efficient use and
user convenience that best suits the environment. This is the notion of effective
utilization of the computer system. We find a large number of operating systems
in use because each one of them provides a different flavor of effective utilization.
At one extreme we have OSs that provide fast service required by command and
control applications, at the other extreme we have OSs that make efficient use of
computer resources to provide low-cost computing, while in the middle we have
OSs that provide different combinations of the two.

Interference with a user’s activities may take the form of illegal use or mod-
ification of a user’s programs or data, or denial of resources and services to a
user. Such interference could be caused by both users and nonusers, and every
OS must incorporate measures to prevent it.

In the following, we discuss important aspects of these fundamental goals.

1.2.1 Efficient Use
An operating system must ensure efficient use of the fundamental computer sys-
tem resources of memory, CPU, and I/O devices such as disks and printers. Poor
efficiency can result if a program does not use a resource allocated to it, e.g.,

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 9 — #9

Chapter 1 Introduction 9

if memory or I/O devices allocated to a program remain idle. Such a situation
may have a snowballing effect: Since the resource is allocated to a program, it
is denied to other programs that need it. These programs cannot execute, hence
resources allocated to them also remain idle. In addition, the OS itself consumes
some CPU and memory resources during its own operation, and this consump-
tion of resources constitutes an overhead that also reduces the resources available
to user programs. To achieve good efficiency, the OS must minimize the waste of
resources by programs and also minimize its own overhead.

Efficient use of resources can be obtained by monitoring use of resources
and performing corrective actions when necessary. However, monitoring use of
resources increases the overhead, which lowers efficiency of use. In practice, oper-
ating systems that emphasize efficient use limit their overhead by either restricting
their focus to efficiency of a few important resources, like the CPU and the mem-
ory, or by not monitoring the use of resources at all, and instead handling user
programs and resources in a manner that guarantees high efficiency.

1.2.2 User Convenience
User convenience has many facets, as Table 1.1 indicates. In the early days of
computing, user convenience was synonymous with bare necessity—the mere
ability to execute a program written in a higher level language was considered
adequate. Experience with early operating systems led to demands for better
service, which in those days meant only fast response to a user request.

Other facets of user convenience evolved with the use of computers in new
fields. Early operating systems had command-line interfaces, which required a
user to type in a command and specify values of its parameters. Users needed
substantial training to learn use of the commands, which was acceptable because
most users were scientists or computer professionals. However, simpler inter-
faces were needed to facilitate use of computers by new classes of users. Hence
graphical user interfaces (GUIs) were evolved. These interfaces used icons on
a screen to represent programs and files and interpreted mouse clicks on the
icons and associated menus as commands concerning them. In many ways, this
move can be compared to the spread of car driving skills in the first half of

Table 1.1 Facets of User Convenience

Facet Examples

Fulfillment of necessity Ability to execute programs, use the file system
Good Service Speedy response to computational requests
User friendly interfaces Easy-to-use commands, graphical user interface (GUI)
New programming model Concurrent programming
Web-oriented features Means to set up Web-enabled servers
Evolution Add new features, use new computer technologies

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 10 — #10

10 Part 1 Overview

the twentieth century. Over a period of time, driving became less of a spe-
cialty and more of a skill that could be acquired with limited training and
experience.

Computer users attacked new problems as computing power increased. New
models were proposed for developing cost-effective solutions to new classes of
problems. Some of these models could be supported by the compiler technology
and required little support from the OS; modular and object-oriented program
design are two such models. Other models like the concurrent programming
model required specific support features in the OS. Advent of the Internet moti-
vated setting up of Web-enabled servers, which required networking support and
an ability to scale up or scale down the performance of a server in response to
the amount of load directed at it.

Users and their organizations invest considerable time and effort in setting
up their applications through an operating system. This investment must be
protected when new application areas and new computer technologies develop,
so operating systems need to evolve to provide new features and support new
application areas through new computer technologies.

1.2.3 Noninterference
A computer user can face different kinds of interference in his computational
activities. Execution of his program can be disrupted by actions of other persons,
or the OS services which he wishes to use can be disrupted in a similar manner.
The OS prevents such interference by allocating resources for exclusive use of
programs and OS services, and preventing illegal accesses to resources. Another
form of interference concerns programs and data stored in user files.

A computer user may collaborate with some other users in the development
or use of a computer application, so he may wish to share some of his files with
them. Attempts by any other person to access his files are illegal and constitute
interference. To prevent this form of interference, an OS has to know which files
of a user can be accessed by which persons. It is achieved through the act of
authorization, whereby a user specifies which collaborators can access what files.
The OS uses this information to prevent illegal accesses to files.

1.3 OPERATION OF AN OS
•

The primary concerns of an OS during its operation are execution of programs,
use of resources, and prevention of interference with programs and resources.
Accordingly, its three principal functions are:

• Program management: The OS initiates programs, arranges their execution
on the CPU, and terminates them when they complete their execution. Since
many programs exist in the system at any time, the OS performs a function
called scheduling to select a program for execution.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 11 — #11

Chapter 1 Introduction 11

• Resource management: The OS allocates resources like memory and I/O
devices when a program needs them. When the program terminates, it deal-
locates these resources and allocates them to other programs that need
them.

• Security and protection: The OS implements noninterference in users’ activ-
ities through joint actions of the security and protection functions. As an
example, consider how the OS prevents illegal accesses to a file. The secu-
rity function prevents nonusers from utilizing the services and resources in
the computer system, hence none of them can access the file. The protection
function prevents users other than the file owner or users authorized by him,
from accessing the file.

Table 1.2 describes the tasks commonly performed by an operating system.
When a computer system is switched on, it automatically loads a program stored
on a reserved part of an I/O device, typically a disk, and starts executing the
program. This program follows a software technique known as bootstrapping to
load the software called the boot procedure in memory—the program initially
loaded in memory loads some other programs in memory, which load other
programs, and so on until the complete boot procedure is loaded. The boot
procedure makes a list of all hardware resources in the system, and hands over
control of the computer system to the OS.

A system administrator specifies which persons are registered as users of the
system. The OS permits only these persons to log in to use its resources and
services. A user authorizes his collaborators to access some programs and data.
The OS notes this information and uses it to implement protection. The OS also
performs a set of functions to implement its notion of effective utilization. These
functions include scheduling of programs and keeping track of resource status
and resource usage information.

Table 1.2 Common Tasks Performed by Operating Systems

Task When performed

Construct a list of resources During booting
Maintain information for security While registering new users
Verify identity of a user At login time
Initiate execution of programs At user commands
Maintain authorization information When a user specifies which collaborators

can acces what programs or data
Perform resource allocation When requested by users or programs
Maintain current status of resources During resource allocation/deallocation
Maintain current status of programs
and perform scheduling

Continually during OS operation

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 12 — #12

12 Part 1 Overview

The following sections are a brief overview of OS responsibilities in managing
programs and resources and in implementing security and protection.

1.3.1 Program Management
Modern CPUs have the capability to execute program instructions at a very high
rate, so it is possible for an OS to interleave execution of several programs on a
CPU and yet provide good user service. The key function in achieving interleaved
execution of programs is scheduling, which decides which program should be
given the CPU at any time. Figure 1.3 shows an abstract view of scheduling. The
scheduler, which is an OS routine that performs scheduling, maintains a list of
programs waiting to execute on the CPU, and selects one program for execution.
In operating systems that provide fair service to all programs, the scheduler also
specifies how long the program can be allowed to use the CPU. The OS takes
away the CPU from a program after it has executed for the specified period of
time, and gives it to another program. This action is called preemption. A program
that loses the CPU because of preemption is put back into the list of programs
waiting to execute on the CPU.

The scheduling policy employed by an OS can influence both efficient use of
the CPU and user service. If a program is preempted after it has executed for only
a short period of time, the overhead of scheduling actions would be high because
of frequent preemption. However, each program would suffer only a short delay
before it gets an opportunity to use the CPU, which would result in good user
service. If preemption is performed after a program has executed for a longer
period of time, scheduling overhead would be lesser but programs would suffer
longer delays, so user service would be poorer.

1.3.2 Resource Management
Resource allocations and deallocations can be performed by using a resource
table. Each entry in the table contains the name and address of a resource unit
and its present status, indicating whether it is free or allocated to some program.
Table 1.3 is such a table for management of I/O devices. It is constructed by the
boot procedure by sensing the presence of I/O devices in the system, and updated
by the operating system to reflect the allocations and deallocations made by it.
Since any part of a disk can be accessed directly, it is possible to treat different parts

Completed
program

Preempted program

CPUScheduler

Selected
program

. . .New
program

Programs waiting
for the CPU

Figure 1.3 A schematic of scheduling.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 13 — #13

Chapter 1 Introduction 13

Table 1.3 Resource Table for I/O Devices

Resource name Class Address Allocation status

printer1 Printer 101 Allocated to P1

printer2 Printer 102 Free
printer3 Printer 103 Free
disk1 Disk 201 Allocated to P1

disk2 Disk 202 Allocated to P2

cdw1 CD writer 301 Free

of a disk as independent devices. Thus the devices disk1 and disk2 in Table 1.3
could be two parts of the same disk.

Two resource allocation strategies are popular. In the resource partitioning
approach, the OS decides a priori what resources should be allocated to each
user program, for example, it may decide that a program should be allocated
1 MB of memory, 1000 disk blocks, and a monitor. It divides the resources in the
system into many resource partitions, or simply partitions; each partition includes
1 MB of memory, 1000 disk blocks, and a monitor. It allocates one resource
partition to each user program when its execution is to be initiated. To facilitate
resource allocation, the resource table contains entries for resource partitions
rather than for individual resources as in Table 1.3. Resource partitioning is
simple to implement, hence it incurs less overhead; however, it lacks flexibility.
Resources are wasted if a resource partition contains more resources than what a
program needs. Also, the OS cannot execute a program if its requirements exceed
the resources available in a resource partition. This is true even if free resources
exist in another partition.

In the pool-based approach to resource management, the OS allocates
resources from a common pool of resources. It consults the resource table when
a program makes a request for a resource, and allocates the resource if it is free.
It incurs the overhead of allocating and deallocating resources when requested.
However, it avoids both problems faced by the resource partitioning approach—
an allocated resource is not wasted, and a resource requirement can be met if a
free resource exists.

Virtual Resources A virtual resource is a fictitious resource—it is an illusion
supported by an OS through use of a real resource. An OS may use the same real
resource to support several virtual resources. This way, it can give the impression
of having a larger number of resources than it actually does. Each use of a virtual
resource results in the use of an appropriate real resource. In that sense, a virtual
resource is an abstract view of a resource taken by a program.

Use of virtual resources started with the use of virtual devices. To prevent
mutual interference between programs, it was a good idea to allocate a device
exclusively for use by one program. However, a computer system did not possess
many real devices, so virtual devices were used. An OS would create a virtual
device when a user needed an I/O device; e.g., the disks called disk1 and disk2 in

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 14 — #14

14 Part 1 Overview

Table 1.3 could be two virtual disks based on the real disk, which are allocated
to programs P1 and P2, respectively. Virtual devices are used in contemporary
operating systems as well. A print server is a common example of a virtual device.
When a program wishes to print a file, the print server simply copies the file into the
print queue. The program requesting the print goes on with its operation as if the
printing had been performed. The print server continuously examines the print
queue and prints the files it finds in the queue. Most operating systems provide
a virtual resource called virtual memory, which is an illusion of a memory that is
larger in size than the real memory of a computer. Its use enables a programmer
to execute a program whose size may exceed the size of real memory.

Some operating systems create virtual machines (VMs) so that each machine
can be allocated to a user. The advantage of this approach is twofold. Allocation
of a virtual machine to each user eliminates mutual interference between users. It
also allows each user to select an OS of his choice to operate his virtual machine.
In effect, this arrangement permits users to use different operating systems on
the same computer system simultaneously (see Section 4.5).

1.3.3 Security and Protection
As mentioned in Section 1.2.3, an OS must ensure that no person can illegally
use programs and resources in the system, or interfere with them in any manner.
The security function counters threats of illegal use or interference that are posed
by persons or programs outside the control of an operating system, whereas
the protection function counters similar threats posed by its users. Figure 1.4
illustrates how security and protection threats arise in an OS.

In a classical stand-alone environment, a computer system functions in com-
plete isolation. In such a system, the security and protection issues can be handled
easily. Recall that an OS maintains information that helps in implementing the
security and protection functions (see Table 1.2). The identity of a person wish-
ing to use a computer system is verified through a password when the person
logs in. This action, which is called authentication, ensures that no person other

Computer system

Internet

Authentication

Protection
threats

Programs

Resources

Users

Intruder

Security
threats

Figure 1.4 Overview of security and protection threats.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 15 — #15

Chapter 1 Introduction 15

than a registered user can use a computer system. Consequently, security threats
do not arise in the system if the authentication procedure is foolproof. In this
environment, the forms of interference mentioned earlier in Section 1.2.3 are all
protection threats. The OS thwarts disruption of program executions and OS
services with the help of hardware features such as memory protection. It thwarts
interference with files by allowing a user to access a file only if he owns it or has
been authorized by the file’s owner to access it.

When a computer system is connected to the Internet, and a user downloads
a program from the Internet, there is a danger that the downloaded program
may interfere with other programs or resources in the system. This is a security
threat because the interference is caused by some person outside the system,
called an intruder, who either wrote the downloaded program, or modified it,
so that it would interfere with other programs. Such security threats are posed
either through a Trojan horse, which is a program that has a known legitimate
function and a well-disguised malicious function, or a virus, which is a piece
of code with a malicious function that attaches itself to other programs in the
system and spreads to other systems when such programs are copied. Another
class of security threats is posed by programs called worms, which replicate by
themselves through holes in security setups of operating systems. Worms can
replicate at unimaginably high rates and cause widespread havoc. The Code Red
worm of 2001 spread to a quarter of a million computer systems in 9 hours.

Operating systems address security threats through a variety of means—by
using sophisticated authentication techniques, by plugging security holes when
they are discovered, by ensuring that programs cannot be modified while they are
copied over the Internet, and by using Internet firewalls to filter out unwanted
Internet traffic through a computer system. Users are expected to contribute to
security by using passwords that are impossible to guess and by exercising caution
while downloading programs from the Internet.

1.4 PREVIEW OF THE BOOK
•

A computer system, the services it provides to its users and their programs, and its
interfaces with other systems all make up the computing environment. Operating
systems are designed to provide effective utilization of a computer system in its
computing environment, which is the appropriate combination of efficient use
of resources and good user service in the computing environment, and to ensure
noninterference in the activities of its users. Parts 1–4 of this book primarily dis-
cuss operating systems for conventional computing environments characterized
by use of a single computer system having a single CPU; only Chapter 10 discusses
operating systems for the multiprocessor computing environment. Operating sys-
tems for the distributed computing environment are discussed in the chapters of
Part 5.

All through this book, we will use abstract views to present the design and
implementation of operating systems because, as discussed in Section 1.1, abstract
views help in managing complexity and presenting generic concepts or ideas.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 16 — #16

16 Part 1 Overview

1.4.1 Introduction to Operating Systems
Part 1 of the book consists of Chapters 1–4, of which the present chapter is
Chapter 1. We begin the study of operating systems in Chapter 2 with a discussion
of how an operating system interacts with the computer and with user programs.

Events and Interrupts An OS interleaves execution of several user programs on
the CPU. While a user program is in execution, some situations concerning its
own activity, or concerning activities in other programs, may require attention
of the OS. Hence, occurrence of an event, which is any situation that requires
attention of the OS, causes control of the CPU to be passed to the operating
system. The operating system uses the CPU to execute instructions that analyze
the event and perform appropriate actions. When an event has been attended to,
the OS schedules a user program for execution on the CPU. Hence operation of
the OS is said to be event driven. For example, if an I/O operation ends, the OS
informs the program that had requested the I/O operation and starts another I/O
operation on the device, if one is pending; if a program requests a resource, the
OS allocates the resource if it is available. In either case, it performs scheduling to
select the program to be executed next. Figure 1.5 is an abstract view, also called
a logical view, of the functioning of an operating system.

The end of an I/O operation or the making of a resource request by a program
actually causes an interrupt in the computer system. The CPU is designed to
recognize an interrupt and divert itself to the OS. This physical view, which is the
foundation for a study of operating systems, is developed in Chapter 2.

Effective Utilization of a Computer System Computing environments evolved in
response to advances in computer architecture and new requirements of computer
users. Each computing environment had a different notion of effective utilization,
so its OS used a different set of techniques to realize it. A modern comput-
ing environment contains features of several classical computing environments,
such as noninteractive, time-sharing, and distributed computing environments,
so techniques employed in these environments are used in modern OSs as well.
Chapter 3 discusses these techniques to form the background for a detailed study
of operating systems.

Computing environment

Event Event

Operating
system

Computer
system

User
programs

Figure 1.5 An operating system in its computing environment.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 17 — #17

Chapter 1 Introduction 17

Portability and Extensibility of Operating Systems Early operating systems
were developed for specific computer systems, so they were tightly integrated
with architectures of specific computer systems. Modern operating systems
such as Unix and Windows pose two new requirements—the operating sys-
tem has to be portable, that is, it should be possible to implement it on many
computer architectures, and it should be extensible so that it can meet new
requirements arising from changes in the nature of its computing environment.
Chapter 4 discusses the operating system design techniques for portability and
extensibility.

1.4.2 Managing User Computations
Chapters 5–10, which constitute Part 2 of the book, discuss various facets of the
program management function. Chapter 5 lays the foundation of this study by
discussing how the operating system handles execution of programs.

Processes and Threads A process is an execution of a program. An OS uses
a process as a unit of computational work—it allocates resources to a process
and schedules it for servicing by the CPU. It performs process switching when it
decides to preempt a process and schedule another one for servicing by the CPU
(see Figure 1.3). Process switching involves saving information concerning the
preempted process and accessing information concerning the newly scheduled
process; it consumes some CPU time and constitutes overhead of the operat-
ing system. The notion of a thread is introduced to reduce the OS overhead.
Switching between threads requires much less information to be stored and
accessed compared with switching between processes. However, processes and
threads are similar in other respects, so we use the term process as a generic term
for both a process and a thread, except while discussing the implementation of
threads.

Process Synchronization Processes that have a common goal must coordinate
their activities so that they can perform their actions in a desired order. This
requirement is called process synchronization. Figure 1.6 illustrates two kinds of
process synchronization. Figure 1.6(a) shows processes named credit and debit
that access the balance in a bank account. Their results may be incorrect if both
processes update the balance at the same time, so they must perform their updates
strictly one after another. Figure 1.6(b) shows a process named generate that

Balance

(a)

Credit Debit

Generate

Sample

(b)

Analyze

Figure 1.6 Two kinds of process synchronization.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 18 — #18

18 Part 1 Overview

produces some data and puts it into a variable named sample, and the process
named analyze that performs analysis on the data contained in variable sam-
ple. Here, process analyze should not perform analysis until process generate has
deposited the next lot of data in sample, and process generate should not produce
the next lot of data until process analyze has analyzed the previous data. Program-
ming languages and operating systems provide several facilities that processes may
use for performing synchronization. Chapter 6 describes these facilities, their use
by processess and their implementation in an OS.

Message Passing Processes may also interact through message passing. When
a process sends some information in a message to another process, the operating
system stores the message in its own data structures until the destination process
makes a request to receive a message. Unlike the situation in Figure 1.6(b), syn-
chronization of sender and destination processes is performed by the operating
system—it makes the destination process wait if no message has been sent to it
by the time it makes a request to receive a message. Details of message passing
are described in Chapter 9.

Scheduling The nature of a computing environment decides whether effective
utilization of a computer system implies efficient use of its resources, high user
convenience, or a suitable combination of both. An OS realizes effective utiliza-
tion through a scheduling policy that shares the CPU among several processes.
This way, many processes make progress at the same time, which contributes to
quick service for all users, and hence to high user convenience. The manner in
which the CPU is shared among processes governs the use of resources allocated
to processes, so it governs efficient use of the computer system. In Chapter 7, we
discuss the classical scheduling policies, which aimed either at efficient use of a
computer system, or at high user convenience, and scheduling policies used in
modern operating systems, which aim at suitable combinations of efficient use
and user convenience.

Deadlocks User processes share a computer system’s resources. If a resource
requested by some process Pi is currently allocated to process Pj , Pi has to wait
until Pj releases the resource. Such waits sometimes cause a deadlock, which
is a situation in which processes wait for other processes’ actions indefinitely.
Figure 1.7 illustrates such a situation. The arrow drawn from process Pi to Pj
indicates that process Pi is waiting because it requested a resource that is cur-
rently allocated to process Pj . Processes Pj and Pk similarly wait for resources
that are currently allocated to processes Pk and Pi , respectively. Hence the three
processes are in a deadlock. A deadlock adversely affects performance of a sys-
tem because processes involved in the deadlock cannot make any progress and
resources allocated to them are wasted. We discuss deadlock handling techniques
used in operating systems in Chapter 8.

Multiprocessor Operating Systems A multiprocessor computer system can
provide high performance because its CPUs can service several processes simulta-
neously. It can also speed up operation of a computer application if its processes
are scheduled simultaneously on several CPUs. To realize these advantages, the

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 19 — #19

Chapter 1 Introduction 19

Pi requires a resource

allocated to Pj

Pi

Pk requires a resource

allocated to Pi

Pj

Pk

Pj requires a resource

allocated to Pk

Figure 1.7 A deadlock involving three processes.

operating system has to use special scheduling and synchronization techniques
to ensure that processes can operate efficiently and harmoniously on the CPUs.
We discuss these techniques in Chapter 10.

1.4.3 Management of Memory
Memory management involves efficient allocation, release and reuse of memory
to meet requests of processes. In the classical model of memory allocation, a single
contiguous area of memory is allocated to a process. This model does not support
reuse of a memory area that is not large enough to accommodate a new process,
so the kernel has to use the technique of compaction to combine several free areas
of memory into one large free area of memory; it incurs substantial overhead. The
noncontiguous memory allocation model allows many disjoint areas of memory
to be allocated to a process, which enables direct reuse of several small areas of
memory. We describe memory reuse techniques and the model of noncontiguous
memory allocation in Chapter 11. The kernel uses special techniques to meet its
own memory requirements efficiently. These techniques are also discussed in this
chapter.

Virtual Memory Modern operating systems provide virtual memory, which is a
storage capability that is larger than the actual memory of a computer system.
The OS achieves it by storing the code and data of a process on a disk, and
loading only some portions of the code and data in memory. This way, a process
can operate even if its size exceeds the size of memory.

The operating system employs the noncontiguous memory allocation model
to implement virtual memory. It maintains a table of memory allocation infor-
mation to indicate which portions of the code and data of a process are present in
memory, and what their memory addresses are. During operation of the process,
the CPU passes each instruction address or data address used by it to a spe-
cial hardware unit called the memory management unit (MMU), which consults
the memory allocation information for the process and computes the address in
memory where the instruction or data actually resides. If the required instruction
or data does not exist in memory, the MMU causes a “missing from memory”
interrupt. The operating system now loads the portion that contains the required
instruction or data in memory—for which it might have to remove some other

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 20 — #20

20 Part 1 Overview

Memory

Operating

system

“Missing

from memory”

interrupt

Memory allocation

information of Pi

Operand address

in instruction

being executed

Loading/removal

of portions of

code and data

Code and data

of processes

Memory areas allocated to process Pi

Memory

management

unit

Memory address

of operand

Figure 1.8 A schematic of virtual memory operation.

Computer hardware

Input output control system
(IOCS)

File system

User process

Figure 1.9 An overview of file system and input output control system (IOCS).

portion from memory—and resumes operation of the process. Figure 1.8 is a
schematic diagram of virtual memory when a process Pi is in operation.

A “missing from memory” interrupt slows down progress of a process, so
the operating system has to make two key decisions to ensure a low rate of these
interrupts: how many and which portions of the code and data of a process should
it keep in memory. The techniques used in making these decisions are described
in Chapter 12.

1.4.4 Management of Files and I/O Devices
A file system has to meet several expectations of its users—provide fast access
to a file, protect the file against access by unauthorized persons, and provide
reliable operation in the presence of faults such as faulty I/O media or power
outages—and also ensure efficient use of I/O devices. A file system uses a layered
organization to separate the various issues involved in fulfilling these expecta-
tions; Figure 1.9 shows an abstract view. The upper layer, which is the file system
itself, permits a user to share his files with some other users, implements file
protection and provides reliability. To implement an operation on a file, the file

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 21 — #21

Chapter 1 Introduction 21

system invokes the lower layer, which contains the input output control system
(IOCS). This layer ensures fast access to files by a process, and efficient use of I/O
devices.

File System The file system provides each user with a logical view in which the
user has a home directory at an appropriate place in the directory structure of
the file system. The user can create directories, or folders, as they are called in
the Windows operating system, in his home directory, and other directories or
folders in these directories, and so on. A user can authorize some collaborators
to access a file by informing the file system of the names of collaborators and the
name of the file. The file system uses this information to implement file protection.
To ensure reliability, the file system prevents damage to the data in a file, and to
its own data such as a directory, which is called the metadata, due to faults like
faulty I/O media or power outages. All these features of file systems are discussed
in Chapter 13.

Input Output Control System (IOCS) The IOCS implements a file operation by
transferring data between a process and a file that is recorded on an I/O device.
It ensures efficient implementation of file operations through three means—by
reducing the time required to implement a data transfer between a process and an
I/O device, by reducing the number of times data has to be transferred between a
process and an I/O device, and by maximizing the number of I/O operations that
an I/O device can complete in a given period of time. Its techniques are discussed
in Chapter 14.

Security and Protection Security and protection threats, and the arrangement
used to implement security and protection, were described earlier in Section 1.3.3.
The OS encrypts the password data through an encryption function known only
to itself. Encryption strengthens the security arrangement because an intruder
cannot obtain passwords of users except through an exhaustive search, which
would involve trying out every possible string as a password. Various security
and protection threats, the technique of encryption, and various methods used
to implement protection are described in Chapter 15.

1.4.5 Distributed Operating Systems
A distributed computer system consists of several computer systems, each with its
own memory, connected through networking hardware and software. Each com-
puter system in it is called a node. Use of a distributed computer system provides
three key advantages: speeding up of a computer application by scheduling its
processes in different nodes of the system simultaneously, high reliability through
redundancy of computer systems and their resources, and resource sharing across
node boundaries. To realize these advantages, a distributed OS must tackle the
following fundamental issues:

• Networking causes delays in the transfer of data between nodes of a dis-
tributed system. Such delays may lead to an inconsistent view of data located
in different nodes, and make it difficult to know the chronological order in
which events occurred in the system.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 22 — #22

22 Part 1 Overview

• Control functions like scheduling, resource allocation, and deadlock detec-
tion have to be performed in several nodes to achieve computation speedup
and provide reliable operation when computers or networking compo-
nents fail.

• Messages exchanged by processes present in different nodes may travel over
public networks and pass through computer systems that are not controlled
by the distributed operating system. An intruder may exploit this feature
to tamper with messages, or create fake messages to fool the authentication
procedure and masquerade as a user of the system (see Figure 1.4).

The chapters of part 5 present various facets of a distributed operating
system. Chapter 16 discusses the model of a distributed computer system, net-
working hardware and software, and distributed computation paradigms, which
permit parts of a computation to be performed in different nodes. Chapter 17 dis-
cusses the theoretical issues that arise from networking delays, and the methods
of tackling them. Chapter 18 discusses how the OS performs its control func-
tions in a distributed manner. Chapter 19 describes the reliability techniques of
fault tolerance and recovery, which enable a distributed system to provide conti-
nuity of operation when failures occur. Chapter 20 describes the reliability and
performance improvement techniques employed in distributed file systems, while
Chapter 21 discusses the security issues in distributed systems and the techniques
employed to address them.

1.5 SUMMARY
•

A computer user’s requirements are determined by
a computer’s role in fulfilling his need. For some
users, computing is merely a means to fulfilling a
need like Internet browsing or sending of e-mails,
whereas for some others it directly satisfies their
needs like running programs to perform data pro-
cessing or scientific computations. An operating
system has to meet the needs of all its users, so it
has diverse functionalities.

A modern computer has an abundance of
resources like memory and disk space, and it also
has a powerful CPU. To ensure that computer
users benefit from this abundance, the operating
system services many programs simultaneously by
distributing its resources among them and inter-
leaving their execution on the CPU. The OS has to
satisfy three requirements to ensure effectiveness
of computing:

• Efficient use: Ensure efficient use of a com-
puter’s resources.

• User convenience: Provide convenient methods
of using a computer system.

• Noninterference: Prevent interference in the
activities of its users.

An operating system meets these requirements
by performing three primary functions during its
operation—management of programs, manage-
ment of resources, and security and protection. An
OS is a complex software system that may con-
tain millions of lines of code, so we use abstraction
to master the complexity of studying its design.
Abstraction helps us to focus on a specific aspect
of a system, whether a hardware system like a com-
puter, a software system like an operating system,
or a real-life system like the urban transportation
network, and ignore details that are not relevant
to this aspect. We will use abstraction throughout
the book to study different aspects of design and
operation of operating systems.

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 23 — #23

Chapter 1 Introduction 23

The plan of the book is as follows: We begin
by discussing how an operating system interacts
with a computer system to control its operation.
We then study how the operating system man-
ages execution of programs, allocation of memory,

and use of files by programs and ensures secu-
rity and protection. This is followed by the study
of distributed operating systems, which control
operation of several computer systems that are
networked.

TEST YOUR CONCEPTS
•

1.1 Classify each of the following statements as true
or false:
a. The boot procedure is used to initiate a user

program.
b. The technique of preemption is employed to

share the CPU among user programs.
c. Resources may be wasted if an OS employs

pool-based resource allocation.
d. Assignment of virtual resources to processes

prevents mutual interference between them.
e. Threats posed by an authenticated user are

security threats.
1.2 Indicate whether each of the following techni-

ques/arrangements provides (i) user convenience

and (ii) efficient use of a computer
system:
a. Virtual memory
b. File protection
c. Noncontiguous memory allocation

1.3 Classify the following into security lapses and
protection lapses:
a. Scribbling your password on a piece of paper
b. Authorizing everybody to perform read and

write operations on your file
c. Leaving your monitor unattended in the mid-

dle of a session
d. Downloading a program that is known to

contain a virus

EXERCISES
•

1.1 A computer can operate under two operating
systems, OS1 and OS2. A program P always exe-
cutes successfully under OS1. When executed
under OS2, it is sometimes aborted with the
error “insufficient resources to continue execu-
tion,” but executes successfully at other times.
What is the reason for this behavior of pro-
gram P? Can it be cured? If so, explain how,
and describe its consequences. (Hint: Think of
resource management policies.)

1.2 A time-sharing operating system uses the fol-
lowing scheduling policy: A program is given
a limited amount of CPU time, called the time
slice, each time it is selected for execution. It is
preempted at the end of the time slice, and it
is considered for execution only after all other
programs that wish to use the CPU have been
given an opportunity to use the CPU. Comment
on (a) user service and (b) efficiency of use, in a
time-sharing system.

1.3 If a computer has a very fast CPU but a small
memory, few computer programs can fit into

its memory at any time and consequently the
CPU is often idle because of lack of work.
Swapping is a technique of removing an inactive
program from memory and loading a program
that requires use of the CPU in its place so that
the CPU can service it. Does swapping improve
(a) user service and (b) efficiency of use? What
is its effect on OS overhead?

1.4 Comment on validity of the following state-
ment: “Partitioned resource allocation provides
more user convenience but may provide poor
efficiency.”

1.5 A program is in a dormant state if it is not
engaged in any activity (e.g., it may be waiting for
an action by a user). What resources does a dor-
mant program consume? How can this resource
consumption be reduced?

1.6 An OS creates virtual devices when it is
short of real devices. Does creation of virtual
devices improve (a) user service, (b) efficiency
of use?

01-M4363-DAS1.LaTeX: “chap01” — 2007/10/30 — 20:00 — page 24 — #24

24 Part 1 Overview

1.7 Can deadlocks arise in the following situa-
tions?
a. A system performs partitioned allocation of

resources to programs.
b. A set of programs communicate through

message passing during their execution.

1.8 A user wishes to let his collaborators access some
of his files, but expects the OS to prevent his col-
laborators from accessing his other files, and also
prevent noncollaborators from accessing any of
his files. Explain how it is achieved jointly by the
user and the OS.

BIBLIOGRAPHY
•

The view of an OS as the software that manages a com-
puter system is usually propounded in most operating
systems texts. Tanenbaum (2001), Nutt (2004), Silber-
schatz et al. (2005), and Stallings (2005) are some of the
recent texts on operating systems.

Berzins et al. (1986) discusses how the complex-
ity of designing a software system can be reduced by
constructing a set of abstractions that hide the inter-
nal working of a subsystem. Most books on software
engineering discuss the role of abstraction in software
design. The paper by Parnas and Siewiorek (1975) on
the concept of transparency in software design is con-
sidered a classic of software engineering. The book by
Booch (1994) discusses abstractions in object oriented
software development.

The concept of virtual devices was first used in the
spooling system of the Atlas computer system developed
at Manchester University. It is described in Kilburn et al.
(1961).

Ludwig (1998) and Ludwig (2002) describe differ-
ent kinds of viruses, while Berghel (2001) describes the
Code Red worm that caused havoc in 2001. Pfleeger
and Pfleeger (2003) is a text on computer security.
Garfinkel et al. (2003) discusses security in Solaris,
Mac OS, Linux, and FreeBSD operating systems. Russi-
novich and Solomon (2005) discusses security features
in Windows.

1. Berghel, H. (2001): “The Code Red worm,”
Communications of the ACM, 44 (12), 15–19.

2. Berzins, V., M. Gray, and D. Naumann (1986):
“Abstraction-based software development,”
Communications of the ACM, 29 (5), 403–415.

3. Booch, G. (1994): Object-Oriented Analysis and
Design, Benjamin-Cummings, Santa Clara.

4. Garfinkel, S., G. Spafford, and A. Schwartz
(2003): Practical UNIX and Internet Security,
3rd ed., O’Reilly, Sebastopol, Calif.

5. Kilburn, T., D. J. Howarth, R. B. Payne, and
F. H. Sumner (1961): “The Manchester
University Atlas Operating System, Part I:
Internal Organization,” Computer Journal, 4 (3),
222–225.

6. Ludwig, M. A. (1998): The Giant Black Book of
Computer Viruses, 2nd ed., American Eagle,
Show Low.

7. Ludwig, M. A. (2002): The Little Black Book of
Email Viruses, American Eagle, Show Low.

8. Nutt, G. (2004): Operating Systems—A Modern
Perspective, 3rd ed., Addison-Wesley, Reading,
Mass.

9. Parnas, D. L., and D. P. Siewiorek (1975): “Use of
the concept of transparency in the design of
hierarchically structured systems,”
Communications of the ACM, 18 (7), 401–408.

10. Pfleeger, C. P., and S. Pfleeger (2003): Security in
Computing, Prentice Hall, Englewood Cliffs, N.J.

11. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

12. Silberschatz, A., P. B. Galvin, and G. Gagne
(2005): Operating System Principles, 7th ed.,
John Wiley, New York.

13. Stallings, W. (2005): Operating Systems—
Internals and Design Principles, 5th ed., Pearson
Education, New York.

14. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 25 — #1

C h a p t e r 2
The OS, the Computer,
and User Programs

A
s we saw in Chapter 1, the operating system performs many tasks like
program initiation and resource allocation repetitively. We call each of
these tasks a control function. Since the operating system is a collection

of routines, and not a hardware unit, it performs control functions by executing
instructions on the CPU. Thus, the CPU services both user programs and the
operating system. A key aspect of understanding how an operating system works
is knowing how it interacts with the computer system and with user programs—
what the arrangement is by which it gets control of the CPU when it needs to
perform a control function, and how it passes control to a user program.

We use the term switching of the CPU for an action that forces the CPU to stop
executing one program and start executing another program. When the kernel
needs to perform a control function, the CPU must be switched to execution of the
kernel. After completing the control function, the CPU is switched to execution
of a user program.

We begin this chapter with an overview of relevant features of a computer,
particularly how an interrupt switches the CPU to execution of the kernel when
the kernel needs to perform a control function. In a later section we discuss how
interrupt servicing and the operating system concept of system calls facilitate
interaction of the operating system with user programs.

2.1 FUNDAMENTAL PRINCIPLES OF OS OPERATION
•

Before we discuss features of operating systems in Chapter 3, and their design in
later chapters, it is important to have a functional understanding of the operation
of an OS—what features of a modern computer system are important from the
OS viewpoint, how the OS uses these features during its operation to control user
programs and resources and implement security and protection, and how user
programs obtain services from the OS.

As discussed in Section 1.1, the kernel of the operating system is the collec-
tion of routines that form the core of the operating system. It controls operation
of the computer by implementing the tasks discussed in Section 1.3, hence we

25

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 26 — #2

26 Part 1 Overview

call each of these tasks a control function. It also offers a set of services to user
programs. The kernel exists in memory during operation of the OS, and executes
instructions on the CPU to implement its control functions and services. Thus,
the CPU is used by both user programs and the kernel.

For efficient use of a computer, the CPU should be executing user programs
most of the time. However, it has to be diverted to execution of the kernel code
whenever a situation requiring the kernel’s attention arises in the system, e.g.,
when an I/O operation ends or a timer interrupt occurs, or when a program
requires some service of the kernel. In Section 1.4, we used the term event for such
a situation. Accordingly, we need to grasp the following details to understand how
the OS operates:

• How the kernel controls operation of the computer.
• How the CPU is diverted to execution of kernel code when an event occurs.
• How a user program uses services offered by the kernel.
• How the kernel ensures an absence of mutual interference among user

programs and between a user program and the OS.

In this chapter we discuss elements of computer system architecture and
describe how the kernel uses features of computer architecture to control oper-
ation of a computer. We then discuss how the notion of an interrupt is used to
divert the CPU to execution of the kernel code, and describe how a special kind
of interrupt called a software interrupt is used by programs to communicate their
requests to the kernel.

The absence of mutual interference among user programs and between a
user program and the OS is ensured by having two modes of operation of the
CPU. When the CPU is in the kernel mode, it can execute all instructions of the
computer. The kernel operates with the CPU in this mode so that it can control
operations of the computer. When the CPU is in the user mode, it cannot execute
those instructions that have the potential to interfere with other programs or
with the OS if used indiscriminately. The CPU is put in this mode to execute user
programs. A key issue in understanding how an OS operates is knowing how the
CPU is put in the kernel mode to execute kernel code, and how it is put in the
user mode to execute user programs.

2.2 THE COMPUTER
•

Figure 2.1 is a schematic of a computer showing the functional units that are
relevant from the viewpoint of an operating system. The CPU and memory are
directly connected to the bus, while the I/O devices are connected to the bus
through device controllers and the DMA. If the CPU and I/O devices try to
access the memory at the same time, the bus permits only one of them to proceed.
The other accesses are delayed until this access completes. We describe impor-
tant details of the functional units in the next few sections. In a later section,
we discuss how the OS uses features of a computer to control the operation of

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 27 — #3

Chapter 2 The OS, the Computer, and User Programs 27

Memory

L3 cache

RAM

Bus

Interrupts

Protection I/O

PSW

CPU

 MMU L1 cache

...

Registers

DMA

Device
controllers

I/O devices

Data path

Interrupt path
Control path

Figure 2.1 Schematic of a computer.

the computer and execution of user programs on it. Discussions in this chapter
are restricted to computers with a single CPU; features of multiprocessor and
distributed computer systems are described in later chapters.

2.2.1 The CPU
General-Purpose Registers (GPRs) and the Program Status Word (PSW) Two
features of the CPU are visible to user programs or the operating system. The
first is those registers that are used to hold data, addresses, index values, or the
stack pointer during execution of a program. These registers are variously called
general-purpose registers (GPRs) or program-accessible registers; we prefer to call
them GPRs. The other feature is a set of control registers, which contain infor-
mation that controls or influences operation of the CPU. For simplicity, we will
call the collection of control registers the program status word (PSW), and refer
to an individual control register as a field of the PSW.

Figure 2.2 describes the fields of the PSW. Two fields of the PSW are com-
monly known to programmers: The program counter (PC) contains the address
of the next instruction to be executed by the CPU. The condition code (CC) con-
tains a code describing some characteristics of the last arithmetic or logical result
computed by the CPU (e.g., whether the result of an arithmetic operation is 0, or
the result of a comparison is “not equal”). These characteristics are often stored
in a set of discrete flags; however, we will view them collectively as the condition
code field or a field called flags. Contents and uses of other control registers are
described later in this section.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 28 — #4

28 Part 1 Overview

Program

counter

(PC)

Condition

code

(CC)

Mode

(M)

Memory protection

information

(MPI)

Interrupt

mask

(IM)

Interrupt

code

(IC)

Field Description

Program counter Contains address of the next instruction to be executed.

Condition code

(flags)

Indicates some characteristics of the result of the last arithmetic or

logical instruction, e.g., whether the result of an arithmetic instruction

was � 0, � 0, or � 0. This code is used in execution of a conditional

branch instruction.

Mode Indicates whether the CPU is executing in kernel mode or user mode.

We assume a single-bit field with the value 0 to indicate that the

CPU is in kernel mode and 1 to indicate that it is in user mode.

Memory protection

information

Memory protection information for the currently executing program.

This field consists of subfields that contain the base register and size
register.

Interrupt mask Indicates which interrupts are enabled (that is, which interrupts can

occur at present) and which ones are masked off.

Interrupt code Describes the condition or event that caused the last interrupt. This

code is used by an interrupt servicing routine.

Figure 2.2 Important fields of the program status word (PSW).

Kernel and User Modes of CPU Operation The CPU can operate in two modes,
called user mode and kernel mode. The CPU can execute certain instructions only
when it is in the kernel mode. These instructions, called privileged instructions,
implement special operations whose execution by user programs would inter-
fere with the functioning of the OS or activities of other user programs; e.g., an
instruction that changes contents of the memory protection information (MPI)
field of the PSW could be used to undermine memory protection in the system
(Section 2.2.3 contains an example). The OS puts the CPU in kernel mode when
it is executing instructions in the kernel, so that the kernel can execute special
operations, and puts it in user mode when a user program is in execution, so that
the user program cannot interfere with the OS or other user programs. We assume
the mode (M) field of the PSW to be a single-bit field that contains a 0 when the
CPU is in kernel mode and a 1 when it is in user mode.

State of the CPU The general-purpose registers and the PSW together contain
all the information needed to know what the CPU is doing; we say that this
information constitutes the state of the CPU. As discussed in Section 1.3.1, the
kernel may preempt the program that is currently using the CPU (see Figure 1.3).
To ensure that the program can resume its execution correctly when scheduled in
future, the kernel saves the state of the CPU when it takes away the CPU from the
program, and simply reloads the saved CPU state into the GPRs and the PSW
when execution of the program is to be resumed. Example 2.1 illustrates how
saving and restoring the state of the CPU suffices to correctly resume execution
of a program.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 29 — #5

Chapter 2 The OS, the Computer, and User Programs 29

•
Example 2.1State of the CPU

Figure 2.3(a) shows an assembly language program for a hypothetical com-
puter whose CPU has two data registers A and B, an index register X, and the
stack pointer register SP. Each assembly language instruction in this program
corresponds to either an instruction in the CPU or a directive to the assembler;
e.g., the last statement declares ALPHA to be a memory location that contains
the value 1. The first instruction moves the value of ALPHA into register A.
The second instruction compares the value in register A with the value 1; this
comparison sets an appropriate value in the condition code field (also called
the flags field). The third instruction, which has the operation code BEQ, is a
conditional branch instruction that transfers control to the instruction with
label NEXT if the result of the comparison is “equal.” We assume that the
result of the COMPARE instruction was “equal,” and that condition code 00
corresponds to this result.

If the kernel decides to take away the CPU from the program after the
program has executed the COMPARE instruction, it saves the state of the CPU,
which is shown in Figure 2.3(b). The state consists of the contents of the
PSW, and the registers A, B, X, and SP. The PC contains 150, which is the
address of the next instruction to be executed. The condition code field con-
tains 00 to indicate that the values that were compared were equal. The MPI
field contains memory protection information for the program, which we shall
discuss in Section 2.2.3. If this CPU state is loaded back into the CPU, the
program will resume its execution at the BEQ instruction that exists in the
memory location with the address 150. Since the condition code field con-
tains 00, implying “equal,” the BEQ instruction will transfer control to the
instruction labeled NEXT. Thus, the program would execute correctly when
resumed.

•

Address Instruction

0142
0146
0150

0192

0210

MOVE
COMPARE
BEQ

A, ALPHA
A, 1
NEXT

DCL_CONST 1

NEXT
...

...

ALPHA

(a) (b)

PSW

Registers

1 A

B

X

SP

PC CC M

MPI IM IC

0150 00 1

Figure 2.3 (a) Listing of an assembly language program showing address assigned to each
instruction or data; (b) state of the CPU after executing the COMPARE instruction.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 30 — #6

30 Part 1 Overview

2.2.2 Memory Management Unit (MMU)
As mentioned in Section 1.3.2, virtual memory is an illusion of a memory that
may be larger that the real memory of a computer. As described in Section 1.4.3,
an OS implements virtual memory by using noncontiguous memory allocation
and the MMU (Figure 1.8). The OS allocates a set of memory areas to a program,
and stores information concerning these areas in a table of memory allocation
information. During the execution of the program, the CPU passes the address
of a data or instruction used in the current instruction to the MMU. This address
is called a logical address. The MMU uses the memory allocation information
to find the address in memory where the required data or instruction actually
resides. This address is called the physical address, and the process of obtaining
it from a logical address is called address translation. In the interest of simplic-
ity, we do not describe details of address translation here; they are described in
Chapter 12.

2.2.3 Memory Hierarchy
A computer system should ideally contain a large enough and fast enough mem-
ory, so that memory accessing will not slow down the CPU. However, fast memory
is expensive, so something that can provide the same service as a large and fast
memory but at a lower cost is desirable. The solution is a memory hierarchy
containing a number of memory units with differing speeds. The fastest memory
in the hierarchy is the smallest in size; slower memories are larger in size. The
CPU accesses only the fastest memory. If the data (or instruction) needed by it
is present in the fastest memory, it is used straightaway; otherwise the required
data is copied into the fastest memory from a slower memory, and then used. The
data remains in the fastest memory until it is removed to make place for other
data. This arrangement helps to speed up accesses to repeatedly used data. Other
levels in the memory hierarchy are used analogously—if data is not present in a
faster memory, it is copied there from a slower memory, and so on. The effective
memory access time depends on how frequently this situation arises in a faster
memory.

Figure 2.4 shows a schematic of a simple memory hierarchy. The hierarchy
contains three memory units. The cache memory is fast and small. Main memory,
which is also called random access memory (RAM), is slow and large; we will
simply call it memory. The disk is the slowest and largest unit in the hierarchy. We
discuss operation of this memory hierarchy before discussing memory hierarchies
in modern computers.

Cache Memory The cache memory holds some instructions and data values that
were recently accessed by the CPU. To enhance cache performance, the memory
hardware does not transfer a single byte from memory into the cache; it always
loads a block of memory with a standard size into an area of the cache called
a cache block or cache line. This way, access to a byte in close proximity of a
recently accessed byte can be implemented without accessing memory. When the
CPU writes a new value into a byte, the changed byte is written into the cache.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 31 — #7

Chapter 2 The OS, the Computer, and User Programs 31

CPU

MMU

Requests contents of byte

with logical address al

Sends a physical

address ap

Byte with

address ap

Byte with

address ap

Cache block
Cache

Transfer of

bytes or

cache blocks

Transfer of

cache blocks

Page
Memory

Transfer of pages

Memory

hierarchy

Disk block

Disk

Slowest memory,

largest size

Fastest memory,

smallest size

Figure 2.4 Operation of a memory hierarchy.

Sooner or later it also has to be written into the memory. Different schemes
have been used for writing a byte into memory; a simple one is to write the byte
into the cache and the memory at the same time. It is called the write-through
scheme.

For every data or instruction required during execution of a program, the
CPU performs a cache lookup by comparing addresses of the required bytes with
addresses of bytes in memory blocks that are present in the cache. A hit is scored if
the required bytes are present in memory, in which case the bytes can be accessed
straightaway; otherwise, a miss is scored and the bytes have to be loaded into the

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 32 — #8

32 Part 1 Overview

cache from memory. The hit ratio (h) of the cache is the fraction of bytes accessed
by the CPU that score a hit in the cache. High hit ratios are obtained in practice as
a result of an empirical law called locality—programs tend to access bytes located
in close proximity of recently accessed bytes, which is called spatial locality, and
access some data and instructions repeatedly, which is called temporal locality.
Effective memory access time of a memory hierarchy consisting of a cache and
memory is given by the formula

tema = h × tcache + (1 − h) × (ttra + tcache)

= tcache + (1 − h) × ttra (2.1)

where tema = effective memory access time,
tcache = access time of cache, and
ttra = time taken to transfer a cache block from memory to cache.

Larger cache blocks are needed to ensure a high hit ratio through spa-
tial locality. However, a large cache block would increase ttra, hence advanced
memory organizations are used to reduce ttra, and the cache block size that
provides the best combination of the hit ratio and ttra is chosen. The Intel
Pentium processor uses a cache block size of 128 bytes and a memory organiza-
tion that makes ttra only about 10 times the memory access time. If we consider
tcache = 10 ns, and a memory that is 10 times slower than the cache, we have
ttra = 10 × (10 × 10) ns = 1000 ns. With a cache hit ratio of 0.97, this organi-
zation provides tema = 40ns, which is 40 percent of the access time of memory.
Note that the hit ratio in a cache is poor at the start of execution of a program
because few of its instructions or data have been transferred to the cache. The hit
ratio is higher when the program has been in execution for some time.

Memory hierarchies in modern computers differ from that shown in
Figure 2.4 in the number of cache memories and the placement of the MMU.
Because of the large mismatch in the speeds of memory and the cache, a hierarchy
of cache memories is used to reduce the effective memory access time instead of
the single cache shown in Figure 2.4. As shown in Figure 2.1, an L1 cache—that
is, a level 1 cache—is incorporated into the CPU chip itself. The CPU chip may
also contain another cache called the level 2 or L2 cache which is slower but larger
than the L1 cache. A much larger and slower L3 cache is typically external to the
CPU. We show it to be associated with memory as in Figure 2.1. All these cache
levels help to improve the effective memory access time. To determine how much,
just substitute the transfer time of a block from the lower cache level in place of
ttra in Eq. (2.1), and use the equation analogously to account for a cache miss in
the lower cache level during the transfer (see Exercise 2.9). Another difference is
that the MMU is replaced by a parallel configuration of the MMU and the L1
cache. This way, a logical address is sent to the L1 cache, rather than a physical
address. It eliminates the need for address translation before looking up the L1
cache, which speeds up access to the data if a hit is scored in the L1 cache. It also
permits address translation performed by the MMU to overlap with lookup in
the L1 cache, which saves time if a cache miss occurs in the L1 cache.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 33 — #9

Chapter 2 The OS, the Computer, and User Programs 33

Memory As a part of the memory hierarchy, operation of memory is analogous
to operation of a cache. The similarities are in transferring a block of bytes—
typically called a page—from the disk to memory when a program refers to some
byte in the block, and transferring it from memory to the disk to make place
for other blocks that are needed in memory. The difference lies in the fact that
the management of memory and transfer of blocks between memory and the
disk are performed by the software, unlike in the cache, where it is performed by
the hardware. The memory hierarchy comprising the memory management unit
(MMU), memory, and the disk is called the virtual memory. Virtual memory is
discussed in Chapter 12; elsewhere in the book, for simplicity, we ignore the role
of the MMU and disks.

Memory Protection Many programs coexist in a computer’s memory, so it is
necessary to prevent one program from reading or destroying the contents of
memory used by another program. This requirement is called memory protection;
it is implemented by checking whether a memory address used by a program lies
outside the memory area allocated to it.

Two control registers are used to implement memory protection. The base
register contains the start address of the memory area allocated to a program,
while the size register (also called the limit register) contains the size of memory
allocated to the program. Accordingly, the last byte of memory allocated to a
program has the address

Address of last byte = <base> + <size> − 1

where <base> and <size> indicate contents of the base register and size register,
respectively. Before making any memory access, say access to a memory location
with address aaa, the memory protection hardware checks whether aaa lies out-
side the range of addresses defined by contents of the base and size registers. If so,
the hardware generates an interrupt to signal a memory protection violation and
abandons the memory access. As described in a later section, the kernel aborts the
erring program in response to the interrupt. The memory protection information
(MPI) field of the PSW (see Figure 2.2) contains the base and size registers. This
way the memory protection information also becomes a part of the CPU state and
gets saved or restored when the program is preempted or resumed, respectively.

•
Example 2.2Fundamentals of Memory Protection

Program P1 is allocated the 5000-byte memory area 20000 to 24999 by the
kernel. Figure 2.5 illustrates memory protection for this program using the
base and size registers. The start address of the allocated area (i.e., 20000)
is loaded in the base register, while the number 5000 is loaded in the size
register. A memory protection violation interrupt would be generated if the
instruction being executed by the CPU uses an address that lies outside the
range 20000–24999, say, the address 28252.

•

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 34 — #10

34 Part 1 Overview

Base 20000

20000

Size 5000

25000

CPU

Memory

Kernel

Load 28252

0

Byte with

address

28252

P1

P2

P3

Address �
<base>?

No

No

Yes

Yes

Normal

memory

access

Protection

violation

interrupt

Address �
<base> ��<size>

?

Figure 2.5 Memory protection using the base and size registers.

A program could undermine the memory protection scheme by loading infor-
mation of its choice in the base and size registers. For example, program P1 could
load the address 0 in the base register and the size of the computer’s memory in
the size register and thereby get itself a capability of modifying contents of any
part of memory, which would enable it to interfere with the OS or other user pro-
grams. To prevent this, instructions to load values into the base and size registers
are made privileged instructions. Since the CPU is in the user mode while execut-
ing a user program, this arrangement prevents a user program from undermining
the memory protection scheme.

Memory protection in a cache memory is more complex. Recall from the
earlier discussion that the L1 cache is accessed by using logical addresses. A
program of size n bytes typically uses logical addresses 0, . . . , n − 1. Thus, many
programs may use the same logical addresses, so a check based on a logical
address cannot be used to decide whether a program may access a value that
exists in the cache memory. A simple approach to memory protection would be
to flush the cache, i.e., to erase contents of the entire cache, whenever execution
of a program is initiated or resumed. This way, the cache would not hold contents
of memory areas allocated to other programs. However, any parts of the program
that were loaded in the cache during its execution in the past would also be erased.
Hence, execution performance of the program would suffer initially because of
a poor cache hit ratio. In an alternative scheme, the id of the program whose
instructions or data are loaded in a cache block is remembered, and only that
program is permitted to access contents of the cache block. It is implemented as
follows: When a program generates a logical address that is covered by contents
of a cache block, a cache hit occurs only if the program’s id matches the id of the
program whose instructions or data are loaded in the cache block. This scheme
is preferred because it does not require flushing of the cache and does not affect
execution performance of programs.

2.2.4 Input/Output
An I/O operation requires participation of the CPU, memory, and an I/O device.
The manner in which the data transfer between memory and the I/O device

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 35 — #11

Chapter 2 The OS, the Computer, and User Programs 35

Table 2.1 Modes of Performing I/O Operations

I/O mode Description

Programmed I/O Data transfer between the I/O device and memory takes
place through the CPU. The CPU cannot execute any
other instructions while an I/O operation is in progress.

Interrupt I/O The CPU is free to execute other instructions after
executing the I/O instruction. However, an interrupt is
raised when a data byte is to be transferred between the
I/O device and memory, and the CPU executes an
interrupt servicing routine, which performs transfer of the
byte. This sequence of operations is repeated until all
bytes get transferred.

Direct memory access
(DMA)-based I/O

Data transfer between the I/O device and memory takes
place directly over the bus. The CPU is not involved in
data transfer. The DMA controller raises an interrupt
when transfer of all bytes is complete.

is implemented determines the data transfer rates and the extent of the CPU’s
involvement in the I/O operation. The I/O organization we find in modern
computers has evolved through a sequence of steps directed at reducing the
involvement of the CPU in an I/O operation. Apart from providing higher data
transfer rates, it also frees the CPU to perform other activities while an I/O
operation is in progress.

We assume that operands of an I/O instruction indicate the address of
an I/O device and details of I/O operations to be performed. Execution of
the I/O instruction by the CPU initiates the I/O operation on the indicated
device. The I/O operation is performed in one of the three modes described
in Table 2.1. In the programmed I/O mode, data transfer is performed through
the CPU. Hence data transfer is slow and the CPU is fully occupied with it.
Consequently, only one I/O operation can be performed at a time. The inter-
rupt mode is also slow as it performs a byte-by-byte transfer of data with the
CPU’s assistance. However, it frees the CPU between byte transfers. The direct
memory access (DMA) mode can transfer a block of data between memory and
an I/O device without involving the CPU, hence it achieves high data transfer
rates and supports concurrent operation of the CPU and I/O devices. The inter-
rupt and DMA modes permit I/O operations on several devices to be performed
simultaneously.

DMA operations are actually performed by the DMA controller, which is a
special-purpose processor dedicated to performing I/O operations; however, for
simplicity we will not maintain this distinction in this chapter, and refer to both
simply as DMA. In Figure 2.1, the I/O organization employs a DMA. Several
I/O devices of the same class are connected to a device controller; a few device
controllers are connected to the DMA. When an I/O instruction is executed, say
a read instruction on device d , the CPU transfers details of the I/O operation to
the DMA. The CPU is not involved in the I/O operation beyond this point; it

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 36 — #12

36 Part 1 Overview

is free to execute instructions while the I/O operation is in progress. The DMA
passes on details of the I/O operation to the device controller, which initiates the
read operation on device d . The device transfers the data to the device controller;
transfer of data between the device controller and memory is organized by the
DMA. Thus the CPU and the I/O subsystem can operate concurrently. At the
end of the data transfer, the DMA generates an I/O interrupt. As described in
the next section, the CPU switches to execution of the kernel when it notices the
interrupt. The kernel analyzes the cause of the interrupt and realizes that the I/O
operation is complete.

2.2.5 Interrupts
An event is any situation that requires the operating system’s attention. The com-
puter designer associates an interrupt with each event, whose sole purpose is to
report the occurrence of the event to the operating system and enable it to per-
form appropriate event handling actions. It is implemented using the following
arrangement: In the instruction execution cycle of the CPU, it performs four steps
repeatedly—fetching the instruction whose address is contained in the program
counter (PC), decoding it, executing it, and checking whether an interrupt has
occurred during its execution. If an interrupt has occurred, the CPU performs
an interrupt action that saves the CPU state, that is, contents of the PSW and the
GPRs, and loads new contents into the PSW and the GPRs, so that the CPU starts
executing instructions of an interrupt servicing routine, often called ISR, in the
kernel. Sometime in the future, the kernel can resume execution of the interrupted
program simply by loading back the saved CPU state into the PSW and GPRs
(see Example 2.1). The computer designer associates a numeric priority with each
interrupt. If several interrupts occur at the same time, the CPU selects the highest-
priority interrupt for servicing. Other interrupts remain pending until they are
selected.

Classes of Interrupts Table 2.2 describes three classes of interrupts that are
important during normal operation of an OS. An I/O interrupt indicates the
end of an I/O operation, or occurrence of exceptional conditions during the I/O
operation. A timer interrupt is provided to implement a timekeeping arrangement
in an operating system. It is used as follows: A clock tick is defined as a specific
fraction of a second. Now, an interrupt can be raised either periodically, i.e., after
a predefined number of ticks, or after a programmable interval of time, i.e., after
occurrence of the number of ticks specified in a special timer register, which can
be loaded through a privileged instruction.

A program interrupt, also called a trap or an exception, is provided for two
purposes. The computer hardware uses the program interrupt to indicate occur-
rence of an exceptional condition during the execution of an instruction, e.g., an
overflow during arithmetic, or a memory protection violation (see Section 2.2.3).
User programs use the program interrupt to make requests to the kernel for
resources or services that they are not allowed to provide for themselves. They
achieve it by using a special instruction provided in the computer whose sole

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 37 — #13

Chapter 2 The OS, the Computer, and User Programs 37

Table 2.2 Classes of Interrupts

Class Description

I/O interrupt Caused by conditions like I/O completion and malfunctioning
of I/O devices.

Timer interrupt Raised at fixed intervals or when a specified interval of time
elapses.

Program
interrupt

(1) Caused by exceptional conditions that arise during the
execution of an instruction, e.g., arithmetic exceptions like
overflow, addressing exceptions, and memory protection
violations.
(2) Caused by execution of a special instruction called the
software interrupt instruction, whose sole purpose is to cause an
interrupt.

purpose is to raise a program interrupt so that control gets transferred to the ker-
nel. The operation code of this instruction machine-specific, e.g., it is called int
in the Intel Pentium, trap in Motorola 68000, and syscall in MIPS R3000.
Generically, we assume that a computer provides an instruction called a software
interrupt instruction with the operation code SI, and call the interrupt raised by
it a software interrupt.

Interrupt Code When an interrupt of some class occurs, the hardware sets an
interrupt code in the interrupt code (IC) field of the PSW to indicate which specific
interrupt within that class of interrupts has occurred. This information is useful
for knowing the cause of the interrupt. For example, if a program interrupt occurs,
the interrupt code would help to decide whether it was caused by an overflow
condition during arithmetic or by a memory protection violation.

Interrupt codes are machine-specific. For an I/O interrupt, the interrupt code
is typically the address of the I/O device that caused the interrupt. For a program
interrupt, a computer assigns distinct codes for exceptional conditions such as
overflow and memory protection violation, and reserves a set of interrupt codes
for software interrupts. Typically, the software interrupt instruction (SI instruc-
tion) has a small integer as an operand; it is treated as the interrupt code when
the interrupt occurs. If a computer does not provide an operand in the SI instruc-
tion, an operating system has to evolve its own arrangement, e.g., it may require
a program to push a software interrupt number on the stack before executing the
SI instruction to cause a software interrupt.

Interrupt Masking The interrupt mask (IM) field of the PSW indicates which
interrupts are permitted to occur at the present moment of time. The IM field
may contain an integer m to indicate that only interrupts with priority ≥ m are
permitted to occur. Alternatively, it may contain a bit-encoded value, where each
bit in the value indicates whether a specific kind of interrupt is permitted to occur.
Interrupts that are permitted to occur are said to be enabled , and others are said

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 38 — #14

38 Part 1 Overview

CPU

PSW

IC
ddd

IM

MPC

IC

ddd

...
...

...
...

3

21

Interrupt

vectors

area

Saved PSW

information

area

Step Description

1. Set interrupt code

2. Save the PSW

3. Load interrupt vector

The interrupt hardware forms a code describing the cause

of the interrupt. This code is stored in the interrupt code
(IC) field of the PSW.

The PSW is copied into the saved PSW information area. In

some computers, this action also saves the general-purpose

registers.

The interrupt vector corresponding to the interrupt class is

accessed. Information from the interrupt vector is loaded

into the corresponding fields of the PSW. This action

switches the CPU to the appropriate interrupt servicing

routine of the kernel.

Figure 2.6 The interrupt action.

to be masked or masked off . If an event corresponding to a masked interrupt
occurs, the interrupt caused by it is not lost; it remains pending until it is enabled
and can occur.

Interrupt Action After executing every instruction, the CPU checks for occur-
rence of an interrupt. If an interrupt has occurred, the CPU performs the interrupt
action, which saves the state of the CPU in memory and switches the CPU to an
interrupt servicing routine in the kernel.

As shown in the schematic of Figure 2.6, the interrupt action consists of
three steps. Step 1 sets the interrupt code in the interrupt code (IC) field of the
PSW according to the cause of the interrupt. Step 2 of the interrupt action saves
contents of the PSW in memory so that the kernel can form the CPU state of
the interrupted program (see Figure 2.3), which it can use to resume execution
of the program at a later time. The saved PSW information area, where the PSW
of the interrupted program is stored, is either a reserved area in memory or an
area on the stack. Step 3 of the interrupt action switches the CPU to execution of
the appropriate interrupt servicing routine in the kernel as follows: The interrupt
vectors area contains several interrupt vectors; each interrupt vector is used to
control interrupt servicing for one class of interrupts. Depending on which class
an interrupt belongs to, the interrupt action chooses the correct interrupt vector

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 39 — #15

Chapter 2 The OS, the Computer, and User Programs 39

and loads its contents into PSW fields. An interrupt vector contains the following
information:

1. Address of an interrupt servicing routine.
2. An interrupt mask indicating which other interrupts can occur while this

interrupt is being processed.
3. A 0 or 1 to indicate whether the CPU should be in kernel or user mode,

respectively, while executing the interrupt servicing routine. Typically 0 is
chosen so that the interrupt servicing routine, which is a part of the kernel,
can use privileged instructions.

For simplicity, we assume that an interrupt vector has the same format as a PSW
and contains these three items of information in the program counter (PC), inter-
rupt mask (IM), and mode (M) fields, respectively. Thus, Step 3 of the interrupt
action loads information from the relevant interrupt vector into the program
counter, interrupt mask and mode fields of the PSW, which puts the CPU in the
kernel mode and switches it to the interrupt servicing routine.

2.3 OS INTERACTION WITH THE COMPUTER
AND USER PROGRAMS

•
To respond readily to events, an OS uses an arrangement in which every event
causes an interrupt. In this section, we discuss how the OS interacts with the
computer to ensure that the state of an interrupted program is saved, so that its
execution can be resumed at a later time, and how an interrupt servicing routine
obtains information concerning the event that had caused an interrupt, so that
it can perform appropriate actions. We also discuss how a program invokes the
services of the OS through a software interrupt. A system call is the term used
for this method of invoking OS services.

2.3.1 Controlling Execution of Programs
To control execution of user programs, the OS has to ensure that various fields of
the PSW contain appropriate information at all times when user programs are in
execution, which includes the time when a new program’s execution is initiated,
and also times when its execution is resumed after an interruption. From the
discussion in Section 2.2, the key points in this function are:

1. At the start of execution of a user program, the PSW should contain the
following information:
a. The program counter field (PC field) should contain the address of the first

instruction in the program.
b. The mode field (M field) should contain a 1 such that the CPU is in the

user mode.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 40 — #16

40 Part 1 Overview

c. The memory protection information field (MPI field) should contain infor-
mation about the start address and size of the memory area allocated to
the program.

d. The interrupt mask field (IM field) should be set so as to enable all
interrupts.

2. When a user program’s execution is interrupted, the CPU state—which con-
sists of the contents of the PSW and the general-purpose registers—should
be saved.

3. When execution of an interrupted program is to be resumed, the saved CPU
state should be loaded into the PSW and the general-purpose registers.

The OS maintains a table to contain information relevant to this function.
For now, we will use the generic name program table for it—in later chapters
we will discuss specific methods of organizing this information such as the pro-
cess control block (PCB). Each entry in the table contains information pertaining
to one user program. One field in this entry is used to store information about
the CPU state. The kernel puts information mentioned in item 1 into this field
when the program’s execution is to be initiated, and saves the CPU state into this
field when the program’s execution is interrupted—it achieves this by copying
information from the saved PSW information area when the program is inter-
rupted. Information stored in this field is used while resuming operation of the
program. Effectively, relevant fields of the PSW would contain the information
mentioned in items 1(b)–1(d) whenever the CPU is executing instructions of the
program.

2.3.2 Interrupt Servicing
As mentioned in Section 2.2.5, for simplicity, we assume that an interrupt vec-
tor has the same format as the PSW. The kernel forms the interrupt vectors for
various classes of interrupts when the operating system is booted. Each inter-
rupt vector contains the following information: a 0 in the mode (M) field to
indicate that the CPU should be put in the kernel mode, the address of the
first instruction of the interrupt servicing routine in the program counter (PC)
field, a 0 and the size of memory in the memory protection information (MPI)
field—so that the interrupt servicing routine would have access to the entire
memory—and an interrupt mask in the interrupt mask (IM) field that either
disables other interrupts from occurring or enables only higher-priority inter-
rupts to occur, in accordance with the philosophy of nested interrupt servicing
employed in the operating system (we discuss details of this philosophy later in this
section).

Figure 2.7 contains a schematic of operation of the kernel—it gets control
only when an interrupt occurs, so its operation is said to be interrupt-driven. The
interrupt action actually transfers control to an appropriate interrupt servicing
routine, also called an ISR, which perform the actions shown in the dashed box.
It first saves information about the interrupted program in the program table, for
use when the program is scheduled again. This information consists of the PSW

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 41 — #17

Chapter 2 The OS, the Computer, and User Programs 41

Occurrence of
an interrupt

Interrupt
servicing

Context
save

Event
handling

Scheduling

Exit from
kernel

Figure 2.7 Interrupt-driven operation of the kernel.

Table 2.3 Event Handling Actions of the Kernel

Interrupt Event handling action

Arithmetic exception Abort the program.
Memory protection violation Abort the program.
Software interrupt Satisfy the program’s request if possible; otherwise,

note it for future action.
End of I/O operation Find which program had initiated the I/O

operation and note that it can now be considered
for scheduling on the CPU. Initiate a pending I/O
operation, if any, on the device.

Timer interrupt (1) Update the time of the day. (2) Take appropriate
action if a specified time interval has elapsed.

saved by the interrupt action, contents of GPRs, and information concerning
memory and resources used by the program. It is called the execution context,
or simply context, of a program; the action that saves it is called the context save
action. The interrupt servicing routine now takes actions appropriate to the event
that had caused the interrupt. As mentioned in Section 2.2.5, the interrupt code
field of the saved PSW provides useful information for this purpose. Table 2.3
summarizes these actions, which we call the event handling actions of the kernel.

The scheduling routine selects a program and switches the CPU to its exe-
cution by loading the saved PSW and GPRs of the program into the CPU.
Depending on the event that caused the interrupt and the state of other programs,
it may be the same program that was executing when the interrupt occurred, or
it may be a different program.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 42 — #18

42 Part 1 Overview

Example 2.3 illustrates interrupt servicing and scheduling when an interrupt
occurs signaling the end of an I/O operation.

•
Example 2.3 Interrupt Servicing in a Hypothetical Kernel

Figure 2.8(a) shows the arrangement of interrupt vectors and interrupt ser-
vicing routines in memory, while Figure 2.8(b) shows contents of the PSW at
various times during servicing of an I/O interrupt. The interrupt vectors are
formed by the OS boot procedure. Each interrupt vector contains the address
of an interrupt servicing routine, an interrupt mask and a 0 in the mode field.
A user program is about to execute the instruction that exists at the address
ddd in memory when an interrupt occurs signaling the end of an I/O operation
on device d1. The leftmost part of Figure 2.8(b) shows the PSW contents at
this time.

Step 1 of the interrupt action puts d1 in the IC field of the PSW and saves
the PSW in the saved PSW information area. The saved PSW contains a 1
in the mode field, ddd in the PC field, and d1 in the IC field. The contents
of the interrupt vector for the I/O completion interrupt are loaded into the
PSW. Effectively, the CPU is put in the kernel mode of operation, and control
is transferred to the routine that has the start address bbb, which is the I/O
interrupt servicing routine (see the arrow marked �A in Figure 2.8(a), and the
PSW contents shown in Figure 2.8(b)).

The I/O interrupt servicing routine saves the PSW and contents of the
GPRs in the program table. It now examines the IC field of the saved PSW,
finds that device d1 has completed its I/O operation, and notes that the program
that had initiated the I/O operation can be considered for scheduling. It now
transfers control to the scheduler (see the arrow marked �B in Figure 2.8(a)).
The scheduler happens to select the interrupted program itself for execution, so
the kernel switches the CPU to execution of the program by loading back the
saved contents of the PSW and GPRs (see arrow marked �C in Figure 2.8(a)).
The Program would resume execution at the instruction with the address ddd
(see the PSW contents in the rightmost part of Figure 2.8(b)).
•

Nested Interrupt Servicing Figure 2.9(a) diagrams the interrupt servicing ac-
tions of Example 2.3 in the simplest form: interrupt servicing routine “a” handles
the interrupt and the scheduler selects the interrupted program itself for execu-
tion. If another interrupt occurs, however, while interrupt servicing routine “a”
is servicing the first interrupt, it will lead to identical actions in the hardware and
software. This time, execution of interrupt servicing routine “a” is the “program”
that will be interrupted; the CPU will be switched to execution of another inter-
rupt servicing routine, say, interrupt servicing routine “b” (see Figure 2.9(b)). This
situation delays servicing of the first interrupt, and it also requires careful coding

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 43 — #19

Chapter 2 The OS, the Computer, and User Programs 43

(a) Interrupt vectors and interrupt servicing routines.

(b) PSW contents at various times.

Before interrupt After action

PC

IC

M

ddd 1

IC

PC M

d1

bbb 0

IC

PC M

d1

ccc 0

IC

PC M

d1

ddd 1

Memory

Save PSW

and GPRs

{Handle the

 event}

Branch ccc

Program interrupt

servicing

routine

Interrupt action

switches the CPU

when an

I/O interrupt

occurs

I/O interrupt

servicing

routine

PC

IM

IM

Interrupt vectors

area

 Kernel switches

the CPU

to return

from interrupt

servicing

Saved PSW

information areaKernel

<previous instruction>

ddd: <next instruction>

User program

d1

M PC M

PC

IC

M

I/O

interrupt

vector

Program

interrupt

vector

Scheduler

Save PSW

and GPRs

{Handle the

 event}

Branch ccc

{Select a

program}

Load GPRs

Transfer to

user program

aaa: bbb: ccc:

B

C

A
bbb 0 ddd 1

aaa 0

A After action B After action C

Figure 2.8 Servicing of an I/O interrupt and return to the same user program.

of the kernel to avoid a mix-up if the same kind of interrupt were to arise again
(also see Exercise 2.6). However, it enables the kernel to respond to high-priority
interrupts readily.

Operating systems have used two approaches to nested interrupt servicing.
Some operating systems use the interrupt mask (IM) field in the interrupt vector

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 44 — #20

44 Part 1 Overview

(a) (b)

User
program

Interrupt
routine “a”

User
program

Interrupt
routine “a”

Interrupt
routine “b”

Figure 2.9 Simple and nested interrupt servicing.

to mask off all interrupts while an interrupt servicing routine is executing (see
Figure 2.8). This approach makes the kernel noninterruptible, which simplifies
its design because the kernel would be engaged in servicing only one interrupt
at any time. However, noninterruptibility of the kernel may delay servicing of
high-priority interrupts. In an alternative approach, the kernel sets the interrupt
mask in each interrupt vector to mask off less critical interrupts; it services more
critical interrupts in a nested manner. Such a kernel is called an interruptible kernel
or a preemptible kernel. Data consistency problems would arise if two or more
interrupt servicing routines activated in a nested manner update the same kernel
data, so the kernel must use a locking scheme to ensure that only one interrupt
processing routine can access such data at any time.

User Program Preemption In the scheme of Figure 2.7, preemption of a user
program occurs implicitly when an interrupt arises during its execution and the
kernel decides to switch the CPU to some other program’s execution. Recall from
Example 2.3 that the interrupted program’s context is stored in the program table,
so there is no difficulty in resuming execution of a preempted program when it is
scheduled again.

2.3.3 System Calls
A program needs to use computer resources like I/O devices during its execution.
However, resources are shared among user programs, so it is necessary to prevent
mutual interference in their use. To facilitate it, the instructions that allocate or
access critical resources are made privileged instructions in a computer’s archi-
tecture. This way, these instructions cannot be executed unless the CPU is in the
kernel mode, so user programs cannot access resources directly; they must make
requests to the kernel, and the kernel must access resources on their behalf. The
kernel provides a set of services for this purpose.

In a programmer view, a program uses a computer’s resources through state-
ments of a programming language. The compiler of a programming language
implements the programmer view as follows: While compiling a program, it

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 45 — #21

Chapter 2 The OS, the Computer, and User Programs 45

Memory

system call ...

system call ...

Kernel

call 1_open(info);

call 1_read(info)..;

Compiled code
of the program

Library function
to open file

Library function
to read data

(a) (b)

open (info);

read (info) ...;

4

2

1

3

Figure 2.10 A schematic of system calls: (a) a program and (b) an execution time
arrangement.

replaces statements concerning use of computer resources by calls on library
functions that implement use of the resources. These library functions are then
linked with the user program. During execution, the user program calls a library
function and the library function actually uses the resource through a kernel ser-
vice. We still need a method by which a library function can invoke the kernel
to utilize one of its services. We will use system call as a generic term for such
methods.

Figure 2.10 shows a schematic of this arrangement. The program shown
in Figure 2.10(a) opens file info and reads some data from it. The compiled
program has the form shown in Figure 2.10(b). It calls a library function to open
the file; this call is shown by the arrow marked �1 . The library function invokes
the kernel service for opening a file through a system call (see the arrow marked
�2). The kernel service returns to the library function after opening the file, which

returns to the user program. The program reads the file analogously through a
call on a library function, which leads to a system call (see arrows marked �3
and �4).

A system call is actually implemented through the interrupt action described
earlier, hence we define it as follows:

Definition 2.1 System Call A request that a program makes to the kernel
through a software interrupt.

We assume that the software interrupt instruction mentioned in Section 2.2.5
has the format

SI <int_code>

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 46 — #22

46 Part 1 Overview

where the value of <int_code>, which is typically an integer in the range 0–255,
indicates which service of the kernel is being requested. A program interrupt
occurs when a program executes this instruction, and Step 1 of the interrupt
action as shown in Figure 2.6 copies <int_code> into the interrupt code (IC) field
of the PSW. The interrupt servicing routine for program interrupts analyzes the
interrupt code field in the saved PSW information area to know the request made
by the program.

A system call may take parameters that provide relevant information for the
invoked kernel service, e.g., the system call to open a file in Figure 2.10 would take
the filename info as a parameter, and the system call to read data would take
parameters that indicate the filename, number of bytes of data to be read, and the
address in memory where data is to be delivered, etc. Several different methods
can be used to pass parameters—parameters can be loaded into registers before
the system call is made, they can be pushed on the stack, or they can be stored
in an area of memory and the start address of the memory area can be passed
through a register or the stack.

The next example describes execution of a system call to obtain the current
time of day.

•
Example 2.4 System Call in a Hypothetical OS

A hypothetical OS provides a system call for obtaining the current time. Let
the code for this time-of-day service be 78. When a program wishes to know
the time, it executes the instruction SI 78, which causes a software interrupt.
78 is entered in the interrupt code field of the PSW before the PSW is saved
in the saved PSW information area. Thus the value d1 in the IC field of the
saved PSW in Figure 2.8 would be 78. As shown in Figure 2.8, the interrupt
vector for program interrupts contains aaa in its PC field. Hence the CPU is
switched to execution of the routine with the start address aaa. It finds that the
interrupt code is 78 and realizes that the program wishes to know the time of
the day. According to the conventions defined in the OS, the time information
is to be returned to the program in a standard location, typically in a data
register. Hence the kernel stores this value in the entry of the program table
where the contents of the data register were saved when the interrupt occurred.
This value would be loaded into the data register when the CPU is switched
back to execution of the interrupted program.
•

In accordance with the schematic of Figure 2.10, we will assume that a pro-
gram written in a programming language like C, C++, or Java calls a library
function when it needs a service from the OS, and that the library function actu-
ally makes a system call to request the service. We will use the convention that
the name of the library function is also the name of the system call. For example,
in Example 2.4, a C program would call a library function gettimeofday to
obtain the time of day, and this function would make the system call gettimeofday
through the instruction SI 78 as described in Example 2.4.

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 47 — #23

Chapter 2 The OS, the Computer, and User Programs 47

Table 2.4 Some Linux System Calls

Call number Call name Description

1 exit Terminate execution of this program
3 read Read data from a file
4 write Write data into a file
5 open Open a file
6 close Close a file
7 waitpid Wait for a program’s execution to terminate

11 execve Execute a program
12 chdir Change working directory
14 chmod Change file permissions
39 mkdir Make a new directory
74 sethostname Set hostname of the computer system
78 gettimeofday Get time of day
79 settimeofday Set time of day

An operating system provides system calls for various purposes like initia-
tion and termination of programs, program synchronization, file operations, and
obtaining information about the system. The Linux operating system provides
close to 200 system calls; some of these calls are listed in Table 2.4. These sys-
tem calls can also be invoked in a C or C++ program through the call names
mentioned in Table 2.4; an assembly language program can invoke them directly
through the SI instruction.

2.4 SUMMARY
•

As mentioned in the first chapter, a modern OS can
service several user programs simultaneously. The
OS achieves it by interacting with the computer
and user programs to perform several control func-
tions. In this chapter we described relevant features
of a computer and discussed how they are used by
the OS and user programs.

The operating system is a collection of rou-
tines. The instructions in its routines must be exe-
cuted on the CPU to realize its control functions.
Thus the CPU should execute instructions in the
OS when a situation that requires the operating sys-
tem’s attention occurs, whereas it should execute

instructions in user programs at other times. It
is achieved by sending a special signal, called an
interrupt, to the CPU. Interrupts are sent at the
occurrence of a situation such as completion of an
I/O operation, or a failure of some sort. A software
interrupt known as a system call is sent when a
program wishes to use a kernel service such as
allocation of a resource or opening of a file.

The CPU contains a set of control registers
whose contents govern its functioning. The pro-
gram status word (PSW) is the collection of control
registers of the CPU; we refer to each control
register as a field of the PSW. A program whose

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 48 — #24

48 Part 1 Overview

execution was interrupted should be resumed at a
later time. To facilitate this, the kernel saves the
CPU state when an interrupt occurs. The CPU
state consists of the PSW and program-accessible
registers, which we call general-purpose registers
(GPRs). Operation of the interrupted program is
resumed by loading back the saved CPU state into
the PSW and GPRs.

The CPU has two modes of operation con-
trolled by the mode (M) field of the PSW. When
the CPU is in the user mode, it cannot execute
sensitive instructions like those that load informa-
tion into PSW fields like the mode field, whereas
it can execute all instructions when it is in the
kernel mode. The OS puts the CPU in the user
mode while it is executing a user program, and
puts the CPU in the kernel mode while it is execut-
ing instructions in the kernel. This arrangement
prevents a program from executing instructions
that might interfere with other programs in the
system.

The memory hierarchy of a computer pro-
vides the same effect as a fast and large memory,
though at a low cost. It contains a very fast
and small memory called a cache, a slower and

larger random access memory (RAM)—which we
will simply call memory—and a disk. The CPU
accesses only the cache. However, the cache con-
tains only some parts of a program’s instructions
and data. The other parts reside in memory; the
hardware associated with the cache loads them into
the cache whenever the CPU tries to access them.
The effective memory access time depends on what
fraction of instructions and data accessed by the
CPU was found in the cache; this fraction is called
the hit ratio.

The input-output system is the slowest unit
of a computer; the CPU can execute millions of
instructions in the amount of time required to
perform an I/O operation. Some methods of per-
forming an I/O operation require participation of
the CPU, which wastes valuable CPU time. Hence
the input-output system of a computer uses direct
memory access (DMA) technology to permit the
CPU and the I/O system to operate independently.
The operating system exploits this feature to let the
CPU execute instructions in a program while I/O
operations of the same or different programs are
in progress. This technique reduces CPU idle time
and improves system performance.

TEST YOUR CONCEPTS
•

2.1 Classify each of the following statements as true
or false:
a. The condition code (i.e., flags) set by an

instruction is not a part of the CPU
state.

b. The state of the CPU changes when a pro-
gram executes a no-op (i.e., no operation)
instruction.

c. The software interrupt (SI) instruction
changes the mode of the CPU to kernel mode.

d. Branch instructions in a program may lead
to low spatial locality, but may provide high
temporal locality.

e. When a DMA is used, the CPU is involved in
data transfers to an I/O device during an I/O
operation.

f. A memory protection violation leads to a
program interrupt.

g. The kernel becomes aware that an I/O opera-
tion has completed when a program makes a
system call to inform it that the I/O operation
has ended.

2.2 Which of the following should be privileged in-
structions? Explain why.
a. Put the CPU in kernel mode
b. Load the size register
c. Load a value in a general-purpose register
d. Mask off some interrupts
e. Forcibly terminate an I/O operation

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 49 — #25

Chapter 2 The OS, the Computer, and User Programs 49

EXERCISES
•

2.1 What use does the kernel make of the interrupt
code field in the PSW?

2.2 The CPU should be in the kernel mode while
executing the kernel code and in the user mode
while executing a user program. Explain how it
is achieved during operation of an OS.

2.3 The kernel of an OS masks off all interrupts dur-
ing interrupt servicing. Discuss the advantages
and disadvantages of such masking.

2.4 A computer system has the clock-tick-based
timer arrangement described in Section 2.2.5.
Explain how this arrangement can be used to
maintain the time of day. What are the limita-
tions of this approach?

2.5 An OS supports a system call sleep, which puts
the program making the call to sleep for the
number of seconds indicated in the argument
of the sleep call. Explain how this system call
is implemented.

2.6 A computer system organizes the saved PSW
information area as a stack. It pushes con-
tents of the PSW onto this stack during Step 2
of the interrupt action (see Figure 2.6). Ex-
plain the advantages of a stack for interrupt
servicing.

2.7 If the request made by a program through a
system call cannot be satisfied straightaway, the
kernel informs the scheduling component that
the program should not be selected for execu-
tion until its request is met. Give examples of
such requests.

2.8 A hypothetical OS provides a system call for
requesting allocation of memory. An experi-
enced programmer offers the following advice:
“If your program contains many requests for
memory, you can speed up its execution by com-
bining all these requests and making a single
system call.” Explain why this is so.

2.9 A computer has two levels of cache memories,
which provide access times that are 0.01 and
0.1 times the access time of memory. If the hit
ratio in each cache is 0.9, the memory has an
access time of 10 microseconds, and the time
required to load a cache block is 5 times the
access time of the slower memory, calculate the
effective memory access time.

2.10 A computer has a CPU that can execute 10 mil-
lion instructions per second and a memory that
has a transfer rate of 100 million bytes/second.
When interrupt I/O is performed, the interrupt
routine has to execute 50 instructions to trans-
fer 1 byte between memory and an I/O device.
What is the maximum data transfer rate during
I/O operations implemented by using the follow-
ing I/O modes: (a) interrupt I/O and (b) DMA-
based I/O.

2.11 Several units of an I/O device that has a peak
data transfer rate of 10 thousand bytes/second
and operates in the interrupt I/O mode are con-
nected to the computer in Exercise 2.10. How
many of these units can operate at full speed at
the same time?

2.12 A hypothetical OS supports two system calls
for performing I/O operations. The system call
init_io initiates an I/O operation, and the sys-
tem call await_io ensures that the program would
execute further only after the I/O operation has
completed. Explain all actions that take place
when the program makes these two system calls.
(Hint: When none of the programs in the OS can
execute on the CPU, the OS can put the CPU
into an infinite loop in which it does nothing. It
would come out of the loop when an interrupt
occurs.)

BIBLIOGRAPHY
•

Smith (1982) and Handy (1998) describe cache mem-
ory organizations. Przybylski (1990) discusses cache
and memory hierarchy design. Memory hierarchy and
I/O organization are also covered in most books on

computer architecture and organization, e.g., Hayes
(1997), Patterson and Hennessy (2005), Hennessy and
Patterson (2002), Hamacher et al. (2002), and Stallings
(2003).

02-M4363-DAS1.LaTeX: “chap02” — 2007/11/26 — 12:12 — page 50 — #26

50 Part 1 Overview

Most books on operating systems discuss the sys-
tem calls interface. Bach (1986) contains a useful syn-
opsis of Unix system calls. O’Gorman (2003) describes
interrupt processing in Linux. Beck et al. (2002), Bovet
and Cesati (2005), and Love (2005) contain extensive dis-
cussions of Linux system calls. Mauro and McDougall
(2006) describes system calls in Solaris, while Russi-
novich and Solomon (2005) describes system calls in
Windows.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice-Hall, Englewood
Cliffs, N.J.

2. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

3. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

4. O’Gorman, J. (2003): Linux Process Manager:
The internals of Scheduling, Interrupts and
Signals, John Wiley, New York.

5. Hamacher, C., Z. Vranesic, and S. Zaky (2002):
Computer Organization, 5th ed., McGraw-Hill,
New York.

6. Handy, J. (1998): The Cache Memory Book,
2nd ed., Academic Press, New York.

7. Hayes, J. (1997): Computer Architecture and
Organization, 3rd ed., McGraw-Hill, New York.

8. Hennessy, J., and D. Patterson (2002): Computer
Architecture: A Quantitative Approach, 3rd ed.,
Morgan Kaufmann, San Mateo, Calif.

9. Love, R. (2005): Linux Kernel Development,
2nd ed., Novell Press.

10. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

11. Patterson, D., and J. Hennessy (2005): Computer
Organization and Design: The Hardware/Software
Interface, 3rd ed., Morgan Kaufman, San Mateo,
Calif.

12. Przybylski, A. (1990): Cache and Memory
Hierarchy Design: A Performance-Directed
Approach, Morgan Kaufmann, San Mateo,
Calif.

13. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

14. Smith, A. J. (1982): “Cache memories,” ACM
Computing Surveys, 14, 473–530.

15. Stallings, W. (2003): Computer Organization and
Architecture, 6th ed., Prentice Hall, Upper Saddle
River, N.J.

16. Tanenbaum, A. (1998): Structured Computer
Organization, 4th ed., Prentice Hall, Englewood
Cliffs, N.J.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 51 — #1

C h a p t e r 3
Overview of
Operating Systems

When we want to describe a computing environment, we need to look at
both the computer system and its users: How is the computer system
built? How is it installed to work with other systems? What are the

services it provides to its users? All these features of a computing environment
influence the design of an operating system because the OS has to provide a
suitable combination of efficient use of the computer’s resources and convenience
of its users—what we called the notion of effective utilization of a computer system
in Chapter 1—and also prevent interference in the activities of its users.

Throughout the history of computing, computing environments have
changed as computer architecture and users’ expectations have changed. New
notions of effective utilization emerged with each new computing environment,
so a new class of operating systems was developed, which used new concepts and
techniques to achieve effective utilization.

Modern computing environments support diverse applications, so they pos-
sess features of several of the classical computing environments. Consequently,
many of the concepts and techniques of the classical computing environments
can be found in the strategies modern operating systems employ. To simplify the
study of modern operating systems, in this chapter we present an overview of
the concepts and techniques of the classical computing environments and discuss
which of them find a place in a modern operating system.

3.1 COMPUTING ENVIRONMENTS AND
NATURE OF COMPUTATIONS

•
A computing environment consists of a computer system, its interfaces with other
systems, and the services provided by its operating system to its users and their
programs. Computing environments evolve continuously to provide better quality
of service to users; however, the operating system has to perform more com-
plex tasks as computer systems become more powerful, their interfaces with I/O
devices and with other computer systems become more complex, and its users
demand new services.

51

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 52 — #2

52 Part 1 Overview

The nature of computations in a computing environment, and the manner in
which users realize them, depends on features of the computing environment.
In a typical modern computing environment, a user initiates diverse activi-
ties simultaneously; e.g., he may run a mail handler, edit a few files, initiate
computations, listen to music or watch a video, and browse the Internet at
the same time. The operating system has to provide the resources required by
each of these activities, such as the CPU and memory, and I/O devices located
either within the same computer system or in another computer system that
can be accessed over the Internet, so that the activities progress to the user’s
satisfaction.

We will begin the discussion of operating systems by taking a quick look at
how computing environments evolved to their present form.

Noninteractive Computing Environments These are the earliest forms of com-
puting environments. In these environments, a user submits both a computation
in the form of a program and its data together to the operating system. The com-
putation is performed by the operating system and its results are presented back
to the user. The user has no contact with the computation during its execution.
Hence these computations can be viewed as passive entities, to be interpreted
and realized by the operating system. Examples of noninteractive computations
are scientific computations involving number crunching and database updates
performed overnight. In these computing environments, the operating system
focuses on efficient use of resources.

Computations used in a noninteractive environment are in the form of a
program or a job. A program is a set of functions or modules that can be exe-
cuted by itself. A job is a sequence of programs that together achieve a desired
goal; a program in a job is executed only if previous programs in the job have
executed successfully. For example, consider compilation, linking, and execution
of a C++ program. A job to achieve these actions would consist of execution
of a C++ compiler, followed by execution of a linker to link the program with
functions from libraries, followed by execution of the linked program. Here, link-
ing is meaningful only if the program is compiled successfully, and execution is
meaningful only if linking is successful.

Interactive Computing Environments In these computing environments, a user
may interact with a computation while it is in progress. The nature of an inter-
action between a user and his computation depends on how the computation is
coded; e.g., a user may input the name of a data file to a computation during its
execution, or may directly input some data to it, and the computation may display
a result after processing the data. The operating system focuses on reducing the
average amount of time required to implement an interaction between a user and
his computation.

A user also interacts with the OS to initiate a computation, typically each user
command to the OS calls for separate execution of a program. Here the notion
of a job is not important because a user would himself consider the dependence
of programs while issuing the next command. For example, if a C++ program
is to be compiled, linked, and executed, a user would attempt linking only if

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 53 — #3

Chapter 3 Overview of Operating Systems 53

Table 3.1 Computations in an OS

Computation Description

Program A program is a set of functions or modules, including some
functions or modules obtained from libraries.

Job A job is a sequence of programs that together achieve a
common goal. It is not meaningful to execute a program in a
job unless previous programs in the job have been executed
successfully.

Process A process is an execution of a program.
Subrequest A subrequest is the presentation of a computational

requirement by a user to a process. Each subrequest produces a
single response, which consists of a set of results or actions.

the program had compiled successfully. Hence operating systems for interactive
environments deal exclusively with execution of programs, not jobs. OS literature
uses the term process for an execution of a program in an interactive environment.
In principle, the term process is applicable in both noninteractive and interactive
environments. However, we will follow the convention and use it only in the
context of interactive computing environments.

A user’s interaction with a process consists of presentation of a computational
requirement—a subrequest—by the user to the process, and a response by the
process. Depending on the nature of a subrequest, the response may be in the form
of a set of results, or a set of actions such as file operations or database updates.
Table 3.1 describes the program, job, process, and subrequest computations.

Real-Time, Distributed, and Embedded Environments Some computations have
special requirements, hence special computing environments are developed to
service them. A real-time computation is one that works under specific time con-
straints, so its actions are effective only if they are completed within a specified
interval of time. For example, a computation that periodically samples the data
from an instrument and stores the samples in a file must finish storing a sam-
ple before it is due to take the next sample. The operating system in a real-time
environment uses special techniques to ensure that computations are completed
within their time constraints. The distributed computing environment enables a
computation to use resources located in several computer systems through a net-
work. In the embedded computing environment, the computer system is a part of
a specific hardware system, such as a household appliance, a subsystem of an
automobile, or a handheld device such as a personal digital assistant (PDA), and
runs computations that effectively control the system. The computer is typically
an inexpensive one with a minimal configuration; its OS has to meet the time
constraints arising from the nature of the system being controlled.

Modern Computing Environments To support diverse applications, the comput-
ing environment of a modern computer has features of several of the computing
environments described earlier. Consequently, its operating system has to employ

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 54 — #4

54 Part 1 Overview

complex strategies to manage user computations and resources; e.g., it has to
reduce the average amount of time required to implement an interaction between
a user and a computation, and also ensure efficient use of resources.

We study the strategies used in modern operating systems in two stages:
In this chapter, we first study the operating system strategies used in each of the
computing environments mentioned earlier, and then see which of them are useful
in a modern computing environment. In later chapters, we discuss the design of
the strategies used in modern operating systems.

3.2 CLASSES OF OPERATING SYSTEMS
•

Classes of operating systems have evolved over time as computer systems and
users’ expectations of them have developed; i.e., as computing environments have
evolved. As we study some of the earlier classes of operating systems, we need
to understand that each was designed to work with computer systems of its own
historical period; thus we will have to look at architectural features representative
of computer systems of the period.

Table 3.2 lists five fundamental classes of operating systems that are named
according to their defining features. The table shows when operating systems of
each class first came into widespread use; what fundamental effectiveness crite-
rion, or prime concern, motivated its development; and what key concepts were
developed to address that prime concern.

Computing hardware was expensive in the early days of computing, so
the batch processing and multiprogramming operating systems focused on effi-
cient use of the CPU and other resources in the computer system. Computing
environments were noninteractive in this era. In the 1970s, computer hardware
became cheaper, so efficient use of a computer was no longer the prime concern
and the focus shifted to productivity of computer users. Interactive comput-
ing environments were developed and time-sharing operating systems facilitated

Table 3.2 Key Features of Classes of Operating Systems

OS class Period Prime concern Key concepts

Batch processing 1960s CPU idle time Automate transition
between jobs

Multiprogramming 1960s Resource
utilization

Program priorities,
preemption

Time-sharing 1970s Good response
time

Time slice, round-robin
scheduling

Real time 1980s Meeting time
constraints

Real-time scheduling

Distributed 1990s Resource sharing Distributed control,
transparency

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 55 — #5

Chapter 3 Overview of Operating Systems 55

better productivity by providing quick response to subrequests made to processes.
The 1980s saw emergence of real-time applications for controlling or tracking of
real-world activities, so operating systems had to focus on meeting the time con-
straints of such applications. In the 1990s, further declines in hardware costs led
to development of distributed systems, in which several computer systems, with
varying sophistication of resources, facilitated sharing of resources across their
boundaries through networking.

The following paragraphs elaborate on key concepts of the five classes of
operating systems mentioned in Table 3.2.

Batch Processing Systems In a batch processing operating system, the prime
concern is CPU efficiency. The batch processing system operates in a strict one-
job-at-a-time manner; within a job, it executes the programs one after another.
Thus only one program is under execution at any time. The opportunity to
enhance CPU efficiency is limited to efficiently initiating the next program when
one program ends, and the next job when one job ends, so that the CPU does not
remain idle.

Multiprogramming Systems A multiprogramming operating system focuses on
efficient use of both the CPU and I/O devices. The system has several programs
in a state of partial completion at any time. The OS uses program priorities and
gives the CPU to the highest-priority program that needs it. It switches the CPU
to a low-priority program when a high-priority program starts an I/O operation,
and switches it back to the high-priority program at the end of the I/O operation.
These actions achieve simultaneous use of I/O devices and the CPU.

Time-Sharing Systems A time-sharing operating system focuses on facilitating
quick response to subrequests made by all processes, which provides a tangible
benefit to users. It is achieved by giving a fair execution opportunity to each
process through two means: The OS services all processes by turn, which is called
round-robin scheduling. It also prevents a process from using too much CPU time
when scheduled to execute, which is called time-slicing. The combination of these
two techniques ensures that no process has to wait long for CPU attention.

Real-Time Systems A real-time operating system is used to implement a
computer application for controlling or tracking of real-world activities. The
application needs to complete its computational tasks in a timely manner to keep
abreast of external events in the activity that it controls. To facilitate this, the
OS permits a user to create several processes within an application program, and
uses real-time scheduling to interleave the execution of processes such that the
application can complete its execution within its time constraint.

Distributed Systems A distributed operating system permits a user to access
resources located in other computer systems conveniently and reliably. To enhance
convenience, it does not expect a user to know the location of resources in the
system, which is called transparency. To enhance efficiency, it may execute parts of
a computation in different computer systems at the same time. It uses distributed
control; i.e., it spreads its decision-making actions across different computers in

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 56 — #6

56 Part 1 Overview

the system so that failures of individual computers or the network does not cripple
its operation.

In Sections 3.4–3.8, we will examine each of the five fundamental OS classes
in greater detail.

3.3 EFFICIENCY, SYSTEM PERFORMANCE,
AND USER SERVICE

•
Measurement provides a method of assessing selected aspects of an operating sys-
tem’s functioning. In Chapter 1, we defined efficiency of use and user convenience
as two of the fundamental goals of an OS. However, to a system administrator
the performance of a system in its environment is more important than merely
efficiency of use, hence in this section we discuss measures of efficiency, system
performance, and user service. Table 3.3 summarizes these measures.

Efficiency The way to evaluate efficiency of use of a resource is to see how
much of the resource is unused or wasted, and, in the amount of resource that is
used, check how much of it is put to productive use. As an example of efficiency,
consider use of the CPU. Some amount of CPU time is wasted because the CPU
does not have enough work to do. This happens when all user processes in the
system are either performing I/O operations or waiting for the users to supply
data. Of the CPU time that is used, some amount of time is used by the OS itself
in performing interrupt servicing and scheduling. This constitutes the overhead
of OS operation. The remaining CPU time is used for executing user processes.
To evaluate efficiency of CPU use, we should consider what fraction or percentage
of the total CPU time is used for executing user processes. Efficiency of use of other
resources such as memory and I/O devices can be similarly determined: Deduct
the amount of unused resource and the OS overhead from the total resource and
consider what fraction or percentage the result is of the total resource.

Using the notion of efficiency of use, we briefly discuss the fundamental
trade-off between efficiency of use and user convenience: A multiprogramming
system has several user programs at any time and switches between them to
obtain efficient use of both the CPU and I/O devices. The CPU is given to the

Table 3.3 Measures of Efficiency, System Performance,
and User Service

Aspect Measure Description

Efficiency of use CPU efficiency Percent utilization of the CPU
Memory efficiency Percent utilization of memory

System performance Throughput Amount of work done per unit time
User service Turnaround time Time to complete a job or a process

Response time Time to implement one subrequest

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 57 — #7

Chapter 3 Overview of Operating Systems 57

highest-priority program in the system whenever it wants, and it can use the CPU
for as long as it wants. A time-sharing system, however, restricts the amount
of CPU time a scheduled process can use. It preempts a process that uses too
much CPU time and schedules another process. The preempted process may
be scheduled again sometime in future. This feature increases the OS overhead
in interrupt servicing and scheduling, thereby affecting efficiency of CPU use.
However, it provides good response times to all processes, which is a feature
desired by users of the OS.

System Performance Once we decide on the suitable combination of CPU effi-
ciency and user service, it is important to know how well the OS is performing.
The notion of performance depends on the computing environment and indicates
the rate at which a computer system accomplishes work during its operation.

An operating system typically uses a measure of efficiency to tune its func-
tioning for better performance. For example, if memory efficiency is low, the
operating system may load more user programs in memory. In turn, it may lead
to better performance of the system by increasing the rate at which the system
completes user computations. If CPU efficiency is low, the operating system may
investigate its causes—either too few programs in memory or programs spending
too much time in waiting for I/O to complete—and take corrective actions where
possible.

System performance is characterized as the amount of work done per unit
time. It is typically measured as throughput.

Definition 3.1 Throughput The average number of jobs, programs, processes,
or subrequests completed by a system in unit time.

The unit of work used for measuring throughput depends on the computing
environment. In a noninteractive environment, throughput of an OS is measured
in terms of the number of jobs or programs completed per unit time. In an inter-
active environment, it may be measured in terms of the number of subrequests
completed per unit time. In a specialized computing environment, performance
may be measured in terms meaningful to the application; for example, in a bank-
ing environment, it could be the number of transactions per unit time. Throughput
can also be used as a measure of performance for I/O devices. For example, the
throughput of a disk can be measured as the number of I/O operations completed
per unit time or the number of bytes transferred per unit time.

User Service Some aspects of user convenience are intangible and thus impos-
sible to measure numerically; e.g., a feature like user friendly interfaces cannot be
quantified. However, there are some measurable aspects of user convenience, so
we can define appropriate measures for them. User service, which indicates how
quickly a user’s computation has been completed by the OS, is one such aspect.
We define two measures of user service—turnaround time, in noninteractive com-
puting environments, and response time, in interactive computing environments.
A smaller turnaround time or response time implies better user service.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 58 — #8

58 Part 1 Overview

Definition 3.2 Turnaround Time The time from submission of a job, program,
or process by a user to the time its results become available to the user.

Definition 3.3 Response Time The time from submission of a subrequest by
a user to the time a process responds to it.

Specialized measures of user service may be defined for use in specific
computing environments. Two such examples are deadline overrun in a real-time
operating system and computation speedup in a distributed operating system.
Deadline overrun indicates by how much time the OS was late in completing the
execution of a computation with time constraints, so a negative deadline overrun
indicates good user service. Computation speedup indicates by what factor the
execution of an application was speeded up because its processes were executed
at the same time in different computers of a distributed system; a larger value of
computation speedup implies better user service.

3.4 BATCH PROCESSING SYSTEMS
•

Computer systems of the 1960s were noninteractive. Punched cards were the pri-
mary input medium, so a job and its data consisted of a deck of cards. A computer
operator would load the cards into the card reader to set up the execution of a
job. This action wasted precious CPU time; batch processing was introduced to
prevent this wastage.

A batch is a sequence of user jobs formed for processing by the operating
system. A computer operator formed a batch by arranging a few user jobs in a
sequence and inserting special marker cards to indicate the start and end of the
batch. When the operator gave a command to initiate processing of a batch, the
batching kernel set up the processing of the first job of the batch. At the end of
the job, it initiated execution of the next job, and so on, until the end of the batch.
Thus the operator had to intervene only at the start and end of a batch.

Card readers and printers were a performance bottleneck in the 1960s,
so batch processing systems employed the notion of virtual card readers and
printers (described in Section 1.3.2) through magnetic tapes, to improve the
system’s throughput. A batch of jobs was first recorded on a magnetic tape, using
a less powerful and cheap computer. The batch processing system processed these
jobs from the tape, which was faster than processing them from cards, and wrote
their results on another magnetic tape. These were later printed and released to
users. Figure 3.1 shows the factors that make up the turnaround time of a job.

User jobs could not interfere with each other’s execution directly because
they did not coexist in a computer’s memory. However, since the card reader
was the only input device available to users, commands, user programs, and data
were all derived from the card reader, so if a program in a job tried to read more
data than provided in the job, it would read a few cards of the following job! To
protect against such interference between jobs, a batch processing system required

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 59 — #9

Chapter 3 Overview of Operating Systems 59

t0

Job is
submitted

t1

Batch
formation

Batch is
formed

t2

Batch
execution

t3

Result
printing

Results are
returned to user

Turnaround time

Figure 3.1 Turnaround time in a batch processing system.

// JOB ··· “Start of job” statement

// EXEC FORTRAN Execute the Fortran compiler

Fortran

program

// EXEC Execute just compiled program

Data for

Fortran

program

/* “End of data” statement

/& “End of job” statement

Figure 3.2 Control statements in IBM 360/370 systems.

a user to insert a set of control statements in the deck of cards constituting a job.
The command interpreter, which was a component of the batching kernel, read
a card when the currently executing program in the job wanted the next card.
If the card contained a control statement, it analyzed the control statement and
performed appropriate actions; otherwise, it passed the card to the currently
executing program. Figure 3.2 shows a simplified set of control statements used
to compile and execute a Fortran program. If a program tried to read more data
than provided, the command interpreter would read the /*, /& and // JOB
cards. On seeing one of these cards, it would realize that the program was trying
to read more cards than provided, so it would abort the job.

A modern OS would not be designed for batch processing, but the tech-
nique is still useful in financial and scientific computation where the same kind
of processing or analysis is to be performed on several sets of data. Use of batch
processing in such environments would eliminate time-consuming initialization
of the financial or scientific analysis separately for each set of data.

3.5 MULTIPROGRAMMING SYSTEMS
•

Multiprogramming operating systems were developed to provide efficient
resource utilization in a noninteractive environment. A multiprogramming OS

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 60 — #10

60 Part 1 Overview

(a)

Multiprogramming
kernel

program1

program2

program3

I/O

CPU

(c)

Multiprogramming
kernel

program1

program2

program3

I/O

CPU

(b)

Multiprogramming
kernel

program1

program2

program3

I/O

I/O

CPU

Figure 3.3 Operation of a multiprogramming system: (a) program2 is in execution while program1 is performing an I/O
operation; (b) program2 initiates an I/O operation, program3 is scheduled; (c) program1’s I/O operation completes and it is
scheduled.

has many user programs in the memory of the computer at any time, hence the
name multiprogramming. It employs the DMA mode of I/O (see Section 2.2.4),
so it can perform I/O operations of some program(s) while using the CPU to
execute some other program. This arrangement makes efficient use of both the
CPU and I/O devices. The I/O and computational activities in several programs
are in progress at any time, so it also leads to high system performance. We discuss
this aspect in Section 3.5.1.

Figure 3.3 illustrates operation of a multiprogramming OS. The memory
contains three programs. An I/O operation is in progress for program1, while the
CPU is executing program2. The CPU is switched to program3 when program2
initiates an I/O operation, and it is switched to program1 when program1’s I/O
operation completes. The multiprogramming kernel performs scheduling, mem-
ory management and I/O management. It uses a simple scheduling policy, which
we will discuss in Section 3.5.1, and performs simple partitioned or pool-based
allocation of memory and I/O devices. Since several programs are in memory at
the same time, the instructions, data, and I/O operations of a program should be
protected against interference by other programs. We shall shortly see how it is
achieved.

A computer must possess the features summarized in Table 3.4 to support
multiprogramming (see Section 2.2). The DMA makes multiprogramming fea-
sible by permitting concurrent operation of the CPU and I/O devices. Memory
protection prevents a program from accessing memory locations that lie outside
the range of addresses defined by contents of the base register and size register
of the CPU. The kernel and user modes of the CPU provide an effective method
of preventing interference between programs. Recall from Section 2.2 that the
OS puts the CPU in the user mode while executing user programs, and that
instructions that load an address into the base register and a number into the
size register of the CPU, respectively, are privileged instructions. If a program
tries to undermine memory protection by changing contents of the base and size
registers through these instructions, a program interrupt would be raised because

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 61 — #11

Chapter 3 Overview of Operating Systems 61

Table 3.4 Architectural Support for Multiprogramming

Feature Description

DMA The CPU initiates an I/O operation when an I/O instruction
is executed. The DMA implements the data transfer
involved in the I/O operation without involving the CPU
and raises an I/O interrupt when the data transfer completes.

Memory protection A program can access only the part of memory defined by
contents of the base register and size register.

Kernel and user
modes of CPU

Certain instructions, called privileged instructions, can be
performed only when the CPU is in the kernel mode. A
program interrupt is raised if a program tries to execute a
privileged instruction when the CPU is in the user mode.

the CPU is in the user mode; the kernel would abort the program while servicing
this interrupt.

The turnaround time of a program is the appropriate measure of user service
in a multiprogramming system. It depends on the total number of programs in
the system, the manner in which the kernel shares the CPU between programs,
and the program’s own execution requirements.

3.5.1 Priority of Programs
An appropriate measure of performance of a multiprogramming OS is through-
put, which is the ratio of the number of programs processed and the total time
taken to process them. Throughput of a multiprogramming OS that processes n
programs in the interval between times t0 and tf is n/(tf − t0). It may be larger
than the throughput of a batch processing system because activities in several
programs may take place simultaneously—one program may execute instruc-
tions on the CPU, while some other programs perform I/O operations. However,
actual throughput depends on the nature of programs being processed, i.e., how
much computation and how much I/O they perform, and how well the kernel can
overlap their activities in time.

The OS keeps a sufficient number of programs in memory at all times, so that
the CPU and I/O devices will have sufficient work to perform. This number is
called the degree of multiprogramming. However, merely a high degree of multi-
programming cannot guarantee good utilization of both the CPU and I/O devices,
because the CPU would be idle if each of the programs performed I/O operations
most of the time, or the I/O devices would be idle if each of the programs per-
formed computations most of the time. So the multiprogramming OS employs the
two techniques described in Table 3.5 to ensure an overlap of CPU and I/O activ-
ities in programs: It uses an appropriate program mix, which ensures that some
of the programs in memory are CPU-bound programs, which are programs that

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 62 — #12

62 Part 1 Overview

Table 3.5 Techniques of Multiprogramming

Technique Description

Appropriate
program mix

The kernel keeps a mix of CPU-bound and I/O-bound programs
in memory, where

• A CPU-bound program is a program involving a lot of
computation and very little I/O. It uses the CPU in long
bursts—that is, it uses the CPU for a long time before
starting an I/O operation.

• An I/O-bound program involves very little computation and a
lot of I/O. It uses the CPU in small bursts.

Priority-based
preemptive
scheduling

Every program is assigned a priority. The CPU is always
allocated to the highest-priority program that wishes to use it.
A low-priority program executing on the CPU is preempted if a
higher-priority program wishes to use the CPU.

involve a lot of computation but few I/O operations, and others are I/O-bound pro-
grams, which contain very little computation but perform more I/O operations.
This way, the programs being serviced have the potential to keep the CPU and I/O
devices busy simultaneously. The OS uses the notion of priority-based preemptive
scheduling to share the CPU among programs in a manner that would ensure
good overlap of their CPU and I/O activities. We explain this technique in the
following.

Definition 3.4 Priority A tie-breaking criterion under which a scheduler
decides which request should be scheduled when many requests await
service.

The kernel assigns numeric priorities to programs. We assume that priorities
are positive integers and a large value implies a high priority. When many pro-
grams need the CPU at the same time, the kernel gives the CPU to the program
with the highest priority. It uses priority in a preemptive manner; i.e., it preempts
a low-priority program executing on the CPU if a high-priority program needs
the CPU. This way, the CPU is always executing the highest-priority program
that needs it. To understand implications of priority-based preemptive schedul-
ing, consider what would happen if a high-priority program is performing an I/O
operation, a low-priority program is executing on the CPU, and the I/O operation
of the high-priority program completes—the kernel would immediately switch the
CPU to the high-priority program.

Assignment of priorities to programs is a crucial decision that can influence
system throughput. Multiprogramming systems use the following priority assign-
ment rule: An I/O-bound program should have a higher priority than a CPU-bound
program. Example 3.1 illustrates operation of this rule.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 63 — #13

Chapter 3 Overview of Operating Systems 63

•
Example 3.1Execution of Programs in a Multiprogramming System

A multiprogramming system has progiob, an I/O-bound program, and progcb,
a CPU-bound program. Its operation starts at time 0. In Figure 3.4, the CPU
and I/O activities of these programs are plotted in the form of a timing chart in
which the x axis shows time and the y axis shows CPU and I/O activities of the
two programs. Cumulative CPU and I/O activities are shown at the bottom of
the chart. Note that the chart is not to scale; the CPU activity of progiob has
been exaggerated for clarity.

Program progiob is the higher priority program. Hence it starts executing
at time 0. After a short burst of CPU activity, it initiates an I/O operation (time
instant t1). The CPU is now switched to progcb. Execution of progcb is thus
concurrent with the I/O operation of progiob. Being a CPU-bound program,
progcb keeps the CPU busy until progiob’s I/O completes at t2, at which time
progcb is preempted because progiob has a higher priority. This sequence of
events repeats in the period 0–t6. Deviations from this behavior occur when
progcb initiates an I/O operation. Now both programs are engaged in I/O
operations, which go on simultaneously because the programs use different
I/O devices, and the CPU remains idle until one of them completes its I/O
operation. This explains the CPU-idle periods t6–t7 and t8–t9 in the cumulative
CPU activity. I/O-idle periods occur whenever progiob executes on the CPU
and progcb is not performing I/O (see intervals 0 − t1, t2–t3, and t4–t5). But
the CPU and the I/O subsystem are concurrently busy in the intervals t1–t2,
t3–t4, t5–t6, and t7–t8.

•

0

progcb

CPU activity

I/O activity

progiob

CPU activity

I/O activity

t1 t2 t3 t4 t5 t6 t7 t8 t9
Time

Cumulative

CPU activity

Busy Busy Busy

Cumulative

I/O activity

Busy Busy Busy

Figure 3.4 Timing chart when I/O-bound program has higher priority.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 64 — #14

64 Part 1 Overview

Table 3.6 Effect of Increasing the Degree of Multiprogramming

Action Effect

Add a CPU-bound
program

A CPU-bound program (say, prog3) can be
introduced to utilize some of the CPU time that was
wasted in Example 3.1 (e.g., the intervals t6–t7 and
t8–t9). prog3 would have the lowest priority. Hence
its presence would not affect the progress of progcb
and progiob.

Add an I/O-bound
program

An I/O-bound program (say, prog4) can be
introduced. Its priority would be between the
priorities of progiob and progcb. Presence of prog4
would improve I/O utilization. It would not affect
the progress of progiob at all, since progiob has the
highest priority, and it would affect the progress of
progcb only marginally, since prog4 does not use a
significant amount of CPU time.

We can make a few observations from Example 3.1: The CPU utilization
is good. The I/O utilization is also good; however, I/O idling would exist if
the system contained many devices capable of operating in the DMA mode.
Periods of concurrent CPU and I/O activities are frequent. progiob makes
very good progress because it is the highest-priority program. It makes very
light use of the CPU, and so progcb also makes very good progress. The
throughput is thus substantially higher than if the programs were executed
one after another as in a batch processing system. Another important fea-
ture of this priority assignment is that system throughput can be improved
by adding more programs. Table 3.6 describes how addition of a CPU-bound
program can reduce CPU idling without affecting execution of other pro-
grams, while addition of an I/O-bound program can improve I/O utilization
while marginally affecting execution of CPU-bound programs. The kernel can
judiciously add CPU-bound or I/O-bound programs to ensure efficient use of
resources.

When an appropriate program mix is maintained, we can expect that an
increase in the degree of multiprogramming would result in an increase in
throughput. Figure 3.5 shows how the throughput of a system actually varies
with the degree of multiprogramming. When the degree of multiprogramming
is 1, the throughput is dictated by the elapsed time of the lone program in the
system. When more programs exist in the system, lower-priority programs also
contribute to throughput. However, their contribution is limited by their oppor-
tunity to use the CPU. Throughput stagnates with increasing values of the degree
of multiprogramming if low-priority programs do not get any opportunity to
execute.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 65 — #15

Chapter 3 Overview of Operating Systems 65

1 2 3

Degree of multiprogramming

Throughput

Figure 3.5 Variation of throughput with degree of multiprogramming.

Time slice
is over

Subrequest is
completed, or I/O

operation is started

CPUScheduler

Selected
process

...

A process finishes
I/O or a new subrequest

is made to it

Scheduling
queue

Figure 3.6 A schematic of round-robin scheduling with time-slicing.

3.6 TIME-SHARING SYSTEMS
•

In an interactive computing environment, a user submits a computational
requirement—a subrequest—to a process and examines its response on the mon-
itor screen. A time-sharing operating system is designed to provide a quick
response to subrequests made by users. It achieves this goal by sharing the CPU
time among processes in such a way that each process to which a subrequest has
been made would get a turn on the CPU without much delay.

The scheduling technique used by a time-sharing kernel is called round-robin
scheduling with time-slicing. It works as follows (see Figure 3.6): The kernel main-
tains a scheduling queue of processes that wish to use the CPU; it always schedules
the process at the head of the queue. When a scheduled process completes ser-
vicing of a subrequest, or starts an I/O operation, the kernel removes it from
the queue and schedules another process. Such a process would be added at the
end of the queue when it receives a new subrequest, or when its I/O operation
completes. This arrangement ensures that all processes would suffer comparable

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 66 — #16

66 Part 1 Overview

delays before getting to use the CPU. However, response times of processes would
degrade if a process consumes too much CPU time in servicing its subrequest.
The kernel uses the notion of a time slice to avoid this situation. We use the
notation δ for the time slice.

Definition 3.5 Time Slice The largest amount of CPU time any time-shared
process can consume when scheduled to execute on the CPU.

If the time slice elapses before the process completes servicing of a subrequest,
the kernel preempts the process, moves it to the end of the scheduling queue, and
schedules another process. The preempted process would be rescheduled when it
reaches theheadof the queue onceagain. Thus, aprocessmayhave tobe scheduled
several times before it completes servicing of a subrequest. The kernel employs a
timer interrupt to implement time-slicing (see Section 2.2.5 and Table 2.2).

The appropriate measure of user service in a time-sharing system is the time
taken to service a subrequest, i.e., the response time (rt). It can be estimated
in the following manner: Let the number of users using the system at any time
be n. Let the complete servicing of each user subrequest require exactly δ CPU
seconds, and let σ be the scheduling overhead; i.e., the CPU time consumed by
the kernel to perform scheduling. If we assume that an I/O operation completes
instantaneously and a user submits the next subrequest immediately after receiv-
ing a response to the previous subrequest, the response time (rt) and the CPU
efficiency (η) are given by

rt = n × (δ + σ) (3.1)

η = δ

δ + σ
(3.2)

The actual response time may be different from the value of rt predicted by
Eq. (3.1), for two reasons. First, all users may not have made subrequests to their
processes. Hence rt would not be influenced by n, the total number of users in the
system; it would be actually influenced by the number of active users. Second,
user subrequests do not require exactly δ CPU seconds to produce a response.
Hence the relationship of rt and η with δ is more complex than shown in Eqs. (3.1)
and (3.2).

Example 3.2 illustrates round-robin scheduling with time-slicing, and how it
results in interleaved operation of processes.

•
Example 3.2 Operation of Processes in a Time-Sharing System

Processes P1 and P2 follow a cyclic behavior pattern. Each cycle contains a
burst of CPU activity to service a subrequest and a burst of I/O activity to
report its result, followed by a wait until the next subrequest is submitted to it.
The CPU bursts of processes P1 and P2 are 15 and 30 ms, respectively, while
the I/O bursts are 100 and 60 ms, respectively.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 67 — #17

Chapter 3 Overview of Operating Systems 67

Figure 3.7 shows operation of the processes in a time-sharing system using
a time slice of 10 ms. The table in the top half of Figure 3.7 shows the scheduling
list and scheduling decisions of the kernel, assuming scheduling overhead to
be negligible, while the timing chart shows the CPU and I/O activities of the
processes. Both processes have to be scheduled a few times before they can
complete the CPU bursts of their execution cycle and start I/O. Process P1 uses
the CPU from time 0 to 10 ms and P2 uses the CPU from 10 to 20 ms without
completing the CPU bursts of their execution cycles. P1 is scheduled once again
at 20 ms and starts an I/O operation at 25 ms. Now P2 gets two consecutive
time slices. However, these time slices are separated by the scheduling overhead
because the OS preempts process P2 at 35 ms and schedules it again, since no
other process in the system needs the CPU. P1’s I/O operation completes at
125 ms. P2 starts an I/O operation at 45 ms, which completes at 105 ms. Thus,
the response times are 125 ms and 105 ms, respectively.

•

3.6.1 Swapping of Programs
Throughput of subrequests is the appropriate measure of performance of a time-
sharing operating system. The time-sharing OS of Example 3.2 completes two
subrequests in 125 ms, hence its throughput is 8 subrequests per second over the
period 0 to 125 ms. However, the throughput would drop after 125 ms if users
do not make the next subrequests to these processes immediately. The CPU is

Time
Scheduling
list

Scheduled
program Remarks

0 P1, P2 P1 P1 is preempted at 10 ms
10 P2, P1 P2 P2 is preempted at 20 ms
20 P1, P2 P1 P1 starts I/O at 25 ms
25 P2 P2 P2 is preempted at 35 ms
35 P2 P2 P2 starts I/O at 45 ms
45 − − CPU is idle

Time

0 20 40 60 80 100 120

I/O activity
P1

P2

CPU activity
P1

P2

Figure 3.7 Operation of processes P1 and P2 in a time-sharing system.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 68 — #18

68 Part 1 Overview

(a)

Kernel

P1

P2

(b)

Kernel

P1

P3

(c)

Kernel

P4

P3

(d)

Kernel

P1

P3

Figure 3.8 Swapping: (a) processes in memory between 0 and 105 ms; (b) P2 is replaced by
P3 at 105 ms; (c) P1 is replaced by P4 at 125 ms; (d) P1 is swapped in to service the next
subrequest made to it.

idle after 45 ms because it has no work to perform. It could have serviced a few
more subrequests, had more processes been present in the system. But what if
only two processes could fit in the computer’s memory? The system throughput
would be low and response times of processes other than P1 and P2 would suffer.
The technique of swapping is employed to service a larger number of processes
than can fit into the computer’s memory. It has the potential to improve both
system performance and response times of processes.

Definition 3.6 Swapping The technique of temporarily removing a process
from the memory of a computer system.

The kernel performs a swap-out operation on a process that is not likely to get
scheduled in the near future by copying its instructions and data onto a disk. This
operation frees the area of memory that was allocated to the process. The kernel
now loads another process in this area of memory through a swap-in operation.
The kernel would overlap the swap-out and swap-in operations with servicing of
other processes on the CPU, and a swapped-in process would itself get scheduled
in due course of time. This way, the kernel can service more processes than can
fit into the computer’s memory. Figure 3.8 illustrates how the kernel employs
swapping. Initially, processes P1 and P2 exist in memory. These processes are
swapped out when they complete handling of the subrequests made to them, and
they are replaced by processes P3 and P4, respectively. The processes could also
have been swapped out when they were preempted. A swapped-out process is
swapped back into memory before it is due to be scheduled again, i.e., when it
nears the head of the scheduling queue in Figure 3.6.

3.7 REAL-TIME OPERATING SYSTEMS
•

In a class of applications called real-time applications, users need the computer to
perform some actions in a timely manner to control the activities in an external
system, or to participate in them. The timeliness of actions is determined by

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 69 — #19

Chapter 3 Overview of Operating Systems 69

the time constraints of the external system. Accordingly, we define a real-time
application as follows:

Definition 3.7 Real-Time Application A program that responds to activities in
an external system within a maximum time determined by the external system.

If the application takes too long to respond to an activity, a failure can
occur in the external system. We use the term response requirement of a system
to indicate the largest value of response time for which the system can function
perfectly; a timely response is one whose response time is not larger than the
response requirement of the system.

Consider a system that logs data received from a satellite remote sensor.
The satellite sends digitized samples to the earth station at the rate of 500 samples
per second. The application process is required to simply store these samples in
a file. Since a new sample arrives every two thousandth of a second, i.e., every
2 ms, the computer must respond to every “store the sample” request in less than
2 ms, or the arrival of a new sample would wipe out the previous sample in the
computer’s memory. This system is a real-time application because a sample must
be stored in less than 2 ms to prevent a failure. Its response requirement is 1.99 ms.
The deadline of an action in a real-time application is the time by which the action
should be performed. In the current example, if a new sample is received from
the satellite at time t, the deadline for storing it on disk is t + 1.99 ms.

Examples of real-time applications can be found in missile guidance, com-
mand and control applications like process control and air traffic control, data
sampling and data acquisition systems like display systems in automobiles, multi-
media systems, and applications like reservation and banking systems that employ
large databases. The response requirements of these systems vary from a few
microseconds or milliseconds for guidance and control systems to a few seconds
for reservation and banking systems.

3.7.1 Hard and Soft Real-Time Systems
To take advantage of the features of real-time systems while achieving maximum
cost-effectiveness, two kinds of real-time systems have evolved. A hard real-time
system is typically dedicated to processing real-time applications, and provably
meets the response requirement of an application under all conditions. A soft
real-time system makes the best effort to meet the response requirement of a
real-time application but cannot guarantee that it will be able to meet it under
all conditions. Typically, it meets the response requirements in some probabilistic
manner, say, 98 percent of the time. Guidance and control applications fail if they
cannot meet the response requirement, hence they are serviced by hard real-time
systems. Applications that aim at providing good quality of service, e.g., multi-
media applications and applications like reservation and banking, do not have a
notion of failure, so they may be serviced by soft real-time systems—the picture
quality provided by a video-on-demand system may deteriorate occasionally, but
one can still watch the video!

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 70 — #20

70 Part 1 Overview

3.7.2 Features of a Real-Time Operating System
A real-time OS provides the features summarized in Table 3.7. The first three
features help an application in meeting the response requirement of a system
as follows: A real-time application can be coded such that the OS can execute
its parts concurrently, i.e., as separate processes. When these parts are assigned
priorities and priority-based scheduling is used, we have a situation analogous
to multiprogramming within the application—if one part of the application ini-
tiates an I/O operation, the OS would schedule another part of the application.
Thus, CPU and I/O activities of the application can be overlapped with one
another, which helps in reducing the duration of an application, i.e., its running
time. Deadline-aware scheduling is a technique used in the kernel that schedules
processes in such a manner that they may meet their deadlines.

Ability to specify domain-specific events and event handling actions enables
a real-time application to respond to special conditions in the external system
promptly. Predictability of policies and overhead of the OS enables an applica-
tion developer to calculate the worst-case running time of the application and
decide whether the response requirement of the external system can be met. The
predictability requirement forces a hard real-time OS to shun features such as vir-
tual memory whose performance cannot be predicted precisely (see Chapter 12).
The OS would also avoid shared use of resources by processes, because it can lead
to delays that are hard to predict and unbounded, i.e., arbitrarily large.

A real-time OS employs two techniques to ensure continuity of operation
when faults occur—fault tolerance and graceful degradation. A fault-tolerant
computer system uses redundancy of resources to ensure that the system will
keep functioning even if a fault occurs; e.g., it may have two disks even though
the application actually needs only one disk. Graceful degradation is the ability
of a system to fall back to a reduced level of service when a fault occurs and
to revert to normal operations when the fault is rectified. The programmer can

Table 3.7 Essential Features of a Real-Time Operating System

Feature Explanation

Concurrency
within an
application

A programmer can indicate that some parts of an application
should be executed concurrently with one another. The OS
considers execution of each such part as a process.

Process priorities A programmer can assign priorities to processes.
Scheduling The OS uses priority-based or deadline-aware scheduling.
Domain-specific
events, interrupts

A programmer can define special situations within the external
system as events, associate interrupts with them, and specify
event handling actions for them.

Predictability Policies and overhead of the OS should be predictable.
Reliability The OS ensures that an application can continue to function

even when faults occur in the computer.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 71 — #21

Chapter 3 Overview of Operating Systems 71

assign high priorities to crucial functions so that they would be performed in a
timely manner even when the system operates in a degraded mode.

3.8 DISTRIBUTED OPERATING SYSTEMS
•

A distributed computer system consists of several individual computer systems
connected through a network. Each computer system could be a PC, a mul-
tiprocessor system (see Chapter 10), or a cluster, which is itself a group of
computers that work together in an integrated manner (see Section 16.2). Thus,
many resources of a kind, e.g., many memories, CPUs and I/O devices, exist in
the distributed system. A distributed operating system exploits the multiplicity
of resources and the presence of a network to provide the benefits summarized in
Table 3.8. However, the possibility of network faults or faults in individual com-
puter systems complicates functioning of the operating system and necessitates
use of special techniques in its design. Users also need to use special techniques
to access resources over the network. We discuss these aspects in Section 3.8.1.

Resource sharing has been the traditional motivation for distributed operat-
ing systems. A user of a PC or workstation can use resources such as printers
over a local area network (LAN), and access specialized hardware or software
resources of a geographically distant computer system over a wide area network
(WAN).

A distributed operating system provides reliability through redundancy of
computer systems, resources, and communication paths—if a computer system
or a resource used in an application fails, the OS can switch the application to
another computer system or resource, and if a path to a resource fails, it can utilize
another path to the resource. Reliability can be used to offer high availability of
resources and services, which is defined as the fraction of time a resource or service
is operable. High availability of a data resource, e.g., a file, can be provided by
keeping copies of the file in various parts of the system.

Computation speedup implies a reduction in the duration of an application,
i.e., in its running time. It is achieved by dispersing processes of an application

Table 3.8 Benefits of Distributed Operating Systems

Benefit Description

Resource sharing Resources can be utilized across boundaries of individual
computer systems.

Reliability The OS continues to function even when computer
systems or resources in it fail.

Computation speedup Processes of an application can be executed in different
computer systems to speed up its completion.

Communication Users can communicate among themselves irrespective of
their locations in the system.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 72 — #22

72 Part 1 Overview

to different computers in the distributed system, so that they can execute at the
same time and finish earlier than if they were to be executed in a conventional OS.

Users of a distributed operating system have user ids and passwords that
are valid throughout the system. This feature greatly facilitates communication
between users in two ways. First, communication through user ids automatically
invokes the security mechanisms of the OS and thus ensures authenticity of com-
munication. Second, users can be mobile within the distributed system and still
be able to communicate with other users through the system.

3.8.1 Special Techniques of Distributed Operating Systems
A distributed system is more than a mere collection of computers connected to
a network—functioning of individual computers must be integrated to achieve
the benefits summarized in Table 3.8. It is achieved through participation of
all computers in the control functions of the operating system. Accordingly, we
define a distributed system as follows:

Definition 3.8 Distributed System A system consisting of two or more nodes,
where each node is a computer system with its own clock and memory, some
networking hardware, and a capability of performing some of the control
functions of an OS.

Table 3.9 summarizes three key concepts and techniques used in a distributed
OS. Distributed control is the opposite of centralized control—it implies that the
control functions of the distributed system are performed by several computers
in the system in the manner of Definition 3.8, instead of being performed by
a single computer. Distributed control is essential for ensuring that failure of a
single computer, or a group of computers, does not halt operation of the entire
system. Transparency of a resource or service implies that a user should be able to
access it without having to know which node in the distributed system contains
it. This feature enables the OS to change the position of a software resource or
service to optimize its use by applications. For example, in a system providing

Table 3.9 Key Concepts and Techniques Used in a Distributed OS

Concept/Technique Description

Distributed control A control function is performed through participation of
several nodes, possibly all nodes, in a distributed system.

Transparency A resource or service can be accessed without having to
know its location in the distributed system.

Remote procedure
call (RPC)

A process calls a procedure that is located in a different
computer system. The RPC is analogous to a procedure or
function call in a programming language, except that the OS
passes parameters to the remote procedure over the network
and returns its results over the network.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 73 — #23

Chapter 3 Overview of Operating Systems 73

transparency, a distributed file system could move a file to the node that contains
a computation using the file, so that the delays involved in accessing the file over
the network would be eliminated. The remote procedure call (RPC) invokes a
procedure that executes in another computer in the distributed system. An appli-
cation may employ the RPC feature to either perform a part of its computation in
another computer, which would contribute to computation speedup, or to access
a resource located in that computer.

3.9 MODERN OPERATING SYSTEMS
•

Users engage in diverse activities in a modern computing environment. Hence a
modern operating system cannot use a uniform strategy for all processes; it must
use a strategy that is appropriate for each individual process. For example, as
mentioned in Section 3.1, a user may open a mail handler, edit a few files, execute
some programs, including some programs in the background mode, and watch a
video at the same time. Here, operation of some of the programs may be inter-
active or may involve activities in other nodes of a distributed computer system,
whereas rendering of a video is a soft real-time activity. Hence the OS must use
round-robin scheduling for program executions, use priority-based scheduling for
processes of the video application, and implement remote procedure calls (RPC)
to support activities in another node. Thus, a modern OS uses most concepts and
techniques that we discussed in connection with the batch processing, multipro-
gramming, time-sharing, real-time, and distributed operating systems. Table 3.10
shows typical examples of how the earlier concepts are drawn upon.

To handle diverse activities effectively, the OS employs strategies that adapt
to the situations encountered during their operation. Some examples of such
strategies are:

• The kernel employs priority-based scheduling; however, instead of assigning
fixed priorities to all processes as in a multiprogramming system, it assigns
fixed high priorities only to processes with real-time constraints, and changes
current priorities of other processes to suit their recent behavior—increases
the priority of a process if it has been engaged in an interaction or an I/O
operation recently, and reduces its priority if it has not been.

• A modern OS typically uses the feature called virtual memory, whereby only
some of the parts of a process are held in memory at any time and other
parts are loaded when needed. The kernel considers the recent behavior of
a process to decide how much memory it should allocate to the process—it
allocates less memory if the process had used only a few of its parts recently,
and allocates more memory if the process had used several of its parts.

• The kernel provides a plug-and-play capability whereby I/O devices could be
connected to the computer at any time during its operation, and the kernel
would select appropriate methods of handling them.

We will see several instances of adaptive strategies in the following chapters.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 74 — #24

74 Part 1 Overview

Table 3.10 Use of Classical OS Concepts in Modern
Computing Environments

Concept Typical example of use

Batch processing To avoid time-consuming initializations for each use of a
resource; e.g., database transactions are batch-processed
in the back office and scientific computations are
batch-processed in research organizations and clinical
laboratories.

Priority-based
preemptive scheduling

To provide a favored treatment to high-priority
applications, and to achieve efficient use of resources by
assigning high priorities to interactive processes and low
priorities to noninteractive processes.

Time-slicing To prevent a process from monopolizing the CPU; it helps
in providing good response times.

Swapping To increase the number of processes that can be serviced
simultaneously; it helps in improving system performance
and response times of processes.

Creating multiple
processes in an
application

To reduce the duration of an application; it is most
effective when the application contains substantial CPU
and I/O activities.

Resource sharing To share resources such as laser printers or services such
as file servers in a LAN environment.

3.10 SUMMARY
•

A computing environment consists of a computer
system, its interfaces with other systems, and
the services provided by its operating system to
its users and their programs. Computing envi-
ronments evolved with advances in computer
technology and computer applications. Each envi-
ronment desired a different combination of effi-
cient use and user service, so it was serviced by a
separate class of operating systems that employed
its own concepts and techniques. In this chapter,
we discussed the concepts and techniques used in
the fundamental classes of operating systems.

The batch processing operating systems
focused on automating processing of a collection of
programs, which reduced CPU idle times between
programs. Development of the direct memory
access (DMA) technology enabled the CPU to

execute instructions while an I/O operation was
in progress. Operating systems exploited this fea-
ture to service several programs simultaneously by
overlapping an I/O operation within one program
with execution of instructions in another program.
A multiprogramming operating system assigned
high priorities to I/O-bound programs and per-
formed priority-based scheduling to achieve good
system performance.

User convenience became important when the
cost of computing hardware declined. Accord-
ingly, the time-sharing operating systems focused
on providing fast response to user programs. It
was achieved through round-robin scheduling with
time-slicing, which serviced all programs by turn
and limited the amount of CPU time a program
could use when it was its turn to use the CPU.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 75 — #25

Chapter 3 Overview of Operating Systems 75

A real-time computer application has to
satisfy time constraints specified by an external
system. Hard real-time systems such as mission
control systems require their time constraints to
be satisfied in a guaranteed manner, whereas
soft real-time systems such as multimedia systems
can tolerate occasional failure to meet their time
constraints. Real-time operating systems support
concurrency within an application program and
employ techniques such as priority-based schedul-
ing and deadline-aware scheduling to help meet the
time constraints.

A distributed operating system controls a
group of computer systems that are networked; it

performs its control functions in several of these
computers. It achieves efficient use of resources of
all computers by letting programs share them over
the network, speeds up execution of a program by
running its parts in different computers at the same
time, and provides reliability through redundancy
of resources and services.

A modern operating system controls a diverse
computing environment that has elements of all
the classic computing environments, so it has to
use different techniques for different applications.
It employs an adaptive strategy that selects the
most appropriate techniques for each application
according to its nature.

TEST YOUR CONCEPTS
•

3.1 Programs A, B, C, and D have similar
structure—each of them consists of a single loop
that contains n statements that perform some
processing on each element of a single dimen-
sioned array Z. Other features of these programs
are as follows:

Program A: n = 4 and Z is a huge array.
Program B: n = 100 and Z is a huge array.
Program C: n = 4 and Z is a small array.
Program D: n = 100 and Z is a small

array.

These programs are executed in a batch process-
ing system. List these programs in the descend-
ing order by cache hit ratio.

3.2 A multiprogramming system is used to execute
a collection of programs C. The system has
enough memory to accommodate a large num-
ber of programs. The programs in C are executed
several times, each time with a different degree of
multiprogramming, and throughput of the sys-
tem and CPU efficiency are plotted against the
degree of multiprogramming. In each of the fol-
lowing cases, what inference can you draw about
the nature of programs in C?
a. Throughput changes only marginally with

the degree of multiprogramming

b. Throughput increases almost linearly with
the degree of multiprogramming

c. CPU efficiency changes only marginally with
the degree of multiprogramming

d. CPU efficiency increases linearly with the
degree of multiprogramming

3.3 Classify each of the following statements as true
or false:
a. Because of presence of the cache memory,

a program requires more CPU time to exe-
cute in a multiprogramming or time-sharing
system than it would require if it were to be
executed in a batch processing system.

b. To achieve high throughput, a multipro-
gramming OS assigns a higher priority to
CPU-bound programs.

c. If a multiprogramming kernel finds that the
CPU efficiency is low, it should remove an
I/O-bound program from memory.

d. If the time slice in a time-sharing system is
too large, processes will complete their oper-
ation in the same order in which they were
initiated.

e. Two persons using the same time-sharing sys-
tem at the same time might receive widely
different response times.

f. It is incorrect to use masking of interrupts in
a real-time operating system.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 76 — #26

76 Part 1 Overview

EXERCISES
•

3.1 A system is described as overloaded if more work
is directed at it than its capacity to perform
work. It is considered underloaded if some of
its capacity is going to waste. The following pol-
icy is proposed to improve the throughput of a
batch processing system: Classify jobs into small
jobs and long jobs depending on their CPU time
requirements. Form separate batches of short
and long jobs. Execute a batch of long jobs only
if no batches of short jobs exist. Does this policy
improve the throughput of a batch processing
system that is: (a) underloaded? (b) overloaded?

3.2 The kernel of a multiprogramming system classi-
fies a program as CPU-bound or I/O-bound and
assigns an appropriate priority to it. What would
be the consequence of a wrong classification of
programs for throughput and turnaround times
in a multiprogramming system? What would be
the effect of a wrong classification on the plot of
throughput versus degree of multiprogramming
of Figure 3.5?

3.3 The CPU of a multiprogramming system is exe-
cuting a high-priority program when an inter-
rupt signaling completion of an I/O operation
occurs. Show all actions and activities in the OS
following the interrupt if
a. The I/O operation was started by a lower-

priority program
b. The I/O operation was started by a higher-

priority program.
Illustrate each case with the help of a timing
chart.

3.4 A multiprogramming OS has programs progiob
and progcb in memory, with progcb having a
higher priority. Draw a timing chart for the sys-
tem analogous to Figure 3.4, and show that
the throughput is less than for the system of
Figure 3.4.

3.5 Draw a timing chart for a system containing two
CPU-bound programs and two I/O-bound pro-
grams when (a) CPU-bound programs have a
higher priority, (b) I/O-bound programs have a
higher priority.

3.6 A program consists of a single loop that executes
50 times. The loop contains a computation that
consumes 50 ms of CPU time, followed by an I/O

operation that lasts for 200 ms. The program is
executed in a multiprogramming OS with negli-
gible overhead. Prepare a timing chart showing
the CPU and I/O activities of the program and
compute its elapsed time in the following cases:
a. The program has the highest priority in the

system.
b. The program is multiprogrammed with n

other programs with identical characteristics
and has the lowest priority. Consider cases
(i) n = 3, (ii) n = 4, and (iii) n = 5.

3.7 A multiprogramming operating system has a
negligible overhead. It services programs that
are identical in size. Each program contains a
loop that has n iterations, where each itera-
tion contains computations that consume tc ms
of CPU time, followed by I/O operations that
require tio ms. The programs are of two classes;
values of n, tc, and tio for these two classes are:

Class n tc tio
A 5 15 100
B 6 200 80

The system has sufficient memory to accommo-
date only two programs. Ten programs arrive in
the system at time 0, five each of classes A and B.
Draw a timing chart showing operation of pro-
grams in the system until two programs complete
their operation. Find their turnaround times.

3.8 A program is said to “make progress” if either
the CPU is executing its instructions or its I/O
operation is in progress. The progress coefficient
of a program is the fraction of its lifetime in the
system during which it makes progress. Com-
pute progress coefficients of the programs in
Exercise 3.6(b).

3.9 Comment on the validity of the following state-
ment: “A CPU-bound program always has a very
low progress coefficient in a multiprogramming
system.”

3.10 A multiprogramming system uses a degree of
multiprogramming (m) � 1. It is proposed to
double the throughput of the system by augmen-
tation/replacement of its hardware components.
Would any of the following three proposals
achieve the desired result?

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 77 — #27

Chapter 3 Overview of Operating Systems 77

a. Replace the CPU by a CPU with twice the
speed.

b. Expand the memory to twice its present size.
c. Replace the CPU by a CPU with twice the

speed and expand the memory to twice its
present size.

3.11 Programs being serviced in a multiprogram-
ming system are named P1, . . . , Pm, where m
is the degree of multiprogramming, such that
priority of program Pi > priority of program
Pi+1. All programs are cyclic in nature, with
each cycle containing a burst of CPU activity
and a burst of I/O activity. Let bi

cpu and bi
io be

the CPU and I/O bursts of program Pi . Com-
ment on the validity of each of the following
statements:
a. CPU idling occurs if bh

io > �j �=h(b j
cpu), where

Ph is the highest-priority program.
b. Program Pm is guaranteed to receive

CPU time if bi
io < (bi+1

cpu + bi+1
io) and bi

io >

�j=i+1...m(bj
cpu) for all values of i = 1, . . . ,

m − 1,
3.12 A program is said to starve if it does not receive

any CPU time. Which of the following condi-
tions implies starvation of the lowest-priority
program in a multiprogramming system? (The
notation is the same as in Exercise 3.11.)
a. For someprogram Pi ,bi

io < �j=i+1...m(b j
cpu).

b. For some program Pi , bi
io < �j=i+1...m(b j

cpu)

and bi
cpu > b j

io for all j > i.
3.13 A time-sharing system contains n identical pro-

cesses, each executing a loop that contains a
computation requiring tp CPU seconds and an
I/O operation requiring tio seconds. Draw a
graph depicting variation of response time with
values of the time slice δ. (Hint: Consider cases
for tp < δ, δ < tp < 2 × δ, and tp > 2 × δ.)

3.14 Comment on the validity of the following state-
ment: “Operation of a time-sharing system is
identical with operation of a multiprogramming
system executing the same programs if δ exceeds
the CPU burst of every program.”

3.15 Answer the following with full justifications:
a. Does swapping improve or degrade the effi-

ciency of system utilization?
b. Can swapping be used in a multiprogram-

ming system?

3.16 A computer is operated under a time-sharing
OS. It is proposed to add a second CPU to
the computer to improve its throughput. Under
what conditions would addition of the sec-
ond CPU improve throughput only if mem-
ory is increased? Under what conditions would
it improve throughput even if memory is not
increased?

3.17 A time-sharing system uses swapping as the fun-
damental memory management technique. It
uses the following lists to govern its actions:
a scheduling list, a swapped-out list contain-
ing processes that are swapped out, a being-
swapped-out list containing processes to be
swapped out, and a being-swapped-in list con-
taining processes to be swapped in. Explain
when and why the time-sharing kernel should
put processes in the being-swapped-out and
being-swapped-in lists.

3.18 A time-sharing system uses a time slice of 100 ms.
Each process has a cyclic behavior pattern. In
each cycle, it requires an average of 50 ms of
CPU time to compute the result of a subrequest
and an average of 150 ms to print it on the user’s
screen. A process receives a new subrequest 1 sec-
ond after it has finished printing results of the
previous subrequest. The operating system can
accommodate 10 processes in memory at any
time; however, it has enough I/O devices for 25
processes. The swap-in and swap-out times of
each process are ts ms each. Calculate the aver-
age throughput of the system over a 10-second
period in each of the following cases:
a. The operating system contains 10 processes.
b. The operating system contains 20 processes

and ts is 750 ms.
c. The operating system contains 20 processes

and ts is 250 ms.
3.19 A real-time application requires a response time

of 2 seconds. Discuss the feasibility of using a
time-sharing system for the real-time application
if the average response time in the time-sharing
system is (a) 20 seconds, (b) 2 seconds, or (c) 0.2
seconds.

3.20 A time-sharing system services n processes. It
uses a time slice of δ CPU seconds, and requires
ts CPU seconds to switch between processes. A
real-time application requires tc seconds of CPU

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 78 — #28

78 Part 1 Overview

time, followed by an I/O operation that lasts
for tio seconds, and has to produce a response
within td seconds. What is the largest value of
δ for which the time-sharing system can sat-
isfy the response requirements of the real time
application?

3.21 An application program is being developed for
a microprocessor-based controller for an auto-
mobile. The application is required to perform
the following functions:

i. Monitor and display the speed of the auto-
mobile

ii. Monitor the fuel level and raise an alarm, if
necessary

iii. Display the fuel efficiency, i.e., miles/gallon
at current speed

iv. Monitor the engine condition and raise an
alarm if an unusual condition arises

v. Periodically record some auxiliary informa-
tion like speed and fuel level (i.e., implement
a “black box” as in an airliner.)

Answer the following questions concerning the
application:

a. Is this a real-time application? Justify your
answer.

b. Would creation of multiple processes reduce
the response time of the application? If so,
what should be the processes in it? What
should be their priorities?

c. Is it necessary to define any domain-specific
events and interrupts? If so, specify their
priorities.

3.22 If two independent events e1 and e2 have the
probabilities of occurrence pr1 and pr2, where
both pr1 and pr2 < 1, the probability that
both events occur at the same time is pr1× pr2.
A distributed system contains two disks. The
probability that both disks fail is required to
be <0.0001. What should be the probability of
failure of a disk?

3.23 To obtain computation speedup in a distributed
system, an application is coded as three parts to
be executed on three computer systems under
control of a distributed operating system. How-
ever, the speedup obtained is <3. List all possible
reasons for the poor speedup.

BIBLIOGRAPHY
•

Literature on batch processing, multiprogramming, and
time-sharing systems dates back to the 1970s. Zhao
(1989) and Liu (2000) are good sources for real-time
systems. Most operating systems texts cover the classes
of operating systems described in this chapter; some
recent OS texts are Tanenbaum (2001), Bic and Shaw
(2003), Nutt (2004), Silberschatz et al. (2005), and
Stallings (2005). Several comprehensive bibliographies
on operating systems are available on the Internet.

Tanenbaum and Renesse (1985) is a good start-
ing point for a study of distributed operating sys-
tems. It discusses the major design issues in distributed
operating systems and contains a survey of some dis-
tributed operating systems. Tanenbaum (1995) discusses
some well-known distributed operating systems in detail.
Coulouris et al. (2001) discusses the concepts and design
of distributed systems.

Several books describe specific modern operating
systems. Bach (1986) and Vahalia (1996) describe the

Unix operating system. Beck et al. (2002), Bovet and
Cesati (2005), and Love (2005) discuss the Linux oper-
ating system, while Stevens and Rago (2005) describes
Unix, Linux, and BSD operating systems. Mauro
and McDougall (2006) discusses Solaris. Russinovich
and Solomon (2005) describes the Windows operating
systems.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

2. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

3. Bic, L., and A. C. Shaw (2003): Operating Systems
Principles, Prentice Hall, Englewood Cliffs, N.J.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

03-M4363-DAS1.LaTeX: “chap03” — 2007/10/30 — 20:02 — page 79 — #29

Chapter 3 Overview of Operating Systems 79

5. Coulouris, G., J. Dollimore, and T. Kindberg
(2001): Distributed Systems—Concepts and
Design, 3rd ed., Addison-Wesley, New York.

6. Crowley, C. (1997): Operating Systems—A Design
Oriented Approach, McGraw-Hill, New York.

7. Denning, P. J. (1971): “Third generation
operating systems,” Computing Surveys, 4 (1),
175–216.

8. Fortier, P. J. (1988): Design of Distributed
Operating Systems, McGraw-Hill, New York.

9. Goscinski, A. (1991): Distributed Operating
Systems—The Logical Design, Addison-Wesley,
New York.

10. Liu, J. W. S. (2000): Real-Time systems, Pearson
Education, New York.

11. Love, R. (2005): Linux Kernel Development,
2nd ed., Novell Press.

12. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall.

13. Nutt, G. (2004): Operating Systems—A Modern
Perspective, 3rd ed., Addison-Wesley, Reading,
Mass.

14. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

15. Silberschatz, A., P. B. Galvin, and G. Gagne
(2005): Operating System Principles, 7th ed.,
John Wiley, New York.

16. Singhal, M., and N. G. Shivaratri (1994):
Advanced Concepts in Operating Systems,
McGraw-Hill, New York.

17. Sinha, P. K. (1997): Distributed Operating
Systems, IEEE Press, New York.

18. Smith, A. J. (1980): “Multiprogramming and
memory contention,” Software—Practice and
Experience, 10 (7), 531–552.

19. Stallings, W. (2005): Operating Systems—
Internals and Design Principles, 5th ed., Pearson
Education, New York.

20. Stevens, W. R., and S. A. Rago (2005): Advanced
Programming in the Unix Environment, 2nd ed.,
Addison-Wesley Professional.

21. Tanenbaum, A. S. (2003): Computer Networks,
4th ed., Prentice Hall, Englewood Cliffs, N.J.

22. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

23. Tanenbaum, A. S., and R. Van Renesse (1985):
“Distributed Operating Systems,” Computing
Surveys, 17 (1), 419–470.

24. Tanenbaum, A. S. (1995): Distributed Operating
Systems, Prentice Hall, Englewood Cliffs, N.J.

25. Vahalia, U. (1996): Unix Internals: The New
Frontiers, Prentice Hall, Englewood
Cliffs, N.J.

26. Wirth, N. (1969): “On multiprogramming,
machine coding, and computer organization,”
Communications of the ACM, 12 (9),
489–491.

27. Zhao, W. (1989): “Special issue on real-time
operating systems,” Operating System Review,
23, 7.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 80 — #1

4 C h a p t e r

Structure of
Operating Systems

During the lifetime of an operating system, we can expect several changes
to take place in computer systems and computing environments. To
adapt an operating system to these changes, it should be easy to imple-

ment the OS on a new computer system, and to add new functionalities to it.
These requirements are called portability and extensibility of an operating system,
respectively.

Early operating systems were tightly integrated with the architecture of a
specific computer system. This feature affected their portability. Modern oper-
ating systems implement the core of an operating system in the form of a kernel
or a microkernel, and build the rest of the operating system by using the services
offered by the core. This structure restricts architecture dependencies to the core
of the operating system, hence portability of an operating system is determined
by the properties of its kernel or microkernel. Extensibility of an OS is determined
by the nature of services offered by the core.

The structure of an operating system concerns the nature of the OS core
and other parts of the operating system, and their interactions with one another.
We describe different philosophies concerning the structure of an operating sys-
tem and discuss their influence on portability and extensibility of operating
systems.

4.1 OPERATION OF AN OS
•

When a computer is switched on, the boot procedure analyzes its configuration—
CPU type, memory size, I/O devices, and details of other hardware connected
to the computer (see Section 1.3). It then loads a part of the OS in memory,
initializes its data structures with this information, and hands over control of the
computer system to it.

Figure 4.1 is a schematic diagram of OS operation (see Section 2.3). An
event like I/O completion or end of a time slice causes an interrupt. When a
process makes a system call, e.g., to request resources or start an I/O oper-
ation, it too leads to an interrupt called a software interrupt. The interrupt

80

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 81 — #2

Chapter 4 Structure of Operating Systems 81

A condition in
hardware causes a
hardware interrupt

A request by a
process causes a

software interrupt

Event
handlers

CPU is switched to
the scheduled process

Context
save

Memory
handler

I/O
handler

Scheduler

Figure 4.1 Overview of OS operation.

Table 4.1 Functions of an OS

Function Description

Process management Initiation and termination of processes, scheduling
Memory management Allocation and deallocation of memory, swapping,

virtual memory management
I/O management I/O interrupt servicing, initiation of I/O operations,

optimization of I/O device performance
File management Creation, storage and access of files
Security and protection Preventing interference with processes and resources
Network management Sending and receiving of data over the network

action switches the CPU to an interrupt servicing routine. The interrupt servicing
routine performs a context save action to save information about the inter-
rupted program and activates an event handler, which takes appropriate actions
to handle the event. The scheduler then selects a process and switches the CPU
to it. CPU switching occurs twice during the processing of an event—first to
the kernel to perform event handling and then to the process selected by the
scheduler.

The functions of an OS are thus implemented by event handlers when they are
activated by interrupt servicing routines. Table 4.1 summarizes these functions,
which primarily concern management of processes and resources, and prevention
of interference with them.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 82 — #3

82 Part 1 Overview

4.2 STRUCTURE OF AN OPERATING SYSTEM
•

4.2.1 Policies and Mechanisms
In determining how an operating system is to perform one of its functions, the
OS designer needs to think at two distinct levels:

• Policy: A policy is the guiding principle under which the operating system
will perform the function.

• Mechanism: A mechanism is a specific action needed to implement a policy.

A policy decides what should be done, while a mechanism determines how
something should be done and actually does it. A policy is implemented as a
decision-making module that decides which mechanism modules to call under
what conditions. A mechanism is implemented as a module that performs a
specific action. The following example identifies policies and mechanisms in
round-robin scheduling.

•
Example 4.1 Policies and Mechanisms in Round-Robin Scheduling

In scheduling, we would consider the round-robin technique (Section 3.6) to
be a policy. The following mechanisms would be needed to implement the
round-robin scheduling policy:

Maintain a queue of ready processes
Switch the CPU to execution of the selected process (this action is called
dispatching).

•
The priority-based scheduling policy, which is used in multiprogramming

systems (see Section 3.5.1), would also require a mechanism for maintaining infor-
mation about ready processes; however, it would be different from the mechanism
used in round-robin scheduling because it would organize information according
to process priority. The dispatching mechanism, however, would be common to
all scheduling policies.

Apart from mechanisms for implementing specific process or resource
management policies, the OS also has mechanisms for performing housekeep-
ing actions. The context save action mentioned in Section 4.1 is implemented as
a mechanism.

4.2.2 Portability and Extensibility of Operating Systems
The design and implementation of operating systems involves huge financial
investments. To protect these investments, an operating system design should have
a lifetime of more than a decade. Since several changes will take place in com-
puter architecture, I/O device technology, and application environments during

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 83 — #4

Chapter 4 Structure of Operating Systems 83

this time, it should be possible to adapt an OS to these changes. Two features are
important in this context—portability and extensibility.

Porting is the act of adapting software for use in a new computer system.
Portability refers to the ease with which a software program can be ported—it is
inversely proportional to the porting effort. Extensibility refers to the ease with
which new functionalities can be added to a software system.

Porting of an OS implies changing parts of its code that are architecture-
dependent so that the OS can work with new hardware. Some examples of
architecture-dependent data and instructions in an OS are:

• An interrupt vector contains information that should be loaded in various
fields of the PSW to switch the CPU to an interrupt servicing routine (see
Section 2.2.5). This information is architecture-specific.

• Information concerning memory protection and information to be pro-
vided to the memory management unit (MMU) is architecture-specific (see
Sections 2.2.2 and 2.2.3).

• I/O instructions used to perform an I/O operation are architecture-specific.

The architecture-dependent part of an operating system’s code is typically asso-
ciated with mechanisms rather than with policies. An OS would have high porta-
bility if its architecture-dependent code is small in size, and its complete code is
structured such that the porting effort is determined by the size of the architecture-
dependent code, rather than by the size of its complete code. Hence the issue
of OS portability is addressed by separating the architecture-dependent and
architecture-independent parts of an OS and providing well-defined interfaces
between the two parts.

Extensibility of an OS is needed for two purposes: for incorporating new
hardware in a computer system—typically new I/O devices or network adapters—
and for providing new functionalities in response to new user expectations. Early
operating systems did not provide either kind of extensibility. Hence even addi-
tion of a new I/O device required modifications to the OS. Later operating systems
solved this problem by adding a functionality to the boot procedure. It would
check for hardware that was not present when the OS was last booted, and either
prompt the user to select appropriate software to handle the new hardware, typ-
ically a set of routines called a device driver that handled the new device, or itself
select such software. The new software was then loaded and integrated with the
kernel so that it would be invoked and used appropriately. Modern operating
systems go a step further by providing a plug-and-play capability, whereby new
hardware can be added even while an OS is in operation. The OS handles the
interrupt caused by addition of new hardware, selects the appropriate software,
and integrates it with the kernel.

Lack of extensibility leads to difficulties in adapting an OS to new user
expectations. Several examples of such difficulties can be found in the history
of operating systems. In 1980s and 1990s, PC users desired a new feature for
setting up several sessions with an operating system at the same time. Several well-
known operating systems of that time, e.g., MS-DOS, had difficulties providing

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 84 — #5

84 Part 1 Overview

it because they lacked sufficient extensibility. A similar difficulty was experienced
by the Unix operating system while supporting multiprocessor computer systems.
We discuss provisions for extensibility in Section 4.7.

4.3 OPERATING SYSTEMS WITH MONOLITHIC STRUCTURE
•

An OS is a complex software that has a large number of functionalities and may
contain millions of instructions. It is designed to consist of a set of software
modules, where each module has a well-defined interface that must be used to
access any of its functions or data. Such a design has the property that a mod-
ule cannot “see” inner details of functioning of other modules. This property
simplifies design, coding and testing of an OS.

Early operating systems had a monolithic structure, whereby the OS formed
a single software layer between the user and the bare machine, i.e., the computer
system’s hardware (see Figure 4.2). The user interface was provided by a com-
mand interpreter. The command interpreter organized creation of user processes.
Both the command interpreter and user processes invoked OS functionalities and
services through system calls.

Two kinds of problems with the monolithic structure were realized over a
period of time. The sole OS layer had an interface with the bare machine. Hence
architecture-dependent code was spread throughout the OS, and so there was
poor portability. It also made testing and debugging difficult, leading to high
costs of maintenance and enhancement. These problems led to the search for
alternative ways to structure an OS. In the following sections we discuss three
methods of structuring an OS that have been implemented as solutions to these
problems.

• Layered structure: The layered structure attacks the complexity and cost of
developing and maintaining an OS by structuring it into a number of layers
(see Section 4.4). The THE multiprogramming system of the 1960s is a well-
known example of a layered OS.

• Kernel-based structure: The kernel-based structure confines architecture
dependence to a small section of the OS code that constitutes the kernel (see
Section 4.6), so that portability is increased. The Unix OS has a kernel-based
structure.

User
interface

User
process

OS layer

Bare machine

Figure 4.2 Monolithic OS.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 85 — #6

Chapter 4 Structure of Operating Systems 85

• Microkernel-based OS structure: The microkernel provides a minimal set of
facilities and services for implementing an OS. Its use provides portability.
It also provides extensibility because changes can be made to the OS without
requiring changes in the microkernel (see Section 4.7).

4.4 LAYERED DESIGN OF OPERATING SYSTEMS
•

The monolithic OS structure suffered from the problem that all OS components
had to be able to work with the bare machine. This feature increased the cost
and effort in developing an OS because of the large semantic gap between the
operating system and the bare machine.

Definition 4.1 Semantic Gap The mismatch between the nature of opera-
tions needed in the application and the nature of operations provided in the
machine.

The semantic gap can be illustrated as follows: A machine instruction imple-
ments a machine-level primitive operation like arithmetic or logical manipulation
of operands. An OS module may contain an algorithm, say, that uses OS-level
primitive operations like saving the context of a process and initiating an I/O
operation. These operations are more complex than the machine-level primi-
tive operations. This difference leads to a large semantic gap, which has to be
bridged through programming. Each operation desired by the OS now becomes
a sequence of instructions, possibly a routine (see Figure 4.3). It leads to high
programming costs.

The semantic gap between an OS and the machine on which it operates can
be reduced by either using a more capable machine—a machine that provides
instructions to perform some (or all) operations that operating systems have to
perform—or by simulating a more capable machine in the software. The former
approach is expensive. In the latter approach, however, the simulator, which is a

I/O
management

Program
management

Operating
system

Semantic
gap

Bare
machine

I/O
instructions

Logical
instructions

Arithmetic
instructions

Figure 4.3 Semantic gap.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 86 — #7

86 Part 1 Overview

program, executes on the bare machine and mimics a more powerful machine that
has many features desired by the OS. This new “machine” is called an extended
machine, and its simulator is called the extended machine software. Now the
OS interfaces with the extended machine rather than with the bare machine;
the extended machine software forms a layer between the OS and the bare
machine.

The basic discipline in designing a layered OS is that the routines of one
layer must use only the facilities of the layer directly below it—that is, no layer
in the structure can be bypassed. Further, access to routines of a lower layer
must take place strictly through the interface between layers. Thus, a routine
situated in one layer does not “know” addresses of data structures or instruc-
tions in the lower layer—it only knows how to invoke a routine of the lower
layer. This property, which we will call information hiding, prevents misuse or
corruption of one layer’s data by routines situated in other layers of the OS.
During debugging, localization of errors becomes easy since the cause of an
error in a layer, e.g., an incorrect value in its data element, must lie within that
layer itself. Information hiding also implies that an OS layer may be modified
without affecting other layers. These features simplify testing and debugging
of an OS.

Figure 4.4 illustrates a two-layered OS. The extended machine provides
operations like context save, dispatching, swapping, and I/O initiation. The
operating system layer is located on top of the extended machine layer. This
arrangement considerably simplifies the coding and testing of OS modules by
separating the algorithm of a function from the implementation of its prim-
itive operations. It is now easier to test, debug, and modify an OS module
than in a monolithic OS. We say that the lower layer provides an abstraction
that is the extended machine. We call the operating system layer the top layer
of the OS.

The layered structures of operating systems have been evolved in various
ways—using different abstractions and a different number of layers. Example 4.2
describes the THE multiprogramming OS, which uses a multilayered structure
and provides a process as an abstraction in the lowest layer.

Bare machine

I/O
management

Process
management

Operating
system

Semantic
gap

Extended
machine

Perform
I/O

Dispatch
a process

Context
save

Figure 4.4 Layered OS design.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 87 — #8

Chapter 4 Structure of Operating Systems 87

•
Example 4.2Structure of the THE Multiprogramming System

The THE multiprogramming system was developed at Technische Hogeschool
Eindhoven in the Netherlands by Dijkstra and others using a layered design.
Table 4.2 shows the hierarchy of layers in the THE system.

Layer 0 of the system handles processor allocation to implement multi-
programming. This function involves keeping track of process states and
switching between processes, using priority-based scheduling. Layers above
layer 0 need not concern themselves with these issues. In fact, they can be
oblivious to the presence of multiple processes in the system.

Layer 1 performs memory management. It implements a memory hierar-
chy consisting of the memory and a drum, which is a secondary storage device
(see Section 2.2.3). Details of transfer between the memory and the drum need
not concern the rest of the OS.

Layer 2 implements communication between a process and the opera-
tor’s console by allocating a virtual console to each process. Layer 3 performs
I/O management. Intricacies of I/O programming (see Section 14.4) are thus
hidden from layer 4, which is occupied by user processes.

•

The layered approach to OS design suffers from three problems. The
operation of a system may be slowed down by the layered structure. Recall that
each layer can interact only with adjoining layers. It implies that a request for OS
service made by a user process must move down from the highest numbered layer
to the lowest numbered layer before the required action is performed by the bare
machine. This feature leads to high overhead.

The second problem concerns difficulties in developing a layered design.
Since a layer can access only the immediately lower layer, all features and facilities
needed by it must be available in lower layers. This requirement poses a problem
in the ordering of layers that require each other’s services. This problem is often
solved by splitting a layer into two and putting other layers between the two halves.
For example, a designer may wish to put process handling functions in one layer
and memory management in the next higher layer. However, memory allocation
is required as a part of process creation. To overcome this difficulty, process han-
dling can be split into two layers. One layer would perform process management
functions like context save, switching, scheduling, and process synchronization.

Table 4.2 Layers in the THE Multiprogramming System

Layer Description

Layer 0 Processor allocation and multiprogramming
Layer 1 Memory and drum management
Layer 2 Operator–process communication
Layer 3 I/O management
Layer 4 User processes

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 88 — #9

88 Part 1 Overview

This layer would continue to be lower than the memory management layer. The
other layer would perform process creation. It would be located above the memory
management layer.

The third problem concerns stratification of OS functionalities. Stratification
occurs because each functionality has to be divided into parts that fit into different
layers of a layered OS. These parts must use interfaces between the various layers
to communicate with one another. For example, consider a certain functionality
F of the OS that consists of two modules, Fl1 and Fl2 , belonging to layers l1 and l2
respectively. If layer l2 can be entered only through an interrupt, Fl1 must cause
an interrupt to communicate with Fl2 . This fact can lead to a complex design
and a loss of execution efficiency. Stratification also leads to poor extensibility
because addition of a new functionality requires new code to be added in many
layers of the OS, which, in turn, may require changes in the layer interfaces.

It may be noted that the design of a multilayered OS does not focus on
separating architecture-dependent parts of OS code; for example, four out of the
five layers of the THE multiprogramming system described in Table 4.2 contain
architecture-dependent parts. Thus, a layered structure does not guarantee high
portability.

4.5 VIRTUAL MACHINE OPERATING SYSTEMS
•

Different classes of users need different kinds of user service. Hence running a sin-
gle OS on a computer system can disappoint many users. Operating the computer
under different OSs during different periods is not a satisfactory solution because
it would make accessible services offered under only one of the operating systems
at any time. This problem is solved by using a virtual machine operating sys-
tem (VM OS) to control the computer system. The VM OS creates several virtual
machines. Each virtual machine is allocated to one user, who can use any OS of his
own choice on the virtual machine and run his programs under this OS. This way
users of the computer system can use different operating systems at the same time.
We call each of these operating systems a guest OS and call the virtual machine
OS the host OS. The computer used by the VM OS is called the host machine.

A virtual machine is a virtual resource (see Section 1.3.2). Let us consider a
virtual machine that has the same architecture as the host machine; i.e., it has a vir-
tual CPU capable of executing the same instructions, and similar memory and I/O
devices. It may, however, differ from the host machine in terms of some elements
of its configuration like memory size and I/O devices. Because of the identical
architectures of the virtual and host machines, no semantic gap exists between
them, so operation of a virtual machine does not introduce any performance loss
(contrast this with the use of the extended machine layer described in Section 4.4);
software intervention is also not needed to run a guest OS on a virtual machine.

The VM OS achieves concurrent operation of guest operating systems
through an action that resembles process scheduling—it selects a virtual machine
and arranges to let the guest OS running on it execute its instructions on the CPU.
The guest OS in operation enjoys complete control over the host machine’s

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 89 — #10

Chapter 4 Structure of Operating Systems 89

environment, including interrupt servicing. The absence of a software layer
between the host machine and guest OS ensures efficient use of the host machine.
A guest OS remains in control of the host machine until the VM OS decides
to switch to another virtual machine, which typically happens in response to
an interrupt. The VM OS can employ the timer to implement time-slicing and
round-robin scheduling of guest OSs.

A somewhat complex arrangement is needed to handle interrupts that arise
when a guest OS is in operation. Some of the interrupts would arise in its own
domain, e.g., an I/O interrupt from a device included in its own virtual machine,
while others would arise in the domains of other guest OSs. The VM OS can
arrange to get control when an interrupt occurs, find the guest OS whose domain
the interrupt belongs to, and “schedule” that guest OS to handle it. However, this
arrangement incurs high overhead because of two context switch operations—the
first context switch passes control to the VM OS, and the second passes control
to the correct guest OS. Hence the VM OS may use an arrangement in which the
guest OS in operation would be invoked directly by interrupts arising in its own
domain. It is implemented as follows: While passing control to a guest operating
system, the VM OS replaces its own interrupt vectors (see Section 2.2.5) by those
defined in the guest OS. This action ensures that an interrupt would switch the
CPU to an interrupt servicing routine of the guest OS. If the guest OS finds that
the interrupt did not occur in its own domain, it passes control to the VM OS
by making a special system call “invoke VM OS.” The VM OS now arranges to
pass the interrupt to the appropriate guest OS. When a large number of virtual
machines exists, interrupt processing can cause excessive shuffling between virtual
machines, hence the VM OS may not immediately activate the guest OS in whose
domain an interrupt occurred—it may simply note occurrence of interrupts that
occurred in the domain of a guest OS and provide this information to the guest
OS the next time it is “scheduled.”

Example 4.3 describes how IBM VM/370—a well-known VM OS of the
1970s—operates.

•
Example 4.3Structure of VM/370

Figure 4.5 shows three of the guest OSs supported by VM/370. The
Conversational Monitor System (CMS) is a single-user operating system, while
the OS/370 and DOS/370 are multiprogramming operating systems. A user
process is unaware of the presence of the VM/370—it sees only the guest OS
that it uses. To prevent interference between the guest OSs, the CPU is put in
the user mode while executing a guest OS. Initiation of I/O operations, which
involves use of privileged instructions, is handled as follows: When the kernel
of a guest OS executes an I/O instruction, it appears as an attempt to execute a
privileged instruction while the CPU is in the user mode, so it causes a program
interrupt. The interrupt is directed to the VM/370 rather than to the guest OS.
The VM/370 now initiates the I/O operation by executing the I/O instruction
that had caused the interrupt.

•

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 90 — #11

90 Part 1 Overview

VM/370

CMS DOS/370OS/370

Figure 4.5 Virtual machine operating system VM/370.

Distinction between kernel and user modes of the CPU causes some diffi-
culties in the use of a VM OS. The VM OS must protect itself from guest OSs,
so it must run guest OSs with the CPU in the user mode. However, this way
both a guest OS and user processes under it run in the user mode, which makes
the guest OS vulnerable to corruption by a user process. The Intel 80x86 family
of computers has a feature that provides a way out of this difficulty. The 80x86
computers support four execution modes of the CPU. Hence the host OS can
run with the CPU in the kernel mode, a guest OS can execute processes running
under it with the CPU in the user mode but can itself run with the CPU in one
of the intermediate modes.

Virtualization is the process of mapping the interfaces and resources of a
virtual machine into the interfaces and resources of the host machine. Full virtu-
alization would imply that the host machine and a virtual machine have identical
capabilities, hence an OS can operate identically while running on a bare machine
and on a virtual machine supported by a VM OS. However, full virtualization
may weaken security. In Example 4.3, we saw how VM/370 lets a guest OS execute
a privileged instruction, but its execution causes an interrupt and VM/370 itself
executes the instruction on behalf of the guest OS. This arrangement is insecure
because VM/370 cannot determine whether use of the privileged instruction is
legitimate—it would be legitimate if a guest OS used it, but illegitimate if a user
process used it.

Modern virtual machine environments employ the technique of paravirtual-
ization to overcome the problems faced in full virtualization. Paravirtualization
replaces a nonvirtualizable instruction, i.e., an instruction that cannot be made
available in a VM, by easily virtualized instructions. For example, the security
issue in VM/370 could be resolved through paravirtualization as follows: The
privileged instructions would not be included in a virtual machine. Instead, the
virtual machine would provide a special instruction for use by a guest OS that
wished to execute a privileged instruction. The special instruction would cause
a software interrupt and pass information about the privileged instruction the
guest OS wished to execute to the VM OS, and the VM OS would execute the
privileged instruction on behalf of the guest OS. The host OS, guest OS, and user
processes would use different execution modes of the CPU so that the host OS
would know whether the special instruction in the virtual machine was used by
a guest OS or by a user process—the latter usage would be considered illegal.
Paravirtualization has also been used to enhance performance of a host OS.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 91 — #12

Chapter 4 Structure of Operating Systems 91

The kernel of an OS typically puts the CPU into an idle loop when none of
the user processes in the OS wishes to use the CPU. However, CPU time of
the host machine would be wasted when a guest OS enters into an idle loop.
Hence paravirtualization could be employed to provide a special instruction
in the virtual machine to notify this condition to the host OS, so that the
host OS could take away the CPU from the guest OS for a specified period
of time.

Use of paravirtualization implies that a virtual machine would differ from the
host machine, so the code of a guest OS would have to be modified to avoid use
of nonvirtualizable instructions. It can be done by porting a guest OS to operate
under the VM OS. Alternatively, it can be achieved by employing the technique
of dynamic binary translation for the kernel of a guest OS, which replaces a por-
tion of kernel code that contains nonvirtualizable instructions by code that does
not contain such instructions. To reduce the overhead of this arrangement, the
modified kernel code is cached so that binary translation does not have to be
repeated often.

Virtual machines are employed for diverse purposes:

• To use an existing server for a new application that requires use of a different
operating system. This is called workload consolidation; it reduces the hard-
ware and operational cost of computing by reducing the number of servers
needed in an organization.

• To provide security and reliability for applications that use the same host
and the same OS. This benefit arises from the fact that virtual machines of
different applications cannot access each other’s resources.

• To test a modified OS (or a new version of application code) on a server
concurrently with production runs of that OS.

• To provide disaster management capabilities by transferring a virtual
machine from a server that has to shut down because of an emergency to
another server available on the network.

A VM OS is large, complex and expensive. To make the benefits of virtual
machines available widely at a lower cost, virtual machines are also used without
a VM OS. Two such arrangements are described in the following.

Virtual Machine Monitors (VMMs) A VMM, also called a hypervisor, is a soft-
ware layer that operates on top of a host OS. It virtualizes the resources of the
host computer and supports concurrent operation of many virtual machines.
When a guest OS is run in each virtual machine provided by a VMM, the host
OS and the VMM together provide a capability that is equivalent of a VM OS.
VMware and XEN are two VMMs that aim at implementing hundreds of guest
OSs on a host computer while ensuring that a guest OS suffers only a marginal
performance degradation when compared to its implementation on a bare
machine.

Programming Language Virtual Machines Programming languages have used
virtual machines to obtain some of the benefits discussed earlier. In the 1970s, the

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 92 — #13

92 Part 1 Overview

Pascal programming language employed a virtual machine to provide portability.
The virtual machine had instructions called P-code instructions that were well-
suited to execution of Pascal programs. It was implemented in the software
in the form of an interpreter for P-code instructions. A compiler converted
a Pascal program into a sequence of P-code instructions, and these could be
executed on any computer that had a P-code interpreter. The virtual machine
had a small number of instructions, so the interpreter was compact and eas-
ily portable. This feature facilitated widespread use of Pascal in the 1970s.
However, use of the VM incurred a substantial performance penalty due to
the semantic gap between P-code instructions and instructions in the host
computer.

The Java programming language employs a virtual machine to provide secu-
rity and reliability. A Java program consists of objects, whose structure and
behavior is specified in classes. Each class is compiled into a bytecode form,
where the bytecode is a sequence of instructions for the Java virtual machine
(JVM). During execution of an application coded in Java, the class loader is
activated whenever an object of a new class is encountered. The loader fetches
the bytecode form of the class, either from a library or from the Internet, and
verifies that the class conforms to the security and reliability standards—that
it has a valid digital signature (see Section 21.3.2), and does not use features
such as pointer arithmetic. The application would be aborted if a class file
fails any of these checks. If several Java applications run on the same host,
each of them would execute in its own virtual machine, hence their opera-
tion cannot cause mutual interference. The performance penalty implicit in
use of the virtual machine can be offset by implementing the JVM in the
hardware.

4.6 KERNEL-BASED OPERATING SYSTEMS
•

Figure4.6 is anabstract view ofakernel-basedOS.The kernel is the coreof theOS;
it provides a set of functions and services to support various OS functionalities.
The rest of the OS is organized as a set of nonkernel routines, which implement
operations on processes and resources that are of interest to users, and a user

Bare machine

Kernel

Nonkernel routines

User interface

Figure 4.6 Structure of a kernel-based OS.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 93 — #14

Chapter 4 Structure of Operating Systems 93

interface. Recall from Section 4.1 and Figure 4.1 that the operation of the kernel
is interrupt-driven. The kernel gets control when an interrupt such as a timer
interrupt or an I/O completion interrupt notifies occurrence of an event to it, or
when the software-interrupt instruction is executed to make a system call. When
the interrupt occurs, an interrupt servicing routine performs the context save
function and invokes an appropriate event handler, which is a nonkernel routine
of the OS.

A system call may be made by the user interface to implement a user
command, by a process to invoke a service in the kernel, or by a nonkernel routine
to invoke a function of the kernel. For example, when a user issues a command to
execute the program stored in some file, say file alpha, the user interface makes
a system call, and the interrupt servicing routine invokes a nonkernel routine
to set up execution of the program. The nonkernel routine would make system
calls to allocate memory for the program’s execution, open file alpha, and load
its contents into the allocated memory area, followed by another system call to
initiate operation of the process that represents execution of the program. If a
process wishes to create a child process to execute the program in file alpha, it,
too, would make a system call and identical actions would follow.

The historical motivations for the kernel-based OS structure were portabil-
ity of the OS and convenience in the design and coding of nonkernel routines.
Portability of the OS is achieved by putting architecture-dependent parts of
OS code—which typically consist of mechanisms—in the kernel and keeping
architecture-independent parts of code outside it, so that the porting effort is
limited only to porting of the kernel. The kernel is typically monolithic to ensure
efficiency; the nonkernel part of an OS may be monolithic, or it may be further
structured into layers.

Table 4.3 contains a sample list of functions and services offered by the kernel
to support various OS functionalities. These functions and services provide a set
of abstractions to the nonkernel routines; their use simplifies design and coding of
nonkernel routines by reducing the semantic gap faced by them (see Section 4.4).
For example, the I/O functions of Table 4.3 collectively implement the abstraction
of virtual devices (see Section 1.3.2). A process is another abstraction provided
by the kernel.

A kernel-based design may suffer from stratification analogous to the layered
OS design (see Section 4.4) because the code to implement an OS command
may contain an architecture-dependent part, which is typically a mechanism that
would be included in the kernel, and an architecture-independent part, which
is typically the implementation of a policy that would be kept outside the ker-
nel. These parts would have to communicate with one another through system
calls, which would add to OS overhead because of interrupt servicing actions.
Consider the command to initiate execution of the program in a file named
alpha. As discussed earlier, the nonkernel routine that implements the command
would make four system calls to allocate memory, open file alpha, load the pro-
gram contained in it into memory, and initiate its execution, which would incur
considerable overhead. Some operating system designs reduce OS overhead by
including the architecture-independent part of a function’s code also in the kernel.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 94 — #15

94 Part 1 Overview

Table 4.3 Typical Functions and Services Offered by the Kernel

OS functionality Examples of kernel functions and services

Process management Save context of the interrupted program, dispatch a
process, manipulate scheduling lists

Process communication Send and receive interprocess messages
Memory management Set memory protection information, swap-in/

swap-out, handle page fault (that is, “missing from
memory” interrupt of Section 1.4)

I/O management Initiate I/O, process I/O completion interrupt,
recover from I/O errors

File management Open a file, read/write data
Security and protection Add authentication information for a new user,

maintain information for file protection
Network management Send/receive data through a message

Thus, the nonkernel routine that initiated execution of a program would become
a part of the kernel. Other such examples are process scheduling policies,
I/O scheduling policies of device drivers, and memory management policies.
These inclusions reduce OS overhead; however, they also reduce portability of
the OS.

Kernel-based operating systems have poor extensibility because addition of
a new functionality to the OS may require changes in the functions and services
offered by the kernel.

4.6.1 Evolution of Kernel-Based Structure
of Operating Systems

The structure of kernel-based operating systems evolved to offset some of its
drawbacks. Two steps in this evolution were dynamically loadable kernel modules
and user-level device drivers.

To provide dynamically loadable kernel modules, the kernel is designed as a
set of modules that interact among themselves through well-specified interfaces.
A base kernel consisting of a core set of modules is loaded when the system is
booted. Other modules, which conform to interfaces of the base kernel, are loaded
when their functionalities are needed, and are removed from memory when they
are no longer needed. Use of loadable modules conserves memory during OS
operation because only required modules of the kernel are in memory at any
time. It also provides extensibility, as kernel modules can be modified separately
and new modules can be added to the kernel easily. Use of loadable kernel modules
has a few drawbacks too. Loading and removal of modules fragments memory,
so the kernel has to perform memory management actions to reduce its memory
requirement. A buggy module can also crash a system. Loadable kernel modules
are used to implement device drivers for new I/O devices, network adapters, or

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 95 — #16

Chapter 4 Structure of Operating Systems 95

new file systems, which are simply device drivers in many operating systems;
and to add new system calls to the kernel. The Linux and Solaris systems have
incorporated support for dynamically loadable kernel modules (see Sections 4.8.2
and 4.8.3).

A device driver handles a specific class of I/O devices. Device drivers consti-
tute the most dynamically changing part of an OS as a result of rapid changes
in the I/O device interfaces, hence the ease with which they could be tested
and added to an OS would determine the reliability and extensibility of the
OS. Dynamic loading of device drivers enhances both these aspects; however,
it is not adequate because a device driver would operate with the privileges
of the kernel, so a buggy device driver could disrupt operation of the OS and
cause frequent boot-ups. Enabling a device driver to operate in the user mode
would overcome this difficulty. Such a device driver is called a user-level device
driver.

User-level device drivers provide ease of development, debugging, and
deployment and robustness, since both the code of the kernel and its oper-
ation are unaffected by presence of the user-level driver. However, they pose
performance problems. Early user-level drivers were found to cause a drop in
the I/O throughput or an increase in the CPU time consumed by I/O opera-
tions. Both of these resulted from the large number of system calls needed to
implement an I/O operation, e.g., the device driver had to make system calls
to set up and dismantle the DMA for the I/O operation, to wake up the user
process waiting for the I/O operation to complete, and to return control to
the kernel at the end of its operation. Later hardware and software develop-
ments have overcome the performance problems through a variety of means.
The setting up and dismantling actions have been simplified by presence of the
IOMMU unit, and system calls have been speeded up through fast system call
support.

4.7 MICROKERNEL-BASED OPERATING SYSTEMS
•

Putting all architecture-dependent code of the OS into the kernel provides
good portability. However, in practice, kernels also include some architecture-
independent code. This feature leads to several problems. It leads to a large
kernel size, which detracts from the goal of portability. It may also necessitate
kernel modification to incorporate new features, which causes low extensibil-
ity. A large kernel supports a large number of system calls. Some of these
calls may be used rarely, and so their implementations across different ver-
sions of the kernel may not be tested thoroughly. This compromises reliability of
the OS.

The microkernel was developed in the early 1990s to overcome the problems
concerning portability, extensibility, and reliability of kernels. A microkernel is
an essential core of OS code, thus it contains only a subset of the mechanisms
typically included in a kernel and supports only a small number of system calls,
which are heavily tested and used. This feature enhances portability and reliability

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 96 — #17

96 Part 1 Overview

Bare machine

Microkernel

Round-
robin

process
scheduler

Memory
handler

......

Servers User processes

Figure 4.7 Structure of microkernel-based operating systems.

of the microkernel. Less essential parts of OS code are outside the microkernel
and use its services, hence these parts could be modified without affecting the
kernel; in principle, these modifications could be made without having to reboot
the OS! The services provided in a microkernel are not biased toward any specific
features or policies in an OS, so new functionalities and features could be added
to the OS to suit specific operating environments.

Figure 4.7 illustrates the structure of a microkernel-based OS. The micro-
kernel includes mechanisms for process scheduling and memory management,
etc., but does not include a scheduler or memory handler. These functions are
implemented as servers, which are simply processes that never terminate. The
servers and user processes operate on top of the microkernel, which merely per-
forms interrupt handling and provides communication between the servers and
user processes.

The small size and extensibility of microkernels are valuable properties for
the embedded systems environment, because operating systems need to be both
small and fine-tuned to the requirements of an embedded application. Exten-
sibility of microkernels also conjures the vision of using the same microkernel
for a wide spectrum of computer systems, from palm-held systems to large
parallel and distributed systems. This vision has been realized to some extent.
The Mach microkernel has been used to implement several different versions
of Unix. The distributed operating system Amoeba uses an identical micro-
kernel on all computers in a distributed system ranging from workstations to
large multiprocessors.

Just what is the “essential core of OS code” has been a matter of some debate,
and as a result considerable variation exists in the services included in a micro-
kernel. For example, IBM’s implementation of the Mach microkernel leaves the
process scheduling policy and device drivers outside the kernel—these functions
run as servers. The QNX microkernel includes interrupt servicing routines, pro-
cess scheduling, interprocess communication, and core network services. The L4
microkernel includes memory management and supports only seven system calls.
Both QNX and L4 are only 32 KB in size, where 1 KB is 1024 bytes. Despite such
variation, it can be argued that certain services must be provided by a microker-
nel. These include memory management support, interprocess communication
and interrupt servicing. Memory management and interprocess communication

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 97 — #18

Chapter 4 Structure of Operating Systems 97

would be invoked by higher-level modules in the OS code that exist outside the
microkernel. The interrupt servicing routine would accept interrupts and pass
them to higher-level modules for processing.

Operating systems using first-generation microkernels suffered up to 50
percent degradation in throughput compared to operating systems that did not
use microkernels. This problem has its origin in the fact that some functionalities
of a conventional kernel are split between a microkernel and an OS implemented
by using the microkernel—the familiar stratification problem again. For exam-
ple, a kernel includes the complete process management function, which performs
creation, scheduling, and dispatching of processes, whereas a microkernel might
include only process creation and dispatching, and process scheduling might run
as a server under the microkernel. Communication between the two parts would
require use of the interprocess communication (IPC) facility. Researchers found
that up to 73 percent of the performance penalty was due to IPC. The L4 micro-
kernel, which is a second-generation microkernel, made IPC more efficient by
eliminating validity and rights checking by default, and by tuning the microker-
nel to the hardware being used. These actions made IPC 20 times faster than
in the first-generation microkernels. Paging activities related to virtual memory
management were also moved out of the microkernel and into the operating sys-
tem built by using the microkernel. After these improvements, microkernel-based
operating systems were found to suffer only 5 percent degradation in throughput
compared to operating systems that did not use a microkernel.

The exokernel uses a radically different philosophy of structuring an OS to
reduce performance degradation: Resource management need not be centralized;
it can be performed by applications themselves in a distributed manner. Accord-
ingly, an exokernel merely provides efficient multiplexing of hardware resources,
but does not provide any abstractions. Thus an application process sees a resource
in the computer system in its raw form. This approach results in extremely fast
primitive operations, 10–100 times faster than when a monolithic Unix kernel is
used. For example, data that is read off an I/O device passes directly to the process
that requested it; it does not go through the exokernel, whereas it would have gone
through the Unix kernel. Since traditional OS functionalities are implemented at
the application level, an application can select and use an OS from a library of
operating systems. The OS executes as a process in the nonkernel mode and uses
features of the Exokernel.

4.8 CASE STUDIES
•

Previous sections discussed the structure of an operating system, that is, arrange-
ment of its parts, and properties of these arrangements. In this section, we discuss
both structure and architecture of some modern operating systems, where archi-
tecture concerns the structure of the operating system as well as functionalities
of its components and relationships between them. Design and implementation
features of specific OS components are described in relevant chapters of Parts 2–4
of this text.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 98 — #19

98 Part 1 Overview

4.8.1 Architecture of Unix
Unix is a kernel-based operating system. Figure 4.8 is a schematic diagram of the
Unix kernel. It consists of two main components—process management and file
management. The process management component consists of a module for inter-
process communication, which implements communication and synchronization
between processes, and the memory management and scheduling modules. The
file management component performs I/O through device drivers. Each device
driver handles a specific class of I/O devices and uses techniques like disk schedul-
ing to ensure good throughput of an I/O device. The buffer cache is used to reduce
both the time required to implement a data transfer between a process and an
I/O device, and the number of I/O operations performed on devices like disks (see
Section 1.4.4).

The process management and file management components of the kernel are
activated through interrupts raised in the hardware, and system calls made by
processes and nonkernel routines of the OS. The user interface of the OS is a
command interpreter, called a shell, that runs as a user process. The Unix kernel
cannot be interrupted at any arbitrary moment of time; it can be interrupted only
when a process executing kernel code exits, or when its execution reaches a point
at which it can be safely interrupted. This feature ensures that the kernel data
structures are not in an inconsistent state when an interrupt occurs and another
process starts executing the kernel code, which considerably simplifies coding of
the kernel (see Section 2.3.2).

The Unix kernel has a long history of over four decades. The original kernel
was small and simple. It provided a small set of abstractions, simple but power-
ful features like the pipe mechanism, which enabled users to execute several
programs concurrently, and a small file system that supported only one file
organization called the byte stream organization. All devices were represented
as files, which unified the management of I/O devices and files. The kernel was

Interrupts

Hardware

Buffer cache

File management

Process management

Interprocess
communi-

cation
Scheduler

Memory
management

Kernel

Nonkernel routines

System calls

Device drivers

Figure 4.8 Kernel of the Unix operating system.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 99 — #20

Chapter 4 Structure of Operating Systems 99

written in the C language and had a size of less than 100 KB. Hence it was easily
portable.

However, the Unix kernel was monolithic and not very extensible. So it
had to be modified as new computing environments, like the client–server
environment, evolved. Interprocess communication and threads were added to
support client–server computing. Networking support similarly required kernel
modification.

A major strength of Unix was its use of open standards. It enabled a large
number of organizations ranging from the academia to the industry to partic-
ipate in its development, which led to widespread use of Unix, but also led
to the development of a large number of variants because of concurrent and
uncoordinated development. The kernel became bulky, growing to a few million
bytes in size, which affected its portability. Around this time, a feature was added
to dynamically load kernel modules in memory. It enabled kernel modules to be
loaded only when needed. This feature reduced the memory requirement of the
kernel, but not its code size. Hence it did not enhance its portability.

Several efforts have been made to redesign the Unix kernel to make it modular
and extensible. The Mach kernel, which has a specific emphasis on multiprocessor
systems, is an example of this trend. Later Mach developed into a microkernel-
based operating system.

4.8.2 The Kernel of Linux
The Linux operating system provides the functionalities of Unix System V
and Unix BSD; it is also compliant with the POSIX standard. It was initially
implemented on the Intel 80386 and has since been implemented on later Intel
processors and several other architectures.

Linux has a monolithic kernel. The kernel is designed to consist of a set of
individually loadable modules. Each module has a well-specified interface that
indicates how its functionalities can be invoked and its data can be accessed by
other modules. Conversely, the interface also indicates the functions and data
of other modules that are used by this module. Each module can be individu-
ally loaded into memory, or removed from it, depending on whether it is likely
to be used in near future. In principle, any component of the kernel can be
structured as a loadable module, but typically device drivers become separate
modules.

A few kernel modules are loaded when the system is booted. A new kernel
module is loaded dynamically when needed; however, it has to be integrated
with the kernel modules that already existed in memory so that the modules
can collectively function as a monolithic kernel. This integration is performed as
follows: The kernel maintains a table in which it records the addresses of functions
and data that are defined in the modules existing in memory. While loading a new
module, the kernel analyzes its interface and finds which functions and data of
other modules it uses, obtains their addresses from the table, and inserts them in
appropriate instructions of the new module. At the end of this step, the kernel

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 100 — #21

100 Part 1 Overview

updates its table by adding the addresses of functions and data defined in the new
module.

Use of kernel modules with well-specified interfaces provides several advan-
tages. Existence of the module interface simplifies testing and maintenance of
the kernel. An individual module can be modified to provide new functionalities
or enhance existing ones. This feature overcomes the poor extensibility typically
associated with monolithic kernels. Use of loadable modules also limits the mem-
ory requirement of the kernel, because some modules may not be loaded during
an operation of the system. To enhance this advantage, the kernel has a feature
to automatically remove unwanted modules from memory—it produces an inter-
rupt periodically and checks which of its modules in memory have not been used
since the last such interrupt. These modules are delinked from the kernel and
removed from memory. Alternatively, modules can be individually loaded and
removed from memory through system calls.

The Linux 2.6 kernel, which was released in 2003, removed many of the
limitations of the Linux 2.5 kernel and also enhanced its capabilities in several
ways. Two of the most prominent improvements were in making the system more
responsive and capable of supporting embedded systems. Kernels up to Linux 2.5
were non-preemptible, so if the kernel was engaged in performing a low-priority
task, higher-priority tasks of the kernel were delayed. The Linux 2.6 kernel is
preemptible, which makes it more responsive to users and application programs.
However, the kernel should not be preempted when it is difficult to save its state,
or when it is performing sensitive operations, so the kernel disables and enables
its own preemptibility through special functions. The Linux 2.6 kernel can also
support architectures that do not possess a memory management unit (MMU),
which makes it suitable for embedded systems. Thus, the same kernel can now be
used in embedded systems, desktops and servers. The other notable feature in the
Linux 2.6 kernel is better scalability through an improved model of threads, an
improved scheduler, and fast synchronization between processes; these features
are described in later chapters.

4.8.3 The Kernel of Solaris
Early operating systems for Sun computer systems were based on BSD Unix;
however, later development was based on Unix SVR4. The pre-SVR4 versions
of the OS are called SunOS, while the SVR4-based and later versions are called
Solaris. Since the 1980s, Sun has focused on networking and distributed com-
puting; several networking and distributed computing features of its operating
systems have become industry standards, e.g., remote procedure calls (RPC), and
a file system for distributed environments (NFS). Later, Sun also focused on mul-
tiprocessor systems, which resulted in an emphasis on multithreading the kernel,
making it preemptible (see Section 2.3.2), and employing fast synchronization
techniques in the kernel.

The Solaris kernel has an abstract machine layer that supports a wide range
of processor architectures of the SPARC and Intel 80x86 family, including multi-
processor architectures. The kernel is fully preemptible and provides real-time

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 101 — #22

Chapter 4 Structure of Operating Systems 101

capabilities. Solaris 7 employs the kernel-design methodology of dynamically
loadable kernel modules (see Section 4.6.1). The kernel has a core module that
is always loaded; it contains interrupt servicing routines, system calls, process
and memory management, and a virtual file system framework that can sup-
port different file systems concurrently. Other kernel modules are loaded and
unloaded dynamically. Each module contains information about other modules
on which it depends and about other modules that depend on it. The ker-
nel maintains a symbol table containing information about symbols defined
in currently loaded kernel modules. This information is used while loading
and linking a new module. New information is added to the symbol table
after a module is loaded and some information is deleted after a module is
deleted.

The Solaris kernel supports seven types of loadable modules:

• Scheduler classes
• File systems
• Loadable system calls
• Loaders for different formats of executable files
• Streams modules
• Bus controllers and device drivers
• Miscellaneous modules

Use of loadable kernel modules provides easy extensibility. Thus, new file
systems, new formats of executable files, new system calls, and new kinds of buses
and devices can be added easily. An interesting feature in the kernel is that when a
new module is to be loaded, the kernel creates a new thread for loading, linking,
and initializing working of the new module. This arrangement permits module
loading to be performed concurrently with normal operation of the kernel. It also
permits loading of several modules to be performed concurrently.

4.8.4 Architecture of Windows
Figure 4.9 shows architecture of the Windows OS. The hardware abstraction layer
(HAL) interfaces with the bare machine and provides abstractions of the I/O
interfaces, interrupt controllers, and interprocessor communication mechanisms
in a multiprocessor system. The kernel uses the abstractions provided by the
HAL to provide basic services such as interrupt processing and multiprocessor
synchronization. This way, the kernel is shielded from peculiarities of a specific
architecture, which enhances its portability. The HAL and the kernel are together
equivalent to a conventional kernel (see Figure 4.6). A device driver also uses the
abstractions provided by the HAL to manage I/O operations on a class of devices.

The kernel performs the process synchronization and scheduling functions.
The executive comprises nonkernel routines of the OS; its code uses facilities in
the kernel to provide services such as process creation and termination, virtual
memory management, an interprocess message passing facility for client–server
communication called the local procedure call (LPC), I/O management and a file
cache to provide efficient file I/O, and a security reference monitor that performs

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 102 — #23

102 Part 1 Overview

Bare machine

Hardware abstraction layer (HAL)

Kernel Device drivers

Executive

I/O
Manager

Environment
subsystem

Subsystem
DLL

User
application

Figure 4.9 Architecture of Windows.

file access validation. The I/O manager uses device drivers, which are loaded
dynamically when needed. Many functions of the executive operate in the kernel
mode, thus avoiding frequent context switches when the executive interacts with
the kernel; it has obvious performance benefits.

The environment subsystems provide support for execution of programs
developed for other operating systems like MS-DOS, Win32, and OS/2. Effec-
tively, an environment subsystem is analogous to a guest operating system within
a virtual machine OS (see Section 4.5). It operates as a process that keeps track of
the state of user applications that use its services. To implement the interface of
a guest OS, each environment subsystem provides a dynamic link library (DLL)
and expects a user application to invoke the DLL when it needs a specific system
service. The DLL either implements the required service itself, passes the request
for service to the executive, or sends a message to the environment subsystem
process to provide the service.

4.9 SUMMARY
•

Portability of an operating system refers to the ease
with which the OS can be implemented on a com-
puter having a different architecture. Extensibility
of an operating system refers to the ease with which
its functionalities can be modified or enhanced
to adapt it to a new computing environment.

Portability and extensibility have become crucial
requirements because of long life-spans of mod-
ern operating systems. In this chapter we discussed
different ways of structuring operating systems to
meet these requirements.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 103 — #24

Chapter 4 Structure of Operating Systems 103

An OS functionality typically contains a pol-
icy, which specifies the principle that is to be used
to perform the functionality, and a few mechanisms
that perform actions to implement the functional-
ity. Mechanisms such as dispatching and context
save interact closely with the computer, so their
code is inherently architecture-dependent; poli-
cies are architecture-independent. Hence porta-
bility and extensibility of an OS depends on
how the code of its policies and mechanisms is
structured.

Early operating systems had a monolithic
structure. These operating systems had poor porta-
bility because architecture-dependent code was
spread throughout the OS. They also suffered
from high design complexity. The layered design
of operating systems used the principle of abstrac-
tion to control complexity of designing the OS.
It viewed the OS as a hierarchy of layers, in
which each layer provided a set of services to
the layer above it, and itself used the services
in the layer below it. Architecture dependencies
were often restricted to lower layers in the hier-
archy; however, the design methodology did not
guarantee it.

The virtual machine operating system (VM OS)
supported operation of several operating systems
on a computer simultaneously, by creating a virtual
machine for each user and permitting the user to
run an OS of his choice in the virtual machine.
The VM OS interleaved operation of the users’
virtual machines on the host computer through
a procedure analogous to scheduling. When a
virtual machine was scheduled, its OS would
organize execution of user applications running
under it.

In a kernel-based design of operating systems,
the kernel is the core of the operating system, which
invokes the nonkernel routines to implement opera-
tions on processes and resources. The architecture-
dependent code in an OS typically resides in the
kernel; this feature enhances portability of the
operating system.

A microkernel is the essential core of OS code.
It is small in size, contains a few mechanisms,
and does not contain any policies. Policy mod-
ules are implemented as server processes; they
can be changed or replaced without affecting the
microkernel, thus providing high extensibility of
the OS.

TEST YOUR CONCEPTS
•

4.1 Classify each of the following statements as true
or false:
a. Mechanisms of the OS are typically

architecture-independent.
b. A layered OS organization reduces the sem-

antic gap between the top layer of the OS and
the bare machine.

c. In a virtual machine OS, each user can run
an OS of his choice.

d. A kernel-based OS structure provides
extensibility.

e. In a microkernel-based OS, the process
scheduler may run as a user process.

4.2 Classify each of the following functions per-
formed by an OS as a policy or a mechanism

(refer to relevant sections of Chapters 1 and 3):
a. Preempting a program
b. Priority-based scheduling used in multipro-

gramming systems
c. Loading a swapped-out program into

memory
d. Checking whether a user program can be

permitted to access a file
4.3 Which of the following operating systems has

the highest portability?
a. An OS with a monolithic structure.
b. An OS with a layered structure.
c. A virtual machine OS.
d. A kernel-based OS.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 104 — #25

104 Part 1 Overview

EXERCISES
•

4.1 The scheduling mechanism “manipulate sch-
eduling lists” (see Table 4.3) is invoked to modify
scheduling lists in response to events in the sys-
tem and actions of the scheduler. Describe the
functions this mechanism should perform for (a)
round-robin scheduling and (b) priority-based
scheduling (as used in a multiprogramming OS).

4.2 Justify the following statement: “Secure oper-
ation of a virtual machine operating system

requires less-than-full virtualization of its re-
sources; however, it may degrade efficiency of
operation of a guest OS.”

4.3 What are the consequences of merging nonker-
nel routines with (a) the user interface, (b) the
kernel? (Hint: Refer to Section 1.1.)

4.4 List the differences between a kernel employ-
ing dynamically loadable modules and (a) a
monolithic kernel and (b) a microkernel.

BIBLIOGRAPHY
•

Dijkstra (1968) describes the structure of the THE multi-
programming system. The virtual machine operating
system VM/370 is based on CP/67, and is described in
Creasy (1981). The XEN and VMware virtual machine
products are described in Barham et al. (2003) and
Sugarman et al. (2001), respectively. The May 2005 issue
of IEEE Computer is a special issue on virtualization
technologies. Rosenblum and Garfinkel (2005) discusses
trends in the design of virtual machine monitors.

Warhol (1994) discusses the strides made by micro-
kernels in the early 1990s while Liedtke (1996) describes
the principles of microkernel design. Hartig et al. (1997)
describes porting and performance of the Linux OS
on the L4 microkernel. Engler et al. (1995) discusses
design of an Exokernel. Bach (1986), Vahalia (1996), and
McKusick et al. (1996) describe the Unix kernel. Beck
et al. (2002), Bovet and Cesati (2005), and Love (2005)
describe the Linux kernel, while Mauro and McDougall
(2006) describes the kernel of Solaris. Tanenbaum (2001)
describes microkernels of the Amoeba and Mach operat-
ing systems. Russinovich and Solomon (2005) describes
architecture of Windows.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

2. Barham, P., B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield (2003): “XEN and the art of
virtualization,” ACM Symposium on Operating
System Principles, 164–177.

3. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

5. Creasy, R. J. (1981): “The origin of the VM/370
time-sharing system,” IBM Journal of Research
and Development, 25 (5), 483–490.

6. Dijkstra, E. W. (1968): “The structure of THE
multiprogramming system,” Communications of
the ACM, 11, 341–346.

7. Engler D. R., M. F. Kasshoek, and J. O’Toole
(1995): “Exokernel: An operating system
architecture for application-level resource
management,” Symposium on OS Principles,
251–266.

8. Hartig, H., M. Hohmuth, J. Liedtke,
S. Schonberg, and J. Wolter (1997): “The
performance of microkernel-based systems,”
16th ACM Symposium on Operating System
Principles.

9. Liedtke J. (1996): “Towards real microkernels,”
Communications of the ACM, 39 (9), 70–77.

10. Love, R. (2005): Linux Kernel Development,
2nd ed., Novell Press.

11. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 105 — #26

Chapter 4 Structure of Operating Systems 105

12. McKusick, M. K., K. Bostic, M. J. Karels,
and J. S. Quarterman (1996): The Design and
Implementation of the 4.4 BSD Operating System,
Addison-Wesley, Reading, Mass.

13. Meyer, J., and L. H. Seawright (1970): “A virtual
machine time-sharing system,” IBM Systems
Journal, 9 (3), 199–218.

14. Rosenblum, M., and T. Garfinkel (2005): “Virtual
machine monitors: current technology and future
trends,” IEEE Computer, 38 (5), 39–47.

15. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

16. Sugarman, J., G. Venkitachalam, and
B. H. Lim (2001): “Virtualizing I/O devices on
VMware workstation’s hosted virtual machine
monitor,” 2001 USENIX Annual Technical
Conference.

17. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

18. Vahalia, U. (1996): UNIX Internals—the New
Frontiers, Prentice-Hall, Englewood Cliffs, N.J.

19. Warhol, P. D. (1994): “Small kernels hit it big,”
Byte, January 1994, 119–128.

04-M4363-DAS1.LaTeX: “chap04” — 2007/11/26 — 12:10 — page 106 — #27

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 107 — #1

107

p a r t 2
Process Management

A
process is an execution of a program. An application may be designed
to have many processes that operate concurrently and interact among
themselves to jointly achieve a goal. This way, the application may be

able to provide a quicker response to the user.
An OS contains a large number of processes at any time. Process management

involves creating processes, fulfilling their resource requirements, scheduling them
for use of a CPU, implementing process synchronization to control their interac-
tions, avoiding deadlocks so that they do not wait for each other indefinitely,
and terminating them when they complete their operation. The manner in which
an OS schedules processes for use of a CPU determines the response times of
processes, resource efficiency, and system performance.

A thread uses the resources of a process but resembles a process in all other
respects. An OS incurs less overhead in managing threads than in managing
processes. We use the term process as generic to both processes and threads.

Road Map for Part 2

Processes

and Threads

Process

Synchronization
Scheduling

Synchronization

and Scheduling in

Multiprocessor OSs

Message

Passing
Deadlocks

Schematic diagram showing the order in which chapters of this part should be covered in a
course.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 108 — #2

108 Part 2 Process Management

Chapter 5: Processes and Threads
This chapter begins by discussing how an application creates processes through
system calls and how the presence of many processes achieves concurrency and
parallelism within the application. It then describes how the operating system
manages a process—how it uses the notion of process state to keep track of
what a process is doing and how it reflects the effect of an event on states of
affected processes. The chapter also introduces the notion of threads, describes
their benefits, and illustrates their features.

Chapter 6: Process Synchronization
Processes of an application work toward a common goal by sharing data and
coordinating with one another. The key concepts in process synchronization are
the use of mutual exclusion to safeguard consistency of shared data and the use of
indivisible operations in coordinating activities of processes. This chapter discusses
the synchronization requirements of some classic problems in process synchro-
nization and discusses how they can be met by using synchronization features such
as semaphores and monitors provided in programming languages and operating
systems.

Chapter 7: Scheduling
Scheduling is the act of selecting the next process to be serviced by a CPU. This
chapter discusses how a scheduler uses the fundamental techniques of priority-
based scheduling, reordering of requests, and variation of time slice to achieve
a suitable combination of user service, efficient use of resources, and system
performance. It describes different scheduling policies and their properties.

Chapter 8: Deadlocks
A deadlock is a situation in which processes wait for one another indefinitely due
to resource sharing or synchronization. This chapter discusses how deadlocks can
arise and how an OS performs deadlock handling to ensure an absence of dead-
locks, either through detection and resolution of deadlocks, or through resource
allocation policies that perform deadlock prevention or deadlock avoidance.

Chapter 9: Message Passing
Processes exchange information by sending interprocess messages. This chapter
discusses the semantics of message passing, and OS responsibilities in buffering
and delivery of interprocess messages. It also discusses how message passing is
employed in higher-level protocols for providing electronic mail facility and in
providing intertask communication in parallel or distributed programs.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 109 — #3

Part 2 Process Management 109

Chapter 10: Synchronization and Scheduling
in Multiprocessor OSs
Presence of many CPUs in a multiprocessor computer system holds the promise
of high throughput and fast response to applications. This chapter discusses dif-
ferent kinds of multiprocessor systems, and describes how the OS achieves high
throughput and fast response by using special techniques of structuring its ker-
nel, so that many CPUs can execute kernel code in parallel, and of synchronizing
and scheduling processes.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 110 — #4

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 111 — #5

C h a p t e r 5
Processes and Threads

The concept of a process helps us understand how programs execute in an
operating system. A process is an execution of a program using a set of
resources. We emphasize “an” because several executions of the same pro-

gram may be present in the operating system at the same time; these executions
constitute different processes. That happens when users initiate independent exe-
cutions of the program, each on its own data. It also happens when a program
that is coded with concurrent programming techniques is being executed. The
kernel allocates resources to processes and schedules them for use of the CPU.
This way, it realizes execution of sequential and concurrent programs uniformly.

A thread is also an execution of a program but it functions in the environment
of a process—that is, it uses the code, data, and resources of a process. It is possible
for many threads to function in the environment of the same process; they share its
code, data, and resources. Switching between such threads requires less overhead
than switching between processes.

In this chapter, we discuss how the kernel controls processes and threads—
how it keeps track of their states, and how it uses the state information to organize
their operation. We also discuss how a program may create concurrent processes
or threads, and how they may interact with one another to achieve a common
goal.

5.1 PROCESSES AND PROGRAMS
•

A program is a passive entity that does not perform any actions by itself; it has to
be executed if the actions it calls for are to take place. A process is an execution of
a program. It actually performs the actions specified in a program. An operating
system shares the CPU among processes. This is how it gets user programs to
execute.

5.1.1 What Is a Process?
To understand what is a process, let us discuss how the OS executes a program.
Program P shown in Figure 5.1(a) contains declarations of a file info and a
variable item, and statements that read values from info, use them to perform
some calculations, and print a result before coming to a halt. During execution,

111

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 112 — #6

112 Part 2 Process Management

Figure 5.1 A program and an abstract view of its execution.

instructions of this program use values in its data area and the stack to perform
the intended calculations. Figure 5.1(b) shows an abstract view of its execution.
The instructions, data, and stack of program P constitute its address space. To
realize execution of P, the OS allocates memory to accommodate P’s address
space, allocates a printer to print its results, sets up an arrangement through
which P can access file info, and schedules P for execution. The CPU is shown
as a lightly shaded box because it is not always executing instructions of P—the
OS shares the CPU between execution of P and executions of other programs.

Following the above discussion, we can define a process as follows:

Definition 5.1 Process An execution of a program using resources allocated
to it.

When a user initiates execution of a program, the OS creates a new process
and assigns a unique id to it. It now allocates some resources to the process—
sufficient memory to accommodate the address space of the program, and some
devices such as a keyboard and a monitor to facilitate interaction with the user.
The process may make system calls during its operation to request additional
resources such as files. We refer to the address space of the program and resources
allocated to it as the address space and resources of the process, respectively.

Accordingly, a process comprises six components:

(id , code, data, stack, resources, CPU state) (5.1)

where id is the unique id assigned by the OS
code is the code of the program (it is also called the text of a program)
data is the data used in the execution of the program, including data

from files
stack contains parameters of functions and procedures called during

execution of the program, and their return addresses

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 113 — #7

Chapter 5 Processes and Threads 113

resources is the set of resources allocated by the OS
CPU state is composed of contents of the PSW and the general-purpose

registers (GPRs) of the CPU (we assume that the stack pointer is
maintained in a GPR)

The CPU state (Section 2.2.1) contains information that indicates which
instruction in the code would be executed next, and other information—such
as contents of the condition code field (also called the flags field) of the PSW—
that may influence its execution. The CPU state changes as the execution of the
program progresses. We use the term operation of a process for execution of a
program. Thus a process operates when it is scheduled.

5.1.2 Relationships between Processes and Programs
A program consists of a set of functions and procedures. During its execution,
control flows between the functions and procedures according to the logic of the
program. Is an execution of a function or procedure a process? This doubt leads to
the obvious question: what is the relationship between processes and programs?

The OS does not know anything about the nature of a program, including
functions and procedures in its code. It knows only what it is told through system
calls. The rest is under control of the program. Thus functions of a program may
be separate processes, or they may constitute the code part of a single process.
We discuss examples of these situations in the following.

Table 5.1 shows two kinds of relationships that can exist between pro-
cesses and programs. A one-to-one relationship exists when a single execution
of a sequential program is in progress, for example, execution of program P in
Figure 5.1. A many-to-one relationship exists between many processes and a
program in two cases: Many executions of a program may be in progress at the
same time; processes representing these executions have a many-to-one relation-
ship with the program. During execution, a program may make a system call to
request that a specific part of its code should be executed concurrently, i.e., as
a separate activity occurring at the same time. The kernel sets up execution of
the specified part of the code and treats it as a separate process. The new pro-
cess and the process representing execution of the program have a many-to-one
relationship with the program. We call such a program a concurrent program.

Processes that coexist in the system at some time are called concurrent pro-
cesses. Concurrent processes may share their code, data and resources with other

Table 5.1 Relationships between Processes and Programs

Relationship Examples

One-to-one A single execution of a sequential program.
Many-to-one Many simultaneous executions of a program,

execution of a concurrent program.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 114 — #8

114 Part 2 Process Management

processes; they have opportunities to interact with one another during their
execution.

5.1.3 Child Processes
The kernel initiates an execution of a program by creating a process for it. For
lack of a technical term for this process, we will call it the primary process for the
program execution. The primary process may make system calls as described in
the previous section to create other processes—these processes become its child
processes, and the primary process becomes their parent. A child process may itself
create other processes, and so on. The parent–child relationships between these
processes can be represented in the form of a process tree, which has the primary
process as its root. A child process may inherit some of the resources of its parent;
it could obtain additional resources during its operation through system calls.

Typically, a process creates one or more child processes and delegates some
of its work to each of them. It is called multitasking within an application. It
has the three benefits summarized in Table 5.2. Creation of child processes has
the same benefits as the use of multiprogramming in an OS—the kernel may
be able to interleave operation of I/O-bound and CPU-bound processes in the
application, which may lead to a reduction in the duration, i.e., running time, of
an application. It is called computation speedup. Most operating systems permit
a parent process to assign priorities to child processes. A real-time application
can assign a high priority to a child process that performs a critical function to
ensure that its response requirement is met. We shall elaborate on this aspect later
in Example 5.1.

The third benefit, namely, guarding a parent process against errors in a child
process, arises as follows: Consider a process that has to invoke an untrusted code.

Table 5.2 Benefits of Child Processes

Benefit Explanation

Computation speedup Actions that the primary process of an
application would have performed sequentially if
it did not create child processes, would be
performed concurrently when it creates child
processes. It may reduce the duration, i.e.,
running time, of the application.

Priority for critical
functions

A child process that performs a critical function
may be assigned a high priority; it may help to
meet the real-time requirements of an
application.

Guarding a parent process
against errors

The kernel aborts a child process if an error
arises during its operation. The parent process is
not affected by the error; it may be able to
perform a recovery action.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 115 — #9

Chapter 5 Processes and Threads 115

If the untrusted code were to be included in the code of the process, an error in
the untrusted code would compel the kernel to abort the process; however, if the
process were to create a child process to execute the untrusted code, the same error
would lead to the abort of the child process, so the parent process would not come
to any harm. The OS command interpreter uses this feature to advantage. The
command interpreter itself runs as a process, and creates a child process whenever
it has to execute a user program. This way, its own operation is not harmed by
malfunctions in the user program.

Example 5.1 illustrates how the data logging system of Section 3.7 benefits
from use of child processes.

•
Example 5.1Child Processes in a Real-Time Application

The real-time data logging application of Section 3.7 receives data samples
from a satellite at the rate of 500 samples per second and stores them in
a file. We assume that each sample arriving from the satellite is put into
a special register of the computer. The primary process of the application,
which we will call the data_logger process, has to perform the following three
functions:

1. Copy the sample from the special register into memory.
2. Copy the sample from memory into a file.
3. Perform some analysis of a sample and record its results into another file

used for future processing.

It creates three child processes named copy_sample, record_sample, and
housekeeping, leading to the process tree shown in Figure 5.2(a). Note that a
process is depicted by a circle and a parent–child relationship is depicted by
an arrow. As shown in Figure 5.2(b), copy_sample copies the sample from the
register into a memory area named buffer_area that can hold, say, 50 samples.
record_sample writes a sample from buffer_area into a file. housekeeping ana-
lyzes a sample from buffer_area and records its results in another file. Arrival
of a new sample causes an interrupt, and a programmer-defined interrupt ser-
vicing routine is associated with this interrupt. The kernel executes this routine
whenever a new sample arrives. It activates copy_sample.

Operation of the three processes can overlap as follows: copy_sample can
copy a sample into buffer_area, record_sample can write a previous sample
to the file, while housekeeping can analyze it and write its results into the
other file. This arrangement provides a smaller worst-case response time of
the application than if these functions were to be executed sequentially. So
long as buffer_area has some free space, only copy_sample has to complete
before the next sample arrives. The other processes can be executed later. This
possibility is exploited by assigning the highest priority to copy_sample.

•

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 116 — #10

116 Part 2 Process Management

(a) (b)

data_
logger

copy_
sample

record_
sample housekeeping

Memory

register

house-
keeping

record_
sample

copy_
sample

buffer
_area

Figure 5.2 Real-time application of Section 3.7: (a) process tree; (b) processes.

To facilitate use of child processes, the kernel provides operations for:

1. Creating a child process and assigning a priority to it
2. Terminating a child process
3. Determining the status of a child process
4. Sharing, communication, and synchronization between processes

Their use can be described as follows: In Example 5.1, the data_logger
process creates three child processes. The copy_sample and record_sample pro-
cesses share buffer_area. They need to synchronize their operation such that
process record_sample would copy a sample out of buffer_area only after process
copy_sample has written it there. The data_logger process could be programmed
to either terminate its child processes before itself terminating, or terminate itself
only after it finds that all its child processes have terminated.

5.1.4 Concurrency and Parallelism
Parallelism is the quality of occurring at the same time. Two events are parallel
if they occur at the same time, and two tasks are parallel if they are performed
at the same time. Concurrency is an illusion of parallelism. Thus, two tasks are
concurrent if there is an illusion that they are being performed in parallel, whereas,
in reality, only one of them may be performed at any time.

In an OS, concurrency is obtained by interleaving operation of processes
on the CPU, which creates the illusion that these processes are operating at the

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 117 — #11

Chapter 5 Processes and Threads 117

same time. Parallelism is obtained by using multiple CPUs, as in a multiprocessor
system, and operating different processes on these CPUs.

How does mere concurrency provide any benefits? We have seen several
examples of this earlier in Chapter 3. In Section 3.5 we discussed how the through-
put of a multiprogramming OS increases by interleaving operation of processes
on a CPU, because an I/O operation in one process overlaps with a computational
activity of another process. In Section 3.6, we saw how interleaved operation of
processes created by different users in a time-sharing system makes each user
think that he has a computer to himself, although it is slower than the real com-
puter being used. In Section 5.1.2 and in Example 5.1, we saw that interleaving
of processes may lead to computation speedup.

Parallelism can provide better throughput in an obvious way because pro-
cesses can operate on multiple CPUs. It can also provide computation speedup;
however, the computation speedup provided by it is qualitatively different from
that provided through concurrency—when concurrency is employed, speedup is
obtained by overlapping I/O activities of one process with CPU activities of
other processes, whereas when parallelism is employed, CPU and I/O activ-
ities in one process can overlap with the CPU and I/O activities of other
processes.

Computation speedup of an application through concurrency and paral-
lelism would depend on several factors:

• Inherent parallelism within the application: Does the application have activi-
ties that can progress independently of one another?

• Overhead of concurrency and parallelism: The overhead of setting up and
managing concurrency should not predominate over the benefits of per-
forming activities concurrently, e.g., if the chunks of work sought to be
performed concurrently are too small, the overhead of concurrency may
swamp its contributions to computation speedup.

• Model of concurrency and parallelism supported by the OS: How much over-
head does the model incur, and how much of the inherent parallelism within
an application can be exploited through it.

We have so far discussed one model of concurrency and parallelism, namely
the process model. In Section 5.3, we introduce an alternative model called the
thread model, and discuss its properties.

5.2 IMPLEMENTING PROCESSES
•

In the operating system’s view, a process is a unit of computational work. Hence
the kernel’s primary task is to control operation of processes to provide effective
utilization of the computer system. Accordingly, the kernel allocates resources
to a process, protects the process and its resources from interference by other
processes, and ensures that the process gets to use the CPU until it completes its
operation.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 118 — #12

118 Part 2 Process Management

Exit from kernel

Event

Dispatching

Scheduling

Event handling

Context save

Figure 5.3 Fundamental functions of the kernel for controlling processes.

The kernel is activated when an event, which is a situation that requires
the kernel’s attention, leads to either a hardware interrupt or a system call
(see Section 2.3). The kernel now performs four fundamental functions to control
operation of processes (see Figure 5.3):

1. Context save: Saving CPU state and information concerning resources of
the process whose operation is interrupted.

2. Event handling: Analyzing the condition that led to an interrupt, or the
request by a process that led to a system call, and taking appropriate actions.

3. Scheduling: Selecting the process to be executed next on the CPU.
4. Dispatching: Setting up access to resources of the scheduled process

and loading its saved CPU state in the CPU to begin or resume its
operation.

The kernel performs the context save function to save information concern-
ing the interrupted process. It is followed by execution of an appropriate event
handling routine, which may inhibit further operation of the interrupted pro-
cess, e.g., if this process has made a system call to start an I/O operation, or
may enable operation of some other process, e.g., if the interrupt was caused
by completion of its I/O operation. The kernel now performs the scheduling
function to select a process and the dispatching function to begin or resume its
operation.

As discussed earlier in Sections 3.5.1 and 3.6, to perform scheduling an
operating system must know which processes require the CPU at any moment.
Hence the key to controlling operation of processes is to monitor all processes
and know what each process is doing at any moment of time—whether execut-
ing on the CPU, waiting for the CPU to be allocated to it, waiting for an I/O
operation to complete, or waiting to be swapped into memory. The operating
system monitors the process state to keep track of what a process is doing at any
moment.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 119 — #13

Chapter 5 Processes and Threads 119

Here in Section 5.2, we will see what is meant by a process state, and we
will look at the different states of a process; and the arrangements by which the
operating system maintains information about the state of a process. We do not
discuss scheduling in this chapter. It is discussed later in Chapter 7.

5.2.1 Process States and State Transitions
An operating system uses the notion of a process state to keep track of what a
process is doing at any moment.

Definition 5.2 Process state The indicator that describes the nature of the
current activity of a process.

The kernel uses process states to simplify its own functioning, so the num-
ber of process states and their names may vary across OSs. However, most OSs
use the four fundamental states described in Table 5.3. The kernel considers
a process to be in the blocked state if it has made a resource request and the
request is yet to be granted, or if it is waiting for some event to occur. A CPU
should not be allocated to such a process until its wait is complete. The ker-
nel would change the state of the process to ready when the request is granted
or the event for which it is waiting occurs. Such a process can be considered
for scheduling. The kernel would change the state of the process to running
when it is dispatched. The state would be changed to terminated when exe-
cution of the process completes or when it is aborted by the kernel for some
reason.

A conventional computer system contains only one CPU, and so at most
one process can be in the running state. There can be any number of processes
in the blocked, ready, and terminated states. An OS may define more process
states to simplify its own functioning or to support additional functionalities like
swapping. We discuss this aspect in Section 5.2.1.1.

Table 5.3 Fundamental Process States

State Description

Running A CPU is currently executing instructions in the process code.
Blocked The process has to wait until a resource request made by it is granted,

or it wishes to wait until a specific event occurs.
Ready The process wishes to use the CPU to continue its operation;

however, it has not been dispatched.
Terminated The operation of the process, i.e., the execution of the program

represented by it, has completed normally, or the OS has aborted it.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 120 — #14

120 Part 2 Process Management

Process State Transitions A state transition for a process Pi is a change in its
state. A state transition is caused by the occurrence of some event such as the
start or end of an I/O operation. When the event occurs, the kernel determines
its influence on activities in processes, and accordingly changes the state of an
affected process.

When a process Pi in the running state makes an I/O request, its state has to
be changed to blocked until its I/O operation completes. At the end of the I/O
operation, Pi ’s state is changed from blocked to ready because it now wishes to use
the CPU. Similar state changes are made when a process makes some request that
cannot immediately be satisfied by the OS. The process state is changed to blocked
when the request is made, i.e., when the request event occurs, and it is changed
to ready when the request is satisfied. The state of a ready process is changed to
running when it is dispatched, and the state of a running process is changed to
ready when it is preempted either because a higher-priority process became ready
or because its time slice elapsed (see Sections 3.5.1 and 3.6). Table 5.4 summarizes
causes of state transitions.

Figure 5.4 diagrams the fundamental state transitions for a process. A new
process is put in the ready state after resources required by it have been allocated.
It may enter the running, blocked, and ready states a number of times as a result
of events described in Table 5.4. Eventually it enters the terminated state.

•
Example 5.2 Process State Transitions

Consider the time-sharing system of Example 3.2, which uses a time slice of
10 ms. It contains two processes P1 and P2. P1 has a CPU burst of 15 ms
followed by an I/O operation that lasts for 100 ms, while P2 has a CPU burst
of 30 ms followed by an I/O operation that lasts for 60 ms. Execution of P1 and
P2 was described in Figure 3.7. Table 5.5 illustrates the state transitions during
operation of the system. Actual execution of programs proceeds as follows:
System operation starts with both processes in the ready state at time 0. The
scheduler selects process P1 for execution and changes its state to running. At
10 ms, P1 is preempted and P2 is dispatched. Hence P1’s state is changed to
ready and P2’s state is changed to running. At 20 ms, P2 is preempted and P1 is
dispatched. P1 enters the blocked state at 25 ms because of an I/O operation.
P2 is dispatched because it is in the ready state. At 35 ms, P2 is preempted
because its time slice elapses; however, it is dispatched again since no other
process is in the ready state. P2 initiates an I/O operation at 45 ms. Now both
processes are in the blocked state.
•

5.2.1.1 Suspended Processes

A kernel needs additional states to describe the nature of the activity of a process
that is not in one of the four fundamental states described earlier. Consider a

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 121 — #15

Chapter 5 Processes and Threads 121

Table 5.4 Causes of Fundamental State Transitions for a Process

State transition Description

ready → running The process is dispatched. The CPU begins or resumes
execution of its instructions.

blocked → ready A request made by the process is granted or an event for
which it was waiting occurs.

running → ready The process is preempted because the kernel decides to
schedule some other process. This transition occurs either
because a higher-priority process becomes ready, or
because the time slice of the process elapses.

running → blocked The process in operation makes a system call to indicate
that it wishes to wait until some resource request made by
it is granted, or until a specific event occurs in the system.
Five major causes of blocking are:

• Process requests an I/O operation
• Process requests a resource
• Process wishes to wait for a specified interval of time
• Process waits for a message from another process
• Process waits for some action by another process.

running →terminated Execution of the program is completed. Five primary
reasons for process termination are:

• Self-termination: The process in operation either
completes its task or realizes that it cannot operate
meaningfully and makes a “terminate me” system call.
Examples of the latter condition are incorrect or
inconsistent data, or inability to access data in a
desired manner, e.g., incorrect file access privileges.

• Termination by a parent: A process makes a
“terminate Pi” system call to terminate a child process
Pi , when it finds that execution of the child process is
no longer necessary or meaningful.

• Exceeding resource utilization: An OS may limit the
resources that a process may consume. A process
exceeding a resource limit would be aborted by the
kernel.

• Abnormal conditions during operation: The kernel
aborts a process if an abnormal condition arises due
to the instruction being executed, e.g., execution of an
invalid instruction, execution of a privileged
instruction, arithmetic conditions like overflow, or
memory protection violation.

• Incorrect interaction with other processes: The kernel
may abort a process if it gets involved in a deadlock.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 122 — #16

122 Part 2 Process Management

New

process
Ready

Running
Completion Termi-

nated

Blocked
Resource granted

or wait completed

Dispatching

Preemption

Resource or

wait request

Figure 5.4 Fundamental state transitions for a process.

Table 5.5 Process State Transitions in a Time-Sharing System

New states

Time Event Remarks P1 P2

0 P1 is scheduled running ready
10 P1 is preempted P2 is scheduled ready running
20 P2 is preempted P1 is scheduled running ready
25 P1 starts I/O P2 is scheduled blocked running
35 P2 is preempted — blocked ready

P2 is scheduled blocked running
45 P2 starts I/O — blocked blocked

process that was in the ready or the blocked state when it got swapped out of
memory. The process needs to be swapped back into memory before it can resume
its activity. Hence it is no longer in the ready or blocked state; the kernel must
define a new state for it. We call such a process a suspended process. If a user
indicates that his process should not be considered for scheduling for a specific
period of time, it, too, would become a suspended process. When a suspended
process is to resume its old activity, it should go back to the state it was in when
it was suspended. To facilitate this state transition, the kernel may define many
suspend states and put a suspended process into the appropriate suspend state.

We restrict the discussion of suspended processes to swapped processes and
use two suspend states called ready swapped and blocked swapped. Accordingly,
Figure 5.5 shows process states and state transitions. The transition ready →
ready swapped or blocked → blocked swapped is caused by a swap-out action.
The reverse state transition takes place when the process is swapped back into
memory. The blocked swapped → ready swapped transition takes place if the
request for which the process was waiting is granted even while the process is in a
suspended state, for example, if a resource for which it was blocked is granted to it.
However, the process continues to be swapped out. When it is swapped back into
memory, its state changes to ready and it competes with other ready processes for

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 123 — #17

Chapter 5 Processes and Threads 123

New

process
Ready

Running
Completion Termi-

nated

Blocked
Resource granted

Dispatching

Preemption

Resource or

wait request

Blocked
swapped

Ready
swapped

Swap-out
Swap-in Swap-out Swap-in

or wait completed

Resource granted

or wait completed

Figure 5.5 Process states and state transitions using two swapped states.

the CPU. A new process is put either in the ready state or in the ready swapped
state depending on availability of memory.

5.2.2 Process Context and the Process Control Block
The kernel allocates resources to a process and schedules it for use of the CPU.
Accordingly, the kernel’s view of a process consists of two parts:

• Code, data, and stack of the process, and information concerning memory
and other resources, such as files, allocated to it.

• Information concerning execution of a program, such as the process state, the
CPU state including the stack pointer, and some other items of information
described later in this section.

These two parts of the kernel’s view are contained in the process context and
the process control block (PCB), respectively (see Figure 5.6). This arrange-
ment enables different OS modules to access relevant process-related information
conveniently and efficiently.

Process Context The process context consists of the following:

1. Address space of the process: The code, data, and stack components of the
process (see Definition 5.1).

2. Memory allocation information: Information concerning memory areas allo-
cated to a process. This information is used by the memory management unit
(MMU) during operation of the process (see Section 2.2.2).

3. Status of file processing activities: Information about files being used, such
as current positions in the files.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 124 — #18

124 Part 2 Process Management

Code Data Stack

Memory

info

Resource

info

File

pointers

Process context

Processid
Process state
GPR contents
PC value

Process control block

(PCB)

Figure 5.6 Kernel’s view of a process.

4. Process interaction information: Information necessary to control interac-
tion of the process with other processes, e.g., ids of parent and child processes,
and interprocess messages sent to it that have not yet been delivered to it.

5. Resource information: Information concerning resources allocated to the
process.

6. Miscellaneous information: Miscellaneous information needed for operation
of a process.

The OS creates a process context by allocating memory to the process, loading
the process code in the allocated memory and setting up its data space. Informa-
tion concerning resources allocated to the process and its interaction with other
processes is maintained in the process context throughout the life of the pro-
cess. This information changes as a result of actions like file open and close and
creation and destruction of data by the process during its operation.

Process Control Block (PCB) The process control block (PCB) of a process
contains three kinds of information concerning the process—identification infor-
mation such as the process id, id of its parent process, and id of the user who
created it; process state information such as its state, and the contents of the
PSW and the general-purpose registers (GPRs); and information that is useful
in controlling its operation, such as its priority, and its interaction with other
processes. It also contains a pointer field that is used by the kernel to form PCB
lists for scheduling, e.g., a list of ready processes. Table 5.6 describes the fields of
the PCB data structure.

The priority and state information is used by the scheduler. It passes the id
of the selected process to the dispatcher. For a process that is not in the running
state, the PSW and GPRs fields together contain the CPU state of the process
when it last got blocked or was preempted (see Section 2.2.1). Operation of the
process can be resumed by simply loading this information from its PCB into the
CPU. This action would be performed when this process is to be dispatched.

When a process becomes blocked, it is important to remember the reason.
It is done by noting the cause of blocking, such as a resource request or an

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 125 — #19

Chapter 5 Processes and Threads 125

Table 5.6 Fields of the Process Control Block (PCB)

PCB field Contents

Process id The unique id assigned to the process at its creation.
Parent, child ids These ids are used for process synchronization, typically for

a process to check if a child process has terminated.
Priority The priority is typically a numeric value. A process is

assigned a priority at its creation. The kernel may change
the priority dynamically depending on the nature of the
process (whether CPU-bound or I/O-bound), its age, and
the resources consumed by it (typically CPU time).

Process state The current state of the process.
PSW This is a snapshot, i.e., an image, of the PSW when the

process last got blocked or was preempted. Loading this
snapshot back into the PSW would resume operation of the
process. (See Fig. 2.2 for fields of the PSW.)

GPRs Contents of the general-purpose registers when the process
last got blocked or was preempted.

Event information For a process in the blocked state, this field contains
information concerning the event for which the process is
waiting.

Signal information Information concerning locations of signal handlers (see
Section 5.2.6).

PCB pointer This field is used to form a list of PCBs for scheduling
purposes.

I/O operation, in the event information field of the PCB. Consider a process Pi
that is blocked on an I/O operation on device d . The event information field in
Pi ’s PCB indicates that it awaits end of an I/O operation on device d . When the
I/O operation on device d completes, the kernel uses this information to make
the transition blocked → ready for process Pi .

5.2.3 Context Save, Scheduling, and Dispatching
The context save function performs housekeeping whenever an event occurs. It
saves the CPU state of the interrupted process in its PCB, and saves information
concerning its context (see Section 5.2.2). Recall that the interrupted process
would have been in the running state before the event occurred. The context
save function changes its state to ready. The event handler may later change the
interrupted process’s state to blocked , e.g., if the current event was a request for
I/O initiation by the interrupted process itself.

The scheduling function uses the process state information from PCBs to
select a ready process for execution and passes its id to the dispatching function.
The dispatching function sets up the context of the selected process, changes its
state to running, and loads the saved CPU state from its PCB into the CPU.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 126 — #20

126 Part 2 Process Management

To prevent loss of protection, it flushes the address translation buffers used by
the memory management unit (MMU). Example 5.3 illustrates the context save,
scheduling, and dispatching functions in an OS using priority-based scheduling.

•
Example 5.3 Context Save, Scheduling, and Dispatching

An OS contains two processes P1 and P2, with P2 having a higher priority
than P1. Let P2 be blocked on an I/O operation and let P1 be running. The
following actions take place when the I/O completion event occurs for the I/O
operation of P2:

1. The context save function is performed for P1 and its state is changed
to ready.

2. Using the event information field of PCBs, the event handler finds that
the I/O operation was initiated by P2, so it changes the state of P2 from
blocked to ready.

3. Scheduling is performed. P2 is selected because it is the highest-priority
ready process.

4. P2’s state is changed to running and it is dispatched.
•

Process Switching Functions 1, 3, and 4 of Example 5.3 collectively perform
switching between processes P1 and P2. Switching between processes also occurs
when a running process becomes blocked as a result of a request or gets preempted
at the end of a time slice. An event does not lead to switching between processes if
occurrence of the event either (1) causes a state transition only in a process whose
priority is lower than that of the process whose operation is interrupted by the
event or (2) does not cause any state transition, e.g., if the event is caused by a
request that is immediately satisfied. In the former case, the scheduling function
selects the interrupted process itself for dispatching. In the latter case, scheduling
need not be performed at all; the dispatching function could simply change the
state of the interrupted process back to running and dispatch it.

Switching between processes involves more than saving the CPU state of
one process and loading the CPU state of another process. The process context
needs to be switched as well. We use the term state information of a process to
refer to all the information that needs to be saved and restored during process
switching. Process switching overhead depends on the size of the state information
of a process. Some computer systems provide special instructions to reduce the
process switching overhead, e.g., instructions that save or load the PSW and all
general-purpose registers, or flush the address translation buffers used by the
memory management unit (MMU).

Process switching has some indirect overhead as well. The newly sched-
uled process may not have any part of its address space in the cache, and so
it may perform poorly until it builds sufficient information in the cache (see
Section 2.2.3). Virtual memory operation is also poorer initially because address

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 127 — #21

Chapter 5 Processes and Threads 127

translation buffers in the MMU do not contain any information relevant to the
newly scheduled process.

5.2.4 Event Handling
The following events occur during the operation of an OS:

1. Process creation event: A new process is created.
2. Process termination event: A process completes its operation.
3. Timer event: The timer interrupt occurs.
4. Resource request event: Process makes a resource request.
5. Resource release event: A process releases a resource.
6. I/O initiation request event: Process wishes to initiate an I/O operation.
7. I/O completion event: An I/O operation completes.
8. Message send event: A message is sent by one process to another.
9. Message receive event: A message is received by a process.

10. Signal send event: A signal is sent by one process to another.
11. Signal receive event: A signal is received by a process.
12. A program interrupt: The current instruction in the running process

malfunctions.
13. A hardware malfunction event: A unit in the computer’s hardware

malfunctions.

The timer, I/O completion, and hardware malfunction events are caused by
situations that are external to the running process. All other events are caused
by actions in the running process. We group events 1–9 into two broad classes for
discussing actions of event handlers, and discuss events 10 and 11 in Section 5.2.6.
The kernel performs a standard action like aborting the running process when
events 12 or 13 occur.

Events Pertaining to Process Creation, Termination, and Preemption When a
user issues a command to execute a program, the command interpreter of the user
interface makes a create_ process system call with the name of the program as a
parameter. When a process wishes to create a child process to execute a program,
it itself makes a create_ process system call with the name of the program as a
parameter.

The event handling routine for the create_ process system call creates a PCB
for the new process, assigns a unique process id and a priority to it, and puts this
information and id of the parent process into relevant fields of the PCB. It now
determines the amount of memory required to accommodate the address space
of the process, i.e., the code and data of the program to be executed and its stack,
and arranges to allocate this much memory to the process (memory allocation
techniques are discussed later in Chapters 11 and 12). In most operating systems,
some standard resources are associated with each process, e.g., a keyboard, and
standard input and output files; the kernel allocates these standard resources to
the process at this time. It now enters information about allocated memory and
resources into the context of the new process. After completing these chores,

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 128 — #22

128 Part 2 Process Management

it sets the state of the process to ready in its PCB and enters this process in an
appropriate PCB list.

When a process makes a system call to terminate itself or terminate a child
process, the kernel delays termination until the I/O operations that were initiated
by the process are completed. It now releases the memory and resources allocated
to it. This function is performed by using the information in appropriate fields of
the process context. The kernel now changes the state of the process to terminated.
The parent of the process may wish to check its status sometime in future, so the
PCB of the terminated process is not destroyed now; it will be done sometime after
the parent process has checked its status or has itself terminated. If the parent
of the process is already waiting for its termination, the kernel must activate
the parent process. To perform this action, the kernel takes the id of the parent
process from the PCB of the terminated process, and checks the event information
field of the parent process’s PCB to find whether the parent process is waiting for
termination of the child process (see Section 5.2.2).

The process in the running state should be preempted if its time slice elapses.
The context save function would have already changed the state of the running
process to ready before invoking the event handler for timer interrupts, so the
event handler simply moves the PCB of the process to an appropriate scheduling
list. Preemption should also occur when a higher-priority process becomes ready,
but that is realized implicitly when the higher-priority process is scheduled so an
event handler need not perform any explicit action for it.

Events Pertaining to Resource Utilization When a process requests a resource
through a system call, the kernel may be able to allocate the resource immediately,
in which case event handling does not cause any process state transitions, so the
kernel can skip scheduling and directly invoke the dispatching function to resume
operation of the interrupted process. If the resource cannot be allocated, the event
handler changes the state of the interrupted process to blocked and notes the id
of the required resource in the event information field of the PCB. When a process
releases a resource through a system call, the event handler need not change the
state of the process that made the system call. However, it should check whether
any other processes were blocked because they needed the resource, and, if so, it
should allocate the resource to one of the blocked processes and change its state
to ready. This action requires a special arrangement that we will discuss shortly.

A system call to request initiation of an I/O operation and an interrupt
signaling end of the I/O operation lead to analogous event handling actions.
The state of the process is changed to blocked when the I/O operation is initiated
and the cause of blocking is noted in the event information field of its PCB; its state
is changed back to ready when the I/O operation completes. A request to receive a
message from another process and a request to send a message to another process
also lead to analogous actions.

Event Control Block (ECB) When an event occurs, the kernel must find the
process whose state is affected by it. For example, when an I/O completion
interrupt occurs, the kernel must identify the process awaiting its completion.
It can achieve this by searching the event information field of the PCBs of all

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 129 — #23

Chapter 5 Processes and Threads 129

Event description

Process id

ECB pointer

Figure 5.7 Event control block (ECB).

processes. This search is expensive, so operating systems use various schemes to
speed it up. We discuss a scheme that uses event control blocks (ECBs).

As shown in Figure 5.7, an ECB contains three fields. The event description
field describes an event, and the process id field contains the id of the process
awaiting the event. When a process Pi gets blocked for occurrence of an event
ei , the kernel forms an ECB and puts relevant information concerning ei and Pi
into it. The kernel can maintain a separate ECB list for each class of events like
interprocess messages or I/O operations, so the ECB pointer field is used to enter
the newly created ECB into an appropriate list of ECBs.

When an event occurs, the kernel scans the appropriate list of ECBs to find an
ECB with a matching event description. The process id field of the ECB indicates
which process is waiting for the event to occur. The state of this process is changed
to reflect the occurrence of the event. The following example illustrates use of
ECBs for handling an I/O completion event; their use in handling interprocess
messages is described in Section 9.2.2. The event information field of the PCB now
appears redundant; however, we retain it because the kernel may need to know
which event a process is blocked on, for example, while aborting the process.

•
Example 5.4Use of ECB for Handling I/O Completion

The actions of the kernel when process Pi requests an I/O operation on some
device d , and when the I/O operation completes, are as follows:

1. The kernel creates an ECB, and initializes it as follows:
a. Event description := end of I/O on device d .
b. Process awaiting the event := Pi .

2. The newly created ECB (let us call it ECB j) is added to a list of ECBs.
3. The state of Pi is changed to blocked and the address of ECB j is put into

the “Event information” field of Pi ’s PCB (see Figure 5.8).
4. When the interrupt ‘End of I/O on device d ’ occurs, ECB j is located by

searching for an ECB with a matching event description field.
5. The id of the affected process, i.e., Pi , is extracted from ECB j . The PCB of

Pi is located and its state is changed to ready.
•

Summary of Event Handling Figure 5.9 illustrates event handling actions of the
kernel described earlier. The block action always changes the state of the pro-
cess that made a system call from ready to blocked. The unblock action finds a
process whose request can be fulfilled now and changes its state from blocked

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 130 — #24

130 Part 2 Process Management

Event information

blocked

Pi

Pi

PCB

End of I/O on d

ECBj

Figure 5.8 PCB-ECB interrelationship.

Schedule Dispatch

Block

Unblock

Resource or

message

request

I/O

request

Timer

interrupt

I/O

completion

Send

message

Resource

release

Create or

terminate

process

Figure 5.9 Event handling actions of the kernel.

to ready. A system call for requesting a resource leads to a block action if the
resource cannot be allocated to the requesting process. This action is followed
by scheduling and dispatching because another process has to be selected for use
of the CPU. The block action is not performed if the resource can be allocated
straightaway. In this case, the interrupted process is simply dispatched again.
When a process releases a resource, an unblock action is performed if some other
process is waiting for the released resource, followed by scheduling and dispatch-
ing because the unblocked process may have a higher priority than the process
that released the resource. Again, scheduling is skipped if no process is unblocked
because of the event.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 131 — #25

Chapter 5 Processes and Threads 131

5.2.5 Sharing, Communication, and Synchronization
Between Processes

Processes of an application need to interact with one another because they work
toward a common goal. Table 5.7 describes four kinds of process interaction. We
summarize their important features in the following.

Data Sharing A shared variable may get inconsistent values if many processes
update it concurrently. For example, if two processes concurrently execute the
statement a:= a+1, where a is a shared variable, the result may depend on the
way the kernel interleaves their execution—the value of a may be incremented
by only 1! (We discuss this problem later in Section 6.2.) To avoid this problem,
only one process should access shared data at any time, so a data access in one
process may have to be delayed if another process is accessing the data. This is
called mutual exclusion. Thus, data sharing by concurrent processes incurs the
overhead of mutual exclusion.

Message Passing A process may send some information to another process in
the form of a message. The other process can copy the information into its own
data structures and use it. Both the sender and the receiver process must anticipate
the information exchange, i.e., a process must know when it is expected to send or
receive a message, so the information exchange becomes a part of the convention
or protocol between processes.

Synchronization The logic of a program may require that an action ai should
be performed only after some action aj has been performed. Synchroniza-
tion between processes is required if these actions are performed in different
processes—the process that wishes to perform action ai is made to wait until
another process performs action aj .

Signals A signal is used to convey an exceptional situation to a process so
that it may handle the situation through appropriate actions. The code that a
process wishes to execute on receiving a signal is called a signal handler. The
signal mechanism is modeled along the lines of interrupts. Thus, when a signal

Table 5.7 Four Kinds of Process Interaction

Kind of interaction Description

Data sharing Shared data may become inconsistent if several processes modify
the data at the same time. Hence processes must interact to
decide when it is safe for a process to modify or use shared data.

Message passing Processes exchange information by sending messages to one
another.

Synchronization To fulfill a common goal, processes must coordinate their
activities and perform their actions in a desired order.

Signals A signal is used to convey occurrence of an exceptional situation
to a process.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 132 — #26

132 Part 2 Process Management

is sent to a process, the kernel interrupts operation of the process and executes a
signal handler, if one has been specified by the process; otherwise, it may perform
a default action. Operating systems differ in the way they resume a process after
executing a signal handler.

Example 5.5 illustrates sharing, communication, and synchronization
between processes in the real-time application of Example 5.1. Implementation
of signals is described in Section 5.2.6.

•
Example 5.5 Process Interaction in a Real-time Data Logging Application

In the real-time data logging application of Example 5.1, buffer_area is shared
by processes copy_sample and record_sample. If a variable no_of_samples
_in_buffer is used to indicate how many samples are currently in the buffer,
both these processes would need to update no_of_samples_in_buffer, so its
consistency should be protected by delaying a process that wishes to update
it if another process is accessing it. These processes also need to synchronize
their activities such that a new sample is moved into an entry in buffer_area
only after the previous sample contained in the entry is written into the file,
and contents of a buffer entry are written into the file only after a new sample
is moved into it.

These processes also need to know the size of the buffer, i.e., how many
samples it can hold. Like no_of_samples_in_buffer, a variable size could be
used as shared data. However, use as shared data would incur the overhead of
mutual exclusion, which is not justified because the buffer size is not updated
regularly; it changes only in exceptional situations. Hence these processes could
be coded to use the size of the buffer as a local data item buf_size. Its value
would be sent to them by the process data_logger through messages. Process
data_logger would also need to send signals to these processes if the size of the
buffer has to be changed.
•

5.2.6 Signals
A signal is used to notify an exceptional situation to a process and enable it
to attend to it immediately. A list of exceptional situations and associated signal
names or signal numbers are defined in an OS, e.g., CPU conditions like overflows,
and conditions related to child processes, resource utilization, or emergency com-
munications from a user to a process. The kernel sends a signal to a process when
the corresponding exceptional situation occurs. Some kinds of signals may also be
sent by processes. A signal sent to a process because of a condition in its own activ-
ity, such as an overflow condition in the CPU, is said to be a synchronous signal,
whereas that sent because of some other condition is said to be an asynchronous
signal.

To utilize signals, a process makes a register_handler system call specifying a
routine that should be executed when a specific signal is sent to it; this routine is

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 133 — #27

Chapter 5 Processes and Threads 133

called a signal handler. If a process does not specify a signal handler for a signal,
the kernel executes a default handler that performs some standard actions like
dumping the address space of the process and aborting it.

A process Pi wishing to send a signal to another process Pj invokes the
library function signal with two parameters: id of the destination process, i.e.,
Pj , and the signal number. This function uses the software interrupt instruction
<SI_instrn> <interrupt_code> to make a system call named signal. The event
handling routine for the signal call extracts the parameters to find the signal
number. It now makes a provision to pass the signal to Pj and returns. It does not
make any change in the state of the sender process, i.e., Pi .

Signal handling in a process is implemented along the same lines as inter-
rupt handling in an OS. In Section 2.2 we described how the interrupt hardware
employs one interrupt vector for each class of interrupts, which contains the
address of a routine that handles interrupts of that class. A similar arrangement
can be used in each process. The signal vectors area would contain a signal vector
for each kind of signal, which would contain the address of a signal handler. When
a signal is sent to a process, the kernel accesses its signal vectors area to check
whether it has specified a signal handler for that signal. If so, it would arrange to
pass control to the handler; otherwise, it would execute its own default handler
for that signal.

Signal handling becomes complicated if the process to which a signal is sent
is in the blocked state. The kernel would have to change its state temporarily to
ready so that it could execute a signal handler, after which it would have to change
the state back to blocked. Some operating systems prefer a simpler approach that
merely notes the arrival of a signal if the destination process is in the blocked
state, and arranges to execute the signal handler when the process becomes ready
and gets scheduled.

Example 5.6 illustrates how a signal is handled by a process.

•
Example 5.6Signal Handling

Figure 5.10 illustrates the arrangement used for handling signals. The code
of process Pi contains a function named sh1, whose last instruction is a
“return from function” instruction, which pops an address off the stack and
passes control to the instruction with this address. Process Pi makes a library
call register_handler(sig1,sh1) to register sh1 as the signal han-
dler for signal sig1. The library routine register_handler makes the
system call register_handler. While handling this call, the kernel accesses the
PCB of Pi , obtains the start address of the signal vectors area, and enters
the address sh1 in the signal vector of signal sig1. Control now returns
to Pi . The solid arrows in Figure 5.10(a) indicate addresses in the kernel’s
data structures, while the dashed arrows indicate how the CPU is switched
to the kernel when the system call is made and how it is switched back
to Pi .

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 134 — #28

134 Part 2 Process Management

sh1sig1 sig1

Pi

sh1:

Start address

of signal

vectors area

(a) (b)

PCBPCB

Pi

Signal

vectors

Signal

vectors

Kernel

area

Kernel

area

sh1:

register_handler(
sig1,sh1)

register_handler(
sig1,sh1)

...b1:

{signalhandler} {signalhandler}

sh1

Figure 5.10 Signal handling by process Pi : (a) registering a signal handler; (b) invoking a
signal handler.

Let process Pi get preempted when it was about to execute the instruction
with address b1. A little later, some process Pj makes the system call signal
(Pi , sig1). The kernel locates the PCB of Pi , obtains the address of its signal
vectors area and locates the signal vector for sig1. It now arranges for process
Pi to execute the signal handler starting at address sh1 before resuming normal
execution as follows: It obtains the address contained in the program counter
(PC) field of the saved state of Pi , which is the address b1 because Pi was about
to execute the instruction with this address. It pushes this address on Pi ’s stack,
and puts the address sh1 in the program counter field of the saved state of Pi .
This way, when process Pi is scheduled, it would execute the signal handler
function with the start address sh1. The last instruction of sh1 would pop
the address b1 off the stack and pass control to the instruction with address
b1, which would resume normal operation of process Pi . In effect, as shown
by the broken arrows in Figure 5.10(b), Pi ’s execution would be diverted to
the signal handler starting at address sh1, and it would be resumed after the
signal handler is executed.
•

5.3 THREADS
•

Applications use concurrent processes to speed up their operation. However,
switching between processes within an application incurs high process switch-
ing overhead because the size of the process state information is large (see
Section 5.2.3), so operating system designers developed an alternative model of

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 135 — #29

Chapter 5 Processes and Threads 135

execution of a program, called a thread, that could provide concurrency within
an application with less overhead.

To understand the notion of threads, let us analyze process switching over-
head and see where a saving can be made. Process switching overhead has two
components:

• Execution related overhead: The CPU state of the running process has to be
saved and the CPU state of the new process has to be loaded in the CPU.
This overhead is unavoidable.

• Resource-use related overhead: The process context also has to be switched.
It involves switching of the information about resources allocated to the
process, such as memory and files, and interaction of the process with other
processes. The large size of this information adds to the process switching
overhead.

Consider child processes Pi and Pj of the primary process of an application.
These processes inherit the context of their parent process. If none of these pro-
cesses have allocated any resources of their own, their context is identical; their
state information differs only in their CPU states and contents of their stacks.
Consequently, while switching between Pi and Pj , much of the saving and loading
of process state information is redundant. Threads exploit this feature to reduce
the switching overhead.

Definition 5.3 Thread An execution of a program that uses the resources of
a process.

A process creates a thread through a system call. The thread does not have
resources of its own, so it does not have a context; it operates by using the context
of the process, and accesses the resources of the process through it. We use the
phrases “thread(s) of a process” and “parent process of a thread” to describe the
relationship between a thread and the process whose context it uses. Note that
threads are not a substitute for child processes; an application would create child
processes to execute different parts of its code, and each child process can create
threads to achieve concurrency.

Figure 5.11 illustrates the relationship between threads and processes. In the
abstract view of Figure 5.11(a), process Pi has three threads, which are represented
by wavy lines inside the circle representing process Pi . Figure 5.11(b) shows an
implementation arrangement. Process Pi has a context and a PCB. Each thread
of Pi is an execution of a program, so it has its own stack and a thread control
block (TCB), which is analogous to the PCB and stores the following information:

1. Thread scheduling information—thread id, priority and state.
2. CPU state, i.e., contents of the PSW and GPRs.
3. Pointer to PCB of parent process.
4. TCB pointer, which is used to make lists of TCBs for scheduling.

Use of threads effectively splits the process state into two parts—the resource
state remains with the process while an execution state, which is the CPU state, is

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 136 — #30

136 Part 2 Process Management

(a) (b)

Code Data Stack

Memory

info

Resource

info

File

pointers

Context of

process Pi
PCB

Thread control

blocks (TCBs)

Stacks

Context of

process Pi

Process

Pi

Threads

Figure 5.11 Threads in process Pi : (a) concept; (b) implementation.

associated with a thread. The cost of concurrency within the context of a process
is now merely replication of the execution state for each thread. The execution
states need to be switched during switching between threads. The resource state is
neither replicated nor switched during switching between threads of the process.

Thread States and State Transitions Barring the difference that threads do not
have resources allocated to them, threads and processes are analogous. Hence
thread states and thread state transitions are analogous to process states and pro-
cess state transitions. When a thread is created, it is put in the ready state because
its parent process already has the necessary resources allocated to it. It enters the
running state when it is dispatched. It does not enter the blocked state because
of resource requests, because it does not make any resource requests; however,
it can enter the blocked state because of process synchronization requirements.
For example, if threads were used in the real-time data logging application of
Example 5.1, thread record_sample would have to enter the blocked state if no
data samples exist in buffer_area.

Advantages of Threads over Processes Table 5.8 summarizes the advantages
of threads over processes, of which we have already discussed the advantage of
lower overhead of thread creation and switching. Unlike child processes, threads
share the address space of the parent process, so they can communicate through
shared data rather than through messages, thereby eliminating the overhead of
system calls.

Applications that service requests received from users, such as airline reser-
vation systems or banking systems, are called servers; their users are called clients.
(Client–server computing is discussed in Section 16.5.1.) Performance of servers
can be improved through concurrency or parallelism (see Section 5.1.4), i.e.,
either through interleaving of requests that involve I/O operations or through use
of many CPUs to service different requests. Use of threads simplifies their design;
we discuss it with the help of Figure 5.12.

Figure 5.12(a) is a view of an airline reservation server. The server enters
requests made by its clients in a queue and serves them one after another. If

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 137 — #31

Chapter 5 Processes and Threads 137

Table 5.8 Advantages of Threads over Processes

Advantage Explanation

Lower overhead of creation
and switching

Thread state consists only of the state of a
computation. Resource allocation state and
communication state are not a part of the thread
state, so creation of threads and switching between
them incurs a lower overhead.

More efficient communication Threads of a process can communicate with one
another through shared data, thus avoiding the
overhead of system calls for communication.

Simplification of design Use of threads can simplify design and coding of
applications that service requests concurrently.

(a) (b) (c)

Pending

requests

Clients

Server

S

Server

S

Clients

Server

Pending

requests

S

Clients

Figure 5.12 Use of threads in structuring a server: (a) server using sequential code;
(b) multithreaded server; (c) server using a thread pool.

several requests are to be serviced concurrently, the server would have to employ
advanced I/O techniques such as asynchronous I/O, and use complex logic to
switch between the processing of requests. By contrast, a multithreaded server
could create a new thread to service each new request it receives, and terminate
the thread after servicing the request. This server would not have to employ any
special techniques for concurrency because concurrency is implicit in its creation
of threads. Figure 5.12(b) shows a multithreaded server, which has created three
threads because it has received three requests.

Creation and termination of threads is more efficient than creation and ter-
mination of processes; however, its overhead can affect performance of the server
if clients make requests at a very high rate. An arrangement called thread pool
is used to avoid this overhead by reusing threads instead of destroying them
after servicing requests. The thread pool consists of one primary thread that per-
forms housekeeping tasks and a few worker threads that are used repetitively.
The primary thread maintains a list of pending requests and a list of idle worker
threads. When a new request is made, it assigns the request to an idle worker
thread, if one exists; otherwise, it enters the request in the list of pending requests.
When a worker thread completes servicing of a request, the primary thread either
assigns a new request to the worker thread to service, or enters it in the list of idle

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 138 — #32

138 Part 2 Process Management

worker threads. Figure 5.12(c) illustrates a server using a thread pool. It contains
three worker threads that are busy servicing three service requests, while three ser-
vice requests are pending. If the thread pool facility is implemented in the OS, the
OS would provide the primary thread for the pool, which would simplify coding
of the server because it would not have to handle concurrency explicitly. The OS
could also vary the number of worker threads dynamically to provide adequate
concurrency in the application, and also reduce commitment of OS resources to
idle worker threads.

Coding for Use of Threads Threads should ensure correctness of data sharing
and synchronization (see Section 5.2.5). Section 5.3.1 describes features in the
POSIX threads standard that can be used for this purpose. Correctness of data
sharing also has another facet. Functions or subroutines that use static or global
data to carry values across their successive activations may produce incorrect
results when invoked concurrently, because the invocations effectively share the
global or static data concurrently without mutual exclusion. Such routines are
said to be thread unsafe. An application that uses threads must be coded in a
thread safe manner and must invoke routines only from a thread safe library.

Signal handling requires special attention in a multithreaded applica-
tion. Recall that the kernel permits a process to specify signal handlers (see
Section 5.2.6). When several threads are created in a process, which thread should
handle a signal? There are several possibilities. The kernel may select one of the
threads for signal handling. This choice can be made either statically, e.g., either
the first or the last thread created in the process, or dynamically, e.g., the highest-
priority thread. Alternatively, the kernel may permit an application to specify
which thread should handle signals at any time.

A synchronous signal arises as a result of the activity of a thread, so it is
best that the thread itself handles it. Ideally, each thread should be able to specify
which synchronous signals it is interested in handling. However, to provide this
feature, the kernel would have to replicate the signal handling arrangement of
Figure 5.6 for each thread, so few operating systems provide it. An asynchronous
signal can be handled by any thread in a process. To ensure prompt attention to
the condition that caused the signal, the highest-priority thread should handle
such a signal.

5.3.1 POSIX Threads
The ANSI/IEEE Portable Operating System Interface (POSIX) standard defines
the pthreads application program interface for use by C language programs.
Popularly called POSIX threads, this interface provides 60 routines that perform
the following tasks:

• Thread management: Threads are managed through calls on thread library
routines for creation of threads, querying status of threads, normal or
abnormal termination of threads, waiting for termination of a thread, setting
of scheduling attributes, and specifying thread stack size.

• Assistance for data sharing: Data shared by threads may attain incorrect
values if two or more threads update it concurrently. A feature called mutex is

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 139 — #33

Chapter 5 Processes and Threads 139

provided to ensure mutual exclusion between threads while accessing shared
data, i.e., to ensure that only one thread is accessing shared data at any time.
Routines are provided to begin use of shared data in a thread and indicate end
of use of shared data. If threads are used in Example 5.5, threads copy_sample
and record_sample would use a mutex to ensure that they do not access and
update no_of_samples_in_buffer concurrently.

• Assistance for synchronization: Condition variables are provided to facilitate
coordination between threads so that they perform their actions in the desired
order. If threads are used in Example 5.5, condition variables would be used
to ensure that thread copy_sample would copy a sample into buffer_area
before record_sample would write it from there into the file.

Figure 5.13 illustrates use of pthreads in the real-time data logging application
of Example 5.1. A pthread is created through the call

pthread_create(< data structure >, < attributes >,

< start routine >, < arguments >)

where the thread data structure becomes the de facto thread id, and attributes
indicate scheduling priority and synchronization options. A thread terminates
through a pthread_exit call which takes a thread status as a parameter. Syn-
chronization between the parent thread and a child thread is performed through
the pthread_join call, which takes a thread id and some attributes as param-
eters. On issuing this call, the parent thread is blocked until the thread indicated
in the call has terminated; an error is raised if the termination status of the thread
does not match the attributes indicated in the pthread_join call. Some thread
implementations require a thread to be created with the attribute “joinable” to
qualify for such synchronization. The code in Figure 5.13 creates three threads
to perform the functions performed by processes in Example 5.1. As mentioned
above, and indicated through comments in Figure 5.13, the threads would use the
mutex buf_mutex to ensure mutually exclusive access to the buffer and use con-
dition variables buf_full and buf_empty to ensure that they deposit samples
into the buffer and take them out of the buffer in the correct order. We do not
show details of mutexes and condition variables here; they are discussed later in
Chapter 6.

5.3.2 Kernel-Level, User-Level, and Hybrid Threads
These three models of threads differ in the role of the process and the kernel in
the creation and management of threads. This difference has a significant impact
on the overhead of thread switching and the concurrency and parallelism within
a process.

5.3.2.1 Kernel-Level Threads

A kernel-level thread is implemented by the kernel. Hence creation and ter-
mination of kernel-level threads, and checking of their status, is performed

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 140 — #34

140 Part 2 Process Management

#include <pthread.h>
#include <stdio.h>
int size, buffer[100], no_of_samples_in_buffer;
int main()
{

pthread_t id1, id2, id3;
pthread_mutex_t buf_mutex, condition_mutex;
pthread_cond_t buf_full, buf_empty;
pthread_create(&id1, NULL, move_to_buffer, NULL);
pthread_create(&id2, NULL, write_into_file, NULL);
pthread_create(&id3, NULL, analysis, NULL);
pthread_join(id1, NULL);
pthread_join(id2, NULL);
pthread_join(id3, NULL);
pthread_exit(0);

}

void *move_to_buffer()
{

/* Repeat until all samples are received */
/* If no space in buffer, wait on buf_full */
/* Use buf_mutex to access the buffer, increment no. of samples */
/* Signal buf_empty */
pthread_exit(0);

}

void *write_into_file()
{

/* Repeat until all samples are written into the file */
/* If no data in buffer, wait on buf_empty */
/* Use buf_mutex to access the buffer, decrement no. of samples */
/* Signal buf_full */
pthread_exit(0);

}

void *analysis()
{

/* Repeat until all samples are analyzed */
/* Read a sample from the buffer and analyze it */
pthread_exit(0);

}

Figure 5.13 Outline of the data logging application using POSIX threads.

through system calls. Figure 5.14 shows a schematic of how the kernel handles
kernel-level threads. When a process makes a create_thread system call, the ker-
nel creates a thread, assigns an id to it, and allocates a thread control block
(TCB). The TCB contains a pointer to the PCB of the parent process of the
thread.

When an event occurs, the kernel saves the CPU state of the interrupted
thread in its TCB. After event handling, the scheduler considers TCBs of all
threads and selects one ready thread; the dispatcher uses the PCB pointer in its

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 141 — #35

Chapter 5 Processes and Threads 141

PCB PCB

···
Thread control blocks

(TCBs)

PCB pointer

Selected TCB

Pi Pj

Scheduler

Figure 5.14 Scheduling of kernel-level threads.

TCB to check whether the selected thread belongs to a different process than
the interrupted thread. If so, it saves the context of the process to which the
interrupted thread belongs, and loads the context of the process to which the
selected thread belongs. It then dispatches the selected thread. However, actions
to save and load the process context are skipped if both threads belong to the same
process. This feature reduces the switching overhead, hence switching between
kernel-level threads of a process could be as much as an order of magnitude
faster, i.e., 10 times faster, than switching between processes.

Advantages and Disadvantages of Kernel-Level Threads A kernel-level thread
is like a process except that it has a smaller amount of state information. This
similarity is convenient for programmers—programming for threads is no dif-
ferent from programming for processes. In a multiprocessor system, kernel-level
threads provide parallelism (see Section 5.1.4), as many threads belonging to a
process can be scheduled simultaneously, which is not possible with the user-level
threads described in the next section, so it provides better computation speedup
than user-level threads.

However, handling threads like processes has its disadvantages too. Switching
between threads is performed by the kernel as a result of event handling. Hence
it incurs the overhead of event handling even if the interrupted thread and the
selected thread belong to the same process. This feature limits the savings in the
thread switching overhead.

5.3.2.2 User-Level Threads

User-level threads are implemented by a thread library, which is linked to the
code of a process. The library sets up the thread implementation arrangement
shown in Figure 5.11(b) without involving the kernel, and itself interleaves oper-
ation of threads in the process. Thus, the kernel is not aware of presence of
user-level threads in a process; it sees only the process. Most OSs implement the

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 142 — #36

142 Part 2 Process Management

pthreads application program interface provided in the IEEE POSIX standard
(see Section 5.3.1) in this manner.

An overview of creation and operation of threads is as follows: A process
invokes the library function create_thread to create a new thread. The library
function creates a TCB for the new thread and starts considering the new thread
for “scheduling.” When the thread in the running state invokes a library function
to perform synchronization, say, wait until a specific event occurs, the library
function performs “scheduling” and switches to another thread of the process.
Thus, the kernel is oblivious to switching between threads; it believes that the
process is continuously in operation. If the thread library cannot find a ready
thread in the process, it makes a “block me” system call. The kernel now blocks
the process. It will be unblocked when some event activates one of its threads
and will resume execution of the thread library function, which will perform
“scheduling” and switch to execution of the newly activated thread.

Scheduling of User-Level Threads Figure 5.15 is a schematic diagram of schedul-
ing of user-level threads. The thread library code is a part of each process. It
performs “scheduling” to select a thread, and organizes its execution. We view
this operation as “mapping” of the TCB of the selected thread into the PCB of
the process.

The thread library uses information in the TCBs to decide which thread
should operate at any time. To “dispatch” the thread, the CPU state of the thread
should become the CPU state of the process, and the process stack pointer should
point to the thread’s stack. Since the thread library is a part of a process, the
CPU is in the user mode. Hence a thread cannot be dispatched by loading new
information into the PSW; the thread library has to use nonprivileged instructions
to change PSW contents. Accordingly, it loads the address of the thread’s stack

Process context

� thread library

Pi Pj

· · ·

Thread control blocks

(TCBs)

Mapping performed

by thread library

Process control blocks

(PCBs)

Scheduler

Selected PCB

Figure 5.15 Scheduling of user-level threads.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 143 — #37

Chapter 5 Processes and Threads 143

into the stack address register, obtains the address contained in the program
counter (PC) field of the thread’s CPU state found in its TCB, and executes a
branch instruction to transfer control to the instruction which has this address.
The next example illustrates interesting situations during scheduling of user-level
threads.

•
Example 5.7Scheduling of User-Level Threads

Figure 5.16 illustrates how the thread library manages three threads in a pro-
cess Pi . The codes N, R, and B in the TCBs represent the states running, ready,
and blocked, respectively. Process Pi is in the running state and the thread
library is executing. It dispatches thread h1, so h1’s state is shown as N, i.e.
running. Process Pi is preempted sometime later by the kernel. Figure 5.16(a)
illustrates states of the threads and of process Pi . Thread h1 is in the running
state, and process Pi is in the ready state. Thread h1 would resume its operation
when process Pi is scheduled next. The line from h1’s TCB to Pi ’s PCB indi-
cates that h1’s TCB is currently mapped into Pi ’s PCB. This fact is important
for the dispatching and context save actions of the thread library.

Thread h2 is in the ready state in Figure 5.16(a), so its TCB contains the
code R. Thread h3 awaits a synchronization action by h1, so it is in the blocked
state. Its TCB contains the code B, and h1 to indicate that it is awaiting an
event that is a synchronization action by h1. Figure 5.16(b) shows the situation
when the kernel dispatches Pi and changes its state to running.

The thread library overlaps operation of threads using the timer. While
“scheduling” h1, the library would have requested an interrupt after a small
interval of time. When the timer interrupt occurs, it gets control through the
event handling routine of the kernel for timer interrupts, and decides to pre-
empt h1. So it saves the CPU state in h1’s TCB, and “schedules” h2. Hence
the state codes in the TCB’s of h1 and h2 change to R and N , respectively
(Figure 5.16(c)). Note that thread scheduling performed by the thread library
is invisible to the kernel. All through these events, the kernel sees process Pi in
the running state.

A user thread should not make a blocking system call; however, let us see
what would happen if h2 made a system call to initiate an I/O operation on
device d2, which is a blocking system call. The kernel would change the state
of process Pi to blocked and note that it is blocked because of an I/O operation
on device d2 (Figure 5.16(d)). Some time after the I/O operation completes,
the kernel would schedule process Pi , and operation of h2 would resume. Note
that the state code in h2’s TCB remains N , signifying the running state, all
through its I/O operation!

•

Advantages and Disadvantages of User-Level Threads Thread synchronization
and scheduling is implemented by the thread library. This arrangement avoids

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 144 — #38

144 Part 2 Process Management

TCBs

PCB

of Pi

(a) (b) (c) (d)

Pi

h1 h2 h3

N R B
h1

Ready

Pi

h1 h2 h3

h1

N R B

Running

Pi

h1 h2 h3

h1

R N B

Running

Pi

h1 h2 h3

h1

R N B

Blocked
d2

Figure 5.16 Actions of the thread library (N, R, B indicate running, ready, and blocked).

the overhead of a system call for synchronization between threads, so the thread
switching overhead could be as much as an order of magnitude smaller than in
kernel-level threads. This arrangement also enables each process to use a schedul-
ing policy that best suits its nature. A process implementing a real-time application
may use priority-based scheduling of its threads to meet its response require-
ments, whereas a process implementing a multithreaded server may perform
round-robin scheduling of its threads. However, performance of an application
would depend on whether scheduling of user-level threads performed by the
thread library is compatible with scheduling of processes performed by the kernel.
For example, round-robin scheduling in the thread library would be compatible
with either round-robin scheduling or priority-based scheduling in the kernel,
whereas priority-based scheduling would be compatible only with priority-based
scheduling in the kernel.

Managing threads without involving the kernel also has a few drawbacks.
First, the kernel does not know the distinction between a thread and a process,
so if a thread were to block in a system call, the kernel would block its parent
process. In effect, all threads of the process would get blocked until the cause of
the blocking was removed—In Figure 5.16(d) of Example 5.7, thread h1 cannot be
scheduled even though it is in the ready state because thread h2 made a blocking
system call. Hence threads must not make system calls that can lead to blocking.
To facilitate this, an OS would have to make available a nonblocking version
of each system call that would otherwise lead to blocking of a process. Second,
since the kernel schedules a process and the thread library schedules the threads
within a process, at most one thread of a process can be in operation at any time.
Thus, user-level threads cannot provide parallelism (see Section 5.1.4), and the
concurrency provided by them is seriously impaired if a thread makes a system
call that leads to blocking.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 145 — #39

Chapter 5 Processes and Threads 145

5.3.2.3 Hybrid Thread Models

A hybrid thread model has both user-level threads and kernel-level threads and
a method of associating user-level threads with kernel-level threads. Different
methods of associating user- and kernel-level threads provide different combina-
tions of the low switching overhead of user-level threads and the high concurrency
and parallelism of kernel-level threads.

Figure 5.17 illustrates three methods of associating user-level threads with
kernel-level threads. The thread library creates user-level threads in a process and
associates a thread control block (TCB) with each user-level thread. The kernel
creates kernel-level threads in a process and associates a kernel thread control block
(KTCB) with each kernel-level thread. In the many-to-one association method,
a single kernel-level thread is created in a process by the kernel and all user-
level threads created in a process by the thread library are associated with this
kernel-level thread. This method of association provides an effect similar to mere
user-level threads: User-level threads can be concurrent without being parallel,
thread switching incurs low overhead, and blocking of a user-level thread leads
to blocking of all threads in the process.

In the one-to-one method of association, each user-level thread is perma-
nently mapped into a kernel-level thread. This association provides an effect
similar to mere kernel-level threads: Threads can operate in parallel on different
CPUs of a multiprocessor system; however, switching between threads is per-
formed at the kernel level and incurs high overhead. Blocking of a user-level
thread does not block other user-level threads of the process because they are
mapped into different kernel-level threads.

The many-to-many association method permits a user-level thread to be
mapped into different kernel-level threads at different times (see Figure 5.17(c)).
It provides parallelism between user-level threads that are mapped into different
kernel-level threads at the same time, and provides low overhead of switching

(a)

PCB

TCBs

KTCBs

(b)

PCB

TCBs

KTCBs

(c)

PCB

TCBs

KTCBs

Figure 5.17 (a) Many-to-one; (b) one-to-one; (c) many-to-many associations in hybrid threads.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 146 — #40

146 Part 2 Process Management

between user-level threads that are scheduled on the same kernel-level thread
by the thread library. However, the many-to-many association method requires
a complex implementation. We shall discuss its details in Section 5.4.3 when we
discuss the hybrid thread model that was used in the Sun Solaris operating system
until Solaris 8.

5.4 CASE STUDIES OF PROCESSES AND THREADS
•

5.4.1 Processes in Unix
Data Structures Unix uses two data structures to hold control data about
processes:

• proc structure: Contains process id, process state, priority, information about
relationships with other processes, a descriptor of the event for which a
blocked process is waiting, signal handling mask, and memory management
information.

• u area (stands for “user area”): Contains a process control block, which stores
the CPU state for a blocked process; pointer to proc structure, user and group
ids, and information concerning the following: signal handlers, open files and
the current directory, terminal attached to the process, and CPU usage by
the process.

These data structures together hold information analogous to the PCB data struc-
ture discussed in Section 5.2. The proc structure mainly holds scheduling related
data while the u area contains data related to resource allocation and signal han-
dling. The proc structure of a process is always held in memory. The u area needs
to be in memory only when the process is in operation.

Types of Processes Two types of processes exist in Unix—user processes and
kernel processes. A user process executes a user computation. It is associated
with the user’s terminal. When a user initiates a program, the kernel creates the
primary process for it, which can create child processes (see Section 5.1.2). A
daemon process is one that is detached from the user’s terminal. It runs in the
background and typically performs functions on a systemwide basis, e.g., print
spooling and network management. Once created, daemon processes can exist
throughout the lifetime of the OS. Kernel processes execute code of the kernel.
They are concerned with background activities of the kernel like swapping. They
are created automatically when the system is booted and they can invoke kernel
functionalities or refer to kernel data structures without having to perform a
system call.

Process Creation and Termination The system call fork creates a child process
and sets up its context (called the user-level context in Unix literature). It allocates
a proc structure for the newly created process and marks its state as ready, and
also allocates a u area for the process. The kernel keeps track of the parent–child
relationships using the proc structure. fork returns the id of the child process.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 147 — #41

Chapter 5 Processes and Threads 147

The user-level context of the child process is a copy of the parent’s user-
level context. Hence the child executes the same code as the parent. At creation,
the program counter of the child process is set to contain the address of the
instruction at which the fork call returns. The fork call returns a 0 in the child
process, which is the only difference between parent and child processes.A child
process can execute the same program as its parent, or it can use a system call
from the exec family of system calls to load some other program for execution.
Although this arrangement is cumbersome, it gives the child process an option of
executing the parent’s code in the parent’s context or choosing its own program
for execution. The former alternative was used in older Unix systems to set up
servers that could service many user requests concurrently.

The complete view of process creation and termination in Unix is as follows:
After booting, the system creates a process init. This process creates a child process
for every terminal connected to the system. After a sequence of exec calls, each
child process starts running the login shell. When a programmer indicates the
name of a file from the command line, the shell creates a new process that executes
an exec call for the named file, in effect becoming the primary process of the
program. Thus the primary process is a child of the shell process. The shell process
now executes the wait system call described later in this section to wait for end of
the primary process of the program. Thus it becomes blocked until the program
completes, and becomes active again to accept the next user command. If a shell
process performs an exit call to terminate itself, init creates a new process for the
terminal to run the login shell.

A process Pi can terminate itself through the exit system call exit (sta-
tus_code), where status_code is a code indicating the termination status of the
process. On receiving the exit call the kernel saves the status code in the proc
structure of Pi , closes all open files, releases the memory allocated to the process,
and destroys its u area. However, the proc structure is retained until the parent
of Pi destroys it. This way the parent of Pi can query its termination status any
time it wishes. In essence, the terminated process is dead but it exists, hence it is
called a zombie process. The exit call also sends a signal to the parent of Pi . The
child processes of Pi are made children of the kernel process init. This way init
receives a signal when a child of Pi , say Pc, terminates so that it can release Pc’s
proc structure.

Waiting for Process Termination A process Pi can wait for the termination of
a child process through the system call wait (addr(. . .)), where addr(. . .) is the
address of a variable, say variable xyz, within the address space of Pi . If process
Pi has child processes and at least one of them has already terminated, the wait call
stores the termination status of a terminated child process in xyz and immediately
returns with the id of the terminated child process. If more terminated child
processes exist, their termination status will be made available to Pi only when
it repeats the wait call. The state of process Pi is changed to blocked if it has
children but none of them has terminated. It will be unblocked when one of the
child processes terminates. The wait call returns with a “−1” if Pi has no children.
The following example illustrates benefits of these semantics of the wait call.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 148 — #42

148 Part 2 Process Management

•
Example 5.8 Child Processes in Unix

Figure 5.18 shows the C code of a process that creates three child processes
in the for loop and awaits their completion. This code can be used to set
up processes of the real-time data logging system of Example 5.1. Note that
the fork call returns to the calling process with the id of the newly created
child process whereas it returns to the child process with a 0. Because of this
peculiarity, child processes execute the code in the if statement while the
parent process skips the if statement and executes a wait statement. The wait
is satisfied whenever a child process terminates through the exit statement.
However, the parent process wishes to wait until the last process finishes, so
it issues another wait if the value returned is anything other than −1. The
fourth wait call returns with a −1, which brings the parent process out of
the loop. The parent process code does not contain an explicit exit() call.
The language compiler automatically adds this at the end of main().
•

Waiting for Occurrence of Events A process that is blocked on an event is said
to sleep on it; e.g., a process that initiates an I/O operation would sleep on its
completion event. Unix uses an interesting arrangement to activate processes
sleeping on an event. It does not use event control blocks (ECBs) described earlier
in Section 5.2.4; instead it uses event addresses. A set of addresses is reserved
in the kernel, and every event is mapped into one of these addresses. When a
process wishes to sleep on an event, the address of the event is computed, the
state of the process is changed to blocked, and the address of the event is put in
its process structure. This address serves as the description of the event awaited
by the process. When the event occurs, the kernel computes its event address and
activates all processes sleeping on it.

main()
{

int saved_status;
for (i=0; i<3; i++)
{

if (fork()==0)
{ /* code for child processes */

...
exit();

}
}
while (wait(&saved_status) !=-1);

/* loop till all child processes terminate */
}

Figure 5.18 Process creation and termination in Unix.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 149 — #43

Chapter 5 Processes and Threads 149

This arrangement incurs unnecessary overhead in some situations. For
example, consider several processes sleeping on the same event as a result of
data access synchronization. When the event occurs, all these processes are acti-
vated but only one process gains access to the data and the other processes go
back to sleep. This is analogous to the busy wait situation, which we will discuss
in the next chapter. The method of mapping events into addresses adds to this
problem. A hashing scheme is used for mapping, and so two or more events may
map into the same event address. Now occurrence of any one of these events will
activate all processes sleeping on all these events. Each activated process would
now have to check whether the event on which it is sleeping has indeed occurred,
and go back to sleep if this is not the case.

Interrupt Servicing Unix avoids interrupts during sensitive kernel-level actions
by assigning each interrupt an interrupt priority level (ipl). Depending on the
program being executed by the CPU, an interrupt priority level is also associated
with the CPU. When an interrupt at a priority level l arises, it is handled only if l
is larger than the interrupt priority level of the CPU; otherwise, it is kept pending
until the CPU’s interrupt priority level becomes < l. The kernel uses this feature
to prevent inconsistency of the kernel data structures by raising the ipl of the
CPU to a high value before starting to update its data structures and lowering it
after the update is completed.

System Calls When a system call is made, the system call handler uses the system
call number to determine which system functionality is being invoked. From its
internal tables it knows the address of the handler for this functionality. It also
knows the number of parameters this call is supposed to take. However, these
parameters exist on the user stack, which is a part of the process context of the
process making the call. So these parameters are copied from the process stack
into some standard place in the u area of the process before control is passed
to the handler for the specific call. This action simplifies operation of individual
event handlers.

Signals A signal can be sent to a process, or to a group of processes. This action
is performed by the kill system call kill (<pid>, <signum>), where <pid> is an
integer value that can be positive, zero, or negative. A positive value of <pid> is
the id of a process to which the signal is to be sent. A 0 value of <pid> implies
that the signal is to be sent to some processes within the same process tree as the
sender process, i.e., some processes that share an ancestor with the sender process.
This feature is implemented as follows: At a fork call, the newly created process
is assigned a group id that is the same as the process group number of its parent
process. A process may change its group number by using the setpgrp system call.
When <pid>= 0, the signal is sent to all processes with the same group number
as the sender. A negative value of <pid> is used to reach processes outside the
process tree of the sender. We will not elaborate on this feature here.

A process specifies a signal handler by executing the statement

oldfunction = signal (<signum>, <function>)

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 150 — #44

150 Part 2 Process Management

where signal is a function in the C library that makes a signal system call,
<signum> is an integer, and <function> is the name of a function within the
address space of the process. This call specifies that the function <function>

should be executed on occurrence of the signal <signum>. The signal call
returns with the previous action specified for the signal <signum>. A user can
specify SIG_DFL as <function> to indicate that the default action defined in the
kernel, such as producing a core dump and aborting the process, is to be executed
on occurrence of the signal, or specify SIG_IGN as <function> to indicate that
the occurrence of the signal is to be ignored.

The kernel uses the u area of a process to note the signal handling actions
specified by it, and a set of bits in the proc structure to register the occurrence
of signals. Whenever a signal is sent to a process, the bit corresponding to the
signal is set to 1 in the proc structure of the destination process. The kernel now
determines whether the signal is being ignored by the destination process. If not,
it makes provision to deliver the signal to the process. If a signal is ignored, it
remains pending and is delivered when the process specifies its interest in receiving
the signal (either by specifying an action or by specifying that the default action
should be used for it). A signal remains pending if the process for which it is
intended is in a blocked state. The signal is delivered when the process comes
out of the blocked state. In general, the kernel checks for pending signals when
a process returns from a system call or interrupt, after a process gets unblocked,
and before a process gets blocked on an event.

Invocation of the signal handling action is implemented as described earlier
in Section 5.2.6. A few anomalies exist in the way signals are handled. If a signal
occurs repeatedly, the kernel simply notes that it has occurred, but does not count
the number of its occurrences. Hence the signal handler may be executed once or
several times, depending on when the process gets scheduled to execute the signal
handler. Another anomaly concerns a signal sent to a process that is blocked in a
system call. After executing the signal handler, such a process does not resume its
execution of the system call. Instead, it returns from the system call. If necessary,
it may have to repeat the system call. Table 5.9 lists some interesting Unix signals.

Table 5.9 Interesting Signals in Unix

Signal Description

SIGCHLD Child process died or suspended
SIGFPE Arithmetic fault
SIGILL Illegal instruction
SIGINT Tty interrupt (Control-C)
SIGKILL Kill process
SIGSEGV Segmentation fault
SIGSYS Invalid system call
SIGXCPU CPU time limit is exceeded
SIGXFSZ File size limit is exceeded

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 151 — #45

Chapter 5 Processes and Threads 151

Process States and State Transitions There is one conceptual difference
between the process model described in Section 5.2.1 and that used in Unix.
In the model of Section 5.2.1, a process in the running state is put in the ready
state the moment its execution is interrupted. A system process then handles the
event that caused the interrupt. If the running process had itself caused a software
interrupt by executing an <SI_instrn>, its state may further change to blocked if
its request cannot be granted immediately. In this model a user process executes
only user code; it does not need any special privileges. A system process may have
to use privileged instructions like I/O initiation and setting of memory protection
information, so the system process executes with the CPU in the kernel mode.

Processes behave differently in the Unix model. When a process makes a
system call, the process itself proceeds to execute the kernel code meant to handle
the system call. To ensure that it has the necessary privileges, it needs to execute
with the CPU in the kernel mode. A mode change is thus necessary every time
a system call is made. The opposite mode change is necessary after processing a
system call. Similar mode changes are needed when a process starts executing the
interrupt servicing code in the kernel because of an interrupt, and when it returns
after servicing an interrupt.

The Unix kernel code is made reentrant so that many processes can execute it
concurrently. This feature takes care of the situation where a process gets blocked
while executing kernel code, e.g., when it makes a system call to initiate an I/O
operation, or makes a request that cannot be granted immediately. To ensure
reentrancy of code, every process executing the kernel code must use its own
kernel stack. This stack contains the history of function invocations since the
time the process entered the kernel code. If another process also enters the kernel
code, the history of its function invocations will be maintained on its own kernel
stack. Thus, their operation would not interfere. In principle, the kernel stack of
a process need not be distinct from its user stack; however, distinct stacks are
used in practice because most computer architectures use different stacks when
the CPU is in the kernel and user modes.

Unix uses two distinct running states. These states are called user running and
kernel running states. A user process executes user code while in the user running
state, and kernel code while in the kernel running state. It makes the transition from
user running to kernel running when it makes a system call, or when an interrupt
occurs. It may get blocked while in the kernel running state because of an I/O
operation or nonavailability of a resource. When the I/O operation completes or
its resource request is granted, the process returns to the kernel running state and
completes the execution of the kernel code that it was executing. It now leaves
the kernel mode and returns to the user mode. Accordingly, its state is changed
from kernel running to user running.

Because of this arrangement, a process does not get blocked or preempted in
the user running state—it first makes a transition to the kernel running state and
then gets blocked or preempted. In fact, user running → kernel running is the only
transition out of the user running state. Figure 5.19 illustrates fundamental process
states and state transitions in Unix. As shown there, even process termination
occurs when a process is in the kernel running state. This happens because the

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 152 — #46

152 Part 2 Process Management

Ready Blocked
Resource granted

or wait completed

Dispatching

Preemption

Resource or

wait request

Kernel
running

User
running

Zombie

Interrupt/

system call

Return from

interrupt/

system call

Exit

Figure 5.19 Process state transitions in Unix.

process executes the system call exit while in the user running state. This call
changes its state to kernel running. The process actually terminates and becomes
a zombie process as a result of processing this call.

5.4.2 Processes and Threads in Linux
Data Structures The Linux 2.6 kernel supports the 1 : 1 threading model, i.e.,
kernel-level threads. It uses a process descriptor, which is a data structure of type
task_struct, to contain all information pertaining to a process or thread. For
a process, this data structure contains the process state, information about its
parent and child processes, the terminal used by the process, its current directory,
open files, the memory allocated to it, signals, and signal handlers. The kernel
creates substructures to hold information concerning the terminal, directory, files,
memory and signals and puts pointers to them in the process descriptor. This
organization saves both memory and overhead when a thread is created.

Creation and Termination of Processes and Threads Both processes and threads
are created through the system calls fork and vfork, whose functionalities are
identical to the corresponding Unix calls. These functionalities are actually imple-
mented by the system call clone, which is hidden from the view of programs. The
clone system call takes four parameters: start address of the process or thread,
parameters to be passed to it, flags, and a child stack specification. Some of the
important flags are:

CLONE_VM Shares the memory management information used
by the MMU

CLONE_FS Shares the information about root and current
working directory

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 153 — #47

Chapter 5 Processes and Threads 153

CLONE_FILES Shares the information about open files
CLONE_SIGHAND Shares the information about signals and signal

handlers

The organization of task_struct facilitates selective sharing of this infor-
mation since it merely contains pointers to the substructures where the actual
information is stored. At a clone call, the kernel makes a copy of task_struct
in which some of these pointers are copied and others are changed. A thread
is created by calling clone with all flags set, so that the new thread shares the
address space, files and signal handlers of its parent. A process is created by
calling clone with all flags cleared; the new process does not share any of these
components.

The Linux 2.6 kernel also includes support for the Native POSIX Threading
Library (NPTL), which provides a number of enhancements that benefit heavily
threaded applications. It can support up to 2 billion threads, whereas the Linux
2.4 kernel could support only up to 8192 threads per CPU. A new system call
exit_group() has been introduced to terminate a process and all its threads; it can
terminate a process having a hundred thousand threads in about 2 seconds, as
against about 15 minutes in the Linux 2.4 kernel. Signal handling is performed
in the kernel space, and a signal is delivered to one of the available threads in
a process. Stop and continue signals affect an entire process, while fatal signals
terminate the entire process. These features simplify handling of multithreaded
processes. The Linux 2.6 kernel also supports a fast user-space mutex called futex
that reduces the overhead of thread synchronization through a reduction in the
number of system calls.

Parent---Child Relationships Information about parent and child processes or
threads is stored in a task_struct to maintain awareness of the process tree.
task_struct contains a pointer to the parent and to the deemed parent, which
is a process to which termination of this process should be reported if its par-
ent process has terminated, a pointer to the youngest child, and pointers to the
younger and older siblings of a process. Thus, the process tree of Figure 5.2 would
be represented as shown in Figure 5.20.

data_logger

copy_sample record_sample housekeeping

Figure 5.20 Linux process tree for the processes of Figure 5.2(a).

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 154 — #48

154 Part 2 Process Management

Process States The state field of a process descriptor contains a flag indicating
the state of a process. A process can be in one of five states at any time:

TASK_RUNNING The process is either scheduled or waiting to
be scheduled.

TASK_INTERRUPTIBLE The process is sleeping on an event, but may
receive a signal.

TASK_UNINTERRUPTIBLE The process is sleeping on an event, but may
not receive a signal.

TASK_STOPPED The operation of the process has been
stopped by a signal.

TASK_ZOMBIE The process has completed, but the parent
process has not yet issued a system call of
the wait-family to check whether it has
terminated.

The TASK_RUNNING state corresponds to one of running or ready
states described in Section 5.2.1. The TASK_INTERRUPTIBLE and
TASK_UNINTERRUPTIBLE states both correspond to the blocked state. Splitting
the blocked state into two states resolves the dilemma faced by an OS in handling
signals sent to a process in the blocked state (see Section 5.2.6)—a process can
decide whether it wants to be activated by a signal while waiting for an event to
occur, or whether it wants the delivery of a signal to be deferred until it comes out
of the blocked state. A process enters the TASK_STOPPED state when it receives a
SIGSTOP or SIGTSTP signal to indicate that its execution should be stopped, or
a SIGTTIN or SIGTTOU signal to indicate that a background process requires
input or output.

5.4.3 Threads in Solaris
Solaris, which is a Unix 5.4-based operating system, originally provided a hybrid
thread model that actually supported all three association methods of hybrid
threads discussed in Section 5.3.2.3, namely, many-to-one, one-to-one, and many-
to-many association methods. This model has been called the M × N model in
Sun literature. Solaris 8 continued to support this model and also provided an
alternative 1 : 1 implementation, which is equivalent to kernel-level threads. The
support for the M × N model was discontinued in Solaris 9. In this section we
discuss the M × N model, and the reasons why it was discontinued.

The M ×N model employs three kinds of entities to govern concurrency and
parallelism within a process.

• User threads: User threads are analogous to user-level threads discussed in
Section 5.3.2.2; they are created and managed by a thread library, so they
are not visible to the kernel.

• Lightweight processes: A lightweight process (LWP) is an intermediary
between user threads and a kernel thread. Many LWPs may be created for

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 155 — #49

Chapter 5 Processes and Threads 155

a process; each LWP is a unit of parallelism within a process. User threads
are mapped into LWPs by the thread library. This mapping can be one-to-
one, many-to-one, many-to-many, or a suitable combination of all three. The
number of LWPs for a process and the nature of the mapping between user
threads and LWPs is decided by the programmer, who makes it known to the
thread library through appropriate function calls.

• Kernel threads: A kernel thread is a kernel-level thread. The kernel creates
one kernel thread for each LWP in a process. It also creates some kernel
threads for its own use, e.g., a thread to handle disk I/O in the system.

Figure 5.21 illustrates an arrangement of user threads, LWPs, and kernel
threads. Process Pi has three user threads and one LWP, so a many-to-one map-
ping exists between them. Process Pj has four user threads and three LWPs. One
of these user threads is exclusively mapped into one of the LWPs. The remaining
three user threads and two LWPs have a many-to-many mapping; this way each
of the three threads can operate in any of the two LWPs.

LWPs can operate in parallel because each of them has a kernel thread associ-
ated with it. The kernel creates an LWP control block for each LWP, and a kernel
thread control block (KTCB) for each kernel thread. In addition, the thread library
maintains a thread control block for each user thread. The information in this
control block is analogous to that described in Section 5.3.2.2. The scheduler
examines the KTCBs and, for each CPU in the system, selects a kernel thread
that is in the ready state. The dispatcher dispatches the LWP corresponding to this
kernel thread. The thread library can switch between user threads mapped into
this LWP to achieve concurrency between user threads. The number of LWPs

Process

context

�
thread

library

PCB
Pi

···

···

PCB
Pj

Threads

Thread control blocks

Mapping performed

by thread library

LWP control blocks

Kernel thread control blocks

Scheduler

Selected KTCB

Figure 5.21 Threads in Solaris.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 156 — #50

156 Part 2 Process Management

per process and the association of user threads with LWPs is decided by the
programmer, thus both parallelism and concurrency within a process are under
the programmer’s control. An n-way parallelism would be possible within a pro-
cess if the programmer created n LWPs for a process, 1 ≤ n ≤ p, where p is the
number of CPUs. However, the degree of parallelism would reduce if a user thread
made a blocking system call during its operation, because the call would block
the LWP in which it is mapped. Solaris provides scheduler activations, described
later in this section, to overcome this problem.

A complex arrangement of control blocks is used to control switching
between kernel threads. The kernel thread control block contains the kernel regis-
ters of the CPU, stack pointer, priority, scheduling information, and a pointer to
the next KTCB in a scheduling list. In addition, it contains a pointer to the LWP
control block. The LWP control block contains saved values of user registers of
the CPU, signal handling information, and a pointer to the PCB of the owner
process.

Signal Handling Signals generated by operation of a thread, such as an arith-
metic condition or a memory protection violation, are delivered to the thread
itself. Signals generated by external sources, such as a timer, have to be directed
to a thread that has enabled its handling. The M ×N model provided each process
with an LWP that was dedicated to signal handling. When a signal was generated,
the kernel would keep it pending and notify this LWP, which would wait until
it found that some thread that had enabled handling of that specific signal was
running on one of the other LWPs of the process, and would ask the kernel to
direct the pending signal to that LWP.

States of Processes and Kernel Threads The kernel is aware only of states of
processes and kernel threads; it is oblivious to existence of user threads. A process
can be in one of the following states:

SIDL A transient state during creation
SRUN Runnable process
SONPROC Running on a processor
SSLEEP Sleeping
SSTOP Stopped
SZOMB Terminated process

The SRUN and SSLEEP states correspond to the ready and blocked states
of Section 5.2.1. A kernel thread has states TS_RUN, TS_ONPROC, TS_SLEEP,
TS_STOPPED, and TS_ZOMB that are analogous to the corresponding process
states. A kernel thread that is free is in the TS_FREE state.

Scheduler Activations A scheduler activation is like a kernel thread. The kernel
uses scheduler activations to perform two auxiliary functions: (1) When some
LWP of the process becomes blocked, the kernel uses a scheduler activation to
create a new LWP so that other runnable threads of the process could operate.
(2) When an event related to the operation of the thread library occurs, the kernel
uses a scheduler activation to notify the thread library.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 157 — #51

Chapter 5 Processes and Threads 157

Consider a many-to-one mapping between many user threads and an LWP,
and a user thread that is currently mapped into the LWP. A kernel thread is
associated with the LWP, so the user thread operates when the kernel thread is
scheduled. If the user thread makes a blocking system call, the kernel thread
would block. Effectively, the LWP with which it is associated would block. If
some of the other threads that are mapped into the same LWP are runnable, we
have a situation where a runnable user thread cannot be scheduled because the
LWP has become blocked.

In such situations, the kernel creates a scheduler activation when the user
thread is about to block, provides the activation to the thread library, and makes
an upcall to it. The upcall is implemented as a signal sent to the thread library.
The thread library now executes its signal handler, using the activation provided
by the kernel. The signal handler saves the state of the user thread that is about
to block, releases the LWP that was used by it, and hands it over to the kernel
for reuse. It now schedules a new user thread on the new activation provided by
the kernel. In effect, the user thread that was about to block is removed from an
LWP and a new user thread is scheduled in a new LWP of the process. When the
event for which the user thread had blocked occurs, the kernel makes another
upcall to the thread library with a scheduler activation so that it can preempt
the user thread currently mapped into the LWP, return the LWP to the kernel,
and schedule the newly activated thread on the new activation provided by the
kernel.

Switchover to the 1:1 Implementation The M × N model was developed in the
expectation that, because a context switch by the thread library incurred signifi-
cantly less overhead than a context switch by the kernel, user-level scheduling of
threads in the thread library would provide good application performance. How-
ever, as mentioned in Section 5.3.2.2, it is possible only when schedulers in the
thread library and in the kernel work harmoniously. The 1 : 1 implementation in
Solaris 8 provided efficient kernel-level context switching. Use of the 1 : 1 model
led to simpler signal handling, as threads could be dedicated to handling of spe-
cific signals. It also eliminated the need for scheduler activations, and provided
better scalability. Hence the M × N model was discontinued in Solaris 9.

5.4.4 Processes and Threads in Windows
The flavor of processes and threads in Windows differs somewhat from that pre-
sented earlier in this chapter—Windows treats a process as a unit for resource
allocation, and uses a thread as a unit for concurrency. Accordingly, a Win-
dows process does not operate by itself; it must have at least one thread inside
it. A resource can be accessed only through a resource handle. A process inherits
some resource handles from its parent process; it can obtain more resource han-
dles by opening new resources. The kernel stores all these handles in a handles
table for each process. This way, a resource can be accessed by simply specifying
an offset into the handles table.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 158 — #52

158 Part 2 Process Management

Windows uses three control blocks to manage a process. An executive process
block contains fields that store the process id, memory management information,
address of the handle table, a kernel process block for the process, and address
of the process environment block. The kernel process block contains scheduling
information for threads of the process, such as the processor affinity for the
process, the state of the process and pointers to the kernel thread blocks of its
threads. The executive process block and the kernel process block are situated
in the system address space. The process environment block contains information
that is used by the loader to load the code to be executed, and by the heap manager.
It is situated in the user address space.

The control blocks employed to manage a thread contain information about
its operation, and about the process containing it. The executive thread block of
a thread contains a kernel thread block, a pointer to the executive process block
of its parent process and impersonation information. The kernel thread block
contains information about the kernel stack of the thread and the thread-local
storage, scheduling information for the thread, and a pointer to its thread envi-
ronment block, which contains its id and information about its synchronization
requirements.

Windows supports the notion of a job as a method of managing a group of
processes. A job is represented by a job object, which contains information such
as handles to processes in it, the jobwide CPU time limit, per process CPU time
limit, job scheduling class that sets the time slice for the processes of the job,
processor affinity for processes of the job, and their priority class. A process can
be a member of only one job; all processes created by it automatically belong to
the same job.

Process Creation The create call takes a parameter that is a handle to the parent
of the new process or thread. This way, a create call need not be issued by the
parent of a process or thread. A server process uses this feature to create a thread
in a client process so that it can access resources with the client’s access privileges,
rather than its own privileges.

Recall from Section 4.8.4 that the environment subsystems provide support
for execution of programs developed for other OSs like MS-DOS, Win 32, and
OS/2. The semantics of process creation depend on the environment subsystem
used by an application process. In the Win/32 and OS/2 operating environments,
a process has one thread in it when it is created; it is not so in other environments
supported by the Windows OS. Hence process creation is actually handled by
an environment subsystem DLL that is linked to an application process. After
creating a process, it passes the id of the new process or thread to the envi-
ronment subsystem process so that it can manage the new process or thread
appropriately.

Creation of a child process by an application process in the Win/32 envi-
ronment proceeds as follows: The environment subsystem DLL linked to the
application process makes a system call to create a new process. This call is han-
dled by the executive. It creates a process object, initializes it by loading the
image of the code to be executed, and returns a handle to the process object. The

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 159 — #53

Chapter 5 Processes and Threads 159

environment subsystem DLL now makes a second system call to create a thread,
and passes the handle to the new process as a parameter. The executive creates
a thread in the new process and returns a handle to it. The DLL now sends a
message to the environment subsystem process, passing it the process and thread
handles, and the id of their parent process. The environment subsystem process
enters the process handle in the table of processes that currently exist in the envi-
ronment and enters the thread handle in the scheduling data structures. Control
now returns to the application process.

Thread States and State Transitions Figure 5.22 shows the state transition
diagram for threads. A thread can be in one of following six states:

1. Ready: The thread can be executed if a CPU is available.
2. Standby: This is a thread that has been selected to run next on a specific

processor. If its priority is high, the thread currently running on the processor
would be preempted and this thread would be scheduled.

3. Running: A CPU is currently allocated to the thread and the thread is in
operation.

4. Waiting: The thread is waiting for a resource or event, or has been suspended
by the environment subsystem.

5. Transition: The thread’s wait was satisfied, but meanwhile its kernel stack
was removed from memory because it had been waiting for long. The thread
would enter the ready state when the kernel stack is brought back into
memory.

6. Terminated : The thread has completed its operation.

Thread Pools Windows provides a thread pool in every process. As described
in Section 5.3, the pool contains a set of worker threads and an arrangement

Ready

Kernel stack

reloaded

RunningStandby
Termi-
nated

Waiting

Transi-
tion

Kernel stack

removed

Resource granted

Select

for

execution

Dispatch

Resource

or wait

request

Preemption

Completion

or wait completed

Figure 5.22 Thread state transitions in Windows.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 160 — #54

160 Part 2 Process Management

of lists of pending services and idle worker threads. The threads of a pool can
be used to perform work presented to the pool, or can be programmed to per-
form specific tasks either at specific times or periodically or when specific kernel
objects become signaled. The number of worker threads is adapted to the pool’s
workload dynamically. Threads are neither created nor destroyed if the rate at
which service requests are made to the pool matches the rate at which worker
threads complete servicing of requests. However, new threads are created if
the request rate exceeds the service rate, and a thread is destroyed if it is idle
for more than 40 seconds. Windows Vista supports several thread pools in a
process.

5.5 SUMMARY
•

A computer user and the operating system have
different views of execution of programs. The user
is concerned with achieving execution of a pro-
gram in a sequential or concurrent manner as
desired, whereas the OS is concerned with allo-
cation of resources to programs and servicing of
several programs simultaneously, so that a suit-
able combination of efficient use and user service
may be obtained. In this chapter, we discussed var-
ious aspects of these two views of execution of
programs.

Execution of a program can be speeded up
through either parallelism or concurrency. Paral-
lelism implies that several activities are in progress
within the program at the same time. Concurrency
is an illusion of parallelism—activities appear to
be parallel, but may not be actually so.

A process is a model of execution of a pro-
gram. When the user issues a command to execute
a program, the OS creates the primary process
for it. This process can create other processes by
making requests to the OS through system calls;
each of these processes is called its child process.
The OS can service a process and some of its
child processes concurrently by letting the same
CPU execute instructions of each one of them
for some time, or service them in parallel by exe-
cuting their instructions on several CPUs at the
same time. The processes within a program must
work harmoniously toward a common goal by
sharing data or by coordinating their activities

with one another. They achieve this by employing
the process synchronization means provided in the
operating system.

The operating system allocates resources to a
process and stores information about them in the
process context of the process. To control opera-
tion of the process, it uses the notion of a process
state. The process state is a description of the cur-
rent activity within the process; the process state
changes as the process operates. The fundamental
process states are: ready, running, blocked, termi-
nated , and suspended. The OS keeps information
concerning each process in a process control block
(PCB). The PCB of a process contains the process
state, and the CPU state associated with the process
if the CPU is not currently executing its instruc-
tions. The scheduling function of the kernel selects
one of the ready processes and the dispatching
function switches the CPU to the selected process
through information found in its process context
and the PCB.

A thread is an alternative model of execu-
tion of a program. A thread differs from a process
in that no resources are allocated to it. This dif-
ference makes the overhead of switching between
threads much less than the overhead of switch-
ing between processes. Three models of threads,
called kernel-level threads, user-level threads, and
hybrid threads, are used. They have different impli-
cations for switching overhead, concurrency, and
parallelism.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 161 — #55

Chapter 5 Processes and Threads 161

TEST YOUR CONCEPTS
•

5.1 An application comprises several processes—
a primary process and some child pro-
cesses. This arrangement provides computation
speedup if
a. The computer system contains many CPUs
b. Some of the processes are I/O bound
c. Some of the processes are CPU bound
d. None of the above

5.2 Classify each of the following statements as true
or false:
a. The OS creates a single process if two users

execute the same program.
b. The state of a process that is blocked on a

resource request changes to running when the
resource is granted to it.

c. There is no distinction between a terminated
process and a suspended process.

d. After handling an event, the kernel need
not perform scheduling before dispatching if
none of the process states has changed.

e. When a user-level thread of a process makes a
system call that leads to blocking, all threads
of the process become blocked.

f. Kernel-level threads provide more concur-
rency than user-level threads in both unipro-
cessor and multiprocessor systems.

g. When a process terminates, its termination
code should be remembered until its parent
process terminates.

5.3 Which of the following state transitions for a
process can cause the state transition blocked →
ready for one or more other processes?
a. A process starts an I/O operation and

becomes blocked.
b. A process terminates.
c. A process makes a resource request and

becomes blocked.
d. A process sends a message.
e. A process makes the state transition blocked

→ blocked swapped.

EXERCISES
•

5.1 Describe the actions of the kernel when pro-
cesses make system calls for the following
purposes:
a. Request to receive a message
b. Request to perform an I/O operation
c. Request for status information concerning a

process
d. Request to create a process
e. Request to terminate a child process

5.2 Describe the conditions under which a kernel
may perform dispatching without performing
scheduling.

5.3 Give an algorithm to implement a Unix-like
wait call using the PCB data structure shown
in Table 5.6. Comment on comparative lifetimes
of a process and its PCB.

5.4 Describe how each signal listed in Table 5.9 is
raised and handled in Unix.

5.5 A process is in the blocked swapped state.
a. Give a sequence of state transitions through

which it could have reached this state.

b. Give a sequence of state transitions through
which it can reach the ready state.

Is more than one sequence of state transitions
possible in each of these cases?

5.6 The designer of a kernel has decided to use a sin-
gle swapped state. Give a diagram analogous to
Figure 5.5 showing process states and state tran-
sitions. Describe how the kernel would perform
swapping and comment on the effectiveness of
swapping.

5.7 Compare and contrast inherent parallelism in
the following applications:
a. An online banking application which per-

mits users to perform banking transactions
through a Web-based browser.

b. A Web-based airline reservation system.
5.8 An airline reservation system using a centralized

database services user requests concurrently. Is
it preferable to use threads rather than pro-
cesses in this system? Give reasons for your
answer.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 162 — #56

162 Part 2 Process Management

5.9 Name two system calls a thread should avoid
using if threads are implemented at the user level,
and explain your reasons.

5.10 As described in Example 5.7 and illustrated in
Figure 5.16, if a process has user-level threads,
its own state depends on states of all of its
threads. List the possible causes of each of the
fundamental state transitions for such a process.

5.11 Explain whether you agree with the following
statement on the basis of what you read in this
chapter: “Concurrency increases the scheduling
overhead without providing any speedup of an
application program.”

5.12 On the basis of the Solaris case study, write a
short note on how to decide the number of user
threads and lightweight processes (LWPs) that
should be created in an application.

5.13 An OS supports both user-level threads and
kernel-level threads. Do you agree with the fol-
lowing recommendations about when to use
user-level threads and when kernel-level threads?
Why, or why not?
a. If a candidate for a thread is a CPU-bound

computation, make it a kernel-level thread
if the system contains multiple processors;
otherwise, make it a user-level thread.

b. If a candidate for a thread is an I/O-bound
computation, make it a user-level thread if
the process containing it does not contain
a kernel-level thread; otherwise, make it a
kernel-level thread.

5.14 Comment on computation speedup of the fol-
lowing applications in computer systems having
(i) a single CPU and (ii) many CPUs.
a. Many threads are created in a server that

handles user requests at a large rate, where
servicing of a user request involves both CPU
and I/O activities.

b. Computation of an expression z := a ∗ b +
c ∗ d is performed by spawning two child
processes to evaluate a ∗ b and c ∗ d .

c. A server creates a new thread to handle every
user request received, and servicing of each
user request involves accesses to a database.

d. Two matrices contain m rows and n columns
each, where m and n are both very large. An
application obtains the result of adding the
two matrices by creating m threads, each of
which performs addition of one row of the
matrices.

5.15 Compute the best computation speedup in the
real-time data logging application of Exam-
ple 5.1 under the following conditions: The over-
head of event handling and process switching
is negligible. For each sample, the copy_sample
process requires 5 microseconds (μs) of CPU
time, and does not involve any I/O operation,
record_sample requires 1.5 ms to record the sam-
ple and consumes only 1 μs of CPU time, while
housekeeping consumes 200 μs of CPU time and
its write operation requires 1.5 ms.

CLASS PROJECT: IMPLEMENTING A SHELL
•

Write a program in C/C++, which will act as a shell in
a Unix or Linux system. When invoked, the program
will display its own prompt to the user, accept the user’s
command from the keyboard, classify it, and invoke an
appropriate routine to implement it. The command “sys-
tem” should not be used in implementing any command
other than the ls command. The shell must support the
following commands:

Command Description

cd <directory_name> Changes current directory
if user has appropriate
permissions.

ls Lists information about files
in the current directory.

rm Deletes indicated files.
Supports options -r, -f, -v.

history n Prints the most recent n
commands issued by the user,
along with their serial numbers.
If n is omitted, prints all
commands issued by the user.

issue n Issues the nth command in the
history once again.

<program_name> Creates a child process to run
<program_name>. Supports
the redirection operators > and
< to redirect the input and

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 163 — #57

Chapter 5 Processes and Threads 163

output of the program to
indicated files.

<program_name> & The child process for
<program_name> should be
run in the background.

quit Quits the shell.

After implementing a basic shell supporting these com-
mands, you should add two advanced features to the
shell:

1. Design a new command that provides a use-
ful facility. As an example, consider a command

rmexcept <list_of_files> which removes all files
except those in <list_of_files> from the current
directory.

2. Support a command <program_name> m that cre-
ates a child process to execute program_name, but
aborts the process if it does not complete its opera-
tion in m seconds. (Hint: Use an appropriate routine
from the library to deliver a SIGALRM signal after
m seconds, and use a signal handler to perform
appropriate actions.)

BIBLIOGRAPHY
•

The process concept is discussed in Dijkstra (1968),
Brinch Hansen (1973), and Bic and Shaw (1974). Brinch
Hansen (1988) describes implementation of processes in
the RC 4000 system.

Marsh et al. (1991) discusses user-level threads and
issues concerning thread libraries. Anderson et al. (1992)
discusses use of scheduler activations for communica-
tion between the kernel and a thread library. Engelschall
(2000) discusses how user-level threads can be imple-
mented in Unix by using standard Unix facilities, and
also summarizes properties of other multithreading
packages.

Kleiman (1996), Butenhof (1997), Lewis and Berg
(1997), and Nichols et al. (1996) discuss programming
with POSIX threads. Lewis and Berg (2000) discusses
multithreading in Java.

Bach (1986), McKusick (1996), and Vahalia (1996)
discuss processes in Unix. Beck et al. (2002) and Bovet
and Cesati (2005) describes processes and threads in
Linux. Stevens and Rago (2005) describes processes and
threads in Unix, Linux, and BSD; it also discusses dae-
mon processes in Unix. O’Gorman (2003) discusses
implementation of signals in Linux. Eykholt et al.
(1992) describes threads in SunOS, while Vahalia (1996)
and Mauro and McDougall (2006) describe threads
and LWPs in Solaris. Custer (1993), Richter (1999), and
Russinovich and Solomon (2005) describe processes and
threads in Windows. Vahalia (1996) and Tanenbaum
(2001) discuss threads in Mach.

1. Anderson, T. E., B. N. Bershad, E. D. Lazowska,
and H. M. Levy (1992): “Scheduler activations:
effective kernel support for the user-level

management of parallelism,” ACM Transactions
on Computer Systems, 10 (1), 53–79.

2. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

3. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

4. Bic, L., and A. C. Shaw (1988): The Logical
Design of Operating Systems, 2nd ed., Prentice
Hall, Englewood Cliffs, N.J.

5. Brinch Hansen, P. (1970): “The nucleus of a
multiprogramming system,” Communications of
the ACM, 13, 238–241, 250.

6. Brinch Hansen, P. (1973): Operating System
Principles, Prentice Hall, Englewood
Cliffs, N.J.

7. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

8. Butenhof, D. (1997): Programming with POSIX
threads, Addison-Wesley, Reading,
Mass.

9. Custer, H. (1993): Inside Windows/NT, Microsoft
Press, Redmond, Wash.

10. Dijkstra, E. W. (1968): “The structure of THE
multiprogramming system,” Communications of
the ACM, 11, 341–346.

11. Engelschall, R. S. (2000): “Portable
Multithreading: The signal stack trick for
user-space thread creation,” Proceedings of the
2000 USENIX Annual Technical Conference,
San Diego.

05-M4363-DAS1.LaTeX: “chap05” — 2007/11/26 — 18:05 — page 164 — #58

164 Part 2 Process Management

12. Eykholt, J. R, S. R. Kleiman, S. Barton,
S. Faulkner, A. Shivalingiah, M. Smith, D. Stein,
J. Voll, M. Weeks, and D. Williams (1992):
“Beyond multiprocessing: multithreading the
SunOS kernel,” Proceedings of the Summer 1992
USENIX Conference, 11–18.

13. Kleiman, S., D. Shah, and B. Smaalders (1996):
Programming with Threads, Prentice Hall,
Englewood Cliffs, N.J.

14. Lewis, B., and D. Berg (1997): Multithreaded
Programming with Pthreads, Prentice Hall,
Englewood Cliffs, N.J.

15. Lewis, B., and D. Berg (2000): Multithreaded
Programming with Java Technology, Sun
Microsystems.

16. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

17. Marsh, B. D., M. L. Scott, T. J. LeBlanc, and
E. P. Markatos (1991): “First-class user-level
threads,” Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles,
October 1991, 110–121.

18. McKusick, M. K., K. Bostic, M. J. Karels,
and J. S. Quarterman (1996): The Design and

Implementation of the 4.4 BSD Operating System,
Addison Wesley, Reading, Mass.

19. Nichols, B., D. Buttlar, and J. P. Farrell (1996):
Pthreads Programming, O’Reilly, Sebastopol.

20. O’Gorman, J. (2003): Linux Process Manager:
The internals of Scheduling, Interrupts and
Signals, John Wiley, New York.

21. Richter, J. (1999): Programming Applications for
Microsoft Windows, 4th ed., Microsoft Press,
Redmond, Wash.

22. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

23. Silberschatz, A., P. B. Galvin, and G. Gagne
(2005): Operating System Principles, 7th ed., John
Wiley, New York.

24. Stevens, W. R., and S. A. Rago (2005): Advanced
Programming in the Unix Environment, 2nd ed.,
Addison-Wesley, Reading, Mass.

25. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

26. Vahalia, U. (1996): Unix Internals—The
New Frontiers, Prentice Hall, Englewood
Cliffs, N.J.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 165 — #1

C h a p t e r 6
Process Synchronization

Interacting processes are concurrent processes that share data or coordinate
their activities with respect to one another. Data access synchronization
ensures that shared data do not lose consistency when they are updated by

interacting processes. It is implemented by ensuring that processes access shared
data only in a mutually exclusive manner. Control synchronization ensures that
interacting processes perform their actions in a desired order. Together, these two
kinds of synchronization make up what we refer to as process synchronization.
Computer systems provide indivisible instructions (also called atomic instructions)
to support process synchronization.

We discuss critical sections, which are sections of code that access shared
data in a mutually exclusive manner, and indivisible signaling operations, which
are used to implement control synchronization, and show how both are imple-
mented by using indivisible instructions. Following this discussion, we introduce
some classic problems of process synchronization, which are representative of
synchronization problems in various application domains. We analyze their syn-
chronization requirements and study important issues involved in fulfilling them.

In the remainder of the chapter, we discuss semaphores and monitors, which
are the primary facilities for synchronization in programming languages and oper-
ating systems. We will see how they offer ways to fulfill the process synchronization
requirements of the classic problems.

6.1 WHAT IS PROCESS SYNCHRONIZATION?
•

In this chapter, we use the term process as a generic term for both a process and a
thread. Applications employ concurrent processes either to achieve computation
speedup (see Table 5.2), or to simplify their own design, as in multithreaded
servers (see Section 5.3). As summarized in Table 5.7, processes of an application
interact among themselves to share data, coordinate their activities, and exchange
messages or signals. We use the following notation to formally define the term
interacting processes:

read_seti set of data items read by process Pi and interprocess messages
or signals received by it

write_seti set of data items modified by process Pi and interprocess
messages or signals sent by it

165

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 166 — #2

166 Part 2 Process Management

We use the term “update of a data item” for a modification of the data item’s value
that is based on its own previous value, e.g., x := x + 1 is an update, whereas
x := 5 is not.

Definition 6.1 Interacting Processes Processes Pi and Pj are interacting pro-
cesses if the write_set of one of the processes overlaps the write_set or read_set
of the other.

The nature of interaction between processes when the write_set of one over-
laps the read_set of another is obvious—the first process may set the value of a
variable which the other process may read. The situation when the write_sets of
two processes overlap is included in Definition 6.1 because the manner in which
the processes perform their write operations can lead to incorrect results, so the
processes must cooperate to avoid such situations. Processes that do not interact
are said to be independent processes; they can execute freely in parallel.

Two kinds of requirements arise in interacting processes:

• A process should perform a specific operation opi only when some condition
concerning shared data holds. The process must be delayed if these require-
ments are not met when it wishes to perform operation opi , and it must be
allowed to resume when these requirements have been met.

• A process should perform an operation opi only after some other process
performs another specific operation opj . This requirement is met by using
some shared data to note whether operation opj has been performed, so that
the process can be delayed and resumed as described above.

Process synchronization is a generic term for the techniques used to delay
and resume processes to implement process interactions. The execution speed
of a process, or the relative execution speeds of interacting processes, cannot be
known in advance because of factors such as time-slicing, priorities of processes,
and I/O activities in processes. Hence a process synchronization technique must
be designed so that it will function correctly irrespective of the relative execution
speeds of processes.

Throughout this chapter, we will use the conventions shown in Figure 6.1 in
the pseudocode for concurrent processes.

6.2 RACE CONDITIONS
•

In Section 5.2.5, we mentioned that uncoordinated accesses to shared data may
affect consistency of data. To see this problem, consider processes Pi and Pj that
update the value of a shared data itemds through operations ai and aj , respectively.

Operation ai : ds := ds + 10;
Operation aj : ds := ds + 5;

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 167 — #3

Chapter 6 Process Synchronization 167

Parbegin
S11 S21 . . . Sn1

...
...

...

S1m S2m . . . Snm
Parend

Process P1 Process P2 Process Pn

where statements S11 . . . S1m form the code of process P1, etc.

• Declarations of shared variables are placed before a Parbegin.

• Declarations of local variables are placed at the start of a process.

• Comments are enclosed within braces “{}”.

• Indentation is used to show nesting of control structures.

• The control structure Parbegin <list of statements> Parend encloses

code that is to be executed in parallel. (Parbegin stands for parallel-begin,

and Parend for parallel-end.) If <list of statements> contains n
statements, execution of the Parbegin–Parend control structure

spawns n processes, each process consisting of the execution of one

statement in <list of statements>. For example, Parbegin S1, S2, S3, S4

Parend initiates four processes that execute S1, S2, S3 and S4, respectively.

The statement grouping facilities of a language such as begin–end,

can be used if a process is to consist of a block of code instead of a

single statement. For visual convenience, we depict concurrent

processes created in a Parbegin–Parend control structure as follows:

Figure 6.1 Pseudocode conventions for concurrent programs.

Let (ds)initial be the initial value of ds, and let process Pi be the first one to per-
form its operation. The value of ds after operation ai will be (ds)initial + 10.
If process Pj performs operation aj now, the resulting value of ds will be
(ds)new = ((ds)initial + 10) + 5, i.e., (ds)initial + 15. If the processes perform their
operations in the reverse order, the new value of ds would be identical.

If processes Pi and Pj perform their operations concurrently, we would expect
the result to be (ds)initial +15; however, it is not guaranteed to be so. This situation
is called a race condition. This term is borrowed from electronics, where it refers
to the principle that an attempt to examine a value, or make measurements on a
waveform, while it is changing can lead to wrong results.

The race condition can be explained as follows: Operation ai is typically
implemented by using three machine instructions. The first instruction loads the
value of ds in a data register, say, register r1, the second instruction adds 10 to
the contents of r1, and the third instruction stores the contents of r1 back into the
location assigned to ds. We call this sequence of instructions the load-add-store
sequence. Operation aj is similarly implemented by a load-add-store sequence.
The result of performing operations ai and aj would be wrong if both ai and aj
operated on the old value of ds. This could happen if one process were engaged in
performing the load-add-store sequence, but the other process was performing a
load instruction before this sequence was completed. In such a case the value of
ds at the end of both the operations would be either (ds)initial + 5 or (ds)initial + 10,
depending on which of the operations completed later.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 168 — #4

168 Part 2 Process Management

We define a race condition formally as follows: Let function fi(ds) represent
the operation ai on ds, i.e., for a given value of ds, fi(ds) indicates the value ds
would have after executing operation ai . Function fj(ds) analogously represents
the operation aj on ds. Let process Pi be the first one to perform its operation. The
value of ds after the operation would be fi(ds). If process Pj performs operation
aj now, operation aj will operate on fi(ds), so the resulting value of ds will be
fj(fi(ds)). If the processes perform their operations in the reverse order, the new
value of ds will be fi(fj(ds)).

Definition 6.2 Race Condition A condition in which the value of a shared data
item ds resulting from execution of operations ai and aj on ds in interacting
processes may be different from both fi(fj(ds)) and fj(fi(ds)).

The next example illustrates a race condition in an airline reservation
application and its consequences.

•
Example 6.1 Race Condition in an Airline Reservation Application

The left column in the upper half of Figure 6.2 shows the code used by processes
in an airline reservation application. The processes use identical code, hence ai
and aj , the operations performed by processes Pi and Pj , are identical. Each of
these operations examines the value of nextseatno and updates it by 1 if a seat
is available. The right column of Figure 6.2 shows the machine instructions
corresponding to the code. Statement S3 corresponds to three instructions
S3.1, S3.2 and S3.3 that form a load-add-store sequence of instructions for
updating the value of nextseatno.

The lower half of Figure 6.2 is a timing diagram for the applications. It
shows three possible sequences in which processes Pi and Pj could execute their
instructions when nextseatno = 200 and capacity = 200. In case 1, process Pi
executes the if statement that compares values of nextseatno with capacity and
proceeds to execute instructions S2.1, S3.1, S3.2 and S3.3 that allocate a seat
and increment nextseatno. When process Pj executes the if statement, it finds
that no seats are available so it does not allocate a seat.

In case 2, process Pi executes the if statement and finds that a seat can be
allocated. However, it gets preempted before it can execute instruction S2.1.
Process Pj now executes the if statement and finds that a seat is available. It
allocates a seat by executing instructions S2.1, S3.1, S3.2 and S3.3 and exits.
nextseatno is now 201. When process Pi is resumed, it proceeds to execute
instruction S2.1, which allocates a seat. Thus, seats are allocated to both
requests. This is a race condition because when nextseatno = 200, only one
seat should be allocated.

In case 3, process Pi gets preempted after it loads 200 in regj through
instruction S3.1. Now, again both Pi and Pj allocate a seat each, which is a
race condition.
•

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 169 — #5

Chapter 6 Process Synchronization 169

Code of processes Corresponding machine instructions

S 1 if nextseatno ≤ capacity S 1.1 Load nextseatno in regk
S 1.2 If regk > capacity goto S4.1

then
S 2 allotedno:=nextseatno; S 2.1 Move nextseatno to allotedno
S 3 nextseatno:=nextseatno+1; S 3.1 Load nextseatno in regj

S 3.2 Add 1 to regj
S 3.3 Store regj in nextseatno
S 3.4 Go to S5.1

else
S 4 display “sorry, no seats S 4.1 Display “sorry, . . . ”

available”

S 5 . . . S 5.1 . . .

Some execution cases

Time →
Execution of instructions by processes

S1.1 S1.2 S2.1 S3.1 S3.2 S3.3 S3.4Pj

S1.1 S1.2 S2.1 S3.1 S3.2 S3.3 S3.4Pi
Case 3

S1.1 S1.2 S2.1 S3.1 S3.2 S3.3 S3.4Pj

S1.1 S1.2 S2.1 S3.1 S3.2 S3.3 S3.4Pi
Case 2

Pj S1.1 S1.2 S4.1

S1.1 S1.2 S2.1 S3.1 S3.2 S3.3 S3.4Pi
Case 1

Figure 6.2 Data sharing by processes of a reservation application.

A program containing a race condition may produce correct or incorrect
results depending on the order in which instructions of its processes are executed.
This feature complicates both testing and debugging of concurrent programs, so
race conditions should be prevented.

Data Access Synchronization Race conditions are prevented if we ensure that
operations ai and aj of Definition 6.2 do not execute concurrently—that is, only
one of the operations can access shared data ds at any time. This requirement
is called mutual exclusion. When mutual exclusion is ensured, we can be sure
that the result of executing operations ai and aj would be either fi(fj(ds)) or
fj(fi(ds)). Data access synchronization is coordination of processes to implement
mutual exclusion over shared data. A technique of data access synchronization
is used to delay a process that wishes to access ds if another process is cur-
rently accessing ds, and to resume its operation when the other process finishes
using ds.

To prevent race conditions, we first check if the logic of processes in an
application causes a race condition. We use the following notation for this
purpose:

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 170 — #6

170 Part 2 Process Management

update_seti set of data items updated by process Pi , that is, the set of data
items whose values are read, modified, and written back by
process Pi

The logic of a pair of processes Pi and Pj causes a race condition if
update_seti ∩ update_setj �= � i.e., if some variable is updated by both Pi and Pj .
The logic of processes Pi and Pj in the airline reservation application of Exam-
ple 6.1 causes a race condition because update_seti = update_setj = {nextseatno}.
Once we know the data item whose updates cause a race condition, we use data
access synchronization techniques to ensure that this data item is used in a mutu-
ally exclusive manner. The next section discusses a conceptual basis for data
access synchronization.

6.3 CRITICAL SECTIONS
•

Mutual exclusion between actions of concurrent processes is implemented by
using critical sections of code. A critical section is popularly known by its
acronym CS.

Definition 6.3 Critical Section A critical section for a data item ds is a section
of code that is designed so that it cannot be executed concurrently either with
itself or with other critical section(s) for ds.

If some process Pi is executing a critical section for ds, another process wish-
ing to execute a critical section for ds will have to wait until Pi finishes executing
its critical section. Thus, a critical section for a data item ds is a mutual exclusion
region with respect to accesses to ds.

We mark a critical section in a segment of code by a dashed rectangular box.
Note that processes may share a single copy of the segment of code that contains
one critical section, in which case only a single critical section for ds exists in
the application. In all other cases, many critical sections for ds may exist in the
application. Definition 6.3 covers both situations. A process that is executing a
critical section is said to be “in a critical section.” We also use the terms “enter a
critical section” and “exit a critical section” for situations where a process starts
and completes an execution of a critical section.

Figure 6.3(a) shows the code of a process that contains several critical
sections. The process has a cyclic behavior due to the statement repeat forever.
In each iteration, it enters a critical section when it needs to access a shared data
item. At other times, it executes other parts of code in its logic, which together
constitute “remainder of the cycle.” For simplicity, whenever possible, we use the
simple process form shown in Figure 6.3(b) to depict a process. The following
example illustrates the use of a critical section to avoid race conditions.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 171 — #7

Chapter 6 Process Synchronization 171

repeat forever repeat forever

Critical section

{Remainder of the cycle}

end end

(a) (b)

. . .

Critical section

. . .

Critical section
Remainder of

the cycle
. . .

Critical section

. . .

Figure 6.3 (a) A process with many critical sections; (b) a simpler way of depicting this
process.

if nextseatno ≤ capacity if nextseatno ≤ capacity
then then

allotedno:=nextseatno; allotedno:=nextseatno;
nextseatno:=nextseatno+1; nextseatno:=nextseatno+1;

else else
display “sorry, no seats display “sorry, no seats

available”;

Process Pi Process Pj

available”;

Figure 6.4 Use of critical sections in an airline reservation system.

•
Example 6.2Preventing a Race Condition through a Critical Section

Figure 6.4 shows use of critical sections in the airline reservation system of
Figure 6.2. Each process contains a critical section in which it accesses and
updates the shared variable nextseatno. Let fi(nextseatno) and fj(nextseatno)
represent the operations performed in critical sections of Pi and Pj , respec-
tively. If Pi and Pj attempt to execute their critical sections concurrently, one
of them will be delayed. Hence, the resulting value of nextseatno will be either
fi(fj(nextseatno)) or fj(fi(nextseatno)). From Definition 6.2, a race condition
does not arise.

•
Use of critical sections causes delays in operation of processes. Both processes

and the kernel must cooperate to reduce such delays. A process must not execute
for too long inside a critical section and must not make system calls that might put
it in the blocked state. The kernel must not preempt a process that is engaged in
executing a critical section. This condition requires the kernel to know whether
a process is inside a critical section at any moment, and it cannot be met if
processes implement critical sections on their own, i.e., without involving the
kernel. Nevertheless, in this chapter we shall assume that a process spends only a
short time inside a critical section.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 172 — #8

172 Part 2 Process Management

Table 6.1 Essential Properties of a CS Implementation

Property Description

Mutual exclusion At any moment, at most one process may execute a CS for
a data item ds.

Progress When no process is executing a CS for a data item ds, one
of the processes wishing to enter a CS for ds will be
granted entry.

Bounded wait After a process Pi has indicated its desire to enter a CS for
ds, the number of times other processes can gain entry to a
CS for ds ahead of Pi is bounded by a finite integer.

6.3.1 Properties of a Critical Section Implementation
When several processes wish to use critical sections for a data item ds, a critical
section implementation must ensure that it grants entry into a critical section in
accordance with the notions of correctness and fairness to all processes. Table 6.1
summarizes three essential properties a critical section implementation must pos-
sess to satisfy these requirements. The mutual exclusion property guarantees that
two or more processes will not be in critical sections for ds simultaneously, which
is the crux of Definition 6.3. It ensures correctness of the implementation. The
second and third property of Table 6.1 together guarantee that no process wish-
ing to enter a critical section will be delayed indefinitely; i.e., starvation will not
occur. We discuss this aspect in the following.

The progress property ensures that if some processes are interested in entering
critical sections for a data item ds, one of them will be granted entry if no process
is currently inside any critical section for ds—that is, use of a CS cannot be
“reserved” for a process that is not interested in entering a critical section at
present. However, this property alone cannot prevent starvation because a process
might never gain entry to a CS if the critical section implementation always favors
other processes for entry to the CS. The bounded wait property ensures that this
does not happen by limiting the number of times other processes can gain entry to
a critical section ahead of a requesting process Pi . Thus the progress and bounded
wait properties ensure that every requesting process will gain entry to a critical
section in finite time; however, these properties do not guarantee a specific limit
to the delay in gaining entry to a CS.

6.4 CONTROL SYNCHRONIZATION
AND INDIVISIBLE OPERATIONS

•
Interacting processes need to coordinate their execution with respect to one
another, so that they perform their actions in a desired order. This requirement
is met through control synchronization.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 173 — #9

Chapter 6 Process Synchronization 173

{Perform operation ai only after Pj Perform operation aj

performs operation aj} . . .

Process Pi Process Pj

Figure 6.5 Processes requiring control synchronization.

var
operation_aj_ performed : boolean;
pi_blocked : boolean;

begin
operation_aj_ performed := false;

pi_blocked := false;

Parbegin
.
if operation_aj_ performed = false {perform operation aj}

then if pi_blocked = true
pi_blocked := true; then
block (Pi); pi_blocked := false;

{perform operation ai} activate (Pi);

. . . else

. . . operation_aj_ performed := true;

.
Parend;

end.

Process Pi Process Pj

Figure 6.6 A naive attempt at signaling through boolean variables.

Figure 6.5 shows a pseudocode for processes Pi and Pj , wherein process Pi
would perform an operation ai only after process Pj has performed an operation
aj . Signaling is a general technique of control synchronization. It can be used
to meet the synchronization requirement of Figure 6.5 as follows: When process
Pi reaches the point where it wishes to perform operation ai , it checks whether
process Pj has performed operation aj . If it is so, Pi would perform operation
ai right away; otherwise, it would block itself waiting for process Pj to perform
operation aj . After performing operation aj , process Pj would check whether Pi
is waiting for it. If so, it would signal process Pi to resume its operation.

Figure 6.6 shows a naive attempt at signaling. The synchronization data
consists of two boolean variables: operation_aj_performed is a flag that indicates
whether process Pj has performed operation aj , and pi_blocked is a flag which
indicates whether process Pi has blocked itself waiting for process Pj to execute
operation aj . Both these flags are initialized to false. The code makes system calls
to block and activate processes to achieve the desired control synchronization.

Before performing operation ai , process Pi consults the variable oper-
ation_aj_ performed to check whether process Pj has already performed
operation aj . If so, it goes ahead to perform operation ai ; otherwise, it sets

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 174 — #10

174 Part 2 Process Management

Table 6.2 Race Condition in Process Synchronization

Time Actions of process P i Actions of process Pj

t1 if action_aj_performed = false

t2 {perform action aj}
t3 if pi_blocked = true

t4 action_aj_performed :=true
...
t20 pi_blocked :=true;
t21 block (Pi);

pi_blocked to true and makes a system call to block itself. Process Pj performs
operation aj and checks whether process Pi has already become blocked to wait
until it has performed operation aj . If so, it makes a system call to activate Pi ;
otherwise, it sets operation_aj_performed to true so that process Pi would know
that it has performed operation aj .

However, this naive signaling arrangement does not work because process Pi
may face indefinite blocking in some situations. Table 6.2 shows such a situation.
Process Pi checks the value of operation_aj_performed and finds that operation
aj has not been performed. At time t2, it is poised to set the variable pi_blocked
to true, but at this time it is preempted. Process Pj is now scheduled. It performs
operation aj and checks whether process Pi is blocked. However, pi_blocked is
false, so Pj simply sets operation_aj_performed to true and continues its execution.
Pi is scheduled at time t20. It sets pi_blocked to true and makes a system call to
block itself. Process Pi will sleep for ever!

In the notation of Section 6.2, consider the if statements in processes Pi and
Pj to represent the operations fi and fj on the state of the system. The result of
their execution should have been one of the following: process Pi blocks itself,
gets activated by Pj and performs operation ai ; or process Pi finds that Pj has
already performed aj and goes ahead to perform operation ai . However, in the
execution shown in Table 6.2, process Pi blocks itself and is never activated. From
Definition 6.2, this is a race condition.

The race condition has two causes—process Pi can be preempted after find-
ing operation_aj_performed = false but before setting pi_blocked to true, and
process Pj can be preempted after finding pi_blocked = false but before setting
operation_aj_performed to true. The race condition can be prevented if we could
ensure that processes Pi and Pj would not be preempted before they set the respec-
tive flags to true. An indivisible operation (also called an atomic operation) is the
device that ensures that processes can execute a sequence of actions without being
preempted.

Definition 6.4 Indivisible Operation An operation on a set of data items that
cannot be executed concurrently either with itself or with any other operation
on a data item included in the set.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 175 — #11

Chapter 6 Process Synchronization 175

procedure check_aj
begin

if operation_aj_performed=false
then

pi_blocked:=true;

block (Pi)

end;

procedure post_aj
begin

if pi_blocked=true
then

pi_blocked:=false;

activate(Pj)

else
operation_aj_performed:=true;

end;

Figure 6.7 Indivisible operations check_aj and post_aj for signaling.

Since an indivisible operation cannot be performed concurrently with any
other operation involving the same data, it must be completed before any other
process accesses the data. The situation shown in Table 6.2 would not arise if
the if statements in Figure 6.6 were implemented as indivisible operations on
data items operation_aj_performed and pi_blocked, because if process Pi found
operation_aj_performed = false, it would be able to set pi_blocked = true without
being preempted, and if process Pj found pi_blocked to be false, it would be able
to set operation_aj_performed to true without being preempted. Accordingly, we
define two indivisible operations check_aj and post_aj to perform the if statements
of processes Pi and Pj , respectively, and replace the if statements by invocations of
these indivisible operations. Figure 6.7 shows details of the indivisible operations
check_aj and post_aj. When operation_aj_performed is false, indivisible operation
check_aj is deemed to be complete after process Pi is blocked; it would enable
process Pj to perform operation post_aj.

An indivisible operation on the set of data items {ds} is like a critical section
on {ds}. However, we differentiate between them because a critical section has
to be explicitly implemented in a program, whereas the hardware or software of
a computer system may provide some indivisible operations among its primitive
operations.

6.5 SYNCHRONIZATION APPROACHES
•

In this section we discuss how the critical sections and indivisible operations
required for process synchronization can be implemented.

6.5.1 Looping versus Blocking
A critical section for {ds} and an indivisible signaling operation on {ds} have the
same basic requirement—processes should not be able to execute some sequences

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 176 — #12

176 Part 2 Process Management

of instructions concurrently or in parallel. Hence both could be implemented
through mutual exclusion as follows:

while (some process is in a critical section on {ds} or
is executing an indivisible operation using {ds})

{ do nothing }

Critical section or

indivisible operation

using {ds}

In the while loop, the process checks if some other process is in a critical section
for the same data, or is executing an indivisible operation using the same data. If
so, it keeps looping until the other process finishes. This situation is called a busy
wait because it keeps the CPU busy in executing a process even as the process does
nothing! The busy wait ends only when the process finds that no other process is
in a critical section or executing an indivisible operation.

A busy wait in a process has several adverse consequences. An implementa-
tion of critical sections employing busy waits cannot provide the bounded wait
property because when many processes are in a busy wait for a CS, the implemen-
tation cannot control which process would gain entry to a CS when the process
currently in CS exits. In a time-sharing OS, a process that gets into a busy wait
to gain entry to a CS would use up its time slice without entering the CS, which
would degrade the system performance.

In an OS using priority-based scheduling, a busy wait can result in a situation
where processes wait for each other indefinitely. Consider the following situation:
A high-priority process Pi is blocked on an I/O operation and a low-priority
process Pj enters a critical section for data item ds. When Pi ’s I/O operation
completes, Pj is preempted and Pi is scheduled. If Pi now tries to enter a critical
section for ds using the while loop described earlier, it would face a busy wait.
This busy wait denies the CPU to Pj , hence it is unable to complete its execution
of the critical section and exit. In turn, this situation prevents Pi from entering its
critical section. Processes Pi and Pj now wait for each other indefinitely. Because
a high-priority process waits for a process with a low priority, this situation is
called priority inversion. The priority inversion problem is typically addressed
through the priority inheritance protocol, wherein a low-priority process that holds
a resource temporarily acquires the priority of the highest-priority process that
needs the resource. In our example, process Pj would temporarily acquire the
priority of process Pi , which would enable it to get scheduled and exit from its
critical section. However, use of the priority inheritance protocol is impractical
in these situations because it would require the kernel to know minute details of
the operation of processes.

To avoid busy waits, a process waiting for entry to a critical section should be
put into the blocked state. Its state should be changed to ready only when it can

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 177 — #13

Chapter 6 Process Synchronization 177

be allowed to enter the CS. This approach can be realized through the following
outline:

if (some process is in a critical section on {ds} or
is executing an indivisible operation using {ds})

then make a system call to block itself;

Critical section or

indivisible operation

using {ds}

In this approach, the kernel must activate the blocked process when no other pro-
cess is operating in a critical section on {ds} or executing an indivisible operation
using {ds}.

When a critical section or an indivisible operation is realized through any of
the above outlines, a process wishing to enter a CS has to check whether any other
process is inside a CS, and accordingly decide whether to loop (or block). This
action itself involves executing a few instructions in a mutually exclusive way to
avoid a race condition (see Section 6.4), so how is that to be done? Actually, it
can be done in two ways. In the first approach, called the algorithmic approach,
a complex arrangement of checks is used in concurrent processes to avoid race
conditions. We shall discuss the features of this approach, and its drawbacks, in
Section 6.8. The second approach uses some features in computer hardware to
simplify this check. We discuss this approach in the next section.

6.5.2 Hardware Support for Process Synchronization
Process synchronization involves executing some sequences of instructions in a
mutually exclusive manner. On a uniprocessor system, this can be achieved by dis-
abling interrupts while a process executes such a sequence of instructions, so that
it will not be preempted. However, this approach involves the overhead of system
calls to disable interrupts and enable them again, and also delays processing of
interrupts, which can lead to undesirable consequences for system performance
or user service. It is also not applicable to multiprocessor systems. For these rea-
sons, operating systems implement critical sections and indivisible operations
through indivisible instructions provided in computers, together with shared vari-
ables called lock variables. In this section, we use illustrations of the looping
approach to process synchronization; however, the techniques discussed here are
equally applicable to the blocking approach to process synchronization. Note that
indivisible instructions merely assist in implementing critical sections; the proper-
ties of CS implementation summarized in Table 6.1 have to be ensured separately
by enabling processes to enter CS in an appropriate manner (see Exercise 6.12).

Indivisible Instructions Since the mid-1960s, computer systems have provided
special features in their hardware to prevent race conditions while accessing a
memory location containing shared data. The basic theme is that all accesses
to a memory location made by one instruction should be implemented without
permitting another CPU to access the same location. Two popular techniques

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 178 — #14

178 Part 2 Process Management

used for this purpose are locking the memory bus during an instruction (e.g.,
in Intel 80x86 processors) and providing special instructions that perform some
specific operations on memory locations in a race-free manner (e.g., in IBM/370
and M68000 processors). We will use the term indivisible instruction as a generic
term for all such instructions.

Use of a Lock Variable A lock variable is a two-state variable that is used to
bridge the semantic gap (see Definition 4.1) between critical sections or indi-
visible operations, on the one hand, and indivisible instructions provided in a
computer system, on the other. To implement critical sections for a data item ds,
an application associates a lock variable with ds. The lock variable has only two
possible values—open and closed. When a process wishes to execute a critical
section for ds, it tests the value of the lock variable. If the lock is open, it closes
the lock, executes the critical section, and opens the lock while exiting from the
critical section. To avoid race conditions in setting the value of the lock variable,
an indivisible instruction is used to test and close the lock. Lock variables assist
in implementing indivisible operations in a similar manner.

Figure 6.8 illustrates how a critical section or an indivisible operation is imple-
mented by using an indivisible instruction and a lock variable. The indivisible
instruction performs the actions indicated in the dashed box: if the lock is closed,
it loops back to itself; otherwise, it closes the lock. In the following, we illustrate
use of two indivisible instructions—called test-and-set and swap instructions—to
implement critical sections and indivisible operations.

Test-and-Set (TS) Instruction This indivisible instruction performs two actions.
It “tests” the value of a memory byte and sets the condition code field (i.e., the
flags field) of the PSW to indicate whether the value was zero or nonzero. It also
sets all bits in the byte to 1s. No other CPU can access the memory byte until both
actions are complete. This instruction can be used to implement the statements
enclosed in the dashed box in Figure 6.8.

Figure 6.9 is a segment of an IBM/370 assembly language program for imple-
menting a critical section or an indivisible operation. LOCK is a lock variable used
with the convention that a nonzero value implies that the lock is closed, and a zero
implies that it is open. The first line in the assembly language program declares
LOCK and initializes it to 0. The TS instruction sets the condition code according
to the value of LOCK and then sets the value of LOCK to closed. Thus, the condition
code indicates if the lock was closed before the TS instruction was executed. The
branch instruction BC 7, ENTRY_TEST checks the condition code and loops

entry_test: if lock = closed
then goto entry_test;

lock := closed;

{Critical section or

indivisible operation}

lock := open;

Performed by

an indivisible

instruction

Figure 6.8 Implementing a critical section or indivisible operation by using a lock variable.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 179 — #15

Chapter 6 Process Synchronization 179

LOCK DC X‘00’ Lock is initialized to open
ENTRY_TEST TS LOCK Test-and-set lock

BC 7, ENTRY_TEST Loop if lock was closed

... { Critical section or
 indivisible operation }

MVI LOCK, X‘00’ Open the lock(by moving 0s)

Figure 6.9 Implementing a critical section or indivisible operation by using test-and-set.

TEMP DS 1 Reserve one byte for TEMP
LOCK DC X‘00’ Lock is initialized to open

MVI TEMP, X‘FF’ X‘FF’ is used to close the lock
ENTRY_TEST SWAP LOCK, TEMP

COMP TEMP, X‘00’ Test old value of lock
BC 7, ENTRY_TEST Loop if lock was closed

... { Critical section or
 indivisible operation }

MVI LOCK, X‘00’ Open the lock

Figure 6.10 Implementing a critical section or indivisible operation by using a swap
instruction.

back to the TS instruction if the lock was closed. This way a process that finds
the lock closed would execute the loop in a busy wait until lock was opened. The
MVI instruction puts 0s in all bits of LOCK; i.e., it opens the lock. This action
would enable only one of the processes looping at ENTRY_TEST to proceed.

Swap Instruction The swap instruction exchanges contents of two memory
locations. It is an indivisible instruction; no other CPU can access either of
the locations during swapping. Figure 6.10 shows how a critical section or an
indivisible operation can be implemented by using the swap instruction. (For
convenience, we use the same coding conventions as used for the TS instruc-
tion.) The temporary location TEMP is initialized to a nonzero value. The SWAP
instruction swaps its contents with LOCK. This action closes the lock. The old
value of LOCK is now available in TEMP. It is tested to find whether the lock was
already closed. If so, the process loops on the swap instruction until the lock is
opened. The process executing the critical section or indivisible operation opens
the lock at the end of the operation. This action enables one process to get past
the BC instruction and enter the critical section or the indivisible operation.

Many computers provide a Compare-and-swap instruction. This instruc-
tion has three operands. If the first two operands are equal, it copies the third
operand’s value into the second operand’s location; otherwise, it copies the
second operand’s value into the first operand’s location. It is easy to rewrite
the program of Figure 6.10 by using the instruction Compare-and-swap
first_opd, LOCK, third_opd where the values of first_opd and
third_opd correspond to the open and closed values of the lock. In effect,
this instruction closes the lock and puts its old value in first_opd.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 180 — #16

180 Part 2 Process Management

6.5.3 Algorithmic Approaches, Synchronization Primitives,
and Concurrent Programming Constructs

Historically, implementation of process synchronization has gone through three
important stages—algorithmic approaches, synchronization primitives, and con-
current programming constructs. Each stage in its history solved practical
difficulties that were faced in the previous stage.

Algorithmic approaches were largely confined to implementing mutual exclu-
sion. They did not use any special features in computer architecture, programming
languages, or the kernel to achieve mutual exclusion; instead they depended on
a complex arrangement of checks to ensure that processes accessed shared data
in a mutually exclusive manner. Thus the algorithmic approaches were inde-
pendent of hardware and software platforms. However, correctness of mutual
exclusion depended on correctness of these checks, and was hard to prove because
of logical complexity of the checks. This problem inhibited development of large
applications. Since the algorithmic approaches worked independently of the ker-
nel, they could not employ the blocking approach to process synchronization
(see Section 6.5.1), so they used the looping approach and suffered from all
its drawbacks.

A set of synchronization primitives were developed to overcome deficiencies of
the algorithmic approach. Each primitive was a simple operation that contributed
to process synchronization; it was implemented by using indivisible instructions
in the hardware and support from the kernel for blocking and activation of pro-
cesses. The primitives possessed useful properties for implementing both mutual
exclusion and indivisible operations, and it was hoped that these properties could
be used to construct proofs of correctness of a concurrent program. However,
experience showed that these primitives could be used haphazardly, a property
that caused its own difficulties with correctness of programs. Most modern oper-
ating systems provide the wait and signal primitives of semaphores; however, they
are employed only by system programmers because of the problems mentioned
above.

The next important step in the history of process synchronization was
the development of concurrent programming constructs, which provided data
abstraction and encapsulation features specifically suited to the construction of
concurrent programs. They had well-defined semantics that were enforced by
the language compiler. Effectively, concurrent programming constructs incorpo-
rated functions that were analogous to those provided by the synchronization
primitives, but they also included features to ensure that these functions could
not be used in a haphazard or indiscriminate manner. These properties helped
in ensuring correctness of programs, which made construction of large appli-
cations practical. Most modern programming languages provide a concurrent
programming construct called a monitor.

We discuss algorithmic approaches to process synchronization in Section 6.8,
and semaphores and synchronization primitives for mutual exclusion in
Section 6.9. Section 6.10 describes monitors.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 181 — #17

Chapter 6 Process Synchronization 181

6.6 STRUCTURE OF CONCURRENT SYSTEMS
•

A concurrent system consists of three key components:

• Shared data
• Operations on shared data
• Interacting processes

Shared data include two kinds of data—application data used and manipu-
lated by processes, and synchronization data, i.e., data used for synchronization
between processes. An operation is a convenient unit of code, typically a func-
tion or a procedure in a programming language, which accesses and manipulates
shared data. A synchronization operation is an operation on synchronization data.

A snapshot of a concurrent system is a view of the system at a specific time
instant. It shows relationships between shared data, operations and processes
at that instant of time. We use the pictorial conventions shown in Figure 6.11
to depict a snapshot. A process is shown as a circle. A circle with a cross in it
indicates a blocked process. A data item, or a set of data items, is represented by
a rectangular box. The value(s) of data, if known, are shown inside the box.

Operations on data are shown as connectors or sockets joined to the data. An
oval shape enclosing a data item indicates that the data item is shared. A dashed
line connects a process and an operation on data if the process is currently engaged
in executing the operation. Recall that a dashed rectangular box encloses code
executed as a critical section. We extend this convention to operations on data.
Hence mutually exclusive operations on data are enclosed in a dashed rectangular
box. A queue of blocked processes is associated with the dashed box to show the
processes waiting to perform one of the operations.

The execution of a concurrent system is represented by a series of snapshots.

Pi
: Process Pi

Pi : Blocked

 process Pi

. . . : Queue of blocked

 processes

25

d
: Data d

37

d OP1

OP2

: Operations

 on data d

5

d

: Shared data d

2

d OP1

OP2

Pi : Process Pi performs

 OP1 on shared data d

8

d OP1

OP2

: OP1, OP2 are mutually

 exclusive operations

Figure 6.11 Pictorial conventions for snapshots of concurrent systems.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 182 — #18

182 Part 2 Process Management

•
Example 6.3 Snapshots of a Concurrent System

Consider the system of Figure 6.5, where process Pi performs action ai only
after process Pj performs action aj . We assume that operations ai and aj operate
on shared data items X and Y , respectively. Let the system be implemented
using the operations check_aj and post_aj of Figure 6.7. This system comprises
the following components:

Shared data Boolean variables operation_aj_performed
and pi_blocked, both initialized to false,
and data items X and Y.

Operations on application data Operations ai and aj .
Synchronization operations Operations check_aj and post_aj.
Processes Processes Pi and Pj .

Figure 6.12 shows three snapshots of this system. T and F indicate val-
ues true and false, respectively. Operations check_aj and post_aj both use the
boolean variables operation_aj_performed and pi_blocked. These operations
are indivisible operations, so they are mutually exclusive. Accordingly, they
are enclosed in a dashed box. Figure 6.12(a) shows the situation when process
Pj is engaged in performing operation aj and process Pi wishes to perform
operation ai , so it invokes operation check_aj. Operation check_aj finds that
operation_aj_performed is false, so it sets pi_blocked to true, blocks process
Pi and exits. When Pj finishes performing operation aj , it invokes operation
post_aj (see Figure 6.12(b)). This operation finds that pi_blocked is true, so it
sets pi_blocked to false, activates process Pi , and exits. Process Pi now performs
operation ai (see Figure 6.12(c)).
•

T

F

F

F

(a)

X
ai

Y
aj

check_aj Pi

post_aj

?

Pj

(b)

X
ai

Pi

Y
aj

check_aj

post_aj Pj

(c)

X
ai

Y
aj

Pj

F

F

pi_blocked
operation_

aj_performed

check_aj Pi

post_aj

Figure 6.12 Snapshots of the system of Example 6.3.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 183 — #19

Chapter 6 Process Synchronization 183

6.7 CLASSIC PROCESS SYNCHRONIZATION PROBLEMS
•

A solution to a process synchronization problem should meet three important
criteria:

• Correctness: Data access synchronization and control synchronization
should be performed in accordance with synchronization requirements of
the problem.

• Maximum concurrency: A process should be able to operate freely except
when it needs to wait for other processes to perform synchronization actions.

• No busy waits: To avoid performance degradation, synchronization should
be performed through blocking rather than through busy waits (see
Section 6.5.1).

As discussed in sections 6.3 and 6.4, critical sections and signaling are the
key elements of process synchronization, so a solution to a process synchroniza-
tion problem should incorporate a suitable combination of these elements. In
this section, we analyze some classic problems in process synchronization, which
are representative of synchronization problems in various application domains,
and discuss issues (and common mistakes) in designing their solutions. In later
Sections we implement their solutions using various synchronization features
provided in programming languages.

6.7.1 Producers−−Consumers with Bounded Buffers
A producers–consumers system with bounded buffers consists of an unspecified
number of producer and consumer processes and a finite pool of buffers (see
Figure 6.13). Each buffer is capable of holding one item of information—it is said
to become full when a producer writes a new item into it, and become empty when
a consumer copies out an item contained in it; it is empty when the producers–
consumers system starts its operation. A producer process produces one item of
information at a time and writes it into an empty buffer. A consumer process
consumes information one item at a time from a full buffer.

A producers–consumers system with bounded buffers is a useful abstraction
for many practical synchronization problems. A print service is a good example

Buffer pool

Producers Consumers

Figure 6.13 A producers–consumers system with bounded buffers.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 184 — #20

184 Part 2 Process Management

in the OS domain. A fixed-size queue of print requests is the bounded buffer. A
process that adds a print request to the queue is a producer process, and a print
daemon is a consumer process. The data logging application of Example 5.1 would
also be an instance of the producers–consumers problem if the housekeeping
process is omitted—the copy_sample process is the producer since it writes a data
sample into a buffer. The record_sample process is a consumer since it removes a
data sample from the buffer and writes it into the disk file.

A solution to the producers–consumers problem must satisfy the following
conditions:

1. A producer must not overwrite a full buffer.
2. A consumer must not consume an empty buffer.
3. Producers and consumers must access buffers in a mutually exclusive

manner.

The following condition is also sometimes imposed:

4. Information must be consumed in the same order in which it is put into the
buffers, i.e., in FIFO order.

Figure 6.14 shows an outline for the producers–consumers problem. Pro-
ducer and consumer processes access a buffer inside a critical section. A producer
enters its critical section and checks whether an empty buffer exists. If so, it pro-
duces into that buffer; otherwise, it merely exits from its critical section. This
sequence is repeated until it finds an empty buffer. The boolean variable produced
is used to break out of the while loop after the producer produces into an empty
buffer. Analogously, a consumer makes repeated checks until it finds a full buffer
to consume from.

This outline suffers from two problems—poor concurrency and busy waits.
The pool contains many buffers, and so it should be possible for producers and
consumers to concurrently access empty and full buffers, respectively. However,

begin
Parbegin

var produced : boolean;

repeat
var consumed : boolean;

repeat
produced := false
while produced = false

consumed := false;

while consumed = false

if an empty buffer exists
then

if a full buffer exists
then

{ Produce in a buffer }

produced := true;

{ Consume a buffer }

consumed := true;

{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;

Parend;

end.

Producer Consumer

Figure 6.14 An outline for producers–consumers using critical sections.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 185 — #21

Chapter 6 Process Synchronization 185

both produce and consume actions take place in critical sections for the entire
buffer pool, and so only one process, whether producer or consumer, can access
a buffer at any time.

Busy waits exist in both producers and consumers. A producer repeatedly
checks for an empty buffer and a consumer repeatedly checks for a full buffer. To
avoid busy waits, a producer process should be blocked if an empty buffer is not
available. When a consumer consumes from a buffer, it should activate a producer
that is waiting for an empty buffer. Similarly, a consumer should be blocked if
a full buffer is not available. A producer should activate such a consumer after
producing in a buffer.

When we reanalyze the producers–consumers problem in this light, we notice
that though it involves mutual exclusion between a producer and a consumer
that use the same buffer, it is really a signaling problem. After producing an
item of information in a buffer, a producer should signal a consumer that wishes
to consume the item from that buffer. Similarly, after consuming an item in a
buffer, a consumer should signal a producer that wishes to produce an item of
information in that buffer. These requirements can be met by using the signaling
arrangement discussed in Section 6.4.

An improved outline using this approach is shown in Figure 6.15 for a simple
producers–consumers system that consists of a single producer, a single consumer,
and a single buffer. The operation check_b_empty performed by the producer
blocks it if the buffer is full, while the operation post_b_ full sets buffer_ full to
true and activates the consumer if the consumer is blocked for the buffer to become
full. Analogous operations check_b_ full and post_b_empty are defined for use by
the consumer process. The boolean flags producer_blocked and consumer_blocked
are used by these operations to note whether the producer or consumer process

var
buffer : . . . ;
buffer_ full : boolean;

producer_blocked, consumer_blocked : boolean;

begin
buffer_ full := false;
producer_blocked := false;
consumer_blocked := false;

Parbegin
repeat repeat

check_b_empty; check_b_ full;
{Produce in the buffer} {Consume from the buffer}

post_b_ full; post_b_empty;

{Remainder of the cycle} {Remainder of the cycle}

forever; forever;

Parend;

end.

Producer Consumer

Figure 6.15 An improved outline for a single buffer producers–consumers system using
signaling.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 186 — #22

186 Part 2 Process Management

procedure check_b_full
begin

if buffer_full = false
then

consumer_blocked := true;

block (consumer);

end;

procedure post_b_full
begin

buffer_full := true;

if consumer_blocked = true
then

consumer_blocked := false;

activate (consumer);

end;

Operations of producer

procedure check_b_empty
begin

if buffer_full = true
then

producer_blocked := true;

block (producer);

end;

procedure post_b_empty
begin

buffer_full := false;

if producer_blocked = true
then

producer_blocked := false;

activate (producer);

end;

Operations of consumer

Figure 6.16 Indivisible operations for the producers–consumers problem.

is blocked at any moment. Figure 6.16 shows details of the indivisible opera-
tions. This outline will need to be extended to handle multiple buffers or multiple
producer/consumer processes. We discuss this aspect in Section 6.9.2.

6.7.2 Readers and Writers
A readers–writers system consists of shared data, an unspecified number of reader
processes that only read the data, and an unspecified number of writer processes
that modify or update the data. We use the terms reading and writing for accesses
to the shared data made by reader and writer processes, respectively. A solution
to the readers–writers problem must satisfy the following conditions:

1. Many readers can perform reading concurrently.
2. Reading is prohibited while a writer is writing.
3. Only one writer can perform writing at any time.

Conditions 1–3 do not specify which process should be preferred if a reader and
a writer process wish to access the shared data at the same time. The following
additional condition is imposed if it is important to give a higher priority to
readers in order to meet some business goals:

4. A reader has a nonpreemptive priority over writers; i.e., it gets access to
the shared data ahead of a waiting writer, but it does not preempt an active
writer.

This system is called a readers preferred readers–writers system. A writers preferred
readers–writers system is analogously defined.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 187 — #23

Chapter 6 Process Synchronization 187

Bank account

Readers Writers

print

statement

stat

analysis

credit

debit

Figure 6.17 Readers and writers in a banking system.

Figure 6.17 illustrates an example of a readers–writers system. The readers
and writers share a bank account. The reader processes print statement and stat
analysis merely read the data from the bank account; hence they can execute
concurrently. credit and debit modify the balance in the account. Clearly only
one of them should be active at any moment and none of the readers should
be concurrent with it. In an airline reservation system, processes that merely
query the availability of seats on a flight are reader processes, while processes that
make reservations are writer processes since they modify parts of the reservation
database.

We determine the synchronization requirements of a readers–writers system
as follows: Conditions 1–3 permit either one writer to perform writing or many
readers to perform concurrent reading. Hence writing should be performed in
a critical section for the shared data. When a writer finishes writing, it should
either enable another writer to enter its critical section, or activate all waiting
readers using a signaling arrangement and a count of waiting readers. If readers
are reading, a waiting writer should be enabled to perform writing when the last
reader finishes reading. This action would require a count of concurrent readers
to be maintained.

Figure 6.18 is an outline for a readers–writers system. Writing is performed
in a critical section. A critical section is not used in a reader, because that would
prevent concurrency between readers. A signaling arrangement is used to handle
blocking and activation of readers and writers. For simplicity, details of main-
taining and using counts of waiting readers and readers reading concurrently are
not shown in the outline; we shall discuss these in Section 6.9.3. The outline of
Figure 6.18 does not provide bounded waits for readers and writers; however, it
provides maximum concurrency. This outline does not prefer either readers or
writers.

6.7.3 Dining Philosophers
Five philosophers sit around a table pondering philosophical issues. A plate of
spaghetti is kept in front of each philosopher, and a fork is placed between each
pair of philosophers (see Figure 6.19). To eat, a philosopher must pick up the
two forks placed between him and the neighbors on either side, one at a time.
The problem is to design processes to represent the philosophers such that each
philosopher can eat when hungry and none dies of hunger.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 188 — #24

188 Part 2 Process Management

Parbegin
repeat repeat

If a writer is writing If reader(s) are reading, or a
then writer is writing

{ wait }; then
{ read } { wait };

If no other readers reading { write }

then If reader(s) or writer(s) waiting
if writer(s) waiting then
then activate either one waiting

activate one waiting writer; writer or all waiting readers;

forever; forever;

Parend;

end.

Reader(s) Writer(s)

Figure 6.18 An outline for a readers–writers system.

P

P P

P P

Figure 6.19 Dining philosophers.

The correctness condition in the dining philosophers system is that a hungry
philosopher should not face indefinite waits when he decides to eat. The challenge
is to design a solution that does not suffer from either deadlocks, where processes
become blocked waiting for each other (see Section 1.4.2), or livelocks, where pro-
cesses are not blocked but defer to each other indefinitely. Consider the outline
of a philosopher process Pi shown in Figure 6.20, where details of process syn-
chronization have been omitted. A philosopher picks up the forks one at a time,
say, first the left fork and then the right fork. This solution is prone to deadlock,
because if all philosophers simultaneously lift their left forks, none will be able
to lift the right fork! It also contains race conditions because neighbors might
fight over a shared fork. We can avoid deadlocks by modifying the philosopher
process so that if the right fork is not available, the philosopher would defer to
his left neighbor by putting down the left fork and repeating the attempt to take
the forks sometime later. However, this approach suffers from livelocks because
the same situation may recur.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 189 — #25

Chapter 6 Process Synchronization 189

repeat
if left fork is not available

then
block (Pi);

lift left fork;

if right fork is not available

then
block (Pi);

lift right fork;

{ eat }

put down both forks

if left neighbor is waiting for his right fork

then
activate (left neighbor);

if right neighbor is waiting for his left fork

then
activate (right neighbor);

{ think }

forever

Figure 6.20 Outline of a philosopher process Pi .

var successful : boolean;

repeat
successful := false;

while (not successful)
if both forks are available then

lift the forks one at a time;

successful := true;

if successful = false
then

block (Pi);
{ eat }

put down both forks;

if left neighbor is waiting for his right fork

then
activate (left neighbor);

if right neighbor is waiting for his left fork

then
activate (right neighbor);

{ think }

forever

Figure 6.21 An improved outline of a philosopher process.

An improved outline for the dining philosophers problem is given in
Figure 6.21. A philosopher checks availability of forks in a CS and also picks
up the forks in the CS. Hence race conditions cannot arise. This arrangement
ensures that at least some philosopher(s) can eat at any time and deadlocks can-
not arise. A philosopher who cannot get both forks at the same time blocks

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 190 — #26

190 Part 2 Process Management

himself. He gets activated when any of his neighbors puts down a shared fork,
hence he has to check for availability of forks once again. This is the purpose
of the while loop. However, the loop also causes a busy wait condition. Some
innovative solutions to the dining philosophers problem prevent deadlocks with-
out busy waits (see Exercise 6.14). Deadlock prevention is discussed in detail in
Chapter 8.

6.8 ALGORITHMIC APPROACH TO IMPLEMENTING
CRITICAL SECTIONS

•
The algorithmic approach to implementing critical sections did not employ either
the process blocking and activation services of the kernel to delay a process, or
indivisible instructions in a computer to avoid race conditions. Consequently,
process synchronization implemented through this approach was independent of
both the OS and the computer. However, these features required the approach to
use a busy wait to delay a process at a synchronization point (see Section 6.5.1),
and use a complex arrangement of logical conditions to ensure absence of race
conditions, which complicated proofs of correctness. The algorithmic approach
was not widely used in practice due to these weaknesses.

This section describes the algorithmic approach to implementing critical
sections which, as we saw in Section 6.5.2, can be used for both data access
synchronization and control synchronization. This study provides an insight into
how to ensure mutual exclusion while avoiding both deadlocks and livelocks.
We begin by discussing critical section implementation schemes for use by two
processes. Later we see how to extend some of these schemes for use by more than
two processes.

6.8.1 Two-Process Algorithms
Algorithm 6.1 First Attempt

var turn : 1 .. 2;
begin

turn := 1;

Parbegin
repeat repeat

while turn = 2 while turn = 1
do { nothing }; do { nothing };

{ Critical Section } { Critical Section }
turn := 2; turn := 1;
{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;
Parend;
end.

Process P1 Process P2

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 191 — #27

Chapter 6 Process Synchronization 191

The variable turn is a shared variable. The notation 1 .. 2 in its declaration
indicates that it takes values in the range 1–2; i.e., its value is either 1 or 2. It is
initialized to 1 before processes P1 and P2 are created. Each process contains a
critical section for some shared data ds. The shared variable turn indicates which
process can enter its critical section next. Suppose process P1 wishes to enter
its critical section. If turn = 1, P1 can enter right away. After exiting its critical
section, P1 sets turn to 2 so that P2 can enter its critical section. If P1 finds turn
= 2 when it wishes to enter its critical section, it waits in the while turn = 2 do
{ nothing } loop until P2 exits from its critical section and executes the assignment
turn := 1. Thus the correctness condition is satisfied.

Algorithm 6.1 violates the progress condition of critical section implemen-
tation described in Table 6.1 because of the way it uses shared variable turn. Let
process P1 be in its critical section and process P2 be in the remainder of the
cycle. When P1 exits from its critical section, it would set turn to 2. If it finishes
the remainder of its cycle and wishes to enter its critical section once again, it will
encounter a busy wait until after P2 uses its critical section and sets turn to 1.
Thus, P1 is not granted entry to its critical section even though no other process
is interested in using its critical section. Algorithm 6.2 is an attempt to eliminate
this problem.

Algorithm 6.2 Second Attempt

var c1, c2 : 0 .. 1;
begin

c1 := 1;
c2 := 1;

Parbegin
repeat repeat

while c2 = 0 while c1 = 0
do { nothing }; do { nothing };

c1 := 0; c2 := 0;
{ Critical Section } { Critical Section }
c1 := 1; c2 := 1;
{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;
Parend;
end.

Process P1 Process P2

The algorithm uses two shared variables c1 and c2, whose values are restricted
to either a 0 or a 1. These variables can be looked upon as status flags for processes
P1 and P2, respectively. P1 sets c1 to 0 while entering its critical section, and sets
it back to 1 after exiting from its critical section. Thus c1 = 0 indicates that P1
is in its critical section and c1 = 1 indicates that it is not in its critical section.
Similarly, the value of c2 indicates whether P2 is in its critical section. Before
entering its critical section, each process checks whether the other process is in
its critical section. If not, it enters its own critical section right away; otherwise,
it loops until the other process exits its critical section, and then enters its own

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 192 — #28

192 Part 2 Process Management

critical section. The progress violation of Algorithm 6.1 is eliminated because
processes are not forced to take turns using their critical sections.

Algorithm 6.2 violates the mutual exclusion condition when both processes
try to enter their critical sections at the same time. Both c1 and c2 will be 1
(since none of the processes is in its critical section), and so both processes will
enter their critical sections. To avoid this problem, the statements “while c2 = 0 do
{ nothing };” and “c1 := 0;” in process P1 could be interchanged and the statements
“while c1 = 0 do { nothing };” and “c2 := 0;” could be interchanged in process
P2. This way c1 will be set to 0 before P1 checks the value of c2, and hence both
processes will not be able to be in their critical sections at the same time. However,
if both processes try to enter their critical sections at the same time, both c1 and
c2 will be 0, and so both processes will wait for each other indefinitely. This is a
deadlock situation (see Section 1.4.2).

Both—the correctness violation and the deadlock possibility—can be elimi-
nated if a process defers to the other process when it finds that the other process
also wishes to enter its critical section. This can be achieved as follows: if P1
finds that P2 is also trying to enter its critical section, it can set c1 to 0. This
will permit P2 to enter its critical section. P1 can wait for some time and make
another attempt to enter its critical section after setting c1 to 1. Similarly, P2 can
set c2 to 0 if it finds that P1 is also trying to enter its critical section. However,
this approach may lead to a situation in which both processes defer to each other
indefinitely. This is a livelock situation we discussed earlier in the context of dining
philosophers (see Section 6.7.3).

Dekker’s Algorithm Dekker’s algorithm combines the useful features of
Algorithms 6.1 and 6.2 to avoid a livelock situation. If both processes try to
enter their critical sections at the same time, turn indicates which of the processes
should be allowed to enter. It has no effect at other times.

Algorithm 6.3 Dekker’s Algorithm

var turn : 1 .. 2;
c1, c2 : 0 .. 1;

begin
c1 := 1;
c2 := 1;
turn := 1;

Parbegin
repeat repeat

c1 := 0; c2 := 0;
while c2 = 0 do while c1 = 0 do

if turn = 2 then if turn = 1 then
begin begin

c1 := 1; c2 := 1;
while turn = 2 while turn = 1

do { nothing }; do { nothing };
c1 := 0; c2 := 0;

end; end;

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 193 — #29

Chapter 6 Process Synchronization 193

{ Critical Section } { Critical Section }
turn := 2; turn := 1;
c1 := 1; c2 := 1;
{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;
Parend;
end.

Process P1 Process P2

Variables c1 and c2 are used as status flags of the processes as in Algorithm 6.2.
The statement while c2 = 0 do in P1 checks if it is safe for P1 to enter its critical
section. To avoid the correctness problem of Algorithm 6.2, the statement c1 :=0
in P1 precedes the while statement. If c2 = 1 when P1 wishes to enter a critical
section, P1 skips the while loop and enters its critical section right away. If both
processes try to enter their critical sections at the same time, the value of turn
will force one of them to defer to the other. For example, if P1 finds c2 = 0, it
defers to P2 only if turn = 2; otherwise, it simply waits for c2 to become 1 before
entering its critical section. Process P2, which is also trying to enter its critical
section at the same time, is forced to defer to P1 only if turn = 1. In this manner
the algorithm satisfies mutual exclusion and also avoids deadlock and livelock
conditions. The actual value of turn at any time is immaterial to correctness of the
algorithm.

Peterson’s Algorithm Peterson’s algorithm is simpler than Dekker’s algorithm.
It uses a boolean array flag that contains one flag for each process; these flags
are equivalent to the status variables c1, c2 of Dekker’s algorithm. A process sets
its flag to true when it wishes to enter a critical section and sets it back to false
when it exits from the critical section. Processes are assumed to have the ids P0
and P1. A process id is used as a subscript to access the status flag of a process in
the array flag. The variable turn is used for avoiding livelocks; however, it is used
differently than in Dekker’s algorithm.

Algorithm 6.4 Peterson’s Algorithm

var flag : array [0 .. 1] of boolean;
turn : 0 .. 1;

begin
flag[0] := false;
flag[1] := false;

Parbegin
repeat repeat

flag[0] := true; flag[1] := true;
turn := 1; turn := 0;
while flag[1] and turn = 1 while flag[0] and turn = 0

do {nothing}; do {nothing};
{ Critical Section } { Critical Section }
flag[0] :=false; flag[1] :=false;
{ Remainder of the cycle } { Remainder of the cycle }

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 194 — #30

194 Part 2 Process Management

forever; forever;
Parend;
end.

Process P0 Process P1

A process wishing to enter a critical section begins by deferring to another
process by setting turn to point to the other process. However, it goes ahead and
enters its critical section if it finds that the other process is not interested in using
its own critical section. If both processes try to enter their critical sections at the
same time, the value of turn decides which process may enter. As an example,
consider process P0. It sets flag[0] to true and turn to 1 when it wishes to enter its
critical section. If process P2 is not interested in using its critical section, flag[1]
will be false, and so P0 will come out of the while loop to enter its critical section
right away. If P1 is also interested in entering its critical section, flag[1] will be
true. In that case, the value of turn decides which process may enter its critical
section.

It is interesting to consider operation of Peterson’s algorithm for different
relative speeds of P0 and P1. Consider the situation when both P0 and P1 wish to
use their critical sections and P0 is slightly ahead of P1. If both processes execute
at the same speed, P0 will enter its critical section ahead of P1 because P1 will
have changed turn to 0 by the time P1 reaches the while statement. P1 now waits
in the while loop until P0 exits from its critical section. If, however, P0 is slower
than P1, it will set turn to 1 sometime after P1 sets it to 0. Hence P0 will wait in
the while loop and P1 will enter its critical section.

6.8.2 n-Process Algorithms
In an algorithmic implementation of a critical section, the algorithm has to know
the number of processes that use a critical section for the same data item. This
awareness is reflected in many features of its code—the size of the array of status
flags, the checks to determine whether any other process wishes to enter a critical
section, and the arrangement for one process to defer to another. Each of these
features has to change if the number of processes to be handled by the critical
section implementation changes. For example, in a two-process critical section
implementation, any process needs to check the status of only one other process,
and possibly defer to it, to ensure correctness and absence of deadlocks and
livelocks. In an n-process critical section implementation, a process must check
the status of n − 1 other processes, and do it in a manner that prevents race
conditions. It makes an n-process algorithm more complex. We see this in the
context of the algorithm by Eisenberg and McGuire [1972], which extends the
two-process solution of Dekker’s algorithm to n processes.

Algorithm 6.5 An n-Process Algorithm (Eisenberg and McGuire [1972])

const n = . . .;
var flag : array [0 .. n − 1] of (idle, want_in, in_CS);

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 195 — #31

Chapter 6 Process Synchronization 195

turn : 0 .. n − 1;
begin

for j := 0 to n − 1 do
flag[j] := idle;

Parbegin
process Pi :

repeat
repeat

flag[i] := want_in;
j := turn;
while j �= i

do if flag[j] �= idle
then j := turn { Loop here! }
else j := j + 1 mod n;

flag[i] := in_CS;
j := 0;
while (j < n) and (j = i or flag[j] �= in_CS)

do j := j + 1;
until (j ≥ n) and (turn = i or flag[turn] = idle);
turn := i;
{ Critical Section }
j := turn +1 mod n;
while (flag[j] = idle) do j := j + 1 mod n;
turn := j;
flag[i] := idle;
{ Remainder of the cycle }

forever
process Pk : . . .

Parend;
end.

The variable turn indicates which process may enter its critical section next.
Its initial value is immaterial to correctness of the algorithm. Each process has
a 3-way status flag that takes the values idle, want_in and in_CS. It is initialized
to the value idle. A process sets its flag to want_in whenever it wishes to enter a
critical section. It now has to decide whether it may change the flag to in_CS. To
make this decision, it checks the flags of other processes in an order that we call
the modulo n order. The modulo n order is Pturn, Pturn+1, . . ., Pn−1, P0, P1, . . . ,
Pturn−1. In the first while loop, the process checks whether any process ahead of
it in the modulo n order wishes to use its own critical section. If not, it turns its
flag to in_CS.

Since processes make this check concurrently, more than one process may
simultaneously reach the same conclusion. Hence another check is made to ensure
correctness. The second while loop checks whether any other process has turned
its flag to in_CS. If so, the process changes its flag back to want_in and repeats all
the checks. All other processes that had changed their flags to in_CS also change
their flags back to want_in and repeat the checks. These processes will not tie for

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 196 — #32

196 Part 2 Process Management

entry to a critical section again because they have all turned their flags to want_in,
and so only one of them will be able to get past the first while loop. This feature
avoids the livelock condition. The process earlier in the modulo n order from
Pturn will get in and enter its critical section ahead of other processes. It changes
its flag to idle when it leaves its critical section. Thus the flag has the value idle
whenever a process is in the remainder of its cycle.

This solution contains a certain form of unfairness since processes do not
enter their critical sections in the same order in which they requested entry to a
critical section. This unfairness is eliminated in the Bakery algorithm by Lamport
[1974].

Bakery Algorithm When a process wishes to enter a critical section, it chooses
a number that is larger than any number chosen by any process earlier. choosing
is an array of boolean flags. choosing[i] is used to indicate whether process Pi is
currently engaged in choosing a number. number[i] contains the number chosen
by process Pi . number[i] = 0 if Pi has not chosen a number since the last time
it entered the critical section. The basic idea of the algorithm is that processes
should enter their critical sections in the order of increasing numbers chosen by
them. We discuss the operation of the algorithm in the following.

Algorithm 6.6 Bakery Algorithm (Lamport [1974])

const n = . . . ;
var choosing : array [0 .. n − 1] of boolean;

number : array [0 .. n − 1] of integer;
begin

for j := 0 to n − 1 do
choosing[j] := false;
number[j] := 0;

Parbegin
process Pi :

repeat
choosing[i] := true;
number[i] := max (number[0], .. ,number[n − 1])+1;
choosing[i] := false;
for j := 0 to n − 1 do
begin

while choosing[j] do { nothing };
while number[j] �= 0 and (number[j], j) < (number[i],i)

do { nothing };
end;
{ Critical Section }
number[i] := 0;
{ Remainder of the cycle }

forever;
process Pj : . . .

Parend;
end.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 197 — #33

Chapter 6 Process Synchronization 197

A process wishing to enter a critical section defers to a process with a smaller
number. However, a tie-breaking rule is needed because processes that choose
their numbers concurrently may obtain the same number. The algorithm uses the
pair (number[i], i) for this purpose—a process enters a critical section if its pair
precedes every other pair, where the precedes relation < is defined as follows:

(number[j], j) < (number[i], i) if
number[j] < number[i], or
number[j] = number[i] and j < i.

Thus, if many processes obtain the same number, the process with the smallest
process id enters its critical section first. In all other cases, processes enter critical
sections in the order in which they raise their requests for entry to a critical
section.

6.9 SEMAPHORES
•

As mentioned in Section 6.5.3, synchronization primitives were developed to over-
come the limitations of algorithmic implementations. The primitives are simple
operations that can be used to implement both mutual exclusion and control
synchronization. A semaphore is a special kind of synchronization data that can
be used only through specific synchronization primitives.

Definition 6.5 Semaphore A shared integer variable with nonnegative values
that can be subjected only to the following operations:

1. Initialization (specified as part of its declaration)
2. The indivisible operations wait and signal

The wait and signal operations on a semaphore were originally called the
P and V operations, respectively, by Dijkstra. Their semantics are shown in
Figure 6.22. When a process performs a wait operation on a semaphore, the
operation checks whether the value of the semaphore is > 0. If so, it decrements
the value of the semaphore and lets the process continue its execution; other-
wise, it blocks the process on the semaphore. A signal operation on a semaphore
activates a process blocked on the semaphore, if any, or increments the value of
the semaphore by 1. Due to these semantics, semaphores are also called counting
semaphores. Indivisibility of the wait and signal operations is ensured by the pro-
gramming language or the operating system that implements it. It ensures that
race conditions cannot arise over a semaphore (see Section 6.9.4).

Processes use wait and signal operations to synchronize their execution
with respect to one another. The initial value of a semaphore determines how
many processes can get past the wait operation. A process that does not get
past a wait operation is blocked on the semaphore. This feature avoids busy
waits. Section 6.9.1 describes uses of semaphores. Sections 6.9.2 and 6.9.3 discuss
implementation of the producers–consumers and readers–writers problems using
semaphores.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 198 — #34

198 Part 2 Process Management

procedure wait (S)

begin
if S > 0

then S := S–1;

else block the process on S;

end;

procedure signal (S)

begin
if some processes are blocked on S

then activate one blocked process;

else S := S+1;

end;

Figure 6.22 Semantics of the wait and signal operations on a semaphore.

Table 6.3 Uses of Semaphores in Implementing Concurrent Systems

Use Description

Mutual
exclusion

Mutual exclusion can be implemented by using a semaphore
that is initialized to 1. A process performs a wait operation on
the semaphore before entering a CS and a signal operation on
exiting from it. A special kind of semaphore called a binary
semaphore further simplifies CS implementation.

Bounded
concurrency

Bounded concurrency implies that a function may be executed,
or a resource may be accessed, by n processes concurrently,
1 ≤ n ≤ c, where c is a constant. A semaphore initialized to c
can be used to implement bounded concurrency.

Signaling Signaling is used when a process Pi wishes to perform an
operation ai only after process Pj has performed an operation
aj . It is implemented by using a semaphore initialized to 0. Pi
performs a wait on the semaphore before performing operation
ai . Pj performs a signal on the semaphore after it performs
operation aj .

6.9.1 Uses of Semaphores in Concurrent Systems
Table 6.3 summarizes three uses of semaphores in implementing concurrent
systems. Mutual exclusion is useful in implementing critical sections. Bounded
concurrency is important when a resource can be shared by up to c processes,
where c is a constant ≥ 1. Signaling is useful in control synchronization. We
discuss details of these uses in this section.

6.9.1.1 Mutual Exclusion

Figure 6.23 shows implementation of a critical section in processes Pi and Pj
by using a semaphore named sem_CS. sem_CS is initialized to 1. Each pro-
cess performs a wait operation on sem_CS before entering its critical section,
and a signal operation after exiting from its critical section. The first process to
perform wait(sem_CS) finds that sem_CS is > 0. Hence it decrements sem_CS

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 199 — #35

Chapter 6 Process Synchronization 199

var sem_CS : semaphore := 1;

Parbegin
repeat repeat

wait (sem_CS); wait (sem_CS);

{ Critical Section } { Critical Section }

signal (sem_CS); signal (sem_CS);

{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;

Parend;

end.

Process Pi Process Pj

Figure 6.23 CS implementation with semaphores.

by 1 and goes on to enter its critical section. When the second process performs
wait(sem_CS), it is blocked on sem_CS because its value is 0. It is activated
when the first process performs signal(sem_CS) after exiting from its own critical
section; the second process then enters its critical section. If no process is blocked
on sem_CS when a signal(sem_CS) operation is performed, the value of sem_CS
becomes 1. This value of sem_CS permits a process that is performing a wait
operation at some later time to immediately enter its critical section. More pro-
cesses using similar code can be added to the system without causing correctness
problems. The next example illustrates operation of this system using snapshots.

•
Example 6.4Critical Sections through Semaphores

Figure 6.24 shows snapshots taken during operation of the system shown
in Figure 6.23. The wait and signal operations on sem_CS are enclosed in
a dashed rectangular box because they are mutually exclusive (refer to the
pictorial conventions of Figure 6.11). Let process Pi perform wait(sem_CS).
Figure 6.24(a) illustrates the situation at the start of Pi ’s wait operation.
Figure 6.24(b) shows the situation after Pi completes the wait operation and Pj
executes a wait operation—Pi ’s wait(sem_CS) operation has reduced the value
of sem_CS to 0, so Pj becomes blocked on the wait operation. Figure 6.24(c)
shows the situation after process Pi performs a signal operation. The value of
sem_CS remains 0, but process Pj has been activated. Process Pj performs a
signal operation on exiting from its critical section. Since no process is cur-
rently blocked on sem_CS, Pj ’s signal operation simply results in increasing
the value of sem_CS by 1 (see Figure 6.24(d)).

•
It is interesting to check which properties of critical section implementa-

tions mentioned in Table 6.1 are satisfied by the implementation of Figure 6.23.
Mutual exclusion follows from the fact that sem_CS is initialized to 1. The imple-
mentation possesses the progress property because a process performing the wait
operation gets to enter its critical section if no other process is in its critical

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 200 — #36

200 Part 2 Process Management

sem_CSwait

signal
Pj

Pi

(c)

1

0

0

1

sem_CSwait

signalPj

Pi

(a)

sem_CSwait

signal
Pj

Pi

(d)

sem_CSwait

signal

· · ·

Pj

Pi

(b)

Figure 6.24 Snapshots of the concurrent system of Figure 6.23.

section. However, the bounded wait property does not hold because the order in
which blocked processes are activated by signal operations is not defined in the
semantics of semaphores. Hence a blocked process may starve if other processes
perform wait and signal operations repeatedly.

Correctness problems can arise because the wait and signal operations are
primitives, and so a program can use them in a haphazard manner. For example,
process Pi of Figure 6.23 could have been erroneously written as

repeat
signal(sem_CS);
{ Critical Section }
signal(sem_CS);
{ Remainder of the cycle }

forever

where a signal(sem_CS) has been used instead of a wait(sem_CS) at Pi ’s entry to
its critical section. Now the critical section would not be implemented correctly
because many processes would be able to enter their critical sections at the same
time. As another example, consider what would happen if the code of process
Pi erroneously uses a wait(sem_CS) operation in place of the signal(sem_CS)
operation following its critical section. When Pi executes its critical section, it will
be blocked on the wait operation after exiting from its critical section because the
value of sem_CS will be 0. Other processes wishing to enter the critical section
will be blocked on the wait operation preceding their critical sections. Since no
process performs a signal operation on sem_CS, all these processes will remain
blocked indefinitely, which is a deadlock situation.

Binary Semaphores A binary semaphore is a special kind of semaphore used
for implementing mutual exclusion. Hence it is often called a mutex. A binary
semaphore is initialized to 1 and takes only the values 0 and 1 during execution
of a program. The wait and signal operations on a binary semaphore are slightly
different from those shown in Figure 6.22; the statement S := S−1 in the wait
operation is replaced by the statement S := 0 and the statement S := S+1 in the
signal operation is replaced by the statement S := 1.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 201 — #37

Chapter 6 Process Synchronization 201

var sync : semaphore := 0;

Parbegin
· · · · · ·

wait (sync); { Performaction aj }
{ Performaction ai } signal (sync);

Parend;

end.

Process Pi Process Pj

Figure 6.25 Signaling using semaphores.

6.9.1.2 Bounded Concurrency

We use the term bounded concurrency for the situation in which up to c processes
can concurrently perform an operation opi , where c is a constant ≥ 1. Bounded
concurrency is implemented by initializing a semaphore sem_c to c. Every pro-
cess wishing to perform opi performs a wait(sem_c) before performing opi and
a signal(sem_c) after performing it. From the semantics of the wait and signal
operations, it is clear that up to c processes can concurrently perform opi .

6.9.1.3 Signaling between Processes

Consider the synchronization requirements of processes Pi and Pj shown in
Figure 6.6—process Pi should perform an operation ai only after process Pj per-
forms an operation aj . A semaphore can be used to achieve this synchronization
as shown in Figure 6.25. Here process Pi performs a wait(sync) before executing
operation ai and Pj performs a signal(sync) after executing operation aj . The
semaphore sync is initialized to 0, and so Pi will be blocked on wait(sync) if Pj
has not already performed a signal(sync). It will proceed to perform operation
ai only after process Pj performs a signal. Unlike the solution of Figure 6.6, race
conditions cannot arise because the wait and signal operations are indivisible.
The signaling arrangement can be used repetitively, as the wait operation makes
the value of sync 0 once again.

6.9.2 Producers−−Consumers Using Semaphores
As discussed in Section 6.7.1, the producers–consumers problem is a signaling
problem. After producing an item of information in a buffer, a producer signals
to a consumer that is waiting to consume from the same buffer. Analogously, a
consumer signals to a waiting producer. Hence we should implement producers–
consumers using the signaling arrangement shown in Figure 6.25.

For simplicity, we first discuss the solution for the single buffer case shown
in Figure 6.26. The buffer pool is represented by an array of buffers with a single
element in it. Two semaphores full and empty are declared. They are used to
indicate the number of full and empty buffers, respectively. A producer performs
a wait(empty) before starting the produce operation and a consumer performs a
wait(full) before a consume operation.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 202 — #38

202 Part 2 Process Management

type item = . . .;

var
full : Semaphore := 0; { Initializations }

empty : Semaphore := 1;

buffer : array [0] of item;

begin
Parbegin

repeat repeat
wait (empty); wait (full);
buffer [0] := . . .; x := buffer [0];

{ i.e., produce } { i.e., consume }

signal (full); signal (empty);

{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;

Parend;

end.

Producer Consumer

Figure 6.26 Producers–consumers with a single buffer.

Initially the semaphore full has the value 0. Hence consumer(s) will be
blocked on wait(full). empty has the value 1, and so one producer will get
past the wait(empty) operation. After completing the produce operation it per-
forms signal(full). This enables one consumer to enter, either immediately or
later. When the consumer finishes a consume operation, it performs a sig-
nal(empty) that enables a producer to perform a produce operation. This solution
avoids busy waits since semaphores are used to check for empty or full buffers,
and so a process will be blocked if it cannot find an empty or full buffer as
required. The total concurrency in this system is 1; sometimes a producer exe-
cutes and sometimes a consumer executes. Example 6.5 describes the operation of
this solution.

•
Example 6.5 Producers−−Consumers with a Single Buffer

through Semaphores
The snapshot of Figure 6.27(a) shows the initial situation in the producers–
consumers system of Figure 6.26. Figure 6.27(b) shows the situation when the
producer and consumer processes attempt to produce and consume, respec-
tively. The producer process has got past its wait operation on empty since
empty was initialized to 1. The value of semaphore empty becomes 0 and the
producer starts producing in the buffer. The consumer process is blocked on
the wait (full) operation because full is 0. When the producer performs a sig-
nal(full) after the produce operation, the consumer process is activated and
starts consuming from the buffer. Figure 6.27(c) shows this situation.
•

Figure 6.28 shows how semaphores can be used to implement a solution of the
n-buffer producers–consumers problem, n ≥ 1, containing one producer and one

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 203 — #39

Chapter 6 Process Synchronization 203

buffer
Produce

Consume

Producer

Consumer

buffer
Produce

Consume

Producer

· · ·

Consumer

buffer
Produce

Consume

Producer

Consumer

full
wait

signal

full
wait

signal

wait

signal

empty
wait

signal

empty
wait

signal

empty
wait

signal

(a) (b) (c)

0

1 0 0

0 0

Figure 6.27 Snapshots of single buffer producers–consumers using semaphores.

const
type
var

begin

Parbegin
repeat repeat

wait (empty); wait (full);
buffer [prod_ ptr] := . . .; x := buffer [cons_ ptr];

{ i.e. produce } { i.e. consume }

prod_ ptr := prod_ ptr + 1 mod n; cons_ ptr := cons_ ptr + 1 mod n;

signal (full); signal (empty);

{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;

Parend;

end.

Producer Consumer

n = . . .;

item = . . .;

buffer : array [0..n – 1] of item;

full : Semaphore := 0; { Initializations }

empty : Semaphore := n;

prod_ ptr, cons_ ptr : integer;

prod_ ptr := 0;

cons_ ptr := 0;

Figure 6.28 Bounded buffers using semaphores.

consumer process. This solution is a simple extension of the single-buffer solution
shown in Figure 6.26. The values of the semaphores empty and full indicate the
number of empty and full buffers, respectively, hence they are initialized to n and 0,
respectively. prod_ptr and cons_ptr are used as subscripts of the array buffer. The

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 204 — #40

204 Part 2 Process Management

producer produces in buffer[prod_ptr] and increments prod_ptr. The consumer
consumes from buffer[cons_ptr] and increments cons_ptr in the same manner.
This feature ensures that buffers are consumed in FIFO order. A producer and a
consumer can operate concurrently so long as some full and some empty buffers
exist in the system.

It is easy to verify that this solution implements the correctness conditions
of the bounded buffer problem described in Section 6.7.1. However, if many
producer and consumer processes exist in the system, we need to provide mutual
exclusion among producers to avoid race conditions on prod_ptr. Analogously,
mutual exclusion should be provided among consumers to avoid race conditions
on cons_ptr.

6.9.3 Readers−−Writers Using Semaphores
A key feature of the readers–writers problem is that readers and writers must
wait while a writer is writing, and when the writer exits, either all waiting readers
should be activated or one waiting writer should be activated (see the outline of
Figure 6.18). To implement this feature, we use four counters as follows:

runread count of readers currently reading
totread count of readers waiting to read or currently reading
runwrite count of writers currently writing
totwrite count of writers waiting to write or currently writing

With these counters, the outline of Figure 6.18 is refined as shown in
Figure 6.29; we do not show details of how the counters are updated. A reader
is allowed to begin reading when runwrite = 0 and a writer is allowed to begin
writing when runread = 0 and runwrite = 0. The value of totread is used to activate
all waiting readers when a writer finishes writing. This solution does not use an
explicit critical section for writers. Instead writers are blocked until they can be
allowed to start writing.

Parbegin
repeat repeat

if runwrite ≠ 0 if runread ≠ 0 or
then runwrite ≠ 0

{ wait }; then { wait };

{ read } { write }

if runread = 0 and if totread ≠ 0 or totwrite ≠ 0

totwrite ≠ 0 then
then activate either one waiting writer

activate one waiting writer or all waiting readers
forever; forever;

Parend;

Reader(s) Writer(s)

Figure 6.29 Refined solution outline for readers–writers.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 205 — #41

Chapter 6 Process Synchronization 205

Blocking of readers and writers resembles blocking of producers and con-
sumers in the producers–consumers problem. Hence it is best handled by using
semaphores for signaling. We introduce two semaphores named reading and
writing. A reader process would perform wait(reading) before starting to read.
This operation should block the reader process if conditions permitting it to
read are not currently satisfied; otherwise, the reader should be able to get past
it and start reading. Similarly, a writer process would perform a wait(writing)
before writing and it would get blocked if appropriate conditions are not sat-
isfied. The conditions on which readers and writers are blocked may change
when any of the counter values change, i.e., when a reader finishes reading or
a writer finishes writing. Hence the reader and writer processes should them-
selves perform appropriate signal operations after completing a read or a write
operation.

This solution is implemented as follows (see Figure 6.30): To avoid race con-
ditions all counter values are examined and manipulated inside critical sections
implemented by using a binary semaphore named sem_CS. When a reader wishes
to start reading, it enters a critical section for sem_CS to check whether runwrite
= 0. If so, it increments runread , exits the critical section and starts reading. If
not, it must perform wait(reading); however, performing a wait(reading) opera-
tion inside the critical section for sem_CS may cause a deadlock, so it performs
a wait(reading) after exiting the critical section. If conditions permitting the start
of a read operation were satisfied when it examined the counter values inside its
critical section, it would have itself performed a signal(reading) inside the criti-
cal section. Such a reader will get past the wait(reading) operation. A writer will
similarly perform a signal(writing) inside its critical section for sem_CS under
the correct set of conditions and wait(writing) after exiting from the critical
section.

Readers and writers that get blocked on their respective wait operations
are activated as follows: When a reader finishes reading, it performs a signal
operation to activate a writer if no readers are active and a writer is waiting.
When a writer finishes writing, it performs signal operations to activate all wait-
ing readers, if any; otherwise, it performs a signal operation to wake a waiting
writer, if any. Hence the resulting system is a readers-preferred readers–writers
system.

The solution appears to have two redundant features (see Exercise 6.10).
First, it uses two semaphores, reading and writing, even though only one
resource—the shared data—is to be controlled. Second, every reader per-
forms a wait(reading) operation even though the operation is clearly redundant
when some other readers are already engaged in reading. However, both fea-
tures are needed to implement a writers-preferred readers–writers system (see
Exercise 6.11).

6.9.4 Implementation of Semaphores
Figure 6.31 shows a scheme for implementing semaphores. A semaphore type
is defined. It has fields for the value of a semaphore, a list that is used to store

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 206 — #42

206 Part 2 Process Management

var
totread, runread, totwrite, runwrite : integer;

reading, writing : semaphore := 0;

sem_CS : semaphore := 1;

begin
totread := 0;

runread := 0;

totwrite := 0;

runwrite := 0;

Parbegin
repeat repeat

wait (sem_CS); wait (sem_CS);

totread := totread + 1; totwrite := totwrite + 1;

if runwrite = 0 then if runread = 0 and runwrite = 0 then
runread := runread + 1; runwrite := 1;

signal (reading); signal (writing);

signal (sem_CS); signal (sem_CS);

wait (reading); wait (writing);

{ Read } { Write }

wait (sem_CS); wait (sem_CS);

runread := runread–1; runwrite := runwrite–1;

totread := totread–1; totwrite := totwrite–1;

if runread = 0 and while (runread < totread) do
totwrite > runwrite begin
then runread := runread + 1;

runwrite := 1; signal (reading);

signal (writing); end;

signal (sem_CS); if runread = 0 and
forever; totwrite > runwrite then

runwrite := 1;

signal (writing);

signal (sem_CS);

forever;

Parend;

end.

Reader(s) Writer(s)

Figure 6.30 A readers–preferred readers–writers system using semaphores.

ids of processes blocked on the semaphore, and a lock variable that is used to
ensure indivisibility of the wait and signal operations on the semaphore. The wait
and signal operations on semaphores are implemented as procedures that take a
variable of the semaphore type as a parameter. A concurrent program declares
semaphores as variables of the semaphore type, and its processes invoke the wait
and signal procedures to operate on them.

To avoid race conditions while accessing the value of the semaphore, proce-
dures wait and signal first invoke the function Close_lock to set the lock variable
sem.lock. Close_lock uses an indivisible instruction and a busy wait; however, the
busy waits are short since the wait and signal operations are themselves short.
The procedures invoke the function Open_lock to reset the lock after completing

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 207 — #43

Chapter 6 Process Synchronization 207

Type declaration for Semaphore
type

semaphore = record
value : integer; { value of the semaphore }

list : . . . { list of blocked processes }

lock : boolean; { lock variable for operations on this semaphore }

end;

Procedures for implementing wait and signal operations

procedure wait (sem)

begin
Close_lock (sem.lock);

if sem.value > 0

then
sem.value := sem.value–1;

Open_lock (sem.lock);

else
Add id of the process to list of processes blocked on sem;

block_me (sem.lock);

end;

procedure signal (sem)

begin
Close_lock (sem.lock);

if some processes are blocked on sem
then

proc_id := id of a process blocked on sem;

activate (proc_id);

else
sem.value := sem.value + 1;

Open_lock (sem.lock);

end;

Figure 6.31 A scheme for implementing wait and signal operations on a semaphore.

their execution. Recall from Section 6.5.1 that a busy wait may lead to priority
inversion in an OS using priority-based scheduling; we assume that a priority
inheritance protocol is used to avoid this problem. In a time-sharing system, a
busy wait can cause delays in synchronization, but does not cause more serious
problems.

The wait procedure checks whether the value of sem is > 0. If so, it decre-
ments the value and returns. If the value is 0, the wait procedure adds the id
of the process to the list of processes blocked on sem and makes a block me
system call with the lock variable as a parameter. This call blocks the process that
invoked the wait procedure and also opens the lock passed to it as a parameter.
Note that the wait procedure could not have performed these actions itself—
race conditions would arise if it opened the lock before making a block_me call,
and a deadlock would arise if it made made a block_me call before opening
the lock!

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 208 — #44

208 Part 2 Process Management

The signal procedure checks whether any process is blocked on sem. If so, it
selects one such process and activates it by making the system call activate. If no
processes are waiting for sem, it increments the value of sem by 1. It is convenient
to maintain the list of blocked processes as a queue and activate the first blocked
process at a signal operation. This way, the semaphore implementation would
also possess the bounded wait property. However, the semantics of the signal
operation do not specify the order in which processes should be activated, so an
implementation could choose any order it desired.

The wait operation has a very low failure rate in most systems using
semaphores, i.e., processes performing wait operations are seldom blocked. This
characteristic is exploited in some methods of implementing semaphores to
reduce the overhead. In the following, we describe three methods of implement-
ing semaphores and examine their overhead implications. Recall that we use the
term process as a generic term for both processes and threads.

Kernel-Level Implementation The kernel implements the wait and signal proce-
dures of Figure 6.31. All processes in a system can share a kernel-level semaphore.
However, every wait and signal operation results in a system call; it leads to
high overhead of using semaphores. In a uniprocessor OS with a noninterrupt-
ible kernel, it would not be necessary to use a lock variable to eliminate race
conditions, so the overhead of the Close_lock and Open_lock operations can be
eliminated.

User-Level Implementation The wait and signal operations are coded as library
procedures, which are linked with an application program so that processes of
the application can share user-level semaphores. The block_me and activate calls
are actually calls on library procedures, which handle blocking and activation of
processes themselves as far as possible and make system calls only when they need
assistance from the kernel. This implementation method would suit user-level
threads because the thread library would already provide for blocking, activation,
and scheduling of threads. The thread library would make a block_me system call
only when all threads of a process are blocked.

Hybrid Implementation The wait and signal operationsare again codedas library
procedures, and processes of an application can share the hybrid semaphores.
block_me and activate are system calls provided by the kernel and the wait and
signal operations make these calls only when processes have to be blocked and
activated. Because of the low failure rate of the wait operation, these system calls
would be made seldom, so a hybrid implementation of semaphores would have
a lower overhead than a kernel-level implementation.

6.10 MONITORS
•

Recall from Section 6.5.3 that a concurrent programming construct provides data
abstraction and encapsulation features specifically suited to the construction of
concurrent programs. A monitor type resembles a class in a language like C++ or

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 209 — #45

Chapter 6 Process Synchronization 209

Java. It contains declarations of shared data. It may also contain declarations of
special synchronization data called condition variables on which only the built-in
operations wait and signal can be performed; these operations provide convenient
means of setting up signaling arrangements for process synchronization. Proce-
dures of the monitor type encode operations that manipulate shared data and
perform process synchronization through condition variables. Thus, the monitor
type provides two of the three components that make up a concurrent system (see
Section 6.6).

A concurrent system is set up as follows: A concurrent program has a monitor
type. The program creates an object of the monitor type during its execution. We
refer to the object as a monitor variable, or simply as a monitor. The monitor con-
tains a copy of the shared and synchronization data declared in the monitor type
as its local data. The procedures defined in the monitor type become operations
of the monitor; they operate on its local data. The concurrent program creates
processes through system calls. These processes invoke operations of the monitor
to perform data sharing and control synchronization; they become blocked or
activated when the monitor operations perform wait or signal operations.

The data abstraction and encapsulation features of the monitor assist in syn-
chronization as follows: Only the operations of a monitor can access its shared
and synchronization data. To avoid race conditions, the compiler of the pro-
gramming language implements mutual exclusion over operations of a monitor
by ensuring that at most one process can be executing a monitor operation at any
time. Invocations of the operations are serviced in a FIFO manner to satisfy the
bounded wait property.

Condition Variables A condition is some situation of interest in a monitor. A
condition variable, which is simply a variable with the attribute condition, is asso-
ciated with a condition in the monitor. Only the built-in operations wait and
signal can be performed on a condition variable. The monitor associates a queue
of processes with each condition variable. If a monitor operation invoked by a
process performs a wait operation on a condition variable, the monitor blocks the
process, enters its id in the process queue associated with the condition variable,
and schedules one of the processes, if any, waiting to begin or resume execution
of a monitor operation. If a monitor operation performs the signal operation
on a condition variable, the monitor activates the first process in the process
queue associated with the condition variable. When scheduled, this process would
resume execution of the monitor operation in which it was blocked. The signal
operation has no effect if the process queue associated with a condition variable
is empty when the condition is signaled.

Implementation of a monitor maintains several process queues—one for each
condition variable and one for processes waiting to execute monitor operations.
To ensure that processes do not get stuck halfway through execution of an oper-
ation, the monitor favors processes that were activated by signal operations over
those wishing to begin execution of monitor operations.

The following example describes use of a monitor to implement a binary
semaphore. We discuss an interesting implementation issue after the example.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 210 — #46

210 Part 2 Process Management

•
Example 6.6 Monitor Implementation of a Binary Semaphore

The upper half of Figure 6.32 shows a monitor type Sem_Mon_type that
implements a binary semaphore, and the lower half shows three processes
that use a monitor variable binary_sem. Recall from Section 6.9.1 that a binary
semaphore takes only values 0 and 1, and is used to implement a critical section.
The boolean variable busy is used to indicate whether any process is currently
using the critical section. Thus, its values true and false correspond to the
values 0 and 1 of the binary semaphore, respectively. The condition variable
non_busy corresponds to the condition that the critical section is not busy; it is
used to block processes that try to enter a critical section while busy = true. The
procedures sem_wait and sem_signal implement the wait and signal operations
on the binary semaphore. Binary_sem is a monitor variable. The initialization
part of the monitor type, which contains the statement busy :=false; is invoked
when binary_sem is created. Hence variable busy of binary_sem is initialized
to false.

type Sem_Mon_type = monitor
var

busy : boolean;

non_busy : condition;
procedure sem_wait;
begin

if busy = true then non_busy.wait;
busy := true;

end;

procedure sem_signal;
begin

busy := false;

non_busy.signal;
end;

begin { initialization }

busy := false;

end;

var binary_sem : Sem_Mon_type;

begin

Parbegin
repeat repeat repeat

binary_sem.sem_wait; binary_sem.sem_wait; binary_sem.sem_wait;
{ Critical Section } { Critical Section } { Critica lSection }

binary_sem.sem_signal; binary_sem.sem_signal; binary_sem.sem_signal;
{ Remainder of { Remainder of { Remainder of

the cycle } the cycle } the cycle }

forever; forever; forever;

Parend;

end.

Process P1 Process P2 Process P3

Figure 6.32 Monitor implementation of a binary semaphore.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 211 — #47

Chapter 6 Process Synchronization 211

Data

Initializations

Operations

busy
non_busy

busy := false

Procedure sem_wait

non_busy.wait

Procedure sem_signal

non_busy.signal

Queue 1

· · ·

· · ·

Queue 2

Figure 6.33 A monitor implementing a binary semaphore.

Figure 6.33 depicts the monitor Sem_Mon_type. The monitor maintains
two queues of processes. Queue 1 contains processes waiting to execute opera-
tion sem_wait or sem_signal of the monitor, while queue 2 contains processes
waiting for a non_busy.signal statement to be executed.

Let P1 be the first process to perform binary_sem.sem_wait. Since busy
is false, it changes busy to true and enters its critical section. If P2 performs
binary_sem.sem_wait while P1 is still inside its critical section, it will be blocked
on the statement non_busy.wait. It will wait in queue 2. Now let P1 start exe-
cuting binary_sem.sem_signal and let P3 try to perform binary_sem.sem_wait
before P1 finishes executing binary_sem.sem_signal. Due to mutual exclusion
over monitor operations, P3 will be blocked and put in the queue associated
with entry to the monitor, i.e., in queue 1. Figure 6.34 shows a snapshot of the
system at this instant. When process P1 executes the statement non_busy.signal
and exits from the monitor, P2 will be activated ahead of P3 because queues
associated with condition variables enjoy priority over the queue associated
with entry to the monitor. Process P3 will start executing binary_sem.sem_wait
only when process P2 completes execution of binary_sem.sem_wait, exits the
monitor and enters its critical section. P3 will now block itself on the condi-
tion non_busy. It will be activated when P2 executes the binary_sem.sem_signal
operation.

•

If procedure sem_signal of Example 6.6 contained some statements following
the signal statement, an interesting synchronization problem would arise
when process P1 invokes binary_sem.sem_signal and executes the statement
non_busy.signal. The signal statement is expected to activate process P2, which

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 212 — #48

212 Part 2 Process Management

Queue 1 ...

P3

sem_wait

sem_signal

P1

non-busy

busy

Queue 2...

P2

Figure 6.34 A snapshot of the system of Example 6.6.

should resume its execution of binary_sem.sem_wait. At the same time, process
P1 should continue its execution of binary_sem.sem_signal by executing state-
ments that follow the non_busy.signal statement. Since monitor operations are
performed in a mutually exclusive manner, only one of them can execute and the
other one will have to wait. So which of them should be selected for execution?

Selecting process P2 for execution would delay the signaling process P1,
which seems unfair. Selecting P1 would imply that P2 is not really acti-
vated until P1 leaves the monitor. Hoare (1974) proposed the first alterna-
tive. Brinch Hansen (1973) proposed that a signal statement should be the
last statement of a monitor procedure, so that the process executing sig-
nal exits the monitor procedure immediately and the process activated by
the signal statement can be scheduled. We will follow this convention in our
examples.

•
Example 6.7 Producers−−Consumers Using Monitors

Figure 6.35 shows a solution to the producers–consumers problem that
uses monitors. It follows the same approach as the solution of Figure 6.28,
using semaphores. The upper half of Figure 6.35 shows a monitor type
Bounded_buffer_type. Variable full is an integer that indicates the number of
full buffers. In the procedure produce, a producer executes a buffer_empty.wait
if full = n. It would be activated only when at least one empty buffer exists in
the pool. Similarly, the consumer executes a buffer_ full.wait if full = 0. Waiting
consumers and producers are activated by the statements buff_ full.signal and
buff_empty.signal in the procedures produce and consume, respectively.

The lower half of Figure 6.35 shows a system containing two producer
processes P1, P2 and a consumer process P3. Operation of a single buffer sys-
tem; i.e., n = 1 in Figure 6.35, can be depicted as shown in Figure 6.36.
Let processes P1 and P2 try to produce and let process P3 try to consume,
all at the same time. Let us assume that process P1 enters the procedure
produce, gets past the wait statement and starts producing, while processes P2

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 213 — #49

Chapter 6 Process Synchronization 213

and P3 are blocked on entry to the monitor (see Part (a) of the snapshot).
P1 executes buff_full.signal and exits. Process P2 is now activated. However,
it becomes blocked again on buff_empty.wait because full = 1. Process P3 is
activated when P2 becomes blocked and starts consuming [see Figure 6.36(b)].
Process P2 will be activated when P3 exits after consuming.

•

6.10.1 Monitors in Java
A Java class becomes a monitor type when the attribute synchronized is
associated with one or more methods in the class. An object of such a class
is a monitor. The Java virtual machine ensures mutual exclusion over the
synchronized methods in a monitor as follows: When a thread calls a synchro-
nized method of an object, the Java virtual machine checks whether the object
is currently locked. If it is unlocked, the lock is set now and the thread is per-
mitted to execute the method; otherwise, the thread has to wait until the object
is unlocked. When a thread exits a synchronized method, the object is unlocked
and a waiting thread, if any, is activated.

Each monitor contains a single unnamed condition variable. A thread waits
on the condition variable by executing the call wait(). The notify() call is like
the signal operation described in Section 6.10. It wakes one of the threads waiting
on the condition variable, if any. The Java virtual machine does not implement
FIFO behavior for the wait and notify calls. Thus, wait and notify do not satisfy
the bounded wait property. The notifyall() call activates all threads waiting
on the condition variable.

Provision of a single condition variable in a monitor can lead to busy waits
in an application. Consider the readers–writers system as an example. When a
writer is active, all readers wishing to read and all writers wishing to write have
to wait on the condition variable. When the writer finishes writing, it would have
to use a notifyall() call to activate all waiting threads. If readers are pre-
ferred, all writer threads will have to perform wait() calls once again. If writers
are preferred, all reader threads and some writer threads will have to perform
wait() calls once again. Thus, a reader or writer thread may be activated many
times before it gets an opportunity to perform reading or writing. A producers–
consumers system with many producer and consumer processes would similarly
suffer from busy waits.

6.11 CASE STUDIES OF PROCESS SYNCHRONIZATION
•

6.11.1 Synchronization of POSIX Threads
As mentioned in Section 5.3.1, POSIX threads provide mutexes for mutual
exclusion and condition variables for control synchronization between processes.
A mutex is a binary semaphore. An OS may implement POSIX threads

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 214 — #50

214 Part 2 Process Management

type Bounded_buffer_type = monitor
const

{ Number of buffers }
type

item = . . .;
var

buffer : array [0..n–1] of item;

full, prod_ptr, cons_ptr : integer;

buff_full : condition;

buff_empty : condition;
procedure produce (produced_info : item);

begin
if full = n then buff_empty.wait;
buffer [prod_ptr] := produced_info; { i.e., Produce }

prod_ptr := prod_ptr + 1 mod n;

full := full + 1;

buff_full.signal;
end;

procedure consume (for_consumption : item);

begin
if full = 0 then buff_full.wait;
for_consumption := buffer[cons_ptr]; { i.e., Consume }

cons_ptr := cons_ptr + 1 mod n;

full := full–1;

buff_empty.signal;
end;

begin { initialization }

full := 0;

prod_ptr := 0;

cons_ptr := 0;

end;

begin
var B_buf : Bounded_buffer_type;

Parbegin
var info : item; var info : item; var area : item;

repeat repeat repeat
info := . . . info := . . . B_buf.consume (area);

B_buf.produce (info); B_buf.produce (info); { Consume area }
{ Remainder of { Remainder of { Remainder of

the cycle } the cycle } the cycle }

forever; forever; forever;

Parend;

end.

Producer P1 Producer P2 Consumer P3

n = . . .;

Figure 6.35 Producers–consumers using monitors.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 215 — #51

Chapter 6 Process Synchronization 215

P2P3

P1

(a)

consume

produce

buff_empty
buff_ full

P1

P3

(b)

consume

produce

buff_empty
buff_ full

?

P2

Figure 6.36 Snapshots of the monitor of Example 6.7 with a single buffer.

as kernel-level threads or user-level threads. Accordingly, mutexes would be
implemented through either a kernel-level implementation or a hybrid imple-
mentation described in Section 6.9.4 when threads are implemented as kernel-
level threads, and through the user-level implementation when threads are
implemented through user-level threads. Analogously, condition variables are
also implemented through a kernel-level, hybrid, or user-level implementation
scheme.

6.11.2 Process Synchronization in Unix
Unix system V provides a kernel-level implementation of semaphores. The name
of a semaphore is called a key. The key is actually associated with an array of
semaphores, and individual semaphores in the array are distinguished with the
help of subscripts. Processes share a semaphore by using the same key. A process
wishing to use a semaphore obtains access to it by making a semget system call
with a key as a parameter. If a semaphore array with matching key already exists,
the kernel makes that array accessible to the process making the semget call;
otherwise, it creates a new semaphore array, assigns the key to it and makes it
accessible to the process.

The kernel provides a single system call semop for wait and signal opera-
tions. It takes two parameters: a key, i.e., the name of a semaphore array, and
a list of (subscript, op) specifications where subscript identifies a semaphore in
the semaphore array and op is a wait or signal operation to be performed. The
entire set of operations defined in the list is performed in an atomic manner; that
is, either all the operations are performed and the process is free to continue its
execution, or none of the operations is performed and the process is blocked.
A blocked process is activated only when all operations indicated in semop can
succeed.

The semantics of semop can be used to prevent deadlocks. Consider the
following example: Semaphores sem1 and sem2 are associated with resources R1
and R2, respectively. A process performs a wait(semi) before using a resource Ri
and a signal(semi) after finishing with it. If each of processes P1 and P2 require
both resources simultaneously, it is possible that P1 will obtain access to R1
but will become blocked on wait(sem2) and process P2 will obtain access to R2

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 216 — #52

216 Part 2 Process Management

but will become blocked on wait(sem1). This is a deadlock situation because both
processes wait for each other indefinitely. Such a deadlock would not arise if
processes performed both wait operations through a single semop, since a process
would be either allocated both resources or it would not be allocated any of the
resources. The situation now resembles the all resources together approach to
deadlock prevention described later in Section 8.5.1.

Unix SVR4 provides an interesting feature to make programs using sema-
phores more reliable. It keeps track of all operations performed by a process
on each semaphore used by it, and performs an undo on these operations when
the process terminates. This action helps to prevent disruptions in a concurrent
application due to misbehavior of some process. For example, if a process Pi
performed more wait operations than signal operations on semaphore semi and
terminated, it could cause indefinite waits for other processes in the application.
Performing an undo operation on all wait and signal operations performed by Pi
might prevent such disasters. To perform undo operations efficiently, the kernel
maintains a cumulative count of changes in the value of a semaphore caused by
the operations in a process, and subtracts it from the value of the semaphore when
the process terminates. If a process Pi performed more wait operations than signal
operations on semaphore semi , its cumulative count for semi would be negative.
Subtracting this count would nullify the effect of Pi on semi . Pi ’s cumulative count
would be 0 if it had performed an equal number of wait and signal operations
on semi . Thus the undo operation does not interfere with normal operation of
processes using semaphores.

Unix 4.4BSD places a semaphore in memory areas shared by a set of pro-
cesses, and provides a hybrid implementation of semaphores along the lines
discussed in Section 6.9.4. This way, it avoids making system calls in cases
where a wait operation does not lead to blocking of a process and a sig-
nal operation does not lead to activation of a process, which provides fast
synchronization.

6.11.3 Process Synchronization in Linux
Linux provides a Unix-like semaphore (see Section 6.11.2) for use by user
processes. It also provides two kinds of semaphores for use by the kernel—
a conventional semaphore and a reader–writer semaphore. The conventional
semaphore is implemented by a kernel-level scheme that is more efficient than
the kernel-level scheme discussed in Section 6.9.4. It uses a data structure that
contains the value of a semaphore, a flag to indicate whether any processes
are blocked on it, and the actual list of such processes. Unlike the scheme of
Section 6.9.4, a lock is not used to avoid race conditions on the value of the
semaphore; instead, the wait and signal operations use indivisible instructions
to decrement or increment the value of the semaphore. These operations lock
the list of blocked processes only if they find that processes are to be added to
it or removed from it—the wait operation locks the list only if the process that
performed the wait operation is to be blocked, whereas the signal operation locks
it only if the semaphore’s flag indicates that the list is nonempty.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 217 — #53

Chapter 6 Process Synchronization 217

The reader–writer semaphore provides capabilities that can be used to imple-
ment the readers–writers problem of Section 6.9.3 within a kernel so that many
processes can read a kernel data structure concurrently but only one process can
update it at a time. Its implementation does not favor either readers or writers—it
permits processes to enter their critical sections in FIFO order, except that con-
secutive readers can read concurrently. It is achieved by simply maintaining a list
of processes waiting to perform a read or write operation, which is organized in
the chronological order.

Kernels older than the Linux 2.6 kernel implemented mutual exclusion in the
kernel space through system calls. However, as mentioned in Section 6.9.4, a wait
operation has a low failure rate; i.e., a process is rarely blocked on a wait call, so
many of the system calls are actually unnecessary. The Linux 2.6 kernel provides
a fast user space mutex called futex. A futex is an integer in shared memory on
which only certain operations can be performed. The wait operation on a futex
makes a system call only when a process needs to be blocked on the futex, and
the signal operation on a futex makes a system call only when a process is to be
activated. The wait operation also provides a parameter through which a process
can indicate how long it is prepared to be blocked on the wait. When this time
elapses, the wait operation fails and returns an error code to the process that made
the call.

6.11.4 Process Synchronization in Solaris
Process synchronization in the Sun Solaris operating system contains three inter-
esting features—reader–writer semaphores and adaptive mutexes, a data structure
called a turnstile, and use of the priority inversion protocol. The reader–writer
semaphore is analogous to the reader–writer semaphore in Linux. An adaptive
mutex is useful in a multiprocessor OS, hence it is discussed in Chapter 10; only
an overview is included here.

Recall from Section 5.4.3 that the Solaris kernel provides parallelism through
kernel threads. When a thread Ti performs a wait operation on a semaphore that
is currently used by another thread Tj , the kernel can either block Ti or let it spin.
The blocking approach involves the overhead of blocking thread Ti , scheduling
another thread, and activating thread Ti when Tj releases the semaphore. Spin-
ning, on the other hand, incurs the overhead of a busy wait until Tj releases
the semaphore. If Tj is currently operating on another CPU, it may release the
semaphore before either Ti or Tj is preempted, so it is better to let Ti spin. If Tj
is not operating currently, Ti may spin for long, so it is better to conserve CPU
time by blocking it. The adaptive mutex uses this method.

The Solaris kernel uses a data structure called a turnstile to hold informa-
tion concerning threads that are blocked on a mutex or reader–writer semaphore.
This information is used for both synchronization and priority inheritance. To
minimize the number of turnstiles needed at any time, the kernel of Solaris 7
attaches a turnstile with every new thread it creates. It performs the follow-
ing actions when a kernel thread is to be blocked on a mutex: If no threads

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 218 — #54

218 Part 2 Process Management

are already blocked on the mutex, it detaches the turnstile from the thread,
associates it with the mutex, and enters the thread’s id in the turnstile. If a turn-
stile is already associated with the mutex, i.e., if some other threads are already
blocked on it, the kernel detaches the turnstile of the thread and returns it to
the pool of free turnstiles, and enters the thread’s id into the turnstile that is
already associated with the mutex. When a thread releases a mutex or a reader–
writer semaphore, the kernel obtains information about threads blocked on the
mutex or reader–writer semaphore, and decides which thread(s) to activate. It
now attaches a turnstile from the pool of free turnstiles with the activated thread.
A turnstile is returned to the pool of free turnstiles when the last thread in it
wakes up.

The Solaris kernel uses a priority inheritance protocol to reduce synchro-
nization delays. Consider a thread Ti that is blocked on a semaphore because
thread Tj is in a critical section implemented through the semaphore. Thread
Ti might suffer a long synchronization delay if Tj is not scheduled for a long
time, which would happen if Tj has a lower priority than Ti . To reduce the
synchronization delay for Ti , the kernel raises the priority of Tj to that of
Ti until Tj exits the critical section. If many processes become blocked on
the semaphore being used by Tj , Tj ’s priority should be raised to that of the
highest-priority process blocked on the semaphore. It is implemented by obtain-
ing priorities of the blocked processes from the turnstile associated with the
semaphore.

6.11.5 Process Synchronization in Windows
Windows is an object-oriented system, hence processes, files and events are
represented by objects. The kernel provides a uniform interface for thread syn-
chronization over different kinds of objects as follows: A dispatcher object is a
special kind of object that is either in the signaled state or in the nonsignaled state.
A dispatcher object is embedded in every object over which synchronization may
be desired, e.g., an object representing a process, file, event, mutex, or semaphore.
Any thread that wishes to synchronize with an object would be put in the waiting
state if the dispatcher object embedded in the object is in the nonsignaled state.
Table 6.4 describes the semantics of various kinds of objects, which determine
when the state of an object would change, and which of the threads waiting on it
would be activated when it is signaled.

A thread object enters the signaled state when the thread terminates, whereas
a process object enters the signaled state when all threads in the process terminate.
In both cases, all threads waiting on the object are activated. The file object enters
the signaled state when an I/O operation on the file completes. If any threads are
waiting on it, all of them are activated and its synchronization state is changed
back to nonsignaled. If no threads are waiting on it, a thread that waits on it
sometime in future will get past the wait operation and the synchronization state
of the file object would be changed to nonsignaled. The console input object has
an analogous behavior except that only one waiting thread is activated when it

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 219 — #55

Chapter 6 Process Synchronization 219

Table 6.4 Windows Objects Used for Synchronization

Object Nonsignaled state Signaled state Signal time action

Process Not terminated Last thread
terminates

Activate all threads

Thread Not terminated The thread
terminates

Activate all threads

File I/O request
pending

I/O completed Activate all threads

Console input Input not
provided

Input provided Activate one thread

File change No changes Change noticed Activate one thread

Notify event Not yet set Set event executed Activate all threads

Synchronization
event

Reset Set event executed Activate one thread
and reset event

Semaphore Successful wait Released Activate one thread

Mutex Successful wait Released Activate one thread

Condition
variable

Initially and after
a wake or
wakeall
function call

wake or wakeall
function is
performed

Activate one thread or
all threads

Timer Reinitialization Set time arrives or
interval elapses

Same as notify
and synchroniza-
tion events

is signaled. The file change object is signaled when the system detects changes in
the file. It behaves like the file object in other respects.

Threads use the event, semaphore, mutex, and condition variable objects for
mutual synchronization. They signal these objects by executing library functions
that lead to appropriate system calls. An event object is signaled at a set event
system call. If it is a notification event, all threads waiting on it are activated. If
it is a synchronization event, only one thread is activated and the event is reset.
The timer object is also designed for use in the notification and synchronization
modes. The kernel changes the state of the object to signaled when the specified
time arrives or the specified interval elapses. Its signal time actions are similar to
those of the notify and synchronization events.

The semaphore object implements a counting semaphore, which can be used
to control a set of resources. The number of resources is specified as the initial
value of the semaphore. A count in the semaphore object indicates how many of
these resources are currently available for use by threads. The semaphore object
is in the nonsignaled state when the count is 0, so any process performing a wait
on it would be put in the waiting state. When a thread releases a resource, the
kernel increments the number of available resources, which puts the semaphore
in the signaled state. Consequently, some thread waiting on it would be activated.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 220 — #56

220 Part 2 Process Management

A thread can specify a time interval in a wait call to indicate how long it is
prepared to wait for an object. It would be activated before this interval elapses if
the object is signaled; otherwise, its wait request would be withdrawn at the end
of the interval and it would get activated. A mutex is implemented as a binary
semaphore. The mutex object is signaled when a process executes the release
function; the kernel releases one of the threads waiting on it.

The Windows kernel provides a variety of synchronization locks—a spin-
lock, a special lock called queued spinlock for multiprocessor configurations
(see Section 10.6.3), and fast mutexes and push locks, which, like the futex of
Linux, avoid system calls unless a thread has to wait on a synchronization object.
Windows Vista provides a reader–writer lock.

6.12 SUMMARY
•

Process synchronization is a generic term for
data access synchronization, which is used to
update shared data in a mutually exclusive man-
ner, and control synchronization, which is used
to ensure that processes perform their actions in
a desired order. Classic process synchronization
problems such as producers–consumers, readers–
writers, and dining philosophers represent impor-
tant classes of process synchronization problems.
In this chapter we discussed the fundamental issues
in process synchronization, and the support for
process synchronization provided by the computer,
the kernel, and programming languages. We also
analyzed classic process synchronization problems
and demonstrated use of various synchronization
facilities of programming languages and operating
systems in implementing them.

A race condition is a situation in which actions
of concurrent processes may have unexpected con-
sequences, such as incorrect values of shared data
or faulty interaction among processes. A race con-
dition exists when concurrent processes update
shared data in an uncoordinated manner. It is
avoided through mutual exclusion, which ensures
that only one process updates shared data at any
time. A critical section on a shared data d is a
section of code that accesses d in a mutually exclu-
sive manner. A race condition may also exist in

control synchronization—processes may not wait
for each other’s actions as expected. Hence avoid-
ance of race conditions is a primary issue in process
synchronization.

The computer provides indivisible instructions,
which access memory locations in a mutually
exclusive manner. A process may use an indivis-
ible instruction on a lock variable to implement
a critical section. However, this approach suffers
from busy waits because a process that cannot
enter the critical section keeps looping until it
may do so, hence the kernel provides a facility
to block such a process until it may be permit-
ted to enter a critical section. Compilers of pro-
gramming languages implement process synchro-
nization primitives and constructs by using this
facility. A semaphore is a primitive that facilitates
blocking and activation of processes without race
conditions. A monitor is a construct that provides
two facilities—it implements operations on shared
data as critical sections over the data and it pro-
vides statements for control synchronization.

Operating systems provide features for effi-
cient implementation of process synchronization;
e.g., Linux provides readers–writers semaphores,
Solaris provides priority inheritance to avoid some
of the problems related to busy waits, and Windows
provides dispatcher objects.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 221 — #57

Chapter 6 Process Synchronization 221

TEST YOUR CONCEPTS
•

6.1 Classify each of the following statements as true
or false:
a. An application can contain a race condition

only if the computer system servicing the
application contains more than one CPU.

b. Control synchronization is needed when pro-
cesses generate and analyze of Figure 1.6(b)
share the variable sample.

c. A process may be starved of entry to a
critical section if the critical section imple-
mentation does not satisfy the bounded wait
condition.

d. A process may be starved of entry to a critical
section if the critical section implementation
does not satisfy the progress condition.

e. A busy wait is unavoidable unless a system
call is made to block a process.

f. Indefinite busy waits are possible in an OS
using priority-based scheduling, but not pos-
sible in an OS using round-robin scheduling.

g. Algorithm 6.1 can be used to implement a
single-buffer producers–consumers system if
process P1 is a producer and P2 is a consumer.

h. When a lock variable is used, an indivisi-
ble instruction is not needed to implement
a critical section.

i. In a producers–consumers system consisting
of many producer processes, many consumer
processes, and many buffers in the buffer-
pool, it is possible for many producer pro-
cesses to be producing and many consumer
processes to be consuming at the same time.

j. In a writers-preferred readers–writers sys-
tem, some reader processes wishing to read
the shared data may become blocked even
while some other reader processes are reading
the shared data.

k. A deadlock cannot occur in the dining
philosophers problem if one of the philoso-
phers can eat with only one fork.

l. A critical section implemented using
semaphores would satisfy the bounded wait
property only if the signal operation activates
processes in FIFO order.

m. A race condition can occur over forks if the
outline of the dining philosophers problem in

Figure 6.21 is modified to remove the action
“lift the forks one at a time” from the while
loop and put it following the while loop.

6.2 A semaphore is initialized to 1. Twelve wait
operations and seven signal operations are per-
formed on it. What is the number of processes
waiting on this semaphore?
a. 12, b. 7, c. 4, d. 5

6.3 A binary semaphore is initialized to 1. 5 wait
operations are performed on it in a row, fol-
lowed by 8 signal operations. Now 5 more
wait operations are performed on it. What
is the number of processes waiting on this
semaphore?
a. 1, b. 2, c. 4, d. 5

6.4 Ten processes share a critical section imple-
mented by using a counting semaphore named
x. Nine of these processes use the code wait(x);
{critical section} signal(x). However, one pro-
cess erroneously uses the code signal(x); {critical
section} signal(x). What is the maximum num-
ber of processes that can be in the critical section
at the same time?
a. 1, b. 2, c. 10, d. 3

6.5 In a readers–writers system, a read operation
consumes 3 time units and a write operation con-
sumes 5 time units. No readers or writers exist
in the system at time ti −1. One reader arrives at
time ti , and 5 readers and 1 writer arrive at time
ti +1. If no more readers or writers arrive, when
will the writer finish writing?
a. ti + 8,
b. ti + 20,
c. ti + 9,
d. none of a–c

6.6 A producer process produces a new item of infor-
mation in 10 seconds and a consumer process
consumes an item in 20 seconds. In a producers–
consumers system consisting of a single pro-
ducer process, a single consumer process, and
a single buffer, both the producer and the con-
sumer processes start their operation at time 0.
At what time will the consumer process finish
consuming 3 items?
a. 20, b. 60, c. 70, d. 90, e. none of a–d

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 222 — #58

222 Part 2 Process Management

EXERCISES
•

6.1 A concurrent program contains a few updates of
a shared variable x, which occur inside critical
sections. Variable x is also used in the following
section of code which is not enclosed in a critical
section:

if x < c
then y :=x;

else y :=x + 10;
print x, y;

Does this program have a race condition?
6.2 Two concurrent processes share a data item sum,

which is initialized to 0. However, they do not use
mutual exclusion while accessing its value. Each
process contains a loop that executes 50 times
and contains the single statement sum :=sum+1.
If no other operations are performed on sum,
indicate the lower bound and upper bound on
the value of sum when both processes terminate.

6.3 Analyze Algorithms 6.1 and 6.2 and comment
on the critical section properties violated by
them. Give examples illustrating the violations.

6.4 Answer the following in context of Dekker’s
algorithm:
a. Does the algorithm satisfy the progress

condition?
b. Can a deadlock condition arise?
c. Can a livelock condition arise?

6.5 Is the bounded wait condition satisfied by
Peterson’s algorithm?

6.6 The following changes are made in Peterson’s
algorithm (see Algorithm 6.4): The statements
flag[0] :=true and flag[0] :=false in process P0
are interchanged, and analogous changes are
made in process P1. Discuss which properties
of the implementation of critical sections are
violated by the resulting system.

6.7 The statement while flag[1] and turn = 1 in Peter-
son’s algorithm is changed to while flag[1] or turn
= 1, and analogous changes are made in process
P1. Which properties of critical section imple-
mentation are violated by the resulting system?

6.8 Comment on the effect of deleting the statement
while choosing[j] do { nothing }; on working of
Lamport’s Bakery algorithm.

6.9 The solution of the producers–consumers prob-
lem shown in Figure 6.37 uses kernel calls block

and activate for process synchronization. It has a
race condition. Describe how this race condition
arises.

6.10 The readers–writers solution of Figure 6.30 uses
two semaphores even though a single entity—
the shared data—is to be controlled. Modify this
solution to use a single semaphore rw_permi-
ssion instead of semaphores reading and
writing. (Hint: perform a wait(rw_permission)
in the reader only if reading is not already in
progress.)

6.11 Modify the readers–writers solution of
Figure 6.30 to implement a writer-preferred
readers–writers system.

6.12 Implement a critical section using the Test-
and-set or Swap instructions of Section 6.5.2.
Use ideas from Section 6.8.2 to ensure that the
bounded wait condition is satisfied.

6.13 A resource is to be allocated to requesting
processes in a FIFO manner. Each process is
coded as

repeat
. . .

request-resource(process_id, resource_id);
{ Use resource }
release-resource(process_id, resource_id);
{ Remainder of the cycle }

forever

Develop the procedures request-resource and
release-resource using semaphores.

6.14 Can one or more of the following features elim-
inate deficiencies of the outline of the dining
philosophers problem shown in Figure 6.20?
a. If n philosophers exist in the system, have

seats for at least n + 1 philosophers at the
dining table.

b. Make sure that at least one left-handed
philosopher and at least one right-handed
philosopher sit at the table at any time.

6.15 In Figure 6.35, producers and consumers
always execute the statements buf_full.signal
and buf_empty.signal. Suggest and implement
a method of reducing the number of signal
statements executed during the operation of
the system.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 223 — #59

Chapter 6 Process Synchronization 223

type
item = . . .;

var
buffer : item;
buffer_full : boolean;
producer_blocked : boolean;
consumer_blocked : boolean;

begin
buffer_full := false;

producer_blocked := false;

consumer_blocked := false;
Parbegin

repeat repeat
if buffer_full = false then if buffer_full = true then

{ Produce in buffer } { Consume from buffer }

buffer_full := true; buffer_full := false;

if consumer_blocked = true then if producer_blocked = true then
activate(consumer); activate(producer);

{ Remainder of the cycle } { Remainder of the cycle }

else else
producer_blocked := true; consumer_blocked := true;

block(producer); block(consumer);

consumer_blocked := false; producer_blocked := false;

forever forever
Parend

Producer Consumer

Figure 6.37 The producer–consumer problem with a synchronization error due to a race
condition.

6.16 Implement the dining philosophers problem
using monitors. Minimize the number of execu-
tions of signal statements in your solution and
observe its effect on the logical complexity of
your solution.

6.17 A customer gives the following instructions to a
bank manager: Do not credit any funds to my
account if the balance in my account exceeds
n, and hold any debits until the balance in the
account is large enough to permit the debit.
Design a monitor to implement the customer’s
bank account.

6.18 The synchronization problem called sleeping
barber is described as follows: A barber shop has
a single barber, a single barber’s chair in a small
room, and a large waiting room with n seats. The
barber and the barber’s chair are visible from the
waiting room. After servicing one customer, the
barber checks whether any customers are wait-
ing in the waiting room. If so, he admits one

of them and starts serving him; otherwise, he
goes to sleep in the barber’s chair. A customer
enters the waiting room only if there is at least
one vacant seat and either waits for the barber
to call him if the barber is busy, or wakes the
barber if he is asleep. Identify the synchroniza-
tion requirements between the barber and cus-
tomer processes. Code the barber and customer
processes such that deadlocks do not arise.

6.19 A monitor is to be written to simulate a clock
manager used for real-time control of concur-
rent processes. The clock manager uses a variable
named clock to maintain the current time. The
OS supports a signal called elapsed_time that is
generated every 2 ms. The clock manager pro-
vides a signal handling action for elapsed_time
(see Section 5.4.1) that updates clock at every
occurrence of the signal. This action is coded as
a procedure of the monitor. A typical request
made to the clock manager is “wake me up at

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 224 — #60

224 Part 2 Process Management

9.00 a.m.” The clock manager blocks the pro-
cesses making such requests and arranges to
activate them at the designated times. Implement
this monitor.

6.20 Nesting of monitor calls implies that a proce-
dure in monitor A calls a procedure of another
monitor, say monitor B. During execution of the
nested call, the procedure of monitor A con-
tinues to hold its mutual exclusion. Show that
nested monitor calls can lead to deadlocks.

6.21 Write a short note on the implementation of
monitors. Your note must discuss:
a. How to achieve mutual exclusion between the

monitor procedures.
b. Whether monitor procedures need to

be coded in a reentrant manner (see
Section 11.3.3.2).

6.22 A large data collection D is used merely to
answer queries, i.e., no updates are carried out
on D, so queries can be processed concurrently.
Because of the large size of D, it is split into sev-
eral parts D1, D2, . . . , Dn, and at any time only
one of these parts, say D1, is loaded in mem-
ory to handle queries related to it. If no queries
are active on D1, and queries exist on some other
part of data, say D2, D2 is loaded in memory and
queries on it are processed concurrently. When
D is split into two parts D1 and D2, this system
is called a readers–readers system. Implement

this system, using any synchronization primitive
or control structure of your choice. To prevent
starvation of queries, it is proposed to handle a
maximum of 10 queries on a part of the data
at any time. Modify the monitor to incorporate
this feature.

6.23 A bridge on a busy highway is damaged by a
flood. One-way traffic is to be instituted on the
bridge by permitting vehicles traveling in oppo-
site directions to use the bridge alternately. The
following rules are formulated for use of the
bridge:
a. At any time, the bridge is used by vehicle(s)

traveling in one direction only.
b. If vehicles are waiting to cross the bridge at

both ends, only one vehicle from one end is
allowed to cross the bridge before a vehicle
from the other end starts crossing the bridge.

c. If no vehicles are waiting at one end, then
any number of vehicles from the other end
are permitted to cross the bridge.

Develop a concurrent system to implement these
rules.

6.24 When vehicles are waiting at both ends, the rules
of Exercise 23(a) lead to poor use of the bridge.
Hence up to 10 vehicles should be allowed to
cross the bridge in one direction even if vehi-
cles are waiting at the other end. Implement the
modified rules.

CLASS PROJECT 1: INTERPROCESS COMMUNICATION
•

An interprocess message communication system uses
the asymmetric naming convention described later in
Section 9.1.1, which uses the following rules: To
send a message, a sender provides the id of the
destination process to which it is to be delivered,
and the text of the message. To receive a mes-
sage, a process simply provides the name of a vari-
able in which the message should be deposited; the
system provides it with a message sent to it by
some process.

The system consists of a monitor named Com-
munication_Manager and four processes. The moni-
tor provides the operations send and receive, which
implement message passing using a global pool of

20 message buffers. The system is to operate as
follows:

1. Each process has a cyclic behavior. Its operation is
governed by commands in a command file that is
used exclusively by it. In each iteration, it reads a
command from the file and invokes an appropri-
ate operation of the monitor. Three commands are
supported:
a. send <process_id>, <message_text>: The pro-

cess should send a message.
b. receive <variable_name>: The process should

receive a message.
c. quit: The process should complete its operation.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 225 — #61

Chapter 6 Process Synchronization 225

2. When a process invokes a send operation, the mon-
itor copies the text of the message in a free message
buffer from the global pool of message buffers. If
the destination process of the message is currently
blocked on a receive operation, the message is deliv-
ered to it as described in Item 3 and the process
is activated. In either case, control is returned to
the process executing the send operation. If none of
the message buffers in the global pool of 20 mes-
sage buffers is free, the process performing the send
operation is blocked until a message buffer becomes
free.

3. When a process invokes a receive operation, it is
given a message sent to it in FIFO order. The mon-
itor finds the message buffer that contains the first
undelivered message that was sent to the process,
copies the text of the message into the variable
mentioned by the process, and frees the message
buffer. If a process executing the send operation was
blocked as mentioned in Item 2, it is activated. The

process performing the receive operation is blocked
if no message exists for it. It would be activated
when a message is sent to it.

4. After performing a send or receive operation, the
monitor writes details of the actions performed by
it in a log file.

5. The monitor detects a deadlock situation, in which
some of the processes are blocked indefinitely. It
writes details of the deadlock situation in the log
file and terminates itself.

6. The interprocess message communication system
terminates itself when all processes have completed
their operation.

Write the monitor Communication_Manager and
test its operation with several sets of sample command
files for the processes that create various interesting sit-
uations in message passing, including some deadlock
situations.

CLASS PROJECT 2: DISK SCHEDULER
•

A disk scheduler is that part of an OS which decides the
order in which I/O operations should be performed on a
disk to achieve high disk throughput (see Section 14.7).
Processes that wish to perform I/O operations on the disk
use a monitor named Disk_scheduler and the following
pseudocode:

var Disk_scheduler : Disk_Mon_type;
Parbegin

begin { User process Pi }
var disk_block_address : integer;
repeat

{read a command from file Fi }
Disk_scheduler . IO_request

(Pi , IO_operation,
disk_block_address);

{ Perform I/O Operation }
Disk_scheduler . IO_complete (Pi);
{ Remainder of the cycle }

forever
end;
... { other user processes }

Parend;

Each process has cyclic behavior. Its operation is
governed by commands in a command file that is used

exclusively by it. Each command is for performing a
read or write operation on a disk block. In each itera-
tion, a process reads a command from its command file
and invokes the monitor operation IO_request to pass
details of the I/O operation to the monitor. IO_request
blocks the process until its I/O operation is scheduled.
When the process is activated, it returns from IO_request
and performs its I/O operation. After completing the I/O
operation, it invokes the monitor operation IO_complete
so that the monitor can schedule the next I/O opera-
tion. The monitor writes details of its actions in a log file
every time the IO_request or IO_complete operation is
invoked.

Code the monitor type Disk_Mon_type. For sim-
plicity, you may assume that I/O operations are sched-
uled in FIFO order, and that the number of processes
does not exceed 10. (Hint: Note the process id of a pro-
cess along with details of its I/O operation in a list in
the monitor. Decide how many condition variables you
would need to block and activate the processes.)

Modify Disk_Mon_type such that I/O operations
would be performed by the monitor itself rather than by
user processes. (Hint: Operation I/O_complete would no
longer be needed.)

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 226 — #62

226 Part 2 Process Management

BIBLIOGRAPHY
•

Dijkstra (1965) discusses the mutual exclusion problem,
describes Dekker’s algorithm, and presents a mutual
exclusion algorithm for n processes. Lamport (1974,
1979) describes and proves the Bakery algorithm. Ben
Ari (1982) describes the evolution of mutual exclusion
algorithms and provides a proof of Dekker’s algorithm.
Ben Ari (2006) discusses concurrent and distributed pro-
gramming. Peterson (1981), Lamport (1986, 1991), and
Raynal (1986) are other sources on mutual exclusion
algorithms.

Dijkstra (1965) proposed semaphores. Hoare
(1972) and Brinch Hansen (1972) discuss the critical
and conditional critical regions, which are synchroniza-
tion constructs that preceded monitors. Brinch Hansen
(1973) and Hoare (1974) describe the monitor concept.
Buhr et al. (1995) describes different monitor implemen-
tations. Richter (1999) describes thread synchronization
in C/C++ programs under Windows. Christopher and
Thiruvathukal (2001) describes the concept of monitors
in Java, compares it with the monitors of Brinch Hansen
and Hoare, and concludes that Java synchronization is
not as well developed as the Brinch Hansen and Hoare
monitors.

A synchronization primitive or construct is
complete if it can be used to implement all process syn-
chronization problems. The completeness of semaphores
is discussed in Patil (1971), Lipton (1974), and Kosaraju
(1975).

Brinch Hansen (1973, 1977) and Ben Ari (1982,
2006) discuss the methodology for building concurrent
programs. Owicki and Gries (1976) and Francez and
Pneuli (1978) deal with the methodology of proving the
correctness of concurrent programs.

Vahalia (1996) and Stevens and Rago (2005) dis-
cuss process synchronization in Unix, Beck et al. (2002),
Bovet and Cesati (2005), and Love (2005), discuss syn-
chronization in Linux, Mauro and McDougall (2006)
discusses synchronization in Solaris, while Richter
(1999) and Russinovich and Solomon (2005) discuss
synchronization features in Windows.

1. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, Pearson
Education, New York.

2. Ben Ari, M. (1982): Principles of Concurrent
Programming, Prentice Hall, Englewood Cliffs,
N.J.

3. Ben Ari, M. (2006): Principles of Concurrent and
Distributed Programming, 2nd ed., Prentice Hall,
Englewood Cliffs, N.J.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

5. Brinch Hansen, P. (1972): “Structured
multiprogramming,” Communications of the
ACM, 15 (7), 574–578.

6. Brinch Hansen, P. (1973): Operating System
Principles, Prentice Hall, Englewood Cliffs, N.J.

7. Brinch Hansen, P. (1975): “The programming
language concurrent Pascal,” IEEE Transactions
on Software Engineering, 1 (2), 199–207.

8. Brinch Hansen, P. (1977): The Architecture of
Concurrent Programs, Prentice Hall, Englewood
Cliffs, N.J.

9. Buhr, M., M. Fortier, and M. H. Coffin (1995):
“Monitor classification,” Computing Surveys, 27
(1), 63–108.

10. Chandy, K. M., and J. Misra (1988): Parallel
Program Design: A Foundation, Addison-Wesley,
Reading, Mass.

11. Christopher, T. W., and G. K. Thiruvathukal
(2001): Multithreaded and Networked
Programming, Sun Microsystems.

12. Courtois, P. J., F. Heymans, and D. L. Parnas
(1971): “Concurrent control with readers and
writers,” Communications of the ACM, 14 (10),
667–668.

13. Dijkstra, E. W. (1965): “Cooperating sequential
processes,” Technical Report EWD-123,
Technological University, Eindhoven.

14. Eisenberg, M. A., and M. R. McGuire (1972):
“Further comments on Dijkstra’s concurrent
programming control problem,” Communications
of the ACM, 15(11), 999.

15. Francez, N., and A. Pneuli (1978): “A proof
method for cyclic programs,” Acta Informatica, 9,
133–157.

16. Hoare, C. A. R. (1972): “Towards a theory of
parallel programming,” in Operating Systems
Techniques, C.A.R. Hoare and R.H. Perrot (eds.),
Academic Press, London, 1972.

06-M4363-DAS1.LaTeX: “chap06” — 2007/11/26 — 13:26 — page 227 — #63

Chapter 6 Process Synchronization 227

17. Hoare, C. A. R (1974): “Monitors: an operating
system structuring concept,” Communications of
the ACM, 17(10), 549–557.

18. Kosaraju, S. (1973): “Limitations of Dijkstra’s
semaphore primitives and petri nets,” Operating
Systems Review, 7, 4, 122–126.

19. Lamport, L. (1974): “A new solution of Dijkstra’s
concurrent programming problem,” Communica-
tions of the ACM, 17, 453–455.

20. Lamport, L. (1979): “A new approach to proving
the correctness of multiprocess programs,” ACM
Transactions on Programming Languages and
Systems, 1, 84–97.

21. Lamport, L. (1986): “The mutual exclusion
problem,” Communications of the ACM, 33 (2),
313–348.

22. Lamport, L. (1991): “The mutual exclusion
problem has been solved,” ACM Transactions on
Programming Languages and Systems, 1,
84–97.

23. Lipton, R. (1974): “On synchronization primitive
systems,” Ph.D. Thesis, Carnegie-Mellon
University.

24. Love, R. (2005): Linux Kernel Development, 2nd
ed., Novell Press.

25. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

26. Owicki, S., and D. Gries (1976): “Verifying
properties of parallel programs: An axiomatic
approach,” Communications of the ACM, 19,
279–285.

27. Patil, S. (1971): “Limitations and capabilities of
Dijkstra’s semaphore primitives for co-ordination
among processes,” Technical Report, MIT.

28. Peterson, G. L. (1981): “Myths about the mutual
exclusion problem,” Information Processing
Letters, 12, 3.

29. Raynal, M. (1986): Algorithms for Mutual
Exclusion, MIT Press, Cambridge, Mass.

30. Richter, J. (1999): Programming Applications for
Microsoft Windows, 4th ed., Microsoft Press,
Redmond, Wash.

31. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

32. Stevens, W. R., and S. A. Rago (2005): Advanced
Programming in the Unix Environment, 2nd ed.,
Addison Wesley, Reading, Mass,.

33. Vahalia, U. (1996): Unix Internals—The New
Frontiers, Prentice Hall, Englewood
Cliffs, N.J.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 228 — #1

7 C h a p t e r

Scheduling

A
scheduling policy decides which process should be given the CPU at the
present moment. This decision influences both system performance and
user service. In Chapter 3, we saw how priority-based scheduling pro-

vides good system performance, and how round-robin scheduling with time-slicing
provides good response times to processes. The scheduling policy in a modern
operating system must provide the best combination of user service and system
performance to suit its computing environment.

A scheduling policy employs three fundamental techniques to achieve the
desired combination of user service and system performance. Assignment of prior-
ities to processes can provide good system performance, as in a multiprogramming
system; or provide favored treatment to important functions, as in a real-time sys-
tem. Variation of time slice permits the scheduler to adapt the time slice to the
nature of a process so that it can provide an appropriate response time to the
process, and also control its own overhead. Reordering of processes can improve
both system performance, measured as throughput, and user service, measured
as turnaround times or response times of processes. We discuss the use of these
techniques and a set of scheduling heuristics in modern operating systems.

Performance analysis of a scheduling policy is a study of its performance. It
can be used for comparing performance of two scheduling policies or for deter-
mining values of key system parameters like the size of a process queue. We discuss
different approaches to performance analysis of scheduling policies.

7.1 SCHEDULING TERMINOLOGY AND CONCEPTS
•

Scheduling, very generally, is the activity of selecting the next request to be ser-
viced by a server. Figure 7.1 is a schematic diagram of scheduling. The scheduler
actively considers a list of pending requests for servicing and selects one of them.
The server services the request selected by the scheduler. This request leaves the
server either when it completes or when the scheduler preempts it and puts it
back into the list of pending requests. In either situation, the scheduler selects
the request that should be serviced next. From time to time, the scheduler admits
one of the arrived requests for active consideration and enters it into the list
of pending requests. Actions of the scheduler are shown by the dashed arrows

228

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 229 — #2

Chapter 7 Scheduling 229

Arrived

requests

Request

arrives

Pending

requests

Request is

admitted

Request is preempted

Request

is completed

Request is

scheduled

Scheduler

Server

Figure 7.1 A schematic of scheduling.

in Figure 7.1. Events related to a request are its arrival, admission, scheduling,
preemption, and completion.

In an operating system, a request is the execution of a job or a process, and
the server is the CPU. A job or a process is said to arrive when it is submitted by a
user, and to be admitted when the scheduler starts considering it for scheduling.
An admitted job or process either waits in the list of pending requests, uses the
CPU, or performs I/O operations. Eventually, it completes and leaves the system.
The scheduler’s action of admitting a request is important only in an operating
system with limited resources; for simplicity, in most of our discussions we assume
that a request is admitted automatically on arrival.

In Chapter 3 we discussed how use of priorities in the scheduler provides
good system performance while use of round-robin scheduling provides good user
service in the form of fast response. Modern operating systems use more complex
scheduling policies to achieve a suitable combination of system performance and
user service.

Table 7.1 lists the key terms and concepts related to scheduling. The service
time of a job or a process is the total of CPU time and I/O time required by it
to complete its execution, and the deadline, which is specified only in real-time
systems (see Section 3.7), is the time by which its servicing should be completed.
Both service time and deadline are an inherent property of a job or a process.
The completion time of a job or a process depends on its arrival and service times,
and on the kind of service it receives from the OS.

We group scheduling concepts into user-centric concepts and system-centric
concepts to characterize the OS’s concern for either user service or system
performance.

User-Centric Scheduling Concepts In an interactive environment, a user inter-
acts with a process during its operation—the user makes a subrequest to a process
and the process responds by performing actions or by computing results. Response
time is the time since submission of a subrequest to the time its processing is com-
pleted. It is an absolute measure of service provided to a subrequest. Turnaround
time is an analogous absolute measure of service provided to a job or process.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 230 — #3

230 Part 2 Process Management

Table 7.1 Scheduling Terms and Concepts

Term or concept Definition or description

Request related
Arrival time Time when a user submits a job or process.
Admission time Time when the system starts considering a job or

process for scheduling.
Completion time Time when a job or process is completed.
Deadline Time by which a job or process must be completed to

meet the response requirement of a real-time
application.

Service time The total of CPU time and I/O time required by a
job, process or subrequest to complete its operation.

Preemption Forced deallocation of CPU from a job or process.
Priority A tie-breaking rule used to select a job or process

when many jobs or processes await service.

User service related: individual request
Deadline overrun The amount of time by which the completion time of

a job or process exceeds its deadline. Deadline
overruns can be both positive or negative.

Fair share A specified share of CPU time that should be devoted
to execution of a process or a group of processes.

Response ratio The ratio

time since arrival + service time of a job or process
service time of the job or process

Response time (rt) Time between the submission of a subrequest for
processing to the time its result becomes available.
This concept is applicable to interactive processes.

Turnaround time (ta) Time between the submission of a job or process and
its completion by the system. This concept is
meaningful for noninteractive jobs or processes only.

Weighted turnaround (w) Ratio of the turnaround time of a job or process to its
own service time.

User service related: average service
Mean response time (rt) Average of the response times of all subrequests

serviced by the system.
Mean turnaround
time (ta)

Average of the turnaround times of all jobs or
processes serviced by the system.

Performance related
Schedule length The time taken to complete a specific set of jobs or

processes.
Throughput The average number of jobs, processes, or

subrequests completed by a system in one unit
of time.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 231 — #4

Chapter 7 Scheduling 231

Turnaround time differs from the service time of a job or process because it also
includes the time when the job or process is neither executing on the CPU nor
performing I/O operations. We are familiar with these two measures from the
discussions in Chapter 3.

Several other measures of user service are defined. The weighted turnaround
relates the turnaround time of a process to its own service time. For example, a
weighted turnaround of 5 indicates that the turnaround received by a request is
5 times its own service time. Comparison of weighted turnarounds of different
jobs or processes indicates the comparative service received by them. Fair share
is the share of CPU time that should be alloted to a process or a group of pro-
cesses. Response ratio of a job or process is the ratio (time since arrival + service
time)/service time. It relates the delay in the servicing of a job or process to its own
service time; it can be used in a scheduling policy to avoid starvation of processes
(see Section 7.2.3). The deadline overrun is the difference between the completion
time and deadline of a job or process in a real-time application. A negative value
of deadline overrun indicates that the job or process was completed before its
deadline, whereas a positive value indicates that the deadline was missed. The
mean response time and mean turnaround time are measures of average service
provided to subrequests and processes or jobs, respectively.

System-Centric Scheduling Concepts Throughput and schedule length are mea-
sures of system performance. Throughput indicates the average number of requests
or subrequests completed per unit of time (see Section 3.5). It provides a basis
for comparing performance of two or more scheduling policies, or for comparing
performance of the same scheduling policy over different periods of time. Sched-
ule length indicates the total amount of time taken by a server to complete a set
of requests.

Throughput and schedule length are related. Consider servicing of five
requests r1, . . . , r5. Let mina and maxc be the earliest of the arrival times and
the latest of the completion times, respectively. The schedule length for these five
requests is (maxc − mina) and the throughput is 5/(maxc − mina). However, it is
typically not possible to compute schedule length and throughput in this manner
because an OS may also admit and service other requests in the interval from mina
to maxc, to achieve good system performance. Nevertheless, schedule length is an
important basis for comparing the performance of scheduling policies when the
scheduling overhead is not negligible. Throughput is related to the mean response
time and mean turnaround time in an obvious way.

7.1.1 Fundamental Techniques of Scheduling
Schedulers use three fundamental techniques in their design to provide good user
service or high performance of the system:

• Priority-based scheduling: The process in operation should be the highest-
priority process requiring use of the CPU. It is ensured by scheduling the
highest-priority ready process at any time and preempting it when a pro-
cess with a higher priority becomes ready. Recall from Section 3.5.1 that a

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 232 — #5

232 Part 2 Process Management

multiprogramming OS assigns a high priority to I/O-bound processes; this
assignment of priorities provides high throughput of the system.

• Reordering of requests: Reordering implies servicing of requests in some
order other than their arrival order. Reordering may be used by itself to
improve user service, e.g., servicing short requests before long ones reduces
the average turnaround time of requests. Reordering of requests is implicit in
preemption, which may be used to enhance user service, as in a time-sharing
system, or to enhance the system throughput, as in a multiprogramming
system.

• Variation of time slice: When time-slicing is used, from Eq. (3.2) of Section 3.6,
η = δ/(δ + σ) where η is the CPU efficiency, δ is the time slice and σ is the
OS overhead per scheduling decision. Better response times are obtained
when smaller values of the time slice are used; however, it lowers the CPU
efficiency because considerable process switching overhead is incurred. To
balance CPU efficiency and response times, an OS could use different values
of δ for different requests—a small value for I/O-bound requests and a large
value for CPU-bound requests—or it could vary the value of δ for a process
when its behavior changes from CPU-bound to I/O-bound, or from I/O-
bound to CPU-bound.

In Sections 7.2 and 7.3 we discuss how the techniques of priority-based
scheduling and reordering of requests are used in classical nonpreemptive and
preemptive scheduling policies. In Sections 7.4 and 7.5, we discuss how sched-
ulers in modern OSs combine these three fundamental techniques to provide a
combination of good performance and good user service.

7.1.2 The Role of Priority
Priority is a tie-breaking rule that is employed by a scheduler when many requests
await attention of the server. The priority of a request can be a function of several
parameters, each parameter reflecting either an inherent attribute of the request,
or an aspect concerning its service. It is called a dynamic priority if some of its
parameters change during the operation of the request; otherwise, it called a static
priority.

Some process reorderings could be obtained through priorities as well. For
example, short processes would be serviced before long processes if priority is
inversely proportional to the service time of a process, and processes that have
received less CPU time would be processed first if priority is inversely proportional
to the CPU time consumed by a process. However, complex priority functions may
be needed to obtain some kinds of process reorderings such as those obtained
through time-slicing; their use would increase the overhead of scheduling. In
such situations, schedulers employ algorithms that determine the order in which
requests should be serviced.

If two or more requests have the same priority, which of them should be
scheduled first? A popular scheme is to use round-robin scheduling among
such requests. This way, processes with the same priority share the CPU among

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 233 — #6

Chapter 7 Scheduling 233

themselves when none of the higher-priority processes is ready, which provides
better user service than if one of the requests is favored over other requests with
the same priority.

Priority-based scheduling has the drawback that a low-priority request may
never be serviced if high-priority requests keep arriving. This situation is called
starvation. It could be avoided by increasing the priority of a request that does not
get scheduled for a certain period to time. This way, the priority of a low-priority
request would keep increasing as it waits to get scheduled until its priority exceeds
the priority of all other pending requests. At this time, it would get scheduled.
This technique is called aging of requests.

7.2 NONPREEMPTIVE SCHEDULING POLICIES
•

In nonpreemptive scheduling, a server always services a scheduled request to
completion. Thus, scheduling is performed only when servicing of a previously
scheduled request is completed and so preemption of a request as shown in
Figure 7.1 never occurs. Nonpreemptive scheduling is attractive because of its
simplicity—the scheduler does not have to distinguish between an unserviced
request and a partially serviced one.

Since a request is never preempted, the scheduler’s only function in improving
user service or system performance is reordering of requests. We discuss three
nonpreemptive scheduling policies in this section:

• First-come, first-served (FCFS) scheduling
• Shortest request next (SRN) scheduling
• Highest response ratio next (HRN) scheduling

We illustrate the operation and performance of various scheduling policies
with the help of the five processes shown in Table 7.2. For simplicity we assume
that these processes do not perform I/O operations.

7.2.1 FCFS Scheduling
Requests are scheduled in the order in which they arrive in the system. The list
of pending requests is organized as a queue. The scheduler always schedules the
first request in the list. An example of FCFS scheduling is a batch processing
system in which jobs are ordered according to their arrival times (or arbitrarily,

Table 7.2 Processes for Scheduling

Process P1 P2 P3 P4 P5

Admission time 0 2 3 4 8
Service time 3 3 5 2 3

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 234 — #7

234 Part 2 Process Management

Completed process Processes in system Scheduled
Time id ta w (in FCFS order) process

0 – – – P1 P1
3 P1 3 1.00 P2, P3 P2
6 P2 4 1.33 P3, P4 P3

11 P3 8 1.60 P4, P5 P4
13 P4 9 4.50 P5 P5
16 P5 8 2.67 – –

ta = 6.40 seconds
w = 2.22

0 5 10 15

P1
P2
P3
P4
P5

Time

Figure 7.2 Scheduling using the FCFS policy.

if they arrive at exactly the same time) and results of a job are released to the
user immediately on completion of the job. The following example illustrates
operation of an FCFS scheduler.

•
Example 7.1 FCFS Scheduling

Figure 7.2 illustrates the scheduling decisions made by the FCFS scheduling
policy for the processes of Table 7.2. Process P1 is scheduled at time 0. The
pending list contains P2 and P3 when P1 completes at 3 seconds, so P2 is
scheduled. The Completed column shows the id of the completed process and
its turnaround time (ta) and weighted turnaround (w). The mean values of ta
and w (i.e., ta and w) are shown below the table. The timing chart of Figure 7.2
shows how the processes operated.
•

From Example 7.1, it is seen that considerable variation exists in the weighted
turnarounds provided by FCFS scheduling. This variation would have been larger
if processes subject to large turnaround times were short—e.g., the weighted
turnaround of P4 would have been larger if its execution requirement had been
1 second or 0.5 second.

7.2.2 Shortest Request Next (SRN) Scheduling
The SRN scheduler always schedules the request with the smallest service time.
Thus, a request remains pending until all shorter requests have been serviced.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 235 — #8

Chapter 7 Scheduling 235

Completed process Processes Scheduled
Time id ta w in system process

0 – – – {P1} P1
3 P1 3 1.00 {P2, P3} P2
6 P2 4 1.33 {P3, P4} P4
8 P4 4 2.00 {P3, P5} P5

11 P5 3 1.00 {P3} P3
16 P3 13 2.60 {} –

ta = 5.40 seconds
w = 1.59

0 5 10 15

P1
P2
P3
P4
P5

Time

Figure 7.3 Scheduling using the shortest request next (SRN) policy.

•
Example 7.2Shortest Request Next (SRN) Scheduling

Figure 7.3 illustrates the scheduling decisions made by the SRN scheduling
policy for the processes of Table 7.2, and the operation of the processes. At
time 0, P1 is the only process in the system, so it is scheduled. It completes at
time 3 seconds. At this time, processes P2 and P3 exist in the system, and P2
is shorter than P3. So P2 is scheduled, and so on.

The mean turnaround time and the mean weighted turnaround are bet-
ter than in FCFS scheduling because short requests tend to receive smaller
turnaround times and weighted turnarounds than in FCFS scheduling. This
feature degrades the service that long requests receive; however, their weighted
turnarounds do not increase much because their service times are large. The
throughput is higher than in FCFS scheduling in the first 10 seconds of the
schedule because short processes are being serviced; however, it is identical at
the end of the schedule because the same processes have been serviced.

•

Use of the SRN policy faces several difficulties in practice. Service times of
processes are not known to the operating system a priori, hence the OS may expect
users to provide estimates of service times of processes. However, scheduling
performance would be erratic if users do not possess sufficient experience in
estimating service times, or they manipulate the system to obtain better service
by giving low service time estimates for their processes. The SRN policy offers

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 236 — #9

236 Part 2 Process Management

poor service to long processes, because a steady stream of short processes arriving
in the system can starve a long process.

7.2.3 Highest Response Ratio Next (HRN) Scheduling
The HRN policy computes the response ratios of all processes in the system
according to Eq. (7.1) and selects the process with the highest response ratio.

Response ratio = time since arrival + service time of the process
service time of the process

(7.1)

The response ratio of a newly arrived process is 1. It keeps increasing at the
rate (1/service time) as it waits to be serviced. The response ratio of a short
process increases more rapidly than that of a long process, so shorter processes are
favored for scheduling. However, the response ratio of a long process eventually
becomes large enough for the process to get scheduled. This feature provides an
effect similar to the technique of aging discussed earlier in Section 7.1.2, so long
processes do not starve. The next example illustrates this property.

•
Example 7.3 Highest Response Ratio Next (HRN) Scheduling

Operation of the HRN scheduling policy for the five processes shown in
Table 7.2 is summarized in Figure 7.4. By the time process P1 completes,
processes P2 and P3 have arrived. P2 has a higher response ratio than P3, so
it is scheduled next. When it completes, P3 has a higher response ratio than
before; however, P4, which arrived after P3, has an even higher response ratio
because it is a shorter process, so P4 is scheduled. When P4 completes, P3 has
a higher response ratio than the shorter process P5 because it has spent a lot
of time waiting, whereas P5 has just arrived. Hence P3 is scheduled now. This
action results in a smaller weighted turnaround for P3 than in SRN scheduling
(see Figure 7.3). Thus, after a long wait, a long process gets scheduled ahead
of a shorter one.
•

7.3 PREEMPTIVE SCHEDULING POLICIES
•

In preemptive scheduling, the server can be switched to the processing of a new
request before completing the current request. The preempted request is put
back into the list of pending requests (see Figure 7.1). Its servicing is resumed
when it is scheduled again. Thus, a request might have to be scheduled many
times before it completed. This feature causes a larger scheduling overhead than
when nonpreemptive scheduling is used. We discussed preemptive scheduling in
multiprogramming and time-sharing operating systems earlier, in Chapter 3.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 237 — #10

Chapter 7 Scheduling 237

Completed process Response ratios of processes
Time id ta w P1 P2 P3 P4 P5 Scheduled process

0 − − − 1.00 P1
3 P1 3 1.00 1.33 1.00 P2
6 P2 4 1.33 1.60 2.00 P4
8 P4 4 2.00 2.00 1.00 P3

13 P3 10 2.00 2.67 P5
16 P5 8 2.67 –

ta = 5.8 seconds
w = 1.80

0 5 10 15

P1
P2
P3
P4
P5

Time

Figure 7.4 Operation of highest response ratio (HRN) policy.

We discuss three preemptive scheduling policies in this section:

• Round-robin scheduling with time-slicing (RR)
• Least completed next (LCN) scheduling
• Shortest time to go (STG) scheduling

The RR scheduling policy shares the CPU among admitted requests by ser-
vicing them in turn. The other two policies take into account the CPU time
required by a request or the CPU time consumed by it while making their
scheduling decisions.

7.3.1 Round-Robin Scheduling with Time-Slicing (RR)
The RR policy aims at providing good response times to all requests. The time
slice, which is designated as δ, is the largest amount of CPU time a request may
use when scheduled. A request is preempted at the end of a time slice. To facilitate
this, the kernel arranges to raise a timer interrupt when the time slice elapses.

The RR policy provides comparable service to all CPU-bound processes. This
feature is reflected in approximately equal values of their weighted turnarounds.
The actual value of the weighted turnaround of a process depends on the number
of processes in the system. Weighted turnarounds provided to processes that per-
form I/O operations would depend on the durations of their I/O operations.
The RR policy does not fare well on measures of system performance like
throughput because it does not give a favored treatment to short processes. The
following example illustrates the performance of RR scheduling.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 238 — #11

238 Part 2 Process Management

•
Example 7.4 Round-Robin (RR) Scheduling

A round-robin scheduler maintains a queue of processes in the ready state and
simply selects the first process in the queue. The running process is preempted
when the time slice elapses and it is put at the end of the queue. It is assumed
that a new process that was admitted into the system at the same instant a
process was preempted will be entered into the queue before the preempted
process.

Figure 7.5 summarizes operation of the RR scheduler with δ = 1 second
for the five processes shown in Table 7.2. The scheduler makes scheduling
decisions every second. The time when a decision is made is shown in the
first row of the table in the top half of Figure 7.5. The next five rows show
positions of the five processes in the ready queue. A blank entry indicates that
the process is not in the system at the designated time. The last row shows the
process selected by the scheduler; it is the process occupying the first position
in the ready queue. Consider the situation at 2 seconds. The scheduling queue
contains P2 followed by P1. Hence P2 is scheduled. Process P3 arrives at
3 seconds, and is entered in the queue. P2 is also preempted at 3 seconds
and it is entered in the queue. Hence the queue has process P1 followed by P3
and P2, so P1 is scheduled.

Time of scheduling 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 c ta w

Position of P1 1 1 2 1 4 4 1.33

Processes in P2 1 3 2 1 3 2 1 9 7 2.33

ready queue P3 2 1 3 2 1 4 3 2 1 2 1 2 1 16 13 2.60

(1 implies P4 3 2 1 3 2 1 10 6 3.00

head of queue) P5 3 2 1 2 1 2 1 15 7 2.33

Process scheduled P1 P1 P2 P1 P3 P2 P4 P3 P2 P4 P5 P3 P5 P3 P5 P3

ta = 7.4 seconds, w = 2.32
c: completion time of a process

0 5 10 15 Time

P1

P2

P3

P4

P5

Figure 7.5 Scheduling using the round-robin policy with time-slicing (RR).

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 239 — #12

Chapter 7 Scheduling 239

The turnaround times and weighted turnarounds of the processes are as
shown in the right part of the table. The c column shows completion times.
The turnaround times and weighted turnarounds are inferior to those given
by the nonpreemptive policies discussed in Section 7.2 because the CPU time
is shared among many processes because of time-slicing. It can be seen that
processes P2, P3, and P4, which arrive at around the same time, receive approxi-
mately equal weighted turnarounds. P4 receives the worst weighted turnaround
because through most of its life it is one of three processes present in the sys-
tem. P1 receives the best weighted turnaround because no other process exists
in the system during the early part of its execution. Thus weighted turnarounds
depend on the load in the system.

•
As discussed in Chapter 3, if a system contains n processes, each subrequest by

a process consumes exactly δ seconds, and the overhead per scheduling decision
is σ , the response time (rt) for a subrequest is n × (σ + δ). However, the relation
between δ and rt is more complex than this. First, some processes will be blocked
for I/O or waiting for user actions, so the response time will be governed by the
number of active processes rather than by n. Second, if a request needs more CPU
time than δ seconds, it will have to be scheduled more than once before it can
produce a response. Hence at small values of δ, rt for a request may be higher for
smaller values of δ. The following example illustrates this aspect.

•
Example 7.5Variation of Response Time in RR Scheduling

An OS contains 10 identical processes that were initiated at the same time.
Each process receives 15 identical subrequests, and each subrequest consumes
20 ms of CPU time. A subrequest is followed by an I/O operation that consumes
10 ms. The system consumes 2 ms in CPU scheduling. For δ ≥ 20 ms, the first
subrequest by the first process receives a response time of 22 ms and the first
subrequest by the last process receives a response time of 220 ms. Hence the
average response time is 121 ms. A subsequent subrequest by any process
receives a response time of 10× (2+20)−10 ms = 210 ms because the process
spends 10 ms in an I/O wait before receiving the next subrequest. For δ = 10 ms,
a subrequest would be preempted after 10 ms. When scheduled again, it would
execute for 10 ms and produce results. Hence the response time for the first
process is 10 × (2 + 10) + (2 + 10) = 132 ms, and that for the last process is
10 × (2 + 10) + 10 × (2 + 10) = 240 ms. A subsequent subrequest receives
a response time of 10 × (2 + 10) + 10 × (2 + 10) − 10 = 230 ms. Figure 7.6
summarizes performance of the system for different values of δ. As expected,
the schedule length and the overhead are higher for smaller values of δ. The
graph in Figure 7.6 illustrates the variation of average response time to second
and subsequent subrequests for different values of δ. Note that the response
time is larger when δ is 5 ms than when it is 10 ms.

•

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 240 — #13

240 Part 2 Process Management

Time slice 5 ms 10 ms 15 ms 20 ms

Average rt for first subrequest (ms) 248.5 186 208.5 121
Average rt for subsequent subrequest (ms) 270 230 230 210
Number of scheduling decisions 600 300 300 150
Schedule length (ms) 4200 3600 3600 3300
Overhead (percent) 29 17 17 9

5 10 15 20 25 Time slice (ms)

Response

time

(msecs)

100

200

300

Figure 7.6 Performance of RR scheduling for different values of δ.

7.3.2 Least Completed Next (LCN) Scheduling
The LCN policy schedules the process that has so far consumed the least amount
of CPU time. Thus, the nature of a process, whether CPU-bound or I/O-bound,
and its CPU time requirement do not influence its progress in the system.
Under the LCN policy, all processes will make approximately equal progress
in terms of the CPU time consumed by them, so this policy guarantees that
short processes will finish ahead of long processes. Ultimately, however, this pol-
icy has the familiar drawback of starving long processes of CPU attention. It
also neglects existing processes if new processes keep arriving in the system.
So even not-so-long processes tend to suffer starvation or large turnaround
times.

•
Example 7.6 Least Completed Next (LCN) Scheduling

Implementation of the LCN scheduling policy for the five processes shown
in Table 7.2 is summarized in Figure 7.7. The middle rows in the table in the
upper half of the figure show the amount of CPU time already consumed
by a process. The scheduler analyzes this information and selects the process
that has consumed the least amount of CPU time. In case of a tie, it selects
the process that has not been serviced for the longest period of time. The
turnaround times and weighted turnarounds of the processes are shown in the
right half of the table.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 241 — #14

Chapter 7 Scheduling 241

Time of scheduling 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 c ta w

P1 0 1 2 2 2 2 2 2 2 2 2 11 11 3.67

CPU time P2 0 1 1 1 2 2 2 2 2 2 12 10 3.33

consumed by P3 0 1 1 1 2 2 2 2 2 2 3 4 5 16 13 2.60

processes P4 0 1 1 1 8 4 2.00

P5 0 1 2 2 2 2 14 6 2.00

Process scheduled P1 P1 P2 P3 P4 P2 P3 P4 P5 P5 P1 P2 P3 P5 P3 P3

ta = 8.8 seconds, w = 2.72
c: completion time of a process

0 5 10 15

P1

P2

P3

P4

P5

Time

Figure 7.7 Scheduling using the least completed next (LCN) policy.

It can be seen that servicing of P1, P2, and P3 is delayed because new pro-
cesses arrive and obtain CPU service before these processes can make further
progress. The LCN policy provides poorer turnaround times and weighted
turnarounds than those provided by the RR policy (See Example 7.4) and the
STG policy (to be discussed next) because it favors newly arriving processes
over existing processes in the system until the new processes catch up in terms
of CPU utilization; e.g., it favors P5 over P1, P2, and P3.

•

7.3.3 Shortest Time to Go (STG) Scheduling
The shortest time to go policy schedules a process whose remaining CPU time
requirements are the smallest in the system. It is a preemptive version of the
shortest request next (SRN) policy of Section 7.2, so it favors short processes
over long ones and provides good throughput. Additionally, the STG policy
also favors a process that is nearing completion over short processes entering
the system. This feature helps to improve the turnaround times and weighted
turnarounds of processes. Since it is analogous to the SRN policy, long processes
might face starvation.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 242 — #15

242 Part 2 Process Management

Time of scheduling 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 c ta w

Remaining P1 3 2 1 3 3 1.00

CPU time P2 3 3 2 2 2 1 8 6 2.00

requirement P3 5 5 5 5 5 5 5 5 5 4 3 2 1 16 13 2.60

of a process P4 2 1 6 2 1.00

P5 3 2 1 11 3 1.00

Process scheduled P1 P1 P1 P2 P4 P4 P2 P2 P5 P5 P5 P3 P3 P3 P3 P3

ta = 5.4 seconds, w = 1.52
c: completion time of a process

0 5 10 15 Time

P1

P2

P3

P4

P5

Figure 7.8 Scheduling using the shortest time to go (STG) policy.

•
Example 7.7 Shortest Time to Go (STG) Scheduling

Figure 7.8 summarizes performance of the STG scheduling policy for the five
processes shown in Table 7.2. The scheduling information used by the policy
is the CPU time needed by each process for completion. In case of a tie, the
scheduler selects whatever process has not been serviced for the longest period
of time. Execution of P3 is delayed because P2, P4, and P5 require lesser CPU
time than it.
•

7.4 SCHEDULING IN PRACTICE
•

To provide a suitable combination of system performance and user service,
an operating system has to adapt its operation to the nature and number of
user requests and availability of resources. A single scheduler using a classical
scheduling policy cannot address all these issues effectively. Hence, a modern
OS employs several schedulers—up to three schedulers, as we shall see later—
and some of the schedulers may use a combination of different scheduling
policies.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 243 — #16

Chapter 7 Scheduling 243

7.4.1 Long-, Medium-, and Short-Term Schedulers
These schedulers perform the following functions:

• Long-term scheduler: Decides when to admit an arrived process for schedul-
ing, depending on its nature (whether CPU-bound or I/O-bound) and
on availability of resources like kernel data structures and disk space for
swapping.

• Medium-term scheduler: Decides when to swap-out a process from memory
and when to load it back, so that a sufficient number of ready processes would
exist in memory.

• Short-term scheduler: Decides which ready process to service next on the CPU
and for how long.

Thus, the short-term scheduler is the one that actually selects a process for
operation. Hence it is also called the process scheduler, or simply the scheduler.
Figure 7.9 shows an overview of scheduling and related actions. As discussed in
Sections 2.3 and 5.2.2, the operation of the kernel is interrupt-driven. Every event
that requires the kernel’s attention causes an interrupt. The interrupt processing

Interrupts

Interrupt
processing

routine

PCB lists

ECB lists

Start
I/O

Memory

handler

Suspend/
resume
process

·· ··
Create/

terminate
process

···· Event
handlers

Schedulers

Control flow
Data flow

Dispatcher

Short-term

scheduler

Medium-term

scheduler

Long-term

scheduler

Figure 7.9 Event handling and scheduling.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 244 — #17

244 Part 2 Process Management

routine performs a context save function and invokes an event handler. The event
handler analyzes the event and changes the state of the process, if any, affected
by it. It then invokes the long-term, medium-term, or short-term scheduler as
appropriate. For example, the event handler that creates a new process invokes the
long-term scheduler, event handlers for suspension and resumption of processes
(see Section 5.2.1.1) invoke the medium-term scheduler, and the memory handler
may invoke the medium-term scheduler if it runs out of memory. Most other
event handlers directly invoke the short-term scheduler.

Long-Term Scheduling The long-term scheduler may defer admission of a
request for two reasons: it may not be able to allocate sufficient resources like
kernel data structures or I/O devices to a request when it arrives, or it may find
that admission of a request would affect system performance in some way; e.g., if
the system currently contained a large number of CPU-bound requests, the sched-
uler might defer admission of a new CPU-bound request, but it might admit a
new I/O-bound request right away.

Long-term scheduling was used in the 1960s and 1970s for job scheduling
because computer systems had limited resources, so a long-term scheduler was
required to decide whether a process could be initiated at the present time. It
continues to be important in operating systems where resources are limited. It is
also used in systems where requests have deadlines, or a set of requests are repeated
with a known periodicity, to decide when a process should be initiated to meet
response requirements of applications. Long-term scheduling is not relevant in
other operating systems.

Medium-Term Scheduling Medium-term scheduling maps the large number
of requests that have been admitted to the system into the smaller number
of requests that can fit into the memory of the system at any time. Thus its
focus is on making a sufficient number of ready processes available to the
short-term scheduler by suspending or reactivating processes. The medium-
term scheduler decides when to swap out a process from memory and when
to swap it back into memory, changes the state of the process appropriately,
and enters its process control block (PCB) in the appropriate list of PCBs. The
actual swapping-in and swapping-out operations are performed by the memory
manager.

The kernel can suspend a process when a user requests suspension, when
the kernel runs out of free memory, or when it finds that the CPU is not
likely to be allocated to the process in the near future. In time-sharing sys-
tems, processes in blocked or ready states are candidates for suspension (see
Figure 5.5). The decision to reactivate a process is more involved: The medium-
term scheduler considers the position occupied by a process in the scheduling
list, estimates when it is likely to be scheduled next, and swaps it in ahead of
this time.

Short-Term Scheduling Short-term scheduling is concerned with effective use
of the CPU. It selects one process from a list of ready processes and hands it
to the dispatching mechanism. It may also decide how long the process should

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 245 — #18

Chapter 7 Scheduling 245

Lists of processes

Arrived

processes

Long-

term

Scheduler

Medium-

term

Scheduler

Short-

term

Scheduler

Ready swapped,

blocked swapped

processes

Swap-inSwap-out

Blocked

processes

Ready

processes

CPU

Figure 7.10 Long-, medium-, and short-term scheduling in a time-sharing system.

be allowed to use the CPU and instruct the kernel to produce a timer interrupt
accordingly.

Example 7.8 illustrates long-, medium-, and short-term scheduling in a time-
sharing OS.

•
Example 7.8Long-, Medium-, and Short-Term Scheduling in Time-Sharing

Figure 7.10 illustrates scheduling in a time-sharing operating system. The long-
term scheduler admits a process when kernel resources like control blocks,
swap space on a disk, and other resources like I/O devices—whether real
or virtual—can be allocated to it. The kernel copies the code of the pro-
cess into the swap space, and adds the process to the list of swapped-out
processes.

The medium-term scheduler controls swapping of processes and decides
when to move processes between the ready swapped and ready lists and between
the blocked swapped and blocked lists (see Figure 5.5). Whenever the CPU
is free, the short-term scheduler selects one process from the ready list for
execution. The dispatching mechanism initiates or resumes operation of the
selected process on the CPU. A process may shuttle between the medium-, and
short-term schedulers many times as a result of swapping.

•

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 246 — #19

246 Part 2 Process Management

Process
dispatching

Context
save

Priority

computation,

reordering

Scheduling
mechanisms

Process
scheduler

PCB
lists

HardwareControl flow

Data flow

Figure 7.11 A schematic of the process scheduler.

7.4.2 Scheduling Data Structures and Mechanisms
Figure 7.11 is a schematic diagram of the process scheduler. It uses several lists of
PCBs whose organization and use depends on the scheduling policy. The process
scheduler selects one process and passes its id to the process dispatching mecha-
nism. The process dispatching mechanism loads contents of two PCB fields—the
program status word (PSW) and general-purpose registers (GPRs) fields—into
the CPU to resume operation of the selected process. Thus, the dispatching mech-
anism interfaces with the scheduler on one side and the hardware on the other side.

The context save mechanism is a part of the interrupt processing routine.
When an interrupt occurs, it is invoked to save the PSW and GPRs of the inter-
rupted process. The priority computation and reordering mechanism recomputes
the priority of requests and reorders the PCB lists to reflect the new priorities.
This mechanism is either invoked explicitly by the scheduler when appropri-
ate or invoked periodically. Its exact actions depend on the scheduling policy
in use.

One question faced by all schedulers is: What should the scheduler do if there
are no ready processes? It has no work for the CPU to perform; however, the CPU
must remain alert to handle any interrupts that might activate one of the blocked
processes. A kernel typically achieves it by executing an idle loop, which is an
endless loop containing no-op instructions. When an interrupt causes a blocked
→ ready transition for some process, scheduling would be performed again and
that process would get scheduled. However, execution of the idle loop wastes
power. In Section 7.4.9, we discuss alternative arrangements that conserve power
when there are no ready processes in the system.

7.4.3 Priority-Based Scheduling
Figure 7.12 shows an efficient arrangement of scheduling data for priority-based
scheduling. A separate list of ready processes is maintained for each priority value;

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 247 — #20

Chapter 7 Scheduling 247

Highest-priority queueP1 P4 P8

Lower-than-highest-

priority queue
P7 P5

.

.

.

Lowest-priority queueP10 P3

Figure 7.12 Ready queues in priority-based scheduling.

this list is organized as a queue of PCBs, in which a PCB points to the PCB of
the next process in the queue. The header of a queue contains two pointers. One
points to the PCB of the first process in the queue, and the other points to the
header of the queue for the next lower priority. The scheduler scans the headers in
the order of decreasing priority and selects the first process in the first nonempty
queue it can find. This way, the scheduling overhead depends on the number of
distinct priorities, rather than on the number of ready processes.

Priority-based scheduling can lead to starvation of low-priority processes. As
discussed in Section 7.1.2, the technique of aging of processes, which increases the
priority of a ready process if it does not get scheduled within a certain period of
time, can be used to overcome starvation. In this scheme, process priorities would
be dynamic, so the PCB of a process would be moved between the different ready
queues shown in Figure 7.12.

Starvation in priority-based scheduling can also lead to an undesirable sit-
uation called priority inversion. Consider a high-priority process that needs a
resource that is currently allocated to a low-priority process. If the low-priority
process faces starvation, it cannot use and release the resource. Consequently,
the high-priority process remains blocked indefinitely. This situation is addressed
through the priority inheritance protocol, which temporarily raises the priority of
the low-priority process holding the resource to the priority value of the high-
priority process that needs the resource. The process holding the resource can now
obtain the CPU, use the resource, and release it. The kernel changes its priority
back to the earlier value when it releases the resource.

7.4.4 Round-Robin Scheduling with Time-Slicing
Round-robin scheduling can be implemented through a single list of PCBs of
ready processes. This list is organized as a queue. The scheduler always removes
the first PCB from the queue and schedules the process described by it. If the time
slice elapses, the PCB of the process is put at the end of the queue. If a process
starts an I/O operation, its PCB is added at the end of the queue when its I/O
operation completes. Thus the PCB of a ready process moves toward the head of
the queue until the process is scheduled.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 248 — #21

248 Part 2 Process Management

7.4.5 Multilevel Scheduling
The multilevel scheduling policy combines priority-based scheduling and round-
robin scheduling to provide a good combination of system performance and
response times. A multilevel scheduler maintains a number of ready queues. A
priority and a time slice are associated with each ready queue, and round-robin
scheduling with time-slicing is performed within it. The queue at a high priority
level has a small time slice associated with it, which ensures good response times
for processes in this queue, while the queue at a low priority level has a large
time slice, which ensures low process switching overhead. A process at the head
of a queue is scheduled only if the queues for all higher priority levels are empty.
Scheduling is preemptive, so a process is preempted when a new process is added to
a queue at a higher priority level. As in round-robin scheduling with time-slicing,
when a process makes an I/O request, or is swapped out, its PCB is removed from
the ready queue. When the I/O operation completes, or the process is swapped
in, its PCB is added at the end of that ready queue where it existed earlier.

To benefit from the features of multilevel scheduling, the kernel puts highly
interactive processes in the queue at the highest priority level. The small time
slice associated with this queue is adequate for these processes, so they receive
good response times [see Eq. (3.1)]. Moderately interactive processes are put in
a ready queue at a medium priority level where they receive larger time slices.
Noninteractive processes are put in a ready queue at one of the low priority
levels. These processes receive a large time slice, which reduces the scheduling
overhead.

•
Example 7.9 Multilevel Scheduling

Figure 7.12 illustrates ready queues in a multilevel scheduler. Processes P7 and
P5 have a larger time slice than processes P1, P4, and P8. However, they get
a chance to execute only when P1, P4, and P8 are blocked. Processes P10 and
P3 can execute only when all other processes in the system are blocked. Thus,
these two processes would face starvation if this situation is rare.
•

The multilevel scheduling policy uses static priorities. Hence it inherits the
fundamental shortcoming of priority-based scheduling employed in multipro-
gramming systems: A process is classified a priori into a CPU-bound process or
an I/O-bound process for assignment of priority. If wrongly classified, an I/O-
bound process may receive a low priority, which would affect both user service
and system performance, or a CPU-bound process may receive a high priority,
which would affect system performance. As a result of static priorities, the mul-
tilevel scheduling policy also cannot handle a change in the computational or
I/O behavior of a process, cannot prevent starvation of processes in low priority
levels (see Example 7.9), and cannot employ the priority inheritance protocol to
overcome priority inversion (see Section 7.4.3). All these problems are addressed
by the multilevel adaptive scheduling policy.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 249 — #22

Chapter 7 Scheduling 249

Multilevel Adaptive Scheduling In multilevel adaptive scheduling, which is also
called multilevel feedback scheduling, the scheduler varies the priority of a process
such that the process receives a time slice that is consistent with its requirement
for CPU time. The scheduler determines the “correct” priority level for a process
by observing its recent CPU and I/O usage and moves the process to this level.
This way, a process that is I/O-bound during one phase in its operation and CPU-
bound during another phase will receive an appropriate priority and time slice at
all times. This feature eliminates the problems of multilevel scheduling described
earlier.

CTSS, a time-sharing OS for the IBM 7094 in the 1960s, is a well-known
example of multilevel adaptive scheduling. The system used an eight-level priority
structure, with the levels numbered 0 through 7, 0 being the highest-priority level
and 7 being the lowest-priority level. Level number n had a time slice of 0.5 × 2n

CPU seconds associated with it. At initiation, each user process was placed at level
2 or 3 depending on its memory requirement. It was promoted or demoted in the
priority structure according to the following rules: If a process completely used up
the time slice at its current priority level (i.e., it did not initiate an I/O operation),
it was demoted to the next higher numbered level, whereas if a process spent more
than a minute in ready state in its current priority level without obtaining any CPU
service, it was promoted to the next lower numbered level. Further, any process
performing I/O on the user terminal was promoted to level 2. Subsequently, it
would be moved to the “correct” priority level through possible demotions.

7.4.6 Fair Share Scheduling
A common criticism of all scheduling policies discussed so far is that they try to
provide equitable service to processes, rather than to users or their applications. If
applications create different numbers of processes, an application employing more
processes is likely to receive more CPU attention than an application employing
fewer processes.

The notion of a fair share addresses this issue. A fair share is the fraction of
CPU time that should be devoted to a group of processes that belong to the same
user or the same application; it ensures an equitable use of the CPU by users
or applications. The actual share of CPU time received by a group of processes
may differ from the fair share of the group if all processes in some of the groups
are inactive. For example, consider five groups of processes, G1–G5, each having
a 20 percent share of CPU time. If all processes in G1 are blocked, processes of
each of the other groups should be given 25 percent of the available CPU time
so that CPU time is not wasted. What should the scheduler do when processes
of G1 become active after some time? Should it give them only 20 percent of
CPU time after they wake up, because that is their fair share of CPU time, or
should it give them all the available CPU time until their actual CPU consumption
since inception becomes 20 percent? Lottery scheduling, which we describe in the
following, and the scheduling policies used in the Unix and Solaris operating
systems (see Section 7.6) differ in the way they handle this situation.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 250 — #23

250 Part 2 Process Management

Lottery scheduling is a novel technique proposed for sharing a resource in
a probabilistically fair manner. Lottery “tickets” are distributed to all processes
sharing a resource in such a manner that a process gets as many tickets as its fair
share of the resource. For example, a process would be given five tickets out of a
total of 100 tickets if its fair share of the resource is 5 percent. When the resource
is to be allocated, a lottery is conducted among the tickets held by processes that
actively seek the resource. The process holding the winning ticket is then allocated
the resource. The actual share of the resources allocated to the process depends
on contention for the resource. Lottery scheduling can be used for fair share CPU
scheduling as follows: Tickets can be issued to applications (or users) on the basis
of their fair share of CPU time. An application can share its tickets among its
processes in any manner it desires. To allocate a CPU time slice, the scheduler
holds a lottery in which only tickets of ready processes participate. When the
time slice is a few milliseconds, this scheduling method provides fairness even
over fractions of a second if all groups of processes are active.

7.4.7 Kernel Preemptibility
Kernel preemptibility plays a vital role in ensuring effectiveness of a scheduler. A
noninterruptible kernel can handle an event without getting further interrupted,
so event handlers have a mutually exclusive access to the kernel data structures
without having to use data access synchronization. However, if event handlers
have large running times, noninterruptibility also causes a large kernel latency, as
the kernel cannot respond readily to interrupts. This latency, which could be as
much as 100 ms in computers with slow CPUs, causes a significant degradation
of response times and a slowdown of the OS operation. When the scheduling
of a high-priority process is delayed because the kernel is handling an event
concerning a low-priority process, it even causes a situation analogous to pri-
ority inversion. Making the kernel preemptible would solve this problem. Now,
scheduling would be performed more often, so a high-priority process that is
activated by an interrupt would get to execute sooner.

7.4.8 Scheduling Heuristics
Schedulers in modern operating systems use many heuristics to reduce their
overhead, and to provide good user service. These heuristics employ two main
techniques:

• Use of a time quantum
• Variation of process priority

A time quantum is the limit on CPU time that a process may be allowed to
consume over a time interval. It is employed as follows: Each process is assigned
a priority and a time quantum. A process is scheduled according to its priority,
provided it has not exhausted its time quantum. As it operates, the amount of
CPU time used by it is deducted from its time quantum. After a process has
exhausted its time quantum, it would not be considered for scheduling unless

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 251 — #24

Chapter 7 Scheduling 251

the kernel grants it another time quantum, which would happen only when all
active processes have exhausted their quanta. This way, the time quantum of a
process would control the share of CPU time used by it, so it can be employed to
implement fair share scheduling.

Process priority could be varied to achieve various goals. The priority of a
process could be boosted while it is executing a system call, so that it would quickly
complete execution of the call, release any kernel resources allocated to it, and
exit the kernel. This technique would improve response to other processes that
are waiting for the kernel resources held by the process executing the system call.
Priority inheritance could be implemented by boosting the priority of a process
holding a resource to that of the highest-priority process waiting for the resource.

Process priority may also be varied to more accurately characterize the nature
of a process. When the kernel initiates a new process, it has no means of knowing
whether the process is I/O-bound or CPU-bound, so it assigns a default priority to
the process. As the process operates, the kernel adjusts its priority in accordance
with its behavior using a heuristic of the following kind: When the process is
activated after some period of blocking, its priority may be boosted in accordance
with the cause of blocking. For example, if it was blocked because of an I/O
operation, its priority would be boosted to provide it a better response time. If it
was blocked for a keyboard input, it would have waited for a long time for the user
to respond, so its priority may be given a further boost. If a process used up its
time slice completely, its priority may be reduced because it is more CPU-bound
than was previously assumed.

7.4.9 Power Management
When no ready processes exist, the kernel puts the CPU into an idle loop (see
Section 7.4.2). This solution wastes power in executing useless instructions. In
power-starved systems such as embedded and mobile systems, it is essential to
prevent this wastage of power.

To address this requirement, computers provide special modes in the CPU.
When put in one of these modes, the CPU does not execute instructions, which
conserves power; however, it can accept interrupts, which enables it to resume
normal operation when desired. We will use the term sleep mode of the CPU
generically for such modes. Some computers provide several sleep modes. In the
“light” sleep mode, the CPU simply stops executing instructions. In a “heavy”
sleep mode, the CPU not only stops executing instructions, but also takes other
steps that reduce its power consumption, e.g., slowing the clock and disconnecting
the CPU from the system bus. Ideally, the kernel should put the CPU into the
deepest sleep mode possible when the system does not have processes in the ready
state. However, a CPU takes a longer time to “wake up” from a heavy sleep mode
than it would from a light sleep mode, so the kernel has to make a trade-off here.
It starts by putting the CPU in the light sleep mode. If no processes become ready
for some more time, it puts the CPU into a heavier sleep mode, and so on. This
way, it provides a trade-off between the need for power saving and responsiveness
of the system.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 252 — #25

252 Part 2 Process Management

Operating systems like Unix and Windows have generalized power manage-
ment to include all devices. Typically, a device is put into a lower power consuming
state if it has been dormant at its present power consuming state for some time.
Users are also provided with utilities through which they can configure the power
management scheme used by the OS.

7.5 REAL-TIME SCHEDULING
•

Real-time scheduling must handle two special scheduling constraints while try-
ing to meet the deadlines of applications. First, the processes within a real-time
application are interacting processes, so the deadline of an application should be
translated into appropriate deadlines for the processes. Second, processes may be
periodic, so different instances of a process may arrive at fixed intervals and all
of them have to meet their deadlines. Example 7.10 illustrates these constraints;
in this section, we discuss techniques used to handle them.

•
Example 7.10 Dependences and Periods in a Real-Time Application

Consider a restricted form of the real-time data logging application of Exam-
ple 5.1, in which the buffer_area can accommodate a single data sample. Since
samples arrive at the rate of 500 samples per second, the response requirement
of the application is 1.99 ms. Hence, processes copy_sample and record_sample
must operate one after another and complete their operation within 1.99 ms.
If process record_sample requires 1.5 ms for its operation, process copy_sample
has a deadline of 0.49 ms after arrival of a message. Since a new sample arrives
every 2 ms, each of the processes has a period of 2 ms.
•

7.5.1 Process Precedences and Feasible Schedules
Processes of a real-time application interact among themselves to ensure that they
perform their actions in a desired order (see Section 6.1). We make the simplifying
assumption that such interaction takes place only at the start or end of a process.
It causes dependences between processes, which must be taken into account while
determining deadlines and while scheduling. We use a process precedence graph
(PPG) to depict such dependences between processes.

Process Pi is said to precede process Pj if execution of Pi must be completed
before Pj can begin its execution. The notation Pi → Pj shall indicate that process
Pi directly precedes process Pj . The precedence relation is transitive; i.e., Pi → Pj
and Pj → Pk implies that Pi precedes Pk . The notation Pi →* Pk is used to indicate
that process Pi directly or indirectly precedes Pk . A process precedence graph is
a directed graph G ≡ (N , E) such that Pi ∈ N represents a process, and an edge
(Pi , Pj) ∈ E implies Pi → Pj . Thus, a path Pi , . . . , Pk in PPG implies Pi →* Pk . A
process Pk is a descendant of Pi if Pi →* Pk .

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 253 — #26

Chapter 7 Scheduling 253

In Section 3.7, we defined a hard real-time system as one that meets the
response requirement of a real-time application in a guaranteed manner, even
when fault tolerance actions are required. This condition implies that the time
required by the OS to complete operation of all processes in the application does
not exceed the response requirement of the application. On the other hand, a
soft real-time system meets the response requirement of an application only in
a probabilistic manner, and not necessarily at all times. The notion of a feasible
schedule helps to differentiate between these situations.

Definition 7.1 Feasible Schedule A sequence of scheduling decisions that
enables the processes of an application to operate in accordance with their
precedences and meet the response requirement of the application.

Real-time scheduling focuses on implementing a feasible schedule for an
application, if one exists. Consider an application for updating airline depar-
ture information on displays at 15-second intervals. It consists of the following
independent processes, where process P5 handles an exceptional situation that
seldom occurs.

Process P1 P2 P3 P4 P5

Service time 3 3 2 4 5

A feasible schedule does not exist for completing all five processes in 15 seconds,
so a deadline overrun would occur. However, several schedules are possible when
process P5 is not active. The scheduler in a soft real-time system can use any one
of them.

Table 7.3 summarizes three main approaches to real-time scheduling. We
discuss the features and properties of these scheduling approaches in the
following.

Table 7.3 Approaches to Real-Time Scheduling

Approach Description

Static scheduling A schedule is prepared before operation of the real-time
application begins. Process interactions, periodicities,
resource constraints, and deadlines are considered in
preparing the schedule.

Priority-based
scheduling

The real-time application is analyzed to assign
appropriate priorities to processes in it. Conventional
priority-based scheduling is used during operation of
the application.

Dynamic scheduling Scheduling is performed when a request to create a
process is made. Process creation succeeds only if
response requirement of the process can be satisfied in
a guaranteed manner.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 254 — #27

254 Part 2 Process Management

Static Scheduling As the name indicates, a schedule is prepared before the
system is put into operation. The schedule considers process precedences, peri-
odicities, resource constraints, and possibilities of overlapping I/O operations in
some processes with computations in other processes. This schedule is represented
in the form of a table whose rows indicate when operation of different processes
should begin. No scheduling decisions are made during operation of the system.
The real-time OS simply consults the table and starts operation of processes as
indicated in it. Static scheduling leads to negligible scheduling overhead during
system operation. However, it is inflexible and cannot handle issues like fault
tolerance.

The size of the scheduling table will depend on periods of processes. If all
processes have the same period, or if processes are nonperiodic, the scheduling
table will have only as many rows as the number of processes in the application.
This schedule is used repeatedly during operation of the system. If periodicities
of processes are different, the length of the schedule that needs to be represented
in the scheduling table will be the least common multiple of periodicities of all
processes in the application.

Priority-Based Scheduling A system analyst uses two considerations while
assigning priorities to processes: criticality of processes and periodicity of pro-
cesses. A process with a smaller period must complete its operation earlier than
a process with a larger period, so it must have a higher priority. This approach
has the benefits and drawbacks normally associated with the use of priorities. It
provides graceful degradation capabilities because critical functions would con-
tinue to be performed even when failures occur. However, it incurs scheduling
overhead during operation.

Dynamic Scheduling In systems using the dynamic scheduling approach,
scheduling is performed during the system’s operation. Multimedia systems like
video on demand use a dynamic scheduling approach in which a scheduling deci-
sion is performed when a process arrives. A request to initiate a process contains
information such as the process’s resource requirement, service time, and a dead-
line or a specification of service quality. On receiving such a request, the scheduler
checks whether it is possible to assign the resources needed by the process and
meet its deadline or provide it the desired quality of service. It creates the process
only if these checks succeed.

Another approach to dynamic scheduling is to optimistically admit processes
for execution. In this approach, there is no guarantee that the deadline or ser-
vice quality requirements can be met. Soft real-time systems often follow this
approach.

7.5.2 Deadline Scheduling
Two kinds of deadlines can be specified for a process: a starting deadline, i.e., the
latest instant of time by which operation of the process must begin, and a com-
pletion deadline, i.e., the time by which operation of the process must complete.
We consider only completion deadlines in the following.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 255 — #28

Chapter 7 Scheduling 255

5P6

4P4

6 P5

3P2 5 P3

2 P1

Figure 7.13 The process precedence graph (PPG) for a real-time system.

Deadline Estimation A system analyst performs an in-depth analysis of a real-
time application and its response requirements. Deadlines for individual processes
are determined by considering process precedences and working backward from
the response requirement of the application. Accordingly, Di , the completion
deadline of a process Pi , is

Di = Dapplication −
∑

k ∈ descendant(i)
xk (7.2)

where Dapplication is the deadline of the application, xk is the service time of process
Pk , and descendant(i) is the set of descendants of Pi in the PPG, i.e., the set of all
processes that lie on some path between Pi and the exit node of the PPG. Thus,
the deadline for a process Pi is such that if it is met, all processes that directly or
indirectly depend on Pi can also finish by the overall deadline of the application.
This method is illustrated in Example 7.11.

•
Example 7.11Determining Process Deadlines

Figure 7.13 shows the PPG of a real-time application containing 6 processes.
Each circle is a node of the graph and represents a process. The number in
a circle indicates the service time of a process. An edge in the PPG shows a
precedence constraint. Thus, process P2 can be initiated only after process P1
completes, process P4 can be initiated only after processes P2 and P3 complete,
etc. We assume that processes do not perform I/O operations and are serviced
in a nonpreemptive manner. The total of the service times of the processes is
25 seconds. If the application has to produce a response in 25 seconds, the
deadlines of the processes would be as follows:

Process P1 P2 P3 P4 P5 P6

Deadline 8 16 16 20 20 25

•
A practical method of estimating deadlines will have to incorporate several

other constraints as well. For example, processes may perform I/O. If an I/O

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 256 — #29

256 Part 2 Process Management

operation of one process can be overlapped with execution of some independent
process, the deadline of its predecessors (and ancestors) in the PPG can be relaxed
by the amount of I/O overlap. (Independent processes were formally defined in
Section 6.1.) For example, processes P2 and P3 in Figure 7.13 are independent of
one another. If the service time of P2 includes 1 second of I/O time, the deadline
of P1 can be made 9 seconds instead of 8 seconds if the I/O operation of P2 can
overlap with P3’s processing. However, overlapped execution of processes must
consider resource availability as well. Hence determination of deadlines is far
more complex than described here.

Earliest Deadline First (EDF) Scheduling As its name suggests, this policy always
selects the process with the earliest deadline. Consider a set of real-time processes
that do not perform I/O operations. If seq is the sequence in which processes are
serviced by a deadline scheduling policy and pos(Pi) is the position of process
Pi in seq, a deadline overrun does not occur for process Pi only if the sum of its
own service time and service times of all processes that precede it in seq does not
exceed its own deadline, i.e.,

∑
k:pos(Pk)≤pos(Pi)

xk ≤ Di (7.3)

where xk is the service time of process Pk , and Di is the deadline of process Pi . If
this condition is not satisfied, a deadline overrun will occur for process Pi .

When a feasible schedule exists, it can be shown that Condition 7.3 holds
for all processes; i.e., a deadline overrun will not occur for any process. Table 7.4
illustrates operation of the EDF policy for the deadlines of Example 7.11. The
notation P4 : 20 in the column processes in system indicates that process P4
has the deadline 20. Processes P2, P3 and P5, P6 have identical deadlines, so three
schedules other than the one shown in Table 7.4 are possible with EDF scheduling.
None of them would incur deadline overruns.

The primary advantages of EDF scheduling are its simplicity and nonpre-
emptive nature, which reduces the scheduling overhead. EDF scheduling is a
good policy for static scheduling because existence of a feasible schedule, which
can be checked a priori, ensures that deadline overruns do not occur. It is also

Table 7.4 Operation of Earliest Deadline First (EDF) Scheduling

Time
Process
completed

Deadline
overrun Processes in system

Process
scheduled

0 – 0 P1 : 8, P2 : 16, P3 : 16, P4 : 20, P5 : 20, P6 : 25 P1
2 P1 0 P2 : 16, P3 : 16, P4 : 20, P5 : 20, P6 : 25 P2
5 P2 0 P3 : 16, P4 : 20, P5 : 20, P6 : 25 P3

10 P3 0 P4 : 20, P5 : 20, P6 : 25 P4
14 P4 0 P5 : 20, P6 : 25 P5
20 P5 0 P6 : 25 P6
25 P2 0 – –

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 257 — #30

Chapter 7 Scheduling 257

a good dynamic scheduling policy for use in soft real-time system; however, the
number of processes that miss their deadlines is unpredictable. The next example
illustrates this aspect of EDF scheduling.

•
Example 7.12Problems of EDF Scheduling

Consider the PPG of Figure 7.13 with the edge (P5, P6) removed. It contains
two independent applications, one contains the processes P1–P4 and P6, while
the other contains P5 alone. If all processes are to complete by 19 seconds, a
feasible schedule does not exist. Now deadlines of the processes determined
by using Eq. (7.2) are as follows:

Process P1 P2 P3 P4 P5 P6

Deadline 2 10 10 14 19 19

EDF scheduling may schedule the processes either in the sequence
P1, P2, P3, P4, P5, P6, which is the same as in Table 7.4, or in the sequence
P1, P2, P3, P4, P6, P5. Processes P5 and P6 miss their deadlines in the first
sequence, whereas only process P5 misses its deadline in the second sequence.
We cannot predict which sequence will be chosen by an implementation of
EDF scheduling, so the number of processes that miss their deadlines is
unpredictable.

•

7.5.3 Rate Monotonic Scheduling
When processes in an application are periodic, the existence of a feasible schedule
can be determined in an interesting way. Consider three independent processes
that do not perform I/O operations:

Process P1 P2 P3

Time period (ms) 10 15 30
Service time (ms) 3 5 9

Process P1 repeats every 10 ms and needs 3 ms of CPU time. So the fraction
of the CPU’s time that it uses is 3/10, i.e., 0.30. The fractions of CPU time used
by P2 and P3 are analogously 5/15 and 9/30, i.e., 0.33 and 0.30. They add up to
0.93, so if the CPU overhead of OS operation is negligible, it is feasible to service
these three processes. In general, a set of periodic processes P1, . . . , Pn that do
not perform I/O operations can be serviced by a hard real-time system that has a
negligible overhead if

�i=1...n
xi

Ti
≤ 1 (7.4)

where Ti is the period of Pi and xi is its service time.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 258 — #31

258 Part 2 Process Management

0 10 20 30

P1

P2

P3

3

5

2

3

2

5

3

5

Time (ms)

Figure 7.14 Operation of real-time processes using rate monotonic scheduling.

We still have to schedule these processes so that they can all operate without
missing their deadlines. The rate monotonic (RM) scheduling policy does it as
follows: It determines the rate at which a process has to repeat, i.e., the number of
repetitions per second, and assigns the rate itself as the priority of the process. It
now employs a priority-based scheduling technique to perform scheduling. This
way, a process with a smaller period has a higher priority, which would enable it
to complete its operation early.

In the above example, priorities of processes P1, P2, and P3 would be 1/0.010,
1/0.015, and 1/0.025, i.e., 100, 67, and 45, respectively. Figure 7.14 shows how
these processes would operate. Process P1 would be scheduled first. It would
execute once and become dormant after 3 ms, because x1 = 3 ms. Now P2
would be scheduled and would complete after 5 ms. P3 would be scheduled
now, but it would be preempted after 2 ms because P1 becomes ready for the
second time, and so on. As shown in Figure 7.14, process P3 would complete
at 28 ms. By this time, P1 has executed three times and P2 has executed two
times.

Rate monotonic scheduling is not guaranteed to find a feasible schedule
in all situations. For example, if process P3 had a time period of 27 ms, its
priority would be different; however, relative priorities of the processes would
be unchanged, so P3 would complete at 28 ms as before, thereby suffering a
deadline overrun of 1 ms. A feasible schedule would have been obtained if
P3 had been scheduled at 20 ms and P1 at 25 ms; however, it is not possi-
ble under RM scheduling because processes are scheduled in a priority-based
manner. Liu and Layland (1973) have shown that RM scheduling may not be
able to avoid deadline overruns if the total fraction of CPU time used by the
processes according to Eq. (7.4) exceeds m(21/m − 1), where m is the number
of processes. This expression has a lower bound of 0.69, which implies that
if an application has a large number of processes, RM scheduling may not be
able to achieve more than 69 percent CPU utilization if it is to meet deadlines
of processes.

Liu and Layland also report a deadline-driven scheduling algorithm that
dynamically assigns priorities to processes based on their current deadlines—a
process with an earlier deadline is assigned a higher priority than a process with a
later deadline. It can avoid deadline overruns even when the fraction of Eq. (7.4)
has the value 1; that is, it can achieve 100 percent CPU utilization. However,

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 259 — #32

Chapter 7 Scheduling 259

its practical performance would be lower because of the overhead of dynamic
priority assignment. Recall that EDF scheduling can avoid deadline overruns if a
feasible schedule exists. Hence, it, too, can achieve 100 percent CPU utilization.
If employed statically, it would suffer little overhead during operation.

7.6 CASE STUDIES
•

7.6.1 Scheduling in Unix
Unix is a pure time-sharing operating system. It uses a multilevel adaptive
scheduling policy in which process priorities are varied to ensure good system
performance and also to provide good user service. Processes are allocated numer-
ical priorities, where a larger numerical value implies a lower effective priority.
In Unix 4.3 BSD, the priorities are in the range 0 to 127. Processes in the user
mode have priorities between 50 and 127, while those in the kernel mode have
priorities between 0 and 49. When a process is blocked in a system call, its prior-
ity is changed to a value in the range 0–49, depending on the cause of blocking.
When it becomes active again, it executes the remainder of the system call with
this priority. This arrangement ensures that the process would be scheduled as
soon as possible, complete the task it was performing in the kernel mode and
release kernel resources. When it exits the kernel mode, its priority reverts to its
previous value, which was in the range 50–127.

Unix uses the following formula to vary the priority of a process:

Process priority = base priority for user processes

+ f (CPU time used recently) + nice value (7.5)

It is implemented as follows: The scheduler maintains the CPU time used by a
process in its process table entry. This field is initialized to 0. The real-time clock
raises an interrupt 60 times a second, and the clock handler increments the count
in the CPU usage field of the running process. The scheduler recomputes process
priorities every second in a loop. For each process, it divides the value in the CPU
usage field by 2, stores it back, and also uses it as the value of f. Recall that a
large numerical value implies a lower effective priority, so the second factor in
Eq. (7.5) lowers the priority of a process. The division by 2 ensures that the effect
of CPU time used by a process decays; i.e., it wears off over a period of time, to
avoid the problem of starvation faced in the least completed next (LCN) policy
(see Section 7.3.2).

A process can vary its own priority through the last factor in Eq. (7.5). The
system call “nice(<priority value>);” sets the nice value of a user process. It takes
a zero or positive value as its argument. Thus, a process can only decrease its
effective priority to be nice to other processes. It would typically do this when it
enters a CPU-bound phase.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 260 — #33

260 Part 2 Process Management

Table 7.5 Operation of a Unix-like Scheduling Policy
When Processes Perform I/O

P1 P2 P3 P4 P5

Scheduled
Time P T P T P T P T P T process

0.0 60 0 P1

1.0 60

90 30 P1

2.0 90 0
105 45 60 0 P2

3.0 45 60 0
82 22 90 30 60 0 P3

3.1 82 22 90 30 60 6 P1

4.0 76 30 6
98 38 75 15 63 3 P3

4.1 98 38 75 15 63 9 P2

5.0 38 69 9 0
79 19 94 34 64 4 60 0 P4

6.0 19 34 4 60
69 9 77 17 62 2 90 30 P3

•
Example 7.13 Process Scheduling in Unix

Table 7.5 summarizes operation of the Unix scheduling policy for the processes
in Table 7.2. It is assumed that process P3 is an I/O bound process that initiates
an I/O operation lasting 0.5 seconds after using the CPU for 0.1 seconds, and
none of the other processes perform I/O. The T field indicates the CPU time
consumed by a process and the P field contains its priority. The scheduler
updates the T field of a process 60 times a second and recomputes process
priorities once every second. The time slice is 1 second, and the base priority
of user processes is 60. The first line of Table 7.5 shows that at 0 second, only P1
is present in the system. Its T field contains 0, hence its priority is 60. Two lines
are shown for the time 1 second. The first line shows the T fields of processes
at 1 second, while the second line shows the P and T fields after the priority
computation actions at 1 second. At the end of the time slice, the contents of
the T field of P1 are 60. The decaying action of dividing the CPU time by 2
reduces it to 30, and so the priority of P1 becomes 90. At 2 seconds, the effective
priority of P1 is smaller than that of P2 because their T fields contain 45 and
0, respectively, and so P2 is scheduled. Similarly P3 is scheduled at 2 seconds.

Since P3 uses the CPU for only 0.1 second before starting an I/O operation,
it has a higher priority than P2 when scheduling is performed at 4 seconds;
hence it is scheduled ahead of process P2. It is again scheduled at 6 seconds.
This feature corrects the bias against I/O-bound processes exhibited by pure
round-robin scheduling.
•

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 261 — #34

Chapter 7 Scheduling 261

Table 7.6 Operation of Fair Share Scheduling in Unix

P1 P2 P3 P4 P5

Time P C G P C G P C G P C G P C G
Scheduled
process

0 60 0 0 P1
1 120 30 30 P1
2 150 45 45 105 0 45 P2
3 134 22 52 142 30 52 60 0 0 P3
4 97 11 26 101 15 26 120 30 30 86 0 26 P4
5 108 5 43 110 7 43 90 15 15 133 30 43 P3
6 83 2 21 84 3 21 134 37 37 96 15 21 P1
7 101 1 40 96 18 18 107 7 40 P3
8 80 0 20 138 39 39 83 3 20 80 0 20 P5
9 100 0 40 98 19 19 101 1 40 130 30 40 P3

10 80 0 20 138 39 39 80 0 20 95 15 20 P2
11 130 30 40 98 19 19 100 0 40 107 7 40 P3
12 95 15 20 80 0 20 83 3 20 P4
13 107 7 40 101 1 40 P5
14 113 3 50 110 0 50 P5
15 116 1 55 P2
16

Fair Share Scheduling To ensure a fair share of CPU time to groups of processes,
Unix schedulers add the term f (CPU time used by processes in the group) to
Eq. (7.5). Thus, priorities of all processes in a group reduce when any of them
consumes CPU time. This feature ensures that processes of a group would receive
favored treatment if none of them has consumed much CPU time recently. The
effect of the new factor also decays over time.

•
Example 7.14Fair Share Scheduling in Unix

Table 7.6 depicts fair share scheduling of the processes of Table 7.2. Fields P,
T, and G contain process priority, CPU time consumed by a process, and CPU
time consumed by a group of processes, respectively. Two process groups exist.
The first group contains processes P1, P2, P4, and P5, while the second group
contains process P3 all by itself.

At 2 seconds, process P2 has just arrived. Its effective priority is low
because process P1, which is in the same group, has executed for 2 seconds.
However, P3 does not have a low priority when it arrives because the CPU
time already consumed by its group is 0. As expected, process P3 receives a
favored treatment compared to other processes. In fact, it receives every alter-
nate time slice. Processes P2, P4, and P5 suffer because they belong to the same
process group. These facts are reflected in the turnaround times and weighted

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 262 — #35

262 Part 2 Process Management

turnarounds of the processes, which are as follows:

Process P1 P2 P3 P4 P5

Completion time 7 16 12 13 15
Turnaround time 7 14 9 9 7
Weighted turnaround 2.33 4.67 1.80 4.50 2.33

Mean turnaround time (ta) = 9.2 seconds
Mean weighted turnaround (w̄) = 3.15

•

7.6.2 Scheduling in Solaris
Solaris supports four classes of processes—time-sharing processes, interactive
processes, system processes, and real-time processes. A time slice is called a time
quantum in Solaris terminology. Time-sharing and interactive processes have pri-
orities between 0 and 59, where a larger number implies a higher priority. System
processes have priorities between 60 and 99; they are not time-sliced. Real-time
processes have priorities between 100 and 159 and are scheduled by a round-robin
policy within a priority level. Threads used for interrupt servicing have priorities
between 160 and 169.

Scheduling of time-sharing and interactive processes is governed by a dis-
patch table. For each priority level, the table specifies how the priority of a process
should change to suit its nature, whether CPU-bound or I/O-bound, and also to
prevent starvation. Use of the table, rather than a priority computation rule as in
Unix, provides fine-grained tuning possibilities to the system administrator. The
dispatch table entry for each priority level contains the following values:

ts_quantum The time quantum for processes of this priority level
ts_tqexp The new priority of a process that uses its entire time quantum
ts_slpret The new priority of a process that blocks before using its

complete time quantum
ts_maxwait The maximum amount of time for which a process can be

allowed to wait without getting scheduled
ts_lwait The new priority of a process that does not get scheduled

within ts_maxwait time

A process that blocks before its time quantum elapses is assumed to be an
I/O-bound process; its priority is changed to ts_slpret, which is a higher
priority than its present priority. Analogously, a process that uses its entire time
quantum is assumed to be a CPU-bound process, so ts_tqexp is a lower priority.
ts_maxwait is used to avoid starvation, hence ts_lwait is a higher priority. In
addition to these changes in priority effected by the kernel, a process can change
its own priority through the nice system call with a number in the range −19 to
19 as a parameter.

Solaris 9 also supports a fair share scheduling class. A group of processes
is called a project and is assigned a few shares of CPU time. The fair share of

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 263 — #36

Chapter 7 Scheduling 263

a project at any time depends on the shares of other projects that are active
concurrently; it is the quotient of the shares of the project and the sum of the
shares of all those projects that have at least one process active. In multiprocessor
systems, shares are defined independently for each CPU. Solaris 10 added the
notion of zones on top of projects. CPU shares are now assigned for both zones
and projects to provide two-level scheduling.

7.6.3 Scheduling in Linux
Linux supports both real-time and non-real-time applications. Accordingly, it has
two classes of processes. The real-time processes have static priorities between 0
and 100, where 0 is the highest priority. Real-time processes can be scheduled in
two ways: FIFO or round-robin within each priority level. The kernel associates
a flag with each process to indicate how it should be scheduled.

Non-real-time processes have lower priorities than all real-time processes;
their priorities are dynamic and have numerical values between −20 and 19,
where −20 is the highest priority. Effectively, the kernel has (100 + 40) priority
levels. To start with, each non-real-time process has the priority 0. The priority
can be varied by the process itself through the nice or setpriority system calls.
However, special privileges are needed to increase the priority through the nice
system call, so processes typically use this call to lower their priorities when they
wish to be nice to other processes. In addition to such priority variation, the
kernel varies the priority of a process to reflect its I/O-bound or CPU-bound
nature. To implement this, the kernel maintains information about how much
CPU time the process has used recently and for how long it was in the blocked
state, and adds a bonus between 5 and −5 to the nice value of the process. Thus,
a highly interactive process would have an effective priority of nice−5, while a
CPU-bound process would have an effective priority of nice+5.

Because of the multilevel priority structure, the Linux kernel organizes its
scheduling data as shown in Figure 7.12 of Section 7.4.3. To limit the schedul-
ing overhead, Linux uses a scheduler schematic analogous to Figure 5.9. Thus,
scheduling is not performed after every event handling action. It is performed
when the currently executing process has to block due to a system call, or when
the need_resched flag has been set by an event handling action. This is done
while handling expiry of the time slice, or while handling an event that acti-
vates a process whose priority is higher than that of the currently executing
process.

Non-real-time processes are scheduled by using the notion of a time slice;
however, the Linux notion of a time slice is actually a time quantum that a process
can use over a period of time in accordance with its priority (see Section 7.4.8).
A process that exhausts its time slice would receive a new time slice only after
all processes have exhausted their time slices. Linux uses time slices in the range
of 10 to 200 ms. To ensure that a higher-priority process would receive more
CPU attention than a lower-priority process, Linux assigns a larger time slice to
a higher-priority process. This assignment of time slices does not affect response

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 264 — #37

264 Part 2 Process Management

times because a high-priority process would be interactive in nature, hence it
would perform an I/O operation before using much CPU time.

The Linux scheduler uses two lists of processes, an active list and an exhausted
list. Both lists are ordered by priorities of processes and use the data structure
described earlier. The scheduler schedules a process from the active list, which
uses time from its time slice. When its time slice is exhausted, it is put into the
exhausted list. Schedulers in Linux kernel 2.5 and earlier kernels executed a pri-
ority recomputation loop when the active list became empty. The loop computed
a new time slice for each process based on its dynamic priority. At the end of
the loop, all processes were transferred to the active list and normal scheduling
operation was resumed.

The Linux 2.6 kernel uses a new scheduler that incurs less overhead and scales
better with the number of processes and CPUs. The scheduler spreads the priority
recomputation overhead throughout the scheduler’s operation, rather than lump
it in the recomputation loop. It achieves this by recomputing the priority of a
process when the process exhausts its time slice and gets moved to the exhausted
list. When the active list becomes empty, the scheduler merely interchanges the
active and exhausted lists.

The scalability of the scheduler is ensured in two ways. The scheduler has a
bit flag to indicate whether the list of processes for a priority level is empty. When
invoked, the scheduler tests the flags of the process lists in the order of reducing
priority, and selects the first process in the first nonempty process list it finds. This
procedure incurs a scheduling overhead that does not depend on the number of
ready processes; it depends only on the number of scheduling levels, hence it is
bound by a constant. This scheduling is called O(1), i.e., order 1, scheduling.
Schedulers in older Linux kernels used a synchronization lock on the active list
of processes to avoid race conditions when many CPUs were supported. The
Linux 2.6 kernel maintains active lists on a per-CPU basis, which eliminates the
synchronization lock and associated delays. This arrangement also ensures that
a process operates on the same CPU every time it is scheduled; it helps to ensure
better cache hit ratios.

7.6.4 Scheduling in Windows
Windows scheduling aims at providing good response times to real-time and inter-
active threads. Scheduling is priority-driven and preemptive. Scheduling within
a priority level is performed through a round-robin policy with time-slicing. A
time slice is called a quantum in Windows terminology. Priorities of non-real-
time threads are dynamically varied to favor interactive threads. This aspect is
analogous to multilevel adaptive scheduling (see Section 7.4.5).

Real-time threads are given higher priorities than other threads—they have
priorities in the range 16–31, while other threads have priorities in the range 1–15.
Priorities of non-real-time threads can vary during their lifetime, hence this class
of threads is also called the variable priority class. The effective priority of a thread
in this class at any moment is a combination of three factors—the base priority
of the process to which the thread belongs; the base priority of the thread, which

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 265 — #38

Chapter 7 Scheduling 265

is in the range −2 to 2; and a dynamic component assigned by the kernel to favor
interactive threads.

The kernel varies a thread’s dynamic component of priority as follows: If the
thread uses up its complete time slice when scheduled, its priority is reduced by
1. When a waiting, i.e., blocked, thread is activated, it is given a priority increase
based on the nature of the event on which it was blocked. If it was blocked on
input from the keyboard, its priority is boosted by 6. To deny an unfair advantage
to an I/O-bound thread, the remaining time of its current quantum is reduced by
one clock tick every time it makes an I/O request. To guard against starvation,
the priority of a ready thread that has not received CPU time for more than
4 seconds is raised to 15 and its quantum is increased to twice its normal value.
When this quantum expires, its priority and quantum revert back to their old
values.

The scheduler uses a data structure resembling that shown in Figure 7.12,
except for two refinements that provide efficiency. Since priority values lie in the
range 0–31, with priority 0 reserved for a system thread, an array of 32 pointers is
used to point at the queues of ready threads at different priority levels. A vector of
32 bit flags is used to indicate whether a ready thread exists at each of the priority
levels. This arrangement enables the scheduler to speedily locate the first thread
in the highest-priority nonempty queue. When none of the system or user threads
is in the ready state, the scheduler schedules a special idle thread on the CPU that
continually executes an idle loop until a thread is scheduled on it. In the loop,
it activates functions in the hardware abstraction layer (HAL) at appropriate
times to perform power management. In a multiprocessor system, the scheduler
operating on one CPU may schedule a thread on another CPU that is idle (see
Section 10.6.3). To facilitate such scheduling, the idle loop also examines the
scheduling data structures to check whether a thread has been scheduled on the
CPU that is executing the idle loop, and switches the CPU to the scheduled thread
if this is the case.

To conserve power when the computer is idle, Windows provides a num-
ber of system states wherein the computer operates in a mode that consumes
low power. In the hibernate state, the states of running applications are stored
on the disk and the system is turned off. When the system is activated, appli-
cation states are restored from the disk before operation is resumed. Use of the
disk to store application states leads to slow resumption; however, it provides
reliability because operation of the computer is immune to loss or depletion of
power while the computer is in hibernation. In the standby state, states of running
applications are saved in memory, and the computer enters a low-power mode of
operation. Resumption using the application states stored in memory is faster.
However, the state information would be lost if power is lost or depleted while
the system is in the standby state, so computer operation is not reliable. Hence
Windows Vista introduced a new hybrid state called the sleep state wherein the
application states are stored both in memory and on the disk. System operation is
resumed as in the standby state if application states are available in memory; oth-
erwise, it is resumed as in the hibernate state using the application states stored on
the disk.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 266 — #39

266 Part 2 Process Management

7.7 PERFORMANCE ANALYSIS OF SCHEDULING POLICIES
•

Performance analysis of a scheduling policy is a study of its performance, using
measures such as response time of a process, efficiency of use of the CPU, and
throughput of the system. Performance analysis can be used to compare perfor-
mance of alternative scheduling policies, and to determine “good” values of key
system parameters like the time slice, number of active users, and the size of the
list of ready processes.

Performance of a scheduling policy is sensitive to the nature of requests
directed at it, and so performance analysis should be conducted in the environ-
ment in which the policy is to be put into effect. The set of requests directed at
a scheduling policy is called its workload. The first step in performance analysis
of a policy is to accurately characterize its typical workload. In the following, we
discuss some issues involved in this step.

As mentioned in Section 7.2 in the context of the SRN policy, user estimates
of service times are not reliable either because users lack the experience to pro-
vide good estimates of service time or because knowledgeable users may provide
misleading estimates to obtain a favored treatment from the system. Some users
may even resort to changes in their requests to obtain better service; for instance,
a user who knows that the SRN policy is being used may split a long-running pro-
gram into several programs with short service times. All these factors distort the
workload. Hence the characterization of a typical workload should be developed
without involving the users.

Three approaches could be used for performance analysis of scheduling
policies:

• Implementation of a scheduling policy in an OS
• Simulation
• Mathematical modeling

Both simulation and mathematical modeling avoid the need for implementing
a scheduling policy in an OS, thereby avoiding the cost, complexity, and delays
involved in implementing the policy. However, to produce the same results as
an implementation, these approaches require a very detailed characterization
of requests in the workload, which is generally not feasible in practice. Hence,
performance aspects like the scheduling overhead or service to individual requests
are best studied through implementation, whereas simulation and mathematical
modeling are well suited for studying performance of a scheduling policy and for
determining “good” values of system parameters like the time slice, number of
users, or the size of the list of ready processes.

7.7.1 Performance Analysis through Implementation
The scheduling policy to be evaluated is implemented in a real operating sys-
tem that is used in the target operating environment. The OS receives real user

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 267 — #40

Chapter 7 Scheduling 267

Completed

requests

Requests to

be serviced

Scheduling

lists

PCB

Data

collection

module

Simulated

Clock

I/O

Simulator

Scheduler

Figure 7.15 Simulation of a scheduling policy.

requests; services them using the scheduling policy; and collects data for statistical
analysis of the policy’s performance. This approach to performance analysis is
disruptive, because a real OS has to be decommissioned, modified, and recommis-
sioned for every scheduling policy that is to be analyzed. This disruption could
be avoided by using virtual machine software, which permits a guest kernel to
be modified without affecting operation of the host kernel; however, the over-
head introduced by use of the virtual machine would cause inaccuracies in the
performance measurement.

7.7.2 Simulation
Simulation is achieved by coding the scheduling policy and relevant OS functions
as a program—the simulator program—and using a typical workload as its input.
The workload is a recording of some real workload directed at the OS during a
sample period. Analysis may be repeated with many workloads to eliminate the
effect of variations across workloads.

Figure 7.15 shows a schematic of a simulator. The simulator operates as
follows: It maintains the data structures that are used by the simulated scheduling
policy, in which it puts information concerning user requests as they arrive in the
system, get admitted, and receive service. It also maintains a clock to keep track
of the simulated time. From time to time, it mimics the scheduling action and
selects a request for processing. It estimates the length of time for which the
request would use the CPU before an event like the initiation of an I/O operation
or completion of a request, occurs. It now advances the simulated clock by the
amount of time for which the request would have used the CPU before the event
occurred, and moves the request out of the scheduling queue. It then performs
scheduling once again, and so on. It may contain other modules like an I/O
simulator module which would predict when the I/O operation initiated by a
request would complete. When the simulated clock shows this time, it adds the
request to a scheduling queue. The data collection module collects useful data
for performance analysis. The level of detail handled in a simulator governs the
cost of simulation and the quality of its results.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 268 — #41

268 Part 2 Process Management

7.7.3 Mathematical Modeling
A mathematical model consists of two components—a model of the server
and a model of the workload being processed. The model provides a set of
mathematical expressions for important performance characteristics like service
times of requests and overhead. These expressions provide insights into the influ-
ence of various parameters on system performance. The workload model differs
from workloads used in simulations in that it is not a recording of actual work-
load in any specific time period. It is a statistical distribution that represents the
workload; that is, it is a function that generates fictitious requests that have the
same statistical properties as the actual workload during any period.

Queuing Theory Widespread use of mathematical models to analyze perfor-
mance of various systems led to development of a separate branch of mathematics
known as queuing theory. Performance analysis using queuing theory is called
queuing analysis. The earliest well-known application of queuing analysis was by
Erlang (1909) in evaluating the performance of a telephone exchange with the
number of trunk lines as the controlling parameter.

The fundamental queuing theory model of a system is identical with the
simple scheduler model discussed at the start of this Chapter (see Figure 7.1).
This is known as the single-server model. Queuing analysis is used to develop
mathematical expressions for server efficiency, mean queue length, and mean
wait time.

A request arriving at time ai with service time xi is completed at time ci . The
elapsed time (ci − ai) depends on two factors—arrival times and service times
of requests that are either in execution or in the scheduling queue at some time
during the interval (ci − ai), and the scheduling policy used by the server. It is
reasonable to assume that arrival times and service times of requests entering
the system are not known in advance; i.e., these characteristics of requests are
nondeterministic in nature.

Although characteristics of individual requests are unknown, they are cus-
tomarily assumed to conform to certain statistical distributions. A computing
environment is thus characterized by two parameters—a statistical distribution
governing arrival times of requests, and a statistical distribution governing their
service times. We give a brief introduction to statistical distributions and their
use in mathematical modeling, using the following notation:

α Mean arrival rate (requests per second)
ω Mean execution rate (requests per second)
ρ α/ω

ρ is called the utilization factor of the server. When ρ > 1, the work being
directed at the system exceeds its capacity. In this case, the number of requests
in the system increases indefinitely. Performance evaluation of such a system is
of little practical relevance since turnaround times can be arbitrarily large. When
ρ < 1, the system capacity exceeds the total work directed at it. However, this is
true only as a long-term average; it may not hold in an arbitrary interval of time.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 269 — #42

Chapter 7 Scheduling 269

Hence the server may be idle once in a while, and a few requests may exist in the
queue at certain times.

Most practical systems satisfy ρ < 1. Even when we consider a slow server, ρ
does not exceed 1 because most practical systems are self-regulatory in nature—
the number of users is finite and the arrival rate of requests slackens when the
queue length is large because most users’ requests are locked up in the queue!

A system reaches a steady state when all transients in the system induced due
to its abrupt initiation at time t = 0 die down. In the steady state, values of mean
queue lengths, mean wait times, mean turnaround times, etc., reflect performance
of the scheduling policy. For obtaining these values, we start by assuming certain
distributions for arrival and servicing of requests in the system.

Arrival Times The time between arrival of two consecutive requests is called
interarrival time. Since α is the arrival rate, the mean interarrival time is 1/α. A
statistical distribution that has this mean interarrival time and that fits empiri-
cal data reasonably well can be used for workload characterization. Arrival of
requests in the system can be regarded as random events totally independent of
each other. Two assumptions leading to a Poisson distribution of arrivals are now
made. First, the number of arrivals in an interval t to t + dt is assumed to depend
only on the value of dt and not on past history of the system during the interval
(0, t). Second, for small values of dt, probability of more than one arrival in the
interval t to (t +dt) is assumed to be negligible. The first assumption is known as
the memoryless property of the arrival times distribution. An exponential distri-
bution function giving the probability of an arrival in the interval 0 to t for any t
has the form:

F (t) = 1 − e−α. t

This distribution has the mean interarrival time 1/α since
∫ ∞

0 t. dF (t) = 1/α. It is
found that the exponential distribution fits the interarrival times in empirical data
reasonably well. (However, a hyperexponential distribution with the same mean
of 1/α is found to be a better approximation for the experimental data (Coffman
and Wood [1966]).

Service Times The function S(t) gives the probability that the service time of a
request is less than or equal to t.

S(t) = 1 − e−ω. t

As in the case of arrival times, we make two assumptions that lead to a Poisson
distribution of service times. Hence the probability that a request that has already
consumed t units of service time will terminate in the next dt seconds depends
only on the value of dt and not on t. In preemptive scheduling, it applies every
time a request is scheduled to run after an interruption.

The memoryless property of service times implies that a scheduling algo-
rithm cannot make any predictions based on past history of a request in the
system. Thus, any preemptive scheduling policy that requires knowledge of future
behavior of requests must depend on estimates of service times supplied by a pro-
grammer. The scheduling performance will then critically depend on user inputs

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 270 — #43

270 Part 2 Process Management

and may be manipulated by users. In a practical situation, a system must strive
to achieve the opposite effect—that is, system performance should be immune
to user specification (or misspecification) of the service time of a request. This
requirement points toward round-robin scheduling with time-slicing as a practical
scheduling policy.

Performance Analysis The relation between L, the mean queue length and W ,
the mean wait time for a request before its servicing begins is given by Little’s
formula,

L = α × W (7.6)

This relation follows from the fact that while a request waits in the queue, α ×W
new requests join the queue.

Whenanewrequest arrives, it is added to the requestqueue. Innonpreemptive
scheduling, the new request would be considered only after the server completes
the request it is servicing. Let W0 be the expected time to complete the current
request. Natually, W0 is independent of a scheduling policy. W0 = α

2 .
∫ ∞

0 t2dF (t),
and has the value α

ω2 for an exponential distribution F (t) = 1 − e−α. t. W , the
mean wait time for a request when a specific scheduling policy is used, is computed
from W0 and features of the scheduling policy. We outline how the mean wait
times for FCFS and SRN policies are derived. Derivations for HRN and round-
robin policies are more complex and can be found in Brinch Hansen (1973).
Table 7.7 summarizes the mean wait time for a request whose service time is t
when different scheduling policies are used.

W , the waiting time for some request r′, is the amount of time r′ spends in
the queue before its service begins. Hence in FCFS scheduling

W = W0 + �i xi

Table 7.7 Summary of Performance Analysis

Scheduling policy Mean wait time for a request with service time = t

FCFS W0
1−ρ

SRN W0
1−ρt

, where ρt = ∫ t
o α · y · dS(y)

HRN For small t: W0 + ρ2

1−ρ
× t

2

For large t: W0

(1−ρ)(1−ρ+ 2.W0
t)

Round-robin n
ω(1−P0)

− 1
α , where P0 = 1

�n
j=0

n!
(n−j)! ×(α)j

(P0 is the probability that no terminal awaits a response)

Note: W0 = α
2 .

∫ ∞
0 t2dF (t). For an exponential distribution F (t) = 1 − e−α. t , it is α

ω2 .

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 271 — #44

Chapter 7 Scheduling 271

where request i is ahead of request r′ in the scheduling queue. Since the system
is in the steady state, we can replace the �i term by n × 1

ω
, where n is the number

of requests ahead of r′ and 1
ω

is the mean service time. Since n is the mean queue
length, n = α × W from Little’s formula. Hence

W = W0 + α × W × 1
ω

= W0 + ρ × W .

Therefore, W = W0
1−ρ

. Thus, the mean wait time in FCFS scheduling rises sharply
for high values of ρ.

In SRN scheduling, requests whose service times< xr′ , where xr′ is the service
time of r′, are serviced before request r′. Hence the waiting time for request r′ is

W = W0 + �i xi , where xi < xr′

= W0

1 − ρr′
, where ρr′ =

∫ r′

0
α · y · dS(y).

Capacity Planning Performance analysis can be used for capacity planning. For
example, the formulae shown in Table 7.7 can be used to determine values of
important parameters like the size of the list of ready processes used by the
kernel.

As an example, consider an OS in which the mean arrival rate of requests
is 5 requests per second, and the mean response time for requests is 3 seconds.
The mean queue length is computed by Little’s formula [Eq. (7.6)] as 5 × 3 = 15.
Note that queues will exceed this length from time to time. The following example
provides a basis for deciding the capacity of the ready queue.

•
Example 7.15Capacity Planning Using Queuing Analysis

A kernel permits up to n entries in the queue of ready requests. If the queue is
full when a new request arrives, the request is rejected and leaves the OS. pi ,
the probability that the ready queue contains i processes at any time, can be
shown to be:

pi = ρi × (1 − ρ)

1 − ρn+1 (7.7)

For ρ = 0.5 and n = 3, p0 = 8
15 , p1 = 4

15 , p2 = 2
15 , and p3 = 1

15 . Hence 6.7
percent of requests are lost. A higher value of n should be used to reduce the
number of lost requests.

•

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 272 — #45

272 Part 2 Process Management

7.8 SUMMARY
•

The scheduler of an OS decides which process
should be serviced next by the CPU and for how
long it should be serviced. Its decisions influence
both user service and system performance. In this
chapter, we discussed three techniques of process
schedulers: priority-based scheduling, reordering of
requests, and variation of time slice; and studied
how schedulers use them to provide a desired com-
bination of user service and system performance.
We also studied real-time scheduling.

A nonpreemptive scheduling policy performs
scheduling only when the process being ser-
viced by the CPU completes; the policy focuses
merely on reordering of requests to improve mean
turnaround time of processes. The shortest request
next (SRN) policy suffers from starvation, as some
processes may be delayed indefinitely. The highest
response ratio next (HRN) policy does not have this
problem because the response ratio of a process
keeps increasing as it waits for the CPU.

Preemptive scheduling policies preempt a pro-
cess when it is considered desirable to make a fresh
scheduling decision. The round-robin (RR) policy
services all processes by turn, limiting the amount
of CPU time used by each process to the value of
the time slice. The least completed next (LCN) pol-
icy selects the process that has received the least
amount of service, whereas the shortest time to go
(STG) policy selects the process that is closest to
completing.

In practice, an operating system uses an
arrangement involving three schedulers. The

long-term scheduler decides when a process should
be admitted for servicing, whereas the medium-
term scheduler decides when a process should
be swapped out to a disk and when it should
be reloaded in memory. The short-term sched-
uler selects one of the processes that is present in
memory. The multilevel adaptive scheduling policy
assigns different values of time slice to processes
with different priorities and varies a process’s pri-
ority in accordance with its recent behavior to
provide a combination of good response time and
low scheduling overhead. The fair share schedul-
ing policy ensures that processes of an application
collectively do not exceed a specified share of the
CPU time.

Real-time scheduling focuses on meeting the
time constraints of applications. Deadline schedul-
ing considers deadlines of processes while perform-
ing scheduling decisions. Rate monotonic schedul-
ing assigns priorities to processes based on their
periods and performs priority-based scheduling.

Modern operating systems face diverse work-
loads, so schedulers divide processes into different
classes such as real-time and non-real-time, and use
an appropriate scheduling policy for each class.

Performance analysis is used to both study and
tune performance of scheduling policies without
implementing them in an OS. It uses a mathemat-
ical characterization of the typical workload in a
system to determine system throughput or values
of key scheduler parameters such as the time slice
and sizes of scheduling lists.

TEST YOUR CONCEPTS
•

7.1 Classify each of the following statements as true
or false:
a. If the scheduling overhead is negligible, the

schedule length is identical in batch process-
ing and multiprogramming systems.

b. If all requests arrive at the same time instant
in a system using the shortest request next

(SRN) scheduling policy and the system
completes execution of these requests in
the sequence r1, r2, . . . , rn, then weighted
turnaround of ri > weighted turnaround of
rj if i > j.

c. The round-robin scheduling policy with
time-slicing provides approximately equal

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 273 — #46

Chapter 7 Scheduling 273

response ratios to requests that arrive at the
same time instant.

d. If processes do not perform I/O, the round-
robin scheduling policy with time-slicing
resembles the least completed next (LCN)
scheduling policy.

e. When both CPU-bound and I/O-bound
requests are present, the least completed
next (LCN) scheduling policy provides bet-
ter turnaround times for I/O-bound requests
than provided by the round-robin scheduling
policy with time-slicing.

f. The highest response ratio next (HRN)
scheduling policy avoids starvation.

g. If a feasible schedule exists for a real-time
application, use of the earliest deadline first
(EDF) scheduling policy guarantees that no
deadline overruns will occur.

h. An I/O-bound process is executed twice, once
in a system using RR scheduling and again
in a system using multilevel adaptive schedul-
ing. The number of times it is scheduled by the
RR scheduler and by the multilevel scheduler
is identical.

i. A CPU-bound process cannot starve when
multilevel adaptive scheduling is employed.

j. If processes do not perform I/O, the Unix
scheduling policy degenerates to the RR
scheduling policy.

7.2 Processes A, B, and C arrive at times 0, 1, and
2, respectively. The processes do not perform
I/O and require 5, 3, and 1 second of CPU
time. The process-switching time is negligible. At
what time does process B complete if the sched-
uler uses the shortest time to go (STG) policy.
a. 8, b. 4, c. 5, d. 9.

7.3 Which of the following scheduling policies will
provide the least turnaround time for an I/O-
bound process? (Both I/O-bound and CPU-
bound requests are present in the system.)
a. RR,
b. LCN,
c. multilevel adaptive scheduling,
d. None of these.

7.4 Which of the following scheduling policies will
provide the least turnaround time for a CPU-
bound process? (Both I/O-bound and CPU-
bound requests are present in the system.)
a. RR,
b. LCN,
c. multilevel adaptive scheduling.

EXERCISES
•

7.1 Give examples of conflicts between user-centric
and system-centric views of scheduling.

7.2 Study the performance of the nonpreemptive
and preemptive scheduling policies on processes
described in Table 7.2 if their arrival times are 0,
1, 3, 7, and 10 seconds, respectively. Draw timing
charts analogous to those in Sections 7.2 and 7.3
to show operation of these policies.

7.3 Show that SRN scheduling provides the min-
imum average turnaround time for a set
of requests that arrive at the same time
instant. Would it provide the minimum average
turnaround time if requests arrive at different
times?

7.4 A program contains a single loop that executes
50 times. The loop includes a computation that
lasts 50 ms followed by an I/O operation that

consumes 200 ms. Ten independent executions
of this program are started at the same time. The
scheduling overhead of the kernel is 3 ms. Com-
pute the response time of the first process in the
first and subsequent iterations if
a. The time slice is 50 ms.
b. The time slice is 20 ms.

7.5 The kernel of an OS implements the HRN pol-
icy preemptively as follows: Every t seconds,
response ratios of all processes are computed
and the process with the highest response ratio
is scheduled. Comment on this policy for large
and small values of t. Also, compare it with the
following policies
a. Shortest time to go (STG) policy.
b. Least completed next (LCN) policy.
c. Round-robin policy with time-slicing (RR).

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 274 — #47

274 Part 2 Process Management

7.6 A process consists of two parts that are function-
ally independent of one another. It is proposed
to separate the two parts and create two pro-
cesses to service them. Identify those scheduling
policies under which the user would receive bet-
ter user service through use of the two processes
instead of the original single process.

7.7 For each of the scheduling policies discussed
in Sections 7.2 and 7.3, a group of 20 requests
is serviced with negligible overheads and the
average turnaround time is determined. The
requests are now organized arbitrarily into two
groups of 10 requests each. These groups of
requests are now serviced one after another
through each of the scheduling policies used
earlier and the average turnaround time is com-
puted. Compare the two average turnaround
times for each scheduling policy and men-
tion conditions under which the two could be
different.

7.8 A multilevel adaptive scheduler uses five prior-
ity levels numbered from 1 to 5, level 1 being the
highest priority level. The time slice for a prior-
ity level is 0.1 × n, where n is the level number.
It puts every process in level 1 initially. A pro-
cess requiring 5 seconds of CPU time is serviced
through this scheduler. Compare the response
time of the process and the total scheduling over-
head incurred if there are no other processes in
the system. If the process is serviced through a
round-robin scheduler using a time slice of 0.1
CPU seconds, what would be the response time
of the process and the total scheduling overhead
incurred?

7.9 A multilevel adaptive scheduling policy avoids
starvation by promoting a process to a higher
priority level if it has spent 3 seconds in its
present priority level without getting scheduled.
Comment on the advantages and disadvan-
tages of the following methods of implementing
promotion:
a. Promote a process to the highest priority

level.
b. Promote a process to the next higher priority

level.
7.10 The Houston Automatic Spooling system

(HASP) was a scheduling subsystem used in
the IBM/360. HASP assigned high priority
to I/O-bound processes and low priority to
CPU-bound processes. A process was classified

as CPU-bound or I/O-bound based on its
recent behavior vis-a-vis the time slice—it was
considered to be a CPU-bound process if
it used up its entire time-slice when sched-
uled; otherwise, it was an I/O-bound process.
To obtain good throughput, HASP required
that a fixed percentage of processes in the
scheduling queue must be I/O-bound processes.
Periodically, HASP adjusted the time slice to
satisfy this requirement—the time slice was
reduced if more processes were considered I/O-
bound than desired, and it was increased if
lesser number of processes were I/O-bound.
Explain the purpose of adjusting the time
slice. Describe operation of HASP if most pro-
cesses in the system were (a) CPU-bound and
(b) I/O-bound.

7.11 Comment on the similarities and differences
between
a. LCN and Unix scheduling
b. HASP and multilevel adaptive scheduling

(see Exercise 7.10).

7.12 Determine the starting deadlines for the pro-
cesses of Example 7.11.

7.13 An OS using a preemptive scheduling policy
assigns dynamically changing priorities. The pri-
ority of a process changes at different rates
depending on its state as follows

α Rate of change of priority when a
process is running

β Rate of change of priority when a
process is ready

γ Rate of change of priority when a
process is performing I/O

Note that the rate of change of priority can be
positive, negative, or zero. A process has prior-
ity 0 when it is created. A process with a larger
numerical value of priority is considered to have
a higher priority for scheduling.
Comment on properties of the scheduling poli-
cies in each of the following cases:
a. α > 0, β = 0, γ = 0.
b. α = 0, β > 0, γ = 0.
c. α = β = 0, γ > 0.
d. α < 0, β = 0, γ = 0.
Will the behavior of the scheduling policies
change if the priority of a process is set to 0 every
time it is scheduled?

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 275 — #48

Chapter 7 Scheduling 275

7.14 A background process should operate in such a
manner that it does not significantly degrade the
service provided to other processes. Which of the
following alternatives would you recommend for
implementing it?
a. Assign the lowest priority to a background

process.
b. Provide a smaller quantum to a back-

ground process than to other processes (see
Section 7.4.8).

7.15 Prepare a schedule for operation of the periodic
processes P1–P3 of Section 7.5.3, using EDF
scheduling.

7.16 If the response requirement of the application
of Figure 7.13 is 30 seconds and service times
of processes P2–P5 are as shown in Figure 7.13,
what is the largest service time of P1 for which
a feasible schedule exists? Answer this question
under two conditions:
a. None of the processes perform any I/O oper-

ations.
b. Process P2 performs I/O for 3 seconds, 2 sec-

onds of which can be overlapped with the
processing of process P3.

7.17 The service times of three processes P1, P2, and
P3 are 5 ms, 3 ms, and 10 ms, respectively; T1 =
25 ms and T2 = 8 ms. What is the smallest value

of T3 for which the rate monotonic schedul-
ing policy will be able to meet deadlines of all
processes?

7.18 A system uses the FCFS scheduling policy. Iden-
tical computational requests arrive in the system
at the rate of 20 requests per second. It is desired
that the mean wait time in the system should
not exceed 2.0 seconds. Compute the size of each
request in CPU seconds.

7.19 Identical requests, each requiring 0.05 CPU sec-
onds, arrive in an OS at the rate of 10 requests per
second. The kernel uses a fixed-size ready queue.
A new request is entered in the ready queue if
the queue is not already full, else the request is
discarded. What should be the size of the ready
queue if less than 1 percent of requests should
be discarded?

7.20 The mean arrival rate of requests in a system
using FCFS scheduling is 5 requests per second.
The mean wait time for a request is 3 seconds.
Find the mean execution rate.

7.21 We define “small request” as a request whose
service time is less than 5 percent of 1

ω . Com-
pute the turnaround time for a small request in
a system using the HRN scheduling policy when
α = 5 and ω = 8.

BIBLIOGRAPHY
•

Corbato et al. (1962) discusses use of multilevel feed-
back queues in the CTSS operating system. Coffman
and Denning (1973) reports studies related to multilevel
scheduling. A fair share scheduler is described in Kay
and Lauder (1988), and lottery scheduling is described
in Waldspurger and Weihl (1994). Real-time scheduling
is discussed in Liu and Layland (1973), Zhao (1989),
Khanna et al. (1992), and Liu (2000). Power conserva-
tion is a crucial new element in scheduling. Power can
be conserved by running the CPU at lower speeds. Zhu
et al. (2004) discusses speculative scheduling algorithms
that save power by varying the CPU speed and reducing
the number of speed changes while ensuring that an
application meets its time constraints.

Bach (1986), McKusick et al. (1996), and Vahalia
(1996) discuss scheduling in Unix; O’Gorman (2003),

Bovet and Cesati (2005), and Love (2005) discuss
scheduling in Linux; Mauro and McDougall (2006)
discusses scheduling in Solaris; while Russinovich and
Solomon (2005) discusses scheduling in Windows.

Trivedi (1982) is devoted to queuing theory. Heller-
man and Conroy (1975) describes use of queuing theory
in performance evaluation.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

2. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol.

3. Brinch Hansen, P. (1972): Operating System
Principles, Prentice Hall, Englewood Cliffs, N.J.

07-M4363-DAS1.LaTeX: “chap07” — 2007/11/16 — 14:11 — page 276 — #49

276 Part 2 Process Management

4. Coffman, E. G., and R. C. Wood (1996):
“Interarrival statistics for time sharing systems,”
Communications of the ACM, 9 (7),
500–503.

5. Coffman, E. G., and P. J. Denning (1973):
Operating Systems Theory, Prentice Hall,
Englewood Cliffs, N.J.

6. Corbato, F. J., M. Merwin-Daggett, and
R. C. Daley (1962): “An experimental
time-sharing system,” Proceedings of the
AFIPS Fall Joint Computer Conference,
335–344.

7. Hellerman, H., and T. F. Conroy (1975):
Computer System Performance, McGraw-Hill
Kogakusha, Tokyo.

8. Kay, J., and P. Lauder (1988): “A fair share
scheduler,” Communications of the ACM, 31 (1),
44–55.

9. Khanna, S., M. Sebree, and J. Zolnowsky (1992):
“Real-time scheduling in SunOS 5.0,” Proceedings
of the Winter 1992 USENIX Conference,
San Francisco, January 1992, 375–390.

10. Love, R. (2005): Linux Kernel Development,
2nd ed., Novell Press.

11. Liu, C. L., and J. W. Layland (1973): “Scheduling
algorithms for multiprogramming in a hard
real-time environment,” Journal of the ACM,
20, 1, 46–61.

12. Liu, J. W. S. (2000): Real-Time Systems, Pearson
Education, New York.

13. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

14. McKusick, M. K., K. Bostic, M. J. Karels, and
J. S. Quarterman (1996): The Design and
Implementation of the 4.4BSD Operating System,
Addison-Wesley, Reading, Mass.

15. O’Gorman, J. (2003): Linux Process Manager:
The Internals of Scheduling, Interrupts and
Signals, John Wiley, New York.

16. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

17. Trivedi, K. S. (1982): Probability and Statistics
with Reliability—Queuing and Computer Science
Applications, Prentice Hall, Englewood
Cliffs, N.J.

18. Vahalia, U. (1996): Unix Internals: The New
Frontiers, Prentice Hall, Englewood Cliffs, N.J.

19. Waldspurger, C. A., and W. E. Weihl (1994):
“Lottery scheduling,” Proceedings of the First
USENIX Symposium on Operating System Design
and Implementation (OSDI), 1–11.

20. Zhao, W. (1989): Special issue on real-time
operating systems, Operating System Review,
23, 7.

21. Zhu, D., D. Mosse, and R. Melhem (2004):
“Power-aware scheduling for AND/OR graphs in
real-time systems,” IEEE Transactions on Parallel
and Distributed Systems, 15 (9), 849–864.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 277 — #1

C h a p t e r 8
Deadlocks

In real life, a deadlock arises when two persons wait for phone calls from one
another, or when persons walking a narrow staircase in opposite directions
meet face to face. A deadlock is characterized by the fact that persons wait

indefinitely for one another to perform specific actions; these actions cannot
occur.

Deadlocks in an operating system are analogous—processes wait for one
another’s actions indefinitely. Deadlocks arise in process synchronization when
processes wait for each other’s signals, or in resource sharing when they wait for
other processes to release resources that they need. Deadlocked processes remain
blocked indefinitely, which adversely affects user service, throughput and resource
efficiency.

Deadlocks arise in resource sharing when a set of conditions concerning
resource requests and resource allocations hold simultaneously. Operating sys-
tems use several approaches to handle deadlocks. In the deadlock detection and
resolution approach, the kernel checks whether the conditions contributing to a
deadlock hold simultaneously, and eliminates a deadlock by judiciously aborting
some processes so that the remaining processes are no longer in a deadlock. In
the deadlock prevention approach, the kernel employs resource allocation poli-
cies that ensure that the conditions for deadlocks do not hold simultaneously; it
makes deadlocks impossible. In the deadlock avoidance approach, the kernel does
not make resource allocations that may lead to deadlocks, so deadlocks do not
arise.

We discuss these deadlock handling approaches and the practical resource
allocation policies employed in operating systems.

8.1 WHAT IS A DEADLOCK?
•

A deadlock is a situation concerning a set of processes in which each process in
the set waits for an event that must be caused by another process in the set. Each
process is then waiting for an event that cannot occur. Example 8.1 illustrates
how a deadlock could arise when two processes try to share resources.

277

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 278 — #2

278 Part 2 Process Management

•
Example 8.1 Two-Process Deadlock

A system contains one tape drive and one printer. Two processes Pi and
Pj make use of the tape drive and the printer through the following
programs:

Process Pi Process Pj

Request tape drive; Request printer;
Request printer; Request tape drive;
Use tape drive and printer; Use tape drive and printer;
Release printer; Release tape drive;
Release tape drive; Release printer;

As the two processes execute, resource requests take place in the following
order:

1. Process Pi requests the tape drive
2. Process Pj requests the printer
3. Process Pi requests the printer
4. Process Pj requests the tape drive

The first two resource requests are granted right away because the system
includes both a tape drive and a printer. Now, Pi holds the tape drive and Pj
holds the printer. When Pi asks for the printer, it is blocked until Pj releases the
printer. Similarly, Pj is blocked until Pi releases the tape drive. Both processes
are blocked indefinitely because they wait for each other.
•

The deadlock illustrated in Example 8.1 is called a resource deadlock. Other
kinds of deadlock can also arise in an OS. A synchronization deadlock occurs when
the awaited events take the form of signals between processes. For example, if a
process Pi decides to perform an action ai only after process Pj performs action
aj , and process Pj decides to perform action aj only after Pi performs ai , both
processes get blocked until the other process sends it a signal (see Section 6.4).
Analogously, a communication deadlock occurs for a set of processes if each pro-
cess sends a message only after it receives a message from some other process in
the set (see Chapter 9). An OS is primarily concerned with resource deadlocks
because allocation of resources is an OS responsibility. The other two forms of
deadlock are seldom handled by an OS; it expects user processes to handle such
deadlocks themselves.

Formally, we say that a deadlock arises if the conditions in the following
definition are satisfied.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 279 — #3

Chapter 8 Deadlocks 279

Definition 8.1 Deadlock A situation involving a set of processes D in which
each process Pi in D satisfies two conditions:

1. Process Pi is blocked on some event ej .
2. Event ej can be caused only by actions of other process(es) in D.

In a deadlock, every process capable of causing the event ej awaited by process
Pi itself belongs to D. This property makes it impossible for event ej to occur.
Hence every process Pi in D waits indefinitely.

8.2 DEADLOCKS IN RESOURCE ALLOCATION
•

Processes use hardware resources, like memory and I/O devices, and software
resources, such as files. An OS may contain several resources of a kind, e.g., several
disks, tape drives, or printers. We use the term resource unit to refer to a resource
of a specific kind, and use the term resource class to refer to the collection of
all resource units of a kind; thus, a resource class contains one or more resource
units; e.g., the printer class may contain two printers. We use the notation Ri
for a resource class, and rj for a resource unit in a resource class. Recall from
Section 1.3.2 that the kernel maintains a resource table to keep track of the
allocation state of a resource.

Resource allocation in a system entails three kinds of events—request for the
resource, actual allocation of the resource, and release of the resource. Table 8.1
describes these events. A request event occurs when some process Pi makes a
request for a resource rl . Process Pi will be blocked on an allocation event for rl
if rl is currently allocated to some process Pk . In effect, Pi is waiting for Pk to
release rl . A release event by Pk frees resource rl , and the kernel may decide to
allocate resource rl to Pi . Thus, a release event by Pk may cause the allocation
event for which Pi is waiting, in which case Pi will become the holder of the
resource and enter the ready state. However, as we saw in Example 8.1, process
Pi will face an indefinite wait if Pk ’s release of rl is indefinitely delayed.

Table 8.1 Events Related to Resource Allocation

Event Description

Request A process requests a resource through a system call. If the resource is
free, the kernel allocates it to the process immediately; otherwise, it
changes the state of the process to blocked.

Allocation The process becomes the holder of the resource allocated to it. The
resource state information is updated and the state of the process is
changed to ready.

Release A process releases a resource through a system call. If some processes
are blocked on the allocation event for the resource, the kernel uses some
tie-breaking rule, e.g., FCFS allocation, to decide which process should
be allocated the resource.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 280 — #4

280 Part 2 Process Management

8.2.1 Conditions for a Resource Deadlock
By slightly rewording parts 1 and 2 of Definition 8.1, we can obtain the conditions
under which resource deadlocks occur: (1) Each process Pi in D is blocked for
an allocation event to occur and (2) the allocation event can be caused only
by actions of some other process Pj in D. Since Pj is in D, parts 1 and 2 of
Definition 8.1 apply to Pj as well. In other words, the resource requested by
process Pi is currently allocated to Pj , which itself waits for some other resource
to be allocated to it. This condition of each process, taken by itself, is called the
hold-and-wait condition.

But parts 1 and 2 of Definition 8.1 also imply that processes in D must wait
for each other. This condition is called the circular wait condition. A circular wait
may be direct, that is, Pi waits for Pj and Pj waits for Pi , or it may be through
one or more other processes included in D, for example Pi waits for Pj , Pj waits
for Pk , and Pk waits for Pi .

Two other conditions must hold for a resource deadlock to occur. If process
Pi needs a resource that is currently allocated to Pj , Pi must not be able to either
(1) share the resource with Pj or (2) preempt it from Pj for its own use.

Table 8.2 summarizes the conditions that must be satisfied for a resource
deadlock to exist. All these conditions must hold simultaneously: A circular wait
is essential for a deadlock, a hold-and-wait condition is essential for a circular
wait, and nonshareability and nonpreemptibility of resources are essential for a
hold-and-wait condition.

Besides the conditions listed in Table 8.2, another condition is also essential
for deadlocks:

• No withdrawal of resource requests: A process blocked on a resource request
cannot withdraw its request.

This condition is essential because waits may not be indefinite if a blocked process
is permitted to withdraw a resource request and continue its operation. However,
it is not stated explicitly in the literature, because many operating systems typically
impose the no-withdrawal condition on resource requests.

Table 8.2 Conditions for Resource Deadlock

Condition Explanation

Nonshareable resources Resources cannot be shared; a process needs exclusive
access to a resource.

No preemption A resource cannot be preempted from one process and
allocated to another process.

Hold-and-wait A process continues to hold the resources allocated to it
while waiting for other resources.

Circular waits A circular chain of hold-and-wait conditions exists in the
system; e.g., process Pi waits for Pj , Pj waits for Pk , and
Pk waits for Pi .

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 281 — #5

Chapter 8 Deadlocks 281

8.2.2 Modeling the Resource Allocation State
Example 8.1 indicated that we must analyze information about resources allo-
cated to processes and about pending resource requests to determine whether
a set of processes is deadlocked, All this information constitutes the resource
allocation state of a system, which we simply call the allocation state of a
system.

Two kinds of models are used to represent the allocation state of a system.
A graph model can depict the allocation state of a restricted class of systems in
which a process can request and use exactly one resource unit of each resource
class. It permits use of a simple graph algorithm to determine whether the circular
wait condition is satisfied by processes. A matrix model has the advantage of
generality. It can model allocation state in systems that permit a process to request
any number of units of a resource class.

8.2.2.1 Graph Models

A resource request and allocation graph (RRAG) contains two kinds of nodes—
process nodes, and resource nodes. A process node is depicted by a circle.
A resource node is depicted by a rectangle and represents one class of resources.
The number of bullet symbols in a resource node indicates how many units of
that resource class exist in the system. Two kinds of edges can exist between a
process node and a resource node of an RRAG. An allocation edge is directed
from a resource node to a process node. It indicates that one unit of the resource
class is allocated to the process. A request edge is directed from a process node
to a resource node. It indicates that the process is blocked on a request for one
unit of the resource class. An allocation edge (Rk , Pj) is deleted when process
Pj releases a resource unit of resource class Rk allocated to it. When a pending
request of process Pi for a unit of resource class Rk is granted, the request edge
(Pi , Rk) is deleted and an allocation edge (Rk , Pi) is added.

A wait-for graph (WFG) can represent the allocation state more concisely
than an RRAG when every resource class in the system contains only one resource
unit. The WFG contains nodes of only one kind, namely, process nodes. An edge
(Pi , Pj) in the WFG represents the fact that process Pi is blocked on a request
for a resource that is currently allocated to process Pj ; i.e., process Pi is waiting
for process Pj to release a resource. Hence the name wait-for graph. Representing
the same information in an RRAG would have required two edges.

The next example illustrates and compares use of an RRAG and a WFG.

•
Example 8.2RRAG and WFG

Figure 8.1(a) shows an RRAG. The printer class contains only one resource
unit, which is allocated to process P1. Requests for a printer made by processes
P2 and P3 are currently pending. The tape class contains two tape drives, which
are allocated to processes P2 and P3. A request by process P4 for one tape drive
is currently pending.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 282 — #6

282 Part 2 Process Management

P3

P2

P4 P5

P6

P7
P7

P6

P5

R3P1

RRAG

printer tape

RRAG WFG

Figure 8.1 (a) Resource request and allocation graph (RRAG); (b) Equivalence of RRAG
and wait-for graph (WFG) when each resource class contains only one resource unit.

Figure 8.1(b) shows both an RRAG and a WFG for a system that
has a resource class R3 that contains only one resource unit and three
processes P5, P6, and P7. The edges (P6, R3) and (R3,P5) in the RRAG
together indicate that process P6 is waiting for the resource currently allo-
cated to P5. Hence we have an edge (P6, P5) in the WFG. Edge (P7, P5)
similarly indicates that process P7 is waiting for the resource currently allocated
to P5.
•

Paths in an RRAG and a WFG We can deduce the presence of deadlocks from
the nature of paths in an RRAG and a WFG. We define the following notation
for this purpose:

Blocked_P set of blocked processes
WFi The wait-for set of Pi , i.e., the set of processes that hold

resources required by process Pi .

With this notation, Parts 1 and 2 of Definition 8.1 can be restated as follows:

D ⊆ Blocked_P (8.1)

For all Pi ∈ D, WFi ⊆ D. (8.2)

Consider a system in which each resource class contains only one resource
unit. Let the system contain a single path P1 −R1 −P2 −R2 . . . Pn−1 −Rn−1 −Pn
in its RRAG. Thus, process Pn is not blocked on any resource and no resource is
currently allocated to P1. The WFG of this system would contain the single path
P1 − P2 − . . . − Pn.

We can establish the absence of a deadlock in this system by showing that
conditions (8.1) and (8.2) are not satisfied by any set of processes in the system.
Blocked_P is {P1, . . . , Pn−1}. First, consider the set of processes {P1, . . . , Pn}.
This set is not a subset of Blocked_P, which violates condition (8.1), and so this
set of processes is not deadlocked. Now, consider the set {P1, . . . , Pn−1}. Here,
WFn−1 = {Pn} violates condition (8.2). Any other subset of {P1, . . . , Pn} can
similarly be shown to violate condition (8.2) for some process. Hence there is no
deadlock in the system.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 283 — #7

Chapter 8 Deadlocks 283

Now, if the unit of resource class Rn−1 were to be allocated to P1 instead of
Pn, the path in the RRAG would be P1 −R1 −P2 −R2 . . . Pn−1 −Rn−1 −P1. This
is a cyclic path, also called a cycle, because it ends on the same node on which it
begins, i.e., node P1. The WFG also contains a cycle, which is P1 − P2 . . . − P1.
Blocked_P is {P1, . . . , Pn−1}, same as before. A deadlock exists because the set
{P1, . . . , Pn−1} satisfies both condition (8.1) and (8.2) since

• {P1, . . . , Pn−1} ⊆ Blocked_P
• For all Pi ∈ {P1, . . . , Pn−1}, WFi contains a single process Pl such that

Pl ∈ {P1, . . . , Pn−1}.
From this analysis we can conclude that condition (8.2), which implies exis-

tence of mutual wait-for relationships between processes of D, can be satisfied
only by cyclic paths. Hence a deadlock cannot exist unless an RRAG, or a WFG,
contains a cycle.

•
Example 8.3RRAG Showing a Deadlock

Figure 8.2 shows the RRAG for Example 8.1. The RRAG contains a cyclic
path Pi−printer−Pj−tape−Pi . Here WFi = {Pj} and WF j = {Pi}. D =
{P1, P2} satisfies both condition (8.1) and (8.2). Hence processes Pi and Pj
are deadlocked.

•
Does presence of a cycle in an RRAG or a WFG imply a deadlock? In the

system discussed so far, each resource class contained a single resource unit, so
a cycle in the RRAG or WFG implied a deadlock. However, it may not be so in
all systems. Consider a path P1 − R1 . . . Pi − Ri − Pi+1 − . . . Pn in a system in
which a resource class Ri contains many resource units. A WFG cannot be used
to depict the allocation state of this system; hence, we will discuss the RRAG for
the system. If some process Pk not included in the path holds one unit of resource
class Ri , that unit may be allocated to Pi when Pk released it. The edge (Pi , Ri)
could thus vanish even without Pi+1 releasing the unit of Ri held by it.

Thus, a cyclic path in an RRAG may be broken when some process not
included in the cycle releases a unit of the resource. Therefore the presence of
a cycle in an RRAG does not necessarily imply existence of a deadlock if a
resource class contains more than one resource unit. (We draw on this knowledge

Pi

Pj

printer tape

Figure 8.2 RRAG for the system of Example 8.1.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 284 — #8

284 Part 2 Process Management

in Section 8.7 when we develop a formal characterization for deadlocks.)
Example 8.4 illustrates such a situation.

•
Example 8.4 A Cycle in RRAG Does Not Imply a Deadlock

A system has one printer and two tape drives and three processes Pi , Pj , and Pk .
The nature of processes Pi and Pj is the same as depicted in Example 8.1—each
of them requires a tape drive and a printer. Process Pk requires only a tape
drive for its operation. Let process Pk request for a tape drive before requests
1–4 are made as in Example 8.1.

Figure 8.3 shows the RRAG after all requests have been made. The graph
has a cycle involving Pi and Pj . This cycle would be broken when process Pk
completes because the tape drive released by it would be allocated to Pj . Hence
there is no deadlock. We come to the same conclusion when we analyze the
set of processes {Pi , Pj} according to Definition 8.1 because WF j = {Pi , Pk}
and Pk �∈ {Pi , Pj} violates condition (8.2).
•

8.2.2.2 Matrix Model

In the matrix model, the allocation state of a system is primarily represented by
two matrices. The matrix Allocated_resources indicates how many resource units
of each resource class are allocated to each process in the system. The matrix
Requested_resources represents pending requests. It indicates how many resource
units of each resource class have been requested by each process in the system.
If a system contains n processes and r resource classes, each of these matrices
is an n × r matrix. The allocation state with respect to a resource class Rk indi-
cates the number of units of Rk allocated to each process, and the number of
units of Rk requested by each process. These are represented as n-tuples (Allo-
cated_resources1,k , . . . , Allocated_resourcesn,k) and (Requested_resources1,k , . . . ,
Requested_resourcesn,k), respectively.

Some auxiliary matrices may be used to represent additional information
required for a specific purpose. Two such auxiliary matrices are Total_resources
and Free_resources, which indicate the total number of resource units in each
resource class and the number of resource units of each resource class that are
free, respectively. Each of these matrices is a column matrix that has r elements
in it. Example 8.5 is an example of a matrix model.

Pi

Pj Pk

printer tape

Figure 8.3 RRAG after all requests of Example 8.4 are made.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 285 — #9

Chapter 8 Deadlocks 285

•
Example 8.5Matrix Model of Allocation State

Using the matrix model, the allocation state of the system of Figure 8.3 is
represented as follows:

Printer Tape

Pk

Pj

Pi

0
1
0

1
0
1

Allocated
resources

Printer Tape

Pk

Pj

Pi

0
0
1

0
1
0

Requested
resources

Total
resources

Printer Tape
1 2

Free
resources 0 0

•
The wait-for relationships in the system are not represented by the matrix

model; they have to be deduced by an algorithm. Algorithms 8.1 and 8.2 discussed
in later sections use the matrix model.

8.3 HANDLING DEADLOCKS
•

Table 8.3 describes the three fundamental approaches to deadlock handling. Each
approach has different consequences in terms of possible delays in resource allo-
cation, the kind of resource requests that user processes are allowed to make, and
the OS overhead.

Under the deadlock detection and resolution approach, the kernel aborts some
processes when it detects a deadlock on analyzing the allocation state. This action
frees the resources held by the aborted process, which are now allocated to other
processes that had requested them. The aborted processes have to be reexecuted.
Thus, the cost of this approach includes the cost of deadlock detection and the
cost of reexecuting the aborted processes. In the system of Example 8.1, the

Table 8.3 Deadlock Handling Approaches

Approach Description

Deadlock detection and
resolution

The kernel analyzes the resource state to check whether
a deadlock exists. If so, it aborts some process(es) and
allocates the resources held by them to other processes
so that the deadlock ceases to exist.

Deadlock prevention The kernel uses a resource allocation policy that ensures
that the four conditions for resource deadlocks
mentioned in Table 8.2 do not arise simultaneously.
It makes deadlocks impossible.

Deadlock avoidance The kernel analyzes the allocation state to determine
whether granting a resource request can lead to a
deadlock in the future. Only requests that cannot lead to
a deadlock are granted, others are kept pending until
they can be granted. Thus, deadlocks do not arise.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 286 — #10

286 Part 2 Process Management

kernel would detect a deadlock sometime after processing the fourth request.
This deadlock can be resolved by aborting either Pi or Pj and allocating the
resource held by it to the other process.

In deadlock prevention, the kernel uses a resource allocation policy that makes
deadlocks impossible and processes have to abide by any restrictions that the
policy may impose. For example, a simple deadlock prevention policy would be
to allocate all resources required by a process at the same time. This policy would
require a process to make all its resource requests together. In Example 8.1,
both processes would request both a printer and a tape drive at the same time.
A deadlock would not arise because one of the processes would get both the
resources it needed; however, the policy may force a process to obtain a resource
long before it was actually needed.

Under the deadlock avoidance approach, the kernel grants a resource request
only if it finds that granting the request will not lead to deadlocks later; otherwise,
it keeps the request pending until it can be granted. Hence a process may face
long delays in obtaining a resource. In Example 8.1, the kernel would realize the
possibility of a future deadlock while processing the second request. Hence it
would not grant the printer to process Pj until process Pi completed.

8.4 DEADLOCK DETECTION AND RESOLUTION
•

Consider a system that contains a process Pi , which holds a printer; and a process
Pj that is blocked on its request for a printer. If process Pi is not in the blocked
state, there is a possibility that it might complete its operation without requesting
any more resources; on completion, it would release the printer allocated to it,
which could then be allocated to process Pj . Thus, if Pi is not in the blocked state,
Pj ’s wait for the printer is not indefinite because of the following sequence of
events: process Pi completes–releases printer–printer is allocated to Pj . If some
other process Pl waits for some other resource allocated to Pj , its wait is also not
indefinite. Hence processes Pi , Pj , and Pl are not involved in a deadlock at the
current moment.

From this observation, we can formulate the following rule for deadlock
detection: A process in the blocked state is not involved in a deadlock at the
current moment if the request on which it is blocked can be satisfied through a
sequence of process completion, resource release, and resource allocation events.
If each resource class in the system contains a single resource unit, this check can
be made by checking for the presence of a cycle in an RRAG or WFG. However,
more complex graph-based algorithms have to be used if resource classes may
contain more than one resource unit (see Section 8.7), so we instead discuss a
deadlock detection approach using the matrix model.

We check for the presence of a deadlock in a system by actually trying to
construct fictitious but feasible sequences of events whereby all blocked processes
can get the resources they have requested. Success in constructing such a sequence
implies the absence of a deadlock at the current moment, and a failure to construct
it implies presence of a deadlock. When we apply this rule to Examples 8.3 and 8.4,

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 287 — #11

Chapter 8 Deadlocks 287

it correctly deduces that processes Pi and Pj of Example 8.3 are in a deadlock,
whereas a deadlock does not exist in Example 8.4.

We perform the above check by simulating the operation of a system starting
with its current state. We refer to any process that is not blocked on a resource
request as a running process, i.e., we do not differentiate between the ready and
running states of Chapter 5. In the simulation we consider only two events—
completion of a process that is not blocked on a resource request, and allocation
of resource(s) to a process that is blocked on a resource request. It is assumed that
a running process would complete without making additional resource requests,
and that some of the resources freed on its completion would be allocated to a
blocked process only if the allocation would put that process in the running state.
The simulation ends when all running processes complete. The processes that are
in the blocked state at the end of the simulation are those that could not obtain
the requested resources when other processes completed, hence these processes
are deadlocked in the current state. There is no deadlock in the current state if
no blocked processes exist when the simulation ends. Example 8.6 illustrates this
approach.

•
Example 8.6Deadlock Detection

The allocation state of a system containing 10 units of a resource class R1 and
three processes P1–P3 is as follows:

R1

P3

P2

P1

2
4
4

Allocated
resources

R1

P3

P2

P1

0
2
6

Requested
resources

Total
resources

R1
10

Free
resources 0

Process P3 is in the running state because it is not blocked on a resource request.
All processes in the system can complete as follows: Process P3 completes and
releases 2 units of the resource allocated to it. These units can be allocated to
P2. When it completes, 6 units of the resource can be allocated to P1. Thus no
blocked processes exist when the simulation ends, so a deadlock does not exist
in the system.

If the requests by processes P1 and P2 were for 6 and 3 units, respectively,
none of them could complete even after process P3 released 2 resource units.
These processes would be in the blocked state when the simulation ended, and
so they are deadlocked in the current state of the system.

•
In our simulation, we assumed that a running process completes its exe-

cution without making further resource requests. This assumption has two
consequences. First, our conclusions regarding existence of a deadlock are not
sensitive to the order in which blocked processes are assumed to become running
or the order in which running processes are assumed to complete. Second, even

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 288 — #12

288 Part 2 Process Management

if a system is deadlock-free at the current moment, a deadlock could arise in the
future. In Example 8.6, this could happen if P3 makes a request for one more
unit of R1. As a consequence, deadlock detection has to be performed repeat-
edly during operation of the OS. It can be achieved by devoting a system process
exclusively to deadlock detection, and activating it at fixed intervals. Alternatively,
deadlock detection can be performed every time a process becomes blocked on a
resource request. The overhead of deadlock detection would depend on several
factors like the number of processes and resource classes in the system and how
often deadlock detection is performed.

8.4.1 A Deadlock Detection Algorithm
Algorithm 8.1 performs deadlock detection. The inputs to the algorithm are
two sets of processes Blocked and Running, and a matrix model of the alloca-
tion state comprising the matrices Allocated_resources, Requested_resources, and
Free_resources.

The algorithm simulates completion of a running process Pi by transferring
it from the set Running to the set Finished [Steps 1(a), 1(b)]. Resources allocated
to Pi are added to Free_resources [Step 1(c)]. The algorithm now selects a blocked
process whose resource request can be satisfied from the free resources [Step 1(d)],
and transfers it from the set Blocked to the set Running. Sometime later the
algorithm simulates its completion and transfers it from Running to Finished.
The algorithm terminates when no processes are left in the Running set. Processes
remaining in the set Blocked , if any, are deadlocked.

The complexity of the algorithm can be analyzed as follows: The sets Running
and Blocked can contain up to n processes, where n is the total number of processes
in the system. The loop of Step 1 iterates ≤ n times and Step 1(d) performs an
order of n × r work in each iteration. Hence the algorithm requires an order of
n2 × r work. Example 8.7 illustrates the working of this algorithm.

Algorithm 8.1 Deadlock Detection

Inputs
n : Number of processes;
r : Number of resource classes;
Blocked : set of processes;
Running : set of processes;
Free_resources : array [1..r] of integer;
Allocated_resources : array [1..n, 1..r] of integer;
Requested_resources : array [1..n, 1..r] of integer;

Data structures

Finished : set of processes;

1. repeat until set Running is empty
a. Select a process Pi from set Running;
b. Delete Pi from set Running and add it to set Finished ;

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 289 — #13

Chapter 8 Deadlocks 289

c. for k = 1..r
Free_resources[k] := Free_resources[k] + Allocated_resources[i,k];

d. while set Blocked contains a process Pl such that
for k = 1..r, Requested_resources[l,k] ≤ Free_resources[k]

i. for k = 1, r
Free_resources[k] := Free_resources[k]−Requested_resources[l, k];
Allocated_resources[l, k] := Allocated_resources[l, k]

+ Requested_resources[l, k];
ii. Delete Pl from set Blocked and add it to set Running;

2. if set Blocked is not empty then
declare processes in set Blocked to be deadlocked.

•
Example 8.7Operation of a Deadlock Detection Algorithm

A system has four processes P1–P4, and 5, 7, and 5 units of resource classes
R1, R2, and R3, respectively. It is in the following state just before process P3
makes a request for 1 unit of resource class R1:

R1R2R3

P4

P3

P2

P1

1 2 2
0 1 1
1 3 1
2 1 0

Allocated
resources

R1R2R3

P4

P3

P2

P1

1 0 2

1 4 0
2 1 3

Requested
resources

Total
resources

R1R2R3
5 7 5

Free
resources

R1R2R3
1 0 1

One resource unit of resource class R1 is allocated to process P3 and
Algorithm 8.1 is invoked to check whether the system is in a deadlock.
Figure 8.4 shows steps in operation of the algorithm. Inputs to it are the
sets Blocked and Running initialized to {P1, P2, P4} and {P3}, respectively,
and matrices Allocated_resources, Requested_resources, and Free_resources as
shown in Figure 8.4(a). The algorithm transfers process P3 to the set Fin-
ished and frees the resources allocated to it. The number of free units of the
resource classes is now 1, 1 and 2, respectively. The algorithm finds that pro-
cess P4’s pending request can now be satisfied, so it allocates the resources
requested by P4 and transfers P4 to the set Running [see Figure 8.4(b)]. Since
P4 is the only process in Running, it is transferred to the set Finished. After
freeing P4’s resources, the algorithm finds that P1’s resource request can be
satisfied [see Figure 8.4(c)] and, after P1 completes, P2’s resource request can
be satisfied [see Figure 8.4(d)]. The set Running is now empty so the algorithm
completes. A deadlock does not exist in the system because the set Blocked is
empty.

•

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 290 — #14

290 Part 2 Process Management

 Initial state

R1 R2 R3 R1 R2 R3 R1 R2 R3

P4

P3

P2

P1

P4

P3

P2

P1

1 2 2

1 1 1

1 3 1

2 1 0

1 0 2

1 4 0

2 1 3 Free

resources

Free

resources

Free

resources

Free

resources

0 0 1

 After simulating allocation of resources to P4 when process P3 completes

P4

P3

P2

P1

P4

P3

P2

P1

2 2 4

0 0 0

1 3 1

2 1 0

1 4 0

2 1 3 0 1 0

 After simulating allocation of resources to P1 when process P4 completes

P4

P3

P2

P1

P4

P3

P2

P1

0 0 0

0 0 0

1 3 1

4 2 3

1 4 0

0 2 1

 After simulating allocation of resources to P2 when process P1 completes

P4

P3

P2

P1

P4

P3

P2

P1

0 0 0

0 0 0

2 7 1

0 0 0 3 0 4

Allocated

resources

Requested

resources

Allocated

resources

Requested

resources

Allocated

resources

Requested

resources

Allocated

resources

Requested

resources

Figure 8.4 Operation of Algorithm 8.1, the deadlock detection algorithm.

8.4.2 Deadlock Resolution
Given a set of deadlocked processes D, deadlock resolution implies breaking the
deadlock to ensure progress for some processes in D, that is, for processes in some
set D′ ⊂ D. It can be achieved by aborting one or more processes in set D, and
allocating their resources to some processes in D′. Each aborted process is called
a victim of deadlock resolution.

Thus, deadlock resolution can be seen as the act of splitting a set of
deadlocked processes D into two sets such that D = D′ ∪ Dv, where

• Each process in Dv is a victim of deadlock resolution, and
• The set of processes D′ is deadlock-free after the deadlock resolution actions

are complete. That is, each process in D′ can complete its operation through
a sequence of process completion, resource release and resource allocation
events.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 291 — #15

Chapter 8 Deadlocks 291

P2

R3

P1

P4

P3

R2

R1

R3

P1

P4

P3

R2

R1

Figure 8.5 Deadlock resolution. (a) a deadlock; (b) resource allocation state after deadlock
resolution.

The choice of the victim process(es) is made using criteria such as the priority
of a process, resources already consumed by it, etc. The next example illustrates
deadlock resolution.

•
Example 8.8Deadlock Resolution

The RRAG of Figure 8.5(a) shows a deadlock situation involving processes
P1, P2, P3 and P4. This deadlock is resolved by choosing process P2 as the
victim. Part (b) of the figure shows the RRAG after aborting process P2 and
allocating resource R3 previously held by it to process P1. Process P4, which
waited for the victim before deadlock resolution, now waits for P1, the new
holder of the resource. This fact is important for detection of future deadlocks.
If the allocation state is represented by the matrix model, it is sufficient to delete
the rows corresponding to P2 in Allocated_resources and Requested_resources,
modify the rows of process P1, and modify Free_resources accordingly.

•

8.5 DEADLOCK PREVENTION
•

The four conditionsdescribed inTable 8.2 musthold simultaneously for a resource
deadlock to arise in a system. To prevent deadlocks, the kernel must use a resource
allocation policy that ensures that one of these conditions cannot arise. In this
section, we first discuss different approaches to deadlock prevention and then
present some resource allocation policies that employ these approaches.

Nonshareable Resources Wait-for relations will not exist in the system if all
resources could be made shareable. This way paths in an RRAG would con-
tain only allocation edges, so circular waits could not arise. Figure 8.6(a)
illustrates the effect of employing this approach: the request edge (Pi , Rl) would
be replaced by an allocation edge (Rl , Pi) because the resource unit of class Rl is
shareable.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 292 — #16

292 Part 2 Process Management

Approach Illustration

Without this approach In this approach

Make resources shareable
 → No waits

Process Pi does not get

blocked on resource Rl.

Rl

Pi

Pi

Pi Pi

Pi

Pi

Pj Pi Pj

Rl

Make resources preemptible
 → No circular paths

Resource Rl is preempted

and allocated to Pi.

Rk Rl Rk Rl

Rk Rl Rk Rl

Rk Rl

Prevent Hold-and-wait
 → No paths in RRAG

 with > 1 process

Process Pi is either (1)

not permitted to block on

resource Rl, or (2) not

allowed to hold Rk while

requesting Rl.

(1)

(2)

Prevent circular waits
Process Pj is not permitted to

request resource Rl.

Pi

Pj

Rk Rl

Pi

Pj

Rk Rl

Figure 8.6 Approaches to deadlock prevention.

However, some resources such as printers are inherently nonshareable, so
how can they be made shareable? OSs use some innovative techniques to solve
this problem. An example is found in the THE multiprogramming system of
the 1960s. It contained only one printer, so it buffered the output produced by
different processes, formatted it to produce “page images,” and used the printer
to print one page image at a time. This arrangement mixed up the printed pages
produced by different processes, and so the output of different processes had
to be separated manually. (Interestingly, the reason the THE system performed
page formatting was not to prevent deadlocks, but to improve printer utilization.
In fact, the THE system made no provisions for handling resource deadlocks.)
The nonshareability of a device can also be circumvented by creating virtual
devices (see Section 1.3.2); e.g., virtual printers can be created and allocated
to processes. However, this approach cannot work for software resources like

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 293 — #17

Chapter 8 Deadlocks 293

shared files, which should be modified in a mutually exclusive manner to avoid
race conditions.

Preemption of Resources If resources are made preemptible, the kernel can
ensure that some processes have all the resources they need, which would pre-
vent circular paths in RRAG. For example, in Figure 8.6(b), resource Rl can be
preempted from its current holder and allocated to process Pi . However, nonpre-
emptibility of resources can be circumvented only selectively. The page formatting
approach of the THE system can be used to make printers preemptible, but, in
general, sequential I/O devices cannot be preempted.

Hold-and-Wait To prevent the hold-and-wait condition, either a process that
holds resources should not be permitted to make resource requests, or a process
that gets blocked on a resource request should not be permitted to hold any
resources. Thus, in Figure 8.6(c), either edge (Pi , Rl) would not arise, or edge
(Rk , Pl) would not exist if (Pi , Rl) arises. In either case, RRAG paths involving
more than one process could not arise, and so circular paths could not exist.
A simple policy for implementing this approach is to allow a process to make
only one resource request in its lifetime in which it asks for all the resources it
needs. We discuss this policy in Section 8.5.1.

Circular Wait A circular wait can result from the hold-and-wait condition, which
is a consequence of the non-shareability and non-preemptibility conditions, so it
does not arise if either of these conditions does not arise. Circular waits can be
separately prevented by not allowing some processes to wait for some resources;
e.g., process Pj in Figure 8.6(d) may not be allowed to wait for resource Rl .
It can be achieved by applying a validity constraint to each resource request.
The validity constraint is a boolean function of the allocation state. It takes
the value false if the request may lead to a circular wait in the system, so such
a request is rejected right away. If the validity constraint has the value true, the
resource is allocated if it is available; otherwise, the process is blocked for the
resource. In Section 8.5.2 we discuss a deadlock prevention policy taking this
approach.

8.5.1 All Resources Together
This is the simplest of all deadlock prevention policies. A process must ask
for all resources it needs in a single request; the kernel allocates all of them
together. This way a blocked process does not hold any resources, so the
hold-and-wait condition is never satisfied. Consequently, circular waits and dead-
locks cannot arise. Under this policy, both processes of Example 8.1 must
request a tape drive and a printer together. Now a process will either hold
both resources or hold none of them, and the hold-and-wait condition will
not be satisfied.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 294 — #18

294 Part 2 Process Management

Simplicity of implementation makes “all resources together” an attractive
policy for small operating systems. However, it has one practical drawback—it
adversely influences resource efficiency. For example, if a process Pi requires a
tape drive at the start of its execution and a printer only toward the end of its
execution, it will be forced to request both a tape drive and a printer at the start.
The printer will remain idle until the latter part of Pi ’s execution and any process
requiring a printer will be delayed until Pi completes its execution. This situation
also reduces the effective degree of multiprogramming and, therefore, reduces
CPU efficiency.

8.5.2 Resource Ranking
Under this deadlock prevention policy, a unique number called a resource rank
is associated with each resource class. When a process Pi makes a request for a
resource, the kernel applies a validity constraint to decide whether the request
should be considered. The validity constraint takes the value true only if the
rank of the requested resource is larger than the rank of the highest ranked
resource currently allocated to Pi . In this case, the resource is allocated to Pi if
it is available; otherwise, Pi is blocked for the resource. If the validity constraint
is false, the request is rejected and process Pi , which made the request, would be
aborted.

Absence of circular wait-for relationships in a system using resource ranking
can be explained as follows: Let rankk denote the rank assigned to resource class
Rk , and let process Pi hold some units of resource class Rk . Pi can get blocked on a
request for a unit of some resource class Rl only if rankk < rankl . Now consider
a process Pj that holds some units of resource class Rl . Process Pj cannot request
a unit of resource class Rk since rankk �> rankl . Thus, if Pi can wait for Pj , Pj
cannot wait for Pi ! Hence two processes cannot get into a circular wait condition.
An analogous argument holds for the absence of a circular wait involving a larger
number of processes.

Example 8.9 illustrates operation of the resource ranking policy.

•
Example 8.9 Resource Ranking

In Example 8.1, let rankprinter > ranktape. Request 1 leads to allocation of
the tape drive to Pi and request 2 leads to allocation of the printer to Pj .
Request 3, which is Pi ’s request for the printer, satisfies the validity constraint
because rankprinter > ranktape, but it remains pending because the printer is
not available. Request 4 will be rejected since it violates the validity constraint
and process Pj will be aborted. This action will release the printer, which will
then be allocated to Pi .
•

The resource ranking policy works best when all processes require their
resources in the order of increasing resource rank. However, difficulties arise

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 295 — #19

Chapter 8 Deadlocks 295

when a process requires a resource having a lower rank. The only way it can get
this resource is by first releasing the higher ranked resource. Thus, in Example 8.9,
process Pj can get the tape by first releasing the printer, getting the tape allocated
and then once again requesting the printer. However, it is difficult in practice
since most resources are nonpreemptible. Processes may tend to circumvent such
difficulties by acquiring lower ranked resources much before they are actually
needed. For example, process Pj of Example 8.1 could acquire the tape drive
before acquiring the printer. In the worst case, this policy may degenerate into
the “all resources together” policy of resource allocation.

Despite these drawbacks, the resource ranking policy is attractive because of
its simplicity. A kernel can use this policy for its own resource requirements when
it needs the resources in a fixed order. We shall discuss this aspect in Section 8.8.

8.6 DEADLOCK AVOIDANCE
•

A deadlock avoidance policy grants a resource request only if it can establish
that granting the request cannot lead to a deadlock either immediately or in the
future. But it raises an obvious question: Algorithm 8.1 described in Section 8.4
can be used to check whether granting a resource request results in a deadlock
immediately, but how would the kernel know whether a deadlock can arise in the
future?

The kernel lacks detailed knowledge about future behavior of processes, so it
cannot accurately predict deadlocks. To facilitate deadlock avoidance under these
conditions, it uses the following conservative approach: Each process declares the
maximum number of resource units of each class that it may require. The kernel
permits a process to request these resource units in stages—that is, a few resource
units at a time—subject to the maximum number declared by it, and uses a worst-
case analysis technique to check for the possibility of future deadlocks. A request
is granted only if there is no possibility of deadlocks; otherwise, it remains pending
until it can be granted. This approach is conservative because a process may
complete its operation without requiring the maximum number of units declared
by it. Thus, the kernel may defer granting of some resource requests that it would
have granted immediately had it known about future behavior of processes. This
effect and the overhead of making this check at every resource request constitute
the cost of deadlock avoidance. We discuss a well-known algorithm called the
banker’s algorithm that uses this approach.

Table 8.4 describes notation of the banker’s algorithm. Max_needj,k indicates
the maximum number of resource units of resource class Rk that a process Pj may
require. The kernel admits process Pj only if Max_needj,k ≤ Total_resourcesk for
all k. The kernel may admit any number of processes satisfying this admission cri-
terion. Thus�j Max_needj,k may exceed Total_resourcesk . Allocated_resourcesj,k
indicates the actual number of resource units of resource class Rk that are allo-
cated to Pj , and Total_allock indicates how many units of resource class Rk are
allocated to processes at present. The banker’s algorithm avoids deadlocks by

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 296 — #20

296 Part 2 Process Management

Table 8.4 Notation Used in the Banker’s Algorithm

Notation Explanation

Requested_resourcesj,k Number of units of resource class Rk currently requested by
process Pj

Max_needj,k Maximum number of units of resource class Rk that may be
needed by process Pj

Allocated_resourcesj,k Number of units of resource class Rk allocated to process Pj

Total_allock Total number of allocated units of resource class Rk , i.e.,
�j Allocated_resourcesj,k

Total_resourcesk Total number of units of resource class Rk existing in the
system

ensuring that at every moment the system is in such an allocation state that
all processes can complete their operation without the possibility of deadlocks.
It is called the banker’s algorithm because bankers need a similar algorithm—
they admit loans that collectively exceed the bank’s funds and then release each
borrower’s loan in installments.

The banker’s algorithm uses the notion of a safe allocation state to ensure
that granting of a resource request cannot lead to a deadlock either immediately
or in future.

Definition 8.2 Safe Allocation State An allocation state in which it is possible
to construct a sequence of process completion, resource release, and resource
allocation events through which each process Pj in the system can obtain
Max_needj,k resources for each resource class Rk and complete its operation.

Deadlock avoidance is implemented by taking the system from one safe
allocation state to another safe allocation state as follows:

1. When a process makes a request, compute the new allocation state the system
would be in if the request is granted. We will call this state the projected
allocation state.

2. If the projected allocation state is a safe allocation state, grant the request
by updating the arrays Allocated_resources and Total_alloc; otherwise, keep
the request pending.

3. When a process releases any resource(s) or completes its operation, examine
all pending requests and allocate those that would put the system in a new
safe allocation state.

The banker’s algorithm determines the safety of a resource allocation state
by trying to construct a sequence of process completion, resource release, and
resource allocation events through which all processes can complete. It can be per-
formed through simulation as in Section 8.4, except for one change: To complete,
a process Pl , whether in the running or blocked state, may require (Max_needl,k −
Allocated_resourcesl,k) more resource units of each resource class Rk , so the

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 297 — #21

Chapter 8 Deadlocks 297

algorithm checks whether

For all Rk : Total_resourcesk − Total_allock ≥ (8.3)

Max_needl,k − Allocated_resourcesl,k

When this condition is satisfied, it simulates completion of process Pl and release
of all resources allocated to it by updating Total_allock for each Rk . It then checks
whether any other process can satisfy Eq. (8.3), and so on. The next example
illustrates this method in a system having a single class of resources. Note that,
as in deadlock detection, the determination of safety of an allocation state is not
sensitive to the order in which processes are assumed to complete their operation.

•
Example 8.10Banker’s Algorithm for a Single Resource Class

A system contains 10 units of resource class Rk . The maximum resource
requirements of three processes P1, P2, and P3 are 8, 7, and 5 resource units,
respectively, and their current allocations are 3, 1, and 3 resource units, respec-
tively. Figure 8.7 depicts the current allocation state of the system. Process P1
now makes a request for one resource unit. In the projected allocation state,
Total_alloc = 8, and so there will be two free units of resource class Rk in the
system.

The safety of the projected state is determined as follows: P3 satisfies
condition (8.3) since it is exactly two units short of its maximum requirements.
Hence the two available resource units can be allocated to P3 if it requests
them in the future, and it can complete. That will make five resource units
available for allocation, so P1’s balance requirement of four resource units can
be allocated to it and it can complete. Now all resource units in the system are
available to P2, so it, too, can complete. Thus the projected allocation state is
safe. Hence the algorithm will grant the request by P1.

The new allocation for the processes is 4, 1, and 3 resource units and
Total_allock = 8. Now consider the following requests:

1. P1 makes a request for 2 resource units.
2. P2 makes a request for 2 resource units.
3. P3 makes a request for 2 resource units.

The requests by P1 and P2 do not put the system in safe allocation states
because condition (8.3) is not satisfied by any process, so these requests will
not be granted. However, the request by P3 will be granted.

•

P3

P2

P1

5

7

8

Max

need

P3

P2

P1

3

1

3

Allocated

resources

P3

P2

P1

0

0

1

Requested

resources

7

10

Total

alloc

Total

resources

Figure 8.7 An allocation state in the banker’s algorithm for a single resource class.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 298 — #22

298 Part 2 Process Management

Algorithm 8.2 is the banker’s algorithm. When a new request is made by
a process, its request is entered in the matrix Requested_resources, which stores
pending requests of all processes, and the algorithm is invoked with the id of
the requesting process. When a process releases some resources allocated to it or
completes its operation, the algorithm is invoked once for each process whose
request is pending. The algorithm can be outlined as follows: After some initial-
izations in Step 1, the algorithm simulates granting of the request in Step 2 by
computing the projected allocation state. Step 3 checks whether the projected
allocation state is feasible, i.e., whether sufficient free resources exist to permit
granting of the request.

Step 4 is the core of the algorithm; it is executed only if the projected allo-
cation state is feasible. To check whether the projected allocation state is a safe
allocation state, it checks whether the maximum need of any active process, i.e.,
any process in the sets Running or Blocked, can be satisfied by allocating some
of the free resources. If such a process exists, this step simulates its completion
by deleting it from the set Active and releasing the resources allocated to it. This
action is performed repeatedly until no more processes can be deleted from the
set Active. If the set Active is empty at the end of this step, the projected state
is a safe allocation state, so Step 5 deletes the request from the list of pending
requests and allocates the requested resources. This action is not performed if
the projected allocation state is either not feasible or not safe, so the request
remains pending.

Note the similarity of Step 4 to the deadlock detection algorithm
(Algorithm 8.1). Accordingly, the algorithm requires an order of n2 × r work.

Algorithm 8.2 Banker’s Algorithm

Inputs
n : Number of processes;
r : Number of resource classes;
Blocked : set of processes;
Running : set of processes;
Prequesting_process : Process making the new resource request;
Max_need : array [1..n, 1..r] of integer;
Allocated_resources : array [1..n, 1..r] of integer;
Requested_resources : array [1..n, 1..r] of integer;
Total_alloc : array [1..r] of integer;
Total_resources : array [1..r] of integer;

Data structures
Active : set of processes;
feasible : boolean;
New_request : array [1..r] of integer;
Simulated_allocation : array [1..n, 1..r] of integer;
Simulated_total_alloc : array [1..r] of integer;

1. Active := Running
⋃

Blocked ;
for k = 1..r

New_request[k] := Requested_resources[requesting_ process, k];

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 299 — #23

Chapter 8 Deadlocks 299

2. Simulated_allocation := Allocated_resources;
for k = 1..r /* Compute projected allocation state */

Simulated_allocation[requesting_ process, k] :=
Simulated_allocation[requesting_ process, k] + New_request[k];

Simulated_total_alloc[k] := Total_alloc[k] + New_request[k];
3. feasible := true;

for k = 1..r /* Check whether projected allocation state is feasible */
if Total_resources[k] < Simulated_total_alloc[k] then feasible := false;

4. if feasible = true
then /* Check whether projected allocation state is a safe allocation state */

while set Active contains a process Pl such that
For all k, Total_resources[k] − Simulated_total_alloc[k]

≥ Max_need [l, k] − Simulated_allocation[l, k]
Delete Pl from Active;
for k = 1..r

Simulated_total_alloc[k] :=
Simulated_total_alloc[k] − Simulated_allocation[l, k];

5. if set Active is empty
then /* Projected allocation state is a safe allocation state */

for k = 1..r /* Delete the request from pending requests */
Requested_resources[requesting_ process, k] := 0;
for k = 1..r /* Grant the request */

Allocated_resources[requesting_ process, k] :=
Allocated_resources[requesting_ process, k] + New_request[k];

Total_alloc[k] := Total_alloc[k] + New_request[k];

•
Example 8.11Banker’s Algorithm for Multiple Resource Classes

Figure 8.8 illustrates operation of the banker’s algorithm in a system con-
taining four processes P1, . . . , P4. Four resource classes contain 6, 4, 8, and 5
resource units, of which 5, 3, 5, and 4 resource units are currently allocated.
Process P2 has made a request (0, 1, 1, 0), which is about to be processed. The
algorithm simulates the granting of this request in Step 2, and checks the safety
of the projected allocation state in Step 4. Figure 8.8(b) shows the data struc-
tures of the Banker’s algorithm at the start of this check. In this state, 1, 0,
2, and 1 resource units are available, so only process P1 can complete. Hence
the algorithm simulates its completion. Figure 8.8(c) shows the data structures
after P1 has completed. Resources allocated to P1 have been freed so they are
deducted from Simulated_alloc, and P1 is deleted from set Active. Process P4
needs 0, 1, 3, and 4 resource units to fulfill its maximum resource need, so
it can be allocated these resources now, and it can complete. The remaining
processes can complete in the order P2, P3. Hence the request made by process
P2 is granted.

•

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 300 — #24

300 Part 2 Process Management

R4R3R2R1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

0 3 4 1

5 4 2 2

2 4 3 2

2 1 2 1

Max
need

R4R3R2R1

0 2 1 1

2 0 2 2

2 0 1 0

1 1 1 1

Allocated
resources

R4R3R2R1

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

Requested
resources

Total
alloc

R4R3R2R1

5 3 5 4

Total
exist

6 4 8 5

Active {P1, P2, P3, P4}

{P1, P2, P3, P4}

{P2, P3, P4}

{P2, P3}

{P3}

0 3 4 1

5 4 2 2

2 4 3 2

2 1 2 1

Max
need

0 2 1 1

2 0 2 2

2 1 2 0

1 1 1 1

Simulated
allocation

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

Requested
resources

Simulated
total_alloc

5 4 6 4

Total
exist

6 4 8 5

Active

0 3 4 1

5 4 2 2

2 4 3 2

2 1 2 1

Max
need

0 2 1 1

2 0 2 2

2 1 2 0

1 1 1 1

Simulated
allocation

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

Requested
resources

Simulated
total_alloc

4 3 5 3

Total
exist

6 4 8 5

Active

0 3 4 1

5 4 2 2

2 4 3 2

2 1 2 1

Max
need

0 2 1 1

2 0 2 2

2 1 2 0

1 1 1 1

Simulated
allocation

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

Requested
resources

Simulated
total_alloc

4 1 4 2

Total
exist

6 4 8 5

Active

0 3 4 1

5 4 2 2

2 4 3 2

2 1 2 1

Max
need

0 2 1 1

2 0 2 2

2 1 2 0

1 1 1 1

Simulated
allocation

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

Requested
resources

Simulated
total_alloc

2 0 2 2

Total
exist

6 4 8 5

Active

(a) State after Step 1

(b) State before while loop of Step 4

(c) State after simulating completion of Process P1

(d) State after simulating completion of Process P4

(e) State after simulating completion of Process P2

Figure 8.8 Operation of the banker’s algorithm for Example 8.11.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 301 — #25

Chapter 8 Deadlocks 301

8.7 CHARACTERIZATION OF RESOURCE
DEADLOCKS BY GRAPH MODELS

•
A deadlock characterization is a statement of the essential features of a deadlock.
In Section 8.4, we presented a deadlock detection algorithm using the matrix
model of the allocation state of a system. Following that algorithm, we can char-
acterize a deadlock as a situation in which we cannot construct a sequence of
process completion, resource release, and resource allocation events whereby all
processes in the system can complete.

In this section, we discuss characterization of deadlocks using graph mod-
els of allocation state and elements of graph theory. As we saw in Section 8.2.1,
a circular wait-for relationship among processes is a necessary condition for a
deadlock. It is manifest in a cycle in an RRAG or WFG. A cycle is a sufficient
condition for a deadlock in some systems (see Example 8.3), but not in others
(see Example 8.4). This difference is caused by the nature of resource classes
and resource requests in the system, hence we first classify systems according
to the resource classes and resource requests used in them and develop sepa-
rate deadlock characterizations for different classes of systems. Later we point at
a deadlock characterization that is applicable to all systems. We use an RRAG
to depict the allocation state of a system all through this discussion.

Resource Class and Resource Request Models A resource class Ri may contain
a single instance of its resource, or it may contain many instances. We refer to the
two kinds of classes as single instance (SI) resource classes and multiple instance
(MI) resource classes, respectively. We define two kinds of resource requests. In a
single request (SR), a process is permitted to request one unit of only one resource
class. In a multiple request (MR), a process is permitted to request one unit each
of several resource classes. The kernel never partially allocates a multiple request;
i.e., it either allocates all resources requested in a multiple request or does not
allocate any of them. In the latter case, the process making the request is blocked
until all resources can be allocated to it.

Using the resource class and resource request models, we can define four
kinds of systems as shown in Figure 8.9. We name these systems by combining
the name of the resource class model and the resource request model used by
them. Accordingly, the SISR system is one that contains SI resource classes and
SR requests.

8.7.1 Single-Instance, Single-Request (SISR) Systems
In an SISR system, each resource class contains a single instance of the resource
and each request is a single request. As discussed in Section 8.2.2, existence of a
cycle in an RRAG implies a mutual wait-for relationship for a set of processes.
Since each resource class contains a single resource unit, each blocked process
Pi in the cycle waits for exactly one other process, say Pk , to release the required
resource. Hence a cycle that involves process Pi also involves process Pk . This fact

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 302 — #26

302 Part 2 Process Management

Resource
instance
models Single

instance (SI)

model

Multiple

instance (MI)

model

Single request (SR)

model

Multiple request (MR)

model

Resource request models

Single-instance,

multiple-request

(SIMR)

Single-instance,

single-request

(SISR)

Multiple-instance,

multiple-request

(MIMR)

Multiple-instance,

single-request

(MISR)

Figure 8.9 Classification of systems according to resource class and resource request
models.

satisfies condition (8.2) for all processes in the cycle. A cycle is thus a necessary
as well as a sufficient condition to conclude that a deadlock exists in the system.

8.7.2 Multiple-Instance, Single-Request (MISR) Systems
A cycle is not a sufficient condition for a deadlock in MISR systems because
resource classes may contain several resource units. The system of Example 8.4
in Section 8.2.2.1 illustrated this property, so we analyze it to understand what
conditions should hold for a deadlock to exist in an MISR system. The RRAG
of the system contained a cycle involving processes Pi and Pj , with Pj requiring
a tape drive and Pi holding a tape drive (see Figure 8.3). However, process Pk ,
which did not belong to the cycle, also held a unit of tape drive, so the mutual
wait-for relation between Pi and Pj ceased to exist when Pk released a tape drive.
Process Pi would have been in deadlock only if processes Pj and Pk had both
faced indefinite waits. Thus, for a process to be in deadlock, it is essential that
all processes that hold units of a resource required by it are also in deadlock. We
use concepts from graph theory to incorporate this aspect in a characterization
of deadlocks in MISR systems.

A graph G is an ordered pair G ≡ (N , E) where N is a set of nodes and E
is a set of edges. A graph G′ ≡ (N ′, E ′) is a subgraph of a graph G ≡ (N , E) if
N ′ ⊆ N and E ′ ⊆ E, i.e., if all nodes and edges contained in G′ are also contained
in G. G′ is a nontrivial subgraph of G if E ′ �= φ, i.e., if it contains at least one
edge. We now define a knot to characterize a deadlock in MISR systems.

Definition 8.3 Knot A nontrivial subgraph G′ ≡ (N ′, E ′) of an RRAG in
which every node ni ∈ N ′ satisfies the following conditions:

1. For every edge of the form (ni , nj) in E: (ni , nj) is included in E ′ and nj is
included in N ′.

2. If a path ni − . . . − nj exists in G′, a path nj − . . . − ni also exists in G′.

Part 1 of Definition 8.3 ensures that if a node is included in a knot, all
its out-edges, i.e., all edges emanating from it, are also included in the knot.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 303 — #27

Chapter 8 Deadlocks 303

Part 2 of Definition 8.3 ensures that each out-edge of each node is included in a
cycle. This fact ensures that each process in the knot is necessarily in the blocked
state. Parts 1 and 2 together imply that all processes that can release a resource
needed by some process in the knot are themselves included in the knot, which
satisfies condition (8.2). Thus one can conclude that the presence of a knot in an
RRAG is a necessary and sufficient condition for the existence of a deadlock in
an MISR system.

•
Example 8.12Deadlock in an MISR System

The RRAG of Figure 8.3 depicts the allocation state in Example 8.4 after
requests 1–5 are made. It does not contain a knot since the path Pi , . . . , Pk
exists in it but a path Pk , . . . , Pi does not exist in it. Now consider the situation
after the following request is made:

6. Pk requests a printer.

Process Pk now blocks on the sixth request. The resulting RRAG is shown
in Figure 8.10. The complete RRAG is a knot because Part 1 of Definition 8.3
is trivially satisfied, and every out-edge of every node is involved in a cycle,
which satisfies Part 2 of Definition 8.3. It is easy to verify that processes
{Pi , Pj , Pk} are in a deadlock since Blocked_P = {Pi , Pj , Pk}, WFi = {Pj},
WFj = {Pi , Pk}, and WFk = {Pj} satisfies conditions (8.1) and (8.2).

•

8.7.3 Single-Instance, Multiple-Request (SIMR) Systems
Each resource class in the SIMR system contains only one resource unit, and so
it has exactly one out-edge in an RRAG. A process may make a multiple request,
in which case it has more than one out-edge. Such a process remains blocked if
even one of the resources requested by it is unavailable. This condition is satisfied
when the process is involved in a cycle, so a cycle is a necessary and sufficient
condition for a deadlock in an SIMR system. This property is illustrated by the
system of Figure 8.11. The process node Pi has an out-edge (Pi , R1) that is a
part of a cycle, and an out-edge (Pi , R3) that is not a part of any cycle. Process

Pi

Pj

•

printer

• •

Pk

tape

Figure 8.10 A knot in the RRAG of an MISR system implies a deadlock.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 304 — #28

304 Part 2 Process Management

Pi

Pj Pk

•R1 •R2 • R3

Figure 8.11 A cycle is a necessary and a sufficient condition for a deadlock in an SIMR
system.

Pi remains blocked until a resource unit of R1 can be allocated to it. Since the
out-edge (Pi , R1) is involved in a cycle, Pi faces an indefinite wait. Pj also faces
an indefinite wait. Hence {Pi , Pj} are involved in a deadlock.

8.7.4 Multiple-Instance, Multiple-Request (MIMR) Systems
In the MIMR model, resource classes contain several resource units and pro-
cesses may make multiple requests, hence both process and resource nodes of an
RRAG can have multiple out-edges. If none of the resource nodes involved in a
cycle in the RRAG has multiple out-edges, the cycle is similar to a cycle in the
RRAG of an SIMR system, and so it is a sufficient condition for the existence
of a deadlock. However, if a resource node in a cycle has multiple out-edges,
a cycle is a necessary condition but not a sufficient condition for a deadlock.
In such cases every out-edge of the resource node must be involved in a cycle;
this requirement is similar to that in the MISR systems. Example 8.13 illustrates
this aspect.

•
Example 8.13 Deadlock in an MIMR System

The RRAG of Figure 8.12 contains the cycle R1 −Pi −R2 −Pj −R1. Resource
node R1 contains an out-edge (R1, Pk) that is not included in a cycle, hence pro-
cess Pk may obtain resource R3 and eventually release an instance of resource
class R1, which could be allocated to process Pj . It will break the cycle in the
RRAG, hence there is no deadlock in the system. If the allocation edge of R3
were to be (R3, Pi), both out-edges of R1 would be involved in cycles. Process
Pj ’s request for R1 would now face an indefinite wait, and so we would have
a deadlock situation. Note that out-edge (Pi , R4) of Pi is not involved in a
cycle; however, a deadlock exists because Pi has made a multiple request and
its request for resource class R2 causes an indefinite wait for it.
•

From the above discussion and Example 8.13 it is clear that we must differen-
tiate between process and resource nodes in the RRAG of an MIMR system—all
out-edges of a resource node must be involved in cycles for a deadlock to arise,
whereas a process node needs to have only one out-edge involved in a cycle.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 305 — #29

Chapter 8 Deadlocks 305

Pi

Pj PlPk

R3 R1 R2 R4

Figure 8.12 RRAG for an MIMR system.

We define a resource knot to incorporate this requirement, where a resource knot
differs from a knot only in that Part 1 of Definition 8.4 applies only to resource
nodes.

Definition 8.4 Resource Knot A nontrivial subgraph G′ ≡ (N ′, E ′) of an
RRAG in which every node ni ∈ N ′ satisfies the following conditions:

1. If ni is a resource node, for every edge of the form (ni , nj) in E: (ni , nj) is
included in E ′ and nj is included in N ′.

2. If a path ni − . . . − nj exists in G′, a path nj − . . . − ni also exists in G′.

•
Example 8.14Resource Knot

Nodes Pi , Pj , Pk , R1, R2, and R3 of Figure 8.12 would be involved in a resource
knot if the allocation edge of resource class R3 is (R3, Pi). Note that out-edge
(Pi , R4) of process Pi is not included in the resource knot.

•
Clearly, a resource knot is a necessary and sufficient condition for the exis-

tence of a deadlock in an MIMR system. In fact, we state here without proof that
a resource knot is a necessary and sufficient condition for deadlock in all classes
of systems discussed in this section (see Exercise 8.17).

8.7.5 Processes in Deadlock
D, the set of processes in deadlock, contains processes represented by process
nodes in resource knots. It also contains some other processes that face indefinite
waits. We use the following notation to identify all processes in D.

RRi The set of resource classes requested by process Pi .
HSk The holder set of resource class Rk , i.e., set of processes to which

units of resource class Rk are allocated.
KS The set of process nodes in resource knot(s) (we call it the knot-set

of RRAG).
AS An auxiliary set of process nodes in RRAG that face indefinite

waits. These nodes are not included in a resource knot.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 306 — #30

306 Part 2 Process Management

P6 P4

P3

P8

P2

P3

P11

R7 R5

R3

R1

R3

R10

Figure 8.13 Processes in deadlock.

KS is the set of process nodes included in resource knots. Now a process Pi �∈
KS faces an indefinite wait if all holders of some resource class Rk requested by
it are included in KS. Resource classes whose holders are included in {Pi} ∪ KS
similarly cause indefinite waits for their requesters. Therefore we can identify D,
the set of deadlocked processes, as follows:

AS = { Pi | RRi contains Rk such that HSk ⊆ (KS ∪ AS)} (8.4)

D = KS ∪ AS (8.5)

•
Example 8.15 Processes in Deadlock

Figure 8.13 shows an RRAG of an MIMR system. The cycle P1 − R1 − P2 −
R2 − P3 − R3 − P1 in the RRAG forms a resource knot because none of R1,
R2, or R3 have an out-edge leaving the cycle. Hence a deadlock exists in the
system. We identify the processes in D as follows:

KS = {P1, P2, P3}
AS = {P4} since RR4 = {R5}, HS5 = {P1} and {P1} ⊆ {P1, P2, P3}
D = KS ∪ AS = {P1, P2, P3, P4}.

Process P6 is not included in AS since RR6 = {R7}, HS7 = {P4, P8}, and
HS7 �⊆ (KS ∪ AS).
•

8.8 DEADLOCK HANDLING IN PRACTICE
•

An operating system manages numerous and diverse resources—hardware
resources such as memory and I/O devices, software resources such as files
containing programs or data and interprocess messages, and kernel resources
such as data structures and control blocks used by the kernel. The over-
head of deadlock detection-and-resolution and deadlock avoidance make them
unattractive deadlock handling policies in practice. Hence, an OS either

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 307 — #31

Chapter 8 Deadlocks 307

uses the deadlock prevention approach, creates a situation in which explicit
deadlock handling actions are unnecessary, or simply does not care about
possibility of deadlocks. Further, since deadlock prevention constrains the
order in which processes request their resources, operating systems tend to
handle deadlock issues separately for each kind of resources like memory,
I/O devices, files, and kernel resources. We discuss these approaches in the
following.

Memory Memory is a preemptible resource, so its use by processes cannot cause
a deadlock. Explicit deadlock handling is therefore unnecessary. The memory
allocated to a process is freed by swapping out the process whenever the memory
is needed for another process.

I/O Devices Among deadlock prevention policies, the “all resources together”
policy requires processes to make one multiple request for all their resource
requirements. This policy incurs the least CPU overhead, but it has the draw-
back mentioned in Section 8.5.1—it leads to underutilization of I/O devices that
are allocated much before a process actually needs them. Resource ranking, on
the other hand, is not a feasible policy to control use of I/O devices because
any assignment of resource ranks causes inconvenience to some group of users.
This difficulty is compounded by the fact that I/O devices are generally nonpre-
emptible. Operating systems overcome this difficulty by creating virtual devices.
For example, the system creates a virtual printer by using some disk area to store
a file that is to be printed. Actual printing takes place when a printer becomes
available. Since virtual devices are created whenever needed, it is not necessary to
preallocate them as in the “all resources together” policy unless the system faces
a shortage of disk space.

Files and Interprocess Messages A file is a user-created resource. An OS con-
tains a large number of files. Deadlock prevention policies such as resource
ranking could cause high overhead and inconvenience to users. Hence operat-
ing systems do not extend deadlock handling actions to files; processes accessing
a common set of files are expected to make their own arrangements to avoid dead-
locks. For similar reasons, operating systems do not handle deadlocks caused by
interprocess messages.

Control Blocks The kernel allocates control blocks such as process control
blocks (PCBs) and event control blocks (ECBs) to processes in a specific order—a
PCB is allocated when a process is created, and an ECB is allocated when the
process becomes blocked on an event. Hence resource ranking can be a solution
here. If a simpler policy is desired, all control blocks for a job or process can be
allocated together at its initiation.

8.8.1 Deadlock Handling in Unix
Most operating systems simply ignore the possibility of deadlocks involving user
processes, and Unix is no exception. However, Unix addresses deadlocks due to
sharing of kernel data structures by user processes. Recall from Section 5.4.1 that a

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 308 — #32

308 Part 2 Process Management

Unix process that was running on the CPU executes kernel code when an interrupt
or system call occurs, hence user processes could concurrently execute kernel code.
The kernel employs the resource ranking approach to deadlock prevention (see
Section 8.5.2) by requiring processes to set locks on kernel data structures in
a standard order; however, there are exceptions to this rule, and so deadlocks
could arise. We present simplified views of two arrangements used to prevent
deadlocks.

The Unix kernel uses a buffer cache (see Section 14.13.1.2) to speed up
accesses to frequently used disk blocks. It consists of a pool of buffers in memory
and a hashed data structure to check whether a specific disk block is present in a
buffer. To facilitate reuse of buffers, a list of buffers is maintained in least recently
used (LRU) order—the first buffer in the list is the least recently used buffer and
the last buffer is the most recently used buffer. The normal order of accessing a
disk block is to use the hashed data structure to locate a disk block if it exists
in a buffer, put a lock on the buffer containing the disk block, and then put a
lock on the list of buffers to update the LRU status of the buffer. However, if a
process merely wants to obtain a buffer for loading a new disk block, it directly
accesses the list of buffers and takes off the first buffer that is not in use at the
moment. To perform this action, the process puts a lock on the list. Then it tries
to set the lock on the first buffer in the list. Deadlocks are possible because this
order of locking the list and a buffer is different from the standard order of setting
these locks.

Unix uses an innovative approach to avoid such deadlocks. It provides a
special operation that tries to set a lock, but returns with a failure condition code
if the lock is already set. The process looking for a free buffer uses this operation
to check whether a buffer is free. If a failure condition code is returned, it simply
tries to set the lock on the next buffer, and so on until it finds a buffer that it can
use. This approach avoids deadlocks by avoiding circular waits.

Another situation in which locks cannot be set in a standard order is in the
file system function that establishes a link (see Section 13.4.2). A link command
provides path names for a file and a directory that is to contain the link to the file.
This command can be implemented by locking the directories containing the file
and the link. However, a standard order cannot be defined for locking these
directories. Consequently, two processes concurrently trying to lock the same
directories may become deadlocked. To avoid such deadlocks, the file system
function does not try to acquire both locks at the same time. It first locks one
directory, updates it in the desired manner, and releases the lock. It then locks the
other directory and updates it. Thus it requires only one lock at any time. This
approach prevents deadlocks because the hold-and-wait condition is not satisfied
by these processes.

8.8.2 Deadlock Handling in Windows
Windows Vista provides a feature called wait chain traversal (WCT), which
assists applications and debuggers in detecting deadlocks. A wait chain starts

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 309 — #33

Chapter 8 Deadlocks 309

on a thread and is analogous to a path in the resource request and allocation
graph (RRAG). Thus, a thread points to an object or lock for which it is wait-
ing, and the object or lock points to the thread that holds it. A debugger can
investigate the cause of a hang-up or freeze in an application by invoking the
function getthreadwaitchain with the id of a thread to retrieve a chain start-
ing on that thread. The function returns an array containing the ids of threads
found on a wait chain starting on the designated thread, and a boolean value
which indicates whether any subset of the threads found on the wait chain form
a cycle.

8.9 SUMMARY
•

A deadlock is a situation in which a set of pro-
cesses wait indefinitely for events because each of
the events can be caused only by other processes
in the set. A deadlock adversely affects user ser-
vice, throughput and resource efficiency. In this
chapter, we discussed OS techniques for handling
deadlocks.

A resource deadlock arises when four con-
ditions hold simultaneously: Resources are non-
shareable and nonpreemptible, a process holds
some resources while it waits for resources that
are in use by other processes, which is called the
hold-and-wait condition; and circular waits exist
among processes. An OS can discover a dead-
lock by analyzing the allocation state of a system,
which consists of information concerning allocated
resources and resource requests on which processes
are blocked. A graph model of allocation state can
be used in systems where a process cannot request
more than one resource unit of a resource class.
A resource request and allocation graph (RRAG)
depicts resource allocation and pending resource
requests in the OS, whereas a wait-for graph (WFG)
depicts wait-for relationships between processes. In
both models, a circular wait condition is reflected
in a circular path in the graph. A matrix model
represents the allocation state in a set of matrices.

When a process completes its operation, it
releases its resources and the kernel can allocate
them to other processes that had requested them.
When a matrix model of allocation state is used, a
deadlock can be detected by finding whether every

process currently blocked on a resource request
can be allocated the required resource through a
sequence of process completion, resource release,
and resource allocation events. Deadlock detec-
tion incurs a high overhead as a result of this
check, so approaches that ensure the absence of
deadlocks have been studied. In the deadlock pre-
vention approach, the resource allocation policy
imposes some constraints on resource requests so
that the four conditions for deadlock would not
be satisfied simultaneously. In the deadlock avoid-
ance approach, the resource allocator knows a
process’s maximum need for resources. At every
resource request, it checks whether a sequence of
process completion, resource release, and resource
allocation events can be found through which all
processes could satisfy their maximum need and
complete their operation. It grants the resource
request only if this check is satisfied.

When a graph model of allocation state is used,
deadlocks can be characterized in terms of paths in
the graph. However, the characterization becomes
complex when a resource class can contain many
resource units.

For reasons of convenience and efficiency, an
OS may use different deadlock handling policies
for different kinds of resources. Typically, an OS
uses deadlock prevention approaches for kernel
resources, and creates virtual resources to avoid
deadlocks over I/O devices; however, it does not
handle deadlocks involving user resources like files
and interprocess messages.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 310 — #34

310 Part 2 Process Management

TEST YOUR CONCEPTS
•

8.1 Classify each of the following statements as true
or false:
a. A cycle in the resource request and allocation

graph (RRAG) is a necessary and sufficient
condition for a deadlock if each resource class
contains only one resource unit.

b. Deadlock resolution guarantees that dead-
locks will not occur in future.

c. The “all resources together” policy of dead-
lock prevention ensures that the circu-
lar wait condition will never hold in the
system.

d. The resource ranking policy of deadlock
prevention ensures that the hold-and-wait
condition will never hold in the system.

e. If a set of processes D is deadlocked, the set
Blocked of Algorithm 8.1 will contain some
of these processes when execution of the algo-
rithm completes; however, Blocked may not
contain all of them.

f. If a process Pi requests r units of a resource
class Rj and ≥ r units of Rj are free, then
the banker’s algorithm will definitely allocate
r units to Pi .

g. The banker’s algorithm does not guarantee
that deadlocks will not occur in future.

h. An OS has a single resource class that is con-
trolled by the banker’s algorithm. 12 units of
the resource have been currently allocated to
processes, of which process Pi has been allo-
cated 2 resources. If Pi has a max need of

5 resources, the system contains at least 15
resource units.

i. An OS employing a multiple-resource
banker’s algorithm has been in operation for
some time with four processes. A new pro-
cess arrives in the system. It is initially not
allocated any resources. Is the new allocation
state of the system safe?

j. If every resource class in a system has a single
resource unit, every cycle in the RRAG of the
system is also a resource knot.

8.2 An OS contains n resource units of a resource
class. Three processes use this resource class, and
each of them has a maximum need of 3 resource
units. The manner and the order in which the
processes request units of the resource class are
not known. What is the smallest value of n for
operation of the system to be free of deadlocks?

a. 3, b. 7, c. 6, d. 9
8.3 An OS employs the banker’s algorithm to con-

trol allocation of 7 tape drives. Maximum need
of three processes P1, P2, and P3 are 7, 3, and
5 drives, respectively. How many drives can the
OS allocate safely to process P1, if the current
allocation state is as follows:
a. 2, 1, and 1 tape drives are allocated to pro-

cesses P1, P2, and P3, respectively.
i. 0, ii. 1, iii. 2, iv. 3

b. 1, 2, and 1 tape drives are allocated to pro-
cesses P1, P2, and P3, respectively.

i. 0, ii. 1, iii. 2, iv. 3

EXERCISES
•

8.1 Clearly justify why deadlocks cannot arise in a
bounded buffer producers–consumers system.

8.2 When resource ranking is used as a deadlock pre-
vention policy, a process is permitted to request a
unit of resource class Rk only if rankk > ranki for
every resource class Ri whose resources are allo-
cated to it. Explain whether deadlocks can arise
if the condition is changed to rankk ≥ ranki .

8.3 A system containing preemptible resources uses
the following resource allocation policy: When

a resource requested by some process Pi is
unavailable,
a. The resource is preempted from one of its

holder processes Pj if Pj is younger than Pi .
The resource is now allocated to Pi . It is
allocated back to Pj when Pi completes. (A
process is considered to be younger if it was
initiated later.)

b. If condition (a) is not satisfied, Pi is blocked
for the resource.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 311 — #35

Chapter 8 Deadlocks 311

A released resource is always allocated to its old-
est requester. Show that deadlocks cannot arise
in this system. Also show that starvation does
not occur.

8.4 Develop a matrix model for the allocation state
of the system of Figure 8.13. Apply Algo-
rithm 8.1 to find the processes involved in
deadlock.

8.5 The system of Figure 8.13 is changed such that
process P6 has made a multiple request for
resources R7 and R1. What are the processes
involved in a deadlock? Process P1 is aborted
and process P3 makes a request for resource R5.
Is the system in a deadlock now?

8.6 A system uses a deadlock detection-and-
resolution policy. The cost of aborting one pro-
cess is considered to be one unit. Discuss how
to identify victim process(es) so as to minimize
the cost of deadlock resolution in each of the fol-
lowing systems: (a) SISR systems, (b) SIMR sys-
tems, (c) MISR systems, and (d) MIMR systems.

8.7 Is the allocation state in which 6, 1, and 2
resource units are allocated to processes P1, P2,
and P3 in the system of Example 8.10 safe?
Would the allocation state in which 3, 2, and 3
resource units are allocated be safe?

8.8 Would the following requests be granted in the
current state by the banker’s algorithm?

R1R2

P2

P1
3
2

2
5

Max
need

R1R2

P2

P1
2
1

1
3

Allocated
resources

Total
alloc

R1R2
3 4

Total
exist 4 5

a. Process P2 requests (1, 0)
b. Process P2 requests (0, 1)
c. Process P2 requests (1, 1)
d. Process P1 requests (1, 0)
e. Process P1 requests (0, 1)

8.9 In the following system:

R1R2R3

P3

P2

P1

3 4 4
4 3 3
3 6 8

Max
need

R1R2R3

P3

P2

P1

1 2 4
2 0 3
2 2 3

Allocated
resources

Total
alloc

R1R2R3
5 4 10

Total
exist 7 7 10

a. Is the current allocation state safe?

b. Would the following requests be granted in
the current state by the banker’s algorithm?

i. Process P1 requests (1, 1, 0)
ii. Process P3 requests (0, 1, 0)
iii. Process P2 requests (0, 1, 0)

8.10 Three processes P1, P2, and P3 use a resource
controlled through the banker’s algorithm. Two
unallocated resource units exist in the current
allocation state. When P1 and P2 request for
one resource unit each, they become blocked on
their requests; however, when P3 requests for
two resource units, its request is granted right
away. Explain why it may be so.

8.11 A system using the banker’s algorithm for
resource allocation contains n1 and n2 resource
units of resource classes R1 and R2 and three
processes P1, P2, and P3. The unallocated
resources with the system are (1,1). The fol-
lowing observations are made regarding the
operation of the system:
a. If process P1 makes a (1,0) request followed

by a (0,1) request, the (1,0) request will be
granted but the (0,1) request will not be
granted.

b. If, instead of making the resource requests in
part (a), process P1 makes a (0,1) request, it
will be granted.

Find a possible set of values for the current
allocations and maximum resource require-
ments of the processes such that decisions using
the banker’s algorithm will match the above
observations.

8.12 Show that when the banker’s algorithm is
applied to a finite set of processes, each having a
finite execution time, each resource request will
be granted eventually.

8.13 Processes in a particular OS make multiple
requests. This OS uses a banker’s algorithm
designed for a single resource class to implement
deadlock avoidance as follows: When a process
requests resource units of some n resource
classes, the request is viewed as a set of n single
requests; e.g., a multiple request (2, 1, 3) would
be viewed as three single requests (2, 0, 0),
(0, 1, 0), and (0, 0, 3). The multiple request is
granted only if each single request would have
been granted in the current allocation state of
the system. Is this a sound approach to deadlock
avoidance? Justify your answer, either by giving

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 312 — #36

312 Part 2 Process Management

an argument about its correctness, or by giving
an example where it will fail.

8.14 A single-resource system contains Total_
resourcess units of resource class Rs. If the sys-
tem contains n processes, show that a deadlock
cannot arise if any one of the following con-
ditions is satisfied (see the notation used in
Algorithm 8.2):
a. For all i : Max_needi,s ≤ Total_resourcess/n
b. �i Max_needi,s ≤ Total_resourcess
c. �i Max_needi,s ≤ Total_resourcess + n −

1 and for all i, 1 ≤ Max_needi,s ≤
Total_resourcess

8.15 In a single-resource system containing Total_
resourcess units of resource class Rs, set PA is
defined as follows:

PA = {Pi | Pi has been allocated some
resources but all its resource
requirements have not been met }

Which of the following statements are true (see
the notation used in Algorithm 8.2)? Justify your
answer.
a. “Processes in PA will definitely become

deadlocked if �i Max_needi,s > Total-
_resourcess.”

b. “Processes in PA may be deadlocked only
if there exists some integer k such that
num_ proc(k) > Total_resourcess/k, where
num_ proc(k) is the number of processes in PA
whose maximum requirement for the units of
resource class Rs exceeds k.”

8.16 The new allocation state of a system after grant-
ing of a resource request is not a safe allocation
state according to the banker’s algorithm.
a. Does it imply that a deadlock will definitely

arise in future?

b. Can the system make a transition to a safe
allocation state? If so, give an example show-
ing such a transition.

8.17 Show that a resource knot in an RRAG is
a necessary and sufficient condition for dead-
locks in SISR, MISR, SIMR, and MIMR
systems.

8.18 A WFG is used to represent the allocation
state of a system in which resource classes
may contain multiple units and processes can
make multiple resource requests (an MIMR sys-
tem). Develop a deadlock characterization using
the WFG. (Hint: A node in the WFG would
have more than one out-edge under two con-
ditions: When a process requests a resource
unit of a multiple-instance resource class, and
when a process makes a multiple request. These
are called OR out-edges and AND out-edges,
respectively. To differentiate between the two
kinds of out-edges, the AND out-edges of a pro-
cess are joined by a straight line as shown in
Figure 8.14(b). Figure 8.14(a) shows the out-
edges for the RRAG of Figure 8.10, whereas
Figure 8.14(b) shows the out-edges for the
RRAG of Figure 8.11. These out-edges have
different implications for deadlock detection!)

8.19 An OS uses a simple policy to deal with dead-
lock situations. When it finds that a set of
processes is deadlocked, it aborts all of them
and restarts them immediately. What are the
conditions under which the deadlock will not
recur?

8.20 An OS has a single disk, which it uses (a)
to create user files and (b) to create a virtual
printer for every process. Space is allocated for
both uses on a demand basis, and a process
is blocked if its disk space requirement cannot
be granted. Print requests directed at a virtual

(a)

Pj

Pi

Pk

Pj

Pi

Pk

(b)

Figure 8.14 WFGs with multiple out-edges: (a) OR edges; (b) AND edges.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 313 — #37

Chapter 8 Deadlocks 313

printer are sent to a real printer when a process
finishes. Is there a possibility of deadlocks in this
system? If so, under what conditions? Suggest a
solution to the deadlock problem.

8.21 A phantom deadlock is a situation wherein a
deadlock handling algorithm declares a dead-
lock but a deadlock does not actually exist.
If processes are permitted to withdraw their
resource requests, show that Algorithm 8.1 may
detect phantom deadlocks. Can detection of
phantom deadlocks be prevented?

8.22 A road crosses a set of railway tracks at two
points. Gates are constructed on the road at each
crossing to stop road traffic when a train is about
to pass. Train traffic is stopped if a car blocks a
track. Two way traffic of cars is permitted on
the road and two-way train traffic is permitted
on the railway tracks.
a. Discuss whether deadlocks can arise in the

road-and-train traffic. Would there be no
deadlocks if both road and train traffic are
only one-way?

b. Design a set of simple rules to avoid dead-
locks in the road-and-train traffic.

8.23 It is proposed to use a deadlock prevention
approach for the dining philosophers problem
(see Section 6.7.3) as follows: Seats at the dinner
table are numbered from 1 to n, and forks are also
numbered from 1 to n, such that the left fork for
seat i has the fork number i. Philosophers are
required to obey the following rule: A philoso-
pher must first pick up the lower-numbered fork,
then pick up the higher-numbered fork. Show
that deadlocks cannot arise in this system.

8.24 A set of processes D is in deadlock. It is observed
that
a. If a process Pj ∈ D is aborted, a set of

processes D′ ⊂ D is still in deadlock.
b. If a process Pi ∈ D is aborted, no deadlock

exists in the system.
State some possible reasons for this difference
and explain with the help of an example. [Hint:
Refer to Eqs. (8.4) and (8.5).]

8.25 After Algorithm 8.1 has determined that a set of
processes D is in deadlock, one of the processes
in D is aborted. What is the most efficient way to
determine whether a deadlock exists in the new
state?

BIBLIOGRAPHY
•

Dijkstra (1965), Havender (1968), and Habermann
(1969) are early works on deadlock handling. Dijkstra
(1965) and Habermann (1969) discuss the banker’s algo-
rithm. Coffman et al. (1971) discusses the deadlock
detection algorithm for a system containing multiple-
instance resources. Holt (1972) provided a graph theo-
retic characterization for deadlocks. Isloor and Mars-
land (1980) is a good survey paper on this topic. Zobel
(1983) is an extensive bibliography. Howard (1973)
discusses the practical deadlock handling approach
described in Section 8.8. Tay and Loke (1995) and Levine
(2003) discuss characterization of deadlocks.

Bach (1986) describes deadlock handling in Unix.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N. J.

2. Coffman, E. G., M. S. Elphick, and A. Shoshani
(1971): “System deadlocks,” Computing Surveys,
3 (2), 67–78.

3. Dijkstra, E. W. (1965) : “Cooperating sequential
processes,” Technical report EWD–123,
Technlogical University, Eindhoven.

4. Habermann, A. N. (1969): “Prevention of System
deadlocks,” Communications of the ACM, 12 (7),
373–377.

5. Habermann, A. N. (1973): “A new approach to
avoidance of system deadlocks,” in Lecture notes
in Computer Science, Vol. 16, Springer-Verlag.

6. Havender, J. W. (1968): “Avoiding deadlock in
multitasking systems,” IBM Systems Journal,
7 (2), 74–84.

7. Holt, R. C. (1972): “Some deadlock properties of
computer systems,” Computing Surveys, 4 (3),
179–196.

08-M4363-DAS1.LaTeX: “chap08” — 2007/11/17 — 15:26 — page 314 — #38

314 Part 2 Process Management

8. Howard, J. H. (1973): “Mixed solutions to the
deadlock problem,” Communications of the ACM,
6 (3), 427–430.

9. Isloor, S. S., and T. A. Marsland (1980): “The
deadlock problem—an overview,” Computer,
13 (9), 58–70.

10. Levine, G. (2003): “Defining deadlock,”
Operating Systems Review, 37, 1.

11. Rypka, D. J., and A. P. Lucido (1979): “Deadlock
detection and avoidance for shared logical

resources,” IEEE Transactions on Software
Engineering, 5 (5), 465–471.

12. Tay, Y. C., and W. T. Loke (1995): “On Deadlocks
of exclusive AND-requests for resources,”
Distributed Computing, Springer Verlag, 9, 2,
77–94.

13. Zobel, D. (1983): “The deadlock problem—a
classifying bibliography,” Operating Systems
Review, 17 (4), 6–15.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 315 — #1

C h a p t e r 9
Message Passing

Message passing suits diverse situations where exchange of information
between processes plays a key role. One of its prominent uses is in
the client–server paradigm, wherein a server process offers a service,

and other processes, called its clients, send messages to it to use its service. This
paradigm is used widely—a microkernel-based OS structures functionalities such
as scheduling in the form of servers, a conventional OS offers services such as
printing through servers, and, on the Internet, a variety of services are offered
by Web servers. Another prominent use of message passing is in higher-level
protocols for exchange of electronic mails and communication between tasks
in parallel or distributed programs. Here, message passing is used to exchange
information, while other parts of the protocol are employed to ensure reliability.

The key issues in message passing are how the processes that send and receive
messages identify each other, and how the kernel performs various actions related
to delivery of messages—how it stores and delivers messages and whether it blocks
a process that sends a message until its message is delivered. These features are
operating system–specific.

We describe different message passing arrangements employed in operating
systems and discuss their significance for user processes and for the kernel. We
also describe message passing in Unix and in Windows operating systems.

9.1 OVERVIEW OF MESSAGE PASSING
•

In Section 5.2.5, we summarized four ways in which processes interact with
one another—data sharing, message passing, synchronization, and signals (see
Table 5.7). Of these, we discussed data sharing and synchronization in Chapter 6
and signals in Chapter 5. Data sharing provides means to access values of shared
data in a mutually exclusive manner. Process synchronization is performed by
blocking a process until other processes have performed certain specific actions.
Capabilities of message passing overlap those of data sharing and synchroniza-
tion; however, each form of process interaction has its own niche application area.
We discuss this aspect after taking an overview of message passing.

Figure 9.1 shows an example of message passing. Process Pi sends a message
to process Pj by executing the statement send (Pj , <message>). The compiled
code of the send statement invokes the library module send. send makes a

315

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 316 — #2

316 Part 2 Process Management

Process Pi Process Pj

···

send (Pj , <message>); receive (Pi , msg_area);
··· ···

···

Figure 9.1 Message passing.

system call send, with Pj and the message as parameters. Execution of the state-
ment receive (Pi, msg_area), where msg_area is an area in Pj ’s address
space, results in a system call receive.

The semantics of message passing are as follows: At a send call by Pi , the ker-
nel checks whether process Pj is blocked on a receive call for receiving a message
from process Pi . If so, it copies the message into msg_area and activates Pj . If
process Pj has not already made a receive call, the kernel arranges to deliver the
message to it when Pj eventually makes a receive call. When process Pj receives
the message, it interprets the message and takes an appropriate action.

Messages may be passed between processes that exist in the same computer or
in different computers connected to a network. Also, the processes participating in
message passing may decide on what a specific message means and what actions
the receiver process should perform on receiving it. Because of this flexibility,
message passing is used in the following applications:

• Message passing is employed in the client–server paradigm, which is used to
communicate between components of a microkernel-based operating system
and user processes, to provide services such as the print service to processes
within an OS, or to provide Web-based services to client processes located in
other computers.

• Message passing is used as the backbone of higher-level protocols employed
for communicating between computers or for providing the electronic mail
facility.

• Message passing is used to implement communication between tasks in a
parallel or distributed program.

In principle, message passing can be performed by using shared variables. For
example, msg_area in Figure 9.1 could be a shared variable. Pi could deposit a
value or a message in it and Pj could collect it from there. However, this approach
is cumbersome because the processes would have to create a shared variable with
the correct size and share its name. They would also have to use synchronization
analogous to the producers–consumers problem (see Section 6.7.1) to ensure
that a receiver process accessed a message in a shared variable only after a sender
process had deposited it there. Message passing is far simpler in this situation. It
is also more general, because it can be used in a distributed system environment,
where the shared variable approach is not feasible.

The producers–consumers problem with a single buffer, a single producer
process, and a single consumer process can be implemented by message passing
as shown in Figure 9.2. The solution does not use any shared variables. Instead,
process Pi , which is the producer process, has a variable called buffer and process

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 317 — #3

Chapter 9 Message Passing 317

begin
Parbegin

var buffer : . . . ; var message_area : . . . ;
repeat repeat

{ Produce in buffer } receive (Pi , message_area);

send (Pj , buffer); { Consume from message_area }

{ Remainder of the cycle } { Remainder of the cycle }
forever; forever;

Parend;
end.

Process Pi Process Pj

Figure 9.2 Producers–consumers solution using message passing.

Pj , which is the consumer process, has a variable called message_area. The pro-
ducer process produces in buffer and sends the contents of buffer in a message to
the consumer. The consumer receives the message in message_area and consumes
it from there. The send system call blocks the producer process until the message
is delivered to the consumer, and the receive system call blocks the consumer until
a message is sent to it.

The producers–consumers solution of Figure 9.2 is much simpler than the
solutions discussed in Chapter 6; however, it is restrictive because it permits a
single producer and a single consumer process. In the general case, it is effective
to use the process synchronization means discussed in Chapter 6 to implement a
system containing producers and consumers.

Issues in Message Passing Two important issues in message passing are:

• Naming of processes: Whether names of sender and receiver processes are
explicitly indicated in send and receive statements, or whether their
identities are deduced by the kernel in some other manner.

• Delivery of messages: Whether a sender process is blocked until the message
sent by it is delivered, what the order is in which messages are delivered to
the receiver process, and how exceptional conditions are handled.

These issues dictate implementation arrangements and also influence the
generality of message passing. For example, if a sender process is required to know
the identity of a receiver process, the scope of message passing would be limited
to processes in the same application. Relaxing this requirement would extend
message passing to processes in different applications and processes operating in
different computer systems. Similarly, providing FCFS message delivery may be
rather restrictive; processes may wish to receive messages in some other order.

9.1.1 Direct and Indirect Naming
In direct naming, sender and receiver processes mention each other’s name. For
example, the send and receive statements might have the following syntax:

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 318 — #4

318 Part 2 Process Management

send (<destination_ process>, <message_length>, <message_address>);
receive (<source_ process>, <message_area>);

where <destination_ process> and <source_ process> are process names (typi-
cally, they are process ids assigned by the kernel), <message_address> is the
address of the memory area in the sender process’s address space that contains
the textual form of the message to be sent, and <message_area> is a memory area
in the receiver’s address space where the message is to be delivered. The processes
of Figure 9.2 used direct naming.

Direct naming can be used in two ways: In symmetric naming, both sender
and receiver processes specify each other’s name. Thus, a process can decide which
process to receive a message from. However, it has to know the name of every
process that wishes to send it a message, which is difficult when processes of
different applications wish to communicate, or when a server wishes to receive a
request from any one of a set of clients. In asymmetric naming, the receiver does
not name the process from which it wishes to receive a message; the kernel gives
it a message sent to it by some process.

In indirect naming, processes do not mention each other’s name in send and
receive statements. We discuss indirect naming in Section 9.3.

9.1.2 Blocking and Nonblocking Sends
A blocking send blocks a sender process until the message to be sent is delivered to
the destination process. This method of message passing is called synchronous mes-
sage passing. A nonblocking send call permits a sender to continue its operation
after making a send call, irrespective of whether the message is delivered immedi-
ately; such message passing is called asynchronous message passing. In both cases,
the receive primitive is typically blocking.

Synchronous message passing provides some nice properties for user pro-
cesses and simplifies actions of the kernel. A sender process has a guarantee
that the message sent by it is delivered before it continues its operation. This
feature simplifies the design of concurrent processes. The kernel delivers the
message immediately if the destination process has already made a receive call
for receiving a message; otherwise, it blocks the sender process until the des-
tination process makes a receive call. The kernel can simply let the message
remain in the sender’s memory area until it is delivered. However, use of block-
ing sends has one drawback—it may unnecessarily delay a sender process in
some situations, for example, while communicating with a heavily loaded print
server.

Asynchronous message passing enhances concurrency between the sender
and receiver processes by letting the sender process continue its operation. How-
ever, it also causes a synchronization problem because the sender should not
alter contents of the memory area which contains text of the message until the
message is delivered. To overcome this problem, the kernel performs message
buffering—when a process makes a send call, the kernel allocates a buffer in
the system area and copies the message into the buffer. This way, the sender

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 319 — #5

Chapter 9 Message Passing 319

process is free to access the memory area that contained text of the message.
However, this arrangement involves substantial memory commitment for buffers
when many messages are awaiting delivery. It also consumes CPU time, as a
message has to be copied twice—once into a system buffer when a send call is
made, and later into the message area of the receiver at the time of message
delivery.

9.1.3 Exceptional Conditions in Message Passing
To facilitate handling of exceptional conditions, the send and receive calls take
two additional parameters. The first parameter is a set of flags indicating how the
process wants exceptional conditions to be handled; we will call this parameter
flags. The second parameter is the address of a memory area in which the kernel
provides a condition code describing the outcome of the send or receive call; we
will call this area status_area.

When a process makes a send or receive call, the kernel deposits a con-
dition code in status_area. It then checks flags to decide whether it should
handle any exceptional conditions and performs the necessary actions. It then
returns control to the process. The process checks the condition code pro-
vided by the kernel and handles any exceptional conditions it wished to handle
itself.

Some exceptional conditions and their handling actions are as follows:

1. The destination process mentioned in a send call does not exist.
2. In symmetric naming, the source process mentioned in a receive call does not

exist.
3. A send call cannot be processed because the kernel has run out of buffer

memory.
4. No message exists for a process when it makes a receive call.
5. A set of processes becomes deadlocked when a process is blocked on a receive

call.

In cases 1 and 2, the kernel may abort the process that made the send or receive
call and set its termination code to describe the exceptional condition. In case 3,
the sender process may be blocked until some buffer space becomes available.
Case 4 is really not an exception if receives are blocking (they generally are!), but
it may be treated as an exception so that the receiving process has an opportunity
to handle the condition if it so desires. A process may prefer the standard action,
which is that the kernel should block the process until a message arrives for it, or
it may prefer an action of its own choice, like waiting for a specified amount of
time before giving up.

More severe exceptions belong to the realm of OS policies. The deadlock situ-
ation of case 5 is an example. Most operating systems do not handle this particular
exception because it incurs the overhead of deadlock detection. Difficult-to-
handle situations, such as a process waiting a long time on a receive call, also
belong to the realm of OS policies.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 320 — #6

320 Part 2 Process Management

9.2 IMPLEMENTING MESSAGE PASSING
•

9.2.1 Buffering of Interprocess Messages
When a process Pi sends a message to some process Pj by using a nonblocking
send, the kernel builds an interprocess message control block (IMCB) to store
all information needed to deliver the message (see Figure 9.3). The control block
contains names of the sender and destination processes, the length of the message,
and the text of the message. The control block is allocated a buffer in the kernel
area. When process Pj makes a receive call, the kernel copies the message from
the appropriate IMCB into the message area provided by Pj .

The pointer fields of IMCBs are used to form IMCB lists to simplify message
delivery. Figure 9.4 shows the organization of IMCB lists when blocking sends
and FCFS message delivery are used. In symmetric naming, a separate list is
used for every pair of communicating processes. When a process Pi performs a
receive call to receive a message from process Pj , the IMCB list for the pair Pi–Pj
is used to deliver the message. In asymmetric naming, a single IMCB list can
be maintained per recipient process. When a process performs a receive, the first
IMCB in its list is processed to deliver a message.

If blocking sends are used, at most one message sent by a process can be
undelivered at any point in time. The process is blocked until the message is
delivered. Hence it is not necessary to copy the message into an IMCB. The

Sender process

Destination process

Message length

Message text

or address

IMCB pointer

Figure 9.3 Interprocess message control block (IMCB).

Pi

Pj

Pr

List headers

for processes
IMCB lists

...

(b)

Pi–Pj

Pi–Pk

Pi–Pl

List headers

for process pairs
IMCB lists

...

(a)

–

–

–

–

–

–

Figure 9.4 Lists of IMCBs for blocking sends in (a) symmetric naming; (b) asymmetric naming.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 321 — #7

Chapter 9 Message Passing 321

kernel can simply note the address of the message text in the sender’s memory
area, and use this information while delivering the message. This arrangement
saves one copy operation on the message. However, it faces difficulties if the
sender is swapped out before the message is delivered, so it may be preferable to
use an IMCB. Fewer IMCBs would be needed than when sends are nonblocking,
because at most one message sent by each process can be in an IMCB at any time.

The kernel may have to reserve a considerable amount of memory for inter-
process messages, particularly if nonblocking sends are used. In such cases, it may
save message texts on the disk. An IMCB would then contain the address of the
disk block where the message is stored, rather than the message text itself.

9.2.2 Delivery of Interprocess Messages
When a process Pi sends a message to process Pj , the kernel delivers the message
to Pj immediately if Pj is currently blocked on a receive call for a message from
Pi , or from any process. After delivering the message, the kernel must also change
the state of Pj to ready. If process Pj has not already performed a receive call, the
kernel must arrange to deliver the message when Pj performs a receive call later.
Thus, message delivery actions occur at both send and receive calls.

Recall from Section 5.2.4 that the kernel uses an event control block (ECB)
to note actions that should be performed when an anticipated event occurs. The
ECB contains three fields:

• Description of the anticipated event
• Id of the process that awaits the event
• An ECB pointer for forming ECB lists

Figure 9.5 shows use of ECBs to implement message passing with symmetric
naming and blocking sends. When Pi makes a send call, the kernel checks whether
an ECB exists for the send call by Pi , i.e., whether Pj had made a receive call and
was waiting for Pi to send a message. If it is not the case, the kernel knows that
the receive call would occur sometime in future, so it creates an ECB for the event
“receive from Pi by Pj” and specifies Pi as the process that will be affected by
the event. Process Pi is put into the blocked state and the address of the ECB is
put in the event info field of its PCB [see Figure 9.5(a)]. Figure 9.5(b) illustrates

Pi

blocked

Event info

receive from Pi
by Pj

Pi

send to Pj
by Pi

Pj

Pj

blocked

Event info

PCB of
sender process Pi

ECB of
receiver process Pj

PCB of
receiver process Pj

ECB of
sender process Pi

(a) (b)

Figure 9.5 ECBs to implement symmetric naming and blocking sends (a) at send; (b) at
receive.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 322 — #8

322 Part 2 Process Management

the case when process Pj makes a receive call before Pi makes a send call. An ECB
for a “send to Pj by Pi” event is now created. The id of Pj is put in the ECB to
indicate that the state of Pj will be affected when the send event occurs.

Figure 9.6 shows complete details of the kernel actions for implementing
message passing by using symmetric naming and blocking sends. For reasons
mentioned earlier, the kernel creates an IMCB even though a sender process is
blocked until message delivery. When process Pi sends a message to process Pj ,
the kernel first checks whether the send was anticipated, i.e., whether an ECB was
created for the send event. It will have happened if process Pj has already made a
receive call for a message from Pi . If this is the case, action S3 immediately delivers
the message to Pj and changes its state from blocked to ready. The ECB and the
IMCB are now destroyed. If an ECB for send does not exist, step S4 creates an
ECB for a receive call by process Pj , which is now anticipated, blocks the sender
process, and enters the IMCB in the IMCB list of process Pj . Converse actions
are performed at a receive call: If a matching send has already occurred, a message
is delivered to process Pj and Pi is activated; otherwise, an ECB is created for a
send call and Pj is blocked.

At send to Pj by Pi :
Step Description

S1 Create an IMCB and initialize its fields;
S2 If an ECB for a ‘send to Pj by Pi’ event exists
S3 then

(a) Deliver the message to Pj ;
(b) Activate Pj ;
(c) Destroy the ECB and the IMCB;
(d) Return to Pi;

S4 else
(a) Create an ECB for a ‘receive from Pi by Pj ’ event and

put id of Pi as the process awaiting the event;
(b) Change the state of Pi to blocked and put the ECB

address in Pi’s PCB;
(c) Add the IMCB to Pj ’s IMCB list;

At receive from Pi by Pj :
Step Description

R1 If a matching ECB for a ‘receive from Pi by Pj ’ event exists
R2 then

(a) Deliver the message from appropriate IMCB in Pj ’s list;
(b) Activate Pi;
(c) Destroy the ECB and the IMCB;
(d) Return to Pj ;

R3 else
(a) Create an ECB for a ‘send to Pj by Pi’ event and

put id of Pj as the process awaiting the event;
(b) Change the state of Pj to blocked and put the ECB

address in Pj ’s PCB;

Figure 9.6 Kernel actions in message passing using symmetric naming and blocking sends.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 323 — #9

Chapter 9 Message Passing 323

Actions when nonblocking sends are used are simpler. It is not necessary
to block and activate the sender [see Steps S4(b) and R2(b) in Figure 9.6]. Cre-
ation of an ECB when a message being sent cannot be delivered immediately [see
Step S4(a)] is also unnecessary since a sender is not blocked until the message is
delivered.

9.3 MAILBOXES
•

A mailbox is a repository for interprocess messages. It has a unique name. The
owner of a mailbox is typically the process that created it. Only the owner process
can receive messages from a mailbox. Any process that knows the name of a
mailbox can send messages to it. Thus, sender and receiver processes use the name
of a mailbox, rather than each other’s names, in send and receive statements;
it is an instance of indirect naming (see Section 9.1.1).

Figure 9.7 illustrates message passing using a mailbox named sample. Pro-
cess Pi creates the mailbox, using the statement create_mailbox. Process
Pj sends a message to the mailbox, using the mailbox name in its send state-
ment. If Pi has not already executed a receive statement, the kernel would
store the message in a buffer. The kernel may associate a fixed set of buffers with
each mailbox, or it may allocate buffers from a common pool of buffers when
a message is sent. Both create_mailbox and send statements return with
condition codes.

The kernel may provide a fixed set of mailbox names, or it may permit user
processes to assign mailbox names of their choice. In the former case, confidential-
ity of communication between a pair of processes cannot be guaranteed because
any process can use a mailbox. Confidentiality greatly improves when processes
can assign mailbox names of their own choice.

To exercise control over creation and destruction of mailboxes, the kernel
may require a process to explicitly “connect” to a mailbox before starting to use
it, and to “disconnect” when it finishes using it. This way it can destroy a mailbox

Process Pi Process Pj

· · · · · ·

create_mailbox (sample); send (sample, ‘. . .’);

· · · · · ·

receive (sample, ‘. . .’); · · ·

sample

buffers

Pi
Owner of

sample

Pj

Pk

Pl

Users of

sample

Figure 9.7 Creation and use of mailbox sample.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 324 — #10

324 Part 2 Process Management

if no process is connected to it. Alternatively, it may permit the owner of a mailbox
to destroy it. In that case, it has the responsibility of informing all processes that
have “connected” to the mailbox. The kernel may permit the owner of a mailbox
to transfer the ownership to another process.

Use of a mailbox has following advantages:

• Anonymity of receiver: A process sending a message to request a service may
have no interest in the identity of the receiver process, as long as the receiver
process can perform the needed function. A mailbox relieves the sender pro-
cess of the need to know the identity of the receiver. Additionally, if the OS
permits the ownership of a mailbox to be changed dynamically, one process
can readily take over the service of another.

• Classification of messages: A process may create several mailboxes, and use
each mailbox to receive messages of a specific kind. This arrangement permits
easy classification of messages (see Example 9.1, below).

Anonymity of a receiver process, as we just saw, can offer the opportunity to
transfer a function from one process to another. Consider an OS whose kernel is
structured in the form of multiple processes communicating through messages.
Interrupts relevant to the process scheduling function can be modeled as messages
sent to a mailbox named scheduling. If the OS wishes to use different process
scheduling criteria during different periods of the day, it may implement several
schedulers as processes and pass ownership of the scheduling mailbox among
these processes. This way, the process scheduler that currently owns scheduling
can receive all scheduling-related messages. Functionalities of OS servers can be
similarly transferred. For example, all print requests can be directed to a laser
printer instead of a dot matrix printer by simply changing the ownership of a
print mailbox.

Although a process can also remain anonymous when sending a message
to a mailbox, the identity of the sender often has to be known. For example, a
server may be programmed to return status information for each request. It can be
achieved by passing the sender’s id along with the text of the message. The sender
of the message, on the other hand, might not know the identity of the server; then,
it would have to receive the server’s reply through an asymmetric receive. As an
alternative, the compiler can implement the send call as a blocking call requiring
a reply containing the status information; so, return of status information would
be a kernel responsibility.

•
Example 9.1 Use of Mailboxes

An airline reservation system consists of a centralized data base and a set
of booking processes; each process represents one booking agent. Figure 9.8
shows a pseudocode for the reservation server. It uses three mailboxes named
enquire, book, and cancel, and expects a booking process to send enquiry,
booking, and cancellation messages to these mailboxes, respectively. Values

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 325 — #11

Chapter 9 Message Passing 325

repeat
while receive (book, flags1, msg_area1) returns a message

while receive (cancel, flags2, msg_area2) returns a message
process the cancellation;

process the booking;
if receive (enquire, flags3, msg_area3) returns a message then

while receive (cancel, flags2, msg_area2) returns a message
process the cancellation;

process the enquiry;
forever

Figure 9.8 Airline reservation server using three mailboxes: enquire, book, and cancel.

of flags in the receive calls are chosen such that a receive call returns with an
error code if no message exists. For improved effectiveness, the server processes
all pending cancellation messages before processing a booking request or an
enquiry, and performs bookings before enquiries.

•

9.4 HIGHER-LEVEL PROTOCOLS USING MESSAGE PASSING
•

In this section, we discuss three protocols that use the message passing paradigm
to provide diverse services. The simple mail transfer protocol (SMTP) delivers
electronic mail. The remote procedure call (RPC) is a programming language
facility for distributed computing; it is used to invoke a part of a program that
is located in a different computer. Parallel virtual machine (PVM) and message
passing interface (MPI) are message passing standards for parallel programming.

9.4.1 The Simple Mail Transfer Protocol (SMTP)
SMTP is used to deliver electronic mail to one or more users reliably and effi-
ciently. It uses asymmetric naming (see Section 9.1.1). A mail would be delivered
to a user’s terminal if the user is currently active; otherwise, it would be deposited
in the user’s mailbox. The SMTP protocol can deliver mail across a number of
interprocess communication environments (IPCEs), where an IPCE may cover a
part of a network, a complete network, or several networks. SMTP is an applica-
tions layer protocol. It uses the TCP as a transport protocol and IP as a routing
protocol. Details of these networking layers, and details of reliable delivery are,
however, beyond the scope of this chapter; they are discussed later in Chapter 16.

SMTP consists of several simple commands. The relevant ones for our pur-
poses are as follows: The MAIL command indicates who is sending a mail.
It contains a reverse path in the network, which is an optional list of hosts and
the name of the sender mailbox. The RCPT command indicates who is to receive
the mail. It contains a forward path that is an optional list of hosts and a desti-
nation mailbox. One or more RCPT commands can follow a MAIL command.
The DATA command contains the actual data to be sent to its destinations. After
processing the DATA command, the sender host starts processing of the MAIL

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 326 — #12

326 Part 2 Process Management

command to send the data to the destination(s). When a host accepts the data
for relaying or for delivery to the destination mailbox, the protocol generates a
timestamp that indicates when the data was delivered to the host and inserts it at
the start of the data. When the data reaches the host containing the destination
mailbox, a line containing the reverse path mentioned in the MAIL command
is inserted at the start of the data. The protocol provides other commands to
deliver a mail to the user’s terminal, to both the user’s terminal and the user’s
mailbox, and either to the user’s terminal or the user’s mailbox. SMTP does not
provide a mailbox facility in the receiver, hence it is typically used with either the
Internet Message Access Protocol (IMAP) or the Post Office Protocol (POP);
these protocols allow users to save messages in mailboxes.

9.4.2 Remote Procedure Calls
Parts of a distributed program are executed in different computers. The remote
procedure call (RPC) is a programming language feature that is used to invoke
such parts. Its semantics resemble those of a conventional procedure call. Its
typical syntax is

call <proc_id> (<message>);

where<proc_id> is the id of a remote procedure and<message> is a list of param-
eters. The call results in sending <message> to remote procedure <proc_id>. The
result of the call is modeled as the reply returned by procedure <proc_id>. RPC
is implemented by using a blocking protocol. We can view the caller–callee rela-
tionship as a client–server relationship. Thus, the remote procedure is the server
and a process calling it is a client. We will call the computers where the client and
the server processes operate as the client node and server node, respectively.

Parameters may be passed by value or by reference. If the architecture of the
server node is different from that of the client node, the RPC mechanism performs
appropriate conversion of value parameters. For reference parameters, the caller
must construct systemwide capabilities for the parameters (see Chapter 15). These
capabilities would be transmitted to the remote procedure in the message. Type
checks on parameters can be performed at compilation time if the caller and
the callee are integrated during compilation; otherwise, type checks have to be
performed dynamically when a remote procedure call is made.

The schematic diagram of Figure 9.9 depicts the arrangement used to imple-
ment a remote procedure call. The server procedure is the remote procedure that
is to be invoked. The client process calls the client stub procedure, which exists
in the same node. The client stub marshals the parameters—collects the parame-
ters, converts them into a machine-independent format, and prepares a message
containing this representation of parameters. It now calls the server stub, which
exists in the node that contains the remote procedure. The server stub converts
the parameters into a machine-specific form and invokes the remote procedure.
Results of the procedure call are passed back to the client process through the
server stub and the client stub. Details concerning naming of the remote procedure
and reliability of the remote procedure call are discussed later in Chapter 16.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 327 — #13

Chapter 9 Message Passing 327

Client

process

Client

stub

Server

stub

Server

procedure

Client

node

Server
node

Figure 9.9 Overview of a remote procedure call (RPC).

Two standards for remote procedure calls—SunRPC and OSF/DCE—have
emerged and are in use widely. Their use simplifies making of RPCs, and makes
programs using RPCs portable across computers and their operating systems.
These standards specify an external representation of data for passing parameters
and results between the client and the server, and an interface compiler that
handles the drudgery of marshaling of parameters.

The remote method invocation (RMI) feature of Java is an implementation of
the remote procedure call that is integrated with the Java language. The remote
method to be invoked is a method of some object. Parameters that are local objects
are passed by value, while nonlocal objects are passed by reference. Integra-
tion with the Java language simplifies naming of the remote method and reliably
passing parameters and results between the client and the server.

9.4.3 Message Passing Standards for Parallel Programming
A parallel program consists of a set of tasks that can be performed in parallel.
Such programs can be executed on a heterogeneous collection of computers or
on a massively parallel processor (MPP). Parallel programs use message passing
libraries that enable parallel activities to communicate through messages. Parallel
virtual machine (PVM) and message passing interface (MPI) are the two standards
that are used in coding message passing libraries. Both standards provide the
following facilities:

• Point-to-point communication between two processes, using both symmet-
ric and asymmetric naming, and collective communication among pro-
cesses, which includes an ability to broadcast a message to a collection of
processes.

• Barrier synchronization between a collection of processes wherein a process
invoking the barrier synchronization function is blocked until all processes
in that collection of processes have invoked the barrier synchronization
function.

• Global operations for scattering disjoint portions of data in a message to
different processes, gathering data from different processes, and performing
global reduction operations on the received data.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 328 — #14

328 Part 2 Process Management

In the PVM standard, a collection of heterogeneous networked computers
operates as a parallel virtual machine, which is a single large parallel computer.
The individual systems can be workstations, multiprocessors, or vector supercom-
puters. Hence message passing faces the issue of heterogeneous representation of
data in different computers forming the parallel virtual machine. After a message
is received, a sequence of calls can be made to library routines that unpack and
convert the data to a suitable form for consumption by the receiving process.
PVM also provides signals that can be used to notify tasks of specific events.

MPI is a standard for a massively parallel processor. It provides a nonblock-
ing send, which is implemented as follows: The message to be sent, which is some
data, is copied into a buffer, and the process issuing the send is permitted to
continue its operation. However, the process must not reuse the buffer before the
previous send on the buffer has been completed. To facilitate it, a request han-
dle is associated with every nonblocking send, and library calls are provided for
checking the completion of a send operation by testing its request handle and
for blocking until a specific send operation, or one of many send operations, is
completed.

9.5 CASE STUDIES IN MESSAGE PASSING
•

9.5.1 Message Passing in Unix
Unix supports three interprocess communication facilities called pipes, message
queues, and sockets. A pipe is a data transfer facility, while message queues and
sockets are used for message passing. These facilities have one common feature—
processes can communicate without knowing each other’s identities. The three
facilities are different in scope. Unnamed pipes can be used only by processes that
belong to the same process tree, while named pipes can be used by other processes
as well. Message queues can be used only by processes existing within the “Unix
system domain,” which is the domain of Unix operating on one computer system.
Sockets can be used by processes within the Unix system domain and within
certain Internet domains. Figure 9.10 illustrates the concepts of pipes, message
queues, and sockets.

Pipes A pipe is a first-in, first-out (FIFO) mechanism for data transfer between
processes called reader processes and writer processes. A pipe is implemented in
the file system in many versions of Unix; however, it differs from a file in one
important respect—the data put into a pipe can be read only once. It is removed
from the pipe when it is read by a process. Unix provides two kinds of pipes,
called named and unnamed pipes. Both kinds of pipes are created through the
system call pipe. Their semantics are identical except for the following differences:
A named pipe has an entry in a directory and can thus be used by any process,
subject to file permissions, through the system call open. It is retained in the
system until it is removed by an unlink system call. An unnamed pipe does not
have an entry in a directory; it can be used only by its creator and its descendants

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 329 — #15

Chapter 9 Message Passing 329

Reader process(es)

(a)

read

offset

Pipe

Data

write

offset

Writer process(es)

Client

Socket

· · ·
Messages

(c)

Socket

Server

Receiver process(es)

(b)

Message
queue

Message

Sender process(es)

Figure 9.10 Interprocess communication in Unix: (a) pipe; (b) message queue; (c) socket.

in the process tree. The kernel deletes an unnamed pipe when readers or writers
no longer exist for it.

A pipe is implemented like a file, except for two differences (see Section 13.14.1
for a discussion of file implementation in Unix). The size of a pipe is limited so that
data in a pipe is located in the direct blocks of the inode. The kernel treats a pipe
as a queue by maintaining two offsets—one offset is used for writing data into the
pipe and the other for reading data from the pipe [see Figure 9.10(a)]. The read
and write offsets are maintained in the inode instead of in the file structure. This
arrangement forbids a process from changing the offset of a pipe through any
means other than reading or writing of data. When data is written, it is entered
into the pipe by using the write offset, and the write offset is incremented by the
number of bytes written. Data written by multiple writers gets mixed up if their
writes are interleaved. If a pipe is full, a process wishing to write data into it would
be put to sleep. A read operation is performed by using the read offset, and the
read offset is incremented by the number of bytes read. A process reading data
from a pipe would be put to sleep if the pipe is empty.

Message Queues A message queue in Unix is analogous to a mailbox. It is
created and owned by one process. Other processes can send or receive messages
to or from a queue in accordance with access permissions specified by the creator
of the message queue [see Figure 9.10(b)]. These permissions are specified by
using the same conventions as file permissions in Unix (see Section 15.6.3). The
size of a message queue, in terms of the number of bytes that it can buffer, is
specified at the time of its creation.

A message queue is created by a system call msgget (key, flag) where key
specifies the name of the message queue and flag indicates some options. The
kernel maintains an array of message queues and their keys. The position of a
message queue in this array is used as the message queue id; it is returned by
the msgget call, and the process issuing the call uses it for sending or receiving
messages. The naming issue is tackled as follows: If a process makes a msgget
call with a key that matches the name of an existing message queue, the kernel
simply returns its message queue id. This way, a message queue can be used by
any process in the system. If the key in a msgget call does not match the name of

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 330 — #16

330 Part 2 Process Management

an existing message queue, the kernel creates a new message queue, sets the key as
its name, and returns its message queue id. The process making the call becomes
the owner of the message queue.

Each message consists of a message type, in the form of an integer, and a
message text. The kernel copies each message into a buffer and builds a message
header for it indicating the size of the message, its type, and a pointer to the
memory area where the message text is stored. It also maintains a list of mes-
sage headers for each message queue to represent messages that were sent to the
message queue but have not yet been received.

Messages are sent and received by using following system calls:

msgsnd (msgqid, msg_struct_ ptr, count, flag)
msgrcv (msgqid, msg_struct_ ptr, maxcount, type, flag)

The count and flag parameters of a msgsnd call specify the number of bytes in
a message and the actions to be taken if sufficient space is not available in the
message queue, e.g., whether to block the sender, or return with an error code.
msg_struct_ ptr is the address of a structure that contains the type of a message,
which is an integer, and the text of the message; maxcount is the maximum length
of the message; and type indicates the type of the message to be received.

When a process makes a msgrcv call, the type parameter, which is an integer,
indicates the type of message it wishes to receive. When the type parameter has a
positive value, the call returns the first message in the queue with a matching type.
If the type value is negative, it returns the lowest numbered message whose type
is smaller than the absolute value of the type. If the type value is zero, it returns
with the first message in the message queue, irrespective of its type. The process
becomes blocked if the message queue does not contain any message that can be
delivered to it.

When a process makes a msgsnd call, it becomes blocked if the message queue
does not contain sufficient free space to accommodate the message. The kernel
activates it when some process receives a message from the message queue, and
the process repeats the check to find whether its message can be accommodated
in the message queue. If the check fails, the process becomes blocked once again.
When it eventually inserts its message into the message queue, the kernel activates
all processes blocked on a receive on the message queue. When scheduled, each
of these processes checks whether a message of the type desired by it is available
in the message queue. If the check fails, it becomes blocked once again.

Example 9.2 shows how these features can be used to code the reservation
server of Example 9.1.

•
Example 9.3 Unix Message Queues

Figure 9.11 shows the reservation server coded using the system calls of
Unix 5.4. The cancellation, booking, and enquiry messages are assigned the
types 1, 2, and 3, respectively. The msgrcv call with type = −4 and flag =
“no wait” returns a cancellation message, if one is present. If no cancellation

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 331 — #17

Chapter 9 Message Passing 331

reservation_server()
{

msgqid = msgget (reservation_data, flags);
...

repeat
msgrcv (msgqid, &msg_struct, 200, −4, "no wait");
if ... /* a message exists */
then ... /* process it */

while(true);
}

Figure 9.11 A reservation server in Unix 5.4.

messages are present, it returns a bookings message if present, or an enquiry
message. This arrangement results in processing of cancellations before book-
ings, and bookings before enquiries, as desired. It also obviates the need for
the three mailboxes used in Figure 9.8.

•
Sockets A socket is simply one end of a communication path. Sockets can be
used for interprocess communication within the Unix system domain and in the
Internet domain; we limit this discussion to the Unix system domain. A com-
munication path between a client and the server is set up as follows: The client
and server processes create a socket each. These two sockets are then connected
together to set up a communication path for sending and receiving messages [see
Figure 9.10(c)]. The server can set up communication paths with many clients
simultaneously.

The naming issue is tackled as follows: The server binds its socket to an
address that is valid in the domain in which the socket will be used. The address
is now widely advertised in the domain. A client process uses the address to
perform a connect between its socket and that of the server. This method avoids
the use of process ids in communication; it is an instance of indirect naming (see
Section 9.1.1).

A server creates a socket s using the system call

s = socket (domain, type, protocol)

where type and protocol are irrelevant in the Unix system domain. The socket call
returns a socket identifier to the process. The server process now makes a call bind
(s, addr, . . .), where s is the socket identifier returned by the socket call and addr
is the address for the socket. This call binds the socket to the address addr; addr
now becomes the ‘name’ of the socket, which is widely advertised in the domain
for use by clients. The server performs the system call listen (s, . . .) to indicate
that it is interested in considering some connect calls to its socket s.

A client creates a socket by means of a socket call, e.g., cs = socket (. . .), and
attempts to connect it to a server’s socket using the system call

connect (cs, server_socket_addr, server_socket_addrlen)

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 332 — #18

332 Part 2 Process Management

The server is activated when a client tries to connect to its socket. It now makes
the call new_soc = accept (s, client_addr, client_addrlen). The kernel creates a
new socket, connects it to the socket mentioned in a client’s connect call, and
returns the id of this new socket. The server uses this socket to implement the
client–server communication. The socket mentioned by the server in its listen
call is used merely to set up connections. Typically, after the connect call the
server forks a new process to handle the new connection. This method leaves
the original socket created by the server process free to accept more connections
through listen and connect calls. Communication between a client and a server
is implemented through read and write or send and receive calls. A send call has
the format

count = send (s, message, message_length, flags)

It returns the count of bytes actually sent. A socket connection is closed by using
the call close (s) or shutdown (s, mode).

9.5.2 Message Passing in Windows
Windows provides several facilities for secure message passing within a host and
within a Windows domain, which consists of a group of hosts. A named pipe
is used for reliable bidirectional byte or message mode communication between
a server and its clients. It is implemented through the file system interface and
supports both synchronous and asynchronous message passing. The name of a
pipe follows the Windows universal naming convention (UNC), which ensures
unique names within a Windows network. The first createnamedpipe call for a
named pipe is given by a server, which specifies its name, a security descriptor,
and the number of simultaneous connections it is to support. The kernel notes
this information and creates one connection to the pipe. The server now makes a
connectnamedpipe call, which blocks it until a client connects to the pipe. A client
connects to a pipe through a createfile or callnamedpipe function with the name
of the pipe as a parameter. The call succeeds if the kind of access requested by it
matches with the security descriptor of the pipe. Now the client can use readfile
and writefile functions to access the pipe. The server can give additional create-
namedpipe calls to create additional connections to the pipe. Windows provides
a mailslot for unreliable unidirectional communication. It can be used for both
point-to-point message passing and broadcasting of a short message across a
Windows domain.

Local Procedure Call (LPC) The LPC facility performs message passing between
processes located within the same host. It is used by components of the Windows
OS for purposes such as invocation of the security authentication server, and
by processes in user computations to communicate with environment subsystem
processes. It is also invoked by the remote procedure call facility when the sender
and receiver processes are located within the same host.

LPC provides a choice of three methods of message passing that suit passing
of small and large messages, and special messages for use by Win32 GUI. The

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 333 — #19

Chapter 9 Message Passing 333

first two types of LPC use port objects to implement message passing. Each port
object is like a mailbox. It contains a set of messages in a data structure called
a message queue. To set up communication with clients, a server creates a port,
publishes its name within the host, and awaits connection requests from clients.
It is activated when a client sends a connection request to the port and gives a
port handle to the client. The client uses this handle to send a message. The server
can communicate with many clients over the same port. For small messages, the
message queue contains the text of the message. As discussed in Section 9.1.2,
such messages are copied twice during message passing. When a process sends a
message, it is copied into the message queue of the port. From there, it is copied
into the address space of the receiver. To control the overhead of message passing,
the length of a message is limited to 256 bytes.

The second method of message passing is used for large messages. The client
and server processes map a section object into their address spaces. When the
client wishes to send a message, it writes the text of the message in the section
object and sends a short message containing its address and size to the port. On
receiving this message, the server views the message text in the section object.
This way, the message is copied only once.

The third method of LPC is called quick LPC. It uses a section object to pass
messages and an event pair object to perform synchronization between client and
server processes. The server creates an event pair object for each client, which
consists of two event objects. It also creates a thread for every client, which is
devoted exclusively for handling requests made by the client. Message passing
takes place as follows: The client process deposits a message in the section object,
signals the event object on which the server thread is waiting and itself waits
on the other event object of the pair. The server thread processes the message,
signals the event object on which the client is waiting, and itself waits on the other
event object. To facilitate message passing, the kernel provides a function that
atomically signals one event object of the pair and issues a wait on the other event
object.

Sockets and Remote Procedure Calls Windows socket (Winsock) was originally
modeled on the Unix BSD socket but later included several extensions. Its fea-
tures and implementation are analogous to those of Unix sockets described in
Section 9.5. Winsock is integrated with Windows message passing. Hence a pro-
gram can perform an asynchronous socket operation and receive a notification
of completion of the operation through a Windows callback message.

The remote procedure call (RPC) facility of Windows is compatible with
the OSF/DCE standard. It is implemented by using the LPC if the procedure
being invoked exists on the same host as its client; otherwise, it is implemented
along the lines discussed in Section 9.4.2. An asynchronous RPC is also sup-
ported, where the remote procedure operates concurrently with its client and
at its completion the client is notified in the manner specified in the call—
through an event synchronization object, through an asynchronous procedure
call, through an I/O port, or through status information, which the client
can poll.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 334 — #20

334 Part 2 Process Management

9.6 SUMMARY
•

The message passing paradigm realizes exchange
of information among processes without using
shared memory. This feature makes it useful
in diverse situations such as in communication
between OS functionalities in a microkernel-based
OS, in client–server computing, in higher-level pro-
tocols for communication, and in communication
between tasks in a parallel or distributed pro-
gram. In this chapter, we studied message passing
facilities in programming languages and operating
systems.

The key issues in message passing are nam-
ing of the sender and receiver processes in the send
and receive calls, and delivery of messages. In sym-
metric naming, the sender and receiver processes
name each other in send and receive calls. It permits
a process to engage in multiple independent con-
versations simultaneously. In asymmetric naming,
the receiver process does not name a sender in its

receive call; the kernel considers messages sent by
all processes to it for delivery. In indirect naming,
sender and receiver processes mention the name
of a mailbox, rather than names of receiver and
sender processes, respectively. It permits the same
sender and destination processes to engage in mul-
tiple independent conversations through different
mailboxes. A mailbox contains a set of buffers
in which messages can be stored pending their
delivery. When mailboxes are not used, the ker-
nel employs its own buffers to store undelivered
messages.

Message passing is employed in higher-level
protocols such as the simple mail transfer protocol
(SMTP), the remote procedure call (RPC), and the
parallel virtual machine (PVM) and message pass-
ing interface (MPI) standards for parallel program-
ming. Operating systems provide many message
passing facilities for use in diverse situations.

TEST YOUR CONCEPTS
•

9.1 Classify each of the following statements as true
or false:
a. When a process sends a message by using a

blocking send call, the kernel has to copy the
message into a buffer area.

b. When a nonblocking send call is used, a
message has to be copied two times before
the receiver process can be allowed to
examine it.

c. In symmetric naming, a process that has
become blocked on a receive call will be
activated whenever any process sends it a
message.

d. When indirect naming is used, a process send-
ing a message need not know the identity

of the process to which the message will be
delivered.

9.2 Select the appropriate alternative in each of the
following questions:
a. If an OS has n processes and uses blocking

send calls and asymmetric receive calls,
i. The OS may require up to n−1 buffers for

each of the n processes at any time.
ii. The OS may require upto n

2 × n
2 buffers at

any time.
iii. The OS may require upto n buffers at any

time.
iv. None of (i)–(iii).

b. Answer question 9.2(a) if processes use block-
ing send calls and symmetric receive calls.

EXERCISES
•

9.1 In Figure 9.6, a process may be blocked because
of lack of memory needed to create an IMCB or

an ECB. Explain how these conditions should
be handled.

09-M4363-DAS1.LaTeX: “chap09” — 2007/11/26 — 12:08 — page 335 — #21

Chapter 9 Message Passing 335

9.2 Modify the scheme of Figure 9.6 to implement
message passing with asymmetric naming and
blocking sends.

9.3 The reservation system of Example 9.1 uses flags
in a receive call to check for presence of pend-
ing messages. A hypothetical mailbox facility
does not support flags. Hence a process uses
the following approach to obtain an equivalent
effect: When a process wishes to check whether
messages exist in a mailbox, it sends a special
message with the text “testing for messages” to
the mailbox, and then performs a receive from
the mailbox. If its own special message is deliv-
ered to it, it concludes that there are no other
messages in the mailbox. Rewrite the reserva-
tion system using this approach. (Hint: Beware
of outdated special messages!)

9.4 Modify the scheme of Figure 9.6 to implement
Unix message queues.

9.5 It is proposed to introduce a time-out facility in
message passing whereby a process performing
a receive specifies the amount of time it is pre-
pared to wait for a message. If this period elapses,
a time-out occurs and the process is activated.
Give a design to implement this facility using
the event handling mechanism.

9.6 Processes in an OS use asymmetric and asyn-
chronous message passing. The kernel reserves
a limited amount of memory for use as mes-
sage buffers and does not use disk space for this
purpose. Analyze this system for deadlocks (see
Chapter 8). How should the kernel detect such
deadlocks?

9.7 Give a design to implement the asynchronous
send of the message passing interface (MPI)
standard described in Section 9.4.3.

BIBLIOGRAPHY
•

Interprocess communication in the RC4000 system
is described in Brinch Hansen (1970). Accetta et al.
(1986) discusses the scheme used in Mach. Bach (1986),
McKusick et al. (1996), Vahalia (1996), and Stevens
and Rago (2005) discusses message passing in Unix.
Bovet and Cesati (2005) discusses message passing in
Linux, while Russinovich and Solomon (2005) discusses
message passing in Windows.

Geist et al. (1996) describes and compares the
PVM and MPI message passing standards for parallel
programming.

1. Accetta, M., R. Baron, W. Bolosky, D. B. Golub,
R. Rashid, A. Tevanian, and M. Young (1986):
“Mach: A new kernel foundation for Unix
development,” Proceedings of the Summer 1986
USENIX Conference, June 1986, 93–112.

2. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N. J.

3. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol,
Calif.

4. Brinch Hansen, P. (1970): “The nucleus of a
multiprogramming system,” Communications of
the ACM, 13 (4), 238–241, 250.

5. Geist, G., J. A. Kohl, and P. M. Papadopoulos
(1996): “PVM and MPI: a comparison of
features,” Calculateurs Paralleles, 8 (2).

6. McKusick, M. K., K. Bostic, M. J. Karels, and
J. S. Quarterman (1996): The Design and
Implementation of the 4.4 BSD Operating System,
Addison Wesley, Reading, Mass.

7. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

8. Stevens, W. R., and S. A. Rago (2005): Advanced
Programming in the Unix Environment, 2nd ed.,
Addison Wesley Professional, Reading, Mass.

9. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N. J.

10. Vahalia, U. (1996): Unix Internals—The New
frontiers, Prentice Hall, Englewood Cliffs, N. J.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 336 — #1

10 C h a p t e r

Synchronization and
Scheduling in
Multiprocessor Operating
Systems

A
multiprocessor system has the potential to provide three benefits—
high throughput, computation speedup, and graceful degradation. High
throughput can be obtained by using the CPUs to service many processes

simultaneously. Computation speedup for an application can be obtained if many
of its processes are serviced by the CPUs at the same time. Graceful degradation is
the feature by which the system can continue to operate even if some of its CPUs
fail. This way, the system can offer continuity of operation, though with reduced
capabilities.

To realize the benefits of a multiprocessor system, the operating system
exploits the presence of multiple CPUs through three special features: First, a
symmetric multiprocessor kernel—SMP kernel for short—permits many CPUs
to execute kernel code in parallel so that control functions of the kernel do not
become a performance bottleneck. Second, special synchronization locks called
spin locks and sleep locks reduce synchronization delays in processes that operate
on different CPUs in parallel. Third, scheduling policies such as affinity scheduling
and coscheduling ensure that processes of an application can operate efficiently
on many CPUs.

We begin with an overview of the architecture of multiprocessor systems,
which provides the background for a discussion of the three OS features described
above.

10.1 ARCHITECTURE OF MULTIPROCESSOR SYSTEMS
•

Performance of a uniprocessor system depends on the performance of the CPU
and memory, which can be enhanced through faster chips, and several levels of

336

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 337 — #2

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 337

Table 10.1 Benefits of Multiprocessors

Benefit Description

High throughput Several processes can be serviced by the CPUs at the
same time. Hence more work is accomplished.

Computation speedup Several processes of an application may be serviced at
the same time, leading to a reduction in the duration,
i.e., running time, of an application; it provides better
response times.

Graceful degradation Failure of a CPU does not halt operation of the system;
the system can continue to operate with somewhat
reduced capabilities.

caches. However, chip speeds cannot be increased beyond technological limits.
Further improvements in system performance can be obtained only by using
multiple CPUs.

As a result of the presence of multiple CPUs, multiprocessor architectures
possess the potential to provide the three benefits summarized in Table 10.1.
High throughput is possible because the OS can schedule several processes in par-
allel, and so several applications can make progress at the same time. The actual
increase in throughput compared with a uniprocessor system may be limited by
memory contention that occurs when several CPUs try to make memory accesses
at the same time, which increases the effective memory access time experienced
by processes. Computation speedup is obtained when processes of an applica-
tion are scheduled in parallel. The extent of the speedup may be limited by the
amount of parallelism within an application, that is, whether processes of the
application can operate without requiring synchronization frequently. Graceful
degradation provides continuity of operation despite CPU failures. This feature is
vital for supporting mission-critical applications like online services and real-time
applications.

A System Model Figure 10.1 shows a model of a multiprocessor system. The
CPUs, the memory, and the I/O subsystem are connected to the interconnection
network. Each CPU chip may contain level 1 and level 2 caches, i.e., L1 and L2
caches, that hold blocks of instructions and data recently accessed by the CPU.
However, for simplicity, we assume that the CPU contains only an L1 cache.
The memory comprises several memory units. We assume that an L3 cache is
associated with each memory unit and holds blocks of instructions and data
accessed recently from it. Every time a CPU or an I/O device wishes to make a
memory access, the interconnection network establishes a path between it and the
memory unit containing the required byte, and the access takes place over this
path. Ignoring delays in the interconnection network, effective memory access
time depends on hit ratios in the L1, L2, and L3 caches, and on the memory
access time (see Section 2.2.3).

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 338 — #3

338 Part 2 Process Management

Interconnection

network
I/O

L3 cache

Memory

L3 cache

Memory

L1 cache

CPU

L1 cache

CPU...

...

Figure 10.1 Model of multiprocessor system.

Cache and TLB Coherence When processes use shared data, several copies of a
data item d may be present in the system at the same time. One of these copies
would be in a memory unit and one may exist in the L3 cache associated with
the memory unit, while the rest would exist in the L1 caches of CPUs where
the processes were scheduled. When a process operating on one CPU updates a
copy of d , the other copies of d become stale. Their use by processes would cause
correctness and data consistency problems, so the system uses a cache coherence
protocol to ensure that a stale copy is never used in a computation.

Cache coherence protocols are based on two fundamental approaches, sev-
eral variants of which are applied in practice. The snooping-based approach can
be used if the interconnection network is a bus. A CPU snoops on the bus to detect
messages that concern caching, and eliminates stale copies from its L1 cache. In
the write-invalidate variant of this approach, any process updating a copy of a
shared data item d is required to update the copy of d existing in memory. Hence
the memory never holds a stale copy. A CPU that updates d sends a “cache inval-
idate” message for d on the bus. On seeing this message, every snooping CPU
discards the copy of d , if present, from its L1 cache. The next time such a CPU
accesses d , the value is copied afresh into the CPU’s L1 cache.

A directory-based cache coherence approach requires maintaining a directory
of information about cached copies of data items in the system; the directory could
indicate which CPUs contain cached copies of each data item. While updating
a data item d , a CPU would send point-to-point cache invalidation signals to
these CPUs. Alternatively, the dictionary could indicate the location of the most
recently updated copy of each shared data item. When a CPU C1 wishes to access
a data item d , it would send a “read d” request to the directory. The directory
would send the request to the memory unit or the CPU that has the most recent
copy of d in its cache, which would forward the value of d to C1. After the update,
the directory entry of d would be set to point to C1.

TLB coherence is an analogous problem, whereby information in some entries
in a CPU’s TLB becomes stale when other CPUs perform page replacements or
change access privileges of processes to shared pages. A shared page pi of a process
has entries in the TLBs of many CPUs. If a page fault arises in a process operating
on one of the CPUs, say, CPU C1, and page pi is replaced by a new page, the TLB

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 339 — #4

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 339

entry of pi in C1 would be erased (see Section 12.2.2.2). The TLB entries of pi in
other CPUs are now stale, so they need to be erased too. It is achieved through a
TLB shootdown action, in which CPU C1 sends interprocessor interrupts to other
CPUs with details of pi ’s id, and the other CPUs invalidate pi ’s entries in their
TLBs. Similar actions are performed when access privileges of shared pages are
changed. The overhead of a TLB shootdown is reduced in two ways. The page
table entry of pi indicates which CPUs have TLB entries for pi , and C1 sends the
interrupts to only these CPUs. A CPU receiving the intimation for shootdown
could implement it in a lazy, i.e., need-based, manner. If the shootdown concerns
the currently operating process, it erases the TLB entry immediately; otherwise,
it queues the intimation and handles it when the process that it concerns is next
scheduled.

Classification of Multiprocessor Systems Multiprocessor systems are classified
into three kinds of systems according to the manner in which CPUs and memory
units are associated with one another.

• Uniform memory access architecture (UMA architecture): All CPUs in the
system can access the entire memory in an identical manner, i.e., with the same
access speed. Some examples of UMA architecture are the Balance system
by Sequent and VAX 8800 by Digital. The UMA architecture is called the
tightly coupled multiprocessor architecture in older literature. It is also called
symmetrical multiprocessor (SMP) architecture.

• Nonuniform memory access architecture (NUMA architecture): The system
consists of a number of nodes, where each node consists of one or more
CPUs, a memory unit, and an I/O subsystem. The memory unit of a node
is said to be local to the CPUs in that node. Other memory units are said
to be nonlocal. All memory units together constitute a single address space.
Each CPU can access the entire address space; however, it can access the local
memory unit faster than it can access nonlocal memory units. Some examples
of the NUMA architecture are the HP AlphaServer and the IBM NUMA-Q.

• No-remote-memory-access architecture (NORMA architecture): Each CPU
has its local memory. CPUs can access remote memory units, but this access is
over the network, and so it is very slow compared with access to local memory.
The Hypercube system by Intel is an example of a NORMA architecture. A
NORMA system is a distributed system according to Definition 3.8; there-
fore, we shall not discuss architecture of NORMA systems in this chapter.

Interconnection Networks CPUs in a multiprocessor system access memory
units through an interconnection network. Two important attributes of an
interconnection network are cost and effective access speed. Table 10.2 lists
the characteristics and relative advantages of three popular interconnection
networks. Figure 10.2 contains schematic diagrams of these networks.

A bus in a multiprocessor system is simply an extension of a bus in a unipro-
cessor system. All memory units and all CPUs are connected to the bus. Thus the
bus supports data traffic between any CPU and any memory unit. However, only
one CPU–memory conversation can be in progress at any time. The bus is simple

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 340 — #5

340 Part 2 Process Management

Table 10.2 Features of Interconnection Networks

Interconnection network Features

Bus Low cost. Reasonable access speed at low traffic
density. Only one CPU–memory conversation can be in
progress at any time.

Crossbar switch High cost. Low expandability. CPUs and memory units
are connected to the switch. A CPU–memory
conversation is implemented by selecting a path
between a CPU and a memory unit. Permits many
CPU–memory conversations in parallel.

Multistage inter-
connection network
(MIN)

A compromise between a bus and a crossbar switch. It
consists of many stages of 2 × 2 crossbar switches. A
CPU–memory conversation is set up by selecting a
path through each stage. Permits some parallel
conversations.

M0 M1

M0
M1

M2
M3

M4
M5

M6
M7

M2 M3

M0

M1

Bus Crossbar switch

First
stage

Second
stage

Third
stage

0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1 0 1

0 1 0 1 0 1

First bit

Bits in address of a memory unit

Multistage interconnection network (MIN)

Second bit Third bit

C2
C3

C0
C1

C4
C5

C6
C7

C0

C1

C2

C3

C0

C1

C2

S11

S14 S24 S34

S33

S32S22

S23

S12

S31S21

S13

Figure 10.2 Bus, crossbar switch, and multistage interconnection network (MIN).

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 341 — #6

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 341

and inexpensive but it is slow because of bus contention at medium or high traffic
densities because more than one CPU might wish to access memory at the same
time. The bus may become a bottleneck when the number of CPUs is increased.

A crossbar switch reduces the contention problem by providing many paths
for CPU–memory conversations. It uses a matrix organization wherein CPUs are
arranged along one dimension and memory units along the other dimension (see
Figure 10.2). Every CPU and every memory unit has its own independent bus.
When a CPU, say CPU C1, wishes to access a byte located in a memory unit, say
memory unit M3, the switch connects the bus of C1 with the bus of M3 and the
CPU–memory conversation takes place over this path. This conversation does not
suffer contention due to conversations between other CPUs and other memory
units because such conversations would use different paths through the switch.
Thus, the switch can provide a large effective memory bandwidth. Contention
would arise only if two or more CPUs wish to converse with the same memory
unit, which has a low probability of happening at low overall traffic densities
between CPUs and memory units. However, a crossbar switch is expensive. It
also suffers from poor expandability.

A multistage interconnection network (MIN) is a compromise between a bus
and a crossbar switch in terms of cost and parallelism; it has been used in the
BBN Butterfly, which has a NUMA architecture. Figure 10.2 shows an 8×8
Omega interconnection network, which permits 8 CPUs to access 8 memory
units whose binary addresses range from 000 to 111. It contains three stages
because memory units have three bits in their binary addresses. Each column
contains 2×2 crossbar switches of one stage in the interconnection network. For
each switch, a row represents a CPU and a column represents the value of one bit
in the binary address of the memory unit to be accessed. If an address bit is 0, the
upper output of the crossbar switch is selected. If the bit is 1, the lower output of
the switch is selected. These outputs lead to switches in the next stage.

When CPU C1 wishes to access memory unit M4, the interconnection takes
place as follows: The address of memory unit M4 is 100. Because the first bit is 1,
the lower output of switch S11 is selected. This leads to S22, whose upper output
is selected because the next address bit is 0. This leads to S33, whose upper output
is selected. It leads to M4 as desired. Switches S13, S24, and S34 would be selected
if CPU C4 wishes to access memory unit 7. The interconnection network uses
twelve 2×2 switches. The cost of these switches is much lower than that of an 8×8
crossbar switch. In general, an N×N multistage network uses log2N stages, and
each stage contains (N/2) 2×2 switches.

Other interconnection networks use combinations of these three fundamen-
tal interconnection networks. For example, the IEEE scalable coherent interface
(SCI) uses a ring-based network that provides bus-like services but uses fast point-
to-point unidirectional links to provide high throughput. A crossbar switch is used
to select the correct unidirectional link connected to a CPU.

10.1.1 SMP Architecture
SMP architectures popularly use a bus or a crossbar switch as the interconnec-
tion network. As discussed earlier, only one conversation can be in progress over

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 342 — #7

342 Part 2 Process Management

the bus at any time; other conversations are delayed. Hence CPUs face unpre-
dictable delays while accessing memory. The bus may become a bottleneck and
limit the performance of the system. When a crossbar switch is used, the CPUs
and the I/O subsystem face smaller delays in accessing memory, so system per-
formance would be better than when a bus is used. Switch delays are also more
predictable than bus delays. Cache coherence protocols add to the delays in mem-
ory access in both of these variations of the SMP architecture. Hence SMP systems
do not scale well beyond a small number of CPUs.

10.1.2 NUMA Architecture
Figure 10.3 illustrates the architecture of a NUMA system. Each dashed box
encloses a node of the system. A node could consist of a single-CPU system;
however, it is common to use SMP systems as nodes. Hence a node consists of
CPUs, local memory units, and an I/O subsystem connected by a local intercon-
nection network. Each local interconnection network also has a global port, and
the global ports of all nodes are connected to a high-speed global interconnection
network capable of providing transfer rates upward of 1 GB/s, i.e., 109 bytes per
second. They are used for the traffic between CPUs and nonlocal memory units. A
global port of a node may also contain a cache to hold instructions and data from
nonlocal memories that were accessed by CPUs of the node. The global inter-
connection network shown in Figure 10.3 resembles the IEEE scalable coherent
interface (SCI). It uses a ring-based network that provides fast point-to-point
unidirectional links between nodes.

As in an SMP system, the hardware of a NUMA system must ensure coher-
ence between caches in CPUs of a node. It must also ensure coherence between
nonlocal caches. This requirement can slow down memory accesses and consume
part of the bandwidth of interconnection networks. Ignoring delays in the local

. . .

. . .

Remote

cache

Remote

cache

Remote

cache

•

Global

port

. . .

High

speed

global

intercon-

nection

network

L1 cache L1 cache

Local

interconnection

network

Local

interconnection

network

L3 cache L3 cache

L1 cache L1 cache

Memory Memory

. . .CPU CPU

I/OI/O

CPU CPU

L3 cache L3 cache

Memory Memory

Remote

cache

Figure 10.3 NUMA architecture.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 343 — #8

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 343

and nonlocal interconnection networks, the effective memory access time to a
local memory would depend on the hit ratios in the L1 and L3 caches, and the
memory access time. The access time to a nonlocal memory would depend on
hit ratios in the L1 cache and the remote cache in the global port, and on the
memory access time.

The nodes in a NUMA system are typically high-performance SMP systems
containing 4 or 8 CPUs. Because of the high speed nonlocal interconnection net-
work, performance of such NUMA architectures is scalable as nodes are added.
The actual performance of a NUMA system would depend on the nonlocal mem-
ory accesses made by processes during their execution. This is an OS issue, which
we discuss in the next section.

10.2 ISSUES IN MULTIPROCESSOR OPERATING SYSTEMS
•

To realize the benefits of high throughput and computation speedup offered by
a multiprocessor system, the CPUs must be used effectively and processes of an
application should be able to interact harmoniously. These two considerations
will, of course, influence process scheduling and process synchronization. They
also affect the operating system’s own methods of functioning in response to
interrupts and system calls. Table 10.3 highlights the three fundamental issues
raised by these considerations.

Early multiprocessor operating systems functioned in the master–slave mode.
In this mode, one CPU is designated as the master, and all other CPUs operate as
its slaves. Only the master CPU executes the kernel code. It handles interrupts and
system calls, and performs scheduling. It communicates its scheduling decisions
to other CPUs through interprocessor interrupts (IPIs). The primary advantage
of the master–slave kernel structure is its simplicity. When a process makes a
system call, the CPU on which it operated is idle until either the process resumes
its operation or the master CPU assigns new work to the CPU. None of these can

Table 10.3 Issues in Synchronization and Scheduling
in a Multiprocessor OS

Issue Description

Kernel structure Many CPUs should be able to execute kernel code in
parallel, so that execution of kernel functions does not
become a bottleneck.

Process synchronization Presence of multiple CPUs should be exploited to
reduce the overhead of switching between processes,
and synchronization delays.

Process scheduling The scheduling policy should exploit presence of
multiple CPUs to provide computation speedup for
applications.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 344 — #9

344 Part 2 Process Management

happen until the master CPU handles the system call and performs scheduling.
Hence execution of kernel functions by the master is a bottleneck that affects
system performance. This problem can be solved by structuring the kernel so
that many CPUs can execute its code in parallel.

Presence of multiple CPUs can be exploited to reduce synchronization delays.
In a uniprocessor system, letting a process loop until a synchronization condi-
tion is met denies the CPU to other processes and may lead to priority inversion
(see Section 6.5.1). Hence synchronization is performed through blocking of a
process until its synchronization condition is met. However, in a multiproces-
sor system, synchronization through looping does not lead to priority inversion
because the process holding the lock can execute on another CPU in parallel with
the looping process. It would be preferable to let a process loop, rather than block
it, if the amount of time for which it would loop is less than the total CPU overhead
of blocking it and scheduling another process, and activating and rescheduling it
sometime in future. This condition would be met if a process looping for entry to
a critical section and the holder of the critical section are scheduled in parallel.
Multiprocessor operating systems provide special synchronization techniques for
exploiting this feature.

Scheduling of processes is influenced by two factors—cache performance
during operation of a process, and synchronization requirements of processes
of an application. Scheduling a process on the same CPU every time may lead
to a high cache hit ratio, which would improve performance of the process and
also contribute to better system performance. If the processes of an application
interact frequently, scheduling them at the same time on different CPUs would
provide them an opportunity to interact in real time, which would lead to a
speedup of the application. For example, a producer and a consumer in a single-
buffer producers–consumers system may be able to perform several cycles of
producing and consuming of records in a time slice if they are scheduled to run
in parallel.

Thus, kernel structure and the algorithms it uses for scheduling and syn-
chronization together determine whether a multiprocessor OS will achieve high
throughput. However, computer systems grow in size with advances in technology
or requirements of their users, so another aspect of performance, called scalabil-
ity, is equally important. Scalability of a system indicates how well the system will
perform when its size grows. The size of a multiprocessor OS may grow through
addition of more CPUs, memory units and other resources to the system, or
through creation of more processes in applications. Two kinds of performance
expectations arise when a system grows in size—the throughput of the system
should increase linearly with the number of CPUs and delays faced by individual
processes, due to either synchronization or scheduling, should not increase as the
number of processes in the system increases.

Scalability is important in the design of both hardware and software. Inter-
connection technologies that work well when the system contains a small number
of CPUs and memory units may not work as well when their number grows. To be
scalable, the effective bandwidth of an interconnection network should increase
linearly as the number of CPUs is increased. As we discussed in Section 10.1,

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 345 — #10

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 345

the crossbar switch is more scalable than the bus as an interconnection network.
In the software realm, special techniques are employed to ensure scalability of
algorithms. We will discuss this aspect in Sections 10.4 and 10.5.

10.3 KERNEL STRUCTURE
•

The kernel of a multiprocessor operating system for an SMP architecture is called
an SMP kernel. It is structured so that any CPU can execute code in the kernel, and
many CPUs could do so in parallel. This capability is based on two fundamental
provisions: The code of the SMP kernel is reentrant (see Section 11.3.3 for a
discussion of reentrant code), and the CPUs executing it in parallel coordinate
their activities through synchronization and interprocessor interrupts.

Synchronization The kernel uses binary semaphores to ensure mutual exclusion
over kernel data structures (see Section 6.9)—we will refer to them as mutex
locks. Locking is said to be coarse-grained if a mutex lock controls accesses to a
group of data structures, and it is said to be fine-grained if a mutex lock controls
accesses to a single data item or a single data structure. Coarse-grained locking
provides simplicity; however, two or more of the data structures controlled by
a lock cannot be accessed in parallel, so execution of kernel functionalities may
become a bottleneck. Fine-grained locking permits CPUs to access different data
structures in parallel. However, fine-grained locking may increase the locking
overhead because a CPU executing the kernel code would have to set and release
a larger number of locks. It may also cause deadlocks if all CPUs do not set the
locks in the same order. Hence deadlock prevention policies such as the resource
ranking policy (see Section 8.8) would have to be used—numerical ranks could
be associated with locks and a CPU could set locks in the order of increasing
ranks.

Good performance of SMP kernels is obtained by ensuring parallelism
without incurring substantial locking overhead. It is achieved through two
means:

• Use of separate locks for kernel functionalities: CPUs can perform different
kernel functionalities in parallel without incurring high locking overhead.

• Partitioning of the data structures of a kernel functionality: CPUs can perform
the same kernel functionality in parallel by locking different partitions of the
data structures. Locking can be dispensed with altogether by permanently
associating a different partition with each CPU.

Heap Management Parallelism in heap management can be provided by main-
taining several free lists, i.e., lists of free memory areas in the heap
(see Section 11.5.1). Locking is unnecessary if each CPU has its own free list;
however, this arrangement would degrade performance because the allocation
decisions would not be optimal. Forming separate free lists to hold free memory
areas of different sizes and letting a CPU lock an appropriate free list would pro-
vide parallelism between CPUs that seek memory areas of different sizes. It would

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 346 — #11

346 Part 2 Process Management

Lawt

CPU
id

C1 Pi
C2 Pj

Assigned workload table

(AWT)

Lrq
Highest-priority queuePi

Lower-than-highest

priority queue
Pj
...

Lowest-priority queue

Assigned
work

Figure 10.4 Scheduling data structures in an SMP kernel.

also avoid suboptimal performance caused by associating a free list permanently
with a CPU.

Scheduling Figure 10.4 illustrates simple scheduling data structures used by
an SMP kernel. CPUs C1 and C2 are engaged in executing processes Pi and
Pj , respectively. The ready queues of processes are organized as discussed in
Section 7.4.3—each ready queue contains PCBs of ready processes having a spe-
cific priority. The kernel maintains an additional data structure named assigned
workload table (AWT) in which it records the workload assigned to various CPUs.
Mutex locks called Lrq and Lawt guard the ready queues data structure and the
AWT, respectively. Let us assume that CPUs set these locks in the order Lrq
followed by Lawt.

However, use of the scheduling data structures shown in Figure 10.4 suffers
from heavy contention for mutex locks Lrq and Lawt because every CPU needs
to set and release these locks while scheduling. To reduce this overhead, some
operating systems partition the set of processes into several subsets of processes,
and entrust each subset to a different CPU for scheduling. In this arrangement,
the ready queues and the assigned workload table get partitioned on a per-CPU
basis. Now, each CPU would access the ready queues data structure that has only
the ready processes in its charge. In a preemptible kernel, mutex locks would still
be needed to avoid race conditions on each of the per-CPU data structures because
the CPU may be diverted due to interrupts; however, these locks would rarely
face contention, so the synchronization overhead would be low. The price for this
reduction in the synchronization overhead is either poor system performance
because some CPUs may be idle while others are heavily loaded, or the overhead
of balancing the load across the CPUs by periodically transferring some processes
from heavily loaded CPUs to lightly loaded CPUs.

An SMP kernel provides graceful degradation because it continues to oper-
ate despite failures, even though its efficiency may be affected. For example,
failure of a CPU when it is not executing kernel code does not interfere with
operation of other CPUs in the system. Hence they would continue to execute
normally. Nonavailability of the failed CPU would affect the process whose code
it was executing when the failure occurred. It would also affect throughput and
response times in the system to some extent, as fewer processes can be scheduled in
parallel.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 347 — #12

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 347

NUMA Kernel CPUs in a NUMA system experience different memory access
times for local and nonlocal memory. A process would operate more efficiently
if instructions and operands accessed by it are found predominantly in local
memory. In keeping with this principle, each node in a NUMA system has its
own separate kernel, and exclusively schedules processes whose address spaces
are in local memory of the node. This approach is analogous to the partitioning
of processes across CPUs of an SMP system, hence it inherits the drawbacks of
that arrangement.

Operating systems for most NUMA architectures generalize this concept
of managing each node separately. They use the notion of an application region
to ensure good performance of an application. An application region consists
of a resource partition and an instance of the kernel. The resource partition
contains one or more CPUs, some local memory units and a few I/O devices. The
kernel of the application region manages processes of only one application. The
advantage of this arrangement is that the kernel can optimize the performance
of the application through clever scheduling. It can also ensure high hit ratios
in the L1 cache by scheduling a process on the same CPU most of the time.
Good hit ratios are obtained in the L3 cache as well because memory units in the
application region contain address spaces of processes of only one application.

Use of a separate kernel for a node of a NUMA system or for an application
region also has some disadvantages. Accesses to nonlocal memory units become
more complex, since they span the domains of more than one kernel. The sepa-
rate kernel arrangement also suffers from the generic problems associated with
partitioning—underutilization of resources may result because idle resources in a
partition cannot be used by processes of other partitions. Reliability is also poor
because a computation has to be aborted or delayed if some resource (including
a CPU) in one partition fails.

10.4 PROCESS SYNCHRONIZATION
•

Process synchronization involves use of critical sections or indivisible signaling
operations. As discussed in Section 6.5.2, each of these is implemented by using
a lock variable that has only two possible values—open and closed. A process
cannot begin execution of a critical section or an indivisible operation if the lock
variable associated with the critical section or indivisible operation has the value
closed. If it finds the value of the lock variable to be open, it changes the value to
closed, executes the critical section or indivisible signaling operation, and changes
the value back to open. A process that finds the value of a lock variable to be
closed must wait until the value is changed to open. We refer to this arrangement
involving use of a lock variable as a synchronization lock, or simply a lock, and
refer to the actions of closing and opening the lock as setting and resetting it.

Two qualities of synchronization locks are important for performance of a
multiprocessor system. The first quality is scalability of a synchronization lock,
which indicates the degree to which the performance of an application using the
lock is independent of the number of processes in the application and the number

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 348 — #13

348 Part 2 Process Management

Table 10.4 Kinds of Synchronization Locks

Lock Description

Queued lock A process waiting for a queued lock becomes blocked
and its id is entered into a queue of processes waiting
for the lock. The process is activated when the lock is
reset and it is the first process in the queue.

Spin lock If a spin lock is already set when a process tries to set it,
the process enters into a busy wait for the lock. The
CPU on which the process is operating can handle
interrupts during the busy wait.

Sleep lock When a process waits for a sleep lock, the CPU on
which it is running is put into a special sleep state in
which it does not execute instructions or process
interrupts. The CPU is activated when the CPU that
resets the lock sends it an interprocessor interrupt.

Pi

C1

L

(a)

Pi

Pk

C1

L

(b)

C1
IPI

L

(d)

Pi

C1

L

(c)

Pi

Figure 10.5 Synchronization locks in multiprocessor operating systems. (a) General
schematic diagram of a lock guarding a mutual exclusion region; (b) Queued lock; (c) Spin
lock; (d) Sleep lock.

of CPUs in the system. The second quality concerns ability of a CPU to handle
interrupts while the process operating on the CPU is engaged in trying to set the
synchronization lock. This ability helps the kernel in providing a quick response
to events in the system.

Table 10.4 summarizes the features of three kinds of synchronization locks,
the queued, spin, and sleep locks. Processes waiting for a queued lock become
blocked; they are activated in FCFS order when the lock is opened. The spin lock
is the synchronization lock we illustrated in Figures 6.9 and 6.10; it leads to a busy
wait because a process that is trying to set it is not blocked. Interestingly, we had
discarded the spin lock because of a busy wait, but it is useful in a multiprocessor
system! The sleep lock is a new kind of lock. We discuss characteristics of all three
kinds of locks in the following.

Figure 10.5 illustrates use of the three kinds of synchronization locks.
Figure 10.5(a) shows a process Pi executing on CPU C1 and a lock L that is

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 349 — #14

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 349

used to guard a mutual exclusion region. The × mark inside the box representing
the lock indicates that the lock is set. A similar mark inside a circle representing
a process indicates that the process is in the blocked state. We discuss features of
these synchronization locks in the following.

Queued Lock A queued lock is a conventional lock used for process synchro-
nization. The kernel performs the following actions when process Pi executing
on CPU C1 requests a lock L: Lock L is tested. If it is not already set, the kernel
sets the lock on behalf of Pi and resumes its execution. If the lock is already set
by another process, Pi is blocked and its request for the lock is recorded in a
queue. Figure 10.5(b) illustrates the situation after blocking of Pi . The id of Pi
is entered in the queue of lock L and CPU C1 has switched to execution of some
other process Pk . When the process that had set lock L completes its use of the
critical section, the process at the head of L’s queue is activated and the lock is
awarded to it.

A process that cannot set a queued lock relinquishes the CPU on which it
is executing. Such a process will not be using a CPU and will not be accessing
memory while it waits to set the lock. The average length of the queue for a lock
determines whether the solution is scalable. If processes do not require lock L
frequently, the queue length is bounded by some constant c (that is, it is never
larger than c). Hence increasing the number of CPUs or processes in the system
does not increase the average delay in acquiring the lock. The solution is scalable
under these conditions. If processes require lock L frequently, the length of the
queue may be proportional to the number of processes. In this case the solution
is not scalable.

Spin Lock A spin lock differs from a queued lock in that a process that makes an
unsuccessful attempt to set a lock does not relinquish the CPU. Instead it enters
into a loop in which it makes repeated attempts to set the lock until it succeeds
[see Figure 10.5(c)]. Hence the name spin lock. We depict the situation in which
CPU C1 spins on lock L by drawing an arrow from C1 to L. CPU C1 repeatedly
accesses the value of the lock and tests it, using an indivisible instruction like
a test-and-set instruction (see Section 6.9.4). This action creates traffic on the
memory bus or across the network.

Use of spin locks may degrade system performance on two counts: First, the
CPU remains with the process looping on the spin lock and so other processes
are denied use of the CPU. Second, memory traffic is generated as the CPU
spins on the lock. The latter drawback may not be significant if the memory
bus or the network is lightly loaded, but it causes performance degradation in
other situations. However, use of spin locks can be justified in two situations:
(1) when the number of processes does not exceed the number of CPUs in the
system, because there is no advantage in preempting a process, and (2) when a
lock is used to control a critical section and the CPU time needed to execute the
critical section is smaller than the total CPU time needed to block a process and
schedule another one, and activate and reschedule the original process. In the
first case blocking is unnecessary. In the second case it is counterproductive.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 350 — #15

350 Part 2 Process Management

A spin lock has an interesting advantage over a queued lock. A CPU spinning
on a lock can handle interrupts and the process operating on it can handle signals.
This feature is particularly important in a real-time application as delays in ser-
vicing interrupts and signals can degrade response times. Nevertheless, spin locks
are not scalable, because of the memory or network traffic that they generate.

In a NUMA system, a process using spin locks may face a situation called
lock starvation, in which it might be denied the lock for long periods of time,
possibly indefinitely. Consider a process Pi that is trying to set a spin lock that is
in its nonlocal memory. Let processes Pj and Pk , which exist in the same node as
the lock, try to set it. Since access to local memory is much faster than access to
nonlocal memory, processes Pj and Pk are able to spin much faster on the lock
than process Pi . Hence they are likely to get an opportunity to set the lock before
Pi . If they repeatedly set and use the lock, Pi may not be able to set the lock for
a long time. A scheme that we will see in Section 10.4.2 avoids lock starvation.

Sleep Lock When a process makes an unsuccessful attempt to set a sleep lock,
the CPU on which it is operating is put into a special state called a sleep state. In
this state it does not execute instructions and does not respond to any interrupts
except interprocessor interrupts. In Figure 10.5(d) we depict this situation by
putting a × mark against all interrupts except IPI. The CPU waiting for the lock
does not spin on it, and so it does not cause memory or network traffic.

The CPU that releases the lock has the responsibility to send interprocessor
interrupts to those CPUs that are sleeping on the lock. This feature leads to the
overhead of generating and servicing interprocessor interrupts, both of which
involve a context switch and execution of kernel code. The sleep lock will scale
poorly if heavy contention exists for a lock; however, it will perform well if this is
not the case. Use of sleep locks in a real-time application can also affect response
times of the application. Nevertheless sleep locks may be preferred to spin locks
if the memory or network traffic densities are high.

Scheduling Aware Synchronization As discussed earlier, some kinds of synchro-
nization are effective only when processes involved in the synchronization are
scheduled to run at the same time. The Solaris OS for Sun systems provides a
synchronization lock called an adaptive lock. A process waiting for this lock spins
on it if the holder of the lock is scheduled to run in parallel; otherwise, the pro-
cess is preempted and queued as in a queued lock. Thus, implementation of a
synchronization lock depends on scheduling decisions in the system.

10.4.1 Special Hardware for Process Synchronization
Some systems use special hardware to avoid the performance problems caused
by queued, spin, and sleep locks. The Sequent Balance system uses a special bus
called the system link and interface controller (SLIC) for synchronization. SLIC
consists of a special 64-bit register in each CPU in the system. The registers
of different CPUs are connected over the SLIC bus (see Figure 10.6). Each bit
represents a spin lock. Thus SLIC can support 64 spin locks. When a CPU C1
wishes to set a lock Lk , it tries to set the corresponding bit, say bk , in its special

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 351 — #16

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 351

C1 C2
SLIC

register

. . .

Memory bus

. . .
SLIC bus

Figure 10.6 SLIC bus.

register. If the bit is not already set, an attempt to set it results in communication
over the SLIC bus. If no other CPU is simultaneously trying to set the same bit,
the lock is awarded to C1 and bit bk is set in the special registers of all CPUs. C1
can now proceed with its execution. When it releases the lock, bit bk is reset in
special registers of all CPUs. If two or more CPUs simultaneously try to set the
same lock, the hardware arbiter awards the lock to one CPU. The attempt to set
lock Lk fails if bit bk is already set on behalf of some other CPU. In this case, the
CPU keeps spinning on this lock, i.e., on bit bk of its special register.

The advantage of the SLIC approach is that a CPU spins on a lock located
within the CPU. Therefore spinning does not generate memory or network traffic.
Use of spinning rather than sleeping also avoids use of interprocessor interrupts
for synchronization. Use of a special synchronization bus relieves pressure on the
memory bus. This is a significant advantage when memory traffic density is high.

10.4.2 A Scalable Software Scheme for Process
Synchronization

We describe a scheme for process synchronization in NUMA and NORMA archi-
tectures that achieves scalable performance by minimizing the synchronization
traffic to nonlocal memory units in a NUMA architecture and over the network
in a NORMA architecture. It does not require any special hardware and provides
an effect that is analogous to the SLIC chip. It also avoids the lock starvation
problem of spin locks.

The scheme uses two types of locks. A primary lock is like a conventional
lock used for synchronization. When a process is unable to set a primary lock, it
creates a shadow lock in the local memory of the node where it resides, associates
the shadow lock with the primary lock, and spins on the shadow lock. This way
spinning does not generate nonlocal memory traffic or network traffic. When
a process wishes to reset a primary lock that it has set, it checks whether any
shadow locks are associated with the primary lock. If so, it resets one of the
shadow locks, which enables one of the processes waiting for the primary lock to
proceed; otherwise, it resets the primary lock.

Figure 10.7 illustrates an implementation of this scheme, using the same
notation as in Figure 10.5. A queue of shadow locks is maintained for each
primary lock. Each entry in the queue contains the address of a shadow lock
and a pointer to the next shadow lock in the queue. If a process fails to set the

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 352 — #17

352 Part 2 Process Management

Local memory

of CPU C1

. . .Queue for a

primary lock
. . .

Address Pointer

Shadow

lock

C1

Pi

Figure 10.7 An efficient software solution for process synchronization.

primary lock, the process allocates a shadow lock in the local memory, enters its
address in the primary lock’s queue and starts spinning on it. The queue may span
different memory units in the system; so the action of entering the shadow lock
in the queue generates nonlocal memory traffic or network traffic. Resetting of a
shadow lock also generates nonlocal memory traffic or network traffic. However,
spinning does not generate such traffic. Needless to say, manipulation of the
queue should itself be done under a lock.

10.5 PROCESS SCHEDULING
•

A process can be scheduled on any CPU in a multiprocessor system. However,
its performance can be improved by making an intelligent choice of the CPU,
i.e., by deciding where to schedule it. Performance of a group of processes that
synchronize and communicate with one another can be improved by deciding
how and when to schedule them. This section discusses issues involved in making
these decisions.

Choice of the CPU When a process Pi operates on a CPU, say, CPU C1, some
parts of its address space are loaded into the L1 cache of the CPU. When the
CPU is switched to another process, some of these parts are overwritten by parts
of the address space of the new process, however some other parts of Pi ’s address
space may survive in C1’s cache memory for some time. These parts are called
the residual address space of a process. A process is said to have an affinity for
a CPU if it has a residual address space in its cache. The process would have a
higher cache hit ratio on this CPU than on a CPU for which it does not have
affinity.

Affinity scheduling schedules a process on a CPU for which it has an affinity.
This technique provides a good cache hit ratio, thereby speeding up operation
of the process and reducing the memory bus traffic. Another way to exploit
the affinity is to schedule the threads of a process on the same CPU in close
succession. However, affinity scheduling interferes with load balancing across
CPUs since processes and threads become tied to specific CPUs. Section 10.6.3
describes how it also leads to scheduling anomalies in the Windows system.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 353 — #18

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 353

Pi Pj Pk

8

blocked
6

running
5

running

C1 C2 C1 C2

(a)

Pi Pj Pk

Pi

8
running

Pj

6
running

PkPi Pj Pk

5
ready

(b)

Figure 10.8 Process Pj is shuffled from CPU C1 to CPU C2 when process Pi becomes ready.

In Section 10.3, we discussed how the SMP kernel permits each CPU to
perform its own scheduling. This arrangement prevents the kernel from becoming
a performance bottleneck; however, it leads to scheduling anomalies in which a
higher-priority process is in the ready state even though a low-priority process has
been scheduled. Correcting this anomaly requires shuffling of processes between
CPUs, as indicated in the next example.

•
Example 10.1Process Shuffling in an SMP Kernel

An SMP system contains two CPUs C1 and C2, and three processes Pi , Pj , and
Pk with priorities 8, 6, and 5, respectively. Figure 10.8(a) shows the situation
in which process Pi is in the blocked state due to an I/O operation (see contents
of its PCB fields) and processes Pj and Pk are executing using CPUs C1 and
C2, respectively. When the I/O operation of Pi completes, the I/O interrupt is
processed by CPU C1, which changes Pi ’s state to ready and switches itself to
service process Pi . So, process Pj , which is the process with the next higher
priority, is in the ready state, and Pk , whose priority is the lowest, is in oper-
ation. To correct this situation, process Pk should be preempted and process
Pj should be scheduled on CPU C2. Figure 10.8(b) shows the situation after
these actions are performed.

•

Process shuffling can be implemented by using the assigned workload table
(AWT), discussed in Section 10.3, and the interprocessor interrupt (IPI). How-
ever, process shuffling leads to high scheduling overhead; this effect is more
pronounced in a system containing a large number of CPUs. Hence some
operating systems do not correct scheduling anomalies through process shuffling.

Synchronization-Conscious Scheduling Parts of a computation may be executed
on different CPUs to achieve computation speedup. However, synchronization
and communication among processes of an application influence the nature of
parallelism between its processes, so a scheduling policy should take these into
account as well. As commented earlier in Section 10.2, processes of an application
should be scheduled on different CPUs at the same time if they use spin locks

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 354 — #19

354 Part 2 Process Management

for synchronization. This is called coscheduling, or gang scheduling. A different
approach is required when processes exchange messages by using a blocking
protocol. When Pi sends a message to Pj , it can proceed with its computation
only after its message is delivered. This wait could be quite long, so it is best to
block Pi . In such cases special efforts are made not to schedule such processes in
the same time slice. Since this approach conflicts with coscheduling, the kernel
has to make a difficult decision. It can either base its decision on the past behavior
of processes in the application or base it on user preference for a specific method
of scheduling. The Mach operating system uses the latter approach.

10.6 CASE STUDIES
•

10.6.1 Mach
The Mach operating system, developed at Carnegie Mellon University, is an OS
for multiprocessor and distributed systems. The multiprocessor Mach uses an
SMP kernel structure. Figure 10.9 shows an overview of the scheduling arrange-
ment used in Mach. The processors of the multiprocessor system are divided into
processor sets. Each processor set is assigned a subset of threads for execution.
Threads can have priorities between 0 and 31, where 0 is the highest priority. Each
processor set has 32 ready queues to hold information about threads at each of the
priority levels. These queues are common to all processors in the processor set.
In addition, every processor has a local queue of threads. These are the threads
that must be executed only on this processor. These threads have a higher priority
than all threads in the thread queues. This feature provides for affinity scheduling.
A thread is preempted at the end of a time slice only if some other ready thread
exists in the thread queues, otherwise the thread is given another time slice. The
time slice is varied according to the number of ready threads—a smaller time slice
if many ready threads exist, and a larger time slice if few ready threads exist.

An interesting feature in the Mach operating system is the technique
of scheduling hints. A thread issues a hint to influence processor scheduling

Processor set

...

0
1

31

Processor set

0
1

31

Subset of

threads

...

Local queues

of threads

P3

P2

P1
P4

P5

Figure 10.9 Scheduling in Mach.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 355 — #20

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 355

decisions. It is presumed that a hint is based on the thread’s knowledge of some
execution characteristic of an application. A thread may issue a hint to ensure
better scheduling when threads of an application require synchronization or com-
munication. A discouragement hint reduces the priority of a thread. This type of
hint can be issued by a thread that has to spin on a lock that has been set by some
other process. A hands-off hint is given by a thread to indicate that it wishes to
relinquish the processor to another thread: The thread can also indicate the iden-
tity of the thread to which it wishes to hand over the processor. On receiving such
a hint, the scheduler switches the processor to execution of the named thread
irrespective of its priority. This feature can be used effectively when a thread
spins on a lock while the holder of the lock is preempted. The spinning thread
can hand-off its processor to the preempted thread. This action will lead to an
early release of the lock. It can also be used to implement the priority inheritance
protocol discussed in Chapter 7.

10.6.2 Linux
Multiprocessing support in Linux was introduced in the Linux 2.0 kernel.
Coarse-grained locking was employed to prevent race conditions over kernel
data structures. Granularity of locks was made finer in later releases; however,
the kernel was still nonpreemptible. With Linux 2.6 kernel, the Linux kernel
became preemptible (see Section 4.8.2). The Linux 2.6 kernel also employs very
fine-grained locking.

The Linux kernel provides spin locks for locking of data structures. It also
provides a special reader–writer spin lock which permits any number of reader
processes, that is, processes that do not modify any kernel data, to access protected
data at the same time; however, it permits only one writer process to update the
data at any time.

The Linux kernel uses another lock called the sequence lock that incurs low
overhead and is scalable. The sequence lock is actually an integer that is used
as a sequence counter through an atomic, i.e., indivisible, increment instruction.
Whenever a process wishes to use a kernel data structure, it simply increments the
integer in the sequence lock associated with the data structure, notes its new value,
and performs the operation. After completing the operation, it checks whether
the value in the sequence lock has changed after it had executed its increment
instruction. If the value has changed, the operation is deemed to have failed, so
it annuls the operation it had just performed and attempts it all over again, and
so on until the operation succeeds.

Linux uses per-CPU data structures to reduce contention for locks on kernel
data structures. As mentioned in Section 10.3, a per-CPU data structure of a
CPU is accessed only when the kernel code is executed by that CPU; however,
even this data structure needs to be locked because concurrent accesses may be
made to it when an interrupt occurs while kernel code is being executed to service
a system call and an interrupt servicing routine in the kernel is activated. Linux
eliminates this lock by disabling preemption of this CPU due to interrupts while
executing kernel code—the code executed by the CPU makes a system call to

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 356 — #21

356 Part 2 Process Management

disable preemption when it is about to access the per-CPU data structures, and
makes another system call to enable preemption when it finishes accessing the
per-CPU data structures.

As described earlier in Section 7.6.3, Linux scheduling uses the ready queues
data structure of Figure 7.12. Scheduling for a multiprocessor incorporates con-
siderations of affinity—a user can specify a hard affinity for a process by indicating
a set of CPUs on which it must run, and a process has a soft affinity for the last
CPU on which it was run. Since scheduling is performed on a per-CPU basis, the
kernel performs load balancing to ensure that computational loads directed at
different CPUs are comparable. This task is performed by a CPU that finds that
its ready queues are empty; it is also performed periodically by the kernel—every
1 ms if the system is idle, and every 200 ms otherwise.

The function load_balance is invoked to perform load balancing with
the id of an underloaded CPU. load_balance finds a “busy CPU” that has
at least 25 percent more processes in its ready queues than the ready queues of
the underloaded CPU. It now locates some processes in its ready queues that do
not have a hard affinity to the busy CPU, and moves them to the ready queues of
the underloaded CPU. It proceeds as follows: It first moves the highest-priority
processes in the exhausted list of the busy CPU, because these processes are less
likely to have a residual address space in the cache of the busy CPU than those
in the active list. If more processes are needed to be moved, it moves the highest-
priority processes in the active list of the busy CPU, which would improve their
response times.

10.6.3 SMP Support in Windows
The Windows kernel provides a comprehensive support for multiprocessor and
NUMA systems, and for CPUs that provide hyperthreading—a hyperthreaded
CPU is considered to be a single physical processor that has several logical pro-
cessors. Spin locks are used to implement mutual exclusion over kernel data
structures. To guarantee that threads do not incur long waits for kernel data
structures, the Windows kernel never preempts a thread holding a spin lock if
some other thread is trying to acquire the same lock.

The Windows Server 2003 and Windows Vista use several free lists of mem-
ory areas as described in Section 11.5.4, which permits CPUs to perform memory
allocation in parallel. These kernels also use per-processor scheduling data struc-
tures as described in Section 10.3. However, CPUs may have to modify each
other’s data structures during scheduling. To reduce the synchronization over-
head in this operation, the kernel provides a queued spinlock that follows the
schematic of Section 10.4.2—a processor spins over a lock in its local memory,
which avoids traffic over the network in NUMA systems and makes the lock
scalable.

The Windows process and thread objects have several scheduling-related
attributes. The default processor affinity of a process and thread processor affinity
of a thread together define an affinity set for a thread, which is a set of processors.
In a system with a NUMA architecture, a process can be confined to a single node

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 357 — #22

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 357

in the system by letting its affinity set be a subset of processors in the node. The
kernel assigns an ideal processor for each thread such that different threads of a
process have different ideal processors. This way many threads of a process could
operate in parallel, which provides the benefits of coscheduling. The affinity set
and the ideal processor together define a hard affinity for a thread. A processor is
assumed to contain a part of the address space of a thread for 20 milliseconds after
the thread ceases to operate on it. The thread has a soft affinity for the processor
during this interval, so its identity is stored in the last processor attribute of
the thread.

When scheduling is to be performed for, say, CPU C1, the kernel examines
ready threads in the order of diminishing priority and selects the first ready thread
that satisfies one of the following conditions:

• The thread has C1 as its last processor.
• The thread has C1 as its ideal processor.
• The thread has C1 in its affinity set, and has been ready for three clock ticks.

The first criterion realizes soft affinity scheduling, while the other two criteria
realize hard affinity scheduling. If the kernel cannot find a thread that satisfies
one of these criteria, it simply schedules the first ready thread it can find. If no
such thread exists, it schedules the idle thread (see Section 7.6.4).

When a thread becomes ready because of an interrupt, the CPU handling the
interrupt chooses a CPU to execute this newly readied thread as follows: It checks
whether there are idle CPUs in the system, and whether the ideal processor or the
last processor of the newly readied thread is one of them. If so, it schedules the
newly readied thread on this CPU by entering the thread’s id in the scheduling
data structure of the selected CPU. The selected idle CPU would be executing
the idle thread, which would pick up the identity of the scheduled thread in the
next iteration of its idle loop and switch to it. If the ideal processor or the last
processor of the newly readied thread is not idle, the CPU handling the interrupt
is itself idle, and it is included in the affinity set of the newly readied thread, it
itself takes up the thread for execution. If this check fails and some CPUs in the
affinity set of the thread are idle, it schedules the thread on the lowest numbered
such CPU; otherwise, it schedules the thread on the lowest numbered idle CPU
that is not included in the affinity set of the thread.

If no CPU is idle, the CPU handling the interrupt compares the priorities
of the newly readied thread and the thread running on the ideal processor of
the newly readied thread. If the newly readied thread has a higher priority, an
interprocessor interrupt is sent to its ideal processor with a request to switch
to the newly readied thread. If this is not the case, a similar check is made on
the last processor of the newly readied thread. If that check also fails, the CPU
handling the interrupt simply enters the newly readied thread in the ready queue
structure. It would be scheduled sometime in future by an idle CPU. In this case,
an anomalous situation may exist in the system because the priority of the newly
readied thread may exceed the priority of some thread that is executing on some
other CPU. However, correcting this anomaly may cause too much shuffling of
threads between CPUs, so it is not attempted by the scheduling policy.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 358 — #23

358 Part 2 Process Management

10.7 SUMMARY
•

A multiprocessor OS exploits the presence of
multiple CPUs in the computer to provide high
throughput of the system, computation speedup of
an application, and graceful degradation of the OS
capabilities when faults occur in the system. In this
chapter we studied the architecture of multipro-
cessor systems and OS issues involved in ensuring
good performance.

Multiprocessor systems are classified into
three kinds based on the manner in which mem-
ory can be accessed by different CPUs. In the
uniform memory architecture (UMA), the memory
is shared between all CPUs. This architecture is
also called the symmetrical multiprocessor (SMP)
architecture. In the nonuniform memory architec-
ture (NUMA), each CPU has some local memory
that can be accessed faster than the rest of the mem-
ory which is accessible over an interconnection
network.

A multiprocessor OS should exploit presence
of multiple CPUs to schedule user processes in
parallel, and also to ensure efficiency of its own
functioning. Two issues are important in this con-
text: kernel structure and delays caused by syn-
chronization and scheduling. Many CPUs should

be able to execute the kernel’s code in parallel
so that the kernel can respond to events read-
ily and it does not become a performance bot-
tleneck. Synchronization and scheduling of user
processes should be performed in such a manner
that processes do not incur large delays. The OS
has to also ensure that its algorithms are scal-
able; that is, they perform well even when the size
of the system increases because of an increase
in the number of CPUs, memory units, or user
processes.

Multiprocessor OSs employ special kinds of
locks called spin locks and sleep locks to control
the overhead of process synchronization. Affinity
scheduling is employed to schedule a process on the
same CPU so that it would obtain high cache hit
ratios during its operation, and coscheduling is used
to schedule processes of an application on different
CPUs at the same time so that they can com-
municate efficiently among themselves. Operating
systems employ process shuffling to ensure that the
highest-priority ready processes are always in oper-
ation on its CPUs. We discussed features of Linux,
Mach, and Windows operating systems in this
context.

TEST YOUR CONCEPTS
•

10.1 Classify each of the following statements as true
or false:
a. Scheduling performed by one CPU in a sym-

metric multiprocessor system may result in
shuffling of processes operating on many
CPUs in the system.

b. The interprocessor interrupt (IPI) is not used
in process synchronization in a symmetric
multiprocessor system.

c. When a process spins on a lock, it affects per-
formance of processes being serviced by other
CPUs.

d. When affinity scheduling is used, a process
may require less CPU time to complete its
operation.

10.2 What would be the consequence of not imple-
menting cache coherence in a multiprocessor
system?
a. Results produced by a process that does not

interact with any other process might be
wrong.

b. Results produced by a group of interacting
processes that use the same CPU might be
wrong.

c. Results produced by a group of interacting
processes that do not use the same CPU
might be wrong.

d. None of (a)–(c).

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 359 — #24

Chapter 10 Synchronization and Scheduling in Multiprocessor Operating Systems 359

EXERCISES
•

10.1 Describe two situations in which an SMP ker-
nel requires use of the interprocessor interrupt
(IPI).

10.2 An OS assigns the same priority to all processes
(or threads) of an application, but uses different
priorities for different applications.
a. In a uniprocessor system, does this assign-

ment of priorities provide an advantage
that is similar to that provided by affinity
scheduling?

b. In a multiprocessor system, does this assign-
ment of priorities provide an advantage that
is similar to that provided by coscheduling?

10.3 Can the hands-off feature of Mach be used to
advantage in implementing the software scheme

for process synchronization discussed in Section
10.4.2?

10.4 Can priority inversion occur when spin or sleep
locks are used? (See Section 6.5.1 for a definition
of priority inversion.)

10.5 Discuss suitability of various kinds of locks for
synchronization of parallel activities within an
SMP kernel.

10.6 Processes of an application interact among
themselves very frequently. Among queued,
spin, and sleep locks, which would you consider
suitable for implementing this application on a
multiprocessor system, and why?

BIBLIOGRAPHY
•

Most books on computer architecture discuss architec-
ture of multiprocessors and interconnection networks,
e.g., Hennessy and Patterson (2002), Hamacher et al.
(2002), and Stallings (2003).

Mellor-Crummey and Scott (1991), Menasse et al.
(1991), and Wisniewski et al. (1997) discuss synchroniza-
tion of processes in a multiprocessor environment. The
efficient software solution for process synchronization
described in Fig. 10.7 is adapted from Mellor-Crummey
and Scott (1991). Ousterhout (1982), Tucker and Gupta
(1989), and Squillante (1990) discuss scheduling issues
in multiprocessor operating systems.

Eykholt et al. (1992) discusses multithreading of
the SunOS kernel to enhance effectiveness of its SMP
structure. Accetta et al. (1986) describes the Mach
multiprocessor operating system. Love (2005) discusses
synchronization and scheduling in Linux 2.6, while
Russinovich and Solomon (2005) describes synchroni-
zation and scheduling in Windows.

1. Accetta, M., R. Baron, W. Bolosky, D. B. Golub,
R. Rashid, A. Tevanian, and M. Young (1986):
“Mach: A new kernel foundation for Unix
development,” Proceedings of the Summer 1986
USENIX Conference, June 1986, 93–112.

2. Eykholt, J. R., S. R. Kleiman, S. Barton,
S. Faulkner, A. Shivalingiah, M. Smith, D. Stein,
J. Voll, M. Weeks, and D. William (1992):
“Beyond multiprocessing: multithreading the

SunOS kernel,” Proceedings of the Summer 1992
USENIX Conference, 11–18.

3. Hamacher, C., Z. Vranesic, and S. Zaky (2002):
Computer Organization, 5th ed., McGraw-Hill,
New York.

4. Hennessy, J., and D. Patterson (2002): Computer
Architecture: A Quantitative Approach, 3rd ed.,
Morgan Kaufmann, San Mateo, Calif.

5. Mellor-Crummey, and M. L. Scott (1991):
“Algorithms for scalable synchronization on
shared memory multiprocessor,” ACM
Transactions on Computer Systems, 9 (1), 21–65.

6. Karlin, A. R., K. Li, M. S. Menasse, and
S. Owicki (1991): “Empirical studies of
competitive spinning for shared memory
multiprocessor,” Proceedings of 13th ACM
Symposium on Operating System Principles,
41–55.

7. Kontothanassis L. I., R. W. Wisniewski, and
M. L. Scott (1997): “Scheduler conscious
synchronization,” ACM Transactions on
Computer Systems, 15 (1), 3–40.

8. Love, R. (2005): Linux Kernel Development, 2nd
ed., Novell Press.

9. Ousterhout, J. K. (1982): “Scheduling techniques
for concurrent systems,” Proceedings of the 3rd
International Conference on Distributed
Computing Systems, 22–30.

10-M4363-DAS1.LaTeX: “chap10” — 2007/11/5 — 15:50 — page 360 — #25

360 Part 2 Process Management

10. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

11. Squillante, M. (1990): “Issues in shared-memory
multiprocessor scheduling: A performance
evaluation,” Ph.D. dissertation, Dept. of
Computer Science & Engineering, University
of Washington.

12. Stallings, W. (2003): Computer Organization and
Architecture, 6th ed., Prentice Hall, Upper Saddle
River, N.J.

13. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

14. Tucker, A., and A. Gupta (1989): “Process control
and scheduling issues for multiprogrammed
shared memory multiprocessors,” Proceedings of
12th ACM Symposium on Operating System
Principles, 159–166.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 361 — #1

p a r t 3
Memory Management

The memory of a computer system is shared by a large number of processes,
so memory management has traditionally been a very important task of
an operating system. Memories keep becoming cheaper and larger every

year; however, the pressure on memory as an OS resource persists because both
the size of processes and the number of processes that an operating system has
to service at any time also keep growing. The basic issues in memory manage-
ment are efficient use of memory, protection of memory allocated to a process
against illegal accesses by other processes, performance of individual processes,
and performance of the system.

Efficient use of memory is important because it determines the number of
processes that can be accommodated in memory at any time. This number, in
turn, influences performance of the system because presence of too few processes
in memory could lead to CPU idling. Both memory efficiency and system perfor-
mance deteriorate when some memory areas remain unused because they are too
small to accommodate a process. This situation is called memory fragmentation.

The technique of noncontiguous memory allocation enables efficient use of
memory by countering memory fragmentation. When the OS does not find a
memory area that is large enough to accommodate a process, it allocates several
nonadjoining memory areas to the process. Special features exist in a computer’s
hardware to support operation of such a process. Operating systems exploit
noncontiguous memory allocation to keep only some parts of a process, rather
than the whole process, in memory. This technique permits the size of a process
to exceed the size of memory, which creates an illusion that the memory of a
computer is larger than it actually is. This illusion is called virtual memory.

Road Map for Part 3
Chapter 11: Memory Management
This chapter is devoted to the fundamentals of memory management. It begins
by discussing how memory protection is implemented in the hardware by using
special registers in the CPU. It then discusses how efficient use of memory is
achieved by reusing memory released by a process while handling subsequent

361

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 362 — #2

362 Part 3 Memory Management

Road Map for Part 3

Memory

Management

Virtual
Memory

Schematic diagram showing the order in which chapters of this part should be covered in a
course.

memory requests, and how techniques for fast memory allocation and dealloca-
tion may cause memory fragmentation. The noncontiguous memory allocation
approaches called paging and segmentation are then described. The chapter
also discusses the special techniques employed by the kernel to manage its own
memory requirements efficiently.

Chapter 12: Virtual Memory
This chapter deals with virtual memory implementation using paging in detail.
It discusses how the kernel keeps the code and data of a process on a disk and
loads parts of it into memory when required, and how the performance of a
process is determined by the rate at which parts of a process have to be loaded
from the disk. It shows how this rate depends on the amount of memory allocated
to a process, and the page replacement algorithm used to decide which pages of
a process should be removed from memory so that new pages can be loaded.
Page replacement algorithms that use clues from the empirical law of locality of
reference are then discussed. Virtual memory implementation using segmentation
is also described.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 363 — #3

C h a p t e r 11
Memory Management

A
s seen in Chapter 2, the memory hierarchy comprises the cache, the mem-
ory management unit (MMU), random access memory (RAM), which is
simply called memory in this chapter, and a disk. We discuss management

of memory by the OS in two parts—this chapter discusses techniques for efficient
use of memory, whereas the next chapter discusses management of virtual mem-
ory, which is part of the memory hierarchy consisting of the memory and the
disk.

Memory binding is the association of memory addresses with instructions
and data of a program. To provide convenience and flexibility, memory bind-
ing is performed several times to a program—the compiler and linker perform
it statically, i.e., before program execution begins, whereas the OS performs it
dynamically, i.e., during execution of the program. The kernel uses a model of
memory allocation to a process that provides for both static and dynamic memory
binding.

The speed of memory allocation and efficient use of memory are the two
fundamental concerns in the design of a memory allocator. To ensure efficient
use, the kernel recycles the memory released by a process to other processes that
need it. Memory fragmentation is a problem that arises in memory reuse, leading
to inefficient use of memory. We will discuss practical techniques for reducing the
amount of memory fragmentation in an OS, in particular, noncontiguous memory
allocation using paging or segmentation.

The kernel creates and destroys data structures used to store control data—
mainly, various control blocks such as PCBs—at a high rate. The sizes of these
data structures are known a priori, so the kernel employs a set of techniques that
exploit this foreknowledge for achieving fast allocation/deallocation and efficient
use of memory.

11.1 MANAGING THE MEMORY HIERARCHY
•

As discussed earlier in Chapter 2, a memory hierarchy comprises cache memo-
ries like the L1 and L3 caches, the memory management unit (MMU), memory,
and a disk. Its purpose is to create an illusion of a fast and large memory at a
low cost. The upper half of Figure 11.1 illustrates the memory hierarchy. The

363

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 364 — #4

364 Part 3 Memory Management

Virtual

memory

Memory

CPU

L1 cache

MMU

L3 cache

Disk

Caches Allocation and use is managed by

hardware

Ensuring high hit ratios

Levels How managed Performance issues

(1) Accommodating more process

in memory, (2) Ensuring high hit ratios

Memory Allocation is managed by the kernel

and use of allocated memory is managed

by run-time libraries

Allocation and use is managed by

the kernel

Disk Quick loading and storing of parts of

process address spaces

Figure 11.1 Managing the memory hierarchy.

CPU refers to the fastest memory, the cache, when it needs to access an instruc-
tion or data. If the required instruction or data is not available in the cache,
it is fetched from the next lower level in the memory hierarchy, which could
be a slower cache or the random access memory (RAM), simply called mem-
ory in this book. If the required instruction or data is also not available in
the next lower level memory, it is fetched there from a still lower level, and so
on. Performance of a process depends on the hit ratios in various levels of the
memory hierarchy, where the hit ratio in a level indicates what fraction of instruc-
tions or data bytes that were looked for in that level were actually present in it.
Eq. (2.1) ofChapter 2 indicateshowthe effectivememoryaccess timedependsona
hit ratio.

The caches are managed entirely in the hardware. The kernel employs special
techniques to provide high cache hit ratios for a process. For example, the kernel
switches between threads of the same process whenever possible to benefit from
presence of parts of the process address space in the cache, and it employs affinity

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 365 — #5

Chapter 11 Memory Management 365

scheduling in a multiprocessor system (see Section 10.5), to schedule a process
on the same CPU every time to achieve high cache hit ratios.

Memory is managed jointly by the kernel and the run-time library of the
programming language in which the code of the process is written. The kernel
allocates memory to user processes. The primary performance concern in this
function is accommodating more user processes in memory, so that both sys-
tem performance and user service would improve. The kernel meets this concern
through efficient reuse of memory when a process completes. During opera-
tion, a process creates data structures within the memory already allocated to
it by the kernel. This function is actually performed by the run-time library. It
employs techniques that efficiently reuse memory when a process creates and
destroys data structures during its operation. Thus some of the concerns and
techniques employed by the kernel and the run-time libraries are similar.

As a sequel to the kernel’s focus on accommodating a large number of pro-
cesses in memory, the kernel may decide on keeping only a part of each process’s
address space in memory. It is achieved by using the part of the memory hierar-
chy called virtual memory that consists of memory and a disk (see the dashed box
in Figure 11.1). The parts of a process’s address space that are not in memory
are loaded from the disk when needed during operation of the process. In this
arrangement, the hit ratio of a process in memory determines its performance.
Hence the kernel employs a set of techniques to ensure a high hit ratio for pro-
cesses. The disk in the virtual memory is managed entirely by the kernel; the
kernel stores different parts of each process’s address space on the disk in such
a manner that they can be accessed efficiently. It contributes to good execution
performance of processes in a virtual memory.

We discuss management of the memory hierarchy by an operating system
in two parts. This chapter focuses on the management of memory, and focuses
on techniques employed for efficient use of memory and for speedy allocation
and deallocation of memory. Later we discuss how presence of the memory
management unit (MMU) simplifies both these functions. Chapter 12 discusses
management of the virtual memory, particularly the techniques employed by the
kernel to ensure high hit ratios in memory and limit the memory committed to
each process.

11.2 STATIC AND DYNAMIC MEMORY ALLOCATION
•

Memory allocation is an aspect of a more general action in software opera-
tion known as binding. Two other actions related to a program—its linking and
loading—are also aspects of binding.

Any entity in a program, e.g., a function or a variable, has a set of attributes,
and each attribute has a value. Binding is the act of specifying the value of an
attribute. For example, a variable in a program has attributes such as name,
type, dimensionality, scope, and memory address. A name binding specifies the
variable’s name and a type binding specifies its type. Memory binding is the act
of specifying the variable’s memory address; it constitutes memory allocation for

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 366 — #6

366 Part 3 Memory Management

the variable. Memory allocation to a process is the act of specifying memory
addresses of its instructions and data.

A binding for an attribute of an entity such as a function or a variable can be
performed any time before the attribute is used. Different binding methods per-
form the binding at different times. The exact time at which binding is performed
may determine the efficiency and flexibility with which the entity can be used.
Broadly speaking, we can differentiate between early binding and late binding.
Late binding is useful in cases where the OS or run-time library may have more
information about an entity at a later time, using which it may be able to perform
a better quality binding. For example, it may be able to achieve more efficient use
of resources such as memory. Early and late binding are represented by the two
fundamental binding methods of static and dynamic binding, respectively.

Definition 11.1 Static Binding A binding performed before the execution of
a program (or operation of a software system) is set in motion.

Definition 11.2 Dynamic Binding A binding performed during the execution
of a program (or operation of a software system).

Static memory allocation can be performed by a compiler, linker, or loader
while a program is being readied for execution. Dynamic memory allocation is
performed in a “lazy” manner during the execution of a program; memory is
allocated to a function or a variable just before it is used for the first time.

Static memory allocation to a process is possible only if sizes of its data
structures are known before its execution begins. If sizes are not known, they
have to be guessed; wrong estimates can lead to wastage of memory and lack
of flexibility. For example, consider an array whose size is not known during
compilation. Memory is wasted if we overestimate the array’s size, whereas the
process may not be able to operate correctly if we underestimate its size. Dynamic
memory allocation can avoid both these problems by allocating a memory area
whose size matches the actual size of the array, which would be known by
the time the allocation is performed. It can even permit the array size to vary
during operation of the process. However, dynamic memory allocation incurs
the overhead of memory allocation actions performed during operation of a
process.

Operating systems choose static and dynamic memory allocation under dif-
ferent circumstances to obtain the best combination of execution efficiency and
memory efficiency. When sufficient information about memory requirements is
available a priori, the kernel or the run-time library makes memory allocation
decisions statically, which provides execution efficiency. When little information
is available a priori, the memory allocation decisions are made dynamically, which
incurs higher overhead but ensures efficient use of memory. In other situations,
the available information is used to make some decisions concerning memory
allocation statically, so that the overhead of dynamic memory allocation can be

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 367 — #7

Chapter 11 Memory Management 367

reduced. We discuss an instance of this approach in Section 11.11, where the ker-
nel exploits its knowledge of its own data structures to achieve efficient memory
allocation for them.

11.3 EXECUTION OF PROGRAMS
•

A program P written in a language L has to be transformed before it can
be executed. Several of these transformations perform memory binding—each
one binds the instructions and data of the program to a new set of addresses.
Figure 11.2 is a schematic diagram of three transformations performed on
program P before it can be loaded in memory for execution.

• Compilation or assembly: A compiler or an assembler is generically called a
translator. It translates program P into an equivalent program in the object
module form. This program contains instructions in the machine language of
the computer. While invoking the translator, the user specifies the origin of
the program, which is the address of its first instruction or byte; otherwise, the
translator assumes a default address, typically 0. The translator accordingly
assigns addresses to other instructions and data in the program and uses these
addresses as operand addresses in its instructions. The execution start address
or simply the start address of a program is the address of the instruction with
which its execution is to begin. It can be the same as the origin of the program,
or it can be different.

The addresses assigned by the translator are called translated addresses.
Thus, the translator binds instructions and data in program P to translated
addresses. An object module indicates the translated origin of the program,
its translated start address, and size.

• Linking: Program P may call other programs during its execution, e.g., func-
tions from mathematical libraries. These functions should be included in the
program, and their start addresses should be used in the function call instruc-
tions in P. This procedure is called linking. It is achieved by selecting object
modules for the called functions from one or more libraries and merging
them with program P.

Library

Object

modules

Binary

programs

Results

Data flow

Control flow

Data

Source

program

P

Loader
Binary

program

Compiler

or

Assembler

Linker

Figure 11.2 Schematic diagram of transformation and execution of a program.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 368 — #8

368 Part 3 Memory Management

• Relocation: Some object module(s) merged with program P may have con-
flicting translated time addresses. This conflict is resolved by changing the
memory binding of the object module(s); this action is called relocation of
object modules. It involves changing addresses of operands used in their
instructions.

The relocation and linking functions are performed by a program called
a linker. The addresses assigned by it are called linked addresses. The user may
specify the linked origin for the program; otherwise, the linker assumes the linked
origin to be the same as the translated origin. In accordance with the linked
origin and the relocation necessary to avoid address conflicts, the linker binds
instructions and data of the program to a set of linked addresses. The resulting
program, which is in a ready-to-execute program form called a binary program,
is stored in a library. The directory of the library stores its name, linked origin,
size, and the linked start address.

A binary program has to be loaded in memory for execution. This function is
performed by the loader. If the start address of the memory area where a program
is to be loaded, which is called its load origin, differs from the linked origin
of program, the loader has to change its memory binding yet again. A loader
possessing this capability is called a relocating loader, whereas a loader without
this capability is called an absolute loader. Note that translators, linkers, and
loaders are not parts of the OS.

In this section we discuss different forms of programs and their properties
concerning memory bindings, processing by the linker, and memory requirements
during execution. We use programs written in a simple hypothetical assembly
language to illustrate the relocation and linking actions performed by the linker.

A Simple Assembly Language An assembly language statement has the follow-
ing format:

[Label] <Opcode> <operand spec> ,<operand spec>

The first operand is always a general-purpose-register (GPR)—AREG, BREG,
CREG or DREG. The second operand is either a GPR or a symbolic name that
corresponds to a memory byte. Self-explanatory opcodes like ADD and MULT are
used to designate arithmetic operations. The MOVER instruction moves a value
from its memory operand to its register operand, whereas the MOVEM instruction
does the opposite. All arithmetic is performed in a register and sets a condition
code. The condition code can be tested by a branch-on-condition (BC) instruction.
The assembly statement corresponding to it has the format

BC <condition code spec>, <instruction address>

where <condition code spec> is a self-explanatory character string describing
a condition, e.g., GT for > and EQ for =. The BC instruction transfers control
to the instruction with the address <instruction address> if the current value of
condition code matches <condition code spec>. For simplicity, we assume that all
addresses and constants are in decimal, and all instructions occupy 4 bytes. The
sign is not a part of an instruction. The opcode and operands of an instruction

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 369 — #9

Chapter 11 Memory Management 369

Assembly statement Generated code
Address Code

START 500
ENTRY TOTAL
EXTRN MAX, ALPHA

+ 09 0 540

+ 04 1 000
+ 06 6 000

+ 06 1 504
+ 00 0 000

500)AREAD
504)

516)
520)

532)
536)
540)
541)

LOOP
...
MOVER AREG, ALPHA
BC ANY, MAX
...
BC LT, LOOP
STOP

1DSA
3DSTOTAL

END

Figure 11.3 Assembly program P and its generated code.

occupy 2, 1, and 3 digits, respectively, and the GPRs AREG, BREG, CREG, and
DREG are represented by 1, 2, 3, and 4, respectively, in an instruction.

11.3.1 Relocation
Figure 11.3 shows program P, an assembly program, and its generated code. The
ENTRY and EXTRN statements have significance for linking; they are discussed
later in Section 11.3.2. A DS statement merely reserves the number of bytes men-
tioned as its operand. The statement START 500 indicates that the translated
origin of the program should be 500. The translated address of LOOP is therefore
504. The address of A is 540. The instructions in bytes with addresses 532 and
500 use these addresses to refer to LOOP and A, respectively. These addresses
depend on the origin of the program in an obvious way. Instructions using such
addresses are called address-sensitive instructions. A program containing address-
sensitive instructions can execute correctly only if it is loaded in the memory area
whose start address coincides with the origin of the program. If it is to execute in
some other memory area, addresses in address-sensitive instructions have to be
suitably modified. This action is called relocation. It requires knowledge of trans-
lated and linked origins and information about address-sensitive instructions.
The next example illustrates relocation of P.

•
Example 11.1Relocation of a Program

The translated origin of program P in Figure 11.3 is 500. The translated
address of the symbol A is 540. The instruction corresponding to the state-
ment READ A is an address-sensitive instruction. If the linked origin of P is
900, the linked address of A would be 940. It can be obtained by adding the
difference between the translated and linked origins, i.e., 900 − 500, to its

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 370 — #10

370 Part 3 Memory Management

translated address. Thus, relocation can be performed by adding 400 to the
address used in each address-sensitive instruction. Thus, the address in the
READ instruction would be changed to 940. Similarly, the instruction in trans-
lated memory byte 532 uses the address 504, which is the address of LOOP.
This address would be changed to 904. (Note that operand addresses in the
instructions with addresses 516 and 520 also need to be “corrected.” However,
it is an instance of linking, which is discussed in the next section.)
•

Static and Dynamic Relocation of Programs When a program is to be executed,
the kernel allocates it a memory area that is large enough to accommodate it,
and invokes the loader with the name of the program and the load origin as
parameters. The loader loads the program in the memory allocated to it, relocates
it using the scheme illustrated in Example 11.1 if the linked origin is different
from the load origin, and passes it control for execution. This relocation is static
relocation as it is performed before execution of the program begins. Some time
after the program’s execution has begun, the kernel may wish to change the
memory area allocated to it so that other programs can be accommodated in
memory. This time, the relocation has to be performed during execution of the
program, hence it constitutes dynamic relocation.

Dynamic relocation can be performed by suspending a program’s execution,
carrying out the relocation procedure described earlier, and then resuming its exe-
cution. However, it would require information concerning the translated origin
and address-sensitive instructions to be available during the program’s execution.
It would also incur the memory and processing costs described earlier. Some com-
puter architectures provide a relocation register to simplify dynamic relocation.
The relocation register is a special register in the CPU whose contents are added to
every memory address used during execution of a program. The result is another
memory address, which is actually used to make a memory reference. Thus,

Effective memory address = memory address used in the current instruction
+ contents of relocation register

The following example illustrates how dynamic relocation of a program is
achieved by using the relocation register.

•
Example 11.2 Dynamic Relocation through Relocation Register

A program has the linked origin of 50000, and it has also been loaded in the
memory area that has the start address of 50000. During its execution, it is to
be shifted to the memory area having the start address of 70000, so it has to be
relocated to execute in this memory area. This relocation is achieved simply

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 371 — #11

Chapter 11 Memory Management 371

(b)(a)

Program

55000 Add 65784

50000

65784

20000

75000

Memory

85784
(65784)

75000
(55000)

Add 65784

70000
(50000)

CPU

PSW

+

Relocation

register

Figure 11.4 Program relocation using a relocation register: (a) program; (b) its execution.

by loading an appropriate value in the relocation register, which is computed
as follows:

Value to be loaded in relocation register
= start address of allocated memory area − linked origin of program
= 70000 − 50000 = 20000

Consider execution of the Add instruction in the program shown in
Figure 11.4(a). This instruction has the linked address 55000 in the program
and uses an operand whose linked address is 65784. As a result of reloca-
tion, the program exists in the memory area starting with the address 70000.
Figure 11.4(b) shows the load addresses of its instructions and data; the corre-
sponding linked addresses are shown in parenthesis for easy reference. The Add
instruction exists in the location with address 75000. The address of its operand
is 65784 and the relocation register contains 20000, so during execution of the
instruction, the effective address of its operand is 65784 + 20000 = 85784.
Hence the actual memory access is performed at the address 85784.

•

11.3.2 Linking
An ENTRY statement in an assembly program indicates symbols that are defined
in the assembly program and may be referenced in some other assembly pro-
grams. Such symbols are called entry points. An EXTRN statement in an assembly
program indicates symbols that are used in the assembly program but are defined
in some other assembly program. These symbols are called external symbols and
uses of these symbols in the assembly program are called external references. The
assembler puts information about the ENTRY and EXTRN statements in an object
module for use by the linker.

Linking is the process of binding an external reference to the correct linked
address. The linker first scans all object modules being linked together to collect
the names of all entry points and their linked addresses. It stores this information
in a table for its own use. It then considers each external reference, obtains the

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 372 — #12

372 Part 3 Memory Management

linked address of the external symbol being referenced from its table, and puts
this address in the instruction containing the external reference. This action is
called resolution of an external reference. The next example illustrates the steps
in linking.

•
Example 11.3 Linking

The statement ENTRY TOTAL in program P of Figure 11.3 indicates that
TOTAL is an entry point in the program. Note that LOOP and A are not entry
points even though they are defined in the program. The statement EXTRN
MAX, ALPHA indicates that the program contains external references to MAX
and ALPHA. The assembler does not know the addresses of MAX and ALPHA
while processing program P, so it puts zeroes in the operand address fields of
instructions containing references to these symbols (see Figure 11.3).

Consider program Q shown below:

Assembly statement Generated code

Address Code

START 200
ENTRY ALPHA
- -

ALPHA DC 25 232) + 00 0 025
END

The DC statement declares a constant 25. Symbol ALPHA is an entry point
in Q; it has the translated address 232. Let the linked origin of program P
of Figure 11.3 be 900. The size of P is 44 bytes, so the linker assigns the
address 944 to the linked origin of Q. Therefore, the linked address of ALPHA
is 232 − 200 + 944 = 976. The linker resolves the external reference to ALPHA
in program P by putting the address 974 in the operand address field of the
instruction that uses ALPHA, i.e., in the instruction with the translated address
516 in P. This instruction has the linked address 916.
•
Static and Dynamic Linking/Loading The distinction between the terms link-
ing and loading has become blurred in modern operating systems. However,
we use the terms as follows: A linker links modules together to form an exe-
cutable program. A loader loads a program or a part of a program in memory
for execution.

In static linking, the linker links all modules of a program before its execu-
tion begins; it produces a binary program that does not contain any unresolved
external references. If several programs use the same module from a library, each
program will get a private copy of the module; several copies of the module might
be present in memory at the same time if programs using the module are executed
simultaneously.

Dynamic linking is performed during execution of a binary program. The
linker is invoked when an unresolved external reference is encountered during

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 373 — #13

Chapter 11 Memory Management 373

its execution. The linker resolves the external reference and resumes execution of
the program. This arrangement has several benefits concerning use, sharing, and
updating of library modules. Modules that are not invoked during execution of
a program need not be linked to it at all. If the module referenced by a program
has already been linked to another program that is in execution, the same copy
of the module could be linked to this program as well, thus saving memory.
Dynamic linking also provides an interesting benefit when a library of modules
is updated—a program that invokes a module of the library automatically starts
using the new version of the module! Dynamically linked libraries (DLLs) use
some of these features to advantage.

To facilitate dynamic linking, each program is first processed by the static
linker. The static linker links each external reference in the program to a dummy
module whose sole function is to call the dynamic linker and pass the name of
the external symbol to it. This way, the dynamic linker is activated when such an
external reference is encountered during execution of the program. It maintains a
table of entry points and their load addresses. If the external symbol is present in
the table, it uses the load address of the symbol to resolve the external reference.
Otherwise, it searches the library of object modules to locate a module that con-
tains the required symbol as an entry point. This object module is linked to the
binary program through the scheme illustrated in Example 11.3 and information
about its entry points is added to the linker’s table.

11.3.3 Program Forms Employed in Operating Systems
Two features of a program influence its servicing by an OS:

• Can the program execute in any area of memory, or does it have to be executed
in a specific memory area?

• Can the code of the program be shared by several users concurrently?

If the load origin of the program does not coincide with the start address of
the memory area, the program has to be relocated before it can execute. This is
expensive. A program that can execute in any area of memory is at an advantage
in this context. Shareability of a program is important if the program may have
to be used by several users at the same time. If a program is not shareable, each
user has to have a copy of the program, and so several copies of the program will
have to reside in memory at the same time.

Table 11.1 summarizes important programs employed in operating systems.
An object module is a program form that can be relocated by a linker, whereas a
binary program cannot be relocated by a linker. The dynamically linked program
form conserves memory by linking only those object modules that are referenced
during its execution. We discussed these three program forms in previous sections.
A self-relocating program can be executed in any part of memory. This program
form is not important when a computer provides either a relocation register or
virtual memory. The reentrant program form avoids the need to have multiple
copies of a program in memory. These two program forms are discussed in the
following sections.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 374 — #14

374 Part 3 Memory Management

Table 11.1 Program Forms Employed in Operating Systems

Program form Features

Object module Contains instructions and data of a program and
information required for its relocation and linking.

Binary program Ready-to-execute form of a program.
Dynamically linked
program

Linking is performed in a lazy manner, i.e., an object
module defining a symbol is linked to a program only
when that symbol is referenced during the program’s
execution.

Self-relocating program The program can relocate itself to execute in any area
of memory.

Reentrant program The program can be executed on several sets of data
concurrently.

11.3.3.1 Self-Relocating Programs

Recall from Section 11.3.1 that relocation of a program involves modification
of its address-sensitive instructions so that the program can execute correctly
from a desired area of memory. Relocation of a program by a linker requires its
object module form to be available; it also incurs considerable overhead. The self-
relocating program form was developed to eliminate these drawbacks; it performs
its own relocation to suit the area of memory allocated to it.

A self-relocating program knows its own translated origin and translated
addresses of its address-sensitive instructions. It also contains a relocating logic,
i.e., code that performs its own relocation. The start address of the relocating
logic is specified as the execution start address of the program, so the relocating
logic gains control when the program is loaded for execution. It starts off by
calling a dummy function. The return address formed by this function call is
the address of its next instruction. Using this address, it obtains address of the
memory area where it is loaded for execution, i.e., its load origin. It now has all
the information needed to implement the relocation scheme of Section 11.3.1.
After performing its own relocation, it passes control to its first instruction to
begin its own execution.

11.3.3.2 Reentrant Programs

Programs can be shared in both static and dynamic manner. Consider two pro-
grams A and B that use a program C. We designate A and B as sharing programs
and C as the shared program. Static sharing of C is performed by using static
linking. Hence the code and data of C are included in both A and B; the identity
of C is lost in the binary programs produced by the linker. If programs A and B are
executed simultaneously, two copies of C will exist in memory [see Figure 11.5(a)].
Thus, static sharing of a program is simple to implement, but may waste memory.

When dynamic sharing is used, a single copy of a shared program’s code
is loaded in memory and used by all sharing programs in execution. Dynamic

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 375 — #15

Chapter 11 Memory Management 375

Program

A
C

Program

B
C

(a)

Program

A

Program

B

Program

C
(b)

Figure 11.5 Sharing of program C by programs A and B: (a) static sharing; (b) dynamic
sharing.

Data
AREG AREG

AREG

(a)

C

Data(C
A
)

(b)

C

Data(C
B
)

Data(C
A
)

(c)

C

Figure 11.6 (a) Structure of a reentrant program; (b)–(c) concurrent invocations of the
program.

sharing is implemented by using dynamic linking. The kernel keeps track of
shared programs in memory. When a program wishes to use one of the shared
programs, the kernel dynamically links the program to the copy of the shared
program in memory. Figure 11.5(b) illustrates dynamic sharing. When program
A needs to use program C in a shared mode, the kernel finds that C does not
exist in memory. Hence it loads a copy of C in memory and dynamically links it
to A. In Figure 11.5(b), this linking is depicted by the arrow from A to C. When
program B needs to use program C, the kernel finds that a copy of C already
exists in memory, so it merely links this copy to B. This arrangement avoids the
need to have multiple copies of a program in memory, but we need to ensure that
concurrent executions of a program do not interfere with one another.

A reentrant program is one that can be executed concurrently by many users
without mutual interference. When invoked, the reentrant program allocates a
new copy of its data structures and loads the memory address of this copy in
a general-purpose register (GPR). Its code accesses its data structures through
the GPR. This way, if the reentrant program is invoked concurrently by many
programs, the concurrent invocations would use different copies of the data
structure.

Figure 11.6 illustrates execution of program C coded as a reentrant program.
Program C is coded so that it assumes AREG to point to the start of its data area
[see Figure 11.6(a)]. Data items in this area are accessed by using different offsets
from the address contained in AREG. When program A calls C, C allocates a data
area for use during this invocation. It is depicted as Data(CA) in Figure 11.6(b).
When execution of A is preempted, the contents of AREG are stored in A’s PCB;
they would be loaded back in AREG when A is scheduled again. When C is called
by B, a data area Data(CB) is similarly allocated and AREG is set to point to the

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 376 — #16

376 Part 3 Memory Management

start of this area [see Figure 11.6(c)]. Thus executions of programs A and B do
not interfere with one another.

11.4 MEMORY ALLOCATION TO A PROCESS
•

11.4.1 Stacks and Heaps
The compiler of a programming language generates code for a program and allo-
cates its static data. It creates an object module for the program (see Section 11.3).
The linker links the program with library functions and the run-time support of
the programming language, prepares a ready-to-execute form of the program,
and stores it in a file. The program size information is recorded in the directory
entry of the file.

The run-time support allocates two kinds of data during execution of the
program. The first kind of data includes variables whose scope is associated with
functions, procedures, or blocks, in a program and parameters of function or
procedure calls. This data is allocated when a function, procedure or block is
entered and is deallocated when it is exited. Because of the last-in, first-out nature
of the allocation/deallocation, the data is allocated on the stack. The second kind
of data is dynamically created by a program through language features like the
new statement of Pascal, C++, or Java, or the malloc, calloc statements of
C. We refer to such data as program-controlled dynamic data (PCD data). The
PCD data is allocated by using a data structure called a heap.

Stack In a stack, allocations and deallocations are performed in a last-in, first-
out (LIFO) manner in response to push and pop operations, respectively. We
assume each entry in the stack to be of some standard size, say, l bytes. Only the
last entry of the stack is accessible at any time. A contiguous area of memory is
reserved for the stack. A pointer called the stack base (SB) points to the first entry
of the stack, while a pointer called the top of stack (TOS) points to the last entry
allocated in the stack. We will use the convention that a stack grows toward the
lower end of memory; we depict it as upward growth in the figures.

During execution of a program, a stack is used to support function calls. The
group of stack entries that pertain to one function call is called a stack frame;
it is also called an activation record in compiler terminology. A stack frame is
pushed on the stack when a function is called. To start with, the stack frame
contains either addresses or values of the function’s parameters, and the return
address, i.e., the address of the instruction to which control should be returned
after completing the function’s execution. During execution of the function, the
run-time support of the programming language in which the program is coded
creates local data of the function within the stack frame. At the end of the func-
tion’s execution, the entire stack frame is popped off the stack and the return
address contained in it is used to pass control back to the calling program.

Two provisions are made to facilitate use of stack frames: The first entry in
a stack frame is a pointer to the previous stack frame on the stack. This entry
facilitates popping off of a stack frame. A pointer called the frame base (FB) is

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 377 — #17

Chapter 11 Memory Management 377

(a) (b)

Top of

stack

(TOS)

Frame

base

(FB)

Local data

of sample

i
y

x
ret_ad (main)

Previous FB

Stack

frame

for

call on

sample

Top of

stack

(TOS)

Frame

base

(FB)

Local data

of calc
Stack

frame

for

call on

calc

sum

b
a

ret_ad (sample)
Previous FB
Local data

of sample

i
y

x
ret_ad (main)

Previous FB

Stack

frame

for

call on

sample

Figure 11.7 Stack after (a) main calls sample; (b) sample calls calc.

used to point to the start of the topmost stack frame in the stack. It helps in
accessing various stack entries in the stack frame. Example 11.4 illustrates how
the stack is used to implement function calls.

•
Example 11.4Use of a Stack

Figure 11.7 shows the stack during execution of a program containing nested
function calls. Figure 11.7(a) shows the stack after main, the primary function
of the program, has made a function call sample(x,y,i). A stack frame
was pushed on the stack when the call was made. The first entry in the stack
frame contains the previous value of the frame base, i.e., a pointer to the
previous stack frame in the stack. The second entry is ret_ad(main), which
is the return address into function main. The next three entries pertain to
the parameters x, y, and i, while the entries following them pertain to the
local data of function sample. The frame base (FB) points to the first entry
in this stack frame. The TOS pointer points to the last local data in the stack
frame. The code for function sample accesses the return address, information
about the parameters, and its local data using displacements from the frame
base (FB): Assuming each stack entry to be 4 bytes, the return address is at a
displacement of 4 from the address in the frame base, the first parameter is at
a displacement of 8, etc.

Figure 11.7(b) shows the stack after function sample has made a function
call calc(a, b, sum). A new stack frame has been pushed on the stack, the
value of the FB has been saved in the first entry of this stack frame, the FB has
been set to point at the start of the new stack frame, and the top of stack pointer
now points at the last entry in the new stack frame. At the completion of the
function, the TOS pointer would be set to point at the stack entry preceding the
entry pointed to by FB, and FB would be loaded with the address contained

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 378 — #18

378 Part 3 Memory Management

in the stack entry to which it was pointing. These actions would effectively
pop off the stack frame of calc and set FB to point at the start of the stack
frame for sample. The resulting stack would be identical to the stack before
function sample called calc.
•
Heap A heap permits allocation and deallocation of memory in a random order.
An allocation request by a process returns with a pointer to the allocated memory
area in the heap, and the process accesses the allocated memory area through this
pointer. A deallocation request must present a pointer to the memory area to be
deallocated. The next example illustrates use of a heap to manage the PCD data
of a process. As illustrated there, “holes” develop in the memory allocation as
data structures are created and freed. The heap allocator has to reuse such free
memory areas while meeting future demands for memory.

•
Example 11.5 Use of a Heap

Figure 11.8 shows the status of a heap after executing the following C program:

float *floatptr1, *floatptr2;
int *intptr;
floatptr1 = (float *) calloc (5, sizeof (float));
floatptr2 = (float *) calloc (4, sizeof (float));
intptr = (int *) calloc (10, sizeof (int));
free (floatptr2);

The calloc routine is used to make a request for memory. The first call
requests sufficient memory to accommodate 5 floating point numbers. The
heap allocator allocates a memory area and returns a pointer to it. This pointer
is stored in floatptr1. The first few bytes of each allocated memory area
are assumed to contain a length field. This field is used during deallocation
when the routine free is called with a pointer to an allocated memory area.
Figure 11.8(a) shows the heap after all calloc calls have been processed.
Figure 11.8(b) shows the heap after the free call. free has freed the mem-
ory area pointed to by floatptr2. This action has created a “hole” in the
allocation.
•

11.4.2 The Memory Allocation Model
The kernel creates a new process when a user issues a command to execute a
program. At this time, it has to decide how much memory it should allocate to
the following components:

• Code and static data of the program
• Stack
• Program-controlled dynamic data (PCD data)

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 379 — #19

Chapter 11 Memory Management 379

(a)

40

16

20

Length
field

intptr
floatptr2
floatptr1

Free
area

(b)

40

20
–

intptr
floatptr2
floatptr1

Free
area

Free
area

Figure 11.8 (a) A heap; (b) A “hole” in the allocation when memory is deallocated.

High end of
allocated memory

Low end of
allocated memory

Code

Static data

PCD Data
Direction
of growth

Free
area

Direction
of growthStack

Figure 11.9 Memory allocation model for a process.

The size of the program can be obtained from its directory entry. Sizes of
the stack and the PCD data vary during execution of a program, so the kernel
does not know how much memory to allocate to these components. It can guess
the maximum sizes the stack and the heap would grow to, and allocate them
accordingly. However, this amounts to static allocation, which lacks flexibility.
As discussed in Section 11.2, the allocated memory may be wasted or a process
may run out of memory during its operation.

To avoid facing these problems individually for these two components, oper-
ating systems use the memory allocation model shown in Figure 11.9. The code
and static data components in the program are allocated memory areas that
exactly match their sizes. The PCD data and the stack share a single large area of
memory but grow in opposite directions when memory is allocated to new data.
The PCD data is allocated by starting at the low end of this area while the stack
is allocated by starting at the high end of the area. The memory between these
two components is free. It can be used to create new data in either component.
In this model the stack and PCD data components do not have individual size
restrictions.

A program creates or destroys PCD data by calling appropriate routines of
the run-time library of the programming language in which it is coded. The library
routines perform allocations/deallocations in the PCD data area allocated to the
process. Thus, the kernel is not involved in this kind of memory management. In
fact it is oblivious to it.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 380 — #20

380 Part 3 Memory Management

11.4.3 Memory Protection
As discussed in Section 2.2.3, memory protection is implemented through two
control registers in the CPU called the base register and the size register. These
registers contain the start address of the memory area allocated to a process and its
size, respectively. The memory protection hardware raises a memory protection
violation interrupt if a memory address used in the current instruction of the
process lies outside the range of addresses defined by contents of the base and
size registers (see Figure 2.5). On processing this interrupt, the kernel aborts
the erring process. The base and size registers constitute the memory protection
information (MPI) field of the program status word (PSW). The kernel loads
appropriate values into these registers while scheduling a process for execution.
A user process, which is executed with the CPU in the user mode, cannot tamper
with contents of these registers because instructions for loading and saving these
registers are privileged instructions.

When a relocation register is used (see Section 11.3.1), memory protection
checks become simpler if every program has the linked origin of 0. In Figure 2.5,
the comparison with the address contained in the base register can be omitted
because the address used in an instruction cannot be < 0. The memory protection
hardware merely checks whether an address is smaller than contents of the size
register. The relocation register and the size register now constitute the MPI field
of the PSW.

11.5 HEAP MANAGEMENT
•

11.5.1 Reuse of Memory
The speed of memory allocation and efficient use of memory are the two fun-
damental concerns in the design of a memory allocator. Stack-based allocation
addresses both these concerns effectively since memory allocation and deallo-
cation is very fast—the allocator modifies only the SB, FB, and TOS pointers
to manage the free and allocated memory (see Section 11.4.1)—and released
memory is reused automatically when fresh allocations are made. However, stack-
based allocation cannot be used for data that are allocated and released in an
unordered manner. Hence heap allocators are used by run-time support of pro-
gramming languages to manage PCD data, and by the kernel to manage its own
memory requirements.

In a heap, reuse of memory is not automatic; the heap allocator must try
to reuse a free memory area while making fresh allocations. However, the size
of a memory request rarely matches the size of a previously used memory area,
so some memory area is left over when a fresh allocation is made. This memory
area will be wasted if it is too small to satisfy a memory request, so the allocator
must carefully select the memory area that is to be allocated to the request.
This requirement slows down the allocator. Because of the combined effect of
unusably small memory areas and memory used by the allocator for its own data

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 381 — #21

Chapter 11 Memory Management 381

Table 11.2 Kernel Functions for Reuse of Memory

Function Description

Maintain a free list The free list contains information about each free
memory area. When a process frees some memory,
information about the freed memory is entered in the
free list. When a process terminates, each memory area
allocated to it is freed, and information about it is
entered in the free list.

Select a memory area for
allocation

When a new memory request is made, the kernel selects
the most suitable memory area from which memory
should be allocated to satisfy the request.

Merge free memory areas Two or more adjoining free areas of memory can be
merged to form a single larger free area. The areas
being merged are removed from the free list and the
newly formed larger free area is entered in it.

free list

header a x

a x

-

b y c d z

-

e

(b)

free list

header b y c d z

-

e

(a)

Figure 11.10 Free area management: (a) singly linked free list; (b) doubly linked free list.

structures, a heap allocator may not be able to ensure a high efficiency of memory
utilization.

The kernel uses the three functions described in Table 11.2 to ensure efficient
reuse of memory. The kernel maintains a free list to keep information about free
memory areas in the system. A memory request is satisfied by using the free
memory area that is considered most suitable for the request, and the memory
left over from this memory area is entered in the free list. The allocation policy
prevents free memory areas from becoming unusably small. The kernel tries to
merge free areas of memory into larger free areas so that larger memory requests
can be granted.

11.5.1.1 Maintaining a Free List

The kernel needs to maintain two items of control information for each memory
area in the free list: the size of the memory area and pointers used for forming
the list. To avoid incurring a memory overhead for this control information, the
kernel stores it in the first few bytes of a free memory area itself. Figure 11.10(a)
shows a singly linked free list in a heap that contains five areas marked a–e in
active use and three free areas x–z. Each memory area in the free list contains
its size and a pointer to the next memory area in the list. This organization is

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 382 — #22

382 Part 3 Memory Management

simple; however, it requires a lot of work when a memory area is to be inserted
into the list or deleted from it. For example, deletion of a memory area from the
list requires a change in the pointer stored in the previous memory area in the list.
Insertion of a memory area at a specific place in the list also involves a similar
operation. Therefore, insertion and deletion operations on a singly linked list are
performed by processing the list from its start. It requires an order of m work,
where m is the number of memory areas in the free list.

A doubly linked free list is used to facilitate faster insertion and deletion
operations on memory areas. Each entry in this list contains two pointers—one
points to the next memory area in the list, while the other points to the previous
memory area [see Figure 11.10(b)]. If a memory area with a specific address is to
be deleted from the list, the kernel can simply take the pointers to the previous and
following memory areas in the list, and manipulate the pointers in these areas to
perform the deletion. Analogous operations would suffice to add a new memory
area at a specific place in the list. Thus the amount of work required to insert or
delete a memory area is a constant, irrespective of the number of memory areas
in the free list.

11.5.1.2 Performing Fresh Allocations by Using a Free List

Three techniques can be used to perform memory allocation by using a free list:

• First-fit technique
• Best-fit technique
• Next-fit technique

To service a request for n bytes of memory, the first-fit technique uses the
first free memory area it can find whose size is ≥ n bytes. It splits this memory
area in two parts. n bytes are allocated to the request, and the remaining part
of the memory area, if any, is put back into the free list. This technique may
split memory areas at the start of the free list repeatedly, so free memory areas
become smaller with time. Consequently, the allocator may not have any large free
memory areas left to satisfy large memory requests. Also, several free memory
areas may become unusably small.

The best-fit technique uses the smallest free memory area with size ≥ n. Thus,
it avoids needless splitting of large memory areas, however it tends to generate a
small free memory area at every split. Hence in the long run it, too, may suffer
from the problem of numerous small free memory areas. The best-fit technique
also incurs higher allocation overhead because it either has to process the entire
free list at every allocation or maintain the free list in ascending order by size of
free memory areas.

The next-fit technique remembers which entry in the free list was used to make
the last allocation. To make a new allocation, it searches the free list starting from
the next entry and performs allocation using the first free memory area of size ≥ n
bytes that it can find. This way, it avoids splitting the same free area repeatedly
as in the first-fit technique and also avoids the allocation overhead of the best-fit
technique.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 383 — #23

Chapter 11 Memory Management 383

Free list

header 200 170 500

(a)

First-fit

50

50100

170 100

400

(b)

Best-fit

200 20

100 50

100

400

(c)

Next-fit

100

100

120

50

100

400

(d)

Figure 11.11 (a) Free list; (b)–(d) allocation using first-fit, best-fit and next-fit.

•
Example 11.6First, Best, and Next-Fit Allocation

The free list in Figure 11.11(a) contains three free memory areas of size 200,
170, and 500 bytes, respectively. Processes make allocation requests for 100,
50, and 400 bytes. The first-fit technique will allocate 100 and 50 bytes from
the first free memory area, thus leaving a free memory area of 50 bytes, and
allocates 400 bytes from the third free memory area. The best-fit technique
will allocate 100 and 50 bytes from the second free memory area, leaving a
free memory area of 20 bytes. The next-fit technique allocates 100, 50, and 400
bytes from the three free memory areas.

•
Knuth (1973) presents experimental data on memory reuse and concludes

that both first-fit and next-fit perform better than best-fit. However, next-fit
tends to split all free areas if the system has been in operation long enough,
whereas first-fit may not split the last few free areas. This property of first-fit
facilitates allocation of large memory areas.

11.5.1.3 Memory Fragmentation

Definition 11.3 Memory Fragmentation The existence of unusable areas in
the memory of a computer system.

Table 11.3 describes two forms of memory fragmentation. External fragmen-
tation occurs when a memory area remains unused because it is too small to be
allocated. Internal fragmentation occurs when some of the memory allocated to
a process remains unused, which happens if a process is allocated more memory
than it needs. In Figure 11.11(c), best-fit allocation creates a free memory area of
20 bytes, which is too small to be allocated. It is an example of external fragmen-
tation. We would have internal fragmentation if an allocator were to allocate, say,
100 bytes of memory when a process requests 50 bytes; this would happen if an

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 384 — #24

384 Part 3 Memory Management

Table 11.3 Forms of Memory Fragmentation

Form of fragmentation Description

External fragmentation Some area of memory is too small to be allocated.
Internal fragmentation More memory is allocated than requested by a process,

hence some of the allocated memory remains unused.

allocator dealt exclusively with memory blocks of a few standard sizes to limit its
overhead.

Memory fragmentation results in poor utilization of memory. In this section,
and in the remainder of this chapter, we discuss several techniques to avoid or
minimize memory fragmentation.

11.5.1.4 Merging of Free Memory Areas

External fragmentation can be countered by merging free areas of memory to
form larger free memory areas. Merging can be attempted every time a new
memory area is added to the free list. A simple method would be to search the
free list to check whether any adjoining area is already in the free list. If so, it can
be removed from the free list and merged with the new area to form a larger free
memory area. This action can be repeated until no more merging is possible, and
the free memory area at hand can be added to the free list. However, this method
is expensive because it involves searching of the free list every time a new memory
area is freed. We now describe two generic techniques that perform merging more
efficiently; in Section 11.5.2 we describe a special merging technique used in the
buddy system allocator.

Boundary Tags A tag is a status descriptor for a memory area. It consists of an
ordered pair giving allocation status of the area; whether it is free or allocated,
represented by F or A, respectively; and its size. Boundary tags are identical tags
stored at the start and end of a memory area, i.e., in the first and last few bytes
of the area. If a memory area is free, the free list pointer can be put following the
tag at its starting boundary. Figure 11.12 shows this arrangement.

When an area of memory becomes free, the kernel checks the boundary tags
of its neighboring areas. These tags are easy to find because they immediately
precede and follow boundaries of the newly freed area. If any of the neighbors
are free, it is merged with the newly freed area. Figure 11.13 shows actions to
be performed when memory areas X, Y, and Z are freed while a system using
boundary tags is in the situation depicted in Figure 11.13(a). In Figure 11.13(b),
memory area X is freed. Only its left neighbor is free, and so X is merged with
it. Boundary tags are now set for the merged area. The left neighbor already
existed in the free list, so it is enough to simply change its size field. Only the right
neighbor of Y is free. Hence when Y is freed, it is merged with its right neighbor
and boundary tags are set for the merged area. Now the free list has to be modified
to remove the entry for the right neighbor and add an entry for the merged area
[see Figure 11.13(c)]. Both neighbors of memory area Z are free. Hence when Z

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 385 — #25

Chapter 11 Memory Management 385

allocation

status size

boundary tag

allocation

status size

boundary tag

free list

pointer

allocated/free area

boundary tag

of right neighbor

boundary tag

of left neighbor

Figure 11.12 Boundary tags and the free list pointer.

Free list

header

30

F

30

F

40

A X
40

A

40

A Y
40

A

20

F

20

F

45

A Z
45

A

30

F

30

F

(a)

70

F

70

F

40

A Y
40

A

20

F

20

F

45

A Z
45

A

30

F

30

F

(b)

30

F

30

F

40

A X
40

A

60

F

60

F

45

A Z
45

A

30

F

30

F

(c)

30

F

30

F

40

A X
40

A

40

A Y
40

A

95

F

95

F

Status flag values: A: Allocated, F: Free

(d)

Figure 11.13 Merging using boundary tags: (a) free list; (b)–(d) freeing of areas X, Y, and Z,
respectively.

is freed, it is merged with both of them to form a single free area. The size field
of the left neighbor’s entry in the free list is modified to reflect the merging. Since
the right neighbor also had an entry in the free list, the free list is modified to
remove this entry [see Figure 11.13(d)]. Whenever merging occurs with the right
neighbor, management of the free list requires an order of m work, where m is
the number of entries in the free list. As mentioned earlier in Section 11.5.1.1,
maintaining the free list as a doubly linked list would enable this operation to be
performed efficiently.

A relation called the 50-percent rule holds when we use this method of merg-
ing. When an area of memory is freed, the total number of free areas in the system
increases by 1, decreases by 1 or remains the same depending on whether the area
being freed has zero, two, or one free areas as neighbors. These areas of memory
are shown as areas of type C, A, and B, respectively, in the following:

A B C B A B B A

When an allocation is made, the number of free areas of memory reduces by
1 if the requested size matches the size of some free area; otherwise, it remains
unchanged since the remaining free area would be returned to the free list.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 386 — #26

386 Part 3 Memory Management

Free list

header

a b c d e
(a)

a b c d e
(b)

Figure 11.14 Memory compaction.

Assuming a large memory so that the situation at both ends of memory can be
ignored, and assuming that each area of memory is equally likely to be released,
we have

Number of allocated areas, n = #A + #B + #C
Number of free areas, m = 1

2 (2 × #A + #B)

where #A is the number of free areas of type A etc. In the steady state #A = #C.
Hence m = n/2, that is, the number of free areas is half the number of allocated
areas. This relation is called the 50-percent rule.

The 50-percent rule helps in estimating the size of the free list and, hence,
the effort involved in an allocation method like the best-fit method that requires
the entire free list to be analyzed. It also gives us a method of estimating the free
area in memory at any time. If sf is the average size of free areas of memory, the
total free memory is sf × n/2.

Memory Compaction In this approach memory bindings are changed in such a
manner that all free memory areas can be merged to form a single free memory
area. As the name suggests, it is achieved by “packing” all allocated areas toward
one end of the memory. Figure 11.14 illustrates compaction to merge free areas.

Compaction is not as simple as suggested by this discussion because it invol-
ves movement of code and data in memory. If area b in Figure 11.14 contains a
process, it needs to be relocated to execute correctly from the new memory area
allocated to it. Relocation involves modification of all addresses used by a process,
including addresses of heap-allocated data and addresses contained in general-
purpose registers. It is feasible only if the computer system provides a relocation
register (see Section 11.3.1); relocation can be achieved by simply changing the
address in the relocation register.

11.5.2 Buddy System and Power-of-2 Allocators
The buddy system and power-of-2 allocators perform allocation of memory
in blocks of a few standard sizes. This feature leads to internal fragmentation
because some memory in each allocated memory block may be wasted. How-
ever, it enables the allocator to maintain separate free lists for blocks of different
sizes. This arrangement avoids expensive searches in a free list and leads to fast
allocation and deallocation.

Buddy System Allocator A buddy system splits and recombines memory blocks
in a predetermined manner during allocation and deallocation. Blocks created by
splitting a block are called buddy blocks. Free buddy blocks are merged to form
the block that was split to create them. This operation is called coalescing. Under

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 387 — #27

Chapter 11 Memory Management 387

this system, adjoining free blocks that are not buddies are not coalesced. The
binary buddy system, which we describe here, splits a block into two equal-size
buddies. Thus each block b has a single buddy block that either precedes b in
memory or follows b in memory. Memory block sizes are 2n for different values
of n ≥ t, where t is some threshold value. This restriction ensures that memory
blocks are not meaninglessly small in size.

The buddy system allocator associates a 1-bit tag with each block to indicate
whether the block is allocated or free. The tag of a block may be located in the
block itself, or it may be stored separately. The allocator maintains many lists of
free blocks; each free list is maintained as a doubly linked list and consists of free
blocks of identical size, i.e., blocks of size 2k for some k ≥ t. Operation of the
allocator starts with a single free memory block of size 2z, for some z > t. It is
entered in the free list for blocks of size 2z. The following actions are performed
when a process requests a memory block of size m. The system finds the smallest
power of 2 that is ≥ m. Let this be 2i . If the list of blocks with size 2i is not empty,
it allocates the first block from the list to the process and changes the tag of the
block from free to allocated. If the list is empty, it checks the list for blocks of
size 2i+1. It takes one block off this list, and splits it into two halves of size 2i .
These blocks become buddies. It puts one of these blocks into the free list for
blocks of size 2i and uses the other block to satisfy the request. If a block of size
2i+1 is not available, it looks into the list for blocks of size 2i+2, splits one of them
to obtain blocks of size 2i+1, splits one of these blocks further to obtain blocks
of size 2i , and allocates one of them, and so on. Thus, many splits may have to
be performed before a request can be satisfied.

When a process frees a memory block of size 2i , the buddy system changes
the tag of the block to free and checks the tag of its buddy block to see whether
the buddy block is also free. If so, it merges these two blocks into a single block of
size 2i+1. It now repeats the coalescing check transitively; i.e., it checks whether
the buddy of this new block of size 2i+1 is free, and so on. It enters a block in a
free list only when it finds that its buddy block is not free.

•
Example 11.7Operation of a Buddy System

Figure 11.15 illustrates operation of a binary buddy system. Parts (a) and (b)
of the figure show the status of the system before and after the block marked
with the symbol is released by a process. In each part we show two views of
the system. The upper half shows the free lists while the lower half shows the
layout of memory and the buddy blocks. For ease of reference, corresponding
blocks in the two halves carry identical numbers. The block being released has
a size of 16 bytes. Its buddy is the free block numbered 1 in Figure 11.15(a),
and so the buddy system allocator merges these two blocks to form a new
block of 32 bytes. The buddy of this new block is block 2, which is also free.
So block 2 is removed from the free list of 32-byte blocks and merged with the
new block to form a free block of size 64 bytes. This free block is numbered 4
in Figure 11.15(b). It is now entered in the appropriate free list.

•

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 388 — #28

388 Part 3 Memory Management

Block

size

Free list

header

Free

memory blocks

16

32

64

128
3

−

1

2

Memory layout

1 2 3

3

2

1

Buddy blocks layout

(a)

Block

size

Free list

header

Free

memory blocks

16

32

64
...

−

−

4

128
3

4 3

3

4

(b)

Figure 11.15 Buddy system operation when a block is released.

The check for a buddy’s tag can be performed efficiently because block
sizes are powers of 2. Let the block being freed have a size of 16 bytes. Since
16 is 24, its address is of the form . . . y0000, where four 0s follow y, and y
is 0 or 1. Its buddy block has the address . . . z0000 where z = 1 − y. This
address can be obtained simply by performing an exclusive or operation with
a number . . . 10000, i.e., with 24. For example, if the address of a block is
101010000, its buddy’s address is 101000000. In general, address of the buddy
of a block of size 2n bytes can be found by performing exclusive or with 2n.
This advantage is applicable even if the tags are stored separately in a bitmap
(see Exercise 11.8).

Power-of-2 Allocator As in the binary buddy system, the sizes of memory blocks
are powers of 2, and separate free lists are maintained for blocks of different
sizes. Similarity with the buddy system ends here, however. Each block contains
a header element that contains the address of the free list to which it should be
added when it becomes free. When a request is made for m bytes, the allocator
first checks the free list containing blocks whose size is 2i for the smallest value
of i such that 2i ≥ m. If this free list is empty, it checks the list containing blocks
that are the next higher power of 2 in size, and so on. An entire block is allocated
to a request, i.e., no splitting of blocks takes place. Also, no effort is made to
coalesce adjoining blocks to form larger blocks; when released, a block is simply
returned to its free list.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 389 — #29

Chapter 11 Memory Management 389

System operation starts by forming blocks of desired size and entering them
into the appropriate free lists. New blocks can be created dynamically either
when the allocator runs out of blocks of a given size, or when a request cannot
be fulfilled.

11.5.3 Comparing Memory Allocators
Memory allocators can be compared on the basis of speed of allocation and
efficient use of memory. The buddy and power-of-2 allocators are faster than the
first-fit, best-fit, and next-fit allocators because they avoid searches in free lists.
The power-of-2 allocator is faster than the buddy allocator because it does not
need to perform splitting and merging.

To compare memory usage efficiency in different memory allocators, we
define a memory utilization factor as follows:

Memory utilization factor = memory in use
total memory committed

where memory in use is the amount of memory being used by requesting pro-
cesses, and total memory committed includes memory allocated to processes, free
memory existing with the memory allocator, and memory occupied by the alloca-
tor’s own data structures. Memory in use may be smaller than memory allocated
to processes because of internal fragmentation and smaller than total memory
committed because of external fragmentation. The largest value of the memory
utilization factor represents the best-case performance of an allocator and the
smallest value at which the allocator fails to grant a memory request represents
its worst-case performance.

Allocators using the first-fit, best-fit, or next-fit techniques do not incur
internal fragmentation. However, external fragmentation limits their worst-
case performance because free blocks may be too small to satisfy a request
(see Exercise 11.4). The buddy and power-of-2 allocators allocate blocks whose
sizes are powers of 2, so internal fragmentation exists unless memory requests
match block sizes. These allocators also use up additional memory to store the free
list headers and tags or header elements for blocks. In a power-of-2 allocator, the
header element in a block cannot be used by a process. Thus the useful portion of
a block is somewhat smaller than a power of 2. If a memory request is for an area
that is exactly a power of 2 in size, this method uses up twice that amount of mem-
ory. A power-of-2 allocator fails to satisfy a request if a sufficiently large free block
does not exist. Since it does not merge free blocks into larger blocks, this situation
can arise even when the total free memory available in smaller-size blocks exceeds
the size of the request. In a buddy system this situation can arise only if adjoining
free blocks are not buddies. This is rare in practice. In fact, Knuth (1973) reports
that in simulation studies the best-case performance of a buddy allocator was
95 percent.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 390 — #30

390 Part 3 Memory Management

11.5.4 Heap Management in Windows
The Windows operating system uses a heap management approach that aims at
providing low allocation overhead and low fragmentation. By default, it uses a
free list and a best-fit policy of allocation. However, this arrangement is not ade-
quate for two kinds of situations: If a process makes heavy use of the heap, it might
repeatedly allocate and free memory areas of a few specific sizes, so the overhead
incurred by the best-fit policy and the merging of free areas is unnecessary. In a
multiprocessor environment, the free list may become a performance bottleneck
(see Section 10.3). So in such situations Windows uses an arrangement called the
low-fragmentation heap (LFH).

The low-fragmentation heap maintains many free lists, each containing mem-
ory areas of a specific size. The sizes of memory areas are multiples of 8 bytes
up to 256 bytes, multiples of 16 bytes up to 512 bytes, multiples of 32 bytes up
to 1 KB, where 1 KB = 1024 bytes, etc., up to and including multiples of 1 KB
up to 16 KB. When a process requests a memory area that is less than 16 KB in
size, a memory area is taken off an appropriate free list and allocated. Neither
splitting nor merging is performed for such memory areas. This arrangement is
analogous to that used in the power-of-2 allocator, though the blocks are not
powers of two, so it inherits its advantages and disadvantages—memory alloca-
tion is fast but internal fragmentation exists in an allocated area. For satisfying
memory requests exceeding 16 KB in size, the heap manager maintains a single
free list and allocates a memory area whose size exactly matches the request.

If the heap manager cannot find an appropriately sized memory area in a
free list for a request <16 KB, it passes the request to the core heap manager. It
also keeps statistics of the requests and the way they were satisfied, e.g., the rate at
which memory areas of a specific size were requested and a count of the number
of times it could not find memory areas of a specific size, and uses it to fine-tune
its own performance by creating free memory areas of appropriate sizes ahead of
the actual requests for them.

11.6 CONTIGUOUS MEMORY ALLOCATION
•

Contiguous memory allocation is the classical memory allocation model in which
each process is allocated a single contiguous area in memory. Thus the kernel allo-
cates a large enough memory area to accommodate the code, data, stack, and
PCD data of a process as shown in Figure 11.9. Contiguous memory alloca-
tion faces the problem of memory fragmentation. In this section we focus on
techniques to address this problem. Relocation of a program in contiguous mem-
ory allocation and memory protection were discussed earlier in Sections 11.3.1
and 11.4.3.

Handling Memory Fragmentation We discussed the causes of internal and exter-
nal fragmentation earlier in Section 11.5.1.3. Internal fragmentation has no cure
in contiguous memory allocation because the kernel has no means of estimat-
ing the memory requirement of a process accurately. The techniques of memory

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 391 — #31

Chapter 11 Memory Management 391

Kernel

D

C

B

A

(a)

D

C

A

Kernel

(b)

Kernel

(c)

E

D

C

A

Figure 11.16 Memory compaction.

compaction and reuse of memory discussed earlier in Section 11.5 can be applied
to overcome the problem of external fragmentation. Example 11.8 illustrates use
of memory compaction.

•
Example 11.8Contiguous Memory Allocation

Processes A, B, C, and D are in memory in Figure 11.16(a). Two free areas
of memory exist after B terminates; however, neither of them is large enough
to accommodate another process [see Figure 11.16(b)]. The kernel performs
compaction to create a single free memory area and initiates process E in this
area [see Figure 11.16(c)]. It involves moving processes C and D in memory
during their execution.

•

Memory compaction involves dynamic relocation, which is not feasible with-
out a relocation register (see Section 11.3.1). In computers not having a relocation
register, the kernel must resort to reuse of free memory areas. However, this
approach incurs delays in initiation of processes when large free memory areas
do not exist, e.g., initiation of process E would be delayed in Example 11.8 even
though the total free memory in the system exceeds the size of E.

Swapping The basic mechanism of swapping, and the rationale behind it, was
described in Section 3.6.1. The kernel swaps out a process that is not in the running
state by writing out its code and data space to a swapping area on the disk. The
swapped out process is brought back into memory before it is due for another
burst of CPU time.

A basic issue in swapping is whether a swapped-in process should be loaded
back into the same memory area that it occupied before it was swapped out. If
so, its swapping in depends on swapping out of some other process that may have
been allocated that memory area in the meanwhile. It would be useful to be able
to place the swapped-in process elsewhere in memory; however, it would amount

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 392 — #32

392 Part 3 Memory Management

to dynamic relocation of the process to a new memory area. As mentioned earlier,
only computer systems that provide a relocation register can achieve it.

11.7 NONCONTIGUOUS MEMORY ALLOCATION
•

Modern computer architectures provide the noncontiguous memory allocation
model, in which a process can operate correctly even when portions of its address
space are distributed among many areas of memory. This model of memory
allocation permits the kernel to reuse free memory areas that are smaller than the
size of a process, so it can reduce external fragmentation. As we shall see later in
this section, noncontiguous memory allocation using paging can even eliminate
external fragmentation completely.

Example 11.9 illustrates noncontiguous memory allocation. We use the term
component for that portion of the process address space that is loaded in a single
memory area.

•
Example 11.9 Noncontiguous Memory Allocation

In Figure 11.17(a), four free memory areas starting at addresses 100K, 300K,
450K, and 600K, where K = 1024, with sizes of 50 KB, 30 KB, 80 KB and 40
KB, respectively, are present in memory. Process P, which has a size of 140 KB,
is to be initiated [see Figure 11.17(b)]. If process P consists of three components
called P-1, P-2, and P-3, with sizes of 50 KB, 30 KB and 60 KB, respectively;
these components can be loaded into three of the free memory areas as follows
[see Figure 11.17(c)]:

Process component Size Memory start address

P-1 50 KB 100K
P-2 30 KB 300K
P-3 60 KB 450K•

Process P
0

140K−1

xyz
51488

(b)

Memory

100 K

300K

450K

600K 40 KB

80 KB

30 KB

50 KB

D

C

F

Kernel

(a)

Memory

100K

300K

450K

600K 40 KB

20 KB
D

P-3
C

P-2

F

P-1

Kernel

307488

(c)

Figure 11.17 Noncontiguous memory allocation to process P.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 393 — #33

Chapter 11 Memory Management 393

11.7.1 Logical Addresses, Physical Addresses,
and Address Translation

In Section 1.1, we mentioned that the abstract view of a system is called its
logical view and the arrangement and relationship among its components is
called the logical organization. On the other hand, the real view of the system
is called its physical view and the arrangement depicted in it is called the physi-
cal organization. Accordingly, the views of process P shown in Figures 11.17(b)
and Figures 11.17(c) constitute the logical and physical views of process P of
Example 11.9, respectively.

A logical address is the address of an instruction or data byte as used in a
process; it may be obtained using index, base, or segment registers. The logical
addresses in a process constitute the logical address space of the process. A physical
address is the address in memory where an instruction or data byte exists. The set
of physical addresses in the system constitutes the physical address space of the
system.

•
Example 11.10Logical and Physical Address Spaces

In Example 11.9, the logical address space of P extends from 0 to 140K−1,
while the physical address space extends from 0 to 640K−1. Data area xyz in
the program of process P has the address 51488 [see Figure 11.17(b)]. This is
the logical address of xyz. The process component P-1 in Figure 11.17 has a
size of 50 KB , i.e., 51200 bytes, so xyz is situated in component P-2 and has
the byte number 288. Since P-2 is loaded in the memory area with the start
address 300 KB, i.e., 307200 bytes, the physical address of xyz is 307488 [see
Figure 11.17(c)].

•
The schematic diagram of Figure 11.18 shows how the CPU obtains the

physical address that corresponds to a logical address. The kernel stores infor-
mation about the memory areas allocated to process P in a table and makes
it available to the memory management unit (MMU). In Example 11.9, this

Memory

Kernel

area

{

Memory

allocation

information

of P

Operand address

in current instruction

Memory

Management

Unit Memory areas allocated

to process P

Memory address

where operand exists

Figure 11.18 A schematic of address translation in noncontiguous memory allocation.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 394 — #34

394 Part 3 Memory Management

information would consist of the sizes and memory start addresses of P-1,
P-2, and P-3. The CPU sends the logical address of each data or instruction used
in the process to the MMU, and the MMU uses the memory allocation infor-
mation stored in the table to compute the corresponding physical address. This
address is called the effective memory address of the data or instruction. The pro-
cedure of computing the effective memory address from a logical address is called
address translation.

A logical address used in an instruction consists of two parts—the id of the
process component containing the address, and the id of the byte within the
component. We represent each logical address by a pair of the form

(compi , bytei)

The memory management unit computes its effective memory address through
the formula

Effective memory address of (compi , bytei)
= start address of memory area allocated to compi

+ byte number of bytei within compi (11.1)

In Examples 11.9 and 11.10, instructions of P would refer to the data area
xyz through the logical address (P-2, 288). The MMU computes its effective
memory address as 307,200 + 288 = 307,488.

11.7.2 Approaches to Noncontiguous Memory Allocation
There are two fundamental approaches to implementing noncontiguous memory
allocation:

• Paging
• Segmentation

In paging, each process consists of fixed-size components called pages. The
size of a page is defined by the hardware of a computer, and demarcation of pages
is implicit in it. The memory can accommodate an integral number of pages. It
is partitioned into memory areas that have the same size as a page, and each of
these memory areas is considered separately for allocation to a page. This way,
any free memory area is exactly the same size as a page, so external fragmentation
does not arise in the system. Internal fragmentation can arise because the last
page of a process is allocated a page-size memory area even if it is smaller than a
page in size.

In segmentation, a programmer identifies components called segments in a
process. A segment is a logical entity in a program, e.g., a set of functions, data
structures, or objects. Segmentation facilitates sharing of code, data, and pro-
gram modules between processes. However, segments have different sizes, so the
kernel has to use memory reuse techniques such as first-fit or best-fit allocation.
Consequently, external fragmentation can arise.

A hybrid approach called segmentation with paging combines the features of
both segmentation and paging. It facilitates sharing of code, data, and program

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 395 — #35

Chapter 11 Memory Management 395

Table 11.4 Comparison of Contiguous and Noncontiguous
Memory Allocation

Function Contiguous allocation Noncontiguous allocation

Memory
allocation

The kernel allocates a single
memory area to a process.

The kernel allocates
several memory areas to a
process—each memory
area holds one component
of the process.

Address
translation

Address translation is not
required.

Address translation is
performed by the MMU
during program execution.

Memory
fragmentation

External fragmentation
arises if first-fit, best-fit, or
next-fit allocation is used.
Internal fragmentation
arises if memory allocation
is performed in blocks of a
few standard sizes.

In paging, external
fragmentation does not
occur but internal
fragmentation can occur.
In segmentation, external
fragmentation occurs, but
internal fragmentation
does not occur.

Swapping Unless the computer system
provides a relocation
register, a swapped-in
process must be placed in its
originally allocated area.

Components of a
swapped-in process can be
placed anywhere in
memory.

modules between processes without incurring external fragmentation; however,
internal fragmentation occurs as in paging. We discuss features of these three
approaches in later sections.

Table 11.4 summarizes the advantages of noncontiguous memory allocation
over contiguous memory allocation. Swapping is more effective in noncontigu-
ous memory allocation because address translation enables the kernel to load
components of a swapped-in process in any parts of memory.

11.7.3 Memory Protection
Each memory area allocated to a program has to be protected against interference
from other programs. The MMU implements this function through a bounds
check. While performing address translation for a logical address (compi , bytei),
the MMU checks whether compi actually exists in the program and whether bytei
exists in compi . A protection violation interrupt is raised if either of these checks
fails. The bounds check can be simplified in paging—it is not necessary to check
whether bytei exists in compi because, as we shall see in the next section, a logical
address does not have enough bits in it to specify a value of bytei that exceeds the
page size.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 396 — #36

396 Part 3 Memory Management

11.8 PAGING
•

In the logical view, the address space of a process consists of a linear arrangement
of pages. Each page has s bytes in it, where s is a power of 2. The value of s is
specified in the architecture of the computer system. Processes use numeric logical
addresses. The MMU decomposes a logical address into the pair (pi , bi), where pi
is the page number and bi is the byte number within page pi . Pages in a program
and bytes in a page are numbered from 0; so, in a logical address (pi , bi), pi ≥ 0
and 0 ≤ bi < s. In the physical view, pages of a process exist in nonadjacent areas
of memory.

Consider two processes P and R in a system using a page size of 1 KB. The
bytes in a page are numbered from 0 to 1023. Process P has the start address 0
and a size of 5500 bytes. Hence it has 6 pages numbered from 0 to 5. The last page
contains only 380 bytes. If a data item sample had the address 5248, which is
5 × 1024 + 128, the MMU would view its address as the pair (5, 128). Process R
has a size of 2500 bytes. Hence it has 3 pages, numbered from 0 to 2. Figure 11.19
shows the logical view of processes P and R.

The hardware partitions memory into areas called page frames; page frames
in memory are numbered from 0. Each page frame is the same size as a page. At
any moment, some page frames are allocated to pages of processes, while others
are free. The kernel maintains a list called the free frames list to note the frame
numbers of free page frames. While loading a process for execution, the kernel
consults the free frames list and allocates a free page frame to each page of the
process.

To facilitate address translation, the kernel constructs a page table (PT) for
each process. The page table has an entry for each page of the process, which indi-
cates the page frame allocated to the page. While performing address translation
for a logical address (pi , bi), the MMU uses the page number pi to index the page
table of the process, obtains the frame number of the page frame allocated to pi ,
and computes the effective memory address according to Eq. (11.1).

Figure 11.20 shows the physical view of execution of processes P and R.
Each page frame is 1 KB in size. The computer has a memory of 10 KB, so page
frames are numbered from 0 to 9. Six page frames are occupied by process P, and
three page frames are occupied by process R. The pages contained in the page
frames are shown as P-0, . . . , P-5 and R-0, . . . , R-2. Page frame 4 is free. Hence
the free frames list contains only one entry. The page table of P indicates the page
frame allocated to each page of P. As mentioned earlier, the variable sample of

sample

0
1
2
3
4
5

Process P

0
1
2

Process R

Figure 11.19 Logical view of processes in paging.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 397 — #37

Chapter 11 Memory Management 397

Page
frame #

Id of
page

0
1
2
3
4
5
6
7
8
9

R-0
P-0
R-1
P-1

R-2
P-3
P-4
P-5
P-2

sample

Memory

Page frame #

Page table of P

Page frame #
0
2
5

0
1
2

Page table of R

4

Free frames

list

1
3
9
6
7
8

0
1
2
3
4
5

Figure 11.20 Physical organization in paging.

process P has the logical address (5, 128). When process P uses this logical address
during its execution, it will be translated into the effective memory address by
using Eq. (11.1) as follows:

Effective memory address of (5, 128)
= start address of page frame #8 + 128
= 8 × 1024 + 128
= 8320

We use the following notation to describe how address translation is actually
performed:

s Size of a page
ll Length of a logical address (i.e., number of bits in it)
lp Length of a physical address
nb Number of bits used to represent the byte number in a logical address
np Number of bits used to represent the page number in a logical address
nf Number of bits used to represent the frame number in a physical address

The size of a page, s, is a power of 2. nb is chosen such that s = 2nb . Hence
the least significant nb bits in a logical address give us bi , the byte number within
a page. The remaining bits in a logical address form pi , the page number. The
MMU obtains the values of pi and bi simply by grouping the bits of a logical
address as follows:

pi bi

� �np � nb �

� �ll

where np = ll − nb. Use of a power of 2 as the page size similarly simplifies
construction of the effective memory address. Let page pi be allocated page frame
qi . Since pages and page frames have identical sizes, nb bits are needed to address
the bytes in a page frame. The physical address of byte 0 of page frame qi is
therefore

qi 0 · · · · · · 0

� �nf � nb �

� �lp

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 398 — #38

398 Part 3 Memory Management

where nf is the number of bits used to represent the frame number. Hence nf =
lp − nb. The physical address of byte bi in page frame qi is now given by

qi bi

� �nf � nb �

� �lp

The MMU obtains this address simply by concatenating qi and bi to obtain an
l_ p bit number. The next example illustrates address translation in a system using
paging.

•
Example 11.11 Address Translation in Paging

A hypothetical computer uses 32-bit logical addresses and a page size of 4 KB.
12 bits are adequate to address the bytes in a page. Thus, the higher order 20
bits in a logical address represent pi and the 12 lower order bits represent bi .
For a memory size of 256 MB, lp = 28. Thus, the higher-order 16 bits in a
physical address represent qi . If page 130 exists in page frame 48, pi = 130, and
qi = 48. If bi = 600, the logical and physical addresses look as follows:

Logical address

0 · · · 010000010 001001011000

� �20 � 12 �
Physical address

0 . . . 00110000 001001011000

� �16 � 12 �

During address translation, the MMU obtains pi and bi merely by group-
ing the bits of the logical address as shown above. The 130th entry of the page
table is now accessed to obtain qi , which is 48. This number is concatenated
with bi to form the physical address.
•

11.9 SEGMENTATION
•

A segment is a logical entity in a program, e.g., a function, a data structure, or an
object. Hence it is meaningful to manage it as a unit—load it into memory for
execution or share it with other programs. In the logical view, a process consists
of a collection of segments. In the physical view, segments of a process exist in
nonadjacent areas of memory.

A process Q consists of five logical entities with the symbolic names main,
database, search, update, and stack. While coding the program, the pro-
grammer declares these five as segments in Q. This information is used by the
compiler or assembler to generate logical addresses while translating the program.
Each logical address used in Q has the form (si , bi) where si and bi are the ids of a
segment and a byte within a segment. For example, the instruction correspond-
ing to a statement call get_sample, where get_sample is a procedure in

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 399 — #39

Chapter 11 Memory Management 399

main

search
update

database
stack

Process Q

Name Size Address
main 476 23500

database 20240 32012
search 378 76248
update 642 91376
stack 500 54500

Segment table of Q

Figure 11.21 A process Q in segmentation.

segment update, may use the operand address (update, get_sample). Alter-
natively, it may use a numeric representation in which si and bi are the segment
number and byte number within a segment, respectively. For simplicity, we assume
such a representation in this chapter.

Figure 11.21 shows how the kernel handles process Q. The left part of
Figure 11.21 shows the logical view of process Q. To facilitate address trans-
lation, the kernel constructs a segment table for Q. Each entry in this table shows
the size of a segment and the address of the memory area allocated to it. The size
field is used to perform a bound check for memory protection. The MMU uses
the segment table to perform address translation (see Figure 11.18). Segments
do not have standard sizes, so address translation cannot be performed through
bit concatenation as in paging. Calculation of the effective memory address for
the logical address (si , bi) therefore involves addition of bi to the start address of
segment si according to Eq. (11.1). In Figure 11.21, if get_sample has the byte
number 232 in segment update, address translation of (update, get_sample)
will yield the address 91376 + 232 = 91608.

Memory allocation for each segment is performed as in the contiguous mem-
ory allocation model. The kernel keeps a free list of memory areas. While loading
a process, it searches through this list to perform first-fit or best-fit allocation
to each segment of the process. When a process terminates, the memory areas
allocated to its segments are added to the free list. External fragmentation can
occur because segments have different sizes.

11.10 SEGMENTATION WITH PAGING
•

In this approach, each segment in a program is paged separately. Accordingly, an
integral number of pages is allocated to each segment. This approach simplifies
memory allocation and speeds it up, and also avoids external fragmentation.
A page table is constructed for each segment, and the address of the page table is
kept in the segment’s entry in the segment table. Address translation for a logical
address (si , bi) is now done in two stages. In the first stage, the entry of si is
located in the segment table, and the address of its page table is obtained. The
byte number bi is now split into a pair (psi , bpi), where psi is the page number in

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 400 — #40

400 Part 3 Memory Management

main

search
update

database
stack

Process Q

Name
Page table

address
main 476

database 20240
search 378
update 642
stack 500

Segment table of Q

Size

Figure 11.22 A process Q in segmentation with paging.

segment si , and bpi is the byte number in page pi . The effective address calculation
is now completed as in paging, i.e., the frame number of psi is obtained and bpi
is concatenated with it to obtain the effective address.

Figure 11.22 shows process Q of Figure 11.21 in a system using segmentation
with paging. Each segment is paged independently, so internal fragmentation
exists in the last page of each segment. Each segment table entry now contains
the address of the page table of the segment. The size field in a segment’s entry is
used to facilitate a bound check for memory protection.

11.11 KERNEL MEMORY ALLOCATION
•

The kernel creates and destroys data structures at a high rate during its operation.
These are mostly control blocks that control the allocation and use of resources
in the system. Some familiar control blocks are the process control block (PCB)
created for every process and the event control block (ECB) created whenever the
occurrence of an event is anticipated. (In Chapters 13 and 14, we will introduce
two other frequently used control blocks: the I/O control block (IOCB) created
for an I/O operation and the file control block (FCB) created for every open
file.) The sizes of control blocks are known in the design stage of an OS. This
prior knowledge helps make kernel memory allocation simple and efficient—
memory that is released when one control block is destroyed can be reused when
a similar control block is created. To realize this benefit, a separate free list can
be maintained for each type of control block.

Kernels of modern operating systems use noncontiguous memory allocation
with paging to satisfy their own memory requirements, and make special efforts
to use each page effectively. Three of the leading memory allocators are:

• McKusick–Karels allocator
• Lazy buddy allocator
• Slab allocator

The McKusick–Karels and lazy buddy allocators allocate memory areas
that are powers of 2 in size within a page. Since the start address of each page
in memory is a larger power of 2, the start address of each allocated memory

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 401 — #41

Chapter 11 Memory Management 401

area of size 2n is a multiple of 2n. This characteristic, which is called boundary
alignment on a power of 2, leads to a cache performance problem as follows:
Some parts of an object are accessed more frequently than others. Because of
boundary alignment on a power of 2, the frequently accessed parts of objects
may be mapped into the same areas of a cache by the set-associative technique of
cache lookup. Hence some parts of the cache face a lot of contention leading to
poor cache performance of the kernel code. The slab allocator uses an interesting
technique to avoid this cache performance problem.

Descriptions of these three allocators follow. In interest of consistency, we use
the same terminology we used in previous sections; it differs from the terminology
used in the literature on these allocators. The bibliography at the end of the chapter
indicates which modern operating systems use these allocators.

McKusick--Karels Allocator This is a modified power-of-2 allocator; it is used
in Unix 4.4 BSD. The allocator has an integral number of pages at its disposal at
any time, and asks the paging system for more pages when it runs out of memory
to allocate. The basic operating principle of the allocator is to divide each page
into blocks of equal size and record two items of information—the block size, and
a free list pointer—under the logical address of the page. This way, the address
of the page in which a block is located will be sufficient for finding the size of the
block and the free list to which the block should be added when it is freed. Hence,
it is not necessary to have a header containing this information in each allocated
block as in a conventional power-of-2 allocator.

With the elimination of the header element, the entire memory in a block can
be used for the intended purpose. Consequently, the McKusick–Karels allocator
is superior to the power-of-2 allocator when a memory request is for an area
whose size is an exact power of 2. A block of identical size can be allocated to
satisfy the request, whereas the conventional power-of-2 allocator would have
allocated a block whose size is the next higher power of 2.

The allocator seeks a free page among those in its possession when it does
not find a block of the size it is looking for. It then divides this page into blocks
of the desired size. It allocates one of these blocks to satisfy the current request,
and enters the remaining blocks in the appropriate free list. If no free page is held
by the allocator, it asks the paging system for a new page to be allocated to it.
To ensure that it does not consume a larger number of pages than necessary, the
allocator marks any page in its possession as free when all blocks in it become
free. However, it lacks a feature to return free pages to the paging system. Thus,
the total number of pages allocated to the allocator at any given moment is the
largest number of pages it has held at any time. This burden may reduce the
memory utilization factor.

Lazy Buddy Allocator The buddy system in its basic form may perform one or
more splits at every allocation and one or more coalescing actions at every release.
Some of these actions are wasteful because a coalesced block may need to be split
again later. The basic design principle of the lazy buddy allocator is to delay
coalescing actions if a data structure requiring the same amount of memory as

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 402 — #42

402 Part 3 Memory Management

a released block is likely to be created. Under the correct set of conditions, this
principle avoids the overhead of both coalescing and splitting.

The lazy buddy allocator used in Unix 5.4 works as follows: Blocks with the
same size are considered to constitute a class of blocks. Coalescing decisions for
a class are made on the basis of the rates at which data structures of the class are
created and destroyed. Accordingly, the allocator characterizes the behavior of
the OS with respect to a class of blocks into three states called lazy, reclaiming,
and accelerated. For simplicity we refer to these as states of a class of blocks.

In the lazy state, allocations and releases of blocks of a class occur at matching
rates. Consequently, there is a steady and potentially wasteful cycle of splitting and
coalescing. As a remedy, excessive coalescing and splitting can both be avoided
by delaying coalescing. In the reclaiming state, releases occur at a faster rate than
allocations so it is a good idea to coalesce at every release. In the accelerated state,
releases occur much faster than allocations, and so it is desirable to coalesce at an
even faster rate; the allocator should attempt to coalesce a block being released,
and, additionally, it should also try to coalesce some other blocks that were
released but not coalesced in the past.

The lazy buddy allocator maintains the free list as a doubly linked list. This
way both the start and end of the list can be accessed equally easily. A bit map is
maintained to indicate the allocation status of blocks. In the lazy state, a block
being released is simply added to the head of the free list. No effort is made to
coalesce it with its buddy. It is also not marked free in the bit map. This way the
block will not be coalesced even if its buddy is released in future. Such a block
is said to be locally free. Being at the head of the list, this block will be allocated
before any other block in the list. Its allocation is efficient and fast because the
bit map does not need to be updated—it still says that the block is allocated.

In the reclaiming and accelerated states a block is both added to the free list
and marked free in the bit map. Such a block is said to be globally free. Globally
free blocks are added to the end of the free list. In the reclaiming state the allocator
tries to coalesce a new globally free block transitively with its buddy. Eventually
a block is added to some free list—either to a free list to which the block being
released would have belonged, or to a free list containing larger-size blocks. Note
that the block being added to a free list could be a locally free block or a globally
free block according to the state of that class of blocks. In the accelerated state
the allocator tries to coalesce the block being released, just as in the reclaiming
state, and additionally tries to coalesce one other locally free block—the block
found at the start of the free list—with its buddy.

The state of a class of blocks is characterized as follows: Let A, L, and G be the
number of allocated, locally free, and globally free blocks of a class, respectively.
The total number of blocks of a class is given by N = A + L + G. A parameter
called slack is computed as follows:

slack = N − 2 × L − G

A class is said to be in the lazy, reclaiming, or accelerated state if the value of
slack is ≥ 2, 1, or 0, respectively. (The allocator ensures that slack is never < 0.)

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 403 — #43

Chapter 11 Memory Management 403

The coalescing overhead is different in these three states. There is no overhead
in the lazy state. Hence release and allocation of blocks is fast. In the reclaiming
state the overhead would be comparable with that in the buddy system, whereas
in the accelerated state the overhead would be heavier than in the buddy system.
It has been shown that the average delays with the lazy buddy allocator are 10 to
32 percent lower than average delays in the case of a buddy allocator.

The implementation of the lazy buddy allocator in Unix 5.4 uses two kinds
of blocks. Small blocks vary in size between 8 and 256 bytes. Large blocks vary
in size between 512 and 16 KB. The allocator obtains memory from the paging
system in 4 KB areas. In each area, it creates a pool of blocks and a bit map to
keep track of the allocation status of the blocks. When all blocks in the pool are
free, it returns the area to the paging system. This action overcomes the problem
of nonreturnable blocks seen in the McKusick–Karels allocator.

Slab Allocator The slab allocator was first used in the Solaris 2.4 operating
system; it has been used in Linux since version 2.2. A slab consists of many
slots, where each slot can hold an active object that is a kernel data structure,
or it may be empty. The allocator obtains standard-size memory areas from the
paging system and organizes a slab in each memory area. It obtains an additional
memory area from the paging system and constructs a slab in it when it runs out
of memory to allocate, and it returns a memory area to the paging system when
all slots in its slab are unused.

All kernel objects of the same class form a pool. For small objects, a pool
consists of many slabs and each slab contains many slots. (Large objects are
not discussed here.) The slabs of a pool are entered in a doubly linked list to
facilitate addition and deletion of slabs. A slab may be full, partially empty, or
empty, depending on the number of active objects existing in it. To facilitate
searches for an empty slab, the doubly linked list containing the slabs of a pool
is sorted according to the slab’s status—all full slabs are at the start of the list,
partially empty slabs are in the middle, and empty slabs are at the end of the list.
Each slab contains a free list from which free slots can be allocated. Each pool
contains a pointer to the first slab that contains a free slot. This arrangement
makes allocation very efficient.

Figure 11.23 shows the format of a slab. When the allocator obtains a memory
area from the paging system, it formats the memory area into a slab by creating
an integral number of slots, a free list containing all slots, and a descriptor field

Coloring

area

Free

slot
× ×Active

object

Slot

Free

slot

Free

slot

Active

object

Unused

area
Descriptor

Free list pointers

Figure 11.23 Format of a slab.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 404 — #44

404 Part 3 Memory Management

at the end of the slab that contains both the count of active objects in it and
the free list header. Each slot in the slab is then initialized; this action involves
initializing the various fields in it with object-specific information like fixed strings
of constant values. When allocated, the slot can be used as an object straightaway.
At deallocation time, the object is brought back to its allocation time status, and
the slot is added to the free list. Since some fields of the objects never change, or
change in such a manner that their values at deallocation time are the same as
their values at allocation time, this approach eliminates the repetitive overhead of
object initialization suffered in most other allocators. However, use of initialized
objects has some implications for the memory utilization factor. If a free slot were
simply free memory, a part of this memory itself could be used as the free list
pointer; but a slot is an initialized object, and so the pointer field must be located
outside the object’s area even when the slot is free (see Figure 11.23).

The slab allocator provides improved cache behavior by avoiding the cache
performance problem faced by power-of-2 allocators and their variants described
at the start of this section. Each slab contains a reserved area at its start called
the coloring area (see Figure 11.23). The allocator uses different-size coloring
areas in the slabs of a pool. Consequently, objects in different slabs of a pool
have different alignments with respect to the closest multiples of a power of
2, and so they map into different areas of a set-associative cache. This feature
avoids excessive contention for certain areas of a cache, thus improving the cache
performance.

The slab allocator also provides a better memory utilization factor because
it allocates only the required amount of memory for each object. Thus, unlike the
McKusick–Karels and lazy buddy allocators, no internal fragmentation exists on
a per object basis; only external fragmentation exists in the form of an unused area
in each slab. Bonwick (1994) has reported that fragmentation is only 14 percent
in the slab allocator as against 45 and 46 percent in the McKusick–Karels and
lazy buddy allocators, respectively. The average allocation times are also better
than in the other allocators.

11.12 USING IDLE RAM EFFECTIVELY
•

A workstation or laptop has a large memory because it is needed for running
specific applications. However, memory remains idle when the applications are
not active. Operating system designers have long pondered the issue of how idle
memory can be exploited for the benefit of the user. A typical solution is to run
utilities such as antivirus software during idle periods of a computer so that their
execution does not tie up memory and consume CPU time when the computer
is being used for productive purposes. However, even such operation of utilities
can have a negative impact on performance because the utilities might displace
important applications from memory, so they have to be loaded back into memory
before they can be used.

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 405 — #45

Chapter 11 Memory Management 405

The Windows Vista operating system has a feature called SuperFetch which
maintains prioritized information about frequently used applications and doc-
uments, and uses it to preload high-priority applications and documents in idle
parts of memory. It also ensures that only idle low-priority applications would be
removed from memory to run antivirus and other utilities. Vista also has another
feature called Readyboost which uses a flash memory in a USB drive to boost
system performance by copying applications on the USB drive, from where they
can be loaded in memory faster than from the disk. When used in conjunction
with SuperFetch, Readyboost effectively makes the USB drive a cache between
memory and the disk, which enhances system performance through quick loading
of applications.

11.13 SUMMARY
•

In this chapter, we discussed techniques of effective
management of memory, which involves perform-
ing fast allocation and deallocation of memory to
processes and ensuring efficient use of memory so
that many processes can be accommodated in it
simultaneously.

When a program is coded or compiled, it is
not known which area of the memory would be
allocated for its execution. However, instructions
used in it need to use memory addresses for its
operands. This dilemma is resolved as follows: A
compiler assumes a specific memory area to be
available to a program and generates a program
form called object module. The linker, which is a
system program, uses the procedure called relo-
cation, which changes the operand addresses in
a program’s instructions such that the program
can execute correctly in the allocated memory
area. The linker also connects the program with
library functions required by it to prepare a ready-
to-execute program. self-relocating programs can
perform their own relocation. Computer hardware
assists in dynamic relocation of programs through
a special register in the CPU called the reloca-
tion register. It permits the kernel to change the
memory area allocated to a program during the
program’s execution.

Memory allocation can be performed in two
ways: Static memory allocation is performed before

execution of a program commences; however, it
requires knowledge of the exact amount of mem-
ory required, failing which it may overallocate
and waste memory. Dynamic memory allocation is
performed during execution of a program, which
incurs a memory management overhead during
execution, but makes efficient use of memory by
allocating only the required amount of memory.
The kernel uses a model of memory allocation for
a process that contains a statically allocated com-
ponent for the code and data of the program, and
dynamically allocated components for the stack,
and for the heap in which a program can dynami-
cally allocate memory through statements such as
new or alloc.

When a process completes its execution, or
releases the memory allocated to it, the kernel
reuses the memory to satisfy the requirements of
other processes. When static memory allocation is
used, some of the memory allocated to a process
may remain unused, which is called internal frag-
mentation. When dynamic memory allocation is
used, unless new requests exactly match the sizes of
released memory, some memory is left over when a
new request is satisfied. It remains unused if it is too
small to satisfy a request, which is called external
fragmentation.

Two approaches can be used to tackle the
fragmentation problem: In the first approach,

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 406 — #46

406 Part 3 Memory Management

the kernel minimizes fragmentation while reusing
memory. Various techniques called first-fit allo-
cation, best-fit allocation, etc. are used to min-
imize external fragmentation, while techniques
called buddy systems allocation and power-of-2
allocation are used to eliminate external frag-
mentation. In the other approach, noncontiguous
memory allocation is used, whereby a process
can be executed even when it is allocated many
small memory areas that add up to its total size
requirement. This way external fragmentation is
eliminated. Paging and segmentation are two such

approaches. Noncontiguous memory allocation
requires use of a memory management unit in the
hardware.

The kernel creates and destroys control blocks
such as the PCB at a very fast rate. Since the sizes
of control blocks are known to the kernel, it mini-
mizes the memory management overhead and the
fragmentation problem by having many memory
blocks of required size and allocating one of them
when a new control block is to be created. The lazy
buddy allocator and the slab allocator are some of
the techniques used by the kernel.

TEST YOUR CONCEPTS
•

11.1 Classify each of the following statements as true
or false:
a. When a stack is used, reuse of a released

memory area is automatic.
b. PCD data can be allocated on a stack.
c. The relocation register helps the kernel per-

form compaction of programs to avoid exter-
nal fragmentation.

d. Memory allocation performed by using a
buddy system allocator does not suffer from
internal fragmentation.

e. When a memory area is released in a sys-
tem employing a buddy system allocator, the
number of free memory areas increases by 1,
decreases by 1, or remains unchanged.

f. External fragmentation can occur when
either a buddy system allocator or a power-
of-2 allocator is used.

g. When dynamic linking and loading is
employed, a routine that is not used in an exe-
cution of a program is not loaded in memory.

h. In a paging system, it is not possible to swap
in a process into a set of noncontiguous mem-
ory area(s) that is different from the set of
noncontiguous memory areas from which it
was swapped out.

i. In a paging system, a programmer has to
demarcate the pages in the code and data of
a program.

j. There would be no need for linkers if all pro-
grams were coded as self-relocating pro-
grams.

11.2 Select the correct alternative in each of the
following questions:
a. A worst-fit allocator always splits the largest

free memory area while making an allocation.
A free list contains three memory areas of
sizes 6 KB, 15 KB and 12 KB. The next four
memory requests are for 10 KB, 2 KB, 5 KB,
and 14 KB of memory. The only placement
strategy that would be able to accommodate
all four processes is

i. First-fit,
ii. best-fit,
iii. worst-fit,
iv. next-fit.

b. Three processes requiring 150 KB, 100 KB,
and 300 KB of memory are in operation in
an OS employing a paging system with a page
size of 2 KB. The maximum internal memory
fragmentation due to memory allocation to
the three processes is

i. Approximately 2 KB
ii. Approximately 6 KB
iii. 275 KB
iv. None of (i)–(iii)

c. A reentrant program is one that
i. Calls itself recursively
ii. Can have several copies in memory that

can be used by different users
iii. Can have a single copy in memory

that is executed by many users
concurrently

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 407 — #47

Chapter 11 Memory Management 407

EXERCISES
•

11.1 A hypothetical programming language permits
one of the following three attributes to be asso-
ciated with a variable in a program:
a. Static: Variables with this attribute are allo-

cated memory at compilation time.
b. Automatic: When execution of a program

is initiated or a function/subroutine is
invoked, variables with the automatic
attribute declared in the program, function,
or subroutine are allocated memory. Memory
is deallocated when the program completes
or the invocation of the function/subroutine
is exited.

c. Controlled: A variable x with the controlled
attribute is allocated memory when the pro-
gram executes the statement new x. Memory
is deallocated when the program executes the
statement release x.

Discuss the method used to allocate memory
to variables with each of these attributes. Com-
ment on (i) memory utilization efficiency and (ii)
execution efficiency of these methods.

11.2 A memory allocator using the best-fit allocation
policy organizes its free list in ascending order
by sizes of free areas. This organization avoids
having to scan the entire free list for making an
allocation. However, while handling a request
for n bytes, the allocator has to skip over the
entries for memory areas that are < n bytes in
size. Propose a method of organizing the free list
that would eliminate the overhead of examining
and skipping over these entries.

11.3 The kernel of an OS uses a separate memory
allocator for handling its own memory require-
ments. It is found that this memory allocator
receives requests to grant and release memory
areas of only two sizes, namely, 100 bytes and
150 bytes, at a high rate. Comment on memory
utilization efficiency and speed of allocation if
the memory allocator is
a. A first-fit allocator
b. A best-fit allocator
c. A slab allocator

11.4 A memory allocator uses the following policy
to allocate a single contiguous area for requests
of 1 KB and 2 KB: It sets apart a contiguous
memory area of n KB for handling such requests,
and splits this memory area into n areas of 1 KB

each. To meet a request for 2 KB, it merges two
adjoining free areas of 1 KB each, if present, and
allocates the resulting contiguous area. When an
area of 2 KB is released, it treats the freed area
as two free areas of 1 KB each. Show that if the
allocator has 22 KB available for allocation, it
may not be able to honor requests for a total of
16 KB.

11.5 A buddy system allocator is allocated an area of
64 KB. Blocks of size 2 KB, 11 KB, 120 bytes,
and 20 KB are allocated in that order.
a. Show the allocation status and free lists

of the allocator. How many splits were
performed?

b. Show the allocation status and free lists of
the allocator after the block of 120 bytes is
freed. How many coalesce operations were
performed?

11.6 A power-of-2 allocator uses a minimum block
size of 16 bytes and a maximum block size
of 32 KB. It starts its operation with one free
block each of sizes 512 bytes, 2 KB, 16 KB and
32 KB. Calculate the internal fragmentation if
the allocator processes the same requests as in
Exercise 11.5.

11.7 When a memory block is freed, a memory allo-
cator makes an effort to merge it with one or
both of its neighbors. Do you agree with the
following statement? “If sizes of neighboring
blocks are known, it is adequate to have a tag
at only one boundary of each block. However,
if sizes of neighboring blocks are not known, it
is essential to have tags at both boundaries of
each block.”

11.8 A buddy system organizes tags of the blocks in
a bitmap, which is a one-dimensional array of
tags. Comment on how best the bitmap can be
organized and used. (Hint: Note that blocks may
be split and coalesced during operation of the
buddy system.)

11.9 If a binary buddy system starts its operation with
a single free block of size 2z bytes.
a. Justify the statement : “When a block is

released, the number of free blocks in the
system may increase by 1, may remain
unchanged, or may decrease by a num-
ber between 1 and n, both inclusive, where
n < z.”

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 408 — #48

408 Part 3 Memory Management

b. Determine the value of n if the minimum
block size in the buddy system is 16 bytes.

11.10 A Fibonacci buddy system uses blocks whose
sizes are multiples of the terms of the Fibonacci
series, for example 16, 32, 48, 80, 128, Hence
the size of a block is the sum of the sizes of the
two immediately smaller blocks. This formula
governs the splitting and merging of blocks.
Compare the execution efficiency and memory
efficiency of the Fibonacci buddy system with
the binary buddy system.

11.11 A memory allocator works as follows: Small
memory areas are allocated by using a buddy
system. Large memory areas are allocated by
using a free list and a first-fit allocator. Com-
ment on the efficiency and memory utilization
achieved by this allocator.

11.12 An OS has 110 MB available for user processes.
The maximum memory requirement of a pro-
cess for its own code and data is 20 MB, while
the average memory requirement of a process
is 10 MB. If the OS uses contiguous memory
allocation and does not know sizes of individ-
ual processes, what is the average internal and
external fragmentation?

11.13 Does the 50-percent rule apply to the following
allocators?
a. Buddy system
b. Power-of-2 allocator
c. Slab allocator

11.14 An OS receives requests for memory allocation
at a high rate. It is found that a large frac-
tion of the requests are for memory areas of
size 100, 300, and 400 bytes (let us call these
“standard” sizes). Other requests are for areas of
various other sizes. Design a memory allocation
scheme in which no fragmentation arises while
allocating areas of standard sizes and no inter-
nal fragmentation arises while allocating areas
of other sizes.

11.15 Compute the slack for each class of buffers if a
lazy buddy allocator were to be used instead of
the buddy allocator in Exercise 11.5.

11.16 If the OS of Exercise 11.12 employed paging with
a page size of 2 KB, is it possible to compute the
average internal fragmentation in the system?

BIBLIOGRAPHY
•

Linkers and Loaders are described in Dhamdhere
(1999).

Knuth (1973) is the classical starting point for a
study of contiguous memory management. He describes
various techniques of memory allocation and efficient
data structures to keep track of free memory. Hoare
and Mckeag (1971) surveys various memory manage-
ment techniques. Randell (1969) is an early paper on the
motivation for virtual memory systems. Denning (1970)
describes the fundamentals of virtual memory systems.

Vahalia (1996) describes the various kernel memory
allocators used in Unix systems. McKusick and Karels
(1988) describes the McKusick–Karels memory alloca-
tor. Lee and Barkley (1989) describes the lazy buddy allo-
cator. Both these allocators are used in Unix. Bonwick
(1994) and Bonwick and Adams (2001) describe the slab
allocator. Mauro and McDougall (2006) describes use
of the slab allocator in Solaris, while Beck et al. (2002),

and Bovet and Cesati (2005) describe its implementa-
tion in Linux. The Windows kernel uses several memory
allocation policies for its own memory requirements. It
implements buddy-system-like allocation for medium-
size blocks and heap-based allocation for small block
sizes. Russinovich and Solomon (2005) describes heap
allocation and kernel memory allocation in Windows.

1. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

2. Bonwick, J. (1994): “The slab allocator: An
object-caching kernel memory allocator,”
Proceedings of the Summer 1994 Usenix Technical
Conference, 87–98.

3. Bonwick, J., and J. Adams (2001): “Extending the
slab allocator to many CPUs and arbitrary

11-M4363-DAS1.LaTeX: “chap11” — 2007/11/26 — 12:06 — page 409 — #49

Chapter 11 Memory Management 409

resources,” Proceedings of the 2001 USENIX
Annual Technical Conference, 15–34.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol,
Calif.

5. Denning, P. J. (1970): “Virtual Memory,”
Computing Surveys, 2 (3), 153–189.

6. Dhamdhere, D. M. (1999): Systems Programming
and Operating Systems, 2nd revised ed.,
Tata McGraw-Hill, New Delhi.

7. Hoare, C. A. R., and R. M. Mckeag (1971):
“A survey of store management techniques,” in
Operating Systems Techniques, by C.A.R. Hoare
and R.H. Perrott (eds.) Academic Press, London.

8. Knuth, D. E. (1973): The Art of Computer
Programming, 2nd ed., Vol. I : Fundamental
Algorithms, Addison-Wesley, Reading, Mass.

9. Kuck, D. J., and D. H. Lowrie (1970): “The use
and performance of memory hierarchies,” in
Software Engineering, 1, J.T. Tou (ed.), Academic
Press, New York.

10. Lee, T. P., and R. E. Barkley (1989):
“A watermark-based lazy buddy system for kernel

memory allocation,” Proceedings of the Summer
1989 USENIX Technical Conference, 1–13.

11. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice Hall, Englewood
Cliffs, N. J.

12. McKusick, M. K., and M. J. Karels (1988):
“Design of a general-purpose memory allocator
for the 4.3 BSD Unix kernel,” Proceedings of the
Summer 1988 USENIX Technical Conference,
295–303.

13. Peterson, J. L., and T. A. Norman (1977): “Buddy
systems,”Communications of the ACM, 20 (6),
421–431.

14. Randell, B.(1969): “A note on storage
fragmentation and program segmentation,”
Communications of the ACM, 12 (7),
365–369.

15. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

16. Vahalia, U. (1996): Unix Internals—The New
Frontiers, Prentice Hall, Englewood
Cliffs, N. J.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 410 — #1

12 C h a p t e r

Virtual Memory

Virtual memory is a part of the memory hierarchy that consists of mem-
ory and a disk. In accordance with the principle of memory hierarchies
described in Chapter 2, only some portions of the address space of a

process—that is, of its code and data—exist in memory at any time; other por-
tions of its address space reside on disk and are loaded into memory when needed
during operation of the process. The kernel employs virtual memory to reduce
the memory commitment to a process so that it can service a large number of
processes concurrently, and to handle processes whose address space is larger
than the size of memory.

Virtual memory is implemented through the noncontiguous memory allo-
cation model described earlier in Chapter 11 and comprises both hardware
components and a software component called a virtual memory manager. The
hardware components speed up address translation and help the virtual mem-
ory manager perform its tasks more effectively. The virtual memory manager
decides which portions of a process address space should be in memory at
any time.

Performance of virtual memory depends on the rate at which portions of a
process address space have to be loaded in memory from a disk and removed
from memory to make space for new portions. According to the empirical law of
locality of reference, a process is likely to access recently referenced portions of
its address space again. The virtual memory manager ensures good performance
of virtual memory by allocating an adequate amount of memory to a process
and employing a replacement algorithm to remove a portion that has not been
referenced recently.

We start by discussing locality of reference and its importance for perfor-
mance of a virtual memory. The techniques employed by the virtual memory
manager to ensure good performance are then discussed.

12.1 VIRTUAL MEMORY BASICS
•

Users always want more from a computer system—more resources and more
services. The need for more resources is satisfied either by obtaining more effi-
cient use of existing resources, or by creating an illusion that more resources exist
in the system. A virtual memory is what its name indicates—it is an illusion of

410

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 411 — #2

Chapter 12 Virtual Memory 411

a memory that is larger than the real memory, i.e., RAM, of the computer sys-
tem. As we pointed out in Section 1.1, this illusion is a part of a user’s abstract
view of memory. A user or his application program sees only the virtual memory.
The kernel implements the illusion through a combination of hardware and soft-
ware means. We refer to real memory simply as memory. We refer to the software
component of virtual memory as a virtual memory manager.

The illusion of memory larger than the system’s memory crops up any time a
process whose size exceeds the size of memory is initiated. The process is able to
operate because it is kept in its entirety on a disk and only its required portions are
loaded in memory at any time. The basis of virtual memory is the noncontiguous
memory allocation model described earlier in Section 11.7. The address space of
each process is assumed to consist of portions called components. The portions
can be loaded into nonadjacent areas of memory. The address of each operand or
instruction in the code of a process is a logical address of the form (compi , bytei).
The memory management unit (MMU) translates it into the address in memory
where the operand or instruction actually resides.

Use of the noncontiguous memory allocation model reduces memory frag-
mentation, since a free area of memory can be reused even if it is not large enough
to hold the entire address space of a process. More user processes can be accom-
modated in memory this way, which benefits both users and the OS. The kernel
carries this idea further—even processes that can fit in memory are not loaded
fully into memory. This strategy reduces the amount of memory that is allocated
to each process, thus further increasing the number of processes that can be in
operation at the same time.

Figure 12.1 shows a schematic diagram of a virtual memory. The logical
address space of the process shown consists of five components. Three of these
components are presently in memory. Information about the memory areas where
these components exist is maintained in a data structure of the virtual memory
manager. This information is used by the MMU during address translation. When
an instruction in the process refers to a data item or instruction that is not in
memory, the component containing it is loaded from the disk. Occasionally, the
virtual memory manager removes some components from memory to make room
for other components.

Process

Memory

Disk

Logical

address

space

Memory

allocation

information Physical

address

space

Loading/

removal of

components

Figure 12.1 Overview of virtual memory.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 412 — #3

412 Part 3 Memory Management

The arrangement shown in Figure 12.1 is a memory hierarchy as discussed in
Section 2.2.3 and illustrated in Figure 2.4. The hierarchy consists of the system’s
memory and a disk. Memory is fast, but small in size. The disk is slow, but has
a much larger capacity. The MMU and the virtual memory manager together
manage the memory hierarchy, so that the current instruction in a process finds
its operands in memory.

We are now ready to define virtual memory.

Definition 12.1 Virtual Memory A memory hierarchy, consisting of a com-
puter system’s memory and a disk, that enables a process to operate with only
some portions of its address space in memory.

Demand Loading of Process Components The virtual memory manager loads
only one component of a process address space in memory to begin with—the
component that contains the start address of the process, that is, address of the
instruction with which its execution begins. It loads other components of the pro-
cess only when they are needed. This technique is called demand loading. To keep
the memory commitment to a process low, the virtual memory manager removes
components of the process from memory from time to time. These components
would be loaded back in memory when needed again.

Performance of a process in virtual memory depends on the rate at which
its components have to be loaded into memory. The virtual memory manager
exploits the law of locality of reference to achieve a low rate of loading of process
components. We discuss this law in Section 12.2.1.1.

Table 12.1 Comparison of Paging and Segmentation

Issue Comparison

Concept A page is a fixed-size portion of a process address space
that is identified by the virtual memory hardware. A
segment is a logical entity in a program, e.g., a
function, a data structure, or an object. Segments are
identified by the programmer.

Size of components All pages are of the same size. Segments may be of
different sizes.

External fragmentation Not found in paging because memory is divided into
page frames whose size equals the size of pages.
It occurs in segmentation because a free area of
memory may be too small to accommodate a segment.

Internal fragmentation Occurs in the last page of a process in paging. Does not
occur in segmentation because a segment is allocated a
memory area whose size equals the size of the segment.

Sharing Sharing of pages is feasible subject to the constraints
on sharing of code pages described later in
Section 12.6. Sharing of segments is freely possible.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 413 — #4

Chapter 12 Virtual Memory 413

Paging and Segmentation In Chapter 11, we discussed how these two
approaches to implementation of virtual memory differ in the manner in which
the boundaries and sizes of address space components are determined. Table 12.1
compares the two approaches. In paging, each component of an address space is
called a page. All pages have identical size, which is a power of two. Page size is
defined by the computer hardware and demarcation of pages in the address space
of a process is performed implicitly by it. In segmentation, each component of
an address space is called a segment. A programmer declares some significant
logical entities (e.g., data structures or objects) in a process as segments. Thus
identification of components is performed by the programmer, and segments can
have different sizes. This fundamental difference leads to different implications
for efficient use of memory and for sharing of programs or data. Some systems
use a hybrid segmentation-with-paging approach to obtain advantages of both
the approaches.

12.2 DEMAND PAGING
•

As discussed earlier in Section 11.8, a process is considered to consist of pages,
numbered from 0 onward. Each page is of size s bytes, where s is a power of 2. The
memory of the computer system is considered to consist of page frames, where a
page frame is a memory area that has the same size as a page. Page frames are
numbered from 0 to #frames−1 where #frames is the number of page frames of
memory. Accordingly, the physical address space consists of addresses from 0 to
#frames × s − 1. At any moment, a page frame may be free, or it may contain a
page of some process. Each logical address used in a process is considered to be a
pair (pi , bi), where pi is a page number and bi is the byte number in pi , 0 ≤ bi < s.
The effective memory address of a logical address (pi , bi) is computed as
follows:

Effective memory address of logical address (pi , bi)

= start address of the page frame containing page pi + bi
(12.1)

The size of a page is a power of 2, and so calculation of the effective address is
performed through bit concatenation, which is much faster than addition (see
Section 11.8 for details).

Figure 12.2 is a schematic diagram of a virtual memory using paging in which
page size is assumed to be 1 KB, where 1 KB = 1024 bytes. Three processes P1, P2
and P3, have some of their pages in memory. The memory contains 8 page frames
numbered from 0 to 7. Memory allocation information for a process is stored in a
page table. Each entry in the page table contains memory allocation information
for one page of a process. It contains the page frame number where a page resides.
Process P2 has its pages 1 and 2 in memory. They occupy page frames 5 and 7
respectively. Process P1 has its pages 0 and 2 in page frames 4 and 1, while process
P3 has its pages 1, 3 and 4 in page frames 0, 2 and 3, respectively. The free frames
list contains a list of free page frames. Currently only page frame 6 is free.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 414 — #5

414 Part 3 Memory Management

0

1

2

3

4

5

6

7

Add ·· 2 480

Memory

1

7 480

pi

qi

bi

bi

2 480

MMU

4

0
1
2
3
4

3

2

Page table

of P1

0
1
2
3

1

4

Page table

of P3

0
1
2
3
4
5

0

2
3

Page table

of P2
7
5

Page

frame #

6

Free frames

list

Figure 12.2 Address translation in virtual memory using paging.

Process P2 is currently executing the instruction ‘Add ·· 2528’, so the MMU
uses P2’s page table for address translation. The MMU views the operand address
2528 as the pair (2, 480) because 2528 = 2 × 1024 + 480. It now accesses the entry
for page 2 in P2’s page table. This entry contains frame number 7, so the MMU
forms the effective address 7 × 1024 + 480 according to Eq. (12.1), and uses it to
make a memory access. In effect, byte 480 in page frame 7 is accessed.

12.2.1 Demand Paging Preliminaries
If an instruction of P2 in Figure 12.2 refers to a byte in page 3, the virtual memory
manager will load page 3 in memory and put its frame number in entry 3 of P2’s
page table. These actions constitute demand loading of pages, or simply demand
paging.

To implement demand paging, a copy of the entire logical address space of a
process is maintained on a disk. The disk area used to store this copy is called the
swap space of a process. While initiating a process, the virtual memory manager
allocates the swap space for the process and copies its code and data into the swap
space. During operation of the process, the virtual memory manager is alerted
when the process wishes to use some data item or instruction that is located in a
page that is not present in memory. It now loads the page from the swap space into
memory. This operation is called a page-in operation. When the virtual memory
manager decides to remove a page from memory, the page is copied back into the
swap space of the process to which it belongs if the page was modified since the
last time it was loaded in memory. This operation is called a page-out operation.
This way the swap space of a process contains an up-to-date copy of every page
of the process that is not present in memory. A page replacement operation is
one that loads a page into a page frame that previously contained another page.
It may involve a page-out operation if the previous page was modified while it
occupied the page frame, and involves a page-in operation to load the new page.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 415 — #6

Chapter 12 Virtual Memory 415

In this section we describe the data structures used by the virtual memory
manager, and the manner in which the virtual memory manager performs the
page-in, page-out, and page replacement operations. We then discuss how the
effective memory access time for a process depends on the overhead of the virtual
memory manager and the time consumed by the page-in, page-out, and page
replacement operations.

Page Table The page table for a process facilitates implementation of address
translation, demand loading, and page replacement operations. Figure 12.3
shows the format of a page table entry. The valid bit field contains a boolean
value to indicate whether the page exists in memory. We use the convention that
1 indicates “resident in memory” and 0 indicates “not resident in memory.” The
page frame # field, which was described earlier, facilitates address translation. The
misc info field is divided into four subfields. Information in the prot info field is
used for protecting contents of the page against interference. It indicates whether
the process can read or write data in the page or execute instructions in it. ref info
contains information concerning references made to the page while it is in mem-
ory. As discussed later, this information is used for page replacement decisions.
The modified bit indicates whether the page has been modified, i.e., whether it is
dirty. It is used to decide whether a page-out operation is needed while replacing
the page. The other info field contains information such as the address of the disk
block in the swap space where a copy of the page is maintained.

Page Faults and Demand Loading of Pages Table 12.2 summarizes steps in
address translation by the MMU. While performing address translation for a
logical address (pi , bi), the MMU checks the valid bit of the page table entry of pi

Misc info

Valid
bit

Field

Valid bit Indicates whether the page described by the entry currently exists

in memory. This bit is also called the presence bit.

Indicates which page frame of memory is occupied by the page.

Indicates how the process may use contents of the page—whether

read, write, or execute.

Information concerning references made to the page while it is in

memory.

Indicates whether the page has been modified while in memory,

i.e., whether it is dirty. This field is a single bit called the dirty
bit.

Other useful information concerning the page, e.g., its position in

the swap space.

Page frame #

Prot info

Ref info

Modified

Other info

Description

Page
frame #

Prot
info

Ref
info

Modi-
fied

Other
info

Figure 12.3 Fields in a page table entry.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 416 — #7

416 Part 3 Memory Management

Table 12.2 Steps in Address Translation by the MMU

Step Description

1. Obtain page number
and byte number in
page

A logical address is viewed as a pair (pi , bi), where bi
consists of the lower order nb bits of the address, and pi
consists of the higher order np bits (see Section 11.8).

2. Look up page table pi is used to index the page table. A page fault is raised
if the valid bit of the page table entry contains a 0, i.e.,
if the page in not present in memory.

3. Form effective memory
address

The page frame # field of the page table entry contains
a frame number represented as an nf -bit number. It is
concatenated with bi to obtain the effective memory
address of the byte.

Swap space

of P2

Page table

of P2

Page

fault

MMU
Free frames

list

Page table

updating

Valid
bit

Page
frame

#

Misc
info

VM

Manager

0

1

2

3

4

5

6

0
1
2
3

1
1

5
7

6

0
4

7

Page-in

operation

Memory

Sub ·· 3 682

1

6

3

4

7

5

pi

qi

bi

bi

3 682

2

Figure 12.4 Demand loading of a page.

(see Step 2 in Table 12.2). If the bit indicates that pi is not present in memory, the
MMU raises an interrupt called a missing page interrupt or a page fault, which is a
program interrupt (see Section 2.2.5). The interrupt servicing routine for program
interrupts finds that the interrupt was caused by a page fault, so it invokes the
virtual memory manager with the page number that caused the page fault, i.e., pi ,
as a parameter. The virtual memory manager now loads page pi in memory and
updates its page table entry. Thus, the MMU and the virtual memory manager
interact to decide when a page of a process should be loaded in memory.

Figure 12.4 is an overview of the virtual memory manager’s actions in demand
loading of a page. The broken arrows indicate actions of the MMU, whereas

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 417 — #8

Chapter 12 Virtual Memory 417

firm arrows indicate accesses to the data structures, memory, and the disk by
the virtual memory manager when a page fault occurs. The numbers in circles
indicate the steps in address translation, raising, and handling of the page fault—
Steps 1–3 were described earlier in Table 12.2. Process P2 of Figure 12.2 is in
operation. While translating the logical address (3, 682), the MMU raises a page
fault because the valid bit of page 3’s entry is 0. When the virtual memory manager
gains control, it knows that a reference to page 3 caused the page fault. The Misc
info field of the page table entry of page 3 contains the address of the disk block
in P2’s swap space that contains page 3. The virtual memory manager obtains
this address. It now consults the free frames list and finds that page frame 6 is
currently free, so it allocates this page frame to page 3 and starts an I/O operation
to load page 3 in page frame 6. When the I/O operation completes, the virtual
memory manager updates page 3’s entry in the page table by setting the valid
bit to 1 and putting 6 in the page frame # field. Execution of the instruction
“Sub ·· (3, 682)”, which had caused the page fault, is now resumed. The logical
address (3, 682) is translated to the effective address of byte number 682 in page
frame 6, i.e., 6 × 1024 + 682.

Page-in, Page-out, and Page Replacement Operations Figure 12.4 showed how
a page-in operation is performed for a required page when a page fault occurs
in a process and a free page frame is available in memory. If no page frame
is free, the virtual memory manager performs a page replacement operation to
replace one of the pages existing in memory with the page whose reference caused
the page fault. It is performed as follows: The virtual memory manager uses a
page replacement algorithm to select one of the pages currently in memory for
replacement, accesses the page table entry of the selected page to mark it as “not
present” in memory, and initiates a page-out operation for it if the modified bit
of its page table entry indicates that it is a dirty page. In the next step, the virtual
memory manager initiates a page-in operation to load the required page into the
page frame that was occupied by the selected page. After the page-in operation
completes, it updates the page table entry of the page to record the frame number
of the page frame, marks the page as “present,” and makes provision to resume
operation of the process. The process now reexecutes its current instruction. This
time, the address translation for the logical address in the current instruction
completes without a page fault.

The page-in and page-out operations required to implement demand paging
constitute page I/O; we use the term page traffic to describe movement of pages in
and out of memory. Note that page I/O is distinct from I/O operations performed
by processes, which we will call program I/O. The state of a process that encounters
a page fault is changed to blocked until the required page is loaded in memory,
and so its performance suffers because of a page fault. The kernel can switch the
CPU to another process to safeguard system performance.

Effective Memory Access Time The effective memory access time for a process
in demand paging is the average memory access time experienced by the process.
It depends on two factors: time consumed by the MMU in performing address
translation, and the average time consumed by the virtual memory manager in

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 418 — #9

418 Part 3 Memory Management

handling a page fault. We use the following notation to compute the effective
memory access time:

pr1 probability that a page exists in memory
tmem memory access time
tpfh time overhead of page fault handling

pr1 is called the memory hit ratio. tpfh is a few orders of magnitude larger than
tmem because it involves disk I/O—one disk I/O operation is required if only a
page-in operation is sufficient, and two disk I/O operations are required if a page
replacement is necessary.

A process’s page table exists in memory when the process is in operation.
Hence, accessing an operand with the logical address (pi , bi) consumes two mem-
ory cycles if page pi exists in memory—one to access the page table entry of pi
for address translation, and the other to access the operand in memory using the
effective memory address of (pi , bi). If the page is not present in memory, a page
fault is raised after referencing the page table entry of pi , i.e., after one memory
cycle. Now the required page is loaded in memory and its page table entry is
updated to record the frame number where it is loaded. When operation of the
process is resumed, it requires two more memory references—one to access the
page table and the other to actually access the operand. Accordingly, the effective
memory access time is as follows:

Effective memory access time = pr1 × 2 × tmem

+ (1 − pr1) × (tmem + tpfh + 2 × tmem)
(12.2)

The effective memory access time can be improved by reducing the number
of page faults. One way of achieving it is to load pages before they are needed by
a process. The Windows operating system performs such loading speculatively—
when a page fault occurs, it loads the required page and also a few adjoining
pages of the process. This action improves the average memory access time if a
preloaded page is referenced by the process. The Linux operating system permits
a process to specify which pages should be preloaded. A programmer may use
this facility to improve the effective memory access time.

12.2.1.1 Page Replacement

Page replacement becomes necessary when a page fault occurs and there are
no free page frames in memory. However, another page fault would arise if the
replaced page is referenced again. Hence it is important to replace a page that
is not likely to be referenced in the immediate future. But how does the virtual
memory manager know which page is not likely to be referenced in the immediate
future?

The empirical law of locality of reference states that logical addresses used by
a process in any short interval of time during its operation tend to be bunched
together in certain portions of its logical address space. Processes exhibit this
behavior for two reasons. Execution of instructions in a process is mostly sequen-
tial in nature, because only 10–20 percent of instructions executed by a process

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 419 — #10

Chapter 12 Virtual Memory 419

are branch instructions. Processes also tend to perform similar operations on
several elements of nonscalar data such as arrays. Due to the combined effect of
these two reasons, instruction and data references made by a process tend to be
in close proximity to previous instruction and data references made by it.

We define the current locality of a process as the set of pages referenced in
its previous few instructions. Thus, the law of locality indicates that the logical
address used in an instruction is likely to refer to a page that is in the current
locality of the process. As mentioned in Section 2.2.3, the computer exploits the
law of locality to ensure high hit ratios in the cache. The virtual memory manager
can exploit the law of locality to achieve an analogous effect—fewer page faults
would arise if it ensures that pages that are in the current locality of a process are
present in memory.

Note that locality of reference does not imply an absence of page faults. Let
the proximity region of a logical address ai contain all logical addresses that are in
close proximity to ai . Page faults can occur for two reasons: First, the proximity
region of a logical address may not fit into a page; in this case, the next address
may lie in an adjoining page that is not included in the current locality of the
process. Second, an instruction or data referenced by a process may not be in
the proximity of previous references. We call this situation a shift in locality of a
process. It typically occurs when a process makes a transition from one action in
its logic to another. The next example illustrates the locality of a process.

•
Example 12.1Current Locality of a Process

In Figure 12.5, bullets indicate the last few logical addresses used during opera-
tion of a process Pi . Dashed boxes show the proximity regions of these logical
addresses. Note that the proximity region of a logical address may extend
beyond a page boundary. Proximity regions of logical addresses may also
overlap; we show the cumulative proximity regions in Figure 12.5; e.g., the
proximity regions of logical addresses referenced in page 4 cumulatively cover
the entire page 4 and parts of pages 3 and 5. Thus, proximity regions are located
in pages 0, 1, 3, 4, 5, 6, and 7; however, the current locality of Pi is the set of
pages whose numbers are marked with the ∗ marks in Figure 12.5, i.e., the set
of pages {0, 1, 4, 6}.

•
The law of locality helps to decide which page should be replaced when a

page fault occurs. Let us assume that the number of page frames allocated to a
process Pi is a constant. Hence whenever a page fault occurs during operation
of Pi , one of Pi ’s own pages existing in memory must be replaced. Let t1 and t2
be the periods of time for which pages p1 and p2 have not been referenced during
the operation of Pi . Let t1 > t2, implying that some byte of page p2 has been
referenced or executed (as an instruction) more recently than any byte of page p1.
Hence page p2 is more likely to be a part of the current locality of the process
than page p1; that is, a byte of page p2 is more likely to be referenced or executed
than a byte of page p1. We use this argument to choose page p1 for replacement

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 420 — #11

420 Part 3 Memory Management

Page

no

Logical address

space of process Pi

0*A page

in current

locality
1*

2

3

4*

5

6*

7

8

•

Logical

address

accessed

Proximity

region of

logical

address

•

•
•• ••

•

•

Figure 12.5 Proximity regions of previous references and current locality of a process.

when a page fault occurs. If many pages of Pi exist in memory, we can rank
them according to the times of their last references and replace the page that has
been least recently referenced. This page replacement policy is called LRU page
replacement.

12.2.1.2 Memory Allocation to a Process

Figure 12.6 shows how the page fault rate of a process should vary with the
amount of memory allocated to it. The page fault rate is large when a small
amount of memory is allocated to the process; however, it drops when more
memory is allocated to the process. This page fault characteristic of a process is
desired because it enables the virtual memory manager to take corrective action
when it finds that a process has a high page fault rate—it can bring about a
reduction in the page fault rate by increasing the memory allocated to the process.
As we shall discuss in Section 12.4, the LRU page replacement policy possesses
a page fault characteristic that is similar to the curve of Figure 12.6 because it
replaces a page that is less likely to be in the current locality of the process than
other pages of the process that are in memory.

How much memory should the virtual memory manager allocate to a pro-
cess? Two opposite factors influence this decision. From Figure 12.6, we see that
an overcommitment of memory to a process implies a low page fault rate for the
process; hence it ensures good process performance. However, a smaller number
of processes would fit in memory, which could cause CPU idling and poor system
performance. An undercommitment of memory to a process causes a high page
fault rate, which would lead to poor performance of the process. The desirable
operating zone marked in Figure 12.6 avoids the regions of overcommitment and
undercommitment of memory.

The main problem in deciding how much memory to allocate to a process
is that the page fault characteristic, i.e., the slope of the curve and the page

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 421 — #12

Chapter 12 Virtual Memory 421

0 No. of page frames allocated to a process

Page

fault

rate

Region of low

memory allocation

and high

page fault rate

Region of moderate

memory allocation

and moderate

page fault rate

Region of high

memory allocation

and low

page fault rate

Desirable

operating

zone

Figure 12.6 Desirable variation of page fault rate with memory allocation.

fault rate in Figure 12.6, varies among processes. Even for the same process, the
page fault characteristic may be different when it operates with different data.
Consequently, the amount of memory to be allocated to a process has to be
determined dynamically by considering the actual page fault characteristic of the
process. This issue is discussed in Section 12.5.

Thrashing Consider a process that is operating in the region of low memory
allocation and high page fault rate in Figure 12.6. Due to the high page fault rate,
this process spends a lot of its time in the blocked state. Such a process is not in a
position to use the CPU effectively. It also causes high overhead due to high page
fault rate and process switching caused by page faults. If all processes in the system
operate in the region of high page fault rates, the CPU would be engaged in per-
forming page traffic and process switching most of the time. CPU efficiency would
be low and system performance, measured either in terms of average response time
or throughput, would be poor. This situation is called thrashing.

Definition 12.2 Thrashing A condition in which high page traffic and low
CPU efficiency coincide.

Note that low CPU efficiency can occur because of other causes as well, e.g.,
if too few processes exist in memory or all processes in memory perform I/O
operations frequently. The thrashing situation is different in that all processes
make poor progress because of high page fault rates.

From Figure 12.6, we can infer that the cause of thrashing is an under-
commitment of memory to each process. The cure is to increase the memory
allocation for each process. This may have to be achieved by removing some
processes from memory—that is, by reducing the degree of multiprogramming.
A process may individually experience a high page fault rate without the system
thrashing. The same analysis now applies to the process—it must suffer from an

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 422 — #13

422 Part 3 Memory Management

undercommitment of memory, so the cure is to increase the amount of memory
allocated to it.

12.2.1.3 Optimal Page Size

The size of a page is defined by computer hardware. It determines the number of
bits required to represent the byte number in a page. Page size also determines

1. Memory wastage due to internal fragmentation
2. Size of the page table for a process
3. Page fault rates when a fixed amount of memory is allocated to a process

Consider a process Pi of size z bytes. A page size of s bytes implies that the
process has n pages, where n = �z/s� is the value of z/s rounded upward. Average
internal fragmentation is s/2 bytes because the last page would be half empty
on the average. The number of entries in the page table is n. Thus internal frag-
mentation varies directly with the page size, while page table size varies inversely
with it.

Interestingly, page fault rate also varies with page size if a fixed amount of
memory is allocated to Pi . This can be explained as follows: The number of pages
of Pi in memory varies inversely with the page size. Hence twice as many pages of
Pi would exist in memory if the page size were made s/2. Now let the proximity
region of an instruction or data byte as defined in Section 12.2 be small compared
with s/2, so that it can be assumed to fit within the page that contains the byte.
When the page size is s/2, memory contains twice as many proximity regions
of recent logical addresses as when the page size is s bytes. From the page fault
characteristic of Figure 12.6, page fault rates would be smaller for smaller page
sizes.

We can compute the page size that minimizes the total of memory penalty due
to internal fragmentation and memory commitment to page tables. If s � z and
each page table entry occupies 1 byte of memory, the optimal value of s is

√
2z.

Thus, the optimal page size is only 400 bytes for a process size of 80 KB, and it
is 800 bytes for a process of 320 KB. However, computers tend to use larger page
sizes (e.g., Pentium and MIPS use page sizes of 4 KB or more, Sun Ultrasparc
uses page sizes of 8 KB or more and the PowerPC uses a page size of 4 KB) for
the following reasons:

1. Page table entries tend to occupy more than 1 byte.
2. Hardware costs are high for smaller page sizes. For example, the cost of

address translation increases if a larger number of bits is used to represent a
page number.

3. Disks, which are used as paging devices, tend to operate less efficiently for
smaller disk block sizes.

The decision to use larger page sizes than the optimal value implies somewhat
higher page fault rates for a process. This fact represents a tradeoff between the
hardware cost and efficient operation of a process.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 423 — #14

Chapter 12 Virtual Memory 423

12.2.2 Paging Hardware
Figure 12.7 illustrates address translation in a multiprogrammed system. Page
tables for many processes are present in memory. The MMU contains a special
register called the page-table address register (PTAR) to point to the start of a page
table. For a logical address (pi , bi), the MMU computes <PTAR> + pi × lPT_entry
to obtain the address of the page table entry of page pi , where lPT_entry is the
length of a page table entry and <PTAR> denotes the contents of the PTAR.
The PTAR has to be loaded with the correct address when a process is scheduled.
To facilitate this, the kernel can store the address of the page table of a process in
its process control block (PCB).

Table 12.3 summarizes the functions performed by the paging hardware. We
describe the techniques used in implementing these functions, and name a few
modern computer systems that use them.

12.2.2.1 Memory Protection

A memory protection violation interrupt should be raised if a process tries to
access a nonexistent page, or exceeds its access privileges while accessing a page.
The MMU provides a special register called the page-table size register (PTSR)
to detect violations of the first kind. The kernel records the number of pages

Add ··

Memory

1

fi

fi

bi

pi bi

PTSR

PTAR

+

1�

Memory protection exception

MMU

2

3

4

1
Page table

of P2

Page table

of P3

Page table

of P1

≥?

Figure 12.7 Address translation in a multiprogrammed system.

Table 12.3 Functions of the Paging Hardware

Function Description

Memory protection Ensure that a process can access only those memory
areas that are allocated to it.

Efficient address
translation

Provide an arrangement to perform address translation
efficiently.

Page replacement support Collect information concerning references made to
pages. The virtual memory manager uses this
information to decide which page to replace when a
page fault occurs.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 424 — #15

424 Part 3 Memory Management

contained in a process in its process control block (PCB) and loads this number
from the PCB in the PTSR when the process is scheduled. A memory protection
violation is raised if the page number in a logical address is not smaller than
contents of PTSR; this check is analogous to the one using the size register in the
memory protection scheme of Chapter 2.

The access privileges of a process to a page are stored in the prot info field of
the page’s entry in the page table. During address translation, the MMU checks
the kind of access being made to the page against this information and raises a
memory protection violation if the two are not compatible. The information in
the prot info field can be bit-encoded for efficient access—each bit in the field
corresponds to one kind of access to the page (e.g., read, write, etc.); it is set “on”
only if the process possesses the corresponding access privilege to the page.

12.2.2.2 Address Translation and Page Fault Generation

The MMU follows the steps of Table 12.2 to perform address translation. For a
logical address (pi , bi), it accesses the page table entry of pi by using pi × lPT_entry
as an offset into the page table, where lPT_entry is the length of a page table entry.
lPT_entry is typically a power of 2, so pi × lPT_entry can be computed efficiently by
shifting the value of pi by a few bits.

Address Translation Buffers A reference to the page table during address trans-
lation consumes one memory cycle because the page table is stored in memory.
The translation look-aside buffer (TLB) is a small and fast associative memory that
is used to eliminate the reference to the page table, thus speeding up address trans-
lation. The TLB contains entries of the form (page #, page frame #, protection
info) for a few recently accessed pages of a program that are in memory. During
address translation of a logical address (pi , bi), the TLB hardware searches for an
entry of page pi . If an entry is found, the page frame # from the entry is used to
complete address translation for the logical address (pi , bi). Figure 12.8 illustrates

Memory

0

1

2

3

4

5

6

7

Add ·· 2480

4

1

2�

3�

2

3

2 480

MMU

7 480

pi bi

qi bi

Page
#

Page
frame #

Prot
info

Translation

look-aside

buffer (TLB)

Page table

of P2

TLB

hit

0
1 1

1
5
72

3
4

2 7

1 5

Valid
bit

Page
frame

#

Prot
info

Figure 12.8 Address translation using the translation look-aside buffer and the page table.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 425 — #16

Chapter 12 Virtual Memory 425

Virtual memory manager actions
MMU actions

Page fault

Page-out

needed?

Remove page pi
from memory

Load

page pi

Update PT entry,

erase TLB entry

of pj

Update PT

entry of pi

Invoke scheduler

N

Y
Raise

page fault

Enter (pi, fi)
in TLB

Form physical

address using fi

Address (pi, bi)

pi’s entry

in TLB?

pi in

memory?
N

N

Y

Y

Figure 12.9 Summary of address translation of (pi , bi) (note: PT = page table).

operation of the TLB. The arrows marked 2′ and 3′ indicate TLB lookup. The
TLB contains entries for pages 1 and 2 of process P2. If pi is either 1 or 2, the TLB
lookup scores a hit, so the MMU takes the page frame number from the TLB
and completes address translation. A TLB miss occurs if pi is some other page,
hence the MMU accesses the page table and completes the address translation if
page pi is present in memory; otherwise, it generates a page fault, which activates
the virtual memory manager to load pi in memory.

Figure 12.9 summarizes the MMU and software actions in address trans-
lation and page fault handling for a logical address (pi , bi). MMU actions
concerning use of the TLB and the page table are as described earlier. The vir-
tual memory manager is activated by a page fault. If an empty page frame is
not available to load page pi , it initiates a page-out operation for some page pj
to free the page frame, say page frame fj , occupied by it. pj ’s page table entry
is updated to indicate that it is no longer present in memory. If pj has an entry
in the TLB, the virtual memory manager erases it by executing an “erase TLB
entry” instruction. This action is essential for preventing incorrect address trans-
lation at pj ’s next reference. A page-in operation is now performed to load pi in
page frame fj , and pi ’s page table entry is updated when the page-in operation
is completed. Execution of the instruction that caused the page fault is repeated
when the process is scheduled again. This time pi does not have an entry in the
TLB but it exists in memory, and so the MMU uses information in the page table
to complete the address translation. An entry for pi has to be made in the TLB
at this time.

New entries in the TLB can be made either by the hardware or by the virtual
memory manager. Hardware handling of the TLB is more efficient; the hard-
ware can make a new entry in the TLB whenever it has to complete address

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 426 — #17

426 Part 3 Memory Management

translation through a reference to the page table. When the TLB is managed
by the virtual memory manager, the MMU raises a “missing TLB entry” inter-
rupt whenever it cannot find an entry for the required page in the TLB, and the
virtual memory manager executes several instructions to make the TLB entry.
In this approach, the MMU performs address translation exclusively through
the TLB, and the page table is used only by the virtual memory manager. This
arrangement provides flexibility because the virtual memory manager can use dif-
ferent organizations of the page table to conserve memory (see Section 12.2.3).
The PowerPC and Intel 80x86 architectures use hardware-managed TLBs, while
the MIPS, Sparc, Alpha, and PA-RISC architectures use software-managed
TLBs.

A few features are common to both the approaches. A replacement algorithm
is used to decide which TLB entry should be overwritten when a new entry is to be
made. Use of the TLB can undermine protection if the MMU performs address
translation through TLB entries that were made while some other process was
in operation. This issue is analogous to the protection issue in a cache discussed
earlier in Section 2.2.3. Hence the solutions are also analogous. Each TLB entry
can contain the id of the process that was in operation when the entry was made—
that is, each TLB entry can have the form (process id, page #, page frame #,
protection info)—so that the MMU can avoid using it when some other process
is in operation. Alternatively, the kernel must flush the TLB while performing
process switching.

We use the following notation to compute the effective memory access time
when a TLB is used:

pr1 probability that a page exists in memory
pr2 probability that a page entry exists in TLB
tmem memory access time
tTLB access time of TLB
tpfh time overhead of page fault handling

As mentioned earlier in Section 12.2.1, pr1 is the memory hit ratio and tmem is a
few orders of magnitude smaller than tpfh. Typically tTLB is at least an order of
magnitude smaller than tmem. pr2 is called the TLB hit ratio.

When the TLB is not used, the effective memory access time is as given by
Eq. (12.2). The page table is accessed only if the page being referenced does not
have an entry in the TLB. Accordingly, a page reference consumes (tTLB + tmem)

time if the page has an entry in the TLB, and (tTLB + 2 × tmem) time if it does
not have a TLB entry but exists in memory. The probability of the latter situation
is (pr1− pr2). When the TLB is used, pr2 is the probability that an entry for the
required page exists in the TLB. The probability that a page table reference is both
necessary and sufficient for address translation is (pr1− pr2). The time consumed
by each such reference is (tTLB + 2 × tmem) since an unsuccessful TLB search
would precede the page table lookup. The probability of a page fault is (1 − pr1).
It occurs after the TLB and the page table have been looked up, and it requires
(tpfh + tTLB + 2 × tmem) time if we assume that the TLB entry is made for the

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 427 — #18

Chapter 12 Virtual Memory 427

page while the effective memory address is being calculated. Hence the effective
memory access time is

Effective memory access time =
pr2 × (tTLB + tmem) + (pr1 − pr2) × (tTLB + 2 × tmem)

+ (1 − pr1) × (tTLB + tmem + tpfh + tTLB + 2 × tmem)

(12.3)

To provide efficient memory access during operation of the kernel, most
computers provide wired TLB entries for kernel pages. These entries are never
touched by replacement algorithms.

Superpages Sizes of computer memories and processes have grown rapidly since
the 1990s. TLB sizes have not kept pace with this increase because TLBs are
expensive as a result of their associative nature; their sizes have grown from about
eight in the 1960s to only about a thousand in 2005. Hence TLB reach, which is
the product of the number of entries in a TLB and the page size, has increased
marginally, but its ratio to memory size has shrunk by a factor of over 1000.
Consequently, TLB hit ratios are poor, and average memory access times are
high [see Eq. (12.3)]. Processor caches have also become larger than the TLB
reach, which affects performance of a cache that is searched by physical addresses
because access to contents of the cache may be slowed down by TLB misses and
lookups through the page table. A generic way of countering these problems is
to use a larger page size, so that the TLB reach becomes larger. However, it leads
to larger internal fragmentation and more page I/O. In the absence of a generic
solution, techniques were developed to address specific problems created by the
low TLB reach. Searching the cache by logical addresses took the TLB out of
the path from the CPU to the cache, which avoided a slowdown of cache lookup
due to limited TLB reach. However, poor TLB hit ratios continued to degrade
virtual memory performance.

Superpages were evolved as a generic solution to the problems caused by
low TLB reach. A superpage is like a page of a process, except that its size is a
power-of-2 multiple of the size of a page, and its start address in both the logical
and physical address spaces is aligned on a multiple of its own size. This feature
increases the TLB reach without increasing the size of the TLB, and helps to
obtain a larger TLB hit ratio. Most modern architectures permit a few standard
superpage sizes and provide an additional field in a TLB entry to indicate the size
of superpage that can be accessed through the entry.

The virtual memory manager exploits the superpages technique by adapting
the size and number of superpages in a process to its execution characteristics. It
may combine some pages of a process into a superpage of an appropriate size if
the pages are accessed frequently and satisfy the requirement of contiguity and
address alignment in the logical address space. This action is called a promotion.
The virtual memory manager may have to move the individual pages in memory
during promotion to ensure contiguity and address alignment in memory. A
promotion increases the TLB reach, and releases some of the TLB entries that
were assigned to individual pages of the new superpage.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 428 — #19

428 Part 3 Memory Management

If the virtual memory manager finds that some pages in a superpage are not
accessed frequently, it may decide to disband the superpage into individual pages.
This action, called demotion, frees some memory that can be used to load other
pages. Thus, it has the potential to reduce page fault frequency.

12.2.2.3 Support for Page Replacement

The virtual memory manager needs two kinds of information for minimizing
page faults and the number of page-in and page-out operations during page
replacement:

1. The time when a page was last used.
2. Whether a page is dirty, i.e., whether a write operation has been performed

on any byte in the page. (A page is clean if it is not dirty.)

The time of last use indicates how recently a page was used by a process; it
is useful in selecting a candidate for page replacement. However, it is expensive
to provide a sufficient number of bits in a page table entry for this purpose, so
most computers provide a single bit called the reference bit. The modified bit in
a page table entry is used to indicate whether a page is clean or dirty. If a page
is clean, its copy in the swap space of the process is still current, so no page-out
operation is needed; the page being loaded can simply overwrite such a page in
memory. For a dirty page, a page-out operation must be performed because its
copy in the swap space is stale. A page-in operation for the new page to be loaded
can be started only after the page-out operation is completed.

12.2.3 Practical Page Table Organizations
A process with a large address space requires a large page table. Hence the virtual
memory manager has to commit a large amount of memory for each page table.
For example, in a computer system using 32-bit logical addresses and a page size
of 4 KB, a process can have 1 million pages. If the size of a page table entry is
4 bytes, the page table has a size of 4 MB. Thus, the virtual memory manager might
tie up a few hundred megabytes of memory for storing page tables of processes!
The memory requirements would be even larger when 64-bit logical addresses are
used. Two approaches are followed to reduce the size of memory committed to
page tables:

• Inverted page table: The inverted page table (IPT) has one entry for each page
frame in memory that indicates which page, if any, occupies the page frame;
the table got this name because the information in it is the “inverse” of the
information in a page table. The size of an inverted page table is governed by
the size of memory, so it is independent of the number and sizes of processes.
However, information about a page cannot be accessed directly as in a page
table; it has to be searched for in the IPT.

• Multilevel page table: The page table of a process is itself paged; the entire
page table therefore does not need to exist in memory at any time. A higher-
level page table is used to access pages of the page table. If the higher-level
page table is large, it could itself be paged, and so on. In this organization,

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 429 — #20

Chapter 12 Virtual Memory 429

the page table entry of a page has to be accessed through relevant entries of
the higher-level page tables.

In both approaches, the TLB is used to reduce the number of memory
references needed to perform address translation.

12.2.3.1 Inverted Page Tables

Figure 12.10(a) illustrates address translation using an inverted page table (IPT).
Each entry of the inverted page table is an ordered pair consisting of a process id
and a page number. Thus a pair (R, pi) in the fith entry indicates that page frame
fi is occupied by page pi of a process R. While scheduling a process, the scheduler
copies the id of the process from its PCB into a register of the MMU. Let this
id be P. The MMU performs address translation for a logical address (pi , bi) in
process P, using the following steps:

1. Separate the components pi and bi of the logical address.
2. Using the process id P, form the pair (P, pi).
3. Search for the pair (P, pi) in the IPT. Raise a page fault if the pair does not

exist in the IPT.

(R, pl)

(P, pi)

(Q, pk)

(a)

Hash table

P pi

h
v

Inverted page table

Page
id

Ref
info Pointer

fk
fi
fl −

(b)

Add ··

Memory

1

P
Process

id

2

fi

fk

pi

pi

bi

bi

P

5

fi

Inverted page table

Page
id

Ref
info

(P, pi)
4

3

Page

fault

MMU

Figure 12.10 Inverted page table: (a) concept; (b) implementation using a hash table.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 430 — #21

430 Part 3 Memory Management

4. If the pair (P, pi) exists in entry fi of the IPT, copy the page frame number fi
for use in address translation.

5. Calculate the effective memory address using fi and bi .

These steps are shown as the circled numbers 1 to 5 in Figure 12.10(a).
The search for (P, pi) in Step 3 should be conducted efficiently, otherwise it

would slow down address translation. Accordingly, a hash table is used to speed
up the search in the inverted page table. Figure 12.10(b) shows an arrangement
called hash-with-chaining, which operates as follows: Each entry of the inverted
page table contains an additional field pointer, which points to another entry in the
same table. To hash a pair (P, pi), we first concatenate the bit strings representing
P and pi to obtain a larger bit string. We now interpret this bit string as an integer
number x, and apply the following hash function h to it:

h(x) = remainder (x
a)

where a is the size of the hash table, which is typically some prime number. h(x),
which is in the range 0, . . . , a − 1, is an entry number in the hash table. Let v
designate its value. Hashing of many process id–page id pairs may produce the
same value v, because the total number of pages of all processes in memory is
much larger than the size of the hash table. Entries of all these pairs in the inverted
page table are chained together by the pointer field.

The inverted page table is constructed and maintained by the virtual memory
manager as follows: When page pi of process P is loaded in page frame fi in
memory, the virtual memory manager stores the pair (P, pi) in the fith entry of
the inverted page table. It now hashes this pair to obtain an entry number, say
v, and adds the fith entry of the inverted page table in the chain starting on the
vth entry of the hash table as follows: It copies the value found in the vth entry
of the hash table into the pointer field of the fith entry of the inverted page table,
and enters fi into the vth entry of the hash table. When this page is removed from
memory, the virtual memory manager deletes its entry from the chain starting
on the vth entry of the hash table. In Figure 12.10(b), the pages (R, pl), (P, pi)
and (Q, pk) were loaded into page frames fl , fi and fk , respectively, and they all
happened to hash into the vth entry of the hash table. Example 12.2 describes
how the MMU uses the inverted page table during address translation.

•
Example 12.2 Search in the Inverted Page Table

The logical address (pi , bi) is to be translated by using the inverted page table
of Figure 12.10(b). The pair (P, pi) is hashed to obtain an entry number v in
the hash table. The chain starting on this entry is searched. The pair (P, pi)
does not match with the pair (Q, pk) found in the page id field of the first entry
of the chain. Therefore, the MMU uses the pointer field of this entry to locate
the next entry in the chain. The pair in this entry matches (P, pi), so the MMU
uses the entry number of this entry, i.e., fi , as the frame number to form the
physical address (fi , bi).
•

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 431 — #22

Chapter 12 Virtual Memory 431

The average number of comparisons required to locate the entry of a pair
(P, pi) in the inverted page table depends on the average length of the chain starting
on an entry of the hash table. Increasing the size of the hash table, a, reduces the
average length of the chain. A value of a > 2 × #frames ensures that the average
number of entries in a linked list is less than 2. The inverted page table contains
exactly #frames entries in it. Note that the inverted page table does not contain
any information about pages that are not present in memory; a conventional page
table would have to be maintained on disk to contain their information. Inverted
page tables have been used in the IBM RS 6000 and AS 400 systems, and in the
PowerPC and PA-RISC architectures. They have also been used in Solaris OSs
for Sparc architectures.

12.2.3.2 Multilevel Page Tables

The memory requirement of the page table of a process is reduced by paging
the page table itself and loading its pages on demand just like pages of pro-
cesses. This approach requires a two-tiered addressing arrangement in which a
higher-level page table contains entries that hold information about pages of
the page table and the page table contains information concerning pages of the
process. The information in each of these tables is similar to the information
contained in a conventional page table. Figure 12.11 illustrates the concept of a
two-level page table. Memory now contains two kinds of pages—pages of pro-
cesses and pages of page tables of processes, which we shall call PT pages. Only
three PT pages of a process P are currently in memory. For address translation
of a logical address (pi , bi) in process P, page pi of process P should exist in
memory and the PT page that contains the entry for page pi should also exist
in memory.

As mentioned in Section 12.2, the page number and byte number in a logical
address (pi , bi) are represented in np and nb bits. The size of each page table entry
is a power of 2, so the number of page table entries that fit in one PT page is also a
power of 2. If the size of a table entry is 2e bytes, the number of page table entries
in one PT page is 2nb/2e, i.e., 2nb−e. Therefore, the page number pi in the logical
address itself consists of two parts—id of the PT page that contains the page table
entry of pi , and an entry number within the PT page. As shown in Figure 12.11,
we call these two parts p1

i and p2
i , respectively. From the preceding discussion, p2

i
is contained in the lower order nb − e bits of pi . Since the binary representation
of pi contains np bits, p1

i is contained in np − (nb − e) higher-order bits.
Figure 12.11 illustrates address translation for a logical address (pi , bi). It

consists of the following steps:

1. The address (pi , bi) is regrouped into three fields

p1
i p2

i bi

� �np − (nb − e) � nb − e �� nb �

The contents of these fields are p1
i , p2

i and bi , respectively.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 432 — #23

432 Part 3 Memory Management

Pages of

process P
Pages of the

page table of P
(i.e., PT pages of P)

Higher-level

page table

Page pi

Byte with

address (pi ,bi)

pi
1

pi
1 pi

2

pi
2

bi

bi

pi

x

x
x

Figure 12.11 Two-level page table organization.

2. The PT page with the number p1
i contains the page table entry for pi . The

MMU checks whether this page exists in memory and raises a page fault if it
does not. The page fault is serviced by the virtual memory manager to load
the PT page in memory.

3. p2
i is the entry number for pi in the PT page. The MMU uses information in

this entry to check whether page pi exists in memory and raises a page fault
if it does not. The virtual memory manager services the page fault and loads
page pi in memory.

4. The contents of pi ’s page table entry are used to perform address translation.

Thus, address translation requires two memory accesses—one to access the
higher-level page table and another to access the page table of process P. It can be
speeded up through the TLB by making two kinds of entries—entries of the form
(P, p1

i , frame number, protection info) help to eliminate accesses to the higher-
level page table of process P and entries of the form (P, p1

i , p2
i , frame number,

protection info) help to eliminate accesses to the page table of P.
When the size of the higher-level page table in a two-level page table organiza-

tion is very large, the higher-level page table can itself be paged. This arrangement

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 433 — #24

Chapter 12 Virtual Memory 433

results in a three-level page table structure. Address translation using three-level
page tables is performed by an obvious extension of address translation in two-
level page tables. A logical address (pi , bi) is split into four components p1

i , p2
i , p3

i ,
and bi , and the first three components are used to address the three levels of the
page table. Thus address translation requires up to three memory accesses. In
computer systems using 64-bit addresses, even the highest-level page table in a
three-level page table organization may become too large. Four-level page tables
are used to overcome this problem.

The Intel 80386 architecture used two-level page tables. Three and four-level
page tables have been used in the Sun Sparc and Motorola 68030 architectures,
respectively.

12.2.4 I/O Operations in a Paged Environment
A process makes a system call for performing I/O operations. Two of its param-
eters are the number of bytes to be transferred and the logical address of the
data area, which is the area of memory that participates in the data transfer. The
call activates the I/O handler in the kernel. The I/O subsystem does not contain
an MMU; it uses physical addresses to implement data transfer to and from
the memory. Consequently, the I/O handler has to perform a few preparatory
actions before initiating the I/O operation. The first of these is to replace the
logical address of the data area with its physical address, using information from
the page table of the process. It has to perform some more actions to address two
more issues discussed in the following.

The data area in an I/O operation may span several pages of the process. A
page fault while accessing a page of the data area would disrupt the I/O oper-
ation, so all these pages must remain in memory while I/O is being performed.
The I/O handler satisfies this requirement by loading all pages of the data area
into memory and putting an I/O fix on each page to instruct the virtual memory
manager that these pages should not be replaced until the I/O fix is removed at
the end of the I/O operation. It now starts the I/O operation. A simple way to
implement I/O fixing of pages is to add an I/O fix bit in the misc info field of each
page table entry.

Since the I/O subsystem operates without an MMU, it expects the data area
to occupy a contiguous area of memory. However, the process is paged, hence
pages of the data area may not have contiguous physical addresses. This situa-
tion can be addressed in two ways. Most I/O subsystems provide a scatter/gather
feature, which can deposit parts of an I/O operation’s data in noncontiguous
areas of memory. For example, the first few bytes from an I/O record can be
read into a page frame located in one part of memory and the remaining bytes
can be read into another page frame located in a different part of memory.
Analogously, a “gather write” can draw the data of the I/O operation from
noncontiguous memory areas and write it into one record on an I/O device.
Example 12.3 illustrates how a scatter-read operation is used to implement an
I/O operation that spans two pages in a process. If an I/O subsystem does not
provide the scatter/gather feature, the I/O handler can handle the situation in

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 434 — #25

434 Part 3 Memory Management

two ways. It can either instruct the virtual memory manager to put pages con-
taining the data area contiguously in memory, or it can first read the data into
a kernel area that has contiguous physical addresses and then copy it to the
data area in the process. Analogous provisions can be made to support a write
operation.

•
Example 12.3 I/O Operations in Virtual Memory

Page i2 of a process Pi contains a system call “perf_io (alpha, read, 828,
(i1, 520)),” where alpha is a file, 828 is the count of data bytes to be read,
and (i1, 520) is the logical address of the start of the data area. Figure 12.12
illustrates how the I/O operation is implemented. The page size is 1 KB, and so
the data area is situated in pages i1 and i1 + 1 of the process. Before initiating
the I/O operation, the I/O handler invokes the virtual memory manager to
load pages i1 and i1 + 1 into memory. They are loaded into page frames 14
and 10 of memory. The I/O handler puts an I/O fix on these pages by setting
the I/O fix bits in the misc info field of their page table entries. These pages are
not replaced until the I/O fix is removed at the end of the I/O operation. The
I/O handler now generates a scatter-read operation to read the first 504 bytes
starting at byte number 520 in page frame 14, and the remaining 324 bytes
starting at byte number 0 in page frame 10. It removes the I/O fix on pages 14
and 10 when the I/O operation completes.
•

Logical address space

i1+1

i2

i1

Perf_io (read, 828, (i
1
, 520))

i1+1

i2

i1
1 10 I/O fix
1 14 I/O fix

1 8

Valid
bit

Misc
info

Page table

Memory

14

10

8 Perf_io (read, 828, (i
1
, 520))

scatter-read

 504, (14,520),

 324, (10,0)

Page
frame #

frame
#

Figure 12.12 An I/O operation in virtual memory.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 435 — #26

Chapter 12 Virtual Memory 435

12.3 THE VIRTUAL MEMORY MANAGER
•

The virtual memory manager uses two data structures—the page table, whose
entry format is shown in Figure 12.3, and the free frames list. The ref info and
modified fields in a page table entry are typically set by the paging hardware. All
other fields are set by the virtual memory manager itself. Table 12.4 summarizes
the functions of the virtual memory manager. We discuss the first four func-
tions in this section. Other functions—page replacement, allocation of memory
to processes, and implementation of page sharing—are discussed in the next few
sections.

Management of the Logical Address Space of a Process The virtual memory
manager manages the logical address space of a process through the following
subfunctions:

1. Organize a copy of the instructions and data of the process in its swap space.
2. Maintain the page table.
3. Perform page-in and page-out operations.
4. Perform process initiation.

As mentioned earlier in Section 12.2, a copy of the entire logical address space
of a process is maintained in the swap space of the process. When a reference to
a page leads to a page fault, the page is loaded from the swap space by using a
page-in operation. When a dirty page is to be removed from memory, a page-out
operation is performed to copy it from memory into a disk block in the swap

Table 12.4 Functions of the Virtual Memory Manager

Function Description

Manage logical address
space

Set up the swap space of a process. Organize its logical
address space in memory through page-in and page-out
operations, and maintain its page table.

Manage memory Keep track of occupied and free page frames in memory.
Implement memory
protection

Maintain the information needed for memory
protection.

Collect page reference
information

Paging hardware provides information concerning page
references. This information is maintained in
appropriate data structures for use by the page
replacement algorithm.

Perform page replacement Perform replacement of a page when a page fault arises
and all page frames in memory, or all page frames
allocated to a process, are occupied.

Allocate physical memory Decide how much memory should be allocated to a
process and revise this decision from time to time to suit
the needs of the process and the OS.

Implement page sharing Arrange sharing of pages be processes.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 436 — #27

436 Part 3 Memory Management

space. Thus the copy of a page in the swap space is current if that page is not in
memory, or it is in memory but it has not been modified since it was last loaded.
For other pages the copy in the swap space is stale (i.e., outdated), whereas that
in memory is current.

One issue in swap space management is size of the swap space of a process.
Most virtual memory implementations permit the logical address space of a pro-
cess to grow dynamically during its operation. This can happen for a variety of
reasons. The size of stack or PCD data areas may grow (see Section 11.4.2), or the
process may dynamically link more modules or may perform memory mapping
of files (see Section 12.7). An obvious approach to handling dynamic growth of
address spaces is to allocate swap space dynamically and noncontiguously. How-
ever, this approach faces the problem that the virtual memory manager may run
out of swap space during operation of a process.

To initiate a process, only the page containing its start address, i.e., address
of its first instruction, need managers to be loaded in memory. Other pages are
brought in on demand. Details of the page table and the page-in and page-out
operations have been described earlier in Section 12.2.

Management of Memory The free frames list is maintained at all times. A page
frame is taken off the free list to load a new page, and a frame is added to it when
a page-out operation is performed. All page frames allocated to a process are
added to the free list when the process terminates.

Protection During process creation, the virtual memory manager constructs its
page table and puts information concerning the start address of the page table
and its size in the PCB of the process. The virtual memory manager records access
privileges of the process for a page in the prot info field of its page table entry.
During dispatching of the process, the kernel loads the page-table start address of
the process and its page-table size into registers of the MMU. During translation
of a logical address (pi , bi), the MMU ensures that the entry of page pi exists in
the page table and contains appropriate access privileges in the prot info field.

Collection of Information for Page Replacement The ref info field of the page
table entry of a page indicates when the page was last referenced, and the modified
field indicates whether it has been modified since it was last loaded in memory.
Page reference information is useful only so long as a page remains in memory;
it is reinitialized the next time a page-in operation is performed for the page.
Most computers provide a single bit in the ref info field to collect page reference
information. This information is not adequate to select the best candidate for
page replacement. Hence the virtual memory manager may periodically reset the
bit used to store this information. We discuss this aspect in Section 12.4.1.

•
Example 12.4 Page Replacement

The memory of a computer consists of eight page frames. A process P1 consists
of five pages numbered 0 to 4. Only pages 1, 2, and 3 are in memory at the
moment; they occupy page frames 2, 7, and 4, respectively. Remaining page

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 437 — #28

Chapter 12 Virtual Memory 437

(a) (b)

Memory

7

6

5

4

3

2

1

0

0
1
2
3
4

Valid
bit

Page
frame #

Misc
info

0
1
1
1
0

2
7
4

t4, m
t11
t9

Page table of P1

Valid
bit

Page
frame #

Misc
info

t11
t9
t12

Memory

7

6

5

4

3

2

1

0

0
1
2
3
4

0
0
1
1
1

7
4
2

Page table of P1

Figure 12.13 Data structures of the virtual memory manager: (a) before and (b) after a page
replacement.

frames have been allocated to other processes and no free page frames are left
in the system.

Figure 12.13(a) illustrates the situation in the system at time instant t+11,
i.e., a little after t11. Only the page table of P1 is shown in the figure since
process P1 has been scheduled. Contents of the ref info and modified fields
are shown in the misc info field. Pages 1, 2, and 3 were last referenced at time
instants t4, t11, and t9, respectively. Page 1 was modified sometime after it
was last loaded. Hence the misc info field of its page table entry contains the
information t4, m.

At time instant t12, process P1 gives rise to a page fault for page 4. Since all
page frames in memory are occupied, the virtual memory manager decides to
replace page 1 of the process. The mark m in the misc info field of page 1’s page
table entry indicates that it was modified since it was last loaded, so a page-out
operation is necessary. The page frame # field of the page table entry of page
1 indicates that the page exists in page frame 2. The virtual memory manager
performs a page-out operation to write the contents of page frame 2 into the
swap area reserved for page 1 of P1, and modifies the valid bit in the page table
entry of page 1 to indicate that it is not present in memory. A page-in operation
is now initiated for page 4 of P1. At the end of the operation, the page table
entry of page 4 is modified to indicate that it exists in memory in page frame 2.
Execution of P1 is resumed. It now makes a reference to page 4, and so the
page reference information of page 4 indicates that it was last referenced at t12.
Figure 12.13(b) indicates the page table of P1 at time instant t+12.

•

12.3.1 Overview of Operation of the Virtual Memory Manager
The virtual memory manager makes two important decisions during its
operation:

• When a page fault occurs during operation of some process proci , it decides
which page should be replaced.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 438 — #29

438 Part 3 Memory Management

Paging

mechanisms
Page-in Page-out

Page

replacement

policy

Paging hardware

Page tables
Memory

allocation

policy

Data flow

Control flow

Free frames

list

Virtual memory

data structures

. .

Figure 12.14 Modules of the virtual memory manager.

• Periodically it decides how much memory, i.e., how many page frames, should
be allocated to each process.

As discussed in later sections, these decisions are taken independently of one
another. When a page fault occurs, the virtual memory manager merely replaces
a page of the same process if all page frames allocated to the process are occupied.
When it decides to increase or decrease memory committed for a process, it merely
specifies the new number of page frames that should be allocated to each process.

Figure 12.14 depicts the arrangement of policy and mechanism modules of
the virtual memory manager. The page replacement policy uses the page refer-
ence information available in the virtual memory manager’s data structures, and
updates the page tables to reflect its decisions. It is implemented using page-in
and page-out operations as mechanisms. The page-in and page-out mechanisms
interact with the paging hardware to implement their functionalities. The pag-
ing hardware updates page reference information maintained in virtual memory
manager’s tables. The memory allocation policy uses the information in the page
tables and the free frames list to periodically decide whether and how to vary the
memory allocated to each process. We use the following notation for the memory
allocated to each process:

alloci Number of page frames allocated to process proci

We omit the subscript of alloci when only one process is under consideration.

12.4 PAGE REPLACEMENT POLICIES
•

As discussed earlier in Section 12.2.1.1, a page replacement policy should replace
a page that is not likely to be referenced in the immediate future. We evaluate
the following three page replacement policies to see how well they fulfill this
requirement.

• Optimal page replacement policy
• First-in, first-out (FIFO) page replacement policy
• Least recently used (LRU) page replacement policy

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 439 — #30

Chapter 12 Virtual Memory 439

For our analysis of these page replacement policies, we rely on the concept of
page reference strings. A page reference string of a process is a trace of the pages
accessed by the process during its operation. It can be constructed by monitoring
the operation of a process, and forming a sequence of page numbers that appear in
logical addresses generated by it. The page reference string of a process depends
on the data input to it, so use of different data would lead to a different page
reference string for a process.

For convenience we associate a reference time string t1, t2, t3, . . . with each
page reference string. This way, the kth page reference in a page reference string
is assumed to have occurred at time instant tk . (In effect, we assume a logical
clock that runs only when a process is in the running state and gets advanced only
when the process refers to a logical address.) Example 12.5 illustrates the page
reference string and the associated reference time string for a process.

•
Example 12.5Page Reference String

A computer supports instructions that are 4 bytes in length, and uses a page
size of 1 KB. It executes the following nonsense program in which the symbols
A and B are in pages 2 and 5, respectively:

START 2040
READ B

LOOP MOVER AREG, A
SUB AREG, B
BC LT, LOOP
...
STOP

A DS 2500
B DS 1

END

The page reference string and the reference time string for the process are as
follows:

Page reference string 1, 5, 1, 2, 2, 5, 2, 1, . . .
Reference time string t1, t2, t3, t4, t5, t6, t7, t8, . . .

The logical address of the first instruction is 2040, and so it lies in page 1.
The first page reference in the string is therefore 1. It occurs at time instant
t1. B, the operand of the instruction is situated in page 5, and so the second
page reference in the string is 5, at time t2. The next instruction is located in
page 1 and refers to A, which is located in page 2, and thus the next two page
references are to pages 1 and 2. The next two instructions are located in page 2,
and the instruction with the label LOOP is located in page 1. Therefore, if the
value of B input to the READ statement is greater than the value of A, the next
four page references would be to pages 2, 5, 2 and 1, respectively; otherwise,
the next four page references would be to pages 2, 5, 2 and 2, respectively.

•

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 440 — #31

440 Part 3 Memory Management

Optimal Page Replacement Optimal page replacement means making page
replacement decisions in such a manner that the total number of page faults
during operation of a process is the minimum possible; i.e., no other sequence
of page replacement decisions can lead to a smaller number of page faults. To
achieve optimal page replacement, at each page fault, the page replacement pol-
icy would have to consider all alternative page replacement decisions, analyze
their implications for future page faults, and select the best alternative. Of course,
such a policy is infeasible in reality: the virtual memory manager does not have
knowledge of the future behavior of a process. As an analytical tool, however, this
policy provides a useful comparison in hindsight for the performance of other
page replacement policies (see Example 12.6, below, and Exercise 12.5).

Although optimal page replacement might seem to require excessive analysis,
Belady (1966) showed that it is equivalent to the following simple rule: At a page
fault, replace the page whose next reference is farthest in the page reference string.

FIFO Page Replacement At every page fault, the FIFO page replacement policy
replaces the page that was loaded into memory earlier than any other page of
the process. To facilitate FIFO page replacement, the virtual memory manager
records the time of loading of a page in the ref info field of its page table entry.
When a page fault occurs, this information is used to determine pearliest, the page
that was loaded earlier than any other page of the process. This is the page that
will be replaced with the page whose reference led to the page fault.

LRU Page Replacement The LRU policy uses the law of locality of reference as
the basis for its replacement decisions. Its operation can be described as follows:
At every page fault the least recently used (LRU) page is replaced by the required
page. The page table entry of a page records the time when the page was last
referenced. This information is initialized when a page is loaded, and it is updated
every time the page is referenced. When a page fault occurs, this information is
used to locate the page pLRU whose last reference is earlier than that of every
other page. This page is replaced with the page whose reference led to the page
fault.

Analysis of Page Replacement Policies Example 12.6 illustrates operation of
the optimal, FIFO, and LRU page replacement policies.

•
Example 12.6 Operation of Page Replacement Policies

A page reference string and the reference time string for a process P are as
follows:

Page reference string 0, 1, 0, 2, 0, 1, 2, . . . (12.4)
Reference time string t1, t2, t3, t4, t5, t6, t7, . . . (12.5)

Figure 12.15 illustrates operation of the optimal, FIFO and LRU page replace-
ment policies for this page reference string with alloc = 2. For convenience, we
show only two fields of the page table, valid bit and ref info. In the interval t0

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 441 — #32

Chapter 12 Virtual Memory 441

Optimal FIFO LRU

Time

instant

t1

t1 t1

t1 t1
t2 t2

t1 t1

t3

t4

t2

t2
t4

t5t5

t5t5
t6t6

t6t6
t7t7

t4t4

t2

t2

t3

t4

t5

t6

t7

Page

ref

0

1

0

2

0

1

2

Valid
bit

Ref
info

Replace-

ment

0
1
2

1
0
0

−

0
1
2

1
1
0

−

0
1
2

1
1
0

−

0
1
2

1
0
1

Replace

1 by 2

0
1
2

1
0
1

−

0
1
2

0
1
1

Replace

0 by 1

0
1
2

0
1
1

−

Valid
bit

Ref
info

Replace-

ment

0
1
2

1
0
0

−

0
1
2

1
1
0

−

0
1
2

1
1
0

−

0
1
2

0
1
1

Replace

0 by 2

0
1
2

1
0
1

Replace

1 by 0

0
1
2

1
1
0

Replace

2 by 1

0
1
2

0
1
1

Replace

0 by 2

Valid
bit

Ref
info

Replace-

ment

0
1
2

1
0
0

−

0
1
2

1
1
0

−

0
1
2

1
1
0

−

0
1
2

1
0
1

Replace

1 by 2

0
1
2

1
0
1

−

0
1
2

1
1
0

Replace

2 by 1

0
1
2

0
1
1

Replace

0 by 2

Figure 12.15 Comparison of page replacement policies with alloc = 2.

to t3 (inclusive), only two distinct pages are referenced: pages 0 and 1. They
can both be accommodated in memory at the same time because alloc = 2. t4
is the first time instant when a page fault leads to page replacement.

The left column shows the results for optimal page replacement. Page
reference information is not shown in the page table since information con-
cerning past references is not needed for optimal page replacement. When the
page fault occurs at time instant t4, page 1 is replaced because its next reference
is farther in the page reference string than that of page 0. At time t6 page 1
replaces page 0 because page 0’s next reference is farther than that of page 2.

The middle column of Figure 12.15 shows the results for the FIFO replace-
ment policy. When the page fault occurs at time t4, the ref info field shows that
page 0 was loaded earlier than page 1, and so page 0 is replaced by page 2.

The last column of Figure 12.15 shows the results for the LRU replace-
ment policy. The ref info field of the page table indicates when a page was last
referenced. At time t4, page 1 is replaced by page 2 because the last reference
of page 1 is earlier than the last reference of page 0.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 442 — #33

442 Part 3 Memory Management

The total number of page faults occurring under the optimal, FIFO, and
LRU policies are 4, 6, and 5, respectively. By definition, no other policy has
fewer page faults than the optimal page replacement policy.
•

When we analyze why the LRU policy performed better than the FIFO pol-
icy in Example 12.6, we find that the FIFO policy removed page 0 at time t4 but
LRU did not do so because it had been referenced later than page 1. This decision
is consistent with the law of locality of reference, which indicates that because
page 0 was referenced more recently than page 1, it has a higher probability of
being referenced again than page 1. The LRU policy performed better because
page 0 was indeed referenced earlier after time t4 than page 1 was. However, the
LRU page replacement policy may not perform better than the FIFO policy if
references in a page reference string do not follow the law of locality of reference.
For example, for alloc = 3, the LRU and FIFO policies would perform identi-
cally for the page reference string 0, 1, 2, 3, 0, 1, 2, 3, while the LRU policy would
perform worse than the FIFO policy for the string 0, 1, 2, 0, 3, 1. However, such
situations are not encountered frequently.

To achieve the desirable page fault characteristic of Figure 12.6, a page
replacement policy must possess the stack property (also called the inclusion
property). It is defined by using the following notation:

{pi}k
n Set of pages existing in memory at time instant t+k if alloci = n

all through the operation of process proci (t+k implies a time
after time instant tk but before tk+1).

Definition 12.3 Stack Property A page replacement policy possesses the
stack property if

{pi}k
n ⊆ {pi}k

m for all n, m such that n < m.

Figure 12.16 illustrates {pi}k
n for different values of n for a page replace-

ment policy. We find that {pi}k
n ⊆ {pi}k

n+1 for n = 1, . . . , 4. Hence the algorithm
possesses the stack property.

To understand how the stack property ensures the desirable page fault char-
acteristic of Figure 12.6, consider two runs of process proci , one with alloci = n
all through the execution, and another with alloci = m, such that n < m. If a

4
5

n = 2

4
5
3

n = 3

4
5
3
1

n = 4

4
5
3
1
2

n = 5

4

n = 1

Figure 12.16 {pi}kn for different n for a page replacement policy processing the stack property.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 443 — #34

Chapter 12 Virtual Memory 443

page replacement policy exhibits the stack property, then at identical points dur-
ing these operations of proci (i.e., at identical time instants) all pages that were in
memory when alloci = n would also be in memory when alloci = m. In addition,
memory also contains m − n other pages of the process. If any of these pages are
referenced in the next few page references of proci , page faults occur if alloci = n,
but not if alloci = m. Thus the page fault rate is higher if alloci = n than if
alloci = m. This satisfies the page fault characteristic of Figure 12.6. The page
fault rates will be identical if these m − n pages are not referenced in the next few
page references. However, in no case will the page fault rate increase when the
memory allocation for a process is increased. If a page replacement policy does
not exhibit the stack property, then {pi}k

m may not contain some page(s) contained
in {pi}k

n . References to these pages would result in page faults. Hence the page
fault rate can increase when the memory allocation for a process is increased.

Example 12.7 illustrates that the FIFO page replacement policy does not
exhibit the stack property. One can prove that the LRU page replacement policy
exhibits the stack property (see Exercise 12.9).

•
Example 12.7Problems in FIFO Page Replacement

Consider the following page reference and reference time strings for a process:

Page reference string 5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5, . . . (12.6)

Reference time string t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, . . .
(12.7)

Figure 12.17 shows operation of the FIFO and LRU page replacement policies
for this page reference string. Page references that cause page faults and result
in page replacement are marked with a ∗ mark. A column of boxes is associated
with each time instant. Each box is a page frame; the number contained in
it indicates which page occupies it after execution of the memory reference
marked under the column.

For FIFO page replacement, we have {pi}12
4 = {2, 1, 4, 3}, while {pi}12

3 =
{1, 5, 2}. Thus, FIFO page replacement does not exhibit the stack property.
This leads to a page fault at t13 when alloci = 4, but not when alloci = 3.
Thus, a total of 10 page faults arise in 13 time instants when alloci = 4, while
9 page faults arise when alloci = 3. For LRU, we see that {pi}3 ⊆ {pi}4 at all
time instants.

•
Figure 12.18 illustrates the page fault characteristic of FIFO and LRU page

replacement for page reference string (12.6). For simplicity, the vertical axis
shows the total number of page faults rather than the page fault frequency.
Figure 12.18(a) illustrates an anomaly in behavior of FIFO page replacement—
the number of page faults increases when memory allocation for the process is
increased. This anomalous behavior was first reported by Belady and is therefore
known as Belady’s anomaly.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 444 — #35

444 Part 3 Memory Management

3 3 3 4 4 4 4 4 2 2 2

3 3 3 4 4 4 4 4 4 1 1

2 2 2 2 5 5 5 5 1 1
33 3 3 3 3 3 3 3 3 3
444 4 4 4 4 4 4 4 4 5
5555 1 1 1 1 1 1 2 2 2

44 4 1 1 1 5 5 5 2 2 2
555 2 2 2 3 3 3 3 3 3 5

2 2 2 2 2 2 3 3 3 3
33 3 3 3 3 4 4 4 4 5
444 4 4 4 5 5 5 5 1 1
5555 1 1 1 1 1 1 2 2 2

44 4 1 1 1 5 5 5 5 5 5
555 2 2 2 3 3 3 3 3 1 1

FIFO alloci = 3

alloci = 4

alloci = 3

alloci = 4

5 4* 3* 2* 1* 4* 3* 5* 4 3 2* 1* 5

5 4* 3* 2* 1* 4 3 5* 4* 3* 2* 1* 5*

5 4* 3* 2* 1* 4* 3* 5* 4 3 2* 1* 5*

5 4* 3* 2* 1* 4 3 5* 4 3 2* 1* 5*

Time line
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

LRU

Time line

Figure 12.17 Performance of FIFO and LRU page replacement.

2

4

6

8

10

12

14

Number

of page

faults

0 1 2 3 4 5
allocFIFO

2

4

6

8

10

12

14

Number

of page

faults

0 1 2 3 4 5
LRU alloc

Figure 12.18 (a) Belady’s anomaly in FIFO page replacement; (b) page fault characteristic for
LRU page replacement.

The virtual memory manager cannot use FIFO page replacement because
increasing the allocation to a process may increase the page fault frequency of the
process. This feature would make it difficult to combat thrashing in the system.
However, when LRU page replacement is used, the number of page faults is
a nonincreasing function of alloc. Hence it is possible to combat thrashing by
increasing the value of alloc for each process.

12.4.1 Practical Page Replacement Policies
Figure 12.19 shows a schematic diagram of a practical virtual memory manager.
The virtual memory manager maintains a free frames list and tries to keep a
few page frames in this list at all times. The virtual memory manager consists

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 445 — #36

Chapter 12 Virtual Memory 445

Virtual

memory

manager

Page

fault

handler

Free

frames

manager

Page tables Free frames list
Swap

disk

Page

I/O

manager

Figure 12.19 Page replacement in practice.

of two daemon threads. The thread called free frames manager is activated by
the virtual memory manager when the number of free page frames drops below
a threshold defined by the virtual memory manager. The free frames manager
scans the pages present in memory to identify a few pages that can be freed, and
adds the page frames occupied by these pages to the free frames list. If the page
contained in a newly added page frame is dirty, it marks the page frame as dirty
in the free frames list. It also resets the valid bit of this page in the page table of
the process to which it belongs. The free frames manager puts itself to sleep when
the number of free page frames exceeds another threshold of the virtual memory
manager. The thread called page I/O manager performs page-out operations on
dirty page frames in the free frames list; it resets the dirty bit of a page frame
when its page-out operation is completed.

The page fault handler runs as an event handler of the kernel. It is activated
when a page fault occurs. It first checks whether the required page exists in any of
the page frames in the free frames list. If so, it simply reclaims the page by removing
its page frame from the free frames list, setting the valid bit of the page in the page
table of the process and copying the value of the dirty bit of the page frame into
the modified bit of the page. This operation makes the required page available
without having to perform a page-in operation. If the required page does not
exist in any page frame, it takes a clean page frame off the free frames list and
starts the page-in operation on it.

Effectively, the page replacement policy is implemented in the free frames
manager of the virtual memory manager; however, in the following we will dis-
cuss page replacement as if it were done directly by the virtual memory manager.
The LRU page replacement policy should be the automatic choice for imple-
mentation in a virtual memory manager because it exhibits the stack property.
However, LRU page replacement is not feasible because computers do not pro-
vide sufficient bits in the ref info field to store the time of last reference—most
computers provide a single reference bit for collecting information about refer-
ences to a page. Therefore page replacement policies have to be implemented

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 446 — #37

446 Part 3 Memory Management

using only the reference bit. This requirement has led to a class of policies called
not recently used (NRU) policies, where the reference bit is used to determine
whether a page has been recently referenced, and some page that has not been
recently referenced is replaced.

A simple NRU policy is as follows: The reference bit of a page is initialized
to 0 when the page is loaded, and it is set to 1 when the page is referenced. When
page replacement becomes necessary, if the virtual memory manager finds that
the reference bits of all pages have become 1, it resets the bits of all pages to 0
and arbitrarily selects one of the pages for replacement; otherwise, it replaces a
page whose reference bit is 0. Future page replacement would depend on which
of the pages were referenced after the reference bits were reset. Page replacement
algorithms called clock algorithms provide better discrimination between pages
by resetting reference bits of pages periodically, rather than only when all of them
become 1, so that it would be possible to know whether a page has been referenced
in the immediate past, say within the past 100 instructions, rather than since the
time when all reference bits were reset to 0.

Clock Algorithms In clock algorithms, pages of all processes in memory are
entered in a circular list and pointers used by the algorithms move over the pages
repeatedly. The algorithms get their name from the fact that movement of the
pointers is analogous to movement of the hands of a clock over the clock dial.
The page pointed to by a pointer is examined, a suitable action is performed on
it, and the pointer is advanced to point to the next page. The clock algorithms
can also be applied at the level of a single process when the memory allocation
for a process is to be decreased. In this case, the virtual memory manager would
maintain a separate list of pages for each process and the clock algorithm would
scan only the list of the process whose memory allocation is to be decreased.

In the one-handed clock algorithm, a scan consists of two passes over all
pages. In the first pass, the virtual memory manager simply resets the reference
bit of the page pointed to by the pointer. In the second pass it finds all pages
whose reference bits are still off and adds them to the free list. In the two-handed
clock algorithm, two pointers are maintained. One pointer, which we will call the
resetting pointer (RP), is used for resetting the reference bits and the other pointer,
which we will call the examining pointer (EP), is used for checking the reference
bits. Both pointers are incremented simultaneously. The page frame to which the
checking pointer points is added to the free frames list if its reference bit is off.
Example 12.8 describes operation of the two-handed clock algorithm.

•
Example 12.8 Two-Handed Clock Algorithm

Figure 12.20 illustrates operation of the two-handed clock algorithm when
used by the free frames manager of Figure 12.19. The ref mark against a
page implies that the reference bit of the page is set to 1; absence of this
mark implies that the reference bit is 0. When the free frames manager is
activated, it examines page 7, which is pointed to by the examining pointer
[see Figure 12.20(a)]. Its reference bit is 1, so both the resetting and examining

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 447 — #38

Chapter 12 Virtual Memory 447

(a) (b)

9

18ref

7ref

EP

6ref
RP

2

311

18ref

7ref

6

EP

2

3
11

RP

Figure 12.20 Operation of the two-handed clock algorithm.

pointers are advanced. At this time, the reference bit of page 6 is reset to 0
because RP was pointing to it. The examining pointer moves over page 18
(and the resetting pointer moves over page 2) because it, too, has its reference
bit set to 1. It now rests on page 9. Page 9 has its reference bit 0, so it is
removed from the list of pages in memory and added to the free frames list.
The resetting and examining pointers now point to pages 6 and 11, respectively
[see Figure 12.20(b)].

•
The distance between the resetting and examining pointers gives different

properties to the page replacement algorithm. If the clock pointers are close
together, a page will be examined very soon after its reference bit has been reset,
hence only recently used pages will survive in memory. If the clock pointers are
far apart, only pages that have not been used in a long time would be removed.

12.5 CONTROLLING MEMORY ALLOCATION TO A PROCESS
•

Section 12.2 described how an overcommitment of memory to processes affects
system performance because of a low degree of multiprogramming, whereas an
undercommitment of memory to processes leads to thrashing, which is charac-
terized by high page I/O, low CPU efficiency, and poor performance of processes
and the system. Keeping the memory allocation for a process within the desirable
operating zone shown in Figure 12.6 avoids both overcommitment and under-
commitment of memory to a process. However, it is not clear how the virtual
memory manager should decide the correct number of page frames to be allocated
to each process, that is, the correct value of alloc for each process.

Two approaches have been used to control the memory allocation for a
process:

• Fixed memory allocation: The memory allocation for a process is fixed. Hence
performance of a process is independent of other processes in the system.
When a page fault occurs in a process, one of its own pages is replaced. This
approach is called local page replacement.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 448 — #39

448 Part 3 Memory Management

• Variable memory allocation: The memory allocation for a process may be
varied in two ways: When a page fault occurs, all pages of all processes that
are present in memory may be considered for replacement. This is called global
page replacement. Alternatively, the virtual memory manager may revise the
memory allocation for a process periodically on the basis of its locality and
page fault behavior, but perform local page replacement when a page fault
occurs.

In fixed memory allocation, memory allocation decisions are performed stat-
ically. The memory to be allocated to a process is determined according to some
criterion when the process is initiated. To name a simple example, the memory
allocated to a process could be a fixed fraction of its size. Page replacement is
always performed locally. The approach is simple to implement, and the over-
head of page replacement is moderate, as only pages of the executing process are
considered in a page replacement decision. However, the approach suffers from
all problems connected with a static decision. An undercommitment or overcom-
mitment of memory to a process would affect the process’s own performance and
performance of the system. Also, the system can encounter thrashing.

In variable memory allocation using global page replacement, the allocation
for the currently operating process may grow too large. For example, if an LRU
or NRU page replacement policy is used, the virtual memory manager will be
replacing pages of other processes most of the time because their last references
will precede references to pages of the currently operating process. Memory allo-
cation to a blocked process would shrink, and so the process would face high
page fault rates when it is scheduled again.

In variable memory allocation using local page replacement, the virtual mem-
ory manager determines the correct value of alloc for a process from time to time.
In the following, we discuss how this can be done in practice.

Working Set Model The concept of a working set provides a basis for deciding
how many and which pages of a process should be in memory to obtain good
performance of the process. A virtual memory manager following the working
set model is said to be using a working set memory allocator.

Definition 12.4 Working Set The set of pages of a process that have been
referenced in the previous � instructions of the process, where � is a parameter
of the system.

The previous � instructions are said to constitute the working set window.
We introduce the following notation for our discussion:

WSi(t, �) Working set for process proci at time t for window size �

WSSi(t, �) Size of the working set WSi(t, �), i.e., the number of pages
in WSi(t, �).

Note that WSSi(t, �) ≤ � because a page may be referenced more than once in
a working set window. We omit (t, �) when t and � are either unimportant or
obvious from the context.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 449 — #40

Chapter 12 Virtual Memory 449

A working set memory allocator either holds the complete working set of a
process in memory, or suspends the process. Thus, at any time instant t, a process
proci either has WSi in memory and alloci = WSSi , or it has alloci = 0. This
strategy helps in ensuring a good hit ratio in memory through the law of locality
of reference. It also prevents undercommitment of memory to a process, thereby
preventing thrashing.

The working set memory allocator must vary the degree of multiprogram-
ming in accordance with changes in working set sizes of processes. For example,
if { prock} is the set of processes in memory, the degree of multiprogramming
should be decreased if

�kWSSk > #frames

where #frames is the total number of page frames in memory. The working
set memory allocator removes some processes from memory until �kWSSk ≤
#frames. The degree of multiprogramming should be increased if �kWSSk <

#frames and there exists a process procg such that

WSSg ≤ (#frames −�kWSSk)

procg should now be allocated WSSg page frames and its operation should be
resumed.

Variations in the degree of multiprogramming are implemented as follows:
The virtual memory manager maintains two items of information for each
process—alloci and WSSi . When the degree of multiprogramming is to be
reduced, the virtual memory manager selects the process to be suspended, say,
process proci . It now performs a page-out operation for each modified page of
proci and changes the status of all page frames allocated to it to free. alloci is
set to 0; however, the value of WSSi is left unchanged. When the degree of mul-
tiprogramming is to be increased and the virtual memory manager decides to
resume proci , it sets alloci = WSSi and allocates as many page frames as the
value of alloci . It now loads the page of proci that contains the next instruction to
be executed. Other pages would be loaded when page faults occur. Alternatively,
the virtual memory manager loads all pages of WSi when execution of proci is
resumed. However, this approach may lead to redundant loading of pages because
some pages in WSi may not be referenced again.

Performance of a working set memory allocator is sensitive to the value of
�. If � is too large, memory will contain some pages that are not likely to be
referenced again. This is overcommitment of memory to processes. Too large
a value of � also forces the virtual memory manager to reduce the degree of
multiprogramming, thereby affecting system performance. If � is too small, there
is a danger of undercommitment of memory to processes, leading to an increase
in page fault frequency and the possibility of thrashing.

Implementation of a Working Set Memory Allocator Use of a working set mem-
ory allocator suffers from one practical difficulty. It is expensive to determine
WSi(t, �) and alloci at every time instant t. To address this difficulty, a virtual

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 450 — #41

450 Part 3 Memory Management

14

WSS
Process

alloc WSS alloc WSS alloc WSS

t400t300t200t100

alloc

20

18

10

P1
P2
P3
P4

12

24

19

10

12

24

19

0

14

11

20

10

14

11

20

10

13

25

18

12

13

25

18

0

14

20

18

0

Figure 12.21 Operation of a working set memory allocator.

memory manager using a working set memory allocator can determine the work-
ing sets of processes periodically rather than at every time instant. Working sets
determined at the end of an interval are used to decide values of alloc for use
during the next interval. The next example illustrates this approach.

•
Example 12.9 Working Set Memory Allocator

A virtual memory manager has 60 page frames available for allocation to
user processes. It recomputes the working sets of all processes at time instants
t+j×100, j = 1, 2 Following the computation of working sets, it handles each
process Pi as follows: It sets alloci = WSSi if it can allocate WSSi page frames
to it, else it sets alloci = 0 and removes all pages of Pi from memory. The value
of alloc assigned at t+j×100 is held constant until t(j+1)×100.

Figure 12.21 illustrates operation of the working set memory allocator. It
shows values of alloc and WSS for all processes at time instants t+100, t+200, t+300,
and t+400. At t+100, WSS4 = 10, alloc4 = 0, and �i=1, . . . ,3WSSi = 52. It implies
that the working set size of P4 is 10 page frames, however, its operation has been
suspended because only 60 − 52, i.e., 8, page frames are free. At t+200, values of
WSSi , i = 1, . . . , 3 are recomputed. The value of WSS4 is carried over from
t+100 since P4 has not been executed in the interval t100–t200. alloci , i = 1, . . . , 3
are now assigned new values. P4 still cannot be swapped in for lack of memory
since �i=1,...,3WSSi = 55, so only five page frames are free and WSS4 = 10.
At t300, P4 is swapped in; however, it is swapped out again at t400. Note that
during the interval t100 − t400 the smallest allocation for P2 is 11 page frames
and the largest allocation is 25 page frames. This variation is performed to
adjust the process’s memory allocation to its recent behavior.

Expansion and contraction of alloc is performed as follows: At t200, the
virtual memory manager decides to reduce alloc1 from 14 page frames to 12
page frames, so it uses an NRU-like policy to remove two pages of P1. At t300,
it increases alloc1 to 14 page frames, so it allocates two more page frames to
alloc1. These page frames will be used when page faults arise during operation
of P1.
•

The virtual memory manager can use the reference bits provided by the pag-
ing hardware to determine the working sets. Reference bits of all pages in memory
can be turned off when working sets are determined. These bits will be turned on

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 451 — #42

Chapter 12 Virtual Memory 451

again as these pages get referenced during the next interval. While performing
page replacements, the virtual memory manager can record which of the replaced
pages had their reference bits on. The working set at the end of the next interval
will consist of these pages and all pages in memory whose reference bits are on.

Implementation of working sets in this manner faces one problem. Resetting
of reference bits at the end of an interval would interfere with page replace-
ment decisions. If a page fault occurs in a process soon after working sets are
determined, the reference bits of most of the process’s pages in memory will be
off. Hence the virtual memory manager cannot differentiate between these pages
for page replacement. If some processes either remain blocked or do not get
an opportunity to execute all through an interval, their allocations will shrink
unnecessarily. This aspect makes it difficult to decide on the correct size of �, the
working set window.

An alternative is to use a working set window for each process individually.
However, it would complicate the virtual memory manager and add to its over-
head. It would also not address the issue of interference with the page replacement
decisions. For these reasons, operating systems do not actually determine work-
ing sets of processes according to Definition 12.4. In Section 12.8.4 we describe
how the Windows operating systems use the notion of working set of a process.

12.6 SHARED PAGES
•

Sharing of programs was discussed in Section 11.3.3. Static sharing results from
static binding performed by a linker or loader before execution of a program
begins (see Section 11.3.3.2). Figure 12.22(a) shows the logical address space of
program C. The Add (4,12) instruction in page 1 has its operand in page 4. With
static binding, if two processes A and B statically share program C, then C is
included in the code of both A and B. Let the 0th page of C become page i of
process A [see Figure 12.22(a)]. The instruction Add (4,12) in page 1 of program C
would be relocated to use the address (i+4,12). If the 0th page of C becomes page
j in process B, the Add instruction would be relocated to become Add (j +4, 12)

Thus, each page of program C has two copies in the address spaces of A and B.
These copies may exist in memory at the same time if processes A and B are in
operation simultaneously.

Dynamic binding (see Section 11.2) can be used to conserve memory by bind-
ing the same copy of a program or data to several processes. In this case, the
program or data to be shared would retain its identity [see Figure 12.22(c)]. It is
achieved as follows: The virtual memory manager maintains a shared pages table
to hold information about shared pages in memory. Process A makes a system
call to bind program C as a shared program starting at a specific page, say, page
i, in its logical address space. The kernel invokes the virtual memory manager,
which creates entries in the page table of A for pages of program C, and sets an
s flag in each of these entries to indicate that it pertains to a shared page. It now
checks whether the pages of program C have entries in the shared pages table. If
not, it makes such entries now, sets up the swap space for program C, and invokes

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 452 — #43

452 Part 3 Memory Management

the dynamic linker, which dynamically binds program C to the code of process
A. During this binding, it relocates the address-sensitive instructions of C. Thus,
the Add instruction in page 1 of program C is modified to read Add (i + 4, 12)
[see Figure 12.22(c)]. When a reference to an address in program C page faults,
the virtual memory manager finds that it is a shared page, so it checks the shared
pages table to check whether the required page is already in memory, which would
happen if another process had used it recently. If so, it copies the page frame num-
ber of the page from the shared pages table into the entry of that page in A’s page
table; otherwise, it loads the page in memory and updates its entry in A’s page
table and in the shared pages table. Similar actions are performed when process
B dynamically binds program C to the start address of page i and references to
C’s pages in process B’s instructions cause page faults. Figure 12.23 shows the
resulting arrangement.

Two conditions should be satisfied for dynamic binding of programs to work.
The program to be shared should be coded as a reentrant program so that it
can be invoked by many processes at the same time (see Section 11.3.3.2). The
program should also be bound to identical logical addresses in every process that

Program

C

Program

C

Process A Process A

Process B

Program CProgram C

Process BPage

#

Page

#

Page

#

Page

#

Page

#

Page

0

0

0 0

0

0

Add (i+4, 12)i+1
i

j+1
j

Add (i+4, 12)

Add (4, 12) Add (i+4, 12)

(a) (b) (c)

Figure 12.22 Sharing of program C by processes A and B: (a) program C; (b) static binding of
C to the codes of processes A and B; and (c) dynamic binding of C.

s
s
s

i+1
i

i+1
iPages of

program C

Process APage

#

Page table

of A

s
s
s

i+1
i

i+1
iPages of

program C

Process BPage

#

Page table

of B

Memory

Add (i+4,12)

Page

id

Frame

#

Shared pages

table

C, 0
C, 1

Swap space

of C

Figure 12.23 Dynamic sharing of program C by processes A and B.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 453 — #44

Chapter 12 Virtual Memory 453

shared it. It would ensure that an instruction like Add (i +4, 12) in page i +1 of
Figure 12.23 will function correctly in each of the processes. These conditions are
unnecessary when data, rather than a program, is dynamically bound to several
processes; however, processes sharing the data would have to synchronize their
accesses to the shared data to prevent race conditions.

When sharing of pages is implemented by making the page table entries of
sharing processes point at the same page frame, page reference information for
shared pages will be dispersed across many page tables. The page replacement
algorithm will have to gather this information together to get the correct picture
about references to shared pages. This is rather cumbersome. A better method
would be to maintain information concerning shared pages in the shared pages
table and collect page reference information for shared pages in entries in this
table. This arrangement also permits a different page replacement criterion to be
used for managing shared pages. In Section 12.8.4, we describe a related technique
used in Windows operating systems.

12.6.1 Copy-on-Write
The copy-on-write feature is used to conserve memory when data in shared pages
could be modified but the modified values are to be private to a process. When
processes A and B dynamically bind such data, the virtual memory manager
sets up the arrangement shown in Figure 12.24(a), which is analogous to the
arrangement illustrated in Figure 12.23 except for a copy-on-write flag in each page
table entry, which indicates whether the copy-on-write feature is to be employed
for that page. The mark c in a page table entry in Figure 12.23 indicates that
the copy-on-write flag is set for that page. If process A tries to modify page k,
the MMU raises a page fault on seeing that page k is a copy-on-write page. The
virtual memory manager now makes a private copy of page k for process A,
accordingly changes the page frame number stored in page k’s entry in the page
table of A, and also turns off the copy-on-write flag in this entry [Figure 12.24(b)].

k+1
k

Page table

of A

k+1
k

Page table

of B

Memory

c
c

c
c

k+1
k

Page table

of A

k+1
k

Page table

of B

Memory

c

c
c

(a) (b)

Figure 12.24 Implementing copy-on-write: (a) before and (b) after process A modifies page k.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 454 — #45

454 Part 3 Memory Management

Other processes sharing page k would continue to use the original copy of page k
in memory; each of them would get a private copy of the page if they modified it.

In Unix systems, a child process starts off with the code and data of the parent
process; however, it can modify the data and the modified values are private to
it. The copy-on-write feature is used for the entire address spaces of the parent
and child processes. It speeds up process creation. It also avoids copying of code
pages because they are never modified; only data pages would be copied if they
are modified.

12.7 MEMORY-MAPPED FILES
•

Memory mapping of a file by a process binds that file to a part of the logical
address space of the process. This binding is performed when the process makes
a memory map system call; it is analogous to dynamic binding of programs and
data discussed earlier in Section 12.6. After memory mapping a file, the process
refers to data in the file as if it were data located in pages of its own address
space, and the virtual memory manager coordinates with the file system to load
page-size parts of the file into memory on demand. When the process updates
the data contained in such pages, the modified bits of the pages are set on but the
data is not immediately written out into the file; dirty pages of data are written
out to the file when the page frames containing them are to be freed. When the
process makes a memory unmap call, the virtual memory manager writes out any
dirty pages that still contain the file’s data and deletes the file from the logical
address space of the process.

Figure 12.25 shows the arrangement used for memory mapping of file info
by process A. Note that the page-in and page-out operations on those pages of
process A that do not belong to file info involve the swap space of the process
and are performed by the virtual memory manager. Reading and writing of data
from file info are performed by the file system in conjunction with the virtual
memory manager. If several processes memory map the same file, we have an
arrangement analogous to that shown in Figure 12.23; these processes would
effectively share the memory-mapped file.

File

system

i+1
i

i+1
i

Memory-

mapped

file

info

Process APage

#

Page table

of A Memory

Swap space

of process A

File

info

Figure 12.25 Memory mapping of file info by process A.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 455 — #46

Chapter 12 Virtual Memory 455

Table 12.5 Advantages of Memory-Mapped Files

Advantage Description

File data as pages Access to file data is looked upon as access to pages,
which is inherently more efficient because of virtual
memory hardware.

Avoids
memory-to-memory
copying

File data is a part of the process space. Hence the
process does not have to copy it into a variable for
processing.

Fewer read/write
operations

File data is read in or written out one page at a time,
rather than at every file operation, and so a single
read/write operation may suffice for several file
operations.

Prefetching of data For sequential reads, data will already be in memory if
the page that contains the data was read in during a
previous file operation.

Efficient data access File data can be accessed efficiently irrespective of file
organization.

Table 12.5 summarizes the advantages of memory mapping of files. Memory-
mapping makes file records accessible through the virtual memory hardware. This
is inherently more efficient. Memory-to-memory copy operations are avoided as
follows: When a process accesses some data in a non-memory-mapped input file,
the file system first copies the record into a memory area used as a file buffer or disk
cache (see Chapter 14). The process now copies the data from the buffer or the disk
cache into its own address space (i.e., into some variables) for accessing it. Thus
one disk-to-memory copy operation and one memory-to-memory copy operation
are performed. When a file is memory-mapped, the memory-to-memory copy
operation from the buffer to the process address space is not necessary since the
data is already a part of the process address space. Similarly, fewer copy operations
are performed when file data is modified. Data located in a page that was read in
or written into during a previous file operation can be accessed without disk I/O,
so memory mapping reduces the number of I/O operations performed during file
processing.

The last advantage, efficient access to data in a file irrespective of its organi-
zation, arises from the fact that data in a memory-mapped file is accessed through
the virtual memory hardware. Hence any part of the data can be accessed equally
efficiently, whereas, as discussed in Chapter 13, efficiency of access to the same
data through file operations would depend on the manner in which the data is
organized in the file.

Memory mapping of files poses some performance problems. The open and
close operations on a memory-mapped file incur more overhead than the open and
close operations on normal files. It is caused by updating of page table and TLB
entries while setting up and dismantling that part of the process address space
where the file is mapped. The virtual memory manager also has to differentiate
between memory-mapped pages and other pages in an address space—dirty data

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 456 — #47

456 Part 3 Memory Management

pages of the address space are written out to a disk only when a memory crunch
exists, whereas the dirty pages of a memory-mapped file have to be written to the
disk periodically for reasons of file reliability. Thus, the virtual memory manager
has to create a special thread that keeps writing out dirty pages of memory-
mapped files.

12.8 CASE STUDIES OF VIRTUAL MEMORY USING PAGING
•

12.8.1 Unix Virtual Memory
Unix has been ported on computer systems with diverse hardware designs. A
variety of ingenuous schemes have been devised to exploit features of the pag-
ing hardware of different host machines. This section describes some features
common to all Unix virtual memory implementations and some interesting tech-
niques used in different versions of Unix. Its purpose is to provide a view of the
practical issues in virtual memory implementations rather than to study the vir-
tual memory manager of any specific Unix version in detail. Wherever possible,
we are replacing the Unix terminology with terminology we used in previous
sections of this chapter.

Logical Address Space and Swap Space The page table of a process differenti-
ates among three kinds of pages—resident, unaccessed, and swapped-out pages.
A resident page is currently in memory. An unaccessed page is one that has not
been accessed even once during operation of the process and therefore has never
been loaded in memory. It will be loaded when a reference to it causes a page fault.
As described later, the page exists either in a file or in the swap space, depending
on whether it is a text page, i.e., it contains instructions, or it is a data page. A
swapped-out page is a page that is currently in the swap space; at a page fault, it
is loaded back in memory from its location in the swap space.

An unaccessed page may be a text page or a data page. A text page is loaded
from an executable file existing in the file system. Locating such a page in the
file system may require reading of several disk blocks in the inode and the file
allocation table (see Section 13.14.1). To avoid this overhead, the virtual memory
manager maintains information about text pages in a separate table and refers
to it when a page needs to be loaded. As described later, the 4.3BSD virtual
memory manager maintains this information in the page table entry itself. This
information gets overwritten by the page frame number when the page is loaded
in memory, and so it is not available if the page gets removed from memory
and has to be reloaded. To overcome this difficulty, the virtual memory manager
writes out a text page into the swap space when it is removed from memory for
the first time, and thereafter loads it from the swap space on demand. A data
page is called a zero-fill page; it is filled with zeroes when its first use leads to a
page fault. Thereafter, it is either a resident page or a swapped-out page.

A text page may remain in memory even if it is marked nonresident in its page
table entry. This situation arises if some other process is using the page (or has
used it in the past). When a page fault occurs for a text page, the virtual memory

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 457 — #48

Chapter 12 Virtual Memory 457

manager first checks whether the page already exists in memory. If so, it simply
puts the page frame information in its page table entry and marks it as resident.
This action avoids a page-in operation and also conserves memory.

To conserve disk space, an effort is made to allocate as little swap space as
possible. To start with, sufficient swap space is allocated to accommodate the
user stack and the data area. Thereafter swap space is allocated in large chunks
whenever needed. This approach suffers from the problem that swap space in the
system may become exhausted when the data area of a process grows; the process
then has to be suspended or aborted.

Copy-on-Write The semantics of fork require that the child process should
obtain a copy of the parent’s address space. These semantics can be implemented
by allocating distinct memory areas and a swap space for the child process. How-
ever, child processes frequently discard the copy of their parent’s address space
by loading some other program for execution through the exec call. In any case,
a child process may not wish to modify much of the parent’s data. Hence mem-
ory and swap space can be optimized through the copy-on-write feature (see
Section 12.6.1).

Copy-on-write is implemented as follows: When a process is forked, the ref-
erence count of all data pages in the parent’s address space is incremented by 1
and all data pages are made read-only by manipulating bits in the access privi-
leges field of their page table entries. Any attempt at modifying a data page raises
a protection fault. The virtual memory manager finds that the reference count
of the page is > 1, so it realizes that this is not a protection fault but a reference
to a copy-on-write page. It now reduces the count, makes a copy of the page for
the child process and assigns the read and write privileges to this copy by setting
appropriate bits in its page table entry. If the new reference count is = 1, it also
enables the read and write privileges in the page table entry that had led to the
page fault because the entry no longer pertains to a shared page.

Efficient Use of Page Table and Paging Hardware If a page is not present in
memory, the valid bit of its page table entry is “off.” Under these circumstances,
bits in other fields of this entry, like the ref info field or the page frame # field, do
not contain any useful information. Hence these bits can be used for some other
purposes. Unix 4.3BSD uses these bits to store the address of a disk block in the
file system that contains a text page.

The VAX 11 architecture does not provide a reference bit to collect page
reference information. Its absence is compensated by using the valid bit in a
novel manner. Periodically, the valid bit of a page is turned off even if the page
is in memory. The next reference to the page causes a page fault. However, the
virtual memory manager knows that this is not a genuine page fault, and so it
sets the valid bit and resumes the process. In effect, the valid bit is used as the
reference bit.

Page Replacement The system permits a process to fix a certain fraction of its
pages in memory to reduce its own page fault rate and improve its own perfor-
mance. These pages cannot be removed from memory until they are unfixed by

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 458 — #49

458 Part 3 Memory Management

the process. Interestingly, there is no I/O fixing of pages in Unix since I/O opera-
tions take place between a disk block and a block in the buffer cache rather than
between a disk block and the address space of a process.

Unix page replacement is analogous to the schematic of Figure 12.19, includ-
ing the use of a clock algorithm. To facilitate fast page-in operations, Unix virtual
memory manager maintain a list of free page frames and try to keep at least 5
percent of total page frames on this list at all times. A daemon called the pageout
daemon (which is labeled process 2 in the system) is created for this purpose. It
is activated any time the total number of free page frames falls below 5 percent.
It tries to add pages to the free list and puts itself to sleep when the free list
contains more than 5 percent free page frames. Some versions of Unix use two
thresholds—a high threshold and a low threshold—instead of a single threshold
at 5 percent. The daemon goes to sleep when it finds that the number of pages in
the free list exceeds the high threshold. It is activated when this number falls below
the low threshold. This arrangement avoids frequent activation and deactivation
of the daemon.

The virtual memory manager divides pages that are not fixed in memory into
active pages, i.e., pages that are actively in use by a process, and inactive pages,
i.e., pages that have not been referenced in the recent past. The virtual memory
manager maintains two lists, the active list and the inactive list. Both lists are
treated as queues. A page is added to the active list when it becomes active, and to
the inactive list when it is deemed to have become inactive. Thus the least recently
activated page is at the head of the active list and the oldest inactive page is at the
head of the inactive list. A page is moved from the inactive list to the active list
when it is referenced. The pageout daemon tries to maintain a certain number
of pages, computed as a fraction of total resident pages, in the inactive list. If it
reaches the end of the inactive list while adding page frames to the free list, it
checks whether the total number of pages in the inactive list is smaller than the
expected number. If so, it transfers a sufficient number of pages from the active
list to the inactive list.

The pageout daemon is activated when the number of free page frames falls
below the low threshold while the system is handling a page fault. It frees page
frames in the following order: page frames containing pages of inactive processes,
page frames containing inactive pages of active processes, and page frames con-
taining active pages of active processes. The daemon finds inactive processes, if
any, and activates the swapper to swap them out. It goes back to sleep if the
number of free page frames now exceeds the high threshold.

If the number of free page frames after swapping out inactive processes is
still below the high threshold, the pageout daemon scans the inactive list and
decides whether and when to add page frames occupied by inactive pages to
the free list. A page frame containing an inactive page is added to the free list
immediately if the page is unreferenced and not dirty. If the page is dirty and
not already being swapped out, the pageout daemon starts a page-out operation
on the page and proceeds to examine the next inactive page. If a page is being
swapped out, the daemon merely skips it. The modified bit of a page is reset when
its page-out operation is completed. The page frame containing this page would

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 459 — #50

Chapter 12 Virtual Memory 459

be added to the free list in a subsequent pass if it is still inactive and the daemon
finds that its page-out operation is complete. The daemon activates the swapper
if it cannot add a sufficient number of page frames to the free list. The swap-
per swaps out one or more active processes to free a sufficient number of page
frames.

To optimize page traffic, the virtual memory manager writes out dirty pages
to the swap space in clusters. When the page daemon finds a dirty page during its
scan, it examines adjacent pages to check if they are also dirty. If so, a cluster of
dirty pages is written out to the disk in a single I/O operation. Another optimiza-
tion concerns redundant page-in operations. When a page frame fi occupied by
some clean page pi is added to the free list, the valid bit of pi ’s page table entry
is set to 0. However, the page is not immediately overwritten by loading another
page in the page frame. This happens sometime later when the page’s entry comes
to the head of the free list and it is allocated to some process. The next reference
to pi would create a page fault since the valid bit in its page table entry has been
set to 0. If pi is still in fi , i.e., if fi is still in the free list, fi can be simply taken out of
the free list and pi can be “reconnected” to the logical address space of the pro-
cess. This saves a page-in operation and consequent delays to the page-faulting
process.

Swapping The Unix virtual memory manager does not use a working set mem-
ory allocator because of the high overhead of such an allocator. Instead it focuses
on maintaining needed pages in memory. A process is swapped out if all its
required pages cannot be maintained in memory and conditions resembling
thrashing exist in the system. An inactive process, i.e., a process that is blocked for
a long time, may also be swapped out in order to maintain a sufficient number of
free page frames. When this situation arises and a swap-out becomes necessary,
the pageout daemon activates the swapper, which is always process 0 in the system.
The swapper finds and swaps out inactive processes. If that does not free sufficient
memory, it is activated again by the pageout daemon. This time it swaps out the
process that has been resident the longest amount of time. When swapped out
processes exist in the system, the swapper periodically checks whether sufficient
free memory exists to swap some of them back in. A swap-in priority—which is
a function of when the process was swapped out, when it was last active, its size
and its nice value—is used for this purpose (see Section 7.6.1 for details of the nice
value). This function ensures that no process remains swapped out indefinitely.
In Unix 4.3BSD, a process was swapped-in only if it could be allocated as much
memory as it held when it was swapped out. In Unix 4.4BSD this requirement
was relaxed; a process is brought in if enough memory to accommodate its user
structure and kernel stack can be allocated to it.

12.8.2 Linux Virtual Memory
Linux uses a page size of 4 KB. On 64-bit architectures, it uses a three-level page
table (see Section 12.2.3.2). The three levels are the page global directory, the
page middle directory and the page table. Accordingly, a logical address consists

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 460 — #51

460 Part 3 Memory Management

of four parts; three of these are for the three levels and the fourth one is the byte
number within a page.

Linux uses an interesting arrangement to eliminate page-in operations for
pages that were loaded previously in memory, but were marked for removal.
This is achieved by using the following states for page frames: A free page frame
is one that has not been allocated to a process, while an active page frame is
one that is in use by a process to which it has been allocated. An inactive dirty
page frame was modified by the process to which it was allocated but it is not
in use by the process any more. An inactive laundered page is one what was
inactive dirty and is therefore being written out to the disk. An inactive laun-
dered page becomes inactive clean when its contents are copied to the disk. If
a process page faults for a page that is in a page frame marked inactive clean,
the page frame is once again allocated to the process, and the page is simply
marked as present in memory. If the page is in a page frame marked inactive
laundered, these actions are performed when its disk operation completes. Apart
from saving on disk operations, this arrangement also prevents access to a stale
copy of a page. An inactive clean page can also be allocated to another process
straightaway.

Page replacement in Linux is based on a clock algorithm. The kernel tries to
maintain a sufficient number of free page frames at all times so that page faults
can be quickly serviced by using one of the free page frames. It uses two lists called
active list and inactive list, and maintains the size of the active list to two-thirds
the size of the inactive list. When the number of free page frames falls below a
lower threshold, it executes a loop until a few page frames are freed. In this loop
it examines the page frame at the end of the inactive list. If its reference bit is
set, it resets the bit and moves the page frame to the head of the list; otherwise,
it frees the page frame. When the balance between the active and inactive lists is
to be maintained, it processes a few page frames from the end of the active list in
a similar manner and either moves them to the head of the active list, or moves
them to the head of the inactive list with their reference bits on. A page frame is
moved from the inactive list to the active list if it is referenced by a process.

Linux uses a buddy system allocator for allocating page frames to processes
(see Section 11.5.2). This method facilitates performing of I/O operations through
older DMA buses that use physical addresses, because such I/O operations require
memory to be contiguously allocated (see Section 12.2.4).

The logical address space of a process can consist of several virtual memory
regions; each region can have different characteristics and is handled by using
separate policies for loading and replacement of pages. A page in a zero-filled
memory region is filled with zeroes at its first use. A file-backed region facilitates
memory mapping of files. The page table entries of its pages point at the disk
buffers used by the file system. This way, any update in a page of such a region
is immediately reflected in the file and is visible to concurrent users of the file.
A private memory region is handled in a different manner. When a new process
is forked, the child process is given a copy of the parent’s page table. At this
time, pages of a private memory region are given a copy-on-write status. When a
process modifies such a page, a private copy of the page is made for it.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 461 — #52

Chapter 12 Virtual Memory 461

12.8.3 Virtual Memory in Solaris
Solaris provides multiple page size support, whereby it uses both normal pages
and superpages. Superpages are used automatically for processes with large
address spaces; other processes can request use of superpages through the mem-
cntl system call. Superpages are not used for memory-mapped files because a
small change in a superpage requires the complete superpage to be written to
the file, which poses a sizable performance penalty because dirty superpages of a
memory-mapped file are written to the disk frequently to ensure reliability of the
file (see Section 12.7).

A component of the virtual memory manager, called the page scanner, tries
to keep a sufficient number of page frames on the cyclic page cache, which is
like the inactive clean list of Linux, so that the virtual memory manager can
allocate a page frame from the cyclic page cache straightaway when a page fault
occurs. It selects a page for removal from memory, using a two-handed clock
algorithm on a global basis; writes it out to the disk if it is dirty; and adds its page
frame to the cyclic page cache. The page scanner is implemented as two kernel
threads analogous to those shown in Figure 12.19. One thread identifies page
frames for addition to the cyclic page cache, while the other thread writes out
dirty pages from these page frames to the disk. If the page for which a process
page faulted exists in a page frame included in the cyclic page cache, the virtual
memory manager simply removes the page frame from the cyclic page cache and
attaches it to the page table of the process. This arrangement saves on a page-in
operation. To reduce page traffic, the page scanner does not put shared pages
on the cyclic page cache if a sufficiently large number of processes are sharing
them.

lotsfree is a parameter of the page scanner that indicates how many page
frames should be free at any time. The page scanner starts scanning pages using
the two-handed clock algorithm when the number of free page frames falls below
lotsfree. The scan rate, which is the number of pages scanned per second, is varied
according to the number of page frames that are actually free—it is smaller when
this number is close to lotsfree and it is increased as the number falls below lotsfree.
The spread between the two hands of the clock algorithm is calculated at boot
time on the basis of the amount of memory in the system. This spread and the
scan rate together determine the elapsed time between the resetting of a bit by one
hand of the two-handed clock algorithm and its examination by the other hand
of the algorithm. A smaller elapsed time implies that only most recently accessed
pages will survive in memory, and a larger elapsed time means that only pages
that have not been accessed for a long time will be removed from memory. To
safeguard system performance, the virtual memory manager limits the amount
of CPU overhead that the page scanner can cause. If the page scanner is not able
to keep pace with the demand for free pages using the clock algorithm, the virtual
memory manager swaps out inactive processes and frees all page frames occupied
by them.

Solaris virtual memory manager has evolved into its present form through
several design updates. Prior to Solaris 6, the page scanner maintained a free

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 462 — #53

462 Part 3 Memory Management

list that contained clean page frames allocated to both user processes and files.
The file system took pages from the free list to accommodate data read from
files. During periods of heavy file activity, the file system effectively stole pages
from address spaces of user processes, which affected their performance. Solaris 6
introduced the feature called priority paging, which ensured that only those page
frames in the free list that were allocated to file pages would be considered for
allocation to data read from files. This way, file processing activity did not affect
operation of processes; however, page frames were still allocated from the free
list, which caused high scan rates and high overhead of the page scanner. Solaris
8 introduced the cyclic page cache described earlier and made the file system steal
pages from itself directly, so that the file processing activity does not affect scan
rates and overhead of the page scanner.

12.8.4 Virtual Memory in Windows
Windows operates on several architectures, hence it supports both 32-bit and
64-bit logical addresses. The page size is 4 KB. The address space of a process is
either 2 GB or 3 GB. The remainder of the logical address space is reserved for
OS use; the kernel is mapped into this part of every process’s address space. On
different architectures, Windows uses two-, three- or four-level page tables and
various page table entry formats. The page table of a process is itself stored in the
reserved part of the logical address space of the process.

On an Intel 80x86 architecture, Windows uses a two-level page table orga-
nization similar to the one shown in Figure 12.11. The higher-level page table
is called a page directory (PD). The PD contains 1024 entries of 4 bytes each.
Each entry in the PD points to a page table (PT). Each page table contains 1024
page table entries of 4 bytes each. Each 32-bit logical address is split into three
components as shown below:

PD index PT index byte index

� �� �� �10 bits 10 bits 12 bits

During address translation, the PD index field is used to locate a page table.
The PT index field is used to select a 32-bit page table entry (PTE) in the page
table, which contains a 20-bit address of the page frame that contains the page;
the byte index is concatenated with this address to obtain the effective physical
address. The virtual memory manager uses the remaining 12 bits in a page table
entry to indicate how the process may access the page—whether read-only or
read/write—and whether the page frame allocated to it is dirty, i.e., modified, or
accessed , i.e., read from or modified. If the page is not in memory, the 20 address
bits would specify the offset into the paging file, i.e., the swap space. If the page
contains code, a copy of it would exist in a code file, hence 28 bits in the page
table entry would point to a system data structure that indicates its position in
the code file. Such a page is directly loaded from the code file, so it is not copied
into a paging file.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 463 — #54

Chapter 12 Virtual Memory 463

A page frame can be in any one of eight states. Some of these states are:

• valid : the page is in active use,
• free: the page is not in active use,
• zeroed : the page is cleaned out and available for immediate use,
• standby: the page has been removed from the working set of the process to

which it was allocated, but it could be “reconnected” to the process if it were
referenced again,

• modified : the page is dirty and yet to be written out,
• bad : the page cannot be accessed because of a hardware problem.

A process cannot use the virtual address space available to it straightaway—it
must first reserve it for use, and then actually commit it for accommodating spe-
cific entities like files and objects. Thus, only some portions of the logical address
space of a process may have been reserved at any time, and only a part of the
reserved logical address space may be in actual use. An access to a page that has
not been reserved and committed leads to an access violation. When a thread
in the process makes a system call to commit virtual memory to a region, the
virtual memory manager constructs a virtual address descriptor (VAD) describ-
ing the range of logical addresses committed to it. To minimize the size of the
page table of a process, the virtual memory manager builds it incrementally—
the page table entry for a committed page is created only when an access to it
leads to a page fault. To facilitate this operation, the VADs for committed por-
tions of the logical address space are stored in an AVL tree, which is a balanced
binary tree.

A section object represents a section of memory that can be shared. It can
be connected to a file, in which case it provides memory-mapped files, or to
memory, in which case it provides shared memory. A process maps a view of a
section into its own address space by making a system call with parameters that
indicate an offset into the section object, the number of bytes to be mapped, and
the logical address in its address space where the object is to be mapped. When the
process accesses a page in the view for the first time, the virtual memory manager
allocates a page frame and loads it, unless it is already present in memory as
a result of access by another process. If the memory section has the attribute
based, the shared memory has the same virtual address in the logical address
space of each sharing process. It facilitates sharing of code among processes
(see Section 12.6).

A copy-on-write feature is used for sharing the pages (see Section 12.6.1). It
is implemented by setting the protection field of a page to read only. A protection
exception is raised when a process tries to modify the page. The virtual memory
manager now makes a private copy of the page for use by the process.

Loading, accessing, and removal of shared pages is performed as follows: A
prototype PTE is created for each shared page in an area of memory reserved
for prototype PTEs. Each process that uses the shared page has a PTE for the
page in its page table. When the shared page does not exist in memory, that is,
it is either not yet loaded in memory or it has been removed from memory, it is
marked invalid in the prototype PTE and in the PTEs in page tables of all sharing

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 464 — #55

464 Part 3 Memory Management

processes. In addition, the PTEs in the page tables of processes are set to point
to the prototype PTE. When the shared page is referenced by one of the sharing
processes, it is loaded in memory and the page frame number where it is loaded
is stored in both the prototype PTE and the PTE of the process. When another
process references this page, its PTE is updated by simply copying the page frame
number information from the prototype PTE.

Translation look-aside buffers are employed to speed up address translation.
In 32-bit architectures, they are managed entirely by the MMU hardware, while
in 64-bit architectures they are managed by the virtual memory manager. When
a memory access by a thread leads to a page fault, the thread is blocked until
the page-in operation for the page completes. Several threads may page-fault for
a shared page at the same time. These page faults are called collided page faults.
The virtual memory manager ensures that all threads whose page faults collided
become unblocked when the page-in operation is completed.

To reduce the number of page faults through page reference locality, the
virtual memory manager always loads a few pages preceding and following a page-
faulted page into memory. While booting the system or starting an application,
the logical prefetcher loads a few pages into memory and monitors page faults
that arise so that it could load a more effective set of pages in memory the next
time the system is booted or the application is started.

The Windows kernel uses the notion of working sets to control the amount of
memory allocated to a process. It defines a minimum and maximum working set
size for each process; these sizes are determined by the memory configuration of
the system, rather than by the size or nature of a process. For large memory con-
figurations, the minimum and maximum working set sizes are 50 and 345 pages,
respectively. At a page fault, the kernel considers the amount of free memory
in the system, the current working set size of the process, and its minimum and
maximum working set sizes. It allocates an additional page frame to the process
if its current allocation is smaller than the maximum working set size and free
memory exists; otherwise, it replaces one of the pages of the process in memory
through a clock algorithm implemented by using the accessed bits in the page
table. The working set manager is activated periodically, and when working sets
of processes need to be adjusted. If the amount of free memory has fallen below a
threshold due to allocation of page frames, it examines working sets whose sizes
exceed the minimum working set size and removes from memory those pages
that have not been used for a long time. This, too, is performed by using a clock
algorithm.

The virtual memory manager maintains a number of page lists—a free list,
a list of zero-initialized pages, a modified list, and a standby list. When a page
is to be removed from memory, or when its process has terminated, it would be
moved to the standby list if it were a clean page; otherwise, it would be moved to
the modified list. (Recall that a standby page could be simply “reconnected” to
a process that wished to use it.) The page writer writes out modified pages and
changes their status to standby. It uses two thresholds—an upper threshold on
the number of modified pages in the system and a lower threshold on the number
of available pages—to decide when pages need to be written out.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 465 — #56

Chapter 12 Virtual Memory 465

12.9 VIRTUAL MEMORY USING SEGMENTATION
•

A segment is a logical entity in a program, such as a function, a data structure,
or an object; or it is a module that consists of some or all of these. A program is
composed of segments. During a program’s execution, the kernel treats segments
as the unit for memory allocation. This results in noncontiguous memory alloca-
tion for processes, which provides efficient use of memory by reducing memory
fragmentation. Being a logical entity, a segment is also a convenient unit for shar-
ing and protection. This feature is useful in constructing large software systems
that comprise of a set of modules or objects.

A logical address in a segmented process is viewed as a pair (si , bi) where si
and bi are the segment and byte ids, respectively. There are variations in the way si
and bi are indicated in a logical address. One method is to represent each of them
numerically. The logical address thus consists of a segment number and a byte
number. We shall discuss the second method separately later in this section. The
logical address space of a process is two-dimensional in nature. One dimension is
defined by the set of segments in the process. The number of segments can vary,
subject to a maximum number that may be specified by the computer architecture
or the virtual memory manager. The other dimension is defined by the set of bytes
in a segment. The number of bytes in a segment can vary, subject to the maximum
imposed by the number of bits available to represent bi in a logical address. The
two-dimensional nature of the address space implies that the last byte of a segment
and the first byte of another segment are not logically adjoining bytes—if we add
1 to the address of the last byte in a segment, it does not spill over into the
next segment; it is merely an invalid address. These are significant differences
from paging. There are also significant similarities, which we now discuss in the
context of address translation.

Figure 12.26 shows how address translation is performed in virtual memory
using segmentation. Some parallels with paging are the existence of a segment
table (ST) for a process, and a special hardware register called the segment table
address register (STAR) that points to the segment table of a process. For a

Memory

1

4

Add si bi

si

STAR

MMU Valid
bit Addr

Misc
info

bi ai

biai

2

1

3

Segment Table

Figure 12.26 Virtual memory implementation using segmentation.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 466 — #57

466 Part 3 Memory Management

logical address (si , bi), address translation is performed by using the memory
address found in si ’s entry in the segment table and the byte number bi in the
segment. A missing segment fault is raised if segment si does not exist in memory.
A difference with paging is that segments do not have a standard length. Hence
address translation involves adding the byte number bi to the start address of si ; it
cannot be performed by using bit concatenation as in paging. Address translation
can be speeded up by using address translation buffers. An entry in the address
translation buffer would contain a segment id and its address in memory, which
is copied from its segment table entry.

In a logical address (si , bi), si and bi could also be specified in a symbolic
form, i.e., as ids. In this case, a logical address is of the form (alpha, beta)
where alpha is the name of a segment and beta is an id associated with a byte
contained in segment alpha. Address translation of such logical addresses is
performed as follows: While compiling a segment, the compiler builds a table
showing byte ids defined in the segment and the byte numbers of corresponding
bytes in the segment. This table is made available to the virtual memory manager
for use during address translation. We will call it the segment linking table (SLT),
and refer to the segment linking table for alpha as SLTalpha. During address
translation, the MMU obtains the start address of alpha from the segment table,
picks up the address of SLTalpha from the misc info field of alpha’s entry and
obtains the byte number of beta from SLTalpha, and adds the two to obtain the
effective memory address.

•
Example 12.10 Effective Address Calculation in Segmentation

Figure 12.27 illustrates effective address calculation for the logical address
(alpha, beta). Part (a) of the figure shows segment alpha. beta and gamma
are two ids associated with specific instructions or data in alpha. These ids are
associated with the bytes numbered 232 and 478 in the segment, respectively.
The segment linking table SLTalpha contains entries for beta and gamma,
showing their byte numbers as 232 and 476, respectively. The segment table
entry of alpha indicates that it exists in the memory area with the start address
23480. The byte number associated with beta is 232. Hence the effective
address of (alpha, beta) would be computed as 23480 + 232 = 23712.
•

Both numeric and symbolic ids have been used in segmented virtual memory.
MULTICS is a well-known system that used symbolic identifiers.

12.9.1 Management of Memory
Memory management in virtual memory using segmentation has some simi-
larities to memory management in paging. A segment fault indicates that a
required segment is not present in memory. A segment-in operation is performed
to load the segment. If there is insufficient free memory, some segment-out oper-
ations may have to precede loading of the required segment. The virtual memory

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 467 — #58

Chapter 12 Virtual Memory 467

Segment

alpha

Segment Table

alpha

beta

gamma 478

232

1

Segment Linking Table

(SLT alpha)

beta:...

gamma:...

23480 764

Name Name Offset
Valid
bit Addr Size

Misc
info

(a) (b)

Figure 12.27 Use of symbolic segment and word ids.

manager can use a working set of segments to control memory allocation for
a process. Segments could be replaced on an NRU basis by collecting segment
reference information in each segment entry.

One difference from virtual memory using paging is that segments do not
have a fixed size. The memory freed by removing one segment from memory may
not suffice for loading another segment. Hence many segments may have to be
removed before a new segment can be loaded. Differences in segment sizes can
lead to external fragmentation, which can be tackled either through compaction
or through memory reuse techniques such as first-fit or best-fit. Compaction is
aided by presence of the MMU—only the address field of the segment table entry
needs to be modified when a segment is moved in memory. However, the virtual
memory manager should ensure that segments being moved are not involved in
I/O operations.

The two-dimensional nature of the logical address space permits a segment to
dynamically grow or shrink in size. Dynamic growth can be handled by allocating
a larger memory area to a segment and releasing the memory area allocated to it
earlier. A segment can be permitted to grow in its present location in memory if
an adjoining free area exists.

12.9.2 Sharing and Protection
Two important issues in sharing and protection of segments are:

• Static and dynamic sharing of segments
• Detecting use of invalid addresses

A segment is a convenient unit for sharing because it is a logical entity in a
process. It can be shared statically or dynamically by using the schemes described
earlier in Section 12.6. If segment ids are numeric, segments must occupy iden-
tical positions in logical address spaces of sharing processes. This requirement is
analogous to that concerning shared pages in virtual memory using paging (see
Section 12.6 and Figure 12.23). It does not apply if segment ids are symbolic.
Processes sharing a segment may have different access privileges to programs and
data in it. The virtual memory manager puts the access privileges in the misc
info field of a segment table entry. While translating a logical address (si , bi), the

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 468 — #59

468 Part 3 Memory Management

MMU makes two kinds of protection checks. It checks whether the kind of access
being made to the logical address is consistent with the access privileges of the
process for the segment. It also checks whether (si , bi) is a valid address by check-
ing whether bi < size of si . It raises a memory protection violation interrupt if
any of these checks fails.

12.9.3 Segmentation with Paging
External fragmentation exists in a virtual memory using segmentation because
segment sizes are different. This problem can be addressed by superimposing
paging on a segment-oriented addressing scheme. A system using this approach
retains the fundamental advantage of segmentation—the logical address space
is two-dimensional, which permits dynamic changes in the size of a segment—
while avoiding external fragmentation. Each segment contains an integral number
of pages, and memory management is performed through demand paging. This
arrangement may achieve more effective utilization of memory since only required
pages of a segment need to be present in memory at any time. However, paging
introduces internal fragmentation in the last page of a segment.

A logical address in such a system has the form (si , pi , bi). Since each segment
consists of a number of pages, a page table is built for each segment. The segment
table entry of a segment points to its page table. Figure 12.28 illustrates this
arrangement. The name field of the segment table is needed only if symbolic
segment ids are used. Address translation now involves an access to the segment
table followed by an access to the page table of the segment. It requires two
memory references if the segment and page tables are held in memory. To speed
up address translation, address translation buffers would have to be employed
for both the segment and page table references. A simple extension to the scheme
described earlier in Section 12.2.2 can be used for this purpose. Alternatively,
a single address translation buffer may be employed, each entry in the buffer
containing a pair (si , pi) and the corresponding page frame number.

Add si pi bi

si pi bi

ai

ai

bi
Page table

Segment table

Memory

MMU

Misc
info

Misc
info

Valid
bit

Valid
bitName

Page table
addr

Page
frame #

Figure 12.28 Address translation in segmentation with paging.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 469 — #60

Chapter 12 Virtual Memory 469

Memory protection can be performed at the level of segments through the
scheme described in Section 12.9.2. Protection information for a segment can
be put in its entry in the segment table, and it can be copied into its entry in the
address translation buffer. Page level access validation is not needed.

12.10 SUMMARY
•

Virtual memory is a part of the memory hierarchy
consisting of memory and a disk. During operation
of a process, some components of its address space
exist in memory, while others reside on a disk. This
arrangement permits the total memory require-
ments of a process to exceed size of the system’s
memory. It also permits a larger number of pro-
cesses to exist in memory simultaneously, because
each of them occupies less memory than its own
size. The performance of a process depends on the
rate at which its parts have to be loaded in mem-
ory from the disk. In this chapter, we studied the
techniques used by the kernel to ensure efficient
operation of a process and good performance of
the system.

Two basic actions in the operation of virtual
memory using paging are address translation and
demand loading of pages. The memory management
unit (MMU), which is a hardware unit, and the vir-
tual memory manager, which is a part of the kernel,
jointly implement these two actions. The mem-
ory is divided into parts called page frames, whose
size matches the size of pages. The virtual memory
manager maintains a page table for each process
to indicate which of its pages exist in which page
frames of memory. When an operand in the current
instruction in a process exists in one of the pages
that is present in memory, the MMU obtains the
page frame number where it exists from the page
table and uses it to compute the effective memory
address of the operand. If the page is not in mem-
ory, the MMU raises an interrupt called a page
fault, and the virtual memory manager loads the
page in memory. A fast translation look-aside buffer
(TLB) is used to speed up address translation; it
caches some entries of page tables of processes. The
inverted page table and the multilevel page table are

used in practice because they require less memory
than the conventional page table.

The virtual memory manager has to make two
key decisions that influence the performance of a
process: Which page should it remove from mem-
ory to make space for a new page required by a
process, and how much memory should it allocate
to a process? It uses a page replacement algorithm to
decide which page should be removed from mem-
ory. The empirical principle of locality of reference
indicates that a recently accessed page is more
likely to be accessed in future than a page that
has not been recently accessed. Accordingly, the
least recently used (LRU) page replacement algo-
rithm removes the page that has been least recently
used. It possesses the stack property, which guaran-
tees that the page fault rate would not increase if
the memory allocation to a process is increased.
However, it is expensive to collect information
about when a page was last referenced. Hence
MMUs typically provide a single bit for collecting
information about page references, and a class of
page replacement algorithms called the not recently
used (NRU) algorithms are used in practice. Clock
algorithms are a widely used subclass of NRU
algorithms.

The working set of a process is the collection
of distinct pages referenced by it recently. Its size
provides a useful pointer to how many pages of
the process should be in memory to ensure good
performance of the process. The virtual memory
manager can use the notion of working sets to
avoid the situation called thrashing in which most
processes in the system have insufficient amounts
of memory allocated to them, so they produce page
faults at a high rate and little useful work gets done
in the system.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 470 — #61

470 Part 3 Memory Management

An operating system uses special techniques
that exploit the virtual memory to speed up oper-
ation of processes. The copy-on-write technique
avoids keeping identical copies of shared pages in

memory, while memory mapping of files enables a
file to be treated as a part of the address space
of a process, thereby speeding up accesses to its
data.

TEST YOUR CONCEPTS
•

12.1 Classify each of the following statements as true
or false:
a. In a computer providing virtual memory, the

number of bits in a logical address can exceed
the number of bits in a physical address.

b. A page-out operation is always needed
in a page replacement operation, irrespec-
tive of whether the page being replaced is
dirty.

c. Loss of protection can result if an entry in the
translation look-aside buffer (TLB) that was
made during operation of one process is used
during operation of another process.

d. The inverted page table organization requires
more accesses to memory during address
translation than the conventional organiza-
tion of page tables.

e. The FIFO page replacement policy guaran-
tees that allocating more page frames to a
program would reduce its page fault rate.

f. If the virtual memory hardware provides a
single reference bit and the reference bits in
the page table entries of all memory-resident
pages are set, the LRU page replacement
algorithm degenerates to FIFO replacement.

g. Page faults would not occur during operation
of a process if all pages included in the work-
ing set of a process are in memory at every
instant.

h. Heavy page traffic implies that thrashing has
occurred.

i. If a single copy of a program C is shared by
two processes A and B, pages of C should
occupy identical positions in the page tables
of processes A and B.

12.2 Select the most appropriate alternative in each
of the following questions:
a. If the virtual memory hardware provides a

single reference bit in an entry of a page table,

the reference bit in the entry of page pi of
process Pk indicates:

i. Whether page pi is likely to be referenced
in the future

ii. Whether page pi will be the next page to
be referenced during operation of Pk

iii. Whether page pi has been referenced since
it was last loaded in memory

iv. Whether page pi is the most recently
referenced page of Pk

b. During operation of a process Pk , the trans-
lation look-aside buffer contains:

i. Some arbitrary entries from the page table
of Pk

ii. The most recently referenced entries of
the page table of Pk

iii. The last few entries of the page table of
Pk

iv. The least recently referenced entries of the
page table of Pk

c. The stack property of a page replacement
algorithm implies that if more memory would
have been allocated to a process:

i. Fewer page faults would have occurred
ii. More page faults would have occurred
iii. The number of page faults would have

been smaller or the same
iv. None of (i)–(iii)

d. If pfri and pfrj are the page fault rates of
processes Pi and Pj when process Pi has 5
percent of its pages in memory, process Pj
has 10 percent of its pages in memory, and the
page replacement policy possesses the stack
property, then:

i. pfri < pfrj
ii. pfri ≤ pfrj
iii. pfri > pfrj
iv. Nothing can be said about the relative

magnitudes of pfri and pfrj

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 471 — #62

Chapter 12 Virtual Memory 471

e. If pfri and pfr′i are the page fault rates of pro-
cess Pi when it is operated with 5 percent
of its pages and 10 percent of its pages in
memory, respectively, and the page replace-
ment policy possesses the stack property,
then:

i. pfri < pfr′i
ii. pfri ≥ pfr′i
iii. pfri > pfr′i

iv. Nothing can be said about the relative
magnitudes of pfri and pfr′i

f. Thrashing can be overcome if
i. The degree of multiprogramming is

increased
ii. The I/O speed is increased
iii. Memory allocation for a process is con-

trolled by its working set size
iv. None of (i)–(iii)

EXERCISES
•

12.1 Page tables are stored in a memory that has an
access time of 100 nanoseconds. The translation
look-aside buffer (TLB) can hold 64 page table
entries and has an access time of 10 nanosec-
onds. During operation of a process, it is found
that 85 percent of the time a required page table
entry exists in the TLB and only 2 percent of
the references lead to page faults. The average
time for page replacement is 2 ms. Compute the
effective memory access time.

12.2 Using the access speeds and hit ratios men-
tioned in Exercise 12.1, compute the effective
memory access time in two-level, three-level, and
four-level page table organizations.

12.3 Three approaches to paging of the kernel in
virtual memory are:
a. Make the kernel permanently memory-

resident.
b. Page the kernel in a manner analogous to the

paging of user processes.
c. Make the kernel a compulsory part of the

logical address space of every process in the
system and manage its pages as shared pages.

Which approach would you recommend? Give
reasons.

12.4 Execution performance of a process in virtual
memory depends on locality of reference dis-
played during its operation. Develop a set of
guidelines that a programmer can follow to
obtain good performance of a process. Describe
the rationale behind each guideline. (Hint:
Consider array references occurring in nested
loops!)

12.5 Give a sample page reference string for a process
that produces more page faults when the LRU

page replacement policy is used with alloc = 5
than when the optimal page replacement policy
is used with alloc = 5.

12.6 A process makes r page references during its
operation. The page reference string of the pro-
cess contains d distinct page numbers in it. The
size of the process is p pages and it is allocated f
page frames all through its operation.
a. What is the least number of page faults that

can occur during its operation?
b. What is the maximum number of page faults

that can occur during its operation?
12.7 Prove the validity of the following statement if

the page replacement policy uses a fixed memory
allocation and local page replacement: “If a pro-
cess does not modify any of its pages, then it is
optimal to replace the page whose next reference
is farthest in the page reference string.” Show
that this policy may not lead to the minimum
number of page-in and page-out operations if
the process modifies some of its pages.

12.8 What is Belady’s anomaly? Show that a page
replacement algorithm that possesses the stack
property cannot exhibit Belady’s anomaly.

12.9 Prove that the LRU page replacement policy
possesses the stack property.

12.10 Optimal page replacement can be implemented
by replacing the page whose next reference is
farthest in the page reference string. Does this
policypossess the stackproperty? Does the clock
algorithm possess the stack property?

12.11 For the page reference string (12.6),
a. Show the working set at each time instant if

the size of the working set window is (i) three
instructions, (ii) four instructions.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 472 — #63

472 Part 3 Memory Management

b. Compare the operation and performance of
the working set allocator with the FIFO and
LRU allocators.

12.12 A working set allocator is used for a page refer-
ence string with two values of �, �1 < �2. pfr1
and pfr2 are page fault rates when �1 and �2
are used, respectively. Is pfr1 ≥ pfr2 if working
sets are recomputed (a) after every instruction
and (b) after every n instructions for some n?

12.13 Describe the actions of a virtual memory man-
ager using a working set memory allocator when
it decides to reduce the degree of multipro-
gramming. Clearly indicate how it uses and
manipulates its data structures for this purpose.

12.14 Explain, with the help of examples, why the
working set size of a process may increase or
decrease during its operation.

12.15 Justify the following statement: “Thrashing can
arise when a working set memory allocator is
used. However, it cannot last for long.”

12.16 A virtual memory manager uses the following
page replacement policy: When a combination
of a high page fault rate in the system and low
CPU efficiency is noticed, reduce the allocation
for each process and load one more process.
Comment on the effectiveness of this policy.

12.17 Explain why the two-handed clock algorithm for
page replacement is superior to the one-handed
clock algorithm (see Section 12.8.1).

12.18 A virtual memory manager implements a work-
ing set memory allocator and uses dynamic shar-
ing of pages. Describe the housekeeping actions
performed by it in the following situations.
a. When a page fault occurs.
b. When a shared page drops out of the working

set of one of the sharing processes.
12.19 The amount of memory allocated to a process in

a system using virtual memory is held constant
and the page size is varied. (This action varies
the number of pages of the process in memory.)
Draw a graph of page size versus expected page
fault rate.

12.20 The degree of multiprogramming in a system
using virtual memory is varied by changing the
memory allocation for processes. Draw a graph
of degree of multiprogramming versus CPU effi-
ciency. Explain the nature of the graph in the
region of high degree of multiprogramming.

12.21 We refer to “instructions in the past” dur-
ing operation of a process as follows: The

most recently executed instruction is said to be
“1 instruction in the past” of the process, the
instruction before it is said to be “2 instruc-
tions in the past,” etc. A memory allocator
refers to the page reference in the instruction
that is i instructions in the past as the −i page
reference. It uses a parameter w, and the fol-
lowing rules for memory allocation and page
replacement:
a. Do nothing if the next page reference matches

the −w page reference.
b. Else, if the next page reference matches the

−i page reference for some i < w, do the
following: if the −w page reference does not
match with the −j page reference for some
j < w, then reduce the memory allocation for
the process by one page frame and remove
the least recently used page, otherwise do
nothing.

c. Else, if the next page reference causes a
page fault and the −w page reference does
not match with the page reference in the
−j instruction for some j < w, then per-
form a page replacement using the LRU page
replacement policy.

d. Else, increase the memory allocation for the
process by one page frame and load the page
contained in the next page reference.

Show that the actions of the memory alloca-
tor are equivalent to actions of the working set
memory allocator with � = w.

12.22 Compare the following memory manage-
ment proposals in virtual memory using
segmentation-with-paging.
a. Use the LRU policy within a process.
b. Use the LRU policy within a segment.

12.23 Comment on the validity of the following state-
ment: “In virtual memory using segmentation-
with-paging, the role of segmentation is limited
to sharing. It does not play any role in memory
management.”

12.24 An I/O operation consists of the execution of a
sequence of I/O commands. A self-describing I/O
operation is an I/O operation some of whose I/O
commands are read in by a previous I/O com-
mand of the same I/O operation. For example,
consider the I/O operation

1. Read d , 6, aaa
2. Read d , count, bbb

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 473 — #64

Chapter 12 Virtual Memory 473

where d is the id of the I/O device. The first
I/O command reads 6 bytes into the memory
area with address aaa. Let this be the area where
the fields containing count (2 bytes) and bbb (4
bytes) of the second I/O command are stored.
Thus, the first I/O command modifies the sec-
ond I/O command. Let n and ccc be the values
read into fields count and bbb, respectively, by
the first I/O command. After I/O for the first
I/O command is completed, the second I/O com-
mand reads n bytes into the memory area with
address ccc. The data for this I/O operation
would be

n, ccc, ︸ ︷︷ ︸
n bytes of data

Can the methods of performing I/O in vir-
tual memory described in Section 12.2.4 handle
self-describing I/O operations correctly? Clearly
justify your answer. In a simplified form of self-
describing I/O, the first I/O command reads in
only 2 bytes and stores them in the count field.
Can the methods described in Section 12.2.4
handle such I/O operations correctly?

12.25 While initiating a process, the virtual memory
manager copies the code of the process, which
exists in a file, into the swap space reserved for
the process. From the swap space, code pages are
loaded into memory when needed. Explain the
advantages of this arrangement. Why not load
code pages directly from the file when needed?
Some code pages may not be used during a run,
hence it is redundant to copy them into the swap
space. To avoid redundant copying, some vir-
tual memory managers copy a code page into

the swap space when it is used for the first time.
Discuss the advantages and drawbacks of the
optimization.

12.26 Performance of a virtual memory is determined
by the interplay of three factors—CPU speed,
size of memory, and peak throughput of the
paging device. Possible causes of low or high
efficiency of the CPU and the paging disk can
be summarized as follows:

High
utilization

Low
utilization

CPU Processes
are CPU-
bound, or
CPU is slow

Only few of the
processes are
CPU-bound,
or thrashing is
present

Paging Thrashing is Memory is
disk present, or

disk is slow
overcommited
to each process

Performance of virtual memory may improve
if one or several of the following changes are
made: the CPU is replaced by a faster CPU,
the paging disk is replaced by a faster disk, the
memory is increased, or the degree of multi-
programming is increased. In each of the fol-
lowing situations, which of the above changes
would you recommend for improving system
performance?
a. Low CPU efficiency, low disk efficiency
b. Low CPU efficiency, high disk efficiency
c. High CPU efficiency, low disk efficiency
d. High CPU efficiency, high disk efficiency

CLASS PROJECT: SIMULATION OF VIRTUAL MEMORY MANAGER
•

A virtual memory manager uses the two-thread arrange-
ment shown in Figure 12.19, where the thread called
free frames manager tries to maintain a sufficient num-
ber of free page frames at all times and the thread called
page I/O manager performs page-out operations on dirty
page frames. The virtual memory manager uses the two-
handed clock algorithm discussed in Example 12.8 and

illustrated in Figure 12.20. It performs page replacement
on a global basis.

The working of this virtual memory manager is to
be simulated. The simulation is controlled by commands
in an input file, where each command has the format
<action> <parameters>. Details of the actions are as
follows:

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 474 — #65

474 Part 3 Memory Management

Action name Parameters and explanation

Memory_size Number of page frames (integer)
Lower_threshold Minimum number of free page frames (integer)
Upper_threshold Maximum number of free page frames (integer)
Distance Distance between clock hands, in terms of number of page

frames (integer)
#processes Number of processes (integer). Process id’s are P0, P1, . . .
Process_size Process id, number of pages (both are integers)
Read Process id, Page number : The indicated process reads the

indicated page (both are integers)
Modify Process id, Page number : The indicated process modifies

the indicated page (both are integers)
Page_table No parameters. Simulator displays the page tables of

processes
IO_list No parameters. Simulator displays the list of page frames

on which page-out operations need to be performed
Hit_ratio Simulator displays hit ratios for processes
Reset_counters Simulator resets counters used for calculation of hit ratios

Develop a simulator of the virtual memory manager.
The simulator must maintain page tables and swap
spaces of the processes. It must also maintain a list of
page frames on which page-out operations should be
performed. The free frames manager puts page frame

numbers in this list. The page I/O manager performs
page-out operations on the page frames in a suitable
order; it informs the free frames manager when the
page-out operation of a page frame has been completed.

BIBLIOGRAPHY
•

Randell (1969) is an early paper on the motivation for vir-
tual memory systems. Ghanem (1975) discusses memory
partitioning in virtual memory systems for multipro-
gramming. Denning (1970) is a survey article on virtual
memory. Hatfield (1971) discusses aspects of program
performance in a virtual memory system.

Belady (1966) discusses the anomaly that carries his
name. Mattson et al. (1970) discusses stack property of
page replacement algorithms. Denning (1968a, 1968b)
discusses thrashing and the fundamental working set
model. Denning (1980) is a comprehensive discussion on
working sets. Smith (1978) is a bibliography on paging
and related topics. Wilson et al. (1995) discusses memory
allocation in virtual memory environments. Johnstone
and Wilson (1998) discusses the memory fragmentation
problem.

Chang and Mergen (1988) describes the inverted
page table, while Tanenbaum (2001) discusses the two-
level page tables used in Intel 30386. Jacob and Mudge

(1998) compares virtual memory features in MIPS, Pen-
tium, and PowerPC architectures. Swanson et al. (1998)
and Navarro et al. (2002) describe superpages.

Car and Hennessy (1981) discusses the clock algo-
rithm. Bach (1986) and Vahalia (1996) describe Unix
virtual memory, Beck et al. (2002), Gorman (2004),
Bovet and Cesati (2005), and Love (2005) discuss Linux
virtual memory, Mauro and McDougall (2006) dis-
cusses virtual memory in Solaris, while Russinovich and
Solomon (2005) discusses Windows virtual memory.

Organick (1972) describes virtual memory in
MULTICS.

1. Aho, A. V., P. J. Denning, and J. D. Ullman
(1971): “Principles of optimal page replacement,”
Journal of ACM, 18 (1), 80–93.

2. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 475 — #66

Chapter 12 Virtual Memory 475

3. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, 3rd ed.,
Pearson Education, New York.

4. Belady, L. A. (1966): “A study of replacement
algorithms for virtual storage computers,” IBM
Systems Journal, 5 (2), 78–101.

5. Bensoussen, A., C. T. Clingen, and R. C. Daley
(1972): “The MULTICS virtual
memory—concepts and design,” Communications
of the ACM, 15 (5), 308–318.

6. Bryant, P. (1975): “Predicting working set sizes,”
IBM Journal of R and D, 19 (5), 221–229.

7. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol,
Calif.

8. Carr, W. R., and J. L. Hennessy (1981):
“WSClock—a simple and effective algorithm for
virtual memory management,” Proceedings of the
ACM Symposium on Operating Systems
Principles, 87–95.

9. Chang, A., and M. Mergen (1988): “801 storage:
architecture and programming,” ACM
Transactions on Computer Systems, 6, 28–50.

10. Daley, R. C., and J. B. Dennis (1968): “Virtual
memory, processes and sharing in MULTICS,”
Communications of the ACM, 11 (5), 305–322.

11. Denning, P. J. (1968a): “The working set model
for program behavior,” Communications of the
ACM, 11 (5), 323–333.

12. Denning, P. J. (1968b): “Thrashing : Its causes
and prevention,” Proceedings of AFIPS FJCC,
33, 915–922.

13. Denning, P. J. (1970): “Virtual Memory,”
Computing Surveys, 2 (3), 153–189.

14. Denning, P. J. (1980): “Working sets past and
present,” IEEE Transactions on Software
Engineering, 6 (1), 64–84.

15. Ghanem, M. Z. (1975): “Study of memory
partitioning for multiprogramming systems with
virtual memory,” IBM Journal of R and D, 19,
451–457.

16. Gorman, M. (2004): Understanding the Linux
Virtual Memory Manager, Prentice Hall,
Englewood Cliffs, N.J.

17. Guertin, R.L.(1972): “Programming in a paging
environment,” Datamation, 18 (2), 48–55.

18. Hatfield, D. J., and J. Gerald (1971): “Program
restructuring for virtual memory,” IBM Systems
Journal, 10 (3), 169–192.

19. Jacob, B., and T. Mudge (1998): “Virtual memory
in contemporary microprocessors,” IEEE Micro
Magazine, 18, 60–75.

20. Johnstone, M. S., and P. R. Wilson (1998):
“The memory fragmentation problem: solved?,”
Proceedings of the First International Symposium
on Memory Management, 26–36.

21. Love, R. (2005): Linux Kernel Development, 2nd
ed. Novell Press.

22. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice-Hall, Englewood
Cliffs, N.J.

23. Mattson, R. L., J. Gecsei, D. R. Slutz, and
I. L. Traiger (1970): “Evaluation techniques for
storage hierarchies,” IBM Systems Journal, 9 (2),
78–117.

24. Navarro, J., S. Iyer, P. Druschel, and A. Cox
(2002): “Practical, transparent operating system
support for superpages,” ACM SIGOPS
Operating Systems Review, 36, issue SI, 89–104.

25. Organick, E. I. (1972): The MULTICS System,
MIT Press, Cambridge, Mass.

26. Randell, B. (1969): “A note on storage
fragmentation and program segmentation,”
Communications of the ACM, 12 (7), 365–369.

27. Rosell, J. R., and J. P. Dupuy (1973): “The design,
implementation and evaluation of a working set
dispatcher,” Communications of the ACM, 16,
247–253.

28. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

29. Smith, A. J. (1978): “Bibliography on paging and
related topics,” Operating Systems Review, 12 (4),
39–56.

30. Swanson, M., L. Stoller, and J. Carter (1998):
“Increasing TLB reach using superpages backed
by shadow memory,” Proceedings of the 25th
International Symposium on Computer
Architecture, 204–213.

31. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

32. Vahalia, U. (1996): Unix Internals—The New
Frontiers, Prentice Hall, Englewood Cliffs, N.J.

33. Wilson, P. R., M. S. Johnstone, M. Neely and
D. Boles (1995): “Dynamic storage allocation: a
survey and critical review,” Proceedings of the
International Workshop on Memory Management,
1–116.

12-M4363-DAS1.LaTeX: “chap12” — 2007/11/16 — 18:58 — page 476 — #67

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 477 — #1

p a r t 4
File Systems and I/O

Management

C
omputer users expect convenience and efficiency while creating and
manipulating files, and sharing them with other users of the system. They
also expect a file system to possess protection, security and reliability fea-

tures so that their files are not subjected to illegal accesses or tampering by other
persons, or damage due to faults in the system. A system administrator expects
a file system to ensure efficient use of I/O devices and contribute towards high
performance of the system.

The file system uses a hierarchy of views and organizations to meet these
diverse requirements. The logical view is employed to provide the features desired
by users. In this view, a file is an entity that is owned by some user, shared by a
group of users, and reliably stored over a period of time. The logical organization
implements the logical view. It consists of different kinds of files and operations
on files, directory structures and arrangements used for sharing and protection of
files, and arrangements for reliable operation of the file system.

The physical view is employed to ensure speedy access to data, good perfor-
mance of file operations in a process, and good performance of I/O devices. In
this view, a file is a collection of data, which need to be accessed speedily, that is
stored on I/O devices, which need to be used efficiently. The physical organization
consists of arrangements using buffers and caches to implement the physical view.

We discuss the logical and physical views of a file system in separate
chapters. The third chapter in this part discusses protection and security measures
employed in an OS.

Chapter 13: File Systems
This chapter discusses a programmer’s view of files and the file system. It describes
fundamental file organizations, directory structures, operations on files and direc-
tories, and file sharing semantics, which specify the manner in which results of
file manipulations performed by concurrent processes are visible to one another.
Issues that compromise reliability of a file system are discussed. Fault tolerance
using atomic actions and recovery using backups are described.

477

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 478 — #2

478 Part 4 File Systems and I/O Management

Road Map for Part 4

File

Systems

Implementation

of

File Operations

Security

and

Protection

Schematic diagram showing the order in which chapters of this part should be covered in a
course.

This chapter also discusses the role of the file control block as the interface
between the logical and physical organizations used in a file system. Its use in
implementing file operations and file sharing semantics is discussed.

Chapter 14: Implementation of File Operations
This chapter discusses the physical organization used in file systems. It starts with
an overview of I/O devices and their characteristics, and discusses different RAID
organizations that provide high reliability, fast access, and high data transfer rates.
The arrangements used to implement device-level I/O are then discussed, includ-
ing use of buffers and caches to speed up I/O operations and use of disk scheduling
policies to improve throughput of disk devices.

Chapter 15: Security and Protection
Security and protection measures together ensure that only authorized users can
access a file. This chapter discusses different kinds of security and protection
threats in an operating system, measures used to thwart these threats, and the
role played by the encryption technique in implementing these measures.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 479 — #3

C h a p t e r 13
File Systems

C
omputer users store programs and data in files so that they can be used
conveniently and preserved across computing sessions. A user has many
expectations when working with files, namely

• Convenient and fast access to files
• Reliable storage of files
• Sharing of files with collaborators

The resources used for storing and accessing files are I/O devices. As it must,
the OS ensures both efficient performance of file processing activities in processes
and efficient use of I/O devices.

Operating systems organize file management into two components called the
file system and the input-output control system (IOCS) to separate the file-level
concerns from concerns related to efficient storage and access of data. Accord-
ingly, a file system provides facilities for creating and manipulating files, for
ensuring reliability of files when faults such as power outages or I/O device mal-
functions occur, and for specifying how files are to be shared among users. The
IOCS provides access to data stored on I/O devices and good performance of
I/O devices.

This chapter deals with the design of the file system. After discussing the
basics of file organizations, directory structures and disk space management, we
describe the file sharing semantics that govern concurrent sharing of files and
file system reliability. Implementation of file operations by means of the IOCS is
discussed in Chapter 14.

13.1 OVERVIEW OF FILE PROCESSING
•

We use the term file processing to describe the general sequence of operations
of opening a file, reading data from the file or writing data into it, and closing
the file. Figure 13.1 shows the arrangement through which an OS implements file
processing activities of processes. Each directory contains entries describing some
files. The directory entry of a file indicates the name of its owner, its location on a
disk, the way its data is organized, and which users may access it in what manner.

The code of a process Pi is shown in the left part of Figure 13.1. When it
opens a file for processing, the file system locates the file through the directory

479

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 480 — #4

480 Part 4 File Systems and I/O Management

Process

Pi beta

open beta

read beta,
...

close beta

Directory

File

Logical

view of

file data

File
system

IOCS

File data

in memory

File data

on disk

beta phi

Directory structure

Figure 13.1 File system and the IOCS.

structure, which is an arrangement of many directories. In Figure 13.1, there are
two files named beta located in different directories. When process Pi opens
beta, the manner in which it names beta, the directory structure, and identities
of the user who initiated process Pi will together determine which of the two files
will be accessed.

A file system provides several file types (see Section 13.2). Each file type pro-
vides its own abstract view of data in a file—we call it a logical view of data.
Figure 13.1 shows that file beta opened by process Pi has a record-oriented log-
ical view, while file phi has a byte stream–oriented logical view in which distinct
records do not exist.

The IOCS organizes a file’s data on an I/O device in accordance with its file
type. It is the physical view of the file’s data. The mapping between the logical
view of the file’s data and its physical view is performed by the IOCS. The IOCS
also provides an arrangement that speeds up a file processing activity—it holds
some data from a file in memory areas organized as buffers, a file cache, or a disk
cache. When a process performs a read operation to get some data from a file,
the IOCS takes the data from a buffer or a cache if it is present there. This way,
the process does not have to wait until the data is read off the I/O device that
holds the file. Analogously, when a process performs a write operation on a file,
the IOCS copies the data to be written in a buffer or in a cache. The actual I/O

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 481 — #5

Chapter 13 File Systems 481

operations to read data from an I/O device into a buffer or a cache, or to write it
from there onto an I/O device, are performed by the IOCS in the background.

13.1.1 File System and the IOCS
A file system views a file as a collection of data that is owned by a user, can be
shared by a set of authorized users, and has to be reliably stored over an extended
period of time. A file system gives users freedom in naming their files, as an aspect
of ownership, so that a user can give a desired name to a file without worrying
whether it conflicts with names of other users’ files; and it provides privacy by
protecting against interference by other users. The IOCS, on the other hand, views
a file as a repository of data that need to be accessed speedily and are stored on
an I/O device that needs to be used efficiently.

Table 13.1 summarizes the facilities provided by the file system and the IOCS.
The file system provides directory structures that enable users to organize their
data into logical groups of files, e.g., one group of files for each professional
activity. The file system provides protection against illegal file accesses and ensures
correct operation when processes access and update a file concurrently. It also
ensures that data is reliably stored, i.e., data is not lost when system crashes occur.
Facilities of the IOCS are as described earlier.

The file system and the IOCS form a hierarchy. Each of them has policies and
provides mechanisms to implement the policies. In the language of Section 1.1, the
IOCS and the file system provide different abstractions that lead to the following
division of functions:

• The file system provides an interface through which a process can perform
open, read/write, and close operations on files. Its policy modules handle
protection and sharing of files during open and read/write operations. Its
mechanism modules assist in the implementation of open and close opera-
tions by accessing directories. They also pass on read/write requests for file
data to the IOCS.

• The IOCS policy modules ensure efficient operation of I/O devices and effi-
cient file processing in each process through the IOCS mechanism modules.
The mechanism modules in the IOCS, in turn, invoke the kernel through
system calls to initiate I/O operations.

Table 13.1 Facilities Provided by the File System
and the Input-Output Control System

File System
• Directory structures for convenient grouping of files
• Protection of files against illegal accesses
• File sharing semantics for concurrent accesses to a file
• Reliable storage of files

Input-Output Control System (IOCS)
• Efficient operation of I/O devices
• Efficient access to data in a file

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 482 — #6

482 Part 4 File Systems and I/O Management

Data and Metadata A file system houses two kinds of data—data contained
within files, and data used to access files. We call the data within files file data, or
simply data. The data used to access files is called control data, or metadata. In
the logical view shown in Figure 13.1, data contained in the directory structure
is metadata. As discussed later in this chapter and in Chapter 14, other metadata
play a role in implementing file operations.

13.1.2 File Processing in a Program
At the programming language level, a file is an object that possesses attributes

describing the organization of its data and the method of accessing the data.
A program contains a declaration statement for a file, which specifies values of
its attributes, and statements that open it, perform read/write operations on it,
and close it (we call them file processing statements). During execution of the
program, file processing is actually implemented by library modules of the file
system and the IOCS.

Figure 13.2 illustrates how file processing is actually implemented. The pro-
gram of Figure 13.2(a) declares alpha as a sequential-access file that contains
records with a size of 60 bytes (see Section 13.2 for a discussion of records in a
file). It also contains statements to open alpha and read a record from it. The
compiler of the programming language processes the file declaration statement in
the program and determines attributes of the file. It now replaces open, close,
read, and write statements with calls on file system library modules open,
close, read, and write, and passes the file attributes as parameters to the
open call [see Figure 13.2(b)]. The file system modules invoke modules of the
IOCS to actually perform I/O operations. The linker links the file system library

file alpha
sequential
record=60

open alpha,
‘read’

read alpha,
xyz

(a)

call read(alpha,
xyz)

(b)

File system

modules open

& close

IOCS module

seq_read

(c)

call...

call...

call open(alpha,‘
read’,..)

Figure 13.2 Implementing a file processing activity: (a) program containing file declaration
statements; (b) compiled program showing calls on file system modules; (c) process invoking
file system and IOCS modules during operation.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 483 — #7

Chapter 13 File Systems 483

modules and the IOCS modules invoked by them to produce the program shown
in Figure 13.2(c) (see Section 11.3.2 for a description of the linking function).
When a process is created for execution of this program, it invokes the file system
library modules during its operation to perform the open and read operations
on the file, and these modules implement them with the help of appropriate IOCS
library modules.

13.2 FILES AND FILE OPERATIONS
•

File Types A file system houses and organizes different types of files, e.g.,
data files, executable programs, object modules, textual information, documents,
spreadsheets, photos, and video clips. Each of these file types has its own format
for recording the data. These file types can be grouped into two classes:

• Structured files
• Byte stream files

A structured file is a collection of records, where a record is a meaningful unit
for processing of data. A record is a collection of fields, and a field contains a single
data item. Each record in a file is assumed to contain a key field. The value in the
key field of a record is unique in a file; i.e., no two records contain an identical key.
Many file types mentioned earlier are structured files. File types used by standard
system software like compilers and linkers have a structure determined by the OS
designer, while file types of user files depend on the applications or programs that
create them.

A byte stream file is “flat.” There are no records and fields in it; it is looked
upon as a sequence of bytes by the processes that use it. The next example
illustrates structured and byte stream files.

•
Example 13.1Structured and Byte Stream Files

Figure 13.3(a) shows a structured file named employee_info. Each record
in the file contains information about one employee. A record contains four
fields: employee id, name, designation, and age. The field containing the
employee id is the key field. Figure 13.3(b) shows a byte stream file report.

•
File Attributes A file attribute is a characteristic of a file that is important either
to its users or to the file system, or both. Commonly used attributes of a file are:
type, organization, size, location on disk, access control information, which indi-
cates the manner in which different users can access the file; owner name, time of
creation, and time of last use. The file system stores the attributes of a file in its
directory entry. During a file processing activity, the file system uses the attributes
of a file to locate it, and to ensure that each operation being performed on it is con-
sistent with its attributes. At the end of the file processing activity, the file system
stores changed values of the file’s attributes, if any, in the file’s directory entry.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 484 — #8

484 Part 4 File Systems and I/O Management

employee_info

51

employee id

Anita Ingle

Manager

33 Years(a) (b)

report

abscd18735 . . .

Figure 13.3 Logical views of (a) a structured file employee_info; (b) a byte stream file
report.

Table 13.2 Operations on Files

Operation Description

Opening a file The file system finds the directory entry of the file and
checks whether the user whose process is trying to open
the file has the necessary access privileges for the file.
It then performs some housekeeping actions to initiate
processing of the file.

Reading or writing
a record

The file system considers the organization of the file
(see Section 13.3) and implements the read/write
operation in an appropriate manner.

Closing a file The file size information in the file’s directory entry is
updated.

Making a copy of a file A copy of the file is made, a new directory entry is
created for the copy and its name, size, location, and
protection information is recorded in the entry.

File deletion The directory entry of the file is deleted and the disk
area occupied by it is freed.

File renaming The new name is recorded in the directory entry
of the file.

Specifying access
privileges

The protection information in the file’s directory entry
is updated.

File Operations Table 13.2 describes operations performed on files. As men-
tioned earlier, operations such as open, close, rename, and delete are performed
by file system modules. Actual access of files, i.e., reading or writing of records,
is implemented by the IOCS modules.

13.3 FUNDAMENTAL FILE ORGANIZATIONS AND
ACCESS METHODS

•
We use the term “record access pattern” to describe the order in which records
in a file are accessed by a process. The two fundamental record access patterns
are sequential access, in which records are accessed in the order in which they

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 485 — #9

Chapter 13 File Systems 485

fall in a file (or in the reverse of that order), and random access, in which records
may be accessed in any order. The file processing actions of a process will execute
efficiently only if the process’s record access pattern can be implemented efficiently
in the file system. The characteristics of an I/O device make it suitable for a specific
record access pattern. For example, a tape drive can access only the record that
is placed immediately before or after the current position of its read/write head.
Hence it is suitable for sequential access to records. A disk drive can directly
access any record given its address. Hence it can efficiently implement both the
sequential and random record access patterns.

A file organization is a combination of two features—a method of arranging
records in a file and a procedure for accessing them. A file organization is designed
to exploit the characteristics of an I/O device for providing efficient record access
for a specific record access pattern. A file system supports several file organi-
zations so that a process can employ the one that best suits its file processing
requirements and the I/O device in use. This section describes three fundamen-
tal file organizations—sequential file organization, direct file organization and
index sequential file organization. Other file organizations used in practice are
either variants of these fundamental ones or are special-purpose organizations
that exploit less commonly used I/O devices.

Accesses to files governed by a specific file organization are implemented by
an IOCS module called an access method. An access method is a policy module
of the IOCS. While compiling a program, the compiler infers the file organiza-
tion governing a file from the file’s declaration statement (or from the rules for
default, if the program does not contain a file declaration statement), and identi-
fies the correct access method to invoke for operations on the file. We describe the
functions of access methods after discussing the fundamental file organizations.

13.3.1 Sequential File Organization
In sequential file organization, records are stored in an ascending or descending
sequence according to the key field; the record access pattern of an application
is expected to follow suit. Hence sequential file organization supports two kinds
of operations: read the next (or previous) record, and skip the next (or previous)
record. A sequential-access file is used in an application if its data can be con-
veniently presorted into an ascending or descending order. The sequential file
organization is also used for byte stream files.

13.3.2 Direct File Organization
The direct file organization provides convenience and efficiency of file processing
when records are accessed in a random order. To access a record, a read/write
command needs to mention the value in its key field. We refer to such files as
direct-access files. A direct-access file is implemented as follows: When a process
provides the key value of a record to be accessed, the access method module for
the direct file organization applies a transformation to the key value that generates
the address of the record in the storage medium. If the file is organized on a disk,

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 486 — #10

486 Part 4 File Systems and I/O Management

the transformation generates a (track_no, record_no) address. The disk heads are
now positioned on the track track_no before a read or write command is issued
on the record record_no.

Consider a file of employee information organized as a direct-access file. Let
p records be written on one track of the disk. Assuming the employee numbers
and the track and record numbers of the file to start from 1, the address of the
record for employee number n is (track number (tn), record number (rn)) where

tn =
⌈

n
p

⌉
(13.1)

rn = n − (tn − 1) × p (13.2)

and �. . .� indicates a rounded-up integer value.
Direct file organization provides access efficiency when records are pro-

cessed randomly. However, it has three drawbacks compared to sequential file
organization:

• Record address calculation consumes CPU time.
• Disks can store much more data along the outermost track than along the

innermost track. However, the direct file organization stores an equal amount
of data along each track. Hence some recording capacity is wasted.

• The address calculation formulas (13.1) and (13.2) work correctly only if a
record exists for every possible value of the key, so dummy records have to
exist for keys that are not in use. This requirement leads to poor utilization
of the I/O medium.

Hence sequential processing of records in a direct-access file is less efficient than
processing of records in a sequential-access file. Another practical problem is that
characteristics of an I/O device are explicitly assumed and used by the address
calculation formulas (13.1) and (13.2), which makes the file organization device-
dependent. Rewriting the file on another device with different characteristics, e.g.,
different track capacity, will imply modifying the address calculation formulas.
This requirement affects the portability of programs.

•
Example 13.2 Sequential and Direct-Access Files

Figure 13.4 shows the arrangement of employee records in sequential and
direct file organizations. Employees with the employee numbers 3, 5–9 and 11
have left the organization. However, the direct-access file needs to contain a
record for each of these employees to satisfy the address calculation formulas
(13.1) and (13.2). This fact leads to the need for dummy records in the direct-
access file.
•

13.3.3 Index Sequential File Organization
An index helps to determine the location of a record from its key value. In a
pure indexed file organization, the index of a file contains an index entry with

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 487 — #11

Chapter 13 File Systems 487

(b)(a)

1 2 4 10 12 . . .

employee #

1 2 3 4 5 . . . 10

dummy records

Figure 13.4 Records in (a) sequential file; (b) direct-access file.

the format (key value, disk address) for each key value existing in the file. To
access a record with key k, the index entry containing k is found by search-
ing the index, and the disk address mentioned in the entry is used to access
the record. If an index is smaller than a file, this arrangement provides high
access efficiency because a search in the index is more efficient than a search in
the file.

The index sequential file organization is a hybrid organization that combines
elements of the indexed and the sequential file organizations. To locate a desired
record, the access method module for this organization searches an index to
identify a section of the disk that may contain the record, and searches the records
in this section of the disk sequentially to find the record. The search succeeds if
the record is present in the file; otherwise, it results in a failure. This arrangement
requires a much smaller index than does a pure indexed file because the index
contains entries for only some of the key values. It also provides better access
efficiency than the sequential file organization while ensuring comparably efficient
use of I/O media.

For a large file the index would still contain a large number of entries, and
so the time required to search through the index would be large. A higher-level
index can be used to reduce the search time. An entry in the higher-level index
points to a section of the index. This section of the index is searched to find the
section of the disk that may contain a desired record, and this section of the
disk is searched sequentially for the desired record. The next example illustrates
this arrangement.

•
Example 13.3Index Sequential File Organization

Figure 13.5 illustrates a file of employee information organized as an index
sequential file. Records are stored in ascending order by the key field. Two
indexes are built to facilitate speedy search. The track index indicates the
smallest and largest key value located on each track (see the fields named low
and high in Figure 13.5). The higher-level index contains entries for groups
of tracks containing 3 tracks each. To locate the record with a key k, first the
higher-level index is searched to locate the group of tracks that may contain
the desired record. The track index for the tracks of the group is now searched
to locate the track that may contain the desired record, and the selected track is
searched sequentially for the record with key k. The search ends unsuccessfully
if it fails to find the record on the track.

•

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 488 — #12

488 Part 4 File Systems and I/O Management

Track index

Track

Track

#

1

2

3

1 1 13

2 16 31

3 32 43. . .

2 4

16 17 18 21 24

13

Records31

434037

10 12

363332Higher-level

index

1 1 43

96452

1

High
Track
group Low Low High

Figure 13.5 Track index and higher-level index in an index sequential file.

13.3.4 Access Methods
An access method is a module of the IOCS that implements accesses to a class
of files using a specific file organization. The procedure to be used for accessing
records in a file, whether by a sequential search or by address calculation, is deter-
mined by the file organization. The access method module uses this procedure to
access records. It may also use some advanced techniques in I/O programming
to make file processing more efficient. Two such techniques are buffering and
blocking of records.

Buffering of Records The access method reads records of an input file ahead
of the time when they are needed by a process and holds them temporarily in
memory areas called buffers until they are actually used by the process. The
purpose of buffering is to reduce or eliminate the wait for an I/O operation to
complete; the process faces a wait only when the required record does not already
exist in a buffer. The converse actions are performed for an output file. When the
process performs a write operation, the data to be written into the file is copied
into a buffer and the process is allowed to continue its operation. The data is
written on the I/O device sometime later and the buffer is released for reuse. The
process faces a wait only if a buffer is not available when it performs a write
operation.

Blocking of Records The access method always reads or writes a large block
of data, which contains several file records, from or to the I/O medium. This
feature reduces the total number of I/O operations required for processing a
file, thereby improving the file processing efficiency of a process. Blocking also
improves utilization of an I/O medium and throughput of a device.

We discuss the techniques of buffering and blocking of records in Chapter 14.

13.4 DIRECTORIES
•

A directory contains information about a group of files. Each entry in a directory
contains the attributes of one file, such as its type, organization, size, location, and
the manner in which it may be accessed by various users in the system. Figure 13.6

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 489 — #13

Chapter 13 File Systems 489

File
name

Type and
size

Location
info

Protection
info

Open
count Lock Flags

Misc
info

Field Description

File name Name of the file. If this field has a fixed size, long file names
beyond a certain length will be truncated.

Type and size The file’s type and size. In many file systems, the type of file is
implicit in its extension; e.g., a file with extension .c is a byte
stream file containing a C program, and a file with extension
.obj is an object program file, which is often a structured file.

Location info Information about the file’s location on a disk. This information
is typically in the form of a table or a linked list containing
addresses of disk blocks allocated to a file.

Protection info Information about which users are permitted to access this file,
and in what manner.

Open count Number of processes currently accessing the file.

Lock Indicates whether a process is currently accessing the file in an
exclusive manner.

Flags Information about the nature of the file—whether the file is a
directory, a link, or a mounted file system.

Misc info Miscellaneous information like id of owner, date and time of
creation, last use, and last modification.

Figure 13.6 Fields in a typical directory entry.

shows the fields of a typical directory entry. The open count and lock fields are
used when several processes open a file concurrently. The open count indicates
the number of such processes. As long as this count is nonzero, the file system
keeps some of the metadata concerning the file in memory to speed up accesses
to the data in the file. The lock field is used when a process desires exclusive
access to a file. The flags field is used to differentiate between different kinds of
directory entries. We put the value “D” in this field to indicate that a file is a
directory, “L” to indicate that it is a link, and “M” to indicate that it is a mounted
file system. Later sections in this chapter will describe these uses. The misc info
field contains information such as the file’s owner, its time of creation, and last
modification.

A file system houses files owned by several users. Therefore it needs to grant
users two important prerogatives:

• File naming freedom: A user’s ability to give any desired name to a file, without
being constrained by file names chosen by other users.

• File sharing: A user’s ability to access files created by other users, and ability
to permit other users to access his files.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 490 — #14

490 Part 4 File Systems and I/O Management

A B C

beta alpha gamma beta calendar

Master

Directory

User

Directories

(UDs)

Figure 13.7 A directory structure composed of master and user directories.

The file system creates several directories and uses a directory structure to
organize them for providing file naming freedom and file sharing. We include
schematic diagrams to illustrate directory structures, using the convention that
a directory is represented by a rectangle, while a file is represented by a circle.
Figure 13.7 shows a simple directory structure containing two kinds of directories.
A user directory (UD) contains entries describing the files owned by one user. The
master directory contains information about the UDs of all registered users of the
system; each entry in the master directory is an ordered pair consisting of a user id
and a pointer to a UD. In the file system shown, users A and B have each created
their own file named beta. These files have entries in the users’ respective UDs.
We describe the directory structure shown in Figure 13.7 as a two-level directory
structure.

Use of separate UDs is what provides naming freedom. When a process
created by user A executes the statement open (beta, ...), the file system
searches the master directory to locate A’s UD, and searches for beta in it. If
the call open(beta, ...) had instead been executed by some process created
by B, the file system would have searched B’s UD for beta. This arrangement
ensures that the correct file is accessed even if many files with identical names
exist in the system.

Use of UDs has one drawback, however. It inhibits users from sharing their
files with other users. A special syntax may have to be provided to enable a user to
refer to another user’s file. For example, a process created by user C may execute
the statement open (A→beta, ...) to open A’s file beta. The file system
can implement this simply by using A’s UD, rather than C’s UD, to search and
locate file beta. To implement file protection, the file system must determine
whether user C is permitted to open A’s file beta. It checks the protection info
field of beta’s directory entry for this purpose. Details of file protection are
discussed in Section 13.6.

13.4.1 Directory Trees
The MULTICS file system of the 1960s contained features that allowed the user
to create a new directory, give it a name of his choice, and create files and other
directories in it up to any desired level. The resulting directory structure is a tree;

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 491 — #15

Chapter 13 File Systems 491

root

X A

alpha

admin projects

beta

real_time

main_pgm

B

Figure 13.8 Directory trees of the file system and of user A.

we call it the directory tree. After MULTICS, most file systems have provided
directory trees.

A user can create a file to hold data or to act as a directory. When a distinction
between the two is important, we will call these files respectively data files and
directory files, or simply directories. The file system provides a directory called
root that contains the home directory for each user, which is a directory file that
typically has the same name as the user’s name. A user structures his informa-
tion by creating directory files and data files in his home directory, creating files
and other directories in a directory file, and so on. We will assume that the file
system puts a “D” in the flags field of a file’s entry if the file is a directory file.
Figure 13.8 shows the directory tree of the file system. The root of this tree is
the directory root, which contains a home directory for each user that bears the
user’s name. User A has created a file called alpha and directories called admin
and projects. The projects directory contains a directory real_time,
which contains a file main_pgm. Thus user A has a directory tree of his own; its
root is his home directory.

At any time, a user is said to be “in” some specific directory, which is called his
current directory. When the user wishes to open a file, the file name is searched for
in this directory. Whenever the user logs in, the OS puts him in his home directory;
the home directory is then the user’s current directory. A user can change his
current directory at any time through a “change directory” command.

A file’s name may not be unique in the file system, so a user or a process
uses a path name to identify it in an unambiguous manner. A path name is a
sequence of one or more path components separated by a slash (/), where each
path component is a reference through a directory and the last path component
is the name of the file.

Path names for locating a file from the current directory are called relative
path names. Relative path names are often short and convenient to use; how-
ever, they can be confusing because a file may have different relative path names
when accessed from different current directories. For example, in Figure 13.8, the

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 492 — #16

492 Part 4 File Systems and I/O Management

file alpha has the simple relative path name alpha when accessed from cur-
rent directory A, whereas it has relative path names of the form ../alpha and
../../alpha when accessed from the directories projects and real_time,
respectively. To facilitate use of relative path names, each directory stores
information about its own parent directory in the directory structure.

The absolute path name of a file starts on the root directory of the file system’s
directory tree. Identically named files created in different directories differ in their
absolute path names. We will use the convention that the first path component in
an absolute path is a null symbol, and the home directory of a user A is specified
as˜A. Thus, in Figure 13.8, the absolute path name of file alpha is /A/alpha.
An alternative path name for it is ˜A/alpha.

13.4.2 Directory Graphs
In a directory tree, each file except the root directory has exactly one parent direc-
tory. This directory structure provides total separation of different users’ files and
complete file naming freedom. However, it makes file sharing rather cumbersome.
A user wishing to access another user’s files has to use a path name that involves
two or more directories. For example, in Figure 13.8, user B can access file beta
using the path name ../A/projects/beta or ˜A/projects/beta.

Use of the tree structure leads to a fundamental asymmetry in the way dif-
ferent users can access a shared file. The file will be located in some directory
belonging to one of the users, who can access it with a shorter path name than
can other users. This problem can be solved by organizing the directories in an
acyclic graph structure. In this structure, a file can have many parent directories,
and so a shared file can be pointed to by directories of all users who have access
to it. Acyclic graph structures are implemented through links.

Links A link is a directed connection between two existing files in the directory
structure. It can be written as a triple (<from_ file_name>, <to_ file_name>,
<link_name>), where <from_ file_name> is a directory and <to_ file_name> can
be a directory or a file. Once a link is established, <to_ file_name> can be accessed
as if it were a file named <link_name> in the directory <from_ file_name>. The
fact that <link_name> is a link in the directory <from_ file_name> is indicated
by putting the value “L” in its flags field. Example 13.4 illustrates how a link is
set up.

•
Example 13.4 Link in a Directory Structure

Figure 13.9 shows the directory structure after user C creates a link
using the command (˜C, ˜C/software/web_server, quest). The
name of the link is quest. The link is made in the directory ˜C and
it points to the file ˜C/software/web_server. This link permits
˜C/software/web_server to be accessed by the name ˜C/quest.
•

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 493 — #17

Chapter 13 File Systems 493

C

personal job software

web server

quest

Figure 13.9 A link in the directory structure.

An unlink command nullifies a link. Implementation of the link and
unlink commands involves manipulation of directories that contain the files
<from_ file_name> and <to_ file_name>. Deadlocks may arise while link and
unlink commands are implemented if several processes issue these commands
simultaneously. The file system can use some simple policy to ensure absence of
deadlocks (see Section 8.8.1).

13.4.3 Operations on Directories
A search is the most frequent operation on directories. Other operations on
directories are maintenance operations like creating or deleting files, updating
file entries when a process performs a close operation, listing a directory, and
deleting a directory.

The deletion operation specifies a path name for the file to be deleted. It
becomes complicated when the directory structure is a graph because a file may
have multiple parents. A file is deleted only if it has a single parent; otherwise, it is
simply made inaccessible from its parent directory in the path name specified in
the delete command. To simplify the delete operation, the file system maintains a
link count with each file. The count is set to 1 when the file is created, incremented
by 1 whenever a link is set to point to it, and decremented by 1 at a delete
command. The file can be deleted only when its link count becomes 0.

This simple strategy is not adequate if the directory structure contains cycles.
A cycle develops when a link is set from a directory to one of its ancestor direc-
tories, e.g., if a link is set up from the directory real_time in Figure 13.8 to the
directory projects. Now the link count of projects is 2, so its deletion by
using the path name ˜A/projects would lead only to deletion of the entry of
projects in A. However, there is no reason to retain directory projects and
files reachable from it, since projects would not be accessible from the home
directory of any user! This problem can be solved either by using a technique
to detect cycles that are not reachable from any home directories, which can be
expensive, or by preventing cycles from arising in the directory structure, which
is equally expensive.

13.4.4 Organization of Directories
A directory could be a flat file that is searched linearly to find the required file
entry. However, this organization is inefficient if the directory contains a large

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 494 — #18

494 Part 4 File Systems and I/O Management

number of entries. Hash tables and B+ trees are used to provide greater search
efficiency.

Hash Table Directory A hash table using the hash with chaining organization was
discussed in Section 12.2.3 in connection with inverted page tables. A directory
can be maintained by using a simpler hash table organization called hash with
open addressing that requires a single table. When a new file is to be created in a
directory, a hashing function h is applied to a bit string obtained from the file’s
name, which yields an entry number e. If the eth entry in the directory is already
occupied by another file, the entry given by (e + 1)mod(n), where n is the size
of the hash table, is checked and so on until an unused entry is found, and the
new file’s details are entered in it. When a file is to be opened, a similar search
is carried out to locate its entry in the directory. Hash table organizations that
do not require more than two comparisons to locate a required file name are
practical, so a hash table directory can be searched efficiently. However, use of
a hash table directory organization has a few drawbacks—it is cumbersome to
change the size of a directory, or to delete an entry from it.

B+ Tree Directory A B+ tree is an m-way search tree where m ≤ 2 × d , d being
an integer called the order of the tree. The B+ tree is a balanced tree; i.e., the
length of the path from the root to any leaf node is the same. This property has a
useful implication for directory search—it takes approximately the same amount
of time to find the information concerning any file name existing in the directory.

A B+ tree directory is organized as follows: Information about files is
recorded only in leaf nodes of the tree; nonleaf nodes are used merely to direct
search to appropriate parts of the tree. The nonleaf nodes of the tree contain
index entries, where each index entry is an ordered pair consisting of a pointer to
another node in the tree and a file name. The last index entry in a node does not
contain a file name; it contains only a pointer to another node in the tree. The
leaf nodes of the tree contain only information entries for files—each entry is an
ordered pair consisting of a pointer to information associated with a file name
and the file name itself.

The root node contains between 2 and 2 × d entries, both inclusive, where
d is the order of the tree. A nonroot node contains between d and 2 × d entries,
both inclusive. To facilitate search for a file name, the entries in a node—whether
index entries or information entries—are lexicographically ordered on file names.
Thus, a file name in an entry is “larger” than the file name in the preceding entry
in the node, and “smaller” than the file name in the following entry in the node. A
leaf node contains two extra pointers. These pointers point to tree nodes that are
to its left and to its right in the tree, if any, respectively. These pointers are used
to facilitate insertion and deletion of entries. We do not discuss their use here.

To locate a file in a directory, the directory B+ tree is searched, starting with
its root node. The file’s name is compared with the file name in the first index
entry in the node. If it is lexicographically “smaller” than the file name in the
entry, the pointer in the index entry is used to locate another tree node, where the
search is continued; otherwise, the search is continued with the next index entry
in the node, if any, and so on. If the next index entry is the last index entry in the

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 495 — #19

Chapter 13 File Systems 495

Information in directory entries Information in directory entries

c f t x

k

a b c d g k r t uf x z

Figure 13.10 A directory organized as a B+ tree.

node, the search is simply continued with the tree node pointed to by the pointer
in the index entry (note that the last index entry in a node does not contain a file
name). This procedure is followed until a leaf node of the tree is encountered.
Now, information entries in the leaf node are searched by using a convenient
search technique like linear or binary search. If an information entry is found
for the file name we are looking for, we use the pointer in the information entry
to locate the information associated with the file name; otherwise, the file name
does not exist in the directory.

•
Example 13.5Directory as a B+ Tree

Figure 13.10 shows a directory organized as B+ tree of order 2. A down-arrow
in a leaf node is a pointer to information associated with a file name. To search
for file c, we compare c with k, the file name in the first index entry in the root.
Since the file name c is “smaller” than k, we use the pointer in this index entry
to locate the tree node where the search is to be continued. This is the node
that contains index entries for file names c and f. Since c is not smaller than
the file name in the first index entry, we compare it with the file name in the
next index entry in the node, i.e., with f. It is smaller, hence we use the pointer
in this index entry. This pointer points to a leaf node. Hence we search for c in
the information entries in this node. We find a match in the first information
entry, so we use the pointer in this entry to locate the directory information
about file c.

•
The advantages of a B+ tree are its fast search capability and the efficiency

of the methods for rebalancing the tree when insertions and deletions are made.
Windows NTFS uses B+ trees for directories.

13.5 MOUNTING OF FILE SYSTEMS
•

There can be many file systems in an operating system. Each file system is con-
stituted on a logical disk, i.e., on a partition of a disk. Files contained in a file

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 496 — #20

496 Part 4 File Systems and I/O Management

system can be accessed only when the file system is mounted. The mount oper-
ation is what “connects” the file system to the system’s directory structure. An
unmount operation disconnects a file system. The mount and unmount opera-
tions are performed by the system administrator. These operations provide an
element of protection to files in a file system.

Mounting creates an effect analogous to that provided by a link. The dif-
ference is that mounting does not permanently alter the directory structure. Its
effect lasts only until the file system is unmounted or until the system is booted
again. Mounting of file systems is useful when there are multiple file systems in
the OS (see Section 13.14.1), or when a user of a distributed system wishes to
access files located in a remote machine (see Chapter 20).

A mount point is a directory in which a file system can be mounted. A
mount operation is performed by issuing the command mount (<FS_name>,
<mount_point_name>), where <FS_name> and <mount_point_name>, both of
which are path names, designate the root of the file system to be mounted and the
mount point, respectively. When the mount operation is performed, the root of
the mounted file system assumes the name <mount_point_name>. Thus, any file
with the relative path name api in the directory <FS_name> can be accessed by
the path name <mount_point_name>/api . If a file system is mounted in a direc-
tory that already contains some files, these files become invisible to the user until
the file system is unmounted. The next example illustrates the effect of executing
a mount command.

•
Example 13.6 Mounting of a File System

In Figure 13.11(a), ˜A/admin is a mount point in a directory structure, and
meeting is the root directory of another file system. Figure 13.11(b) shows
the effect of the command mount (meeting,˜A/admin). File items can
now be accessed as ˜A/admin/agenda/items.
•

~A

admin

meeting

agenda

items

time

(a)

~A

admin

(b)

agenda

items

time

Figure 13.11 Directory structures (a) before a mount command; (b) after a mount command.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 497 — #21

Chapter 13 File Systems 497

The effect of a mount operation is nullified by the corresponding command
unmount (<FS_name>, <mount_point_name>). The unmount operation suc-
ceeds only if no files of the mounted file system are currently open. To check
this condition easily, the file system keeps a count in the root of the mounted file
system to indicate how many of its files have been opened.

13.6 FILE PROTECTION
•

A user would like to share a file with collaborators, but not with others. We call
this requirement controlled sharing of files. To implement it, the owner of a file
specifies which users can access the file in what manner. The file system stores this
information in the protection info field of the file’s directory entry (see Figure 13.6),
and uses it to control access to the file.

Different methods of structuring the protection information of files are dis-
cussed in Chapter 15. In this section, we assume that a file’s protection information
is stored in the form of an access control list. Each element of the access control list
is an access control pair of the form (<user_name>, <list_of_access_privileges>).
When a process executed by some user X tries to perform an operation <opn>

on file alpha, the file system searches for the pair with <user_name>= X, in the
access control list of alpha and checks whether <opn> is consistent with the
<list_of_access_privileges>. If it is not, the attempt to access alpha fails. For
example, a write attempt by X will fail if the entry for user X in the access control
list is (X, read), or if the list does not contain an entry for X.

The size of a file’s access control list depends on the number of users and the
number of access privileges defined in the system. To reduce the size of protection
information, users can be classified in some convenient manner and an access
control pair can be specified for each user class rather than for each individual
user. Now an access control list has only as many pairs as the number of user
classes. For example, Unix specifies access privileges for three classes of users—
the file owner, users in the same group as the owner, and all other users of the
system.

In most file systems, access privileges are of three kinds—read, write, and
execute. A write privilege permits existing data in the file to be modified and
also permits new data to be added: One can further differentiate between these
two privileges by defining a new access privilege called append; however, it would
increase the size of the protection information. The execute privilege permits a
user to execute the program contained in a file. Access privileges have differ-
ent meanings for directory files. The read privilege for a directory file implies
that one can obtain a listing of the directory, while the write privilege for a
directory implies that one can create new files in the directory. The execute
privilege for a directory permits an access to be made through it—that is, it
permits a file existing in the directory to be accessed. A user can use the exe-
cute privilege of directories to make a part of his directory structure visible to
other users.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 498 — #22

498 Part 4 File Systems and I/O Management

13.7 ALLOCATION OF DISK SPACE
•

As mentioned in Section 13.5, a disk may contain many file systems, each in its
own partition of the disk. The file system knows which partition a file belongs
to, but the IOCS does not. Hence disk space allocation is performed by the file
system.

Early file systems adapted the contiguous memory allocation model (see
Section 11.6) by allocating a single contiguous disk area to a file when it was
created. This model was simple to implement. It also provided data access effi-
ciency by reducing disk head movement during sequential access to data in a
file. However, contiguous allocation of disk space led to external fragmentation.
Interestingly, it also suffered from internal fragmentation because the file system
found it prudent to allocate some extra disk space to allow for expansion of a file.
Contiguity of disk space also necessitated complicated arrangements to avoid use
of bad disk blocks: The file system identified bad disk blocks while formatting
the disk and noted their addresses. It then allocated substitute disk blocks for the
bad ones and built a table showing addresses of bad blocks and their substitutes.
During a read/write operation, the IOCS checked whether the disk block to be
accessed was a bad block. If it was, it obtained the address of the substitute disk
block and accessed it.

Modern file systems adapt the noncontiguous memory allocation model (see
Section 11.7) to disk space allocation. In this approach, a chunk of disk space is
allocated on demand, i.e., when the file is created or when its size grows because of
an update operation. The file system has to address three issues for implementing
this approach:

• Managing free disk space: Keep track of free disk space and allocate from it
when a file requires a new disk block.

• Avoiding excessive disk head movement: Ensure that data in a file is not dis-
persed to different parts of a disk, as it would cause excessive movement of
the disk heads during file processing.

• Accessing file data: Maintain information about the disk space allocated to
a file and use it to find the disk block that contains required data.

The file system can maintain a free list of disk space and allocate from it
when a file requires a new disk block. Alternatively, it can use a table called the
disk status map (DSM) to indicate the status of disk blocks. The DSM has one
entry for each disk block, which indicates whether the disk block is free or has
been allocated to a file. This information can be maintained in a single bit, and
so a DSM is also called a bit map. Figure 13.12 illustrates a DSM. A 1 in an entry
indicates that the corresponding disk block is allocated. The DSM is consulted
every time a new disk block has to be allocated to a file.

To avoid dispersing file data to different parts of a disk, file systems confine
the disk space allocation for a file either to consecutive disk blocks, which form
an extent, also called a cluster, or consecutive cylinders in a disk, which form
cylinder groups (see Section 14.3.2). Use of a disk status map, rather than a free

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 499 — #23

Chapter 13 File Systems 499

011100101 ...

didi + 2Disk block address

Disk block status

Disk block

is allocated

Disk block

is free

Figure 13.12 Disk status map (DSM).

beta

alpha

File
name

Location
info

Directory

7

5

3

1

--

-

Data

Metadata

8

6

4

2

Free list pointer

Figure 13.13 Linked allocation of disk space.

list, has the advantage that it allows the file system to readily pick disk blocks
from an extent or cylinder group.

We discuss two fundamental approaches to noncontiguous disk space allo-
cation. They differ in the manner they maintain information about disk space
allocated to a file.

13.7.1 Linked Allocation
A file is represented by a linked list of disk blocks. Each disk block has two
fields in it—data and metadata. The data field contains the data written into the
file, while the metadata field is the link field, which contains the address of the
next disk block allocated to the file. Figure 13.13 illustrates linked allocation. The
location info field of the directory entry of file alpha points to the first disk block
of the file. Other blocks are accessed by following the pointers in the list of disk
blocks. The last disk block contains null information in its metadata field. Thus,
file alpha consists of disk blocks 3 and 2, while file beta consists of blocks 4, 5,
and 7. Free space on the disk is represented by a free list in which each free disk
block contains a pointer to the next free disk block. When a disk block is needed
to store new data added to a file, a disk block is taken off the free list and added
to the file’s list of disk blocks. To delete a file, the file’s list of disk blocks is simply
added to the free list.

Linked allocation is simple to implement, and incurs a low allocation/
deallocation overhead. It also supports sequential files quite efficiently. However,
files with nonsequential organization cannot be accessed efficiently. Reliability
is also poor since corruption of the metadata field in a disk block may lead to

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 500 — #24

500 Part 4 File Systems and I/O Management

beta

alpha

File
name

Location
info

Directory File allocation table

--

-

8

6

4

2

7

5

3

1

free

end

2

5

7

free

end

free

1
2
3

3

4 4
5
6
7
8

Figure 13.14 File Allocation Table (FAT).

loss of data in the entire file. Similarly, operation of the file system may be dis-
rupted if a pointer in the free list is corrupted. We discuss these reliability issues
in Section 13.11.

File Allocation Table (FAT) MS-DOS uses a variant of linked allocation that
stores the metadata separately from the file data. A file allocation table (FAT)
of a disk is an array that has one element corresponding to every disk block
in the disk. For a disk block that is allocated to a file, the corresponding FAT
element contains the address of the next disk block. Thus the disk block and its
FAT element together form a pair that contains the same information as the disk
block in a classical linked allocation scheme.

The directory entry of a file contains the address of its first disk block. The
FAT element corresponding to this disk block contains the address of the second
disk block, and so on. The FAT element corresponding to the last disk block con-
tains a special code to indicate that the file ends on that disk block. Figure 13.14
illustrates the FAT for the disk of Figure 13.13. The file alpha consists of disk
blocks 3 and 2. Hence the directory entry of alpha contains 3. The FAT entry
for disk block 3 contains 2, and the FAT entry for disk block 2 indicates that the
file ends on that disk block. The file beta consists of blocks 4, 5, and 7. The FAT
can also be used to store free space information. The list of free disk blocks can
be stored as if it were a file, and the address of the first free disk block can be held
in a free list pointer. Alternatively, some special code can be stored in the FAT
element corresponding to a free disk block, e.g. the code “free” in Figure 13.14.

Use of the FAT rather than the classical linked allocation involves a per-
formance penalty, since the FAT has to be accessed to obtain the address of
the next disk block. To overcome this problem, the FAT is held in memory
during file processing. Use of the FAT provides higher reliability than classi-
cal linked allocation because corruption of a disk block containing file data leads
to limited damage. However, corruption of a disk block used to store the FAT is
disastrous.

13.7.2 Indexed Allocation
In indexed allocation, an index called the file map table (FMT) is maintained
to note the addresses of disk blocks allocated to a file. In its simplest form, an

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 501 — #25

Chapter 13 File Systems 501

Directory

beta

alpha

File
name

Location
info

--

-

fmtbeta

fmtalpha

Figure 13.15 Indexed allocation of disk space.

FMT can be an array containing disk block addresses. Each disk block contains a
single field—the data field. The location info field of a file’s directory entry points
to the FMT for the file (see Figure 13.15). In the following discussion we use the
notation fmtalpha for the FMT of the file alpha. If the size of the file alpha
grows, the DSM is searched to locate a free block, and the address of the block
is added to fmtalpha. Deallocation is performed when alpha is deleted. All disk
blocks pointed to by fmtalpha are marked free before fmtalpha and the directory
entry of alpha are erased.

The reliability problem is less severe in indexed allocation than in linked
allocationbecause corruptionof anentry in an FMTleads toonly limiteddamage.
Compared with linked allocation, access to sequential-access files is less efficient
because the FMT of a file has to be accessed to obtain the address of the next disk
block. However, access to records in a direct-access file is more efficient since the
address of the disk block that contains a specific record can be obtained directly
from the FMT. For example, if address calculation analogous to (13.1)–(13.2)
shows that a required record exists in the ith disk block of a file, its address can
be obtained from the ith entry of the FMT.

For a small file, the FMT can be stored in the directory entry of the file; it is
both convenient and efficient. For a medium or large file, the FMT will not fit into
the directory entry. A two-level indexed allocation depicted in Figure 13.16 may
be used for such FMTs. In this organization, each entry of the FMT contains the
address of an index block. An index block does not contain data; it contains entries
that contain addresses of data blocks. To access the data block, we first access an
entry of the FMT and obtain the address of an index block. We then access an
entry of the index block to obtain the address of the data block. This arrangement
resembles a multilevel page table (see Section 12.2.3). The index blocks resemble
pages of a page table for the file, and the FMT resembles a higher-level page table.
Such an FMT is compact; hence even FMTs of large files may fit into a directory
entry. However, access to data blocks is slower since two levels of indirection are
involved.

Some file systems use a hybrid FMT organization that includes some of the
features of both classical and multilevel indexed allocation. Figure 13.17 shows
such an organization. The first few entries in the FMT, say n entries, point to

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 502 — #26

502 Part 4 File Systems and I/O Management

FMT

Index

blocks

Data

blocks

.

.

.

Figure 13.16 A two-level FMT organization.

FMT

Index

blocks

Data

blocks

Data

blocksm

n

1

.

.

.

Figure 13.17 A hybrid organization of FMT.

data blocks as in the conventional indexed allocation. Other entries point to
index blocks. The advantage of this arrangement is that small files containing n
or fewer data blocks continue to be accessible efficiently, as their FMT does not
use index blocks. Medium and large files suffer a marginal degradation of their
access performance because of multiple levels of indirection. The Unix file system
uses a variation of the hybrid FMT organization.

13.7.3 Performance Issues
Two performance issues are associated with the use of a disk block as the unit
of disk space allocation—size of the metadata, i.e., the control data of the file
system; and efficiency of accessing file data. Both issues can be addressed by using
a larger unit of allocation of disk space. Hence modern file systems tend to use an
extent, also called a cluster, as a unit of disk space allocation. An extent is a set
of consecutive disk blocks. Use of large extents provides better access efficiency.
However, it causes more internal fragmentation. To get the best of both worlds,
file systems prefer to use variable extent sizes. Their metadata contains the size
of an extent along with its address.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 503 — #27

Chapter 13 File Systems 503

13.8 INTERFACE BETWEEN FILE SYSTEM AND IOCS
•

The file system uses the IOCS to perform I/O operations and the IOCS imple-
ments them through kernel calls. The interface between the file system and the
IOCS consists of three data structures—the file map table (FMT), the file con-
trol block (FCB), and the open files table (OFT)—and functions that perform
I/O operations. Use of these data structures avoids repeated processing of file
attributes by the file system, and provides a convenient method of tracking the
status of ongoing file processing activities.

As discussed earlier in Section 13.7.2, the file system allocates disk space to
a file and stores information about the allocated disk space in the file map table
(FMT). The FMT is typically held in memory during the processing of a file.

A file control block (FCB) contains all information concerning an ongoing
file processing activity. This information can be classified into the three categories
shown in Table 13.3. Information in the file organization category is either sim-
ply extracted from the file declaration statement in an application program, or
inferred from it by the compiler, e.g., information such as the size of a record and
number of buffers is extracted from a file declaration, while the name of the access
method is inferred from the type and organization of a file. The compiler puts this
information as parameters in the open call. When the call is made during execu-
tion of the program, the file system puts this information in the FCB. Directory
information is copied into the FCB through joint actions of the file system and
the IOCS when a new file is created. Information concerning the current state of
processing is written into the FCB by the IOCS. This information is continually
updated during the processing of a file.

The open files table (OFT) holds the FCBs of all open files. The OFT resides
in the kernel address space so that user processes cannot tamper with it. When a

Table 13.3 Fields in the File Control Block (FCB)

Category Fields

File organization File name
File type, organization, and access method
Device type and address
Size of a record
Size of a block
Number of buffers
Name of access method

Directory information Information about the file’s directory entry
Address of parent directory’s FCB
Address of the file map table (FMT)
(or the file map table itself)
Protection information

Current state of processing Address of the next record to be processed
Addresses of buffers

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 504 — #28

504 Part 4 File Systems and I/O Management

File system data structures

in memory

fmtalpha

fmtalpha

Open files table

(OFT)

6internal idalpha=

Directory

alpha
File alpha
is closed

File alpha
is openedfcbalpha

Figure 13.18 Interface between file system and IOCS—OFT, FCB and FMT.

file is opened, the file system stores its FCB in a new entry of the OFT. The offset
of this entry in the OFT is called the internal id of the file. The internal id is passed
back to the process, which uses it as a parameter in all future file system calls.

Figure 13.18 shows the arrangement set up when a file alpha is opened.
The file system copies fmtalpha in memory; creates fcbalpha, which is an FCB for
alpha, in the OFT; initializes its fields appropriately; and passes back its offset
in OFT, which in this case is 6, to the process as internal_idalpha.

The file system supports the following operations:

• open (<file_name>, <processing_mode>, <file_attributes>)
• close (<internal_id_of_file>)
• read/write (<internal_id_of_file>, <record_info>, <I/O_area_addr>)

<file_name> is an absolute or relative path name of the file to be opened.
<processing_mode> indicates what kind of operations will be performed on the
file—the values “input,” “create,” and “append” of it have obvious meanings,
while “update” indicates that the process intends to update existing data in place.
<file_attributes> is a list of file attributes, such as the file’s organization, record
size, and protection information. It is relevant only when a new file is being
created—attributes from the list are copied into the directory entry of the file at
this time. <record_info> indicates the identity of the record to be read or written
if the file is being processed in a nonsequential mode. <I/O_area addr> indicates
the address of the memory area where data from the record should be read, or
the memory area that contains the data to be written into the record.

The IOCS interface supports the following operations:

• iocs-open (<internal_id_of_file>, <directory_entry_address>)
• iocs-close (<internal_id_of_file>, <directory_entry_address>)
• iocs-read/write (<internal_id_of_file>, <record_info>, <I/O_area_

addr>)

Each of these operations is a generic operation for the various file organi-
zations supported by the file system. It works in two parts: It performs some

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 505 — #29

Chapter 13 File Systems 505

Source program

<file declaration>

‘read’)
open (alpha,

xyz)
<record_info>,

read (alpha,

close (alpha)

open (alpha,‘read’,

Open files table (OFT)

fcbalpha

internal_idalpha

Ad(xyz))
<record_info>,

read (internal idalpha,

close (internal idalpha)

Compiled program File system and IOCS actions

File

system
IOCS

1 2

4 5

6 7

3 8

Directory
~U alpha ...

<file_attributes>)

Figure 13.19 Overview of file processing.

actions that are common to all file organizations, and invokes a module of the
access method mentioned in the FCB of the file for performing special actions
required for specific file organizations.

The iocs-open and iocs-close operations are specialized read and
write operations that copy information into the FCB from the directory entry
or from the FCB into the directory entry. The iocs-read/write operations
access the FCB to obtain information concerning the current state of the file
processing activity, such as the address of the next record to be processed. When
a write operation requires more disk space, iocs-write invokes a function of
the file system to perform disk space allocation (see Section 13.7).

Figure 13.19 is a schematic diagram of the processing of an existing file alpha
in a process executed by some user U. The compiler replaces the statements open,
read, and close in the source program with calls on the file system operations
open, read, and close, respectively. The following are the significant steps in
file processing involving the file system and the IOCS, shown by numbered arrows
in Figure 13.19:

1. The process executes the call open (alpha, ‘read,’ <file_attributes>). The
call returns with internal_idalpha if the processing mode “read” is consistent
with protection information of the file. The process saves internal_idalpha

for use while performing operations on file alpha.
2. The file system creates a new FCB in the open files table. It resolves the

path name alpha as described later in Section 13.9.1, locates the directory
entry of alpha, and stores the information about it in the new FCB for use
while closing the file. Thus, the new FCB becomes fcbalpha. The file system
now makes a call iocs-open with internal_idalpha and the address of the
directory entry of alpha as parameters.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 506 — #30

506 Part 4 File Systems and I/O Management

3. The IOCS accesses the directory entry of alpha, and copies the file size
and address of the FMT, or the FMT itself, from the directory entry into
fcbalpha.

4. When the process wishes to read a record of alpha into area xyz, it invokes
the read operation of the file system with internal_idalpha, <record_info>,
and Ad(xyz) as parameters.

5. Information about the location of alpha is now available in fcbalpha.
Hence the read/write operations merely invoke iocs-read/write
operations.

6. The process invokes the close operation with internal_idalpha as a
parameter.

7. The file system makes a call iocs-close with internal_idalpha.
8. The IOCS obtains information about the directory entry of alpha from

fcbalpha and copies the file size and FMT address, or the FMT itself, from
fcbalpha into the directory entry of alpha.

13.9 FILE PROCESSING
•

In this section we discuss the processing of structured files, in which read/write
operations are performed on a record.

13.9.1 File System Actions at open

The purpose of a call open (<path_name>, <processing_mode>, <file_
attributes>), where <path_name> is an absolute or relative path name for a file
<file_name>, is to set up the processing of the file. As described in Section 13.8,
open performs the following actions:

1. It aborts the process if <processing_mode> is not consistent with the pro-
tection information for the file. Otherwise, it creates an FCB for the file
<file_name> in the OFT, and puts relevant information in its fields. If
<file_name> is a new file, it also writes <file_attributes> into its directory
entry.

2. It passes the internal id of the file <file_name> back to the process for use
in file processing actions.

3. If the file <file_name> is being created or appended to, it makes provi-
sion to update the file’s directory entry when a close call is made by the
process.

The procedure called path name resolution traverses all path components in
a path name and checks the validity of each component. It uses two pointers
called the file FCB pointer and the directory FCB pointer during the traversal. It
points the file FCB pointer at the FCB of the file corresponding to the current
component in the path name, and the directory FCB pointer at the FCB of its
parent directory. At the end of path name resolution, the file FCB pointer is used to

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 507 — #31

Chapter 13 File Systems 507

determine the internal id of the file. Path name resolution consists of the following
steps:

1. If an absolute path name is used, locate the FCB of the file system root
directory in the OFT; otherwise, locate the FCB of the current directory. (This
step assumes that the FCBs of these directories have already been created in
the OFT. If not, they should be created in this step.) Set directory FCB pointer
to point to this FCB.

2. a. Search for the next path component of the path name in the directory
represented by directory FCB pointer. Indicate an error if the component
does not exist or if the process owner lacks privileges to access it.

b. Create an FCB for the file described by the path component. Store this
FCB in a free entry of the OFT. Copy the directory FCB pointer in this
FCB.

c. Set the file FCB pointer to point to this FCB.
d. If this is not the last path component in the path name, initialize the

newly created FCB using information from the directory entry of the
file. Set directory FCB pointer = file FCB pointer, and repeat step 2.

3. a. If the file already exists, copy the file size and the pointer to the FMT
from the directory entry of the file into the FCB pointed to by file FCB
pointer.

b. If the file does not already exist, create the FMT of the file and store its
address in the FCB. (This action may involve allocating a disk block for
the FMT.)

4. Set internal id of the file to the offset of file FCB pointer in the OFT. Copy
the directory FCB pointer into the FCB of the file. Return internal id to the
process.

Apart from the actions described above, the file system may perform some
other actions in the interest of efficiency. For example, while opening an existing
file it may copy a part or all of the file’s FMT into memory [see Step 3(a)]. This
action ensures efficient access to data in the file. Also, only the FCBs pointed to
by directory FCB pointer and file FCB pointer are needed during file processing,
so other FCBs created during path name resolution may be destroyed.

The following example illustrates the data structures built by the file system
when a file is opened.

•
Example 13.7Implementation of the open Operation

Figure 13.20 shows the result of the file system actions after executing the call

open(/info/alpha, . .);

The path name used in the open call is an absolute path name. The file
system searches for the name info in the root directory, and creates an FCB

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 508 — #32

508 Part 4 File Systems and I/O Management

fcbinfo

fcbalpha

fmtalpha

OFT

File
FCB pointer

Directory
FCB pointer

info

Directory root

alpha

Directory info

6

Figure 13.20 File system actions at open.

for info in the OFT. It now searches for the name alpha in info and creates
an FCB for alpha in the OFT. directory FCB pointer points to fcbinfo and
file FCB pointer points to fcbalpha. Since alpha is an existing file, its FMT
pointer is copied into fcbalpha from the directory entry of alpha. The call
returns with the internal id of alpha, which is 6.
•

The mount command mount (<FS_name>, <mount_point_name>) mounts
<FS_name> at the mount point (see Section 13.4). A simple way to implement
mounting is to temporarily change the directory entry of <mount_point_name>
in its parent directory to point to the directory entry of <FS_name>.

When a mount point is crossed during path name resolution, the file system
has to switch from the directory structure of the mount point to the directory
structure of the mounted file system, or vice versa. To facilitate this, while pro-
cessing a mount command, the file system puts the value “M” in the flags field
of the directory entry of <FS_name> and maintains a mount table to store pairs
of the form (<FS_name>, <mount_point_name>). For example, when the call
mount (meeting,˜A/admin) of Section 13.4 is executed, the file system adds
the pair (meeting, ˜A/admin) to the mount table. During path name resolu-
tion, this table is consulted when a mount point is encountered during traversal
of the directory structure from parent to child (for the slash (/) operator in the
path name) or child to parent (for the “..” operator). The file system also has to
ensure that disk space allocation performed during the processing of a mounted
file is in the mounted file system rather than in the host file system.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 509 — #33

Chapter 13 File Systems 509

13.9.2 File System Actions during a File Operation
After opening a file <file_name>, a process executed by user U performs some
read or write operations on it. Each such operation is translated into a call

<opn> (internal id , record id , <IO_area addr>);

where internal id is the internal id of <file_name> returned by the open call,
and record id is absent if the operation is performed on a sequential-access file
because the operation is necessarily performed on the next record in the file. The
file system performs the following actions to process this call:

1. Locate the FCB of <file_name> in the OFT using internal id.
2. Search the access control list of <file_name> for the pair (U, ...). Give an

error if the protection information found in the file’s FCB does not permit
user U to perform <opn> on the file.

3. Make a call on iocs-read or iocs-write with the parameters internal id,
record id and <IO_area addr>. For nonsequential-access files, the operation
is performed on the indicated record. For sequential-access files, the opera-
tion is performed on the record whose address is in the FCB field “address
of the next record to be processed,” and the contents of this field are updated
to point to the next record in the file.

In Step 3, the IOCS and the access method invoked by it obtains the FMT
of the file from its FCB and uses it to convert record id into a pair of the form
(disk block id, byte offset). If it runs out of disk space during a write operation, it
calls a module of the file system, which allocates a new disk block to the file and
adds its address to the FMT.

•
Example 13.8Implementation of read/write Operations

Following the open call of Example 13.7, a call read (alpha, 25, ...)
by the process, where 25 is record id, would lead to the call iocs-read (6,
25, ..). If disk blocks have a size of 1000 bytes each, and a record is 100
bytes in length, the IOCS will convert record id into disk block number 3 and
record number 5 in the disk block, which implies a byte offset of 400. Now the
address of the third disk block allocated to alpha is obtained from its FMT
and this block is read to obtain the desired record.

•

13.9.3 File System Actions at close

The file system performs the following actions when a process executes the
statement close (internal id , ...).

1. If the file has been newly created or appended to.
a. If it is a newly created file, create an entry for the file in the directory

pointed to by the directory FCB pointer. If the directory entry format

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 510 — #34

510 Part 4 File Systems and I/O Management

(a)

fmtphi
fcbphi

fcbinfo

OFT

Directory
FCB pointer

File
FCB pointer

info

alpha

(b)

fmtphi

info

alpha
phi

Figure 13.21 File system data structures (a) before; (b) after close.

contains a field where the complete FMT can be stored, copy the FMT
into this field; otherwise, first write the FMT into a disk block and copy
the address of this disk block into the directory entry.

b. If the file has been appended to, the directory entry of the file is updated
by using directory FCB pointer.

c. If necessary, repeat Steps 1b and 1c to update other directories in the path
name of the file after setting file FCB pointer := directory FCB pointer
and directory FCB pointer := address of parent directory’s FCB found in
the FCB of the file. If their FCBs were deleted after open, the directory
files would have to be opened and updated.

2. The FCB of the file and FCBs of its parent and ancestor directories are erased
from the OFT.

•
Example 13.9 Implementation of File close Operation

Figure 13.21 illustrates the file system actions before and after executing the
command close phi for a newly created file phi that was opened using the
path name /info/phi. An entry is created for phi in directory info and a
pointer to fmtphi is put in the location info field of this entry. Addition of this
entry to info increases the size of info; hence an additional disk block may
have to be allocated to info. It will involve updating the FMT of info and
the size of info in its entry in the root directory [see Steps 1(b) and 1(c) of
actions at close].
•

13.10 FILE SHARING SEMANTICS
•

As discussed in Section 13.6, the owner of a file may authorize some other users
to access the file. Processes created by authorized users can read, write, or execute

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 511 — #35

Chapter 13 File Systems 511

the file in accordance with access privileges granted to them. In essence they share
the files to which they have access. The file system provides two methods of file
sharing so that processes can choose the one that permits them to collaborate
and build on each other’s work effectively:

• Sequential sharing: Processes access a shared file one after another. Thus, file
modifications made by one process, if any, are visible to processes that access
the file afterwards.

• Concurrent sharing: Two or more processes access a file over the same period
of time.

File sharing semantics is a set of rules that determine the manner in which results of
file manipulations performed by concurrent processes are visible to one another.

Sequential sharing of a file can be implemented through the lock field in the
file’s directory entry (see Figure 13.6). If the lock field of the file’s directory entry
has the value “reset,” an open operation would succeed and change the value to
“set”; otherwise, the open operation would fail and would have to be repeated.
A close operation would change the value in the lock to “reset.”

To facilitate concurrent sharing of a file, the file system has to ensure that
file processing activities of processes do not interfere. Accordingly, it creates a
separate FCB for each process by simply following the procedure of Section 13.9.1
every time a file is opened. Several FCBs may thus be created for concurrent
sharing of file alpha. We use the notation fcbP1

alpha for the FCB of alpha
created for process P1. Table 13.4 summarizes three modes of concurrent file
sharing provided in file systems.

Sharing Immutable Files When the file alpha is shared as an immutable file,
none of the sharing processes can modify it. Hence the processes sharing file
alpha are independent of one another. Creation of an fcbalpha for each sharing
process is adequate to implement this form of file sharing.

Table 13.4 Modes of Concurrent File Sharing

Mode Description

Immutable files The file being shared cannot be modified by any
process.

Single-image mutable files All processes concurrently sharing a file “see” the same
image of the file, i.e., they have an identical view of file’s
data. Thus, modifications made by one process are
immediately visible to other processes using the file.

Multiple-image mutable
files

Processes sharing a file may “see” different images of
the file. Thus, updates made by a process may not be
visible to some concurrent processes. The file system
may maintain many images of a file, or it may reconcile
them in some manner to create a single image when
processes close the file.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 512 — #36

512 Part 4 File Systems and I/O Management

OFT

Data blocks

of alpha

P1

fmtalpha

fcbalpha

P2fcbalpha

Figure 13.22 Concurrent sharing of a single-image mutable file by processes P1 and P2.

Sharing Single-Image Mutable Files A single copy of the file is shared by pro-
cesses accessing it. Hence modifications made by one process are immediately
visible to other processes. To implement this form of sharing, it is essential that a
single copy of the FMT be used by all sharing processes. Hence it is best to keep
a pointer to the FMT, rather than the FMT itself, in an FCB.

Figure 13.22 shows concurrent sharing of file alpha using such an arrange-
ment. The FCBs fcbP1

alpha and fcbP2
alpha are created when alpha is opened by

processes P1 and P2. Both FCBs point to the same copy of fmtalpha. Each FCB
contains the address of the next record to be accessed by a process. If the sets of
records processed by P1 and P2 overlapped, their modifications would be visible
to one another. Race conditions could also arise in such situations, and updates
made by processes might be lost. A typical file system does not provide any means
of tackling this problem; the processes have to evolve their own synchronization
conventions for this purpose. The Unix file system supports single-image mutable
files; we discuss Unix file sharing semantics in Section 13.14.1.

Sharing Multiple-Image Mutable Files When a multiple-image mutable file
alpha is shared by several processes, each process that modifies the file creates
a new version of alpha that is distinct from versions created by other concur-
rent processes. In this scheme, there has to be a distinct fmtalpha for each FCB,
and each FMT must point to an exclusive copy of the file. This requirement is
best implemented by making a copy of alpha (and its FMT) for each process
concurrently accessing it.

Figure 13.23 illustrates the arrangement for implementing multiple-image
mutable files. Processes P1 and P2 are engaged in updating alpha. alphaP1 rep-
resents the copy of alpha made for process P1. Processing by P1 uses fcbP1

alpha

and fmtP1
alpha to access alphaP1 , while processing by P2 uses fcbP2

alpha and

fmtP2
alpha to access alphaP2 . alphaP1 and alphaP2 are thus two versions of

alpha. To arrive at a unique implementation scheme, the file sharing semantics
must specify how alpha would be accessed by processes that wish only to read
it, i.e., which version of alpha they would access.

Sharing of multiple-image mutable files has special features that may not be
valid or applicable in many applications. Hence it can be used only in applications

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 513 — #37

Chapter 13 File Systems 513

OFT

Data blocks

of alphaP
1

Data blocks

of alphaP
2

fmtalpha
P1

P1fcbalpha

P2fcbalpha

fmtalpha
P2

Figure 13.23 Concurrent sharing of a multiple-image mutable file by processes P1 and P2.

where existence of multiple versions due to concurrent updates is meaningful.
We discuss one kind of semantics for multiple-image mutable files, called session
semantics, in Section 20.3. Unfortunately, file sharing semantics for multiple-
image mutable files are hard to understand and implement. Hence their use is not
very common.

13.11 FILE SYSTEM RELIABILITY
•

File system reliability is the degree to which a file system will function correctly
even when faults such as data corruption in disk blocks and system crashes due
to power interruptions occur. The two principal aspects of file system reliability
are:

• Ensuring correctness of file creation, deletion and updates.
• Preventing loss of data in files.

The former concerns consistency and correctness of metadata, i.e., the control
data of the file system, while the latter concerns consistency and correctness of
data stored in files.

Reliability literature distinguishes between the terms fault and failure. A fault
is a defect in some part of the system. A failure is a system behavior that is
erroneous, or that differs from its expected behavior. Occurrence of a fault causes
a failure. Thus corruption of a disk block due to a damaged disk head or a power
outage is a fault, whereas inability of the file system to read a faulty block is a
failure. Chapter 19 discusses these terms formally.

13.11.1 Loss of File System Consistency
File system consistency implies correctness of metadata and correct operation of
the file system. Loss of consistency arises if the metadata of the file system is lost
or damaged. It is interesting to see how this can happen. Consider operation of
a process that updates a file alpha. To ensure efficient operation, the file system
maintains some of its metadata in memory. Thus, fcbalpha (which exists in the

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 514 — #38

514 Part 4 File Systems and I/O Management

open files table), part of fmtalpha, and part of the disk status map or free list
would be in memory. Some of this metadata, like fmtalpha, are written on a disk
when alpha is closed. In addition, the file system may periodically copy the disk
status map or free list on the disk. However, metadata is modified constantly, so
disk copies of metadata generally do not contain up-to-date information during
system operation. When power fails, metadata maintained in memory is lost, and
when a disk fails metadata stored on the disk is lost. These situations may result
in one or more of the following failures:

1. Some data from file alpha may be lost.
2. Part of file alpha may become inaccessible.
3. Contents of two files may get mixed up.

It is easy to visualize a situation of the first kind. For example, suppose a fault
occurs after a new disk block has been added to the file alpha. The disk copy
of fmtalpha will not contain this block’s id, and so data in the newly added block
will be lost when the fault occurs. The second and third kind of situation can arise
in a file system that does not employ any reliability techniques. We illustrate these
situations in a file system that uses linked allocation of disk space and employs
Algorithm 13.1 to add a new disk block to a file. The third kind of situation can
also arise in a file system that uses indexed allocation of disk space.

Algorithm 13.1 Add Block dj between Blocks d1 and d2

Input :
d1, d2, dj : record

next : . . .; { id of next block }
data : . . .;

end

1. dj .next := d1.next;
2. d1.next := address (dj);
3. Write d1 to disk.
4. Write dj to disk.

Algorithm 13.1 adds a new disk block dj between blocks d1 and d2 of the file.
Figure 13.24 illustrates how parts of file alpha may become inaccessible due to
a fault. Figures 13.24(a), (b) show the file before and after a normal execution of
the algorithm. Figures 13.24(c) shows the file if a fault occurs between Steps 3
and 4 of Algorithm 13.1. New contents have been written into disk block d1, but
not into disk block dj . Hence d1.next points to dj , whereas dj does not contain
correct metadata in its next field. Disk blocks d2, d3, . . . would not be accessible
as parts of the file any more.

Contents of two files may get mixed up if the file system writes metadata to
the disk only while closing a file, and not after every file operation. Consider the
following situation: A process P1 deletes a disk block dk from some file beta.
dk will be returned to the free list (or will be marked free in the disk status map).
Now process P2 adds a new record to file alpha. The file system allocates a new
disk block dj for this purpose and adds it ahead of disk block dm in file alpha

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 515 — #39

Chapter 13 File Systems 515

(a)

Before adding dj

d1 d2 d3

After adding dj

(b)

d1 dj d2

(c)

After a fault

dj

d1 d2 d2

Figure 13.24 Inconsistencies in metadata due to faults: (a)–(b) before and after adding dj during normal operation; (c)
after a fault.

···alpha

···beta

(a)

···

(b)

dk dl dh d1

d1 dj d2d1 dj d2

dh

Figure 13.25 Files alpha and beta: (a) after adding dj during normal operation;
(b) if dj = dk , alpha is closed and a power outage occurs.

[see Figure 13.25(a)]. Now, consider the situation when dj = dk and the following
events occur in the system:

1. File alpha is closed.
2. The file system updates the disk copy of file alpha. It involves adding disk

block dj to alpha.
3. A power outage occurs.

Note that file beta was not closed before the power outage occurred, so the disk
contains an old copy of beta that contains block dk , and the new copy of alpha
that contains block dj . Since dj = dk , alpha and beta now share disk block dj
and all other blocks accessible through it [see Figure 13.25(b)]. All disk blocks
of file beta that were previously accessible through dk , i.e., block dl and other
blocks accessible through it, are now inaccessible. In effect, some data is common
to files alpha and beta, while some data of beta has been lost.

13.11.2 Approaches to File System Reliability
By means of the two approaches described in Table 13.5, operating systems ensure
that user files are reliably stored over a period of time. Recovery is a classic
approach that is activated when a failure is noticed. It restores the data and
metadata of the file system to some previous consistent state. The file system now
resumes its operation from this state. Thus, deviations from correct behavior do
occur, but system operation is rectified when deviations are noticed. Fault toler-
ance, on the other hand, provides correct operation of the file system at all times,
i.e., it ensures that faults do not lead to failures. It achieves this ability through
some special techniques.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 516 — #40

516 Part 4 File Systems and I/O Management

Table 13.5 Approaches to File System Reliability

Approach Description

Recovery Restore data and metadata of the file system to some
previous consistent state.

Fault tolerance Guard against loss of consistency of data and metadata
due to faults, so that system operation is correct at all
times, i.e., failures do not occur.

To see the difference between the two approaches, consider the example of
a disk block that becomes unreadable. Inability of the file system to read the
block is a failure. Under the recovery approach, the data in the block would
be restored to an earlier value when a failure is noticed. With fault tolerance,
each data unit would be recorded in two blocks—a primary block and an alter-
native block. If a failure occurs while the primary block is being read, the file
system would automatically read the alternative block. Of course, fault tolerance
is not absolute. The system can tolerate only those faults that it is designed to.
For example, when a data unit is recorded in two blocks, the system can toler-
ate a fault in the primary block, but not faults in both primary and alternative
blocks.

13.11.2.1 Recovery Techniques

The file system state at some time instant ti is the collection of all data and
metadata in the file system at ti . A backup of the file system is a recording of
the file system state. To support recovery, the file system periodically produces
backups during its operation. Let tlb represent the time at which the latest backup
was produced. In the event of a failure, say, at time tf , the file system is restored
to the state recorded in its latest backup. File updates performed between tlb
and tf are lost; operations that performed these updates need to be reprocessed
after recovery. Recovery using backups thus involves two kinds of overheads—
overhead of creating backups, and overhead of reprocessing.

Reprocessing overhead in recovery can be reduced through a combination
of backups and incremental backups of a file system. An incremental backup
contains copies of only those files or disk blocks that were modified after the last
backup or incremental backup was created. The file system creates backups at
large intervals of time, e.g., a day, a few days, or a week. Incremental backups are
created at shorter intervals and are discarded when the next backup is created. For
example, an incremental backup may be created when a process closes a file after
updating it; the incremental backup would contain a copy of only that file. Use
of incremental backups increases the overhead of the backing up activity. The
space overhead is also high because backups and incremental backups coexist
and some files may exist in more than one incremental backup. However, the
reprocessing overhead is low for the following reason: After a crash the system
could be restored from the latest backup, and incremental backups would then be
processed in the same order in which they were created. This action would restore

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 517 — #41

Chapter 13 File Systems 517

all files whose modification was completed before the last of the incremental
backups was created. Only the file processing activities that were in progress at
the time of the failure would have to be repeated.

To reduce the recovery overhead, the file system could be restored by pro-
cessing all incremental backups and the latest backup in the reverse order, taking
care not to restore a file that has been already restored from a later incremental
backup. This approach would reduce overhead by restoring each file exactly once.
However, it would be effective only if the file system metadata is consistent at the
time of a failure.

•
Example 13.10Recovery in a File System

Figure 13.26 illustrates a system in which backups were taken at times t1 and
t4, and incremental backups were taken at t2 and t3. The incremental backups
contain 3 and 2 disk blocks, respectively, because 3 disk blocks were updated
between t1 and t2 and 2 disk blocks were updated between t2 and t3. If a
failure occurs after t4, the system would be restored to the state recorded in
the backup taken at t4. However, if a failure occurred between t3 and t4, the
system would have been restored by using the backup taken at t1 and the
incremental backups taken at t2 and t3.

•

Creating Backups The key issue in creation of backups is consistency of meta-
data recorded in a backup. Consider the following scenario during operation of
a file system.

1. The free list data structure is written in the backup.
2. A record is added to a file phi, which requires a new disk block to be allocated

to phi from the free list.
3. File phi is now written in the backup.

Here, recording of the free list and file phi in the backup would be mutually incon-
sistent. It could lead to a mix-up of data in files as discussed in Section 13.11.1.
Similar problems would arise even if these three actions are performed in the
reverse order. Inconsistencies of metadata could be prevented by freezing all
activities in the file system while a backup is created; however, this method is
intrusive and it would cause delays in processes. An alternative is to create a
backup during normal operation of a system, but use some simplifications like
not writing the free list in a backup. When the state of the file system is restored
from such a backup, the file system could scan the complete disk and build the free
list anew. However, in this scheme files would have been recorded in the backup
at different times, so they would suffer loss of data to different extents if the file
system is restored by using this backup. Another issue is the backing up of a file
that is being processed when a backup is initiated—either its backing up should
be delayed until its processing is complete, or the user would not precisely know
how much of the file’s processing would be lost if the file system is restored by

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 518 — #42

518 Part 4 File Systems and I/O Management

Time Backup media Kind of backup

t1

t2

t3

t4

Backup

Incremental backup

Incremental backup

Backup

File system

Figure 13.26 Backups and incremental backups in a file system.

using the backup. An incremental backup that is created when a file is closed does
not face any of these consistency problems because only modified files are writ-
ten into the backup, so file system metadata like free lists would not be written
into it.

What about the overhead of creating a backup? When disk space was expen-
sive, backups were typically created on slower I/O devices like tapes; however,
disk space is affordable in modern computer systems, so it is possible to create
backups on disks. When indexed allocation of disk space is used, it is possible to
create an on-disk backup of a file cheaply by means of a technique that resem-
bles the copy-on-write technique of virtual memory. Figure 13.27 illustrates this
technique.

d1 d2 d2

Directory

b_phi
phi

b_phi
phi

File
name

Location
info

File
name

Location
info

(a)

Directory

fmtb_phi

fmtb_phi

fmtphifmtphi

(b)

23

78

23

Figure 13.27 Creating a backup: (a) after backing up file phi; (b) when phi is modified.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 519 — #43

Chapter 13 File Systems 519

When file phi is to be backed up, the file system creates a copy of the directory
entry of phi and names the new file appropriately, say b_phi. Now, the FMT
pointers of phi and b_phi are identical [see Figure 13.27(a)], so file b_phi is
a copy of phi as desired. If contents of the second disk block allocated to phi
change from 23 to 78 because of a file update, the file system would perform the
following actions [see Figure 13.27(b)]:

1. If the FMT pointers of phi and b_phi are identical, make a copy of the
FMT and make the directory entry of b_phi point to the copy.

2. Allocate a new disk block to file phi.
3. Change the appropriate pointer in fmtphi to point to the new disk block.
4. Write the new contents into the new disk block.

Thus, only the FMT and the disk block whose contents are updated after the
backup is created would be copied. This arrangement conserves both disk space
and time.

13.11.2.2 Fault Tolerance Techniques

File system reliability can be improved by taking two precautions—preventing
loss of data or metadata due to I/O device malfunction, and preventing inconsis-
tency of metadata due to faults. These precautions are implemented by using the
fault tolerance techniques of stable storage and atomic actions, respectively.

Stable Storage Lampson (1981) proposed the technique of redundant recording
of data to ensure reliability. It is called stable storage because it can tolerate one
fault in the recording of a data item. Two copies of a record, called its primary
and secondary copy, are maintained on a disk. A write operation updates both
copies—the primary copy is updated first, followed by the secondary copy. A read
operation accesses the disk block containing the primary copy. If it is unreadable,
the block containing the secondary copy is accessed. Since only single faults are
assumed to occur, one of the blocks is sure to contain readable data.

Figure 13.28 illustrates operation of the stable storage technique if faults
occur at times t1, t2, t3, or t4, respectively, while a process Pi is executing an
update operation on some data D. Parts (a)–(d) show timing charts and values
in the primary and secondary copies of D when faults occur. In Part (a), a fault
occurs at time t1, i.e., before the primary copy is updated. Hence the primary
copy, containing the old value of the data, is accessible after a fault. In Part (b),
a fault occurs while the primary copy is being updated, so that the primary copy
becomes unreadable. The old value of the data is accessible from the secondary
copy. In Part (c), a fault occurs after the primary copy is updated but before
the secondary copy is updated. New data is accessible in the primary copy after
the fault occurs. In Part (d), a fault occurs after both copies have been updated.
Hence both copies are accessible.

The stable storage technique can be applied to entire files. (Lampson called
this technique disk mirroring; however, it is different from the disk mirroring
we will come across in Section 14.3.) However, stable storage incurs high space
and time overhead, which makes it unsuitable for general use in a file system,

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 520 — #44

520 Part 4 File Systems and I/O Management

Primary

copy is

updated

Secondary

copy is

updated

Time

Primary

copy
Secondary

copy

new new

new old

oldunreadable

old old

(d)

(c)

(b)

(a)

t4t3t2t1

Figure 13.28 Fault tolerance using the stable storage technique.

so processes may use it selectively to protect some of their own data. Also, while
stable storage guarantees that one copy of data will survive a single fault, it cannot
indicate whether this value is old or new [see parts (a), (d) of Figure 13.28]. Hence
the user does not know whether to reexecute the update operation in Pi when
system operation is restored. An atomic action overcomes this problem.

Atomic Actions An action may involve manipulation of many data structures,
e.g., consider Algorithm 13.1 of Section 13.11.1. These data structures may
become inconsistent if a fault interrupts execution of the action. An atomic action
is a method of avoiding such ill effects of faults.

Definition 13.1 Atomic Action An action that consists of a set of subactions
and whose execution has the property that either

1. The effects of all of its subactions are realized, or
2. The effects of none of its subactions are realized.

Thus, an atomic action has an all-or-nothing property. This property avoids
data inconsistency when faults occur. Consistency of file system metadata can be
preserved by updating all file system data structures by using atomic actions.
Database systems use a concept called an atomic transaction or a database
transaction that ensures certain additional properties such as serializability; our
discussion is restricted to atomic actions for file system reliability only.

The subactions in an atomic action are enclosed between the statements begin
atomic action and end atomic action. Execution of the atomic action begins when
the begin atomic action statement is executed. The action can end in two ways—it
can either fail or succeed. It fails if it loses interest in continuing its execution and
executes an abort statement, or if a fault occurs before the statement end atomic
action is executed. If it fails, the state of each file or metadata used by it should be
left as it was prior to execution of the begin atomic action statement. An atomic
action succeeds when it executes the end atomic action statement. It is said to

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 521 — #45

Chapter 13 File Systems 521

begin atomic action add_a_block;

end atomic action add_a_block;

dj .next := d1.next;

d1 .next := address(dj);

write d1 ;

write dj ;

Figure 13.29 Atomic action add_a_block.

commit at this time. All updates made by it are guaranteed to survive any faults
after it commits.

Figure 13.29 shows Algorithm 13.1 of Section 13.11.1 coded as an atomic
action named add_a_block. It differs from Algorithm 13.1 only in the use of
the statements begin atomic action and end atomic action. If the atomic action
add_a_block commits, disk block dj is added to file alpha and alpha now
consists of disk blocks . . . d1, dj , d2, If it fails, disk block dj is not added to
file alpha; i.e., alpha continues to consist of disk blocks . . . d1, d2, Thus it
avoids the problem described in Section 13.11.1 and illustrated in Figure 13.24.

Atomic actions can be implemented in many ways. In one implementation
approach, files or metadata are not updated during execution of the atomic action.
They are updated only after the atomic action commits. This arrangement auto-
matically tolerates faults that occur before an atomic action commits since no
updates will have been made in files. Thus it implements the “nothing” part of
the all-or-nothing property. To implement the “all” part of the all-or-nothing
property, it is necessary to ensure that all updates will be made even if faults
occur. Two data structures called intentions list and commit flag are maintained
to ensure this. Both data structures are maintained in stable storage to protect
them against data corruption and loss due to faults.

Every time the atomic action modifies a file or metadata, the file system
makes an entry of the form (<disk block id>, <new contents>) in the intentions
list to indicate that <new contents> should be written in the disk block with the
id <disk block id>. The file system uses the information in the intentions list to
update the files when the atomic action commits. This action is called commit
processing. The commit flag contains two fields, transaction id and value. This
flag is created when the statement begin atomic action of an atomic action Ai is
executed and its fields are initialized to Ai and “not committed,” respectively. The
value in the commit flag is changed to “committed” when end atomic action is
executed. The flag is destroyed after all updates described in the intentions list
have been carried out.

If a failure occurs, the file system checks for the presence of commit flags
when its operation is resumed. If a commit flag exists for Ai and has the value “not
committed,” the file system simply destroys the commit flag and the intentions
list, and executes atomic action Ai again starting with the statement begin atomic
action. Existence of a commit flag for Ai with the value “committed” implies
that commit processing of Ai was in progress when occurrence of a fault led to

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 522 — #46

522 Part 4 File Systems and I/O Management

(b)(a)

d2

d1

dj

d1

d2

d1

dj

add_a_block

Transaction id

NC

Commit flag

Disk
block

New
contents

Intentions list

Value

Figure 13.30 (a) Before and (b) after commit processing. (Note: NC means not committed.)

a failure. Since it is not known whether any entries of the intentions list were
processed before the fault, the entire commit processing is now repeated.

If faults occur during commit processing, some entries of the intentions list
may be processed many times. However, it does not pose any data consistency
problems because the operation of writing <new contents> into <disk block id>

is an idempotent operation, which has the property that executing it many times
has the same effect as executing it once. The following algorithm summarizes all
actions concerning implementation of an atomic action.

Algorithm 13.2 Implementation of an Atomic Action

1. Execution of an atomic action Ai:
a. When the statement begin atomic action is executed, create a commit flag

and an intentions list in stable storage, and initialize them as follows:
commit flag := (Ai , “not committed”);
intentions list := “empty”;

b. For every file update made by a subaction, add a pair (d , v) to the
intentions list, where d is a disk block id and v is its new content.

c. When the statement end atomic action is executed, set the value of Ai ’s
commit flag to “committed” and perform Step 2.

2. Commit processing:
a. For every pair (d , v) in the intentions list, write v in the disk block with

the id d .
b. Erase the commit flag and the intentions list.

3. On recovering after a failure:
If the commit flag for atomic action Ai exists,
a. If the value in commit flag is “not committed”: Erase the commit flag

and the intentions list. Reexecute atomic action Ai .
b. Perform Step 2 if the value in commit flag is “committed.”

•
Example 13.11 Implementation of an Atomic Action

Figure 13.30(a) shows the file alpha, the commit flag and the intentions
list when Algorithm 13.2 is applied to the atomic action add_a_block of

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 523 — #47

Chapter 13 File Systems 523

Figure 13.29. The new contents of disk blocks dj and d1 are kept in the inten-
tions list until commit processing. Atomicity of the action is ensured as follows:
If a fault occurs during Step 13.2 of the algorithm, none of the file updates
are reflected on the disk. Hence the file contains the original sequence of disk
blocks d1, d2, A fault occurring in Step 2 cannot damage either the com-
mit flag or the intentions list because these data structures are recorded in
stable storage. Thus, processing of the intentions list eventually completes; the
file contains the sequence of disk blocks d1, dj , d2 . . . at the end of commit
processing, as shown in Figure 13.30(b).

•

13.12 JOURNALING FILE SYSTEM
•

As discussed in Section 13.11.1, a file system keeps some part of file data as well as
metadata such as file control blocks, file map tables, and free lists of disk blocks
in memory during its operation. When a file system’s operation is shut down
by a system administrator, the file system copies all the data and metadata held
in memory onto the disk, so that the copy on disk is complete and consistent.
However, when a power outage occurs, or when the system is switched off abruptly,
the file system does not get an opportunity to copy the file data and metadata
from memory to disk. Such a shutdown is called an unclean shutdown; it results
in loss of file data and metadata that was held in memory.

Traditionally, file systems relied on recovery techniques to protect against
loss of data and metadata because they were so simple to implement. Thus,
backups were created periodically, and files were recovered from backups when
failures were detected. Metadata was recovered by laborious searches to find and
fix inconsistencies. Use of recovery techniques imposed little overhead during
normal operation of the system. When a failure was detected, however, CPU
overhead was incurred in checking consistency of metadata, and the system was
unavailable during recovery, as well. As an example, consider what happened
when a Unix system using the ext2 file system was shut down uncleanly. On
rebooting, the file system would realize that it was shut down uncleanly, and hence
its metadata was likely to be inconsistent. It would invoke the fsck program to
recover the metadata. fsck would look through every file system data structure
on the disk and try to fix any inconsistencies it could find. Operation of the OS
was delayed while fsck executed.

A modern file system uses fault tolerance techniques so that it can resume its
operation quickly after an unclean shutdown. A journaling file system implements
fault tolerance by maintaining a journal, which resembles the intentions list used
to implement atomic actions (see Section 13.11.2). The file system records actions
that it is about to perform in the journal before actually performing them. When
operation of a file system is restored after an unclean shutdown, it consults the
journal to identify actions that were not performed as a result of the shutdown
and performs them, thus ensuring correctness of file data and metadata. The ext3

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 524 — #48

524 Part 4 File Systems and I/O Management

Table 13.6 Journaling Modes

Mode Description

Write behind Protects only metadata. Does not provide any
protection to file data.

Ordered data Protects metadata. Limited protection is offered for file
data as well—it is written to disk before metadata
concerning it is written.

Full data Journals both file data and metadata.

file system of Linux, XFS of Silicon Graphics, JFS of IBM, and VxFS of Veritas
are some examples of journaling file systems.

Use of fault tolerance techniques to protect consistency of both metadata
and file data causes high overhead—it amounts to performing every file update
as an atomic action. Hence a journaling file system offers a menu of journaling
modes, each mode providing a different kind of protection to metadata and file
data. A system administrator can choose a journaling mode to suit the kind of
reliability that is necessary in the computing environment. Table 13.6 describes
three journaling modes.

In the write behind mode, metadata is protected but file data is not. When
new data is added to a file, this mode ensures that the disk blocks allocated to
hold the new data would be added in the disk copy of the file’s FMT. However,
it does not ensure that new data added to the file would be recorded in these
blocks before a fault can occur. Consequently, if a fault occurs while the file is
being processed, the disk copy of the file may contain junk data. The ordered
data mode avoids this problem by ensuring that file data is written to disk before
metadata is written. However, when this mode is used, we may have a situation
where disk blocks in which the new file data have been written are not added to
the file map table. The full data mode protects both metadata and file data.

13.13 VIRTUAL FILE SYSTEM
•

Users have diverse requirements of a file system, such as convenience, high reli-
ability, fast response, and access to files on other computer systems. A single file
system cannot provide all these features, so an operating system provides a virtual
file system (VFS), which facilitates simultaneous operation of several file systems.
This way each user gets to use the file system he prefers.

A virtual file system (VFS) is an abstraction that supports a generic file
model. The abstraction is implemented by a VFS layer that is situated between a
process and a file system (see Figure 13.31). The VFS layer has two interfaces—an
interface with the file systems, and an interface with processes. Any file system that
conforms to the specification of the VFS–file system interface can be installed to
work under the VFS. This feature makes it easy to add a new file system. The VFS–
process interface provides functionalities to perform generic open, close, read, and

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 525 — #49

Chapter 13 File Systems 525

Virtual file system

(VFS)

Processes

File systems of type X File systems of type Y

Metadata File data Metadata File data Metadata File data

File systems of type Z

Metadata

Figure 13.31 Virtual file system.

write operations on files, and mount, unmount operations on file systems. These
functionalities are invoked through system calls. The VFS determines which file
system a file actually belongs to and invokes the open, close, read, and write
functionalities of the specific file system through the VFS–file system interface.
It also invokes functions of the specific file system to implement mount and
unmount operations.

All file systems operating under the VFS are available for use simultaneously.
In the system of Figure 13.31, one process may use a file system of type X while
another process simultaneously uses a file system of type Y. The virtual file system
can also be used to compose a heterogeneous file system. For example, a user can
mount a file system of type X in a directory of a file system of type Y. This feature
is useful with removable media like CDs; it permits a user to mount the file system
that exists in a CD in his current directory and access its files without any concern
for the fact that file data is recorded in a different format. This feature is also useful
in a distributed environment for mounting a remote file system into a file system
of a computer. It is described in Section 20.6.1.

As shown in the schematic diagram of Figure 13.31, the virtual file system
does not contain any file data. It merely contains data structures that constitute
VFS metadata. Each file system contains its own metadata and file data. The key
data structure used by the virtual file system is the virtual node, popularly called
vnode, which contains the information needed for performing operations on a
file. It can be looked upon as a file object with the following three parts:

• File-system-independent data such as a file id that is unique within the
domain of the VFS, which may be the individual computer system or a net-
work; the file type, e.g., directory, data file, or a special file; and other fields
such as an open count, lock, and flags.

• File-system-specific data such as the file map table.
• Addresses of functions in the file system that contains this file. These func-

tions implement the open, close, read, and write operations on files of this
file type.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 526 — #50

526 Part 4 File Systems and I/O Management

Operating systems have provided virtual file systems since the 1990s. Sun OS
and Solaris operating systems of Sun, Unix System V version 4, Unix 4.2 BSD,
and Linux provide a virtual file system.

13.14 CASE STUDIES OF FILE SYSTEMS
•

13.14.1 Unix File System
The design of the Unix file system is greatly influenced by the MULTICS file
system. In this section we describe important features common to most versions
of Unix, in the context of the generic description of file processing in Sections 13.4
and 13.8.

Inodes, File Descriptors, and File Structures The information that constituted
the directory entry of a file in Figure 13.6 is split in Unix between the directory
entry and the inode of the file. The directory entry contains only the file name
and the inode number; the bulk of the information concerning a file is contained
in its inode. Files are considered to be streams of characters and are accessed
sequentially. The system administrator can specify a disk quota for each user. It
prevents a user from occupying too much disk space.

The inode data structure is maintained on disk. Some of its fields contain the
following information:

• File type, e.g., whether directory, link, or special file
• Number of links to the file
• File size
• Id of the device on which the file is stored
• Inode serial number
• User and group ids of the owner
• Access permissions
• Allocation information

The splitting of the conventional directory entry into the directory entry and
the inode facilitates creation and deletion of links. A file can be deleted when its
number of links drops to zero. Note the similarity between fields of the inode and
those of the FCB (see Table 13.3).

Figure 13.32 illustrates the arrangement in memory during the processing
of a file. It consists of inodes, file structures, and file descriptors. A file structure
contains two fields—the current position in an open file, which is in the form of
an offset from the start of the file; and a pointer to the inode for the file. Thus an
inode and a file structure together contain all the information necessary to access
the file. A file descriptor points to a file structure. File descriptors are stored in
a per-process table. This table resembles the open files table (OFT) described in
Section 13.8.

When a process opens a file alpha, the directory entry for alpha is located.
A directory lookup cache is employed to speed up this operation. Once the entry
of alpha is located, its inode is copied into memory, unless memory already

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 527 — #51

Chapter 13 File Systems 527

Inode pointer

Offset

0
1
2

Per-process

table of

file descriptors

File

structure

Disk

blocks

of

alpha

Inode

for alpha

Figure 13.32 Unix file system data structures.

contains such a copy. The arrangement shown in Figure 13.32 is now set up and
the index of the file descriptor in the file descriptors table, which is an integer,
is passed back to the process that opened the file. The process can use it in a
manner that resembles use of the internal id of a file in the generic arrangement
of Sections 13.4 and 13.8.

When a process creates a child process, a table of descriptors is created for
the child process, and the file descriptors of the parent process are copied into it.
Thus more than one file descriptor may point to the same file structure. Processes
owning these file descriptors share the offset into the file. A read or write by one
process will modify the offset for the other processes as well.

File Sharing Semantics Several processes may independently open the same file.
In that case, the arrangement of Figure 13.32 is set up for each process. Thus,
two or more file structures may point to the same inode. Processes using these file
structures have their own offsets into the file, so a read or write by one process
does not modify the offset used by other processes.

Unix provides single-image mutable file semantics for concurrent file sharing.
As shown in Figure 13.32, every process that opens a file points to the copy
of its inode through the file descriptor and file structure. Thus, all processes
sharing a file use the same copy of the file; changes made by one process are
immediately visible to other processes sharing the file. Implementation of these
semantics is aided by the fact that Unix uses a disk cache called buffer cache
rather than buffers for individual file processing activities (see Section 14.13.1.2).
To avoid race conditions while the inode of a shared file is accessed, a lock field
is provided in the memory copy of an inode. A process trying to access an inode
must sleep if the lock is set by some other process. Processes concurrently using a
file must make their own arrangements to avoid race conditions on data contained
in the file.

Disk Space Allocation Unix uses indexed disk space allocation, with a disk block
size of 4 KB. Each file has a file allocation table analogous to an FMT, which is
maintained in its inode. The allocation table contains 15 entries (see Figure 13.33).
Twelve of these entries directly point to data blocks of the file. The next entry in
the allocation table points to an indirect block, i.e., a block that itself contains
pointers to data blocks. The next two entries point to double and triple indirect

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 528 — #52

528 Part 4 File Systems and I/O Management

.

.

.

15

14

13

12

1

Triple

indirection

Double

indirection

Single

indirection

Figure 13.33 Unix file allocation table.

blocks, respectively. In this manner, the total file size can be as large as 242 bytes.
However, the file size information is stored in a 32-bit word of the inode. Hence
file size is limited to 232−1 bytes, for which the direct, single, and double indirect
blocks of the allocation table are adequate.

For file sizes smaller than 48 KB, this arrangement is as efficient as the
flat FMT arrangement discussed in Section 13.7. Such files also have a small
allocation table that can fit into the inode itself. The indirect blocks permit files
to grow to large sizes, although their access involves traversing the indirection in
the file allocation table. A survey of Unix file sizes conducted in 1996 reported
that the average file size in Unix was 22 KB, and over 93 percent of files had sizes
smaller than 32 KB. Thus the Unix file allocation table is as efficient as the flat
FMT for most files.

Unix maintains a free list of disk blocks. Each entry in the list is similar to an
indirect block in an FMT—it contains addresses of free disk blocks, and the id of
the next disk block in the free list. This arrangement minimizes the overhead of
adding disk blocks to the free list when a file is deleted; only marginal processing
is required for files that contain only direct and single indirect blocks. A lock field
is associated with the free list to avoid race conditions when disk blocks are added
and deleted from it. A file system program named mkfs is used to form the free
list when a new file system is created. mkfs lists the free blocks in ascending order
by block number while forming the free list. However, this ordering is lost as disk
blocks are added to and deleted from the free list during file system operation.
The file system makes no effort to restore this order. Thus blocks allocated to a
file may be dispersed throughout a disk, which reduces the access efficiency of a
file. BSD Unix uses cylinder groups to address this issue (see Section 13.7).

Multiple File Systems The root of a file system is called the superblock. It con-
tains the size of the file system, the free list, and the size of the inode list. In the
interest of efficiency, Unix maintains the superblock in memory but copies it onto
the disk periodically. This arrangement implies that some part of file system state
is lost in the event of a system crash. The file system can reconstruct some of this
information, e.g., the free list, by analyzing the disk status. This is done as a part
of the system booting procedure.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 529 — #53

Chapter 13 File Systems 529

There can be many file systems in a Unix system. Each file system has to
be kept on a single logical disk device; hence files cannot span different logical
disks. A physical disk can be partitioned into many logical disks and a file system
can be constructed on each of them. Such partitioning provides some protection
across file systems, and also prevents a file system from occupying too much disk
space. A file system has to be mounted before being accessed. Only a user with
the root password, typically a system administrator, can mount a file system.

Mounting and unmounting of file systems works as follows: A logical disk
containing a file system is given a device special file name. This name is indi-
cated as FS_name in a mount command (see Section 13.5). When a file system is
mounted, the superblock of the mounted file system is loaded in memory. Disk
block allocation for a file in the mounted file system is performed within the
logical disk device of the mounted file system. Files in a mounted file system are
accessed as described in Section 13.9.1.

A file open call in Unix specifies three parameters—path name, flags, and
mode. Flags indicate what kind of operations will be performed on the file—
whether read , write, or read/write. The mode parameter is provided only when
a file is being created. It specifies the access privileges to be associated with the
file. This information is typically copied from the file creation mask of the user.
The owner of a file can change the file protection information any time through
a chmod command.

13.14.1.1 Berkeley Fast File System

The Berkeley fast file system (FFS) for Unix was developed to address the limita-
tions of the file system s5fs. It supports a symbolic link, which is merely a file that
contains a reference to another file. If the symbolic link is encountered during
path name resolution, the path name resolution is simply continued at the refer-
enced file. It also includes several innovations concerning disk block allocation
and disk access, which we describe in the following.

FFS permits use of large disk blocks—blocks can be as large as 8 KB.
Different file systems can use different block sizes; however, block size cannot vary
within one file system. A large block size makes larger files accessible through the
direct blocks in the file allocation table. A large block size also makes I/O opera-
tions more efficient and makes efficient use of the disk. However, a large block size
leads to large internal fragmentation in the last disk block of a file. FFS counters
this effect by allocating a part of a disk block to the last portion of a file. This
way, a disk block may be shared by many files. To facilitate such allocation, a disk
block is divided into equal-size parts called fragments. The number of fragments
in a disk block is a parameter of a file system, and is either 1, 2, 4, or 8. FFS uses
a bit map to keep track of free fragments of a block. File growth requires special
attention in this scheme, because a file may need more fragments, which might
not be available in the same disk block. In such cases, all its fragments are moved
to another disk block and the previously allocated fragments are freed.

FFS uses the notion of cylinder groups to reduce the movement of disk heads
(see Section 13.7). To reduce disk head movement further, it puts all inodes of
a file system in the same cylinder group and tries to put the inode of a file and

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 530 — #54

530 Part 4 File Systems and I/O Management

the file itself in the same cylinder group. It also prevents a file from filling up
a cylinder group. If a file grows to a size that would violate this constraint, it
relocates the entire file into a larger cylinder group. This technique increases the
possibility that concurrently accessed files will be found within the same cylinder
group, which would reduce disk head movement.

FFS tries to minimize rotational latency while reading a sequential file. As
described later in Section 14.3.2, a certain period of time elapses between the
end of a disk read operation and start of the next disk read operation. During
this time, the next few disk blocks inevitably pass under the disk head. Even if a
command to read thenext diskblock is issued immediately, theblockcan therefore
be read only during the next revolution of the disk. To ensure that consecutively
numbered blocks on a track can be read during the same disk revolution, FFS
separates them by putting a few other disk blocks between them. This feature
is similar to the technique of interleaving of sectors in a track discussed later in
Section 14.3.2. As illustrated there, this technique has a significant impact on disk
throughput.

13.14.2 Linux File System
Linux provides a virtual file system (VFS) which supports a common file model
that resembles the Unix file model. This file model is implemented by using Unix-
like data structures such as superblocks and inodes. When a file is opened, the VFS
transforms its directory entry into a dentry object. This dentry object is cached
so that the overhead of building it from the directory entry is avoided if the file
is opened repeatedly during a computing session. The standard file system of
Linux is called ext2. The file system ext3 incorporates journaling, which provides
integrity of file data and metadata and fast booting after an unclean shutdown
(see Section 13.12).

Ext2 provides a variety of file locks for process synchronization. Advisory
locks are those that are supposed to be heeded by processes to ensure mutual
exclusion; however, the file system does not enforce their use. Unix file locks
belong to this category of locks. Mandatory locks are those that are checked by
the file system; if a process tries to access data that is protected by a mandatory
lock, the process is blocked until the lock is reset by its holder. A lease is a special
kind of file lock that is valid for a specific amount of time after another process
has tried to access the data protected by it. It is implemented as follows: If a
process accesses some data that is protected by a lease, the holder of the lease
is intimated by the file system. It now has a stipulated interval of time to finish
accessing the file and release the lease. If it does not do so, its lease is broken and
awarded to the process that tried to access the data protected by it.

Design of ext2 was influenced by BSD’s fast file system (see Section 13.14.1).
Ext2 uses the notion of a block group, which is a set of consecutive disk blocks, to
reduce the movement of disk heads when a file is opened and its data is accessed.
It uses a bit map to keep track of free disk blocks in a block group. When a file
is created, it tries to allocate disk space for the inode of the file within the same
block group that contains its parent directory, and also accommodates the file

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 531 — #55

Chapter 13 File Systems 531

data within the same block group. Every time a file is extended through addition
of new data, it searches the bit map of the block group to find a free disk block
that is close to a target disk block. If such a disk block is found, it checks whether
a few adjoining disk blocks are also free and preallocates a few of these to the file.
If such a free disk block is not found, it preallocates a few contiguous disk blocks
located elsewhere in the block group. This way it is possible to read large sections
of data without having to move the disk head. When the file is closed, preallocated
but unused disk blocks are freed. This strategy of disk space allocation ensures use
of contiguous disk blocks for contiguous sections of file data even when files are
created and deleted at a high rate; it contributes to high file access performance.

13.14.3 Solaris File System
The Solaris file system provides Unix-like file access permissions in which
three access control pairs exist in each access control list—for the file
owner, for other users in the file owner’s group, and for all other users in
the system (see Section 13.6). To provide flexibility that is lacking in this
basic scheme, it also permits new pairs containing <list_of_user_ids> and
<list_of_access_privileges> to be added to the access control list of a file; the
system administrator specifies a new pair through the setfacl command.

Solaris offers convenience and flexibility in file processing, through a virtual
file system as described in Section 13.13 and through a variety of file processing
modes. An exclusive open operation on a file fails if the file already exists; oth-
erwise, it creates the file and returns its descriptor in a single indivisible action.
This operation avoids race conditions while a new file is created; it is used by pro-
cesses that create a lock file to synchronize their activities. Record-level locking
is provided to implement fine-grained synchronization between processes that
concurrently access a file; when a process tries to access a record whose lock has
been set by another process, it is blocked until the lock is reset. The nonblocked
I/O mode is provided to avoid indefinite waits due to this feature. In this mode,
an I/O operation that tries to access a record that is locked by another process
simply fails. The process issuing the operation now has an opportunity to perform
some other actions and retry the I/O operation later. An asynchronous I/O mode
is provided in which a process is not blocked for its I/O operation to complete.
This mode is useful in real-time applications. In the direct I/O mode, the file sys-
tem does not buffer or cache file data; this mode facilitates applications such as
database systems that wish to perform their own buffering or caching.

Data synchronization and file integrity flags can be set in the directory entry
of a file to obtain reliable operation. When some of these flags are set for a file,
I/O operations on the file ensure the integrity of metadata and/or the file data in
a manner resembling the journaling modes summarized in Table 13.6.

13.14.4 Windows File System
The NTFS file system of Windows is designed to meet the requirements of servers
and workstations. It provides support for client–server applications for file and

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 532 — #56

532 Part 4 File Systems and I/O Management

database servers. A key feature of NTFS is recoverability of the file system, which
we will discuss later in this section.

A partition is a large collection of contiguous sectors on a disk; A volume is
a logical partition on a disk; i.e., it is a virtual disk. A simple volume contains
a single partition, while a multipartition volume called a spanned volume may
contain up to 32 partitions located on one or more disks. NTFS performs disk
space allocation in units called clusters. Each cluster is a group of contiguous
sectors; the number of sectors in a cluster is a power of 2. A cluster on a volume is
assigned a logical cluster number (LCN), whereas that in a file is assigned a virtual
cluster number (VCN).

An NTFS volume contains a boot sector, a master file table (MFT), some
system files and user files. The presence of a boot sector makes every volume
bootable. The MFT typically contains a 1 KB record for each file and directory
on the volume, though large files may need multiple MFT records. The MFT also
contains information about unused areas on the volume. Each file on a volume has
a unique file reference, which consists of two components—a 48-bit file number,
which is simply the record number of the MFT record occupied by it, and a 16-bit
sequence number, which is a count of the number of times the MFT record has
been used to date. The sequence number is used to prevent mix-ups between two
files that have used the same MFT record at different times.

Each file has a set of attributes, where each attribute is an independent byte
stream that can be edited. Some standard attributes are common to all files.
In addition, a file may have special attributes required in an application. Each
file has an MFT record called its base file record, which contains the file ref-
erence of the file, the time of its last update, and its attributes. An unnamed
data attribute of a file contains file data. This arrangement permits the data in
a small file or directory to be stored in its base file record itself, which provides
high file access efficiency. If an attribute cannot fit in the file’s base file record,
it is stored as a nonresident attribute—it is stored in another MFT record and
a pointer to it is put in its base file record. If the nonresident attribute itself
cannot fit in one MFT record, it is stored in clusters on the disk and the MFT
record pointed to by the file’s base file record contains a VCN-to-LCN map-
ping for its clusters. When a process opens a file, NTFS sets up a stream control
block (SCB) for each of its attributes. An SCB contains a pointer to a file con-
trol block for the file, which contains its file reference, and an offset into an
attribute. When the process wishes to access an attribute of a file, NTFS uses
the SCB to locate the file’s base file record, finds information about location
of the attribute, and then applies the offset to access the required portion of
the attribute.

A directory is organized as a B+ tree with files as its leaf nodes, and it is
implemented by using an index file. The B+ tree data structure has the property
that the length of each path in the tree is the same. This feature facilitates efficient
search for a file in a directory (see Section 13.4.4). NTFS provides hard links to
set up multiple paths to a file. It also supports symbolic links, called junctions,
that redirect path name translation from a directory to an alternative one. This
feature provides an effect that is analogous to mounting of file systems.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 533 — #57

Chapter 13 File Systems 533

NTFS employs two techniques to save disk space. If a file is sparse, it does not
allocate disk space to that portion of the file into which either no data has been
written, or the written data is such that one or more complete sectors contain
zeroes. It performs data compression for nonsparse files, using 16 consecutive
virtual clusters in a file as a unit. It replaces them by a compressed form only
if that action would save at least one cluster, and notes this fact so that it can
automatically perform decompression when the file is accessed.

NTFS stores its metadata also in files. Some of these files are as follows:

• The MFT file contains MFT records.
• The log file contains information used for recovery; its use is described later

in this section.
• The attribute definition table contains information about attributes.
• A bit map file indicates which clusters in a volume are allocated and which

are free.
• The boot file contains the boot sector.
• A bad clusters file keeps track of clusters that are unusable due to hardware

problems.

NTFS provides robustness by ensuring consistency of the metadata when a
crash occurs. It is achieved by treating every modification of the metadata as an
atomic transaction. From the discussion of atomic actions in Section 13.11.2, it
would appear that atomic transactions can be implemented simply by writing
the “intentions” of a transaction in a write-ahead log file, and actually carrying
out the intentions when the transaction commits. However, certain actions like
creation of a new file’s record in the MFT cannot be delayed until a transaction
commits, so NTFS uses a combined redo/undo log that contains two kinds of
records. The collection of redo records in the log resembles the intentions list of
Section 13.11.2, while the undo records pertain to actions that have been already
performed by transactions that are yet to commit. During normal operation, only
the redo records are used—they are processed to actually perform modification
of NTFS’s metadata when a transaction commits. The undo records are used
only during recovery from a crash, as described in the following.

NTFS performs recovery as follows: It modifies its metadata according to
the redo entries in the log pertaining to transactions that had committed prior to
the crash. It then processes the undo entries to undo the modifications performed
by transactions that had not committed prior to the crash. The metadata is in
a consistent state at the end of these actions, so NTFS now resumes normal
operation. This feature provides the write behind capabilities of journaling file
systems discussed in Section 13.12.

In principle, log entries pertaining to a transaction can be discarded after all
of its actions are carried out during normal operation or recovery, or after all
of its actions are undone during recovery. However, NTFS cannot discard log
entries in this manner for two reasons—it stores its metadata in files, and it uses a
file cache (see Section 14.13.3) to speed up file processing activities. Thus, changes
made in a file containing metadata while processing the redo or undo entries in
the log would remain in the file cache for a long time and may be lost if a crash

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 534 — #58

534 Part 4 File Systems and I/O Management

occurred before they were written to the disk. To prevent indefinite growth of the
log, NTFS takes a checkpoint every 5 seconds. It puts a checkpoint record into
the log at this time, in which it writes contents of dirty blocks existing in the file
cache. When a crash occurs, NTFS locates the latest checkpoint record in the log,
restores values of disk blocks found there in the file cache, and then processes the
redo/undo entries of transactions that were in progress at the time of the crash.
This recovery procedure does not require the log entries of transactions that had
committed or aborted before the checkpoint was taken, hence NTFS deletes these
log entries while taking the checkpoint.

File data may be lost if a crash damages some disk blocks. The volume
manager driver that runs under NTFS employs the RAID technology to tolerate
such faults. Disk mirroring implies recording of identical data on disk blocks in
two disks, so that one of the disk blocks would be accessible even if the other one
is damaged because of a fault. (Disk mirroring and other RAID configurations
are discussed in Section 14.3.5.)

Windows Vista has many new features for recovery. The kernel transaction
manager implements transaction semantics over files and objects which can span
several computer systems. The backup and recovery center permits a user to specify
when and how frequently each file should be backed up, and to request recovery
of a specific previous version of the file. To conserve disk space, it stores only the
changes made in a file in a backup.

13.15 PERFORMANCE OF FILE SYSTEMS
•

File systems employ five techniques to provide high file access performance:

• Use of efficient data structures: Directories are organized by using data
structures that facilitate fast search.

• Effective disk space allocation: Disk space is allocated to a file in such a
manner that little disk head movement and rotational delays are involved in
processing of a sequential file.

• Caching: Part of memory is used as a cache for data stored on an I/O device.
As discussed in Section 2.2.3, caching speeds up accesses to information that
exhibits either temporal locality or spatial locality—that is, data that is either
repeatedly accessed or located in proximity of previously accessed data.

• Buffering: A buffer is a memory area that is used to store data temporarily.
The file system loads data from an I/O device into a buffer before a process
needs it, so that the process can access the data without having to wait for an
I/O operation to complete. Converse actions are performed when a process
wishes to write data in a file.

• Disk scheduling: I/O operations on a disk are performed in an order that
reduces disk head movement; it ensures high throughput of a disk.

Figure 13.34 summarizes how a file system uses these techniques to speed up
file processing. Hash tables and B+ trees enable fast searches in a directory (see
Section 13.4.3). Disk space allocation of a file is confined to extents and cylinder

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 535 — #59

Chapter 13 File Systems 535

Directory search Hashtables, B+ trees

Accessing file map table File map table cache in memory

Accessing a disk block Disk block allocation in extents and cylinder groups,
 Disk block cache in memory, disk scheduling, disk
 block cache in I/O device

Accessing data Buffering and blocking of data, or use of a file cache

Techniques employed for speedup

Process Pi

read phi,..

open phi

Cached and buffered

data and metadata

File data

FMTs

Directories
phi

Operation

Directory access Directory cache

Figure 13.34 Techniques employed to provide high file access performance.

groups to reduce disk head movement and rotational delays (see Section 13.7).
The other techniques provide fast access to file data and metadata of a file system,
such as directory entries and file map tables.

Directories are cached in memory when accessed for the first time. Thus a
directory used to resolve a path name is retained in the cache to speed up future
references to files located in it. This cache is called a directory names cache. A
file map table is buffered in memory when the file is opened, in anticipation of
accesses to it. It may be cached after its first access. Buffering may not be feasible
if a file map table is large in size. In that case, parts of it may be cached in memory
when first referenced.

A disk cache stores disk blocks in memory following their first use in a file
processing activity. Hit ratios better than 0.9 are possible in the disk cache. Hence
its use reduces the number of I/O operations on a disk significantly. An access
method uses buffering and blocking of file data or stores file data in a file cache
to reduce the wait time involved in an I/O operation. Disk scheduling is used to
reduce disk head movement and the average wait time for I/O operations. These
techniques are employed by the IOCS; they are discussed later in Chapter 14.

As technology advances, techniques that were developed for use in soft-
ware become implemented in the hardware. Modern I/O device technology
incorporates some of the techniques mentioned in Figure 13.34. Thus SCSI disks

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 536 — #60

536 Part 4 File Systems and I/O Management

provide disk scheduling in the device itself. RAID units contain a disk block
buffer, which can be used to both buffer and cache disk blocks. These technologies
are discussed later in Chapter 14.

13.15.1 Log-Structured File System
Disk caching reduces the number of read operations directed at a disk. Hence
disk usage is dominated by disk head movement and write operations. Disk head
movement can be reduced through disk scheduling and through the use of cylinder
groups in disk space allocation for files. However, these techniques are less effective
when files located in different parts of a disk are processed simultaneously, which
is the case most of the time in a shared computer system. For example, in a Unix
system, write operations to a disk consume only about 10 percent of the disk
time; the rest of the time is spent in disk head movement, which leads to poor
throughput of a disk.

A log-structured file system reduces disk head movement through a radically
different file organization. It writes file data of all files together in a single sequen-
tial structure that resembles a journal. We call it the log file. When an update or
write operation is performed on any file, the new data is simply added to the end
of the log file. Hence little disk head movement is involved in this operation. The
file system writes special index blocks into the log file to contain metadata about
the location of each file’s data in the log file. These index blocks are used when file
data has to be read off the disk. Thus, little disk head movement is required for
reading data that was written into a file recently; however, more disk head move-
ment is involved for older data. Performance studies on the Sprite log-structured
file system showed that disk head movement accounted for only 30 percent of the
disk time consumed during file processing, and its performance was superior to
the conventional file system for frequent small writes. Example 13.12 illustrates
operation of a log-structured file system.

•
Example 13.12 Log-Structured File System

Figure 13.35(a) is a schematic diagram of the arrangement used in a log-
structured file system. For simplicity, it shows the metadata and file data of
a single file in the log file. The data blocks in the log file are numbered for
convenience. The directory entry of a file points to an index block in the log
file; we assume the index block to contain the FMT of the file. When file data
residing in block 1 is updated, the new values are written into a new disk block,
i.e., block 4. Similarly some file data is written into disk block 5 when the data in
block 3 is updated. The file system now writes a new index block that contains
the updated FMT of the file and sets the FMT pointer in the directory entry
of the file to point to the new index block. The new FMT contains pointers to
the two new data blocks and to data block 2 that has not been modified [see
Figure 13.35(b)]. The old index block and disk blocks 1 and 3 are now free.
•

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 537 — #61

Chapter 13 File Systems 537

1

Index block

Log file

(a)

Index block

Log file

(b)

1 2 3

2 3

4 5

Figure 13.35 File update in a log-structured file system.

Since the log file is written as a sequential-access file, the file system has to
ensure that a large-enough disk area is always available to write the log file. It
achieves this by moving data blocks around on the disk to make a large free
area available for the log file. This operation is analogous to memory compaction
(see Section 11.5.1.4). It involves considerable disk head movement, which now
dominates the disk usage; however, compaction is performed as a background
activity so it does not delay file processing activities in processes.

13.16 SUMMARY
•

Computer users have many expectations of a file
system—convenience, good performance of a file
processing activity, and efficient use of I/O devices.
To deal with these concerns effectively, the file sys-
tem is structured into two layers: The file system
layer deals with convenience issues such as sharing
and protection of files and reliability; the input-
output control system (IOCS) layer implements file
operations and deals with efficiency issues. In this
chapter, we discussed the techniques of file systems.

A file may be a structured file, i.e., it may con-
tain records of data, or it may be an unstructured,
or byte stream, file. A file system provides con-
venience to its users through three means. First,
it provides different file organizations, where each
organization suits a specific pattern of accessing
records in a file—it provides a method of arranging
records of a file on an I/O device and access-
ing them efficiently. The sequential and direct file

organizations suit sequential and random access
to records in a file, respectively. Several hybrid
organizations, such as the index sequential organi-
zation, are also widely used. Second, a file system
allows users to group related files logically and con-
veniently by creating files and directories to any
desired level. Third, it allows a user to specify which
other users may access his files in what manner,
which facilitates sharing and protection of files.

The file system allocates disk space to a file
such that fragmentation of disk space is avoided
and file data can be accessed efficiently. Indexed
allocation of disk space to a file uses a disk block
or an extent as the unit of disk space for alloca-
tion. The disk blocks or extents allocated to a file
are confined to cylinder groups to ensure efficient
access to file data. Information concerning the disk
space allocated to a file is stored in a file map table
(FMT).

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 538 — #62

538 Part 4 File Systems and I/O Management

Before reading from or writing into a file, a
process has to open the file by specifying its path
name in the directory structure. The file system
traverses the path name, determines which file is
being opened, and sets up a file control block (FCB)
to contain information such as the file’s type and
organization, address of its FMT, and address of its
next record. When the process wishes to perform
a read or write operation, the file system passes
the FCB to the IOCS, and the IOCS implements
the operation, using the information accessible
through the FCB. The file system specifies the file
sharing semantics, which determine how the results
of a file update made by a process should be visible
to other processes using the file concurrently.

The file system ensures reliability of opera-
tion by ensuring that the file data and metadata
such as FMTs and FCBs are not lost or made

inconsistent by faults such as power outages. It is
achieved through an atomic action, which ensures
that all actions in a set of related actions are com-
pleted even if faults occur. An atomic action incurs
considerable overhead, therefore journaling file sys-
tems provide a menu of reliability modes that guard
data and metadata to different extents, so that a
system administrator can choose the mode that is
cost-effective for a computing environment.

A virtual file system (VFS) is a software layer
that permits several file systems to be in opera-
tion on a computer system simultaneously, so that
a user can choose the file system that is most
suitable for his application. The VFS provides a
unified method of accessing different file systems.
A process invokes the VFS layer using generalized
commands to access files, and the VFS layer directs
the commands to the appropriate file system.

TEST YOUR CONCEPTS
•

13.1 Classify each of the following statements as true
or false:
a. Allocation of contiguous disk space for a

sequential-access file leads to more efficient
file processing than allocation of noncontigu-
ous disk space.

b. Cycles in the directory structure create diffi-
culties with the file deletion operation.

c. Absolute path names for two different files
cannot be identical, whereas their relative
path names could be identical.

d. The purpose of the file control block (FCB)
is to facilitate a file open operation; the FCB
can be deleted immediately after the file is
opened.

e. When a file is closed after updating, the
directory containing the file may have to be
updated as well.

f. Maintaining a file’s file map table (FMT)
in memory while the file is being processed
reduces the number of disk accesses during
file processing.

g. During creation of a new file in a mounted
file system, the file is allocated disk space
in the logical disk used by the mounted file
system.

h. The effect of mounting a file system is similar
to that of setting up a link in the directory
structure, except that the effect is obliterated
when the file system is unmounted.

i. When a user updates the data in a single-
image mutable file, changes made to the file
are not immediately visible to users concur-
rently using the file.

j. When a fault occurs, a single incremental
backup is adequate for restoring the entire
file system to a previous consistent state.

k. Journaling incurs overhead during operation
of a file system.

l. A virtual file system permits use of many file
systems in a computer; however, these file
systems cannot be used concurrently.

13.2 Select the appropriate alternative in each of
the following questions:

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 539 — #63

Chapter 13 File Systems 539

a. The file control block (FCB) of a file
alpha:

i. Contains only information copied from
the directory entry of alpha

ii. Is used to avoid frequent accesses to the
directory entry of alpha

iii. Is used only to protect file alpha
against invalid accesses

b. The stable storage technique is:
i. A fault tolerance technique that is used to

recover from two faulty blocks on a disk
ii. A recovery technique used to recover the

file system after a power failure
iii. A fault tolerance technique that is used to

recover from one faulty block on a disk
iv. None of the above

EXERCISES
•

13.1 A file named data is frequently accessed by
users in a system. The following alternatives are
proposed to simplify access to data.
a. Set up links from every user’s home directory

to data.
b. Copy data into every user’s home directory.
Compare the advantages and drawbacks of these
approaches.

13.2 An index sequential file contains 10,000 records.
Its index contains 100 entries. Each index entry
describes an area of the file that contains 100
records. If all records in the file have the
same probability of being accessed, calculate
the average number of disk operations involved
in accessing a record. Compare this number
with the number of disk operations required if
the same records were stored in a sequential
file.

13.3 Consider the index sequential file of Figure 13.5.
The following problem arises when a new record,
say record for employee number 8 (we will call
it record 8), is added to it. There is no space
to store the new record on the track. Hence the
access method takes out record 13 from the track
and shifts records 10 and 12 to make space for
the new record. Record 13 is now put into an
overflow area. A new field called overflow area
pointer is added to each entry in the track index.
This field in the first entry of the track index is
set to point to record 13 in the overflow area. If
more records overflow out of the first track, they
are put into a linked list and the overflow area
pointer of the track index points to the head of
the list. Similar linked lists may be formed for
several tracks over a period of time.

If all records in the index sequential file have the
same probability of being accessed, show that
access efficiency of the file will be affected by the
presence of records in the overflow area. Can
access efficiency be restored by rewriting the file
as a new file that does not contain any overflow
records?

13.4 The Amoeba distributed operating system uses
contiguous allocation of disk space. When a file
is updated, it writes the updated file as a new file
and deletes its old copy.
Comment on the advantages and drawbacks of
this approach.

13.5 Does noncontiguous allocation of disk space
influence the feasibility and effectiveness of
the fundamental file organizations discussed in
Section 13.3?

13.6 A file system uses indexed disk space allocation.
The size of each disk block is 4 KB and each disk
block address is 4 bytes in length. The size of the
FMT is one disk block. It contains 12 pointers
to data blocks. All other pointers point to index
blocks.
A sequential file info contains 5000 records,
each of size 4 KB. Characteristics of the disk and
of a process that reads and processes all records
in file info are as follows:

Average time to read a disk block = 3 ms
Average time to process a record = 5 ms

Calculate the elapsed time of the process under
the following conditions:
a. The file system keeps the FMT in memory,

butdoesnotkeepany indexblocks inmemory
while processing info.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 540 — #64

540 Part 4 File Systems and I/O Management

b. The file system keeps the FMT and one index
block of info in memory.

13.7 A new record is to be added to the file info of
Problem 13.15.1. What is the minimum number
of disk operations required to reflect this change
in info on the disk? What is the maximum
number?

13.8 A file system uses indexed allocation of disk
space; however, it permits a sequential file
to contain partially full disk blocks. What
are the advantages and disadvantages of this
scheme?

13.9 A file system uses contiguous allocation of disk
space. The sequential access method handles
bad blocks on a disk as follows: If an error occurs
while reading/writing a block, it consults the bad
blocks table that is itself stored on the disk and
accesses the alternative disk block assigned to
the bad block. Assuming all disk accesses to
require identical access times, calculate degra-
dation in file access performance if 2 percent
of the disk blocks allocated to a file are bad
blocks. Suggest a method to improve the access
performance.

13.10 To reduce the overhead of file access valida-
tion (see Step 2 of Section 13.9.2), an OS
designer proposes to perform validation only at
file “open” time. As mentioned in Section 13.9.1,
the open statement specifies the kind of accesses
which will be made to the file, e.g., open (abc,
‘read’, ..). Is a single access validation
check at file open time adequate? If not, explain
why. In either case, suggest an implementation
outline.

13.11 Step 2 of Section 13.9.1 creates an FCB for every
directory appearing in a path name.
a. Is this arrangement adequate when a relative

path name is used?
b. Are these entries necessary if a file is being

opened for reading?
c. Can the number of FCBs created per file be

reduced?
13.12 Explain how the following features can be incor-

porated in a file system:
a. Cascaded mounts: Directory C contains a

file D. The directory structure rooted at C
is mounted at mount point X/B. Later, the

directory structure rooted at X is mounted in
directory Y/A. It should be possible to access
file D as ..Y/A/B/D.

b. Multiple mounts: The directory structure
rooted at some directory, say, W, is mounted
at many mount points simultaneously.

13.13 When indexed allocation is used for files, explain
how a disk block may occur in more than one
file if a fault occurs.

13.14 Let Algorithm 13.1 be rewritten as follows:
1. dj .next := d1.next;
2. d1.next := address (dj);
3. Write dj to disk.
4. Write d1 to disk.
Does this modified algorithm prevent mix-up
between files in the event of a fault?

13.15 Explain how the byte offset into a Unix file can
be converted into the pair (<disk block id>,
<byte offset>).

13.16 By default, Unix assigns the files stdin and
stdout to the keyboard and terminal, respec-
tively. A user can use the redirection operators
< and > in a command to override the default
assignments and use some other files for input
and output. The “redirect and append” operator
>> appends the output of a process to the end
of an existing file. The default assignments of
the files are restored at the end of the command.
These features can be implemented by perma-
nently associating FCBs for stdin and stdout with
each process.
a. Describe the file system actions involved in

implementing the default assignments for
stdin and stdout and the redirection operators
< and >.

b. Describe the file system actions involved in
implementing the >> operator.

13.17 Disk blocks allocated to a file are added to
the free list when the file is deleted. Write an
algorithm to perform this operation in Unix.

13.18 The Unix file system associates a lock field with
the free list (see Section 13.14.1). Classify the
following statement as true or false: “Locking
of the free list is necessary due to the nature
of Unix processes. Such locking is unneces-
sary in an OS using the conventional process
model.”

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 541 — #65

Chapter 13 File Systems 541

BIBLIOGRAPHY
•

Organick (1972) is historically the most important paper
on directory structures, since the MULTICS directory
structure has influenced most contemporary file sys-
tems like Unix, Linux, Solaris, and Windows. USENIX
(1992) contains proceedings of a file system work-
shop. Grosshans (1986), Weiderhold (1987), and Livadas
(1990) discuss file organizations and file systems.

McKusick et al. (1990) describes a memory-based
file system, which provides memory-mapped files and
directory structures implemented in pageable mem-
ory. Levy and Silberschatz (1990) discusses file shar-
ing semantics. Lampson (1981) describes the stable
storage technique for reliability of disk data, while
Svobodova (1984) surveys how atomic actions are
performed in various file servers. Florido (2000) dis-
cusses design of journaling file systems. Kleiman (1986)
describes the virtual file system design. Vahalia (1996)
describes the Unix virtual file system interface. Rosen-
blum and Ousterhout (1992) discusses design of the
Sprite log-structured file system, while Matthews et al.
(1997) discusses adaptive methods for improving the
performance of log-structured file systems. McKusick
et al. (1996) discusses the log-structured file system
of Unix 4.4 BSD.

Bach (1986) and Vahalia (1996) describe the Unix
file system. Kowalski (1978) describes the Unix program
used to check file system integrity. This program looks
through every file system data structure on disk. Bina
and Emrath (1989) discusses how the file system integrity
checks can be speeded up in the Unix file system. Beck
et al. (2002) and Bovet and Cesati (2005) discuss the
ext2 file system of Linux. Mauro and McDougall (2006)
discusses the Solaris file system. Nagar (1997) and Russi-
novich and Solomon (2005) describe the NTFS file
system of Windows.

1. Bach, M. J. (1986): The Design of the Unix
Operating System, Prentice Hall, Englewood
Cliffs, N.J.

2. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, Pearson
Education, New York.

3. Bina, E. J., and P. A. Emrath (1989): “A faster
fsck for BSD UNIX,” Proceedings of the Winter
1989 USENIX Technical Conference, 173–185.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol,
Calif.

5. Burrows, M., C. Jerian, B. Lampson, and
T. Mann (1992): “On-line data compression in a
log-structured file system,” ACM Sigplan Notices,
27, 9, 2–9.

6. Florido, J. I. S. (2000): “Journal file systems,”
Linux Gazette, issue 55.

7. Grosshans, D. (1986): File Systems: Design and
Implementation, Prentice Hall, Englewood Cliffs,
N.J.

8. Kleiman, S. R. (1986): “Vnodes: an architecture
for multiple file system types in Sun Unix,”
Proceedings of the Summer 1986 USENIX
Technical Conference, 238–247.

9. Kowalski, T. (1978): “Fsck—the Unix system
check program,” Bell Laboratories, Murray Hill,
N.J.

10. Lampson, B. W. (1981): “Atomic transactions,” in
Distributed systems—Architecture and
Implementation: An Advanced Course, Goos, G.,
and J. Hartmanis (eds), Springer Verlag, Berlin,
246–265.

11. Levy, H. M., and A. Silberschatz (1990):
“Distributed file systems: concepts and
examples,” ACM Computing Surveys, 22, 4,
321–374.

12. Livadas, P. (1990): File Structures: Theory and
Practice, Prentice Hall, Englewood Cliffs, N.J.

13. Love, R. (2005): Linux Kernel Development,
2nd ed., Novell Press.

14. Matthews, J. N., D. Roselli, A. M. Costello,
R. Y. Wang, and T. E. Anderson (1997):
“Improving the performance of log-structured file
systems with adaptive methods,” Proceedings of
Sixteenth Symposium on Operating Systems
Principles, 238–251.

15. Mauro, J., and R. McDougall (2006): Solaris
Internals, 2nd ed., Prentice-Hall, Englewood
Cliffs, N.J.

13-M4363-DAS1.LaTeX: “chap13” — 2007/11/16 — 19:05 — page 542 — #66

542 Part 4 File Systems and I/O Management

16. McKusick, M. K., K. Bostic, M. Karels, and
J. S. Quarterman (1996): The Design and
Implementation of the 4.4BSD Operating System,
Addison Wesley, Reading, Mass.

17. McKusick, M. K., M. Karels, and K. Bostic
(1990): “A pageable memory based filesystem,”
Proceedings of the Summer 1990 USENIX
Technical Conference, 137–144.

18. Nagar, R. (1997): Windows NT File System
Internals, O’Reilly, Sebastopol, Calif.

19. Organick, E. I. (1972): The MULTICS System,
MIT Press, Cambridge, Mass.

20. Rosenblum, M., and J. K. Ousterhout (1992):
“The design and implementation of a

log-structured file system,” ACM Transactions on
Computer Systems, 10, 2, 26–52.

21. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

22. Svobodova, L. (1984): “File servers for
network-based distributed systems,” ACM
Computing Surveys, 16, 4, 353–398.

23. USENIX (1992): Proceedings of the File Systems
Workshop, Ann Arbor, Mich., May 1992.

24. Vahalia, U. (1996): Unix Internals: The New
Frontiers, Prentice Hall, Englewood Cliffs, N.J.

25. Weiderhold, G. (1987): File Organization for
Database Design, McGraw-Hill, New York.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 543 — #1

C h a p t e r 14
Implementation of
File Operations

A
s we saw in Chapter 13, a file processing activity is implemented through
modules of the file system and the input-output control system (IOCS).
The file system modules provide file-naming freedom, sharing and pro-

tection of files, and reliability. Operations on files are implemented by the IOCS.
The IOCS has two primary concerns—efficient implementation of a file pro-

cessing activity in a process and high throughput of I/O devices. To address these
concerns, the IOCS is organized into two layers called the access method and the
physical IOCS layers. An access method module organizes reading and writing of
file data to efficiently implement a file processing activity in a process. It invokes
the physical IOCS to actually perform reading and writing of data. The physical
IOCS performs input-output at the I/O device level and carries out scheduling
policies to enhance throughput of an I/O device.

We first discuss the characteristics of I/O devices, and arrangements that
provide high reliability, fast access and high data transfer rates of disks. We then
discuss how I/O operations are performed at the level of I/O devices, what facil-
ities are offered by the physical IOCS to simplify I/O operations, and how disk
scheduling provides high disk throughput. Finally, we discuss how the techniques
of buffering, blocking, and caching of data speed up a file processing activity.

14.1 LAYERS OF THE INPUT-OUTPUT CONTROL SYSTEM
•

The schematic of Figure 14.1 shows how the input-output control system (IOCS)
implements file operations. Processes Pi and Pj are engaged in file processing
activities and have already opened some files. When one of these processes makes
a request to read or write data from a file, the file system passes on the request to
the IOCS. Recall from Section 13.1 that the IOCS holds some file data in memory
areas called buffers, the file cache, or the disk cache to speed up file processing
activities. For a read operation, the IOCS checks whether the data required by
the process is present in memory. If so, the process can access the data straight-
away; otherwise, the IOCS issues one or more I/O operations to load the data
into a file buffer or the disk cache, and the process has to wait until this I/O

543

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 544 — #2

544 Part 4 File Systems

Access methods

Physical IOCS

Process

Pi

Process

PJ
File buffers,

File cache, or

Disk cache

Disk blocks

contain ≥ 1 records

I/O

operations

Disk

scheduling

Figure 14.1 Implementation of file operations by the IOCS.

Kernel

Physical IOCS layer

Access method layer
Layers of

the IOCS

File system layer

Process

Figure 14.2 Layers of the file system and the IOCS.

operation completes. Since many processes perform I/O operations concurrently,
the I/O operations are scheduled by a disk scheduling algorithm, which aims to
provide high throughput of the disk. Thus the IOCS implements I/O operations
in a manner that provides efficiency of file processing activities in processes and
high throughput of I/O devices.

The IOCS is structured into two layers called the access method and the
physical IOCS. The access method layer provides efficient file processing and the
physical IOCS layer provides high device throughput. This structure of the IOCS
separates process-level concerns in efficient implementation of file operations
from device-level concerns.

Figure 14.2 shows the hierarchy of file system and IOCS layers. The number of
IOCS layers and their interfaces vary across operating systems. In older operating
systems, the physical IOCS was typically a part of the kernel; however, modern
operating systems put it outside the kernel to enhance extensibility and reliability
of the OS. We will assume that the physical IOCS is invoked through system calls,
and it invokes other functionalities of the kernel also through system calls.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 545 — #3

Chapter 14 Implementation of File Operations 545

Table 14.1 Mechanisms and Policies in File System and IOCS Layers

Physical IOCS
• Mechanisms: I/O initiation, providing I/O operation

status, I/O completion processing, error recovery.
• Policy: Optimization of I/O device performance

through a disk scheduler and a disk cache.
Access methods

• Mechanisms: File open and close, read and write.
• Policy: Optimization of file access performance

through buffering and blocking of file data and use
of a file cache.

File System
• Mechanisms: Allocation of disk blocks, directory

maintenance, setting and checking of file protection
information.

• Policies: Disk space allocation for access efficiency,
sharing and protection of files.

Table 14.1 summarizes significant mechanisms and policies implemented by
IOCS layers in a conventional two-layer IOCS design. The physical IOCS layer
implements device-level I/O. Its policy modules determine the order in which I/O
operations should be performed to achieve high device throughput. These mod-
ules invoke physical IOCS mechanisms to perform I/O operations. The access
method layer has policy modules that ensure efficient file processing and mecha-
nisms that implement file-level I/O by using physical IOCS policy modules. The
file system layer implements sharing and protection of files, using the modules of
the access method.

Note that Table 14.1 lists only those mechanisms that can be meaningfully
accessed from a higher layer. Other mechanisms, which are “private” to a layer,
are not listed here. For example, mechanisms for buffering and blocking of file
data, and for managing a file cache exist in the access method layer. However,
they are available only to access method policy modules; they are not accessed
directly from the file system layer. Similarly, the physical IOCS has mechanisms
for managing the disk cache, which cannot be accessed from outside the physical
IOCS layer.

14.2 OVERVIEW OF I/O ORGANIZATION
•

Section 2.2.4 contained an overview of I/O organization. Three modes of per-
forming I/O operations—programmed mode, interrupt mode, and direct memory
access (DMA) mode—were summarized in Table 2.1. We focus on the DMA
mode of I/O operations. Figure 2.1 showed how I/O devices are connected to
device controllers, which are in turn connected to the DMA controller. Each
device controller has a unique numeric id. Similarly, each device connected

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 546 — #4

546 Part 4 File Systems

to it has a unique numeric device id. A device address is a pair of the form
(controller_id, device_id).

An I/O operation involves the following details:

• Operation to be performed—read, write, etc.
• Address of the I/O device.
• Number of bytes of data to be transferred.
• Addresses of areas in memory and on the I/O device that are to participate

in the data transfer.

When an I/O operation is performed in the DMA mode, the CPU initiates
the I/O operation, but it is not involved in data transfer between an I/O device
and memory. To facilitate this mode of I/O, an I/O operation is initiated by
executing an I/O instruction. The CPU, the DMA controller, the device controller,
and the I/O device participate to realize an I/O instruction. The I/O instruction
points to a set of I/O commands that specify the individual tasks involved in
the data transfer. Implementation of an I/O command requires participation of
the DMA controller, the device controller, and the I/O device, but does not require
participation of the CPU. This way, the CPU is free to execute other instructions
while the I/O operation is in progress.

Typically, I/O commands are stored in memory and the address of the
memory area containing I/O commands is used as an operand in the I/O instruc-
tion (in some computers, the address is picked up from a standard memory
location when the I/O instruction is executed). When the I/O instruction is
executed, the CPU passes this address to the DMA controller. The DMA con-
troller now realizes the I/O commands. The next example provides details of this
arrangement.

•
Example 14.1 I/O Operations

The I/Ooperation to read the data recorded inadiskblockwith the id (track_id,
block_id) is performed by executing the following I/O instruction:

I/O-init (controller_id, device_id), I/O_command_addr

where I/O_command_addr is the start address of the memory area containing
the following two I/O commands:

1. Position disk heads on track track_id
2. Read record record_id into the memory area with the start address

memory_addr

•
The arrangement called third party DMA works as follows: Device con-

trollers are connected to the DMA controller as shown in Figure 2.1. When
an I/O instruction is executed, the DMA controller passes details of the I/O
commands to the device controller of the I/O device. The device delivers the

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 547 — #5

Chapter 14 Implementation of File Operations 547

data to the device controller. Transfer of data between the device controller
and memory is organized as follows: The device controller sends a DMA-
request signal when it is ready to perform a data transfer. On seeing this signal,
the DMA controller obtains control of the bus, puts address of the memory
location that is to participate in the data transfer on the bus, and sends a
DMA-acknowledgment signal to the device controller. The device controller now
transfers the data to or from memory. At the end of data transfer, the DMA
controller raises an I/O completion interrupt with the address of the device as
the interrupt code. The interrupt servicing routine analyzes the interrupt code
to find which device has completed its I/O operation, and takes appropriate
actions.

Since the CPU continues to execute instructions while an I/O operation is
in progress, the CPU and the DMA controller are in competition for use of the
bus. The technique of cycle stealing ensures that both can use the bus without
facing large delays. The CPU defers to the DMA controller for use of the bus at
some specific points in its instruction cycle, typically when it is about to read an
instruction or its data from memory. When the DMA wishes to transfer data to
or from memory, it waits until the CPU reaches one of these points. It then steals
a memory cycle from the CPU to implement its data transfer.

First party DMA is more efficient than third party DMA. In this arrange-
ment, the device controller and the DMA controller are rolled into one unit. The
combined unit obtains control of the bus when it is ready for a data transfer. This
technique is called bus mastering. It achieves higher data transfer rates than third
party DMA.

14.3 I/O DEVICES
•

I/O devices operate under a variety of principles, such as electromechanical signal
generation and electromagnetic or optical data recording. I/O devices work with
different I/O media, serve different purposes, and organize and access data in
different ways, so they can be classified through the following criteria:

• Purpose: Input, print and storage devices
• Nature of access: Sequential and random-access devices
• Data transfer mode: Character and block mode devices

The information written (or read) in one I/O command is said to form a record.
A sequential-access device uses its I/O medium in a sequential manner; hence an
operation is always performed on a record that adjoins the record accessed in the
previous operation. Access to any other record requires additional commands
to skip over intervening records. A random-access device can perform a read or
write operation on a record located in any part of the I/O medium. A keyboard,
a mouse, a network and a tape drive are sequential-access devices. Disks can be
accessed in both sequential and random manner.

A unit of I/O medium is called an I/O volume; thus, a tape cartridge and a
disk can be called a tape volume and a disk volume, respectively. I/O volumes

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 548 — #6

548 Part 4 File Systems

for some I/O devices are detachable, e.g., floppy disks, compact disks (CDs), or
digital audiotape (DAT) cartridges; while those for other I/O devices like hard
disks are permanently fixed in the device.

Data Transfer Modes The data transfer mode of a device depends on its speed
of data transfer. A slow I/O device operates in the character mode; i.e., it transfers
one character at a time between memory and the device. The device contains a
buffer register that can store one character. The device controller raises an inter-
rupt after an input device reads a character into the buffer or an output device
writes a character from the buffer. Device controllers of such devices can be con-
nected directly to the bus. The keyboard, mouse, and printer are character mode
devices.

A device capable of a high data transfer rate operates in the block mode of
data transfer. It is connected to a DMA controller. Tapes and disk drives are
block mode devices. A block mode device needs to read or write data at a specific
speed. Two kinds of problems would arise if a data transfer is delayed because
of contention for the bus: Data would be lost during a read operation if the bus
were unable to accept data from an I/O device at the required rate for transfer to
memory. A write operation would fail if the bus were unable to deliver data to
the I/O device at the required rate.

To prevent problems due to contention for the bus, data is not transferred
over the bus during the operation; instead, it is transferred between an I/O device
and a buffer. During an input operation, the data delivered by the I/O device is
stored in a buffer in the DMA controller, which we will call the DMA buffer. It is
transferred from the DMA buffer to memory after the I/O operation completes.
To perform an output operation, data to be written onto the I/O device is first
transferred from memory to the DMA buffer. During the I/O operation, it is
transferred from the DMA buffer to the I/O device.

Data transfer between the CPU and an I/O device can also be realized by
using memory-mapped I/O. In this approach, a set of memory addresses are
reserved for an I/O device. These addresses are mapped into some of the reg-
isters of the I/O device such that when the CPU writes some data into a memory
location with one of the reserved addresses, the data is actually written into the
corresponding register of the I/O device. Similarly, when the CPU executes an
instruction that reads data from a memory location with one of the reserved
addresses, the data actually gets read from the corresponding register of the I/O
device. This way the transfer of data takes place without a DMA yet it does
not load the CPU much. Memory-mapped I/O is implemented as follows: An
I/O device listens on the bus on which memory is connected. When one of its
reserved addresses appears on the bus, it simply transfers data between the bus
and the register corresponding to the reserved address. Memory-mapped I/O
is popular on the PCs because a special I/O bus is not needed, and the CPU
does not have to provide any special instructions for initiating I/O operations
and for checking the status of I/O devices, which reduces the cost of the CPU.
However, more hardware is needed on the memory bus to decode the reserved
addresses.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 549 — #7

Chapter 14 Implementation of File Operations 549

Access Time and Transfer Time We use the following notation while discussing
I/O operations.

tio I/O time, i.e., time interval between the execution of an
instruction to initiate an I/O operation and completion of
the I/O operation.

ta access time, i.e., time interval between the issue of a read or
write command and the start of data transfer.

tx transfer time, i.e., time taken to transfer the data from/to an
I/O device during a read or write operation. It is the time
between start of transfer of the first byte to end of transfer of
the last byte.

The I/O time for a record is the sum of its access time and transfer time, i.e.,

tio = ta + tx (14.1)

Figure 14.3 illustrates the factors influencing tio. The access time in a sequential
device is a constant because the device can only read or skip a record on either
side of its current position. The access time in a random-access device varies
because it can read or write any record in an I/O volume, so it must reposition
either the read/write head or the I/O medium before commencing a read or write
operation.

Error Detection and Correction Errors might arise during recording or reading
of data or transferring it between an I/O medium and memory. To facilitate
detection and correction of such errors, data being recorded or transmitted is
viewed as a bit stream, i.e., as a stream of 1s and 0s, and special codes are used to
represent the bit stream. We discuss some of these codes in the following.

Error detection is performed through recording of redundancy information
with data. This information, which we will call error detection information, is
derived from the data by using a standard technique. When data is read off an
I/O medium, this information is also read off the medium. Now, error detection
information is computed again from the read data, using the same technique,
and it is compared with the error detection information read off the medium. A
mismatch indicates some recording errors. Error correction is performed anal-
ogously, except that more powerful algorithms are used to generate the error
correction information. This information can both detect an error and indicate

Read/write command

is issued
Data transfer

starts
Data transfer

ends

tio

ta tx

Device readied for

data transfer

Data transfer

in progress

Figure 14.3 Access and transfer times in an I/O operation.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 550 — #8

550 Part 4 File Systems

how it can be corrected. Recording and reading of redundant information causes
an overhead. Error correction incurs more overhead than error detection.

Figure 14.4 describes two approaches to error detection and correction. In
the parity bits approach, np parity bits are computed for nd bits of data. The
parity bits are put in fixed locations in a record. They are indistinguishable from
data, except to the error detection/correction algorithm. In the cyclic redundancy
check (CRC) approach, an nc bit number called the CRC is recorded in the CRC
field of a record. A key difference between the two approaches is that np depends
on nd , while nc is independent of nd .

Both approaches use modulo-2 arithmetic. This arithmetic is analogous to
binary arithmetic, except that it ignores carries or borrows generated in any bit
position. This property makes it very fast. A modulo-2 addition is represented as
an exclusive-OR operation ⊕. It uses the following rules: 0 ⊕ 0 = 0, 1 ⊕ 0 = 1,
0 ⊕ 1 = 1, and 1 ⊕ 1 = 0.

A popular variant of the parity bits approach used in RAMs and older
magnetic tapes associates a single parity bit with a byte of data. As described
in Figure 14.4, it is generated from all bits of a byte by using the ⊕ oper-
ation. It can detect a single error in a byte, but fails if two errors occur. It
also cannot correct any errors. The error detection overhead is 1 parity bit for
8 bits of data, i.e., 12.5 percent. A Hamming code can detect up to two errors in
a record and can correct a single error. The correct technical name of the code is
(nd +np, nd) Hamming code. Comparison of the parity bit values in a record read
off the medium with parity values computed from the read data by applying the
rules of the code indicates which bit is in error. The value in this bit is inverted to
correct the error. Figure 14.4 gives the rules for determining the number of parity
bits and computing their values. A (12, 8) Hamming code can perform error detec-
tion and correction for 1 byte. It uses 12 – 8, i.e., 4, parity bits. Thus, the overhead is
50 percent. The overhead decreases with the number of data bits; e.g., 8 parity
bits are adequate for 30 bytes of data.

The CRC is computed from data that is to be transmitted or recorded, and it
is put into the CRC field of a record. It can indicate whether one or more errors
have occurred in any byte of data, or if bytes have been swapped or reordered.
When a record is read, a CRC is computed from its data field and compared with
the number in its CRC field. An error exists if the two do not match. A practical
value of nc is 16 or 32 bits, irrespective of the value of nd . With nc < nd , error
detection is not foolproof because two bit streams, say s1 and s2, could generate
the same CRC. If one of them is transformed into the other due to errors, the
errors cannot be detected using CRC. The probability of this happening is 1

2nc .
Hence, reliability of CRC is 1 − 1

2nc . For a 16-bit CRC, the reliability is 99.9985
percent. For a 32-bit CRC, reliability is 99.9999 percent.

14.3.1 Magnetic Tapes
The I/O medium in a tape or cartridge is a strip of magnetic material on which
information is recorded in the form of 1s and 0s, using principles of electromag-
netic recording. The recording on a tape is multitrack; each track records a bit

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 551 — #9

Chapter 14 Implementation of File Operations 551

Data and parity

Parity bitnd + np bits

Parity bits approach

Data CRC

nd bits nc bits

CRC approach

Calculating a parity bit

A parity bit is computed from a collection of data bits by modulo-2 arithmetic, i.e., by
using the exclusive OR operator ⊕. For example, the parity bit for 4 data bits bi , bj , bk
and bl is computed as follows: p = bi ⊕ bj ⊕ bk ⊕ bl ⊕ c1, where c1 is a constant which
is 1 for odd parity and 0 for even parity.

Hamming code

Step 1: Determine the number of parity bits as the smallest value of np which satisfies
nd +np +1 ≤ 2np . Fix parity bit positions as powers of 2, i.e., positions b1, b2, b4, b8, . . . ,
in a record, where bits are numbered as b1, b2 . . . from the start of the record.
Step 2: Compute the parity bit occupying the 2nth position from the following bits,
excepting itself: For each value of c2, take 2n consecutive bits starting on bit position
2n + c2 × 2n+1, where c2 has values 1, 2, 3, . . . , etc. Thus, parity bit b1 is computed
from b3, b5, . . . ; b2 is computed from b3, b6, b7, b10, b11 . . . ; and b4 is computed from
b5, b6, b7, b12, b13, b14, b15,
Step 3: When a record is received or read, compute parity bits and compare them with
the parity bit values in the record. Form a binary number e1, e2, e4, . . . as follows: ei is 1
if the received and computed values of parity bit bi are different; otherwise, it is 0. No
error has occurred if this number is zero. If a single error exists, this number indicates
the position of the bit which is in error.
Example: If 5-bit data 10110 is to be transmitted or recorded, 4 parity bits are used.
They occupy positions b1, b2, b4, and b8. The record contains 011001100, where the
parity bits have been underlined. If the record is read as 011001101, the error word is
1001, indicating that the error has occurred in position 9.

Cyclic redundancy check (CRC)

Step 1: A bit stream is looked upon as a binary polynomial, i.e., a polynomial each of
whose coefficients is either a 0 or a 1. For example, a bit stream 1101 is looked upon as
a binary polynomial 1 × x3 + 1 × x2 + 0 × x1 + 1 × x0, i.e., x3 + x2 + 1. Here a + is
interpreted as modulo-2 addition, i.e., an exclusive-OR operation ⊕.
Step 2: The data in a received record is augmented by adding nc zeroes at its end. The
polynomial obtained from the augmented data is divided by a predefined polynomial of
degree nc + 1. The remainder of this division is a polynomial of degree nc. Coefficients
in this polynomial form the CRC. For example, the CRC for data 11100101 using a
predefined 5-bit polynomial 11011 is 0100.
Step 3: When a record is received, the receiver computes the CRC from the data part
of the record and compares it with the CRC part of the record. A mismatch indicates
error(s). Alternatively, the receiver computes the CRC from the entire record. An error
exists if the computed CRC is not 0.

Figure 14.4 Approaches to error detection and correction.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 552 — #10

552 Part 4 File Systems

of a byte or a parity bit. A read–write head is positioned on each track. Tape
drives are sequential-access devices. The operations that can be performed on
these devices are: read/write a specified number of bytes, skip, and rewind.
Because of the sequential nature, tapes and DAT cartridges are popularly used for
archival purposes, which involve reading or writing of all records on the medium.

In older tape technologies, adjoining records on a tape are separated by
an interrecord gap. This gap provides for the start–stop motion of the medium
between the reading or writing of successive records. The access time (ta) during
a read or write operation is caused by both the need to achieve uniform-velocity
motion of the I/O medium before the data transfer can be initiated and the need
to position the next record under the read–write head. Total I/O time for a record
of size s bytes is given by the formula

tio = ta + s
d × v

where d recording density
v velocity of the I/O medium.

Interrecord gaps cause heavy penalties—they lead to poor use of the record-
ing medium and slow down file processing activities. Despite the drawback of
poor utilization of the recording medium, in the 1990s tapes offered a cost per
megabyte that was one-tenth of that offered by disks. However, tapes lost this
edge in the subsequent decade because disk technology made rapid progress and
large disks became both practical and cheap. To regain the cost advantage, a
streaming tape technology was developed.

A streaming tape contains a single record that is stored without a break
irrespective of its size. Hence interrecord gaps do not exist even when a large
volume of data is recorded on a tape. A streaming tape device contains a buffer.
A write operation is started after putting some data in the buffer. The device writes
the data from the buffer onto the tape. To keep the streaming tape operating at
full speed, it is important to put new data into the buffer at a speed that matches
the writing speed of the tape. The tape drive stops writing when it finds that the
buffer is empty. When new data is put into the buffer, the tape drive resumes the
write operation. To avoid creating an interrecord gap, the tape is first moved back
and then moved forward again so that it can gather recording velocity by the time
the head passes over the last bit it has written. It now resumes writing. Effectively,
resumption of writing consumes a few milliseconds.

The streaming tape provides a high data transfer rate if the buffer is not
allowed to become empty at any time. However, if the tape stops frequently, the
effective writing speed can drop to a much smaller value. The physical IOCS has
to ensure that this does not happen. The stop–start–resume operation of the tape
also requires precise positioning and alignment, which makes streaming tapes
expensive.

14.3.2 Magnetic Disks
The essential storage element of a magnetic disk is a flat circular object called a
platter, which rotates on its axis. The circular surfaces of a platter are covered with

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 553 — #11

Chapter 14 Implementation of File Operations 553

magnetic material. A single read–write head records on and reads from a surface,
so a byte is recorded serially along a circular track on the disk surface. The read–
write head can move radially over the platter. For each position of the head, the
recorded information forms a separate circular track. Parity information is not
used in a disk; a CRC is written with each record to support error detection.

A start-of-track position is marked on each track, and records of a track are
given serial numbers with respect to this mark. The disk can access any record
whose address is specified by the pair (track number, record number). The access
time for a disk record is given by

ta = ts + tr (14.2)

where ts seek time, i.e., time to position the head on the required track
tr rotational latency, i.e., time to access desired record on the track

The seek time is the time required for the mechanical motion of the head. Rota-
tional latency arises because an I/O operation can start only when the required
record is about to start passing under the head. The average rotational latency
is the time taken for half a disk revolution. Representative values of the average
rotational latency are 3–4 ms, seek times are in the range of 5–15 ms, and data
transfer rates are of the order of tens of megabytes per second.

Variations in disk organization have been motivated by the desire to reduce
the access time of a disk, increase its capacity and data transfer rate, and reduce
its price. The cheapest disk is a floppy disk which is slow and has a small capacity.
A hard disk has a higher capacity; still higher capacities are obtained mainly
through mounting of many platters on the same spindle. One read–write head
is provided for each circular surface of a platter—that is one above and one
below each platter. All heads in the disk pack are mounted on a single access
arm, which is called the actuator, and so at any moment all heads are located
on identically positioned tracks of different surfaces. The set of such identi-
cally positioned tracks outlines a cylinder (see Figure 14.5), a form that can be
exploited for data organization. All the tracks in a cylinder are accessible from
the same position of the access arm; thus, cylinders make several disk tracks
accessible without requiring any movement of the disk heads, and so I/O opera-
tions on records situated in the same cylinder can be performed without incurring
seek times.

A hard disk can be looked upon as consisting of a set of concentric cylinders,
from the innermost to the outermost. A record’s address can thus be specified
by the triple (cylinder number, surface number, record number). The necessary
commands for operation of a disk device are seek (cylinder number, surface
number) and read/write a specified record.

Disk capacity can be increased by increasing the number of platters. How-
ever, more platters require more disk heads, which in turn require a heavier
actuator and impose more mechanical stresses. Hence disks tend to have only
a few platters. When a very large capacity is desired, applications use multiple
disk drives. (In Section 14.3.5, we discuss how arrangements using multiple disk

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 554 — #12

554 Part 4 File Systems

Read-Write heads

Access arm

Cylinder

Track

Platter

Figure 14.5 A disk pack.

drives can also be exploited to provide high data transfer rates and high reliabil-
ity.) Seek times can be reduced by using higher rotational speeds, but high speeds
increase the cost of mechanical components, and so fast disks tend to have smaller
platters to compensate. PCs and desktop computers tend to use cheaper disks.
These disks have large platters, which provide large capacity, and comparatively
low rotational speeds. In contrast, servers tend to use costlier disks that are smaller
and rotate faster.

To optimize use of disk surface, tracks are organized into sectors. A sector
is a standard-sized “slot” in a track for a disk record. The sector size is chosen
to ensure minimum wastage of recording capacity due to interrecord gaps on the
surface. Sectoring can be made a part of the disk hardware (hard sectoring), or
could be implemented by the software (soft sectoring).

14.3.3 Data Staggering Techniques
Recall from Section 14.3 that the data read off an I/O device during a read opera-
tion is stored in the DMA buffer, from where the DMA transfers it to memory as
a single block. But while this transfer is under way, the disk continues to revolve
and one or more following sectors may pass under the head by the time the trans-
fer is completed. Hence if a read operation on the next consecutive sector is issued
immediately after the previous one, the required sector may have passed under the
head by the time the DMA can initiate the read operation. Such a read operation
can be performed only in the next disk revolution. Analogously, during a write
operation, recording of the data is initiated only after data is transferred from
memory to the DMA buffer, so recording in the next sector cannot take place
in the same revolution if the sector passes under the read–write head before the
data transfer is completed. A similar problem is caused by head switching time,
which is the time taken to switch operation between heads positioned on differ-
ent platters. By this time a few sectors of the next platter have passed under the
read–write head. The seek time to move the head to the next cylinder also causes
a similar problem. All these problems adversely affect the throughput of a disk.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 555 — #13

Chapter 14 Implementation of File Operations 555

The techniques of sector interleaving, head skewing, and cylinder skewing
address the problems caused by data transfer time, head switch time, and seek
time, respectively. These techniques, collectively called data staggering techniques,
ensure that the next consecutively numbered sector will not pass under the read–
write head before the head will be in a position to perform a read/write operation
on it, so that the operation can be performed in the current revolution of the disk.
Sector interleaving staggers sectors along a track in such a way that consecutively
numbered sectors are separated by a few other sectors. This arrangement permits
the I/O operation for a sector to be completed by the time the sector with the next
consecutive address passes under the head. Head skewing staggers the “start of
track” positions on different platters of a cylinder so that the times when the last
sector of a track and the first sector of the next track pass under their respective
heads are separated by the head switch time. Cylinder skewing analogously stag-
gers the “start of track” positions on consecutive cylinders to allow for the seek
time after reading the last sector on a cylinder.

Figure 14.6 illustrates how the techniques of sector interleaving, head skew-
ing, and cylinder skewing reduce rotational delays through data staggering. It is
assumed that the disk has five sectors in a track and uses ten platters, so a cylinder
has 50 sectors in it. For each data staggering technique, the left and right parts
of the figure show operation of the disk without and with data staggering. The
first line in each part shows which sectors pass under the read-write heads of the
disk at different times. The next few lines show what activities involved in an I/O
operation are in progress as the disk rotates—they constitute a timing diagram
for the I/O operation.

Figure 14.6(a) illustrates sector interleaving. We assume the disk head is
positioned immediately before the first sector on the first cylinder where a file
is stored, so the command to read the first sector does not incur any seek or
rotational latency. Reading of the sector into the DMA buffer completes a little
before time t1, and the transfer of this data to memory by the DMA controller
completes a little after time t1. The command to read the next sector is issued
immediately after reading of the previous sector completes, i.e., a little after time
t1. By that time the head is positioned somewhere over sector 2, so sector 2
cannot be read immediately. A rotational delay now occurs that lasts until sector
2 passes under the head in the next revolution of the disk, i.e., until time t6. The
right part of the figure shows the arrangement of sectors when sector interleaving
is employed; sectors 1 and 2 are separated by sector 4 on the track. When the
command to read sector 2 is issued, the read–write head is located almost at the
end of sector 4. Now, the rotational delay lasts only until time t2, when sector 2
starts passing under the head.

Figure 14.6(b) illustrates head skewing. Here, we show the arrangement of
sectors in the first two tracks allocated to a file. The read command on sector
5, which is the last sector on the first track, is issued at time t10. The reading
of this sector and transfer of the data to memory completes before time t11,
so the read command for sector 6 is issued some time before t11. However, it
involves head switching because t11 is located on a different track; head switch-
ing is not completed before time t11 when sector 6 starts passing under the head.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 556 — #14

556 Part 4 File Systems

(a) Sector interleaving

Sectors of

first track

Seek

Rotational

latency

Read

Memory

transfer

(b) Head skewing

Sectors of

first two

tracks

Seek and

head

switching

Rotational

latency

Read

Memory

transfer

(c) Cylinder skewing

Sectors of

first tracks of

2 cylinders

Seek

Rotational

latency

Read

Memory

transfer

With data staggeringWithout data staggering

1 4 1 42 5 3

0 t1 t2 t3 t4 t5 t6

1 2 1 23 4 5

0 t1 t2 t3 t4 t5 t6

9 10 9 106 7 8

5 1 5 12 3 4

t11 t12 t13 t14 t15 t16

5 1 5 12 3 4

10 6 10 67 8 9

t11t10 t10t12 t13 t14 t15 t16

50 46 50 4647 48 49

55 51 55 5152 53 54

50 46 50 4647 48 49

53 54 53 5455 51 52

t20
t21 t22 t23 t24 t25 t26t20

t21 t22 t23 t24 t25 t26

Figure 14.6 Effect of data staggering: (a) sector interleaving; (b) head skewing; and
(c) cylinder skewing.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 557 — #15

Chapter 14 Implementation of File Operations 557

So reading of sector 6 cannot be commenced immediately; it has to wait until
sector 6 starts passing under the head in the next revolution of the disk at time t16.
This rotational delay is reduced by staggering the recording on the second track
by one sector position, as shown in the right half of the figure. Now, the reading
of sector 6 can commence at time t12, thus incurring a much smaller rotational
delay. Figure 14.6(c) illustrates cylinder skewing. Here, we show the arrange-
ment of sectors in the first track of the first two cylinders allocated to a file. The
seek operation for reading sector 51 results in movement of the read–write head
by one cylinder. The seek operation completes a little before t23; however, sector
51 has passed under the read–write head by that time, hence a rotational delay is
incurred until sector 51 passes under the head in the next revolution at time t26.
As shown in the right half of the figure, data staggering by two sector positions
enables sector 51 to be read starting at time t23.

Sector interleaving had a dramatic impact on the throughput of older disks.
Modern disks have controllers that transfer data to and from memory at very
high rates, so that sector interleaving is not needed. However, we discuss sector
interleaving because it provides an insight into optimizing the peak disk through-
put through data staggering. Head and cylinder skewing are still used to optimize
the peak disk throughput.

Figure 14.7 illustrates sector interleaving. The interleaving factor (Fint) is the
number of sectors that separate consecutively numbered sectors on the same disk
track. Part (b) of Figure 14.7 illustrates the arrangement when Fint = 2, i.e., con-
secutively numbered sectors have two other sectors between them. Interleaving
is uniform, that is, each pair of consecutively numbered sectors are separated by
the same number of sectors, if either n − 1 or n + 1 is a multiple of Fint + 1,
where n is the number of sectors on a track. The arrangement in the figure, where
there are 8 sectors to a track, is uniform, whereas interleaving with Fint = 1 or 3
would not be uniform (see the second column in Table 14.2—some consecutive
sectors are separated by more than Fint sectors). As we shall see in Example 14.2,
a performance penalty is incurred when interleaving is not uniform.

Let tst be the time taken to transfer one sector’s data between the DMA
controller and memory, and let tsect be the time taken for one sector to pass under
the disk head. Optimal performance is obtained if tst = Fint × tsect, since I/O on
the next sector can be started immediately after the DMA finishes transferring

1

2

3

4

8

7

6

5

(a)

1

4

7

2

6

3

8

5

(b)

Figure 14.7 Sectors in a disk track: (a) without interleaving; (b) with interleaving factor = 2.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 558 — #16

558 Part 4 File Systems

the previous sector’s data. If tst > Fint × tsect, the next sector would pass under
the head before the DMA finishes data transfer for the previous sector. Hence the
next sector can be accessed only in the next revolution of the disk. tst < Fint ×tsect
implies that the disk would be idle for some time before the next sector is accessed
in the same revolution. Disk throughput suffers in both these cases. Analogously,
throughput would suffer when other data staggering techniques are employed if
data is staggered by too little or too much. The following example illustrates the
variation of peak disk throughput with the sector interleaving factor.

•
Example 14.2 Sector Interleaving

A disk completes one revolution in 8 ms and has 8 sectors on a track, each
containing 1000 bytes. The values of tst and tsect satisfy the relation tsect <

tst < 2 × tsect. To obtain the peak disk throughput for a value of Fint, we read
the sectors in the order 1, . . . , 8 over and over again and observe the number
of bytes transferred in one second. Figure 14.8 shows variation of peak disk
throughput for different values of Fint.

Table 14.2 shows the arrangement of sectors for different values of Fint
and the corresponding disk throughput represented in units of kB/s where
1 kB/s is 1000 bytes per second. Interleaving with Fint = 1 or 3 is not uniform.
For Fint = 1, the arrangement of sectors on the track is 1, 5, 2, 6, 3, 7, 4, 8.
After reading sector 1, sector 2 cannot be read in the same revolution. Hence
the disk takes 10 ms to read sector 2. Similarly, sectors 3 and 4 require 10 ms.
Sectors 4 and 5 are separated by 2 sectors. Hence they can be read in the same
revolution of the disk; the disk takes only 3 ms to read sector 5 after sector 4
has been read. Reading of sectors 6, 7, and 8 requires 10 ms each, while reading
of sector 1 requires 9 ms.

Figure 14.8 shows the variation of throughput with different values of Fint.
Fint = 2 is adequate to satisfy tst ≤ Fint × tsect, and so the throughput increases
sharply. Values of Fint > 2 are counterproductive since the disk spends some
idle time before the next sector passes under the head. Hence the throughput
dips for Fint > 2.
•

0

Peak

disk

throughput

50

150

250

350

1 2 3 4

Interleaving factor

Figure 14.8 Variation of throughput with sector interleaving factor.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 559 — #17

Chapter 14 Implementation of File Operations 559

Table 14.2 Sector Arrangement and Performance in Sector
Interleaving

Fint

Arrangement of
sectors tio for sectors (ms)

Average
tio (ms)

Peak throughput
(kB/s)

0 1, 2, 3, 4, 5, 6, 7, 8 9, 9, 9, 9, 9, 9, 9, 9 9 111.1
1 1, 5, 2, 6, 3, 7, 4, 8 9, 3, 10, 10, 10, 10, 10, 10 9 111.1
2 1, 4, 7, 2, 5, 8, 3, 6 3, 3, 3, 3, 3, 3, 3, 3 3 333.3
3 1, 3, 5, 7, 2, 4, 6, 8 9, 5, 5, 5, 4, 4, 4, 4 5 200.0
4 1, 6, 3, 8, 5, 2, 7, 4 5, 5, 5, 5, 5, 5, 5, 5 5 200.0

14.3.4 Disk Attachment Technologies
EIDE and SCSI Interfaces Enhanced integrated device electronics (EIDE) and
small computer system interconnect (SCSI) are the leading disk interfaces for
attaching disks to computers. Disks attached this way have come to be called
host-attached storage. Integrated device electronics (IDE, also called advanced
technology attachment, or ATA) was the predecessor of EIDE. Before EIDE
was developed, the different features of IDE and SCSI made each of them ideal
for specific applications. For example, IDE was considered to provide excellent
performance for sequential I/O while SCSI was considered to be superior for
random I/O. Accordingly, IDE disks were used in the low-cost PC and desk-
top environment while SCSI disks were used in the server environment. With
EIDE, the gap in random-access performance has narrowed considerably. Both
retain their traditional niche areas, but EIDE and SCSI now compete in some
application segments, such as backup storage media. Both kinds of disks provide
a large buffer of a few megabytes.

IDE disks primarily worked with programmed I/O modes, though they sup-
ported a DMA mode as well. EIDE supports new DMA modes including the
first party, i.e., bus mastering, DMA mode; the ultra ATA mode of EIDE sup-
ports transfer rates of 33.3 MB per second, which is 8 times faster than the IDE
data transfer rate. EIDE disks use larger platters, rotate relatively slowly, and are
cheap. Up to two disks can be connected to EIDE; however, only one of them
can operate at a time.

SCSI supports several DMA modes; the fastest of these provides a data
transfer rate of 80 MB per second. SCSI permits up to 7 disks to be con-
nected to it. SCSI is called an interface, but technically it is an I/O bus
because it permits simultaneous operation of many disks connected to it. SCSI
disks are smaller, rotate faster, and are more expensive. Accordingly, they pro-
vide smaller seek times and higher data transfer rates. A SCSI disk supports
scatter/gather I/O wherein it can transfer data from a disk block into non-
contiguous areas of memory or collect data from noncontiguous areas and
write them into a disk block (see Section 12.2.4). It also provides several

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 560 — #18

560 Part 4 File Systems

functionalities that were traditionally performed by the IOCS, including the
following:

• Disk scheduling: A SCSI disk accepts several I/O requests concurrently and
stores them into a queue of requests. It uses its knowledge of the current
position of disk heads and the rotational position of the platters to select an
I/O operation that involves the minimum delay due to seek and rotational
latency. This feature is described in Section 14.7.

• Bad block recovery: A SCSI disk detects bad disk blocks and assigns substitute
disk blocks for them. It maintains a table showing addresses of bad blocks
and their substitutes. If an I/O command is directed toward a bad disk block,
the disk automatically redirects it at the substitute block. This feature speeds
up I/O operations by performing bad block management in the device rather
than in the access method layer of IOCS.

• Prefetching of data: A SCSI disk contains a buffer. At every I/O opera-
tion, it reads the next few disk blocks into the buffer. This action speeds
up subsequent read operations during processing of a sequential file.

Network-Attached Storage and Storage Area Networks Host attachment of
disks suffers from poor scalability because disk sizes are limited by prevailing
technologies and the number of disks that can be attached to a host is limited
by the interface. Therefore, organizations have to constantly replace disks or
add more servers to meet their requirements for more storage. This problem is
addressed by facilitating use of remote disks through a network. This approach
enables the storage capacity to be increased incrementally and seamlessly, and
storage to be shared by applications operating on many servers.

A network-attached storage (NAS) is a disk or a redundant array of inexpen-
sive disks (RAID), which is discussed in the next section, attached directly to a
local area network (LAN) [see Figure 14.9(a)]. NAS is an inexpensive method
of providing large disk capacities, because it employs the hardware and software
existing in a LAN environment. Functionalities such as a file server or a dis-
tributed file system (see Chapter 20) can be provided by using the NAS. However,
use of NAS faces some difficulties in practice: LANs use protocols that optimize
application-to-application data transfers whereas the file server or distributed file
system requires use of a file-based protocol like the Sun NFS protocol discussed
in Section 20.6.1, or Microsoft’s common interface file system (CIFS) protocol.
The load created by the file-based protocol slows down networking applications.

A storage area network (SAN) is an alternative arrangement that avoids slow-
down of networking applications. A SAN is a network composed of disks that
provides a high bandwidth [see Figure 14.9(b)]. The network could be a dedicated
fiber channel that uses the SCSI protocol, or an Internet protocol (IP) network
that uses the iSCSI protocol. Several servers can be connected to a SAN; each
server can access the entire storage. This feature facilitates formation of high-
performance clusters of computer systems (see Section 16.2). Data integrity and
availability is provided through the redundancy of disks and servers connected
to the SAN.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 561 — #19

Chapter 14 Implementation of File Operations 561

(a)

Clients

Network-

attached

storage

Local area

network (LAN)

Local area

network (LAN)

(b)

Clients

Storage area

network (SAN)

ServerServer

Figure 14.9 (a) Network-attached storage; (b) storage area network.

New technologies that employ the iSCSI protocol over an IP network to
combine the features of the NAS and SAN technologies are emerging. These
technologies support both block-accessed SAN devices and file-accessed NAS
devices without incurring the cost of a fiber channel.

14.3.5 RAID
Computer users constantly clamor for disks with larger capacity, faster access to
data, higher data transfer rate and higher reliability. All these issues are addressed
through arrangements involving multiple disks. The redundant array of inexpen-
sive disks (RAID) technology was originally employed for providing large disk
capacities at a low cost through use of several inexpensive disks. However, the
recent trend is to enhance disk capacities through network-attached storage and
storage area networks (see Section 14.3.4). Hence today’s RAID technology is
used for providing fast access, high data transfer rates, and high reliability; it is
more appropriately called redundant array of independent disks.

The RAID technology spreads the data involved in an I/O operation
across several disks and performs I/O operations on these disks in paral-
lel. This feature can provide either fast access or a high data transfer rate,
depending on the arrangement employed. High reliability is achieved by record-
ing redundant information; however, the redundancy employed in a RAID is
qualitatively different from that employed in conventional disks: A conven-
tional disk provides reliability only by writing a CRC at the end of every
record (see Section 14.3), whereas redundancy techniques in a RAID employ
extra disks to store redundant information so that data can be recovered even
when some disks fail. Access to redundant information does not cost addi-
tional I/O time because both data and redundant information can be accessed in
parallel.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 562 — #20

562 Part 4 File Systems

Recording in a RAID is performed as follows: A disk strip is a unit of data on
a disk, which can be a sector, a disk block, or a disk track. Identically positioned
disk strips on different disks form a disk stripe. A file is allocated an integral
number of disk stripes. The data residing in the strips of the same stripe can be
read or written simultaneously because they exist on different disks. If the disk
array contains n disks, theoretically the data transfer rate could be n times that
of a single disk. Practical values of data transfer rates depend on overhead and
on any factors that may limit the parallelism of I/O operations while processing
a file.

Several RAID organizations using different redundancy techniques and disk
striping arrangements have been proposed. These organizations are called RAID
levels. Table 14.3 summarizes the properties of various RAID levels. RAID levels
0 + 1 and 1 + 0, which are hybrid organizations based on RAID levels 0 and 1,
and RAID level 5 are the most popular RAID organizations.

RAID Level 0 Level 0 employs only disk striping; it is not really a RAID organi-
zation because it does not involve redundant recording of data. It provides high
data transfer rates, particularly if each disk is under a separate disk controller.
However, it suffers from low reliability. Data becomes inaccessible even if a single
disk is inoperative. Also, lack of redundancy implies that data is lost if a disk
fails, and so reliability still has to be achieved by means other than the RAID
organization.

RAID Level 1 Level 1 RAID organization writes identical information on two
disks; it is called disk mirroring. When a process writes or updates a record in a
file, one copy of the record is written on each disk. This way, RAID 1 incurs 100
percent overhead; however, one copy of a record is guaranteed to be accessible
even if a single fault occurs. During a read, the RAID simply reads the copy
that can be accessed earlier. High data transfer rates can be achieved during read
operations because both disks could operate in parallel when no errors arise.

Hybrid organizations that use the features of RAID levels 0 and 1 are often
used in practice to obtain both high data transfer rates as in RAID level 0 and
high reliability as in RAID level 1. RAID 0 +1 employs disk striping as in RAID
0, and mirrors each stripe as in RAID 1. RAID 1 + 0 first mirrors each disk
and then performs striping. These organizations provide different kinds of fault
tolerance: In RAID 0+1, a single error in a copy of a stripe makes the entire copy
inaccessible, so errors in both copies of a stripe would make the stripe inaccessible.
In RAID 1 + 0, an error on one disk would be tolerated by accessing its mirror
disk. A stripe would become inaccessible only if both a disk and its mirror disk
have errors.

RAID Level 2 This RAID organization uses bit striping, i.e., it stores each bit of
data or redundancy information on a different disk. When data is to be written,
the ith data strip contains the ith bit of each byte and a parity strip contains one
of the parity bits computed from corresponding bits in all strips of the stripe. An
error correcting code is used to compute and store redundancy information for
each byte (see Section 14.3). Thus, 8 disks are used to record the bits of a byte,

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 563 — #21

Chapter 14 Implementation of File Operations 563

Table 14.3 RAID Levels

Level Technique Description

Level 0 Disk striping

...

Data is interleaved on several disks. During an I/O oper-
ation, the disks are accessed in parallel. Potentially, this
organization can provide an n-fold increase in data transfer
rates when n disks are used.

Level 1 Disk mirroring

Disk 1 Disk 2

Identical data is recorded on two disks. During reading
of data, the copy that is accessible faster is used. One of
the copies is accessible even after a failure occurs. Read
operations can be performed in parallel if errors do not
arise.

Level 2 Error correction codes

DD P P

...

Redundancy information is recorded to detect and cor-
rect errors. Each bit of data or redundancy information is
stored on a different disk and is read or written in parallel.
Provides high data transfer rates.

Level 3 Bit-interleaved parity

DD P

...

Analogous to level 2, except that it uses a single parity disk
for error correction. An error that occurs while reading
data from a disk is detected by its device controller. The
parity bit is used to recover lost data.

Level 4 Block-interleaved parity

DD P

...

Writes a block of data, i.e., consecutive bytes of data, into
a strip and computes a single parity strip for strips of
a stripe. Provides high data transfer rates for large read
operations. Small read operations have low data transfer
rates; however, many such operations can be performed in
parallel.

Level 5 Block-interleaved

distributed parity

...

Analogous to level 4, except that the parity information
is distributed across all disk drives. Prevents the parity
disk from becoming an I/O bottleneck as in level 4. Also
provides better read performance than level 4.

Level 6 P + Q redundancy

DD P P

... ...

Analogous to RAID level 5, except that it uses two inde-
pendent distributed parity schemes. Supports recovery
from failure of two disks.

Note: D and P indicate disks that contain only data and only parity information, respectively. indicates a strip. • Indicates bits of a byte that
are stored on different disks, and their parity bits. indicates a strip containing only parity information.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 564 — #22

564 Part 4 File Systems

and a few more disks are used to record redundancy information. For example,
the (12, 8) Hamming code, which is adequate for recovery from a single failure,
would require 4 redundancy bits. The RAID 2 arrangement employing this code
would consist of 8 data disks and 4 disks containing redundancy information,
each storing 1 bit of data or parity information. This RAID arrangement can
read/write data 8 times faster than a single disk. However, it is expensive because
several disks are needed to store redundancy information, hence it is not practical.

RAID Level 3 Level 3 employs disk striping with a bit-interleaved parity scheme;
i.e., it employs bit interleaving—it writes the bits of a byte on different disks—and
employs a single parity bit per byte. The data strips of a stripe are stored on 8 data
disks and the parity strip is stored on the parity disk. Thus, RAID level 3 employs
a significantly smaller amount of redundant information than RAID level 2. A
read operation is performed as follows: The disk controller checks whether an
error exists within a strip. If so, it ignores the entire strip and recovers the data in
the strip using the parity strip—the value of a data bit is the modulo-2 difference
between the parity bit and the modulo-2 sum of corresponding bits of other strips
in the stripe.

All data disks participate in an I/O operation. This feature provides high
data transfer rates. However, it also implies that only one I/O operation can be in
progress at any time. Another drawback of RAID level 3 is that parity compu-
tation can be a significant drain of the CPU power. Hence parity computation is
off-loaded to the RAID itself.

RAID Level 4 Level 4 is analogous to level 3 except that it employs block-
interleaved parity. Each strip accommodates a block of data, i.e., a few consecutive
bytes of data. If an I/O operation involves a large amount of data, it will involve
all data disks as in RAID level 3, hence RAID level 4 can provide high data
transfer rates for large I/O operations. A fault-free read operation whose data fits
into one block will involve only a single data disk, so small I/O operations have
small data transfer rates; however, several such I/O operations can be performed
in parallel.

A write operation involves computation of parity information based on data
recorded in all strips of a stripe. This can be achieved by first reading data con-
tained in all strips of a stripe, replacing the data in some of the strips with new
data that is to be written, computing the new parity information, and writing
the new data and parity information on all disks. However, this procedure limits
parallelism because all disks are involved in the write operation even when new
data is to be written into a single block blocki of stripe stripei . Hence, the parity
information is computed by a simpler method that involves the exclusive OR of
three items—the old information in the parity block, the old data in block blocki ,
and the new data to be written in block blocki . This way, only the disk(s) contain-
ing the block(s) to be written into and the parity block are involved in the write
operation, and so several small fault-free read operations involving other disks
can be performed in parallel with the write operation.

RAID Level 5 Level 5 uses block level parity as in level 4, but distributes the
parity information across all disks in the RAID. This technique permits small

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 565 — #23

Chapter 14 Implementation of File Operations 565

write operations that involve a single data block to be performed in parallel if their
parity information is located on different disks. Small fault-free read operations
can be performed in parallel as in RAID level 4. Hence this organization is
particularly suitable for small I/O operations performed at a high rate. Larger
operations cannot be performed in parallel; however, the organization provides
high data transfer rates for such operations. It also provides higher peak disk
throughput for read operations than level 4 because one more disk can participate
in read operations.

RAID Level 6 This organization uses two independent distributed parity
schemes. These schemes support recovery from failure of two disks. Peak disk
throughput is slightly higher than in level 5 because of the existence of one more
disk.

14.3.6 Optical Disks
Data is recorded on an optical disk by creating changes in reflectivity of the disk,
and it is read by a laser and a photosensitive assembly that picks up changes in
reflectivity of the surface under the disk head. A compact disc (CD) is an optical
disk. The disk writer stores a 1 by causing a change in reflectivity compared
with the data bit in the preceding position, and stores a 0 by retaining the same
reflectivity as the preceding bit.

Recording on a CD can be performed by various means. Mass-produced
prerecorded CDs that contain music are produced by mechanical means. They
are called stamped CDs. Recording can also be performed by using a laser beam.
A laser-recorded CD contains three layers: a polycarbonate layer, a polymer dye,
and a reflective metallic layer. When a strong laser beam is directed at a spot
on the CD, it heats the dye and creates a permanent mark on the disk called
a pit, which has a lower reflectivity. This is why the recording process is called
“burning” a CD. Data is recorded in a shallow spiral groove on a CD that extends
from the inside diameter of the disk to its outside diameter. A CD contains
22,188 spiral revolutions, which are about 1.6 microns apart. Each revolution
is called a track. Speed control and absolute time information are prerecorded
on a CD.

A CD contains several regions reserved for use by a CD recorder. The power
calibration area is used to calibrate the power of the writing laser. The program
memory area stores track information for all sessions in the CD. It is followed
by lead-in, program, and lead-out areas for each session. A lead-in area is a table
of contents of a session. It indicates the number of tracks, track start and stop
points, and the length of the session. The program area contains data tracks of
the session. The lead-out area indicates end of a session.

Two features of a CD are important from an operating system viewpoint—
recording of data and creation of a file system. Data is recorded in the form
of sectors on a track. A CD-ROM intended for computer use contains sec-
tors of 2 KB. It has a capacity of about 650 MB. A DVD (digital versatile disk),
on the other hand, has a capacity of about 5 GB. Data is recorded on either

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 566 — #24

566 Part 4 File Systems

Primary volume

descriptor (PVD)

Path table

root

A B C

D

u

z

v w x

Figure 14.10 Primary volume descriptor of a CD.

type of disk by using the encoding method called CIRC (cross-interleaved Reed–
Solomon code). CIRC encodes a unit of data that is 24 bytes, i.e., 192 bits, in
size, to produce an encoded unit that is 588 bits in size. Apart from data, this
unit contains information concerning relative and absolute timing, placement of
tracks and indices; synchronization data, and error prevention and correction
data. To make error correction reliable, data is scrambled while encoding. This
way, if a few bytes of consecutively recorded data are lost, a large number of bytes
may lose only 1 bit each. This data can be recovered by using the error correction
information.

ISO Standard 9660 defines a common logical format for files and directories
on a CD. It defines basic requirements for data interchange and also provides
for optional extensions to Windows, Unix, and Macintosh environments. The
Rockridge extension allows Unix-specific long filenames, multilevel directories,
access privileges, and file types. The universal disk format (UDF) is also designed
for a common logical, i.e., cross-platform, file system. UDF can coexist with ISO
9660, and many CD drives can write information in either format.

Figure 14.10 shows how a file system is implemented on a CD volume. The
primary volume descriptor (PVD) is recorded in logical sector 16. It indicates
the position of the root directory, and the position of a path table. Each entry in
the path table contains information about the location of a directory. Its use to
locate a required directory avoids searches through intermediate directories in a
path name; in a Unix system, for example, it avoids searches through directories
root and A for a pathname ˜A/D/z.

14.4 DEVICE-LEVEL I/O
•

Four functions are involved in implementing I/O at the level of an I/O device—
initiating an I/O operation, performing read/write operations, checking the status
of an I/O device, and handling interrupts raised by devices. The first three of these
functions are performed through I/O instructions and I/O commands described in
Section 14.2. Table 14.4 describes features in the computer system that support

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 567 — #25

Chapter 14 Implementation of File Operations 567

Table 14.4 Computer System Features Supporting Functions
in Device-Level I/O

Function Description of computer system feature supporting it

Initiating an
I/O operation

The I/O instruction I/O-init (cu, d), command_address initiates
an I/O operation (see Example 14.1). The I/O-init instruction
sets a condition code to indicate whether the I/O operation has
been initiated successfully.

Performing
read/write

Device-specific I/O commands implement tasks like positioning
of read–write heads over a record and reading of a record.

Checking
device status

The I/O instruction I/O-status (cu, d) obtains status information
for an I/O device. The information indicates whether the device
is busy, free, or in an error state, and cause of the error, if any.

Handling
interrupts

The interrupt hardware implements the interrupt action
described in Section 2.2. The CPU is switched to the physical
IOCS when an I/O completion interrupt occurs.

these functions. We assume that I/O operations are performed in the DMA mode
(see Section 2.2.4). In Section 14.4.1, we discuss details of device-level I/O and in
Section 14.5, we discuss the facilities provided by the physical IOCS to simplify
device-level I/O.

14.4.1 I/O Programming
We use the term I/O programming to describe all actions involved in performing
an I/O operation. To understand two key aspects of I/O programming—namely,
I/O initiation and I/O completion processing—we consider the program of
Figure 14.11, which is an assembly language version of the following program in
a higher-level language:

read a, b;
. . .

result := a + b;

The program uses a bare machine, i.e., a computer system that does not have any
software layers between the program and the machine’s hardware. The program
uses the flag IO_FLAG to indicate whether the I/O operation is in progress. It sets
the IO_FLAG to 1, initiates an I/O operation and loops until the I/O operation
completes before performing its computations.

I/O Initiation When the I/O-init instruction of Figure 14.11 is executed, the
CPU sends the device address to the DMA controller. The DMA controller
finds whether the device is available for the I/O operation, and informs the CPU
accordingly; the CPU sets an appropriate condition code in the condition code
field (also called the flags field) of the PSW. If the device is available, the DMA also
starts the I/O operation by accessing and decoding the first I/O command. The

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 568 — #26

568 Part 4 File Systems

SET IO_FLAG, ‘1’ To indicate that I/O is in progress
RETRY: IO_init (cu, d), COMMANDS Read a, b

BC cc1, IN_PROGRESS Branch if I/O initiation is successful
BC cc2, RETRY Loop if the device is busy
BC cc3, ERROR Error. Inform system administrator

IN_PROGRESS: COMP IO_FLAG, ‘1’ Check whether I/O is still in progress
BC EQ, IN_PROGRESS Loop if I/O is in progress

{ Perform result := a+b;}

COMMANDS: {I/O commands}
· · ·

IO_INTRPT: SET IO_FLAG, ‘0’ Interrupt processing: I/O is complete
· · ·

Figure 14.11 I/O programming.

I/O-init instruction is now complete. The I/O operation, if initiated, will proceed
in parallel with the CPU’s execution of instructions.

In the next few instructions, the program examines the condition code set
by the I/O-init instruction to handle any exceptional situations that might have
occurred when the I/O-init instruction was executed. The instruction BC cc1,
IN_PROGRESS is a conditional branch instruction. Condition code cc1 would
have been set if I/O initiation was successful. In that event the I/O operation
would have already started, and so execution of the program is diverted to the
instruction with the label IN_PROGRESS. Condition code cc2 indicates that the
device was busy, so the program would retry the I/O instruction until I/O initiation
succeeds. Condition code cc3 indicates that an I/O error occurred, so the program
would report the error to the system administrator. These details are not shown
in Figure 14.11.

I/O Completion Processing The program cannot perform the computation
result := a+b; until the I/O operation completes. However, the program’s
execution cannot be suspended because it is executing on a bare machine. The
program addresses this problem by using the flag IO_flag to indicate whether
the I/O operation has completed. To start with, it sets the value of IO_FLAG to 1
to indicate that I/O is in progress. After starting the I/O operation, it enters a loop
at IN_PROGRESS where it repeatedly checks this flag. This is a busy wait—see
Section 6.5.1.

When an I/O interrupt occurs indicating the end of the I/O operation, con-
trol is transferred to the instruction with the label IO_INTRPT by the interrupt
action (see Section 2.2). This is the start of the I/O interrupt servicing routine,
which changes IO_FLAG to 0 and returns. This action ends the busy wait at
IN_PROGRESS.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 569 — #27

Chapter 14 Implementation of File Operations 569

14.5 THE PHYSICAL IOCS
•

The purpose of physical IOCS is to simplify the code of user processes by hiding
the complexity of I/O operations and to ensure high system performance. It is
achieved through the following three functions:

• Handling device-level I/O: The physical IOCS provides an interface for device-
level I/O that eliminates the complexity of I/O programming discussed earlier
in Section 14.4.1.

• Synchronizing a process with completion of an I/O operation: This synchro-
nization avoids the busy wait following I/O initiation in Figure 14.11 and
releases the CPU for use by other processes.

• I/O scheduling: The physical IOCS schedules the I/O operations to be
performed on a device in a suitable order to provide high device throughput.

Handling Device-Level I/O While requesting initiation of an I/O operation, a pro-
cess needs to specify only the device address and details of the I/O operation. The
physical IOCS initiates an I/O operation immediately if the I/O device is available;
otherwise, it notes the request for I/O initiation and initiates it sometime later. In
either case, control is returned to the process that made the I/O request. When
an interrupt arises, the physical IOCS notes which I/O operation has completed,
and initiates another operation on the I/O device, if one is pending.

Synchronizing a Process with Completion of an I/O Operation The physical
IOCS provides an “await I/O completion” functionality to block a process until
an I/O operation completes. Its parameters are the address of the I/O device and
details of the I/O operation. When a process invokes this functionality, the phys-
ical IOCS checks whether the I/O operation has already completed. If it has not,
it requests the kernel to block the process. This action avoids the busy wait of
Figure 14.11. The state of the process is changed to ready when the I/O operation
completes.

I/O Scheduling The throughput of an I/O device can be computed as the num-
ber of bytes of data transferred per unit time, or the number of I/O operations
performed per unit time. Throughput can be optimized by minimizing the access
times suffered during I/O operations. In disk devices it can be achieved by reduc-
ing the rotational latency and mechanical motion of disk heads by performing
I/O operations in a suitable order. This function is called I/O scheduling. It is
performed automatically by the physical IOCS; it is not explicitly invoked by a
process.

14.5.1 Logical Devices
A logical device is an abstraction that is employed for a variety of useful purposes.
In the simplest case, a logical device is merely a name for a physical I/O device.
Use of a logical device in the code of a process solves a practical difficulty—the
address of a physical device that a process will use is not known when its code is

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 570 — #28

570 Part 4 File Systems

written. While creating a process that uses a logical device, the kernel assigns a
physical device to the logical device. When the process performs an operation on
the logical device, the physical IOCS implements the operation on the physical
device assigned to the logical device.

A logical device can also be a virtual device as described in Section 1.3.2.
In this case, the kernel has to map the logical device into a part of a physical
device. Many logical disks may be mapped into a physical disk in this manner;
the I/O operations directed at the logical disks would all be performed on the
same physical disk.

14.5.2 Physical IOCS Data Structures
The physical IOCS uses the following data structures (see Figure 14.12):

• Physical device table (PDT)
• Logical device table (LDT)
• I/O control block (IOCB)
• I/O queue (IOQ)

The physical device table (PDT) is a systemwide data structure. Each entry in
it contains information about one I/O device. The IOQ pointer field of an entry
points to the queue of I/O operations that are to be performed on the device. Each
entry in the queue is a pointer to an I/O control block (IOCB), which contains
information concerning one I/O operation. The current operation field points to
the I/O control block that contains information concerning the I/O operation

std_err

std_out

Logical
device
name

Logical
device
name

Logical device

table (LDT)

of process Pi

Physical
device

address

Disk

Device
address

Device
type

IOQ
pointer

Current
operation

Physical device

table (PDT)

I/O Queue (IOQ)

Kernel space

User space
I/O

details
Status
flag

I/O control block (IOCB)

Figure 14.12 Data structures of the physical IOCS.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 571 — #29

Chapter 14 Implementation of File Operations 571

that has been initiated on the device. This information is useful in processing
completion of the I/O operation.

The logical device table (LDT) is a per-process data structure. There is one
copy of the LDT for every process in the system; this copy is accessible from
the process control block (PCB) of the process. The LDT contains one entry
for each logical device used by the process. The field physical device address in
the entry contains information concerning the current assignment, if any, for the
logical device. Note that many logical devices, possibly belonging to different user
processes, may be assigned the same physical device such as a disk.

An I/O control block (IOCB) contains all information pertaining to an I/O
operation. The important fields in an IOCB are logical device name, I/O details,
and status flag. The I/O details field contains the address of the first I/O com-
mand. The status flag indicates whether an I/O operation is “in progress” or
“completed”; it is the equivalent of IO_FLAG in Figure 14.11.

The I/O queue (IOQ) is a list of all I/O operations pending on a physical device.
Each entry of the IOQ contains a pointer to an I/O control block. Information
in the IOQ is used for I/O scheduling.

The PDT is formed at system boot time by obtaining details of all devices
connected to the system. The size of the LDT is specified at boot time. An LDT
is formed when a process is created. An I/O control block is allocated when
an I/O operation is to be initiated. The IOQ is shown as an array of pointers in
Figure 14.12. However, it is more practical to organize it as a linked list of IOCBs.

The PDT, LDT, and IOQ data structures are found within the kernel, whereas
a process creates an IOCB in its own address space, initializes its fields, and uses
it as a parameter in a call on a physical IOCS module. The IOCB’s presence in
the address space of the process permits the process to check the status of an I/O
operation without having to invoke the kernel.

14.5.3 Organization of Physical IOCS
Figure 14.13 shows organization of the physical IOCS. Modules above the dashed
line execute with the CPU in the user mode, while those below this line execute
with the CPU in the kernel mode. The physical IOCS is activated in one of two
ways:

• Through calls on the physical IOCS library modules start-io or
await-io by a process, with an I/O control block as a parameter

• Through occurrence of an I/O completion interrupt

When a process invokes start-io, start-io invokes the I/O initiator through
a system call. The I/O initiator obtains the address of the physical device on which
the I/O operation is to be performed, enters the I/O operation in the IOQ of the
physical device and passes control to the I/O scheduler. The I/O scheduler invokes
the I/O initiator to start the I/O operation immediately if no other I/O operations
exist in the IOQ of the device. Control is then passed to the process scheduler,
which returns it to the process that had requested the I/O operation.

When the await-io module of the physical IOCS is invoked, it determines
the status of the I/O operation from the status flag of the I/O control block. If

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 572 — #30

572 Part 4 File Systems

Process

Await-ioStart-io

Obtain

physical device

address

I/O

scheduler

I/O

initiator

Process

scheduler

IOQ

I/O

interrupt

I/O

completion

handler

Error

recovery

Data
Control

Figure 14.13 Organization of the physical IOCS.

the I/O operation is complete, control is immediately returned to the process;
otherwise, the await-io module makes a system call to block the process. At
an I/O completion interrupt from a device, an error recovery routine is invoked
if an I/O error has occurred; otherwise, the status flag in the I/O control block
describing the current operation on the device is set to “completed,” the ECB-
PCB arrangement of Example 5.4 is used to activate a process (if any) awaiting
completion of the I/O operation, and the I/O scheduler is invoked. It selects one
of the I/O operations pending on the device and hands it over to the I/O initiator.
The I/O initiator initiates the I/O operation and passes control to the process
scheduler.

14.5.4 Implementation of Physical IOCS
Recall from Section 13.1 that the compiler replaces the file processing statements
in a program with calls on the file system operations open, read, and close.
As seen in Section 13.8, the file system operation read makes a call on the IOCS
library module seq-read. seq-read contains code that contributes to efficient
processing of a file (more about it later in this chapter). This code makes a call on
the physical IOCS library module start-io to perform device-level I/O. The
linker links all these modules of the file system, IOCS, and the physical IOCS
with the compiled program.

A process representing execution of the linked program makes a call on the
file system operation open to open a file named alpha. open constructs a
file control block (FCB) for alpha, i.e., fcbalpha, in the open files table (OFT)
and returns internal idalpha, which is the offset of the FCB in the OFT (see
Section 13.9.1). The following actions take place when the process wishes to read
a record of alpha (see Figure 14.14):

1. The process calls the file system module read, which invokes the IOCS
module seq-read with internal idalpha as a parameter.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 573 — #31

Chapter 14 Implementation of File Operations 573

File system module
read

···

···

seq_read
(internal idalpha)

IOCS module
seq_read

···

···

start_io
 (Ad(<OPN>))

Physical IOCS library
module start-io

···

<Load> <reg>,
Ad(<OPN>)

<SI> <int_code>
···

Figure 14.14 Invocation of the physical IOCS library module start-io in a process.

2. When seq-read decides to read a record of alpha, it uses internal idalpha

to access fcbalpha, obtains the address of fmtalpha and finds the address of
the disk block that contains the desired record. It now forms an I/O control
block for the I/O operation and calls start-io with the address of the
I/O control block as a parameter. The I/O control block is named OPN in
Figure 14.14.

3. start-io loads the address of the I/O control block in a general-purpose
register and executes an SI instruction with an appropriate code to invoke
the physical IOCS.

I/O Initiation When invoked through a system call, the physical IOCS obtains
the address of the IOCB from the general-purpose register and performs the
following actions:

1. Sets the status flag field of the IOCB to “in progress.”
2. Enters the address of the I/O control block in the IOQ of the physical device.
3. Initiates the I/O operation, if the I/O device is not busy.
4. Returns control to the process.

To enter the I/O control block address in the correct IOQ, the physical IOCS
extracts the logical device id from the IOCB, and accesses the logical device table
(LDT) of the process to obtain the address of the physical device assigned to the
logical device. It then obtains the address of the IOQ for the physical device from
its entry in the physical device table (PDT) and adds the IOCB address at the
end of the IOQ. The I/O operation can be initiated immediately if there are no
other entries in the IOQ. If other entries exist, presumably one of the previous
I/O operations is in progress, so the I/O operation cannot be initiated now.

I/O initiation is performed as described in Section 14.4.1. The status flag field
of the I/O control block is used in a manner analogous to the use of IO_FLAG in
Figure 14.11. Address of the I/O control block is stored in the current operation
field of the device’s entry in the physical device table.

I/O Completion Handling The I/O completion handler is implicitly invoked at
the occurrence of an I/O completion interrupt. The interrupt hardware provides
the address of the physical device raising the I/O interrupt. The I/O completion
handler queries the device to obtain an I/O status code describing the cause of
the interrupt. It now performs the following actions: If the I/O operation was

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 574 — #32

574 Part 4 File Systems

unsuccessful, it consults the device type field of the PDT entry and invokes an
appropriate I/O error recovery routine with the address of the I/O control block
as a parameter. Otherwise, it sets the status flag of the I/O control block to
“completed” and removes the address of the I/O control block from the IOQ of
the device. If any I/O operations are pending on the device, it initiates one of
them through the I/O scheduler (see Section 14.7), and puts the address of its I/O
control block in the current operation field of the PDT entry. If the process that
had issued the just-completed I/O operation is blocked awaiting completion of
the I/O operation, it changes the state of the process to ready. The arrangement
used for this purpose is described in the following.

Awaiting Completion of an I/O Operation A process invokes this function
through the physical IOCS library call await-io (<IOCB_address>) where
the I/O control block describes the awaited I/O operation. The physical IOCS
merely tests the status flag in the I/O control block, and returns control to the
process if the flag value is “completed.” If not, the physical IOCS library rou-
tine makes a “block me” system call to block itself on the event “successful I/O
completion.” The kernel creates an event control block (ECB) for the I/O com-
pletion event and enters it in the list of event control blocks. This event control
block contains the id of the process waiting for completion of the I/O operation.
When the I/O completion event occurs, the I/O completion handler locates its
event control block, extracts the id of the process, and marks an appropriate
change in its state. This arrangement ensures that the process would be acti-
vated at the completion of the I/O operation and would return from the call on
the physical IOCS library routine. (See Example 5.4 for an explanation of this
arrangement.)

14.6 DEVICE DRIVERS
•

In the physical IOCS design described in previous sections, the physical IOCS
handles I/O initiation, I/O completion and error recovery for all classes of I/O
devices within the system. Consequently, addition of a new class of I/O devices
requires changes to the physical IOCS, which can be both complex and expensive
because the physical IOCS may be a part of the kernel. Modern operating sys-
tems overcome this problem through a different arrangement. The physical IOCS
provides only generic support for I/O operations, and invokes a specialized device
driver (DD) module for handling device-level details for a specific class of devices.
Thus device drivers are not part of the physical IOCS. This arrangement enables
new classes of I/O devices to be added to the system without having to modify the
physical IOCS. Device drivers are loaded by the system boot procedure depend-
ing on the classes of I/O devices connected to the computer. Alternatively, device
drivers can be loaded whenever needed during operation of the OS. This feature
is particularly useful for providing a plug-and-play capability.

Figure 14.15 illustrates how device drivers are used by the physical IOCS.
The entry of a device in the physical device table (PDT) shows the name of its

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 575 — #33

Chapter 14 Implementation of File Operations 575

IOQ

Physical device table

(PDT)

Disk_DD

Tape_DD

Device
address

DD
name

IOQ
pointer

Tape_DD

Table of

entry points

Int_proc:

IO_init: Disk_DD

Figure 14.15 Use of device drivers.

device driver in the DD name field. The Disk_DD, the device driver for the sys-
tem disk, has been loaded at system boot time. The Tape_DD would be loaded
on demand, so it is shown as a dashed box. A device driver contains function-
alities of the four physical IOCS modules shown in Figure 14.13, namely, I/O
scheduler, I/O initiator, I/O completion handler, and error recovery. A table of
entry points located at the start of its code contains start addresses of these
functionalities.

When the physical IOCS is invoked for initiating an I/O operation, it locates
the PDT entry of the device and performs the generic function of entering details
of the I/O operation into the IOQ of the device. It now consults the DD name
field of the PDT entry, obtains the identity of the device driver and loads the
device driver in memory if it is not already in memory. It now obtains the address
of the entry point for I/O initiator in the device driver by following the standard
conventions and passes control to it. The device driver performs I/O initiation
processing and returns control to the physical IOCS, which passes control to
the process scheduler. When the physical IOCS is invoked implicitly at an I/O
interrupt, it performs similar actions to identify the device driver entry point for
handling interrupts and passes control to it. After servicing the interrupt, the
device driver returns control to the physical IOCS, which passes it to the process
scheduler.

Device-Level Optimization One important optimization is disk scheduling to
ensure good throughput, which is discussed in the next section. Another opti-
mization is reducing the number of seek operations in a disk. This optimization
can be performed in various ways. One simple way is to read several adjoining
disk blocks when a read operation is to be performed. It amounts to buffer-
ing of data, which is useful in sequential files. Device drivers for RAID units
reduce the number of seek operations by combining several I/O operations into a
single one.

A device driver can also support a novel or nonstandard I/O device. A good
example of the former is a RAM disk, which is simply a virtual disk maintained in
the RAM of a computer system: An area in RAM is reserved for use as a disk. All
read and write operations directed at the disk are actually performed on relevant
parts of the RAM. Operation of the RAM disk is extremely fast. However, data

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 576 — #34

576 Part 4 File Systems

stored in it is lost if the system crashes or if the RAM disk is abolished. For this
reason, only scratch files of compilers and processes are typically created in a
RAM disk. Files intended for storage of data over a period of time are stored on
conventional disk devices.

14.7 DISK SCHEDULING
•

The seek time of a disk block depends on its position relative to the current posi-
tion of the disk heads. Consequently, the total seek time involved in performing a
set of I/O operations depends on the order in which the operations are performed.
The throughput of a disk defined as the number of I/O operations performed per
second, also depends on the order in which I/O operations are performed. Hence
the physical IOCS and device drivers for disks employ a disk scheduling policy
to perform disk I/O operations in a suitable order. We shall discuss the following
disk scheduling policies before describing disk scheduling in modern systems:

• First-come, first-served (FCFS) scheduling: Select the I/O operation that was
requested earliest.

• Shortest seek time first (SSTF) scheduling: Select the I/O operation whose
seek time from the current position of disk heads is the shortest.

• SCAN scheduling: This policy moves the disk heads from one end of the
platter to the other, servicing I/O operations for blocks on each track or
cylinder before moving on to the next one. It is called a scan. When the
disk heads reach the other end of the platter, they are moved in the reverse
direction and newly arrived requests are processed in a reverse scan. A variant
called look scheduling reverses the direction of disk heads when no more I/O
operations can be serviced in the current direction. It is also called the elevator
algorithm.

• Circular SCAN or CSCAN scheduling: This policy performs a scan as in
SCAN scheduling. However, it never performs a reverse scan; instead, it
moves the heads back to that end of the platter from where they started
and initiates another scan. The circular look variant (we will call it C-look
scheduling) moves the heads only as far as needed to service the last I/O
operation in a scan before starting another scan.

The FCFS disk scheduling policy is easy to implement but does not guarantee
good disk throughput. To implement the shortest seek time first (SSTF) policy,
the physical IOCS uses a model of the disk to compute the seek time of the
disk block involved in an I/O operation given the current position of the disk
heads. However, the SSTF policy is analogous to the shortest request next (SRN)
scheduling policy, so while it achieves good disk throughput, it may starve some
I/O requests. SSTF and the various scan policies can be efficiently implemented
if the IOQs are maintained in sorted order by track number.

Example 14.3 describes the operation of various disk scheduling policies for
a set of five I/O operations. The look policy completes all I/O operations of this

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 577 — #35

Chapter 14 Implementation of File Operations 577

example in the shortest amount of time. However, none of these policies is a clear
winner in practice because the pattern of disk accesses cannot be predicted.

•
Example 14.3Disk Scheduling Policies

Figure 14.16 summarizes the performance of the FCFS, SSTF, Look, and C-
Look disk scheduling policies for five I/O operations on a hypothetical disk
having 200 tracks. The requests are made at different instants of time. It is
assumed that the previous I/O operation completes when the system clock
reads 160 ms. The time required for the disk heads to move from track1
to track2 is assumed to be a linear function of the difference between their
positions:

thm = tconst + | track1 − track2 | × tpt

where tconst is a constant, tpt is the per-track head movement time and thm
is the total head movement time. We assume the rotational latency and data
transfer times to be negligible, tconst = 0 ms and tpt = 1 ms. A practical value
of tconst is 2 ms. Also, the formula for thm is not linear in practice.

Figure 14.16 shows the following details for each decision: time at which
the decision is made, pending requests and head position at that time, the
scheduled I/O operation, and its seek time. The last column shows the total
seek time for each policy. The plots in the lower half of the figure show the
disk head movement for each policy. Note that the total seek times in different
scheduling policies vary greatly. SSTF is better than FCFS; however look has
the smallest total seek time in this example. It is better than C-Look because
it can reverse the direction of disk-head traversal after completing the I/O
operation on track 100, and service the operations on tracks 75, 40, and 12,
whereas C-Look starts a new scan with the operation on track 12.

•
Scheduling in the disk itself can surpass scheduling in the physical IOCS

because the disk uses a more precise model that considers the seek time as well
as the rotational latency of a disk block. Hence it can make fine distinctions
between two I/O commands that would appear equivalent to the physical IOCS.
As an example, consider I/O commands that concern disk blocks that are +n
and −n tracks away from the current position of the disk heads. Both commands
have equal seek times; the physical IOCS would have to make a random choice
between them. However, given the current rotational position of the platters and
the position of the required disk block or sector, the disk may find that the block
that is +n tracks away may already be passing under the heads by the time the
heads are positioned on that track. It would mean that the disk block can be read
only in the next revolution of the disk. The disk block that is −n tracks away, on
the other hand, might pass under the heads sometime after the heads have been
positioned on that track. Hence its rotational latency would be smaller than that
of the disk block that is +n tracks away. Such finer distinctions can contribute to
higher throughput of the disk.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 578 — #36

578 Part 4 File Systems

tconst and tpt = 0 ms and 1 ms, respectively
Current head position = Track 65
Direction of last movement = Toward higher numbered tracks
Current clock time = 160 ms

Requested I/O operations:

Serial number 1 2 3 4 5

Track number 12 85 40 100 75

Time of arrival 65 80 110 120 175

Scheduling details:

Scheduling decisions � Seek
Policy Details 1 2 3 4 5 time

FCFS Time of decision 160 213 286 331 391
Pending requests 1, 2, 3, 4 2, 3, 4, 5 3, 4, 5 4, 5 5
Head position 65 12 85 40 100
Selected request 1 2 3 4 5
Seek time 53 73 45 60 25 256

SSTF Time of decision 160 180 190 215 275
Pending requests 1, 2, 3, 4 1, 3, 4, 5 1, 3, 4 1, 3 1
Head position 65 85 75 100 40
Selected request 2 5 4 3 1
Seek time 20 10 25 60 28 143

Look Time of decision 160 180 195 220 255
Pending requests 1, 2, 3, 4 1, 3, 4, 5 1, 3, 5 1, 3 1
Head position 65 85 100 75 40
Selected request 2 4 5 3 1
Seek time 20 15 25 35 28 123

C-Look Time of decision 160 180 195 283 311
Pending requests 1, 2, 3, 4 1, 3, 4, 5 1, 3, 5 3, 5 5
Head position 65 85 100 12 40
Selected request 2 4 1 3 5
Seek time 20 15 88 28 35 186

Time

Track

no.

160

FCFS

416

65

85

100

75

40

12

SSTF

160 303

65

85

100

75

40

12

Look

160 283

65

85

100

75

40

12

C-Look

160 346

65

85

100

75

40

12

Figure 14.16 Disk scheduling summary using the FCFS, SSTF, Look, and C-Look policies.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 579 — #37

Chapter 14 Implementation of File Operations 579

Scheduling in SCSI Disks A SCSI disk can accept up to 32 commands concur-
rently from the physical IOCS. The physical IOCS associates a tag with each I/O
command to indicate how it wants the disk to handle it. The disk stores the com-
mands in a command table and uses their tags while making scheduling decisions.
This feature is called tagged command queuing.

The tag in a command can be of three kinds—simple queue tag, ordered
queue tag, and head-of-queue tag. A simple queue tag in a command indicates
that the command can be reordered to optimize disk throughput. A command
with an ordered queue tag indicates that all commands that were entered in the
queue earlier should be scheduled before it is scheduled. Such a command should
be issued periodically to ensure that I/O operations do not starve, i.e., do not
remain indefinitely in the command table. A command with a head-of-queue tag
should be performed immediately by the disk; i.e., it should be performed ahead
of any other command. This feature may be used to ensure that file data are
written to the disk before metadata (see the discussion of journaling file systems
in Section 13.12).

Scheduling in the disk also has its drawbacks. Since the disk treats all I/O
operations uniformly, it might interfere with file-level optimizations performed
by access method modules. Consider processing of a sequential file through a
few buffers, which we discuss later in Section 14.8. When the file is opened, the
access method layer issues commands to read the first few records of the file in its
buffers. To exploit the advantages of buffering, these read commands should be
performed in the order in which they are issued. However, the disk might reorder
them on the basis of their seek and rotational latencies. Hence a later record of
the file may be read in while a process waits to access an earlier record! When a
disk is used for both paging and user files, the OS may wish to perform paging
operations at a higher priority. Scheduling in the disk may interfere with this
requirement.

These drawbacks of disk scheduling lead to the obvious question—should
disk scheduling be performed in the disk, in the physical IOCS or in both? Use
of a more precise model to compute seek and rotational latencies indicates that
scheduling should be performed in the disk. Command ordering requirements
to support file-level access optimization imply that scheduling should also be
performed in the physical IOCS. An OS designer has to use the tagged command
queuing features to ensure that these schedulers work harmoniously.

14.8 BUFFERING OF RECORDS
•

To process the records in a sequential file using the physical IOCS, a process
initiates a read operation on a record by invoking the start-io module and
immediately invokes the await-io module to check whether the read operation
has completed. The await-io module blocks the process until the I/O oper-
ation completes (see Section 14.5.4). Thus the process suffers a wait time for
each record, which affects its performance. An access method for sequential files
reduces the wait times faced by a process through the technique of buffering of

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 580 — #38

580 Part 4 File Systems

records, which tries to overlap the I/O and CPU activities in the process. It is
achieved through two means:

• Prefetching an input record into an I/O buffer, or
• Postwriting an output record from an I/O buffer

where an I/O buffer, or simply a buffer, is a memory area that is temporarily used
to hold the data involved in an I/O operation.

In prefetching, the I/O operation to read the next record into a buffer is
started sometime before the record is actually needed by the process—it may
be started while the process is engaged in processing the previous record. This
arrangement overlaps a part of the time spent in reading the next record with
processing of the previous record, which reduces the wait time for the next record.
In postwriting, the record to be written is simply copied into a buffer when the
process issues a write operation and the process is allowed to continue. Actual
writing is performed from the buffer sometime later. It can overlap with (a part
of) processing of the next record.

We use the following notation while discussing the technique of buffering:

tio I/O time per record [see Eq. (14.1)]
tc copying time per record (i.e., the amount of CPU time required

to copy a record from one memory area to another)
tp processing time per record (i.e., the amount of CPU time con-

sumed by the process in processing a record)
tw wait time per record (i.e., the amount of time for which the process

has to wait before the next record is available for processing)
tee effective elapsed time per record (i.e., the interval between the

time when a process wishes to start processing a record and the
time when the processing of the record is completed)

tw and tee are analogously defined for an output file.
Consider a program that reads and processes 100 records from a sequential

file F. We consider three versions of the program named Unbuf_P, Single_buf_P,
and Multi_buf_P that use zero, one, and n buffers, n > 1, respectively. We assume
tio = 75 ms, tp = 50 ms and tc = 5 ms.

Figure 14.17 illustrates the operation and performance of processes that rep-
resent executions of Unbuf_P, Single_buf_P, and Multi_buf_P. For convenience,
we assume a process to have the same name as the program it executes. Each
column of the figure shows the code of a program, illustrates the steps involved in
reading and processing a record and shows a timing chart depicting performance
of the process executing it. The statements “start an I/O operation” and “await
I/O completion” in the programs are translated into calls on the physical IOCS
modules start-io and await-io with appropriate operands. The start I/O
statement reads the next record of F, if any, into a memory area. If there are no
more records in F, the end_of_file condition is set when an await I/O statement
is executed. Unbuf_P uses a single area of memory named Rec_area to read and
process a record of file F [see Figure 14.17(a)]. It issues a read operation and

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 581 — #39

Chapter 14 Implementation of File Operations 581

Programs

Program Unbuf_P Program Single_buf_P Program Multi_buf_P

start an I/O operation for
read (F, Rec_area);

await I/O completion;
while (not end_of_file(F))
begin

process Rec_area;
start an I/O operation for

read (F, Rec_area);
await I/O completion;

end

start an I/O operation for
read (F, Buffer);

await I/O completion;
while (not end_of_file(F))
begin

copy Buffer into Rec_area;
start an I/O operation for

read (F, Buffer);
process Rec_area;
await I/O completion;

end

for i := 1 to n
start an I/O operation

for read (F, Bufi);
await I/O completion on

Buf 1;
k := 1;
while (not end_of_file(F))

copy Bufk into Rec_area;
start an I/O operation for

read (F, Buf k);
process Rec_area;
k := (k mod n) +1;
await I/O completion on

Buf k ;
end

Rec_area

Rec_area
UP

Buffer Buf1

Buf2

Buf1

Buffer Rec_area

Buffer Rec_area

Buf1 Rec_area

Buf1 Rec_area

Rec_area
Buffer

Rec_area
UP

Rec_area
SP Rec_area

MP

Rec_area
MP

Buffer

Rec_area
SP

75

I

C

Buf
1

150

75

I

C

Buf
2

15075

I

C

Buffer 155

80

C

P

155 20513075

C

P

130 160 21075

I

P

Rec_area Rec_area Rec_area125 200

Timing Diagrams (I: I/O operation, C: Copying, P: Processing)

I/O, Copying, and Processing activites (UP:Unbuf_P, SP:Single_buf_P, MP:Multi_buf_P)

(a) (b) (c)

Figure 14.17 Unbuffered and buffered file processing. (Note: the end_of_file condition is set
when the statement await I/O completion is executed for an operation that tried to read past
the end of a file.)

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 582 — #40

582 Part 4 File Systems

awaits its completion before processing the record in Rec_area itself. The timing
diagram shows that I/O is performed on Rec_area from 0 to 75 ms, and CPU
processing of the record held in Rec_area occurs between 75 ms and 125 ms.
Hence tw = tio and tee = tio + tp. This sequence of operations repeats 100 times,
hence the elapsed time of the process is 100 × (75 + 50) ms = 12.5 seconds.

Figure 14.17(b) illustrates operation of Single_buf_P, which uses a single
buffer area named Buffer. The process issues a read operation to read the first
record into Buffer and awaits its completion. It now enters the main loop of the
program, which repeats the following four-step procedure 99 times:

1. Copy the record from Buffer into Rec_area.
2. Initiate an I/O operation on Buffer.
3. Process the record held in Rec_area.
4. Await end of I/O operation on Buffer.

As shown in the timing diagram of Figure 14.17(b), the process faces an
I/O wait in Step 1 until the read operation on Buffer completes. It now per-
forms Steps 2–4. Hence after copying the record into Rec_area, it initiates a read
operation for the second record and starts processing the first record. These two
activities proceed in parallel, thus overlapping processing of the first record with
I/O for the second record. We depict this parallelism by drawing a rectangular
box to enclose these two actions in the activities part of Figure 14.17(b). Step 1,
i.e., copying of the next record from Buffer to Rec_area, is performed only after
both, reading of the next record and processing of the current record, complete.
It is once again followed by processing of a record and reading of the next record
in parallel. Hence, the wait time before processing each of records 2–99 is

tw = (tio − tp) + tc, if tio > tp (14.3)

= tc, if tio ≤ tp

and so buffering is more effective when tio ≤ tp.
For records 2–99, effective elapsed time per record (tee) is given by

tee = tw + tp

= tc + max (tio, tp) (14.4)

Thus the process goes through three distinct phases—the start-up phase when
the first record is read, the steady state when a record is copied and processed
while the next record is read in parallel, and the final phase when the last record
is copied and processed. Accordingly, the total elapsed time of the process is
given by

Total elapsed time = tio + (number of records − 1) × tee + (tc + tp) (14.5)

From Eqs. (14.4) and (14.5), tee is 80 ms and total elapsed time of the process is
75 + 99 × 80 + 55 ms = 8.05 seconds. If tio had been 50 ms, the total elapsed time
of the process would have been 5.55 seconds.

Figure 14.17(c) illustrates operation of the process Multi_buf_P, which
uses buffer areas named Buf 1, Buf 2, . . . , Buf n. At the start of file processing,

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 583 — #41

Chapter 14 Implementation of File Operations 583

Multi_buf_P initiates I/O operations on all n buffers. Inside the file processing
loop, it uses the buffers in turn, following the four steps of the program loop
for processing a record in a buffer. The statement k := (k mod n) +1; ensures
that the buffers are used in a cyclic manner. The process waits for I/O to com-
plete on the next buffer, copies the record from the buffer into Rec_area, invokes
start-io for reading the next record in the buffer, and then processes the record
in Rec_area.

Presence of multiple buffers causes one significant difference between oper-
ations of Multi_buf_P and Single_buf_P. Consider processing of the first two
records by Multi_buf_P [see Figure 14.17(c)]. When I/O on Buf 1 completes,
Multi_buf_P would copy the first record from Buf 1 into Rec_area and start pro-
cessing it. A read operation on Buf 2 would have been requested earlier, so the
physical IOCS would initiate this read operation when the I/O on Buf 1 completes.
Hence this operation would overlap with the copying out of the first record from
Buf 1. In Figure 14.17(c), we depict this parallelism as follows: The dashed rect-
angular box around copying and processing of the record from Buf 1 is meant
to indicate that these actions are performed sequentially. The rectangular box
enclosing this box and the I/O operation on Buf 2 indicates that these two activi-
ties are performed in parallel. Accordingly, the effective elapsed time per record
is given by

tw = tio − tp if tio > tc + tp (14.6)

= tc, if tio ≤ tc + tp

tee = max(tio, tc + tp) (14.7)

From Eq. (14.7), tee = 75 ms. The total elapsed time, which is governed by
Eq. (14.5), is 75 + 99 × 75 + 55 ms = 7.555 seconds, which is marginally better
than Single_Buf_P’s elapsed time of 8.05 seconds.

The ratio of the elapsed times of Unbuf_P and Multi_buf_P is the speedup
factor due to use of multiple buffers. Considering the steady state, the speedup
factor is approximately

tio + tp
max (tio, tc + tp)

From Eq. (14.7), it can be seen that its best value is obtained when tio = tc + tp.
This value has the upper bound of 2.

Consider the operation of Multi_Buf_P when more than one buffer is used.
Figure 14.18 illustrates a typical situation during execution of Multi_Buf_P. The
CPU has recently copied the record from Buf i−1 into Rec_area and started an
I/O operation on Buf i−1. Thus, I/O operations have been initiated on all n buffers.
Some of the I/O operations, specifically, those on Bufi , . . . , Bufj−1, are already
complete. I/O is currently in progress for Bufj , while Bufj+1, . . ., Bufn, Buf1, . . . ,
Bufi−1 are currently in the queue for I/O initiation. Thus (j − i) buffers are full at
the moment, I/O is in progress for one buffer, and (n− j + i − 1) buffers are in the
queue for I/O.

The value of (j − i) depends on the values of tio and tp. If tio < tp, i.e., if
the I/O operation for a record requires less time than its processing, we can see

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 584 — #42

584 Part 4 File Systems

2
1

n
n-1

j
i-1

i
i+1

I/O

Empty buffer

Full buffer

Figure 14.18 Use of buffers in Buf_P.

that buffers Bufi+1, . . . , Bufn, Buf1, . . . , Bufi−2 will be full, and Bufi−1 will be
either under I/O or full when the CPU is processing the record copied out of
Buf i−1. If tio > tp, the steady-state situation will be that Bufi is under I/O when
the CPU is processing the record copied out of Bufi−1 and buffers Bufi+1, . . . ,
Bufn, Buf1, . . . , Bufi−1 are empty.

Use of multiple buffers is irrelevant if a process manipulates each record
individually. However, it makes a significant difference if a process manipulates
many records together. Using n buffers helps in such a case because many buffers
may be full when the process needs a few records together. The next example
illustrates this point.

•
Example 14.4 Use of Multiple Buffers

Each line of a program written in language L is stored in a record of file F. The
compiler of L used to compile this program needs to read an entire statement
into memory before starting its processing. A statement may contain up to
l lines. The I/O wait for the compiler can be eliminated only if the following
conditions hold:

1. tio ≤ tpl, and
2. l ≤ n

where tpl is the average processing time for each line of a statement. Condition
1 ensures that in the steady state, all buffers will be full when the compiler
finishes processing one statement. Condition 2 ensures that at least l buffers
are full when the compiler finishes processing a statement. Hence the compiler
will not face I/O waits. It would face I/O waits if l > n, e.g., if l = 3 and it used
two buffers.
•

14.9 BLOCKING OF RECORDS
•

In unbuffered processing of a file by a process, the time spent in performing
I/O operations may dominate the elapsed time of the process. Even in buffered

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 585 — #43

Chapter 14 Implementation of File Operations 585

processing of a file, tw > 0 if tio > tp, or tio > tc + tp [see Eqs. (14.3) and
(14.6)]. Thus both unbuffered and buffered processing of files would benefit from
a reduction in tio. The technique of blocking of records reduces the effective I/O
time per record by reading or writing many records in a single I/O operation.
From Eq. (14.1), tio = ta + tx. Hence, a program that processes two records from
a file that does not employ blocking would incur the total I/O time of 2×(ta +tx).
If blocking is employed and a process reads or writes two records in a single I/O
operation, the total I/O time would reduce to ta + 2 × tx.

Logical and Physical Records When several records are read or written together,
it is necessary to differentiate between how file data is accessed and processed in
a process, and how it is written on an I/O device. A logical record is the unit of
file data for accessing and processing in a process. A physical record, also called a
block, is the unit of data for transfer to or from an I/O device. The blocking factor
of a file is the number of logical records in one physical record. A file is said to
employ blocking of records if the blocking factor is greater than 1. Figure 14.19
shows a file that uses a blocking factor of 3. Note that when blocking is employed,
interrecord gaps on the I/O media separate physical records, i.e., blocks, rather
than logical records.

Deblocking Actions A read operation on a file containing blocked records trans-
fers m logical records to memory, where m is the blocking factor. Actions for
extracting a logical record from a block for use in a process are collectively called
deblocking actions.

Figure 14.20 shows a program that manipulates a file with blocked records in
an unbuffered manner. The main loop of the program reads one physical record
in each iteration. It contains an inner loop that extracts logical records from a
physical record and processes them. Thus, an I/O operation is initiated only after

Logical

record

Logical

record

Logical

record

Physical record (i.e., block)

Interrecord

gap

Interrecord

gap

Figure 14.19 A file with blocking factor = 3.

start an I/O operation for read (F, Rec_area);
await I/O completion;
while (not end_of_file(F))

for i := 1 to m
{ extract i th record in Rec_area and process it }

start an I/O operation for read (F, Rec_area);
await I/O completion;

end

Figure 14.20 Processing of a file with blocked records in an unbuffered manner.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 586 — #44

586 Part 4 File Systems

m records are processed. A similar logic can be incorporated into the programs of
Figures 14.17(b), (c) to achieve buffered processing of a file containing blocked
records.

Choice of Blocking Factor Generalizing on the previous discussion,we can say
that if slr and spr represent the size of a logical and a physical record, respectively,
spr = m × slr. The I/O time per physical record, (tio)pr, and the I/O time per
logical record, (tio)lr, are given by

(tio)pr = ta + m × tx (14.8)

(tio)lr = ta
m

+ tx (14.9)

Thus blocking reduces the effective I/O time per logical record, which would
benefit both buffered and unbuffered processing of a file. If tx < tp, with an
appropriate choice of m it is possible to reduce (tio)lr such that (tio)lr ≤ tp. Once
it is achieved, from Eqs. (14.3) and (14.6) it follows that buffering can be used
to reduce the wait time per record to tc. The next example illustrates how (tio)lr
varies with the blocking factor.

•
Example 14.5 Blocking of Records

Table 14.5 shows the variation of (tio)lr with m for a disk device with ta = 10 ms,
transfer rate of 800 kB/s, where 1 kB/s = 1000 bytes per second, and slr = 200
bytes. tx, the transfer time per logical record, is 200

800 ms, i.e., 0.25 ms. (tio)pr and
(tio)lr are computed according to Eqs. (14.8) and (14.9). If tp = 3 ms, m ≥ 4
makes (tio)lr < tp.
•

The value of m is bounded on the lower side by the desire to make (tio)lr ≤ tp.
On the higher side, it is bounded by the memory commitment for file buffers, and
the size of a disk track or sector. A practical value of the blocking factor is the
smallest value of m that makes (tio)lr ≤ tp. The next example illustrates processing
of a file employing both blocking and buffering of records.

Table 14.5 Variation of (tio)lr with Blocking Factor

Blocking
factor (m) Block size

ta
ms

m × tx
ms

(tio)pr
ms

(tio)lr
ms

1 200 10 0.25 10.25 10.25
2 400 10 0.50 10.50 5.25
3 600 10 0.75 10.75 3.58
4 800 10 1.00 11.00 2.75

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 587 — #45

Chapter 14 Implementation of File Operations 587

I/O activities

Buf2

Buf1

0

Processing activity

0 11

Records

from

Buf2

Records

from

Buf1

23 35

1 2 3 4 1 2 3 4
Rec_area

11 2223 3435

Figure 14.21 Buffered processing of blocked records with blocking factor = 4 and
two buffers.

•
Example 14.6Buffered Processing of a File Containing Blocked Records

Figure 14.21 shows the timing chart of processing the blocked file of Exam-
ple 14.5 with a blocking factor of 4, using two buffers Buf 1 and Buf 2. We
assume tc to be negligible. When the file is opened at time 0 second, read oper-
ations are initiated on Buf 1 and Buf 2. The operation on Buf 1 completes at
t = 11 ms. The process copies out one logical record from Buf 1 at a time and
processes it. tp = 3 ms, so processing of the four records of Buf 1 consumes 12
ms. This processing overlaps with the read operation on Buf 2, which consumes
11 ms. Hence the next physical record of the file has been read into Buf 2 before
processing of records in Buf 1 is completed. The process starts processing of
the logical records copied from Buf 2 at t = 23 ms. Thus, it does not suffer any
waits after the start-up phase.

•

14.10 ACCESS METHODS
•

As mentioned in Section 13.3.4, an access method provides support for efficient
processing of a class of files that use a specific file organization. For the funda-
mental file organizations discussed in Section 13.3, the IOCS may provide access
methods for the following kinds of processing:

• Unbuffered processing of sequential-access files
• Buffered processing of sequential-access files
• Processing of direct-access files
• Unbuffered processing of index sequential-access files
• Buffered processing of index sequential-access files

Access methods for buffered processing of sequential-access and index sequential-
access files incorporate the buffering technique illustrated in Figure 14.17(c).
These access methods also optionally perform blocking of records, using the
technique shown in Figure 14.20.

We assume that each access method module provides three entry points with
the following parameters:

1. AM-open (<internal_id>)
2. AM-close (<internal_id>)
3. AM-read/write (<internal_id>, <record_info>, <I/O_area addr>)

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 588 — #46

588 Part 4 File Systems

AM-open (internal idalpha); 1. Allocate buffers, set their addresses in
fcbalpha.

2. Issue start-io calls on all buffers.

AM-read (internal idalpha,
< Rec_area address >);

1. Issue await-io for the I/O operation
on the next buffer.

2. If blocking is employed, perform
deblocking actions. Copy record into
Rec_area. If necessary, issue start-io
for the next block.

3. Otherwise, copy record into Rec_area
and issue start-io for the next
record.

AM-close (internal idalpha); 1. Release all buffers.

Application program Access method actions

Figure 14.22 Actions of an access method for buffered reading of a file.

Modules of the file system and IOCS invoke these functionalities to implement file
processing. AM-open is invoked after a file control block has been created for the
file, using information from the directory entry of the file. Similarly, AM-close is
invoked by iocs-close. AM-read/write are invoked by a file system mod-
ule; the entry point AM-read is actually the start of the IOCS library module
seq-read of Figure 14.14.

Figure 14.22 shows actions of the access method for buffered processing of
a sequential-access file alpha. AM-open issues read operations on all buffers.
AM-read uses the information in fcbalpha, including fmtalpha, to form a pair
(record id, byte id) in Steps 2 and 3 for the next physical record in the file. A few
actions of the access method would be different if alpha were an output file.
AM-write would be invoked to perform write operations. In steps 2 and 3, it
would invoke a module of the file system to allocate more disk space to alpha
and enter its address into fmtalpha.

14.11 DISK AND FILE CACHES
•

A generic technique of speeding up access to file data is to use a memory hierarchy
consisting of a part of memory and files stored on a disk. Recall from the principles
of memory hierarchies discussed in Section 2.2.3 that memory would contain
some parts of the file data stored on the disk; other parts would be loaded in
memory when required. In essence, memory would function as a cache between
files on the disk and processes. Both physical IOCS and access methods use this

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 589 — #47

Chapter 14 Implementation of File Operations 589

principle. The physical IOCS uses a disk cache, which treats all files stored on
a disk uniformly and holds some data of some files in memory at any time. An
access method, on the other hand, uses a file cache, which focuses on keeping
some part of the data in a specific file in memory. The access method maintains
a separate file cache for each file.

The unit of data kept in a disk or file cache is typically a few consecutive
disk blocks; for simplicity we assume it to be a single disk block. We will call the
memory area used to store a unit of data a buffer. The cache is thus a collection
of buffers managed in the software. Each buffer has two parts—the header part
indicates what data is contained in it, and the data part actually contains data.
The header contains the following information:

• Address of the disk blocks from where data has been loaded in the buffer
• A dirty flag
• Information needed for performing replacement of data in the buffer, such as

the time of last reference made to it

When a process issues a read operation, it specifies the offset of the required
data in the file. The IOCS determines the address of the disk block that contains
the required data and searches the cache to check whether contents of that disk
block are present in a buffer. If so, the required data is copied from the buffer into
the address space of the process. Otherwise, an I/O operation is initiated to load
the data from the disk block into a buffer in the cache and it is copied into the
address space of the process when the I/O operation completes. When a process
performs a write operation, the IOCS checks whether contents of the disk block
that contains old values of the data are present in a buffer. If so, it copies the
values to be written from address space of the process into the buffer and sets the
dirty flag of the buffer to true. Otherwise, it copies the disk block address and
values of the data to be written into a new buffer and sets its dirty flag to true. In
either case, contents of the buffer would be written on the disk by the procedure
described in the following.

To facilitate speedy search in the cache, the buffer headers are stored in an
efficient data structure such as a hash table. For example, the hash-with-chaining
organization used in the inverted page table of the virtual memory handler could
be adapted for use in the cache (see Figure 12.10 in Section 12.2.3.1). In this orga-
nization, the address of a disk block whose data is contained in a buffer is hashed
to obtain an entry number in the hash table. All buffers that contain disk blocks
whose addresses hash into the same entry of the hash table are entered into a linked
list, called a chain, and the hash table entry is made to point to the chain. To check
whether data from a disk block is present in the cache, the address of the disk
block is hashed to obtain an entry number in the hash table, and the chain pointed
to by this entry is searched to check whether a copy of the disk block is contained
in one of the buffers. If it is not present in the cache, it is loaded in a free buffer in
the cache and the buffer is added to the chain. If the cache is full, a policy such as
LRU replacement is employed to decide which buffer should be used to load the
required data. If the dirty flag of the buffer is true, its contents would be written in
the disk block whose address is contained in its header before new data is loaded in

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 590 — #48

590 Part 4 File Systems

the buffer. Such an arrangement used in the Unix buffer cache is described later in
Section 14.13.1.2.

Loading of whole disk blocks, which are a few KB in size, in the cache captures
spatial locality because data that adjoins previously accessed data would exist in
the cache. This effect is analogous to blocking of records discussed previously in
Section 14.9. Studies mentioned in Section 14.13.1.2 indicate that disk cache hit
ratios of 0.9 or more can be obtained by committing a small amount of memory
to the disk cache. A file cache can exploit temporal locality further by preloading
the next few disk blocks of a sequential-access file in the cache, which is analogous
to buffering of records discussed in Section 14.8.

Use of a cache has some drawbacks too. An I/O operation involves two copy
operations, one between the disk and the cache and the other between the cache
and the address space of the process that initiated the I/O operation. Use of a
cache also leads to poor reliability of the file system because modified data exists
in a buffer in the cache until it is written to the disk. This data will be lost in the
event of a crash.

File Cache A file cache is implemented in an access method and aims to provide
efficient access to data stored in a file. As shown in Figure 14.23(a), the access
method invokes the cache manager, which checks whether the required data is
available in the file cache. It invokes the physical IOCS only if the file cache does
not already contain the required data. The key advantage of a file cache over a
disk cache is that the cache manager can employ file-level techniques to speed up
accesses to file data. Such a technique exploits properties of a file’s organization
to speed up data accesses, e.g., it can perform prefetching of data for sequential-
access files. However, a key disadvantage is that a separate file cache has to be
implemented for each file, so the IOCS has to decide how much memory to
commit to each individual file cache.

Disk Cache The disk cache is implemented in the physical IOCS or device driver
of a disk. Its purpose is to speed up accesses to data stored on the disk. As shown
in Figure 14.23(b), a request for an I/O operation is passed to the I/O scheduler
only if the required data is not present in the disk cache. The key advantage of a

File

system

Access

method

Physical

IOCS

(a)

Cache

manager

File

cache

File

system

Access

method

Physical

IOCS

(b)

Cache

manager

Disk

cache

I/O

scheduler

Figure 14.23 (a) File cache; (b) disk caches.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 591 — #49

Chapter 14 Implementation of File Operations 591

disk cache over a file cache is that it does not differentiate between files stored on
a disk, so its use benefits all file processing activities in the system. It also does
not have to determine cache size for each file individually. However, the hit ratio
in the disk cache is sensitive to the file access behavior of processes. For example,
if a process reads a large sequential file very rapidly, its data might occupy most
of the buffers in the cache, which will degrade accesses to data in other files. Disk
caches implemented in modern operating systems also incorporate some features
of file caches to enhance hit ratios. Hence a disk cache may prefetch a few disk
blocks in a sequential-access file to reduce wait times in processes.

14.12 UNIFIED DISK CACHE
•

Apart from disk or file caches, the OS also maintains, implicitly or explicitly,
another cache called the page cache in the virtual memory handler. Use of several
caches may increase the number of copy operations that have to be performed
to access data stored on a disk. The time and memory overhead introduced by
multiple copy operations motivates use of a unified disk cache.

Figure 14.24(a) is a schematic diagram showing use of the disk cache and the
page cache. The page cache contains all code and data pages of processes that
are presently in memory, including pages of any memory-mapped files. A new
page is loaded into the page cache when a page fault occurs. Since the page size
is typically a few disk blocks, this operation involves reading a few blocks from
a program file or a swap file. This is file I/O. Hence the disk blocks get read into
the disk cache, and they have to be copied into the page cache. When a modified
page is to be removed from memory, it is first copied into the disk cache. From
there, it is written to the disk sometime in the future. Thus, two copy operations
are involved in each page-in and page-out operation—one copy operation
between a disk and the disk cache, and another between the disk cache and the

(a)

Disk

Disk cache

Page cache File system

Process
Demand paging,

memory-mapped

files
File

accesses

Demand paging,

memory-mapped

files

File

accesses

(b)

Disk

Unified

disk cache

File system

Process

Figure 14.24 Disk caching: (a) separate disk and page caches; (b) unified disk cache.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 592 — #50

592 Part 4 File Systems

page cache. After a page-in operation, two copies of the page would be present
in memory until either of the copies is overwritten.

Multiple copy operations on pages and duplicate copies of pages cause per-
formance problems. The amount of memory to be committed to each cache is
also a difficult design decision; it can affect performance of the system because
undercommitment of memory to the page cache could lead to either a reduced
degree of multiprogramming or thrashing, while undercommitment to the disk
cache would slow down file processing activities because of frequent accesses to
the disk. Merging the two caches would solve these problems: duplicate copies
and multiple copy operations would be eliminated, and portions of the cache
committed to the two uses could be varied to adapt to changes in the system
workload.

A unified disk cache is a single cache used for both paging and file I/O.
Figure 14.24(b) is a schematic diagram of the unified disk cache. The file sys-
tem looks upon files as paged objects on the disk. It decomposes the byte offset
provided in a read or write statement into a page number and an offset into a
page. It passes the page number to the unified disk cache to ensure that the page
is loaded in memory and uses the offset into the page to copy the data between
the unified disk cache and the address space of a process. Page I/O continues to
be handled as in conventional systems because the unified disk cache is really a
page cache.

The unified disk cache was introduced in the Sun OS 4.0. Later it was imple-
mented in the Unix System 5 version 4. The Linux 2.4 kernel and its later versions
also use a unified disk cache.

14.13 CASE STUDIES
•

14.13.1 Unix
Unix supports two types of devices—block devices and character devices. Block
devices are random-access devices that are capable of reading or writing blocks
of data, such as various kinds of disks, while character devices are serial-access
devices such as keyboards, printers and mice. A block device can also be used
as a serial device. Unix files are simply sequences of characters, and so are I/O
devices, so Unix treats I/O devices as files. Thus a device has a file name, has an
entry in the directory hierarchy, and is accessed by using the same calls as files,
viz. open, close, read and write.

The Unix IOCS consists of two main components—device drivers and a
buffer cache. These are described in the following sections.

14.13.1.1 Device Drivers

A Unix device driver is structured into two parts called the top half and the bottom
half. The top half consists of routines that initiate I/O operations on a device in
response to open, close, read, or write calls issued by a process, while the bottom
half consists of the interrupt handler for the device class serviced by the driver.
Thus the top half corresponds to the I/O scheduler and I/O initiator modules in

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 593 — #51

Chapter 14 Implementation of File Operations 593

Figure 14.13, while the bottom half corresponds to the I/O completion handler
and error recovery modules.

A device driver has an interface consisting of a set of predefined entry points
into the device driver routines. Some of these are:

1. <ddname>_init : Device driver initialization routine
2. <ddname>_read/write : Routines to read or write a character
3. <ddname>_int : Interrupt handler routine

The <ddname>_init routine is called at system boot time. It initializes various
flags used by the device driver. It also checks for the presence of various devices,
sets flags to indicate their presence, and may allocate buffers to them. Character
I/O is performed by invoking the <ddname>_read and <ddname>_write rou-
tines. The device driver has to provide a strategy routine for block data transfers,
which is roughly equivalent to the I/O scheduler shown in Figure 14.13. A call
on the strategy routine takes the address of an I/O control block as a parameter.
The strategy routine adds this I/O control block to an IOQ, and initiates the I/O
operation if possible. If immediate initiation is not possible, the I/O operation is
initiated subsequently when an I/O completion interrupt occurs.

14.13.1.2 Buffer Cache

The buffer cache is a disk cache as described in Section 14.12. It is organized
as a pool of buffers, where each buffer is the same size as a disk block. Each
buffer has a header containing three items of information: A (device address, disk
block address) pair gives the address of the disk block that is present in the buffer,
a status flag indicates whether I/O is in progress for the buffer, and a busy flag
indicates whether some process is currently accessing the contents of the buffer.

A hash table is used to speed up the search for a required disk block (see
Figure 14.25). The hash table consists of a number of buckets, where each bucket
points to a list of buffers. When a disk block with address aaa is loaded into a
buffer with the address bbb, aaa is hashed with function h to compute a bucket
number e = h(aaa) in the hash table. The buffer is now entered in the list of
buffers in the eth bucket. Thus, the list contains all buffers that hold disk blocks
whose addresses hash into the eth bucket.

Bucket #4

Bucket #3

Bucket #2

Bucket #1

Hash table

4

11

6

9

3

18

25 13

Buffers

Free list

pointer

Figure 14.25 Unix buffer cache.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 594 — #52

594 Part 4 File Systems

The following procedure is used when a process Pi performs a read operation
on some file alpha:

1. Form the pair (device address, disk block address) for the byte required by Pi .
2. Hash disk block address to obtain a bucket number. Search the buffers in the

bucket to check whether a buffer has a matching pair in its header.
3. If there is no buffer with a matching header, allocate a free buffer, put the

(device address, disk block address) information in its header, enter the buffer
in the list of the appropriate bucket, set its status flag to “I/O in progress,”
queue the buffer for I/O, and put Pi to sleep on completion of I/O.

4. If a buffer with matching header exists, return to Pi with its address if flags
indicate that the I/O operation on the buffer is complete and the buffer is
“not busy.” Otherwise, put Pi to sleep on completion of a read operation on
the buffer or buffer “not busy” condition.

5. If free buffers exist, check whether the next disk block allocated to alpha is
already present in a buffer. If not, allocate a free buffer to it and queue it for
a read operation.

This procedure does not allocate buffers on a per-process basis, so processes
that concurrently access a file can share the file data present in a buffer. This
arrangement facilitates Unix file sharing semantics (see Section 13.14.1). At the
same time, prefetching of data is performed on a per-process basis by initiating
an I/O for the next disk block of the file (see Step 5), which provides buffering on
a per-process basis. The benefits of blocking of records are inherent in the fact
that a complete disk block is read/written when any byte in it is accessed.

Buffers in the buffer pool are reused on an LRU basis as follows: All buffers
are entered in a free list. A buffer is moved to the end of the list whenever its
contents are referenced. Thus the least recently used buffers move toward the
head of the free list. In Step 3, the buffer at the head of the free list is allocated
unless it contains some modified data that is yet to be written into the disk block.
In that case, a write operation for the buffer is queued and the next buffer in the
list is allocated.

•
Example 14.7 Unix Buffer Cache

Figure 14.25 illustrates the Unix buffer cache. Disk blocks 9, 25 and 13 hash
into the first entry of the hash table; hence they are entered in the linked list
starting on this entry. Similarly 6, 18 and 11, 3 form the linked lists starting
on the second and third entries of the hash table. All buffers are also entered
in the free list. If a process accesses some data residing in disk block 18, the
buffer containing block 18 is moved to the end of the free list. If the process
now accesses data in disk block 21, the first buffer in the free list, i.e., the buffer
containing block 13, is allocated if its contents have not been modified since
it was loaded. The buffer is added to an appropriate list in the hash table after
block 21 is loaded in it. It is also moved to the end of the free list.
•

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 595 — #53

Chapter 14 Implementation of File Operations 595

The effectiveness of the Unix buffer cache has been extensively studied. A
1989 study reported that a 60 MB cache on an HP system provided a hit ratio of
0.99 and a 16 MB cache on another system provided a hit ratio of 0.9. Thus a
comparatively small memory commitment to the buffer cache can provide a high
hit ratio.

14.13.2 Linux
The organization of Linux IOCS is analogous to that of Unix IOCS. Thus, block-
and character-type I/O devices are supported by individual device drivers, devices
are treated like files, and a buffer cache is used to speed up file processing. However,
many IOCS specifics are different. We list some of them before discussing details
of disk scheduling in Linux 2.6.

1. Linux kernel modules—which include device drivers—are dynamically load-
able, so a device driver has to be registered with the kernel when loaded and
deregistered before being removed from memory.

2. For devices, the vnode data structure of the virtual file system (VFS) (see
Section 13.13) contains pointers to device-specific functions for the file
operations open, close, read , and write.

3. Each buffer in the disk cache has a buffer header that is allocated in a slab
of the slab allocator (see Section 11.11).

4. Dirty buffers in the disk cache are written to the cache when the cache is too
full, when a buffer has been in the cache for a long time, or when a file directs
the file system to write out its buffers in the interest of reliability.

I/O scheduling in Linux 2.6 uses some innovations to improve I/O scheduling
performance. A read operation needs to be issued to the disk when a process makes
a read call and the required data does not already exist in the buffer cache. The
process would get blocked until the read operation is completed. On the other
hand, when a process makes a write call, the data to be written is copied into
a buffer and the actual write operation takes place sometime later. Hence the
process issuing a write call does not get blocked; it can go on to issue more write
calls. Therefore, to provide better response times to processes, the IOCS performs
read operations at a higher priority than write operations.

The I/O scheduler maintains a list of pending I/O operations and schedules
from this list. When a process makes a read or a write call, the IOCS checks
whether the same operation on some adjoining data is pending. If this check suc-
ceeds, it combines the new operation with the pending operation, which reduces
the number of disk operations and the movement of disk heads, thereby improving
disk throughput.

Linux 2.6 provides four I/O schedulers. The system administrator can choose
the one that best suits the workload in a specific installation. The no-op scheduler
is simply an FCFS scheduler. The deadline scheduler uses Look scheduling as its
basis but also incorporates a feature to avoid large delays. It implements Look
scheduling by maintaining a scheduling list of requests sorted by track numbers
and selecting a request based on the current position of disk heads. However,

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 596 — #54

596 Part 4 File Systems

Look scheduling faces a problem when a process performs a large number of
write operations in one part of the disk—I/O operations in other parts of the disk
would be delayed. If a delayed operation is a read, it would cause considerable
delays in the requesting process. To prevent such delays, the scheduler assigns
a deadline of 0.5 second to a read operation and a deadline of 5 seconds to a
write operation, and maintains two queues—one for read requests and one for
write requests—according to deadlines. It normally schedules requests from the
scheduling list; however, if the deadline of a request at the head of the read or write
queue expires, it schedules this request, and a couple of more requests from its
queue, out of sequence before resuming normal scheduling. The completely fair
queuing scheduler maintains a separate queue of I/O requests for each process and
performs round robin between these queues. This approach avoids large delays
for processes.

A process that performs synchronous I/O is blocked until its I/O operation
completes. Such a process typically issues the next I/O operation immediately
after waking up. When Look scheduling is used, the disk heads would most
probably have passed over the track that contains the data involved in the next
I/O operation, so the next I/O operation of the process would get serviced only in
the next scan of the disk. This causes delays in the process and may cause more
movement of the disk heads. The anticipatory scheduler addresses this problem.
After completing an I/O operation, it waits a few milliseconds before issuing the
next I/O operation. This way, if the process that was activated when the previous
I/O operation completed issues another I/O operation in close proximity to the
previous operation that operation may also be serviced in the same scan of the
disk.

14.13.3 File Processing in Windows
The schematic of Figure 14.26 shows the file processing arrangement used in
Windows. The cache manager performs file caching. The I/O manager provides
generic services that can be used to implement subsystem-specific I/O operations
through a set of device drivers, and also performs management of I/O buffers.
As described in Section 4.8.4, subsystem DLLs linked to a user application invoke
functions in the I/O manager to obtain subsystem-specific I/O behavior. The VM
manager was described in Section 12.8.4.

The file cache is organized as a set of cache blocks, each of size 256 KB.
The part of a file held in a cache block is called a view. A virtual address control
block (VACB) describes each view; it contains the virtual address associated with
the view, the offset of its first byte in the file, and the number of read or write
operations currently accessing the view. Presence of the virtual address and file
offset information in the VACB helps in implementing file sharing semantics—it
ensures that processes making concurrent accesses to a file would see the result of
the latest update operation irrespective of whether the file was memory-mapped
or accessed directly. The cache manager sets up a VACB index array for a file
when the file is opened. For a sequential file, the index array would contain only
one pointer that points to the VACB covering the current offset into the file. For

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 597 — #55

Chapter 14 Implementation of File Operations 597

User

application

Cache

manager

Data

transfer

Cache

flushing

VM

manager

DLL

I/O manager

File

system

driver

Driver

stacks

Disk

Driver

I/O request

Data

transfer

Page

loading

Figure 14.26 File processing in Windows.

a random file, the VACB index array would contain pointers to VACBs that cover
several recent accesses made to the file.

An I/O operation is performed by a layered device driver. It is represented
as a linked list of device drivers called a driver stack. When a thread requests an
I/O operation, the I/O manager constructs an I/O request packet (IRP) for it and
passes it to the first device driver in the appropriate driver stack. The device driver
may perform the complete I/O operation itself, write a status code in the IRP,
and pass it back to the I/O manager. Alternatively, it may decide on additional
actions required to complete the I/O operation, write their information in the
IRP, and pass the IRP to the next device driver in the stack, and so on, until
the I/O operation actually gets implemented. This model permits device drivers
to be added to provide additional features in the I/O subsystem. For example,
a device driver could be added between the file system driver, which we discuss
in the following, and the disk driver to perform disk mirroring. Such a driver is
called a filter driver. Drivers such as the disk driver are called function drivers.
They contain functionalities for initialization, scheduling, and initiation of I/O
operations; interrupt servicing; and dynamic addition of new devices to facilitate
the plug-and-play capability.

A file system is also implemented as a file system driver (FSD). It invokes
other drivers that implement the functionalities of the access method and the
device drivers. This arrangement permits many file systems to coexist in the host.
The I/O manager thus provides the functionalities of a virtual file system (see
Section 13.13). When a subsystem DLL linked to a thread requests a file oper-
ation, the I/O manager invokes an appropriate file system driver to handle the
request. The request typically contains the byte offset of the file data involved
in the I/O operation. The file system driver consults the file map table for the
concerned file, which is accessible from the file’s base file record in the master file
table (MFT), to convert the byte offset within the file into a byte offset within

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 598 — #56

598 Part 4 File Systems

a data block on a device and invokes the device driver for it. If the concerned
device is a RAID, the device driver is actually a volume manager, which manages
the RAID. It converts the byte offset within a data block into one or more units
containing a disk number, sector number, and a byte offset and passes the request
to the disk driver. Windows supports striped volumes, which are level 0 RAID
systems, mirrored volumes, which are level 1 RAID systems, and level 5 RAID
systems in this manner. It supports spanned volumes described in section 13.14.4
analogously.

When a thread makes a request to read from a file, the I/O manager passes
this request to the file system driver, which passes it to the cache manager. The
cache manager consults the VACB index array for the file and determines whether
the required bytes of the file are a part of some view in the cache. If not, it allocates
a cache block, creates a view that covers the required bytes from the file in the
cache block, and constructs a VACB for it. This operation involves reading the
relevant part of the file into the cache block. The cache manager now copies
the required data from the cache block into the caller’s address space. Converse
actions are performed at a write request. If a page fault arises while copying data
to or from the caller’s address space, the virtual memory manager invokes the
disk driver through the file system to read the required page into the memory.
This operation is performed in a noncached manner. Thus, a file system must
support both cached and noncached file I/O. To facilitate efficient manipulation
of metadata, the file system driver uses kernel-level read/write operations, which
access the data directly in the cache instead of first copying it to/from the logical
address space of the file system driver.

The cache manager keeps information about the last few I/O requests on
a file. If it can detect a pattern from them, such as sequential accesses to the
file, it prefetches the next few data blocks according to this pattern. It also
accepts hints from user applications concerning the nature of file processing
activities and uses them for the same purpose. File updates take place in an
asynchronous manner. The data to be written into a file is reflected into the view
of the file held in the cache manager. Once every second, the lazy writer, which
is a system thread created by the cache manager, queues one-quarter of the dirty
pages in the cache for writing on a disk and nudges the virtual memory manager
to write out the data.

Recall that an OS typically finds out the devices connected to it at boot time
and builds its device data structures accordingly. This arrangement is restrictive,
as it requires rebooting of the system when a device is to be connected to it or
disconnected from it. Windows supports a plug-and-play (PnP) capability which
permits devices to be connected and disconnected to the system dynamically. It is
achieved by coordinating the operation of I/O hardware, the operating system and
the concerned device driver. The hardware cooperates with the boot software to
construct the initial list of devices connected to the system, and also coordinates
with the PnP manager when devices are added or disconnected. The PnP manager
loads a device driver for a new device if necessary, determines the resources such
as specific interrupt numbers that may be required for its operation, and ensures
the absence of conflicts by assigning or reassigning required resources. It now

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 599 — #57

Chapter 14 Implementation of File Operations 599

initializes the device driver for the new device and reinitializes any other devices
that may have been affected by the reorganization.

Windows Vista has a new feature that addresses a problem area in disk
scheduling: Disk scheduling treats all I/O operations uniformly while trying to
improve the throughput of a disk. Thus, occasionally I/O operations of low-
priority processes may be favored over other I/O operations, which would cause
delays in high-priority processes and degrade responsiveness of applications that
spawned them. The Vista feature called prioritized I/O provides a method of
striking the correct balance between throughput and responsiveness. Using this
feature, an application can specify a priority for its I/O operations. It can make
a system call to lower its I/O priority to background so that its I/O operations
would not have priority over those of nonbackground processes, and can revert
to its original priority through another system call when desired. A device driver
checks the priority of the process that issued an I/O operation and sets flags in
an IRP to indicate whether the I/O operation should be treated at a low priority.

14.14 SUMMARY
•

During a file processing activity, the file system
implements sharing and protection of files, while
the input output control system (IOCS) actually
implements file operations. The IOCS is itself
structured into two layers called access methods
and physical IOCS that ensure good performance
of a file processing activity, and good throughput
of I/O devices, respectively. In this chapter, we stud-
ied the techniques employed by the access methods
and the physical IOCS.

Good throughput of an I/O device is achieved
through joint actions of the I/O device and the
IOCS. The I/O device is designed such that it
is reliable, and I/O operations incur short access
time—which is the time spent in positioning the
I/O media or the read–write heads prior to data
transfer—and achieve high data transfer rates.
Data staggering techniques, disk attachment tech-
nologies, and redundant arrays of inexpensive disks
(RAID) are relevant in this context.

Even with fast access and high data trans-
fer rates of I/O devices, a process performing an
I/O operation incurs considerable wait time until
the I/O operation completes. The physical IOCS
provides two basic capabilities to enhance sys-
tem performance: It blocks a process until its

I/O operation has completed, which enables the
kernel to switch the CPU to another process. It
uses disk scheduling to perform the I/O operations
directed at a disk in an order that would reduce the
movement of read–write heads of the disk, which
increases the throughput of the disk and reduces
the average wait time of I/O operations.

An access method improves the performance of
a file processing activity within a process through
the techniques of buffering and blocking of records.
A buffer is a memory area used to temporarily hold
data that has been read off a device or that is to be
written on it. For an input file, the technique of
buffering tries to prefetch the data so that it would
be available to a process without having to perform
an I/O operation, which reduces or eliminates the
wait time. For an output file, it copies the data into
the buffer and lets the process continue its oper-
ation; the actual writing is performed later. The
technique of blocking reads more data off a device
in a single I/O operation than required by a process
at a time; it reduces the number of I/O operations
to be performed.

Caching is the technique of keeping some of
the file data in memory, so that it can be accessed
without having to perform an I/O operation.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 600 — #58

600 Part 4 File Systems

Caching reduces the number of I/O operations
performed to access data stored in files, thereby
improving performance of file processing activi-
ties in processes and also improving performance
of the system. The physical IOCS implements a
disk cache to reduce the number of I/O opera-
tions performed for accessing the files stored on
a disk. An access method implements a file cache
to reduce the number of I/O operations performed
during the processing of an individual file in a
process.

The virtual memory handler also uses a cache
called a page cache, which contains pages of pro-
cesses, to improve virtual memory performance.
However, since the swap areas of processes are
implemented on a disk, use of the page cache
and the disk cache involves copying of pages
between the two caches, which consumes CPU time
and ties up memory because of multiple copies of a
page. Operating systems therefore use a unified disk
cache to reduce copying and eliminate the need for
multiple copies of pages.

TEST YOUR CONCEPTS
•

14.1 Classify each of the following statements as true
or false:
a. When parity bits are used for reliable record-

ing/reading of data, an error correction code
requires more parity bits than an error detec-
tion code.

b. Restricting the disk space allocation for a file
to a cylinder group—which is a group of con-
secutive cylinders on a disk—reduces disk
head movement while the file is processed.

c. RAID level 4, which uses block-interleaved
parity, provides parallelism between small
I/O operations.

d. Blocking of records speeds up processing of
sequential files.

e. Buffering of records speeds up processing of
direct-access files.

f. The SCAN disk scheduling policy suffers
from starvation.

g. The physical IOCS provides a method to
avoid the busy wait condition while a process
awaits completion of its I/O operation.

h. If tx < tp, it is possible to reduce tw to tc
through appropriate buffering and blocking.

i. Using a blocking factor of m reduces the
effective I/O time per logical record by a
factor of m.

14.2 Select the correct alternative in each of the
following questions:
a. A disk cache is used to

i. Reduce the number of I/O operations on
a disk

ii. Increase the capacity of a disk
iii. None of (i)–(ii)

b. Data staggering techniques are used to
i. Reduce the number of disk operations

while a file is processed
ii. Reduce disk head movement between disk

blocks having adjoining addresses
iii. Reduce rotational delays while disk

blocks having adjoining addresses are
accessed.

iv. Improve effectiveness of buffering and
blocking of file records

c. Disk scheduling
i. Reduces the number of I/O operations

performed on a disk
ii. Reduces the average disk head movement

per I/O operation
iii. Aims at speeding up processing of a file

d. A program executes a read statement on a
file alpha 100 times during its execution;
however only 50 I/O operations are actually
performed to read data from the file alpha.
This is possible if

i. The access method used for the file
alpha employs buffering without
blocking

ii. The access method does not employ
blocking and the physical IOCS does not
employ a disk cache

iii. Either the access method employs block-
ing or the physical IOCS employs a disk
cache

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 601 — #59

Chapter 14 Implementation of File Operations 601

EXERCISES
•

14.1 Explain how (and whether) buffering and block-
ing of records is beneficial for the following kinds
of files:
a. A sequential-access file
b. An index sequential-access file
c. A direct-access file

14.2 An update file is one that is read and modified
during processing—a program reads a record,
modifies it in memory, and writes it back into
the file.
a. Which I/O device is best suited for recording

an update file?
b. Is buffering and blocking of records useful

for an update file?
Justify your answers.

14.3 Discuss how the throughput of a disk device
can be optimized in a file system that performs
noncontiguous allocation of disk blocks to files.
(Hint: Think of organization of blocks in the free
list, data staggering, and cylinder groups.)

14.4 A sectored disk has the following characteristics:

Time for 1 revolution = 8 ms
tsect = 1 ms
tst = 3 ms
Sector size = 1024 bytes

Plot the peak disk throughput against the sector
interleaving factor (Fint).

14.5 Comment on the effectiveness of (a) a disk cache
and (b) a RAM disk for speeding up processing
of sequential-access and direct-access files.

14.6 Requests for I/O operations on the following
tracks are pending at time = 160 ms.

7, 45, 98, 70, 68, 180

If the requests are made in the above order, con-
struct a table analogous to Table 14.16 for the
disk of Example 14.3.

14.7 A biased disk is a hypothetical disk device whose
seek time for track n is a linear function in n (for
example, seek time = 0.1 × n). {seqi} is the set
of I/O operations requested over a certain period
of time. Is the order in which I/O operations are
scheduled on a biased disk by the SSTF algo-
rithm identical to the order in which the same
I/O operations would be scheduled by a SCAN

algorithm on the conventional disk described in
Example 14.3?

14.8 A process manipulates a sequential-access file.
The I/O and processing times for each record in
the file are as follows:

Access time of device = 10 ms
Transfer time per record = 6 ms
Largest number of records = 5 records
required together
Processing time per record = 10 ms

a. If two buffers are used, find the value of the
smallest blocking factor that can minimize
the wait time per record.

b. If two buffers and a blocking factor of 5
are used, what is the minimum number of
records that are present in memory at any
time? (Assume that a process initiates an I/O
operation on a buffer after processing the last
record in it—see Figure 14.20.)

14.9 A sequential file is recorded by using blocking.
A process manipulates it by using two buffers.
The I/O and processing times are as follows:

Access time (average) = 20 ms
Transfer time per record = 5 ms
Largest number of records = 5 records
required together
Processing time per record = 10 ms

Determine optimal values of the blocking fac-
tor and the number of buffers. What changes, if
any, would you make in your design if the largest
number of records that the process is likely to
require together is (i) 3 records, (ii) 8 records?
(Hint: See Example 14.4.)

14.10 One buffer is used in processing the file info of
Exercise 13.6. Calculate the elapsed time of the
process if the copying time per record is 0.5 ms.
Explain your calculations.

14.11 Classify the following statement as true or false:
“By judicious selection of the blocking factor
and the number of buffers, it is always possible
to reduce the wait time to tc.”

14.12 A process is expected to open a file before access-
ing it. If it tries to access a file without opening,
the file system performs an open before

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 602 — #60

602 Part 4 File Systems

implementing the access. A system program-
mers’ handbook warns all programmers to open
a file before accessing it or suffer a performance
penalty. Explain the nature and causes of the
performance penalty.

14.13 How do different disk scheduling algorithms
influence the effectiveness of I/O buffering?

14.14 A process manipulates an input file using many
buffers. Which of the following statements are
accurate? Explain your reasoning.
a. “Of all the disk scheduling algorithms, FCFS

disk scheduling is likely to provide the best
elapsed time performance for the process.”

b. “Data staggering is effective only during
reading of the first few records in the file; it is
not effective during reading of other records
in the file.”

14.15 A magnetic tape has a recording density of
80 bits/cm along a track. The tape moves at
a velocity of 2 meters per second while read-
ing/writing data. The inter-record gap is 0.5 cm
wide, and the access time of the tape is 5 ms. A
sequential file containing 5000 records, each of
size 400 bytes, is stored on this magnetic tape.
Calculate the length of the magnetic tape occu-
pied by the file and the total I/O time required
to read the file if the file is recorded (a) without
blocking and (b) with a blocking factor of 4.

14.16 A process uses many buffers while manipulating
a file containing blocked records. A system fail-
ure occurs during its execution. Is it possible to
resume execution of the process from the point
of failure?

14.17 The speedup factor resulting from the use of a
special I/O technique is the ratio of the elapsed
time of a process without blocking or buffering
of records to the elapsed time of the same process

with the special I/O technique. In Section 14.8,
the speedup factor due to buffering was shown
to have an upper bound of 2. Develop a for-
mula for speedup factor when a process does
not use buffers while processing a file containing
blocked records. Can the value of this speedup
factor exceed 2? If so, give an example.

14.18 Develop a formula for speedup factor when a
process uses two buffers while processing a file
containing blocked records and tp ≥ tx.

14.19 Describe the implications of a file or disk cache
for file system reliability. Unix supports a sys-
tem call flush () that forces the kernel to write
buffered output onto the disk. Can a program-
mer use flush () to improve the reliability of his
files?

14.20 The lseek command of Unix indicates the off-
set of the next byte in a sequential-access file
to be read or written. When a process wishes
to perform a read or write operation, it issues an
lseek command. This command is followed by
an actual read or write command.
a. What are the advantages of using the lseek

command?
b. What is the sequence of actions the file system

and the IOCS should execute when a process
issues an lseek command.

14.21 Show that division of the binary polynomial
formed from nd + nc bits in a record, where
nd is the number of data bits and nc is the
number of CRC bits, by the CRC polynomial
will yield a 0 remainder. (Hint: A term of xi ,
i = 1, . . . , nd − 1, in the polynomial for the nd
bits of data is the term of xi+nc in the polyno-
mial for the nd + nc bits in the record. Also note
that modulo-2 addition and subtraction produce
identical results.)

BIBLIOGRAPHY
•

Tanenbaum (1990) describes I/O hardware. Ruemmler
and Wilkes (1994) presents a disk drive model that can
be used for performance analysis and tuning. Teorey
and Pinkerton (1972) and Hofri (1980) compare var-
ious disk scheduling algorithms, while Worthington
et al. (1994) discusses disk scheduling for modern

disk drives. Lumb et al. (2000) discusses how back-
ground activities like disk reorganization can be per-
formed during mechanical positioning of disk heads
for servicing foreground activities, and the effect of
disk scheduling algorithms on effectiveness of this
approach.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 603 — #61

Chapter 14 Implementation of File Operations 603

Chen and Patterson (1990) and Chen et al. (1994)
describe RAID organizations, while Wilkes et al. (1996)
and Yu et al. (2000) discuss enhancements to RAID sys-
tems. Alvarez et al. (1996) discusses how multiple failures
can be tolerated in a RAID architecture, while Chau
and Fu (2000) discusses a new layout method to evenly
distribute parity information for declustered RAID.
Gibson et al. (1997) discusses file servers for network-
attached disks. Nagle et al. (1999) discusses integration
of user-level networking with network-attached storage
(NAS). Curtis Preston (2002) discusses NAS and stor-
age area networks (SANs), while Clark (2003) is devoted
to the SAN technology. Toigo (2000) discusses modern
disks and future storage technologies.

Disk caching is discussed in Smith (1985).
Braunstein et al. (1989) discusses how file accesses are
speeded up when virtual memory hardware is used to
look up the file buffer cache.

McKusick et al. (1996) discusses the Berkeley fast
file system for Unix 4.4BSD. Bach (1986) and Vahalia
(1996) discuss other Unix file systems. Ruemmler and
Wilkes (1993) presents performance studies concerning
various characteristics of disk accesses made in the Unix
file system. Beck et al. (2002) and Bovet and Cesati
(2005) discuss the I/O schedulers of Linux. Love (2004,
2005) describes the I/O schedulers in Linux 2.6. Custer
(1994) describes the Windows NT file system, while
Russinovich and Solomon (2005) discusses NTFS for
Windows.

1. Alvarez, G. A., W. A. Burkhard, F. Cristian
(1996): “Tolerating multiple failures in RAID
architectures with optimal storage and uniform
declustering,” Proceedings of the 24th Annual
International Symposium on Computer
Architecture, 62–72.

2. Bach, M. J. (1986): The design of the Unix
operating system, Prentice-Hall, Englewood
Cliffs, N.J.

3. Beck, M., H. Bohme, M. Dziadzka, U. Kunitz,
R. Magnus, C. Schroter, and D. Verworner
(2002): Linux Kernel Programming, Pearson
Education, New York.

4. Bovet, D. P., and M. Cesati (2005): Understanding
the Linux Kernel, 3rd ed., O’Reilly, Sebastopol,
Calif.

5. Braunstein, A., M. Riley, and J. Wilkes (1989):
“Improving the efficiency of Unix buffer caches,”
ACM Symposium on OS Principles, 71–82.

6. Chau, A., and A. W. Fu (2000): “A gracefully
degradable declustered RAID architecture with
near optimal maximal read and write
parallelism,” Cluster Computing, 5 (1), 97–105.

7. Chen, P. M., and D. Patterson (1990):
“Maximizing performance in a striped disk
array,” Proceedings of 17th Annual International
Symposium on Computer Architecture,
May 1990.

8. Chen, P. M., E. K. Lee, G. A. Gibson,
R. H. Katz, and D. A. Patterson (1994):
“RAID—high performance, reliable secondary
storage,” Computing Surveys, 26 (2), 145–186.

9. Clark, T. (2003): Designing Storage Area
Networks: A Practical Reference for Implementing
Fibre Channel and IP SANS, 2nd ed., Addison
Wesley Professional.

10. Curtis Preston, W. (2002): Using SANs and NAS,
O’Reilly, Sebastopol,Calif.

11. Custer, H. (1994): Inside the Windows NT File
System, Microsoft Press, Redmond,Wash.

12. Gibson, G. A., D. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri,
E. Riedel, D. Rochberg, and J. Zelenka (1997):
“File server scaling with network-attached secure
disks,” Measurement and Modeling of Computer
Systems, 272–284.

13. Hofri, M. (1980): “Disk scheduling: FCFS vs.
SSTF revisited,” Communications of the ACM,
23 (11), 645–53.

14. Iyer, S., and P. Druschel (2001): “Anticipatory
scheduling: a disk scheduling framework to
overcome deceptive idleness in synchronous I/O,”
Proceedings of the 18th ACM Symposium on
Operating Systems Principles.

15. Lampson, B. (1981): “Atomic transactions,” in
Distributed Systems—Architecture and
Implementation: An Advanced Course, Goos, G.
and J. Hartmanis (eds.), Springer Verlag, Berlin,
246–265.

16. Love, R. (2004): “I/O schedulers,” Linux Journal,
118.

17. Love, R. (2005): Linux Kernel Development, 2nd
ed., Novell Press.

18. Lumb, C. R., J. Schindler, G. R. Ganger, and
D. F. Nagle (2000): “Towards higher disk head
utilization: extracting free bandwidth from busy
disk drives,” Proceedings of the 4th Symposium on
Operating Systems Design and Implementation.

14-M4363-DAS1.LaTeX: “chap14” — 2007/11/14 — 17:22 — page 604 — #62

604 Part 4 File Systems

19. McKusick, M. K., K. Bostic, M. J. Karels, and
J. S. Quarterman (1996): The Design and
Implementation of the 4.4BSD Operating System,
Addison Wesley, Reading, Mass.

20. Nagle D., G. Ganger, J. Butler, G. Gibson, and
C. Sabol (1999): “Network support for
network-attached storage,” Proceedings of Hot
Interconnects.

21. Ruemmler, C., and J. Wilkes (1993): “Unix disk
access patterns,” Proceedings of the Winter 1993
USENIX Conference, 405–420.

22. Ruemmler, C., and J. Wilkes (1994): “An
introduction to disk drive modeling,” IEEE
Computer, 27 (3), 17–29.

23. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

24. Smith, A. J. (1985): “Disk cache-miss ratio
analysis and design considerations,” ACM
Transactions on Computer Systems, 3 (3),
161–203.

25. Tanenbaum, A. S. (1990): Structured Computer
Organization, 3rd ed., Prentice Hall, Englewood
Cliffs, N. J.

26. Teorey, T. J., and T. B. Pinkerton (1972):
“A comparative analysis of disk scheduling
policies,” Communications of the ACM, 15 (3),
177–184.

27. Toigo, J. (2000): “Avoiding a data crunch,”
Scientific American, 282 (5), 58–74.

28. Vahalia, U. (1996): Unix Internals—The New
Frontiers, Prentice Hall, Englewood Cliffs, N. J.

29. Wilkes, J., R. Golding, C. Staelin, and T. Sullivan
(1996): “The HP autoRAID hierarchical storage
system,” ACM Transactions on Computer
Systems, 14 (1), 108–136.

30. Worthington, B. L., G. R. Ganger, and Y. N. Patt
(1994): “Scheduling algorithms for modern disk
drives,” Proceedings of the 1994 ACM Sigmetrics
Conference on Measurement and Modeling of
Computer Systems, 241–251.

31. Yu, X., B. Gum, Y. Chen, R. Y. Wang, K. Li,
A. Krishnamurthy, and T. E. Anderson (2000):
“Trading capacity for performance in a disk
array,” Proceedings of the 2000 Symposium on
Operating Systems Design and Implementation,
243–258.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 605 — #1

C h a p t e r 15
Security and Protection

Operating systems employ security and protection measures to prevent a
person from illegally using resources in a computer system, or interfering
with them in any manner. These measures ensure that data and programs

are used only by authorized users and only in a desired manner, and that they
are neither modified nor denied to authorized users. Security measures deal with
threats to resources that come from outside a computer system, while protection
measures deal with internal threats.

Passwords are the principal security tool. A password requirement thwarts
attempts by unauthorized persons to masquerade as legitimate users of a system.
The confidentiality of passwords is upheld by encryption.

Computer users need to share data and programs stored in files with collabo-
rators, and here is where an operating system’s protection measures come in. The
owner of a file informs the OS of the specific access privileges other users are to
have—whether and how others may access the file. The operating system’s protec-
tion function then ensures that all accesses to the file are strictly in accordance
with the specified access privileges.

We begin by discussing how different kinds of security breaches are car-
ried out: Trojan horses, viruses, worms, and buffer overflows. Their description is
followed by a discussion of encryption techniques. We then describe three popu-
lar protection structures called access control lists, capability lists, and protection
domains, and examine the degree of control provided by them over sharing of files.
In the end, we discuss how security classifications of computer systems reflect the
degree to which a system can withstand security and protection threats.

15.1 OVERVIEW OF SECURITY AND PROTECTION
•

Ensuring noninterference with the computations and resources of users is one
of the three fundamental goals of an OS mentioned in Section 1.2. A resource
could be a hardware resource such as an I/O device, a software resource such as
a program or data stored in a file, or a service offered by the OS. Several kinds
of interference can arise during operation of a computer system; we call each of
them a threat. Some of the threats depend on the nature of specific resources or
services and the manner of their use, while others are of a generic nature.

605

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 606 — #2

606 Part 4 File Systems and I/O Management

Unauthorized access to resources is an obvious threat in an OS. Persons who
are not registered users of a computer system may try to access its resources, while
registered users may try to access resources that they have not been authorized
to use. Such persons may maliciously try to corrupt or destroy a resource. This
is a potent threat for programs and data stored in files. A less obvious threat
is interference in legitimate access of resources and services by users. It tends to
disrupt computational activities of users by preventing them from using resources
and services of an OS. This threat is called denial of service. In this chapter, we
discuss how an OS counters generic threats and threats concerning programs and
data stored in files.

Operating systems use two categories of techniques to counter threats to data
and programs:

• Security measures guard a user’s data and programs against interference from
persons or programs outside the operating system; we broadly refer to such
persons and their programs as nonusers.

• Protection measures guard a user’s data and programs against interference
from other users of the system.

Table 15.1 describes two key methods used by operating systems for imple-
menting security and protection. Authentication, which is aimed at security,
consists of verifying the identity of a person. Computer-based authentication rests
on either of two kinds of assumptions. One common assumption is that a person
is the user he claims to be if he knows something that only the OS and the user
are expected to know, e.g., a password. It is called authentication by knowledge.
The other authentication method relies on things that only the user is assumed
to possess. For example, biometric authentication is based on some unique and
inalterable biological feature such as fingerprints, retina, or iris. Authorization is
the key method of implementing protection. It consists of: (1) granting an access

Table 15.1 Terminology Used in Security and Protection
of Information

Term Explanation

Authentication Authentication is verification of a user’s identity.
Operating systems most often perform authentication by
knowledge. That is, a person claiming to be some user X is
called upon to exhibit some knowledge shared only
between the OS and user X, such as a password.

Authorization Authorization has two aspects:
1. Granting a set of access privileges to a user; for

example, some users may be granted read and write
privileges for a file, while others are granted read-only
privileges,

2. Verifying a user’s right to access a resource in a specific
manner.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 607 — #3

Chapter 15 Security and Protection 607

Service and

resource

manager

User

+ kernel

Login id and

authentication information

Authentication

token

Requests and

responses

Process

Requests and

responses

Security

setup

Protection

setup

Authentication

database

Changes in

privileges

yes/no

Authentication

token

Authorization

database

Authentication

service

Authorization

service

Figure 15.1 Generic security and protection setups in an operating system.

privilege for a resource to a user, which is a right to access the resource in the
specified manner (see Chapter 13), and (2) determining whether a user possesses
the right to access a resource in a specific manner.

Figure 15.1 shows a generic scheme for implementing security and protection
in an operating system. The security setup is shown in the dashed box in the upper
part of the figure. It consists of the authentication service and the authentication
database. The authentication database contains a pair of the form (login id, val-
idating information) for every registered user of the operating system, where the
validating information is typically an encrypted form of a user’s password. To
log into the system, a person submits his login id and password to the kernel.
The kernel passes this information to the authentication service, which encrypts
the password and compares it with the validating information for the user stored
in the authentication database. If the check succeeds, the authentication service
generates an authentication token for the user and passes it back to the kernel.
The authentication token is typically the user id assigned to the user. Whenever
the user or a process initiated by the user makes a request to access a resource, the
kernel appends the user’s authentication token to the request to facilitate making
of protection checks.

The protection setup is shown in the dashed box in the lower part of
Figure 15.1. It consists of the authorization service and the authorization database.
The authorization database contains triples of the form (authentication token,
resource id, privileges). When a user wishes to grant access privileges for one of
his files to some users, or withdraw some previously granted access privileges for
the file, he makes a request to the kernel. As shown in Figure 15.1, the kernel
passes on the request to the authorization service along with the authentication
token for the user. The authorization service now makes appropriate changes in
the authorization database. To access a resource, a user or his process makes a
resource request to the service and resource manager. The request contains the

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 608 — #4

608 Part 4 File Systems and I/O Management

id of a resource, the kind of access desired to it, and the authentication token
of the user. The service and resource manager passes the request to the autho-
rization service, which determines whether the user possesses the privilege to use
the resource in the desired manner and sends a yes/no reply to the service and
resource manager. Depending on this reply, the service and resource manager
decides whether the user’s request should be granted.

Not all operating systems incorporate all the elements shown in Figure 15.1
in their security and protection setups. For example, in most modern operating
systems, the authorization information is typically maintained and used by the
file system, so the operating system does not maintain the authorization database
and does not perform authorization.

The distinction between security and protection provides a neat separation
of concerns for the OS. In a conventional operating system, the security concern
is limited to ensuring that only registered users can use the system. A security
check is performed when a person logs in. It decides whether the person is a user
of the OS and determines his user id. Following this check, all threats to infor-
mation stored in the system are protection concerns; the OS uses the user id of a
person to determine whether he can access a specific file in the OS. In a distributed
system, however, security concerns are more complex because of the presence of
the networking component (see Chapter 21). We confine the discussion in this
chapter to conventional operating systems only.

Mechanisms and Policies Table 15.2 describes mechanisms and policies in secu-
rity and protection. Security policies specify whether a person should be allowed
to use a system. Protection policies specify whether a user should be allowed to
access a specific file. Both these policies are applied outside the OS domain—a
system administrator decides whether a person should be allowed to become a
user of a system, and a user specifies what users may access his files. Security and
protection mechanisms implement these policies by maintaining the authentica-
tion and authorization databases and using their contents to make specific checks
during system operation.

Table 15.2 Policies and Mechanisms in Security and Protection

Security • Policy: Whether a person can become a user of the system.
The system administrator employs the policy while
registering new users.

• Mechanisms: Add or delete users, verify whether a person is a
registered user (i.e., perform authentication), perform
encryption to ensure confidentiality of passwords.

Protection • Policy: The file owner specifies the authorization policy for a
file. It decides which user can access a file and in what manner.

• Mechanisms: Set or change authorization information for a
file. Check whether a file processing request conforms to the
user’s privileges.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 609 — #5

Chapter 15 Security and Protection 609

Table 15.3 Goals of Computer Security and Protection

Goal Description

Secrecy Only authorized users should be able to access information.
This goal is also called confidentiality.

Privacy Information should be used only for the purposes for which it
was intended and shared.

Authenticity It should be possible to verify the source or sender of
information, and also verify that the information has been
preserved in the form in which it was created or sent.

Integrity It should not be possible to destroy or corrupt information,
for example, by erasing a disk.

15.1.1 Goals of Security and Protection
Table 15.3 describes the four goals of security and protection, namely, secrecy,
privacy, authenticity, and integrity of information.

Of the four goals, only privacy is exclusively a protection concern. An OS
addresses privacy through the authorization service and the service and resource
manager (see Figure 15.1). The authorization service verifies whether a user pos-
sesses the privilege to access a resource in a specific manner, and the service and
resource manager disallows requests that do not conform to a user’s privileges.
It is up to users to ensure privacy of their information by using this setup. A user
who wishes to share his data and programs with a few other users should set
the authorization for his information according to the well-known need-to-know
principle: Only those persons who need to use some information for a legitimate
function should be authorized to access it.

Secrecy, authenticity, and integrity are both protection and security concerns.
As protection concerns, secrecy, authenticity, and integrity are easy to satisfy
because the identity of a user would have already been verified and the service
and resource manager would use the authorization information, which is a part of
the protection setup shown in Figure 15.1. However, elaborate arrangements are
needed to satisfy secrecy, authenticity, and integrity as security concerns. These
are discussed in Chapter 21.

15.1.2 Security and Protection Threats
To see how and when security and protection threats arise in an OS, first consider
a conventional OS. Its authentication procedures ensure that only registered users
can log into the system and initiate processes. Hence the OS knows which user has
initiated a specific process, and with that knowledge it can readily check whether a
process should be allowed to use a specific resource. When processes communicate
with other processes, OS actions concerning communication are also confined to
the same computer system. Hence an illegal access to a resource or a service by

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 610 — #6

610 Part 4 File Systems and I/O Management

a process and an attempt to tamper with messages are both protection threats
rather than security threats.

The situation is different when a system has an Internet connection and a
user downloads data or programs from the Internet. Some person or programs
external to the OS may be able to corrupt the data and programs being down-
loaded. Threats raised by such data and programs are, by definition, security
threats.

Security threats can arise more easily in a distributed OS. An interprocess
message may cross boundaries between nodes as it travels between a sender and
a receiver. Communication between nodes takes place over open communication
links, including public links. Hence it is possible for an external entity to tamper
with messages. We discuss measures to counter such threats in Chapter 21.

15.2 SECURITY ATTACKS
•

Attempts to breach the security of a system are called security attacks, and the
person or the program making the attack is called an adversary or intruder. Two
common forms of security attacks are:

• Masquerading: Assuming the identity of a registered user of the system
through illegitimate means.

• Denial of service: Preventing registered users of the system from accessing
resources for which they possess access privileges.

In a successful masquerading attack, the intruder gains access to resources
that the impersonated user is authorized to access, hence he can corrupt or destroy
programs and data belonging to the impersonated user at will. The obvious way to
launch a masquerading attack is to crack a user’s password and use this knowledge
to pass the authentication test at log in time. Another approach is to perform
masquerading in a more subtle manner through programs that are imported into
a software environment. We discuss this approach in Section 15.2.1.

A denial-of-service attack, also called a DoS attack, is launched by exploiting
some vulnerability in the design or operation of an OS. A DoS attack can be
launched through several means; some of these means can be employed only by
users of a system, while others may be employed by intruders located in other
systems. Many of these means are legitimate, which makes it easy to launch DoS
attacks and hard for an OS to detect and prevent them. For example, a DoS
attack can be launched by overloading a resource through phantom means to
such an extent that genuine users of the resource are denied its use. If the kernel
of an OS limits the total number of processes that can be created in order to
control pressure on kernel data structures, a user may create a large number of
processes so that no other users can create processes. Use of network sockets
may be similarly denied by opening a large number of sockets. A DoS attack
can also be launched by corrupting a program that offers some service, or by
destroying some configuration information within the kernel, e.g., use of an I/O

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 611 — #7

Chapter 15 Security and Protection 611

device can be denied by changing its entry in the physical device table of the kernel
(see Section 14.5.2).

A network DoS attack may be launched by flooding the network with mes-
sages intended for a particular server so that network bandwidth is denied to
genuine messages, and the server is so busy receiving messages that it cannot get
around to responding to any messages. A distributed DoS attack is one that is
launched by a few intruders located in different hosts in the network; it is even
harder to detect and prevent than a nondistributed one.

Many other security attacks are launched through the message commu-
nication system. Reading of messages without authorization, which is also
called eavesdropping, and tampering with messages are two such attacks. These
attacks primarily occur in distributed operating systems, so we discuss them in
Chapter 21.

15.2.1 Trojan Horses, Viruses, and Worms
Trojan horses, viruses, and worms are programs that contain some code that can
launch a security attack when activated. Table 15.4 summarizes their charac-
teristics. A Trojan horse or a virus enters a system when an unsuspecting user
downloads programs over the Internet or from a disk. On the contrary, a worm
existing in one computer system spreads to other computer systems by itself.

A Trojan horse is a program that has a hidden component that is designed
to cause havoc in a computer system. For example, it can erase a hard disk in the
computer, which is a violation of integrity; collect information for masquerading;
or force a system to crash or slow down, which amounts to denial of service. A
typical example of a Trojan horse is a spoof login program, which provides a fake
login prompt to trick a user into revealing his password, which can be used later
for masquerading. Since a Trojan horse is loaded explicitly by an unsuspecting
user, it is not difficult to track its authorship or origin.

Table 15.4 Security Threats through Trojan Horses,
Viruses, and Worms

Threat Description

Trojan horse A program that performs a legitimate function that is known
to an OS or its users, and also has a hidden component that
can be used later for nefarious purposes like attacks on
message security or masquerading.

Virus A piece of code that can attach itself to other programs in the
computer system and spread to other computer systems when
programs are copied or transferred.

Worm A program that spreads to other computer systems by
exploiting security holes in an OS like weaknesses in facilities
for creation of remote processes.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 612 — #8

612 Part 4 File Systems and I/O Management

A virus is a piece of code that infects other programs and spreads to other
systems when the infected programs are copied or transferred. A virus called an
executable virus or file virus causes infection as follows: The virus inspects the
disk, selects a program for infection, and adds its own code, which we will call the
viral code, to the program’s code. It also modifies the program’s code such that
the viral code is activated when the program is executed. A simple way to achieve
it is to modify the first instruction in the program’s code, i.e., the instruction
whose address is the execution start address of the program (see Section 11.3), to
transfer control to the viral code. When the viral code gets activated, it inspects
the disk looking for other programs to infect. After infecting these programs,
it passes control to the genuine code of the program. Since the infection step
does not consume much CPU time and the infected program’s functioning is not
affected, a user has no way of knowing whether a program has been infected. The
way a virus attaches itself to another program makes it far more difficult to track
than a Trojan horse.

A virus typically sets up a back door that can be exploited for a destructive
purpose at a later date. For example, it may set up a daemon that remains dormant
until it is activated by a trigger, which could be a specific date, time, or message,
and performs some destructive acts when activated. Different categories of viruses
infect and replicate differently. Apart from the file virus described above, a boot-
sector virus plants itself in the boot sector of a hard or floppy disk. Such a virus
gets an opportunity to execute when the system is booted, and gets an opportunity
to replicate when a new bootable disk is made.

Executable and boot-sector viruses thrived when programs were loaded
through floppies. Use of CDs that cannot be modified has curtailed their men-
ace. However, newer viruses have switched to more sophisticated techniques to
breach a computer’s defenses. An e-mail virus enters a computer system through
an e-mail and sends spurious mails to users whose e-mail ids can be found in
an address book. The Melissa virus of 1999 used a viral code that was a Word
document posted on an Internet newsgroup. The virus was triggered when a user
opened a downloaded copy of the Word document, and it sent the document
itself to 50 persons whose e-mail id’s were found in the user’s address book.
The back door in this case was a tiny code fragment that was associated with
the Word document using the language called Visual Basic Application (VBA).
It was triggered by the autoexecute feature of Microsoft Word, which automati-
cally executes the program associated with a Word document when the document
is opened. The I LOVE YOU virus of year 2000 was an e-mail virus that attached
viral code as an attachment in an e-mail. This code executed when some user
double-clicked on the attachment. It sent e-mails containing its own copies to
several others and then corrupted files on the disk of the host where it executed.
Both Melissa and I LOVE YOU viruses were so powerful that they forced large
corporations to completely shut off their e-mail servers until the viruses could be
contained.

Viruses use various techniques to escape detection by antivirus software.
These techniques include changing their form, compressing or encrypting their
code and data, hiding themselves in parts of the OS, etc.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 613 — #9

Chapter 15 Security and Protection 613

A worm is a program that replicates itself in other computer systems by
exploiting holes in their security setup. It is more difficult to track than a virus
because of its self-replicating nature. Worms are known to replicate at unimag-
inably high rates, thus loading the network and consuming CPU time during
replication. The Code Red worm of 2001 spread to a quarter of a million hosts
in 9 hours, using a buffer overflow attack. The Morris worm of 1988 spread to
thousands of hosts through three weaknesses in the Unix system:

• The Unix remote login facility rsh enabled a user to set up an arrangement
through which he could log into a remote host without having to supply a
password. The worm searched for files that stored names of remote hosts that
could be accessed through rsh and used these files to move to remote hosts.

• The buffer overflow technique, described later in Section 15.2.2, forces a dae-
mon on an unprotected server to accept and execute a piece of code. The
Morris worm used this attack on the finger daemon of a remote Unix host
to send its own code to the remote host and achieve its execution on that host.

• It used the debug facility in the sendmail program of Unix to mail a copy
of its code to another host and execute it there.

The security attacks launched through Trojan horses, viruses, or worms can
be foiled through the following measures:

• Exercising caution while loading new programs into a computer
• Using antivirus programs
• Plugging security holes as they are discovered or reported

Loading programs from original disks on which they are supplied by a vendor
can eliminate a primary source of Trojan horses or viruses. This approach is
particularly effective with the compact disk (CD) technology. Since such disks
cannot be modified, a genuine program cannot be replaced by a Trojan horse, or
a vendor-supplied disk cannot be infected by a virus.

Antivirus programs analyze each program on a disk to see if it contains any
features analogous to any of the known viruses. The fundamental feature it looks
for is whether the execution start address of the program has been modified or
whether the first few bytes of a program perform actions resembling replication,
e.g., whether they attach code to any programs on a disk.

OS vendors post information about security vulnerabilities of their operating
systems on their websites periodically and provide security patches that seal these
loopholes. A system administrator should check such postings and apply security
patches regularly. It would foil security attacks launched through worms.

15.2.2 The Buffer Overflow Technique
The buffer overflow technique can be employed to force a server program to
execute an intruder-supplied code to breach the host computer system’s security.
It has been used to a devastating effect in mail servers and other Web servers.
The basic idea in this technique is simple: Most systems contain a fundamental
vulnerability—some programs do not validate the lengths of inputs they receive

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 614 — #10

614 Part 4 File Systems and I/O Management

from users or other programs. Because of this vulnerability, a buffer area in which
such input is received may overflow and overwrite contents of adjoining areas of
memory. On hardware platforms that use stacks that grow downward in memory,
e.g., the Intel 80x86architecture, suchoverflowsprovideanopportunity to execute
a piece of code that is disguised as data put in the buffer. This code could launch
a variety of security attacks.

Figure 15.2 illustrates how an intruder can launch a security attack through
the buffer overflow technique. A Web server is in operation. When one of its

Direction

of growth

Top of

stack

Stack before function

sample is called

Local data of
calling function

Direction

of growth

Local data of

calling function

Return address

(4 bytes)

Parameters

(8 bytes)

Variable beta
(400 bytes) 412 bytes

copied into

beta occupy

this area

Other local data

of sample
Start address

of beta

End address

of beta

Top of

stack

Stack after function

sample is called

How a buffer overflow can be used to launch a security attack
1. The stack grows downward, i.e., toward smaller addresses in memory.

It looks as shown on the left before the currently executing function
calls function sample.

2. The code of the calling function pushes a return address and two
parameters of sample onto the stack. Each of these occupies four
bytes.

3. The code of sample allocates the variable beta and other variables
on the stack. The stack now looks as shown on the right. Notice that
the start address of beta is at the low end of the memory allocated to
it. The end address of beta adjoins the last byte of the parameters.

4. The function sample copies 412 bytes into the variable beta. The
first 408 bytes contain code whose execution would cause a security
violation. Bytes 409–412 contain the start address of this code. These
four bytes overwrite the return address in the stack.

5. The function sample executes a return statement. Control is trans-
ferred to the address found in the stack entry that is expected to contain
the return address. Effectively, the code in variable beta is invoked.
It executes with the privileges of the calling function.

Figure 15.2 Launching a security attack through the buffer overflow technique.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 615 — #11

Chapter 15 Security and Protection 615

functions calls a function sample with two parameters, the stack is used for
two purposes—to store a return address that would be used to resume execu-
tion of the calling function when sample completes its execution, and to pass
the parameters to sample. We assume that the return address and each of the
parameters occupy 4 bytes, and that the stack grows downward in memory, i.e.,
toward smaller addresses in memory. During execution, sample allocates space
for its local variables on the stack. Thus a variable beta, which has a size of
400 bytes, adjoins the parameters on the stack. When invoked, sample accepts a
message containing a request to the Web server and copies it into beta; however,
it does not check to make sure that the message is not longer than 400 bytes. An
intruder exploits this weakness by sending a message that is 412 bytes in length,
such that the first 408 bytes contain some code and the last 4 bytes contain the
start address of this code. When this message is copied into beta, its last 4 bytes
would overwrite contents of the stack entry that holds the return address. When
execution of sample completes, control would be passed to the address found in
this stack entry. Thus, the intruder’s code would be activated and would execute
with the privileges of the Web server. This code could corrupt the Web server’s
code and files so that it does not respond to any requests, which would be a denial
of service, or it could send out spurious mails.

How does an intruder know which Web server would fall prey to the
buffer overflow technique and how many bytes should be provided so as to
overwrite the return address? He could find out both these details through
experimentation.

15.3 FORMAL ASPECTS OF SECURITY
•

To formally prove that a system can withstand all forms of security attacks,
we need a security model comprising security policies and mechanisms, a list of
threats, a list of fundamental attacks, and a proof methodology. The list of attacks
must be provably complete in the sense that it should be possible to produce any
threat in the list of threats through a combination of the fundamental attacks.
The proof methodology should be capable of ascertaining whether the security
model can withstand certain forms of attack.

Early work in security was performed along these lines. In the take-grant
model of computer security (Landwehr [1981]), processes were given privileges
for objects and for other processes. A privilege for an object entitled the holder
of the privilege to access the object in a specific manner. A privilege for another
process entitled the holder of the privilege to take an access privilege possessed
by the other process (a take operation), or to transfer one of its own access
privileges to the other process (a grant operation). The proof took the form of
ascertaining whether a specific process could obtain a specific access privilege
for a specific object through a series of take and grant operations. In the follow-
ing example we discuss how a security flaw can be detected through the formal
approach.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 616 — #12

616 Part 4 File Systems and I/O Management

•
Example 15.1 Detection of a Security Flaw

In an organization employing military-like security, all documents are classi-
fied into three security levels—unclassified, confidential, and secret. Persons
working in the organization are given security clearances called U (unclassi-
fied), C (confidential), and S (secret) with the proviso that a person can access
all documents at his level of security classification and at lower levels of clas-
sification. Thus, a person with C classification can access confidential and
unclassified documents, but is forbidden from accessing secret documents.

The organization uses a Unix system and persons in the organization use
Unix features to access files containing documents. This way, it is expected that
a program executed by a user can access a document at a specific security level
only if the user possesses the appropriate security clearances. To check whether
document security is foolproof, all operations in the system are modeled and a
check is made to see whether a person can access a document that is at a higher
level of classification than his security clearance. It is found that a combination
of indiscriminate assignment of the “execute” privilege for programs to users
and use of the setuid feature of Unix can enable a user to access a forbidden
document. It can happen because the setuid feature permits a user to execute
a program with the privileges of the program’s owner (see Section 15.9.2),
so if a user can execute a program owned by an individual with a higher
security clearance, he can “take” the security clearance of the program’s
owner.

This security flaw can be eliminated by either forbidding use of the setuid
feature or confining the “execute” privilege for a program only to users whose
security clearance is not lower than that of the program’s owner.
•

The security flaw in Example 15.1 could also have been discovered through
manual procedures; however, manual procedures become less reliable as systems
grow more complex. Formal methods construct feasible sequences of operations
and deduce or verify their properties. This way they can discover sequences of
operations that have disastrous consequences, or assert that such sequences of
operations do not exist.

The formal approach also has some drawbacks. As the size of the sys-
tem to be analyzed grows, the computing and storage requirements of formal
methods exceed the capabilities of contemporary computer systems. The formal
approach is also hard to apply because it requires a complete specification of
a system and a comprehensive list of fundamental attacks; it is not possible to
develop such a list for modern operating systems. It also requires a clear state-
ment of security policies. This requirement is hard to meet because most security
policies consist of rules that are informally stated so that everyone in an orga-
nization can understand them. However, this is where the formal approach con-
tributes substantially to the field of security—it emphasizes the need for precise
specifications.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 617 — #13

Chapter 15 Security and Protection 617

15.4 ENCRYPTION
•

Encryption is application of an algorithmic transformation to data. When data
is stored in its encrypted form, only a user or his process that knows how to
recover the original form of data can use it. This feature helps in preserving
confidentiality of data. Protection and security mechanisms use encryption to
guard information concerning users and their resources; however, it could also
be used to guard information belonging to users. Cryptography is the branch of
science dealing with encryption techniques.

Table 15.5 summarizes key terms and definitions used in cryptography. The
original form of data is called the plaintext form and the transformed form is
called the encrypted or ciphertext form. We use the following notation:

Pd Plaintext form of data d
Cd Ciphertext form of data d

where Pd ≡ d . Encryption is performed by applying an encryption algorithm E
with a specific encryption key k to data. Data is recovered by applying a decryp-
tion algorithm D with a key k′. In the simplest form of encryption called symmetric
encryption, decryption is performed by using the same key k. In advanced encryp-
tion techniques called asymmetric encryption, a different key k′ is used to decrypt
a ciphertext.

Figure 15.3 illustrates symmetric encryption. We represent encryption and
decryption of data by using algorithms E and D with key k as application of
functions Ek and Dk , respectively. Thus,

Cd = Ek(d)
Pd = Dk(Cd)

Obviously the functions Ek and Dk must satisfy the relation

Dk(Ek(d)) = d , for all d

Thus a process must be able to perform the transformation Dk in order to obtain
the plaintext form of encrypted data.

In practice, encryption is performed by standard algorithms E and D. Hence,
effectiveness of encryption depends on whether an intruder can determine the
encryption key through trial and error. Later in this section, we see how it is
impractical for an intruder to discover the encryption key because of the large
number of trials involved; however, theoretically, it is not impossible to do so.
This property makes encryption effective in a probabilistic sense, though not in
an absolute sense. Confidentiality of encrypted data follows from this property.

Confidentiality provided through encryption also helps to verify integrity of
data. If the encrypted form of data is tampered with by an intruder, its decryp-
tion by a process having the correct decryption algorithm and key would yield
unintelligible data, which would reveal that it has been altered in an unauthorized
manner. Because of this property of encrypted data, we use the term “decryp-
tion is unsuccessful” for the situation where decryption by the correct key yields
unintelligible data.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 618 — #14

618 Part 4 File Systems and I/O Management

Table 15.5 Cryptography Terms and Definitions

Term Description

Encryption Encryption is application of an algorithmic transformation Ek to
data, where E is an encryption algorithm and k is an encryption
key. It is used to protect confidentiality of data. The original data
is recovered by applying a transformation Dk′ , where D is a
decryption algorithm and k′ is a decryption key. A scheme using
k = k′ is called symmetric encryption, and one using k �= k′ is
called asymmetric encryption.

Plaintext Data to be encrypted.
Ciphertext Encrypted form of plaintext.
Confusion Shannon’s principle of confusion requires that changes caused in

a ciphertext due to a change in a plaintext should not be easy to
find.

Diffusion Shannon’s principle of diffusion requires that the effect of a small
substring in the plaintext should be spread widely in the
ciphertext.

Attacks on
cryptographic
systems

An attack is a series of attempts by an intruder to find a
decryption function Dk . In a ciphertext only attack, the intruder
can examine only a set of ciphertexts to determine Dk . In a known
plaintext attack, the intruder has an opportunity to examine
the plaintext and ciphertext form of some data, whereas in a
chosen plaintext attack the intruder can choose a plaintext and
obtain its ciphertext form to perform the attack.

One-way
function

A function, computation of whose inverse is expensive enough to
be considered impractical. Its use as an encryption function
makes cryptographic attacks difficult.

Block cipher A block cipher technique substitutes fixed-size blocks of plaintext
by blocks of ciphertext. It introduces some confusion, but does
not introduce sufficient diffusion.

Stream cipher Both a plaintext and the encryption key are considered to be bit
streams. Bits in the plaintext are encrypted by using an equal
number of bits in the encryption key. A stream cipher does not
introduce confusion and introduces limited diffusion; however,
some of its variants can introduce a high level of diffusion.

DES The Data Encryption Standard of the National Bureau of
Standards, adopted in 1976, uses a block cipher technique and
provides cipher block chaining as an option. It contains 16
iterations, which perform complex transformations on the
plaintext or the intermediate ciphertext.

AES The Advanced Encryption Standard is the new standard adopted
by the National Institute of Standards and Technology (formerly
known as the National Bureau of Standards) in 2001. It performs
between 10 and 14 rounds of operations, each involving only
substitutions and permutations, on plaintext blocks of 128, 192,
or 256 bits.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 619 — #15

Chapter 15 Security and Protection 619

Plaintext

(Pd)

Encryption

key (k)

Encryption

algorithm

(E)

Ciphertext

(Cd)

Decryption

key (k)

Decryption

algorithm

(D)

Plaintext

(Pd)

Figure 15.3 Symmetric encryption of data d.

15.4.1 Attacks on Cryptographic Systems
An attack on a cryptographic system consists of a series of attempts to find the
decryption function Dk . Since Dk(Ek(d)) = d , Dk is the inverse of Ek . Hence
an attack implies finding the inverse of Ek . If we define the quality of encryption
to mean its ability to withstand attacks, the aim of an encryption technique is to
perform high-quality encryption at a low cost. The encryption quality is best if
the function Ek is a one-way function, i.e., if computation of its inverse through
an attack involves an impractical amount of effort and time.

An intruder, who may be within an OS or outside it, can launch a vari-
ety of attacks on a cryptographic system. The nature of an attack depends on
the position that an intruder can occupy within the system. If an intruder can-
not invoke the encryption function and can only examine data in the ciphertext
form, he has to depend on guesswork. This is a trial-and-error approach in which
the function Dk is guessed repeatedly until its application to a ciphertext pro-
duces intelligible output. This attack is called an exhaustive attack because all
possibilities for Dk may have to be tried out.

An exhaustive attack involves a very large number of trials. For example, 255

trials would be needed to break an encryption scheme employing a 56-bit key by
using an exhaustive attack. The huge number was believed to make such a scheme
computationally secure, and the quality of encryption was believed to improve
with an increase in the number of bits in an encryption key. However, powerful
mathematical techniques like differential analysis may be employed to find Dk
much more easily than in an exhaustive attack. Intruders may also employ the
attacks described below that involve fewer trials than an exhaustive attack. We
see examples of these attacks when we discuss password security in Section 15.5.

In the ciphertext only attack, an intruder has access only to a collection of
ciphertexts. Consequently, to make the attack more efficient than an exhaus-
tive attack, the intruder relies on clues extracted through analysis of strings in
ciphertexts and information about features of plaintexts, such as whether they
consist only of words in a dictionary. In the known plaintext attack, an intruder
knows the plaintext corresponding to a ciphertext. This attack is feasible if an
intruder can gain a position within the OS from which both a plaintext and
the corresponding ciphertext can be observed. Collecting a sufficient number of
plaintext–ciphertext pairs provides clues for determining Dk . In the chosen plain-
text attack, an intruder is able to supply a plaintext and observe its encrypted
form, i.e., choose a d and observe Ek(d). It allows the intruder to systematically

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 620 — #16

620 Part 4 File Systems and I/O Management

build a collection of plaintext–ciphertext pairs to support guessing and refinement
of guesses during the attack.

15.4.2 Encryption Techniques
Encryption techniques differ in the way they try to defeat intruder attempts at
finding Dk . The fundamental approach is to mask the features of a plaintext—i.e.,
ensure that a ciphertext does not reveal features of the corresponding plaintext—
without incurring a very high cost of encryption.

Consider the simplest encryption technique, the classical substitution cipher,
which substitutes each letter in a plaintext by some other letter of the alphabet. It
does not mask features of a plaintext well enough; so frequency analysis provides
a simple method for finding Dk : Arrange letters of the alphabet in the order of
decreasing frequency of usage in a collection of ciphertexts. Take standard data
for frequency of letters in English texts, and organize the letters in the order of
decreasing frequency. Now, a good guess for Dk is a function that simply maps a
letter of the first list into the corresponding letter of the second list.

So how to mask features of a plaintext during encryption? Shannon (1949)
formulated two principles for design of high-quality encryption techniques. These
principles are called confusion and diffusion. The confusion principle recommends
that it should not be easy to find what changes would occur in the ciphertext due
to a change in a plaintext. The diffusion principle recommends that the effect
of a small substring in the plaintext should be spread throughout the ciphertext.
These principles ensure that features of a plaintext are masked effectively, because
individual parts of a plaintext and its ciphertext would not have a strong corre-
lation between them. In the following, we describe four encryption schemes and
discuss their confusion and diffusion properties.

Block Cipher The block cipher is an extension of the classical substitution cipher.
It performs substitution of fixed-size blocks of a plaintext by ciphertext blocks
of equal size. For example, a block consisting of, say, n bits is encrypted with a
key k to obtain an n-bit block of the ciphertext (see Figure 15.4). These blocks
are assembled to obtain the ciphertext. The block cipher technique is simple to
implement. However, the confusion and diffusion introduced by it is confined to a
block in the ciphertext. Hence identical blocks in a plaintext yield identical blocks
in the ciphertext. This feature makes it vulnerable to an attack based on frequency
analysis and known plaintext or chosen plaintext attacks. Larger values of n can
be used to make such attacks less practical.

Block

cipher

Encryption

key (k)

··

Plaintext

··

Ciphertext

Figure 15.4 Block cipher.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 621 — #17

Chapter 15 Security and Protection 621

Stream Cipher A stream cipher considers a plaintext as well as the encryption
key to be streams of bits. Encryption is performed by using a transformation that
involves a few bits of the plaintext and an equal number of bits of the encryption
key. A popular choice of the transformation is a bit-by-bit transformation of a
plaintext, typically by performing an operation like exclusive-OR on a bit of the
plaintext and a bit of the encryption key.

A stream cipher is faster than a block cipher. It does not provide confusion
or diffusion when a bit-by-bit transformation is used. A variant of this cipher,
called a vernam cipher, uses a random stream of bits as the key stream, whose size
exactly matches the size of the plaintext. Hence identical substrings in a plaintext
do not lead to identical substrings in the ciphertext. The one-time pad that is
famous for its use during the Second World War was actually a vernam cipher
wherein a key stream was used to encode only one plaintext. It made the cipher
unbreakable.

Variants of the stream cipher have been designed to introduce diffusion. Such
a cipher operates as follows: An n-bit key stream is used to encrypt the first n bits
of the plaintext. The next n bits of the key stream are the n bits of the ciphertext
that were just produced, and so on until the complete plaintext is encrypted. Thus
a substring in the plaintext influences encryption of the rest of the plaintext, which
provides a high level of diffusion. This cipher is called a ciphertext autokey cipher
(see Figure 15.5). If the key stream generator uses n bits of the plaintext that were
just encrypted, instead of its ciphertext, the cipher is called a self-synchronizing
cipher. The diffusion introduced by it is confined only to the next n bits of the
ciphertext.

RC4 is a widely used stream cipher that uses a key stream that is a pseudoran-
dom stream of bits. It uses a pseudorandom stream generator that is initialized
by using a key generated by the key scheduling algorithm. It is fast, as it requires
only between 8 and 16 machine operations to generate 1 byte in the key stream.
It is used in the Wired Equivalent Privacy (WEP) protocol for security in wireless
networks and its successor the Wi-Fi Protected Access (WPA) protocol, and in
the Secure Sockets Layer (SSL) protocol for the Internet. The key scheduling
algorithm of RC4 was shown to possess weaknesses, which led to breaking of
the WEP and WPA protocols. However, its use in the SSL protocol is considered
secure because the SSL protocol itself generates the key used to initialize the
pseudorandom stream generator.

Plaintext
Stream

cipher
Ciphertext

Encryption

key(k)

Key stream

generator

Figure 15.5 Ciphertext autokey cipher.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 622 — #18

622 Part 4 File Systems and I/O Management

Data Encryption Standard (DES) DES was developed by IBM for the National
Bureau of Standards. It uses a 56-bit key to encrypt 64-bit data blocks. Thus,
it is a block cipher. However, to overcome the problem of poor diffusion, DES
provides a cipher block chaining (CBC) mode. In this mode, the first block of
plaintext is combined with an initial vector using an exclusive-OR operation
and then enciphered. The resulting ciphertext is then combined with the second
block of the plaintext using an exclusive-OR operation and then enciphered,
and so on.

DES consists of three steps—the initial permutation step, the transforma-
tion step, and the final permutation step. The transformation step consists of 16
iterations. In each iteration the string input to the iteration is subjected to a com-
plex transformation that involves a permutation operation on the string, which
achieves diffusion, and a substitution operation through duplication and omis-
sion of some bits, which achieves confusion. Figure 15.6 illustrates operations
performed in each iteration. In the first iteration, the input string is the plaintext.
In all other iterations, the input string is the output of the previous iteration. The
input string is split into two halves of 32 bits each. The right half of the input
string becomes the left half of the result string, and a complex transformation
involving the left and right halves is performed to obtain the right half of the
result string.

Transformation of the right half of the input string consists of the following
steps: The right half is first expanded to 48 bits by permuting its bits and dupli-
cating some of them. It is combined with key Ki using an exclusive-OR operation
(see the function f in Figure 15.6), where key Ki is derived by permuting the
encryption key k, using the iteration number i. The result of this operation is
split into eight groups of 6 bits each. Each 6-bit group is input to an S-box that
substitutes a 4-bit group for it. The results of substitution are concatenated to
obtain a 32-bit string that is permuted to obtain another 32-bit string. This string
is combined with the left half of the input string, using an exclusive-OR opera-
tion to obtain the right half of the result string. The S-box introduces confusion.
The permutation introduces diffusion, while the final exclusion-OR operation
introduces confusion.

DES achieves both encryption and decryption by using the same sequence
of steps, except that the keys are used in the reverse order during decryption; i.e.,
iteration i uses key K17−i instead of key Ki . The 56-bit key length used in DES
would have required 255 trials in an exhaustive attack, which was considered a

Input stringRi−1Li−1

f
Ki = Φ (k, i)

Li−1⊕ f(Ri−1, Ki)

Result stringLi Ri

Figure 15.6 An iteration in DES (⊕ indicates an exclusive-OR operation).

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 623 — #19

Chapter 15 Security and Protection 623

large enough number to defeat such attacks in the 1970s and 1980s. However, use
of a small key length made DES vulnerable to attacks using modern technology.
In 1998, a message encrypted through DES was broken in less than 3 days by a
specially designed computer. In 1999, another message was broken in less than
a day by using 100,000 PCs on the Internet. The triple DES algorithm was then
endorsed as an interim standard until a new standard was adopted. It contained
three iterations, where each iteration applied the DES algorithm, using a different
key derived from the encryption key—the first and third iterations performed
encryption using their keys, while the second iteration performed decryption
using its key. Effectively it could use keys up to 168 bits in length, which was
considered to make it secure against attacks for a few years. The new standard
called the Advanced Encryption Standard (AES) was adopted in 2001.

Advanced Encryption Standard (AES) AES is a variant of Rijndael, which is a
compact and fast encryption algorithm using only substitutions and permuta-
tions. AES uses a block size of 128 bits and keys of 128, 192, or 256 bits, whereas
Rijndael can use any key and block sizes in the range 128 to 256 bits that are mul-
tiples of 32 bits. A plaintext block of 16 bytes is treated as a 4 byte × 4 byte
array called a state. It is encrypted through many rounds of operations, where
the number of rounds depends on the key length—10 rounds are performed for
128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Each
round consists of the following operations:

1. Byte substitution: Each byte of the state is subjected to a nonlinear
transformation applied by an S-box.

2. Shifting of rows: Rows in the state are shifted cyclically by 0, 1, 2, and 3 bytes,
respectively.

3. Mixing of columns: The 4 bytes in a column are replaced such that each result
byte is a function of all the 4 bytes in the column.

4. Key addition: A subkey, whose size is the same as the size of the state, is
derived from the encryption key by using a key schedule. The subkey and
the state are viewed as bit strings and combined by using the exclusive-OR
operation. If this is the last round, the result of the exclusive-OR operation
is a block of ciphertext; otherwise, it is used as the state for the next round
of encryption.

To enable both encryption and decryption to be performed by the same sequence
of steps, a key addition is performed before starting the first round, and the step
of mixing of columns is skipped in the last round.

15.5 AUTHENTICATION AND PASSWORD SECURITY
•

Authentication is typically performed through passwords, using the scheme
shown in Figure 15.1. For every registered user, the system stores a pair of the
form (login id, <validating_info>) in a passwords table, where <validating_info>

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 624 — #20

624 Part 4 File Systems and I/O Management

= Ek(password). To authenticate a user, the system encrypts his password using
Ek and compares the result with his validating information stored in the
passwords table. The user is considered to be authentic if the two match.

If an intruder has access to the passwords table, he can launch one of
the attacks described earlier in Section 15.4.1 to determine Ek . Alternatively,
the intruder may launch an attack to crack the password of an individual user.
In the scheme described above, if two users use identical passwords, the encrypted
forms of their passwords would also be identical, which would facilitate an
intruder’s attempts at cracking of a password if the passwords table is visible
to him. Hence the encryption function E takes two parameters. One parameter is
the encryption key k, and the other parameter is a string derived from the user’s
login id. Now, identical passwords yield distinct encrypted strings.

Intruders may use password cracking programs to discover passwords of
individual users. Their task is simplified by users’ tendency to use passwords
that are not difficult to guess, such as dictionary words and vehicle numbers,
or use simple keyboard sequences. For infrequently used accounts, users often
choose simple passwords that are easy to remember, the common refrain being
that they do not have many important files in that account. However, a pass-
word is the proverbial weakest link in the security chain. Any password that is
cracked provides an intruder with opportunities for launching further security
attacks. Consequently, a large number of security problems relate to use of poor
passwords.

Operating systems use a set of techniques to defeat attacks on passwords.
Table 15.6 summarizes these techniques. Password aging limits the exposure of
passwords to intruders, which is expected to make passwords more secure. System-
chosen passwords ensure use of strong passwords, which cannot be cracked by

Table 15.6 OS Techniques for Defeating Attacks on Passwords

Technique Description

Password aging Encourage or force users to change their passwords
frequently, at least once every 6 months. It limits the exposure
of a password to intruder attacks.

System-chosen
passwords

A system administrator uses a methodology to generate and
assign strong passwords to users. Users are not allowed to
change these passwords. An intruder would have to use an
exhaustive attack to break such passwords.

Encryption of
passwords

The encrypted form of passwords is stored in a system file;
however, the ciphertext form of passwords is visible to all
users in the system. An intruder can use one of the attacks
described in Section 15.4.1 to find Ek , or launch an
exhaustive attack to crack an individual user’s password.

Encrypt and hide
password
information

The encrypted form of passwords is not visible to any person
within or outside the system. Hence an intruder cannot use
any of the attacks described in Section 15.4.1.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 625 — #21

Chapter 15 Security and Protection 625

simple techniques like looking for parts of names or dictionary words in the
passwords. Their use would force an intruder to use an exhaustive attack to crack
a password, which is impractical.

When the encrypted passwords file is visible within and outside the system,
a registered user can use a chosen plaintext attack to discover Ek by changing his
own password repeatedly and viewing its encrypted form. However, an intruder
would have to use a ciphertext-only attack to find Ek since he does not know
any of the passwords. Hiding of the encrypted password file denies an intruder
within or outside the system an opportunity to use any of the attacks described
in Section 15.4.1, so he would have to rely on cracking of individual passwords,
which has little chance of success if strong passwords are used.

The Unix operating system performs DES encryption of passwords. Linux
employs a message digest, which is a 128-bit or 160-bit hash value obtained by
applying a one-way hash function to a password. This technique has variants
called MD2, MD4, and MD5. Linux uses MD5. Both Unix and Linux provide
a shadow passwords file option. When this option is chosen, the ciphertext form
of passwords is stored in a shadow file that is accessible only to the root.

15.6 PROTECTION STRUCTURES
•

A protection structure is the classical name for the authorization database dis-
cussed in Section 15.1 and illustrated in Figure 15.1. It contains information
indicating which users can access which files in what manner. We begin by dis-
cussing the nature of information contained in a protection structure, and how
the information is used to implement protection. Later in this section, we discuss
the key issues in organization of the protection structure.

Recall from Section 15.1 that an access privilege for a file is a right to make
a specific form of access to the file, e.g., a read access or a write access. A user
may hold one or more access privileges for a file, e.g., he may be permitted to
only read a file, or read and write a file but not execute it. An access descriptor is
a representation of a collection of access privileges for a file. The access control
information for a file is a collection of access descriptors; it represents access
privileges for the file held by all users in the system.

We use the notations r, w, and x to represent access privileges to read, write,
and execute the data or program in a file. An access descriptor can be repre-
sented as a set of access privileges, e.g., the set {r, w} indicates privileges to both
read and write a file. We will use a set representation in this chapter for simplicity;
however, a set representation is expensive in terms of both memory requirements
and access efficiency, so operating systems actually use a bit-encoding scheme for
access descriptors. In this scheme, an access descriptor is a string of bits, where
each bit indicates the presence or absence of a specific access privilege. For exam-
ple, in an OS using only three access privileges r, w, and x, the access descriptor
110 could be used to indicate that the read and write privileges are present but
the execute privilege is absent.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 626 — #22

626 Part 4 File Systems and I/O Management

As discussed in Section 15.1, the access control information for a file alpha
is created and used as follows:

1. When a user A creates file alpha, he specifies the access control information
for it. The file system stores it in the protection structure.

2. When a user X logs in, he is authenticated. The authentication service gen-
erates an authentication token for him, which is typically a user id. When
a process initiated by user X wishes to open or access file alpha, his
authentication token is passed to the file system.

3. The file system uses the authentication token to find the access privileges
of user X for file alpha in the protection structure, and checks whether
the kind of access desired by the process is consistent with the access
privileges.

Organization of the protection structure influences two key aspects of
protection—how much discrimination the owner of a file can exercise in Step 1
while specifying which other users can access the file, and how efficiently the
protection check of Step 3 can be implemented. We discuss these issues in the
following sections.

15.6.1 Granularity of Protection
Granularity of protection signifies the degree of discrimination a file owner can
exercise concerning protection of files. We define three levels of granularity in
Table 15.7.

Coarse-grained protection implies that users are clubbed into groups and
access privileges are specified for a group of users, whereas medium-grained
protection implies that the owner of a file can specify access privileges individu-
ally for each user in the system. Fine-grained protection permits access privileges
to be specified for a process or for different phases in operation of a process.
This way, different processes created by the same user may possess different
access privileges for a file, or the same process may possess different access priv-
ileges for the file at different times. It helps in ensuring privacy of information
(see Section 15.1.1).

Table 15.7 Granularity of Protection

Granularity Description

Coarse-grained
protection

Access privileges for a file can be specified only for groups of
users. Each user in a group has identical access privileges for
the file.

Medium-grained
protection

Access privileges for a file can be specified individually for
each user in the system.

Fine-grained
protection

Access privileges for a file can be specified for a process, or for
a phase in operation of a process.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 627 — #23

Chapter 15 Security and Protection 627

Jay {r} {r,w}

Anita {r,w,x} {r}

{r}

Access privileges

of Anita

Access control information

for alpha

Sheila

Users

Files
alpha beta gamma

Figure 15.7 Access control matrix (ACM).

Users desire medium- or fine-grained protection. However, such protection
leads to a large size of the protection structure. This is why operating systems
resort to coarse-grained protection.

15.6.2 Access Control Matrix
An access control matrix (ACM) is a protection structure that provides efficient
access to both access privileges of users for various files, and access control infor-
mation for files. Each element of the ACM contains access privileges of one user
for one file. Each user has a row in the ACM, while each file has a column in it.
This way, a row in the ACM describes one user’s access privileges for all files in
the system, and each column describes the access control information for a file.
When a user ui wishes to access file fk , the element ACM(ui , fk) can be accessed
efficiently to validate the kind of access being made by ui . Figure 15.7 shows an
ACM. User Jay has {read, write} access privileges for beta but only a {read}
privilege for alpha.

The ACM provides medium-grained protection. However, it is large in size
because an OS has a large number of users and contains a large number of files.
Accordingly, a large area of memory has to be committed to hold the ACM,
or parts of it, in memory during system operation. Operating systems use two
approaches to reduce the size of access control information. In the first approach,
the number of rows is reduced by assigning access privileges to groups of users
rather than to individual users. This approach retains the basic advantage of the
ACM, namely efficient access to both access privileges of users and access control
information of files. However, it leads to coarse-grained protection because all
users in a group have identical access privileges for a file.

The second approach to reducing size of the protection structure exploits
the fact that a typical user possesses access privileges for only a few files. Thus,
most elements in an ACM contain null entries, so space can be conserved by
organizing the protection information in the form of lists containing only nonnull
access privileges. This approach does not affect the granularity of protection;
however, it compromises access efficiency of the protection structure. We present
two list-organized protection structures in the following sections.

15.6.3 Access Control Lists (ACLs)
The access control list (ACL) of a file is a representation of its access con-
trol information; it contains the non-null entries that the file’s column would

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 628 — #24

628 Part 4 File Systems and I/O Management

alpha {(Jay, {r}), (Anita,{r, w, x})}

beta {(Jay, {r, w})}

gamma {(Anita, {r}), (Sheila, {r})}

File
name

Access control list
(ACL)

Figure 15.8 Access control lists (ACLs).

(alpha, {r, w, x})

(gamma, {r})

Figure 15.9 Capability list for user Anita.

have contained in the ACM. It is stored as a list of pairs of the form (user_id,
access_privileges). Figure 15.8 shows access control lists for the files alpha,
beta, and gamma of Figure 15.7. The ACL for alpha is {(Jay, {read}), (Anita,
{read, write, execute})}, which indicates that user Jay can only read file alpha
while Anita can read, write, or execute the file. User Sheila is not permitted
any kind of access to alpha, since alpha’s ACL does not contain an entry for
Sheila.

Even though use of an ACL eliminates the need to store null access privileges,
presence of a large number of users in a system leads to large ACL sizes, and
thereby to large disk and memory overhead in the file system. The time overhead
is also high because the ACL has to be searched for validating a file access. Both
memory and CPU time can be conserved at the cost of using coarse-grained
protection by specifying protection information for groups of users rather than
for individual users. Such an ACL could be small enough to be stored in the
directory entry of a file. For example, if users Jay and Anita belong to the same
group of users, the ACL of file alpha would contain a single pair. It would now
be easier to determine whether Jay can access alpha; however, both Jay and
Anita would have identical access privileges.

15.6.4 Capability Lists (C-lists)
A capability list (C-list) represents access privileges of a user for various files in
the system; it contains the non-null entries that the user’s row in the ACM would
have contained. Each entry in the C-list is a capability, which represents access
privileges for one file; it is a pair of the form (file_id, access_privileges). Figure 15.9
shows a C-list for user Anita of Figure 15.7. Anita can read, write, or execute
file alpha and can read file gamma. Anita has no access privileges for file beta,
since no entry for beta exists in the C-list. C-lists are usually small in size; this
feature limits the space and time overhead in using them for protection of files.
We discuss how capabilities are used in a computer in Section 15.7.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 629 — #25

Chapter 15 Security and Protection 629

15.6.5 Protection Domain
The access control matrix, access control list, or capability list is used to confer
access privileges on users. This arrangement serves the secrecy goal of security and
protection because only authorized users can access a file. However, the privacy
goal of security and protection requires that information should be used only for
intended purposes (see Section 15.1.1), and this requirement could be violated
as follows: A user is granted an access privilege for a file because some process
initiated by the user requires it. However, every other process initiated by the user
also has the same access privilege for the file; some of these processes may access
the file in an unintended manner, thus violating the privacy requirement. The
next example illustrates how privacy of information may be jeopardized.

•
Example 15.2Privacy Violation

A user ui has an execute privilege for a program invest owned by another
user uj . When ui executes invest, invest operates as a process initiated
by user ui . It can access any file for which user ui holds an access privilege,
including files that have nothing to do with investments. If uj so wishes, he can
code invest to obtain a listing of ui ’s current directory and either copy or
modify some of the files found in it.

•

Violation of privacy raises a major reliability concern, as the correctness of
data would depend not only on correct manipulation by processes that are sup-
posed to access it, but also on harmlessness of the accesses made by processes that
are not supposed to access it. The concept of a protection domain is used to prevent
privacy violations. We can think of a protection domain as a conceptual “execu-
tion environment”: Access privileges are granted to a protection domain rather
than to a user or his process. A process operates “within” a protection domain
and can access those files for which the protection domain has access privileges.
This arrangement facilitates implementation of the need-to-know principle with
a fine granularity—a process should be allowed to operate within a protection
domain only if it needs to access the files for which the protection domain has
access privileges. The following example illustrates how this approach ensures
privacy of information.

•
Example 15.3Protection Domains

Figure 15.10 shows three protection domains. Domain D1 has read and write
privileges for the files personal and finance, while D2 possesses only a
read privilege for finance. Domain D3 has read and write privileges for
the files memos and notes and a read privilege for the file project. Thus
domains D1 and D2 overlap while domain D3 is disjoint with both of them.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 630 — #26

630 Part 4 File Systems and I/O Management

D1 {r, w} {r, w}

{r, w} {r, w}

D2

D3 {r}

{r}

Domains

Files
personal finance memos notes project

Figure 15.10 Protection domains.

User ui initiates three processes named self, invest, and job_related
in domains D1, D2, and D3, respectively. Thus invest can access only file
finance, and can only read it.

If the OS did not use protection domains, user ui would have needed read
and write privileges for the files personal, finance, memos, and notes
and a read privilege for the file project. When user ui executed the program
invest of Example 15.2, which is owned by user uj , invest would have been
able to modify files personal, finance, memos, and notes of user ui .
•

Privacy can be enhanced by permitting a process to access some resources
only during specific phases in its operation. It is facilitated by letting a process
change its protection domain during operation, subject to some conditions. Using
this domain change facility, user ui of Example 15.3 would have been able to use
a single process to perform some personal computing, make some investment
decisions using program invest owned by user uj , and write some memos and
notes using a standard package. The process would be initiated in domain D1.
After performing personal computing in this domain, the process would change
its domain to D2 and call program invest, so that invest could only view
ui ’s financial details but not modify either those details or any of ui ’s personal
information. The process would later change to domain D3 for writing memos and
notes, using the standard package. We describe features for change of protection
domain in the Unix and Multics operating systems in Section 15.9.

15.7 CAPABILITIES
•

Dennis and Van Horn (1966) proposed the concept of a capability for use in
sharing and protection. A capability is a token representing some access privileges
for an object, where an object is any hardware or software entity in the system,
e.g., a laser printer, a CPU, a file, a program, or a data structure of a program.
A capability is possessed by a process. Its possession gives the process a right to
access the object in a manner that is consistent with the access privileges in the
capability.

Figure 15.11 shows the format of a capability. It consists of two fields—object
id and access privileges. Each object has an unique object id in the system. The

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 631 — #27

Chapter 15 Security and Protection 631

Access
privileges

Object
id

Figure 15.11 Format of a capability.

P1

Object
id

Access
privileges

C_list1

dcap (alpha)
alpha r

alpha

Object
id

Object
address

Object table

(OT)

alpha

Figure 15.12 Capability-based addressing.

access privileges field typically contains a bit-encoded access descriptor. A pro-
cess may possess many capabilities. These are stored in the capability list (C-list)
discussed earlier in Section 15.6.4.

When some process Pi creates an object Oi , the OS forms a capability for Oi
that contains the entire set of access privileges defined in the system, and passes
this capability to Pi . Using this capability, Pi can request the OS to create subset
capabilities for Oi that contain fewer access privileges. It can also make copies
of the capability for Oi that it received from the OS. Thus, many capabilities
for Oi may exist in the system. Process Pi can share the object Oi with other
processes by passing capabilities for Oi to other processes. Thus, each process
possesses capabilities for the objects it owns, and some capabilities passed to it by
other processes. All these capabilities are obtained through legal means—none
can be stolen or fraudulently created by a process. This is why a capability is often
described as an unforgeable token that confers access privileges onto its holder.

We use the notation Capk(obji) to refer to a capability for obji . The subscript
of Cap is used simply to distinguish between different capabilities for an object.
It does not have any other significance. For simplicity, we omit the subscript in
contexts where a single capability of an object is involved.

15.7.1 Capability-Based Computer Systems
A capability-based computer system implements capability-based addressing and
protection for all objects in the system, ranging from long-life objects like files
to short-life objects like data structures and copies of programs in memory.
Many capability-based systems were built for research; the Intel iapx-432 was
a capability-based commercial system.

Figure 15.12 is a schematic diagram of capability-based addressing of objects.
The system does not explicitly associate “memory” with processes; it associates
C-lists with processes. Each object has an unique id. The object table (OT) is a

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 632 — #28

632 Part 4 File Systems and I/O Management

systemwide table that contains location information for all objects in the system.
The object address field of an OT entry indicates the address of the object in the
computer’s primary or secondary memory. Access to an object is implemented
as follows: A process P1 performs an operation <opi> on an object by using an
instruction of the form

<opi> dCap(obji) (15.1)

where dCap(obji) is the displacement of Cap(obji) in P1’s C-list. The CPU locates
the capability in P1’s C-list using the displacement, and verifies that the operation
<opi> is consistent with access privileges in the capability. The object id in the
capability, that is, alpha, is now used to locate alpha’s entry in the OT and
the object address found there is used to implement <opi>. Capability-based
addressing can be made more efficient by using buffers analogous to address
translation buffers (see Section 12.2.2) and special cache memories for address
translation.

The capabilities in a C-list may be used to access objects existing anywhere
in the system, i.e., in memory or on disk; the location of an object is immaterial
to a process. This feature permits the OS to move objects around in memory for
better memory management, or move them between memory and disk for cost-
effective access performance, without affecting the manner in which a program
accesses the objects. Thus, long-life objects like files and short-life objects like
data structures can be accessed in a uniform manner.

Operations on Objects and Capabilities A process may be given some capabilities
by the OS by default when it is created. It may also inherit some capabilities from
its parent process. When the process performs the operation “create a new object,”
the CPU creates a new object and creates a new entry in the OT for it. It puts the
object id and address of the newly created object in the entry. It now creates a
capability containing the entire set of access privileges for the object and puts it
in the C-list of Pi . It also puts dCap(obji) in a register of the CPU. Process Pi saves
the contents of this register for use while accessing obji in future.

All operations performed by a process are subject to access privileges con-
tained in its C-list. The operation of creating an object may itself be subject to
an access privilege; if so, the OS would confer this access privilege through one
of the default capabilities it gives to each process. Table 15.8 lists the operations
a process can perform on objects and capabilities. Thus, a process can create,
modify, destroy, copy, or execute an object if it possesses a capability with the
appropriate access privileges.

Operations on a capability are also subject to access privileges in it. For
example, a process may be able to create a subset capability of Cap(obji) only
if Cap(obji) contains the access privilege “create subset capability.” This feature
controls the operations that processes can perform on capabilities. Sharing of
objects occurs when a process passes a capability for an object to another process.
The process receiving the capability enters it in its C-list. Sharing is implicit in
the fact that both C-lists contain a capability for the object. Protection is implicit
in the fact that these capabilities may confer different access privileges on the
processes.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 633 — #29

Chapter 15 Security and Protection 633

Table 15.8 Permissible Operations on Objects and Capabilities

Operations on objects
• Create an object
• Read or modify the object
• Destroy the object
• Copy the object
• Execute the object

Operations on capabilities
• Make a copy of the capability
• Create a “subset” capability
• Use the capability as a parameter in a function/

procedure call
• Pass the capability for use by another process
• Delete the capability

Protection of Capabilities Protection using capabilities is based on the funda-
mental assumption that capabilities cannot be forged or tampered with. This
assumption would be invalid if a process could access its C-list and modify the
capabilities existing in it. For example, process P1 of Figure 15.12 could alter the
access privileges field of the capability for alpha to give itself a “write” access
privilege, and then use the modified capability to modify object alpha. Such tam-
pering of capabilities is prevented by ensuring that arbitrary operations cannot
be performed on capabilities. It is implemented using two approaches—tagged
architectures and capability segments.

In a computer with a tagged architecture, the run-time representation of
an entity consists of two fields—a tag field and a value field. The tag field
describes the type of the entity. The CPU is designed to perform only those
operations on an entity that are consistent with its tag. This way, only the
six operations on capabilities that are mentioned in Table 15.8 can be performed
on a capability, which ensures that a capability cannot be tampered with. In
a computer using capability segments, data objects and their capabilities are
stored in different segments, and instructions in the CPU are designed to access
their operands from an appropriate segment. Only the six operations on capa-
bilities that are mentioned in Table 15.8 would take their operands from the
capability segment. This way, arbitrary operations cannot be performed on a
capability.

15.7.2 Software Capabilities
The OS for a non-capability-based computer can implement capabilities in the
software. The arrangement of objects and capabilities can be analogous to the
arrangement shown in Figure 15.12. However, manipulation and protection of
objects cannot be performed by the CPU of the system; it is now performed by
a component of the kernel called an object manager (OM). A program indicates
its object manipulation requirements to the object manager by making a call

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 634 — #30

634 Part 4 File Systems and I/O Management

Object
id

Access
privileges Number

Figure 15.13 An Amoeba-like capability.

OM (<opi>, Cap(obji)). This call has the same effect as instruction (15.1). The
object manager implements <opi> only if Cap(obji) contains the necessary access
privileges for performing it.

Two important issues in software capabilities are: A process may be able to
bypass the capability-based protection arrangement while accessing objects, and
it may be able to tamper with or fabricate capabilities. How can we prevent a pro-
cess from manipulating objects without going through the object manager? One
way to achieve it is to hide objects from the view of user processes by encrypting
the object table. Now processes will not know the locations of objects. Hence
they will have to depend on the object manager to perform object manipulation.
Tampering with capabilities can also be prevented by using encryption. As an
example, we describe a simplified version of the capability protection scheme
used in the distributed operating system Amoeba.

Capabilities in Amoeba An object obji , is assigned an encryption key keyi when
it is created. The encryption key is stored in the object table entry of obji . The
Amoeba capability has the format shown in Figure 15.13. The number field con-
tains information that is used to protect the capability. A capability for obji is
created using the following procedure:

1. The object id and access privileges fields of the capability are set appropriately.
2. The encryption key keyi is obtained from the object table entry of obji .

Contents of the access privileges field are now concatenated with keyi and
the resulting string is encrypted using keyi . We denote this operation as
Ekeyi

(access privileges . keyi), where “.” denotes concatenation. The result
of the encryption step is stored in the number field of the capability.

To manipulate obji , a process must submit a capability for obji to the object
manager. The object manager verifies the validity of this capability as follows:

1. The encryption key keyi is obtained from the object table entry of obji .
2. The string access privileges is obtained from the capability and Ekeyi

(access
privileges . keyi) is compared with the number field in the capability.

The comparison in Step 2 would fail if the object id or access privileges field
of a capability has been tampered with, so the object manager aborts the process
if the comparison fails.

Comparison with Capability-Based Systems The major strength of software
capabilities—their independence from the underlying hardware—is also their

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 635 — #31

Chapter 15 Security and Protection 635

major weakness. Operations such as creation of subset capabilities, which are
performed by the hardware of a capability-based system, need to be performed
in the software. Each of these involves a system call to invoke the object manager.
In addition, prevention of tampering requires validation of a capability before
use. These requirements lead to substantial time overhead.

15.7.3 Problem Areas in the Use of Capabilities
Use of capabilities has three practical problems:

• Need for garbage collection: When can an object be destroyed?
• Confinement of capabilities: How to ensure that processes do not pass

capabilities to other processes indiscriminately?
• Revocation of capabilities: How to cancel a capability or withdraw the access

privileges conferred by it?

Garbage Collection Theownerof anobject mayprepare subset capabilities for an
object and pass them to other processes so that they can access the object. Before
destroying such an object, the owner must know that no process is currently using
the object. This information can be gained only through synchronization of the
owner with all users of an object. This approach is impractical when objects are
created and used at a high rate or when objects with long lifetimes are shared. Two
problems can arise if objects are destroyed without collecting such information.
Dangling pointers can exist—that is, an object may be destroyed while some
capabilities still exist for it—or an object may exist long after capabilities for it
have been destroyed. Preventing both these situations requires use of expensive
garbage collection techniques.

Confinement of Capabilities Confinement implies restricting the use of a capa-
bility to a given set of processes. Lack of confinement implies proliferation of
capabilities throughout the system due to indiscriminate passing of capabilities.
It complicates garbage collection and prolongs the life of an object. It can also
undermine protection by violating the need-to-know principle. Confinement can
be achieved by making the passing of a capability itself an access right: If process
Pi turns off the “pass” access right in a capability while passing it to Pj , Pj will
not be able to pass the capability to any other process.

Revocation of Capabilities Revocation of all capabilities for an object is the most
difficult problem in a capability-based system, since there is no way to know which
processes hold capabilities for the object and there is no method of nullifying a
capability. However, revocation is possible in the case of software capabilities
because they are protected through encryption. In Amoeba, all existing capabil-
ities of an object would be invalidated when the encryption key assigned to the
object is changed. To selectively revoke some capabilities of an object, the owner
can invalidate all capabilities of the object by changing the encryption key and
then issue fresh capabilities to only some processes. However, it is an expensive and

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 636 — #32

636 Part 4 File Systems and I/O Management

intrusive operation—every process holding a capability for the object is affected
when any capability of the object is to be revoked.

15.8 CLASSIFICATIONS OF COMPUTER SECURITY
•

A security policy specifies the roles of entities—whether individuals or
programs—in ensuring that resources of a computer system are used in a legiti-
mate manner. In the terminology of Figure 15.1, a security policy would specify
roles of system administrators and programs used by them to maintain the
authentication and authorization databases and the roles of OS programs that
constitute the authentication and authorization services.

Ideally, it should be possible to prove that the security policies cannot be
undermined. However, such proofs are difficult for the reasons mentioned in
Section 15.3, so system developers must use other means to inspire confidence in
the security capabilities of systems. These means typically take the form of some
evidence that the system implements access control to ensure that resources are
used in a legitimate manner, and an auditing capability, which keeps information
on how a security-related event has been handled by the relevant entity.

The U.S. Department of Defense evolved Trusted Computer System Eval-
uation Criteria (TCSEC) to determine how well a computer system conforms
with the security and protection requirements. These criteria classify computer
systems into four divisions and several levels within each division (see Table 15.9).
The classification envisages that a computer system can be partitioned into two
parts: The trusted computing base (TCB) is that part of its hardware, software,

Table 15.9 Trusted Computer System Evaluation Criteria

Division Description and levels

Verified protection
(division A)

A system must support formal methods for verification of
security.

Mandatory
protection
(division B)

A system must associate sensitivity labels with data and
programs and implement mandatory access control rules
through a reference monitor (RM).
• B1: Labeled security protection
• B2: Structured protection
• B3: Security domains

Discretionary
protection
(division C)

A system must implement need-to-know protection and
provide audit capabilities for accountability of subjects and
their actions.
• C1: Discretionary security protection
• C2: Controlled access protection

Minimal
protection
(division D)

A system that fails the requirements for a higher division.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 637 — #33

Chapter 15 Security and Protection 637

and firmware that implements security-related functionalities in the system; the
remainder of the system does not implement any security-related functions. The
classification of a computer system depends on whether its TCB meets the require-
ments of a specific division in the classification and all lower divisions. Division
D is the lowest security classification; it is awarded to systems that cannot meet
the requirements of any of the other divisions.

The TCB of a division C computing system possesses three key capabili-
ties. First, it permits a user to specify which other users can access the data
or programs owned by him; it performs authentication of users to provide this
capability. Second, it facilitates auditing of security-related events in the system
by keeping a record of events such as authentication attempts, file open/close,
actions of system administrators, etc. Third, it provides object reuse protection to
ensure that a user’s data cannot be accidentally accessed by another user. It is
implemented by clearing the memory allocated to a data object before returning
it to the TCB’s pool of free objects or free memory. Levels C1 and C2 of division
C correspond to the different protection granularities. A system satisfies level C2
of the classification if a user can identify each individual user who can access
the files owned by him; otherwise, the system satisfies level C1. Thus, a system
implementing coarse-grained protection would earn a level C1 classification (see
Section 15.6.1).

To earn a division B classification, a computer system must assign sensitivity
labels to all data and programs that reflect their security and protection levels,
and must use these labels to validate every access of a data or program, which is
called mandatory access control. It must also control the propagation of access
rights. The system developer must furnish a security policy model on which the
TCB is based. This model must employ a reference monitor (RM) to validate each
reference to a data or program by a user or his process. The reference monitor
should be tamper-proof and should be small so that its completeness can be
analyzed and tested.

Division B consists of three levels, which differ in the extent of mandatory
protection, resistance to penetration, support for trusted facility management,
and structuring of the TCB into protection-critical and non-protection-critical
elements. In level B1, mandatory access control must exist, and the system admin-
istrator should be able to audit the actions of select users or actions related to
select programs or data objects. In level B2, mandatory access control should be
extended to all users and all data and program objects. The system should be
resistant to penetration, and should provide support for system administrator
and operator functions. The system should also provide a trusted path between a
user and the TCB. This path is typically used when a user wishes to log in. Its use
eliminates masquerading attacks by a Trojan horse program (see Section 15.2). In
level B3, the system should be highly resistant to penetration and must support a
system administrator in collecting information on imminent security attacks and
terminating events that could be parts of such attacks.

To qualify for the division A rating, a system has to have the capabili-
ties of level B3, and its developer has to furnish a formal proof of its security
policy.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 638 — #34

638 Part 4 File Systems and I/O Management

15.9 CASE STUDIES IN SECURITY AND PROTECTION
•

15.9.1 MULTICS
MULTICS provides 64 protection domains that are organized as concen-
tric rings. The rings are numbered from the innermost to the outermost (see
Figure 15.14). The access privileges of a domain include access privileges of all
higher-numbered domains. In addition, the domain may have a few other access
privileges of its own. Each procedure of a program is assigned to a protection
domain and can be executed only by a process that is in the same protection
domain.

The code component of a process may consist of procedures in different
protection domains. An interrupt is raised when a process executing in protection
domain Di invokes a procedure that is assigned to a protection domain Dj , where
Dj �= Di . To execute the procedure, the protection domain of the process should
be changed to Dj . The kernel checks whether this is permissible according to the
rule for change of protection domain. A simplified view of this rule is as follows:
Change of protection domain is permitted if a process running in some domain
Di invokes a procedure that exists in a higher-numbered domain. However, to
enter a lower-numbered domain a process must invoke a specially designated
procedure called a gate. An attempt to invoke any other procedure in a lower-
numbered layer fails and the process is aborted. If a procedure call satisfies this
rule, the protection domain of the process is temporarily changed to the domain
in which the invoked procedure exists. The invoked procedure executes in this
protection domain and accesses resources according to the access privileges of
the domain. At return, the protection domain of the process is reset to its earlier
value, i.e., to Di .

The MULTICS protection structure is complex and incurs substantial
execution overhead due to checks made at a procedure call. Because of the
requirement that access privileges of a protection domain should include access
privileges of all higher-numbered domains, it is not possible to use domains
whose access privileges are disjoint. For example, domains D1, D2, and D3 of
Figure 15.10 cannot be implemented in MULTICS since domain D3 is disjoint
with domains D1 and D2. This feature restricts users’ freedom in specifying
protection requirements.

Ring 63Gates

. . .Ring

0

Figure 15.14 MULTICS protection rings.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 639 — #35

Chapter 15 Security and Protection 639

15.9.2 Unix
As mentioned in Section 15.5, Unix employs encryption for password security.
Under an option, it uses a shadow passwords file that is accessible only to the
root, which forces an intruder to use an exhaustive attack to crack passwords.
Each Unix user has an unique id in the system. The system administrator creates
nonoverlapping groups of users and assigns a unique group id to each group. The
credential of a user is composed of his user id and group id. It is stored in the
passwords table and becomes the authentication token of the user after the user
is authenticated.

Unix defines three user classes—file owner, user group, and other users—and
provides only three access rights, r, w, and x, representing read, write, and execute,
respectively. A 3-bit bit-encoded access descriptor is used for each user class and
the access control list (ACL) contains access descriptors for three user classes in
the sequence: file owner, user group, and other users. This way, the ACL requires
only 9 bits; it is stored in the inode of a file (see Section 13.14.1). The identity of
the file owner is stored in another field of the file’s inode. Figure 15.15 shows the
Unix ACLs as reported in a directory listing. The file sigma can be read by any
user in the system, but can be written only by its owner. delta is a read-only file
for all user classes, while phi has the read, write, and execute privileges only for
its owner.

The access privileges of a Unix process are determined by its uid. When the
kernel creates a process, it sets the uid of the process to the id of the user who
created it. Thus the process operates in a protection domain determined by the
id of the user who created it. Unix changes the protection domain of a process
under two conditions—when the process makes a system call, and when the setuid
or setgid feature is used. A process has two distinct running states—user running
and kernel running (see Section 5.4.1). While in the user-running state, a process
has access to the memory space and other resources allocated to it, and to files
in the file system according to its uid. The process makes a transition to the
kernel-running state through a system call. In this state, it can access kernel data
structures and also contents of the entire memory. It returns to the user-running
state when it returns from the system call. Thus, a change of protection domain
occurs implicitly when a process makes a system call and when it returns from a
system call.

The setuid feature can be used in two ways. A process can make a system call
setuid <id> to change its uid to <id>, and another setuid system call with its
own id to revert to its original uid. Alternatively, uid can be changed implicitly
when a process performs an exec in order to execute a program. The latter usage

r w - r - - r - -

r - - r - - r - -

r w x - - - - - -

file

owner

user

group

other

users

sigma

delta

phi

Figure 15.15 Unix access control list.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 640 — #36

640 Part 4 File Systems and I/O Management

is realized as follows: Let a program P be stored in a file named P. If the owner
of P requests the kernel that P be executed under the setuid feature, the kernel
sets the setuid bit in the inode of file P. When P is exec’ed by some process that
has an execute permission for it, the kernel notices that the setuid bit of file P
is set, and temporarily changes the uid of the process executing P to the uid
of P’s owner. This action effectively puts the process into a protection domain
whose access privileges are identical with the access privileges of P’s owner. This
feature can be used to avoid the privacy violation discussed in Example 15.2 as
follows: User uj sets the setuid bit of the program invest. User ui provides
uj with a read access to the file finance before invoking invest. Now, the
program invest executes with the uid of uj . Thus, invest can access user
ui ’s file finance, but it cannot access any other files owned by ui . The setgid
feature analogously provides a method of temporarily changing the group id of
a process.

15.9.3 Linux
Linux authenticates a user at login time by adding a “salt” value to his pass-
word and encrypting the result through MD5. Under an option, it employs a
shadow passwords file that is accessible only to the root. Additionally, Linux pro-
vides pluggable authentication modules (PAMs), through which an application can
authenticate a user at any time through a dynamically loadable library of authenti-
cation modules. This arrangement provides flexibility because the authentication
scheme used in an application can be changed without having to recompile the
application. An application developer can use PAMs to enhance application secu-
rity in several ways—to employ a password encryption scheme of his own choice,
to set resource limits to users so that they cannot consume an excessive amount
of a resource to launch a denial-of-service attack, and to allow specific users to
log in only at specific times from specific locations.

The system administrator maintains a PAM configuration file for each appli-
cation that is authorized to employ PAM. Each PAM configuration file specifies
how authentication is to be performed and what actions, such as mounting
of home directories or logging of the authentication event, are to be taken
after a user is authenticated. The configuration file also names the mechanism
that is to be employed when a user wishes to change his password. PAM per-
mits several authentication modules to be “stacked”; these modules are invoked
one after another. An application can use this facility to authenticate a user
through several means such as passwords and biometric identification, to enhance
security.

Linux provides file access protection based on user id and group id of a
process. When a server such as the NFS accesses a file on behalf of a user, file
protection should be performed using the user id and group id of the user rather
than those of the server. To facilitate this, Linux provides the system calls fsuid
and fsgid through which a server can temporarily assume the identity of its
client.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 641 — #37

Chapter 15 Security and Protection 641

As described in Section 4.8.2, the Linux kernel supports loadable kernel
modules. This feature has been employed to provide enhanced access controls
through loadable kernel modules called the Linux security modules (LSM). Use
of LSMs permits many different security models to be supported. The basic
schematic of LSM is simple: The kernel invokes an access validation function
before accessing an object. An LSM provides this function, which may permit or
deny the access to go through. The Security Enhanced Linux (SELinux) of the
U.S. National Security Agency has built additional access control mechanisms
through LSM, which provide mandatory access control.

The Linux kernel provides the exec-shield patch, which enables protection
against exploitation of buffer overflows and data structure overwriting to launch
security attacks.

15.9.4 Security and Protection in Windows
The Windows security model has several elements of C2- and B2-class systems
according to the TCSEC criteria (see Section 14.5.2). It provides discretionary
access control, object reuse protection, auditing of security-related events, a secu-
rity reference monitor (SRM) that enforces access control, and a trusted path
for authentication that would defeat masquerading attacks launched through
a Trojan horse. Among other notable features, it provides security for client–
server computing through access tokens, which are analogous to capabilities (see
Section 15.7).

Windows security is based around the use of security identifiers (SIDs); a
security identifier is assigned to a user, a host, or a domain, which is composed
of several hosts. The important fields in an SID are a 48-bit identifier authority
value, which identifies the host or domain that issued the SID, and a few 32-bit
subauthority or relative identifier (RID) values that are used primarily to generate
unique SIDs for entities created by the same host or domain.

Each process and thread has an access token that identifies its security con-
text. (Recall that we use the term process as being generic to both a process and a
thread.) An access token is generated when a user logs on, and it is associated with
the initial process created for the user. A process can create more access tokens
through the LogonUser function. An access token contains a user account SID
and a group account SID. These fields are used by the security reference monitor
to decide whether the process holding the access token can perform certain oper-
ations on an object. An access token also contains a privilege array indicating any
special privileges held by the process, such as a privilege for creating backups of
files, impersonating a client, and shutting down a host. It may also contain a few
superprivileges for loading and unloading drivers, taking ownership of objects,
and creating new access tokens.

An object such as a file has a security descriptor, which contains the object
owner’s id, a discretionary access control list (DACL) and a system access control
list (SACL). The DACL is used to specify which users can access the object
in what manner, while the SACL is used to generate an audit log of operations
performed on the object. Both DACL and SACL are lists of access control entries

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 642 — #38

642 Part 4 File Systems and I/O Management

(ACEs); however, an ACE plays different roles in these lists. An ACE in a DACL
either indicates that the specified user is allowed to access the object, or indicates
that the user is forbidden access to the object. This arrangement permits medium-
grained protection and yet helps to make the DACL compact; however, the entire
DACL has to be processed to determine whether a specific user is allowed to access
the object in a specific manner. An object that can contain other objects, such
as a directory, is called a container object; we will call the objects contained in it
its “child objects”. An ACE in the DACL of a container object contains flags to
indicate how the ACE is to apply to a child object—identically, not at all, or in
some other manner. An important option is that the ACE may be inherited by a
child object that is itself a container object, but it may not be further inherited by
objects that may be created within the child object. This feature helps to limit the
propagation of access control privileges. An ACE in the SACL indicates which
operation on the object by which users or groups of users should be audited. An
entry is made in the audit log when any of these operations is performed.

The impersonation feature in the Windows security model provides security in
client–server computing. When a server performs some operations on objects on
behalf of a client, these operations should be subject to the access privileges of the
client rather than those of the server; otherwise, the client may be able to realize
operations on these objects that exceed its own access privileges. Analogously, the
security audit log that is generated when the server accesses an object on behalf
of a client should contain the identity of the client rather than that of the server.
Both these requirements are satisfied by letting the server temporarily assume the
identity of the client through impersonation.

Impersonation is implemented as follows: When a client invokes a server, it
indicates the kind of impersonation it wishes the server to perform—the server
cannot perform impersonation without the client’s consent. If impersonation is
enabled, an impersonation token is created from the client’s token and given to
the server. The server presents the impersonation token, rather than its own
access token, while performing operations on objects. Effectively, the access token
and the impersonation token act like the capabilities discussed in Section 15.7.
Further, to ensure security, the server may create a restricted token from an imper-
sonation token. Such a token would contain a subset of the privileges contained in
the impersonation token—it is like a subset capability discussed in Section 15.7.

The following new security features were added in Windows Vista to make
it a more secure OS:

• Defeating buffer overflow attacks in Intel 80x86 architectures: Recall from
Section 15.2.2 that the stack grows downward in memory in processors with
these architectures. Vista places the return pointers and parameters of a func-
tion call higher in the stack than local data to prevent their corruption by an
overflow. Attempts at executing code smuggled in as data are defeated using
the no-execute (NX) feature of processors by flagging parts of memory used
to hold data as no-execute zones.

• Detecting heap corruption: An intruder can launch a buffer overflow attack
in the heap as well. To prevent it, metadata such as pointers in the heap are

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 643 — #39

Chapter 15 Security and Protection 643

encoded by performing an exclusive-OR with a random number. Corruption
of the heap, through overflow or otherwise, would change some of the meta-
data, hence its decryption would fail. The kernel aborts a process when this
happens.

• Preventing access to system code: Parts of system code are loaded randomly in
any one of 256 possible locations in memory, to make it difficult for an intruder
to access them. Function pointers that exist in memory for long durations
are obfuscated by performing an exclusive-OR with random numbers.

• Preventing misuse of privileges: System services do not run in the system
account as they used to in earlier versions of Windows. They run in less priv-
ileged accounts. Processes initiated by system administrators also run in less
privileged modes and the kernel prompts the administrator to authenticate
himself when his process is about to execute a function that requires adminis-
trator privileges. If authentication is successful, other windows on the screen
are blanked out to prevent spoofing of the user interface and mouse.

• Network access protection: Unless a computer conforms to the norms set by
the administrator, it is either blocked from accessing the network or provided
only limited access to it.

15.10 SUMMARY
•

A fundamental goal of an OS is to ensure non-
interference in the computations and resources
of users. However, users need to share some of
their resources, such as programs and data stored
in files, with collaborators. Hence an important
aspect of implementing noninterference is know-
ing what accesses to a resource are legitimate and
what accesses constitute interference. Threats of
interference can arise outside a system or within it.
Measures employed to counter such threats consti-
tute security and protection, respectively. Authenti-
cation is the key technique of security; it determines
whether a person is a registered user of a com-
puter system. Authorization is the key technique
of protection. It determines whether a user is per-
mitted to access a resource. In this chapter we
studied implementation of the authentication and
authorization techniques.

A person or program posing a threat of inter-
ference is called an intruder. Intruders may employ
various means that exploit security flaws in a com-
puter system, either to masquerade as a user or

to disrupt legitimate use of resources by users.
These means include a Trojan horse, virus, or worm
or use of a buffer overflow. Threats imposed by
intruders are thwarted by exercising caution while
loading unknown programs into a computer and
by removing security flaws.

The authentication service of an OS keeps
names of registered users, and information used
to identify them, in a database. It uses encryption,
which is an algorithmic transformation of data, to
prevent intruders from accessing and misusing the
authentication database. Block cipher and stream
cipher are widely used encryption techniques; the
encryption standards digital encryption standard
(DES) and advanced encryption standard (AES)
have been widely deployed.

The authorization service of an OS has a
protection structure, which contains two kinds of
information. An access privilege represents a user’s
right to access a specific file in a specific man-
ner. The protection information of a file indicates
which users can access the file in what manner.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 644 — #40

644 Part 4 File Systems and I/O Management

Organization of the protection structure controls
the amount of discrimination a user can exer-
cise while specifying which users can access his
files in what manner; it is called granularity of
protection. Access control lists, capability lists,
and protection domains are alternative protection
structures.

A computer system is assigned a security clas-
sification based on how well it conforms to the
security and protection requirements. Its ability
to provide fine-grained protection and support
the system administrator in implementing secu-
rity policies are key determinants of its security
classification.

TEST YOUR CONCEPTS
•

15.1 Classify each of the following statements as true
or false:
a. The authentication mechanism is used to dis-

tinguish between users and nonusers of a
computer system.

b. An authentication token contains the list of
access privileges held by a user.

c. The authorization database is used by secu-
rity mechanisms.

d. Encryption of information ensures its
integrity.

e. Masquerading is a security attack.
f. A virus launches a security attack only if

explicitly downloaded by a user.
g. The buffer overflow technique can be used to

launch a security attack.
h. When encrypted by a stream cipher, identi-

cal substrings in a plaintext always lead to
identical substrings in its ciphertext.

i. To authenticate a user at login time, an
OS decrypts the encrypted form of the
user’s password stored in the authentication
database and compares the result with the
password presented by the user.

j. Password aging limits exposure of a password
to attacks by an intruder.

k. Two capabilities of an object may confer
identical access privileges on their holders.

l. Encryption is used to protect software capa-
bilities.

15.2 Which of the following is a protection violation?
a. User X who possesses a write privilege for

file alpha of user Y writes invalid data into
alpha.

b. A nonuser manages to read the data stored in
a file beta in a computer system.

c. User X manages to read a file alpha of user
Y even though he does not possess a read
privilege for it.

d. None of (a)–(c).
15.3 Pair the related items in each column:

i. Unix-style access
control list

i. Fine-grained
protection

ii. Access control matrix
(ACM)

ii. Coarse-grained
protection

iii. Protection domains iii. Medium-grained
protection

EXERCISES
•

15.1 Explain the procedure to be followed for making
changes in the authentication and authorization
databases of Figure 15.1.

15.2 List the security attacks that cannot be pre-
vented by encryption.

15.3 Discuss whether encryption can ensure secrecy,
privacy, and integrity of data.

15.4 Formulate a security rule that will eliminate the
security flaw of Example 15.1.

15.5 Describe the conditions under which a cho-
sen plaintext attack can be launched against
passwords.

15.6 Comment on the impact of granularity of pro-
tection on sizes of various protection structures.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 645 — #41

Chapter 15 Security and Protection 645

Suggest methods of reducing the size of the
access control list (ACL) when medium-grained
protection is to be implemented.

15.7 A file is encrypted by using an encryption func-
tion E and a key k. No other protection checks
are made by the file system. If the user wishes
to share the file with another user, he makes E
and k available to the other user. Compare the
above scheme for protecting files with a protec-
tion scheme using an access control list, on the
basis of (a) ease of granting access privileges to
users or withdrawing them, and (b) granting
different kinds of access privileges to the same
file.

15.8 Some old operating systems used to associate
passwords with files and permit any program
that presented a valid password for a file to
access it. Compare this protection scheme with a
capability-based protection scheme on the same
criteria as in Exercise 15.7.

15.9 Capability review is the process by which an OS
finds all processes that possess a capability for a
specific object obji . Describe how a review oper-
ation can be performed in a system that uses
hardware or software capabilities.

15.10 An OS performs validation of software capabili-
ties as follows: When a new capability is created,
the object manager stores a copy of the capa-
bility for its own use. When a process wishes to
perform an operation on an object, the capa-
bility presented by it is compared with stored
capabilities. The operation is permitted only if a
matching capability exists with the object man-
ager. Is this scheme foolproof? Does it permit
selective revocation of access privileges?

15.11 An OS creates servers to offer various services to
users. While handling a service request made by
a user, a server may need to access resources on
behalf of the user. Such resource accesses must
be subject to access privileges of the user, rather
than access privileges of the server.
a. The following scheme is proposed for this

purpose: When a user invokes a service, he
sends his own authentication token to the
server. When the server requests access to
a resource, it presents the user’s authentica-
tion token, rather than its own authentica-
tion token, to the authorization service. This
way, its use of resources would be subject to
the user’s access privileges. How to ensure
that an intruder cannot exploit this arrange-
ment to masquerade as a user? (Hint: Ensure
that a user’s authentication token cannot be
forged.)

b. Design a scheme using capabilities.
15.12 Explain how buffers analogous to address trans-

lation buffers used in virtual memories (see
Section 12.2.2.2) or a cache memory can be used
in the schematic of Figure 15.12 to speed up
object accesses.

15.13 Different nodes of a distributed system may con-
currently create new objects. Describe a scheme
that can ensure uniqueness of object ids in a
distributed OS.

15.14 Study relevant Unix literature and describe the
provisions in Unix for (a) finding the id of the
user who owns a file, and (b) deciding whether a
user belongs to the same user group as the owner
of a file.

BIBLIOGRAPHY
•

Ludwig (1998) describes different kinds of viruses, while
Ludwig (2002) discusses e-mail viruses. Spafford (1989)
discusses the Morris Internet worm that caused havoc in
1988, and Berghel (2001) describes the Code Red worm
of 2001.

Landwehr (1981) discusses formal models for com-
puter security. Voydock and Kent (1983) discuss security
issues in distributed systems and practical techniques
used to tackle them.

Shannon (1949) is the classical work in computer
security. It discusses the diffusion and confusion prop-
erties of cyphers. Denning and Denning (1979) and
Lempel (1979) contain good overviews of data security
and cryptology, respectively. Schneier (1996) and Fergu-
son and Schneier (2003) are texts on cryptography, while
Pfleeger and Pfleeger (2003) is a text on computer secu-
rity. Stallings (2003) discusses cryptography and network
security.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 646 — #42

646 Part 4 File Systems and I/O Management

Naor and Yung (1989) discusses one-way hash func-
tions. Rivest (1991) describes the MD4 message digest
function. The goal of MD4 is to make it computation-
ally infeasible to produce two messages with an identical
message digest, or to produce a message with a given
message digest. MD4 is extremely fast and resists crypt-
analysis attacks successfully. Rivest (1992) describes
MD5, which is more conservative and a little slower than
MD4. Preneel (1998) describes cryptographic primitives
for information authentication.

Access matrix-based protection and protection
domains are discussed in Lampson (1971) and Popek
(1974). Organick (1972) discusses the MULTICS pro-
tection rings. The setuid feature of Unix is described in
most books on Unix.

Dennis and Van Horn (1966) is a widely refer-
enced paper on the concept of capabilities. Levy (1984)
describes a number of capability-based systems. Mul-
lender and Tanenbaum (1986) and Tanenbaum (2001)
describe the software capabilities of Amoeba. Ander-
son et al. (1986) discusses software capabilities with a
provision for containment.

The Trusted Computer System Evaluation Criteria
(TCSEC) of the U.S. Department of Defense offers a
classification of security features of computer systems.
It is described in DoD (1985).

Spafford et al. (2003) discusses security in Solaris,
Mac OS, Linux, and FreeBSD operating systems. Wright
et al. (2002) discusses the Linux security modules. Russi-
novich and Solomon (2005) discusses security features
in Windows.

1. Anderson, M., R. D. Pose, and C. S. Wallace
(1986): “A password-capability system,”
The Computer Journal, 29 (1), 1–8.

2. Berghel, H. (2001): “The Code Red worm,”
Communications of the ACM, 44 (12), 15–19.

3. Denning, D. E., and P. J. Denning (1979):
“Data security,” Computing Surveys, 11 (4).

4. Dennis, J. B., and E. C. Van Horn (1966):
“Programming semantics for multiprogrammed
computations,” Communications of the ACM,
9 (3).

5. DoD (1985): Trusted Computer System
Evaluation Criteria, U.S. Department of Defense.

6. Ferguson, N., and B. Schneier (2003): Practical
Cryptography, John Wiley, New York.

7. Fluhrer, S., I. Mantin, and A. Shamir (2001):
“Weaknesses in the key scheduling algorithm of

RC4,” Proceedings of 8th Annual Workshop on
Selected Areas in Cryptography.

8. Lampson, B. W. (1971): “Protection,” Operating
Systems Review, 8 (1), 18–24.

9. Landwehr, C. E. (1981): “Formal models for
computer security,” Computing Surveys, 13 (3),
247–278.

10. Lempel, A. (1979): “Cryptology in transition,”
Computing Surveys, 11 (4), 286–303.

11. Levy, H. M. (1984): Capability-Based Computer
Systems, Digital Press, Burlington, Mass.

12. Ludwig, M. A. (1998): The Giant Black Book of
Computer Viruses, 2nd ed., American Eagle,
Show Low, Ariz.

13. Ludwig, M. A. (2002): The Little Black Book of
Email Viruses, American Eagle, Show Low,
Ariz.

14. Menezes, A., P. van Oorschot, and S. Vanstone
(1996): Handbook of Applied Cryptography, CRC
Press, Boca Raton, Fla.

15. Mullender, S. P., and A. Tanenbaum (1986): “The
design of a capability-based distributed operating
system,” Computer Journal, 29 (4).

16. Nachenberg, C. (1997): “Computer
virus–antivirus coevolution,” Communications of
the ACM, 40, 46–51.

17. Naor, M., and M. Yung (1989): “Universal
one–way hash functions and their cryptographic
applications,” Proceedings of the 21st Annual
ACM Symposium on Theory of Computing,
33–43.

18. Oppliger, R. (1997): “Internet security: firewalls
and beyond,” Communications of the ACM,
40 (5), 92–102.

19. Organick, E. I. (1972): The MULTICS System,
MIT Press, Cambridge, Mass.

20. Pfleeger, C. P., and S. Pfleeger (2003): Security in
computing, Prentice Hall, Englewood Cliffs, N.J.

21. Popek, G. J. (1974): “ Protection structures,”
Computer, 7 (6), 22–33.

22. Preneel, B. (1998): Cryptographic primitives for
Information Authentication—State of the art in
applied cryptography, LNCS 1528, Springer
Verlag, 1998.

23. Rivest, R. (1991): “The MD4 message digest
algorithm,” Proceedings of Advances in
Cryptology—Crypto’90, Lecture Notes in
Computer Science, volume 537, Spinger-Verlag,
303–311.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 647 — #43

Chapter 15 Security and Protection 647

24. Rivest, R. (1992): “The MD5 Message digest
algorithm,” Request for Comments, RFC 1321.

25. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

26. Schneier, B. (1996): Applied cryptography, 2nd
ed., John Wiley, New York.

27. Shannon, C. E. (1949): “Communication Theory
of Secrecy Systems,” Bell System Technical
Journal, October 1949.

28. Spafford, E. H. (1989): “The Internet worm: crisis
and aftermath,” Communications of the ACM, 32
(6), 678–687.

29. Spafford, G., S. Garfinkel, and A. Schwartz
(2003): Practical UNIX and Internet Security, 3rd
ed., O’Reilly, Sebastopol, Calif.

30. Stallings, W. (2003): Cryptography and Network
Security: Principles and Practice, 3rd ed., Prentice
Hall, N.J.

31. Stiegler, H. G. (1979): “A structure for access
control lists,” Software—Practice and Experience,
9 (10), 813–819.

32. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

33. Voydock, V. L., and S. T. Kent (1983): “Security
mechanisms in high level network protocols,”
Computing Surveys, 15 (2), 135–171.

34. Wofsey, M. M. (1983): Advances in Computer
Security Management, John Wiley, New York.

35. Wright, C., C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman (2002): “Linux Security
modules: General security support for the Linux
kernel,” Eleventh USENIX Security
Symposium.

15-M4363-DAS1.LaTeX: “chap15” — 2007/11/24 — 13:04 — page 648 — #44

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 649 — #1

p a r t 5
Distributed Operating

Systems

Adistributed system consists of several nodes, where each node is a
computer system with its own clock and memory, that can communicate
among themselves through a network. A distributed operating system

exploits these features as follows: It facilitates a user to structure his applica-
tion as a distributed computation, which consists of several processes located in
different nodes of the distributed system. To service all processes in the system
efficiently, it balances computational loads in various computers by transferring
processes between nodes, if necessary. This way, processes of an application can
compete for CPUs in different nodes, which provides both computation speedup
within an application and better performance of the system. Also, the OS uses
the redundancy of resources and network links in the system to provide high
reliability.

To realize these benefits of computation speedup, performance, and relia-
bility, the OS has to perform control functions like scheduling and deadlock
handling on a systemwide basis. Because of the distributed nature of the system,
a distributed OS cannot use the notions of time and state to perform control
functions the way a conventional OS uses them, so it performs its control func-
tions in a distributed manner, i.e., through processes in several computers that
work in close coordination to make decisions.

A fault in a distributed system does not halt the complete system. It may affect
only some computations, or only some parts of a computation, so the distributed
OS uses special reliability techniques to minimize the impact of a fault. Presence
of the network has several implications for the distributed OS. Communication
over the network is slow, so it can seriously erode system performance if processes
access their files over the network. To prevent this, distributed file systems employ
techniques that reduce network traffic during file processing. The networking
component also makes the OS susceptible to security attacks, so it employs special
techniques to provide security.

649

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 650 — #2

650 Part 5 Distributed Operating Systems

Road Map for Part 5

Distributed

System Security

Distributed

File Systems

Distributed

Control

Algorithms

Distributed

Operating

Systems

Theoretical Issues

in Distributed

Systems

Recovery and

Fault Tolerance

Schematic diagram showing the order in which chapters of this part should be covered
in a course.

Chapter 16: Distributed Operating Systems
A distributed system consists of hardware components such as computer systems
and the network, and software components such as network protocols, distributed
computations, and the operating system. This chapter discusses important features
of these components and the manner in which these features influence the compu-
tation speedup, reliability, and performance that can be achieved in a distributed
system.

Chapter 17: Theoretical Issues in Distributed Systems
Time and state are two key notions used in a conventional OS. However, these
notions cannot be used in the same manner in a distributed system because it
contains several computer systems, each with its own clock and memory, that
communicate through messages that incur unpredictable communication delays.
This chapter discusses practical alternatives to the traditional notions of time
and state. These alternative notions are used in the design of distributed control
algorithms and recovery schemes used in a distributed OS.

Chapter 18: Distributed Control Algorithms
A distributed OS uses a distributed control algorithm to implement a control
function. The algorithm involves actions in several nodes of the distributed

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 651 — #3

Chapter 15 651

system. This chapter describes the notions of correctness of a distributed control
algorithm, and presents algorithms for performing five control functions in a
distributed OS—mutual exclusion, deadlock handling, leader election, scheduling,
and termination detection.

Chapter 19: Recovery and Fault Tolerance
A fault may disrupt operation in a system by damaging the states of some data
and processes. The focus of recovery is to restore some data or process(es) to a
consistent state such that normal operation can be restored. Fault tolerance pro-
vides uninterrupted operation of a system despite faults. This chapter discusses
recovery and fault tolerance techniques used in a distributed operating system.
Resiliency, which is a technique for minimizing the impact of a fault, is also
discussed.

Chapter 20: Distributed File Systems
A distributed file system stores files in several nodes of a distributed system, so a
process and a file used by it might be in different nodes of a system. Performance
and reliability of a distributed file system are determined by the manner in which
it organizes access to a required file. This chapter discusses different methods of
organizing access to files and directories located in various nodes of a system, and
techniques such as file caching and stateless file servers that are used to ensure
good performance and reliability, respectively.

Chapter 21: Distributed System Security
Presence of the network makes a distributed system susceptible to security attacks
such as tampering of messages and masquerading, which can be launched through
interprocess messages. This chapter discusses authentication and message security
measures used in distributed operating systems to thwart such attacks. Methods
of verifying authenticity of data are also discussed.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 652 — #4

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 653 — #5

C h a p t e r 16
Distributed Operating
Systems

Adistributed system consists of many computer systems, each having its
own clock and memory, connected to a network and operating under a
distributed operating system. Its key benefits are sharing of resources

located in different computers, reliability of operation through redundancy
of CPUs and resources across the computer systems, and speedup of a user
application achieved by operating its processes in different computers. Fea-
tures of four hardware and software components are important for realizing
these benefits—computer systems in the distributed system, the network connect-
ing them, distributed computations performed in the system, and the distributed
operating system.

The role of these four components can be described as follows: A computer
system forms a node of a distributed system. Its architecture influences its ability
to contribute to computation speedup and reliability of operation. The operat-
ing system integrates the operation of nodes of a distributed system to provide
resource sharing, computation speedup, and reliability. To exploit the OS fea-
tures for access to nonlocal resources and computation speedup, a user employs
a distributed computation, whose actions are performed in several nodes of the
system. Such a computation uses interprocess communication protocols to reli-
ably transfer messages containing data and computations between nodes. These
messages are actually sent over the network through network protocols.

In this chapter, we discuss important features of these four components of a
distributed system to create the background for a study of distributed operating
systems. We then identify design issues that arise in a distributed OS because of
the distributed nature of its computing environment. We identify five such design
issues. These issues are discussed in detail in subsequent chapters.

16.1 FEATURES OF DISTRIBUTED SYSTEMS
•

A distributed system can consist of two or more computer systems, each with
its own clock and memory, some networking hardware, and a capability of

653

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 654 — #6

654 Part 5 Distributed Operating Systems

Table 16.1 Benefits of a Distributed System

Feature Description

Resource sharing An application may use resources located in different
computer systems.

Reliability A distributed system provides availability, i.e.,
continuity of services, despite occurrence of faults. It is
achieved through redundancies in the network and
resources, and in OS services.

Computation speedup Parts of a computation can be executed in parallel in
different computer systems, thus reducing duration of
an application, i.e., its running time.

Communication Users or their subcomputations located at different
nodes can communicate reliably by using OS services.

Incremental growth Open system standards permit new subsystems to be
added to a distributed system without having to replace
or upgrade existing subsystems. This way, the cost of
enhancing a capability of a distributed system is
proportional to the additional capability desired.

performing some of the control functions of the OS (see Definition 3.8). Benefits
of a distributed system were discussed earlier in Section 3.8; these are summarized
here in Table 16.1.

Use of distributed systems spread rapidly in 1990s when computer hardware
prices dropped and use of the open system standard facilitated incremen-
tal growth of a system. An open system has well-defined and nonproprietary
interfaces with its own components and with other systems. These interfaces
are typically developed or approved by a standards body, so they have ready
acceptance within the computer industry. Their use enables addition of new com-
ponents and subsystems to a computer system, thereby facilitating incremental
growth. The LAN is an excellent example of an open system. Computer systems
ranging from supercomputers to cheap PCs can be connected to it because they
all use a standard interface. When a distributed system is implemented by using
a LAN, its computing capability can be enhanced incrementally by connecting
new computer systems to the LAN.

The benefits of distributed systems listed in Table 16.1 are realized using the
following hardware and software components:

• Hardware components: Individual computer systems and networking hard-
ware such as cables, links, and routers.

• Software components: Operating system components that handle creation
and scheduling of distributed computations and use of distant resources,
OS and programming language features that support writing of dis-
tributed computations, and networking software, which ensures reliable
communication.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 655 — #7

Chapter 16 Distributed Operating Systems 655

Several terms are used for a computer system that is a part of a distributed
system. We use the following convention: a host is a computer system in a physical
sense, a node is a computer system in a logical sense, and a site is a location
in a distributed system that contains one host. Entities, such as processes and
resources, in the same site are said to be local entities and those in different sites
are said to be distant entities.

16.2 NODES OF DISTRIBUTED SYSTEMS
•

A distributed system can contain different types of nodes. A minicomputer node
has a single CPU that is shared to service applications of several users. A work-
station node has a single CPU but services one or more applications initiated by
a single user. A node that is a multiprocessor system is called a processor pool
node. It contains several CPUs, and the number of CPUs may exceed the number
of users whose applications are serviced in parallel.

A cluster is a group of hosts that work together in an integrated manner.
A cluster constitutes a single node of a distributed system; each individual host
is a node within the cluster. Figure 16.1 is a schematic diagram of a cluster. The
cluster is shown to have two nodes; however, more nodes may be added to provide
incremental growth. Each node is a computer system having its own memory
and I/O devices. The nodes share disk storage, such as a multihost RAID, which
offers both high transfer rate and high reliability (see Section 14.3.5), or a storage
area network, which offers incremental growth (see Section 14.3.4). Each node
is connected to two networks—a private LAN to which only the nodes in the
cluster are connected, and a public network through which it can communicate
with other nodes in the distributed system.

Cluster software controls operation of all nodes in a cluster. It can pro-
vide computation speedup by scheduling subtasks in an application on different
nodes within the cluster, and reliability by exploiting redundancy of CPUs
and resources within the cluster. Section 16.3 describes how these features are
implemented in the Windows cluster server and the Sun Cluster.

Node P CU CU NodeCU PCU

M

Public network

Private LAN

RAID

M

Figure 16.1 Architecture of a cluster.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 656 — #8

656 Part 5 Distributed Operating Systems

16.3 INTEGRATING OPERATION OF NODES
OF A DISTRIBUTED SYSTEM

•
To realize the benefits of resource sharing, reliability, and computation speedup
summarized in Table 16.1, processes of an application should be scattered across
various nodes in the system (1) whenever possible, to achieve computation
speedup and efficiency of resources, and (2) whenever necessary to provide reli-
ability. It is achieved by integrating the operation of various nodes in the system
through interactions of their kernels. In this section, we sample features of a few
systems to illustrate different ways in which operation of nodes is integrated. In
Section 16.8, we discuss design issues in distributed operating systems.

Network Operating Systems A network operating system is the earliest form
of operating system for distributed architectures. Its goal is to provide resource
sharing among two or more computer systems that operate under their own OSs.
As shown in the schematic of Figure 16.2, the network OS exists as a layer between
the kernel of the local OS and user processes. If a process requests access to a
local resource, the network OS layer simply passes the request to the kernel of the
local OS. However, if the request is for access to a nonlocal resource, the network
OS layer contacts the network OS layer of the node that contains the resource
and implements access to the resource with its help. Many network operating
systems have been developed on top of the Unix operating system. The Newcastle
connection, also called Unix United, is a well-known network OS developed at the
University of Newcastle upon Tyne. It provided access to remote files by using
system calls that are identical with those used for local files.

A network OS is easier to implement than a full-fledged distributed OS. How-
ever, local operating systems retain their identities and operate independently, so
their functioning is not integrated and their identities are visible to users. In some
network OSs, a user had to log into a remote operating system before he could
utilize its resources. This arrangement implies that a user must know where a
resource is located in order to use it. A network OS cannot balance or optimize
utilization of resources. Thus, some resources in a node may be heavily loaded
while identical resources in other nodes may be lightly loaded or free. The net-
work OS also cannot provide fault tolerance—a computation explicitly uses a
resource id while accessing a resource, so it has to be aborted if the resource fails.

User processes

Computer

system 1

User processes

Computer

system 2

Network OS

layer

Kernel of

local OS

Network OS

layer

Kernel of

local OS

Figure 16.2 A network operating system.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 657 — #9

Chapter 16 Distributed Operating Systems 657

Windows and Sun Cluster Software Cluster software is not a distributed oper-
ating system; however, it contains several features found in distributed operating
systems—it provides availability through redundancy of resources such as CPUs
and I/O devices and computation speedup by exploiting presence of several CPUs
within the cluster.

The Windows cluster server provides fault tolerance support in clusters con-
taining two or more server nodes. An application has to use a special application
program interface (API) to access cluster services. Basic fault tolerance is pro-
vided through RAIDs of level 0, 1, or 5 (see Section 14.3.5) that are shared by all
server nodes. In addition, when a fault or a shutdown occurs in one server, the
cluster server moves its functions to another server without causing a disruption
in its services.

A cluster is managed by distributed control algorithms, which are implemented
through actions performed in all nodes (see Chapter 18). These algorithms require
that all nodes must have a consistent view of the cluster, i.e., they must possess
identical lists of nodes within the cluster. The following arrangement is used to
satisfy this requirement: Each node has a node manager, which maintains the
list of nodes in a cluster. The node manager periodically sends messages called
heartbeats to other node managers to detect node faults. The node manager that
detects a fault broadcasts a message containing details of the fault on the private
LAN. On receiving this message, each node corrects its list of nodes. This event
is called a regroup event.

A resource in the cluster server can be a physical resource, a logical resource,
or a service. A resource is implemented as a dynamic link library (DLL), so it is
specified by providing a DLL interface. A resource belongs to a group. A group
is owned by one node in the cluster at any time; however, it can be moved to
another node in the event of a fault. The resource manager in a node is respon-
sible for starting and stopping a group. If a resource fails, the resource manager
informs the failover manager and hands over the group containing the resource
so that it can be restarted at another node. When a node fault is detected, all
groups located in that node are “pulled” to other nodes so that resources in
them can be accessed. Use of a shared disk facilitates this arrangement. When a
node is restored after a failure, the failover manager decides which groups can
be handed over to it. This action is called a failback; it safeguards resource effi-
ciency in the system. The handover and failback actions can also be performed
manually.

The network load balancing feature distributes the incoming network traf-
fic among the server nodes in a cluster. It is achieved as follows: A single IP
address is assigned to the cluster; however, incoming messages go to all server
nodes in the cluster. On the basis of the current load distribution arrangement,
exactly one of the servers accepts the message and responds to it. When a node
fails, its load is distributed among other nodes, and when a new node joins, the
load distribution is reconfigured to direct some of the incoming traffic to the
new node.

The Sun cluster framework integrates a cluster of two or more Sun systems
operating under the Solaris OS to provide availability and scalability of services.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 658 — #10

658 Part 5 Distributed Operating Systems

Availability is provided through failover, whereby the services that were running
at a failed node are relocated to another node. Scalability is provided by sharing
the load across servers. Three key components of the Sun Cluster are global
process management, distributed file system, and networking. Global process
management provides globally unique process ids. This feature is useful in process
migration, wherein a process is transferred from one node to another to balance
the computational loads in different nodes, or to achieve computation speedup.
A migrated process should be able to continue using the same path names to
access files from a new node. Use of a distributed file system provides this feature.

Amoeba Amoeba is a distributed operating system developed at the Vrije Uni-
versiteit in the Netherlands during the 1980s. The primary goal of the Amoeba
project is to build a transparent distributed operating system that would have the
look and feel of a standard time-sharing OS like Unix. Another goal is to provide
a testbed for distributed and parallel programming.

The Amoeba system architecture has three main components—X terminals,
a processor pool, and servers such as file and print servers. The X terminal is a user
station consisting of a keyboard, a mouse and a bit-mapped terminal connected
to a computer. The processor pool has the features described in Section 16.2.
The Amoeba microkernel runs on all servers, pool processors and terminals, and
performs the following four functions:

1. Managing processes and threads
2. Providing low-level memory management support
3. Supporting communication
4. Handling low-level I/O

Amoeba provides kernel-level threads and two communication protocols. One
protocol supports the client–server communication model through remote proce-
dure calls (RPCs), while the other protocol provides group communication. For
actual message transmission, both these protocols use an underlying Internet
protocol called the fast local Internet protocol (FLIP), which is a network layer
protocol in the ISO protocol stack (see Section 16.6.6).

Many functions performed by traditional kernels are implemented through
servers that run on top of a microkernel. Thus actions like booting, process
creation, and process scheduling are performed by servers. The file system is also
implemented as a file server. This approach reduces the size of the microkernel
and makes it suitable for a wide range of computer systems from servers to pool
processors. The concept of objects is central to Amoeba. Objects are managed
by servers and they are protected by using capabilities (see Section 15.7).

When a user logs in, a shell is initiated in some host in the system. As the user
issues commands, processes are created in some other hosts to execute the com-
mands. Thus a user’s computation is spread across the hosts in the system; there is
no notion of a home machine for a user. This disregard for machine boundaries
shows how tightly all resources in the system are integrated. Amoeba uses the
processor pool model of nodes in the system. When a user issues a command,
the OS allocates a few pool processors to the execution of the command. Where
necessary, pool processors are shared across users.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 659 — #11

Chapter 16 Distributed Operating Systems 659

16.4 RELIABLE INTERPROCESS COMMUNICATION
•

In a conventional OS, processes that wish to communicate through messages
exist in the same host, and have unique ids assigned by its kernel. However, in a
distributed system, processes existing in different nodes may wish to communicate
with one another, hence the distributed OS assigns globally unique names to
processes. It also provides an arrangement through which a process with a given
name can be located in the system, so that other processes can communicate with
it. We discuss both these features in Section 16.4.1.

Once the location of a destination process is determined, a message meant
for it can be sent to it over the network. However, message delivery may fail
because of faults in communication links or nodes located in network path(s)
to the destination process, hence processes must make their own arrangement
to ensure reliable delivery of messages. This arrangement is in the form of an
interprocess communication protocol (IPC protocol), which is a set of rules and
conventions aimed at handling transient faults during message transmission. The
sender and destination processes invoke protocol routines when they execute the
send and receive statements. These routines perform necessary actions to
ensure reliable delivery of messages.

Table 16.2 summarizes three key provisions in IPC protocols—
acknowledgments, time-outs, and retransmissions. An acknowledgment informs
the sender process that its message has been delivered to the destination process.
A time-out is said to have occurred if the sender process does not receive an
acknowledgment in an expected interval of time. The message is now retransmit-
ted. These steps are repeated until the sender process receives an acknowledgment.

The protocol is implemented as follows: When a process sends a message, the
protocol routine invoked by it makes a system call to request an interrupt at the
end of a specific time interval. This interrupt is called a time-out interrupt. When
the message is delivered to the destination process, the protocol routine invoked
by the destination process sends an acknowledgment to the sender process to
inform it that its message has been delivered. If the time-out interrupt occurs

Table 16.2 Provisions for Reliability in an IPC Protocol

Provision Description

Acknowledgment When a process receives a message, the protocol
routine invoked by it sends an acknowledgment to
the sender of the message.

Time-out The protocol specifies an interval of time within
which it expects a sender process to receive an
acknowledgment. A time-out is said to have occurred if
the acknowledgment is not received within this interval.

Retransmission of a
message

If a time-out interrupt occurs before the sender receives
an acknowledgment, the protocol routine invoked by
the sender retransmits the message.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 660 — #12

660 Part 5 Distributed Operating Systems

in the sender’s site before an acknowledgment is received, the protocol routine
retransmits the message and makes a system call to request another time-out
interrupt. These actions are repeated until the sender receives an acknowledg-
ment. A similar arrangement may be used to ensure that a reply, if any, sent by
the destination process reaches the sender process. We discuss IPC protocols in
Sections 16.4.2–16.4.3.

16.4.1 Naming of Processes
All entities in a distributed system, whether processes or resources, are assigned
unique names as follows: Each host in a system is assigned a systemwide unique
name, which can be either numeric or symbolic, and each process or resource
in a host is assigned an id that is unique in the host. This way, the pair
(<host_name>, <process_id>) is unique for each process and can be used as
its name. A process that wishes to send a message to another process uses a
pair like (human_resources, Pj) as the name of the destination process, where
human_resources is the name of a host. This name should be translated into
a network address for sending the message.

To easily locate a host in the Internet, the Internet is partitioned into a set of
domains that have unique names, each domain is partitioned into smaller domains
that have unique names in the domain, and so on. A host has a unique name in the
immediately containing domain, but its name may not be unique in the Internet,
so a unique name for a host is formed by adding names of all the domains that
contain it, separated by periods, starting with the smallest domain and ending
with the largest domain. For example, the host name Everest.cse.iitb.ac.in refers
to the server Everest in the Computer Science and Engineering Department of
IIT Bombay, which is in the academic domain in India.

The domain name space is hierarchically organized; the top level in the hier-
archy is occupied by an unnamed root domain. This domain contains a small
number of top-level domains that represent either organizations of a specific kind,
or organizations within a country. In the host name Everest.cse.iitb.ac.in, “in”
is the top-level domain representing India and “ac” is the name of a domain
containing academic organizations. Hence “ac.in” contains academic organiza-
tions in India. “ac” is called a second-level domain because its name contains
two domain names.

Each host connected to the Internet has a unique address known as the Inter-
net protocol address (IP address). The domain name system (DNS) is a distributed
Internet directory service that provides the IP address of a host with a given name.
It has a name server in every domain, which contains a directory giving the IP
address of each host in the domain. When a process operating in a host hi wishes
to send a message to another process with the name (<host_name>, <process_
id>), host hi performs name resolution to determine the IP address of <host
name>. Host hi is called the resolver. Name resolution proceeds as follows: The
resolver knows the address of a name server for the root domain. To resolve the
name <host_name>, the resolver sends it to the name server of the root domain.
This name server responds by returning the IP address of a name server for the

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 661 — #13

Chapter 16 Distributed Operating Systems 661

top-level domain in <host_name>. The resolver now sends <host_name> to this
name server, which returns the address of a name server for the second-level
domain, and so on, until a name server returns the address of the required host.

Name resolution using name servers can be slow, so each resolver can cache
some name server data. This technique speeds up repeated name resolution the
same way a directory cache speeds up repeated references to the directory entry
of a file (see Section 13.15). An IP address can be kept in the cache for the amount
of time specified as the time to live, which is 1 hour. The name server of a domain
is replicated to enhance its availability and to avoid contention.

16.4.2 IPC Semantics
IPC semantics is the set of properties of an IPC protocol. IPC semantics depend
on the arrangement of acknowledgments and retransmissions used in an IPC
protocol. Table 16.3 summarizes three commonly used IPC semantics.

At-most-once semantics result when a protocol does not use acknowledg-
ments or retransmission. These semantics are used if a lost message does not
pose a serious threat to correctness of an application, or if the application knows
how to recover from such situations. For example, an application that receives
periodic reports from other processes knows when a message is not received as
expected, so it may itself communicate with a sender whose message is lost and ask
it to resend the message. These semantics provide high communication efficiency
because acknowledgments and retransmissions are not used.

At-least-once semantics result when a protocol uses acknowledgments and
retransmission, because a destination process may receive a message more than

Table 16.3 IPC Semantics

Semantics Description

At-most-once semantics A destination process either receives a message once, or
does not receive it. These semantics are obtained when
a process receiving a message does not send an
acknowledgment and a sender process does not
perform retransmission of messages.

At-least-once semantics A destination process is guaranteed to receive a
message; however, it may receive several copies of the
message. These semantics are obtained when a process
receiving a message sends an acknowledgment, and a
sender process retransmits a message if it does not
receive an acknowledgment before a time-out occurs.

Exactly-once semantics A destination process receives a message exactly once.
These semantics are obtained when sending of
acknowledgments and retransmissions are performed
as in at-least-once semantics; however, the IPC protocol
recognizes duplicate messages and discards them so
that the receiver process receives the message only once.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 662 — #14

662 Part 5 Distributed Operating Systems

once if an acknowledgment is lost or delayed because of congestion in the net-
work. A message received for the second or subsequent time is called a duplicate
message. An application can use at-least-once semantics only if processing of
duplicate messages does not pose any correctness problems such as updating of
data many times instead of only once.

Exactly-once semantics result when a protocol uses acknowledgments and
retransmission, but discards duplicate messages. These semantics hide transient
faults from both sender and receiver processes; however, the IPC protocol incurs
high communication overhead due to handling of faults and duplicate messages.

16.4.3 IPC Protocols
An IPC protocol specifies what actions should be performed at the sites of sender
and destination processes so that a message is delivered to a destination process
and its reply is delivered to the sender process. We describe how IPC protocols
are classified and present a couple of examples.

Reliable and Unreliable Protocols A reliable protocol guarantees that a message,
or its reply, is not lost. It achieves this through at-least-once or exactly-once
semantics for both messages and their replies. An unreliable protocol does not
guarantee that a message or its reply would not be lost—it provides at-most-
once semantics either for messages or for their replies. As commented in the last
section, a reliable protocol incurs substantial overhead due to acknowledgments
and retransmission of messages and replies, whereas an unreliable protocol does
not incur these overheads.

Blocking and Nonblocking Protocols As discussed in Chapter 9, it is common to
block a process that executes a receive system call if no messages have been sent
to it. There are no intrinsic reasons to block a process that executes a send system
call; however, blocking of a sender process may simplify a protocol, reduce its
overhead, and also add some desirable features to its semantics. For example, if a
sender process is blocked until its message is delivered to a destination process, the
message would never have to be retransmitted after the sender is activated, so the
message need not be buffered by the protocol after the sender is activated. Also,
blocking of the sender helps to provide semantics similar to the conventional
procedure call.

A protocol is a blocking protocol if a sender process is blocked until it receives
a reply to its message; otherwise, it is a nonblocking protocol. We assume that if
a protocol does not block a sender process, interrupt(s) will be generated to
notify the process of the arrival of a reply or an acknowledgment so that it can
take appropriate actions. Blocking and nonblocking protocols are also called
process-synchronous and asynchronous protocols, respectively.

16.4.3.1 The Request-Reply-Acknowledgment Protocol

The request-reply-acknowledgment (RRA) protocol is a reliable protocol for use
by processes that exchange requests and replies. Receipt of the reply implies that
the destination process has received the request, so a separate acknowledgment

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 663 — #15

Chapter 16 Distributed Operating Systems 663

5

4

3

2

1

Sender

site

Destination

site

Request

buffer

Reply

buffer

Header Reply

Figure 16.3 Operation of a blocking version of the request-reply-acknowledgment (RRA)
protocol.

of the request is not needed. The sender, however, sends an an explicit acknowl-
edgment of the reply. A blocking version of the RRA protocol is presented as
Algorithm 16.1. Figure 16.3 depicts its operation.

Algorithm 16.1 A Blocking Version of the RRA Protocol

1. When a process makes a request: The request is copied in a buffer called the
request buffer in its site and also sent to the destination process in the form of
a message. A system call is made to request a time-out interrupt. The sender
process is blocked until a reply is received from the destination process.

2. When a destination process receives a message: The destination process ana-
lyzes the request contained in the message and prepares a reply. The reply is
copied in a buffer called the reply buffer in the destination site and also sent
to the sender process. A system call is made to request a time-out interrupt.

3. When a time-out occurs in the sender process: The copy of the request stored
in the request buffer is retransmitted.

4. When the sender process receives a reply: The sender process sends an
acknowledgment to the destination process. It also releases the request buffer,
if not already done.

5. When a time-out occurs in the destination process: The copy of the reply stored
in the reply buffer is retransmitted.

6. When the destination process receives an acknowledgment: The destination
process releases the reply buffer.

The sender process is blocked until it receives a reply, so a single request buffer
in the sender site suffices irrespective of the number of messages a process sends
out, or the number of processes it sends them to. The destination process is not
blocked on an acknowledgment, so it could handle requests from other processes
while it waits for an acknowledgment. Accordingly, the destination site needs
one reply buffer for each sender process. The number of messages can be reduced
through piggybacking, which is the technique of including the acknowledgment of
a reply in the next request to the same destination process. Since a sender process is
blocked until it receives a reply, an acknowledgment of a reply is actually implicit
in the next request it makes. Hence only the reply to the last request would require
an explicit acknowledgment message.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 664 — #16

664 Part 5 Distributed Operating Systems

The RRA protocol has the at-least-once semantics because messages and
replies cannot be lost; however, they might be delivered more than once. As
mentioned in Table 16.3, duplicate requests would have to be discarded in the
destination site to provide exactly-once semantics. It can be achieved as follows:
A sender assigns ascending sequence numbers to its requests and includes them in
its request messages. The sequence number of a message is copied into its reply and
acknowledgment, and into the header field of the reply buffer in the destination
site. The destination process also separately preserves the sequence number of the
last request received from the sender process. If the sequence number in a request is
not greater than the preserved sequence number, the request is a duplicate request
so the destination process simply retransmits the reply if its copy is present in the
reply buffer. Otherwise, either the copy of the reply in the reply buffer would have
been discarded after receiving its acknowledgment, in which case the request is an
outdated retransmission, or the destination process is still processing the request
and would send its reply sometime in future. In either of these cases, the duplicate
request is simply discarded.

16.4.3.2 The Request-Reply Protocol

The request-reply (RR) protocol simply performs retransmission of a request
when a time-out occurs. A nonblocking version of the RR protocol that provides
the exactly-once semantics is presented as Algorithm 16.4.3. Figure 16.4 depicts
its operation.

Algorithm 16.2 A Nonblocking Version of the RR Protocol

1. When a process makes a request: The request is copied in a request buffer
in the sender site and also sent to the destination process in the form of a
message. A system call is made to request a time-out interrupt. The sender
process proceeds with its computation.

2. When the destination process receives a message: If the message is not a dupli-
cate request, the destination process analyzes the request contained in the
message and prepares a reply, copies it in a reply buffer and also sends it to
the sender process. Otherwise, it simply locates the reply of the message in a
reply buffer and sends it to the sender process.

Request

buffer

Sender

site

Destination

site

3

2

1

Reply

buffers

Header Reply

Figure 16.4 Operation of a nonblocking version of the request-reply (RR) protocol.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 665 — #17

Chapter 16 Distributed Operating Systems 665

3. When a time-out occurs in the sender site: The copy of the request stored in
the request buffer is retransmitted.

4. When a reply is received at the sender site: An interrupt is raised to notify
the sender process of the arrival of a reply. The sender process releases the
request buffer.

A sender does not explicitly acknowledge a reply. Also, unlike the RRA
protocol of the previous section, an acknowledgment is not implicit in the
sender’s next request because the sender could have made the next request before
receiving the reply to its previous request. Consequently, the destination pro-
cess has to buffer its replies indefinitely, which leads to a very high buffer space
requirement.

If requests made by a sender are delivered to the destination process in the
same order, the duplicate recognition and discarding arrangement of the RRA
protocol can be used with minor changes: A destination process preserves the
sequence numbers and replies of all requests in a pool of buffers. When it recog-
nizes a duplicate request through a comparison of sequence numbers, it searches
for the reply of the request in the buffer pool using the sequence number, and
retransmits the reply if found in a buffer; otherwise, it simply ignores the request,
as a reply would be sent after processing the request. Exercise 16.5 addresses a
refinement of this approach that is needed if the requests may be received out of
order at the destination site.

This protocol can be simplified for use in applications involving idempotent
computations. An idempotent computation has the property that it produces the
same result if executed again. For example, the computation i := 5 is idempotent,
whereas the computation i := i+1 is not. If the handling of a request involves only
idempotent computations, data consistency would not be affected if a request is
processed more than once, so it is possible to omit the arrangement for buffering of
replies and discarding of duplicate requests. Read and write operations performed
in a file are idempotent, so it is possible to employ the simplified RR protocol in
using a remote file server. It has the additional advantage that the file server need
not maintain information about which requests it has already processed, which
helps to make it stateless and more reliable (see Section 20.4.3).

16.5 DISTRIBUTED COMPUTATION PARADIGMS
•

Data used in an application may be stored in different sites of a distributed system
because of the following considerations:

• Data replication: Several copies of a data D may be kept in different sites of
a distributed system to provide availability and efficient access.

• Data distribution: Parts of a data D may be kept in different sites of a system
either because the data D is voluminous, or because its parts originate in
different sites or are frequently used in different sites.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 666 — #18

666 Part 5 Distributed Operating Systems

Table 16.4 Modes of Accessing Data in a Distributed System

Mode of access Description

Remote data access A computation accesses data over the network. This
mode of access does not interfere with organization or
access of data and does not require restructuring of a
computation. However, computations are slowed down
by communication delays.

Data migration The data is moved to the site where a computation is
located. Data migration provides efficient data access;
however, it may interfere with replication and
distribution of data.

Computation migration A computation (or a part of it) is moved to the site
where its data is located. It provides efficient data access
without interfering with organization or access of data.

When data D is neither replicated nor distributed, the OS may position it such
that the total network traffic generated by accesses to D by various applications
is minimal.

Table 16.4 summarizes three modes of accessing data in a distributed system.
In remote data access, the data is accessed in situ, i.e., where it exists. This mode
of using data does not interfere with decisions concerning placement of the data;
however, it is slow because of network latencies. Data migration involves moving
data to the site of the computation that uses it. This mode faces difficulties if
data is used by many computations or if it has been replicated to provide high
availability. In the worst case, it may force the data to be used strictly by one
computation at a time. Computation migration moves a computation to the site
where its data is located. It does not interfere with replication or distribution
of data.

Operating systems provide some support for each data access mode summa-
rized in Table 16.4. As described in Section 16.3, a network OS supports remote
data access. The File Transfer Protocol (FTP) is a facility for data migration; it
performs transfer of files in an offline manner rather than during execution of a
computation. Process migration is a feature for migrating a computation, or a part
of it, while the computation is in progress. It is described later in Section 18.8.2.

A distributed computation is one whose parts can be executed in different
sites for reasons of data access efficiency, computation speedup, or reliability.
A distributed computation paradigm is a model of useful practices for designing
distributed computations. The primary issues addressed by a distributed compu-
tation paradigm are manipulation of data and initiation of subcomputations
in different sites of a distributed system. Table 16.5 summarizes three dis-
tributed computation paradigms. The client–server computing paradigm focuses
on remote data access and manipulation, while the remote procedure call and
remote evaluation paradigms provide different ways of performing computation
migration.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 667 — #19

Chapter 16 Distributed Operating Systems 667

Table 16.5 Distributed Computation Paradigms

Paradigm Description

Client–server computing A server process provides a specific service to its clients.
A client process invokes its service by sending a
message to it, and the server returns its results in
another message. Applications use the client–server
paradigm extensively to perform remote data access or
remote data manipulation.

Remote procedure
call (RPC)

A remote procedure resembles a conventional
procedure except that it executes in a different node of
the system. A remote procedure is installed in a node
by a system administrator and it is registered with a
name server. The remote procedure call has been used
extensively for computation migration.

Remote evaluation If a program uses the statement at <node> eval
<code_segment>, the compiler of the language in
which the program is written makes a provision to
transfer <code_segment> to the node designated by
<node>, execute it there and return its results. There is
no need to install the code segment in the remote node.
Java provides a facility for remote evaluation.

16.5.1 Client−−Server Computing
A server is a process in a distributed system that provides a specific service to its
clients. Typically, the name of a server and a specification of its service are widely
advertised in a system. Any process can send a message to a server and become its
client. Aservicemayhaveaphysical connotation likeaccessingorprintingafile, or
it may have a computational connotation like evaluating mathematical functions
in a math server. Accordingly, the server’s role ranges from mere data access to
data manipulation; in the latter case the server may even play a computational
role in a distributed computation.

A server may become a bottleneck if the rate at which clients make requests
exceeds the rate at which the server can service them. Figure 16.5 depicts three
methods of addressing this problem. Figure 16.5(a) shows many identical servers,
each with its own request queue. The clients are partitioned in some way such
that each client knows which server it should use. This arrangement inherits the
drawbacks of partitioning—some servers may be heavily loaded while others
are idle. In Figure 16.5(b) many servers dynamically share the same queue. This
arrangement is more flexible than partitioning the clients to use different servers.
Figure 16.5(c) shows a multithreaded server. A new thread is created to handle
each request. The threads compete with one another for CPU and other resources.
If the server function is I/O-bound, this arrangement can overlap servicing of
several requests. Another way to eliminate the server bottleneck is to push most
of the computational burden into a client process. Now the server can provide

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 668 — #20

668 Part 5 Distributed Operating Systems

S S

Clients

(a)

S S S

Clients

(b)

S

Clients

(c)

Figure 16.5 Servers with (a) independent and (b) shared queues; (c) a multithreaded server.

better response times to clients. Design methodologies have been evolved to design
such client–server arrangements.

Client–server computing is a poor paradigm for distributed computing
because methodologies for structuring a distributed computation in the form of
a client–server configuration have not been evolved. The primary difficulty is that
a distributed computation involves many entities with a symmetric relationship.
This relationship is hard to model with the client–server paradigm. In practice,
the client–server paradigm is used extensively for noncomputational roles in a
LAN environment, such as accessing files, or handling simple database queries.
To make its implementation efficient, simple protocols like the RR protocol are
preferred over multilayered protocols like the ISO protocol, which is discussed in
a later section.

16.5.2 Remote Procedure Calls
A remote procedure call (RPC) is a programming language feature designed
for distributed computing. As discussed earlier in Section 9.4.2, its syntax
and semantics resemble those of a conventional procedure call. In the remote
procedure call

call <proc_id> (<message>);

<proc_id> is the id of a remote procedure, and <message> is a list of parameters.
The call is implemented by using a blocking protocol. The result of the call may be
passed back through one of the parameters, or through an explicit return value.
We can view the caller–callee relationship as a client–server relationship. Thus,
the remote procedure is the server and a process calling it is a client.

The schematic diagram of Figure 16.6 depicts the arrangement used to per-
form name resolution, parameter passing, and return of results during a remote
procedure call. The domain name system (DNS) described in Section 16.4.1 is
used to obtain the IP address of the called process. The functions of the client and
server stubs are as described earlier in Section 9.4.2—the client stub converts the
parameters into a machine-independent form and the server stub converts them
into the machine-specific representation suitable for the server’s host, whereas
they play the converse roles for the results of the called procedure. The circled

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 669 — #21

Chapter 16 Distributed Operating Systems 669

3

Client

process

Client

stub Server

stub

Server

procedure1

10

6

7

4

8

Client

site

Server

site

Name

server

2 9 5

Figure 16.6 Implementation of a remote procedure call (RPC).

numbers in Figure 16.6 denote the steps in implementing the remote procedure
call. Details of these steps are as follows:

1. The client process calls the client stub with parameters. This call is a con-
ventional procedure call. Hence execution of the client process is suspended
until the call is completed.

2. The client stub marshals the parameters and converts them into a machine-
independent format. It now prepares a message containing this representa-
tion of parameters.

3. The client stub interacts with the name server to find the identity of the site
at which the remote procedure exists.

4. The client stub sends the message prepared in Step 2 to the site where the
remote procedure exists, using a blocking protocol. This send operation
blocks the client stub until a reply to its message arrives.

5. The server stub receives the message sent by the client stub. It converts the
parameters to the machine-specific format suitable for the server site.

6. The server stub now executes a call on the server procedure with these param-
eters. This is a conventional procedure call, hence execution of the server stub
is suspended until the procedure call is completed.

7. The server procedure returns its results to the server stub. The server stub
converts them into a machine-independent format and prepares a message
containing the results.

8. The message containing the results is sent to the client site.
9. The client stub converts the results into the format suitable for the client site.

10. The client stub returns the results to the client process.

Step 10 completes execution of the remote procedure call. The client process is
now free to continue its execution.

In Step 3, the client stub need not perform name resolution every time the
RPC is executed. It can do so the first time, and save the information concerning
site of the remote procedure in a name server cache for future use. Name resolution
can even be performed statically, i.e., before operation of the client process begins.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 670 — #22

670 Part 5 Distributed Operating Systems

Faults may occur during a remote procedure call—either in the communica-
tion link, in the server site, or in the client itself. If the client site crashes, the call
becomes an orphan because its result is not going to be of any use. We discuss
orphans and their handling later in Section 19.3. Communication and server
faults can be handled using an arrangement involving acknowledgments and
retransmissions (see Section 16.4). Ideally, RPCs should possess the exactly-once
semantics; however, it is expensive to implement these semantics. At-least-once
semantics are cheaper to implement; however, they require that either the actions
of the remote procedure should be idempotent or that it must discard duplicate
requests.

The remote procedure call feature can be used as a building block for dis-
tributed computations. Its advantages over the client–server paradigm are due
to two factors. First, it may be possible to set up a remote procedure by simply
intimating its name and location to the name server. It is much easier than setting
up a server. Second, only those processes that know of the existence of a remote
procedure can invoke it. So, use of remote procedures provides more privacy, and
hence more security, than use of the client–server paradigm. Its primary disad-
vantage is a lack of flexibility—the remote procedure has to be registered with a
name server, so its location cannot be changed easily.

16.5.3 Remote Evaluation
The remote evaluation paradigm was proposed by Stamos and Gifford (1990).
The paradigm is implemented through the statement

at <node> eval <code_segment>

where <node> is an expression that evaluates to the identity of some node in the
distributed system and <code_segment> is a segment of code, possibly a sequence
of statements. When the at statement is encountered during operation of a pro-
cess, <node> is evaluated to obtain the identity of a node, <code_segment> is
executed in that node, and its results, if any, are returned to the process.

This paradigm has several advantages over the client–server and RPC
paradigms. It requires minimal support from the OS. Most of the work is done
by the compiler of the language in which the program is written. With the help
of the OS, the compiler makes a provision to transfer <code_segment> to the
target node and to execute it there. The OS of the target node creates a process to
execute the code and to return its results. Prior installation of <code_segment>
or an elaborate setup of stub procedures is not needed.

The issues of naming and binding are also much simpler than in an RPC
environment. The decision about which node should be used to execute the code
segment is taken dynamically. This decision could use information concerning
computational loads at various nodes. <code_segment> can be any arbitrary
section of code that can be executed remotely; it need not have the syntactic
shape of a procedure. The remote evaluation paradigm can be used along with the
client–server or RPC paradigms, i.e., the code segment could invoke procedures
during its execution or it could itself be a procedure.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 671 — #23

Chapter 16 Distributed Operating Systems 671

The remote evaluation paradigm can be used for computation speedup or
for improving efficiency of a computation. For example, if a subcomputation
involves considerable manipulation of data located at some specific node Si , the
subcomputation can itself be executed at Si . It would reduce the amount of
network traffic involved in remote data access. Similarly, if a user wishes to send
an email to a number of persons at Si , the mail sending command can itself be
executed at Si .

16.5.4 Case Studies
SUN RPC Sun RPC was designed for client–server communication in NFS,
the Sun network file system. NFS models file processing actions as idempo-
tent actions, so Sun RPC provides the at-least-once semantics. This feature
makes the RPC efficient; however, it requires applications using RPC to make
their own arrangements for duplicate suppression if exactly-once semantics are
desired.

Sun RPC provides an interface language called XDR and an interface com-
piler called rpcgen. To use a remote procedure, a user has to write an interface
definition for it in XDR, which contains a specification of the remote procedure
and its parameters. The interface definition is compiled using rpcgen, which
produces the following: a client stub, the server procedure and a server stub, a
header file for use in the client and server programs, and two parameter han-
dling procedures that are invoked by the client and server stubs, respectively. The
client program is compiled with the header file and the client stub, while the server
program is compiled with the header file and the server stub. The parameter han-
dling procedure invoked by the client stub marshals parameters and converts
them into a machine-independent format called the external data representation
(XDR). The procedure invoked by the server stub converts parameters from the
XDR format into the machine representation suitable for the called procedure.

The Sun RPC schematic has some limitations. The remote procedure can
accept only one parameter. This limitation is overcome by defining a structure
containing many data members and passing the structure as the parameter. The
RPC implementation also does not use the services of a name server. Instead,
each site contains a port mapper that is like a local name server. It contains
names of procedures and their port ids. A procedure that is to be invoked as a
remote procedure is assigned a port and this information is registered with the
port mapper. The client first makes a request to the port mapper of the remote
site to find which port is used by the required remote procedure. It then calls the
procedure at that port. A weakness of this arrangement is that a caller must know
the site where a remote procedure exists.

Java Remote Method Invocation (RMI) A server application running on a host
creates a special type of object called a remote object, whose methods may be
invoked by clients operating in other hosts. The server selects a name for the
service that is to be offered by a method of the remote object, and registers
it with a name server called the rmiregistry, which runs on the server’s

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 672 — #24

672 Part 5 Distributed Operating Systems

host. The rmiregistry typically listens on a standard port for registration and
invocation requests. The prospective clients of the service know the IP address
of the server’s host. A client consults the rmiregistry in the server’s host to
locate the service with a given name. The rmiregistry returns an object handle
for the remote object providing the service, and the client uses this object handle to
invoke the method that provides the service. The syntax of this invocation resem-
bles a similar operation on a local object. The invocation of the remote service
resembles the familiar schematic described in section 16.5.2; the javac compiler
is used to compile the source files containing the server and client programs, and
the rmic compiler is used to generate client and server stubs.

A client can pass special types of objects called serializable objects as param-
eters of the remote method. The Java RMI passes the code and data of such
objects to the invoked remote method. This code is loaded in the server’s host
while unmarshaling the parameters; it may be invoked by the object offering the
remote service. This feature can be used to achieve an effect analogous to remote
evaluation described in Section 16.5.3 as follows: A server registers a remote ser-
vice r_eval that takes a serializable object alpha as a parameter and simply
invokes the method alpha.gamma(). When a client creates a serializable object
and passes it as a parameter in an invocation of r_eval, r_eval would load
the code of the object and invoke its method gamma. In effect, the client would
have achieved execution of some of its own code at the server’s site. Different
clients can use the same service r_eval to get different codes executed at the
server’s site.

16.6 NETWORKING
•

The term networking includes both network hardware and network software.
Thus, it includes networking technology and design of computer networks, as also
software aspects of implementing communication between a pair of processes.
The basic issues in networking are summarized in Table 16.6. Network type,
network topology, and networking technology concern the design of networks.
All other issues concern message communication between processes—finding
the IP address of the node where a destination process is located, deciding which
route a message would follow to that node, and ensuring that the message is
delivered efficiently and reliably. We discussed the domain name system (DNS)
that determines the IP address of a host in Section 16.4.1. All other issues in
networking are discussed in this section.

16.6.1 Types of Networks
A wide area network (WAN) connects resources and users that are geographically
distant. When expensive mainframe computers were in use, it made good sense to
make them accessible to a large number of users from different organizations and
different locations. A WAN made this possible. The other motivation for WANs
was to enable communication and data sharing between users.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 673 — #25

Chapter 16 Distributed Operating Systems 673

Table 16.6 Issues in Networking

Issue Description

Network type The type of a network is determined by the
geographical distribution of users and resources in the
system. Two main types of networks are wide area
networks (WANs) and local area networks (LANs).

Network topology Network topology is the arrangement of nodes and
communication links in a network. It influences the
speed and reliability of communication, and the cost of
network hardware.

Networking technology Networking technology is concerned with transmission
of data over a network. It influences network
bandwidth and latency.

Naming of processes Using the domain name system (DNS), the pair (<host_
name>, <process_id>) for a destination process is
translated into the pair (IP address, <process_id>).

Connection strategy A connection strategy decides how to set up data paths
between communicating processes. It influences
throughput of communication links and efficiency of
communication between processes.

Routing strategy A routing strategy decides the route along which a
message would travel through the system. It influences
communication delays suffered by a message.

Network protocols A network protocol is a set of rules and conventions
that ensure effective communication over a network.
A hierarchy of network protocols is used to obtain a
separation of various concerns involved in data
transmission and reliability.

Network bandwidth
and latency

The bandwidth of a network is the rate at which data is
transferred over the network. Latency is the elapsed
time before data is delivered at the destination site.

When inexpensive personal computers became available, many organiza-
tions installed a large number of PCs within offices. Data used by PC users and
resources like good-quality laser printers became critical resources, so local area
networks (LANs) were set up to connect users and resources located within the
same office or same building. Since all resources and users in a LAN belonged
to the same organization, there was little motivation for sharing the data and
resources with outsiders. Hence few LANs were connected to WANs, though
the technology for making such connections existed. Advent of the Internet
changed the scenario and most LANs and WANs are today connected to the
Internet.

Figure 16.7 illustrates WANs and LANs. The LAN consists of PCs, printers,
and a file server. It is connected to a WAN through a gateway, which is a computer
that is connected to two (or more) networks and transfers messages between them.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 674 — #26

674 Part 5 Distributed Operating Systems

CP

Host

CP

Host

CP

Host

Wide area

network (WAN) Gateway

Local area

network (LAN)

Workstations

File

server

Printer

Figure 16.7 Types of networks.

Bus Star Ring

Fully connected Partially connected

...

Figure 16.8 Network topologies.

Special-purpose processors called communication processors (CPs) are used in the
WAN to facilitate communication of messages between distant hosts. LANs use
expensive high-speed cables like Category 5 or fiber-optic cables to provide high
data transfer rates. WANs often use public lines for data transfer because of cost
considerations, so it is generally not possible to support high transfer rates.

16.6.2 Network Topology
Figure 16.8 illustrates five network topologies. These topologies differ in the cost
of network hardware, speed of communication, and reliability. The bus topology

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 675 — #27

Chapter 16 Distributed Operating Systems 675

is similar to the bus in a PC. All hosts are connected directly to the bus, so the cost
of network hardware is low. Only one pair of hosts can communicate over the
bus at any time. High transfer rates are achieved except when contention exists
for the bus. The bus topology is used in Ethernet-based LANs.

In the star topology, each host is connected only to the host in the central site
of the system. This topology is useful when the distributed system contains one
server, and nodes contain processes that use this server. Reliability of a star net-
work depends on reliability of the central host. Communication delays between
a host and the central host, or between two hosts, depend on contention at the
central host. Fast Ethernet uses a star topology.

In a ring network, each host has two neighbors. When a host wishes to
communicate with another host, a message is passed along the ring until it reaches
the destination host. Consequently, the communication load on a host is high
even when none of its processes is communicating. In a unidirectional ring, a link
carries messages in only one direction whereas in a bidirectional ring a link can
carry messages in both directions. Naturally unidirectional and bidirectional rings
have different reliability characteristics—a bidirectional ring network is immune
to single host or link faults, whereas a unidirectional ring network is not.

In a fully connected network, a link exists between every pair of hosts. Con-
sequently, communication between a pair of hosts is immune to crashes of other
hosts, or faults in up to (n − 2) links, where n is the number of hosts in the net-
work. One or more hosts may become isolated if the number of faults exceeds
n − 2. This situation is called network partitioning. A partially connected network
contains fewer links than a fully connected network. It has a lower cost than a
fully connected network; however, it may get partitioned with fewer host or link
crashes than a fully connected network.

16.6.3 Networking Technologies
We discuss three networking technologies. The Ethernet and token ring tech-
nologies are used for local area networks and the Asynchronous Transfer Mode
(ATM) technology is used for ISDN networks.

Ethernet Ethernet is a bus-like network (simple or branching bus) using a circuit
that consists of cables linked by repeaters. Several entities, called stations, are
connected to the same cable. Data is transmitted in units called frames. Each
frame contains addresses of its source and destination, and a data field. Each
station listens on the bus at all times. It copies a frame in a buffer if the frame
is meant for it; otherwise, it ignores the frame. The original Ethernet operated
at a transmission rate of 10 Mbits per second. Fast Ethernet, which operates at
100 Mbits per second, Gigabit Ethernet, and 10 Gigabit Ethernet are prevalent
variants of Ethernet. A bridge is used to connect Ethernet LANs. It is a computer
that receives frames on one Ethernet and, depending on the destination addresses,
reproduces them on another Ethernet to which it is connected.

Since the basic Ethernet topology is that of a bus, only one conversation
can be in progress at any time. The “carrier sense multiple access with collision

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 676 — #28

676 Part 5 Distributed Operating Systems

detection” (CSMA/CD) technology ensures it as follows: A station that wishes to
send a message listens to the traffic on the cable to check whether a signal is being
transmitted. This check is called carrier sensing. The station starts transmitting
its frame if it does not detect a signal. However, if many stations find no signal
on the cable and transmit at the same time, their frames would interfere with
one another, causing abnormal voltage on the cable. This situation is called a
collision. A station that detects a collision emits a special 32-bit jam signal. On
receiving the jam signal, any transmitting station that had not so far detected a
collision becomes aware of a collision. All the transmitting stations now back off
by abandoning their transmissions and waiting for a random period of time before
retransmitting their frames. This procedure of recovering from a collision does
not guarantee that the frames will not collide again; however, it helps in ensuring
that eventually all frames will be transmitted and received without collisions. The
frame size must exceed a minimum that facilitates collision detection. This size is
512 bits for the 10 Mbps and 100 Mbps Ethernets, where Mbps is an abbrevation
of 220 bits per second, and 4096 bits for the Gigabit Ethernet.

Token Ring A token ring is a network with a ring topology that uses the notion
of a token to decide which station may transmit a message at any time. The token
is a special message circulating over the network. It has a status bit, which can be
either free or busy. The status bit value busy indicates that a message is currently
being transmitted over the network, whereas the value free indicates that the
network is currently idle. Any station that wishes to transmit a message waits
until it sees the token with the status bit free. It now changes the status to busy
and starts transmitting its message. Thus a message follows a busy token, so only
one message can be in transit at any time. A message can be of any length. It need
not be split into frames of a standard size.

Every station that sees a message checks whether the message is intended
for it; only the destination station copies the message. When the station that
transmitted a message sees the busy token over the network, it resets its status bit
to free. This action releases the network for another message transmission. When
early token release is supported, the destination station resets the status bit of
the token to free. Operation of the token ring comes to a halt if the token is lost
because of communication errors. One of the stations is responsible for recovering
from this situation—it listens continuously to the traffic on the network to check
for the presence of a token, and creates a new token if the token has been lost.

Asynchronous Transfer Mode (ATM) Technology ATM is a virtual-circuit–
oriented packet-switching technology (see Sections 16.6.4 and 16.6.5). The virtual
circuit is called a virtual path in ATM terminology, and a packet is called a cell.
ATM implements a virtual path between sites by reserving specific bandwidth in
physical links situated in a network path between the sites, that is, by reserving a
specific portion of the capacity of each physical link for the virtual path. When
a physical link is common to many virtual paths, it multiplexes the traffic of the
various virtual paths on a statistical basis such that each virtual path receives
the specified portion of the bandwidth of the physical link. This way, cells to be

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 677 — #29

Chapter 16 Distributed Operating Systems 677

transmitted on a virtual path do not face delays due to traffic on other virtual
paths.

The principle of reserving bandwidth is carried one step further by hosts in
an ATM network. A virtual path may be set up between two hosts, say, hosts X
and Y. When a process Pi in host X wishes to communicate with a process Pj
in host Y, the hosts may set up a virtual channel between Pi and Pj by reserving
some bandwidth of the virtual path between X and Y. This two-tier arrangement
ensures that message traffic between a pair of processes does not incur delays due
to message traffic between other pairs of processes.

The ATM technology aims to provide real-time transport capabilities for
multimedia applications incorporating diverse traffics such as voice, video, and
high-speed data. ATM uses a cell size of 53 bytes. This size is a compromise
between a small cell size that is desired in voice communication to ensure small
delays and a largish cell size desired in data communication to reduce the overhead
of forming packets for a message and assembling them back to form a message.
Each cell contains a header of 5 bytes and a data field of 48 bytes. The header
contains two items of information: a virtual path id (VPI) and a virtual channel id
(VCI).

Figure 16.9 is a schematic diagram illustrating functioning of an ATM switch.
The switch contains a routing table, which has an entry for each virtual path
defined in the switch. The entry contains two fields—the VPI field and the port
field. In Figure 16.9, the virtual path identifier of the incoming cell is n, and the
nth entry in the routing table contains m and p. The switch copies m in the VPI
field of the cell and sends out the modified cell on port p. This simple arrangement
ensures that the ids assigned to virtual paths need not be unique in the system;
they only need to be unique in the switch. The switching actions are performed in
the hardware of the switch; they provide extremely fast switching, of the order of
low double digits of microseconds, which makes it possible to provide LAN-like
transmission speeds over wide area networks.

While creating a new virtual path, an application specifies the desired band-
width. The OS sets up a virtual path by reserving the bandwidth in individual
links, choosing a unique virtual path identifier in each switch and updating its
routing table. While managing the traffic in virtual channels of the same vir-
tual path, hosts use statistical multiplexing to provide appropriate bandwidth to

ATM switch

#n

Routing
table

Header Data

n
VPI VCI p

Header Data

m
VPI

VPI

m p

Port

VCI

Figure 16.9 An ATM switch.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 678 — #30

678 Part 5 Distributed Operating Systems

Physical layer

ATM layer

Adaptation layer

Voice Video Data

Applications

Figure 16.10 ATM protocol reference model.

Circuit switching

(a)

Message switching

(b)

Packet switching

(c)

Pi Pj

m3 m2 m1

m3

m2

m1

Pi Pj

pc1(m1)

pc3(m1)

pc2(m1)

Pi Pj

Figure 16.11 Connection strategies: circuit, message, and packet switching.

individual applications. Thus different applications can simultaneously transmit
messages at different speeds over their virtual paths.

An ATM network has a mesh-star architecture. ATM switches are connected
to one another in a mesh form. Hosts are connected to the ATM switches as
in a star network. This strategy provides a path between every pair of nodes.
Figure 16.10 shows the protocol layers in the ATM protocol reference model.
The physical layer performs transfer of cells across the network. The ATM layer
performs transmission of messages between ATM entities. It performs multiplex-
ing and demultiplexing of virtual channels into virtual paths, cell scheduling, and
cell routing. The ATM adaptation layer provides different kinds of services to dif-
ferent kinds of traffic such as voice, video, and data communication. It provides
separate protocols for each kind of traffic.

16.6.4 Connection Strategies
A connection is a data path between communicating processes. A connection strat-
egy, also called a switching technique, determines when a connection should be set
up between a pair of processes, and for how long it should be maintained. Choice
of the switching technique influences efficiency of communication between a pair
of processes and throughput of communication links. Figure 16.11 illustrates
three connection strategies. We use the notation mi for a message and pcj(mi) for
the jth packet of message mi , where a packet has the meaning defined later in this
section.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 679 — #31

Chapter 16 Distributed Operating Systems 679

Circuit Switching A circuit is a connection that is used exclusively by a
pair of communicating processes and carries all messages between them [see
Figure 16.11(a)]. A circuit is set up when processes decide to communicate, i.e.,
before the first message is transmitted, and is destroyed sometime after the last
message has been transmitted. Circuit set up actions involve deciding the actual
network path that messages will follow and reserving communication resources
accordingly. Each circuit is given a unique id, and processes specify the circuit id
while sending and receiving messages.

The advantage of circuit switching is that messages do not face delays once a
circuit has been set up. However, a circuit ties up a set of communication resources
and incurs set up overhead and delays, so use of circuit switching is justified only
if the overall message density in the system is low but medium-to-heavy traffic is
expected between a pair of processes.

Message Switching A connection is established for every message exchanged
between a pair of processes. Thus messages between the same pair of processes
may travel over different paths in the system [see Figure 16.11(b)]. Message switch-
ing incurs repetitive overhead and may cause delays due to the set up time of the
connection, so its use is justified if light message traffic exists between a pair of
processes. It does not tie up communication resources, so other processes can use
the same connection, or some links in the connection, for their communication.
Traffic in the network should be heavy enough to exploit this possibility.

Packet Switching In packet switching, a message is split into parts of a standard
size, called packets. A connection is set up for each packet individually, so packets
of a message may travel along different paths [see Figure 16.11(c)] and arrive out
of sequence at a destination site. Use of packet switching incurs two kinds of
overhead: A packet has to carry some identification information in its header—
id of the message to which it belongs, sequence number within the message, and
ids of the sender and destination processes—and packets have to be assembled
into messages in the destination site. However, use of fixed-size packets reduces
the cost of retransmission when an error arises. Also, links are not monopolized
by specific pairs of processes, hence all pairs of communicating processes receive
fair and unbiased service. These features make packet switching attractive for
interactive processes.

Because of the cost of setting up connections, connectionless protocols are
often used in practice for sending messages and packets. In such a protocol,
the originating node simply selects one of its neighboring nodes and sends the
message to it. If that node is not the destination node, it saves the message in
its memory and decides which of the neighbors to send it to, and so on until
the message reaches the destination node. This method is called the store-and-
forward method of transmitting a message. A packet is transmitted similarly.
Connectionless transmission can adapt better to traffic densities in communica-
tion links than message or packet switching, because a node can make the choice
of the link when it is ready to send out a message or packet. It is typically imple-
mented by exchanging traffic information among nodes and maintaining a table
in each node that indicates which neighbor to send to in order to reach a specific

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 680 — #32

680 Part 5 Distributed Operating Systems

destination node. However, each node should have a large memory for buffering
messages and packets when its outgoing links are congested.

16.6.5 Routing
The routing function is invoked whenever a connection is to be set up. It decides
which network path would be used by the connection. Choice of the routing
strategy influences ability to adapt to changing traffic patterns in the system.
Figure 16.12 illustrates three routing strategies.

Fixed Routing A path is permanently specified for communication between a
pair of nodes [see Figure 16.12(a)]. When processes located in these nodes wish
to communicate, a connection is set up over this path. Fixed routing is simple
and efficient to implement—each node merely contains a table showing paths to
all other nodes in the system; however, it lacks flexibility to deal with fluctuations
in traffic densities and node or link faults. Hence its use can result in delays or
low throughputs.

Virtual Circuit A path is selected at the start of a session between a pair of pro-
cesses. It is used for all messages sent during the session [see Figure 16.12(b)].
Information concerning traffic densities and communication delays along differ-
ent links in the system is used to decide the best path for a session. Hence this
strategy can adapt to changing traffic patterns and node or link faults, and it
ensures good network throughput and response times.

Dynamic Routing A path is selected whenever a message or a packet is to be
sent, so different messages between a pair of processes and different packets of
a message may use different paths [see Figure 16.12(c)]. This feature enables the
routing strategy to respond more effectively to changes in traffic patterns and
faults in nodes or links, and achieve better throughput and response times than
when virtual circuits are used. In the Arpanet, which was the progenitor of the
Internet, information about traffic density and communication delay along every
link was constantly exchanged between nodes. This information was used to
determine the current best path to a given destination node.

Fixed routing

(a)

Virtual circuit

(b)

Dynamic routing

(c)

N1

Pk Pl

PjPi

N2

Pl

Pj

Pk

Pi

N1 N2

m3 m2 m1

PlPk

N1 N2

m2

m3

m1 PjPi

Figure 16.12 Routing strategies: fixed routing, virtual circuit, and dynamic routing.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 681 — #33

Chapter 16 Distributed Operating Systems 681

16.6.6 Network Protocols
A network protocol is a set of rules and conventions used to implement communi-
cation over a network. Several concerns need to be addressed while implementing
communication, such as ensuring confidentiality of data, achieving communica-
tion efficiency, and handling data transmission errors. Therefore, a hierarchy of
network protocols is used in practice to provide a separation of concerns. Each
protocol addresses one or more concerns and provides an interface to the proto-
cols above and below it in the hierarchy. The protocol layers are like the layers of
abstraction in a model (see Section 1.1). They provide the same benefits—an entity
using a protocol in a higher layer need not be aware of details at a lower layer.
Accordingly, lower-level protocols deal with data-transmission-related aspects
such as detection of data transmission errors, middle-level protocols deal with
formation of packets and routing, and higher-level protocols deal with semantic
issues that concern applications, e.g., atomicity of actions and confidentiality of
data.

ISO Procotol The International Organization for Standardization (ISO) devel-
oped an Open Systems Interconnection reference model (OSI model) for com-
munication between entities in an open system. This model consists of seven
protocol layers described in Table 16.7. It is variously called the ISO protocol, the
ISO protocol stack, or the OSI model.

Figure 16.13 illustrates operation of the OSI model when a message is
exchanged by two application processes. The message originates in an appli-
cation, which presents it to the application layer. The application layer adds
some control information to it in the form of a header field. The message
now passes through the presentation and session layers, which add their own
headers. The presentation layer performs change of data representation and

Table 16.7 Layers of the ISO Protocol Stack

Layer Function

1. Physical layer Provides electrical mechanisms for bit transmission
over a physical link.

2. Data link layer Organizes received bits into frames. Performs error
detection on frames. Performs flow control.

3. Network layer Performs switching and routing.
4. Transport layer Forms outgoing packets. Assembles incoming packets.

Performs error detection and retransmission and flow
control.

5. Session layer Establishes and terminates sessions. Provides for restart
and recovery in applications.

6. Presentation layer Implements data semantics by performing change of
representation, compression, and encryption/
decryption where necessary.

7. Application layer Provides network interface for applications.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 682 — #34

682 Part 5 Distributed Operating Systems

Application

process

Physical layer

Data link layer

Network layer
Transport layer

Session layer

Presentation layer

Application layer

Sender Receiver

Figure 16.13 Operation of the ISO protocol stack.

encryption/decryption. The session layer establishes a connection between the
sender and destination processes. The transport layer splits the message into
packets and hands over the packets to the network layer. The network layer
determines the link on which each packet is to be sent and hands over a link
id and a packet to the data link layer. The data link layer views the packet
as a string of bits, adds error detection and correction information to it, and
hands it over to the physical layer for actual transmission. When the message
is received, the data link layer performs error detection and forms frames, the
transport layer forms messages, and the presentation layer puts the data in the rep-
resentation desired by the application. The protocol layers are discussed in the
following.

The physical layer is responsible for the mechanical, electrical, functional, and
procedural aspects of transmitting bit streams over the network. It is implemented
in the hardware of a networking device. RS-232C and EIA-232D are the common
physical layer standards.

The data link layer provides error detection, error correction, and flow control
facilities. It splits the bit stream to be sent into fixed-size blocks called frames,
and adds a CRC to each frame (see Section 14.3). It provides flow control by
sending frames at a rate that the receiver can handle. HDLC (high-level data
link control) is a common protocol of this layer. Bridges and switches operate in
this layer.

The network layer is responsible for providing connections and routes
between two sites in a system; it also collects information for routing. Popu-
lar protocols of this layer are the X.25 protocol, which is a connection-oriented
protocol using virtual circuits, and the Internet protocol (IP), which is a con-
nectionless protocol. Thus, routing is the primary function of this layer, and
connection is an optional one. Routers operate in this layer. The network layer is
mostly redundant in LANs and in systems with point-to-point connections.

The transport layer provides error-free transmission of messages between
sites. It splits a message into packets, and hands them over to the network
layer. It handles communication errors like nondelivery of packets due to node
or link faults. This feature resembles the reliability feature of IPC protocols,
hence it is implemented analogously through time-outs and retransmissions

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 683 — #35

Chapter 16 Distributed Operating Systems 683

(see Section 16.4). The transport layer also performs flow control so that data is
transferred at a rate that the receiver can handle. The effective rate depends on
the buffer space available in the receiver and the rate at which it can copy data
out of the buffer. ISO has five classes of transport layer protocols, named TP0
through TP4. Other common transport layer protocols are the Transport Con-
trol Protocol (TCP), which is a connection-oriented reliable protocol, and User
Datagram Protocol (UDP), which is a connectionless unreliable protocol.

The session layer provides means to control the dialog between two enti-
ties that use a connection-oriented protocol. It provides authentication, different
types of dialogs (one-way, two-way alternate, or two-way simultaneous) and
checkpoint–recovery facilities. It provides dialog control to ensure that mes-
sages exchanged using nonblocking send primitives arrive in the correct order
(see Section 16.4). It also provides a quarantine service whereby messages are
buffered at a receiver site until explicitly released by a sender. This facility is use-
ful in performing atomic actions in a file (see Section 13.11.2) and in implementing
atomic transactions (see Section 19.4).

The presentation layer supports services that change the representation of
a message to address hardware differences between the sender and destination
sites, to preserve confidentiality of data through encryption, and to reduce data
volumes through compression.

The application layer supports application-specific services like file transfer,
e-mail, and remote log in. Some popular protocols of this layer are FTP (File
Transfer Protocol), X.400 (e-mail), and rlogin (remote log-in).

TCP/IP The Transmission Control Protocol / Internet Protocol (TCP/IP) is a pop-
ular protocol for communication over the Internet. It has fewer layers than
the ISO protocol, so it is both more efficient and more complex to implement.
Figure 16.14 shows details of its layers. The lowest layer is occupied by a data
link protocol. The Internet Protocol (IP) is a network layer protocol in the ISO
protocol stack; it can run on top of any data link protocol. The IP performs data
transmission over the Internet using the 32-bit IP address of a destination host.
It is a connectionless unreliable protocol; it does not guarantee that packets of
a message will be delivered without error, only once, and in the correct order.
These properties are provided by the protocols occupying higher levels in the
hierarchy.

Data Link Protocol

Internet Protocol (IP)

Transmission Control

Protocol (TCP)

User Datagram

Protocol (UDP)

File Transfer Protocol (FTP), e-mail, remote

log-in, or an application-specific protocol

ISO layer 2

ISO layer 3

ISO layer 4

ISO layers 5–7

Figure 16.14 The Transmission Control Protocol/Internet Protocol (TCP/IP) stack.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 684 — #36

684 Part 5 Distributed Operating Systems

Protocols in the next higher layers provide communication between
processes—each host assigns unique 16-bit port numbers to processes, and a
sender process uses a destination process address that is a pair (IP address, port
number). Use of port numbers permits many processes within a host to send and
receive messages concurrently. Some well-known services such as FTP, telnet,
SMTP, and HTTP have been assigned standard port numbers by the Internet
Assigned Numbers Authority (IANA); other port numbers are assigned by the
OS in a host.

As shown in Figure 16.14, two protocols can be used in the layer above the
IP, which corresponds to the transport layer, i.e., layer 4, in the ISO protocol
stack. The Transmission Control Protocol (TCP) is a connection-oriented reliable
protocol, It employs a virtual circuit between two processes and provides reliabil-
ity by retransmitting a message that is not received in an expected time interval
(see Section 16.4 for a discussion of acknowledgments and time-outs used to
ensure reliable delivery of messages). The overhead of ensuring reliability is high
if the speeds of a sender and a receiver mismatch, or if the network is overloaded;
hence, the TCP performs flow control to ensure that a sender does not send pack-
ets faster than the rate at which a receiver can accept them, and congestion control
to ensure that traffic is regulated so that a network is not overloaded.

The User Datagram Protocol (UDP) is a connectionless, unreliable protocol
that neither guarantees delivery of a packet nor ensures that packets of a message
will be delivered in the correct order. It incurs low overhead compared to the
TCP because it does not have to set up and maintain a virtual circuit or ensure
reliable delivery. The UDP is employed in multimedia applications and in video
conferencing because the occasional loss of packets is not a correctness issue in
these applications—it only leads to poor picture quality. These applications use
their own flow and congestion control mechanisms such as reducing the resolu-
tion of pictures—and, consequently, lowering the picture quality—if a sender, a
receiver, or the network is overloaded.

The top layer in the TCP/IP stack is occupied by an application layer protocol
like the file transfer protocol, an e-mail protocol such as the SMTP, or a remote
log-in protocol. This layer corresponds to layers 5–7 in the ISO protocol. When
the UDP is used in the lower layer, the top layer can be occupied by an application-
specific protocol implemented in an application process itself.

16.6.7 Network Bandwidth and Latency
When data is to be exchanged between two nodes, network hardware and network
protocols participate in data transfer over a link, and communication processors
(CPs) store and forward the data until it reaches the destination node. Two aspects
of network performance are the rate at which data can be delivered and how soon
data can reach the destination node.

Network bandwidth is the rate at which data is transferred over a network. It is
subject to various factors such as capacities of network links, error rates and delays
at routers, bridges, and gateways. Peak bandwidth is the theoretical maximum rate
at which data can be transferred between two nodes. Effective bandwidth may be

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 685 — #37

Chapter 16 Distributed Operating Systems 685

lower than the peak bandwidth because of data transmission errors, which lead
to time-outs and retransmissions. Latency is the elapsed time between sending
of a byte of data by a source node and its receipt at the destination node. It is
typically computed for the first byte of data to be transferred. The processing
time in the layers of a network protocol and delays due to network congestion
contribute to latency.

16.7 MODEL OF A DISTRIBUTED SYSTEM
•

A system model is employed to determine useful properties of a distributed
system, such as the impact of faults on its functioning and the latency and
cost of message communication. A distributed system is typically modeled as a
graph

S = (N , E)

where N and E are sets of nodes and edges, respectively. Each node may represent
a host, i.e., a computer system, and each edge may represent a communication
link connecting two nodes; however, as discussed later, nodes and edges may also
have other connotations. The degree of a node is the number of edges connected
to it. Each node is assumed to have an import list describing nonlocal resources
and services that the node can utilize, and an export list describing local resources
of the node that are accessible to other nodes. For simplicity, we do not include
the name server (see Section 16.4.1) in the system model.

Two kinds of graph models of a distributed system are useful in practice. A
physical model is used to represent the arrangement of physical entities in a dis-
tributed system. In this model, nodes and edges have the implications described
earlier, i.e., a node is a computer system and an edge is a communication link.
A logical model is an abstraction. Nodes in a logical model represent logical
entities like processes and edges represent relationships between entities. A log-
ical model may use undirected or directed edges. An undirected edge represents
a symmetric relationship like two-way interprocess communication. A directed
edge represents an asymmetric relationship like the parent–child relationship
between processes or one-way interprocess communication. Note that nodes and
edges in a logical model may not have a one-to-one correspondence with physical
entities in a distributed system.

A system model is analyzed to determine useful properties of a system such
as the ones described in Table 16.8. One important property is the resiliency of
a system, which is its ability to withstand faults without facing disruption. A
k-resilient system can withstand any combination of up to k faults. If n′ is the
smallest degree of a node, at least n′ faults must occur for a node to get isolated;
however, fewer faults may be able to partition a system (see Exercise 16.7). As
illustrated in Example 16.1, analysis of the system model can be used as a network
design technique as well.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 686 — #38

686 Part 5 Distributed Operating Systems

Table 16.8 System Properties Determined by Analyzing
a System Model

Property Description

Impact of faults Faults can isolate a node from the rest of the system or
partition a system, i.e., split it into two or more parts
such that a node in one part cannot be reached from a
node in another part.

Resiliency A system is said to be k-resilient, where k is a constant,
if k is the largest number of faults that the system can
withstand without disruption.

Latency between two
nodes

The minimum latency of a communication path
depends on the minimum latency of each
communication link in it. The minimum latency
between two nodes is the smallest of the minimum
latencies across all paths between the nodes.

Cost of sending
information to every
node

The cost of this operation depends on topology of the
system and the algorithm used for sending the
information. In a fully connected system containing n
nodes, the cost can be as low as n − 1 messages. The
cost may be more if the system is not fully connected.

•
Example 16.1 Resiliency of a System

If it is expected that only one or two sites in a system may suffer faults simul-
taneously, and faults never occur in communication links, availability of a
resource is guaranteed if three units of the resource exist in three different sites
in the system. If communication links can also suffer faults but the total num-
ber of faults does not exceed two, three units of each resource must exist and
each site must have at least three communication links connected to it. In such
a system, a resource becomes unavailable only if three or more faults occur.
•

When a node wishes to send some information to all other nodes in the
system, it can send the information to each of its neighbors in the form of a
message and each neighbor receiving such a message for the first time can send
similar messages to its neighbors, and so on. In this method, a node would receive
the information as many times as the number of edges connected to it, so a
total of e messages are required, where e is the number of edges in the system.
However, because a node needs to receive a message only once, it is possible to use
knowledge of the system’s topology to manage with fewer messages. For example,
if the system is fully connected, it is possible to use a simpler protocol in which
only the originator node sends messages to its neighbors. This operation would
require only n − 1 messages.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 687 — #39

Chapter 16 Distributed Operating Systems 687

Both physical and logical models are used to determine useful properties.
The latency between two nodes is determined by analyzing a physical model.
Analyses on logical models are typically used to determine complexity of control
algorithms used in a distributed OS. We shall see such usage in Chapter 18.

16.8 DESIGN ISSUES IN DISTRIBUTED OPERATING SYSTEMS
•

The user of a distributed system expects its operating system to provide the look
and feel of a conventional OS and also provide the benefits of a distributed
system summarized in Table 16.1. To meet these expectations, the OS must fully
exploit the capabilities of all nodes by distributing data, resources, users, and
their computations effectively among the nodes of the system. It gives rise to the
following design issues.

Transparency of Resources and Services Transparency implies that names of
resources and services do not depend on their locations in the system. It enables
an application to access local and nonlocal resources identically. It also permits
an OS to change the location of a resource freely because a change in location
does not affect the name of the resource and hence does not affect the appli-
cations that use the resource. The OS can exploit transparency to perform data
migration to speed up applications, reduce network traffic, or optimize use of
disks. Transparency also facilitates computation migration because the compu-
tation can continue to access resources as it did before it was migrated. We discuss
transparency in detail in Chapter 20.

Distribution of Control Functions A control function is a function performed by
the kernel to control resources and processes in the system, e.g., resource alloca-
tion, deadlock handling, and scheduling. Centralized control functions face two
problems in a distributed system: Because of network latency, it is not possible to
obtain consistent information about the current state of processes and resources
in all nodes of the system, so the centralized function may not be able to arrive
at correct decisions. A centralized function is also a potential performance bot-
tleneck and a single point of failure in the system. To handle these problems,
a distributed OS performs a control function through a distributed control algo-
rithm, whose actions are performed in several nodes of the system in a coordinated
manner. We discuss distributed algorithms for performing control functions such
as deadlock detection, scheduling, and mutual exclusion in Chapter 18.

System Performance In addition to techniques of conventional OSs, a dis-
tributed OS uses two new techniques to provide good system performance—data
migration and computation migration. Data migration is employed to reduce
network latencies and improve response times of processes. Computation migra-
tion is employed to ensure that nearly equal amounts of computational load are
directed at all CPUs in the system. This technique is called load balancing.

A distributed system typically grows in size over time through addition of
nodes and users. As the size of a system grows, process response times may degrade

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 688 — #40

688 Part 5 Distributed Operating Systems

because of increased loading of resources and services of the OS, and increased
overhead of OS control functions. Such degradation obstructs growth of a system,
so the performance of a distributed system should be scalable; i.e., the delays and
response times should not degrade with growth in system size, and the throughput
should increase with growth in system size. An important scalability technique
is to use self-sufficient clusters of hosts (see Section 16.3), so that network traffic
does not grow as more clusters are added to the system. In Chapter 20, we discuss
how the technique of file caching used in distributed file systems helps satisfy this
requirement.

Reliability Fault tolerance techniques provide availability of resources and con-
tinuity of system operation when faults occur. Link and node faults are tolerated
by providing redundancy of resources and communication links. If a fault occurs
in a network path to a resource or in the resource itself, an application can use
another network path to the resource or use another resource. This way, a resource
is unavailable only when unforeseen faults occur.

Consistency of data becomes an issue when data is distributed or replicated.
When several parts of distributed data are to be modified, a fault should not put
the system in a state in which some parts of the data have been updated but others
have not been. A distributed OS employs a technique called two-phase commit
protocol to ensure that it does not happen (see Section 19.4.3).

Parts of a computation may be performed in different nodes of a system. If
a node or link fault occurs during execution of such a computation, the system
should assess the damage caused by the fault and judiciously restore some of the
subcomputations to previous states recorded in backups. This approach is called
recovery. The system must also deal with uncertainties about the cause of a fault.
Example 16.2 illustrates these uncertainties.

•
Example 16.2 Uncertainties about Faults

A distributed computation consists of two subcomputations represented
by processes Pi and Pj , executing in nodes N1 and N2, respectively (see
Figure 16.15). Process Pi sends a request to Pj and waits for a response. How-
ever, a time-out occurs before it receives a reply. The time-out could have been
caused by any one of the following situations:

1. Process Pj never received the request, so never started processing it.
2. The processing is taking longer than expected; i.e., process Pj is still

processing the request.
3. Process Pj started processing the request but suffered a fault before

completing it.
4. Process Pj completed the processing of the request but its reply to process

Pi was lost.

•

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 689 — #41

Chapter 16 Distributed Operating Systems 689

request

Node N1 Node N2

Pi Pj

Figure 16.15 Recovery issues in a remote request.

In Example 16.2, the OS has to resolve the uncertainty and handle the
situation that actually caused the time-out. If node N2 had crashed, the subcom-
putation Pj would have to be repeated, possibly at some other node in the system.
In other cases, the subcomputation Pj may have been completed, so reexecuting
it elsewhere in the system may affect consistency of data (e.g., an update may
be performed twice!) or waste CPU time. We discuss special recovery techniques
designed for handling uncertainties in Chapter 19.

Security Security acquires a new dimension in a distributed system because
interprocess messages may pass through a computer system called a communica-
tion processor, which may operate independently under its own OS. An intruder
may gain control of such a computer system and either tamper with messages
passing through it, or misuse them to perform masquerading. Special techniques
for message security and authentication are used to prevent such attacks; we
discuss them in Chapter 21.

16.9 SUMMARY
•

Resource sharing, reliability, and computation
speedup are the key benefits of distributed sys-
tems. A distributed OS realizes these benefits by
integrating operation of individual computer sys-
tems, ensuring reliable network communication,
and effectively supporting operation of distributed
computations. In this chapter we studied the rele-
vant techniques of a distributed OS.

A distributed system consists of nodes con-
nected to a network, where a node could be an
individual computer system, or a cluster, which
is a group of computers that share resources and
operate in an integrated manner. A cluster can pro-
vide computation speedup and reliability within
a node.

Parts of a distributed computation can be exe-
cuted in different nodes to achieve resource sharing

and computation speedup. Such a computation
may use data located in a distant node in three
ways: Remote data access uses the data over the
network, data migration moves the data to the
node where the computation exists, and computa-
tion migration moves a part of the computation to
the node where the data is located. A distributed
computation paradigm is a model of distributed
computation that provides features for remote data
access, data migration, or computation migration.
The client–server paradigm provides remote data
access, while the remote procedure call (RPC) and
remote evaluation paradigms provide computation
migration.

Processes located in different nodes of a dis-
tributed system communicate by using an interpro-
cess communication protocol (IPC protocol), which

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 690 — #42

690 Part 5 Distributed Operating Systems

is a set of rules for ensuring effective communica-
tion. The protocol uses the domain name system
(DNS) to find the location of a destination pro-
cess. IPC semantics describe the properties of an
IPC protocol. A reliable protocol guarantees that a
message would be delivered to the destination pro-
cess in spite of faults in nodes and communication
links. Reliability is achieved as follows: A process
that receives a message returns an acknowledgment
to the sender of the message. The sender pro-
cess retransmits the message if an acknowledgment
is not received within the expected time inter-
val. In this protocol, a message may be received
by the destination process more than once, hence
it is called an at-least-once protocol. A proto-
col would be called an exactly-once protocol if
it arranges to recognize and discard duplicate
messages.

Network communication has to deal with tran-
sient faults in links and nodes of the system, and
network traffic densities in different parts of the
network. Hence apart from IPC semantics, the net-
work software has to ensure reliability by detecting
and tolerating faults, and ensure performance by
finding an appropriate route for a message through

the network and transmitting data at an appro-
priate rate. Effective network communication is
implemented by a hierarchy of protocols called a
protocol stack, in which each individual protocol
addresses a different concern in network communi-
cation. The ISO protocol stack uses seven network
protocols. The TCP and IP protocol stacks use
fewer protocols. Network performance is mea-
sured either as effective bandwidth, which is the rate
at which data can be transferred over the network,
or as latency, which is the delay involved in the
transfer of data.

A distributed system is modeled by a graph.
In a physical model, nodes and edges of the graph
are nodes and links of the distributed system,
respectively; in a logical model, they are pro-
cesses and relationships between processes, respec-
tively. Graph models of a system are used to
determine reliability properties of a system or
as a basis for design of algorithms used by a
distributed OS.

New design issues are faced by OS designers in
providing resource sharing, reliability, and perfor-
mance in the distributed environment. These issues
are discussed in the next few chapters.

TEST YOUR CONCEPTS
•

16.1 Classify each of the following statements as true
or false:
a. Failure of a single node partitions a ring

network.
b. When message switching is used, all messages

between a pair of processes travel over the
same path in the network.

c. Dynamic routing can adapt to link and node
failures in a network.

d. A message sent using a virtual path in an
ATM network might face a delay in a link
due to high traffic density.

e. The at-least-once semantics are implemented
by recognizing and discarding duplicate
messages.

f. The sequence number in a message plays a
role in implementing semantics of interpro-
cess communication.

g. In a reliable, nonblocking interprocess com-
munication protocol, a receiver process may
maintain only one reply buffer per sender
process.

h. A remote procedure call is useful for perform-
ing data migration.

i. Transferring n bytes between two nodes
requires only 50 percent of the time required
to transfer 2 × n bytes.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 691 — #43

Chapter 16 Distributed Operating Systems 691

(a) (b)

Figure 16.16 Exercises for determining resiliency of distributed systems.

EXERCISES
•

16.1 Discuss which process synchronization means
used in symmetrical multiprocessor systems can
be adapted for use in clusters (see Chapter 10).

16.2 Explore the possibility of implementing the
blocking and nonblocking protocols through
monitors. What are the difficulties in the imple-
mentation?

16.3 Write a short note on factors that influence the
duration of the time-out interval in the RRA
protocol of Section 16.4.3.1.

16.4 Develop schemes to discard duplicate replies
received in the sender site in the blocking and
nonblocking versions of the RRA protocol.

16.5 Requests made by nonblocking send calls may
arrive out of sequence at the destination site
when dynamic routing is used. Discuss how a
nonblocking RR protocol should discard dupli-
cate requests when this property holds (refer to
Section 16.4.3.2).

16.6 One change is made in the RRA protocol of
Section 16.4.3.1: A destination process blocks

until it receives an acknowledgment of its reply.
Analyze the properties of this protocol.

16.7 a. Determine the (i) site faults and (ii) link
faults that the systems of Figure 16.16(a) can
tolerate for interprocess communication.

b. Determine placement of copies of data D in
the systems of Figure 16.16(b) if D is to be
available despite two site/link faults in the
system.

16.8 The diameter of a distributed system (d) is the
largest number of links in any shortest path
between nodes of the system. If the maximum
communication delay along any link in the sys-
tem is δ, what is the maximum communication
delay in the system? Explain the conditions
under which it occurs.

16.9 Compare the RPC and remote evaluation
paradigms on the following basis
a. Flexibility
b. Efficiency
c. Security

BIBLIOGRAPHY
•

Tanenbaum and van Renesse (1985) is a survey article
on distributed operating systems. It discusses blocking
and nonblocking communication protocols. The texts
by Sinha (1997), Tanenbaum and van Steen (2002), and
Coulouris et al. (2005) discuss the topics included in this
chapter.

Comer and Stevens (2000) discusses the client–
server computing model. Birrell and Nelson (1984)
discusses implementation of remote procedure calls.
Tay and Ananda (1990) is a survey article on remote

procedure calls. Lin and Gannon (1985) discusses a
remote procedure call (RPC) schematic with exactly-
once semantics. Stamos and Gifford (1990) discusses
remote evaluation. Tanenbaum (2001) discusses the
ISO protocol, the client–server model and the RPC.
Birman (2005) discusses the client–server model and
the RPC.

Tanenbaum (2003) is a text devoted to computer
networks. It covers the ISO protocol in great detail.
Comer (2004) is a broad introduction to networking.

16-M4363-DAS1.LaTeX: “chap16” — 2007/11/13 — 15:34 — page 692 — #44

692 Part 5 Distributed Operating Systems

It explains the TCP/IP protocol. Stallings (2004) dis-
cusses various networking protocols. Stevens and Rago
(2005) describes network programming in Unix.

1. Birman, K. (2005): Reliable Distributed Systems:
Technologies, Web Services, and Applications,
Springer, Berlin.

2. Birrell, A. D., and B. J. Nelson (1984):
“Implementing remote procedure calls,” ACM
Transactions on Computer Systems, 2, 39–59.

3. Comer, D. (2004): Computer Networks and
Internets, 4th ed., Prentice Hall, Englewood
Cliffs, N.J.

4. Comer, D., and D. Stevens (2000):
Internetworking with TCP/IP, Vol. III:
Client–Server Programming and Applications,
Linux/POSIX Socket Version, Prentice Hall,
Englewood Cliffs, N.J.

5. Coulouris, G., J. Dollimore, and T. Kindberg
(2005): Distributed Systems—Concepts and
Design, 4th ed., Addison-Wesley, New York.

6. Lin, K. J., and J. D. Gannon (1985): “Atomic
remote procedure call,” IEEE Transactions on
Software Engineering, 11 (10), 1126–1135.

7. Sinha, P. K. (1997): Distributed Operating
Systems, IEEE Press, New York.

8. Stallings, W. (2004): Computer Networking with
Internet Protocols, Prentice Hall, Englewood
Cliffs, N.J.

9. Stamos, J. W., and D. K. Gifford (1990): “Remote
evaluation,” ACM Transactions on Programming
Languages and Systems, 12 (4), 537–565.

10. Stevens, W. R., and S. A. Rago (2005): Advanced
Programming in the Unix Environment, 2nd ed.,
Addison-Wesley Professional.

11. Tanenbaum, A. S. (2001): Modern Operating
Systems, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J.

12. Tanenbaum, A. S. (2003): Computer Networks,
4th ed., Prentice Hall, Englewood
Cliffs, N.J.

13. Tanenbaum, A. S., and M. van Steen (2002):
Distributed Systems: Principles and Paradigms,
Prentice Hall, Englewood Cliffs, N.J.

14. Tanenbaum, A. S., and R. Van Renesse (1985):
“Distributed Operating Systems,” Computing
Surveys, 17 (1), 419–470.

15. Tay, B. H., and A. L. Ananda (1990): “A survey
of remote procedure calls,” Operating Systems
Review, 24 (3), 68–79.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 693 — #1

C h a p t e r 17
Theoretical Issues in
Distributed Systems

T ime and state are two key notions used in an operating system—the OS
needs to know the chronological order in which events such as resource
requests occur, and it needs to know the states of resources and processes

for performing resource allocation and scheduling. In a conventional computer
system, presence of a single memory and a single CPU simplifies handling of time
and state. Only one event can occur at any time, so the OS knows the chronological
order of events implicitly, and it knows states of all processes and resources in the
system.

A distributed system consists of several computer systems, each with a clock,
memory, and one or more CPUs, that communicate through messages, which
incur unpredictable communication delays. Consequently, the distributed OS can-
not know the chronological order in which events occur, or the states of resources
and processes in all nodes of the system at the same instant of time. Therefore, the
key theoretical issues in distributed systems are to evolve practical alternatives to
the traditional notions of time and state, develop algorithms to implement these
alternatives, and show correctness of these algorithms.

We present the notion of event precedence which can be used to discover
the chronological order in which some events occur in a distributed system. We
then discuss two alternatives to the traditional notion of time, using the notions of
logical clocks and vector clocks. We also present the notion of a consistent recording
of state that can be used as an alternative to global state of a distributed system
in several applications. These alternative notions of time and state are employed
in the design of distributed control algorithms and recovery algorithms used in
a distributed OS.

17.1 NOTIONS OF TIME AND STATE
•

Time is the fourth dimension; it indicates when an event occurred. The state of an
entity is the condition or mode of its being. The state of an entity depends on its
features; e.g., the state of a memory cell is the value contained in it. If an entity is

693

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 694 — #2

694 Part 5 Distributed Operating Systems

composed of other entities, its state contains the states of its component entities.
The global state of a system comprises the states of all entities in the system at a
specific instant of time. An OS uses the notions of time and state for performing
scheduling of resources and the CPU: It uses time to know when a request event
occurred, or to find the chronological order in which request events occurred, and
it uses the state of a resource to decide whether it can be allocated. A distributed
OS also uses these notions in recovery to ensure that processes of a distributed
computation would be in mutually consistent states after recovery from the crash
of a node that contained some of the processes.

It is easy to handle time and state in a uniprocessor OS. The system has a
clock and a single CPU, so the OS can find the times at which processes made
their resource requests and use this information to determine their chronological
order. However, a typical conventional operating system uses the notion of time
only implicitly. When an event occurs, it adds information about the event to a
queue, so the queue shows the chronological order of events. The OS also knows
states of processes, and the states of all physical and logical resources.

In a distributed system, each node is a computer system with its own clock
and a local memory, and nodes are connected by communication links which
have unpredictable communication delays. Consequently, a node cannot precisely
determine the time at which an event occurred in another node; its perception
of the state of a remote process or resource may also be stale. Thus, a dis-
tributed OS cannot use the notions of time and state in the same manner as a
uniprocessor OS.

In this chapter, we discuss some theoretical concepts in distributed systems
and use them to develop practical alternatives to the notions of time and state as
used in a uniprocessor system. These alternative notions of time and state are used
in Chapter 18 in the design of distributed control algorithms, and in Chapter 19
in the design of recovery schemes.

17.2 STATES AND EVENTS IN A DISTRIBUTED SYSTEM
•

17.2.1 Local and Global States
Each entity in a system has its own state. The state of a memory cell is the value
contained in it. The state of a CPU is the contents of its PSW and general-purpose
registers. The state of a process is its state tag; state of the memory allocated to it;
the CPU state if it is currently scheduled on the CPU, or contents of PCB fields if
it is not scheduled on the CPU; and the state of its interprocess communication,
which consists of information concerning the messages received and sent by it.
The state of an entity is called a local state. The global state of a system at time
instant t is the collection of local states of all entities in it at time t.

We denote the local state of a process Pk at time t as st
k , where the subscript

is omitted if the identity of the process is implicit in the context. We denote the
global state of a system at time t as St. If a system contains n processes P1, . . . , Pn,
St ≡ {st

1, st
2, . . . , st

n}.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 695 — #3

Chapter 17 Theoretical Issues in Distributed Systems 695

Old state

of Pk

Event ei

s
New state

of Pk
s

Figure 17.1 Change of state in process Pk on occurrence of event (Pk , s, s′, send, c, m).

17.2.2 Events
An event could be the sending or receiving of a message over a channel, which
is an interprocess communication path, or some other happening that does not
involve a message. The state of a process changes when an event occurs in it. We
represent an event as follows:

(process id, old state, new state, event description, channel, message)

where channel and message are written as “–” if the event does not involve sending
or receiving of a message. An event ei ≡ (Pk , s, s′, send , c, m) can occur only when
process Pk is in state s. The event is the sending of a message m over a channel c.
When this event occurs, process Pk enters the new state s′ (see Figure 17.1).

Certain events can occur only when some conditions are met, e.g., a receive
event for message m on channel c can occur only if channel c contains message
m. Thus, only some events may be feasible in the current state of a process.

17.3 TIME, CLOCKS, AND EVENT PRECEDENCES
•

Let a global clock be an abstract clock that can be accessed from different sites of a
distributed system with identical results. If processes in two nodes of a distributed
system perform the system call “give current time” at the same time instant, they
would obtain identical time values. If they perform these system calls δ time
units apart, they would obtain time values that differ by exactly δ time units.
A global clock cannot be implemented in practice because of communication
delays. Requests for current time made in two different nodes at the same time
instant would face different communication delays to reach the site where the
clock is maintained. Consequently, they would be given different time values.
Similarly, requests that are made δ time units apart may get time values that do
not differ by exactly δ time units.

Since a global clock cannot be implemented, we can explore an alternative
arrangement that uses a clock in each process. Such a clock is called a local
clock. The local clock of a process would be accessed whenever the process per-
forms a “give current time” system call. To implement a practical timekeeping
service using this idea, local clocks should be reasonably well synchronized.
Section 17.3.2 discusses how clock synchronization can be achieved, using the
notion of event precedence.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 696 — #4

696 Part 5 Distributed Operating Systems

17.3.1 Event Precedence
The notation e1 → e2 is used to indicate that event e1 precedes event e2 in time;
i.e., event e1 occurred before event e2. Event ordering implies arranging a set of
events in a sequence such that each event in the sequence precedes the next one.
In essence, it implies determining the order in which events have occurred in a
system. A total order with respect to the precedes relation “→” is said to exist if
all events that can occur in a system can be ordered. A partial order implies that
some events can be ordered but not all events can be ordered—to be precise, at
least two events exist that cannot be ordered.

Table 17.1 summarizes the fundamental rules used to order events. These
rules can be explained as follows: The OS can readily determine precedence
between events occurring within the same process. Events like execution of a
“send P3, <message mi>” event in a process P2 and a receive event in P3 that
receives message mi have a causal relationship, i.e., a cause-and-effect relation-
ship. Consequently, the send event in process P2, which is the cause, precedes the
receive event in process P3, which is its effect. The precedes relation is transitive
in nature, hence e1 → e3 if e1 → e2 and e2 → e3. This property can be used to
determine precedences between some events that neither have a causal relation-
ship nor occur within the same process. For example, an event ei preceding the
send event for message mi in P2 precedes an event ej that follows the receive event
for message mi in P3, because ei precedes the send event, the send event precedes
the receive event, and the receive event precedes event ej .

Using the rules of Table 17.1, precedence between any two events ei and ej
can be classified as follows:

• ei precedes ej : If events ek and el exist such that ek → el , ei → ek or ei ≡ ek ,
and el → ej or el ≡ ej .

• ei follows ej: If events eg and eh exist such that eg → eh, ej → eg or ej ≡ eg ,
and eh → ei or eh ≡ ei .

• ei is concurrent with ej : If ei neither precedes nor follows ej .

A timing diagram is a plot of the activities of different processes against time—
processes are marked along the vertical axis in the plot, and time is marked along

Table 17.1 Rules for Ordering of Events in a Distributed System

Category Description of rule

Events within a process The OS performs event handling, so it knows the order
in which events occur within a process.

Events in different
processes

In a causal relationship, i.e., a cause-and-effect
relationship, an event that corresponds to the cause
precedes an event in another process that corresponds
to the effect.

Transitive precedence The precedes relation is transitive; i.e., e1 → e2 and
e2 → e3 implies e1 → e3.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 697 — #5

Chapter 17 Theoretical Issues in Distributed Systems 697

the horizontal axis. We use the notation ekn for event en in process Pk . Exam-
ple 17.1 demonstrates use of a timing diagram in determining event precedences
by using transitiveness of the precedes relation. It also illustrates why a total order
over events does not exist in a distributed system.

•
Example 17.1Event Precedence

Figure 17.2 shows activities in processes P1 and P2. Event e23 is a “send” event
while e12 is a “receive” event for message m1. Hence e23 → e12. The transitive
nature of “→” leads to the precedence relations e22 → e12 and e21 → e12.
Transitiveness also yields e22 → e13 and e21 → e13. Event e11 is concurrent
with events e21 and e22. It is also concurrent with events e23 and e24!

•

17.3.2 Logical Clocks
An OS needs a practical method of event ordering for purposes related to schedul-
ing and resource allocation. The method should be efficient, so it should perform
event ordering directly, instead of working through causal relationships and tran-
sitivity. It should also provide a total order over events so that the OS can provide
FCFS service to resource requests. Such an order can be obtained by

• Incorporating event precedences into the event order.
• Arbitrarily ordering events that are concurrent, e.g., the events e11 and e21 in

Figure 17.2.

Timestamping of events provides a direct method of event ordering. Each
process has a local clock that is accessible only to itself. The timestamp of an
event is its occurrence time according to the local clock of the process. Let ts(ei)
represent the timestamp of event ei . Event ordering is performed in accordance
with the timestamps of events, i.e., ∀ei , ej : ei → ej if ts(ei) < ts(ej) and ej → ei
if ts(ei) > ts(ej). However, local clocks in different processes may show different
times because of clock drift, which would affect reliability of timestamp-based
event ordering. For example, if event ei occurred before event ej , ts(ei) should
be < ts(ej); however, if the clock at the process where event ei occurred is run-
ning faster than the clock at the process where ej occurred, ts(ei) may be >

ts(ej). To avoid such situations, it is necessary to synchronize the clocks of all
processes.

P2

P1

e24

e13e12e11

e23e22e21

m1

Figure 17.2 Event precedence via timing diagram.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 698 — #6

698 Part 5 Distributed Operating Systems

Synchronization of local clocks is achieved by using the causal relationship
found in interprocess message exchange. Consider a message m sent by pro-
cess Pk to process Pl . Let timestamps of the send and receive events be tk and
tl , respectively. The cause-and-effect relationship between the send and receive
events implies that tk must be smaller than tl . If it is not, the situation can be cor-
rected by increasing the time in the local clock of the receiver process to some
value greater than tk before timestamping the receive event. Algorithm 17.1 is the
complete clock synchronization algorithm.

Algorithm 17.1 Clock Synchronization

1. When a process Pk wishes to send a message m to process Pl: Pk executes
a command “send Pl , (ts(send(m)), m),” where ts(send(m)) is a timestamp
obtained just prior to sending message m.

2. When process Pl receives a message: Process Pl performs the actions
if local clock(Pl) < ts(send(m)) then

local clock(Pl) := ts(send(m)) + δ;
timestamp the receive event.

where local clock(Pl) is the value in the local clock of process Pl and δ is the
average communication delay in the network.

The clock synchronization achieved by Algorithm 17.1 is called loose syn-
chronization because clocks of the two processes are mutually consistent at
a message exchange, but can drift apart at other times (see Exercise 17.1).
The quality of clock synchronization depends on the frequency of interprocess
communication—a higher frequency of communication provides tighter synchro-
nization. Synchronization can be improved by using special synchronization mes-
sages that are exchanged at short intervals simply to keep the clocks synchronized.

Note that clocks synchronized in this manner do not show “real” time. For
example, if the clock at a sender process is fast, the clock at the receiver process
would also be advanced. Once we accept that the local clocks do not show “real”
time, there is no need to keep incrementing them all the time. A process may
increment its local clock by 1 only when an event occurs in it, and synchronize
the local clock, if necessary, when it receives a message. Such clocks are called
logical clocks. We denote the logical clock of process Pk by LCk . Logical clocks
are implemented according to the following rules:

R1 A process Pk increments LCk by 1 whenever an event occurs in it.
R2 When process Pk receives a message m containing ts(send(m)), Pk

sets its clock by the rule LCk = max (LCk , ts(send(m))+1).

The next example illustrates synchronization of logical clocks by these rules.

•
Example 17.2 Synchronization of Logical Clocks

Figure 17.3 contains the timing diagram for a system consisting of three pro-
cesses. The pair of numbers appearing in parentheses below an event indicate
values in the logical clock of the process before and after the event. The logical

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 699 — #7

Chapter 17 Theoretical Issues in Distributed Systems 699

P1

P2

P3

e13

(27, 28)

e12

(10, 27)

e11

(9, 10)

m1 m3 m4

m2

e24

(13, 29)

e23

(12, 13)

e31

(24, 25)

e32

(25, 26)

e21

(3, 11)

e22

(11, 12)

Figure 17.3 Synchronization of logical clocks.

clock in P1 contains 9 when P1 decides to send message m1 to P2. It is incre-
mented by rule R1 and the send event is timestamped, so m1 contains the
timestamp 10. When P2 receives the message, its clock reads 3. It first incre-
ments its clock to 4, using rule R1, and then synchronizes it, using rule R2.
The clock now reads 11.

When P2 decides to send message m2, its logical clock is incremented
to 12. m2 thus contains the timestamp 12. When m2 reaches P3, P3 applies
rules R1 and R2. Rule R2 has no effect since P3’s logical clock value is much
larger than the timestamp in the message. When P3 sends m3 to P1, P1’s clock
is synchronized to P3’s clock. Similarly P2’s clock gets synchronized to P1’s
clock when P1 sends m4 to P2.

•

Timestamps obtained by using logical clocks have the property that ts(ei)
< ts(ej) if ei → ej . However, the converse is not guaranteed for events occur-
ring in different processes; i.e., ei may not precede ej even if ts(ei) < ts(ej). Such
a situation may arise if ei and ej occur in processes X and Y , respectively, of
the system, and there has been no direct synchronization of the clocks of X
and Y either due to lack of message traffic between them or because the clock
at process Y is running faster than that at process X (because more events
occurred in process Y than in process X). We see this situation in Figure 17.3,
where e32 occurs “earlier than” event e23 but has a larger timestamp than
that of e23.

Obtaining Unique Timestamps Events in different processes would obtain iden-
tical timestamps if the logical clocks in their processes happen to have identical
time values when they occurred. Consequently, these timestamps cannot be used
to obtain a total order over events. This problem can be overcome by using a pair
pts(ei) as the timestamp of an event ei , where

pts(ei) ≡ (local time, process id)

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 700 — #8

700 Part 5 Distributed Operating Systems

This way, events cannot have identical timestamps. Event ordering is now
performed by defining event precedence as follows:

ei precedes ej iff (i) pts(ei).local time < pts(ej).local time, or

(ii) pts(ei).local time = pts(ej).local time and

pts(ei).process id < pts(ej).process id (17.1)

where pts(ei).local time and pts(ei).process id are the local time and process id in
pts(ei), respectively. Note that this notion of event precedence would provide an
identical ordering of events ei and ej as that obtained through logical clocks, if
processes had different local times when events ei and ej occurred in them.

17.3.3 Vector Clocks
A vector clock is a vector containing n elements, where n is the number of processes
in the distributed system. We denote the vector clock of process Pk by VCk , and
its lth element by VCk[l]. Elements of the vector clock VCk have the following
significance:

VCk[k] The logical clock of process Pk
VCk[l], l �= k The highest value in the logical clock of process Pl which is

known to process Pk—that is, the highest value of VCl [l]
known to it

The timestamp of an event ei occurring in a process Pk is the value of VCk
when ei occurred. Thus, the timestamp is a vector; we call it the vector timestamp.
We denote the vector timestamp of event ei by vts(ei), and the lth element of
vts(ei) by vts(ei)[l]. When process Pk sends a message m to process Pl , it includes
vts(send(m)) in the message. Vector clocks are implemented according to the
following rules:

R3 A process Pk increments VCk[k] by 1 whenever an event occurs in it.
R4 When process Pk receives a message m containing vts(send(m)), Pk

sets its clock as follows:
For all l: VCk[l] = max (VCk[l], vts(send(m))[l]).

From these rules, VCk[k] ≥ VCl [k] for all l. If ei , ej are two consecutive events
in process Pk , vts(ej)[k] = vts(ei)[k] + 1 by rule R3. If ei , ej were send and
receive events for a message in processes Pg and Pk , respectively, process Pk
would increment VCk[k] by rule R3 when ej occurs, and then update VCk by
rule R4 before timestamping ej . Consequently, vts(ei)[l] ≤ vts(ej)[l], for all l and
vts(ei)[k] < vts(ej)[k]. We represent this condition as vts(ei) < vts(ej).

The precedence between events ei and ej is obtained as follows:

• ei precedes ej : For all l: vts(ei)[l] ≤ vts(ej)[l], but for some k: vts(ei)[k] �=
vts(ej)[k].

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 701 — #9

Chapter 17 Theoretical Issues in Distributed Systems 701

• ei follows ej: For all l: vts(ei)[l] ≥ vts(ej)[l], but for some k: vts(ei)[k] �=
vts(ej)[k].

• ei , ej are concurrent: For some k, l: vts(ei)[k] < vts(ej)[k] and vts(ei)[l] >

vts(ej)[l].

Timestamping through vector clocks has two important properties: Every event
has a unique timestamp as a result of rules R3 and R4, and vts(ei) < vts(ej) if
and only if ei → ej . The next example illustrates these properties.

•
Example 17.3Synchronization of Vector Clocks

Figure 17.4 shows synchronization of vector clocks for the system of
Figure 17.3. The vector timestamp after the occurrence of an event is shown
below it. When message m1 is received, VC2[2] is incremented by 1 and
VC2[1] is updated to 10. Analogously, when message m2 is received by pro-
cess P3, VC3[3] is incremented by 1 and VC3[1] and VC3[2] are updated.
Events e32 and e23 are concurrent events because vts(e32)[2] < vts(e23)[2] and
vts(e32)[3] > vts(e23)[3].

•
The property that vts(ei) < vts(ej) if and only if ei → ej implies that vector

clocks do not provide a total order over events. Total order can be obtained by
using a pair pvts(ei) ≡ (local time, process id) as the timestamp of an event ei and
the following event ordering relation:

ei precedes ej iff (i) pvts(ei).local time < pvts(ej).local time, or

(ii) ei , ej are concurrent events and

pvts(ei).process id < pvts(ej).process id (17.2)

where pvts(ei).local time and pvts(ei).process id are the local vector time and
process id in pvts(ei), respectively.

P1

P2

P3

e13

(12,4,26)

e12

(11,4,26)

e11

(10,0,0)

m1 m3 m4

m2

e24

(12,6,26)

e23

(10,5,0)

e31

(10,4,25)

e32

(10,4,26)

e21

(10,3,0)

e22

(10,4,0)

Figure 17.4 Synchronization of vector clocks.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 702 — #10

702 Part 5 Distributed Operating Systems

17.4 RECORDING THE STATE OF A DISTRIBUTED SYSTEM
•

As discussed in Section 17.2.1, the global state of a distributed system at a time
instant t is the collection of local states of all entities in the system at time t.
However, it is not possible to get all nodes to record their states at the same time
instant because local clocks are not perfectly synchronized. Any other collection
of local states may be inconsistent. Consider the distributed system shown in
Figure 17.5. A banking application has a process P1 in node N1 and a process P2
in node N2, which perform the following actions:

1. Process P1 debits $100 to account A.
2. Process P1 sends a message to process P2 to credit $100 to account B.
3. Process P2 credits $100 to account B.

The recorded states of nodes N1 and N2 would be inconsistent if the balance
in account A is recorded before Step 1 and that in account B is recorded
after Step 3. A distributed OS cannot use such a state to perform its control
functions.

In this section we present an algorithm for obtaining a consistent collec-
tion of local states. Such a collection of states is not a substitute for the global
state; however, it has properties that facilitate some of the control functions in a
distributed OS.

Consistent State Recording A state recording is a collection of local states of
entities in a system obtained through some algorithm. A consistent state recording
is one in which process states of every pair of processes in the system are consistent
according to Definition 17.1.

Definition 17.1 Mutually Consistent Local States Local states of processes
Pk and Pl are mutually consistent if

1. Every message recorded as “received from Pl” in Pk ’s state is recorded as
“sent to Pk” in Pl ’s state, and

2. Every message recorded as “received from Pk” in Pl ’s state is recorded as
“sent to Pl” in Pk ’s state.

In the state recording mentioned at the start of this section, the state of P2
indicates that it has received the message from P1 concerning credit of $100 in
account B, but the state of P1 does not indicate that it has sent such a message.

N1 N2

A B

900 300

Figure 17.5 A funds transfer system.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 703 — #11

Chapter 17 Theoretical Issues in Distributed Systems 703

Hence the state recording is inconsistent. A state recording that shows any of the
following situations would have been consistent:

1. Accounts A and B contain $900 and $300, respectively.
2. Accounts A and B contain $800 and $400, respectively.
3. Accounts A and B contain $800 and $300, respectively.

In case 1, none of the processes had received a message before its state was
recorded, so the process states are consistent. In case 2, the message recorded as
received from P1 in P2’s state is recorded as sent in P1’s state. In case 3, again
none of the process states records receipt of a message. The message from P1 to
P2 is in transit. It will be delivered to process P2 sometime in future, and process
P2 will add $100 to account B when it receives the message. This is why mutual
consistency of process states requires that every message recorded as received
should be recorded as sent, but not vice versa.

17.4.1 Properties of a Consistent State Recording
Figure 17.6 shows a model of a distributed computation. The computation
consists of four processes P1–P4 that communicate among themselves through
messages. An edge (Pi , Pj) represents a channel Chij , i.e., an interprocess commu-
nication path that is used by process Pi to send messages to process Pj . Note that
a channel is unidirectional—a process either sends or receives messages along a
channel, but not both. Channels Ch23 and Ch32 together indicate that processes
P2 and P3 send messages to one another.

Figure 17.7 shows the timing diagram of the computation. Table 17.2 shows
states of processes P1–P4 recorded at time instants tP1 , tP2 , tP3 , and tP4 , respec-
tively. These time instants are marked with the symbol in the figure. The state
of process P1 shows that it has received message m21, but not sent out any mes-
sages, while the state of process P2 shows that it has sent out messages m21 and
m23 before tP2 but not received any messages. These states are mutually consistent
according to Definition 17.1. However, the states of P3 and P4 are not mutually
consistent because the state of process P3 records message m43 as received but
process P4’s state does not record it as sent. Hence the state recording of Table 17.2
is not a consistent state recording.

P1

P2

P4

P3

Ch21 Ch43

Ch42

Ch23

Ch32

Figure 17.6 A distributed computation for state recording.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 704 — #12

704 Part 5 Distributed Operating Systems

P1

P2

P3

P4

e11 e12
tP1

tP2

tP3

tP4

e13

e21

m21

e22

e23

m23

e24 e25

e31 e32

e33 e34

m32

e41

m43

e42

m42

Figure 17.7 A timing diagram for the distributed computation of Figure 17.6.

Table 17.2 Local States of Processes

Process Description of recorded state

P1 No messages have been sent. Message m21 has been received.
P2 Messages m21 and m23 have been sent. No messages have been

received.
P3 No messages have been sent. Message m43 has been received.
P4 No messages have been sent. No messages have been received.

Cut of a System The notion of a cut of a system helps in determining the con-
sistency of a state recording. Let tPi be the point in a timing diagram at which
the state of a process Pi is recorded.

Definition 17.2 Cut of a System A curve that connects the points in a tim-
ing diagram at which states of processes are recorded, in increasing order by
process number.

The cut of the distributed computation shown in Figure 17.7 represents the
recorded state shown in Table 17.2. The term “a cut is taken” means that a
collection of local states is recorded. An event that had occurred in a process
before the state of the process was recorded is said to occur “to the left of the
cut” in the timing diagram. Such an event belongs in the past of the cut. An event
that would occur in a process after the state of the process was recorded is said
to occur “to the right of the cut” in the timing diagram. Such an event belongs
to the future of the cut. A cut represents a consistent state recording of a system
if the states of each pair of processes satisfy Definition 17.1.

State of a Channel The state of a channel Chij is the set of messages con-
tained in Chij , i.e., the messages sent by process Pi that are not yet received

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 705 — #13

Chapter 17 Theoretical Issues in Distributed Systems 705

by process Pj . We use the following notation to determine the state of a
channel Chij :

Recorded_sentij The set of messages recorded as sent over channel Chij
in the state of Pi

Recorded_recdij The set of messages recorded as received over channel
Chij in the state of Pj

Recorded_sentij = Recorded_recdij implies that all messages sent by Pi
have been received by Pj . Hence the channel is empty. Recorded_sentij −
Recorded_recdij �= φ, where “−” represents the set difference operator, implies
that some messages sent by Pi have not been received by Pj . These messages are
still contained in channel Chij . Recorded_recdij − Recorded_sentij �= φ, implies
that process Pj has recorded as received at least one message that is not recorded
as sent by process Pi . This situation indicates inconsistency of the recorded
local states of Pi and Pj according to Definition 17.1.

A cut in the timing diagram may intersect with a message mk sent by process
Pi to process Pj over channel Chij . The manner of the cut indicates whether the
recorded states of Pi and Pj are consistent with respect to the sending and receipt
of the message. It also indicates the state of the channel. Three possibilities are:

• No intersection with a message: The message send and receive events are either
both located to the left of the cut or both located to the right of the cut. In
either case, the message did not exist in channel Chij when the cut was taken.

• Forward intersection with a message: The message send event is located to
the left of the cut and the message receive event is located to the right of
the cut. Hence, the message existed in channel Chij when the cut was taken.
The cut in the timing diagram of Figure 17.7 has a forward intersection with
message m23.

• Backward intersection with a message: The message send event is located to
the right of the cut and the message receive event is located to the left of the
cut. Hence, the message had been received but had not been sent when the cut
was taken. Such a message indicates an inconsistency in the recorded state.
The cut in the timing diagram of Figure 17.7 has a backward intersection
with message m43.

From these observations, we can formulate a consistency condition for a cut
as follows:

CC A cut C represents a consistent state recording of a distributed
system if the future of the cut is closed under the precedes relation
on events, i.e., closed under “→”.

Condition CC can be explained as follows: A set of items I is said to be closed
under a relation R, if using the relation on any item in I yields an item that is also
in I . Let I be the set of events in the future of a cut. Applying the relation “→”
to an event ei ∈ I gives us an event ej such that ei → ej , i.e., ei precedes ej . If I is
closed under “→”, this event also belongs to I . That is, it does not belong to the
past of the cut. This condition is equivalent to the restriction that a cut should

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 706 — #14

706 Part 5 Distributed Operating Systems

P1

P2

P3

P4

e12 e13

C2 C3C1

e22

e23

e32

e33 e34

e41

Figure 17.8 Consistency of cuts—cuts C1, C2 are consistent while C3 is inconsistent.

not have a backward intersection with a message. A forward intersection does
not violate condition CC since its send event is in the past and its receive event is
in the future.

•
Example 17.4 Consistency of a Cut

In Figure 17.8, cuts C1 and C2 are consistent cuts because there is no event
ej belonging to the past of the cut that follows an event ei in the future of the
cut. Cut C3 is inconsistent because event e13 follows event e34 because of the
cause-and-effect relationship between a send and a receive; however, e34 is in
the future of C3 while e13 is in its past.
•

17.4.2 An Algorithm for Consistent State Recording
This section describes the state recording algorithm by Chandy and Lamport
(1985). The algorithm makes the following assumptions:

1. Channels are unidirectional.
2. Channels have unbounded capacities to hold messages.
3. Channels are FIFO.

The assumption of FIFO channels implies that messages received by a destination
process must be the first few messages sent by a sender process, and messages
contained in a channel must be the last few messages sent by a process.

To initiate a state recording, a process records its own state and sends
a state recording request called a marker on every outgoing channel. When
a process receives a marker, it records the state of the channel over which
it received the marker. If the marker is the first marker it received from any
process, it also records its own state and sends a marker on every outgoing

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 707 — #15

Chapter 17 Theoretical Issues in Distributed Systems 707

channel. We use the following notation to discuss how the state of a channel is
determined:

Receivedij The set of messages received by process Pj on channel
Chij before it received the marker on channel Chij .

Recorded_recdij The set of messages recorded as received over channel
Chij in the state of process Pj .

Algorithm 17.2 Chandy–Lamport Algorithm

1. When a process Pi initiates the state recording: Pi records its own state and
sends a marker on each outgoing channel connected to it.

2. When process Pj receives a marker over an incoming channel Chij : Process Pj
performs the following actions:

a. If Pj had not received any marker earlier, then
i. Record its own state.
ii. Record the state of channel Chij as empty.
iii. Send a marker on each outgoing channel connected to it.

b. Otherwise, record the state of channel Chij as the set of messages
Receivedij − Recorded_recdij .

Rules of Algorithm 17.2 are executed atomically, i.e., as indivisible operations.
Recording of the channel state by the algorithm can be explained as follows:
Let a process Pi send messages mi1 , mi2 , . . . min on channel Chij before recording
its own state and sending a marker on Chij . Let process Pj have two incoming
channels Chij and Chkj . If the marker on channel Chij is the first marker Pj
received, it would record its own state, which would show Recorded_recdij and
Recorded_recdkj as the messages received by it. Pj would also record the state of
Chij as empty. Because channels are FIFO, process Pj would have received the
marker after receiving messages mi1, mi2, . . . , min on Chij , so it is correct to record
the state of channel Chij as empty.

Let Pj receive two more messages mk1 and mk2 on Chkj before it received
the marker. Hence Receivedkj = Recorded_recdkj ∪ {mk1, mk2} and the state of
channel Chkj would be recorded as the set of messages Receivedkj − Recorded-
_recdkj i.e., {mk1, mk2}. It is correct because process Pk would have sent messages
mk1 , mk2 before it recorded its own state and sent the marker on channel Chkj ,
so if these messages were not received by Pi by the time it recorded its own state,
they must have been in the channel.

Example 17.5 illustrates operation of the Chandy–Lamport algorithm.

•
Example 17.5Operation of the Chandy−−Lamport Algorithm

Figure 17.9(a) shows a distributed system at time 0. Process P1 has sent message
m1 to P3. The message currently exists in Ch13. At time 1, process P3 sends
message m2 to process P2. At time 2, P1 decides to record the state of the
system, so it records its own state and sends markers on its outgoing channels.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 708 — #16

708 Part 5 Distributed Operating Systems

(c)

P1

P2 P3

m2 m3

�

��

P1

(a)

P2 P3

m1

P3

(b)

P1

P2 P3

m2

m1

�

Figure 17.9 Example of the Chandy–Lamport algorithm: system at times 0, 2+, and 5+.

Table 17.3 Recorded States of Processes and Channels in
Figure 17.9

Entity Description of recorded state

P1 Message m1 has been sent. No messages have been
received.

P2 No messages have been sent or received.
P3 Messages m2 and m3 have been sent. Message m1 has been

received.
Ch12 Empty
Ch13 Empty
Ch23 Contains the messages m2 and m3

Figure 17.9(b) shows the situation at time 2+. Message m1 is still in channel
Ch13 and m2 is in Ch32. The bullets indicate markers. The symbol � indicates
that the state of a process has been recorded.

Process P2 receives the marker on Ch12 at time 3, records its own state and
records the state of Ch12 as empty. Process P3 sends message m3 to process
P2 at time 4 and receives the marker on Ch13 at time 5. It now records its
own state, records the state of Ch13 as empty, and sends a marker on Ch32.
Figure 17.9(c) shows the situation at time 5+. States of all processes have been
recorded. States of channels Ch12 and Ch13 have also been recorded; however,
the state of Ch32 is yet to be recorded.

When the marker on Ch32 reaches process P2, P2 will record the state
of Ch32 according to step 2(b) of Algorithm 17.2. It is recorded as messages
{m2, m3} because these messages are in Received32 but not in Recorded_recd32.
Table 17.3 shows the state recording of the system.
•

Properties of the Recorded State Let tb and te be the time instants when the state
recording of system S begins and ends. Let RS be the recorded state of the system.
One would expect that system S would have been in the state RS at some time
instant ti such that tb < ti < te. However, this may not be so! That is, the recorded

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 709 — #17

Chapter 17 Theoretical Issues in Distributed Systems 709

state RS may not match any global state of the system. Example 17.6 illustrates
this fact.

•
Example 17.6Recorded State versus Global State

Figure 17.7 shows the timing diagram of the distributed system of Figure 17.6.
Let P4 initiate state recording at time instant t1. The timing diagram of
Figure 17.10 shows how the markers are sent and received by processes during
state recording. The markers are shown as dotted arrows.

Table 17.4 shows channel and process states recorded by the Chandy–
Lamport algorithm. Only message m21 is recorded as sent by P2 and received
by P1. No other messages are recorded as sent or received. However, because
the timing diagram of Figure 17.7 is drawn to scale, it is clear that the system
never existed in a state in which message m21 had been sent and received but no
other messages had been sent—the message-send and message-receive events
e23, e32, and e41 had occurred before event e12, the message-receive event for
message m21. Thus any global state that recorded message m21 as received
would have also recorded message m43 as sent and received, and message m23
as sent.

•
Even though the system may not have existed in the recorded state at any

point in time, the recorded state is useful for applications that require only mutual

P1

P2

P3

P4

e11 e12

t4
1

e13

m21

m32m23

e22

e23 e24 e25

e32

e33 e34

e41

m43

e42

m42

Figure 17.10 State recording of the system of Figures 17.6 and 17.7.

Table 17.4 A Recorded State that Does Not Match Any Global State

Entity∗ Description of recorded state

P1 No messages have been sent. Message m21 has been received.
P2 Message m21 has been sent. No messages have been received.
P3 No messages have been sent or received.
P4 No messages have been sent or received.

∗ States of all channels are recorded as empty.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 710 — #18

710 Part 5 Distributed Operating Systems

consistency of local states. Consider the problem of finding the total funds in a
banking system. When $100 is transferred from account A to account B, it is
irrelevant whether the recorded state shows this amount to be in account A or
account B or in the channel connecting the two, so long as it shows exactly
one of these three possibilities. The state recorded by Algorithm 17.2 meets this
requirement.

Chandy and Lamport (1985) shows that Algorithm 17.2 can be used to detect
a class of properties called stable properties. A stable property is one that, if it
holds in the global state of a system at time instant ti , it would hold in the
global state of the system at all time instants tj > ti . Algorithm 17.2 is executed
periodically to obtain a state recording and the recorded state is analyzed to
detect presence of the stable property. This scheme may fail to capture the stable
property in the first state recording that completes at a time instant > ti . However,
this failure is not disastrous because the property would continue to hold and
some later execution of the scheme would capture it. A useful stable property is
existence of a cycle, knot, or resource knot in a WFG or an RRAG, which can
be used for deadlock detection (see Chapter 8). Another useful stable property is
the distributed termination condition, which is defined as a situation in which all
processes participating in a distributed computation are passive and no messages
between the processes are in transit (see Section 18.6).

17.5 SUMMARY
•

An operating system uses the notions of time and
state for controlling operation of user processes
and for organizing its own functioning. However,
each node in a distributed system has its own clock
and memory, so these notions cannot be employed
as simply as in a conventional operating system.
In this chapter, we developed alternative notions
of time and state for use in a distributed system.

An OS uses the notion of time to know
the order in which events occurred, so that it
can service events in time-dependent orders such
as FCFS and LIFO. The notion of precedence
of events, which indicates which event occurred
before which other event, is transitive, that is, if
event ei occurred before ej and event ej occurred
before ek , then ei must have occurred before ek .
The OS can determine precedence of events as fol-
lows: If two events occurred in the same node,
the OS knows which of them occurred earlier. For
events occurring in different nodes, the OS uses
transitivity of events and the notion of a causal

relationship between events—that is, cause-and-
effect relationship—to find which of the events
occurred earlier. For example, in interprocess mes-
sage communication, the sending of a message is a
cause and its receipt is the effect. Hence the receive
event of a message is known to occur after its send
event. Using transitivity, it follows that an event
that preceded a send event of a message must have
occurred before an event that followed its receipt.
However, for some pairs of events, it is not possible
to know which of the events occurred earlier. Such
events are called concurrent events.

It is laborious to deduce the precedence of
events by using transitivity. Hence an OS asso-
ciates a timestamp, i.e., occurrence time, with each
event and compares the timestamps of two events
to know which of them occurred earlier. To facil-
itate timestamping, the OS maintains a clock in
each process, which is called the local clock of the
process, and keeps the local clocks of processes well
synchronized. It performs clock synchronization

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 711 — #19

Chapter 17 Theoretical Issues in Distributed Systems 711

by using the causal relationship governing inter-
process messages as follows: Each message con-
tains the timestamp of its send event. The local
clock in the process receiving the message must
show a time larger than the timestamp in the mes-
sage. If it is not so, the local clock in the receiving
process is incremented to a time that is larger than
the timestamp in the message. Since local clocks
do not show the real time, they are called logical
clocks. Timestamps using logical clocks have the
property that if ti , tj are the timestamps of events
ei , ej , respectively, ti < tj if event ei precedes ej .
An alternative system of clocks called vector clocks
has the additional property that ti < tj implies that
event ei occurred before ej . For concurrent events,
it is immaterial how we order them. Hence a pair
(process id, timestamp) is used to obtain a total
order on events.

The state of a node is called its local state. The
global state of a system is a collection of local states

of its nodes obtained at exactly the same instant of
time. It is not possible to record the global state
by asking each node to record its local state at a
specific time instant, because clocks in the nodes
are not perfectly synchronized. An arbitrary collec-
tion of local states of nodes may be inconsistent.
For example, if nodes record their states sponta-
neously, the local state of node Ni may be recorded
before it sent a message m to node Nj and the local
state of Nj may be recorded after it received mes-
sagem. ThisproblemwasovercomebyChandyand
Lamport (1985) by using special messages called
markers to instruct individual nodes to record their
local states. They showed that if interprocess com-
munication is FIFO, the local states of processes
recorded by their algorithm were mutually consis-
tent. The collection of these local states can be used
to detect stable properties, which are properties that
do not change with time, such as presence of cycles
in wait-for graphs.

TEST YOUR CONCEPTS
•

17.1 Classify each of the following statements as true
or false:
a. Events ei and ej are concurrent events only

if ts(ei) = ts(ej), where ts(ei), ts(ej) are the
timestamps of ei , ej using logical clocks.

b. Even if ts(ei) > ts(ej), event ei could have
occurred earlier than event ej .

c. Even if vts(ei) > vts(ej), event ei could have
occurred earlier than event ej .

d. A message from process Pi to process Pj that
intersects with a cut of a system is a mes-
sage that has been sent by Pi but not received
by Pj in the states of processes Pi and Pj
represented by the cut.

e. In a state recorded by the Chandy–Lamport
algorithm, the state of channel Chij is likely
to be nonempty only if process Pj receives a
marker on some other channel before receiv-
ing the marker on channel Chij .

17.2 Select the appropriate alternative in each of the
following questions:

a. If process Pi sends messages to process Pj ,
but process Pj does not send messages to pro-
cess Pi , states of processes Pi , Pj are mutually
consistent local states only if

i. All messages sent by process Pi to process
Pj have been received by process Pj .

ii. Some messages sent by process Pi to
process Pj have not been received by
process Pj .

iii. All messages received by process Pj from
process Pi have been sent by process Pi .

iv. None of (i)–(iii).
b. If event ei in process Pi is in the past of a

cut Ck ,
i. All events in the system that precede event

ei are in the past of the cut Ck .
ii. Some of the events that precede event ei

may be in the past of the cut Ck .
iii. All events that occur after event ei are in

the future of the cut Ck .
iv. None of (i)–(iii).

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 712 — #20

712 Part 5 Distributed Operating Systems

EXERCISES
•

17.1 In Example 17.2, P3’s time is much larger than
that of P1 or P2. List all conditions under which
this can happen.

17.2 The following eventsoccur ina systemconsisting
of three processes:

process P1 process P2 process P3

event e1; event e3; event e5;
– – – – – –
Send
message
to P2;

Receive
message
from P3;

Send
message
to P2;

event e2; Receive
message
from P1;

event e6;

– – Receive
message
from P2;

event e4; – –
Send
message
to P3;

event e7;

a. Draw a timing diagram for the system.
b. Show event precedences in this system.
c. List the concurrent events.

17.3 Synch(Pi , Pj , tk)= true if the logical clocks of Pi
and Pj are reasonably consistent at time instant
tk ; i.e., if the difference between their values is
<δ, for some small value δ. If RP(i, k) is the set
of processes from whom Pi has received a mes-
sage before tk and SP(i, k) is the set of processes
to which Pi has sent a message before tk , deter-
mine whether Synch(Pi , Pj , tk) would be true in
the following situations:
a. RP(i, k)

⋂
RP(j, k) �= φ

b. There exists a Pg ∈ SP(i, k) such that
Pj ∈ SP(g, k)

c. Pj ∈ SP(i, k)

d. Pj ∈ RP(i, k) but Pj �∈ RP(i, k − 1)

e. Pj ∈ SP(i, k) and Pi ∈ SP(j, k)

f. Pj ∈ RP(i, k) but Pj �∈ RP(i, k − 1) and
Pi has not received any message from any
process after the time it sent a message to Pj .

17.4 Relation (17.1) imposes a total order even
if events can be only partially ordered by

using causal relationships. Give an example of
a system showing such events. Comment on
the advantages and drawbacks of using rela-
tion (17.1).

17.5 Instead of using relation (17.2) to obtain a total
order using vector timestamps, it is proposed to
use the following relation:

ei precedes ej iff

(i) pvts(ei).local time < pvts(ej).local time, or

(ii) pvts(ei).local time = pvts(ej).local time and

pvts(ei).process id < pvts(ej).process id

Comment on the correctness of this proposal.
17.6 ti and tj are timestamps of events ei and ej .

a. Give an example of a system in which ti < tj
when logical clocks are used but ti �< tj when
vector clocks are used.

b. If ti < tj when vector clocks are used, show
that ti < tj when logical clocks are used.

c. If ti < tj when logical clocks are used, show
that ti �> tj when vector clocks are used.

17.7 Vector timestamps of concurrent events ei
and ej are such that vts(ei)[k] < vts(ej)[k].
Show that events ei and el are concurrent
if vts(el)[g] = vts(ej)[g] for all g �= k and
vts(el)[k] > vts(ej)[k].

17.8 Explain, with the help of an example, why the
Chandy–Lamport algorithm requires channels
to be FIFO.

17.9 A transitless state of a system is a state in which
no messages are in transit. (See Table 17.4 for an
example.) Give an example of a system in which
all states recorded by the Chandy–Lamport
algorithm are necessarily transitless.

17.10 A system consists of processes Pi , Pj and chan-
nels Chij and Chji . Each process sends a message
to the other process every δ seconds. Every mes-
sage requires σ seconds to reach Pj . Prove that
if δ < σ , the state recording initiated by Pi
using the Chandy–Lamport algorithm cannot
be transitless.

17.11 Give an example of a system in which the state
recorded by the Chandy–Lamport algorithm is
one of the states in which the system existed
sometime during the execution of the algorithm.

17-M4363-DAS1.LaTeX: “chap17” — 2007/11/24 — 13:06 — page 713 — #21

Chapter 17 Theoretical Issues in Distributed Systems 713

17.12 What will be the state recording in Example 17.6,
if the state recording request in channel Ch42 is
delayed and delivered to process P2 immediately
after event e23 occurs?

17.13 The Chandy–Lamport algorithm works cor-
rectly if more than one node in a distributed
system spontaneously initiates a state record-
ing. Describe working of the algorithm if pro-
cesses P2 and P4 of Figure 17.6 initiate state
recording (a) before sending any messages, (b)
after one message has been sent on each of
Ch21, Ch32 and Ch43 and no other messages
are sent.

17.14 The assumption concerning FIFO channels can
be removed from Algorithm 17.2 as follows: A
flag field is added to each message. This field
contains the values before token or after token
depending on whether the message is sent before
or after sending a token on the same channel.
If a process receives a message with the flag
value after token before it receives a token on the
same channel, it performs the same actions as it
would have performed on receiving a token, and
ignores the token when it is received later. For-
mulate rules for recording the state of a channel
using this scheme.

BIBLIOGRAPHY
•

Lamport (1978) discusses ordering of events in a dis-
tributed system and defines a partial order on events.
Mattern (1989), Garg (2002), and Attiya and Welch
(2004) discuss vector clocks and consistency of cuts.
Consistency of cuts is also discussed in Chandy and
Lamport (1985) and Knapp (1987).

Chandy and Lamport (1985) developed the dis-
tributed snapshot problem described in Section 17.2,
which requires FIFO channels. Li, Radhakrishnan, and
Venkatesh (1987), Lai and Yang (1987), and Mattern
(1989) describe algorithms that do not require chan-
nels to be FIFO. Lynch (1996) and Tel (2000) discuss
algorithms for global snapshots.

1. Attiya, H., and J. Welch (2004): Distributed
Computing: Fundamentals, Simulations and
Advanced Topics, John Wiley, New York.

2. Chandy K. M., and L. Lamport (1985):
“Distributed snapshots: Determining global
states of distributed systems,” ACM Transactions
on Computer Systems, 3, 1 (Feb. 1985), 63–75.

3. Garg, V. K. (2002): Elements of Distributed
Computing, Wiley-IEEE, New York.

4. Knapp, E. (1987): “Distributed deadlock
Detection,” Computing Surveys, 19, 4 (Dec. 1987),
303–328.

5. Lai, T. H., and T. H. Yang (1987) : “On
distributed snapshots,” Information Processing
Letters, 25, 153–158.

6. Lamport L. (1978): “Time, clocks, and the
ordering of events in a distributed system,”
Communications of the ACM, 21, 7 (July 1978),
558–565.

7. Li, H. F., T. Radhakrishnan, and K. Venkatesh
(1987) : “Global state detection in non-FIFO
networks,” Proceedings of the 7th International
Conference on Distributed Computing Systems,
364–370.

8. Lynch, N. (1996): Distributed Algorithms,
Morgan Kaufmann.

9. Mattern, F. (1989) : “Virtual time and global
states of distributed systems,” M. Cosnard et al.
(eds.), Parallel and Distributed Algorithms,
Elsevier Science, North Holland.

10. Spezialetti, M., and P. Kearns (1986) : “Efficient
distributed snapshots,” Proceedings of the 6th
International Conference on Distributed
Computing Systems, 382–388.

11. Tel, G. (2000): Introduction to Distributed
Algorithms, 2nd ed. Cambridge University
Press, Cambridge.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 714 — #1

18 C h a p t e r

Distributed Control
Algorithms

Adistributed operating system performs several control functions. Of these
control functions, the mutual exclusion and deadlock handling functions
are similar to those performed in a conventional OS. The scheduling func-

tion performs load balancing to ensure that computational loads in all nodes of
the system are comparable. The election function elects one among a group of
processes as the coordinator for an activity. The termination detection function
checks whether processes of a distributed computation operating in different
nodes of the system have all completed their tasks.

To respond speedily and reliably to events occurring in the system, a dis-
tributed operating system performs a control function using a distributed control
algorithm, whose actions are performed in several nodes of the distributed system.
Distributed control algorithms avoid using the global state of a system. Instead,
they depend on local states of different nodes, and use interprocess messages to
query the states and make decisions. Their correctness depends on how they use
the local states and interprocess messages for arriving at correct decisions, and
for avoiding wrong decisions. These two aspects of correctness are called liveness
and safety, respectively.

We present distributed control algorithms for the different control functions
and discuss their properties such as overhead and effect on system performance.

18.1 OPERATION OF DISTRIBUTED CONTROL ALGORITHMS
•

A distributed operating system implements a control function through a dis-
tributed control algorithm, whose actions are performed in several nodes of the
system and whose data is also spread across several nodes. This approach has the
following advantages over a centralized implementation of control functions:

• The delays and overhead involved in collecting the global state of a system
are avoided.

• The control function can respond speedily to events in different nodes of the
system.

• Failure of a single node does not cripple the control function.

714

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 715 — #2

Chapter 18 Distributed Control Algorithms 715

Table 18.1 Overview of Control Functions in a Distributed OS

Function Description

Mutual exclusion Implement a critical section (CS) for a data item ds for use
by processes in a distributed system. It involves
synchronization of processes operating in different nodes
of the system so that at most one process is in a CS for ds
at any time.

Deadlock handling Prevent or detect deadlocks that arise from resource
sharing within and across nodes of a distributed system.

Scheduling Perform load balancing to ensure that computational loads
in different nodes of a distributed system are comparable.
It involves transferring processes from heavily loaded
nodes to lightly loaded nodes.

Termination detection Processes of a distributed computation may operate in
several nodes of a distributed system. Termination
detection is the act of determining whether such a
computation has completed its operation. It involves
checking whether any of the processes is active
and whether any interprocess message is in transit
between them.

Election A coordinator (also called a leader process) is the one that
performs some privileged function like resource allocation.
An election is performed when a coordinator fails or is
terminated. It selects one of the active processes to become
the new coordinator and informs the identity of the new
coordinator to all other processes.

A distributed control algorithm provides a service whose clients include both
user applications and the kernel. Table 18.1 describes control functions in a dis-
tributed OS. Mutual exclusion and election are services provided to user processes,
deadlock handling and scheduling are services offered to the kernel, while the ter-
mination detection service may be used by both user processes and the kernel.
In OS literature, names of these functions are generally prefixed with the word
“distributed” to indicate that the functions are performed in a distributed man-
ner. Note that fault tolerance and recovery issues are not discussed here; they are
discussed separately in Chapter 19.

A distributed control algorithm operates in parallel with its clients, so that
it can respond readily to events related to its service. The following terminol-
ogy is used to distinguish between actions of a client and those of a control
algorithm.

• Basic computation: Operation of a client constitutes a basic computation.
A basic computation may involve processes in one or more nodes of the
system. The messages exchanged by these processes are called basic messages.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 716 — #3

716 Part 5 Distributed Operating Systems

Process

Pi

Control part

Kernel calls

Control

messages
cpi

Request Reply

Basic part

Kernel calls

Basic

messages
bpi

Figure 18.1 Basic and control parts of a process Pi .

• Control computation: Operation of a control algorithm constitutes a control
computation. Messages exchanged by processes of a control computation are
called control messages.

To understand operation of a distributed control algorithm, we visualize
each process to consist of two parts that operate in parallel—a basic part and
a control part. Figure 18.1 illustrates the two parts of a process Pi . The basic
part of a process participates in a basic computation. It exchanges basic mes-
sages with basic parts of other processes. When it requires a service offered by
a control algorithm, it makes a request to the control part of the process. All
other requests are made directly to the kernel. The control part of a process par-
ticipates in a control computation. It exchanges control messages with control
parts of other processes, and may interact with the kernel to implement its part
in the control function. The basic part of a process may become blocked when it
makes a resource request; however, the control part of a process never becomes
blocked—this feature enables it to respond to events related to its service in a
timely manner.

•
Example 18.1 Basic and Control Parts of a Process

A distributed application consists of four processes P1–P4. Let process P2 be
currently in a CS for shared data ds. When process P1 wishes to enter a CS
for ds, bp1 makes a request to cp1, which is a part of some distributed mutual
exclusion algorithm discussed later in Section 18.3. To decide whether P1 may
be allowed to enter a CS for ds, cp1 exchanges messages with cp2, cp3, and
cp4. From their replies, it realizes that some other process is currently in a CS
for ds, so it makes a kernel call to block bp1. Note that cp2 participates in this
decision even while bp2 was executing in a CS. When process P2 wishes to exit
the CS, bp2 makes a request to cp2, which interacts with control parts of other
processes and decides that process P1 may enter a CS for ds. Accordingly, cp1
makes a kernel call to activate bp1.
•

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 717 — #4

Chapter 18 Distributed Control Algorithms 717

18.2 CORRECTNESS OF DISTRIBUTED
CONTROL ALGORITHMS

•
Processes of a distributed control algorithm exchange control data and coordi-
nate their actions through control messages. However, message communication
incurs delays, so the data used by the algorithm may become stale and inconsis-
tent, and the algorithm may either miss performing correct actions or perform
wrong actions. Accordingly, correctness of a distributed control algorithm has
two facets:

• Liveness: An algorithm will eventually perform correct actions, i.e., perform
them without indefinite delays.

• Safety: An algorithm does not perform wrong actions.

Lack of liveness implies that an algorithm would fail to perform correct
actions. For example, a distributed mutual exclusion algorithm might fail to
satisfy the progress and bounded wait properties of Section 6.3.1, or a dead-
lock detection algorithm might not be able to detect a deadlock that exists in
the system. Note that the amount of time needed to perform a correct action
is immaterial for the liveness property; the action must be performed eventu-
ally. Lack of safety implies that an algorithm may perform wrong actions like
permitting more than one process to be in CS at the same time. Table 18.2
summarizes the liveness and safety properties of some distributed control
algorithms.

Assuming a distributed control algorithm to consist of a set of distinct
actions and a set of distinct conditions, we can represent the algorithm as a
set of rules of the form <condition> : <action>, where a rule specifies that the
algorithm should perform <action> if and only if <condition> is true. Using

Table 18.2 Liveness and Safety of Distributed Control Algorithms

Algorithm Liveness Safety

Mutual exclusion (1) If a CS is free and some
processes have requested
entry to it, one of them will
enter it in finite time.

At most one process will be
in a CS at any time.

(2) A process requesting
entry to a CS will enter it in
finite time.

Deadlock
handling

If a deadlock arises, it will
be detected in finite time.

Deadlock will not be
declared unless one actually
exists.

Termination
detection

Termination of a distributed
computation will be
detected within a finite time.

Termination will not be
declared unless it has
occurred.

Election A new coordinator will be
elected in a finite time.

Exactly one process will be
elected coordinator.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 718 — #5

718 Part 5 Distributed Operating Systems

the notation “�→” for the words “eventually leads to,” we define the notion of
correctness as follows:

• Liveness: For all rules, <condition> �→ <action>, i.e., <action> will be
eventually performed if <condition> holds.

• Lack of safety: For some rule, ¬ <condition> �→ <action>, i.e., <action>

may be eventually performed even if <condition> does not hold.

Proving correctness of a distributed algorithm is a complex task.
<condition> and <action> should be specified to correctly represent the
algorithm, and formal techniques must be employed to demonstrate that an
algorithm possesses the liveness and safety properties. Theoretical founda-
tions needed for formal proofs of distributed algorithms did not exist until
the early 1990s. This is why many distributed algorithms developed earlier
contained bugs.

It should be noted that liveness and safety are concerned only with correct-
ness of an algorithm. Other desirable properties of an algorithm, e.g., FCFS
service in distributed mutual exclusion algorithms, must be stated and proved
separately.

18.3 DISTRIBUTED MUTUAL EXCLUSION
•

18.3.1 A Permission-Based Algorithm
The algorithm by Ricart and Agrawala (1981) grants entry to a critical section
in FCFS order. The algorithm is fully distributed in that all processes participate
equally in deciding which process should enter a CS next. A process that wishes to
enter a CS sends timestamped request messages to all other processes and waits
until it receives a “go ahead” reply from each of them. If the system contains n
processes, 2 ×(n − 1) messages have to be exchanged before a process can enter
the critical section. Safety of mutual exclusion follows from the fact that at most
one process can obtain (n − 1) replies at any time. Entry is granted in FCFS
order, hence every process gains entry to CS in finite time. This feature satisfies
the liveness property.

Algorithm 18.1 Ricart-Agrawala Algorithm

1. When a process Pi wishes to enter a CS: Pi sends request messages of the
form (“request”, Pi , <timestamp>) to all other processes in the system, and
becomes blocked.

2. When a process Pi receives a request message from process Pr:
a. If Pi is not interested in using a CS, it immediately sends a “go ahead”

reply to Pr.
b. If Pi itself wishes to enter a CS, it sends a “go ahead” reply to Pr if the

timestamp in the received request is smaller than the timestamp of its

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 719 — #6

Chapter 18 Distributed Control Algorithms 719

own request; otherwise, it adds the process id found in the request to the
pending list.

c. If Pi is in a CS, it simply adds the request message to the pending list.
3. When a process Pi receives n − 1 “go ahead” replies: The process becomes

active and enters a CS.
4. When a process Pi exits a CS: The process sends a “go ahead” reply to every

process whose request message exists in its pending list.

Table 18.3 shows how steps of Algorithm 18.1 are implemented in the con-
trol part of a process. The first column shows steps in the basic computation
performed by a process. It consists of a loop in which the process requests entry
to a CS, performs some processing inside the CS, and exits from it. The other
columns show actions of the control part of the algorithm.

Table 18.3 Basic and Control Actions of Pi in a Fully Distributed
Mutual Exclusion Algorithm

Algorithm steps executed by the control part

Actions of basic part Steps Details

repeat forever
{ Request CS entry } 1, 2(b), 3 i. Send request messages

(“request”, Pi , <timestamp>)
to all other processes and
request the kernel to block the
basic part.

ii. When a request message is
received from another
process, send a “go ahead”
reply if the request has a
smaller timestamp; otherwise,
add the process id found in
the request to the pending list.

iii. Count the “go ahead” replies
received. Activate the basic
part of the process after
receiving (n − 1) replies.

{ Critical Section } 2(c) Enter all received requests in the
pending list.

{ Perform CS exit } 4 Send a “go ahead” reply to every
process whose request message
exists in its pending list.

{ Rest of the cycle } 2(a) When a request is received, send
a “go ahead” reply immediately.

end

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 720 — #7

720 Part 5 Distributed Operating Systems

The number of messages required per CS entry can be reduced by requiring
a process Pi to obtain permissions from a subset Ri of processes in the system.
Ri is called the request set of Pi . Safety must be ensured by forming request sets
carefully. The algorithm by Maekawa (1985) uses request sets of size

√
n, and

uses the following rules to ensure safety (see Exercise 18.3):

1. For all Pi : Pi ∈ Ri .
2. For all Pi , Pj : Ri ∩ Rj �= φ.

18.3.2 Token-Based Algorithms for Mutual Exclusion
A token represents the privilege to use a CS; only a process possessing the token
can enter the CS. Safety of a token-based algorithm follows from this rule. When
a process makes a request to enter a CS, the mutual exclusion algorithm ensures
that the request reaches the process possessing the token and that the token is
eventually transferred to the requesting process. This feature ensures liveness.
Logical complexity and cost of a mutual exclusion algorithm depend on prop-
erties of the system model. Hence token-based algorithms use abstract system
models in which edges represent the paths used to pass control messages, and the
graph formed by nodes and these edges has certain nice properties. We discuss
two algorithms that use abstract ring and tree topologies.

An Algorithm Employing the Ring Topology Figure 18.2 shows the logical
model of a distributed computation and its abstract unidirectional ring model.
The token is an object, i.e., a data structure, containing a request queue. In
Figure 18.2(b), the token is currently with process P4, P4 is in a CS, and the
request queue in the token contains P2 and P5. The algorithm works as fol-
lows: A process that wishes to enter a CS sends a message containing its request
and becomes blocked. The message is routed along the ring until it reaches the
token holder. If the token holder is currently in a CS, its control part enters the
requester’s id in the request queue contained in the token. When the token holder
finishes using the CS, it removes the first process id from the request queue in the
token and sends a message containing the token and the process id. This message
is routed along the ring until it reaches the process whose id matches the process
id in the message. The control part of this process extracts and keeps the token
for future use, and activates its basic part, which enters a CS. In Figure 18.2(b),

token

P2

P2

P1

P6
P5

P4 P1 P4

P3

P3

P6 P5

P2

P5

(a) (b)

Figure 18.2 (a) System model; (b) abstract system model.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 721 — #8

Chapter 18 Distributed Control Algorithms 721

process P2 would receive the token when P4 exits from its CS. The algorithm is
shown as Algorithm 18.2. The number of messages exchanged per CS entry is
order of n, where n is the number of processes.

Algorithm 18.2 Token-Based Mutual Exclusion Algorithm for a Ring Topology

1. When a process Pi wishes to enter a CS: The process sends a request message
(“request”, Pi) along its out-edge and becomes blocked.

2. When a process Pi receives a request message from process Pr: If Pi does not
possess the token, it forwards the message along its out-edge. If Pi possesses
the token and it is currently not in a CS, it forms the message (“token”, Pr)
and sends it along its out-edge. If Pi is in a CS, it merely enters Pr in the
request queue in the token.

3. When a process Pi completes execution of a CS: It checks whether the request
queue is empty. If not, it removes the first process id from the queue. Let this
id be Pr. It now forms a message (“token”, Pr) and sends it along its out-edge.

4. When a process Pi receives the message (“token”, Pj): Pi checks whether
Pi = Pj . If so, it creates a local data structure to store the token, becomes
active and enters its CS. If Pi �= Pj , it merely forwards the message along
its out-edge.

Raymond’s Algorithm Raymond’s algorithm uses an abstract inverted tree as
the system model. The inverted tree differs from a conventional tree in that a tree
edge points from a node to its parent in the tree. Pholder designates the process in
possession of the token. Raymond’s algorithm has four key features—invariants
that ensure that a request reaches Pholder, a local queue of requesters in each
node, features to reduce the number of request messages and provisions to ensure
liveness.

Figure 18.3 depicts the model of a distributed computation and its abstract
inverted tree model. Process P5 holds the token, so it is at the root of the tree.
Processes P1 and P3, which are its children, have out-edges pointing to P5. Simi-
larly, out-edges (P6, P1), (P2, P3), and (P4, P3) point from a process to its parent.
The algorithm maintains three invariants concerning the abstract inverted tree:

1. Process Pholder is the root of the tree.
2. Each process in the system belongs to the tree.

(a) (b)

P2

P2

P3P1P1 P6

P6

P5

P5

P4

P4

Pholder

P3

Figure 18.3 (a) System model; (b) abstract system model.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 722 — #9

722 Part 5 Distributed Operating Systems

3. Each process Pi �= Pholder has exactly one out-edge (Pi , Pj), where Pj is its
parent in the tree.

These invariants ensure that the abstract system model contains a path from every
process Pi �= Pholder to Pholder. This property is useful for ensuring that a request
made by Pi would reach Pholder. These invariants are maintained by changing
edges in the abstract inverted tree when a process Pk sends the token to another
process, say process Pj—the edge (Pj , Pk) is reversed. These actions reverse the
direction of the tree edges along which the token is sent, and establish a path
from previous holder of the token to the new holder. For example, edge (P3, P5)

in Figure 18.3(b) would be reversed when P5 sends the token to P3.
Each process maintains a local queue of requesters. A request message con-

tains a single field requester_id. A process wishing to enter a CS puts its own id
in its local queue and also sends a request message along its out-edge. When a
process Pi receives a request message, it enters the requesting process’s id in its
local queue. It now forms a request message in which it puts its own id, i.e., Pi ,
and sends it along its out-edge. Thus the request reaches Pholder along a path
ensured by invariant 3; however, the requester id is different in each edge of the
path. To reduce the number of request messages, a process does not originate or
send a request if a request sent earlier by it has not been honored yet. (It knows
this because it would have received the token if its request had been honored.)

Pholder enters all requests it receives in its local queue. On exiting the CS,
it removes the first process id from its local queue and sends the token to that
process. The process receiving the token sends it to the first process in its local
queue, unless its own id is at the head of the local queue. This action is repeated
until the token reaches a process that is at the head of its own local queue. The
control part of this process keeps the token with itself. Its basic part becomes
active and enters a CS.

Liveness requires that every process that requests entry to a CS gets to enter it
in finite time. To ensure this property, a process transferring the token to another
process checks whether its local queue is empty. If the local queue still contains
some requests, it forms a new request with its own id in the requester_id field and
sends it to the process to which it has sent the token. This action ensures that it will
receive the token sometime in future for servicing other requests in its local queue.

Algorithm 18.3 Raymond’s Algorithm

1. When a process Pi wishes to enter a CS: Process Pi enters its own id in its
local queue. It also sends a request message containing its own id along its
outgoing edge if it has not sent a request message earlier, or if its last request
has been already honored.

2. When a process Pi receives a request message from process Pr: Process Pi
performs the following actions:
a. Put Pr in its local queue.
b. If Pi �= Pholder, send a request message containing its own id, i.e., Pi ,

along its outgoing edge if it has not sent a request message earlier or if its
last request has been already honored.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 723 — #10

Chapter 18 Distributed Control Algorithms 723

P2 P4

P4

P4

P6

P5P1

P1
P1

P3

P3

(a)

P5

P3

P1

P1

P2 P4P6

P5

P1 P3

(b)

Figure 18.4 An example of Raymond’s algorithm.

3. When a process Pi completes execution of a CS: Pi performs following
actions:
a. Remove the process id at the head of the local queue. Let it be Pj .
b. Send the token to Pj .
c. Reverse the tree edge (Pj , Pi).
d. If the local queue is not empty, send a request message containing its own

id, i.e., Pi , to Pj .
4. When a process Pi receives the token:

a. If its own id is at the top of the local queue, it removes the request from
the queue. Its basic part now becomes active and enters a CS.

b. Otherwise, it performs Steps 3(a)–(d).

The algorithm requires an order of log n messages for each request. It does
not ensure FIFO entry to a critical section [see Step 2(b)]. Example 18.2 illustrates
operation of the algorithm.

•
Example 18.2Raymond Algorithm

Figure 18.4(a) shows the situation in the system of Figure 18.3 after the
requests made by P4 and P1 have reached P5, which is Pholder (see Steps 1
and 2 of Algorithm 18.3). When process P5 exits its CS, it removes P3 from
its local queue, passes the token to P3, and reverses the edge (P3, P5). P5 now
sends a request to P3 since its local queue is not empty [see Step 3(d)]. P3 per-
forms similar actions (see Step 4), which result in sending the token to process
P4, reversal of the edge (P4, P3), and sending of a request by P3 to P4.

Figure 18.4(b) shows the resulting abstract inverted tree. P4 now enters its
CS. After P4 completes the CS, the token is transferred to process P1 via P3
and P5 in an analogous manner, which enables P1 to enter its CS. Note that this
action would not have been possible if Step 3(d) did not exist in the algorithm.

•

18.4 DISTRIBUTED DEADLOCK HANDLING
•

The deadlock detection, prevention, and avoidance approaches discussed in
Section 8.3 make use of state information. This section illustrates problems in
extending these approaches to a distributed system, and then describes distributed

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 724 — #11

724 Part 5 Distributed Operating Systems

deadlock detection and distributed deadlock prevention approaches. No spe-
cial techniques for distributed deadlock avoidance have been discussed in OS
literature. For simplicity, the discussion in this section is restricted to the single-
instance, single-request (SISR) model of resource allocation (see Section 8.3).

18.4.1 Problems in Centralized Deadlock Detection
Distributed applications may use resources located in several nodes of the system.
Deadlocks involving such applications could be detected by collecting the wait-
for graphs (WFGs) of all nodes at a central node, superimposing them to form
a merged WFG, and employing a conventional deadlock detection algorithm
to check for deadlocks. However, this scheme has a weakness. It may obtain
WFGs of individual nodes at different instants of time, so the merged WFG may
represent a misleading view of wait-for relationships in the system. This could
lead to detection of phantom deadlocks, which is a violation of the safety property
in deadlock detection. Example 18.3 illustrates such a situation.

•
Example 18.3 Phantom Deadlock

The sequence of events in a system containing three processes P4, P5, and P6
is as follows:

1. Process P5 requests and obtains resource r5 in node N3.
2. Process P6 requests and obtains resource r4 in node N3.
3. Process P5 requests and obtains resource r6 in node N4.
4. Process P4 requests resource r5 in node N3.
5. Process P5 requests resource r4 in node N3.
6. Node N3 sends its local WFG to the coordinator node.
7. Process P6 releases resource r4 in node N3.
8. Process P6 requests resource r6 in node N4.
9. Node N4 sends its local WFG to the coordinator node.

Figures 18.5(a) and (b) show WFGs of the nodes at Steps 6 and 9, respectively.
It can be seen that no deadlock exists in the system at any of these times. How-
ever, the merged WFG is constructed by superimposing the WFG of node N3
taken at Step 6 and WFG of node N4 taken at Step 9 [see Figure 18.5(c)],
so it contains a cycle {P5, P6} and the coordinator detects a phantom
deadlock.
•

18.4.2 Distributed Deadlock Detection
Recall from Chapter 8 that a cycle is a necessary and sufficient condition for
a deadlock in an SISR system, whereas a knot is a necessary and sufficient

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 725 — #12

Chapter 18 Distributed Control Algorithms 725

Node N3 Node N4

WFGs at Step 6

Node N3 Node N4

WFGs at Step 9

(a) (b)

Merged WFG

(c)

P4

P5 P6

P4

P5 P6

r5

r4

P4

P5 P6

r5

P4

P5 P6

r6

P4

P5 P6

r5 r6

r4

Figure 18.5 Phantom deadlock in Example 18.3: Node WFGs at Steps 6, 9
and the merged WFG.

condition for a deadlock in an MISR system. In the distributed deadlock detec-
tion approach, cycles and knots are detected through joint actions of nodes in
the system, and every node in the system has the ability to detect and declare a
deadlock. We discuss two such algorithms.

Diffusion Computation-Based Algorithm The diffusion computation was pro-
posed by Dijkstra and Scholten (1980) for termination detection; they called
it the diffusing computation. The diffusion computation contains two phases—
a diffusion phase and an information collection phase. In the diffusion phase,
the computation originates in one node and spreads to other nodes through
control messages called queries that are sent along all edges in the system.
A node may receive more than one query if it has many in-edges. The first
query received by a node is called an engaging query, while queries received
later are called nonengaging queries. When a node receives an engaging query,
it sends queries along all its out-edges. If it receives a nonengaging query sub-
sequently, it does not send out any queries because it would have already sent
queries when it received the engaging query. In the information collection phase,
each node in the system sends a reply to every query received by it. The reply
to an engaging query contains information pertaining to the node to which
the engaging query was directed, and about some other nodes connected to
that node. The reply to a nonengaging query typically does not contain any
information. It is called a dummy reply. If the initiator receives its own query
along some edge, it sends a dummy reply immediately. The Chandy–Lamport
algorithm for consistent state recording of a distributed system discussed in
Section 17.4.2 actually uses the first phase of a diffusion computation (see
Exercise 18.5).

Algorithm 18.4 uses a diffusion computation to perform deadlock detection.
It was proposed by Chandy, Misra, and Haas (1983), and works for both SISR and
MISR systems. The diffusion computation spreads through edges in the WFG.
All steps in the algorithm are performed atomically, so if a process receives two
messages at the same time, they will be processed one after another. It is assumed
that diffusion computations initiated by different processes are assigned distinct
ids, and that their queries and replies carry these ids. This way, different diffusion
computations do not interfere with one another.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 726 — #13

726 Part 5 Distributed Operating Systems

(a) (b)

P1 P2 P3 P4 P1 P2 P3 P4

Figure 18.6 System for illustrating diffusion computation-based distributed deadlock
detection.

Algorithm 18.4 Diffusion Computation-Based Distributed Deadlock Detection

1. When a process becomes blocked on a resource request: The process initiates
a diffusion computation through the following actions:
a. Send queries along all its out-edges in the WFG.
b. Remember the number of queries sent out, and await replies to them.
c. If replies are received for all the queries sent out and it has been in the

blocked state continuously since it initiated the diffusion computation,
declare a deadlock.

2. When a process receives an engaging query: If the process is blocked, it
performs the following actions:
a. Send queries along all its out-edges in the WFG.
b. Remember the number of queries sent out, and await replies to them.
c. If replies are received for all the queries sent out and it has been in the

blocked state continuously since it received the engaging query, send a
reply to the node from which it received the engaging query.

3. When a process receives a nonengaging query: If the process has been in the
blocked state continuously since it received the engaging query, send a dummy
reply to the node from which it received the nonengaging query.

Consider an SISR system that contains four processes P1–P4. The WFG of
Figure 18.6(a) shows the system state immediately after process P1 requests a
resource that is currently allocated to P2. P1, P2, and P3 are now in the blocked
state, whereas P4 is not. P1 initiates a diffusion computation when it becomes
blocked. When P2 receives its query, it sends a query to P3, which sends a query
to P4. However, P4 is not in the blocked state, so it does not reply to P3’s query.
Thus, P1 does not receive a reply and consequently does not declare that it is
in a deadlock. Let P4 now request the resource allocated to P2 and get blocked
[see the WFG of Figure 18.6(b)]. P4 would now initiate a diffusion computation
that would spread to processes P2 and P3. Since these processes are blocked, P4
will get the reply to its query and declare that it is involved in a deadlock. The
condition that a process should be continuously in the blocked state since the time
it initiated the diffusion computation or since the time it received the engaging
query ensures that a phantom deadlock would not be detected.

Edge Chasing Algorithm In this algorithm, a control message is sent over a wait-
for edge in the WFG to facilitate detection of cycles in the WFG, hence the name
edge chasing algorithm. It was proposed by Mitchell and Merritt (1982). Each

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 727 — #14

Chapter 18 Distributed Control Algorithms 727

Name of rule After applying the rule

Detect
u
u

u u
u

u

Transmit
u w

u < w
w w

Activate

Block
u x z

z
x

Precondition

Figure 18.7 Rules of Mitchell–Merritt algorithm.

process is assigned two numerical labels called a public label and a private label.
The public and private labels of a process are identical when the process is created.
These labels change when a process gets blocked on a resource. The public label
of a process also changes when it waits for a process having a larger public label.
A wait-for edge that has a specific relation between the public and private labels
of its start and end processes indicates existence of a deadlock.

Figure 18.7 illustrates rules of the Mitchell–Merritt algorithm. A process is
represented as

u
v where u and v are its public and private labels, respectively.

Figure 18.7 illustrates rules of the Mitchell–Merritt algorithm. A rule is applied
when the public and private labels of processes at the start and end of a wait-for
edge satisfy the pre-condition. It changes the labels of the processes as shown to
the right of “ ”. Details of the four rules are as follows:

1. Block: The public and private labels of a process are changed to a value
z when it becomes blocked because of a resource request. The value z is
generated through the statement z := inc(u, x), where u is the public label of
the process, x is the public label of the process for which it waits, and function
inc generates a unique value larger than both u and x.

2. Activate: The out-edge of a process is removed from WFG when it is activated
following a resource allocation. Its labels remain unchanged.

3. Transmit: If the public label of the process at the start of a wait-for edge (u)
is smaller than the public label of the process at the end of the edge (w), then
u is replaced by w.

4. Detect: A deadlock is declared if the public and private labels of a process at
the start of a wait-for edge are identical and also equal to the public label of
the process at the end of the edge.

Operation of the algorithm can be explained as follows: Consider a path in
the WFG from Pi to Pk . Let labels of process Pi be

ui
vi and let those of Pk be

uk
vk . According to the transmit rule applied to all edges in the path from Pi to

Pk , ui is greater than or equal to the public label of every process on the path
from Pi to Pk . Let Pk make a resource request that results in a wait-for edge
(Pk , Pi). According to the block rule, public and private labels of Pk assume a
value given by inc(uk , ui). Let this be n. Hence n > ui . According to the transmit

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 728 — #15

728 Part 5 Distributed Operating Systems

rule, n is propagated to Pi through processes along the path from Pi to Pk . The
edge (Pk , Pi) now satisfies the detect rule. As an example, consider the system
of Figure 18.6. Process P4 would be given new public and private labels when
it becomes blocked. Its public label would be larger than the public labels of P2
and P3, so it would be propagated to P2 via P3. Consequently, process P4 would
detect a deadlock.

Correctness of the algorithm follows from the fact that the public label of a
process Pi at the start of a wait-for edge gets propagated to another process Pj
only if a path exists from Pj to Pi (see the transmit step). Thus, if the wait-for
edge from Pi to Pj satisfies the detect rule, it completes a cycle in the WFG, so a
deadlock exists. Safety follows trivially if processes are not permitted to withdraw
their requests spontaneously.

18.4.3 Distributed Deadlock Prevention
Deadlock prevention approaches discussed in Section 8.5 prevent cycles from
arising in a resource request and allocation graph (RRAG) or a wait-for graph
(WFG) through restrictions on resource requests. Deadlocks in a distributed sys-
tem can be prevented analogously: Each process creation event is timestamped by
a pair (local time, node id), and the timestamp is associated with the newly created
process. Circular waits in the RRAG or WFG are prevented by disallowing cer-
tain kinds of wait-for relationships through a comparison of process timestamps
using relation (17.1). We discuss two such schemes.

• Wait-or-die: When a process Preq makes a request for some resource currently
held by Pholder, Preq is permitted to wait for the resource if it is older than
Pholder; otherwise, it is aborted. Circular waits cannot arise because an older
process may wait for a younger process, but a younger process cannot wait
for an older process.

• Wound-or-wait: If Preq is younger than Pholder, it is allowed to wait for the
resource held by Pholder; otherwise, Pholder is aborted and the requested
resource is allocated to Preq. Thus, a younger process can wait for an older
process, but an older process cannot wait for a younger process.

In both approaches, the younger process is aborted and has to be reinitiated
sometime in future. To avoid starvation due to repeated aborts, a process may
be permitted to retain its old timestamp when it is reinitiated. The wait-or-die
scheme may be preferred in practice because it does not involve preemption of a
resource, whereas the wound-or-wait scheme does.

18.5 DISTRIBUTED SCHEDULING ALGORITHMS
•

Both system performance and computation speedup in applications would be
adversely affected if computational loads in the nodes of a distributed system
are uneven. A distributed scheduling algorithm balances computational loads
in the nodes by transferring some processes from a heavily loaded node to a

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 729 — #16

Chapter 18 Distributed Control Algorithms 729

Time

Process Pi
operates at

node N1

State of Pi
is transferred

node N2

Process Pi
operates at

node N2

Activities in

node N2

Activities in

node N1

0 ti tj

Figure 18.8 Migration of process Pi from node N1 to node N2.

lightly loaded node. Figure 18.8 illustrates this technique, which is called pro-
cess migration. Process Pi is created in node N1 at time t = 0. At time ti the
scheduling function decides to transfer the process to node N2, so operation of
the process is halted in node N1 and the kernel starts transferring its state to node
N2. At time tj the transfer of state is complete and the process starts operating
in node N2.

To perform load balancing through process migration, a scheduling algo-
rithm needs to measure the computational loads in nodes, and apply a threshold
to decide which ones are heavily loaded and which ones are lightly loaded. At
appropriate times, it transfers processes from heavily loaded nodes to lightly
loaded nodes. These nodes are called sender nodes and receiver nodes, respec-
tively. CPU utilization is a direct indicator of the computational load serviced in
a node; however, monitoring of CPU utilization incurs high execution overhead.
Hence operating systems prefer to use the number of processes in a node or the
length of the ready queue of processes, as measures of computational loads. These
measures possess a good correlation with the average response time in a node,
and their use incurs a low overhead.

Actual migration of a process can be performed in two ways. Preemp-
tive migration involves suspending a process, recording its state, transferring it
to another node and resuming operation of the process in the new node (see
Figure 18.8); it requires extensive kernel support. In nonpreemptive migration,
the load balancing decision is taken during creation of a new process. If the node
in which a “create process” call is performed is heavily loaded, the process is
simply created in a remote node. Nonpreemptive migration does not require any
special support in the kernel.

Stability is an important issue in the design of a distributed scheduling algo-
rithm. An algorithm is unstable if, under some load conditions, its overhead is not
bounded. Consider a distributed scheduling algorithm that transfers a process
from a heavily loaded node to a randomly selected node. If the node to which
the process is sent is itself heavily loaded, the process would have to be migrated
once again. Under heavy load conditions, this algorithm would lead to a situa-
tion that resembles thrashing—the scheduling overhead would be high because

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 730 — #17

730 Part 5 Distributed Operating Systems

process migration is frequent, but processes being transferred would not make
much progress.

A sender-initiated algorithm transfers a process nonpreemptively, i.e., from
a sender node to a receiver node. While creating a process in a heavily loaded
node, it polls other nodes to find a lightly loaded node so that it can migrate the
process to that node. This action makes the scheduling algorithm unstable at high
system loads because a sender that cannot find a lightly loaded node would poll
continuously and waste a considerable fraction of its CPU’s time. Instability can
be prevented by limiting the number of attempts a sender is allowed to make to
find a receiver. If this number is exceeded, the sender would abandon the process
migration attempt and create the new process locally. Instability may also result if
several processes are sent to the same receiver node, which now becomes a sender
node and has to migrate some of the processes it received. This situation can be
avoided by using a protocol whereby a node accepts a process only if it is still a
receiver node (see Exercise 18.10).

A receiver-initiated algorithm checks whether a node is a receiver node every
time a process in the node completes. It now polls other nodes in the system to
find a node that would not become a receiver node even if a process is transferred
out of it, and transfers a process from such a node to the receiver node. Thus,
process migration is necessarily preemptive. At high system loads, the polling
overhead would be bounded because the receiver would be able to find a sender
quickly. At low system loads, continuous polling by a receiver would not be
harmful because idle CPU times would exist in the system. Unbounded load
balancing overhead can be prevented by abandoning a load balancing attempt
if a sender cannot be found in a fixed number of polls; however, a receiver must
repeat load balancing attempts at fixed intervals of time to provide the liveness
property.

We discuss a symmetrically initiated algorithm that contains features of
both sender-initiated and receiver-initiated algorithms. It behaves like a sender-
initiated algorithm at low system loads and like a receiver-initiated algorithm at
high system loads. Each node maintains a status flag to indicate whether it is
presently a sender, a receiver, or an OK node, i.e., neither a sender nor a receiver.
It also maintains three lists, called senders list, receivers list, and OK list, to
contain ids of nodes that are known to be senders, receivers, and OK nodes,
respectively.

Algorithm 18.5 Symmetrically Initiated Load Balancing Algorithm

1. When a node becomes a sender as a result of creation of a process: Change
the status flag to “sender.” If the receivers list is nonempty, poll the nodes
included in it, subject to the limit on number of nodes that can be polled.
a. If the polled node replies that it is a receiver node, transfer a process to it.

Examine local load and set the status flag accordingly.
b. Otherwise, move the polled node to the appropriate list, based on its reply.

2. When a node becomes a receiver as a result of completion of a process: Change
the status flag to “receiver.” Poll the nodes included in the senders list,

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 731 — #18

Chapter 18 Distributed Control Algorithms 731

followed by those in the receivers list and OK list, subject to the limit on
number of nodes that can be polled.
a. If the polled node replies that it is a sender node, transfer a process from

it. Examine local load and set the status flag accordingly.
b. Otherwise, move the polled node to the appropriate list, based on its reply.

3. When a node is polled by a receiver node: Move the polling node to the receivers
list. Send a reply containing own current status.

4. When a node is polled by a sender node: Move the polling node to the senders
list. Send a reply containing own current status.

5. When a process is transferred from or to a node: Examine local load and set
the status flag accordingly.

Instability would arise in this algorithm if too many processes are trans-
ferred to a receiver node simultaneously. To prevent it, a receiver node should
change its flag in Step 3 by anticipating a transfer, rather than in Step 5 as at
present.

Figure 18.9 depicts comparative performance of distributed scheduling algo-
rithms. A sender-initiated algorithm incurs low overhead at low system loads
because few senders exist in the system. Hence, the system can provide good
response times to processes. As the load increases, the number of senders increases
and the overhead of the algorithm increases. At high system loads the algo-
rithm is unstable because a large number of senders exists in the system and
few, if any, receivers exist. Consequently, the response time increases sharply. A
receiver-initiated algorithm incurs a higher overhead at low system loads than a
sender-initiated algorithm because a large number of receivers exists at low system
loads. Hence the response time is not as good as when a sender-initiated algorithm
is used. At high system loads, few receivers exist in the system, so a receiver-
initiated algorithm performs distinctly better than a sender-initiated algorithm.
The performance of a symmetrically initiated algorithm would resemble that of

0.90.5

System load

Response

time

Sender

initiated

Receiver

initiated

Figure 18.9 Performance of distributed scheduling algorithms.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 732 — #19

732 Part 5 Distributed Operating Systems

a sender-initiated algorithm at low system loads and that of receiver-initiated
algorithms at high system loads.

18.6 DISTRIBUTED TERMINATION DETECTION
•

A process ties up system resources such as kernel data structures and memory.
The kernel releases these resources either when the process makes a “terminate
me” system call at the end of its operation, or when it is killed by another process.
This method is not adequate for processes of a distributed computation because
they may not be able to decide when they should terminate themselves or kill
other processes. For example, consider a distributed computation whose processes
have a client–server relationship. A server would not know whether any more
requests would be made to it, because it would not know who its clients are and
whether all of them have completed their operation. In such cases, the kernel
employs methods of distributed termination detection to check whether the entire
distributed computation has terminated. If so, it winds up all processes of the
computation and releases the resources allocated to them.

We define two process states in our system model to facilitate termination
detection. A process is in the passive state when it has no work to perform;
such a process is dormant and waits for some other process to send it some
work through an interprocess message. A process is in the active state when it
is engaged in performing some work. It can be performing I/O, waiting for a
resource, waiting for the CPU to be allocated to it, or executing instructions. The
state of a process changes several times during its execution. A passive process
becomes active immediately on receiving a message, sends an acknowledgment
to the sender of the message, and starts processing the message. An active process
acknowledges a message immediately, though it may delay its processing until a
convenient time. An active process becomes passive when it finishes its current
work and does not have other work to perform. It is assumed that both control
and basic messages travel along the same interprocess channels.

A distributed computation is said to have terminated if it satisfies the
distributed termination condition (DTC). The DTC comprises two parts:

1. All processes of a distributed computation are passive.
2. No basic messages are in transit. (18.1)

The second part is needed because a message in transit will make its destination
process active when it is delivered. We discuss two approaches to determining
whether DTC holds for a distributed computation.

Credit-Distribution-Based Termination Detection In this approach by Mattern
(1989), every activity or potential activity in a distributed computation is assigned
a numerical weightage called credit. A distributed computation is initiated with
a known finite amount of credit C. This credit is distributed among its processes.
The manner of its distribution is immaterial so long as each process Pi receives
a nonzero credit ci . When a process sends a basic message to another process,

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 733 — #20

Chapter 18 Distributed Control Algorithms 733

it puts a part of its credit into the message—again, it is immaterial how much
credit is put into a message, so long as it is neither zero nor the entire credit of the
process. A process receiving a message adds the credit from the message to its own
credit before processing the message. When a process becomes passive, it sends
its entire credit to a special system process called the collector process, which
accumulates all credit it receives. The distributed computation is known to have
terminated when the credit accumulated by the collector process equals C. This
algorithm is simple and elegant; however, credit may be distributed indefinitely,
so a convenient representation of credit should be used in its implementation.

Diffusion Computation-Based Termination Detection Each process that becomes
passive initiates a diffusion computation to determine whether the DTC holds.
Thus, every process has the capability to detect termination. We discuss detection
of the DTC in a system where the following three rules hold:

1. Processes are neither created nor destroyed dynamically during execution
of the computation; i.e., all processes are created when the distributed
computation is initiated, and remain in existence until the computation
terminates.

2. Interprocess communication channels are FIFO.
3. Processes communicate with one another through synchronous communi-

cation; i.e., the sender of a message becomes blocked until it receives an
acknowledgment for the message.

Rule 3 simplifies checking for the DTC as follows: The sender of a basic
message becomes blocked; it resumes its operation after it receives the acknowl-
edgment. It may enter the passive state only after finishing its work. Thus, the
basic message sent by a process cannot be in transit when it becomes passive and
the system cannot have any basic messages in transit when all processes are pas-
sive. Hence it is sufficient to check only the first part of the DTC condition, i.e.,
whether all processes are passive. Algorithm 18.6 performs this check through a
diffusion computation over a graph whose nodes represent processes and edges
represent interprocess communication. Example 18.4 illustrates operation of
Algorithm 18.6.

Algorithm 18.6 Distributed Termination Detection

1. When a process becomes passive: The process initiates a diffusion computa-
tion through the following actions:
a. Send “Shall I declare distributed termination?” queries along all edges

connected to it.
b. Remember the number of queries sent out, and await replies.
c. After replies are received for all of its queries, declare distributed

termination if all replies are yes.
2. When a process receives an engaging query: If the process is in the active state,

it sends a no reply; otherwise, it performs the following actions:
a. Send queries along all edges connected to it excepting the edge on which

it received the engaging query.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 734 — #21

734 Part 5 Distributed Operating Systems

b. Remember the number of queries sent out, and await replies.
c. After replies are received for all of its queries: If all replies are yes, send a yes

reply to the process from which it received the engaging query; otherwise,
send a no reply.

3. When a process receives a nonengaging query: The process immediately sends
a yes reply to the process from which it received the query.

•
Example 18.4 Distributed Termination Detection

Figure 18.10 shows a distributed computation. Only processes P1 and P2 are
active; all other processes are passive. Now the following events occur:

1. Process P2 becomes passive, initiates termination detection and sends a
query to process P1.

2. Process P1 sends a basic message to process P5 along the edge (P1, P5)
and becomes passive at the earliest opportunity.

The receive event in P5 for the basic message of P1, and events concerning
sending and receipt of queries and their replies by the processes could occur in
several different sequences. Two sequences of interest are as follows: If process
P1 received the query from P2 before it became passive, it would send a no reply
to P2, so P2 would not declare termination. If process P1 received the query
from P2 after it became passive, according to Rule 3, it would have already
received an acknowledgment to the basic message it had sent to process P5
in Step 2, so process P5 must have become active after receiving P1’s message
before P1 became passive. Now, when P1 receives the query from P2, it would
send a query to each of P3–P7. P5 would send a no reply to P1, which would
send a no reply to P2, so P2 would not declare termination. If Rules 2 and 3
of the system are removed, the algorithm would suffer from safety problems
in some situations.
•

Distributed termination detection algorithms become complex when they
try to remove Rules 1–3 of the system. Papers cited in the Bibliography discuss
details of such algorithms.

P2 P5P1

P7

P3 P4

P6

Figure 18.10 Illustration of distributed termination detection.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 735 — #22

Chapter 18 Distributed Control Algorithms 735

18.7 ELECTION ALGORITHMS
•

A critical function like replacing the lost token in a token-based algorithm is
assigned to a single process called the coordinator for the function. Typically, pri-
orities are assigned to processes and the highest-priority process among a group
of processes is chosen as the coordinator for a function. Any process that finds
that the coordinator is not responding to its request assumes that the coordinator
has failed and initiates an election algorithm. The election algorithm chooses the
highest-priority nonfailed process as the new coordinator and announces its id
to all nonfailed processes.

Election Algorithms for Unidirectional Ring Topologies All links in the ring are
assumed to be FIFO channels. It is further assumed that the control part of a
failed process continues to function and simply forwards each received message
along its out-edge. The election is performed by obtaining ids of all nonfailed
processes in the system and electing the highest-priority process. It is achieved
as follows: A process Pi initiates an election by sending out an (“elect me”, Pi)
message along its out-edge. A process Pj that receives this message performs two
actions—it sends out an (“elect me”, Pj) message of its own and also forwards the
(“elect me”, Pi) message immediately after its own message. These messages reach
process Pi such that the (“elect me”, Pi) message follows all the other messages.
Process Pi examines process ids contained in all these messages and elects the
highest priority process, say Phigh, as the new coordinator. It now sends a (“new
coordinator”, Phigh) message along the ring to inform all processes about the
outcome of the election. It is assumed that failures do not occur during an election.
This assumption ensures identical results even if two or more processes initiate
elections in parallel. The algorithm requires an order of n2 messages per election.

The number of messages per election can be reduced as follows: A process Pj
that receives an (“elect me”, Pi) message sends out only one message—it sends an
(“elect me”, Pj) message to start a new election if its own priority is higher than
that of Pi ; otherwise, it simply forwards the (“elect me”, Pi) message. This way,
only the highest-priority nonfailed process Phigh would get back its own “elect
me” message. It would send a (“new coordinator”, Phigh) message to announce
its election. All other processes abandon their elections, if any, when they receive
the (“new coordinator”, Phigh) message. When this refinement is used, the number
of messages per election can be a maximum of 3n−1 as follows: The (“elect me”,
Pi) message sent by the process that initiates an election needs a maximum of
n − 1 messages to reach the highest-priority process. The election initiated by the
highest-priority process requires n messages to complete, and another n messages
are required to inform every process about the outcome of the election. The time
consumed by the election could be as high as (3n − 1) × twc, where twc is the
worst-case message delivery time over a link.

Bully Algorithm A process Pi that initiates an election sends an (“elect me”, Pi)
message to all higher-priority processes and starts a time-out interval T1. If it
does not hear from any of them before the time-out occurs, it assumes that all of
them have failed, sends a (“new coordinator”, Pi) message to all lower-priority
processes, and becomes the new coordinator. If its “elect me” message reaches a

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 736 — #23

736 Part 5 Distributed Operating Systems

higher-priority process Pj , process Pj sends a “don’t you dare!” message to it. On
receiving this message, process Pi abandons its claim to become the new coordi-
nator. It now expects process Pj or another higher-priority process to announce
itself the new coordinator, so it starts another time-out interval to wait for such
a message. If it does not receive such a message before a time-out occurs, it
assumes that a higher-priority process that should have become the coordinator
has failed during the interval. It now initiates another election by once again send-
ing (“elect me”, Pi) messages. A process Pj that receives an “elect me” message
from a lower-priority process responds by sending a “don’t you dare!” message to
the lower-priority process. Immediately following this, Pj itself initiates an elec-
tion, unless it has already initiated one, by sending (“elect me”, Pj) messages to
all higher priority processes.

The total number of messages per election is an order of n2. If the system
graph is fully connected and no nodes fail or recover during an election, the
time consumed by the election could be as high as T1 + T2, where T1, T2 are
the two time-out intervals. T1 ≥ 2 × twc, where twc is the worst-case message
delivery time over a link. T2 ≥ 3 × twc; however, T2 ≥ 2 × twc would suffice since
transmission of the “elect me” message sent by a higher-priority process would
overlap with transmission of the “don’t you dare!” message sent by it. Hence the
time consumed by the algorithm can be less than 5 × twc.

•
Example 18.5 Election Algorithms

A system contains 10 processes P1, P2, . . . , P10, with the priorities 1, . . . , 10,
10 being the highest priority. Process P10 is the coordinator process. Its failure
is detected by process P2. P2 sends (“elect me”, P2) messages to P3–P10. Each of
P3–P9 respond by sending a “don’t you dare!” message to P2, and start their
own elections by sending “elect me” messages to higher-priority processes.
Eventually processes P2–P8 receive “don’t you dare!” messages from all higher-
priority processes excepting P10, which has failed. Process P9 does not receive
any “don’t you dare!” message, so it elects itself as the coordinator and sends a
(“new coordinator”, P9) message to P1–P8. During the election, 36 “elect me”
messages, 28 “don’t you dare!” messages and 8 “new coordinator” messages
are sent. The total number of messages for this election is thus 72.

If the same system had been organized as a unidirectional ring with edges
(Pi , Pi+1) ∀i < 10 and edge (P10, P1), a total of 27 messages would have been
needed to complete the election.
•

18.8 PRACTICAL ISSUES IN USING DISTRIBUTED
CONTROL ALGORITHMS

•
18.8.1 Resource Management
When a process requests access to a resource, the resource allocator must find
the location of matching resources in the system, determine their availability,

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 737 — #24

Chapter 18 Distributed Control Algorithms 737

Node Ni

3 , 5

4

1

2

Resource manager

1 , 3 , 5

Node Nk

Resource

allocator

Resource

allocator

Name

server

Name

server

Resource manager

rk

3 , 5

Pi Pk

Figure 18.11 Resource allocation in a distributed system.

and allocate one of the resources. Figure 18.11 contains a schematic of resource
allocation. A resource manager exists in each node of the system. It consists of
a name server and a resource allocator. The numbered arcs in the schematic
correspond to steps in the following resource allocation procedure:

1. When process Pi wishes to use a resource named resj , it constructs a pair
(resj , Pi) and forwards it to the resource manager in its node. The resource
manager forwards the request to the name server.

2. The name server locates resj , using its name and attributes, and constructs
the triple (rk , Nk , Pi), where resj is resource rk at node Nk . It forwards the
triple to the resource allocator.

3. The resource allocator finds whether resource rk of node Nk is available. If
so, it passes Pk , the id of the resource controller process for the resource, to
Pi . It also sends an allocation message containing the id of Pi to Pk . If the
resource is not available, it stores the request in a queue of pending requests.
The request would be honored sometime in future when the resource becomes
available.

4. Process Pk interacts with process Pi to fulfill Pi ’s service requests.
5. After completing its use of the resource, process Pi makes a release request.

The resource manager sends a release message to Pk and allocates the
resource to a pending request, if any.

The important issue in Step 3 is ensuring noninterference of resource alloca-
tors of different nodes. It could be achieved either through a distributed mutual
exclusion algorithm or through an election algorithm to elect a coordinator that
would perform all allocations in the system. Use of a mutual exclusion algorithm
would incur overhead at every allocation. Use of an election algorithm would
avoid this overhead. However, it would require a protocol to ensure that resource
status information would be accessible to a new coordinator if the present coor-
dinator failed. A simpler arrangement would be to entrust allocation of resources
in a node to the resource allocator of that node. This scheme would avoid the
overhead of mutual exclusion, election, and fault tolerance. It would also be more
robust because a resource could be allocated to a process so long as the nodes

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 738 — #25

738 Part 5 Distributed Operating Systems

containing the process and the resource, and a network path between the two,
are functional. The name server in each node would have to be updated when
resources are added. This problem can be solved through an arrangement of name
servers as in the domain name service (DNS) (see Section 16.4.1), where only the
name server of a domain needs to be updated when a resource is added.

18.8.2 Process Migration
The process migration mechanism is used to transfer a process between nodes in
a distributed system. It is used to achieve load balancing, or to reduce network
traffic involved in utilizing a remote resource. It may also be used to provide
availability of services when a node has to be shut down for maintenance. The
schematic Figure 18.8 made process migration look deceptively simple; however,
in reality, it is quite complex for several reasons. The state of a process comprises
the following:

• Process identifier and ids of its child processes
• Pending signals and messages
• Current working directory and internal ids of files (see Section 13.8)

Two kinds of problems are faced in transferring process state: Process state is
often spread across many data structures in the kernel, so it is difficult to extract
it from kernel data structures. Process ids and internal ids of files have to be
unique in the node where a process operates; such information may have to be
changed when a process is migrated. This requirement creates difficulties in pro-
cess synchronization and in I/O. Providing globally unique process ids as in the
Sun Cluster (see Section 16.3) and transparency of resources and services (see
Section 16.8) are important in this context.

When a message is sent to a process, the DNS converts the process name
(<host_name>, <process_id>) into the pair (IP address, <process_id>). Such a
message may be in transit when its destination process is migrated, so arrange-
ments have to be made to deliver the message to the process at its new location.
Each node could maintain the residual state of a process that was migrated out of
it. This state would contain the id of the node to which it was migrated. If a mes-
sage intended for such a process reaches this node, the node would simply redirect
the message to its new location. If the process had been migrated out of that node
in the meanwhile, the node would similarly redirect the message, using the resid-
ual state maintained by it. In this manner a message would reach the process
irrespective of its migration. However, the residual state causes poor reliability
because a message would not be delivered if the residual state of its destination
process in some node has been lost or has become inaccessible because of a fault.
An alternative scheme would be to inform the changed location of a process (as
also a change in the process id, if any) to all processes that communicate with it.
This way, a message could be sent to the process directly at its new location. If
a message that was in transit when a process was migrated reached the old node
where the process once existed, the node would return a “no longer here” reply

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 739 — #26

Chapter 18 Distributed Control Algorithms 739

to the sender. The sender would then resend the message to the process at its new
location.

18.9 SUMMARY
•

A distributed control algorithm is an algorithm for
use in an OS, whose actions are performed in many
nodes of the distributed system. An OS uses dis-
tributed control algorithms so that it can avoid the
overhead of collecting state information about all
entities in the system in one place, be responsive to
events occurring in its nodes, and provide reliable
operation in the presence of node and link faults. In
this chapter, we discussed distributed control algo-
rithms for mutual exclusion, deadlock handling,
scheduling, electing coordinators for functions and
services, and detecting termination of a distributed
computation.

Parts of a distributed control algorithm exe-
cuting in different nodes of a distributed system
reach a decision by interacting among themselves
through interprocess messages. This method of
operation may delay decisions; however, the algo-
rithm must make the correct decision eventually.
Since distributed algorithms do not have access
to states of all relevant entities at the same time,
they must also ensure that they would not per-
form a wrong action. These two aspects of their
correctness are called liveness and safety, respec-
tively. They have to be interpreted in the context
of the function performed by a distributed con-
trol algorithm. For example, in mutual exclusion,
liveness implies that the progress and bounded
wait conditions of Section 6.3.1 are satisfied, while
safety implies that at most one process is in the
CS at any time. Performance of a distributed
control algorithm is measured in terms of the
number of messages exchanged by the algorithm,
and the delay incurred until a required action is
performed.

A distributed control algorithm uses a sys-
tem model that is either a physical model of the
system or a logical model in which nodes are pro-
cesses and an edge indicates that two processes
exchange messages. Each node in the model is

aware of its own local state, and interacts with
other nodes to convey state information. The cor-
rectness of the algorithm depends on how state
information is conveyed among nodes and how
decisions are made, while performance depends
on the nature of the system model used by the
algorithm.

Mutual exclusion is performed by using either
a fully connected logical model and timestamping
of requests, or a token to represent the privilege
to enter a critical section. The former incurs small
decision times, while the latter requires fewer mes-
sages. Distributed deadlock detection algorithms
use a logical model in which edges represent wait-
for relationships between processes, and special
messages are sent over the edges for deadlock
detection. Either a special algorithm called diffu-
sion computation is used to collect state informa-
tion from all relevant processes, or presence of a
cycle is inferred when a sender process receives
back its own deadlock detection message. Dis-
tributed scheduling is performed by exchanging
state information among nodes of the system to
decide whether processes should be transferred
between nodes to balance the execution loads
among nodes.

A distributed computation terminates only
when all its processes are idle and no messages are
in transit between them. Distributed termination
detection can be performed by using a diffusion
computation to check whether any process is active
or any interprocess message is in transit. Alter-
natively, some known amount of credit can be
distributed among processes and some of it can
be put on every interprocess message. Termination
has occurred if the total credit with idle processes
equals the amount of credit with which the sys-
tem started. Election algorithms use logical models
and special messages to find the highest-priority
nonfailed process.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 740 — #27

740 Part 5 Distributed Operating Systems

TEST YOUR CONCEPTS
•

18.1 Classify each of the following statements as true
or false:
a. The control part of a process never blocks.
b. The Ricart–Agrawala algorithm is deadlock-

free if timestamps are distinct.
c. In a token-based algorithm for mutual exclu-

sion, a requesting process sends its request to
every other process.

d. In a diffusion computation model, a process
does not send a reply to a nonengaging query.

e. A centralized deadlock detection algorithm
may detect phantom deadlocks.

f. A sender-initiated distributed scheduling
algorithm is unstable at high system loads.

g. A distributed computation is said to have ter-
minated if all processes in the computation
are in the passive state.

18.2 Select the appropriate alternative in each of the
following questions:

a. Which of the following properties of a critical
section implementation will ensure liveness
of a distributed mutual exclusion algorithm
(refer to Table 6.1)?

i. The progress property
ii. The bounded wait property
iii. The progress and bounded wait

properties
iv. None of (i)–(iii).

b. A process Pi initiates a diffusion computa-
tion by sending out queries. A process Pk in
the system

i. Receives the query initiated by Pi exactly
once.

ii. May not receive the query even once.
iii. Receives the query at least once, but may

receive it several times
iv. None of (i)–(iii).

EXERCISES
•

18.1 State and compare the liveness properties of (a)
a distributed mutual exclusion algorithm, and
(b) an election algorithm.

18.2 Step 2 of the Ricart–Agrawala algorithm is mod-
ified such that a process wishing to enter a CS
does not send a “go ahead” reply to any other
process until it has used its CS. Prove that this
modified algorithm is not deadlock-free.

18.3 Prove the safety property of Maekawa’s algo-
rithm, which uses request sets of size

√
n.

18.4 Construct an example where Raymond’s algo-
rithm does not exhibit FCFS behavior for entry
to a CS. (Hint: Consider the following situation
in Example 18.2: Process P2 makes a request for
CS entry while P5 is still in CS.)

18.5 Identify the engaging and nonengaging queries
in the Chandy–Lamport algorithm for consis-
tent state recording (Algorithm 17.2). Extend
the algorithm to collect the recorded state infor-
mation at the site of the node that initiated a
state recording.

18.6 Prove that a resource allocator using the wait-
or-die and wound-or-wait scheme for deadlock

detection does not possess the liveness property
if a killed process is given a new timestamp when
it is reinitiated.

18.7 It is proposed to use an edge chasing dead-
lock detection algorithm for deadlocks arising
in interprocess communication. When a process
gets blocked on a “receive message” request,
a query is sent to the process from which it
expects the message. If that process is blocked
on a “receive message” request, it forwards the
query to the process for which it is waiting, and
so on. A process declares a deadlock if it receives
its own query. Comment on the suitability of this
algorithm for
a. Symmetric communication.
b. Asymmetric communication.

18.8 If use of the inc function in the block rule is omit-
ted from the Mitchell–Merritt algorithm, show
that the modified algorithm violates the liveness
requirement.

18.9 Prove correctness of the credit distribution-
based distributed termination detection
algorithm.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 741 — #28

Chapter 18 Distributed Control Algorithms 741

18.10 A sender-initiated distributed scheduling algo-
rithm uses the following protocol to transfer a
process from one node to another:
a. A sender polls all other nodes in the system

in search of a receiver node.
b. It selects a node as the prospective receiver,

and sends it a “lock yourself for a process
transfer” message.

c. The recipient of the message sends a no reply
if it is no longer a receiver. Else it increases
the length of its CPU queue by 1 and sends
a yes reply.

d. The sender transfers a process when it
receives a yes reply.

e. If it receives a no reply, it selects another node
and repeats Steps 10(b)–10(e).

Does this protocol avoid instability at high
system loads?

18.11 Define the liveness and safety properties of a
distributed scheduling algorithm. (Hint: Will
imbalances of computational load arise in a
system if its scheduling algorithm possesses
liveness and safety properties?)

BIBLIOGRAPHY
•

Dijkstra and Scholten (1980) and Chang (1982) discuss
the diffusion computation model of distributed algo-
rithms. Andrews (1991) discusses broadcast and token
passing algorithms.

Raymond (1989) and Ricart and Agrawala
(1981) discuss distributed mutual exclusion algorithms.
Dhamdhere and Kulkarni (1994) discusses a fault-
tolerant mutual exclusion algorithm. The diffusion
computation-based distributed deadlock detection algo-
rithm (Algorithm 18.4) is adapted from Chandy et al.
(1983). Knapp (1987) discusses several distributed dead-
lock detection algorithms. Sinha and Natarajan (1984)
discuss an edge chasing algorithm for distributed dead-
lock detection. Wu et al. (2002) describes a distributed
deadlock detection algorithm for the AND model.

Distributed termination detection is discussed in
Dijkstra and Scholten (1980), Mattern (1989), and
Dhamdhere et al. (1997). The bully algorithm for dis-
tributed elections is discussed in Garcia-Molina (1982).
Smith (1988) discusses process migration techniques.

Singhal and Shivaratri (1994) and Lynch (1996)
describe many distributed control algorithms in detail.
Tel (2000) and Garg (2002) discuss election and termi-
nation detection algorithms. Attiya and Welch (2004)
discusses algorithms for the election problem.

1. Andrews, G. R. (1991): “Paradigms for process
interaction in distributed programs,” Computing
Surveys, 23, 1, 49–40.

2. Attiya, H. and J. Welch (2004): Distributed
Computing: Fundamentals, Simulations and
Advanced Topics, John Wiley, New York.

3. Chandy, K. M., J. Misra, and L. M. Haas (1983):
“Distributed deadlock detection,” ACM
Transactions on Computer Systems, 1 (2),
144–152.

4. Chang, E. (1982): “Echo algorithms: depth
parallel operations on general graphs,” IEEE
Transactions on Software Engineering, 8 (4),
391–401.

5. Dhamdhere, D. M., and S. S. Kulkarni (1994): “A
token based k-resilient mutual exclusion
algorithm for distributed systems,” Information
Processing Letters, 50 (1994), 151–157.

6. Dhamdhere, D. M., S. R. Iyer, and E. K. K.
Reddy (1997): “Distributed termination detection
of dynamic systems,” Parallel Computing, 22 (14),
2025–2045.

7. Dijkstra, E. W., and C. S. Scholten (1980):
“Termination detection for diffusing computa-
tions,” Information Processing Letters, 11 (1).

8. Garg, V. K. (2002): Elements of Distributed
Computing, Wiley-IEEE, New York.

9. Garcia-Molina, H. (1982): “Elections in
distributed computing systems,” IEEE
Transactions on Computers, 31 (1).

10. Knapp, E. (1987): “Deadlock detection in
distributed databases,” Computing Surveys,
19, (4), 303–328.

11. Lynch, N. (1996): Distributed Algorithms,
Morgan Kaufmann.

12. Mattern, F. (1989): “Global quiescence detection
based on credit distribution and recovery,”
Information Processing Letters, 30 (4), 195–200.

18-M4363-DAS1.LaTeX: “chap18” — 2007/11/14 — 17:38 — page 742 — #29

742 Part 5 Distributed Operating Systems

13. Mitchell, D. P., and M. J. Merritt (1982):
“A distributed algorithm for deadlock detection
and resolution,” Proceedings of the ACM
Conference on Principles of Distributed
Computing, August 1984, 282–284.

14. Obermarck, R. (1982): “Distributed deadlock
detection algorithm,” ACM Transactions on
Database Systems, 7 (2), 187–202.

15. Raymond, K. (1989): “A tree-based algorithm for
distributed mutual exclusion,” ACM Transactions
on Computer Systems, 7, 61–77.

16. Ricart, G., and A. K. Agrawala (1981):
“An optimal algorithm for mutual exclusion in
computer networks,” Communications of the
ACM, 24 (1), 9–17.

17. Singhal, M., and N. G. Shivaratri (1994):
Advanced Concepts in Operating Systems,
McGraw-Hill, New York.

18. Sinha, M. K., and N. Natarajan (1984):
“A priority based distributed deadlock detection
algorithm,” IEEE Transactions on Software
Engineering, 11 (1), 67–80.

19. Smith, J. M. (1988): “A survey of process
migration mechanisms,” Operating Systems
Review, 22 (3), 28–40.

20. Tel, G. (2000): Introduction to Distributed
Algorithms, 2nd ed., Cambridge University Press,
Cambridge.

21. Wu, H., W. Chin, and J. Jaffer (2002):
“An efficient distributed deadlock avoidance
algorithm for the AND model,” IEEE
Transactions on Software Engineering,
28, 1, 18–29.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 743 — #1

C h a p t e r 19
Recovery and Fault
Tolerance

Afault may damage the state of some data or processes. Several things could
go wrong if a fault occurs during operation of a system—data consistency
could be lost, a server could malfunction, resources and services could

become unavailable, or the system could cease operation. To provide reliable
operation, an OS avoids such consequences of faults using three approaches
called recovery, fault tolerance, and resiliency.

Recovery in a distributed system uses the notion of rollbacks, discussed earlier
in Chapter 13. When a fault occurs, some data or processes would be rolled back
to states that were recorded before the fault. However, a rollback of one of the
processes of a distributed computation may force rollbacks of a few of its other
processes to ensure mutual consistency of process states. This requirement is
called the domino effect. Normal operation of a computation would be resumed
after recovery is completed; however, the computation may have to reexecute
some actions it had performed before the fault occurred.

Fault tolerance provides uninterrupted operation of a system by repair-
ing the states of data or processes affected by a fault, rather than by rolling
them back to recorded states. The resiliency approach tries to minimize the cost
of reexecution when faults occur. Resiliency is achieved through special tech-
niques for (1) remembering useful results computed in a subcomputation and
using them directly, i.e., without reexecution, after a fault and (2) reexecuting a
subcomputation, rather than a complete computation, when a fault occurs.

We begin this chapter with an overview of different classes of faults and
various ways of dealing with them. Subsequent sections discuss recovery, fault
tolerance and resiliency.

19.1 FAULTS, FAILURES, AND RECOVERY
•

A fault like a power outage or a memory read error may damage the state of
a system. For reliable operation, the system should be restored to a consistent
state, and its operation should be resumed. Recovery is the generic name for all
approaches used for this purpose.

743

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 744 — #2

744 Part 5 Distributed Operating Systems

System Behavior

State

Expected

behavior

Before

fault

Fault

State
error

After

fault

Unexpected

behavior;

i.e., failure

Figure 19.1 Fault, error, and failure in a system.

A fault like a power outage is noticed readily, whereas a fault like a damaged
disk block becomes noticeable only when the resulting loss of data causes an
unexpected behavior of the system or an unusual situation in it. Such unexpected
behavior or situation is called a failure. Figure 19.1 illustrates how a failure arises.
A fault causes an error, which is a part of the system state that is erroneous. An
error causes unexpected behavior of the system, which is a failure. Example 19.1
discusses a fault, an error and a failure in a banking system.

•
Example 19.1 Fault, Error, and Failure

Bank accounts A and B contain $1000 and $250, respectively. A banking
application transfers $100 from account A to account B. A power outage
occurs after it deducts $100 from the balance in account A, but before it adds
$100 to the balance in account B. The power outage is a fault. The error is that
$100 has been deducted from account A but has not been added to account B.
The failure is that $100 has vanished!
•

A recovery is performed when a failure is noticed. Figure 19.2 illustrates the
state of a system during normal operation, after a fault, and after recovery. The
system is initiated in state S0 at time 0. A fault occurs at time t1. The consequent
failure is detected at ti . The system would have been in state Si at time ti if the fault
had not occurred; however, it is actually in state S′

i . A recovery procedure applies
a correction �S to the state and makes the system ready to resume its operation.
The resulting state would depend on the recovery procedure employed. Let the
resulting state be called Snew. It would be ideal if Snew = Si ; however, the nature
of a fault, the failure caused by it, and the recovery approach would determine
whether it could be so.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 745 — #3

Chapter 19 Recovery and Fault Tolerance 745

0 tit1
Time

A fault

occurs

S0 S1 Si

Si

A failure

is noticed

ΔS
Recovery

actions change

the state
Snew

Figure 19.2 Recovery after a fault.

19.1.1 Classes of Faults
A fault may affect a computer system, affect only a process in the system, or
affect hardware components such as memory and the communication hardware.
Accordingly, faults are classified into system, process, storage, and communica-
tion faults. Within a class of faults, a fault model describes those properties of
a fault that determine the kinds of errors and failures that might result from a
fault.

A system fault is a system crash caused by a power outage or by compo-
nent faults. System faults are classified into amnesia and partial amnesia faults,
depending on how much state information is lost when a fault occurs. In an
amnesia fault, the system completely “forgets” the state it was in when the fault
occurred. In a partial amnesia fault, the system “forgets” some components of its
state when the fault occured. File servers typically suffer partial amnesia faults
because they lose the data or metadata that was stored in memory or on a disk
that failed. A fail-stop system fault is one that brings a system to a halt. This
characteristic is convenient in practice because it permits an external observer,
whether a person or a computer system, to know when a fault has occurred. It
also provides an opportunity to recover or repair the system state before putting
the system back into operation.

A process that suffers a Byzantine fault may perform malicious or arbi-
trary actions. It is not possible to undo such actions when a failure is noticed.
Hence Byzantine faults are handled by using redundant processes and agreement
protocols. In this approach, several processes are created to perform the same
computation. If their results do not match, the system uses an agreement proto-
col to decide which of them is the correct result. Processes producing incorrect
results are identified and aborted before they perform any data updates; others
are permitted to perform updates and continue their operation.

A typical storage fault occurs because of a bad block on a storage medium.
It makes some data unreadable. The occurrence of a storage fault may be detected
by error checking techniques (see Section 14.3), or it may be noticed when data is
accessed. Storage faults are basically partial amnesia faults, however they could
be made nonamnesia faults by using software techniques such as disk mirroring.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 746 — #4

746 Part 5 Distributed Operating Systems

Communication faults are caused by link or transmission faults. These faults are
nonamnesia faults because the networking software includes sufficient buffering
and error handling capability to ensure that messages are not lost.

In Section 19.2, we discuss how Byzantine faults are handled in practice.
The rest of this chapter assumes faults to be non-Byzantine.

19.1.2 Overview of Recovery Techniques
For non-Byzantine faults, recovery involves restoring a system or an application
to a consistent state. It involves reexecuting some actions that were performed
before the fault occurred. Recovery techniques can be classified into data recovery,
process recovery, fault tolerance, and resiliency. These techniques have differ-
ent implications for reliability, response times to computations, and the cost of
recovery. Table 19.1 summarizes their features.

Data recovery techniques guard against loss of data in a file through backups.
Backups are created periodically during normal operation. When a fault occurs,
a file is restored to the state found in its latest backup (see Section 13.11). Data
recovery techniques incur substantial reexecution overhead if backups are created
at large intervals and high overhead during normal operation if they are created
frequently. So deciding the frequency of backups involves a trade-off.

Process recovery techniques employ checkpoints to record the state of a pro-
cess and its file processing activities. This operation is called checkpointing. When
a fault occurs, the recovery procedure sets the state of a process to that found in
a checkpoint. This operation is called a rollback of the process. It incurs the cost
of reexecuting the actions that were performed after the checkpoint was taken.
The tradeoff between the cost of a rollback and the overhead of checkpointing
during normal operation is analogous to that in data recovery techniques.

Table 19.1 Recovery Techniques

Technique Description

Data recovery A backup is a recording of the state of a file. When a fault
occurs, the state of the file is set to that found in its latest
backup (see Section 13.11).

Process recovery A checkpoint is a recording of the state of a process and its file
processing activities. A process is recovered by setting its state to
that found in a checkpoint that was taken before a fault
occurred. This action is called a rollback.

Fault tolerance The error in state caused by a fault is corrected without
interrupting the system’s operation.

Resiliency Special techniques are employed to reduce the cost of fault
tolerance—fewer results that were produced in a computation
before a fault occurred are recomputed after the fault.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 747 — #5

Chapter 19 Recovery and Fault Tolerance 747

Fault tolerance techniques enable a system or an application to continue its
operation despite the occurrence of a fault. A fault tolerance technique recovers
the system or the application to a consistent state that differs only marginally, if
at all, from the state the system would have been in if the fault had not occurred.
Results of some computations that were in progress at the time when a fault
occurred may be lost. These computations have to be reexecuted.

Resiliency techniques ensure that some of the results that were produced
by a computation that was in progress when a fault occurred would be used in
the computation after the fault. It reduces reexecution costs and degradation of
response times due to a fault.

Backward and Forward Recovery Recovery approaches are classified into two
broad classes. Backward recovery implies resetting the state of an entity or an
application affected by a fault to some prior state and resuming its operation from
that state. It involves reexecution of some actions that were performed before a
fault. Forward recovery is based on repairing the erroneous state of a system so
that the system can continue its operation. The repair cost depends on the nature
of the computation and may involve a certain amount of reexecution.

Backward recovery is simpler to implement than forward recovery. However,
it requires a practical method of producing a consistent state recording of a
system. This aspect poses obvious difficulties in a distributed system. Another
weakness of the backward recovery technique is that an application may not make
any progress if faults occur frequently. A major advantage of forward recovery
is that the operation of a system or an application continues from the repaired
state rather than from some previous state as in backward recovery. This feature
guarantees forward progress of a computation with time for certain classes of
faults.

19.2 BYZANTINE FAULTS AND AGREEMENT PROTOCOLS
•

Because of the difficulty in undoing wrong actions, recovery from Byzantine faults
has been studied only in the restricted context of agreement between processes.
The agreement problem is motivated by the Byzantine generals problem where a
group of generals have to decide whether to attack the enemy. The generals and
their armies are located in different geographical locations, hence generals have
to depend on exchange of messages to arrive at a decision. Possible faults are
that messages may get lost, or some generals may be traitors who deliberately
send out confusing messages. An agreement protocol is designed to arrive at an
agreement in spite of such faults.

Three agreement problems have been defined in literature. In the Byzantine
agreement problem one process starts the agreement protocol by broadcasting a
single value to all other processes. A process that receives the value broadcasts it to
other processes. A nonfaulty process broadcasts the same value that it receives.
A faulty process may broadcast an arbitrary value; it may even send different
values to different processes. Processes may have to perform many rounds of

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 748 — #6

748 Part 5 Distributed Operating Systems

broadcasts before an agreement is reached. The problem requires all nonfaulty
processes to agree on the same value. This value should be the same as the value
broadcast by the initiator if the initiator is a nonfaulty process; otherwise, it could
be any value. In the consensus problem, each process has its own initial value and
all nonfaulty processes have to agree on a common value. In the interactive con-
sistency problem, nonfaulty processes have to agree on a set of values. We discuss
only the Byzantine agreement problem.

Lamport et al. (1982) developed an agreement protocol for use when pro-
cesses may fail but messages are delivered without fail. It involves m + 1 rounds
of information exchange, where the number of faulty processes is ≤ m. However,
there are some restrictions on the value of m. Agreement is possible only if the
total number of processes exceeds 3 times the number of faulty processes. An
impossibility result states that a group of three processes containing one faulty
process cannot reach agreement.

The impossibility result is easy to prove if the initiator is a faulty process.
Let process P1, the initiator, send values 0 and 1 to processes P2 and P3. Process
P2 will send 0 to process P3. Now, process P3 has received two different values
from two processes. It cannot decide which of the two is the correct value. A similar
situation arises if P1 is a nonfaulty initiator and sends 1 to P2 and P3, but process
P2 is faulty and sends 0 to process P3. Agreement would have been possible
if the system contained n processes, n ≥ 4, and the following algorithm was
used:

1. The initiator sends its value to every other process.
2. A process receiving the value from the initiator sends it to all processes other

than itself and the initiator.
3. Each process forms a collection of n−1 values containing one value received

from the initiator in Step 1 and n − 2 values received from other processes
in Step 2. If it did not receive a value from the initiator or from some other
process, it would assume an arbitrary value 0. It uses the value appearing the
majority of times in this collection.

This is the algorithm followed for a single Byzantine fault, i.e., for m = 1.
The algorithm for m > 1 is quite complex, hence we do not discuss it here.

19.3 RECOVERY
•

A recovery scheme consists of two components. The checkpointing algorithm
decides when a process should take a checkpoint. We will use the notation Cij to
denote the jth checkpoint taken by process Pi . The recovery algorithm rolls back
some processes to their states recorded in checkpoints such that the new process
states are mutually consistent. Example 19.2 illustrates the fundamental issue in
the design of checkpointing and recovery algorithms.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 749 — #7

Chapter 19 Recovery and Fault Tolerance 749

P1

m1

C13

C23

C32C31

C22C21

C12C11

P2

m2 m3

P3

tf

Figure 19.3 Checkpoints of processes in a distributed system.

•
Example 19.2Checkpointing and Recovery

Figure 19.3 shows the timing diagram of a distributed computation whose
processes P1 − P3 operate in nodes N1 − N3, respectively. C11, C12 and C13
are the checkpoints taken by process P1. Similarly C21, C22, C23, and C31, C32
are the checkpoints taken by processes P2 and P3, respectively. We denote the
state recorded in <checkpoint> as state(<checkpoint>). Let processes P1, P2
and P3 be in the states s1, s2 and s3, respectively, at time instant tf . Hence the
distributed computation is in the state S ≡ {s1, s2, s3}. Let a failure occur in
node N3 at time instant tf . A naive recovery algorithm simply rolls back process
P3 to its latest checkpoint, i.e., C32. However, the new state of the computation,
{s1, s2, state(C32)}, is not a consistent state because P2 has received message
m3 in state s2 but P3 has not sent m3 in state(C32), which is its new state (see
Definition 17.1).

•
From Example 19.2 it is clear that the state of a process cannot be recovered

in isolation. A recovery algorithm should restore the state of the computation to a
state S′ in which states of all pairs of processes are mutually consistent according
to Definition 17.1. Hence the goal of a recovery algorithm is to make the following
decisions for each process Pi in a distributed computation:

1. Decide whether process Pi should be rolled back.
2. If so, identify a checkpoint Cij to which Pi should be rolled back.

In Example 19.2, the distributed computation could be recovered to the state
{s1, state(C22), state(C32)}. We discuss a basis for such recovery in the following.

Definition 19.1 Orphan Message A message mk sent by process Pi to process
Pj is an orphan message in the state S ≡ {s1, . . . , si , . . . , sj , . . . , sn} of a system
if sj , the state of process Pj , records mk as received but si , the state of process
Pi , does not record it as sent.

An orphan message is a message that has been received by its destination
process, but it is disowned by its sender because of recovery. Hence the states of its
sender and destination processes are inconsistent. This inconsistency is removed

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 750 — #8

750 Part 5 Distributed Operating Systems

by rolling back its destination process to some state in which it had not received
the orphan message. This effect is called the domino effect. In Example 19.2, m3
becomes an orphan message when P3 is rolled back to the state in C32. Hence
P2 should be rolled back to some checkpoint that was taken before P2 received
message m3, for example, to checkpoint C22. If process P2 had sent a message m4
to P1 after C22 and process P1 had received this message in state s1, the domino
effect would force a rollback of process P1 as well.

Using these ideas, checkpointing and recovery can be performed in one of
two ways. The checkpointing algorithm would permit individual processes to
take checkpoints at will. This method is called asynchronous checkpointing. At a
fault, the recovery algorithm would roll back processes one by one in accordance
with the domino effect. Alternatively, the checkpointing algorithm would coor-
dinate the checkpointing actions of processes to ensure that the process states
in the checkpoints are mutually consistent. This method is called synchronous
checkpointing, and the collection of process checkpoints produced by it is called a
synchronous checkpoint. When applied to the system of Figure 19.3, a synchronous
checkpointing algorithm would produce either the synchronous checkpoint
{C11, C21, C31}or the synchronous checkpoint {C12, C22, C32}. The recovery algo-
rithm would simply roll back each process to its individual checkpoint in the latest
synchronous checkpoint.

19.4 FAULT TOLERANCE TECHNIQUES
•

The basic principle in fault tolerance is to ensure that a fault either does not cause
an error, or the error can be removed easily. In some earlier chapters and sections,
we saw how fault tolerance techniques ensure that no error in state would arise due
to process, storage, and communication faults: Section 19.2 described how pro-
cess faults of a Byzantine nature can be tolerated, Section 13.11.2.2 discussed how
the stable storage technique tolerates storage faults, and Section 16.4 discussed
an arrangement involving acknowledgment and retransmission of messages to
tolerate communication faults.

In this section, we discuss two facets of the tolerance of system faults that
follow the fail-stop model.

• Fault tolerance for replicated data: Despite a fault, data should be avail-
able and applications should see values resulting from the latest update
operation.

• Fault tolerance for distributed data: Despite a fault, mutual consistency of
different parts of the data should not be affected.

19.4.1 Logs, Forward Recovery, and Backward Recovery
A log is a record of actions or activities in a process. Two kinds of logs are used
in practice:

• Do logs: A do log records those actions that should be performed to ensure
correctness of state of an entity or a system. A do log is also called a redo log

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 751 — #9

Chapter 19 Recovery and Fault Tolerance 751

because actions recorded in it may be performed more than once if a fault
occurs. Do logs are used to implement forward recovery.

• Undo logs: An undo log contains a record of those actions that should be
undone to remove an error in state caused by occurrence of a fault. Undo
logs are used to implement backward recovery.

A write-ahead logging principle is used to construct a log—a process writes
information concerning an action it intends to take into a log before performing
the action. This way, the log would contain all information necessary to achieve
the correct state should a fault occur before the action is completed. A log could
be an operation log, which contains a list of actions to be performed so that entities
in the system would achieve correct states, or a value log, which contains a list of
values or data images that should be assigned to entities.

The implementation scheme for an atomic action discussed in Sec-
tion 13.11.2.2 used an intentions list. The intentions list is a value log that is
used as a redo log. Being a value log, recovery actions that use it are idempotent;
this property is needed because entries in the log would be processed more than
once if faults occur during commit processing. Recovery using the intentions
list constitutes forward recovery. If the subactions in an atomic action directly
updated data, an undo log would have to be maintained so that the actions could
be undone if a fault occurred before the atomic action could commit. The undo
log would contain data images taken before updates were performed. Its use to
undo data updates constitutes backward recovery.

The idea of atomic execution of a sequence of operations on a file can be
extended to operations involving several files. A language construct called the
atomic transaction is provided in a programming language or a database query
language for this purpose. It has the following syntax:

begin transaction <transaction id>

{Access and modify files}
if <condition>

then abort transaction;
{Access and modify files}

end transaction <transaction id>

An atomic transaction has an all-or-nothing property like an atomic action.
Its execution commences when a process executes the begin transaction statement.
The atomic transaction is said to commit if the process executes the end trans-
action statement. All files modified by the atomic transaction would be updated
consistently at this time. If the process executes the abort transaction statement,
or if a fault occurs before the transaction commits, execution of the transaction
would be aborted and no file updates would be made. In this case, all files would
remain in their original states.

19.4.2 Handling Replicated Data
Availability of data D can be provided through replication. We can make n copies
of D, n > 1 and locate them strategically in the system such that at least one copy
of D would be accessible from any node despite anticipated faults in the system.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 752 — #10

752 Part 5 Distributed Operating Systems

If data D may be modified, it is essential to use rules that would ensure correctness
of data access and updates. We use the following rules:

1. Many processes can concurrently read D.
2. Only one process can write a new value into D at any time.
3. Reading and writing cannot be performed concurrently.
4. A process reading D must see the latest value of D.

Rules 1–3 are analogous to rules of the readers and writers problem of
Section 6.7.2. Rule 4 addresses a special issue in data replication.

Quorum Algorithms A quorum is the number of copies of D that must be accessed
to perform a specific operation on D. Quorum algorithms ensure adherence to
Rules 1–4 by specifying a read quorum Qr and a write quorum Qw. Two kinds of
locks are used on D. A read lock is a shared lock, and a write lock is an exclusive
lock. A process requesting a read lock is granted the lock if D is presently unlocked
or if it is already under a read lock. Request for a write lock is granted only if D is
presently unlocked. Processes use read and write quorums while accessing D, so
a process can read D after putting a read lock on Qr copies of D, and can write
D after putting a write lock on Qw copies of D.

Since a read lock is a shared lock, any value of Qr would satisfy Rule 1. For
implementing Rules 2 and 3, we choose Qr and Qw such that

2 × Qw > n (19.1)

Qr + Qw > n (19.2)

Equation (19.2) also ensures that a reader will always lock at least one copy that
participated in the latest write operation. This copy contains the latest value of
D, so Eq. (19.2) also satisfies Rule 4.

A choice of values that satisfies Eqs. (19.1) and (19.2) is Qr = 1 and Qw = n.
With these quorums, a read operation is much faster than a write operation.
It would be appropriate if read operations are more frequent than write opera-
tions. Many other quorum values are also possible. If write operations are more
frequent, we could choose values of Qr and Qw such that Eqs. (19.1) and (19.2)
are satisfied and Qw is as small as possible. If Qw �= n, a writer would not update
all copies of D, so a reader would access some copies of D that contain its latest
value, and some copies that contain its old values. To be able to identify the latest
value, we could associate a timestamp with each copy of D to indicate when it was
last modified.

The choice of Qr = 1 and Qw = n is not fault tolerant. Qw = n implies that a
process would have to put locks on all n copies of D in order to perform a write
operation. Hence a writer would be unable to write if even one node containing
a copy of D failed or became inaccessible to it. If a system is required to tolerate
faults in up to k nodes, we could choose

Qr = k + 1
Qw = n − k
n > 2 × k

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 753 — #11

Chapter 19 Recovery and Fault Tolerance 753

These quorum sizes are large, however it is unavoidable because Eq. (19.1) is
essential to ensure consistency of data and Eq. (19.2) is essential to ensure that
reading and writing are not performed concurrently.

19.4.3 Handling Distributed Data
A distributed transaction (also called a multisite transaction) is a facility for manip-
ulating files located in different nodes of a distributed system in a mutually
consistent manner. Each node participating in a distributed transaction Ti con-
tains a transaction manager. It maintains information about data updates to be
made on behalf of the transaction, which could be similar to the intentions list
of atomic actions (see Section 13.11.2.2). In addition, it also maintains a log
that is local to it. The node where the transaction was initiated contains a trans-
action coordinator. The coordinator implements the all-or-nothing property of
transactions through the two-phase commit protocol, also called the 2PC pro-
tocol. It initiates this protocol when the application executes the statement end
transaction Ti . In the first phase the protocol checks whether each participating
node can commit the updates of the transaction. Depending on responses from
participating nodes, it decides whether to commit or abort the transaction. In the
second phase, it informs its decision to each participating node, so that it could
commit or abort accordingly. The 2PC protocol is presented as Algorithm 19.1.

Algorithm 19.1 Two-Phase Commit Protocol

Phase 1:

1. Actions of the transaction coordinator: Write the record prepare Ti in the log.
Set a time-out interval δ and send a prepare Ti message to each participat-
ing node. Wait until either each participating node replies, or a time-out
occurs.

2. Actions of a participating node: On receiving a prepare Ti message, the partici-
pating node decides whether it is ready to commit. If so, it writes information
about data updates to be made, followed by the record prepared Ti in its
log and sends a prepared Ti reply to the coordinator. Otherwise, it writes
the record abandoned Ti in its log and sends an abandoned Ti reply to the
coordinator.

Phase 2:

1. Actions of the transaction coordinator: If each participating node sent a pre-
pared Ti reply, write the record commit Ti in its log and send a commit Ti
message to each participating node. If a participating node sent an abandoned
Ti message, or a time-out occurred, write the record abort Ti in its log and
send an abort Ti message to each participating node. In either case, wait until
an acknowledgment is received from each participating node, and write a
complete Ti record in its log.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 754 — #12

754 Part 5 Distributed Operating Systems

2. Actions of a participating node: Write the record commit Ti or abort Ti in
the log in accordance with the coordinator’s message and send an acknowl-
edgment to the coordinator. Perform either commit processing or abort
processing accordingly, and release locks on the data.

The 2PC protocol handles failure of a participating node as follows: If a
participating node fails before the 2PC protocol was initiated by the coordinator,
on recovery it would not find a prepared or abandoned record for the transaction
in its log. It would assume that the first phase of the 2PC protocol would have
timed out and the coordinator would have aborted the transaction. Hence it
would abandon the transaction. This action is safe because a participating node
can unilaterally withdraw from a transaction any time before sending a prepared
reply in the first phase. The coordinator would abort the transaction because the
failed node would not send a prepared Ti message even if it has recovered by the
time the coordinator starts the 2PC protocol.

If the participating node fails after sending a prepared or abandoned reply
to the coordinator, it would find a prepared or abandoned record in its log when
it recovers. This record may be followed by a commit or abort record, in which
case the node would perform commit or abort processing. Otherwise, the node
would have to query the coordinator to find whether the transaction had been
committed or aborted, and accordingly perform commit or abort processing.
If the node fails while it was performing commit processing, it would find a
commit record in its log when it recovered. So it would repeat commit processing.
Recall from Section 13.11.2.2 that repeated commit processing would not cause
data consistency problems because the data update operations performed during
commit processing are idempotent.

If the coordinator fails after writing the commit record in its log, but before
writing the complete record in the log, it would see the commit record in its log
when it recovers. It would now resend commit Ti messages to all participating
nodes, because it would not know whether it had sent such messages before it
crashed. However, this requirement constitutes a weakness in the 2PC protocol:
If the coordinator had failed before sending commit Ti messages, participating
nodes would not know whether the coordinator decided to commit or abort the
transaction. Any participating node that had sent an abandoned Ti reply in the
first phase would know that the decision could not be to commit the transaction;
however, a node that had sent a prepared Ti reply would be blocked until the
coordinator recovered and sent it a commit Ti or abort Ti message. A three-phase
commit protocol has been designed to avoid this blocking situation; however, it is
not discussed here.

19.5 RESILIENCY
•

Resiliency techniques focus on minimizing the cost of reexecution when faults
occur. The basis for resiliency is the property that failures in a distributed system
are partial, rather than total, so some parts of a distributed computation, or

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 755 — #13

Chapter 19 Recovery and Fault Tolerance 755

the results computed by them, may survive a failure. Use of such results after
recovery would reduce reexecution, and may even avoid it. Consider a distributed
transaction that is initiated in node Ni and involves computations in nodes Nj and
Nk . It has a transaction manager in each of these nodes. The transaction would
be aborted if the transaction manager in node Nj does not respond to the prepare
message from the coordinator in node Ni because of the failure of node Nj or link
(Ni , Nj). The aborted transaction would have to be reexecuted at some other time.
Much of the reexecution would be wasteful if node Nj had already completed the
computation, but was simply unable to participate in commit processing because
of a link fault.

A nested transaction Tik is an atomic transaction that is a part of another
transaction Ti . Transactions Ti and Tik have a parent–child relationship; the
transaction controller of Ti initiates Tik and assigns it a unique id. The nested
transaction can commit or abort just like an atomic transaction, except for one
difference—when it reaches the commit point, a tentative commit is performed
for it. A tentative commit is an intermediate stage between not committed and
committed. The log of the nested transaction is written in stable storage; however,
it is not processed at this time. The actual commit of the nested transaction, which
involves processing of the log, is held in abeyance until the parent transaction com-
mits. When a parent transaction reaches its commit point, it is committed by using
a two-phase commit protocol to ensure that all its child transactions can commit.

Resiliency using nested transactions is implemented as follows: Consider a
transaction Ti that executes in node Ni and initiates a nested transaction Tik
in node Nj . Let node Nj crash and recover sometime after Tik has performed a
tentative commit. The transaction coordinator, which is in node Ni , may find that
the nested transaction Tik is taking too long to complete, or that the transaction
manager in node Nj is not responding to its prepare message, so it may decide to
initiate Tik once again—either in node Nj itself, or in another node. If it reinitiates
Tik in node Nj , the transaction manager in node Nj would check whether Tik was
initiated there in the past and had performed a tentative commit. If so, it would
not reinitiate Tik because it already has Tik ’s results in the log; it would simply
use Tik ’s results when the parent transaction Ti commits. Thus, reexecution of
Tik would be avoided.

If the transaction coordinator of Ti decided to reinitiate the nested transac-
tion in another node, it would assign another id to the new nested transaction,
say, Til . Now, transaction Tik of node Nj has become an orphan because its parent
transaction is no longer interested in it. If it has not performed a tentative commit,
it should be prevented from performing it in future. If it has performed a tentative
commit, care should be taken not to include it in the 2PC when the results of Ti
are committed so that data consistency is not harmed through duplicate actions.
To implement this aspect, the transaction coordinator for Ti maintains a list of
ids of nested transactions in which it is currently interested. When it initiates
nested transaction Tik , it would add Tik ’s id to the list, and when it reinitiates
the nested transaction with the id Til , it would delete Tik from this list and add
Til to it. When Tik wishes to perform a tentative commit, its transaction man-
ager would check with the transaction coordinator whether Tik ’s id is present

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 756 — #14

756 Part 5 Distributed Operating Systems

in the list of nested transactions. Since it is not the case, the transaction manager
would disallow a tentative commit of Tik to take place. When Ti commits, Tik
would not participate in the 2PC because its id is not present in the list of nested
transactions.

19.6 SUMMARY
•

Recovery and fault tolerance are two approaches to
reliability of a computer system. These approaches
are generically called recovery. The cost of a recov-
ery approach is determined by its overhead during
normal operation and the amount of reprocessing
which becomes necessary when a fault occurs. In
a distributed system, a fault typically affects the
operation of a single link or node, hence special
techniques are employed to minimize the cost of a
recovery. It gives rise to a third recovery approach
called resiliency. In this chapter we studied
the recovery techniques of distributed operating
systems.

A fault like an I/O device malfunction or a
power outage causes an error in the state of the
system. It leads to an unexpected behavior of the
system, which is called a failure. Recovery is initi-
ated when a failure is noticed. It puts the system
into a new state from which its operation can be
resumed. The nature of a fault determines what
kind of recovery is possible. A fail-stop fault brings
the system to a halt, a partial amnesia fault makes it
lose a part of its state, while a Byzantine fault makes
it behave in an unpredictable manner and perform
wrong actions. It may not be possible to undo
the effect of wrong actions performed because of
a Byzantine fault in a process, hence recovery is
implemented as follows: Several processes are cre-
ated to perform the same computation in parallel.
When a failure results from a Byzantine fault, the
state in which majority of the processes exist is
considered to be the correct state. Processes in the
wrong state are aborted and others resume their
operation.

Recovery from non-Byzantine faults can be
performed by using two approaches. In backward
recovery, recovery is performed by rolling back the
system to a previous consistent state and resuming

its operation, whereas in forward recovery the
error is removed from the system’s state and its
operation is resumed. Backward recovery is imple-
mented as follows: The states of processes are
recorded periodically. When a node fails, a process
that was executing in it, say process Pi , is rolled
back to a previous state. If Pi had sent a message
m that was received by another process Pj , Pi ’s
rollback makes message m an orphan message and
causes an inconsistency in the states of Pi and Pj .
To remove this inconsistency, Pj has to be rolled
back to some previous state in which it had not
received message m. This effect is called the domino
effect. Recovery is performed by rolling back pro-
cesses in accordance with the domino effect until
all processes assume mutually consistent states.

A system implements fault tolerance by main-
taining a log in which it writes information for
recovery. An undo log contains information useful
for backward recovery, while a do log, which is also
called a redo log, contains information for forward
recovery. Fault tolerance is implemented through
an atomic transaction, which ensures that if a fault
occurs, either all actions in a specified sequence of
actions would be performed or none of them would
be performed. This way, the system will never be in
a state in which only some of the actions have been
performed. An atomic transaction can be imple-
mented by using a do log and forward recovery
if a fault occurs while implementing its actions; it
can also be implemented by using an undo log and
backward recovery. The two-phase commit proto-
col (2PC protocol) is used to implement atomic
transactions that involve data existing in differ-
ent nodes of the system. It ensures that actions of
the transaction are implemented only if all nodes
containing its data can carry out the required
updates.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 757 — #15

Chapter 19 Recovery and Fault Tolerance 757

An atomic transaction that involves data in
many nodes of the system can be implemented
by using nested transactions, which are its parts
that execute in different nodes. If an atomic trans-
action is unable to complete because of a node
fault, it may be reinitiated. The resiliency technique

reduces the cost of reprocessing as follows: A
nested transaction of the failed transaction may
have completed its operation in some other node.
Hence it is not reinitiated even if its parent trans-
action is reinitiated; instead, its results are simply
reused in the reinitiated parent transaction.

TEST YOUR CONCEPTS
•

19.1 Classify each of the following statements as true
or false:
a. A power outage is a partial amnesia fault if

no recovery techniques are used.
b. Use of a recovery technique incurs overhead

even during normal operation of a system,
i.e., even when no faults occur.

c. Backward recovery is performed by using
backups and checkpoints.

d. An orphan message is a message that has
been sent but has not been received by its
destination process.

e. The domino effect may be observed while
recovering a system by using asynchronous
checkpoints.

f. Quorum algorithms are used for fault toler-
ance while updating distributed data.

19.2 Select the appropriate alternative(s) in each of
the following questions:

a. A fault occurs when a system is in state S, and
a process Pi is in state si . Process Pi is rolled
back to a state s′i contained in a checkpoint
that was taken at time t. A domino effect
arises if

i. Pi had received a message m′ some time
after time t.

ii. Pi had sent a message m∗ to a process Pk
some time after time t, and in state S the
message is still in transit.

iii. Pi had sent a message m∗ to a process
Pk some time after time t, and in state
S process Pk has received the message.

b. An atomic transaction can be implemented
by using

i. A do log and backward recovery
ii. A do log and forward recovery
iii. An undo log and backward recovery
iv. An undo log and forward recovery

EXERCISES
•

19.1 A checkpoint is said to be strongly consistent if
(i) states of all pairs of processes are mutually
consistent, and (ii) every message recorded as
sent by a sender process is recorded as received
by a receiver process. Discuss whether a syn-
chronous checkpoint is both consistent and
strongly consistent.

19.2 Processes in a distributed computation perform
asynchronous checkpointing as follows: Each
process takes a checkpoint immediately after
sending a message. Prove that recovery using
such checkpoints can be performed without
encountering the domino effect.

19.3 Can orphan messages arise if a process takes a
checkpoint before receiving each message?

19.4 When asynchronous checkpointing is used, sev-
eral checkpoints for each process need to be
preserved to support rollbacks in the presence
of orphan messages. To preserve disk space, it
is useful to know when (if ever) a specific check-
point can be deleted without affecting recovery.
Comment on the following proposals:
a. Delete a checkpoint Cij when another check-

point is taken for process Pi .
b. Delete a checkpoint Cij if another check-

point Cij+1 is taken for process Pi and no

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 758 — #16

758 Part 5 Distributed Operating Systems

messages were sent by Pi between the two
checkpoints.

c. Delete a checkpoint Cij if another checkpoint
Cij+1 is taken for process Pi and no mes-
sages were received by Pi between the two
checkpoints.

d. Delete all checkpoints for process Pi taken
prior to checkpoint Cij if for every message
mk recorded as received in Cij , the process
that sent message mk has taken a checkpoint
after sending it.

19.5 The node in a distributed system in which a pro-
cess Pi operates fails. What are the processes that
need to be rolled back due to recovery of Pi?
Give an algorithm to recover from Pi ’s failure.
While recovery from Pi ’s failure is in progress,
the node in which another process Pj operates
fails. State the conditions under which recovery
from these two failures would be independent of
one another. How should recovery from these
failures be performed if these conditions are not
satisfied?

19.6 Give a scheme to implement an atomic trans-
action using an undo log. In what order should
entries in the undo log be processed if a transac-
tion is aborted?

19.7 Can use of read and write quorums determined
by Eq.(19.2) lead to deadlocks? If so, design a
scheme to avoid deadlocks.

19.8 Because of large quorum sizes in handling repli-
cated data, it is proposed to use an approach
based on the notion of request sets of Maekawa
(see Section 18.3.1). Comment on whether all
four rules of Section 19.4.2 would be satisfied by
this approach.

19.9 Comment on correctness of the following
scheme for mutual exclusion of readers and
writers over replicated data:
a. Set Qr = 1 and Qw = n, where n is the number

of copies of data.
b. When a writer wishes to update the data, it

tries to set a write lock on each copy.
i. If the copy is already locked, it waits

for the copy’s lock to be released by the
process which had set it.

ii. If it cannot access the copy, it assumes
that the node containing the copy has
failed, and reduces Qw by 1.

iii. It proceeds to update the data when it
finds that it has set a write lock on as
many copies as the current value of Qw.

BIBLIOGRAPHY
•

Lamport et al. (1982) discusses the Byzantine generals
problem. Barborak et al. (1993) surveys approaches that
can be used to obtain agreement on a system status by the
fault-free segment of the processor population. Lynch
(1996), Tel (2000), and Garg (2002) discuss consensus in
synchronous and asynchronous systems.

The two-phase commit protocol is discussed in
Gray (1981). The three-phase commit protocol avoids
the blocking problem of the two–phase commit proto-
col when the coordinator fails. It permits participating
nodes to roll forward such a transaction to completion,
or to roll it back to an abort. The three-phase commit
protocol is discussed in Skeen (1983). Svobodova (1984)
discusses resiliency in distributed computing.

Venkatesh et al. (1987) discusses optimal check-
pointing and domino-free recovery. This topic con-
tinues to be much researched even today. Tel (2000)

discusses fault tolerance in distributed systems. Garg
(2002) discusses recovery based on checkpointing and
message logging.

1. Barborak, M., M. Malek, and A. Dahbura
(1993): “The consensus problem in fault tolerant
computing,” Computing Surveys, 25, 2, 171–220.

2. Garg, V. K. (2002): Elements of Distributed
Computing, Wiley-IEEE, New York.

3. Gray, J. N. (1981): “The transaction concept:
virtues and limitations,” Proceedings of the
International Conference on Very Large Data
Bases, 144–154.

4. Lamport, L., R. Shostak, and M. Pease (1982):
“The Byzantine generals problem,” ACM
Transactions on Programming Languages and
Systems, 4 (3), 382–401.

19-M4363-DAS1.LaTeX: “chap19” — 2007/11/14 — 17:01 — page 759 — #17

Chapter 19 Recovery and Fault Tolerance 759

5. Lynch, N. (1996): Distributed Algorithms,
Morgan Kaufmann.

6. Skeen, D. (1983): “A formal model of crash
recovery in a distributed system,” IEEE
Transactions on Software Engineering, 9 (3),
219–228.

7. Svobodova, L. (1984): “Resilient Distributed
computing,” IEEE Transactions on Software
Engineering, 10 (3), 257–267.

8. Tel, G. (2000): Introduction to Distributed
Algorithms, 2nd ed., Cambridge University Press,
Cambridge.

9. Venkatesh, K., T. Radhakrishnan, and H. F. Li
(1987): “Optimal checkpointing and local
recording for domino-free rollback recovery,”
Information Processing Letters, 25 (5),
295–304.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 760 — #1

20 C h a p t e r

Distributed File Systems

Users of a distributed file system (DFS) expect it to provide the
convenience, reliability, and performance provided by conventional file
systems. The convenience of using a distributed file system depends on

two key issues. Transparency of a distributed file system makes users oblivious
to the location of their files in the nodes and disks in the system. File sharing
semantics specify the rules of file sharing—whether and how the effect of file
modifications made by one process are visible to other processes using the file
concurrently.

A process and a file accessed by it may exist in different nodes of a distributed
system, so a fault in either node or in a path between the two can affect the file
processing activity. Distributed file systems ensure high reliability through file
replication, and through use of a stateless file server design to minimize the impact
of file server crashes on ongoing file processing activities.

Response time to file system operations is influenced by network latencies in
accessing remote files, so the technique of file caching is used to reduce network
traffic in file processing. Another aspect of performance is scalability—response
times should not degrade when the distributed system grows in size. It is addressed
through techniques that localize a file processing activity to a cluster, which is a
group of computer systems having a high-speed LAN.

This chapter discusses the DFS techniques for achieving user convenience,
reliability, and high performance. Case studies of distributed file systems illustrate
their operation in practice.

20.1 DESIGN ISSUES IN DISTRIBUTED FILE SYSTEMS
•

A distributed file system (DFS) stores user files in several nodes of a distributed
system, so a process and a file being accessed by it often exist in different nodes
of the distributed system. This situation has three likely consequences:

• A user may have to know the topology of the distributed system to open and
access files located in various nodes of the system.

• A file processing activity in a process might be disrupted if a fault occurs in
the node containing the process, the node containing the file being accessed,
or a path connecting the two.

760

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 761 — #2

Chapter 20 Distributed File Systems 761

• Performance of the file system may be poor because of the network traffic
involved in accessing a file.

The need to avoid these consequences motivates the three design issues
summarized in Table 20.1 and discussed in the following.

Transparency A file system finds the location of a file during path name resolu-
tion (see Section 13.9.1). Two relevant issues in a distributed file system are: How
much information about the location of a file should be reflected in its path name,
and can a DFS change the location of a file to optimize file access performance?
The notion of transparency has two facets that address these issues.

• Location transparency: The name of a file should not reveal its location.
• Location independence: The file system should be able to change the location

of a file without having to change its name.

Location transparency provides user convenience, as a user or a computation
need not know the location of a file. Location independence enables a file system
to optimize its own performance. For example, if accesses to files stored at a
node cause network congestion and result in poor performance, the DFS may
move some of those files to other nodes. This operation is called file migration.
Location independence can also be used to improve utilization of storage media
in the system. We discuss these two facets of transparency in Section 20.2.

Fault Tolerance A fault disrupts an ongoing file processing activity, thereby
threatening consistency of file data and metadata, i.e., control data, of the file
system. A DFS may employ a journaling technique as in a conventional file

Table 20.1 Design Issues in Distributed File Systems

Design issue Description

Transparency High transparency of a file system implies that a user need
not know much about location of files in a system.
Transparency has two aspects. Location transparency implies
that the name of a file should not reveal its location in the file
system. Location independence implies that it should be
possible to change the location of a file without having to
change its name.

Fault tolerance A fault in a computer system or a communication link may
disrupt ongoing file processing activities. It affects availability
of the file system and also impairs consistency of file data and
metadata, i.e., control data, of the file system. A DFS should
employ special techniques to avoid these consequences of
faults.

Performance Network latency is a dominant factor of file access times in a
DFS; it affects both efficiency and scalability of a DFS.
Hence a DFS should use techniques that reduce network
traffic generated by file accesses.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 762 — #3

762 Part 5 Distributed Operating Systems

system to protect consistency of metadata, or it may use a stateless file server
design, which makes it unnecessary to protect consistency of metadata when a
fault occurs. To protect file data, it may provide transaction semantics, which
are useful in implementing atomic transactions (see Section 19.4.1), so that an
application may itself achieve fault tolerance if it so desires. We discuss fault
tolerance issues in Section 20.4.

Performance Performance of a DFS has two facets—efficiency and scalabil-
ity. In a distributed system, network latency is the dominant factor influencing
efficiency of a file processing activity. Network latency typically exceeds the pro-
cessing time for a file record so, unlike I/O device latency, it cannot be masked by
blocking and buffering of records (see Sections 14.8 and 14.9). A DFS employs the
technique of file caching, which keeps a copy of a remote file in the node of a pro-
cess that accesses the file. This way accesses to the file do not cause network traffic,
though staleness of data in a file cache has to be prevented through cache coherence
techniques. Scalability of DFS performance requires that response times should
not degrade when system size increases because of addition of nodes or users. A
distributed system is composed of clusters, which are groups of computer systems
having high-speed LANs (see Section 16.2), so caching a single copy of a file in a
cluster ensures that file access performance for accesses from a computer system
within a cluster would be independent of system size. It also reduces network traf-
fic. Both these effects help in enhancing scalability of DFS performance. When
several processes access the same file in parallel, distributed locking techniques
are employed to ensure that synchronization of the file processing activities scales
well with an increase in system size. We discuss DFS performance enhancement
techniques in Section 20.5.

20.1.1 Overview of DFS Operation
Figure 20.1 shows a simplified schematic of file processing in a DFS. A pro-
cess in node N1 opens a file with path name . . . alpha. We call this process
a client process of this file, or simply a client of this file, and call node N1 the
client node. Through path name resolution, the DFS finds that this file exists in
node N2, so it sets up the arrangement shown in Figure 20.1. The file system
component in node N2 is called a file server, and node N2 is called the server
node. Other nodes that were involved in path name resolution or that would be
involved in transferring file data between nodes N1 and N2 are called intermediate
nodes.

We refer to this model as the remote file processing model. An arrangement
analogous to RPC is used to implement file accesses through stub processes called
file server agent and client agent (see Section 16.5.2). When the client opens the
file, the request is handed over to the client agent. The client agent communicates
the request to the file server agent in node N2, which hands over the request to the
file server. The file server opens alpha and builds fcbalpha. When file caching
is not employed, a read or write operation on alpha is implemented through a

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 763 — #4

Chapter 20 Distributed File Systems 763

Node N1 Node N2

Open files table

fcbalpha

fmt

Client

process

Client

agent

File server

agent

File

server

File

cache
Cache

manager

Figure 20.1 Basics of file processing in a distributed file system.

message between the client agent and the file server agent. I/O buffers for the file
exist at node N2, and only one record at a time gets passed to the client.

When file caching is employed, a read or write request is routed to the
cache manager, which checks whether the required data can be accessed from
or deposited in the file cache. The cache manager interacts with the file server
agent through messages when it needs to transfer data between the file cache
and the file. For efficiency reasons, the client agent and the cache manager are
typically rolled into a single unit.

20.2 TRANSPARENCY
•

In a conventional file system, a user identifies a file through a path name. He is
aware that the file belongs in a specific directory; however, he is not aware of its
location in the system. The location info field of the file’s directory entry indicates
the file’s location on disk. This arrangement would be adequate to provide location
transparency in a DFS as well—a user would use a path name to access a file, and
the DFS would obtain the location of the file from its directory entry. The DFS
may choose to keep all files of a directory in the same node of the distributed
system, or disperse them to different nodes. In the former case, its metadata
would be identical with that of a conventional file system. In the latter case, the
location info field of the directory entry of a file would contain a pair (node id,
location).

Providing location independence would require the information in the location
info field of a directory entry to change dynamically. Now, the DFS could change
the location of a file at will, so long as it puts information about the new location in
the location info field of the directory entry. It should similarly change information
in all links to the file (see Section 13.4.2). To simplify these changes, a DFS may
use the following arrangement: Each file is assigned a globally unique file id.
The directory entry of the file contains this file id. DFS maintains a separate
data structure to hold (file id, file location) pairs. This way, the DFS needs to
change only one pair in this data structure when the location of a file is changed,
irrespective of the number of links to the file.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 764 — #5

764 Part 5 Distributed Operating Systems

Most distributed file systems provide location transparency, but not location
independence. Hence files cannot be migrated to other nodes. This restriction
deprives the DFS of an opportunity to optimize file access performance.

20.3 SEMANTICS OF FILE SHARING
•

Semantics of file sharing determine the manner in which the effect of file manip-
ulations performed by concurrent users of a file are visible to one another. Recall
from the discussion in Section 13.10 that all clients concurrently processing a
single-image mutable file have the same view of its contents, so modifications
made by one client are immediately visible to other clients processing the file.
Clients processing a multiple-image mutable file can have different views of its
contents. When their file processing activities complete, the file system can either
reconcile these views in some manner to create a single image, or support exis-
tence of many versions of the file. In the latter case, it has to ensure that any
client that opens the file subsequently gets access to the correct version of the
file. Table 20.2, summarizes key features of three file sharing semantics—Unix
semantics, session semantics, and transaction semantics.

Unix Semantics Recall from Section 13.10 that Unix file sharing semantics sup-
port a single-image mutable file. Thus, updates made by one client are visible to
other clients immediately. Clients may optionally share the offset into a file. This
feature is useful if clients process a file jointly. The Unix semantics are easy and
efficient to implement in a conventional file system; however, as discussed later
in Section 20.5.2, they incur the overhead of cache coherence in a DFS that uses
file caching.

Table 20.2 Features of File Sharing Semantics

Semantics Description

Unix semantics A single-image mutable file is implemented. The effect of a
write operation in a file by one client is visible immediately to
other clients of the file. Clients may optionally share the file
offset, i.e., pointer to the next record in a file.

Session semantics A multiple-image mutable file is implemented. Only clients in a
session share the same image of a file. Updates made by a
client are visible to other clients in the same session
immediately; they are visible to other clients only after the file
is closed.

Transaction
semantics

File processing performed by a client is implemented as an
atomic transaction, so either all file operations are performed
or none of them are performed. This property simplifies fault
tolerance.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 765 — #6

Chapter 20 Distributed File Systems 765

SF1 SF2 SF3

Node

N2

Node

N1

C C C C C C C C

FFF

SF1 SF2 SF3

Figure 20.2 Three sessions in a DFS using session semantics.

Session Semantics A session consists of some of the clients of a file that are
located in the same node of a system. Clients in one session share a single mutable
image of the file. Thus, result of a write operation performed by a client process
is visible to other clients in the same session immediately, but not to clients in
other sessions.

Formation of sessions and visibility of file images is governed by the follow-
ing rules: Let SF i be a session involving a set of clients processing file F. When
another client located in the same node opens file F, the DFS would let it join
session SF i if none of the clients in SF i had closed F after performing a write
operation; otherwise, the DFS would start a new session. When a client located
in another node opens file F, the DFS always starts a new session. Figure 20.2
illustrates three sessions SF1, SF2, and SF3 on a file F. Two of these sessions are
in node N1 for the reasons mentioned above. A new version of the file would be
created every time a client closes a file after modifying it. However, session seman-
tics do not specify the rules for deciding which version of a file should be opened
when a new session is started, so file systems may implement this aspect differ-
ently. Consequently, applications that use session semantics may not be portable.
Session semantics are easy to implement in a DFS employing file caching because
changes made in a file are not to be visible to clients in other nodes.

Transaction Semantics The file processing activity of each client is performed as
an atomic transaction. Transaction semantics can be implemented by treating the
open and close operations on a file as the beginning and end of a transaction,
providing a mutually exclusive access to a file by setting a lock on the file, and
performing file updates as discussed in Section 19.4.1. Thus, only one client can
access a file at any time and either all updates made by it are reflected in the
file or none are. The all-or-nothing property of transaction semantics always
maintains a file in a consistent state. Consequently, a client can simply reexecute
a file processing activity that is disrupted by a fault. Locking of a file also implies
that the DFS does not have to handle concurrent accesses to a file by clients.

20.4 FAULT TOLERANCE
•

File system reliability has several facets. A file must be robust, i.e., it must survive
faults in a guaranteed manner. It must be recoverable to an earlier state when a

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 766 — #7

766 Part 5 Distributed Operating Systems

failure occurs. It must also be available despite faults in the system, i.e., a copy
of the file should be accessible at all times and a client process should be able
to open it for processing. Robustness and recoverability depend on how files are
stored and backed up, respectively, while availability depends on how files are
opened and accessed. All these facets are independent of one another. Thus a
file may be recoverable without being robust or available, recoverable and robust
without being available, available without being recoverable or robust, and so on.
Robustness is achieved by using techniques for reliable storage of data, e.g., the
disk mirroring technique used in RAID level 1 (see Section 14.3.5). Recoverability
and availability are achieved through special techniques discussed in this Section.

Faults in the server or intermediate nodes during a file open operation
disrupt path name resolution. Such faults are tolerated through availability tech-
niques. The DFS maintains many copies of the information required for path
name resolution, and many copies of a file. If a copy is inaccessible because of a
fault, the DFS uses another copy. However, availability techniques become very
complex and expensive if faults that occur during file processing are to be tol-
erated (see Section 19.4.2 for the quorum-based fault tolerance techniques to
handle replicated data). Hence few, if any, distributed file systems handle such
faults.

Faults in the server or client nodes during file processing may result in loss of
state. As we shall see in Section 20.4.3, a file server can be designed such that its
operation is not disrupted if state information is lost because of a fault. However,
clients may not use special design techniques to protect against loss of state, so
client node crashes can be messy. The only defense against client node crashes
is the use of transaction semantics in the file server, whereby the file would be
restored to its state before the failed client had started its processing. A fault in
an intermediate node does not affect file processing if the communication system
has sufficient resiliency, i.e., if it can tolerate a few link and node faults. Hence
file systems do not address these faults.

Table 20.3 summarizes fault tolerance techniques used in distributed file sys-
tems. File replication and cached directories address faults in a file server and
in intermediate nodes during an open operation. The stateless file server design
addresses faults in a file server during file processing. Following sections describe
these techniques.

20.4.1 Availability
A file is said to be available if a copy of the file can be opened and accessed
by a client. Ability to open a file depends on whether path name resolution can
be completed, i.e., whether the server node and all nodes involved in path name
resolution are functional. Ability to access a file requires only the client and server
nodes to be functional, because a path between the two is guaranteed by resiliency
of the network.

Consider a path name a/b/c/d, where directory files a, b, c and file d exist
in nodes A, B, C, and D, respectively. Two approaches can be employed to resolve
this path. When the DFS finds that file b exists in node B, it would send the path

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 767 — #8

Chapter 20 Distributed File Systems 767

Table 20.3 Fault Tolerance Techniques of Distributed File Systems

Technique Description

Cached directories A cached directory is a copy of a directory that exists at a
remote site. It helps the DFS to tolerate faults in intermediate
nodes involved in path name resolution.

File replication Several copies of a file are maintained in the interest of
availability. Special techniques are used to avoid
inconsistencies between the copies. The primary copy
technique permits client programs to read-access any copy of
a file but restricts file updates only to a special copy called the
primary copy. The results of these updates are propagated to
other copies. This method simplifies concurrency control.

Stateless file server A conventional file server maintains information concerning
state of a file processing activity in the metadata, for example,
in file control blocks and file buffers. A stateless file server
does not maintain such information, so it is immune to faults
that lead to loss of state information.

name suffix b/c/d to node B. At node B, it would look up c in directory b and
find that it exists at node C, so it would send c/d to node C, and so on. In an
alternative approach, the DFS would perform resolution of all path components
in the client node itself. When it finds that a path name component is the name of
a directory in a remote node, it would copy the directory from the remote node
and continue path name resolution using it. This way, all directories would be
copied into the client node during path name resolution. As we shall see later,
these approaches have different implications for availability. In either approach,
an access to file data does not involve the intermediate nodes involved in path
name resolution. File processing would not be affected if any of these nodes failed
after the file was opened.

Cached Directories An anomalous situation may arise when path names span
many nodes. In the previous example, let node c fail after file d was opened using
path name a/b/c/d and its processing was underway. If another client in node
A tries to open a/b/c/z, where file z also exists in node D, it would fail because
node c has failed. So file z cannot be processed even though its processing involves
the same client and server nodes as file d.

The only way to avoid this anomaly is to cache remote directories accessed
during path name resolution at the client node. For the path name a/b/c/d,
it implies that the DFS would cache the directories a/b and a/b/c at node A.
While resolving path names involving the prefixes a/b and a/b/c, the DFS
would directly use the cached directories. Thus, it would be able to resolve the
path name a/b/c/z without having to access nodes B or C. However, informa-
tion in cached directories may be outdated because of creation or deletion of files
in some of the intermediate nodes, so a cache updating protocol would have to be
used. We discuss a related issue in the next section.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 768 — #9

768 Part 5 Distributed Operating Systems

File Replication The DFS performs replication in such a way that it is
transparent to clients. Replication of a file that is likely to be updated involves a
trade-off between cost and complexity of the protocol for updating and its impli-
cations for efficient use of the file. A two-phase commit protocol could be used
to update all copies of a file at the same time. This way, stale and updated copies
of a file would not coexist, so a client would need only one copy of the file to
implement a read access. However, an update operation may be delayed if some
copies are in use by other processes or are inaccessible because of faults. Alter-
natives to this approach focus on speeding up the update operation by reducing
the number of copies that need to be updated.

In the primary copy approach, updates are directed at a single copy—the
primary copy. Other copies are invalidated when the primary copy is updated;
they would be replicated afresh when they are referenced. Alternatively, the DFS
can use a protocol similar to the readers-and-writers protocol for replicated data
(see Section 19.4.2). To provide efficiency and fault tolerance, it would make the
read and write quorums as small as possible. A timestamp would be associated
with each copy to indicate when it was last updated. These timestamps would be
compared to identify the most recent copy of data in a read quorum.

File replication works best if the use of a stale copy is also meaningful, because
changes need not be propagated to all copies of a file immediately. Directories can
be replicated in this manner. All updates are made in the primary copy. Staleness
of a directory’s copy can cause two kinds of failures—a file does not have an
entry in the directory even though it has been created, or an entry for a file exists
in the directory even though the file has been deleted. If the first kind of failure
occurs, the file server can immediately consult the primary copy to check whether
the file actually exists, and abort the process only if it does not. The second kind
of failure would occur when a read or write operation is attempted on the file.
The process would be aborted if it occurs.

20.4.2 Client and Server Node Failures
As described in Section 13.8, a conventional file system stores information con-
cerning the state of a file processing activity in metadata such as the file control
block (FCB) of the file. This state information provides an implicit context
between the file system and a client, using which a read or write operation on the
file can be performed efficiently. For example, to read the next record or byte from
a sequential file, the file system simply accesses its FCB to obtain the id of the next
record or byte to be read, and accesses the file map table (FMT) to obtain the disk
address of the next record or byte; it does not have to access the directory entry
of the file to obtain address of its FMT. We refer to this design of a file system as
a stateful design. In a distributed file system, the server node can maintain FCBs
and the open files table (OFT) in memory, just as in a conventional file system.
This arrangement provides good performance. However, use of a stateful DFS
design poses problems in the event of client and server crashes.

When a client crashes, the file processing activity would have to be aban-
doned and the file would have to be restored to its previous state so that the

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 769 — #10

Chapter 20 Distributed File Systems 769

client can restart its file processing activity. The server would have committed
resources like the FCB and I/O buffers to service the file processing activity. These
resources would have to be released, otherwise they would remain committed to
the aborted file processing activity indefinitely. These issues can be addressed as
follows: The client and the file server share a virtual circuit (see Section 16.6.5).
The virtual circuit “owns” the file processing actions and resources like file server
metadata. These actions and resources become orphans when a client or server
crash breaks the virtual circuit, so the actions would have to be rolled back and
the metadata would have to be destroyed. A client–server protocol implementing
transaction semantics may be used to ensure this. If a DFS does not provide trans-
action semantics, a client would have to make its own arrangements to restore
the file to a previous consistent state.

When a file server crashes, state information stored in server metadata is lost,
so an ongoing file processing activity has to be abandoned and the file has to be
restored to its previous state. The stateless file server design described in the next
section can be used to avoid both these problems.

20.4.3 Stateless File Servers
A stateless file server does not maintain any state information about a file pro-
cessing activity, so there is no implied context between a client and the file server.
Consequently, a client must maintain state information about a file processing
activity and provide all relevant information in a file system call. For example, a
client reading from a sequential file has to keep track of the id of the next record
or byte to be read from the file so that it can issue the following call:

read (“alpha”, <record/byte id>, <io_area address>);

At this call, the file server opens file alpha, locates its file map table, and
uses it to convert <record/byte id> into the pair (disk block id, byte offset) (see
Section 13.9.2). It then reads the disk block and provides the required record
or byte to the client. Thus, many actions traditionally performed only at file
open time are repeated at every file operation. If a file server crashes, time-outs
and retransmissions occur in the client. The file server processes a retransmit-
ted request when it recovers, and provides a reply to the client. Thus the client
perceives only a delayed response to a request and is unaware of a file server crash.

Use of a stateless file server provides fault tolerance, but it also incurs a
substantial performance penalty for two reasons. First, the file server opens a file
at every file operation, and passes back state information to the client. Second,
when a client performs a write operation, reliability considerations require that
data should be written into the disk copy of a file immediately. Consequently, a
stateless file server cannot employ buffering, file caching (see Section 20.5.2), or
disk caching (see Section 14.12) to speed up its own operation. In Section 20.5.1,
we discuss a hybrid design of file servers that avoids repeated file open operations.

A stateless file server is oblivious of client failures because it does not pos-
sess any state information for a client or its file processing activity. If a client
fails, recovers and resends some requests to the file server, the file server would

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 770 — #11

770 Part 5 Distributed Operating Systems

simply reprocess them. For the same reason, it cannot detect and discard duplicate
requests, so it may process a request more than once. An individual read or write
operation is idempotent, so its reprocessing does not pose any problem. However,
directory-related requests like creation and deletion of files are not idempotent.
Consequently, a client may receive ambiguous or misleading warnings if a state-
less file server crashes and recovers during a file processing activity. A sequence of
read and write operations may also not be idempotent. For example, a sequence
of operations involving reading of a record from a file, searching for a string xyz
in the record, insertion of a string S before string xyz, and writing of the modi-
fied record back into the file, is not idempotent. If a failed client has performed
such a nonidempotent sequence, it must restore the file to a previous state before
reissuing the sequence of operations.

20.5 DFS PERFORMANCE
•

Inherent efficiency of file access mechanisms determines peak performance of a
DFS measured as either average response time to client requests or throughput of
client requests. The DFS can achieve peak performance when all data accesses are
local to client nodes, i.e., when clients and file servers are located in the same node.
However, network latencies can completely overshadow the efficiency of access
mechanisms even when only a small fraction of file accesses cause network traffic.
This fact motivates measures to reduce network traffic caused by file processing
activities.

A DFS design is scalable if DFS performance does not degrade with an
increase in the size of a distributed system. Scalability is important for avoiding
a situation in which a DFS that used to perform well in a user’s organization
becomes a bottleneck when the organization becomes large. Scalability is achieved
through special techniques that ensure that network traffic does not grow with
size of the distributed system.

Table 20.4 summarizes techniques used to achieve high DFS performance.
These techniques are discussed in the following sections.

20.5.1 Efficient File Access
Inherent efficiency of file access depends on how the operation of a file server is
structured. We discuss two server structures that provide efficient file access.

Multithreaded File Server The file server has several threads; each thread is
capable of servicing one client request. Operation of several of these threads can
be overlapped because file processing is an I/O-bound activity. This arrangement
provides fast response to client requests and a high throughput. The number of
threads can be varied in accordance with the number of client requests that are
active at any time, and the availability of OS resources such as thread control
blocks.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 771 — #12

Chapter 20 Distributed File Systems 771

Table 20.4 Performance Techniques of Distributed File Systems

Technique Description

Multithreaded file
server design

Each thread in the file server handles one client request. File
processing is an I/O-bound activity, hence several threads can
make progress in parallel, thereby contributing to higher
throughput.

Hint-based file
server design

A hint is some information related to an ongoing file
processing activity that may be maintained by a file server.
When a suitable hint is available, the file server behaves like a
stateful file server so that it can perform a file operation
efficiently; otherwise, it behaves like a stateless file server.

File caching Some part of a file located in a remote node is copied into the
file cache in the client node. File caching reduces network
traffic during file processing by converting data transfers over
the network into data transfers that are local to a client node.

Semi-independent
clusters of nodes

A cluster of nodes is a section of the distributed system that
contains sufficient hardware and software resources such that
processes operating in a cluster rarely need resources located
elsewhere in the system.

Hint-Based File Server A hint-based file server is a hybrid design in that it has
features of both a stateful and a stateless file server. In the interest of efficiency,
it operates in a stateful manner whenever possible. At other times, it operates
in a stateless manner. A hint is some information concerning an ongoing file
processing activity, e.g., id of the next record in a sequential file that would to be
accessed by a file processing activity (see Section 13.8). The file server maintains a
collection of hints in its volatile storage. When a client requests a file operation, the
file server checks for presence of a hint that would help in its processing. If a hint is
available, the file server uses it to speed up the file operation; otherwise, it operates
in a stateless manner—it opens the file and uses the record/byte id provided by
the client to access the required record or byte. In either case, after completing
the file operation, it inserts a part of the state of the file processing activity in its
volatile storage as a hint and also returns it to the client as in a stateless file server.
The overall efficiency of the file server depends on the number of file operations
that are aided by the presence of hints.

Operation of a hint-based file server is fault tolerant because it would not
be disrupted even if all hints in the server’s volatile storage are lost because of a
crash. Users will notice only a degradation of response times until the file server
recovers and builds up a useful set of hints.

20.5.2 File Caching
The technique of file caching speeds up operation of a DFS by reducing network
traffic. It holds some data from a remote file in a buffer in a client node called

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 772 — #13

772 Part 5 Distributed Operating Systems

the file cache. The file cache and the copy of the file on a disk in the server node
form a memory hierarchy (see Section 2.2.3), so operation of the file cache and
its benefits are analogous to those of a CPU cache. Chunks of file data are loaded
from the file server into the file cache. To benefit from spatial locality, each chunk
is large enough to service a few file accesses made by a client. Studies of file size
distributions indicate small average file size, so even an entire file can be copied
into the file cache, which is called whole-file caching. Studies by Tanenbaum and
others reported that 79 percent of files in their system were smaller than 4 KB in
size and 94 percent were smaller than 16 KB. In the Andrew file system, where
the chunk size was varied on a per-client basis, chunk size was frequently 8 KB
and contained an entire file, and file cache hit ratios exceeded 0.98. A DFS may
use a separate attributes cache to cache information about file attributes.

Figure 20.3 contains a schematic diagram of file caching. The cache manager
exists on the path between a client and a file server. It loads chunks of file data
into the file cache; supplies data from the cache to clients; maintains the file cache,
using a replacement algorithm for chunks; and writes modified chunks into the
file copy in the server node. Key issues in the design of a file cache are:

• Location of the file cache
• File updating policy
• Cache validation policy
• Chunk size

The file cache can be maintained in memory of a client node, or on a disk
attached to the client node. Organizing the file cache in memory would provide
faster access to file data; however, it would result in low reliability because a
crash of the client node would lead to loss of the file cache, including any mod-
ified file data that is yet to be written to the file copy in the server. Locating the
cache on the disk would slow down access to file data, but would provide relia-
bility as the file cache and the modified data contained in it would survive client

Client

node

Client

node

Data traffic and

cache validation

traffic

Server

node

File

cache

Client1

Cache

manager
File

cache

Client2

Cache

manager

F

File

server

Figure 20.3 A schematic of file caching.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 773 — #14

Chapter 20 Distributed File Systems 773

node crashes. Redundancy-based techniques like disk mirroring could be used to
further enhance reliability of the file cache organized on a disk.

When a client performs a write operation on a disk, the modified file data
would have to be written into the file copy in the server. The decision of whether
to update the file copy immediately or at a later time involves a trade-off between
delay in the client and reliability of the DFS. It is simplest to use the write-through
policy, which updates the file cache in the client node and the file copy in the server
node at the same time. This method is reliable, because the write-through could
be implemented as a transaction to ensure that it completes; however, it delays
the client that performed the write operation. To avoid delaying the client, the
update of the file copy could be performed at a later time provided arrangements
are made to ensure that the modified data would not be lost if the client node
failed in the meanwhile. This policy is called the delayed write policy. Its varia-
tions perform the write operation at different times—when the modified chunk is
deleted from the file cache due to replacement, or when the client closes the file.

When a file is processed by many clients in parallel, copies of its data would
exist in several file caches at the same time. If one client performs a write operation,
copies in other clients’ caches become invalid, i.e., stale. The cache validation
function identifies invalid data and deals with it in accordance with the file sharing
semantics of the DFS. For example, when Unix semantics are used, file updates
made by a client should be immediately visible to other clients of the file, so the
cache validation function either refreshes invalid data or prevents its use by a
client.

Chunk size in the file cache should be large so that spatial locality of file data
contributes to a high hit ratio in the file cache. However, use of a large chunk size
implies a higher probability of data invalidation due to modifications performed
by other clients, hence more delays and more cache validation overhead than
when a small chunk size is used. So the chunk size used in a DFS is a trade-off
between these two considerations. A fixed chunk size may not suit all clients of a
DFS, so some distributed file systems, notably the Andrew file system, adapt the
chunk size to each individual client.

Cache Validation A simple method to identify invalid data is through time-
stamps. A timestamp is associated with each chunk in a file and with each of its
cached chunks. The timestamp of a chunk indicates when it was last modified.
When a chunk of the file is copied into a cache, its timestamp is also copied as
the timestamp of the cached chunk. At any time, the cached chunk is invalid if
its timestamp is smaller than the timestamp of the corresponding chunk in the
file. This way a write operation in some chunk x of a file by one client invalidates
all copies of x in other clients’ caches. Data in such a chunk is refreshed, i.e.,
reloaded, at its next reference.

Two basic approaches to cache validation are client-initiated validation and
server-initiated validation. Client-initiated validation is performed by the cache
manager at a client node. At every file access by a client, it checks whether the
required data is already in the cache. If so, it checks whether the data is valid.
If the check succeeds, the cache manager provides the data from the cache to

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 774 — #15

774 Part 5 Distributed Operating Systems

the client; otherwise, it refreshes the data in the cache before providing it to the
client. This approach leads to cache validation traffic over the network at every
access to the file. This traffic can be reduced by performing validation periodically
rather than at every file access, provided such validation is consistent with the file
sharing semantics of the DFS. Sun NFS uses this approach (see Section 20.6.1).

In the server-initiated approach, the file server keeps track of which client
nodes have which file data in their caches and uses this information as follows:
When a client updates data in some part x of a file, the file server finds the client
nodes that have x in their file cache, and informs their cache managers that their
copies of x have become invalid. Each cache manager now has an option of
deleting the copy of x from its cache, or of caching it afresh either immediately
or at the next reference to it.

Cache validation is an expensive operation, hence some file sharing semantics
like the session semantics do not require that updates made by one client should
be visible to clients in other nodes. This feature avoids the need for validation
altogether. Another way to avoid the cache validation overhead is to disable file
caching if some client opens a file in the update mode. All accesses to such a file
are directly implemented in the server node.

20.5.3 Scalability
DFS scalability is achieved through techniques that localize most data traffic
generated by file processing activities within small sections of a distributed system
called clusters of nodes or, simply, clusters (see Section 16.2). There are two reasons
why this approach is effective. First, clusters typically represent subnets like high-
speed LANs, which provide high data transfer rates, so both response time and
throughput improve when data traffic is confined to a cluster. Second, an increase
in the number of clusters does not lead to degradation of performance because
it does not add much network traffic. When a client of a DFS possessing both
location transparency and location independence accesses a remote file, the file
could be simply moved to the cluster where the client is located. If the DFS does
not possess location independence, an analogous effect can be achieved for read-
only files by replicating or caching a file in the client’s node. For files that are
updated, use of session semantics eliminates cache validation traffic, so locating
a file version in the client node would suffice to reduce network traffic.

20.6 CASE STUDIES
•

20.6.1 Sun Network File System
The Sun network file system (NFS) provides sharing of file systems in nodes oper-
ating under the SunOS operating system, which is a version of Unix. Figure 20.4
shows a schematic diagram of the NFS. It uses a two-level architecture consist-
ing of the virtual file system (VFS) layer (see Section 13.13) and the NFS layer.
The VFS layer implements the mount protocol and creates a systemwide unique

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 775 — #16

Chapter 20 Distributed File Systems 775

Client

System calls

interface

VFS interface

Other

file systems

Unix 4.2

file system

NFS layer

NFS client

RPC/XDR

Network

RPC/XDR

NFS server
Unix 4.2

file system

VFS interface

Server

Figure 20.4 Architecture of the Sun network file system (NFS).

designator for each file, called the vnode. If the file on which an operation is to
be performed is located in one of the local file systems, the VFS invokes that
file system; otherwise, it invokes the NFS layer. The NFS layer interacts with
the remote node containing the file through the NFS protocol. This architecture
permits a node to be both a client and a server at the same time.

Mount Protocol Each node in the system contains an export list that con-
tains pairs of the form (<directory>, <list_of_nodes>). Each pair indicates that
<directory>, which exists in one of the local file systems, can be remotely mounted
only in the nodes contained in <list_of_nodes>. When the superuser of a node
makes a request to mount a remote directory, the NFS checks the validity of the
request, mounts the directory, and returns a file handle, which contains the iden-
tifier of the file system that contained the remote directory, and the inode of the
remote directory in that file system. Users in the node see a directory hierarchy
constructed through such mount commands.

NFS permits cascaded mounting of file systems, i.e., a file system could
be mounted at a mount point in another file system, which is itself mounted
inside another file system, and so on. However, the NFS design carefully
avoids transitivity of the mount mechanism. For example, consider the following
situation:

1. The superuser in node N1 of the system mounts the file system C of node N3
at mount point y in the local file system B.

2. The superuser in node N2 mounts the file system B of node N1 at mount
point x in the local file system A.

The NFS does not permit users in node N2 to access the file system C that was
mounted over some part of file system B. This way, each host’s view of the direc-
tory hierarchy is the result of the mounts performed by its own superuser only,
which enables the file server to operate in a stateless manner. If this restriction were

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 776 — #17

776 Part 5 Distributed Operating Systems

not imposed, each file server would have to know about all mounts performed by
all clients over its file system, which would require the file server to be stateful.

NFS Protocol The NFS protocol uses the remote service paradigm (i.e., remote
file processing—see Section 20.1.1) through a client–server model employing
remote procedure calls (RPC). A file server is stateless, so each RPC has param-
eters that identify the file, the directory containing the file, record id and the data
to be read or written. The NFS provides calls for looking up a file within a direc-
tory; reading directory entries; manipulating links and directories; accessing file
attributes, i.e., inode information; and performing a file read/write operation.

Since a file server is stateless, it performs an implicit open and close for every
file operation, and does not use the Unix buffer cache (see Section 14.13.1.2 for
a description of the Unix buffer cache). An NFS server does not provide locking
of files or records; users must use their own means for concurrency control.

Path Name Resolution Let a user U1 located in node N1 use a path name
x/y/z/w where y is the root directory of a mounted file system. To start with,
host node N1 creates vnodex, the vnode for x. The NFS uses the mount table of
N1 while looking up the next component of the path name, so it knows that y is
a mounted directory. It creates vnodey from the information in the mount table.
Let vnodey be for a file in node N2, so the NFS makes a copy of directory y in
node N1. While looking for z in this copy y, the NFS again uses the mount table
of N1. This action would resolve z properly even if z were a file system that was
mounted by the superuser of node N1 over some point in the remote file system y.
The file server in node N2, which contains y, does not need to have any knowledge
of this mounting. Instead of using this procedure, if the path name y/z/w were
to be handed over to the file server in node N2, it would have to know about all
mounts performed by all clients over its file system. It would require the file server
to be stateful.

A directory names cache is used in each client node to speed up path name
resolution. It contains remote directory names and their vnodes. New entries
are added to the cache when a new path name prefix is resolved, and entries are
deleted when a lookup fails because of mismatch between attributes returned by
the file server and those of the cached vnodes.

File Operations and File Sharing Semantics The NFS uses two caches to speed
up file operations. A file attributes cache caches inode information. This cache is
used because it was found that a large percentage of requests made to a file server
concerned file attributes. The cached attributes are discarded after 3 seconds for
files and after 30 seconds for directories.

The file blocks cache is the conventional file cache. It contains data blocks
from the file. The file server uses large (8 Kbytes) data blocks, and uses read-
ahead and delayed-write techniques (i.e. buffering techniques, see Section 14.8)
for improving file access performance. Cache validation is performed through
timestamps associated with each file, and with each cache block. Contents of
a cached block are assumed to be valid for a certain period of time. For any
access after this time, the cached block is used only if its timestamp is larger
than the timestamp of the file. A modified block is sent to the file server for

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 777 — #18

Chapter 20 Distributed File Systems 777

writing into the file at an unspecified time during processing of a file, or when
the file is closed. This policy is used even if clients concurrently access the same
file block in conflicting modes. As a result of this policy and the cache validation
scheme, visibility of a file modification made by one client to concurrent clients
is unpredictable and the file sharing semantics are neither Unix semantics nor
session semantics.

20.6.2 Andrew and Coda File Systems
Andrew, the distributed computing environment developed at the Carnegie
Mellon University, is targeted at gigantic distributed systems containing 5000
workstations. Each workstation has a local disk, which is used to organize the
local name space. This name space contains system programs for booting and
operation of the workstation, and temporary files which are accommodated there
for performance reasons. All clients have an identical shared name space, which
is location transparent in nature. It is implemented by dedicated servers which
are collectively called Vice.

Scalable performance is obtained as follows: Clusters localize file processing
activities as much as possible so that file accesses do not cause traffic on the
system backbone network. Traffic within a cluster is reduced by caching an entire
file on the local disk of a workstation when it is opened for processing. These two
techniques ensure that network traffic in the system does not grow as system size
grows.

Shared Name Space Andrew uses the concept of a volume. A volume typically
contains files of a single user. Many volumes may exist on a disk. Andrew treats
a volume in much the same way Unix treats a disk partition, though a volume
can be substantially smaller than a disk partition. A volume can be mounted.
This fact provides a much finer granularity for mounting than in Unix. The file
identifier used by Vice contains volume number of the volume which contains a
file, and an index into the array of inodes contained in the volume.

A volume location database (VLDB) contains information about each vol-
ume in the system. This database is replicated on every server. Volumes are
migrated from one disk to another in order to balance the utilization of disks
in the system. The server that previously contained a migrated volume main-
tains some forwarding information until all servers update their volume location
databases. This arrangement simplifies volume migration by eliminating the need
to update all volume location databases at the same time. Actual migration of a
volume is performed with minimum disruption of file processing activities by the
following procedure: A copy of a volume is made at the new server. While this
operation is in progress, its original server continues to service requests. Once
the copying is completed, the volume is made off-line, recent updates performed
after the copy operation was initiated are made on the copy at the new server,
and the new copy is made operational.

File Operations and File Sharing Semantics When a client opens a file, Andrew
caches the file on the local disk of the client’s workstation using 64 KB chunks.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 778 — #19

778 Part 5 Distributed Operating Systems

However, it adapts the chunk size on a per-client basis to suit the client’s file
access pattern. As mentioned earlier in Section 20.5.2, studies conducted in the
mid-1990s have reported that chunks of 8 KB were widely used, and the hit ratio
in the file cache typically exceeded 0.98. File open/close calls are directed to a user-
level process called Venus. Venus caches a file when a client opens it, and updates
the server’s copy when the client closes the file. File read and write operations are
performed on the cached copy without involving Venus. Consequently, changes
made to a file are not immediately reflected on the server’s copy and they are
not visible to other clients accessing the file. These file sharing semantics have
some features of session semantics; however, Andrew does not maintain multiple
versions of a file.

The file copy cached by the Venus process in a node is considered to be valid
unless the Venus process is told otherwise. This way, a cached copy of a file may
persist across the close operation on the file and the next open operation on it in
the same workstation. Cache validation is performed in a server-initiated manner
using a mechanism called callback. When some file F is cached at client node N1
because of an open, the server notes this fact in its table. As long as this entry
remains in the table, node N1 is said to have a callback on F. When the copy of
F in the server is updated because some client closed F, the server removes N1’s
entry from its table and notifies the Venus process in node N1 that its callback on
F has been broken. If some client in N1 tried to open F in the future, Venus would
know that N1 does not have a callback on F, so it would cache file F once again.
Venus maintains two caches—a data cache and a status cache. The status cache
is used to service system calls that query file status information. Both caches are
managed on an LRU basis.

Path name resolution is performed on a component-by-component basis.
Venus maintains a mapping cache, which contains information concerning vol-
umes which have been accessed recently. Since volumes may be migrated, Venus
treats this information as a hint and discards it if it turns out to be wrong. During
path name resolution, Venus also copies each directory involved in the path name
in its cache. Presence of these cached copies may speed up path name resolution
in the future.

File servers are multithreaded to prevent them from becoming a bottleneck.
A lightweight process package is used to spawn new lightweight processes to
handle file requests. Client–server communication is organized by using RPCs.

Features of Coda Coda, which is a successor of the Andrew file system version 2,
added two complementary features to achieve high availability—replication and
disconnected operation. Coda supports replication of volumes. The collection of
servers that have a copy of a volume is known as the volume storage group (VSG).
Coda controls use of replicated files through the read one, write all policy—only
one of the copies needs to be available for reading; however, all copies must be
updated at the same time. A multicasting RPC called multiRPC is used for this
purpose.

A node enters the disconnected mode of operation when the subset of
VSG accessible to it is null. Andrew already supported whole-file caching in

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 779 — #20

Chapter 20 Distributed File Systems 779

a client’s node, so a client in the disconnected mode of operation could operate
on a file in isolation. The file updates made by this client would be reflected in
the file when the client’s node is able to connect to the server. Any conflicts
with file versions created by other file processing activities in the meanwhile
would have to be resolved at this time. This step can be automated in an
application-specific manner; however, it may require human intervention in some
cases.

Having a single file in cache may not be adequate for disconnected opera-
tion, so Coda provides hoarding of files. A user can provide a hoarding database,
which contains path names of important files, to Coda. During a session initi-
ated by the user, Coda uses a prioritized cache management policy to hold some
recently accessed files and files named in the hoarding database in the cache of
the user’s node. This set of files is refined by recomputing their priorities period-
ically. This way, the cache in the node may contain an adequate set of files when
the node becomes disconnected, which would enable meaningful disconnected
operation.

20.6.3 GPFS
The general parallel file system is a high-performance shared-disk file system
for large computing clusters operating under Linux. GPFS uses data striping
(see Section 14.3.5) across all disks available in a cluster. Thus, data of a file is
written on several disks, which can be read from or written to in parallel. A large-
size block, i.e., strip, is used to minimize seek overhead during a file read/write;
however, a large disk block may not provide high data transfer rates for small files
that would occupy only a small number of strips, so a smaller subblock, which
could be as small as 1

32 of a block, is used for small files.
Locking is used to maintain consistency of file data when processes in several

nodes of the cluster access a common file. High parallelism in accessing a common
file requires fine-grained locking, whereas low locking overhead requires coarse-
grained locking. So GPFS uses a composite approach that works as follows:
The first process that performs a write operation on a file is given a lock whose
byte range covers the entire file. If no other process accesses the same file, this
process does not have to set and reset locks while processing the file. If another
process wishes to write into the same file, that process is given a lock with a
byte range that covers the bytes it wishes to write, and the byte range in the lock
already held by the first process is reduced to exclude those bytes. This way the
lock granularity is as coarse as possible, but as fine as necessary, subject to the
restriction that the byte range in a lock cannot be smaller than a data block on
a disk. Whenever the byte range in a lock is narrowed, updates made on the
bytes that are not covered by the new byte range in the lock are flushed to the
file. This way, a process acquiring a lock for these bytes would see their latest
values.

The locking scheme of GPFS involves a centralized lock manager and a few
distributed lock managers, and employs the notion of lock tokens to reduce the
latency and overhead of locking. The first time some process in a node accesses

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 780 — #21

780 Part 5 Distributed Operating Systems

a file, the centralized lock manager issues a lock token to that node. This token
authorizes the node to locally issue locks on the file to other processes in that
node, until the lock token is taken away from it. This arrangement avoids repeated
traffic between a node and the centralized lock manager for acquiring locks on
a file. When a process in some other node wishes to access the same file, the
centralized lock manager takes away the lock token from the first node and gives
it to the second node. Now, this node can issue locks on that file locally. The data
bytes covered by byte ranges in the locks issued by a node can be cached locally
at that node; no cache coherence traffic would be generated when these bytes are
accessed or updated because no process in another node is permitted to access
these bytes.

Race conditions may arise over the metadata of a file, such as the index
blocks in the FMT, when several nodes update the metadata concurrently. For
example, when two nodes add a pointer each to the same index block in the FMT,
one client’s update of the block would be lost when another client updates it. To
prevent inconsistencies due to race conditions, one of the nodes is designated as
the metanode for the file, and all accesses and updates to the file’s metadata are
made only by the metanode. Other nodes that update the file send their metadata
to the metanode and the metanode commits them to the disk.

The list of free disk space can become a performance bottleneck when file
processing activities in many nodes need more disk space. The central allocation
manager avoids it by partitioning the free space map and giving one partition of
the map to each node. A node makes all disk space allocations, using its partition
of the map. When the free space in that partition is exhausted, it requests the
allocation manager for another partition.

Each node writes a separate journal for recovery. This journal is located in
the file system to which the file being processed belongs. When a node fails, other
nodes can access its journal and carry out the pending updates. Consistency of
the data bytes updated in this manner is implicit because the failed node would
have locked the data bytes; these locks are released only after the journal of the
failed node is processed.

Communication failures may partition the system. However, file process-
ing activities in individual nodes may not be affected because nodes may be
able to access some of the disks. Such operation of the file system can lead to
inconsistencies in the metadata. To prevent such inconsistencies, only nodes in
one partition should continue file processing and all other nodes must cease
file processing. GPFS achieves it as follows: Only nodes in the majority par-
tition, i.e., the partition that contains a majority of the nodes, are allowed to
perform file processing at any time. GPFS contains a group services layer that
uses heartbeat messages to detect node failures; it notifies a node when the node
has fallen out of the majority partition or has become a part of the majority
partition once again. However, this notification may itself be delayed indef-
initely because of communication failures, so GPFS uses features in the I/O
subsystem to prevent those nodes that are not included in the majority partition
from accessing any disks. GPFS uses a replication policy to protect against disk
failures.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 781 — #22

Chapter 20 Distributed File Systems 781

20.6.4 Windows
The file system of the Windows Server 2003 provides two features for data
replication and data distribution:

• Remote differential compression (RDC) is a protocol for file replication that
reduces the file replication and file coherence traffic between servers.

• DFS namespaces is a method of forming a virtual tree of folders located on
different servers, so that a client located in any node can access these folders.

Replication is organized by using the notion of a replication group, which is
a group of servers that replicates a group of folders. If a client wishes to access
several of these folders, it is made to access them off the same server. The RDC
protocol is used to synchronize copies of a replicated folder across servers in its
replication group. This protocol transmits only changes made to a file, or only
the differences between copies of a file, among different members of a replica-
tion group, thereby conserving bandwidth between servers. Copies of a file are
synchronized periodically. When a new file is created, cross-file RDC identifies
existing files that are similar to the new file, and transmits only differences of the
new file from one of these files to members of the replication group. This protocol
reduces the bandwidth consumed by the replication operation.

The DFS namespace is created by a system administrator. For every folder
in the namespace, the administrator specifies a list of servers that contain a copy
of the folder. When a client refers to a shared folder that appears in the namespace,
the namespace server is contacted to resolve the name in the virtual tree. It sends
back a referral to the client, which contains the list of servers that contain a copy
of the folder. The client contacts the first server in this list to access the folder.
If this server does not respond and client failback is enabled, the client is notified
of this failure and goes on to contact the next server in the list. Thus, if the list
of servers contains two servers, the second server acts as a hot standby for the
first server.

20.7 SUMMARY
•

A distributed file system (DFS) stores user files
in several nodes of a distributed system, hence a
process and a file being accessed by it may exist
in different nodes. This situation requires a dis-
tributed file system to use special techniques so
that a user (1) need not know where a file is
located, (2) can perform file processing even when
link and node failures occur in the system, and
(3) can process files efficiently. In this chapter we
discussed how distributed file systems fulfill these
requirements.

The notion of transparency concerns the asso-
ciation between the path name of a file and location
of the file—whether a user must know a file’s
location in order to access it and whether the sys-
tem can change the location without affecting the
file’s name. High transparency provides user con-
venience and also enables a DFS to reduce network
traffic by moving a file to a node where it is accessed
very frequently. File sharing semantics represent
another aspect of user convenience. They specify
whether the file updates made by a process would

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 782 — #23

782 Part 5 Distributed Operating Systems

be visible to other processes accessing the file con-
currently. Three popular file sharing semantics are
as follows: In Unix semantics, file updates made
by a process are visible immediately to all other
processes using the file. In session semantics, the
updates made by a process are visible to only some
processes in the same node. In transaction seman-
tics, a complete file processing activity is treated
as a single atomic transaction so that either all file
updatesmadeduring theactivity are reflected in the
file or none of them are, and the updates made by a
file processing activity are visible to other processes
only after the activity completes.

High availability of a file system requires that
a file processing activity in a process should not be
affected by a transient fault in the node holding
the file, which is called the server node. The DFS
uses a stateless server design to provide high avail-
ability. The stateless server does not maintain any
state information about an ongoing file processing
activity. Consequently, a crash of the server node
does not disrupt the file processing activity—it can
be resumed when the server’s operation is restored.
However, the stateless design of the server implies
that every time a file is accessed, the file server
would have to access the directory entry of the file

to find its location. The notion of a hint is used
to improve performance of a stateless file server.
A hint is simply a part of DFS state; however, the
server is designed in such a manner that it uses a
hint if one is available, but proceeds in a stateless
manner if a hint is not available.

Performance of a DFS is affected by network
latencies when a process and the file processed by
it exist in different nodes. A DFS uses the tech-
nique of file caching to improve its performance.
It maintains a copy of a file’s data in the node
where the process exists, so that accesses to file
data are implemented locally in the node rather
than over the network. If processes located in dif-
ferent nodes update the same file concurrently,
copies of the file would exist in caches in many
nodes, so a process may not see the latest value
of the data that was updated by another process.
This problem is overcome by using cache coher-
ence techniques, which prevent accesses to stale file
data. However, it causes network traffic for refresh-
ing stale copies of a file’s data in caches, which
reduces the benefit of file caching. Session seman-
tics eliminate the cache coherence traffic because
updates made by a process are not visible outside
its node.

TEST YOUR CONCEPTS
•

20.1 Classify each of the following statements as true
or false:
a. Location independence in a distributed file

system provides user convenience.
b. The session semantics use multiple-image

mutable files.
c. Robustness of a file can be achieved through

disk mirroring.
d. File caching has exactly the same effect as

file migration, i.e., movement of files among
nodes in the system.

e. Directory caching improves file access perfor-
mance in a distributed file system.

f. Faults that occur in a file server during a file
processing activity can be tolerated by using
a stateless file server.

20.2 Select the appropriate alternative in each of the
following questions:
a. A distributed file system uses file caching to

ensure good file access performance. Which
file sharing semantics cause the least cache
validation overhead?

i. Session semantics
ii. Unix semantics
iii. Transaction semantics.

b. File replication improves
i. Robustness of a file system
ii. Recoverability of a file system
iii. Availability of a file system
iv. None of (i)–(iii).

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 783 — #24

Chapter 20 Distributed File Systems 783

EXERCISES
•

20.1 Discuss how session semantics can be imple-
mented.

20.2 Should a DFS maintain file buffers at a server
node or at a client node? What is the influence of
this decision on Unix file sharing semantics (see
Section 13.10) and session semantics?

20.3 Justify the following statement: “File caching
integrates well with session semantics, but not
so with Unix semantics.”

20.4 Discuss the various techniques discussed in this
chapter and in Chapters 13 and 19 that can be
used to ensure robustness of a file.

20.5 Discuss how a client should protect itself against
failures in a distributed file system using (a) a

stateful file server design, (b) a stateless file server
design.

20.6 What are the benefits and limitations of spawn-
ing multiple threads in a file server to han-
dle file processing activities of different clients?
Describe the synchronization requirements of
these threads.

20.7 Discuss important issues to be handled during
recovery of a failed node in a system that uses
file replication to provide availability.

20.8 Discuss how locking can be used to reduce cache
validation overhead and enhance scalability of a
distributed file system.

BIBLIOGRAPHY
•

Svobodova (1986) and Levy and Silberschatz (1990)
are survey papers on distributed file systems. Comer
and Peterson (1986) discusses concepts in naming and
discusses name resolution mechanisms in many systems.

Lampson (1983) and Terry (1987) discuss use of
hints to improve performance of a distributed file system.
Makaroff and Eager (1990) discusses effect of cache sizes
on file system performance.

Brownbridge et al. (1982) discusses the Unix United
system, which is an early network file system. Sandberg
(1987) and Callaghan (2000) discuss the Sun NFS.
Satyanarayanan (1990) discusses the Andrew distributed
file system, while Kistler and Satyanarayanan (1992)
describes the Coda file system. Braam and Nelson
(1999) discusses the performance bottlenecks in Coda
and Intermezzo, which is a sequel to Coda that incor-
porates journaling. Russinovich and Solomon (2005)
discusses data replication and data distribution features
of the Windows file system.

Application processes running in different nodes
of a cluster of computer systems may make parallel
accesses to files. Thekkath et al. (1997) discusses a scal-
able distributed file system for clusters of computer
systems. Preslan et al. (2000) describes fault tolerance
in a cluster file system through journaling. Carns et al.
(2000) discusses a parallel file system that provides high
bandwidth for parallel file accesses to data in shared

files. Schmuck and Haskin (2002) discusses use of shared
disks in a parallel file system and describes distributed
synchronization and fault tolerance techniques.

1. Braam, P. J., and P. A. Nelson (1999): “Removing
bottlenecks in distributed file systems: Coda and
InterMezzo as examples,” Proceedings of Linux
Expo, 1999.

2. Brownbridge, D. R., L. F. Marshall, and
B. Randell (1982): “The Newcastle Connection
or UNIXes of the World Unite!,”
Software—Practice and Experience, 12 (12),
1147–1162.

3. Callaghan, B. (2000): NFS Illustrated,
Addison-Wesley, Reading, Mass.

4. Carns, P. H., W. B. Ligon III, R. B. Ross, and
R. Thakur (2000): “PVFS: A parallel file system
for Linux Clusters,” 2000 Extreme Linux
Workshop.

5. Comer, D., and L. L. Peterson (1986): “A model
of name resolution in distributed mechanisms,”
Proceedings of the 6th International Conference on
Distributed Computing Systems, 509–514.

6. Ghemawat, S., H. Gobioff, and S. T. Leung
(2003): “The Google file system,” Proceedings of
the 19th ACM Symposium on Operating System
Principles, 29–43.

20-M4363-DAS1.LaTeX: “chap20” — 2007/11/13 — 15:48 — page 784 — #25

784 Part 5 Distributed Operating Systems

7. Gray, C. G., and D. R. Cheriton (1989): “Leases:
an efficient fault-tolerant mechanism for
distributed file cache consistency,” Proceedings of
the 12th ACM Symposium on Operating Systems
Principles, 202–210.

8. Kistler, J. J., and M. Satyanarayanan (1992):
“Disconnected operation in the Coda file
system,” ACM Transactions on Computer
Systems, 10, 1, 3–25.

9. Lampson, B. W. (1983): “Hints for computer
system designers,” Proceedings of the 9th
Symposium of Operating Systems Principles,
33–48.

10. Levy, E., and A. Silberschatz (1990): “Distributed
File Systems: Concepts and Examples,”
Computing Surveys, 22 (4), 321–374.

11. Melamed, A. S. (1987): “Performance analysis of
Unix-based network file systems,” IEEE Micro,
25–38.

12. Makaroff, D. J., and D. L. Eager (1990): “Disk
cache performance for distributed systems,”
Proceedings of the 10th International Conference
on Distributed Computing Systems, 212–219.

13. Preslan, K. W., A. P. Barry, J. Brassow,
R. Cattelan, A. Manthei, E. Nygaard, S. V. Oort,
D. Teigland, M Tilstra, M. O’Keefe, G. Erickson,
and M. Agarwal (2000): “Implementing

journaling in a Linux shared disk file system,”
Proceedings of the 7th IEEE Symposium on Mass
Storage Systems, 351–378.

14. Russinovich, M. E., and D. A. Solomon (2005):
Microsoft Windows Internals, 4th ed., Microsoft
Press, Redmond, Wash.

15. Sandberg, R. (1987): The Sun Network File
System: Design, Implementation, and experience,
Sun Microsystems, Mountain View, Calif.

16. Satyanarayanan, M. (1990): “Scalable, secure,
and highly available distributed file access,”
Computer, 23 (5), 9–21.

17. Schmuck, F., and R. Haskin (2002): “GPFS: A
shared-disk file system for large computing
clusters,” Proceedings of the First USENIX
Conference on File and Storage Technologies,
231–244.

18. Svobodova, L. (1986): “File servers for
network-based distributed systems,” Computing
Surveys, 16 (4), 353–398.

19. Terry, D. B. (1987): “Caching hints in distributed
systems,” IEEE Transactions on Software
Engineering, 13 (1), 48–54.

20. Thekkath, C. A., T. Mann, and E. K. Lee (1997):
“Frangipani: A scalable DFS,” Proceedings of the
16th ACM symposium on Operating System
Principles, 224–237.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 785 — #1

C h a p t e r 21
Distributed System
Security

Processes in a distributed OS use the network for accessing distant resources
and for communicating with other processes. The network may include
public communication channels or computer systems called communica-

tion processors that are not under control of the distributed OS. Hence an intruder
located in a communication processor may be able to corrupt interprocess mes-
sages to disrupt operation of processes or fabricate messages to masquerade as a
user and access his resources.

A distributed OS employs message security techniques to prevent intruders
from tampering with interprocess messages. Encryption forms the backbone of
these techniques; however, use of encryption implies that cryptographic attacks
must be prevented and processes must know what encryption keys to use while
communicating with other processes. These issues are tackled either through
use of public key encryption or through use of session keys, which are securely
distributed to communicating processes by key distribution centers. To prevent
masquerading, the distributed OS provides trusted third-party authentication
means for use while sending messages or using resources.

In this chapter, we discuss message security and authentication techniques
of distributed systems. We also discuss how integrity and authenticity of data is
ensured through message authentication codes and digital signatures, respectively.

21.1 ISSUES IN DISTRIBUTED SYSTEM SECURITY
•

We term the nodes that are directly under control of the distributed OS as secure
nodes. They contain resources and offer services to users and their processes.
As shown in Figure 21.1, a user process accesses a remote resource through a
message sent to the resource coordinator process. Such a message may travel
over public networks and pass through computer systems called communication
processors, which operate under local operating systems. Communication pro-
cessors employ a store-and-forward model to route a message to its destination.
Thus, messages between processes are exposed to observation and interference

785

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 786 — #2

786 Part 5 Distributed Operating Systems

Remote

user

process

Resource

coordinator

process

N1

Pi Pj

N2

·· ··

Secure node Secure node

CP

Figure 21.1 Security threats in a network.

by external entities. This situation raises new security threats that do not arise in
a conventional system.

Security threats in distributed operating systems are of four kinds:

1. Leakage: Release of message contents to unauthorized user(s).
2. Tampering: Modification of message contents.
3. Stealing: Use of system resources without authorization.
4. Denial of service to authorized users: This threat can be in the form of willful

destruction of system resources not amounting to stealing, i.e., destruction
without any gain to the perpetrator, or disruption of access to resources.

Leakage and tampering are termed threats to message security. Tampering
may be employed to modify the text of a message, which is a threat to its integrity,
or modify the identity of its sender, which is a threat to its authenticity. An intruder
can perform stealing by masquerading through tampering. Denial of service can
be achieved by tampering with the text of a message or ids of its source and
destination processes, or by masquerading. These security threats are addressed
through two means:

• Message security techniques: Special techniques are employed to thwart
attacks on messages.

• Authentication of remote users: Trusted means are provided to authenticate
remote users.

Attacks on integrity and authenticity are addressed through a combination of
these two means.

21.1.1 Security Mechanisms and Policies
Figure 21.2 shows an arrangement of security mechanisms and policies. Authen-
tication in conventional systems has been described earlier in Chapter 15.
Authentication in a distributed system has two new facets: The authentication ser-
vice must be trustworthy and available to all nodes in a system. Encryption is used
to ensure secrecy and integrity of the authentication and authorization databases.
It is also used to implement message security by encoding the text of messages.
Processes need to know what encryption keys to use while communicating with
other processes. The lower-level mechanism called key distribution generates and

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 787 — #3

Chapter 21 Distributed System Security 787

Authenti-

cation

Key

distribution

Encryption

Policies

Figure 21.2 Mechanisms and policies for distributed system security.

Table 21.1 Classes of Security Attacks in Distributed Systems

Attack Description

Eavesdropping An intruder listens to interprocess messages over the
network to obtain information concerning message content
or statistical features of messages.

Message tampering An intruder intercepts messages, alters their contents, and
reinserts them into the communication stream.

Message replay An intruder makes copies of messages exchanged by
communicating processes and inserts the copies into the
communication stream at a later time as if they were genuine
messages being sent at that time.

Masquerading An intruder is able to pass off as an authorized user of the
system while consuming resources, and while sending and
receiving messages.

distributes encryption keys for use by communicating processes; it is discussed in
Section 21.2.1.

21.1.2 Security Attacks in Distributed Systems
Security attacks in distributed systems, which are typically launched through
messages, can be classified into the four classes summarized in Table 21.1. Eaves-
dropping can take various forms like obtaining the content of a message or
collecting information about messages exchanged by specific nodes or passing
over specific links. In a police or military information system, the latter analyses
can be used to reveal or guess identities of communicating entities. Message tam-
pering can be used to mislead the recipient of a message. This attack is feasible
in a store-and-forward network.

Message replay can be used to achieve a variety of nefarious ends. The recip-
ient of a replayed message may be misled into thinking that messages are being
exchanged in real time. If the recipient is a user process, it might be fooled into
taking actions that are unnecessary, absurd, or wasteful in terms of resources.
It may also be misled into revealing confidential information. If the recipient is a
server process, a replayed message may lead to wrong authentication, leading to
opportunities for masquerading or stealing of resources.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 788 — #4

788 Part 5 Distributed Operating Systems

In masquerading, an intruder is able to pass off as an authorized user of the
system. The intruder could corrupt or destroy information belonging to the user,
or communicate with other processes and trick them into believing that they are
communicating with the user.

Passive and Active Attacks Security attacks can be classified into passive attacks
and active attacks. A passive attack does not interfere with the system’s function-
ing in any manner. It neither fabricates messages nor destroys genuine messages.
Eavesdropping is an example of a passive attack. An active attack interferes with
a system’s functioning. Replay, fabrication, modification, and destruction of mes-
sages are examples of active attacks. Passive attacks are harder to detect or thwart
than active attacks.

21.2 MESSAGE SECURITY
•

Approaches to message security can be classified into link-oriented approaches and
end-to-end approaches. In a link-oriented approach, security measures are applied
at every link of a communication path. This approach tends to be expensive since
its cost depends on the number of links over which a message travels. For example,
if a message between process Pi located at node N1 and process Pj located at
node N3 passes along the path N1-N2-N3, it has to incur security overhead for
links N1-N2 and N2-N3. In the end-to-end approach, security measures can be
employed selectively by nodes or processes in the system. This feature permits
users to employ security measures with varying degrees of cost and sophistication.
In the following discussion, we will assume that end-to-end measures are used.

We describe three approaches to message security. They involve encryp-
tion using public keys, private keys, and session keys, respectively. Table 21.2
summarizes their features.

Private Key Encryption Private key encryption (also called secret key encryption)
is the classical approach based on symmetric keys. Each process Pi has a private
key Vi known to itself and to a few other processes in the system. A process
sending a message to Pi must encrypt it by using Vi . On receiving a message, Pi
decrypts it by using Vi . The main advantage of private key encryption is that the
number of encryption keys in the system is limited to n, where n is the number of
communicating entities in the system. Since all messages intended for process Pi
are encrypted with the same key, Pi need not know the identity of the sender of
a message in order to read the message.

Private key encryption suffers from a few drawbacks. Each sender process
needs to know the private key of Pi . Thus, many processes know the private key
of a process, and an intruder may discover it as a result of somebody’s negligence.
The private key is exposed to intruder attacks over a long period of time, so
chances of a successful attack on the private key increase with time; however, it is
not possible to change the private key of a process because it is known to many
other processes in the system.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 789 — #5

Chapter 21 Distributed System Security 789

Table 21.2 Encryption Techniques Used for Message Security

Technique Description

Private key
encryption

Employs symmetric encryption. A process Pi has a unique
encryption key Vi called the private key. All messages sent
to Pi must be encrypted by using Vi . Process Pi decrypts
them by using Vi . The private key of a process is exposed to
intruder attacks over the entire lifetime of a process.

Public key encryption Employs asymmetric encryption. A process Pi has a pair of
unique keys (Ui , Vi). Ui is the public key, which can be
made known to all processes in the system, whereas Vi is
the private key, which is kept secret. Messages to Pi are
encrypted by using Ui , but Pi decrypts them by using Vi .
The Rivest–Shamir–Adelman (RSA) algorithm is widely
used to generate the pair of keys for a process. The private
key of a process is not exposed to intruder attacks.

Session key
encryption

A pair of communicating processes (Pi , Pj) is assigned a
session key SKij when they begin a communication session.
The session key is used for symmetric encryption of all
messages exchanged during the session. The session key has
a smaller lifetime than a private or public key, so it suffers
less exposure to intruder attacks.

User processes do not know each other’s private keys, so private key encryp-
tion is not useful for security of interprocess messages in general. OS processes
know private keys of user processes, so they use private key encryption while
communicating with user processes. As discussed in Section 21.2.1, this feature
is used in the implementation of key distribution centers. User processes need to
use some other encryption scheme while communicating with one another.

Public Key Encryption Each process Pi has a pair of keys (Ui , Vi). Ui is the
public key of Pi , which can be made known to all processes in the system. Vi is
the private key known only to process Pi . Ui and Vi are chosen such that

• Vi cannot be guessed from Ui , and
• For any message m

DVi (EUi (Pm)) = Pm ∀i (21.1)

where Pm is the plaintext form of message m and E, D are the encryption and
decryption functions, respectively (see Section 15.4).

When Pj wishes to send a message to Pi , it obtains Pi ’s public key from the
OS. Transmission of the message takes place as follows:

1. Process Pj encrypts the message with the public key of the destination process
Pi , i.e., with Ui .

2. The encrypted message, i.e., EUi (Pm), is transmitted over the network and is
received by process Pi .

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 790 — #6

790 Part 5 Distributed Operating Systems

3. Process Pi decrypts the received message with its own private key, i.e., with
Vi . Thus, it performs DVi (EUi (Pm)), which yields Pm.

The Rivest–Shamir–Adelman (RSA) encryption algorithm is used to gen-
erate pairs of keys (Ui , Vi) that satisfy Eq. (21.1). Let (u, v) be such a pair of
keys. Given two numbers x and y, both smaller than a chosen integer number n,
encryption and decryption using u and v, respectively, are performed as follows:

Eu(x) = xu mod n

Dv(y) = yv mod n

To encrypt and decrypt a message m, the RSA algorithm is used as a block cipher
with a block size s, which is chosen such that 2s < n, the chosen number. x is now
the number formed by the bit string found in a block of Pm, the plaintext form
of message m, and y is the number formed by the bit string in the corresponding
block of Cm, the ciphertext form of message m. This way, x < 2s and y < 2s, so
each of them is smaller than n, as required.

The RSA algorithm chooses n as the product of two large prime numbers p
and q. Typically, p and q are 100 digits each, which makes n a 200-digit number.
Assuming u and v to be the public and private keys, to satisfy Eq. (21.1) v should
be relatively prime to (p − 1) × (q − 1) [i.e., v and (p − 1) × (q − 1) should not
have any common factors except 1], and u should satisfy the relation

u × v mod [(p − 1) × (q − 1)] = 1

Choice of u and v as the public and private keys implies that a standard value
of n is used in the system. Alternatively, the pair (u, n) can be used as the public
key and the pair (v, n) can be used as the private key of a process. It will permit
different values of n to be used for different pairs of processes.

An attack on the RSA cipher can succeed if n can be factored into p and q.
However, it is estimated that factorization of a 200 digit number, which would be
needed to break the cipher, would need 4 billion years on a computer that can
perform 1 million operations per second.

Public key encryption suffers from some drawbacks when compared with
private key encryption. Keys used in public key encryption are approximately an
order of magnitude larger in size than private keys. This is unavoidable since public
keys have to be large to make factorization prohibitively expensive. The encryp-
tion and decryption operations are also very expensive when compared with
symmetric encryption; in many situations, these operations are up to 1000 times
slower. Therefore it is not practical to use public key encryption for interprocess
messages. Instead, it is used to securely communicate a session key to a pair of
processes that intend to start a communication session. This aspect is discussed
in the next section.

Session Keys Processes Pi and Pj obtain a session key, also called a conversation
key, for one session of communication. This key is used for symmetric encryption
during the session and is discarded at the end of the session. If the processes

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 791 — #7

Chapter 21 Distributed System Security 791

wish to enter into another session sometime in the future, they obtain a fresh
session key. This approach limits exposure of an encryption key to an intruder,
thereby reducing the risk of a successful attack on the cryptographic system.

21.2.1 Distribution of Encryption Keys
A process needs to know what encryption key to use while communicating with
another process. The OS contains an interactive service called a key distribution
center (KDC) to provide this information. Figure 21.3 shows a schematic of a key
distribution center. A process Pi makes a request to the KDC for an encryption
key to communicate with a process Pj . The KDC returns a key k. Pi uses this
key to encrypt a message m to be sent to process Pj . If processes use public keys
to communicate with one another, the KDC maintains a directory containing
public keys of all entities in the system. If processes use session keys, the KDC
does not posses a directory; it generates a new session key on demand.

An important issue in the KDC schematic is the protocol used for securely
passing the keys. When a public key is requested, it needs to be passed only to
the requester. When a session key is requested by a process Pi to communicate
with a process Pj , the key has to be passed to both Pi and Pj . However, Pj is
unaware that Pi is interested in setting up a session with it, so the KDC does
not send the session key directly to Pj . Instead, Pi can send the session key to Pj
along with its first message. These key transmission protocols are described in the
following.

Distribution of Public Keys The following messages are exchanged between Pi ,
the requesting process, and the KDC:

1. Pi → KDC : EUkdc(Pi , Pj)

2. KDC → Pi : EUi (Pj , Uj)
(21.2)

Pi sends its own id and Pj , the id of the intended destination process, to the KDC.
This message is encrypted with Ukdc, the public key of KDC. The KDC replies
by sending Uj , the public key of Pj , encrypted with the public key of Pi . Here, the
encryption is not used to protect confidentiality of Pj ’s key, because an intruder
can legitimately obtain this key by itself by making a request to the KDC; the
purpose of encryption is to prevent an intruder from tampering with messages

KDC

Pi Pj

Ek (m)

Request key

(Pi, Pj) Key k

Figure 21.3 Key distribution center (KDC) in a distributed OS.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 792 — #8

792 Part 5 Distributed Operating Systems

between Pi and the KDC to perpetrate a denial-of-service attack. In the absence
of encryption, an intruder could have tampered with Pi ’s message to the KDC
and changed Pj to some Pk , so that Pi would not obtain Pj ’s key, or the intruder
could have tampered with the KDC’s message to Pi and changed Pj ’s key that
is being passed to Pi . When encryption is used, both the KDC and Pi would
recognize tampered messages and discard them.

Distribution of Session Keys When Pi wishes to obtain a session key to com-
municate with Pj , the session key should be made known to both Pi and Pj .
Figure 21.4 illustrates how it is achieved in three steps. In the first step, Pi sends
a request message containing its own id and the id of Pj to the KDC. The KDC
allocates a session key SKi,j for the session between Pi and Pj and sends it to
Pj . Its reply to Pj also contains an encrypted unit containing SKi,j , which can be
decrypted only by Pj . Pi passes this encrypted unit to Pj in its first message, or in
a special message intended for this purpose. Pj obtains SKi,j by decrypting this
unit, and keeps it for use during the session with Pi .

In a private key system, this exchange can be implemented as follows:

1. Pi → KDC : Pi , Pj

2. KDC → Pi : EVi (Pj , SKi,j , EVj (Pi , SKi,j))

3. Pi → Pj : EVj (Pi , SKi,j), ESKi,j (<message>) (21.3)

In the second step, the KDC sends a reply to Pi , which is encrypted with Pi ’s
private key. The reply contains the session key SKi,j and EVj (Pi , SKi,j), which
is the session key encrypted by using Pj ’s private key. Pi decrypts the KDC’s
message with its own private key to obtain the session key SKi,j . Decryption
also yields EVj (Pi , SKi,j). Pi copies this unit in the first message it sends to Pj .
When Pj decrypts this unit, it obtains SKi,j , which it uses to decrypt all messages
from Pi .

In a public key system, session keys need not be distributed by the KDC—a
sender process can itself choose a session key. It merely has to communicate the
session key securely to the destination process, which can be achieved through
encryption by using the public key of the destination process. Thus a process Pi

Pass
session key

Request
session key

Send
session key

KDC

Pi Pj

1

2

3

Figure 21.4 Distribution of session keys.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 793 — #9

Chapter 21 Distributed System Security 793

can employ the following protocol to communicate a session key to process Pj :

1. Pi → KDC : EUkdc(Pi , Pj)

2. KDC → Pi : EUi (Pj , Uj)

3. Pi → Pj : EUj (Pi , SKi,j), ESKi,j (<message>) (21.4)

The first two steps of this protocol are identical with the first two steps of protocol
(21.2); they provide Pi with the public key of Pj . Now, Pi itself generates a session
key SKi,j and passes the session key and its first message to Pj in Step 3.

21.2.2 Preventing Message Replay Attacks
In a message replay attack, an intruder simply copies messages passing over the
network and “plays them back” in the future. A replayed message may mislead its
recipient into taking wrong or duplicate actions which may affect data consistency
or reveal confidential information. For example, in a system using session keys,
an intruder could replay the message of Step 3 in Protocol (21.3) or Protocol
(21.4). When Pj receives the replayed message, it would be tricked into thinking
that Pi is communicating with it using the session key SKi,j . When process Pj
responds to this message, the intruder would replay the next copied message. In
this manner, it could replay an entire session.

The recipient of a message can employ the challenge–response protocol to
check whether the message exchange is taking place in real time. Steps of the
challenge–response protocol are as follows:

• Challenge: When a process Pj receives a message originated by a process Pi ,
it throws a challenge to Pi to prove that it is engaged in a message exchange
with it in real time. The challenge is in the form of a message containing a
challenge string, which is encrypted in such a manner that only process Pi
can decrypt it.

• Response: On receiving the challenge message, process Pi is expected to
decrypt it, obtain the challenge string, transform it in a manner expected
by Pj , encrypt the result so that only Pj can decrypt it, and send it back
to Pj .

• Detect: On receiving a reply message, process Pj decrypts the message and
checks whether the decrypted contents match its expectations. A mismatch
indicates that it is subject to a replay attack.

A challenger could send a number as the challenge string, and expect a reply
that is the result of some simple tranformation of that number, like adding 1
to it; however, the challenger should use a different number in every challenge
so that a replay of an old conversation would not provide the expected reply.
Two choices of the challenge string are a random number or the current time
of the day. The actual value of a challenge string is immaterial, so it is called
a nonce.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 794 — #10

794 Part 5 Distributed Operating Systems

The challenge–response protocol should be used in every situation where a
message replay attack would be meaningful. As an example, consider the distribu-
tion of session keys through Protocol (21.3). An intruder could save the message
of Step 3, and replay it sometime in the future to trick process Pj into starting
a conversation with it using SKi,j . So, before using the session key obtained in
Step 3, process Pj would use the challenge–response protocol to ensure that the
conversation is taking place in real time:

4. Pj → Pi : ESKi,j (n)

5. Pi → Pj : ESKi,j (n + 1)

Here n is a nonce. Pi is expected to obtain n through decryption, using the session
key SKi,j , add 1 to it, encrypt the result by using SKi,j , and send it back to Pj . An
intruder would not be able to perform these actions correctly, since it does not
know SKi,j . In fact, Pi ’s ability to extract n from Pj ’s message implicitly verifies
its identity. This property is useful in mutual authentication discussed in the next
session.

21.2.3 Mutual Authentication
To defeat masquerading attacks, processes involved in a communication session
should validate each other’s identity at the start of the session. Recall from the
previous section that the challenge–response protocol implicitly verifies the iden-
tity of the process that responds to a chellenge, so it can be employed for this
purpose. Consider protocol (21.4), which is used to select session keys in a pub-
lic key system. In Step 3, Pi sends the session key to Pj in a message that is
encrypted by using the public key of Pj . In principle, any process could fabricate
such a message and trick process Pj into thinking that it is engaging in a session
with process Pi . So Pj must authenticate Pi before it engages in a session with it.
Pj can achieve it as in the following protocol, whose first three steps are identical
with protocol (21.4):

1. Pi → KDC : EUkdc(Pi , Pj)

2. KDC → Pi : EUi (Pj , Uj)

3. Pi → Pj : EUj (Pi , SKi,j)

4. Pj → Pi : EUi (Pj , n)

5. Pi → Pj : EUj (n + 1)

6. Pi → Pj : ESKi,j (<message>)

In Step 4, Pj sends a nonce n encrypted with the public key of Pi . The identity of Pi
is verified by its ability to decrypt this message, extract the nonce, and transform
it in the expected manner. Note that in Step 4, Pj must not encrypt its message
by using the session key SKi,j , as the intruder would be able to decrypt such a
message if he had fabricated the message in Step 3!

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 795 — #11

Chapter 21 Distributed System Security 795

21.3 AUTHENTICATION OF DATA AND MESSAGES
•

Authenticity of data requires that a process should be capable of verifying
that data was originated or sent by a claimed person or process and that it
has not been tampered with by an intruder. The latter aspect implies integrity
of data.

Integrity of data is ensured as follows: When data d is originated or is to be
transmitted, a special one-way hash function h is used to compute a hash value v.
This hash value, also called a message digest, has a fixed length irrespective of
the size of data. Apart from the properties of one-way functions described earlier
in Section 15.4.1, this special one-way hash function has the property that a
birthday attack is infeasible; i.e., given the hash value v of data d , it is impractical
to construct another data d ′ whose hash value would also be v. The data and the
hash value are stored and transmitted as a pair <d , v>. To check the authenticity
of d , its hash value is computed afresh by using h, and it is compared with v.
Following from the special property of h mentioned above, data d is considered
to be in its original form if the two match; otherwise, d has been tampered with.
For this scheme to work, the value v should itself be protected against tampering
or substitution by an intruder; otherwise, an intruder could substitute a pair
<d , v> by another pair <d ′, v′> and mislead other processes into thinking that
data d ′ is genuine. Accordingly, the person or process originating or transmitting
d encrypts v or the pair <d , v>, using its own encryption key, so that tampering
or substitution of v can be detected. Note that it is less expensive to encrypt v
rather than <d , v>.

Authenticity requires one more check—verify whether v or <d , v> was
encrypted by the claimed person or process. This check is made by using a certi-
fication authority, which provides information concerning encryption keys used
by persons or processes in a secure manner. Details of this check are described in
the following.

21.3.1 Certification Authorities and Digital Certificates
A certification authority (CA) assigns public and private keys to an entity, whether
a person or a process, after ascertaining its identity by using some means of phys-
ical verification. The keys are valid for a specific period of time. The certification
authority also acts like a key distribution center discussed in Section 21.2.1:
It keeps a record of all keys assigned by it, and when a process requests it for
the public key of some person or process, it issues a public key certificate which
includes the following information:

• Serial number of the certificate
• Owner’s distinguished name (DN), which consists of the DNS name of the

owner and the owner’s name, unit, locality, state, and country in a textual
form.

• Identifying information of owner, such as address
• Owner’s public key

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 796 — #12

796 Part 5 Distributed Operating Systems

• Date of issue and date of expiry, and the issuer’s distinguished name
• Digital signature on the above information by the certification authority

A number of certification authorities could operate in parallel. A server
would obtain a certificate from one of these. If a client knows which certifica-
tion authority a server is registered with, it can request the certification authority
for the server’s public key certificate. Alternatively, if it knows the IP address of
the server, it can request the server to forward its own public key certificate.

The purpose of asking for the certificate of an entity is to obtain its public
key for communicating with it. However, before the receiver of the certificate
uses the key to communicate with the entity, it has to ensure that the certificate
is genuine and belongs to the entity with which it wishes to communicate; i.e.,
it is not subject to a security attack called the man-in-the-middle attack. In this
attack, an intruder masquerades as a server. When a client requests the server
for the server’s digital certificate, the intruder intercepts the message and sends
a forged certificate containing its own public key to the client. Now, if it can
intercept subsequent messages from the client to the server, it can read those
messages by using its own private key. If it so desires, it can initiate a conversation
with the genuine server, this time masquerading as the client, and pass on the
client’s messages to the server after reading them. Neither the client nor the
server would be able to discover that they are subject to a successful man-in-the-
middle attack.

The public key certificate contains many items of information that are used
to prevent such attacks. The certificate is digitally signed by the certification
authority. The client can use this digital signature to ensure that the certificate
has not been tampered with or forged. (We discuss details of digital certifi-
cates in Section 21.3.2.) For this, it requires the public key of the certification
authority that issued the certificate. If it does not already know this key, it
can request a higher-order certification authority for a certificate of this certi-
fication authority. Once genuineness of the certificate has been established, it
can check whether the certificate is valid by checking whether the current date
falls within the validity period of the certificate. If it knows the IP address of
the server, it can check that against the IP address information mentioned in
the certificate. It begins exchanging messages with the server only if all these
checks succeed.

21.3.2 Message Authentication Codes and Digital Signatures
A message authentication code (MAC) is used to check the integrity of data. A
process that originates or transmits data d obtains MACd , the message authenti-
cation code of d , as follows: It generates a message digest v for d through a one-way
hashing function. It encrypts v by using an encryption key that is known only to
itself and to the intended recipient of d . The result is MACd . It now stores or
transmits the pair <d , MACd>. Only the intended recipient of d can check and
verify the integrity of d .

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 797 — #13

Chapter 21 Distributed System Security 797

A digital signature is used to verify authenticity of data. A person or process
that originates or transmits data d obtains v from d as mentioned above. It now
obtains DSd , the digital signature of d , by encrypting v and, optionally, a times-
tamp, by using its own private key. The pair <d , DSd > is now stored or transmit-
ted. Any process that wishes to check the authenticity of d decrypts DSd by using
the public key of the originator of d . Successful decryption validates the integrity
of d and also identifies its originator or sender. This identification is nonrepudia-
ble; i.e., the identified originator or sender cannot deny having created or sent the
data, because the data was encrypted by using the private key of the originator
or sender, which is known only to itself. The digital signature can also be used to
detect any modifications of data after the data was created or sent by a process.

Figure 21.5 illustrates steps in the use of a digital signature. The sender
applies a one-way hash function to the text of a message to obtain a message
digest. He signs the message digest by encrypting it with his private key. This
digital signature is added at the end of the message text before sending the mes-
sage. The recipient applies the same one-way hash function to the message text
received by it to obtain its message digest. It now obtains a public key certificate
of the sender of the message, and uses the public key contained in it to decrypt
the digital signature. This step yields the message digest that was computed by the
sender. The recipient compares this message digest with its own message digest.
The message is authentic only if the two match and the timestamp in the digital
signature is within the validity period of the public key certificate.

21.4 THIRD-PARTY AUTHENTICATION
•

An open system uses standard, well-specified interfaces with other systems. A
process in any node with matching interfaces can request access to resources
and services of an open system. This fact gives rise to an obvious problem in
authentication—how does a server know whether a process wishing to act as its
client was created by an authorized user? One solution is to require each server to
authenticate every user through a password. This approach is inconvenient since
each server would have to possess a systemwide authentication database and each
user would be authenticated several times while using the system. An alternative
is to use a third-party authenticator and a secure arrangement by which the
authenticator can introduce an authorized user to a server. This way each server
does not have to authenticate each user.

We discuss two protocols for third-party authentication in a distributed sys-
tem. The Kerberos protocol employs an authentication database, whereas the
secure sockets layer (SSL) protocol performs authentication in a decentralized
manner.

21.4.1 Kerberos
Kerberos is a third-party authenticator developed in project Athena at MIT for
use in an open system environment. It enables a user to prove his identity to the

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 798 — #14

798 Part 5 Distributed Operating Systems

Private key

of sender

2
Message

digest

Encryption
3

Sent

message

Message

text

Message

text

1

One-way
hash

Digital

signature

Received

message

Digital

signature

5

One-way

hash

6
Decryption

Public key

of sender

7
Message

digest

= ? N Not

authentic

Y
Authentic

message

4

Sender-side actions Receiver-side actions

Step Action Description

1. Message digest of
message text

A one-way hash function is applied to the message text
to produce a message digest, which is a bit string of a
standard length.

2. Create digital signature The message digest and a timestamp are encrypted by
using the private key of the sender. The result of
encryption is the digital signature.

3. Append signature The digital signature is added at the end of the message
text.

4. Transmission The message consisting of the message text and the
digital signature is transmitted to the destination.

5. Message digest of
received text

The same one-way hash function as used in the sender is
applied to the message text to produce a message digest.

6. Decryption of digital
signature

The digital signature at the end of the message is
extracted and decrypted by using the public key of the
sender.

7. Authenticity check The message digest produced in Step 5 and the result of
decryption in Step 6 are compared. The message is
authentic if the two are identical.

Figure 21.5 Message authenticity through digital signature.

servers in an open system without being subject to repeated authentication. A
user is authenticated at log in time using a password. The authentication service
issues tickets to an authenticated user; each ticket is like a capability—it grants
a privilege to access one server. The user presents a ticket to a server whenever it
wishes to use its service. The server provides the service if the ticket is valid. Private
keys are assigned to users and servers. A user’s key is used to encrypt messages
from Kerberos to the user’s processes, while a server’s key is used to encrypt the
tickets for the server. Session keys are used to ensure message security. They are

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 799 — #15

Chapter 21 Distributed System Security 799

generated by using a schematic similar to Figure 21.4. To limit exposure of a
session key to intruders, it is valid for only a limited amount of time. Timestamps
are used to implement this aspect and to foil message replay attacks. Hence nodes
in the system must contain loosely synchronized clocks.

A client is a process that operates on a user’s computer and requests remote
services on behalf of the user. When a client C wishes to use the services of
a server Sj , it creates a new authenticator and presents a ticket for Sj and the
authenticator to Sj . The ticket is used to communicate the session key to the
server in a secure manner, while the authenticator is used to prevent message
replay attacks. The ticket contains the client and server ids, i.e., C and Sj ; the
session key assigned to the communication session between C and Sj ; a times-
tamp indicating when the ticket was created; and the lifetime of the ticket, i.e.,
its expiry time. It is valid only during the time period starting at timestamp
and ending at lifetime. Typically this period is about 8 hours. This arrangement
limits exposure of the session key to intruder attacks. The authenticator pre-
sented by C contains C’s id and address, and a timestamp encrypted by using the
session key.

The server decrypts the ticket by using its own key. It checks the timestamp
and lifetime of the ticket to ensure that the ticket is valid. It now extracts the
session key and uses it to decrypt the authenticator. It checks the timestamp in
the authenticator to ensure that the request has originated in real time and within
the validity period of the ticket. It performs the service requested by the client
only if all these checks succeed. Thus, an intruder cannot replay authenticators
and tickets to obtain a service.

Working of Kerberos The Kerberos system has two main components: Kerberos
authentication server (KAS), and ticket granting server (TGS). KAS authenticates
a user at log in time, using an authentication database and provides him with a
ticket to TGS. TGS enables a client to obtain tickets to other servers in the
system. A user achieves use of servers through a three-stage protocol. Figure 21.6
illustrates various steps in the protocol. n1, n2, and n3 are nonces.

1. Initial authentication: The user is authenticated at log in time as follows:

1.1 User → C : U, password
1.2 C → KAS : U, TGS, n1
1.3 KAS → C : EVU (n1, SKU ,TGS , TTGS)

The user submits his id and password to the client in Step 1.1. In Step 1.2, the
client forwards the user id to KAS. It also encloses a nonce n1 to authenticate
KAS. This message is a request for a ticket to TGS. Note that the user’s password
is not passed to KAS. This fact avoids its exposure over the network. It also
implies that authentication is not performed by KAS; it is actually performed by
C in an interesting manner described later. In Step 1.3, KAS uses the user id U to
retrieve VU , the private key of U , from the authentication database and uses it to
encrypt its reply to C. SKU ,TGS is a session key for the session between the user
and TGS, and TTGS is a ticket for TGS encrypted with the key of TGS. TTGS is
also called a ticket granting ticket (TGT).

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 800 — #16

800 Part 5 Distributed Operating Systems

User

1.1

Client

KAS TGS

Authentication

database

Kerberos

1.2
1.3 2.1

2.2

3.1

3.2

Server

Figure 21.6 Kerberos.

C has to decrypt the reply from KAS by using the key VU to obtain SKU ,TGS
and TTGS . This step authenticates the user as follows: VU , the private key of the
user, satisfies the relation VU = f (password), where f is a one-way function
known to C. C obtains VU by applying f to password. It now decrypts the reply
received from KAS by using this key. Decryption would be unsuccessful if the
password supplied by the user is invalid. In this case C cannot extract TTGS from
the reply sent by KAS, so the user cannot use any services or resources in the
system.

2. Obtaining a ticket for a server: When a user wishes to use a server, C obtains
a ticket for the server, using the following protocol:

2.1 C → TGS : <Server_id>, TTGS , AU, n2
2.2 TGS → C : ESKU ,TGS (n2, T<Server_id>, SKU ,<Server_id>,

<Server_id>)

where <Server_id> is the name of the server that C wishes to use, AU is an
authenticator, SKU ,Server_id is a session key for the session between the client and
the desired server, and TServer_id is the ticket for the desired server, encrypted by
using the key of the server. Before replying to the client, TGS verifies that the
ticket presented by the client is valid and that the request has originated in real
time and within the validity period of the ticket.

3. Obtaining a service: When user U makes a service request, C generates
an authenticator and a nonce and exchanges the following messages with
the server:

3.1 C → Server : T<Server_id>, AU , ESKU ,<Server_id>
(<service request>, n3)

3.2 Server → C : ESKU ,<Server_id>
(n3)

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 801 — #17

Chapter 21 Distributed System Security 801

The server performs the service if it finds that the ticket is valid, and the
request originated in real time and within the validity period of the ticket. It
returns the nonce n3 to the client so that the client can authenticate it, if it so
desires.

21.4.2 Secure Sockets Layer (SSL)
SSL is a message security protocol providing authentication and communication
privacy. It works on top of a reliable transport protocol such as the TCP/IP. Its suc-
cessor, the transport layer security (TLS) protocol, is based on SSL 3.0; we discuss
features that are common to both. When a client wishes to communicate with a
server, the SSL handshake protocol is used before message exchange can start. It
uses RSA public key encryption to authenticate the server and optionally authen-
ticate the client, and generates symmetric session keys for message exchange
between the client and the server. Actual message exchange is performed through
the SSL record protocol, which performs symmetric encryption of messages and
transmits them over the network. Thus, message communication between the
client and the server is reliable because of the transport protocol, secure because
of authentication performed by the handshake protocol, and private because
of encryption performed by the record protocol. Authenticity of data is ensured
through a digital signature on a message. If mere integrity checking is desired, it is
provided through a message authentication code (MAC). Higher-level application
protocols such as HTTP and FTP can be implemented on top of the SSL.

The SSL handshake protocol performs the following functions:

1. It performs authentication of the server.
2. It allows the client and the server to select the cryptographic algorithms to

be used during the session from among RC2, RC4, DES, triple-DES, and a
few other algorithms; and digital signature and hash algorithms from among
DSA, MD5, and SHA-1.

3. It optionally performs authentication of the client.
4. It enables the client and the server to generate a shared secret, which would

be used to generate the session keys.

A simplified overview of the SSL handshake protocol is as follows: The client
sends a client_hello message to the server. This message contains a specification
of the cryptographic and compression options, and a 28-byte random number
that we will call nclient. The server responds with a server_hello message, which
contains another random number nserver. Immediately following the server_hello
message, the server sends its certificate. SSL has a list of certificate authorities
(CAs) on the client side, using which it ensures that the server’s certificate is
from one of the listed CAs, and verifies the server’s authenticity by using public
key cryptography. The server, if it so wishes, asks for the client’s certificate and
verifies the client’s identity in a similar manner. Following this, the client sends

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 802 — #18

802 Part 5 Distributed Operating Systems

the encrypted premaster secret message, which contains a 48-byte premaster secret
string encrypted by the public key of the server.

Both client and server now generate a 48-byte master secret string from nclient,
nserver, and premaster secret, using a standard one-way function. Use of nclient
and nserver, which are randomly chosen values, ensures that the master secret
would be different for different sessions between the same client–server pair.
The master secret string is used to obtain four symmetric session keys using a
standard algorithm. These keys are used as follows: Keys kcrypt

c→s and kcrypt
s→c are

used for encryption and decryption of messages sent by the client to the server,
and by the server to the client, respectively, and keys kmac

c→s and kmac
s→c are used

to generate message authentication codes for messages sent by the client and by
the server, respectively. Following key generation, both client and server send
finished messages to one another. At this time, the SSL handshake protocol is
complete.

Exchange of messages is performed by the SSL record protocol using the
session keys generated during the handshake. The steps in sending a message m
from the client to the server are as follows:

1. The client generates MACm, which is a message authentication code for
message m, using the key kmac

c→s.
2. The pair<m, MACm > is encrypted by using the key kcrypt

c→s , and the encrypted
string is sent to the server.

3. The server decrypts the string by using the key kcrypt
c→s to obtain the pair

<m, MACm >. It accepts m if its MAC computed using the key kmac
c→s matches

MACm.

The SSL protocol could be subverted by a man-in-the-middle attack, where
an intruder intercepts a client’s messages to a server in the SSL handshake pro-
tocol and masquerades as the server in all subsequent message exchanges. It may
analogously masquerade as the client and set up a secured SSL connection with
the server. The client and server processes must take precautions to defeat the
man-in-the-middle attack during the initial handshake. When the server provides
its certificate to the client in the SSL handshake protocol, the client must verify
that the distinguished name and IP address mentioned in the server’s certificate
match those of the server with which it is attempting to set up the SSL connection.
A mismatch would indicate that it is subject to a man-in-the-middle attack, so it
should abort the handshake protocol if this is the case.

The server does not know the IP address where a client resides, so it has to
use a different approach to authenticate the client. If the server requires client
authentication in the SSL handshake protocol, the client is required to provide a
certificate and also a piece of random data known to the server which it digitally
signs using its private key to authenticate itself. The server obtains the public key
of the client from the client certificate and validates the client’s digital signature.
A failure in this step would indicate that it is subject to a man-in-the-middle
attack, so it aborts the handshake protocol. This step is analogous to that in the
challenge–response protocol described earlier in Section 21.2.2.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 803 — #19

Chapter 21 Distributed System Security 803

21.5 SUMMARY
•

Interprocess messages in a distributed system may
pass through links and nodes that are not under
control of the distributed OS. It provides an oppor-
tunity for an intruder to launch a variety of attacks
such as unauthorized reading of messages, tamper-
ing with messages, masquerading as a registered
user, or interfering with use of resources or ser-
vices by users, which is called denial of service. In
this chapter we discussed how a distributed OS
deals with these threats.

The threats of leakage or tampering are called
threats to message security. They are countered
through encryption. In private key encryption, mes-
sages sent to a process must be encrypted with
the key assigned to the process. This arrangement
is convenient for communication between system
entities and user processes because the system enti-
ties can readily find a user’s key; however, it is
not suitable for communication between user pro-
cesses. In public key encryption, each process Pi has
a pair of keys (ui , vi), where ui is the public key
which is made known to all processes in the sys-
tem and vi is a private key known only to Pi . These
keys have the property that a message encrypted
by using ui can be decrypted by using vi , and vice
versa. The Rivest–Shamir–Adelman (RSA) algo-
rithm is used to generate the pairs of keys for
processes. Public key encryption has the disad-
vantage that the keys are an order of magnitude
larger than the keys used in private key encryption,
so encryption is an expensive operation. Because
of these drawbacks, processes are assigned session
keys for use during a communication session. A key

distribution center (KDC) is used to provide public
keys of processes or to generate session keys on
demand by communicating processes.

An intruder can launch a message replay
attack to masquerade as another user. In this
attack, the intruder records messages to or from a
process and plays them back at a later time to
fool the OS or the KDC. A challenge-response
protocol is used to thwart such attacks by authen-
ticating the sender of a message. This protocol is
included in the protocol for communicating with
the KDC. Processes can also use it for mutual
authentication. However, mutual authentication in
this manner is cumbersome and expensive. Hence
third-party authenticators such as Kerberos and
SSL are employed in practice.

When processes exchange data, it is important
to know that the data is authentic, that is, it was
originated or sent by the claimed process and it has
not been tampered with by anyone. A digital signa-
ture is used to verify authenticity of data. It consists
of a hash code generated from the data, which is
encrypted using the private key of the originator
or sender of the data. Authenticity of the data is
verified as follows: A public key certificate of the
originator or sender of the data is obtained from
a certification authority. The digital signature of
the data is decrypted by using the public key of the
originator or sender found in the certificate. A suc-
cessful decryption establishes that the originator
or sender had indeed originated or sent the data.
The data is genuine if a hash code generated from it
matches the decrypted form of its digital signature.

TEST YOUR CONCEPTS
•

21.1 Classify each of the following statements as true
or false:
a. Message replay is an active security

attack.
b. Encryption prevents eavesdropping, but can-

not prevent tampering with messages.

c. In a distributed system using public key
encryption, a message being sent by process
Pi to process Pj should be encrypted with the
private key of process Pi .

d. Public key encryption incurs higher overhead
than private key encryption.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 804 — #20

804 Part 5 Distributed Operating Systems

e. Session keys are used to limit exposure of
encryption keys to intruder attacks.

f. A challenge–response protocol can be used
to prevent a masquerading attack.

g. A key distribution center is used to distribute
private keys of processes.

21.2 Select the appropriate alternative in each of the
following questions:
a. A message contains the id of its sender

process, the id of the receiver process, and
a ciphertext form of the message text. An
intruder can eavesdrop on the message
readily

i. If the message text is encrypted by using
a session key

ii. If the message text is encrypted by using
the public key of the receiver process

iii. If the message text is encrypted by using
the private key of the sender process

iv. None of (i)–(iii)

b. In a public key system, a key distribution
center is used

i. To ensure confidentiality of the private
key of a process

ii. To distribute information about private
keys of processes

iii. To ensure confidentiality of the public
key of a process

iv. To distribute information about public
keys of processes

c. A digital signature
i. Is a string that uniquely identifies the

person who sent a message
ii. Consists of the text of a message and the

name or id of its sender
iii. Consists of the encrypted form of a

message and the name or id of its
sender

iv. None of (i)–(iii)

EXERCISES
•

21.1 Devise a public key cipher for n = 77 using the
RSA approach.

21.2 Comment on the following statement : “There is
no danger of masquerading if the message sent
by a client to a key distribution center request-
ing a session key for a server is exposed to an
intruder.”

21.3 It is proposed to distribute session keys in a
public key system as follows:

1. Pi → KDC : EUkdc (Pi , Pj)

2. KDC → Pi : EUi (Pj , SKi,j , EUj (Pi , SKi,j))

3. Pi → Pj : EUj (Pi , SKi,j)

4. Pj → Pi : ESKi,j (n)

5. Pi → Pj : ESKi,j (n+1)

6. Pi → Pj : ESKi,j (<message>)

Does this protocol suffer from any weaknesses?
If so, suggest ways to overcome them.

21.4 Can tampering of messages lead to denial of ser-
vice? (Hint: Think of key distribution centers.)

21.5 Explain how Kerberos avoids transmitting pass-
word information over the network when a user
logs in. What actions should be performed when
a user changes his password?

21.6 Describe use of the lifetime field in a Kerberos
ticket. How is the lifetime guessed? Comment
on the advantages and disadvantages of using
the lifetime field.

21.7 Comment on validity of the following statement:
“Message replay attacks are possible in Kerberos
until a ticket expires.”

21.8 The challenge–response protocol for detect-
ing message replay attacks described in
Section 21.2.2 consists of the following steps:

Pj → Pi : ESKi,j (n)
Pi → Pj : ESKi,j (n+1)

However, in Step 3.2 of the Kerberos protocol,
the server returns the nonce n3 to the client with-
out performing any operation on it. Explain why
this is adequate.

21.9 The challenge–response protocol mentioned
in Exercise 21.8 assumes that an intruder
would not be able to guess or obtain SKi,j .
It fails if this assumption is not valid. An
intruder can use this fact to subvert security
of session key distribution in a private key
system as follows: The intruder obtains an

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 805 — #21

Chapter 21 Distributed System Security 805

SKi,j by some means. Now it replays the message
in Step 3 of (21.3), namely.

3. Pi → Pj : EVj (Pi , SKi,j), ESKi,j (<message>)

This way it would be able to set up a spurious
association with Pj , i.e. set up an association in

which Pj believes that it is interacting with Pi . It
would enjoy this ability to set up spurious associ-
ations indefinitely. Design a protocol to prevent
this threat. (Hint: Would it help if, instead of
using the challenge–response protocol, Pj tries
to initiate a fresh session with Pi by obtaining a
session key from the KDC?)

BIBLIOGRAPHY
•

Rivest (1978) and Pfleeger and Pfleeger (2003) describe
the theory behind RSA encryption. Woo and Lam
(1992) discusses authentication protocols in distributed
systems. Steiner et al. (1988) describes the Kerberos
protocol.

Denning and Denning (1998) is a collection of arti-
cles on cyberspace attacks and Internet security. Khare
(1997) is a similar collection of articles that covers trust
issues on the Web, including digital signatures and pub-
lic key infrastructures. Cheswick et al. (2003) discusses
security attacks, firewalls, and authentication.

1. Cheswick, W. R., S. M. Bellovin, and A. D. Rubin
(2003): Firewalls and Internet Security, 2nd ed.,
Addison-Wesley Professional, Reading, Mass.

2. Denning, D. E., and P. J. Denning (eds.) (1998):
Internet Besieged: Countering Cyberspace
Scofflaws, Addison-Wesley, Reading, Mass.

3. Khare, R. (ed.) (1997): Web Security: A Matter of
Trust, O’Reilly, Sebastopol, Calif.

4. Lampson, B., M. Abadi, M. Burrows, and
E. Wobbler (1992): “Authentication in distributed
systems: theory and practice,” ACM Transactions
on Computers, 10, 4, 265–310.

5. Pfleeger, C. P., and S. Pfleeger (2003): Security in
computing, Prentice Hall, Englewood Cliffs, N.J.

6. Rivest, R. L., A. Shamir, and L. Adelman (1978):
“On digital signatures and public key
cryptosystems,” Communications of the ACM, 21,
2, 120–126.

7. Steiner, J. G., C. Newman and J. I. Schiller (1988):
“Kerberos: an authentication service for open
network system”, Proceedings of the Winter
USENIX conference.

8. Woo, T. Y. C. and S. S. Lam (1992):
“Authentication for distributed systems,” IEEE
Computer.

21-M4363-DAS1.LaTeX: “chap21” — 2007/11/24 — 13:10 — page 806 — #22

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 807 — #1

Index

A
Absolute path name, 492
Abstract view, 6, 92, 112, 135

of OS, 6–8
Abstraction, 86, 93, 98, 101
Access control list (ACL), 497,

627–628
Access control matrix (ACM), 627
Access descriptor, 625
Access method, 485, 488, 543, 545,

587–588
functions, 588
mechanisms and policies, 545

Access path, 491
Access privilege, 605, 608, 625, 638
Access time

effective memory access time
using cache, 32
in virtual memory, 417

Access time, in I/O, 549
Adaptive lock, 350
Adaptive mutex, 217
Address

Internet, 660
linked, 368
load time, 368
logical, 393
physical, 393
translated, 368

Address sensitive instruction, 369
Address space, 112

logical, 393, 411
physical, 393, 413

Address space id (ASID),
see Program id

Address translation, 30, 394,
397–398, 424–427

Advanced encryption standard
(AES), 618, 623

Adversary, 610

AES, see Advanced encryption
standard

Affinity, 352, 356–357
hard affinity, 356–357
soft affinity, 356–357

Affinity-based scheduling, 352,
356–357, 365

Aging of requests, 233
Agreement protocol, 748
Allocation

disk space allocation, 498–502
indexed allocation, 500–502
linked allocation, 499–500

memory allocation, 363–406,
410–470

resource allocation
in distributed operating

system, 736–738
Allocation edge, 281
Amnesia fault, 745
Amoeba distributed operating

system, 96, 658
capabilities, 634–635
fast local Internet protocol

(FLIP), 658
Andrew file system, 777–779

file sharing semantics, 777–779
path name resolution, 778
scalability, 777
shared name space, 777

Append privilege, 497
Application layer, 683
Application package, 6
Architecture

cluster, 655
distributed system, 655
single CPU computer system,

26–39
of Unix, 98–99
of Windows, 101–102

Arrival pattern, 268

Arrival time, 229, 230, 269
Assembly language, 368–369
Asymmetric encryption, 617
Asymmetric naming, in message

passing, 318
Asynchronous message

passing, 318
Asynchronous protocol, 662
Asynchronous transfer mode

(ATM), 676–678
switch, 677

ATA interface, 559
ATM, see Asynchronous transfer

mode
Atomic action, 520–523

example, 522
implementation, 522
intentions list, 751

Atomic instruction, 165, see also
Indivisible instruction

Atomic transaction, 520,
533–534, 751

abort, 751
commit, 751

Attack
birthday attack, 795
buffer overflow attack, 613–615
man in the middle attack, 796
message replay attack, 793–794
on cryptographic systems,

618–620
chosen plaintext, 620
ciphertext only, 619
exhaustive attack, 619
known plaintext, 619

security attack, 610–613,
787–788

Attributes cache, 772
Authentication, 15, 606–608, 786

biometric, 607
database, 607

807

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 808 — #2

808 Index

Authentication (continued)
in distributed system, 797–802

mutual authentication, 794
by knowledge, 606
module, 640
by possession, 607
token, 607
using passwords, 623–624

Authentication token, 607
Authenticity of information,

609, 786
digital signature, 797
message authentication code

(MAC), 796
Authorization, 606–608

database, 607
Availability, 71, 688, 766–768
Awaiting I/O completion, 574

B
B+ tree, 494–495, 532, 535
Background process, 146, 154
Backup, 516–519, 746

creation of, 517
incremental, 516

Backward recovery, 747
Bad disk block, 498
Bakery algorithm, 196–197
Banker’s algorithm, 295–300

safe allocation state, 296
Bare machine, 84
Barrier synchronization, 327
Base register, 33, 60, 380
Basic computation, 715–716

example, 716
Batch, 58
Batch processing system, 54, 55,

58–59
command interpreter, 59
turnaround time, 58

Belady’s anomaly, 444
Best-fit algorithm, 382–383
Binary program, 367, 374
Binary semaphore, 200, 210–211,

see also Mutex
Binding, 365–367

dynamic, 366
memory, 365–366
static, 366

Biometric feature, 607
Birthday attack, 795
Bit

mode bit, 48
modified bit, 415
reference bit, 436, 446
valid bit, 415

Bit map, 498, 529
Bit stream, 549
Bit-interleaved parity, 564
Block cipher, 618, 620
Block-interleaved distributed

parity, 564
Block-interleaved parity, 564
Blocked state, 119, 120, 127–130,

287–289
Blocking factor, 585–587

definition, 585
Blocking of records, 488, 545,

584–587
Blocking protocol, 662
Blocking, for synchronization,

176–177
Booting, 11, 80
Bootstrapping, 80
Boundary tag, 384–386
Bounded concurrency, 201
Bounded wait, 172
Bridge, 675
Buddy system, 386–388
Buffer

bounded, 183
pool, 183

Buffer overflow attack,
613–615

Buffering of records, 488, 545,
579–584

Bully algorithm, 735–736
Bus, 32, 339, 340
Bus mastering, 547
Busy wait, 175–177, 183, 185,

191, 344
Byte code, 92
Byte number, 396
Byte stream file, 98, 483
Byzantine

agreement problem, 747
consensus problem, 748
fault, 747–748
generals problem, 747

C
C-look scheduling policy, 576
Cache

attributes cache, 772
cache memory, 30–32, 352
directory names cache, 535, 767
disk cache, 480, 535, 591–592
file cache, 480, 533, 535, 543
page cache, 461
unified disk cache, 591–592
Unix buffer cache, 527

Cache coherence, 338
snooping, 338
write-invalidate, 338

Cache memory, 30–32
cache block, 30
cache line, 30
flushing, 34
hierarchy, 32
hit ratio, 32
protection, 34
update, 32
write-through, 32

Callback, 778
Calloc (of C), 376
Capability

in Amoeba, 634–635
based addressing, 631–632

object id, 630
object table (OT), 631

based computer system, 631–632
based protection, 630–636
confinement, 635
definition, 630
protection of, 633
protection of objects, 632–633
revocation of, 635–636
sharing of objects, 632–633
in software, 633–636
structure, 630
subset capability, 631

Capability list (C-list), 628
Capability segment, 633
Capacity planning, 271
Carrier sense multiple access

(CSMA), 676
Cascaded mounting, 775
Causal relationship, 696
Certification authority (CA), 795

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 809 — #3

Index 809

Challenge–response protocol,
793–794

Chandy–Lamport algorithm,
706–710

example, 708
marker, 706
properties of recorded state,

708–709
Channel

interprocess communication,
695, 703

state, 704
Checkpoint, 746
Child process, 114–116, 133, 153

benefits, 114
Chunk, 772
Cipher-block chaining, 622
Ciphertext, 617, 618
Circuit switching, 679
Circular scan scheduling policy

(CSCAN), 576
Circular wait condition, 280, 293
Client node, 762
Client stub, 326, 668
Client–server computing, 659,

667–668
Clock

global, 695
local, 695
logical, 698–700
synchronization, 698–701
vector, 700–701

Clock algorithm, 446–447, 460
Clock tick, 36
Cluster, 71, 655

of computers, 560
of disk blocks, 498, 502
Sun, 657–658
Windows, 657

Co-scheduling, 354
Coda file system, 778–779

callback, 778
Code, 19, 22

architecture-dependent, 83, 84,
93, 95

byte code, 92
P-code, 92

Collision, 676
Command interpreter, 59, 84, 98
Command line interface, 7

Commit, 521, 751
flag, 521
processing, 521

Communication, 71, see
Communication protocol,
Interprocess
communication,
Interprocess message,
Message passing

Communication link, 654,
659, 675

Communication processor
(CP), 674

Communication protocol
HDLC, 682
IP, 683
ISO, 681–683
TCP, 683, 684
TCP/IP, 683–684
UDP, 682–684

Communication session, 680, 682
Compact disk (CD), 565–566
Compaction, in memory, 386, 391
Compare-and-swap instruction,

179
Completion time, 229
Computation migration, 666,

687, 689
Computation speedup, 71, 114,

337, 654
Computational load, 728
Computer system

distributed computer system,
71–72

multiprocessor, 336–341
single CPU computer system,

26–39
Computing environment, 15, 51–54

distributed computing
environment, 53

embedded computing
environment, 53

interactive computing
environment, 52–53

modern computing environment,
53–54

noninteractive computing
environment, 52

real-time computing
environment, 53

Concurrency, 113, 116–117
Concurrent events, 696, 701
Concurrent processes, 113
Concurrent program, 113
Concurrent programming

constructs, 180
Concurrent system, 181–182
Condition code, 27–29, 113
Condition variable, 209–213
Conditions for deadlock, 280–281
Confidentiality, 609, 617
Confinement problem, 635
Confusion, in encryption, 618,

620–623
Connection, 678
Connection strategies, 678
Connectionless protocol, 679,

683, 684
Consensus problem, 748
Context save, 41, 81, 93, 118, 125
Context, of process, 41, 118,

123–125
Contiguous memory allocation,

390–392
Control block, 307

event control block (ECB),
128–129

file control block (FCB),
503–510, 768

I/O control block (IOCB), 571
interprocess message control

block (IMCB), 320
process control block (PCB),

124–125
thread control block

(TCB), 770
Control computation, 716

example, 716
Control function, 25, 687
Control statement, 59
Control synchronization, 165,

172–175
Conversation key, see Session key
Copy-on-write, 453–454, 457,

460, 463
CPU, 27–29

base register, 33, 60, 380
burst, 62
condition code (CC), 27, 29
flags, 27, 29

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 810 — #4

810 Index

CPU (continued)
general-purpose register (GPR),

27, 28, 40–44, 124–126, 133,
135, 141, 149, 156, 167

instruction execution cycle, 36
interrupt mask, 28
kernel mode, 28, 61, 89–90, 102
limit register, 33
memory protection

information, 28
mode, 28
privileged instruction, 28
program counter (PC), 27
program status word (PSW), 27
relocation register, 370
size register, 33, 60, 380
sleep mode, 251
stack pointer, 113
state, 28–29, 81
switching, 25, 36, 38–42, 81
user mode, 28, 89–90, 95

CPU burst, 62
CPU scheduling, see Scheduling
CPU utilization, 56
CPU–I/O activity overlap, 61–64
CPU-bound process, 114, 161,

162, 237, 244, 248, 251, 259,
262, 263

CPU-bound program, 62–64
CRC, see Cyclic redundancy check
Critical section (CS), 165, 170–197

definition, 170
example, 171
implementation, 177–179

algorithmic implementation,
190–197

Bakery algorithm, 196–197
Dekker’s algorithm, 192–193
Peterson’s algorithm, 193–194
using indivisible instruction,

177–190
using semaphore, 198–199

properties of implementation,
172

Crossbar switch, 340, 341
Cryptography, 617

terms in, 618
CSCAN scheduling policy, 576
CSMA, see Carrier sense multiple

access

CSMA/CD, 676
CTSS, 249
Current directory, 491
Current locality, 419
Cut, of distributed system, 704–706

consistency condition, 705–706
Cycle stealing, 547
Cycle, in graph model, 283, 284,

301–304
Cyclic redundancy check (CRC),

550–552
Cylinder group, 498, 528, 529
Cylinder skewing, 555
Cylinder, of disk, 553

D
Daemon process, 146
Data, 19

distributed, 665
file data, 482
integrity, 795
metadata, 482
migration, 666, 687, 689
replication, 665

Data access synchronization, 165,
169–177

Data encryption standard (DES),
618, 622–623, 625

cipher-block chaining, 622
triple DES, 623

Data integrity, 795
Data link layer, 682
Data recovery, 746
Data sharing, 131–132, see also

Data access synchronization
Data staggering, 554–558
Data transfer rate, 547, 559, 561
Deadline, 69, 230

estimation, 255
I/O scheduler, 595
overrun, 231
scheduling, 254–257, 272

Deadline estimation, 255
Deadline overrun, 230
Deadlock, 18, 176, 188, 192,

277–309
characterization, 301–306
conditions for, 280–281
definition, 279

handling, 285–309
necessary conditions for,

301–305
MIMR system, 304–305
MISR system, 302–303
SIMR system, 303–304
SISR system, 301–302

processes in, 305–306
in resource allocation, 279–284
resource allocation state model,

281–285
graph model, 281–284
matrix model, 284–285

resource class model, 301
resource request model, 301
sufficient conditions for,

301–305
MIMR system, 304–305
MISR system, 302–303
SIMR system, 303–304
SISR system, 301–302

Deadlock handling, 285–309, 715
Banker’s algorithm, 295–299
deadlock avoidance, 285, 286,

295–300
deadlock detection, 285–290

algorithm, 288–290
deadlock prevention, 285, 286,

291–295
all resources together, 293–294
resource ranking, 294–295

deadlock resolution, 285,
290–291

in distributed operating system,
723–728

MIMR system, 304–305
MISR system, 302–303
practical approach, 306–308
resource allocation state

modeling, 281–282
SIMR system, 303–304
SISR system, 301–302
in Unix, 307–308
in Windows, 308–309

Deadlock prevention
in distributed operating

system, 728
Deblocking actions, 585
Degree of multiprogramming, 61
Dekker’s algorithm, 192–193

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 811 — #5

Index 811

Demand paging, 413–434, see
also Paging

effective memory access
time, 417

page fault, 416
page replacement, 414
thrashing, 421–422

Denial of service, 610, 786
DES, see Data encryption standard
Device controller, 27
Device driver, 83, 94–96, 98, 101,

574–576
Unix, 592–593
user-level, 95
Windows, 597

Device level I/O, 566–576
Diffusion computation, 725–726

engaging query, 725
non-engaging query, 725

Diffusion, in encryption, 618,
620–623

Digital certificate, 795
Digital signature, 92, 797, 801
Dijkstra, 197
Dining philosophers problem,

187–190
Direct memory access (DMA), 26,

35–36, 48, 545–547
buffer, 548
bus mastering, 547
first party DMA, 547
third party DMA, 546

Direct naming, 317
Direct-access file, 485–486
Directory

current directory, 491
entry format, 488–489
home directory, 491
names cache, 535
operations on, 493–495
organization, 494–495

B+ tree, 494–495
hash table, 494

root directory, 566
search, 493
structure, 479–480, 488–497

graph, 492–493
tree, 490–492

Directory caching, 767
Directory FCB pointer, 506

Directory graph, 492–493
Directory names cache, 776
Directory organization, 494–495
Directory tree, 490–492
Dirty bit, see Modified bit
Dirty page, 428, 458, 459
Disk, 552, see also Disk scheduling,

Disk space allocation,
RAID

access time, 553
actuator, 553
bad block, 560
cache, 535
compact disk, 565–566
cylinder, 553
cylinder skewing, 555
data staggering, 554–558
head skewing, 555
head switching time, 554
IDE, 559–561
mirroring, 519–520, 534, 562
optical, 565–566

primary volume descriptor,
566

platter, 552
record address, 554
reliability, 561
SCSI, 536, 559–561

disk scheduling, 560
tagged command queuing, 579

sector, 554
sector interleaving, 555–558
seek time, 553
strip, 562
stripe, 562
striping, 562
throughput, 557–558
track, 552

Disk attachment technology
advanced technology attachment

(ATA) interface, 559
EIDE interface, 559
SCSI interface, 559–560

Disk block fragment, 529
Disk cache, 480, 535, 543, 545,

588–592
unified, 591–592

Disk mirroring, 519–520,
534, 562

Disk partition, 495, 532

Disk scheduler, 545
Disk scheduling, 560, 576–579

C-look policy, 576
CSCAN policy, 576
example, 577
FCFS policy, 576
Look policy, 576
SCAN policy, 576
in SCSI disk, 579
SSTF policy, 576

Disk space allocation, 498–502,
529–530

bit map, 529
file map table, 500
free list, 498, 499
indexed allocation, 500–502
linked allocation, 499–500
status map, 498

Disk strip, 562
Disk stripe, 562
Dispatcher object, 218
Dispatching, 82, 118, 125–126
Distributed computation

paradigm, 665–672
client–server computing,

667–668
remote evaluation, 670–671
remote procedure call (RPC),

326–327, 668–670
Distributed computer system,

71–72
Distributed control, 72
Distributed control algorithm, 657,

687, 714–741
control action, 714
control data, 714
control message, 716
correctness criteria, 717–718

liveness, 717
safety, 717

diffusion computation, 725–726
edge chasing algorithm, 726–728
operation of, 714–716
token-based algorithm,

720–723
Distributed data, 750, 753–754
Distributed deadlock detection,

715, 724–728
Distributed deadlock handling,

723–728

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 812 — #6

812 Index

Distributed deadlock prevention,
728

wait-or-die, 728
wound-or-wait, 728

Distributed file system (DFS),
760–779

Andrew file system, 777–779
availability, 766–768
cache manager, 772
cache validation, 772

client initiated, 773
server initiated, 773

Coda file system, 778–779
fault tolerance, 761–762, 765–770
file caching, 771–774
file migration, 761
file server structure, 770
file sharing semantics, 764–765
GPFS, 779–780
hint, 771
path name resolution, 766, 767
performance, 762, 770–771
remote mount, 778
scalability, 762, 770, 771, 774
stateless file server, 769–770
Sun NFS, 774–777
transparency, 761, 763–764
Windows, 781

Distributed locking, 762
Distributed mutual exclusion, 715,

718–723
fully distributed approach,

718–720
token-based approach, 720–723

Raymond’s algorithm,
721–723

for ring topology, 720–721
Distributed operating system, 54,

55, 71–73, 656–689
benefits, 71
computation speedup, 71
design issues, 687–689
distributed control, 55, 72
distributed file system (DFS),

760–779
recovery, 688–689
reliability, 71, 688–689, 750–756

availability, 71
remote procedure call, 73
resource allocation, 736–738

scalability, 654, 667, 673
scheduling in, 715, 728–732
security, 785–805

Distributed scheduling, 715,
728–732

receiver initiated, 730
sender initiated, 730
stability, 729
symmetrically initiated, 730–731

Distributed system
authentication, 797–802
benefits, 654–655
cluster, 655
communication, 654, 659–665
computation speedup, 654
consistent state recording,

702–710
cut of a system, 704–706
definition, 72
event precedence, 696–697
fault tolerance, 750–754
global state, 694
incremental growth, 654
local state, 694
model, 685–687

logical model, 685
physical model, 685

node model, 655
recovery, 743–756
reliability, 654
resource sharing, 654
security, 785–805
state, 694–703
transparency, 55, 761, 763–764

Distributed termination condition,
710, 732

Distributed termination detection,
715, 732–734

credit distribution-based,
732–733

diffusion computation-based,
733–734

Distributed transaction,
753–754

DMA, 60, 61, 72
DMA controller, 35
Domain name service (DNS),

660–661, 673, 738
Domain, of protection,

629–640

change of, 630–640
MULTICS, 638
Unix, 639–640

Domain-specific event, 70
Domino effect, 750
Duplicate request, 664
Dynamic binary translation, 91
Dynamic binding, 366
Dynamic data, 378
Dynamic link library (DLL), 102,

373, 657
Dynamic linking, 372
Dynamic memory allocation,

364, 366
Dynamic priority, 232, 259
Dynamic routing, 680
Dynamic scheduling, 254
Dynamically loadable kernel

module, 94–95, 101

E
Earliest deadline first (EDF)

scheduling, 256–257
Eavesdropping, 787
EDF scheduling, see Earliest

deadline first scheduling
Edge

allocation edge, 281
in distributed system model,

685–687
process precedence edge, 252
request edge, 281
wait-for edge, 281

Edge chasing algorithm, 726
Effective utilization, 8–10, 51
Efficiency, 56–57
EIA-232D, 682
EIDE interface, 559
Election, 715
Election algorithm, 735–736

Bully algorithm, 735–736
for ring topologies, 735

Elevator algorithm, 576
Embedded computer system, 53,

96, 100
Encryption, 617–623, 788–792

asymmetric, 617
distribution of keys, 791–793
key, 617

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 813 — #7

Index 813

private key encryption, 788–789
public key encryption, 789–790
RSA encryption, 790
session keys, 790
symmetric, 617

Error, 743
Error correction code, 562
Error detection, 552
Ethernet, 675–676
Event, 16, 36, 127–130, 695

handling, 36, 81, 118, 127–130
Event control block (ECB),

128–129, 148, 321–323
Event handler, 81, 93
Event handling, 41, 81
Event ordering, 696
Event precedence, 696–697,

700–701
causal relationship, 696
partial order, 696
total order, 696
transitive precedence, 696

Exception, 36
addressing exception, 37
arithmetic exception, 37
protection violation, 37

exec() system call, 147
Execute privilege, 497
Exhausted list, of Linux, 264
Exokernel, 97
Export list, 685
Extended machine, 86
Extensibility, 17, 83
Extent, 502
External data representation

(XDR), 671, 683
External fragmentation, 383, 392

F
50-percent rule, 385–386
Fail-stop fault, 745
Failure, 743
Fair share, 230
Fair share scheduling

Solaris, 262
Unix, 261–262

Fault, 743
amnesia fault, 745
Byzantine fault, 747–748

classification, 745–746
communication fault, 745
fail-stop fault, 745
partial amnesia fault, 745
storage fault, 745
system fault, 745

Fault tolerance, 70, 746, 750–754,
761–762, 765–770

in distributed system
resiliency, 754–756

in file system, 515, 519–523
atomic action, 520–523
stable storage, 519–520

Faulty process, 747
FCB, see File control block
FCFS scheduling, see First-come,

first-served scheduling
Feasible schedule, 253
Field, 483
FIFO page replacement, 440
File, 307, 483

access, 506–510
attribute, 483
availability, 766
byte stream file, 480, 483
cache, 480, 543, 588–591,

771–774, 776
caching, 761, 771–774

cache validation, 773–774
close operation, 484, 506,

509–510
creation operation, 484
data, 482
deletion operation, 484
field, 483
file control block, 503–506
internal id, 504
location, 489
map table, 500
memory mapping, 454–456
mutable file, 512–513
open operation, 484, 505–508
operations on, 483–484, 509
organization, 484–487
primary copy, 768
processing, 482
protection, 497, 625–640
read/write operation, 484
record, 483
recoverability, 765

recovery, 515–517
renaming operation, 484
replication, 768
robustness, 765
sharing semantics, 510–513,

764–765
structured file, 483
type, 480, 483

File allocation table (FAT), 500
File attribute, 483, 532
File cache, 543, 588–591,

771–774, 776
cache validation, 773–774

File control block (FCB),
503–510

File data, 482
File FCB pointer, 506
File management, 81
File map table (FMT), 500,

506–510
File organization

direct-access file, 485–486
index sequential file, 486–487
sequential file, 485

File replication, 767
File server, 762
File sharing, 497
File sharing semantics, 764–765

session semantics, 513, 765
transaction semantics, 534, 765
Unix semantics, 527, 764

File system, 21, 479–530, see also
Atomic action, Disk space
allocation, Distributed file
system, File sharing

access method, 485, 488
access validation, 509
atomic action, 520–523
backup, 516–519
close operation, 509–510
consistency, 513–515
delete operation, 493
direct-access file, 485–486
directory

entry format, 488–489
structure, 488–497

disk space allocation, 498–502
fault tolerance, 515, 519–523
file control block (FCB), 503–506
file operations, 509

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 814 — #8

814 Index

File system (continued)
file sharing, 489

semantics of, 510–513,
764–765

index sequential file, 486–487
interface with IOCS, 503–506
internal id, 509
journaling file system, 523–524
journaling modes, 524
library modules, 482–483
link, 492, 529, 532
Linux, 530–531
log-structured, 536–537
mechanisms and policies, 545
memory mapped files, 454–456
metadata, 482, 499, 502,

516, 525
mount table, 508
mounted files, 508
mounting of, 495–497

cascaded mounting, 775
naming freedom, 489
open operation, 506–508
performance, 502, 534–537
recovery, 515–517

overhead of, 516
reliability, 513–517, see also

Atomic action, Fault
tolerance, Recovery

sequential file, 485
Solaris, 531
state, 516
Unix, 526–530
virtual file system (VFS),

524–526
Windows, 531–534

File transfer protocol (FTP),
666, 683

Firewall, 15
First-come, first-served (FCFS)

scheduling, 233–234
performance analysis, 270

First-fit algorithm, 382–383
Flags, see Condition code,

113
Flow control, 681, 682, 684
Flushing, of cache, 34
fork() system call, 146
Forward recovery, 747

Fragmentation, see Memory
fragmentation

Free list, 381–385, 387, 388,
400–403

in disk space allocation, 498, 528
Unix, 528

Free page frames list, 435
Free space management

in disk space allocation, 498, 528
in memory allocation, 380–386

FTP, see File transfer protocol
Fully connected network, 675

G
Gang scheduling, 354
Garbage collection, 635
Gateway, 673
General-purpose register (GPR),

27, 28, 40–44, 113, 124–126,
133, 135, 141, 149, 156, 167

Global clock, 695
GPFS, 779–780

lock manager, 779
Graceful degradation, 70, 336,

337, 346
Graph

acyclic, 492
knot, 302
resource knot, 305

Graph model
of distributed system, 685–687
of process precedences, 252
of resource allocation state

RRAG, 281–284
WFG, 281–282

Graphical user interface (GUI), 9
Guest OS, 88–91
GUI, see Graphical user interface

H
HAL, see Hardware abstraction

layer
Hamming code, 550, 551
Hard affinity, 356–357
Hard real-time system, 69
Hardware abstraction layer

(HAL), 101
Hash table, 430, 535, 593

Hash value, 625
Hashing function, 430
Head skewing, 555
Heap, 376, 378–390
Heap management, 345–346,

380–390
parallelism in, 345–346
in Windows, 390

High level data link control
(HDLC), 682

Highest response ratio next (HRN)
scheduling, 236

performance analysis, 270
Hint, 771

in distributed file system, 771
in scheduling, 354

Hit ratio, 364
in cache, 32
in memory, 418
in TLB, 426, 427

Hold-and-wait condition, 280, 293
Home directory, 491
Host, 88–91, 655
Host OS, 88–91
HP AlphaServer, 339
HRN scheduling, see Highest

response ratio next
scheduling

Hybrid thread model, 145–146
Hypercube, 339
Hypervisor, 91

I
I/O, 34–36

access time, 549
asynchronous mode, 545
buffer, 580
command, 546
completion processing, 568,

573–574
device, 307, 547–566

address, 545
block mode, 548
character mode, 548
controller, 545
random-access, 547, 552–558
sequential, 547, 550–552

DMA mode, 35
initiation, 279, 567–568, 573

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 815 — #9

Index 815

instruction, 546
interrupt, 36
interrupt mode, 35
memory mapped I/O, 548
organization, 545–547, 566–567
programmed mode, 35
programming, 567–568
scheduler, 571
status information, 545, 567
synchronous mode, 545
time, 549
transfer time, 549
volume, 547
wait time, 579

I/O control block (IOCB), 571,
573–574

I/O device
data transfer mode, 548

block mode, 548
character mode, 548

error correction, 549–551
error detection, 549–551

I/O fixing, of pages, 433
I/O management, 81
I/O programming, 567–568

advanced I/O programming
blocking, 584–587
buffering, 579–584

I/O queue (IOQ), 571
I/O wait time, 579
I/O-bound process, 114, 161, 162,

244, 248, 251, 262, 263
I/O-bound program, 62–64
IBM

360/67, 447
JFS, 524
NUMA-Q, 339
VM/370, 89

IDE disk, 559–561
Idempotent operation, 522, 665
Identifier

group id, 639
internal id, of file, 504
program id, 34
user id, 639

Idle loop, 91
IEEE scalable coherent interface

(SCI), 341, 342
Immutable file, 511
Import list, 685

Inclusion property, 442
Incremental backup, 516
Incremental growth, 71
Indefinite wait, 279
Independent processes, 166
Index, 486
Index block, 501, 536, 780

in log-structured file system, 536
Index sequential file, 486–487
Indexed disk space allocation,

500–502
Indirect block, 527
Indirect naming, 318, 323
Indivisible instruction, 165,

177–179, 208
compare-and-swap, 179
swap, 179
test-and-set, 178

Indivisible operation, 165, 174–175,
197

definition, 174
implementation, 177–179

Inode, 526–527
Input output control system

(IOCS), 479–483, 543–545
difference with file system, 482
library, 481
operations, 504
physical organization, 543, 544

Instruction execution cycle, 36
Integrity of information, 609, 786
Intel 80386, 99, 432
Intel 80x86, 90, 100, 615
Intentions list, 751
Interacting processes, 165–166

definition, 166
Interarrival time, 269
Interconnection network, 339–341
Internal fragmentation, 383, 390
Internal id, of file, 504
Internet, 10
Internet address, 660
Internet protocol (IP), 682
Interprocess communication

(IPC), 97
Interprocess communication (IPC)

protocol, 659–665
asynchronous protocol, 662
blocking protocol, 662
nonblocking protocol, 662

reliable protocol, 662
RR protocol, 664–665
RRA protocol, 662–664
semantics

at-least-once semantics, 661
at-most-once semantics, 661
exactly-once semantics, 661,

662, 664
synchronous protocol, 662
unreliable protocol, 662

Interprocess message, 131–132,
307, 315–333

Interprocess message control block
(IMCB), 320

Interprocessor interrupt (IPI), 343
Interrecord gap, 552
Interrupt, 16, 26, 36, 39

action, 38–39
classes, 36–37
code, 41
I/O, 37, 38, 41
mask, 28, 37–40
masking, 37–38, 42–44
priority, 36, 37
program interrupt, 37, 38, 41
servicing, 40–44

nested interrupts, 42–44, 149
software interrupt, 37, 38, 41,

45, 132
timer, 37, 41
vector, 38

Interrupt masking, 37–38, 42–44
Interrupt priority, 36, 37
Interrupt servicing routine, 36,

40–44, 80–81, 83, 89, 93,
96–97, 101

Interrupt vector, 83, 89
Intruder, 15, 610, 786
Inverted page table, 429–431
IOCS, see Access method, Physical

IOCS
IOMMU, 95
IP, see Internet protocol
IP network, 561
IPI, see Interprocessor interrupt
ISO protocol layers, 681–683

operation, 682
ISO protocol stack, 681–683
ISO reference model, 681–683

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 816 — #10

816 Index

J
Java

byte code, 92
monitor, 213
registry, 671
remote method invocation

(RMI), 327, 671–672
virtual machine, 92

Job, 52, 53
scheduling, 244

Journal, for recovery, 780
Journaling file system, 523–524

modes, 524

K
KB, 96, 99
kB/s, 558
Kerberos, 797–801

authenticator, 799
ticket, 799

Kernel, 7, 8, 19, 25, 92–95, 481
and portability, 93
dynamically loadable kernel

module, 94–95
embedded system, 100
functions, 94
interrupt-driven operation, 40
memory allocation, 400–404
noninterruptible kernel, 44
NUMA kernel, 347
preemptible kernel, 44, 100, 250
SMP kernel, 345
synchronization support, 208

Kernel memory allocation, 400–404
lazy buddy allocator, 401–403
McKusick–Karels allocator, 401
slab allocator, 403–404

Kernel mode, of CPU, 28, 39, 42,
89–90, 102

Kernel-based OS design, 92–95
Kernel-level thread, 139–141, 658
Key

encryption, 617
in record, 483

Key distribution center (KDC),
791–793

Key stream, 621
Knot, 302
Knuth, 383, 389

L
LAN, see Local area network
Latency, 553

network, 685
rotational, 579

Layered OS design, 85–88
stratification, 87

Lazy buddy allocator, 401–403
LCN scheduling, see Least

completed next scheduling
Least completed next (LCN)

scheduling, 237, 240–241
Least recently used (LRU) page

replacement, 440–442,
446–447

Library
file system modules, 481–483
IOCS modules, 571
physical IOCS, 572–574
thread library, 141–143

Light weight process
(LWP), 154

Limit register, 33
Link, 492, 529, 532

communication, 654, 659, 675
Linked disk space allocation,

499–500
Linked list, 381–382, 385, 387,

402, 403
Linking, 367–373

definition, 371
dynamic linking, 372–373
entry point, 371
external reference, 371
program relocation, 369–371

definition, 369
static linking, 372–373

Linux, 152–154, 418, 524, 592
clone system call, 152–153
futex, 217
authentication, 640

pluggable authentication
module (PAM), 640

embedded system, 100
exhausted list, 264
file system, 530–531

ext2, 530–531
journaling file system, 530
lease, 530

mandatory lock, 530
virtual file system, 530

I/O scheduling, 595–596
inode, 530
kernel, 99–100

dynamically loadable kernel
module, 94–95

Linux 2.6 kernel, 100, 264
Linux security module

(LSM), 641
memory management, 403
multiprocessor support, 355–356

load balancing, 356
reader–writer spinlock, 355

password security, 625
process state, 154
process synchronization, 216–217
reader–writer semaphore, 217
scheduling, 263–264

scalability, 264
security, 640–641
superblock, 530
virtual memory, 459–460

Little’s formula, 270
Livelock, 188, 192
Liveness, in distributed control

algorithm, 717
Load balancing, 352, 356, 687,

728–732
Load-add-store sequence, 167
Loader, 367, 368

definition, 372
Local area network (LAN), 71,

654, 672–674
Local clock, 695
Local memory, 339
Local procedure call (LPC),

332–333
Locality, 32, 412, 418–420

spatial, 32
temporal, 32

Location independence, 761
Location transparency, 761
Lock

adaptive lock, 350
coarse-grained, 345
distributed locking, 762
fine-grained, 345
lease, 530

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 817 — #11

Index 817

lock granularity, 779
mandatory lock, 530
queued lock, 349
queued spinlock, 220
reader–writer lock, 220
reader–writer spinlock, 355
shadow lock, 351
sleep lock, 350
spin lock, 349–350

Lock variable, 178, 208
Log, 750

operation log, 751
redo log, 750
undo log, 751
value log, 751
write-ahead logging, 751

Log file, 536
Log-structured file system, 536–537

index block, 536
log file, 536

Logical address, 30, 393, 411
Logical address space, 393, 396, 411
Logical clock, 698–700

synchronization, 698–699
Logical device, 569–570
Logical device table (LDT),

570–571
Logical disk, 495
Logical organization, 393–394
Logical record, 585
Logical view, 16, 479–482
Long-term scheduling, 244–245
Look scheduling, 576
Looping

for synchronization, 175–176
LRU page replacement, see Least

recently used page
replacement

M
Mach operating system, 354–355

microkernel, 96
processor set, 354
scheduling hints, 354

Magnetic tape, 550
streaming tape, 552

Mailbox, 323–325
Main memory, see Memory
Malloc (of C), 376

Man in the middle attack, 796
Mandatory access control, 637
Mandatory protection, 637
Marshaling, 668, 669, 672
Masking, of interrupts, 37–38,

42–44
Masquerading, 610, 788
Master secret, 802
Master–slave, 343
Matrix model, of resource

allocation state, 284–285
McKusick–Karels allocator,

401
Mean response time, 230
Mean turnaround time, 230
Mechanism, 82–83, 93, 95–96, 98,

101, 545, 608
authentication, 623
dispatching, 244, 245
event handling, 574
IOCS mechanism, 481, 503, 545
memory management

mechanism, 391
paging mechanisms, 438
process migration, 738
protection mechanism, 608
scheduling mechanisms, 246
security mechanisms, 608

Medium-term scheduling, 244–245
Memory, 307

local memory, 339
nonlocal memory, 339
physical address space, 393
protection, 380

Memory allocation, see also Virtual
memory

contiguous allocation, 390–392
dynamic allocation, 366, 367
free list, 380–385, 387, 388,

400–403
heap, 376, 378–390
kernel memory allocation,

400–404
memory reuse, 380–386
noncontiguous allocation,

392–397
to a process, 378–379, 420–422,

447–451
stack, 376–378
static allocation, 366, 367

Memory allocators
buddy system allocator, 386–388
lazy buddy allocator, 401–403
McKusick–Karels allocator, 401
power-of-2 allocator, 388–389
slab allocator, 403–404

Memory compaction, 386, 391
Memory fragmentation, 383,

390–391, 404
definition, 383
external fragmentation, 392
internal fragmentation, 390–391

Memory hierarchy, 30–33
management of, 363–365

Memory management, 81, 363–408
in Linux, 403
in Unix, 400–404
in Windows, 390

Memory management unit
(MMU), 19, 27, 30, 83, 123,
126, 363, 365, 393–400, 411,
417, 423, 424, 433, 465

Memory map, 58
Memory mapped files, 454–456
Memory protection, 15, 33–34, 61,

380, 395, 423–424
Memory protection information

(MPI), 28, 33
Memory reuse, 380–386

best-fit, 382–383
first-fit, 382–383
next-fit, 382–383
worst-fit, 406

Memory utilization factor, 389
Memoryless property, 269
Merging free memory areas,

384–386
Message

acknowledgment, 659
orphan, 749
queue, 329–331
retransmission, 659

Message authentication code
(MAC), 796, 801

Message digest, 625, 795
MD2, 625
MD4, 625
MD5, 625, 640

Message passing, 18, 131–132,
307, 315–333

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 818 — #12

818 Index

asymmetric naming, 318
asynchronous, 318
blocking send, 318
buffering, 320–321
delivery, 321–323
exceptional condition, 319
higher level protocols, 325–328

message passing interface
(MPI), 327

parallel programming,
327–328

parallel virtual machine
(PVM), 327

RPC, 326–327
SMTP, 325–326

interprocess message control
block (IMCB), 320

issues, 317
naming, 317–318
nonblocking send, 318
symmetric naming, 318
synchronous, 318
Unix, 328–331
Windows, 332–333

Message passing interface (MPI),
327–328

Message replay attack, 787,
793–794

Message security, 786, 788–794
Message switching, 679
Message tampering, 786
Metadata, 21, 482, 499, 502, 516,

525, 761, 780
Microkernel, 95–97

definition, 95
embedded system, 96

Microkernel-based OS design,
95–97

Migration
computation, 728–732, 764
data, 666, 687, 689
file, 761, 764
process, 728–732
volume, 777

MIMR system, 304–305
MISR system, 302–303
Mitchell–Merritt algorithm,

726–728
Mode bit, of CPU, 48
Modified bit, 415, 447, 458

Monitor, 165, 208–213
signal statement, 209
wait statement, 209
condition variable, 209–213
in Java, 213
mutual exclusion, 209
usage example

binary semaphore, 210–211
producers–consumers,

212–214
Morris worm, 613
Motorola 68030, 433
Mount point, 496
Mounting, of file system, 495–497

cascaded mounting, 775
Multi-site transaction, see

Distributed transaction
MULTICS

file system, 490–491, 526
protection domain, 638
segmentation, 466

Multilevel adaptive scheduling, 249
Multilevel scheduling, 248–249

CTSS, 249
Multimedia systems, 69
Multiple instance resource, 301
Multiple request, 301
Multiprocessor kernel structure,

345–347
NUMA kernel, 347
SMP kernel, 345–346

Multiprocessor operating system,
336–355

co-scheduling, 354
gang scheduling, 354
graceful degradation, 346
heap management, 345–346
kernel structure, 345–347

NUMA kernel, 347
SMP kernel, 345–346

process scheduling, 346–347,
352–355

process synchronization, 345,
347–352

queued lock, 348–349
sleep lock, 348, 350
special hardware, 350–351
spin lock, 348–350

Multiprocessor system, 336–341
benefits, 337

interconnection network,
339–341

Interprocessor interrupt (IPI),
343

NORMA architecture, 339
NUMA architecture, 339,

342–343
operating system, 343–345
SMP architecture, 339, 341–342
UMA architecture, 339

Multiprogramming system, 54, 55,
59–64

architectural support, 60
CPU–I/O activity overlap,

61–64
CPU-bound program, 61
degree of multiprogramming,

61, 62
I/O-bound program, 62
kernel functions, 60–64
performance, 64
program classification, 61–62
program mix, 61–62
program priority, 55, 62–64
protection, 60–61
scheduling, 61–64
schematic, 60

Multistage interconnection
network (MIN), 340–341

Multitasking, 114
Mutable file

multiple image, 512–513
single image, 512

Mutex, 200
adaptive, 217

Mutex lock, see Binary semaphore
Mutual exclusion, 169, 172, 181

algorithmic approaches, 180
concurrent programming

constructs, 180
critical section, 170–197
distributed mutual exclusion,

718–723
fully distributed approach,

718–720
token-based approach,

720–723
in monitors, 209
synchronization primitives, 180
using semaphore, 198–200

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 819 — #13

Index 819

N
Name server, 660, 669, 685,

737–738
Name space, 777
Named pipe, 328
Naming

in communication, 660–661
domain name service (DNS),

660–661
in file system, 490, 763
freedom, 489
in message passing, 317–318
of processes, see Process: id

Necessary conditions for deadlock
MIMR system, 304–305
MISR system, 302–303
SIMR system, 303–304
SISR system, 301–302

Nested interrupts, 42–44
Nested transaction, 755–756
Network

bandwidth, 673, 676–677, 684
connection, 673
latency, 673, 685
layer, 682
local area netwok (LAN),

672–674
operating system, 656–657
partition, 675
protocol, 673
routing, 673
topology, 673–675

fully connected, 675
partially connected, 675
ring, 675
star, 675

type, 673
wide area netwok (WAN), 672

Network bandwidth, 673, 676–677
Network file system, 774–777

Sun NFS, 774–777
Mount protocol, 775–776
NFS protocol, 776

Network latency, 673, 685
Network management, 81
Network partition, 675, 780
Network protocol, 681

ISO reference model, 681–683

Network-attached storage
(NAS), 560

Networking, 672–685
connection strategies, 678–680
routing, 680
technologies, 675–678

New (of Pascal), 379
Newcastle connection, 656
Next-fit algorithm, 382–383
Node, 655

in distributed system, 21
Nonce, 793
Noncontiguous memory allocation,

392–397, see also Paging,
Segmentation

Noninterference in user activities,
10, 22

Nonkernel routine, 7, 101
Nonlocal memory, 339
Nonpreemptible server, 233
Nonpreemptive scheduling,

233–236
Nonrepudiability, 797
Nonshareable resource, 280, 291
NRU page replacement, 446
NUMA kernel, 347

O
Object module, 367, 376
Object table (OT), 631
One-time pad, 621
One-way function, 618, 619, 625
Open files table (OFT), 503–504,

506–510, 572, 768
Open system, 654, 797
Operating system, see also

Protection, Security
architecture-dependent code, 83,

84, 93, 95
booting, 11, 12
classes of, 54–56

batch processing, 54, 55, 58–59
distributed, 54, 55, 71–73
multiprogramming, 54, 55,

59–64
real-time, 54, 55, 68–71
time-sharing, 54, 55, 65–68

command line interface, 7
designer’s abstract view, 6

distributed operating system,
653–690

and effective utilization, 8–10
extensibility, 83
file management, 81
functions, 81
goals, 8–10

efficient use, 8–9
noninterference, 8
user convenience, 8–10

graphical user interface, 7, 9
guest OS, 88
I/O management, 81
interrupt-driven operation, 40, 93
kernel, 7, 8, 19
mechanism, 82
memory management, 81
network management, 81
network operating system, 656
noninterference, 10, 22
operation of, 10–15, 80–81
overhead, 8, 12, 13, 17, 19
policy, 82
portability, 82, 95
process management, 81
program management, 10, 12
resource management, 11–14
structure, 7, 82–103

kernel-based, 84, 92–95
layered, 84–88
Linux, 99–100
microkernel-based, 85, 95–97
monolithic, 84–85
Solaris, 100–101
Unix, 98–99
virtual machine OS, 88–89
Windows, 101–102

user convenience
good service, 56
necessity, 56
resource sharing, 56

user interface, 81
Operation log, 751
Operation, of a process, 113
Optical disk, 565–566
Optimal page replacement, 440
Orphan message, 749
Overhead, 8, 12, 13, 17, 19, 25, 56,

59, 66, 70
Overlay, 412

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 820 — #14

820 Index

P
P+Q redundancy, in RAID, 563
P-code instruction, 92
Packet, 679
Packet switching, 676, 679
Page, 33, 413

definition, 394
fault, 416–420, 422, 423, 425,

426, 430
desirable characteristic, 422

frame, 413
optimal page size, 422
reference string, 439
replacement, 417, 418
sharing of, 424
table, 413, 435

entry format, 415
inverted page table, 429–431
multi-level page table, 431–433
two-level page table, 431–432

traffic, 417
Page cache, 591
Page directory, 462
Page fault, 416
Page number, 396
Page reference string, 439
Page replacement, 414
Page replacement policies,

438–447
clock algorithm, 446–447
FIFO replacement, 440, 443
LRU replacement, 440–442
NRU replacement, 446–447
optimal replacement, 440
practical page replacement

policies, 444–447
stack property, 442–443

Page sharing, 424, 451–454
Page size, 422
Page table, 396

entry format, 415
inverted page table, 429–431
multi-level page table, 431–433

Page-in operation, 414, 417
Page-out operation, 414, 417
Page-table address register

(PTAR), 423
Paging, 394, 396–398, 412–413

address translation, 397–398,
413–418, 423–428

address translation buffer,
424–427

current locality, 419
demand paging, 413–434
effective memory access time, 417
free frames list, 435
hardware, 423–428
I/O fixing of pages, 433–434
I/O operations, 433–434
inverted page table, 429–431
memory protection, 423–424
multi-level page table, 431–433
page fault, 416
page reference string, 439
page replacement, 414
page replacement policies,

438–447
page sharing, 451–454
page table, 435
sharing of pages, 424
thrashing, 421–422
two-level page table, 431–432

Intel 80386, 432
Paging hardware, 423–428
Paging software, 435–454
Parallel virtual machine (PVM),

327–328
Parallelism, 116–117
Paravirtualization, 90
Parbegin–Parend, 166–167
Parent process, 114, 153
Parity

bit-interleaved parity, 564
block-interleaved distributed

parity, 564
block-interleaved parity, 564

Parity bit, 550–552
Partial order, 696
Partially connected network, 675
Partition

of disk, 495, 532
network partition, 675
of resources, 13, 60

Passive attack, 788
Password, 623

aging, 624
encryption, 624, 625

Password security, 615–617

Path
in RRAG, 282–283
in WFG, 282–283

Path name, 491–492
absolute path name, 492
relative path name, 491
resolution, 506–508, 766, 767,

776, 778
Path table, 566
Performance, 57–58, 569, 770–774

scalability, 344, 770, 774
Performance analysis, of scheduling

policies, 266–271
FCFS scheduling, 270
highest response ratio next

(HRN) scheduling, 270
mathematical modeling, 268
queuing theory, 268
round-robin scheduling, 270
simulation, 267
SRN scheduling, 270

Period, 252
Periodic process, 252
Personal digital assistant (PDA), 53
Peterson’s algorithm, 193–194
Phantom deadlock, 313, 717,

718, 724
Physical address, 30, 393, 411
Physical address space, 393, 413
Physical device table (PDT),

570–571
Physical IOCS, 543, 545, 569–594

data structures, 570–571
design aims, 569
device performance, 569
I/O completion, 573–574
I/O control block (IOCB), 570
I/O initiation, 573
I/O queue, 570
library, 572–574
logical device, 569
logical device table (LDT),

570–571
mechanisms and policies, 545
optimization of device

performance, 569, 576–579
physical device table (PDT),

570–571
system performance, 569

Physical layer, 682

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 821 — #15

Index 821

Physical organization, 393–394
Physical record, 585
Pipe, 328–329
Plaintext, 617, 618
Platter, 552
Plug-and-play, 73, 83, 574, 597
Poisson distribution, 269
Policy, 82–83, 93, 545, 608
Pool

based resource allocation, 13, 60
of buffers, 183
thread pool, 137, 159–160

Port, 671
Portability, 17
Portability, of OS, 82–84, 95
POSIX threads, 138–139, 142,

213–215
Power management, 251–252, 265
Power-of-2 allocator, 388–389
Preallocation of resources, 307
Preemption, 12, 62, 230, 231, 293
Preemptive scheduling, 236–242
Prefetching of data, 560
Premaster secret, 802
Presentation layer, 683
Primary copy, 519
Primary process, 114
Print server, 14
Priority, 55, 62–64, 230, 232–233,

246–247
definition, 62
dynamic, 232, 247, 259
static, 232
variation of, 232, 233, 251, 259,

265
Priority inheritance protocol, 176
Priority inversion, 176
Priority paging, 462
Priority-based scheduling, 62, 231,

246–249
Privacy, 609, 786
Private key, 788–790, 799–800
Private key encryption, 788–789
Privileged instruction, 28
Process, 17, 53, 111–160

address space, 364, 365, 392, 411
benefits of child processes, 114
blocked state, 119
child process, 114–116
concurrent processes, 113

context, 118, 123–125
CPU-bound, 114, 161, 162,

237, 244, 248, 251, 259,
262, 263

creation, 127–128, 146, 158–159
daemon, 146
data sharing, 131–132
definition, 112
fault, 745
I/O-bound, 114, 161, 162, 244,

248, 251, 262, 263
id, 123
independent processes, 166
interacting processes, 131–132,

165–166
control synchronization,

172–175
data access synchronization,

166–170
definition, 166

interprocess communication,
131–132, 315–334

interprocess message, 131–132
kernel view of, 112–130
Linux, 152–154
memory allocation to, 378–379
message passing, 131–132
parent process, 133
precedence, 252
primary process, 114
priority, 230–233, 246–247

variation of, 232, 233, 251,
259, 265

process control block (PCB),
124–125, 128, 129, 133–135,
142, 146, 156

and program, 111–114
ready state, 119
recovery, 746
running state, 119
scheduling, 118, 125–126,

246–252, 346–347, 352–355
in distributed operating

system, 715, 728–732
in multiprocessor system,

346–347, 352–355
signal, 131–132
stack, 123
standby state, 159

state, 118–123, 151–152, 154,
156, 159

definition, 119
state transition, 120–123,

151–152, 154, 159
suspend state, 122
switching, 17, 126

overhead, 134
synchronization, 17, 131, 345,

347–352
in multiprocessor system, 345,

347–352
special hardware, 350–351

terminated state, 119
termination, 128
and thread, 134–138
tree, 114
Unix, 146–152
Windows, 157–160

Process context, 118, 123–125
Process control block (PCB),

124–125, 128, 129, 133–135,
142, 146, 156, 246, 321–323,
380, 400

Process management, 81
Process migration, 666, 728–732,

738–739
Process precedence graph (PPG),

252
Process scheduling, see Scheduling
Process state, 111

definition, 119
Process synchronization, 165–220,

see also Monitor,
Semaphore

classic problems, 183–190
dining philosophers, 187–190
producers–consumers,

183–186, 201–204, 212–213
readers–writers, 186–187,

204–206
sleeping barber, 222

control synchronization, 172–175
data access synchronization,

166–170
Linux, 216–217
race condition, 166–170
Solaris, 217–218
through blocking, 176–177
through looping, 175–176

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 822 — #16

822 Index

Process synchronization (continued)
Unix, 215–216
Windows, 218–220

Processor affinity, see Affinity
Processor pool, 655
Producers–consumers problem,

183–186, 201–204
indivisible operations, 186
outline, 184, 186
statement of problem, 183
using monitor, 212–214
using semaphore, 201–204

Program, 52, 53
address space, 112
compilation, 367
context, 41
counter, 27, 38, 39
kernel program, 7
linking, 367
mix, 61–62
multi-segment, 400
nonkernel program, 7
preemption, 54
priority, 54, 62–64
relocation, 368–371
start address, 367
text, 112

Program controlled dynamic (PCD)
data, 376, 378–379

Program counter (PC), 27, 28,
38, 39

Program execution, 112
Program forms, 373–376

binary program, 367, 374
reentrant program, 374–376
self relocating program, 374

Program id, 34
Program mix, 62
Program relocation, 369–371

definition, 369
Program status word (PSW), 27–33,

83, 124–126, 135, 380
Program table, 40, 42, 44
Programmed I/O, 35
Progress condition, 172, 191
Protection, 11, 14–15, 21, 60–61,

81, see also Capability, File:
protection, Memory
protection

access control list, 627–628

access control matrix, 627
access privilege, 605, 608, 625,

638
in cache, 34
capability list, 628
domain, 629–640

change of, 630–640
MULTICS, 638
Unix, 639–640

goals, 609
granularity, 626–627
information, 490
mechanism, 608
memory protection, 29, 33–34
policy, 608
ring, 638
and security, 11, 606
structure, 625–640
threats, 609–610

Protection granularity, 626–627
Protection violation, 37
Protocol, see Communication

protocol
Proximity region, 419
PT address register, 423
PT size register, 424
Pthreads, 138
Public key, 789–792

distribution, 791
Public key certificate, 795
Public key encryption, 789–790

Q
Quantum, see Time quantum
Queue

I/O, 571
scheduling, 129

Queued lock, 348–349
Queuing theory, 268
Quorum algorithm, 752–753

R
Race condition, 166–170

in control synchronization,
172–175

definition, 168
in distributed file system, 780
example, 168

RAID, 561–564
level 0 (disk striping), 562
level 1 (disk mirroring), 562
level 2, 562

RAID, P+Q redundancy, 563
RAM, 30, 48
RAM disk, 575
Random access device, 547
Random access memory

(RAM), 364
Random events, 269
Rate monotonic scheduling,

257–259
Raymond algorithm, 721–723
RC4, 621
Read–write head, 552
Reader–writer lock, 220
Readers–writers problem, 186–187,

204–206
outline, 187
readers preferred, 186
statement of problem, 186–187
using semaphores, 204–206
writers preferred, 186

Ready list, 245–249
Ready queue, see Ready list
Ready state, 119, 127–130
Real-time application, 68–71, 115

deadline, 69
definition, 69
example, 69
response requirement, 69

Real-time operating system, 54, 55,
68–71

deadline-aware scheduling, 70
fault tolerance, 70
features of, 70–71
graceful degradation, 70

Real-time scheduling, 54, 252–259
deadline scheduling, 254–257
dynamic scheduling, 254
priority-based scheduling, 254
rate monotonic (RM)

scheduling, 257–259
static scheduling, 254

Real-time system
hard, 69, 253
soft, 69, 253

Receive operation, 315–334

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 823 — #17

Index 823

Record, 483, 548
logical record, 585
physical record, 585

Recoverability, of file, 765
Recovery

in distributed system, 743–756
backward recovery, 747
checkpoint, 746
data recovery, 746
definition, 743
forward recovery, 747
orphan message, 749
process recovery, 746
rollback, 746

in file system, 516–517
Redo log, 750
Redundant array of inexpensive

disks (RAID), see RAID
Reed–Solomon code, 566
Reentrant code, 345
Reentrant program, 375–376
Reference bit, 436, 446
Reference monitor (RM), 637
Register

base, 33, 60, 380
flags, 27
general-purpose register

(GPR), 27
limit, 33
page table address register, 423
PT size register, 424
relocation register, 370
segment table address register

(STAR), 465
size, 33, 60
timer, 66

Registry, 671
Relative path name, 491
Reliability, 71

availability, 71
in communication protocol,

659–660
in distributed operating

system, 688
in distributed system, 654,

686, 694
of file system, 513–517
in network, 674–675

Reliable protocol, 662
Relocating loader, 370

Relocation of program, 368–371
definition, 369

Relocation register, 370, 380
Remote data access, 666
Remote evaluation, 659, 667,

670–671
Remote file processing, 762
Remote method invocation (RMI),

327, 671–672
Remote procedure call (RPC), 72,

73, 326–327, 333, 659,
667–671

Replicated data, 750–753
Request, 229

reordering, in scheduling, 232
Request edge, 281
Request queue, 233, 238
Residual state, 738
Resiliency, 685–686, 746, 754–756
Resolution of deadlock, 290–291
Resource

allocation, 12–14, 279–284
partitioning, 13
pool-based allocation, 13
virtual resource, 13–14

class, 279
instance, 301
knot, 305
partition, 13
pool, 13
ranking, 294–295
unit, 279

Resource allocation, 12–14,
279–284

in distributed operating system,
736–738

events in, 279
partitioning, 13, 60
pool-based allocation, 13, 60
state modeling, 281–282

matrix model, 284–285
RRAG, 281–284
WFG, 281–282

virtual resource, 13–14
Resource handle, 157
Resource knot, 305
Resource pool, 13
Resource ranking, 294–295
Resource request and allocation

graph (RRAG), 281–284

Resource sharing, 71, 277–309
Response ratio, 230, 236
Response requirement, 69
Response time, 56–58, 229, 230

definition, 58
variation with time slice, 239–240

Reuse of memory, 380–386
best-fit, 382–383
first-fit, 382–383
next-fit, 382–383
worst-fit, 406

Revocation, of capability, 635–636
Ricart–Agrawala algorithm,

718–720
Ring network, 675
Robustness, of file, 765
Rollback, 749–750
Root directory, 491
Rotational latency, 530, 553
Round-robin (RR) scheduling, 54,

65–66, 237–240, 247
performance analysis, 270

Router, 654, 682
Routing, 680

dynamic, 680
RR protocol, 664–665
RRA protocol, 662–664
RS-232C, 682
Run-time library, 365
Running state, 119, 287–289

S
Safe allocation state, 296
Safety, in distributed control

algorithm, 717
Saved PSW information, 38–39,

41, 42
Scalability, 344, 771

in distributed file system, 762,
770, 774

in multiprocessor system, 344
SCAN scheduling policy, 576
Schedule length, 230, 231
Scheduler, 12, 81
Scheduling, 12, 18, 41, 61–62,

65–66, 118, 125–126,
228–275

concepts, 230
CTSS, 249

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 824 — #18

824 Index

Scheduling (continued)
disk, 576–579
in distributed operating system,

715, 728–732
earliest deadline first (EDF)

scheduling, 256–257
events

arrival, 229
completion, 229
preemption, 229
scheduling, 229

fair share scheduling, 249–250,
261–262

first-come, first-served (FCFS)
scheduling, 233–234

fundamentals, 228–233
heuristics, 250–251
highest response ratio next

(HRN) scheduling, 236
hint, 354
job scheduling, 244
least completed next (LCN)

scheduling, 237, 240–241
Linux, 263–264
long-term scheduling, 244
lottery scheduling, 250
medium-term scheduling, 244
multilevel adaptive scheduling,

249
multilevel scheduling, 248–249
in multiprocessor system,

352–354
in multiprogramming, 61–64
nonpreemptive, 233–236
overhead, 66
performance analysis, 266–271
preemptive, 236–242
priority-based scheduling,

246–247
process scheduling, 246–252

Linux, 263–264
multilevel scheduling, 248–249
multiprogramming, 246–247
real-time scheduling, 252–259
Solaris, 262–263
time sharing, 247
Unix, 259–262
Windows, 264–265

queue, 129, 233, 238, 239, 244,
247, 268

rate monotonic (RM)
scheduling, 257–259

real-time scheduling, 54, 70,
252–259

request, 229
round-robin (RR) scheduling,

237–240, 247
short-term scheduling, 244–252
shortest request next (SRN)

scheduling, 234–236
shortest time to go (STG)

scheduling, 237, 241–242
terms, 230
in time-sharing, 65–66, 245
using resource consumption

information, 240–242
Scheduling hint, 354
Scheduling list, 67, 68
Scheduling overhead, 66
Scheduling queue, 65, 233, 238,

239, 244, 247, 268
SCSI disk, 559–561
SCSI interface, 559–560
Secondary copy, 519
Secrecy, 609, 786
Sector, 554
Sector interleaving, 555–558
Secure sockets layer (SSL), 621,

801–802
handshake protocol, 801
master secret, 802
premaster secret, 802
record protocol, 801

Security, 11, 14–15, 21, 81, 785–805
attack, 610–613
authentication, 606–608

token, 607
authenticity, 609, 786
authorization, 606–608
biometric, 607
birthday attack, 795
buffer overflow attack, 613–615
denial of service, 606, 615
in distributed systems, 785–805
encryption, 608
formal aspects, 615–617

take-grant model, 615
goals, 609
integrity, 609, 786
Linux, 640–641

mechanism, 608, 615, 786
password security, 608, 615–617
policy, 608, 615, 786
privacy, 609, 786
and protection, 11
reference monitor (RM), 637
secrecy, 609, 786
TCSEC classification, 636–637
threats, 609–610
Trojan horse, 611
virus, 612
Windows, 641–643
worm, 613

Security attack, 610–613, 787–788
denial of service, 610
eavesdropping, 787
man in the middle attack, 796
masquerading, 610, 788
message replay, 787, 793–794
message tampering, 787

Security classification, 636–637
Security threats

denial of service, 786
leakage, 786
stealing, 786
tampering, 786

Seek time, 553
Segment, 394
Segment linking table (SLT), 466
Segment table, 399, 465
Segment table address register

(STAR), 465
Segmentation, 394, 398–400,

412–413, 465–469
fragmentation, 467, 468
MULTICS, 466
sharing, 467–468

Segmentation with paging,
399–400, 468–469

fragmentation, 468
Self relocating program, 374
Semantic gap, 85–86, 88, 92, 93

definition, 85
Semantics

of file sharing, 510–513
of interprocess communication

(IPC) protocols, 661
Semaphore, 165, 197–208

binary semaphore, 200
counting semaphore, 197

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 825 — #19

Index 825

definition, 197
implementation, 205–208

hybrid, 208
kernel-level, 208
lock variable, 208
pseudo-code, 189, 207
user-level, 208

reader–writer semaphore, 217
Unix, 215–216
usage example

mutual exclusion, 198–200
producers–consumers,

201–204
readers–writers, 204–206

use for bounded
concurrency, 201

use for mutual exclusion,
198–200

use for signaling, 201
Windows, 219

Send operation, 315–334
Sequent Balance, 339
Sequential file, 485
Server, 667

in microkernel-based OS, 96
Server node, 762
Server stub, 326, 668
Service pattern, 268
Service time, 229, 230, 269
Session key, 790, 792–793, 798

distribution, 792
Session layer, 683
Session semantics, 764–765
Setuid bit, 640
Shadow lock, 351
Shannon, 620
Sharing

data, 166–170
file, 510–513, 764–765
of programs, 374–376

Shell, 147
Short-term scheduling, 244–245
Shortest request next (SRN)

scheduling, 234–236
performance analysis, 270

Shortest seek time first (SSTF)
policy, 576

Shortest time to go (STG)
scheduling, 237, 241–242

Signal, 131–134, 149–151, 156

Signal handler, 131–133, 146, 149
default handler, 133, 150

signal operation, 197
Signaled state, 218
Signaling, 173, 185, 201
Silicon graphics XFS, 524
Simple mail transfer protocol

(SMTP), 325–326
SIMR system, 303–304
Simulation, 267, 287
Single instance resource, 301
Single request, 301
SISR system, 301–302, 724
Site, 655
Size register, 33, 60, 380
Slab allocator, 403–404
Sleep lock, 348, 350
Sleep mode, of CPU, 251
SMP kernel, 345
Snapshot of concurrent system, 181

example, 182, 200, 203, 211, 212
pictorial conventions, 181

Socket, 331–332
Soft affinity, 356–357
Soft real-time system, 69
Software capability, 633–636
Software interrupt, 26, 37, 45, 80
Solaris

M × N thread model, 154
file system, 531

asynchronous I/O, 531
kernel, 100–101

dynamically loadable kernel
module, 101

kernel thread, 155
light weight process (LWP), 154
process synchronization, 217–218

turnstile, 217
reader–writer semaphore, 217
remote procedure call, 100
scheduler activation, 156–157
scheduling, 262–263
signal handling, 156
Sun NFS, 100
thread, 154–157
user thread, 154
virtual memory, 461–462

cyclic page cache, 461
priority paging, 462

Spatial locality, 32

Spin lock, 348–350
Spooling, 54, 307
SRN scheduling, see Shortest

request next scheduling
Stable property, 710
Stable storage, 519–520
Stack, 123, 135, 142, 376–379
Stack property, 442
Standby state, 159
Star network, 675
Starvation, 172, 200, 233, 236, 576

in priority-based scheduling, 233
State, 743

of channel, 704
of CPU, 28–29
of distributed system, 694–703

consistent recording, 702–710
global, 694
local, 694
of process, 119–123
transition, 120–123, 136,

151–152, 154, 159
Stateless file server, 767, 769–770
Static binding, 366
Static data, 378
Static linking, 372–373
Static memory allocation, 364, 366
Static priority, 232
Static scheduling, 254
Statistical distribution, 268
Steady state, 269
Storage area network (SAN), 560
Store-and-forward, 679, 684, 785
Stratification, 87, 93, 97
Stream cipher, 618, 621
Stub

client stub, 668, 762
server stub, 668, 762

Subrequest, 53, 229
Substitution cipher, 620
Sun

cluster, 657–658
RPC, 671

Sun NFS, 774–777
architecture, 775
file handle, 775
file sharing semantics, 776–777
Mount protocol, 775–776
path name resolution, 776

Sun OS, 592

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 826 — #20

826 Index

Sun Sparc, 433
Superblock, 528
Superpage, 427

demotion, 428
promotion, 427

Suspend state, 122
Swap instruction, 179
Swap space, 428, 435–436
Swap-in operation, 68
Swap-out operation, 68
Swapping, 67–68, 74, 391–392

definition, 68
Switch

ATM, 677
crossbar, 341

Switching
circuit switching, 679
of CPU, 25, 36, 38–42
message switching, 679
packet switching, 679

Switching technique, 678
Symbolic link, 529, 532
Symmetric encryption, 617
Symmetric multiprocessing (SMP),

341–342, 345–346
Symmetric naming, in message

passing, 318
Synchronization, see Process

synchronization
of clocks, 698–701
of processes, see Process

synchronization
Synchronization primitives, 180
Synchronous message passing, 318
Synchronous protocol, 662
System call, 44–47, 80, 89, 93–98,

100–101
exec(), 147
exit(), 148
fork(), 146
wait(), 147, 154
definition, 45

System link and interface controller
(SLIC), 350

System performance, 56–58

T
2PC protocol, 753–754, see

Two-phase commit protocol

Tagged architecture, 633
Tagged command queuing, 579
Take-grant model, 615
TCP/IP protocol, 683–684
Temporal locality, 32
Terminated state, 119
Test-and-set instruction, 178
THE operating system, 87–88
Thrashing, 421–422
Thread, 17, 111, 134–160

benefits, 136–138
coding for, 138
definition, 135
hybrid threads, 145–146
kernel-level thread, 139–141, 658
library, 138, 141–143
Linux threads, 152–154
pool, 137, 159–160
POSIX threads, 138–139, 142,

213–215
safe, 138
scheduling, 135
Solaris threads, 154–157
stack, 135
state, 136
state transition, 136
user-level threads, 141–144
Windows threads, 157–158

Thread control block (TCB), 135,
141, 770

Thread library, 141–143
Thread pool, 137, 159–160
Thread safe, 138
Throughput, 56, 57, 61, 230, 231,

234, 235, 337
definition, 57

Tightly coupled systems, 339
Time, 693
Time quantum, 250
Time slice, 54, 66

definition, 66
variation, 232

Time-out, 659
in 2 PC protocol, 753
in IPC protocols, 659
in leader election algorithm, 735
in message passing, 335

Time-sharing system, 54, 55, 65–68
memory management, 67–68
response time, 66

scheduling, 55, 65–66
swapping, 67–68
time-slicing, 55, 66–67, 74

Time-slicing, 55, 66–67, 74
Timer object, 219
Timestamp, 697–700, 799

in distributed control algorithm,
718

in distributed system, 699–701
Timing diagram, 696
TLB, see Translation lookaside

buffer
Token ring, 676
Token-based algorithm, 720–723
Topology, of network, 674–675
Total order, 696
Track, 552

on CD, 565
Transaction semantics, 764, 765
Transfer time, in I/O, 549
Translation lookaside buffer

(TLB), 424–427
coherence, 338–339
hit ratio, 426, 427
miss, 425
reach, 427
shootdown, 339

Transparency, 54, 72, 687, 761,
763–764

location independence, 761, 763
location transparency, 687,

761, 763
Transport control protocol

(TCP), 683
Transport layer, 682–683
Trap, 36, 37
Triple DES, 623
Trojan horse, 15, 611
Trusted computer system

evaluation criteria
(TCSEC), 636–637

Trusted computing base (TCB), 637
Trusted path, 637
Turnaround time, 56, 57, 229,

230, 234
definition, 58

Turnstile, 217
Two-phase commit (2PC) protocol,

688, 753–754

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 827 — #21

Index 827

U
UDP, see User datagram

protocol
Unclean shutdown, 523
Undo log, 751
Unified disk cache, 591–592
Unix

exec, 147, 639
exec(), 457
fork, 146, 147
fork(), 457
proc structure, 146
semget, 215
semop, 215
setuid , 616, 639–640
u area, 146
architecture of, 98–99
buffer cache, 98, 527, 593–595
byte stream file, 98
child process, 146–148
command interpreter, 98
copy-on-write, 457
cylinder group, 528, 529
daemon, 146
deadlock handling, 307–308
device driver, 592–593
disk quota, 526
disk space allocation, 527–530
event address, 148
ext2, 523
fast file system (FFS), 529–530
FIFO, 328
file allocation table, 527
file descriptor, 526–527
file sharing semantics, 527
file structure, 526–527
file system, 526–530

mounting, 529
free list, 528
fsck, 523
indirect block, 527
inode, 526–527
interprocess message, 328–331
interrupt servicing, 149
kernel memory allocation,

400–404
kernel process, 146
kernel running state, 151–152
message queue, 329–331

named pipe, 328
nice value, 259
page fixing, 457
pageout daemon, 457–459
password security, 625
pipe, 328–329
process, 146–152

creation, 146
kernel running state, 151
priority, 259
state transitions, 151–152
termination, 147
user running state, 151

protection domain, 639–640
scheduling, 259–262
semaphore, 215–216
shell, 98, 147
signals, 149–151
socket, 331–332
swap space, 456–457
swapping, 459
system call, 149
user process, 146
virtual memory, 456–459

zero-fill page, 456
zombie process, 147
zombie state, 152

Unix semantics, 764
Unreliable protocol, 662
User convenience, 8–10
User datagram protocol

(UDP), 683
User interface, 7, 80, 81, 92,

93, 98
command line interface, 7
GUI, 7

User mode, of CPU, 26, 28,
89–90, 95

User service, 56–58, 65
in batch processing, 58
in multiprogramming, 60–61
in time-sharing, 65

User-level threads, 141–144
Utilization factor, of

server, 268

V
Valid bit, 415
Value log, 751

VAX 8800, 339
Vector clock, 700–701

synchronization, 700–701
Veritas VxFS, 524
Vernam cipher, 621
Victim process, 290
Virtual address, see Logical

address
Virtual channel, 677
Virtual circuit, 680
Virtual device, 58, 87, 93, 292
Virtual file system, 524–526,

774–775
Virtual machine, 14, 88

Java VM, 92
Pascal P-code machine, 92

Virtual machine monitor, 91
VMware, 91
XEN, 91

Virtual machine OS, 88–89
benefits, 88, 91

Virtual memory, 14, 19–20, 30, 33,
70, 73, 365, 410–412, see also
Paging, Page replacement
policies, Segmentation,
Virtual memory manager,
Working set

definition, 412
demand loading, 412
effective memory access time,

426–427
page, 33

Virtual memory manager, 411,
435–454

data structures, 435
functions, 435
page replacement, 436–437
protection, 436

Virtual node, see Vnode
Virtual path, 676
Virtual resource, 13–14
Virtualization, 90
Virus, 15, 611, 612
VM OS, see Virtual machine

OS, 88
VM/370, 89
VMware, 91
Vnode, 525
Volume, 532, 777

migration, 777

02-M4363-DAS1.LaTeX: “index” — 2007/11/26 — 17:22 — page 828 — #22

828 Index

W
wait operation, 197
wait() system call, 147
Wait-for graph (WFG), 281–282,

724–728
Wait-or-die, 728
WAN, see Wide area network
Weighted turnaround, 230, 231,

234, 236
Wi-Fi protected access (WPA), 621
Wide area network (WAN), 71, 672
Windows, 308–309, 418, 781

affinity based scheduling,
356–357

architecture, 101–102
cache manager, 596
cluster, 532
cluster server, 657
container object, 642
control blocks, 157–158
copy-on-write, 463
device driver, 597
DFS namespace, 781
dispatcher object, 218
DLL, 102
environment subsystem, 102, 158
event, 219
event pair, 333
executive, 101
failover manager, 657
file attribute, 532
file cache, 101, 533
file processing, 596–599
hardware abstraction layer

(HAL), 101
I/O request packet, 597
idle thread, 265, 357
job object, 158
kernel, 101
lazy writer, 598

local procedure call (LPC), 102,
332–333

low fragmentation heap, 390
memory management, 390
message passing, 332–333
mutex, 219
NTFS file system, 531–534

atomic transactions, 533–534
folder, 532
logical cluster number, 532
master file table, 532
virtual cluster number, 532

power management, 265
prioritized I/O, 599
process, 157–160

creation, 158–159
process synchronization, 218–220
queued spinlock, 356
reader–writer lock, 220
real-time threads, 264
remote differential compression,

781
resource handle, 157
RPC, 333
scheduling, 264–265
security descriptor, 641
security model, 641–642
semaphore, 219
signaled state, 218
SMP support, 356–358
socket, 333
spanned volume, 532
standby state, 159
synchronization lock, 220

queued spinlock, 220
synchronization objects, 218–220
thread

state transitions, 159–160
thread pool, 159–160
timer object, 219
variable priority threads, 264

virtual memory, 462–464
page directory, 462
shared pages, 463
virtual address descriptor, 463
working set, 464

Vista, 160, 220, 356, 405, 534, 599
Readyboost, 405
security features, 642–643
sleep state, 265
superfetch, 405
wait chain traversal, 308

VM manager, 596
Wired equivalent privacy

(WEP), 621
Working set, 448–450

definition, 448
implementation, 449–451
window, 448

Working set memory allocator,
449–451

Workload, 266
Workload consolidation, 91
Workstation, 655
Worm, 15, 611, 613

Code Red, 15
Morris worm, 613

Wound-or-wait, 728
Write behind

in journaling, 533
Write-ahead logging, 751
Write-through, 773

X
XDR, 671, see also External data

representation
XEN, 91

Z
Zombie process, 147

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Brief Contents
	Preface
	Contents
	Part 1: Overview
	Chapter 1: Introduction
	1.1 Abstract Views of an Operating System
	1.2 Goals of an OS
	1.3 Operatin of an OS
	1.4 Preview of the Book
	1.5 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 2: The OS, the Computer, and User Programs
	2.1 Fundamental Principles of OS Operation
	2.2 The Computer
	2.3 OS Interaction with the Computer and User Programs
	2.4 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 3: Overview of Operating Systems
	3.1 Computing Environments and Nature of Computations
	3.2 Classes of Operating Systems
	3.3 Efficiency, System Performance and User Service
	3.4 Batch Processing Systems
	3.5 Multiprogramming Systems
	3.6 Time-Sharing Systems
	3.7 Real-Time Operating Systems
	3.8 Distributed Operating Systems
	3.9 Modern Operating Systems
	3.10 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 4: Structure of Operating Systems
	4.1 Operating of an OS
	4.2 Structure of an Operating System
	4.3 Operating Systems with Monolithic Sturcture
	4.4 Layered Design of Operating Systems
	4.5 Virtual Machine Operating Systems
	4.6 Kernel-Based Operating Systems
	4.7 Microkernel-Based Operating Systems
	4.8 Case Studies
	4.9 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Part 2: Process Management
	Chapter 5: Processes and Threads
	5.1 Processes and Programs
	5.2 Implenting Processes
	5.3 Threads
	5.4 Case Studies of Processes and Threads
	5.5 Summary
	Test Your Concepts
	Exercises
	Class Project: Implementing a Shell
	Bibliography

	Chapter 6: Process Synchronization
	6.1 What is Process Synchronization?
	6.2 Race Conditions
	6.3 Critical Sections
	6.4 Control Synchronizatin and Indivisible Operations
	6.5 Synchronization Approaches
	6.6 Structure of Concurent Systems
	6.7 Classic Process Synchronization Problems
	6.8 Algorithmic Approach to Implementing Critical Sections
	6.9 Semaphores
	6.10 Monitors
	6.11 Case Studies of Process Synchronization
	6.12 Summary
	Test Your Concepts
	Exercises
	Class Project 1: Interprocess Communication
	Class Project 2: Disk Scheduler
	Bibliography

	Chapter 7: Scheduling
	7.1 Scheduling Terminology and Concepts
	7.2 Nonpreemptive Scheduling Polices
	7.3 Preemptive Scheduling Policies
	7.4 Scheduling in Practice
	7.5 Real-Time Scheduling
	7.6 Case Studies
	7.7 Performance Analysis of Scheduling Policies
	7.8 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 8: Deadlocks
	8.1 What is a Deadlock?
	8.2 Deadlocks in Ressource Allocation
	8.3 Handling Deadlocks
	8.4 Deadlock Detection and Resolution
	8.5 Deadlock Prevention
	8.6 Deadlock Avoidance
	8.7 Characterization of Resource Deadlock by Graph Models
	8.8 Deadlock Handling in Practice
	8.9 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 9: Message Passing
	9.1 Overview of Message Passing
	9.2 Implementing Message Passing
	9.3 Mailboxes
	9.4 Higher-Level Protocols Using Message Passing
	9.5 Case Studies in Message Passing
	9.6 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 10: Synchronization and Scheduling in Multiprocessor Operating Systems
	10.1 Architecture of Multiprocessor Systems
	10.2 Issues in Multiprocessor Operting Systems
	10.3 Kernel Structure
	10.4 Process Synchronization
	10.5 Process Scheduling
	10.6 Case Studies
	10.7 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Part 3: Memory Management
	Chapter 11: Memory Management
	11.1 Managing The Memory Hierarchy
	11.2 Static and Dynamic Memory Allocation
	11.3 Execution of Programs
	11.4 Memory Allocation to a Process
	11.5 Heap Management
	11.6 Contiguous Memory Allocation
	11.7 Noncontiguous Memory Allocation
	11.8 Paging
	11.9 Segmentation
	11.10 Segmentation with Paging
	11.11 Kernel Memory Allocation
	11.12 Using Idle Ram Effectively
	11.13 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 12: Virtual Memory
	12.1 Virtual Memory Basics
	12.2 Demand Paging
	12.3 The Virtual Memory Manager
	12.4 Page Replacement Polocies
	12.5 Controlling Memory Allocation to a Process
	12.6 Shared Pages
	12.7 Memory-Maped Files
	12.8 Case Studies of Virtual Memory Using Paging
	12.9 Virtual Memory Using Segmentation
	12.10 Summary
	Test Your Concepts
	Exercises
	Class Project: Simulation of Virtual Memory Manager
	Bibliography

	Part 4: File Systems and I/O Management
	Chapter 13: File Systems
	13.1 Overview of File Processing
	13.2 Files and File Operations
	13.3 Fundamental Files Organizations and Acces Methods
	13.4 Directories
	13.5 Mounting of File Systems
	13.6 File Protection
	13.7 Allocation of Disk Space
	13.8 Interface Between File System and IOCS
	13.9 File Processing
	13.10 File Sharing Semantics
	13.11 File System Realiability
	13.12 Journaling File System
	13.13 Virtual File System
	13.14 Case Studies of File Systems
	13.15 Performance of File Systems
	13.16 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 14: Implementation of File Operations
	14.1 Layers of the Imput-Output Control Slystem
	14.2 Overview of I/O Organization
	14.3 I/O Devices
	14.4 Device-Level I/O
	14.5 The Physical IOCS
	14.6 Devece Drivers
	14.7 Disk Scheduling
	14.8 Buffering of Records
	14.9 Blocking of Records
	14.10 Access Methods
	14.11 Disk and File Caches
	14.12 Unified Sisk Cache
	14.13 Case Studies
	14.14 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 15: Security and Protection
	15.1 Overview of Security and Protection
	15.2 Security attacks
	15.3 Formal Aspects of Security
	15.4 Encryption
	15.5 Authentical and Password Security
	15.6 Protection Structures
	15.7 Capabilities
	15.8 Classifications of Computer Security
	15.9 Case Studies in Security and Protection
	15.10 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Part 5: Distributed Operating Systems
	Chapter 16: Distributed Operating Systems
	16.1 Features of Distributed Systems
	16.2 Nodes of Distributed Systems
	16.3 Integrating Operation of Nodes of a Distributed System
	16.4 Reliable Interprocess Communication
	16.5 Distributed Computation Paradigms
	16.6 Networking
	16.7 Model of a Distributed System
	16.8 Design Issues of Distributed Operating Systems
	16.9 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 17: Theoretical Issues in Distributed Systems
	17.1 Notion of Time and Date
	17.2 States and Events in a Distributed System
	17.3 Time, Clock, and Event Precedences
	17.4 Recording the State of a Distributed System
	17.5 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 18: Distributed Control Algorithms
	18.1 OPERATION OF DISTRIBUTED CONTROL ALGORITHMS
	18.2 Correctness of Distributed Control Algorithms
	18.3 Distributed Mutual Exclusion
	18.4 Distributed Deadlock Handling
	18.5 Distributed Scheduling Algorithms
	18.6 Distributed Termination Detection
	18.7 Electio Algorithms
	18.8 Practical Issues in Using Distributed Control Algorithms
	18.9 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 19: Recovery and Fault Tolerance
	19.1 Faults, Failures, and Recovery
	19.2 Byzantine Faults and Agreement Protocols
	19.3 Recovery
	19.4 Fault Tolerance Techniques
	19.5 Resiliency
	19.6 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 20: Distributed File Systems
	20.1 Design Issues in Distributed File Systems
	20.2 Transparency
	20.3 Semantics of File Sharing
	20.4 Fault Tolerance
	20.5 DFS Performance
	20.6 Case Studies
	20.7 Summary
	Test Your Concepts
	Exercises
	Bibliography

	Chapter 21: Distributed System Security
	21.1 Issues in Distributed System Security
	21.2 Message Security
	21.3 Authentics of Data and Messages
	21.4 Third-Party Authentication
	21.5 Summary
	Test Your Concepts
	Exercises
	Bibliography

