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EPILOGUE

Four Laws of Nature and
Society: The Governing
Principles of Digital Wireless
Communication Networks

Andrew ]. Viterbi

Four laws, two each from the natural sciences and the social sciences, have formed
the basis for the development of digital wireless communication networks. This
essay describes their interaction, as well as their logical support for spread-spectrum
multiple-access techniques.

E.1 OVERVIEW

In this techno-philosophical essay, we attempt to demonstrate that the implementa-
tion and success of digital wireless communication networks depends primarily on
four basic laws and their underlying theories, which are attributed respectively to:

e Maxwell and Hertz
¢ Shannon

* Moore

¢ Metcalfe

380




Sec.E.2 Wireless Propagation and Its Anomalies 381

The first two laws are laws of nature, while the last two, though often mistakenly
thought as such, are in reality laws of behavior. The order is in the sequence of their
discovery and their importance; additionally, as the field of wireless communica-
tions has matured, the emphasis and immediate relevance has shifted gradually
downward in the list. Without an appreciation for Maxwell’s and Hertz's theories,
there would be no controlled wireless propagation of electromagnetic waves.
Without an understanding of Shannon’s theories, efficient use of the spectrum
through sophisticated signal processing could not be achieved. Without the conse-
quences of Moore’s law, these signal processing techniques could not be imple-
mented in a useful and economic fashion. And finally, Metcalfe’s law, which we
shall explore last, helps to predict the success or failure of large new network
deployments and, consequently, the wisdom of business strategies involving pro-
portionally large capital investments.

E.2 WIRELESS PROPAGATION AND ITS ANOMALIES

In a remarkable sequence of achievements in theoretical and experimental physics
toward the end of the nineteenth century, the basis for electromagnetic propagation
was established and proved both theoretically and experimentally. Though numer-
ous academic researchers, residing in the musty lecture halls and laboratories of that
period, shared in the success, the two that stand out are James Clerk Maxwell and
Heinrich Hertz. Maxwell’s equations, learned by every electrical engineering under-
graduate as the elegant synthesis of all the fundamental laws of electricity and mag-
netism, represents the framework upon which, with the aid of a few unifying steps,
the theoretical proof of electromagnetic wave propagation is readily constructed.
Hertz was perhaps the first to verify this theory experimentally. Thereafter, just after
the turn of the century a succession of pioneering “communication engineers” de-
fined this new profession with gradually more convincing experimental successes,
culminating in commercial deployments for which the name of Guglielmo Marconi
stands out for his outstanding blend of experimental and business acumen. Our pur-
pose, however, is not to review the scientific and historical record, far better re-
counted elsewhere, but to note the particular features that impact modern wireless
multiple access communication embodied in digital cellular networks.

Thus, we take for granted electromagnetic propagation but, as discussed in
several chapters of this volume, note that the direct path from transmitter to
receiver may not be the only path of signal propagation and, in some cases, may be
blocked and hence attenuated far more than other indirect paths created by reflec-
tions off terrain or buildings. Consequently, for a transmitted signal

x(t) = A(t) sin [2xf t + 0 (1)], (E.1)
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where f, is the carrier frequency and A(t) and 0(t) are, respectively, the amplitude
and phase modulation which bear the information transmitted, the received signal
will be of the form

y(t) = B,(t— t)sin[2nf, (t— £) + 0,(t — £,)]
+ By(t— t) sin[27f, (F— &) + O, (t — 1)] (E.2)
4+ By (t— t)sin[2nf, (E— 1) + 0, (t— t)] + n(D,

where ¢, t,,..., t; are the propagation delays of the various propagation paths and
B (t — t) and 0, (t — t,) are, respectively, the received amplitude and phase for the
kth path. Finally, 7 (f) represents the additive noise at the receiver, partly of thermal
origin, but which may also include interference caused by other emissions and
transmissions not under the control of the communicators. The amplitudes
B,(t — t,) and phases 0, (t — ) may be distorted versions of the transmitted ampli-
tude and phase, which vary with time. As discussed in several of the chapters of
this book, one model for this process is that of a time-varying delay line as shown
in Figure E.1, where both the delays between taps, Af, 2 | — t, and the complex
tap multipliers a, () = B, (f)e/’*" are time-varying functions. If these values can be
measured exactly, then the optimum receiver, in a minimum-mean-square-error
sense and in the presence of Gaussian interference, is the matched filter, which can
be implemented as the time reverse' of Figure E.1, but with the complex amplitude
o, (t) replaced by its conjugate a; (f) = B, (H)e /<.

The problem, however, is in the feasibility of the measurement and its accu-
racy when the parameters vary rapidly in time. A fundamental limitation on feasi-
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Figure E.1 Multipath propagation channel model: [ (f) = B, (f)e

Usually referred to as a RAKE receiver.
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bility, known as the uncertainty principle, dictates that measurement resolution
in time is inversely proportional to the signal (and receiver) bandwidth. Thus,
for example, if we wish to resolve two paths separated in time by Af=1 us,
the bandwidth of the complex signal A(t)e’’”’ must be at least on the order of
1 MHz.

If the signal and receiver bandwidth W is less than 1 /At, then the paths will
appear smeared together; for paths whose relative delays are separated by less
than 1/At, their complex amplitudes will occasionally cancel one another, thus
causing deep fades in that composite component of the received signal. But mea-
surement accuracy depends on more than bandwidth. Fundamental estimation
theory (the Cramer-Rao bound) leads to the expression for the standard deviation
(inaccuracy) of the estimate for the peak-time of the received signal,

k

Op = ———,
M wE/N,

where W is the signal bandwidth, N, is the noise or interference density (assuming
wideband noise of uniform density), and E is the energy of the signal component
measured; k is a proportionality constant that depends in part on the definition of
bandwidth but is not far from unity. Thus, the longer the measurement time, the
more accurate the result, provided the signal parameters remain nearly constant
over this duration. This phenomenon implies that for rapidly varying environ-
ments, such as with speeding vehicles, the measurement time must be shortened
and the accuracy reduced. Though it would appear that wider bandwidths are
always preferable, this too has its limitations. For while the far field propagation
effects produce distinct multipath components (such as reflections from different
buildings or hills), the near field effects may create many components, closely
spaced in time. With a very large bandwidth, we may resolve these close compo-
nents, but each will produce very little received energy, jeopardizing its measure-
ment accuracy. Thus, keeping the bandwidth large enough to resolve a reasonable
number of moderately spaced multipath components is important. Beyond this, it
may be better to allow very closely spaced components (closer than the inverse
bandwidth) to combine, occasionally causing fading of the combination through
cancellation, but on the average with enough energy for accurate measurement.
The key is to have a sufficiently wide bandwidth to isolate enough components (or
composite components) and thus provide sufficient path diversity to guarantee an
overall adequate signal strength for the optimally combined paths at the output of
the matched filter. This strategy is usually effective for outdoor propagation, where
the propagation time dispersion is on the order of several microseconds. Indoors,
where propagation time dispersion is much smaller, other techniques for temporal
and spatial diversity must be employed.
We move on now to the second set of laws.

(E.3)
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E.3 SHANNON THEORY: LIMITATIONS ON SIGNAL PROCESSING

Claude Shannon, beginning with a remarkable series of papers in 1948, established
the theoretical basis of digital communication with two well-known theorems: for
source coding and channel coding. The first established the minimum bit rate re-
quired to reproduce a source signal within a given degree of accuracy; the second
established the maximum rate at which transmission is achievable with arbitrarily
high accuracy, in terms of channel parameters such as bandwidth and signal-to-
noise ratio.” Underlying the proof of the channel coding theorem was the concept of
signal randomness, which is closely related to wide bandwidth spread-spectrum
signaling. We shall concentrate on the latter as it applies to multiple-access commu-
nication, which we have previously labeled “Shannon’s Third Theorem.” It is best
expressed in terms of a game between a communicator and an interferer (or jam-
mer). If both are restricted to transmit at power levels S and ], respectively, the com-
municator’s channel capacity is bounded according to the Shannon-theoretic limits,

S log[2me(5+ )] = H(])=C

= % log (1 + S/J ) bits/channel symbol, E4
where C is channel capacity, H(] ) is the entropy of the jammer’s signal of power ],
and all logarithms are to the base 2. (This formula can be converted to bits/s by
multiplying all terms by 2W, where W is the communicator’s bandwidth, assum-
ing Nyquist-pulse signal modulation.) The minimax solution to this game, mean-
ing the joint selection of communicator and jammer signals that maximizes
capacity for the worst case jamming or that minimizes capacity for the best case
communicator signal, is for both the communicator and the jammer to employ ran-
dom signals whose first-order distributions are Gaussian and for which successive
symbols are independent. The per symbol entropy of the jammer signal is thus
H(]) = (1/2) log (2ne] ).

Consequently, from (E.4) we obtain

1
—log (1 + S/] ) bits/channel symbol
5 log (1 + /1) y (E5)

Wilog (1 + S/]) bits/s,

This maximum limit, known as channel capacity, has occupied legions of channel coding spe-
cialists for the intervening half-century. While simple techniques for reaching within about one-third to
one-half of channel capacity (for a wideband Gaussian channel) have been known and employed for at
least 30 years, only within the last few years has a composite technique involving iterative soft decod-
ing of parallel or serial concatenated codes, known as “turbo” decoding, shown that efficiencies above
80% of channel capacity are practically achievable, provided sufficiently long decoding delays can be
tolerated.
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which is the usual capacity expression for a Gaussian channel. Gaussian signals
can be approximated by spread-spectrum signals that are implemented by modu-
lating the digital information onto a carrier already modulated by a random (or
pseudorandom) sequence of symbols generated at a much higher rate than the
information, approximately equal to the spreading bandwidth W. The ratio of the
random sequence rate to the digital information rate is the spreading factor. Actu-
ally, provided the random carrier bandwidth is much larger than the information
rate (the condition for spread spectrum), the symbols of the random sequence need
not be Gaussian distributed. It suffices that the random sequence consist of inde-
pendent, equiprobable binary symbols and thus be Bernoulli distributed; given the
large spreading factor, the aggregate (sum) of the independent spreading symbols
over the duration of one data symbol will approach a Gaussian distribution,
according to the central limit theorem.

Returning to the communicator-jammer scenario, since the spread spectrum
jamming is approximately uniformly distributed over the bandwidth W, we can
define its spectral density as

Ny 2] /w. (E.6)

Let the communicator’s signaling bit rate be R, bits/s, which is bounded by the
capacity formula (E.5). Its bit energy is the ratio of power S to bit rate R, :

E,=S/R,. (E.7)

Combining (E.6) and (E.7), we have the ratio of tolerable jamming-to-signal powers,
] W/Rb

== =7 (E.8)
S E/N,

where E, /N, in the denominator is the minimum value required at the receiver for
tolerably low error probability. A lower bound on E, /N, can be obtained from the
capacity formula, for since R, = C, it follows from (E.5) and (E.8) that

R, Eb/N0
—
W _log<l+ W/Rb , (E.9)
whence,
E, W R,
N, = R, [exp( W an) 1]>ln2. (E.10)

The lower bound, In2, is approached for R, at capacity and as the spreading factor
W/R, approaches infinity.

We turn now to a nonhostile and reasonably cooperative set of communicators
in multiple access to a common receiver, such as a base station of a cellular mobile
telephony system. If M communicators are all spread over the same bandwidth by
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independent random (or pseudorandom) carrier sequences and each has its power
controlled so that they all arrive at the common receiving station with equal powers,
S, then the demodulator for each user will be faced effectively with jamming power
equal to the sum of the powers of all other users, (M — 1)S. It follows from (E.8) and
(E.10) that the tolerable jamming-to-signal power and hence the tolerable number of
other users

W/R, _ W/R
Moo VR WIR,
E,/N, = In2

(E.11)

Thus, the overall throughput aggregated over all users, normalized by the total
(common) bandwidth occupied, is upper bounded by
MR, 1 R 1 bits/s/Hz (E.12)
W In2 W In2 ' ' '

To approach this bound requires a very large spreading factor and error-
correcting coding powerful enough to approach channel capacity. It also assumes
that all the interference is caused by other users in the band, ignoring background
noise of thermal or other origin. Including background noise and practically
implementable coding techniques, throughputs of one-quarter to one-half of this
value can be achieved, depending on the time-variability of the physical channel.

It can be shown that, with powerful enough error correction, the overall
throughput MR, can approach the classical channel capacity formula (E.5), with |
equal to just the background noise not including any of the interference from the
other cooperative users. Approaching this capacity requires that all users cooperate
further in transmitting at specified but unequal powers, and that the common re-
ceiver optimally demodulates and decodes each user successively, subtracting off
its effect from the common, overall received signal prior to decoding the next user.
This latter procedure is an idealized form of the successive cancellation discussed in
Chapter 3. At present, however, this optimal successive cancellation procedure re-
mains a theoretical possibility only. Less ambitious cancellation or cooperative de-
modulation techniques abound, but they seem to yield only modest improvements.

We proceed now to review the practice of spread-spectrum techniques over
the past half century.

E.4 HALF A CENTURY OF WIRELESS SPREAD SPECTRUM:
FROM MILITARY TO COMMERCIAL APPLICATIONS

Spread-spectrum techniques for thwarting hostile interference or jamming date
back to World War II. The sophisticated approach employing carriers whose spec-
trum is spread by a pseudorandom sequence generated by a maximum-length
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shift register (with linear feedback) date back to the fifties. In their simplest con-
ceptual implementation, the binary sequences, which appear random and repeat
only after 2" — 1 symbol times, where N is the length of the shift register, modulate
the carrier by shifting its phase by +7/2 or -/2 radians, corresponding to whether
the symbol is a “0” or a “1,” respectively.’ The intended receiver knows the para-
meters to generate the same sequence and thus can demodulate by performing the
inverse operation, shifting phase by -7/2 or 7/2 corresponding to a “0” or a “1,”
respectively. Incidentally, by performing this inverse operation, the jammer spec-
trum at the demodulator will appear to be spread, even if the jammer’s transmit-
ted signal was originally narrowband.*

With the launch of Sputnik in 1957, the era of satellite communication began.
Many of the early launches were of military satellites, which are “sitting ducks” to
hostile interferers. Spread-spectrum techniques with very large spreading factors
provided for a wide margin of advantage over a jammer, according to (E.8). Com-
mercial satellites began operations in the mid-sixties and the first digital commu-
nication satellites were launched in the seventies. Spread-spectrum techniques
were not employed commercially until the eighties, when they found their way
into mobile terminals operating with very small and hence wide-aperture anten-
nas in the presence of much stronger interference from stationary terminals trans-
mitting through near-orbit satellites. With 250,000 mobile satellite terminals now
installed in trucks worldwide, providing two-way communication and position
location to their home bases, this spread-spectrum system has dramatically
impacted the long-haul transportation industry. Finally, in the nineties, spread
spectrum has had an even greater impact on the digital cellular communication
industry. Here, it is usually referred to as code-division multiple-access (CDMA), to
distinguish this access technology from frequency division (FDMA) and time divi-
sion (TDMA) techniques.

The common thread through all these applications is tolerance to interference
through digital signal processing. As discussed elsewhere in this volume, for cel-
lular applications, the interference comes not only from the other users communi-
cating through a given cell’s base station but also from the transmissions of users
in other cells, which contribute strongly to the background noise in the given base
station. For FDMA and TDMA systems, it is generally necessary to allocate dif-
ferent bands or time slots to contiguous cells, thus reducing spectrum efficiency by
an order of magnitude. With CDMA, all cells can be allocated the same common
spectrum, a feature called universal frequency reuse. This of course increases the
interference in each cell, reducing the number of users per cell, but only by a factor

3As noted elsewhere in this volume, this approach is generally called direct-sequence spread spec-
trum. An alternate approach, known as frequency hopping, uses multiple symbols of the pseudorandom
sequence to select one of numerous carrier frequencies among which to hop.

4This case again implies a minimax solution to the game between communicator and jammer.
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of about 1.6, a net gain over the other access techniques. As previously noted, to
establish (E.11), each CDMA user must be power controlled to guarantee the max-
imum number of users per cell. But with tight power control, each transmitter
emits the least amount of power needed to achieve reliable transmission, thus
avoiding the usual power margin allocation and also reducing the interference to
users in the same and other cells. Furthermore, the spreading feature of CDMA
also guarantees a bandwidth wide enough to isolate multipath, using the RAKE
receiver technique described in Section E.2. Also, with universal frequency reuse,
transition between cells can be eased by performing “soft handoft”; as the mobile
user approaches the edge of a first cell, it can begin communication with the sec-
ond cell’s base station without dropping the link to the first cell’s base station. This
artificially creates a dual diversity multipath condition. The same multipath RAKE
receiver can thus be employed to handle soft handoff just as it does the natural
multipath condition previously described in Section E.2.

Employing all the above techniques in implementing a digital multiple-
access system, as well as error-correcting coding to reduce E /Ny, and variable rate
transmission of digitally compressed voice, results in a spectral efficiency over ten
times that of a conventional analog system. Hence, employing techniques based on
Shannon laws improves the efficiency of a system based only on Maxwell-Hertz
laws by more than one order of magnitude.

Their implementation, however, depends critically on digital signal process-
ing technology whose practical and economic embodiment would be impossible
without highly integrated solid state processors and memories. We discuss this
technology and its underlying law in the next section.

E.5 MOoORFE’s Law: THE Socio-EcoNomiIC BAsis
FOR DiGITAL WIRELESS

Gordon Moore, a founder of Intel Corporation, observed in the seventies that the
number of devices per unit area that can be incorporated in a silicon integrated cir-
cuit (IC) doubles approximately every year and a half. We may state this fact as the
formula

o(T) = (T2~ T0/13, (E.13)

where o(T) is the device density at time T > T,, where time is stated in years.
Although this may appear to be a physical law like those previously discussed
(and in some minds it is considered such), it is in fact an empirical observation with
no direct physical basis. Rather, it is explained by the fact that human ingenuity,
coupled with market forces, produces exponential growth of technological capa-
bility, and eighteen months appears to be the time between product cycles in the
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semiconductor industry. This leads us to categorize Moore’s Law as a socio-
economic principle. Applying the formula and taking the initial year to be 1965,
when one IC contained only one device, we find that by 1995 one IC of the same
area could contain one million devices and by the year 2000 about ten million
devices, both estimates being reasonably accurate. Within a few more decades, the
atomic limit will be reached, but already experiments in subatomic storage would
lead us to believe that the ultimate limit may be even further out. In any case, the
millionfold growth in the last three decades has turned many a system theorist’s
dream into reality. The early military spread-spectrum systems consisting of mul-
tiple racks costing tens of millions of dollars are now implemented on a single chip
(embedded in a palm-sized cellular telephone), costing only tens of dollars. In
short, the progress described by Moore’s Law was indispensable for the realization
of the benefits of all three laws of Shannon (source, channel, and multiple-access
coding). Yet, there remain the skeptics who do not understand, or merely ignore,
the significance of Shannon’s laws made practically implementable by Moore’s
Law and continue to design and attempt to justify systems that do not profit from
these guiding principles.

E.6 MEeTCALFE’S LAW: IMPLICATIONS FOR WIRELESS NETWORKS

Another socio-economic law of more recent vintage, due to Robert Metcalfe, states
that the value of any communication network grows as the square of the number
of users of the network. More precisely, if the number of users is N, then

Network Value ~ N(N — 1)/2 (E.14)

since this is the number of connections” possible among N users. This law places an
inordinate burden on the initiation of a network service that requires a significant
capital cost to both the network provider and the consumer. Numerous failures
attest to this fact. The most notable was “PicturePhone,” an initiative of AT&T in
the early seventies, which was discontinued after an initial trial period. As tele-
phone data modems became ever more capable, offering progressively higher data
rates at ever lower costs, a few manufacturers offered updated versions of tele-
phone video terminals that could operate over the ordinary public switched net-
work. Even these were not particularly successful because of low consumer
demand both caused by and resulting from prices being high. The most common
sale involved the purchase of a pair of terminals by grandparents who wished to
view distant grandchildren. Turning to successes, we cite the Minitel data terminal
operating over the French public switched network. This, in large part, was the

E"Actually, since each link is bidirectional, one could argue that it should be N(N — 1).
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result of heavy subsidization by the French government and thus removed the bur-
den from the consumer. Another is the facsimile (fax) machine, which is practically
ubiquitous in businesses and is becoming common in consumer households. For
this success to occur, first the prices had to fall significantly and then the consider-
able saving and convenience became clear: a fax message consumes a fraction of
the time of a telephone conversation, and more importantly, it gets through with
greater accuracy than voice mail when the recipient is not present. This feature is
particularly important for transoceanic calls, where the volume of fax messages
now exceeds that of voice calls.

The most dramatic current network success is the Internet. Its usage has been
growing precipitously in just the last couple of years, after a gestation period of
over twenty years, during which the U.S. government through DARPA and, later,
NSF, financed an ever-higher-speed data network to interconnect computer cen-
ters of universities and government facilities. Turned over to the private sector, its
usage and required capacity have grown exponentially with time. The explanation
is the growing presence of the personal computer at almost every desk and work-
station of businesses and in the majority of homes, coupled with the rapidly falling
costs of the embedded data modem. With tens of millions of users comes the
opportunity to capture their attention as consumers, resulting in the creation of a
multitude of information and other services through the World Wide Web.

Focusing, however, on our theme of digital wireless networks, the question
arises as to whether Metcalfe’s law applies in a strict sense. Even a single mobile
phone has accessibility, through a base station, to all the fixed phones of the public
switched wired network. Yet the mobile user wants to connect to the universe of
users wherever he or she may roam. Thus, the operator must provide to this “first”
user, connectivity through a multitude of base stations throughout a metropolitan
area as well as in multiple areas and even in multiple countries. And this works in re-
verse as well. All the user’s wired friends and associates want to reach her or him
wherever she or he may be. Hence, an operator’s capital expenditures dominate the
network economics, at least initially. Thus, effectively, the value should grow as the
square of the area covered (assuming, simplistically, a uniform density of users).
Each unit area covered captures users linearly, for whom value increases also lin-
early with the size of the total area covered. Clearly, the network provider’s eco-
nomics are improved, the fewer the base stations required per unit area. A base sta-
tion’s coverage area and capacity, in numbers of users that it can serve, are the key
economic parameters. With light usage, coverage is the principal factor. As usage
grows, the capacity constraint dictates that more base stations must be provided.
Both coverage and capacity are increased from two- to four-fold by the use of spread-
spectrum techniques, enhancing economics and consequently network growth.

Case histories of the growth of two very different digital wireless networks
are summarized in Table E.1.
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TasLE E.1  Case histories of two digital technologies

GSM (TDMA) 1S-95 (CDMA)
Technology Proposed 1982 1989
Technology Standardized 1988 1993
First Commercial Launch 1991 1995 (late)
1 Million Subscribers 1994 1996
5 Million Subscribers 1995 1997
50 Million Subscribers 1997 1999 (Estimated)
Spectral Limit* Sooner Later

*Limit set by Maxwell and Shannon, not Moore or Metcalfe

The first, GSM, is the Pan-European TDMA standard, now available also in
the Americas and Asia. It was launched as a “Greenfield” service, meaning that
new spectral allocations were provided for it. Also, most countries in which it was
launched had either no previous service or a very inadequate and sparse analog
service, and GSM was the only digital technology licensed in the countries of the
European Union. Probably its most significant innovation was the introduction of
“global roaming,” whereby a phone purchased in any covered nation can be used
equally in any other covered nation, wisely adhering to the just-stated wireless
version of Metcalfe’s law.

The second technology is the spread-spectrum, or CDMA, technology which
has been the major theme of this essay. It was standardized in North America as the
Telecommunication Industry Association’s IS-95. Its purpose was to provide much
higher spectral efficiency than the analog networks, already well established in
North America. Thus, it was planned to ultimately serve an order of magnitude
more users within the same spectral allocation, over the same base stations, which
were nearing saturation with the inefficient analog access technology. A principal
requirement, both economic and regulatory, was to not displace the existing analog
users, unless they willingly chose digital service. The introduction strategy, there-
fore, contained three components:

* Provide superior service, including improved voice quality

* Convert only as much of the spectrum over to digital service as the user
demand warranted, thus not disadvantaging the remaining analog users

* Provide for staged conversion of base stations so that initially not all stations
needed to be converted to digital

CDMA was able to fulfill all three requirements. By its better than tenfold
increase in user capacity, it required converting only one-tenth of the bandwidth to
digital service to provide enough capacity to potentially serve all existing analog
users on the network. By providing improved service, CDMA could attract the
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heaviest users; these represent typically 3% of users, consuming 30% of service.
Thus, a relatively small percentage of conversions to the 10% digital bandwidth
could alleviate congestion on the 90% of the band still serving analog users. Finally,
by providing all converted users with a dual-mode analog/digital CDMA phone,
the operator did not need to provide digital service on all base stations at once;
when digital users roamed away from digitally equipped base stations, their
phone was transferred automatically to analog without service interruptions. The
statistics in the second column of Table E.1 attest to the success of this approach.

Standardized seven years later than GSM and launched four years later,
CDMA now lags in customer adoption by two years. Significantly also, in almost
all countries where it was introduced, the consumer had a choice between analog,
CDMA, and one or two digital TDMA technologies. The most important conclu-
sion, then, is that where there already exists an installed base, as well as consider-
able competition, it is essential, if not also mandatory, to provide backward
compatibility to the predominant, previously existing technology.

The last entry in both columns deals qualitatively with the time at which
spectral allocations will reach saturation. More users are supported by CDMA
because of its greater efficiency. One approach for GSM operators to expand their
capacity would be to gradually equip their base stations with CDMA technology
compatible with their GSM network signaling. The high-usage customers would
be provided with a dual-mode GSM/CDMA subscriber unit capable of communi-
cation with both types of base stations, in the same manner in which North Amer-
ican and Asian analog users were converted to digital.

We conclude with a look into the future. Unlike the wired network that
already serves a substantial and ever-growing percentage of data users at varying
speeds, the wireless network still offers primarily voice telephony, with only a
minuscule percentage of low-speed data. This situation is certain to change over
the next few years. The nomadic nature of business users, particularly for elec-
tronic mail and continuous connectivity to a home base, mandates the availability
of wireless high-speed data (above 64K bits/s) beyond what is currently provided
by ordinary wired phone connections. Several standards organizations worldwide
are currently deliberating the merits of a variety of proposals for this service. Given
the large number of current subscribers to digital cellular services, adherence to the
principles of Metcalfe’s law seems logical. In order not to start at the bottom of the
quadratic curve, service providers would be well advised to choose a technology
that is backward compatible to one of the existing services. The flexibility of
spread-spectrum signaling facilitates such compatibility.

The complex interaction of technology and economics, involving the interplay
of the four very diverse laws described in this essay, has created a vibrant wireless
telecommunication industry, likely to serve an ever-widening percentage of the
world’s population, with both mobile and fixed service, for many decades to come.
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199
Advanced Television Research
Consortium (ATRC), 241
Angle spread, 181
Antenna arrays, 34, 6, 42-60, 160,
179-208, 185, 224-25
array manifold, 190
array response vector, 186
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Antenna arrays (continued)
precoding, See Linear antenna
precoding
Antenna diversity, See Spatial diversity
Architectural principles, for multimedia
networks, 229-81
ARQ schemes, See Automatic repeat
request (ARQ)
Asymptotic efficiency (multiuser), 87, 217,
223
Asynchronous DS-CDMA, 80
Asynchronous transfer mode (ATM), 246
Asynchronous video, 274
Automatic repeat request (ARQ):
Class 2 hybrid, 317
hybrid, 317
techniques, 282, 316-17
in universal channel coding, 296-97

B

Backbone network, xiii
Bandwidth:
coherence, 12fn, 181
effective, 212, 224-25
and multipath, 383
Barker sequence, 364
Beamforming, 47-48, 224
Binary additive stream cipher, 255
Binary erasure codes, 260
Binary FEC, 233-34
Biorthogonal filters, 288
Bitway, abstracted view of, 24445
Bitway architecture, 235-36
Bitway layer, 242-52
high-level network architecture,
231-33
scalability and configurability issues,
250-52
Blind equalization/identification, 159-75,
189, 194-99, 202-8
block methods, 203-7
cross-relation method, 162-66
direct symbol estimation, 169-70
filter order, 170-71
filter order ambiguity, 171
identification and, 189, 194-99
multiple antenna methods, 173-75
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multistage equalization, 205
multiuser equalization, 172-75
multiuser identification, 204-7
recursive methods, 207-8
in reverse link via multiple
observations, 172-75
of single-input, multiple-output FIR
channels, 160-72
space-time oversampling, 160, 196-97
subspace-based methods, 166-69
zeros in common (common zeros), 195
Blind multiuser detection, 95-101
Blind multiuser equalization, 172-75
Blind space-time signal processing,
179-210
channel identification/equalization,
193-202
conditions for, 194-95
multiple-user problem, 199-203
signal model/structure, 184-93
single-user channels, equalization of,
193-99
spatial signal structure, 190
temporal signal structure, 190-93
wireless propagation environment,
180-83
Block cipher, 255-56
Broadcast channels/transmission, 269,
294,297, 309-11

C

CDMA, See Code-division multiple-access
systems
Channel capacity, 114, 218-20, 265-69,
384-86
Channel coding, See Coding
Channel impairments:
angle spread, 181
cochannel interference, See Cochannel
interference
delay spread, 181
Doppler shift, 109, 350-52
Doppler spread, 133, 180-81, 350-52,
361
fading, See Fading channels
multiple-access interference, See
Multiple-access interference
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narrowband interference, 114
non-Gaussian ambient noise, 114-15
propagation delay, 111-12
shadowing, 108
Channel length, 186
Channel precoding, 362
linear antenna precoding, See Linear
antenna precoding
spread-response precoding, See Spread-
response precoding
Channel transfer function, 342
Chip-synchronous DS-CDMA, 80
Circuit-switched telephone network, 257
CM services, See Continuous-media (CM)
services
Cochannel interference (CCI), 5, 179-80
See also Multiple-access interference
Code-division multiple-access (CDMA)
systems, xi, 28-29, 31, 66, 74, 130,
151, 264, 369, 387, 391-92
capacity region of, 267
direct-sequence, code-division
multiple-access (DS-CDMA)
systems, See Direct-sequence
code-division multiple-access
(DS-CDMA) systems
spread-signature CDMA, See Spread-
signature CDMA
See also Spread-spectrum techniques
Coding, xiii, 3, 10, 16, 28-29, 43, 116,
294-96
binary, 233-34
chaotic codes, 296
coded modulation, 16
embedded, 294-96
forward error-correction coding (FEC),
233-34, 235
and interleaving, 16
layered, 311
multiresolution, See Multiresolution
channel coding
rate-compatible punctured
convolutional (RCPC) codes, 295
signal-space, 233, 258
unequal error protection codes, 294, 295
Coherence bandwidth, 12fn, 181
Coherence distance, 181
Coherence time, 3fn, 133
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Coherence-time scaling, 25
spread-signature CDMA, 40
Communicator-jammer game, 384
Complexity management, 231
Compression, xiii, 233, 239
delay-cognizant video, 273-75
H.261/H.263 video standard, 292
lossless, 233
MPEG, 269-73
signal-semantics-based, 233
speech, 240
See also Source coding
Computational complexity, 69
Constant modulus (CM), 190, 202, 206
multiuser algorithm, 207
real analytical algorithm (RACMA), 206
Continuous-media (CM) services, 230,
231, 253
Coordinated UEP, 265
Cyclic-redundancy-check (CRC) code, 307
Cyclostationarity, 191-92
through decision feedback, 197-98
transmission-induced, 198-99

D

Data compression, See Compression
Data Encryption Standard (DES), 255-56
Data partitioning, 293
Decision-feedback equalization, 150-59,
197-98, 355-57, 369-72
cyclostationarity and, 197-98
for LTI channels, 155-57
fractionally-spaced, 355-57
Decode/presentation timestamps
(DTS/PTS), 271
Decorrelating detector (decorrelator), 69,
74,222-23
performance, 222-23
zero-forcing (decorrelating) receivers,
74-75, 85, 144-46
Degrees of freedom, 75, 212, 213-14
Delay-cognizant video coding,
asynchronous video, 274
Delay-cognizant video compression,
273-75
Delay-lock loop, 359
Delay-spread function, 181, 34245, 364
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Delay tolerance, 236
DFE, See Decision-feedback equalization
Digital acoustic telemetry system (DATS),
354
Digital PLL, 373
Digital wireless communication
networks:
governing principles of, 380-92
Metcalfe’s law, 389-92
Moore’s law, 388-89
Shannon theory, 384-86
spread-spectrum techniques, 386-88
wireless propagation, 381-83
Direct-form linear antenna precoding,
48-54
Direct-sequence, code-division multiple-
access (DS-CDMA) systems, 6667,
78-90, 387fn
asynchronous, 80
chip-synchronous, 80
coding, 116
long spreading sequences, 119
power control, 112-13, 116-17, 218-22
timing recovery, 78
See also Code-division multiple-access
systems
Discrete multitone modulation (DMT),
299
Diversity, 353
antenna, See Spatial diversity
explicit, 353-54
implicit, 353-54
linear diversity techniques for fading
channels, 1-63
multiuser systems, 25-42
spatial, See Spatial diversity
spectral, 3, 10-16, 212
temporal, See Temporal diversity
transmission without, 8-10
Dominant scatterers, 182
Doppler compression, 331, 358
Doppler shift, 350-52
Doppler spread, 133, 180-81, 351, 361
Downlink scenario, and multiple-access
signaling model, 26-27, 68
Dual-form linear antenna precoding,
54-59
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E

Edge architecture, 252, 277
joint source/channel coding, 263
layered coding, 263
privacy and security, 263
quality objectives, 261
Effective bandwidth, 212, 224-25
multiple classes, 220-22
Effective interference, 216, 224
Embedded codes, 294-96
See also Multiresolution channel coding
Embedded modulation, 297-98
hybrid options, 298-300
Embedded zerotree wavelet (EZW)
coders, 289-92
Encryption, xiii, 233-35, 242-43, 255-56
binary additive stream cipher, 255
block cipher, 255-56
Data Encryption Standard (DES),
255-56
running key generator (RKG), 255
Entropy codes, 289
Equalization, xii, 258
adaptive, 155, 359
blind, See Blind
equalization/identification
decision-feedback, See Decision-
feedback equalization
linear, 70, 148—49
MMSE, 14649
of multipath fading channels, 133-59
for linear antenna precoding, 50, 53,
57-58
matched-filter receiver, 14344
maximum-likelihood sequence
detection, 138-42
for spread-response precoding, 18-20
for spread-signature CDMA, 33-35
system model, 135-38
for underwater acoustic channels,
353
zero-forcing equalizers, 14446
multiuser, 148
of single-user channels, 193-99
state-space, 153, 157-59
successive cancellation, 150-57
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Erlangs, 113

Error control coding, See Coding

Error rates, 240

European digital audio and video
broadcast, 311

Explicit diversity, 353-54

F

Facsimile (fax), 390
Fading, 65, 185
use of term, 3
See also Fading channels
Fading channels, 248, 302
angle spread, 181
average performance on, 8-10
coherence time, 3fn, 181
delay spread, 181
Doppler shift, 350-52
Doppler spectrum, 133, 182
Doppler spread, 133, 180-81, 351, 361
frequency-nonselective fading, 6, 42
frequency-selective fading, 3, 5, 110-11,
133,181
Jake’s model, 110, 181
linear diversity techniques for, 1-63
memory, 360
models, 4-7
multipath (delay) spread, 132
multipath intensity profile, 132
multiuser, 26-27
nonselective, 6, 42
overspread, 133
Rayleigh fading, 7, 109, 132, 182, 185,
225,302
Ricean fading, 7fn, 109, 182, 185, 302
scatterers, 181-82
spaced-frequency, spaced-time
correlation function, 132
space-selective fading, 34, 181
spread factor, 133
time-selective fading, 3, 5, 6, 129,
180-81
underspread, 133
wide-sense stationary uncorrelated
scattering, 7, 132
Fast transversal RLS (FTRLS), 360
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FDMA, See Frequency-division multiple-
access systems
FEC, See Forward error-correction coding
Feedback, 248
point-to-point image/video
transmission with, 316-17
point-to-point image/video
transmission without, 311-16
Feedback channels, 285, 296-97
Flowspec, 245
Flowspec negotiation, 250
Forward error-correction coding (FEC),
233-34, 243, 25961, 264, 283
See also Coding
Forward-link scenario, and multiple-
access signaling model, 26-27, 68
Fractionally spaced decision-feedback
equalization, 355, 357, 360
Fractionally spaced equalizer, 200
Frequency diversity, See Spectral diversity
Frequency-division multiple-access
(FDMA) systems, 28-30, 74, 387
Frequency-nonselective fading, 6, 42
Frequency-selective fading, 3, 5, 110-11,
133,181

G

Gateway, 242
Gaussian channels:
capacity, 385
optimal coding, 318-20
Gertrude system, 354
Global Information Infrastructure (GII),
231-32
GMSK modulation, 190
Greenfield service, 391
GSM (Groupe Special Mobile), 183, 255,
391-92

H

H.261/H.263 video compression
standard, 292

HDTYV, See High-definition television
(HDTV)

Hertz, Heinrich, 381
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Heterogeneous subnets, 252
Hierarchical coder, 272
High-definition television (HDTV), 238,
240, 247, 311
Advanced Television Research
Consortium (ATRC), 241
Higher-order statistics (HOS), 191
High-level network architecture, 231-33
bitway layer, 231-33
services layer, 231-33
Huffman coding, 270
Hybrid analog-digital transmission, JSCC,
310-11
Hybrid techniques in image transmission,
31724
Gaussian noise channels, 318-20

Image transmission, 282, 320-24
hybrid techniques in, 317-24
point-to-point:

with feedback, 316-17
without feedback, 311-16
Implicit diversity, 353-54
Indirect adaptive equalization, 362-63
Indoor communications, ix
InfoPad system, 275
Informational complexity, 69-70
Infrared systems, ix, 1
Input delay-spread function, 34748
Integrated-services networks, 211
multimedia, 229
Interactive applications, 275
Interleaving, 233, 240, 302
and coding, 16
Internet, 390
Internet Protocol (IP), 246
flow label, 246
Internet Stream Protocol, 246
Intersymbol interference (ISI), 34, 65, 91,
299

Intracell interference, 266—67

IS-54 TDMA standard, 184, 190, 212, 235,
240, 253

1S-95 CDMA standard, 212, 391

Iterated least-squares with projection/
enumeration (ILSP/E), 206
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J

Jake’s model, 110, 181
Jammer, 384
Joint ISI/CCI cancellation, 199-202
ill conditioning, 200
Joint source/channel coding (JSCC), xiii,
237-41, 263, 277
brief history of, 304-7
for delay, 273-75
hybrid analog-digital transmission, 305,
310-11
loosely coupled, 238
multiresolution, 303-29
basic infrastructure of, 308-9
tightly coupled, 238, 23940
See also Multiresolution joint
source/channel coding (MR-JSCC)
JPEG, 292

K
Kalman filter, 153, 155, 158

L

Least squares (LS) algorithm, 93-95
Linear antenna precoding, 48-54
antenna signatures, 49, 54
bandwidth expansion, incorporating,
59-60
channel transformation interpretation,
50, 55-56
direct-form, 48-54
dual-form, 54-59
performance, 53-54, 58
Linear digital modulation, detection of,
356-60
Linear diversity techniques, 1-63
for multiuser systems, 25-42
spatial diversity, 34, 6, 42-60, 258
spectral diversity, 3, 10-16
system and fading channel models, 4-7
temporal diversity, 3, 16-25, 258
transmission without diversity, 8-10
Linear multiuser detection, 69-78
minimum mean-squared error (MMSE)
linear detector, 71-73
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tapped-delay line (TDL),
implementation as, 76-78
zero-forcing (decorrelating) detector,
74-75
Linear time-invariant (LTT) channels, 131
Link architecture, 254
quality objectives, 261
Link-by-link architecture, 260
List-Viterbi decoding, 307
Lloyd-Max algorithm, 305
LMS (least mean squares) algorithm,
91-93, 359-60
convergence properties, 92
supervised (decision-directed)
algorithm, 91-92
Long spreading sequences, 119
Loosely coupled joint source/channel
coding, 238, 24849
Lossless compression, 233, 289
LS algorithm, See Least squares (LS)
algorithm

M

Macro-multipath structure, 373
delay-spread function, 342-45
Marconi, Guglielmo, 381
Matched-filter (MF) receiver, 130, 143-44
performance of, 216-17
See also RAKE receiver
Maximal ratio combining, 45
Maximum-likelihood (ML) sequence
detection, 18, 130, 138—42
additive white Gaussian noise
channels, sufficient statistics for,
14142
LTI channels, sufficient statistics for,
14041
Maxwell-Hertz laws, 388
Maxwell, James Clerk, 381
MBone, 251, 263
Minimum mean-square error (MMSE)
equalizer, See MMSE equalizer
Media-access layer, 252

Medley gateway, 242, 248, 258-59, 262-63,

276

Memory truncation, in adaptive filtering,

362-63
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Metcalfe, Robert, 389
Metcalfe’s law, 389-92
Micro-multipath structure, 373
delay-spread function, 34245
Minitel data terminal, 389
MMSE detector/receiver, 69, 71-73,
214-23
asymptotic behavior, 86
capacity/ performance under power
control, 218-20
computation of MMSE coefficients,
81-83
discrete-time representation, 79-81
geometric interpretation, 83-85
linear, 71-73
performance under random spreading
sequences, 214-18
with spatial diversity, 76-78
MMSE equalizer, 20-21, 14649
Mobile telephony, ix
Mobile wireless environment, and
multiuser detection, 106-15
Modularity of services, 242-52
bitway, abstracted view of, 24445
loosely coupled joint source/channel
coding, 24849
partitioning of functionality, 242-44
scalability and configurability issues,
250-52
service, abstracted view of, 245-48
substream-based transport protocols,
249-50
Moore, Gordon, 388
Moore’s law, 388-89
MPEG, 239, 240, 292-93
bitstream formats, 270
compression, 269-73
decode/presentation timestamps
(DTS/PTS), 271
program clock references, 271
Real-Time Interface (RTT), 240, 271
scalability, 272-73
video scalability, 293
MPEG-1, 269
MPEG-2, 232, 269-70
MPEG-2 compression, 269-73
features of, 270-72
scalability, 272-73
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MPEG-3, 269
MPEG-4, 269
MR-JSCC, See Multiresolution joint
source/channel coding
Multicarrier modulation, 299
Multicast:
layered coding, 311
medley gateway, 262-63
Multicast backbone (MBone), 251, 263
Multicast CM services, 253
Multicast communication, 295
Multichannel demodulator, 373
Multimedia networks:
architectural principles for, 229-81
bitway architecture, 235-36
corruption/loss/delay effects, 236-37
design examples, 263-76
high-level network architecture, 231-33
joint source/channel coding (JSCC),
23741
modularity of services, 242-52
service layer, edge vs. link
architecture for, 252-55
signal processing
functions/constraints, 233-35
Multimedia transmission, xiii, 282
Multipath, 1-3, 65, 89, 184
and bandwidth, 383
space-time channel model, 182-83
See also Multipath propagation
Multipath fading channels, equalization
of, 133-59
See also Equalization
Multipath intensity profile (MIP), 132, 363
Multipath propagation, 1-3, 89-90,
108-11, 180, 382-83
in large cells, 181
power delay profile, 109
standing wave patterns, 1-3
and underwater acoustic channel,
338-50
See also Fading channels
Multiple-access channels, 26-27, 65-67,
189, 212, 213, 369
asynchronous channel, 146
successive cancellation for, 150-57
Multiple-access formats, 27-29
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Multiple-access interference (MAI), 34, 65,
130, 14446, 148, 216
See also Cochannel interference
Multiple-delivery transport protocol,
275-76
Multiplexing formats, 27-29
Multirate signal processing, xi, 1
Multiresolution channel coding, 293-303
automatic repeat request (ARQ), 296-97
channel models used in, 300-303
chaotic codes, 296
embedded modulation, 297-300
hybrid options, 298-300
error control coding, 294-96
multiresolution QAM constellations,
300
See also Unequal error protection (UEP)
Multiresolution joint source-channel
coding (MR-JSCC), 303-29
basic infrastructure of, 308-9
embedded modulation, 309-11
hybrid techniques in image
transmission, 317-24
informed transmitter case, 316-17
multicast, layered coding, 311
point-to-point image transmission with
no feedback, 311-16
successive approximation, 286-87
successive approximation source
coders, 287-92
uniformed transmitter scenarios,
309-16
Multiresolution source coding, 286-93
See also Successive approximation
source coding
Multiuser blind equalization, 172-75
See also Blind equalization
Multiuser channels, equalization of,
129-78
Multiuser detection, 6, 66-70, 386
adaptive interference suppression,
66-70
blind techniques, 95-101
decorrelating detector, See
Decorrelating detector
elements of, 67-70
informational complexity, 69-70
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linear multiuser detector, 69
maximum-likelihood criterion, 69
minimum-error-probability criterion, 69
MMSE detector, See MMSE
detector /receiver
and mobile wireless environment,
106-15
performance measures, 86-88
and successive cancellation of
interference, 70
zero-forcing (decorrelating) solution, 85
Multiuser DFE (MDFE), 150-59, 369
See also Decision-feedback equalization
Multiuser equalization, 148
Multiuser systems, 2542
fading channels, 26-27
multiple-access and multiplexing
formats, 27-29
orthogonal multiuser modulation,
29-31
spread-response precoding,
implementations of, 4042
spread-signature CDMA, 31-35
coherence-time scaling, 40
performance characteristics, 35-39

N

Narrowband interference suppression, xi,
65,114

Near-far effects, 38, 69, 218

Near-far resistance, 87, 145, 217

Nomadic computing/communication,
229

Noncooperating users, 331

Non-Gaussian ambient noise, 114-15

Nonorthogonal multiplexing, xi

Nonselective fading channels, 42

Nyquist zones, 74

0]

Order estimation, 94-95

Orthogonally anchored (blind)
algorithms, 95-101

Orthogonal multiuser modulation, 29-31

Outage, 8, 16, 43
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Outage probability, 252
Oversampling, 160, 196-97
Overspread, 133

P

Packet-based communications networks,
236
Packet transmission, substreams, 24648
Packet transport impairments, 236, 245
Partial-response equalization, 362
Path loss, 107
Phase-locked loop, 359
PicturePhone, 389
Platform constraints, underwater acoustic
communications, 352-53
Point-to-point image/video transmission:
with feedback, 316-17
without feedback, 311-16
Postcoder, 19
Power allocation, See Power control
Power consumption, 119-20
Power control, xii, 112-13, 116-17, 212,
218-20, 226, 258, 264, 265
Precoding, See Channel precoding
Priority encoding transmission (PET), 259
Privacy and security, 255-56
Program clock references, 271
Propagation delay, 111-12
Pseudonoise (PN) /pseudorandom
sequences, 32, 386-87
spread-signature sequences, 31-32
Pyramid coding, 287-88

Q

Quality of service (QoS), x, xii, 117-19,
211, 233, 245, 247-48, 251-52, 299
negotiation, 253-54, 261
variable QoS, 263-69, 276

R

RAKE receiver, 11, 35, 90, 143-44, 150, 355,
369, 388

Random coding, 285

Random signature sequences, 214-18, 267
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Rate characterization, 245
Rate-compatible punctured convolutional
(RCPC) codes, 295
Rate-distortion theory, 286
Rayleigh fading, 7, 109, 132, 182, 185, 225,
302
Ray propagation model, 332-33
Real analytical constant-modulus
algorithm (RACMA), 206
Real-Time Interface (RTI), 240
MPEG, 240, 271
Receiver antenna diversity, 43-46, 59
Recursive LS (RLS) algorithm, 94-95
fast modular RLS algorithm, 368
minimum-variance algorithm, 98-99
Reduced parameterization techniques,
361
Reduced updating techniques, 361
Remote scatterers, 182
Resource allocation, in wireless networks,
261-62
Resource reservation protocol (RSVP), 251
Retransmission, 233-34
Reverse-link scenario, and multiple-
access signaling model, 26-27, 68
Ricean fading, 7fn, 109, 182, 185, 302
RLS-based adaptive equalization, 359-60
Running key generator (RKG), 255

S

Scalar quantization, 289

Scattering local to base, 182

Scattering local to mobile, 181-82

Selection combining, 4445

Separation principle, 284

Service layer:
edge vs. link architecture for, 252-55
high-level network architecture, 231-33
multicast connections, 262-63
openness to change, 256-57
performance and efficiency, 258-61
privacy and security, 255-56
resource allocation, 261-62

Shadowing, 107-8

Shallow-water channels, 355-56

Shannon, Claude, 384

Index

Shannon laws, 388
Shannon theory, 284, 384-86
Shell mapping, 258
Signal processing, limitations of, 384
Signal processing functions /constraints,
233-35
compression, 233
encryption, 233-35
forward error-correction coding (FEC),
233-34, 235
See also Compression, Encryption,
Forward-error-correction coding
(FEC)
Signal-semantics—based compression, 233
Signal-space codes, 258
Signature sequences, 15-16, 29-31, 66,
135,213
antenna signatures, 49, 54
random, 214-18, 267
spread-signatures, 31-32
Slowly time-varying channels, 159-75
SNR scalability, 293
Soft handoff, 26fn, 388
Sound speed profile, 333-35
Source coding, 283-85
multiresolution, See Multiresolution
source coding
Spaced-frequency, spaced-time
correlation function, 132
Space-frequency quantization (SFQ), 290
Space-selective fading, 3—4, 181
Space-time channel model, 182-83
Space-time filtering, 88-89
Space-time oversampling, 196-97
Space-time signal processing, xii
blind techniques, 202-8
Sparse adaptive equalization, 365-69
Sparse channel identification, 36365
Spatial diversity, 3—4, 6, 42-60, 258
receiver antenna diversity, 43—46, 59
transmitter antenna diversity, 43, 46-60
Spatial scalability, 293
Spatial signal structure, 190
Spectral diversity, 3, 10-16, 212
RAKE receiver, 11, 14
spread-spectrum strategy, 11-13
Speech compression, 240
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Spread factor, 133
Spreading codes, 15-16, 29-31, 66, 213-18,
266-67
Spread-response precoding, 16, 17-23
bandwidth expansion, incorporating,
23-24
implementations of, 4042
linear periodically time-varying (LPTV)
precoder, 4042
maximally spread precoder, 40
postcoder, 19
Spread-signature CDMA, 31-35
bandwidth expansion, 36
coherence-time scaling, 40
iterated-decision equalizers, 38
maximally spread signature sets, 32-33
performance characteristics, 35-39
Spread-spectrum techniques, xiii, 3,
10-16, 213, 386-87
See also Code-division multiple-access
systems
Standing wave patterns, multipath
propagation, 1-3
Statistical multiplexing, 239
Stochastic-gradient algorithm, 91-93,
364-65
Stripping, See Successive cancellation
Subband coding, 288-89
Subspace-based linear multiuser
detection, 83
adaptive algorithms, 101
interference subspace, 83
projection-based approaches, 101-2
signal subspace, 83
Substream-based transport protocols,
249-50
Substreams, 24648
Substream structure, 263
Successive approximation source coding,
286-93
H.261/H.263, 292
JPEG, 292
MPEG, 292-93
pyramid coding, 287-88
standards, 292-93
subband coding, 288-89
wavelet coding, 289-92
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Successive cancellation, 386
of interference, 70
for multiple-access channels, 150-57
Supervised (decision-directed) algorithm,
91-92
Symbol-spaced channel, 186
System capacity, See Capacity

T

Tactical military communications, ix
Tapped-delay line (TDL), implementation
as, 76-78
TCP, 232, 244, 253
TDMA, See Time-division multiple-access
systems
Temporal diversity, 3, 16-25, 258
bandwidth expansion, incorporating,
23-24
coherence-time scaling, 25
spread-response precoding, 16, 17-23
Temporal scalability, 293
Temporal signal structure, 190-93
constant modulus (CM), 190
cyclostationarity, 191-92
distance from Gaussianity, 191
finite alphabet (FA), 190-91
temporal manifold, 192
Tetherless communication, 229
Tightly coupled joint source/channel
coding, 238, 239-40
Time diversity, See Temporal diversity
Time-division multiple-access (TDMA)
systems, 28-30, 74, 130, 240, 369,
387
Time-selective fading, 3, 5, 6, 107, 129,
180-81
Time-varying channels, state-space
approaches for, 157-59
See also Fading channels
Time-varying user population, 113
Timing recovery, 117
Traffic load, 113
Transcoding, 241, 242, 252-53, 256-57
Transform coding, 288
Transmission-induced cyclostationarity,
198-99
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Transmitter antenna diversity, 46-60
beamforming, 4748
linear antenna precoding, 48-54
Transmitter powers, 330
Transport Control Protocol (TCP), 232,
244,253
Trellis-coded modulation (TCM), 258, 264,
306-7
Trellis-coded quantization (TCQ), 306-7
Turbo decoding, 384

U

UEP coding of speech, 264
See also Unequal error protection
Uncertainty principle, 383
Underspread, 133
Underwater acoustic channel (UAC), xiii,
331-52
channel latency and coherence times,
352
Doppler compression, 331, 358
Doppler effects, 350-52
horizontal multipath channel, 350
input delay-spread function, 34748
intersymbol interference, 374
micro- and macro-multipath, 34045
multipath delay spreads, 330
multipath propagation, 338-50
partially saturated channels, 347
ray propagation model, 332-33
signal losses and ambient noise, 335-38
sound speed variability, 333-35
spatial /temporal channel statistics,
345-50
unsaturated channels, 347
vertical multipath channel, 350
wideband channel characterization,
342-45
Underwater acoustic communications,
330-79
adaptive detection, complexity
reduction in, 360-69
array signal processing, 372-74
brief history of, 353-56
coded modulation, 353
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equalization, 353
linear digital modulation, detection of,
356-60
modulation techniques, 353
multiuser detection, 369-72
nominal signal strength, 338
platform constraints, 352-53
sparse channel identification, 363
See also Underwater acoustic channel
Underwater vehicles (UVs), 331
Unequal error protection (UEP), 263-64
codes, 294-95, 297
coordinated UEP, 265
UEP coding of speech, 264
Universal frequency reuse, 387-88
Uplink scenario, and multiple-access
signaling model, 26-27, 68
User Datagram Protocol (UDP), 250, 253

Vv

Variable QoS, 263-69, 276
Variable rate (VR) convolutional codes,
264

Vector quantization, 289, 306
Vertical multipath channel, 350
Video conferencing, 236-37, 244
Video-on-demand applications, 236
Video transmission, 282
Virtual circuits (VCs), 246
Viterbi algorithm, 18, 362
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Preface

These are exciting times in which to be involved in wireless communications re-
search. The field is growing at an explosive rate, stimulated by a host of important
emerging applications ranging from third-generation mobile telephony [5, 10,17, 18,
20], wireless personal communications [1,7, 8,9, 13, 14, 16], and wireless subscriber
loops, to radio and infrared indoor communications [2, 4, 6, 11, 15], nomadic com-
puting [3, 12], and wireless tactical military communications [10]. These and other
newly envisioned networks have both profound social implications and enormous
commercial potential. For system planners and designers, the projections of rapidly
escalating demand for such wireless services present major challenges, and meeting
these challenges will require sustained technical innovation on many fronts.

CHARACTERISTICS OF WIRELESS SERVICES
Many of the main technical challenges stem from three key characteristics inherent
in existing and envisioned wireless services. First, the communication channels

over which radio-frequency (RF), infrared, underwater acoustic, and other wireless
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systems must operate are all complex and highly dynamic. These channels suffer
from numerous physical impairments that severely impact system performance,
important examples of which include fading due to multipath propagation and in-
terference from extra-network sources. Moreover, channel characteristics often
change at rates that can be significant relative to system time scales, particularly in
mobile communications applications.

Second, many emerging wireless applications are aimed toward providing
universal access at relatively high data rates. Providing these capabilities is
increasingly accomplished through the use of random multiple-access protocols,
which while natural, lead to a still more complicated wireless channel. In particu-
lar, in such cases multiple-access/cochannel interference is at least as significant an
impairment as noise and other forms of interference in limiting system perfor-
mance. Another aspect of the universal access paradigm is that network demands
more generally are highly dynamic, with the users entering and leaving the net-
work having diverse quality-of-service requirements. At the same time, the net-
work itself is often reconfigurable and typically part of a larger heterogeneous
system of networks, meaning that the associated network resources are also highly
dynamic as well.

Finally, driving much of the development of wireless technology is the need
for truly portable communications. Many applications demand a system infra-
structure that can be rapidly and flexibly deployed. And the end users themselves
require a lightweight, compact interface to the network in the form of a pocket-
sized, battery-powered transceiver or terminal. As such, complexity and power
consumption are critical issues in the design of mobile systems and give rise to
important practical constraints.

What all these diverse challenges have in common is the very central role that
signal processing ultimately has to play in meeting them. Indeed, increasingly we
are seeing many key problems in wireless communication system design being
approached from signal processing perspectives, yielding solutions in the form of
advanced signal processing algorithms and having implementations on flexible
digital signal processing architectures. In turn, this evolution is stimulating both
significantly heightened interest in signal processing methodologies within the
wireless communications community and considerable recent growth of interest
within the signal processing community in wireless communications applications.

The idea of this book evolved from these basic observations. As such, its aim
is to provide a signal processing perspective on the field of wireless communica-
tions by describing the state of the art and recent research developments in this
area, and also by identifying key directions in which further research is needed.
The treatment comprises eight contributed chapters and an epilogue, spanning
some of the main focus areas of signal processing research at both the physical and
network layers of the wireless system hierarchy.
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OVERVIEW OF CHAPTERS

Abrief outline of the constituent chapters is as follows.

Chapter 1 is the first of four that focus primarily on issues at the physical
layer. In this chapter, Wornell focuses on the role of signal processing in creating
and exploiting diversity for counteracting the effects of multipath-induced signal
fading. Multipath propagation effects generally lead to a channel signal-to-noise
ratio characteristic that varies as a function of frequency, time, and space; diversity
techniques take advantage of the fact that typically not all parts of such channels
fade simultaneously. This chapter describes the key ways in which linear signal
processing algorithms can be used at the transmitters and receivers of multiuser
communication systems to realize effective forms of diversity with very low com-
putational complexity. Such diversity is achieved by, in effect, spreading the trans-
mission of symbols spectrally, temporally, and/or spatially to within the limits
imposed by bandwidth, delay, and other physical system constraints. Spread-spec-
trum code-division multiple-access (CDMA) protocols and multiple-element
antenna arrays at transmitters and receivers are discussed as means for realizing
spreading of this type. All such techniques have the characteristic that they
improve both average and worst-case performance and can be used in conjunction
with—or as an alternative to—coding in such systems. The various techniques in
Chapter 1 are described and interrelated within a common multirate/multichan-
nel signal processing framework. This framework not only provides some useful
new perspectives on traditional approaches for making use of diversity but also
lends itself naturally to the description of several promising, more recently intro-
duced methods.

In Chapter 2, Honig and Poor describe the analogous role that signal process-
ing algorithms have to play in suppressing interference in the receivers of wireless
systems. The primary focus of the chapter is on suppression of interference that
arises due to the nonorthogonal multiplexing inherent in random-access protocols
such as CDMA. While these formats allow systems to optimize their use of band-
width in channels subject to fading, bursty traffic, and time-varying user popula-
tions, overall system performance depends critically on the degree to which the ac-
companying increase in interference is effectively eliminated at the receiver. Unlike
the ambient noise that limits all electronic communications, this multiple-access in-
terference is highly structured. This structure provides both challenges and oppor-
tunities for the use of advanced signal processing to mitigate the effects of the inter-
ference. Chapter 2 develops the basic signal processing concepts relevant to this and
closely related classes of interference suppression problems such as multipath miti-
gation, narrowband interference suppression, and beamforming. These problems
are treated within the basic framework of the CDMA transmission protocol, al-
though many of the techniques described are equally applicable to any system in
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which structured interference is a major impairment. Moreover, because typically
the wireless channel is rapidly time-varying, the emphasis in the chapter is on adap-
tive methods. This is a very active area of current research, and a number of open is-
sues are discussed.

Wireless channels are ultimately limited by their bandwidths. As data rates be-
come more demanding with respect to the channel bandwidth, dispersion and the
attendant intersymbol interference become a critical, performance-limiting issue.
The equalization of wireless channels presents major signal processing challenges
not present in more traditional wireline equalization, again both because of the
rapid time-variation in the channel and because of the additional sources of inter-
ference that compound the problem. In Chapter 3, Papadopoulos discusses the
principal issues arising in the problem of equalizing wireless channels in multiuser
environments and describes several of the key algorithmic structures being ex-
plored for their solution. The development of this chapter emphasizes a powerful
multiple-input multiple-output linear systems perspective within which equalizers
that efficiently and jointly mitigate both intersymbol and multiple-access interfer-
ence are described. As the development reflects, the resulting equalizers constitute
natural and powerful generalizations of equalizers used in many traditional com-
munications applications. Representative examples of both training-based and
blind algorithms from this particularly active area of research are discussed.

In Chapter 4, Paulraj, Papadias, Reddy, and van der Veen turn to the problem
of space-time processing for wireless systems. This chapter is complementary to
the preceding three in that it also considers issues of spatial diversity, interference
suppression, and equalization in the wireless channel. However, the focus of this
chapter is on explicit space-time signal processing strategies that can be employed
in these pursuits. In particular, this chapter develops array signal processing for
both single-user and multiuser systems with the underlying assumptions of linear
modulation and time-division multiple-access transmission. Key elements of this
treatment are the issues of blind channel identifiability and linear channel equaliz-
ability in the presence of both intersymbol interference and cochannel interference.

Ensuring that emerging wireless networks operate efficiently while meeting
the quality-of-service requirements of end users increasingly requires sophisti-
cated strategies for dynamic allocation of power, bandwidth, and other resources.
Moreover, many of the key system design issues are particularly challenging
because they span both the physical layer and the network layer within the wire-
less communication system hierarchy—two layers whose development has tradi-
tionally been treated separately and by culturally different subcommunities. In
Chapter 5, Tse and Hanly explore some key aspects of the interplay between these
two layers in wireless architectures. In particular, they discuss natural and practi-
cal notions of capacity for a cellular system in terms of the quality-of-service
requirements of the participating users. Central to their development is the pow-
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erful concept of a user’s effective bandwidth, which summarizes the fraction of a
cell’s resources that is required to support a user at its desired target signal-to-
interference ratio, given the class of interference suppression techniques being
implemented at the physical layer. Through this framework, several important
insights into the problem of optimal power control are obtained.

Focusing further on the network layer, one of the major thrusts of current
research in wireless communications is the development of techniques for intro-
ducing multimedia capability into wireless networks. The high bandwidth
requirements and quality-of-service expectations of multimedia traffic place major
demands on all signal processing functions of the wireless system. In Chapter 6,
Haskell, Messerschmitt, and Yun consider the major signal processing issues that
arise from the needs of such multimedia transmission. In particular, the chapter
examines four primary signal processing functions—data compression, encryp-
tion, modulation, and error control—in this context and considers the impact of
multimedia traffic on the backbone network. The authors propose a novel archi-
tectural framework for the design of both network protocols and signal processing
algorithms that allows for the resolution of most issues arising in wireless multi-
media networks. In outlining this framework, the authors also identify a number
of active research areas, both in networking and signal processing.

In Chapter 7, Ramchandran and Vetterli explore issues of data compression
(i.e., source coding) and error control (i.e., channel coding) in wireless multimedia
networks in more detail. In particular, this chapter focuses on the interaction
between source and channel coding in such contexts. The heterogeneous nature
of both the information sources and the physical channels in these applications in-
troduces issues that are not addressed by more traditional information-theoretic
approaches to these problems. Joint source and channel coding techniques are
featured as an approach to some of the key challenges in these contexts, and promis-
ing techniques based on multiresolution signal processing in the form of wavelet-
and subband-based source coders together with multilevel error-correcting coders
are emphasized. The chapter illustrates how such techniques can be particularly
well suited to the demands of speech, image, and video transmission over wireless
channels, allowing, for example, rate adaptation and flexible control over noise
immunity.

Finally, while much of the discussion in Chapters 1 through 7 applies, in
principle, to general wireless communication systems, these chapters are largely
developed with RF systems in mind. As an illustration of other kinds of propagation
environments and how they have their own unique sets of issues in terms of wire-
less system design, in Chapter 8, Brady and Preisig explore wireless communication
through the underwater acoustic channel. In practice, this channel is an important
one in a number of scientific and military applications involving underwater com-
munication, and it presents particularly challenging problems for signal processing
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design. Indeed, many of the impairments encountered on wireless RF channels are
experienced at even more severe levels in the underwater acoustic channel. As such,
this latter channel provides a useful context in which to explore and develop some
of the most aggressive and signal-processing-intensive emerging techniques.

Finally, in the epilogue, Viterbi provides a philosophical view of the forces
driving the development of wireless technology. In particular, he identifies four
laws, two each from the natural sciences and the social sciences, that have formed
the basis for the development of digital wireless communication networks. This
essay describes their interaction, as well as their logical support for spread-spec-
trum multiple-access techniques.

AUDIENCE FOR THIS Book

Collectively, these nine contributions represent a sampling of some of the main
themes and directions being pursued within this active field of research. While
broad in scope, this volume does not attempt to be comprehensive in its coverage.
Indeed, given the brisk pace at which developments are currently taking place, thor-
ough coverage would be almost impossible. Instead, the goal of the book is a more
modest one. The topics are representative rather than exhaustive, and the treatment
is aimed toward developing perspectives and insights that will allow readers to ap-
preciate what some of the fundamental challenges are, what the scope of current ac-
tivities is, and where some of the major research opportunities lie. For newcomers,
this book can be used as a starting point for navigating the rapidly growing body of
literature on various aspects of the topic. For those already active in the field, this
book can provide an opportunity to reflect on one’s work in the context of develop-
ments in other aspects of the topic and to explore interconnections between these
developments that may lead to fundamentally new research directions.

More broadly, it is our hope that this volume will be a useful resource to the
dual audience it is intended to serve: both to the signal processing community as it
becomes more active in the wireless communications area, and to the communica-
tions community as it increasingly embraces signal processing algorithms and
architectures in the development of efficient wireless systems of the future. More
generally, there is tremendous opportunity for major advances to come from
expanded dialog and interaction between these two communities, and thus it is
also our hope that projects such as this can ultimately be vehicles for fostering such
collaboration.

H. Vincent Poor
Gregory W. Wornell




Preface XV
REFERENCES

[1] 1. Brodsky, Wireless: The Revolution in Personal Telecommunications. (Artech: Boston,
1995)

[2] K-C. Chen, et al., eds., IEEE ]. Select. Areas Commun., Issue on Wireless Local Com-
munication, vol. 14, Nos. 34, Apr.-May, 199.

[3] P.Cochran, ed., Proc. IEEE, Special Issue on Communications in the Twenty-first Cen-
tury, vol. 85, No. 10, Oct. 1997.

[4] P.T. Davis and G. R. McGuffin, Wireless Local Area Networks. (McGraw-Hill: New York,
1995)

[5] K. Fehrer, Wireless Digital Communications: Modulation and Spread Spectrum Applica-
tions. (Prentice-Hall: Upper Saddle River, NJ, 1995)

[6] J.J. Fernandes, P. A. Watson, and J. C. Neves, “Wireless LANs: Physical Properties of
Infrared Systems vs. Mmw Systems,” IEEE Commun. Mag., vol. 32, no. 8, pp. 68-73,
Aug. 1994.

[7] V. K. Garg and J. E. Wilkes, Wireless and Personal Communications Systems. (Prentice-
Hall: Upper Saddle River, NJ, 1996)

[8] V.K. Garg, K. Smolik, and J. E. Wilkes, Applications of CDMA in Wireless/Personal Com-
munications. (Prentice-Hall: Upper Saddle River, NJ, 1997)

[9] D. Grillo, A. Sasaki, R. A. Skoog, and B. Warfield, eds., [EEE J. Select. Areas Commun.,
Issue on Personal Communications—Services, Architecture, and Performance Issues,
vol. 15, no. 8, Oct. 1997.

[10] J. M. Holtzman and D. J. Goodman, Wireless and Mobile Communications. (Kluwer:
Boston, 1994)

[11] J. H. Kahn and J. R. Barry, “Wireless Infrared Communications,” Proc. IEEE, vol. 85,
no. 2, pp. 265-298, Feb. 1997.

[12] L. Kleinrock, “Nomadic Computing—An Opportunity,” ACM SIGCOMM Comput.
Commun. Rev., vol. 25, pp. 36—40, Jan. 1995.

[13] K. L Park, Personal and Wireless Communications: Digital Technology and Standards.
(Kluwer: Boston, 1996)

[14] K. Pahlavan and A. H. Levesque, Wireless Information Networks. (Wiley: New York, 1995)

[15] T.S. Rappaport, Wireless Communications: Principles and Practice. (Prentice-Hall: Upper
Saddle River, NJ, 1996)

[16] T.S. Rappaport, B. E. Woerner, and J. H. Reed, Wireless Personal Communications: The
Evolution of Personal Communications Systems. (Kluwer: Boston, 1996)

[17] S. Sampei, Applications of Digital Wireless Technologies to Global Wireless Communica-
tions. (Prentice-Hall: Upper Saddle River, NJ, 1997)

[18] G. L. Stiiber, Principles of Mobile Communications. (Kluwer: Boston, 1996)

[19] Universal Communications—Proc. Military Commun. Conf. (MILCOM), San Diego,
Calif., Nov. 6-8, 1995.

[20] A.]J. Viterbi, CDMA: Principles of Spread Spectrum Communications. (Addison-Wesley:
Reading, Mass., 1995)




Linear Diversity Techniques
for Fading Channels

Gregory W. Wornell

Signal fading due to multipath propagation is a dominant source of impairment in
wireless communication systems, often severely impacting performance. How-
ever, the effects of fading can be substantially mitigated through the use of diver-
sity techniques via appropriately designed signal processing algorithms at both
the transmitters and receivers. Practical, high-performance systems require that
such diversity techniques be efficient in their use of resources such as power, band-
width, and hardware, and that they meet often tight computational and delay con-
straints. This chapter develops a common, multirate-signal-processing-oriented
framework within which the relative benefits of various types of diversity are dis-
cussed. Several examples of resource-efficient linear diversity methods—both tra-
ditional and more recently proposed—are highlighted.

Fading in signal strength arises primarily from multipath propagation of a
transmitted signal due to reflections off physical objects, which gives rise to spatially
distributed standing wave patterns of constructive and destructive interference.

We will be focusing primarily on radio-frequency (RF) systems, although much of what we dis-
cuss also applies to acoustic-frequency systems used in underwater environments. Many of the under-
lying principles also apply in infrared (IR) systems, although technological and other considerations
often preclude direct implementations of the kinds of processing discussed here.

1
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These standing wave patterns depend not only on the geometry of the constituent
propagation paths from transmitter to receiver but on the carrier frequency of the
transmitted signal as well. As a result, signal strength varies both with spatial loca-
tion and with frequency. Moreover, when the receiver is in motion through the
standing wave pattern, time variation in signal strength is experienced.

Figure 1.1 illustrates an example of a multipath-induced standing wave pat-
tern in two dimensions. In this example, a single-frequency tone is transmitted
from a particular source location, and a single, perfectly reflecting, linear boundary
creates one indirect propagation path in addition to the direct path to a given
receiver location. We emphasize that increasing the frequency of the transmitted
signal would lead to more closely spaced contours in Figure 1.1.

The scenario represented by Figure 1.1 is obviously highly simplified. For
example, the effects of path loss, i.e., attenuation in signal strength that occurs with
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Figure 1.1 The standing wave (interference) pattern associated with the trans-
mission of a single tone in a two-dimensional propagation environment with a sin-
gle perfect reflecting boundary, indicated by the solid line, and no path losses. The
symbol © denotes the transmitter location, and the dashed curves indicate the con-
tours of points where maximum constructive interference would be experienced
by a receiver. Between are dotted curves indicating corresponding contours of
points where maximum destructive interference would be experienced. A similar
interpretation is obtained when the roles of transmitter and receiver are reversed.
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propagation distance, have been neglected; these would otherwise affect the inter-
ference pattern. More generally, in more realistic physical environments involving
many reflectors and therefore many propagation paths, the standing wave pattern
is considerably more complicated. In such cases, deterministic characterization of
the particular interference patterns may be difficult to obtain. However, useful sta-
tistical characterizations of the effects of such fading can often be exploited.

To compensate for the effects of signal fading due to multipath propagation,
three main forms of diversity are traditionally exploited to varying degrees in
wireless communication systems: spectral diversity, temporal diversity, and spa-
tial diversity. Each of these forms is discussed in detail in this chapter. We begin by
summarizing their salient features.

Spectral diversity is effective when the fading is frequency-selective, i.e., varies
as a function of frequency. This form of diversity can be practically exploited when
the available bandwidth for transmission is large enough that individual multipath
components can begin to be resolved, or equivalently when it is large enough that
different subbands of the transmission bandwidth experience effectively indepen-
dent fading. As we discuss, examples of systems that take advantage of frequency di-
versity are direct-sequence or frequency-hopped spread-spectrum communication
systems, which are designed to utilize wideband transmission formats.

Temporal diversity is effective when the fading is time-selective, i.e., fluctu-
ates with time.? This form of diversity is exploited by introducing memory into the
transmitted symbol stream in the form of coding or precoding to effect temporal
spreading of symbols. Since temporal diversity schemes introduce delay, the
degree to which this form of diversity can be exploited depends on delay con-
straints in the system relative to the coherence time of the channel,® which, in turn,
is a function of both the vehicle speeds in mobile applications and the carrier fre-
quency in the system. Delay constraints are often quite stringent for two-way voice
communication but can, in principle, be significantly milder for broadcast and
other applications.

Finally, spatial diversity—which involves the use of sufficiently spaced,
multiple-element antenna arrays at either the receiver, the transmitter, or both—
exploits the spatial variation in fading corresponding to the standing wave inter-
ference patterns. Among other advantages, spatial diversity can be exploited even
in situations where the fading channel is neither frequency-selective nor time-
selective—or when system constraints preclude the use of spectral or temporal

2The term “fading” is sometimes reserved exclusively for describing this phenomenon of tem-
poral variation specifically. Throughout this chapter, however, the term fading is used in its broader
sense to describe effects induced by multipath propagation more generally, whether or not they are
accompanied by significant time variation.

3The coherence time of the channel is the correlation time of the fading process: it is a measure of
how far apart two time samples have to be to experience effectively independent fades.
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diversity. The extent to which this form of diversity can be exploited depends on
issues such as physical size constraints and cost.

A detailed outline of the chapter is as follows. We begin with a discussion in
Section 1.1 of a basic system and channel model that will be used throughout. For
reference, Section 1.2 summarizes the performance characteristics of systems that
do not exploit diversity. In the remainder of this chapter, we focus on several inter-
related classes of low-complexity, linear signal processing algorithms for exploit-
ing each of the three forms of diversity, both individually and jointly. In particular,
spectral and temporal diversity techniques are discussed in Sections 1.3 and 1.4,
respectively. The emphasis in these sections is on effectively single-user (i.e., point-
to-point) systems. Natural generalizations of these diversity techniques are devel-
oped for use in multiuser scenarios in Section 1.5; these are of particular interest in
many contemporary applications. Section 1.6 describes and contrasts techniques
for exploiting diversity through the use of both receiver and transmitter antenna
arrays in wireless systems, and finally Section 1.7 contains some concluding
remarks.

1.1 System AND FADING CHANNEL MODELS

The model for the channel between a particular transmitter and receiver pair in a
wireless system generally consists of two components: a linear, time-varying filter
that captures the effects of multipath fading in the transmission medium, and an
additive noise term representing both receiver noise and, often more significantly,
sources of co-channel interference. When pulse amplitude modulation (PAM) is
employed in the system, it is convenient to work with an equivalent discrete-time
baseband model for the passband system.* In particular, as depicted in Figure 1.2,
the response of the channel to an input sequence y[n] is given by

rlnl = alm; Kly[n— k] + wln], (1.1)
k

yin] — afn;k] r[n]
Figure1.2 Adiscrete-time baseband
model for a generally time- and

W[ n ] frequency-selective fading channel.

“Itis worth commenting at the outset that while such discrete-time models sometimes constitute
an oversimplification of the physical systems they represent, they are generally adequate for capturing
the key features of such systems and the associated channels, and at the same time lead rather naturally
to algorithms having efficient digital signal processor (DSP) based implementations.
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where the sequence w[n] represents the additive noise and interference, and where
the kernel a[n; k] is the response of the channel at time # to a unit-sample input at
time n — k.

It is often convenient to model the noise w[#n] as a zero-mean, complex-valued,
circularly symmetric stationary white Gaussian process with variance

E[|w([n] |2] = N W,

where W, is the underlying system bandwidth. While this is a reasonably realistic
model for the receiver noise, it is generally an overly simplistic (and rather pes-
simistic) model for cochannel interference; more realistic models for cochannel
interference that take into account its inherent structure lead to more effective
interference suppression algorithms, several of which are discussed in Chapters 2
and 3 as well as other chapters of this volume.

The time-varying frequency response of the channel is related to the kernel
a[n; k] via®

Alw; n] = za [n; ke /K. (1.2)
k

When A(w; n] does not vary with 1, the channel is said to be time-nonselective, and
a[n; k] specializes to the kernel of a linear time-invariant system. This fading model
is generally applicable to systems in which any transmitter or receiver motion is
sufficiently slow that time variations in the channel are on scales much longer than
the symbol duration. In this case, as depicted in Figure 1.3 the input-output rela-
tion involves simple convolution, i.e.,

rinl = alklyln — k] + wn], 1.3)
k

where the unit-sample response a [k] is given by a[k] = a[0; k] and has the associ-
ated frequency response A(w) = A(w; 0]. In such cases, temporal diversity cannot
be exploited.

yln] — aln] r(n]

Figure 1.3 A discrete-time baseband
model for a frequency-selective, time-
W[ I’l] nonselective fading channel.

SWe adopt the useful convention of using parentheses (-) to denote continuous-valued argu-
ments and brackets [-] to denote discrete-valued arguments. For functions of two arguments where the
first is continuous and the second is discrete (as in the case of time-varying frequency responses), we
use the convenient mixed notation (-; -].
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By contrast, when A(w; n] in (1.2) does not vary with w, we have a[n; k] =
a[n] 6[k], with 6[n] denoting the unit-sample, i.e.,

1 =0
d[n] 2 " . (1.4)
0 otherwise,

in which case the channel is said to be frequency-nonselective. This fading model
is appropriate for use with systems in which any frequency variations are on scales
much larger than the system bandwidth. As such, this model is applicable to nar-
rowband channels where the delay spread—i.e., the effective length of the
sequence a[n; k] with n fixed—is smaller than the symbol duration. Such is the
case, for example, in indoor applications when the bandwidth is less than about
200 kHz, and outdoor applications when the bandwidth is less than about 20 kHz.
In this scenario, as depicted in Figure 1.4, the input-output relation involves mod-
ulation, i.e.,

r[n] = aln]yln] + wln]. (1.5)

On such channels, spectral diversity cannot be exploited.
Finally, channels that are both time- and frequency-nonselective can be ex-
pressed in the form

r[n] = ay[n] + wln], (1.6)

where a = Ais a random variable. On such channels, neither temporal nor spectral
diversity can be exploited, though spatial diversity often can. Spatial diversity
exploits the fact that different gains a are encountered (experienced) by different
elements of the antenna array.

As we will generally assume throughout this chapter, the transmitter typi-
cally does not have any knowledge of the fading channel kernel a [; k]. Exceptions
are when a feedback path exists from receiver to transmitter through which at least
partial channel state information can be passed. In contrast, the receiver is gener-
ally able to infer information about the fading channel kernel from the received
waveform, through the use of either training data sent by the transmitter or a
“blind” algorithm (examples of which are discussed in Chapters 3 and 4). In this
chapter, we assume that the receiver has perfect knowledge of the fading channel

y[n] r(n]

Figure 1.4 A discrete-time baseband

a [ n ] w [ n ] model for a time-selective but frequency-

nonselective fading channel.
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through which the information was transmitted; this assumption allows us to
develop useful bounds on the performance attainable in practice. In turn, useful
refinements of these bounds can be obtained by separately assessing and subse-
quently incorporating the effects of channel identification limitations on diversity
methods. However, such refinements are not explored in this chapter.

A variety of statistical characterizations of fading behavior have proven use-
ful in designing receivers and transmitters for wireless systems and in evaluating
the resulting performance. One of the most widely used, and the one we use in this
chapter, is the stationary Rayleigh fading channel model, which is appropriate
when there are a large number of superimposed propagation paths.® In this case,
for fixed values of k, the kernel a [n; k] is well modeled as a zero-mean, stationary,
complex-valued, circularly symmetric Gaussian sequence based on a Central Limit
Theorem argument. Furthermore, uncorrelated scattering is generally assumed—
i.e., sequences corresponding to distinct values of k are statistically independent,
so that”

Ela[m Kla*[n—m; 1] = R [m; K)ok — 1.

With uncorrelated scattering, the time-varying channel frequency response
A(w; n]is then stationary in both n and w and satisfies

E[A(w; n]] =0 (1.7a)
E[|A(w; n] ]2] =g (1.7b)

The noise w(#n], fading kernel a[n; k], and channel input y[n] are reasonably mod-
eled as mutually independent. Other aspects of the characterization of discrete-
time Rayleigh fading channels based on Bello’s continuous-time framework [2] are
discussed in [3].

The remainder of the chapter considers methods for transmitting a continu-
ous- or discrete-valued sequence x[n] of complex-valued symbols having average
energy & per symbol over such channels at a prescribed rate of R complex symbols
per second. From traditional Nyquist sampling theory, we know that such rates
can be achieved over a passband channel having a bandwidth of at least W, =R
Hz, corresponding to a spectral efficiency of at most 1 (complex) symbol/s/Hz [4].
In practice, at least a small amount of excess bandwidth is generally required to
facilitate timing recovery. However, when available, larger amounts of excess
bandwidth can also be used to dramatically improve performance of wireless sys-
tems in particular, as we will discuss.

*When a direct propagation path is also included, a Ricean model [1] is more appropriate.
"We use the operator * to denote convolution, and the superscript * to denote complex conjugation.
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1.2 TRANSMISSION WITHOUT DIVERSITY

To illustrate the impact of fading on system performance before exploiting diver-
sity, we consider a representative uncoded system in which a stream of quadrature
phase-shift keying (QPSK) symbols x[r] is transmitted over a nonselective fading
channel (1.6). A typical signal set for these systems would be of the form

x[n] € {+\J€, €, +}|E, €.

First, note that the signal-to-noise ratio (SNR) associated with the channel
takes the form

_ _E&lal?

AT (1.8)

For a particular realization (i.e., fixed ), the channel is Gaussian and the associated
QPSK bit-error rate is given by
P, = Q(), (1.9)

where

Q) = — re"zﬂdt (1.10)
2 Jv

Thus, the bit-error rate achieved depends strongly on the channel gain a. If the fad-

ing is sufficiently severe that a drops below some minimum SNR level necessary

for adequate performance, then the system is said to experience an “outage.”®

Since with a complex-valued Gaussian amplitude the SNR (1.8) is an exponentially

distributed random variable with mean

L oaprg_ O
Co 2 Ela] NOWO , (1.11)

then for a given threshold the outage probability can be readily calculated as the
integral under the tail of the exponential density. This outage probability charac-
terizes, in an appropriate sense, worst-case performance on the fading channel.

Average performance on the fading channel is also of interest in practice. Tak-
ing the expectation of (1.9) with respect to the exponential density for « yields an
average bit-error rate of

1 1
P=={1-—/—]). 112
2( 2<;O+1) 12

8This threshold effect is often pronounced for coded systems as error-correcting codes typically
exhibit rapid performance degradation when SNR falls below a prescribed level.




Sec.1.2 Transmission without Diversity 9

with {, as given by (1.11). By contrast, a Gaussian channel with a deterministic gain
a that is the root-mean-square (RMS) value of 4 in the fading channel, i.e.,

7 =E[|a]’]

has the same average SNR as the fading channel but supports a dramatically better
average bit-error rate of

Py = Q(VETal) = o(1/E,). (1.13)

These two bit-error rate curves are depicted in Figure 1.5, where we see that to
achieve a modest bit-error rate of 1072, in excess of 15 dB more transmission power
is required on the fading channel than on the corresponding Gaussian channel. At
lower error rates, the differences are even more striking and arise because at high
SNR (low (), (1.12) decays only as the reciprocal of SNR, i.e.,

P~ (1.14)

10" T T T T T T T

Bit Error Probability

—
o

)
[}

10

| 1 | | |
10 12 14 16 18 20
SNR (dB/bit)

10

Figure 1.5 Bit-error rate behavior for QPSK transmission. The top curve corresponds to the
performance on the Rayleigh fading channel, and the bottom corresponds to the performance
on a Gaussian channel with the same average SNR.
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while (1.13) decays exponentially with SNR, i.e.,
Py ~fCoe @0, (1.15)

With these observations in mind, the goal of diversity is to improve both the
worst-case and average performance of systems operating in the presence of fad-
ing. Ultimately, the performance of the corresponding Gaussian channel discussed
above provides a useful performance benchmark for various linear diversity
strategies. For example, as we will see first, the Gaussian channel performance can
be approached arbitrarily closely through the use of spectral diversity.

1.3 SpecTRAL DIVERSITY

Spectral diversity is obtained by means of a spread-spectrum system, which
exploits a bandwidth significantly greater than the W, Hz that would otherwise be
required for transmission of the symbol stream x[n] at rate R = W, symbols/s. The
most effective spectral diversity is obtained by making use of the excess band-
width through an appropriately designed error-correction code. However, we
restrict our attention to linear methods for generating and exploiting spectral
diversity, a class of which are the simple spread-spectrum systems that take the
form depicted in Figure 1.6 and which effectively correspond to a repetition coding
strategy. As this figure reflects, the symbol stream x[r] is upsampled by an integer
factor p,’ the result of which is processed by a linear time-invariant (LTI) filter (the
code) whose unit-sample response /[n] has unit energy, i.e.,

> [hinl|* =1,
yielding

ylnl = > x[klh[n— kp]. (1.16)
k

“Upsampling by a factor p involves inserting p — 1 zeros between each of the symbols, i.e., if z[n]
denotes the output of a rate-p upsampler with input x[n], then

z[n] = x[n/p] ”=~~'/.‘/J,0,/),2/),...
0 otherwise.

As aresult, the average power in z[n] is reduced from that in x[#] by a factor of p. This reduction ensures
that SNR degrades in the proper manner with bandwidth expansion due to increased noise at the front
end of the receiver. As we will see, this noise enhancement is more than compensated for by the diver-
sity benefit inherent in the bandwidth expansion.
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Y

x[n] —= 4 p hin] = yln]

Figure 1.6 A multirate model for direct-sequence, spread-spectrum modulation.

The samples constituting y[n] are referred to as “chips,” and thus for each
symbol in the original stream, p chips are generated in the new stream.

When the chips y[n] are pulse-amplitude modulated at the correspondingly
higher rate pR = pW, (the chip rate), the symbols x[n] continue to be transmitted at
rate R = W, (the symbol rate), but now using a bandwidth of pW,. Thus, the spec-
tral efficiency is reduced to p ™' symbols/s/Hz.

The detailed characteristics of the transmitted spectrum—and how much
spectral diversity can be ultimately be exploited—are controlled by the choice of
h[n] or, equivalently, its frequency response

H(w) = hlnle7".

In particular, as will become apparent, H(w) should be broadband, with its energy
spread as uniformly as possible in frequency.

The associated whitened matched filter for this system when used in con-
junction with the frequency-selective fading channel of Figure 1.3 takes the follow-
ing form: with

a[n] = h[n]*aln]

denoting the equivalent channel, the received signal r[r] is first processed with a
matched filter, whose unit-sample response is "[-7], and downsampled by a fac-
tor of p. This first stage of processing, which takes place at the chip rate, is referred
to as a RAKE receiver, after Price and Green [5]. The second stage of processing
takes place at the symbol rate and performs the whitening. In particular, the output
of the RAKE receiver is further processed by an anticausal system with frequency
response 1/G"(w), where G () is the minimum-phase spectral factor of the associ-

ated folded spectrum
AR + 27l
()7
P P

G()G (w) = S; (w).

2

7

-1

1%
Sa(w)=7 Z

=0

ie.,
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Y

rln] —= h[-n] al-n] v = gn] [ X[n]

Y

Figure 1.7 Whitened matched filter for direct-sequence, spread-spectrum system in
frequency-selective fading.

The result x[#] is then related to x[r] according to
x[n] = gln] * x[n] + v[n], (1.17)

where g[n] is the causal unit-sample response of the system with frequency
response G(w), and the noise v[n] is white with the same variance as w[n]. It can be
shown, as in the continuous-time case [4], that the collection of output samples x[r]
of this whitened matched filter, which is depicted in Figure 1.7, is a sufficient sta-
tistic for making decisions about x[n].

The whitened matched filter, as well as the subsequent processing, often sim-
plify in practice. For example, when /1[n] is the unit-sample response of an allpass
filter [6], i.e.,

|H)|"=1,  whence  h[n]=h"[-n] = [n], (1.18)

and when the coherence bandwidth 0, of the channel is such that a [1] has a delay
spread (effective length) L satisfying'

L=pW,/0,<p, (1.19)
then
L—1 )
Si(w)="> |alll]” 242 (1.20)
=0

Thus, the whitening filter becomes a simple normalizing gain 1/, and the equiva-
lent channel is a simple additive white Gaussian noise channel that is free of inter-
symbol interference (ISI), i.e.,

x[n] = ux[n] + v[n], (1.21)

where, as before, varv[n] = varw[n] = N y)W,. Thus, simple symbol-by-symbol
detection will suffice in recovering the original stream.

To evaluate the diversity benefit obtained through this spread-spectrum
strategy, we first note that under Rayleigh fading with uncorrelated scattering, the
a[n] are independent, identically distributed zero-mean Gaussian random vari-

19The coherence bandwidth of the channel is a measure of how far apart two frequencies have to
be in order to experience effectively independent fades, so L is a measure of the number of available
degrees of spectral diversity.
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ables. Furthermore, consistent with (1.7b), the frequency-dependent SNR in the
original channel, i.e.,

2
a(w) = —Ejl\’?:f,ov)! (1.22)
has mean
1 . _ 028
= E[a] N, (1.23)

and the same variance. By contrast, the SNR in the equivalent channel (1.21), i.e.,

&

T IN W,

(1.24)

is an Lth-order Erlang random variable with the same mean but reduced variance;
specifically, using (1.20),

E[]= —Cl— (1.25)
0
1

vary = LC% (1.26)

This reduction in variance has a substantial impact on average bit-error-rate
performance. For example, for a QPSK symbol stream x[r], the bit-error probabil-

ity is [1]
1
2wl
(k)(za@%+1))]' (127

M

0

polfp 1 -
2 V2 L+1 §

where () is as defined in (1.23). At high SNR, (1.27) has the asymptotic form
P~ (1.28)

As we would expect, (1.27) and (1.28) specialize to (1.12) and (1.14), respec-
tively, when there is no spectral diversity. More significantly, in the limit of infinite
spectral diversity (L — =), (1.27) and (1.28) approach the equivalent Gaussian chan-
nel performance (1.13) and (1.15), respectively, i.e.,

lim P = 9(1/4%,). (1.29)

This result can be obtained by exploiting the fact that 4* — o> as L — %, using the
(strong) law of large numbers. Figure 1.8 depicts the bit-error rates (1.27) as a func-
tion of SNR for different numbers of degrees of spectral diversity (and, therefore,
different amounts of bandwidth expansion).
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Figure 1.8 Bit-error probabilities with uncoded QPSK on the Rayleigh fading channel with
spectral diversity exploited by a RAKE receiver. The top curve corresponds to the perfor-
mance without spectral diversity (L= 1), and the bottom curve indicates the performance
potential with infinite spectral diversity (L— o) obtained via infinite bandwidth expansion.
The successively lower curves between these two extremes represent the performance
obtained with L=2, 4, 18, 16, 32, and 64 degrees of spectral diversity, respectively.

We conclude this section with some remarks on the design of the filter h[n] and
on the implementation of the system. First, consistent with the preceding analysis,
selecting h[n] to be the unit-sample response of an allpass system allows the maxi-
mum number of degrees of spectral diversity to be exploited. From this perspective,
even the simple choice h[n] = J[n] is sufficient and allows the individual multipath
components to be directly resolved. In practice, this choice is typically not used, pri-
marily because the associated transmitted signal y[n] has a large peak-power re-
quirement, which is often undesirable from the perspective of transmitter amplifier
design.!! As a result, to achieve more uniform power characteristics, /[n] is more

This choice can also be undesirable when there are transmission security considerations.
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typically chosen to be a binary-valued sequence (1[n] € {=1/,/p}) of length p. With
this constraint, (1.18) cannot be satisfied exactly but can be approximated by appro-
priate design of the binary taps of h[n]. A variety of pseudorandom shift-register se-
quences have proven popular for this purpose—see, e.g., [7, 8] and the references
therein.

When /i [n] and the length L of a [1] satisfy—at least approximately—the con-
ditions (1.18) and (1.19), respectively, the RAKE receiver is often most easily imple-
mented in the manner reflected in Figure 1.7. First, the received sequence r[#] is
correlated with h[n], which is implemented by filtering with h*[-n]. Exploiting
(1.18), we see that this operation eliminates the effect of h[n] at the transmitter
without affecting the noise statistics. As a result, from the point of view of subse-
quent processing, it is as if the filter i1 [n] = 6[n] were used to implement the spread-
spectrum system. In particular, provided that the bandwidth expansion factor p
is chosen so that there is no ISI after this correlation operation, then symbol-by-
symbol decisions can be made after subsequent processing in the form of matched
filtering and downsampling, where the filter is matched to the channel and there-
fore has unit-sample response 2" [-7].

It is also important to note that the choice of /1[n] also determines the spectral
characteristics of the transmitted signal, which is an important consideration in
system design for both public and secure communication. From this perspective it
is useful to recognize that the allpass condition (1.18) also ensures that if the origi-
nal symbols x[r] are uncorrelated, then the transmit spectrum will be white, i.e.,
Sy(ca) will be constant.

Structure in the code h[n] can also facilitate implementation. For example,
when h[n] is of length p and binary-valued, i.e., h[n] = %1, then the spread-spectrum
modulation with a binary phase-shift keying (BPSK) symbol stream, i.e., x[n] & *+1,
can be implemented very efficiently with high-speed digital logic circuitry. In par-
ticular, a sequence is created in which each symbol in the original stream x[n] is
replicated p times in succession, and the result is bitwise exclusive-or’d with a peri-
odically replicated version of the length-p sequence to generate the transmission
y[n]. Most practical implementations of direct-sequence spread-spectrum employ
this approach.!?

A final comment: the general spread-spectrum approach described in this sec-
tion extends readily to multiuser systems, either as time-division or code-division
multiple access systems. In such systems, many users share the total expanded
bandwidth. The transmissions of the users are distinguished from one another by
assigning different filters i1[n] to the different users; these filters serve as distinct

2n practice, this exclusive-or process is often used with a periodically replicated binary code
sequence having length greater than p. The resulting modulation effectively corresponds to using dif-
ferent codes for successive symbols. While this generalization does not allow any additional diversity
benefit to be realized, it sometimes has implementational and other advantages.
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“signatures” for each of the users. A framework for such systems is explored later in
the context of Section 1.5.

1.4 TempoORAL DIVERSITY

In systems where the transmitters, receivers, and/or reflectors are in motion so
that time-varying multipath propagation is experienced, temporal diversity can be
exploited either as an alternative to, or in conjunction with, spectral diversity. This
section discusses natural techniques for exploiting temporal diversity in such sce-
narios. Our focus in this section is on single-user scenarios; multiuser extensions
are subsequently developed in Section 1.5. We first consider temporal diversity
methods that are bandwidth-preserving and then turn our attention to extensions
that involve bandwidth expansion.

In general, to obtain the benefits of temporal diversity, the transmission of
each symbol is effectively spread in time, thus avoiding an entire symbol encoun-
tering a deep fade. Indeed, since SNR in a time-selective fading channel fluctuates
from time sample to time sample, we can improve at least worst-case performance
(outage probability) in the transmission of individual symbols by appropriately
spreading the transmission of each symbol over a large number of time samples.
As we will see, this generally also leads to an improvement in average perfor-
mance.

In practice, such spreading can be accomplished in a variety of ways such as
through the generation of memory in the transmitted stream by applying error-
correction coding to the original symbols. Moreover, if necessary, this spreading
can be accomplished without bandwidth expansion through the use of coded
modulation [9]. When used on fading channels, coding is generally combined with
interleaving, the purpose of which is to scramble the coded data stream so that
symbols within a codeword experience effectively independent fading. This strat-
egy reduces the coding complexity required to achieve a given level of fidelity,
allowing shorter lengths in the case of block codes, or fewer states in the case of
convolutional codes. However, although such codes can be used to approach
capacity, they can be impractical in attempts to exploit large numbers of degrees of
time diversity because such nonlinear methods often require high computational
complexity at the receiver for decoding in such regimes.

A computationally efficient alternative for obtaining a temporal diversity
benefit is to use linear processing in the form of what is referred to as spread-
response precoding [10] (see also [11]). This strategy requires signal processing
algorithms at the transmitter and receiver whose complexity grows linearly with
the number of degrees of diversity being exploited.
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y[n] r[n] yin]

FADING EQUALIZER POSTCODER —» .Q[ nj/

x[n] —={ PRECODER CHANNEL

Figure 1.9 A spread-response precoding system.
1.4.1 Spread-Response Precoding

A typical system employing spread-response precoding is depicted in Figure 1.9.
In the transmitter of this system, the symbol stream x[n] is transformed into a pre-
coded symbol stream y[n]. At the receiver, the data r[n] is first processed by an
equalizer to produce y[n], then by a postcoder to produce X[#], from which deci-
sions about the original symbols x[n] are made. In general, the linear precoding
(and postcoding) may be either time-invariant or periodically time-varying. The
time-invariant case is conceptually somewhat simpler and is discussed first, but
the periodically time-varying pre- and postcoders we discuss later have important
advantages for implementations in practice.

In the LTI case, the spread-response precoding filter that constitutes the
transmitter portion of the system of Figure 1.9 is characterized by its (possibly
complex-valued) unit-sample response, which we denote by h[n]. With this nota-
tion, the transmitted sequence is

ylnl = x[n] * hn] = Z x[klh[n — K]. (1.30)
k
We now focus on the design of i[n], which can also be viewed as a discrete-time
pulse shape, so as to achieve the desired symbol spreading.

For this application, it is natural to require /1 [1] to be the unit-sample response
of an (at least approximately) allpass filter, which as we recall satisfies the condi-
tion (1.18). The condition (1.18) implies that allpass filters are lossless systems, pro-
ducing outputs y[n] that are orthogonal (i.e., distance- and energy-preserving)
transformations on their inputs x[n]. Such transformations have a number of key
properties; as just one example, (1.18) implies that x[n1] can be conveniently and sta-
bly recomputed from y[n] via

x[n] = y[n] = h*[-n] = > ylklh [k — nl. (1.31)
k

From a practical standpoint, it is generally necessary to restrict our attention
to finite impulse response (FIR) precoders. However, the only lossless FIR filters
are the shifted unit-samples, i.e., h[n] = 6[n — ny] for arbitrary n,. Nevertheless,
many infinite impulse response (IIR) lossless filters have sufficiently localized tem-
poral support that they can be truncated without significantly altering their char-
acteristics. More generally, a wide variety of FIR filters closely approximate the




18 Linear Diversity Techniques for Fading Channels Chap. 1

losslessness (allpass) condition (1.18), where a suitable measure of loss is based on
the energy in the approximation error, as developed in [10]. More importantly, we
will see that perfect losslessness can be achieved with FIR systems when we relax
the strict time-invariance constraint and allow periodically time-varying filters.

Among FIR precoders that meet or approximate the losslessness condition
(1.18), those of interest have the energy in their unit-sample response spread or dis-
persed as uniformly as possible over the filter length, so that the energy allocated
to each symbol in the stream is spread most efficiently in time. As discussed in [10],
a variety of useful measures of the spreading or dispersion capabilities of a pre-
coder can be developed; for real-valued FIR systems, maximum spreading occurs
when the associated impulse response h[n] is binary-valued, i.e., h[n] = =N -1/ 2
where N is the filter length. In this case, the length N of the precoder impulse
response determines the number of degrees of temporal diversity L that can be
exploited. In particular, L is determined by the length of the precoding filter rela-
tive to the coherence time (in samples) 7, of the fading; specifically,

L=N/z,. (1.32)

The transmission characteristics of spread-response precoding are straight-
forward to develop. First, with lossless precoding, the transmitted stream y[n] has
the same power spectrum as the original coded data x[n], i.e.,

Sy (w) =S, (w).

Hence, when x[n] is a sequence of independent symbols, each with energy £, then
y[n] is a complex-valued, wide-sense stationary white sequence with variance £.
Moreover, with sufficient spreading (large N), the transmitted samples y[n] have
each an effectively Gaussian distribution regardless of the symbol constellation
associated with x[n]—this is suggested by a Central Limit Theorem argument since
via (1.30) each y[n] is the balanced sum of a large number of independent random
variables.!®> The associated peak-to-average power characteristics and receiver
synchronization requirements are therefore different from some conventional
wireless systems and require correspondingly different implementations.

The temporal diversity inherent in spread-response precoding transmissions
can be exploited via an appropriately designed equalizer and postcoder, as illus-
trated in Figure 1.9. Consistent with the emphasis in the chapter, we focus on lin-
ear receiver structures. It is important to remark, however, that nonlinear receivers
can be designed to extract even more substantial diversity benefits than the linear
receivers described here. For example, maximum likelihood sequence detection
can be implemented with the Viterbi algorithm, although this is generally imprac-

131t is worth emphasizing however, that y[n] is not, even asymptotically, a Gaussian process
unless the independent symbols constituting x[n] are Gaussian.
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tical when the number of degrees of temporal diversity is large. Potentially more
practical nonlinear receivers exploit the efficient iterated-decision algorithms
described in [12, 35] and [13].

When we use a linear time-varying equalizer with kernel b [#; k] to compen-
sate for the fading, the equalized stream takes the form

ylnl =" bl klr[n— k.
k
Typically, the kernel b [1; k], or equivalently, its time-varying frequency response
B(w; n] = Z b[n; kle T
k

is chosen based on the specific fading channel coefficients a [#; k] and the noise sta-
tistics.

In turn, the postcoder inverts the transformation of input symbols that takes
place during precoding and is simply a linear filter whose unit-sample response is
[cf. (1.31)] a time-reversed version of the lossless precoding filter h[n], i.e.,

&[n] = K [-nl = §ln) = > ylkIH Tk — n]. (1.33)
k

Anatural equalizer choice for such systems arises from a useful second-order
characterization for the equivalent channel consisting of the fading channel
together with precoding, equalization, and postcoding. As developed in [10], pro-
vided that the physical channel is sufficiently ergodic and that the lossless pre-
coder effects spreading that is large compared to the coherence time, the equivalent
channel can be well modeled as a simple additive white noise channel that is free
of fading when any of a broad class of equalizers is used. Specifically, for a white
input stream x[n],

x[n] = ux[n] + v[n], (1.34)

where uis a nonrandom gain and v[#n] is an additive distortion that is uncorrelated
with x[n]. Moreover, the quality of the approximation in (1.34) improves with the
number of degrees of temporal diversity involved and is asymptotically exact. As
(1.34) implies, when used in conjunction with a linear equalizer and postcoder,
spread-response precoding transforms the effects of fading into a comparatively
more benign form of additive white interference that is uncorrelated with the sym-
bol stream. This behavior allows each symbol in the original stream x[r] to effectively
experience the average characteristics of the fading channel during transmission.

It is important to emphasize that this equivalent channel has some charac-
teristics that distinguish it from the usual additive white noise channel. In particu-
lar, the equivalent distortion v[n] in (1.34) can be expressed as the sum of two
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uncorrelated components, one due to the receiver noise and one due to the ISI
induced by fading, i.e.,

v[n] = vnopse 1] + vigp (7] (1.35)

Thus, because the ISI term has the property that its variance is proportional to the
transmitted power, the overall “equivalent noise” power in the equivalent model
has a dependence on symbol energy. Ultimately, this property is taken into account
in designing a suitable equalizer for this system.

The gain uin (1.34) as well as the variances GZNOISE and O'IZSI of the components
of (1.35) all depend on the choice of equalizer kernel b [1; k]. Remarkably, when the
equalizer is selected so as to maximize the associated signal-to-interference+noise
ratio (SINR)

’ onorse + Olst (159
a minimum mean-square error (MMSE) type equalizer is obtained [10]. In par-
ticular, for sufficiently slowly varying channels, the optimum equalizer has time-
varying frequency response

1o A 1]
B(w; n] EE— Y (1.37a)
where
L1012
_ £l A n]® (1.37b)

a(w; nj NoW,

denotes the SNR at time 1 and frequency w in the original channel. When the arbi-
trary scale factor is appropriately chosen for this equalizer, the resulting x[n] is an
MMSE linear estimate of x[n].

For frequency-nonselective channels of the form (1.5), this equalization
process specializes to

yln] = b[nlr[n],

where
b[n] = 1[1_‘_—[07[]71] , (1.38a)
with
2
a[n] = —gjl\?o[s\],l) (1.38b)

analogously denoting the SNR at time 7 in the original channel.
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In both frequency-selective and frequency-nonselective cases, the associated
receivers can be implemented via computationally efficient recursive linear filter-
ing by recognizing the MMSE property of the equalizer and exploiting a state-
space description of the received data. Algorithms of this type are developed in
[14, 35], and more generally, this state-space framework also leads to equalizers
that can be used even with rapidly time-varying channels; these issues are dis-
cussed more generally in Chapter 3.

With the optimized equalizer (1.37) (or (1.38) when applicable), the resulting
SINR (1.36) takes the form [10]

)= 1 S R _1 1, (1.39)
E 1 Coe™Eq (o)
a(w; n] + 1
with
2
I = %aE ,
% = E [a(w; n]] N, (1.40)

denoting the mean SNR in the original channel, and E, (-) denoting the exponential
integral, i.e.,

= ,’t
E,(v)= J —‘—t—dt. (1.41)

As aresult, in this regime where the effective number of degrees of temporal diver-
sity is high, the associated QPSK bit-error rate is well approximated by

P=0o(). (1.42)
At high SNR ({, < 1), the associated SINR takes the form
1/¢
/Sy (1.43)

T (/)

which, when combined with a corresponding Q-function approximation, leads in
turn to an associated bit-error probability of the form

 [na/gy (_L 12, )
P \——1/C() exp > ln(l/CO) . (1.44)

The asymptotic bit-error probability (1.42) bounds the performance obtained
in practice with FIR precoders that exploit finitely many degrees (L) of temporal
diversity. This can be seen in Figure 1.10, where achievable QPSK bit-error rate is
plotted as a function of the average received SNR per bit £52/ (2N W,) as the
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Figure 1.10 QPSK bit-error probabilities on the Rayleigh fading channel when spread-
response precoding is employed. The top solid curve corresponds to the performance with-
out precoding (L=1), and the bottom solid curve indicates the performance bound
corresponding to the infinite temporal-diversity case (L— ). The successively lower solid
curves between these two extremes represent the performance corresponding to L=2, 4, 8,
16, 32, 64, and 128 degrees of temporal diversity, respectively.

number of degrees of temporal diversity being exploited is varied. In the simula-
tions, optimized periodically time-varying lossless precoders were used; their
detailed construction arises naturally in the context of Section 1.5, where multiuser
generalizations of spread-response precoding are developed.

As Figure 1.10 reflects, there are diminishing returns as L becomes large. In
particular, for a given target bit-error rate, there is corresponding value of L that is
adequate for capturing most of the diversity benefit that can be attained. In turn,
this choice of L effectively bounds the delay that is needed to exact this maximum
possible diversity benefit. As the curves reflect, this value of L (and associated
delay) are inversely related to the target bit-error rate.
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1.4.2 Incorporating Bandwidth Expansion

Infinite temporal diversity in the form of spread-response precoding without
bandwidth expansion cannot achieve the performance of the equivalent Gaussian
channel, as is apparent from a comparison of (1.15) and (1.44). Equivalently, com-
paring Figures 1.8 and 1.10, we see that among linear strategies, large numbers of
degrees of spectral diversity have a more substantial impact on performance than
do the corresponding number of degrees of temporal diversity. From this we con-
clude that using large bandwidths leads to improvements that generally cannot be
achieved with arbitrarily large delays on jointly time- and frequency-selective
channels (when restricting attention to linear processing). However, it is possible
to close the gap between the infinite temporal diversity performance and the infi-
nite spectral diversity performance by combining spread-response precoding with
bandwidth expansion. And it is important to emphasize that this potential exists
even when the underlying channel is frequency-nonselective so that no spectral
diversity is to be gained.!

To incorporate bandwidth expansion into the spread-response precoding
system, it suffices to upsample the symbol stream x[n] by an (integer) bandwidth
expansion factor of p prior to precoding, downsample the output of the postcoder
by the same factor, and replace the equalizer (1.37a) with

A (w; 1]

P T il

where a(w; n] is still given by (1.37b).

Exploiting the analysis developed in [3], we can determine the additional
diversity benefit of bandwidth expansion when the number of degrees of temporal
diversity is large. In particular, the corresponding optimized SINR is

-1
=l (] —L——]) -1|=p| —2—-
! p[(E[ 1+ a(w; nl/p ]) 1] p[ pfoepéoEl o) 1], (1.45)

which is larger than (1.39) for p>1 at every {,, and reflects a reduction in ISI
effects. With {, fixed, it is straightforward to verify that by choosing L to be suffi-
ciently large, the performance gap to the infinite spectral diversity case can be
made arbitrarily small. Indeed, a large p approximation to (1.45) yields y — 1 /¢ as

14As an aside, it is straightforward to verify that one simple way to achieve the infinite spectral
diversity performance on an infinite-bandwidth, frequency-nonselective fading channel is to use a sim-
ple symbol-repetition strategy. Using L repetitions while preserving the original symbol rate gives this
result for large L, assuming sufficient symbol interleaving is used.
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p— », and hence Q(\/;) approaches (1.29). Also, for a fixed p and high SNR
(1/¢,> p), (1.45) takes the form [cf. (1.43)]

- _1/_(/§L]
T [ (1705 | (140

These features are apparent in Figure 1.11, where QPSK bit-error rate is plotted as
a function of SNR for several different values of p, again assuming the maximum
possible temporal diversity benefit has been obtained.

Bit Error Probability

-
o
&

T ) S A T R e E T

2 4 6 8 10 12 14 16 18 20
SNR (dB/bit)

Figure 1.11 QPSK bit-error probabilities on the Rayleigh fading channel when spread-
response precoding with a large number of degrees of temporal diversity is combined with
bandwidth expansion. The top curve corresponds to the performance without bandwidth
expansion (p = 1), and the bottom curve indicates the performance bound corresponding to
the infinite bandwidth expansion (p— ). The successively lower curves in between repre-
sent the performance corresponding to bandwidth expansion factors of p =2, 4, 8, 16, 32, 64,
and 128, respectively.
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1.4.3 Coherence-Time Scaling

We conclude this section with a brief discussion of how spread-response precoding
system performance varies with delay and computational complexity.

First, from (1.32) we see that to achieve the performance corresponding to a
fixed number of degrees of temporal diversity requires a delay (precoder length)
that grows in proportion to the coherence time of the channel. Conversely, given a
fixed delay constraint, larger diversity benefits can be achieved on channels with
shorter coherence times (i.e., higher vehicle speeds in mobile applications), at least
in principle.

The computational requirements of the transmitter and receiver processing
in spread-response precoding systems are rather different, however. In particular,
efficient implementations of these systems require a constant number of computa-
tions per symbol per degree of temporal diversity being exploited, independent of
the channel coherence time.

Such implementations arise by observing that when the coherence time in the
channel (in samples) is 7,, only samples of the channel response spaced at least 7,
apart in time are effectively independently faded. As a result, with | = [7,], only
every Jth sample of the precoder unit-sample response need be nonzero, and the
number of nonzero coefficients corresponds to the number of degrees of temporal
diversity to be exploited. Hence, if h[n] is a prototype precoder of length L
designed for memoryless fading (z, = 1), then an appropriate precoder for fading
channels with a coherence time 7, is obtained by simply upsampling /[n] by a fac-
torz,,ie,

h<ra>[n]:{h[n/11 n=,,0,]1,2], 1.4

0 otherwise.

1.5 Diversity METHODS FOR MULTIUSER SYSTEMS

Temporal and spectral diversity can also be efficiently exploited in multiuser sys-
tems and involve rich generalizations of the methods discussed in Sections 1.3 and
1.4. In this section, we develop such generalizations within a common framework.
We begin with a broader discussion of multiuser communication.

Wireless communication systems for coordinating communication among
multiple users typically employ a cellular architecture, which we will consider for
the purposes of illustration. With such a system, the coverage area is partitioned
into contiguous cells, each of which contains a base station and multiple users,
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which are referred to as “mobiles.” There is no direct (“peer-to-peer”) communica-
tion between users. Rather, each mobile sends its message directly to the base unit
in its cell,!® and this local base unit routes the message to the base unit in the cell of
the intended recipient. In turn, this remote base unit broadcasts the message within
its cell for the receiving mobile to pick up.

Our discussion focuses on the intracell communication involved in such sce-
narios—both base-to-mobile (referred to as the “forward link”) and mobile-to-base
(referred to as the “reverse link”) transmission. We consider a typical scenario in
which forward- and reverse-link communication within each cell takes place on
separate (i.e., noninterfering) channels, and some total fixed bandwidth is shared
for each of the two links within a cell. In particular, for each link a total of pMW,, is
available for the M mobiles, each of which is transmitting or receiving a message at
a rate of W, symbols/s. Initially, we restrict our attention to the case for which
p =1, corresponding to the nominal spectral efficiency of 1 symbol/s/Hz.

1.5.1 Multiuser Fading Channels

The forward and reverse links have rather different characteristics. For the reverse
link, the base unit receives the superposition of uncoordinated and individually
faded transmissions from each of the M mobiles in the cell, from which it must
extract and separate the individual messages. For the forward link, a particular
mobile receives the superposition of M coordinated and identically faded trans-
missions broadcast by the base, from which it must extract the message for which
it is the intended recipient. Nevertheless, the multiuser channel models for both
links share a common form. In particular, as depicted in Figure 1.12, in a useful
equivalent discrete-time baseband model for the passband communication chan-
nel, the received signal  [1] takes the form

M
rinl= > > a,[n Kly,[n—kl + wn]. (1.48)
m=1 k
In general, the randomly time-varying kernels a,, [1; k] capture the effects of multi-
path fading due both to fluctuations in the media and to the relative motions of
mobiles in the system, as well as the effects of asynchronism among the mobiles’
transmissions in the case of the reverse link. Meanwhile, w[n] captures both

15In more sophisticated cellular systems, base units in adjacent cells also receive and process the
message, particularly when the user is near a cell boundary. However, we consider a simplified scenario
ge, p y Yy P
without such “soft handoff” processing.
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yiln] —= a,[nk]

y2[n] —=| ay[n:k]

— r[n]

’ w[n]

yu [n] —=| ay (k]

Figure 1.12 General multiuser fading channel model, where a,,[#; k] denotes the
randomly time-varying linear kernel corresponding to the mth user.

receiver noise and any sources of interference not otherwise taken into account,
including interference from other cells.

The difference between the models for the forward and reverse links is in the
relationships between the channel kernels. For the forward link, the a,,[1; k] are all
identical in the model, i.e.,

a,[m; k] = a,[m; k] = - = aylm k] 2 a[n; k].

However, for the reverse link, the mobiles are usually sufficiently well separated
from one another that they experience independent fading, so the kernels a,,[17; k]
for different m are mutually independent. As in the single-user scenarios discussed
earlier, we continue to assume in both cases that the receiver is able to obtain reli-
able estimates of the channel and noise coefficients.

1.5.2 Multiple-Access and Multiplexing Formats

We begin with a preliminary discussion of frequency-division, time-division, and
code-division transmission formats. On the reverse link, these correspond to what
are referred to as multiple-access protocols; on the forward link, they constitute
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multiplexing strategies. For convenience, we summarize their salient features in
the reverse link context.

There are a variety of ways for a collection of users to share some com-
mon available bandwidth in reverse-link transmission. One example is frequency-
division multiple-access (FDMA), whereby the total bandwidth is partitioned into
subbands, a separate one of which is allocated to each user for transmission of its
message. From a diversity perspective, FDMA systems are inefficient because
with each mobile using a narrowband subchannel of the full wideband channel,
an important source of potential spectral diversity is sacrificed. Moreover, such
systems can be inefficient when the user transmissions are intermittent unless
sophisticated dynamic channel reassignment strategies are employed. And inter-
mittency of this type is quite common—in many such systems, there are large
numbers of potential users, only a small fraction of whom are actively transmit-
ting at any time.

As one alternative, time-division multiple-access (TDMA) systems partition
each signaling interval into a sequence of time slots, one of which is assigned to
each user for transmission of the associated segment of its message. In contrast to
FDMA systems, the wideband format of TDMA systems means they are able, at
least in principle, to obtain a substantial, spectral-diversity benefit. However,
TDMA systems face essentially the same channel reassignment challenges as
those of FDMA systems in dynamic user environments. Furthermore, TDMA for-
mats do not provide an intrinsic, temporal-diversity benefit, though they are fre-
quently used in conjunction with error-correction coding, which does allow an
effective if computationally somewhat expensive temporal diversity benefit to be
realized.

More generally, code-division multiple-access (CDMA) protocols can be
used, which generalize the spread-spectrum systems discussed in Section 1.3. In a
typical direct-sequence CDMA system, for example, each symbol to be transmitted
is effectively represented by a finite sequence of p chips in the transmission. For
example, in a traditional BPSK scheme, a 0-bit is signaled by transmission of a suit-
ably chosen code sequence of length p, and a 1-bit by transmission of the binary
complement of this sequence. When the code sequences for the different users are
appropriately chosen, the result is a multiple-access system with the same poten-
tial frequency-diversity benefit of TDMA, but where intermittency issues are often
more easily handled.

Although we do not develop such approaches in this chapter, it is worth
pointing out that a more sophisticated alternative to these modulation formats is to
directly apply nonlinear processing in the form of error-correcting coding to each
mobile’s stream prior to transmission. If this coding is suitably chosen, the indi-
vidual symbol streams can be separated at a base unit by one of a number of non-
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linear decoding algorithms, examples of which are those based on the concept of
successive cancellation (stripping) [15, 16].

1.5.3 Orthogonal Multiuser Modulation

Many FDMA, TDMA, and CDMA systems of the type discussed in Section 1.5.2 are
naturally viewed as forms of orthogonal multiuser modulation and can be
described within a convenient multirate signal processing framework [3, 17].

The multirate system framework for multiuser communication takes the fol-
lowing form. The coded symbol stream of the mth user, which we denote by x,,[11],
is modulated onto a distinct signature sequence (i.e., discrete-time transmit pulse
shape) h,, [1] to produce y,, [11], which is transmitted within the total available band-
width. Figure 1.13 depicts this process, which consists of upsampling x, [11] by a
factor M, the number of users, followed by linear time-invariant filtering with the
signature sequence, i.e.,

vl = > x, [klh,, [n — kM]. (1.49)
k

To obtain a useful representation for signature sequences, we first express the
signature set as a vector sequence, ie., 1

hin] = [y [n] hy[n] - hylnl] (1.50)

The “spread” of a signature set refers to the extent to which the energy in the
constituent signatures is temporally dispersed. When each of the component
signatures 1, [n] is of finite length, the signature set is said to have finite spread.
Among such systems, it is natural to restrict our attention to those having the
property that in the absence of fading, and with perfect synchronism among users,
there is no interference between symbols either within a user’s stream or among
users. This restriction is equivalent to requiring that the signature sets satisfy cer-
tain orthogonality conditions—specifically, that the signature sequences together

Y

Xm[l’l]—> *M hm[n] _>ym[n]

Figure 1.13 Modulation of the mth user’s coded symbol stream x,,[1] onto a sig-
nature sequence h,, [11] for transmission.

19 The superscript | denotes transposition.
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with all translates by integer multiple of M constitute a complete orthonormal set.

The associated conditions on h[n] are:'”

> hlk — nMIN [k — mM] = 5[n — m]I (1.51a)
k

S hi'[n— kMIh[m—kM] = > h[n— kMlh;lm— kM] = 6[n—m),  (151b)
k k,i

where I denotes the identity matrix of appropriate size. Orthogonal modulation
formats are desirable from a variety of perspectives and simplify receiver design.

For M =2, we can infer from multirate filterbank theory [18] that a rich col-
lection of signature sets satisfies (1.51), even when we restrict our attention to
finite-length signatures. This property can be conveniently seen in the frequency
domain. To this end, we express the set of Fourier transforms corresponding to
(1.50) in the form

+ o0

H(w)= S hlne?™ 2 [H, (@) Hy(w) - Hy)]" (1.52)

n=-%

This representation leads to the so-called polyphase factorization
H(w) = Q(Mw) A(w), (1.53)

where Q(w) is referred to as the polyphase matrix, and A(w) is the Fourier trans-
form of the delay chain of order M, i.e,,

8[71]:[5[”] on—1] - 5[H—M+1]]T,
whence
A(CU) = [1 e'jw e“ja)(M—l)]T'

For a signature set to be orthonormal, it is necessary and sufficient that the
associated polyphase matrix be paraunitary—i.e., that it satisfy

Q)Q () =1 (1.54)

for all @. From this perspective, choosing a signature set is equivalent to choosing
a paraunitary matrix.

Several important special cases are immediately apparent. For example, the
polyphase matrix corresponding to TDMA systems is

Q) =1,
while that corresponding to (ideal) FDMA systems has (k, [)th element
Q)] =@M o=w=n (1.55)

7The superscript " denotes the conjugate-transpose operator.
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In contrast, for discrete Fourier transform (DFT) based multiplexing, for which the
signatures are complex-valued, Q(w) is the inverse of the DFT matrix, i.e.,

[Q()]y,; = e/*™ /M, (1.56)

Finally, for direct-sequence CDMA systems that use Hadamard sequences as sig-
natures, the polyphase matrix is

1]

Q(w)=E, (1.57)

where E is the Hadamard matrix of appropriate dimension. Recall that the
Hadamard matrix of dimension M, viz., &,,, where M is a power of two, is defined
recursively: forM=2,4, ..,

_ 1 vz Eup
Eu=— |- _ ,
\/E =M M2
where E, = 1.

The multirate signal processing framework for orthogonal multiuser modu-
lation is also a convenient one for describing several more recently developed
classes of multiple-access and multiplexing formats that inherently provide both
spectral and temporal diversity benefits. We discuss these systems next.

1.5.4 Spread-Signature CDMA Systems

In traditional CDMA systems such as those corresponding to (1.57), the signature
sequences h, [11] used in the modulation (1.49) have a length N equal to the inter-
symbol period (upsampling rate) M. In this way, the signatures are used in a
nonoverlapping manner for consecutive symbols of any particular user. In this sec-
tion, however, we focus on the case in which the signature length N is significantly
greater than M, so that signatures are used in highly lapped manner. This format is
referred to as “spread-signature CDMA” [3]. Lapped and nonlapped formats are
readily distinguished in the frequency domain: in lapped systems, the polyphase
matrix Q(w) depends explicitly on w, while for nonlapped systems, Q(w) is a con-
stant independent of w. Moreover, it is worth stressing that even with the use of
extensive overlapping, interference among symbols both within a user’s stream
and from different users can be entirely avoided on ideal channels through impo-
sition of the orthogonality conditions (1.51).

Using longer signature sequence lengths for a given symbol rate has the
advantage of allowing a temporal diversity benefit to be realized in time-selective
fading. Indeed, it is natural to interpret the signature as playing the role of a
spread-response precoder for a particular user. Thus, the spread of a signature
determines the temporal extent over which a symbol is transmitted, which can be
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controlled independently of the symbol rate. As in the case of spread-response pre-
coding, the longer this symbol duration, the better the immunity to fades within
the symbol interval. Moreover, analogously the best signatures in these applica-
tions have their energy spread as uniformly as possible over the length to which
they are limited by delay constraints while meeting the orthogonality constraints
(1.51). When length-N signature sequences have perfectly uniform energy distrib-
ution, i.e., |h,, N2, the corresponding signature sets are said to be “maxi-
mally spread” [3]. Orthogonal signature sets of this type that are also real-valued
are particularly attractive computationally since they require no multiplications—
only additions and sign changes.

A class of real-valued, maximally spread signature sets is developed in [3] for
arbitrary large values of M and N and tabulated for several particular values of M
and N. As an example, for M = 2 and N = 8, the non-zero taps of h,[#n] and h, [#] are
given in Table 1.1. As discussed in [3], these signature sets are, rather interestingly,
closely related to a number of orthogonal systems developed independently in a
variety of other fields for wide ranging applications. For example, they are closely
related to sequences constructed by Golay [19] [20] and Turyn [21], and later Taki,
et. al. [22] and Tseng and Liu [23]. Similar constructions appear in the work of both
Shapiro [24] and, later, Rudin [25].

It is important to emphasize that these multirate systems have characteristics
that are markedly different from those typically used in traditional signal process-
ing applications: maximally spread signature sets are localized in neither time nor
frequency. In fact, the constituent signatures are fully broadband As an illustration
of this, Figure 1.14 depicts the energy density |H,,(w) | for the signature corre-
sponding to m = 0 for the case M = 2 and N = 1024. It is this spreading in both time
and frequency that provides an effective form of combined temporal and spectral
diversity for combating fading in wireless systems.

Figure 1.14 also implies that when the users’ symbol streams x, [11] are white,
the corresponding transmitted signals y, [1] are broadband with power effectively
uniformly distributed over the bandwidth. Moreover, as with spread-response
precoding systems, regardless of whether the symbol streams x, [11] are discrete-

m
valued, when these symbols are independent, the transmissions v, [1] are also mar-

TABLE 1.1 Non-zero taps of the length N =8 maximally spread signature
sequences in a two-user (M = 2) system

n= 0 1 2 3 4 5 6 7

Bholn]  +1 +1 41 -1 41 +1 1 +1
B 41 +1 +1 A1 -1 -1 41 -1
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Figure 1.14 Magnitude of the frequency response of a typical signature of length
N =1024 in a maximally spread, two-user signature set.

ginally Gaussian due to the lapped manner in which signatures are used.

Some attractive linear equalization and demodulation methods have been
developed for use with spread-signature CDMA. These generalize the structure
used for spread-response precoding. In particular, a three-stage receiver can be
used to recover the mth transmitted message, the front end of which is depicted in
Figure 1.15. First, the received data r[n] is processed by a linear equalizer accord-

ing to
il = > b, [m klr[n— k], (1.58)
k
Vmlnl [
rfn] —={ b [nk] h) [-n] - M —=%, [n]

Figure 1.15 Receiver structure for extracting the symbol stream of the mth user. The first
stage is equalization, producing ¥, [#n], and the second stage is demodulation, producing
%,[n]. A final stage (not shown) is decoding.
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where b, [1; k] is the kernel of the equalizer. In the second stage, the equalized data
is demodulated from the corresponding signature sequence via a discrete-time
matched-filter and downsample operation, viz.,

&, [n]1=> i, [klh, [k — Mn]. (1.59)
k

The final stage of the message recovery, which is not depicted in Figure 1.15, con-
sists of decoding the demodulated stream X,,[11] to recover the transmitted sym-
bols. When the symbols are uncoded, a simple slicer can be used at this stage to
implement symbol-by-symbol decisions.

As in the case of spread-response precoding, the equivalent system consist-
ing of modulation, propagation, equalization, and demodulation has some appeal-
ing asymptotic characteristics that simplify decoding. In particular, if the channel
is ergodic and the signature sequences are long relative to the channel coherence
time, then for a broad class of equalizers, the original set of coupled fading chan-
nels in the multiuser system is effectively transformed into a set of decoupled, sim-
ple additive white noise channels. Specifically, when the symbol streams x,,[1] are
white, then

x,,[n] = ux,[n] +v,,[n], (1.60)

where the accuracy of the approximation increases with the signature length. In
(1.60), u is a (complex-valued) nonrandom constant, and the v,,[n] are mutually
uncorrelated, zero-mean, quasi-Gaussian white noise sequences that are uncorre-
lated with the streams x,, [1]. Furthermore, the variance of the noise v, [1] takes the
form

2 2 2
var v, [1n] = o\oisg + 1s1 T Tvar (1.61)

reflecting the fact that the equivalent noise consists of three components. The first
component is due to the original noise w[n] in the system after processing by the
equalizer and thus is proportional to the original noise power. The second compo-
nent is due to ISI in the mth user’s stream induced by the fading process. Finally,
the third term is due to multiple-access (i.e., interuser) interference (MAI) resulting
from the effects of fading in the channel and asynchronism among users; this term
is zero in the forward link scenario. The ISI term is again proportional to the user’s
transmit power, and the MAI term is proportional to a linear combination of the
transmit powers of all the other users. Hence, the overall noise power in the equiv-
alent model again has a dependence on signal power, which distinguishes this
channel from the usual additive white noise channel.

It is important to emphasize that in the preceding discussion the average
transmit powers of the various users are the relevant quantities in computing the
equivalent noise power. In particular, the smaller the fraction of time a user is
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actively transmitting symbols at some fixed symbol energy, the smaller the corre-
sponding average transmit power. The characteristic that reduced activity levels
directly and dynamically translate into SINR enhancement is an extremely attrac-
tive feature of not only spread-signature CDMA systems but of CDMA systems
more generally.

As in spread-response precoding systems, the particular choice of equalizer
determines the overall normalized SINR

| ul?
y=—3 > 5 . (1.62)
Tnoise T T1s1 T Omar

For frequency-selective slow fading channels, it has been shown [3] that SINR
(1.62) is maximized when the time-variant frequency response of the equalizer is of
the MMSE form

A, (w; 1]

M 7
1+ W Z ak((o; nj
k=1

B, (w; n] = (1.63a)

where qa,, (w; 1] denotes the SNR at time 7 and frequency w of mth user in the orig-
inal channel, i.e.,

A (c; nl|?

N, , (1.63b)

a, (o; n] =
with &, the transmission power associated with this user.

The numerator of (1.63a) is a conventional matched filter (i.e., RAKE
receiver), so that the denominator can be viewed as an additional compensation
stage that takes into account the special characteristics of the equivalent noise in
this context. However, it is worth noting that for reverse-link transmission involv-
ing a large number of users, it follows from a law of large numbers argument that
the denominator of (1.63a) is effectively constant, in which case the RAKE receiver
alone suffices. More generally, when the number of users is not large, an efficient
recursive implementation of the equalizer (1.63) can be developed by means of the
state-space framework developed in [14]; see Chapter 3.

1.5.5 CDMA Performance Characteristics

There are some important differences in the performance characteristics of con-
ventional and spread-signature CDMA systems. In both types of systems, excess
bandwidth—i.e., bandwidth beyond what is otherwise needed to support the
totality of all users’ symbol rates—is generally necessary in practice to achieve
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typical target bit-error rates. In general, such excess bandwidth is most efficiently
exploited through the use of error-correction coding. However, a common and
computationally efficient alternative is to use linear processing. Within the orthog-
onal multiuser modulation framework linear processing is accommodated by sim-
ply changing the upsampling rate in the modulation depicted in Figure 1.13 from
Mto M' = pMwhere p = 1 denotes the desired bandwidth expansion factor, so that
(1.49) becomes

Yulnl = > x,, [kl [n = pkM]. (1.64)
k

The amount of excess bandwidth required to achieve a prescribed level of
performance generally differs for the two types of systems. We illustrate the key
characteristics in a reverse-link scenario in which power control is employed to
ensure that the transmissions from all mobiles are received at the same average
power level.

Let us first consider spread-signature systems. Given a bandwidth expansion
factor of p, the optimum equalizer for spread-signature CDMA takes the modified
form

A (w; 1]
1
1+ p_M kgl o (w; ]

B(w; n] « , (1.65)

where o, (w; n] remains as given by (1.63b). The equivalent SINR associated with
each user’s transmission then follows as [3]

y = pMI:% - 1], (1.66)
where
M-1  (pMy" e K
p="r e DM MOE (M) + kZO M+ YA (1.67)
with, due to power control,
1/¢, = Ela,,(w; n], all m. (1.68)

When the resulting system is used in conjunction with, for example, an uncoded
QPSK symbol stream, the associated symbol error probability is well approxi-
mated by Q(ﬁ)
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The SINR (1.66) is bounded according to

M
0<y<p =T (1.69)
where the upper bound is attained at high SNR ({, — 0). Moreover, when the num-
ber of users M is large, (1.66) is well-approximated by

1
Co+1//7 ’

which at high SNR yields y = p, consistent with (1.69).

With conventional CDMA systems, the bandwidth requirement as a function
of the number of users is significantly different because temporal diversity is not
involved. In this scenario, bandwidth expansion serves two functions: it increases
the available spectral diversity that can be exploited to improve transmission per-
formance as discussed in Section 1.3, and it reduces the multiple access interfer-
ence between users. In particular, when we extend the analysis in Section 1.3 to the
multiuser case, the noise source is augmented with an interference source. In an M
user system with bandwidth expansion pM, there are M — 1 interferers, the power
spectral density for the kth of which is

SkIAk((U)IZ
pM

y (1.70)

Hence, the power spectrum for total noise and interference experienced by the mth
user is

£,4%

&A@
NPy + 3

y:

which via a law of large numbers can be conveniently approximated as

i

y = . (1.71)
gkaa
N OWO + (M — 1) W
Moreover, at high SNR ({, — 0), we can further approximate (1.71) via
M
VRPN (1.72)
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Hence, replacing ,, in (1.27) with 1 /v, as defined in (1.71) or (1.72), and appropri-
ately redefining L as

L= pMW,/0,, (1.73)

we obtain the associated bit-error probability behavior. It is worth pointing out that
these results also accurately characterize the performance of spread-signature
CDMA systems in time-nonselective fading environments.

The approximation (1.72) and upper bound in (1.69) reflect that the perfor-
mance of both conventional and spread-signature CDMA systems, respectively, is
MAI-limited at high SNR. This behavior is characteristic of many CDMA imple-
mentations. When power control is not employed, this behavior can give rise to
problematic near-far effects, whereby transmissions from nearby mobiles entirely
bury those from more distant ones. However, it is important to emphasize that
this is not an inherent limitation of either CDMA systems in general or of spread-
signature CDMA systems in particular. Rather, it is a consequence of the specific
receiver structure imposed, and these effects can be avoided through the use of
even linear receivers provided they are appropriately designed. Indeed, a variety
of efficient near-far resistant linear receivers for conventional CDMA systems are
discussed in detail in Chapter 2. Related receivers for spread-signature systems
have also been developed [14, 35], and have computationally efficient recursive
implementations; these are special cases of the state-space algorithms discussed in
Chapter 3.1%

Nevertheless, even without near-far resistant receivers, reasonable perfor-
mance can be achieved with sufficient bandwidth expansion. This is illustrated in
Figure 1.16, which depicts the excess bandwidth (i.e., reduction in bits /s /Hz/user)
that is required to achieve a target error rate in the high SNR regime in uncoded
CDMA systems. Note that a bandwidth expansion factor of p corresponds to a spec-
tral efficiency of 2p™" bits/s/Hz/user since QPSK symbol streams are involved.
From this figure, we see that for conventional CDMA systems, the per-user excess
bandwidth requirements generally decrease with the number of users; as the num-
ber of users increases, so does the overall system bandwidth, which allows a sub-
stantial spectral diversity benefit to be realized. This benefit more than offsets the
corresponding increase in MAL

On the other hand, for spread-signature CDMA systems, a substantial tem-
poral diversity benefit is obtained independently of total system bandwidth. For
these systems, then, the per-user excess bandwidth requirements increase with the
number of users in order to mitigate the increasing effects of MAI. When the num-

18pyrthermore, with only a modest additional increase in complexity, still better interference
rejection can be achieved, at least in principle, in spread-signature CDMA systems through the use of
the nonlinear iterated-decision equalizers [12, 35].
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Figure1.16 [Excess bandwidth required to achieve target QPSK bit-error rates in an M trans-
mitter multiple-access system with spread-signature CDMA. The successively higher solid
curves correspond to bit-error rates of 102,104 10°°, and 10°%. The corresponding dashed
curves describe the performance of a conventional CDMA system, or a spread-signature sys-
tem used in an environment without time-selective fading.

ber of users is large, corresponding to large system bandwidths, both conventional
and spread-signature systems achieve similar efficiencies because maximal use of
diversity is made by both systems in this regime. However, when the number of
users is smaller, spread-signature systems offer a distinct advantage in providing a
more extensive diversity benefit.

It should be pointed out that CDMA systems exhibit dramatically different
behavior on the forward link due to the absence of MAL In fact, forward-link per-
formance is effectively identical to that obtained for the corresponding single-user
systems. As such, the forward-link performance of spread-signature CDMA coin-
cides with that of spread-response precoding, as depicted in Figure 1.10 for various
degrees of temporal diversity.
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1.5.6 Coherence-Time Scaling

As with spread-response precoding systems, the computational complexity
required to implement spread-signature CDMA is a function of the number of
degrees of temporal diversity to be exploited and is independent of the coherence
time characteristics of the channel. In fact, signatures are matched to the coherence-
time characteristics of the channel in a similar manner: signatures are obtained by
upsampling prototypes so that the non-zero coefficients have a spacing that is on
the order of the coherence time. In particular, with memoryless-fading prototype
signatures h,,[n], new signatures are derived via

h(ra>[n]:{h[”/f] n= o, 0,1,2],
" 0

i (1.74)
otherwise.

In this case, however, the upsampling factor | must satisfy certain constraints so as
to ensure that the new signatures also meet the orthogonality conditions (1.51).
Specifically, ] is chosen to be the smallest integer that is at least as large as 7, but is
not a multiple of a prime factor of M [3].

1.5.7 Efficient Implementations of Spread-Response
Precoding

Spread-signature CDMA can be used to obtain an efficient implementation of
the spread-response precoding concept described in Section 1.4.1. To develop this
perspective, first note that the particular class of spread-response precoding systems
described in Section 1.4.1 corresponds to spread-signature CDMA systems in which
M = 1. However, some difficulties arise in this special case. In particular, recall that
FIR LTI filters cannot be simultaneously lossless (allpass) and spread (length greater
than one). Thus, if we wish to restrict our attention to LTI filters for spread-response
precoding applications, we are forced to sacrifice perfect losslessness.!” However, if
we relax the time-invariance constraint and allow periodically time-varying filters,
then both losslessness and maximal spreading can be achieved.

Abinary-valued (maximally spread), linear periodically time-varying (LPTV)
precoder can be constructed as follows. First, the symbol stream x[n] is transformed
into a set of K parallel substreams

x,,[n] = x[nK + m] (1.75)

via a serial-to-parallel converter, which can be implemented via the multirate
structure shown in Figure 1.17. These subsequences are then treated as K virtual

YHowever, some approximately lossless solutions are developed in [10] and [11].
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A\

d[n] K —x,[n]

d/n+1] > LK —>x;[n]

x[n]

K > xk[n]

\

d[n+K-1]

Figure 1.17 Construction of the different phases of an input for linear periodi-
cally time-varying precoding: serial-to-parallel conversion.

users and multiplexed in the manner used for forward-link transmission with
spread-signature CDMA. In particular, these substreams are upsampled, filtered
by the appropriate maximally spread signatures described in Section 1.5.4, and
combined as depicted in Figure 1.18. The result is a computationally highly effi-
cient (multiply-free) lossless precoder with optimum spread for a given delay con-
straint.?

xg[n]— TK > hyln]

A

x;[n]— TK hyn]  |——

yln]

xkg.p[n]— TK » hg.[n]

Figure 1.18 Construction of the output of a linear periodically time-varying pre-
coder from the phases of its input.

*Note that as an LPTV system, this precoder is characterized by K unit-sample responses: the
response to a unit sample o [n — ng] is h,,[n+ m— ], where m= nymodK.
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hol-n] = LK » TK —>  §[n] —\
hi[-n] > LKk — TK — §/n-1]
x[n]
— hggl-n] — LK > TK > 8/n-K+1]

Figure 1.19 Postcoder for use with linear periodically time-varying precoding.

The interpretation of LPTV precoding involving virtual users is also useful
in terms of receiver design. Indeed, the equalization and demodulation process
follows immediately from the corresponding receiver for spread-signature CDMA
in forward-link transmission, and the postcoder in particular takes the form
depicted in Figure 1.19.

This precoding system based on maximally spread signatures for the K = 2
case was what was used in the simulations of Figure 1.10. Comparisons between
the results presented in [10] and [3] reflect that for a given delay constraint, using
maximally spread LPTV precoders instead of LTI precoders reduces both the bit-
error rate and the required computational complexity.

1.6 SpATIAL DIVERSITY

The final form of diversity we examine in this chapter is spatial diversity in the
form of multiple-element antenna arrays. This form of diversity can be used alone
or in conjunction with spectral or temporal diversity. Whether such arrays are
available at the transmitter or receiver has a major impact on the resulting diversity
benefit. To emphasize their differences, we consider the two cases separately,
although it is worth keeping in mind that in practice, arrays at both transmitter and
receiver can be exploited simultaneously to varying degrees.

Also, to simplify the presentation and to isolate and distinguish the benefits
of spatial diversity from those of temporal and spectral diversity, we restrict our
attention to time- and frequency-nonselective fading channels where only a spatial
diversity benefit can be obtained. However, generalizations of the approaches we
discuss can be applied to more general selective fading channels.
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As we discuss first, the use of multiple-element antennas at the receiver is
fairly easily exploited. In essence, multiple copies of the transmitted stream are
received; these copies can be efficiently combined by use of the appropriate spatial
matched filter. As the number of antennas increases, the outage probability is dri-
ven to zero and the effective channel approaches an infinite-power additive white
Gaussian noise channel, which dramatically improves communication even with-
out additional coding. However, receiver antenna diversity can be impractical in a
number of applications such as broadcasting or forward-link (base-to-mobile)
transmission in cellular systems. In such scenarios, the use of multiple antennas at
the transmitter is significantly more attractive.

Transmitter antenna diversity, which we discuss subsequently, is generally
less straightforward to exploit, particularly when bandwidth expansion is not fea-
sible and when there is no feedback path to provide the transmitter with knowl-
edge of the channel parameters. To optimally exploit this form of diversity requires
the use of suitably designed error-correction coding at each antenna element [26,
27]. As a lower complexity alternative, we will discuss a class of practical and
bandwidth-efficient linear techniques that nevertheless yield a substantial
improvement in system performance.

1.6.1 Receiver Antenna Diversity

For a system with an L-element receiver antenna array, the associated nonselective
fading channel model takes the form depicted in Figure 1.20, where the signal r,[r]
obtained at the [th array element takes the form

r[n] = ax[n] + w[n], (1.76)

with x[n] denoting the transmitted symbol stream, and with w,[r1] denoting the re-
ceiver noise at that element, which is complex-valued, zero-mean, white, circularly
symmetric Gaussian noise of variance N j)JW,. Given sufficient physical separation
among the constituent elements, the fading coefficients a,, a,,...,a, _; can be
modeled as mutually independent with identical variances o. It is not difficult to
accommodate the case in which the antennas are close enough that the g, are corre-
lated, though arrays in this configuration yield a smaller diversity benefit for a
given number of array elements. Likewise, we consider a typical scenario in which
the receiver noises w, [1] can be reasonably modeled in practice as being mutually in-
dependent; when these noises are correlated, additional performance enhancement
is possible, at least in principle. As in earlier parts of the chapter, we continue to as-
sume that the channel parameters 4, have been accurately measured at the receiver.
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rolni

ryln]
x[n]

aj.q w_4n]

Figure 1.20 Channel model when nonselective Rayleigh fading is experienced
with a multiple-element receiver antenna array.

The signals obtained at the different array elements are linearly combined
using a weight-and-sum process, i.e.,

L-1
k[n]=> by ln] (1.77)
=0

where b, are the weights. Substituting (1.76) in (1.77) reveals that the combiner out-
put takes the form

x[n] = px[n] + v[n], (1.78)

where the gain zand white noise variance 6> = var v[n] depend on the choice of the
weights b,.

A variety of combining strategies used in practice correspond to different
choices for the b,’s. For example, with selection combining, the weights take the
form [28]

b a/|a)| ifl=argmax|a,]| 1.79)
: 0 otherwise,
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corresponding to a receiver that makes use of only the strongest of the received sig-
nals r;[n]. However, it is straightforward to show that the SNR at the output of the
combiner, i.e.,

2
y= |"2| (1.80)

a

is maximized when, in general, all of the received signals are used and are com-
bined by means of weights b, of the form

b, >a;, (1.81)

which corresponds to spatial matched filtering. This processing is referred to as
maximal ratio combining [28] and results in an output SNR of

2
__ K¢
s TATIA (1.82)
with
L—-1 )
L= || (1.83)

=0

This output SNR is therefore an Lth-order Erlang random variable with mean L/{,
and variance L/Cé, where (, is as given in (1.11).

Comparing these results with those obtained in Section 1.3, we see that this
SNR is a factor of L greater than that obtained with spectral diversity. This gain
makes receiver antenna diversity overwhelmingly more effective than other forms
of diversity we have discussed thus far. In fact, the preceding implies that we
would have to boost the transmitted power by a factor of L in a single-element
antenna system with spectral diversity to achieve the performance of a system
without spectral diversity but with spatial diversity in the form of an L-element
receiver antenna array.

For a QPSK symbol stream, the bit-error probability is obtained through an
appropriate renormalization of (1.27) that involves replacing {, with {,/L, yielding

L-1 . k
1,1 2k &
PIL] = = [1 T kzo(k)<2(2éo+1)> ] (1.84)

The variation with SNR 1/, is depicted in Figure 1.21. Note that for any particu-
lar SNR, L can be chosen to make P[L] arbitrarily small because o — % as L — . As
we develop next, the behavior with transmitter antenna diversity is dramatically
different.
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SNR, dB/bit

Figure 1.21 Bit-error probabilities, using uncoded QPSK on the Rayleigh fading channel
with receiver antenna diversity exploited with maximal ratio combining. The top curve cor-
responds to the performance without spatial diversity (L =1), and the successively lower
curves represent the performance obtained with L=2, 4, 8, 16, 32, and 64 receiver array ele-
ments, respectively.

1.6.2 Transmitter Antenna Diversity

For a system with an L-element transmitter antenna array, the associated nonselec-
tive fading channel model takes the form depicted in Figure 1.22, where the (gen-
erally complex-valued) transmission from the /th array element we denote using
ynlforl=0,1,...,L — 1. At the receiver we obtain
L-1
rlnl =l + 3 aglnl, (1.85)
1=0
where w[n] denotes the receiver noise, which is complex-valued, zero-mean, white
circular Gaussian noise with variance N jW,. As in the case of receiver antenna
diversity, given sufficient physical separation among the constituent elements,
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Figure1.22 Channel model for transmission in nonselective Rayleigh fading via a multiple-
element transmitter antenna array.

the fading coefficients a, a,,...,a; _; can be modeled as being mutually indepen-
dent, complex-valued, zero-mean circular Gaussian random variables with vari-
ance g>.2! We continue to assume these a, are known at the receiver.

1.6.2.1 Beamforming: Diversity with Feedback

When a feedback path exists between the receivers and the transmitter through
which perfect side information about the channel parameters can be sent, then
transmitter antenna diversity can achieve performance identical to that we de-
scribed for receiver antenna diversity in the previous section.

Consider, for example, a scenario with a single receiver and a transmitter that
has exact knowledge of the channel gains g, to that receiver. In this case, it is suffi-
cient for the sequence emitted from the /th antenna element to be of the form

yln] = byx[n], (1.86)
where the b, satisfy the constraint
L-1
> b =1
1=0

so that the total transmitted power is independent of L.

2 Again, although not considered here, it is possible to accommodate arrays in which the
antenna elements are close enough that the a, are correlated.
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It is straightforward to verify that choosing the b, so as to optimize the SNR at
which the symbol stream x[1] is received yields

a
=
VZk'akl

With these gains, which correspond to a beamforming process in which the indi-
vidual paths from each antenna element combine coherently, a received signal of
the form

b = (1.87)

rn] = x[n] = ux[n] + wln] (1.88)

is produced, where

L—1
=3 |a|’ (1.89)
1=0

Comparing these results to those of Section 1.6.1 we see that the effective SNR
at the receiver is therefore identical to that obtained with receiver antenna diver-
sity: with perfect channel knowledge at the transmitter and a single receiver, the
diversity benefit is identical to that obtained through the use of receiver antenna
diversity with the same number of antenna elements. Hence, Figure 1.21 reflects
the performance of this transmitter antenna diversity system as well.

When more than one receiver is involved, it is generally not possible to achieve
this SNR enhancement at every receiver since the transmitter must attempt to beam-
form to multiple receivers simultaneously, which is an inherently more constrained
problem and generally cannot yield the same performance as beamforming to each
user individually. However, when there are large numbers of receivers (corre-
sponding, for example, to a broadcast scenario), strategies of the type we explore in
the next section are more appropriate. These strategies also have the advantage that
channel state information is not required at the transmitter.

1.6.2.2 Linear Antenna Precoding

A rather general framework for describing linear transmitter antenna diversity
strategies is that developed in [29]. It encompasses a variety of efficient schemes
proposed over the last several years, including the methods of Wittneben [30],
Winters [31], Hiroike et. al. [32], and Weerackody [33], as well as more traditional
approaches such as those described in Jakes [28]. In this framework, the ability to
exploit diversity is created by processing the symbol stream to be transmitted with
a different linear filter at each antenna element. This processing is referred to as lin-
ear antenna precoding [29] and effects a form of spatial spreading or dispersion
that is analogous to the temporal spreading generated in spread-response precod-
ing systems.
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holn] — y,[n]

hiln] — Yy [n]

x[n]

INL

hyg[n]f——> y.4[n]

Figure 1.23 Linear antenna precoding (direct-form).

We first restrict our attention to the case in which this linear processing is
specifically time-invariant. Important periodically time-varying alternatives are
developed in Section 1.6.2.3.

As depicted in Figure 1.23, we use /1, [11] to denote the generally complex-valued,
unit-sample response of the filter associated with the /th antenna element and refer
to this as the “signature” of the element in this context. The collection of L signatures
associated with the array is referred to as the signature set. With this notation, we
have

yn] = LL Z h[k]x[n — k]. (1.90)
k=

With H, () denoting the associated Fourier transform of each signature, i.e.,
Hy(@)=> hnle™, (1.91)
n

the total average transmitted power is constrained to be independent of L by
imposing the condition

L—1
%Z |H()|*=1,  forall w. (1.92)
=0

Eq. (1.92) can be verified by noting that the power transmitted from the /th antenna
element is

1 n
vary,[n] = Sl J IHI () I 2S.x(a)) do,
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where S_(w) is the power spectrum of the symbol stream x[n]. Thus, the total trans-
mitted power is

L-1

L-1
S varyll = 5 | [%Z |Hl<w>|2]sx<w) dos,
=0 o 1=0

which is equal to var x[11] when (1.92) is satisfied.

Linear antenna precoding has a powerful interpretation as a channel trans-
formation strategy. To see this, observe that by specializing (1.85), the received sig-
nal can be expressed in the form

r[n] = a[n] = x[n] + wln], (1.93)

where

L—1
alnl = —= S ahln] (1.94)
L =

is the unit-sample response of the “effective” channel generated by the antenna
precoder. This channel has frequency response

L—-1
Alw) = LL S a,H,(w), (1.95)
=0

which is a zero-mean, 2z-periodic, Gaussian random process in frequency w, with
variance o>. Hence, we see that the antenna precoding effectively transforms the
original nonselective fading channel into a frequency-selective fading channel.
Naturally, the specific properties of the resulting equivalent frequency selective
channel depend on the characteristics of the antenna signatures /,[n] through the
parameterization (1.94).

This key channel transformation observation has important implications for
receiver design. Indeed, it implies, for example, that any of a variety of traditional
approaches to detection in the presence of intersymbol interference can be
exploited. Examples include maximum likelihood sequence detection, decision-
feedback equalization, or linear equalization [4]. When suitably designed, such
receivers can exploit this inherent frequency diversity to substantially improve
system performance.

As in earlier parts of the chapter, we continue to restrict our attention to the
use of a linear equalizer with unit-sample response b[n] and denote the equalized
signal by x[n], i.e.,

x[n]=bln] *rin] = Zb[k]r[n—k]. (1.96)
k

In general, since the receiver knows the fading coefficients, the equalizer b [n] will
depend on the channel response a [n].
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With linear equalizers, linear antenna precoding systems have some useful
properties that are counterparts to those of spread-response precoding systems in
the context of time-diversity. In particular, when the number of antenna elements
L is large, then for a broad class of signatures and equalizers, the relationship
between the equalizer output x[n] and a white symbol stream input x[n] can be
approximated by [29]

x[n] = ux[n] + v[n], (1.97)

where p is a nonrandom constant and v[n] is an equivalent noise that is white and
uncorrelated with x[n]. The quality of the approximation (1.97) increases with L
and, analogous to earlier results in the chapter, is asymptotically exact.

As was the case with spread-response precoding systems using linear
receivers, (1.97) implies that this transmitter antenna diversity system transforms
the effects of fading into a form of additive white interference that is uncorrelated
with the symbol stream. In particular, v[n] in (1.97) is composed of two uncorre-
lated components, one due to the receiver noise and one due to the ISI induced by
the multiple transmissions, i.e.,

v[n] = vnorse 1] + vigp[nl (1.98)

The class of signatures for which the approximation (1.97) is valid is quite
large. It includes, for example, those corresponding to the unrealizable transmit
antenna diversity scheme in which each antenna is assigned a distinct portion of
the available bandwidth. The associated antenna signatures are the unit-sample
responses of ideal bandpass filters, i.e.,

JL /L <|o| <+ 1)n/L
Hl(a)) = .
0 elsewherem|a)|<n.

This class also includes a large number of realizable systems in general and
FIR systems in particular. For example, it can be shown [29] that antenna signa-
tures of length L are within this class whenever the matrix

h,[0] ho[1] o hy[L—1]
_ h, [0] h, [1] h, [L.— 1] (1.99)
h, 401 h_,[11 - h_4[L—1]

is unitary.

An example of a signature set in this class is that for which H=1, so that
hy[n] = 6[n — I]. This corresponds to a scheme explored both by Wittneben [30] for
the case L = 2 and, more generally, by Winters [31] (see also Seshadri and Winters
[34]). In these schemes, each antenna transmits a delayed copy of the sequence
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x[n]. Other possible choices would include H=F or H= E, which are again the
DFT and Hadamard matrices, respectively. The former corresponds to a generally
complex-valued signature set and can be viewed as a finite length variant of the
frequency band allocation example described earlier. For L =2 the DFT- and
Hadamard-based schemes specialize to a common scheme also explored by Wit-
tneben [30].

Although these various choices for Hall lead to a similar diversity benefit, as
we will discuss shortly, the detailed transmission characteristics are signature
dependent. For example, when H = I, the transmitted signals y,[n] have the same
amplitude characteristic (i.e., marginal probability density function) as x[n] regard-
less of L. By contrast, when H = Z, the amplitude distribution for each y,[n] is effec-
tively Gaussian for large L, corresponding to large peak-to-average transmitted
power. Nevertheless, when L is at least moderately large, all such transmitter
antenna diversity schemes have the property that the signal component of the
received waveform has an effectively Gaussian amplitude distribution due to the
superposition of the multiple transmissions.

An important implication of (1.97) is that using a transmitter antenna array
reduces variations in system performance as experienced by different receivers. To
appreciate what this means in practice, consider a scenario in which there is a col-
lection of suitably separated receivers all at roughly the same radius from the
transmitter, as depicted in Figure 1.24. With a single-element transmit antenna, the
SNR of the transmitted data as measured at a receiver will vary from receiver to
receiver. However, when diversity via a multiple-element antenna cluster is
exploited, this variation from receiver to receiver is reduced. In fact, when the

Figure 1.24 A collection of receivers, each denoted
n ] by the symbol B, at a constant radius from a central
transmitter, which is denoted by @.
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number of antenna elements is large, (1.97) implies that variation from receiver to
receiver is effectively eliminated, in which case all receivers “see” the data at the
same effective SNR as the outage probability is driven to zero.

The gain uin (1.97) as well as the variances azNOISE and a7, of the components
of (1.98) all depend on the choice of equalizer unit-sample response b [1]. Maxi-
mizing the SINR

|l
y=— = (1.100)
INoise T Tist
with respect to the choice of b [1] to obtain the best possible average performance at
the receiver leads to another MMSE type (modified RAKE) equalizer, viz.,

A*
B((U)Oi—l:%)—, (1.101a)
where
2
a(w) = %AO(COVV-)OL (1.101b)

is again the SNR at frequency w in the corresponding frequency-selective channel,
i.e., (1.37b). Computationally efficient implementations of these MMSE equalizers
can also be developed, with or without an additional FIR constraint on b [n].

By analogy with the results obtained for spread-response precoding, when
this optimum equalizer is used, the resulting SINR can be expressed in the form [29]

et -1 (1.102)
E 1 QOESOE](QQ)
a(w) +1
with
L ()] = % 1.103
= [a(w)] = NV, (1.103)

In turn, the associated average QPSK bit-error rate is well approximated by

P=9(y7). (1.104)

But since (1.104) is identical to the corresponding expression (1.42) for spread-
response precoding, the error probability vs. SNR behavior is identical for the sys-
tem when the number of degrees of diversity is large for each. As a result, the
asymptotic expression (1.44), valid for spread-response precoding at high SNR,
also applies to linear antenna precoding in the same regime.

Since P in (1.104) is uniformly lower than the corresponding QPSK bit-error
rate with a single element transmitter antenna—i.e., (1.12)—we are able to conclude
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that with an appropriately chosen linear equalizer, the use of transmitter diversity
in the form of linear antenna precoding not only asymptotically eliminates the vari-
ance in performance among receivers but significantly improves the average level of
performance among these receivers as well.

1.6.2.3 Dual-Form Linear Antenna Precoding

Aspects of linear antenna precoding as developed in the preceding section can be
potentially problematic in implementations. For example, even with a finite num-
ber of antennas, the optimum equalizer has, in general, an infinite length, unreal-
izable, unit-sample response. And, while finite-length approximations can give a
close approximation to the optimum performance in practice, they do so at a cost
of excessive delay. These problems can be conveniently circumvented through an
alternative form of linear antenna precoding, which is the focus of this section. To
distinguish the two forms of precoding, it is convenient to refer to the strategy of
Section 1.6.2.1 as direct-form linear antenna precoding, and to the one we describe
next as dual-form linear antenna precoding.

Both direct-form and dual-form precoding can be described within a broader
framework for linear antenna precoding in which the linear processing that takes
place at each antenna element is generally periodically time-varying (i.e., LPTV fil-
tering). Within this framework, direct-form linear antenna precoding corresponds
to the special unit-period case of time-invariant processing (i.e., LTI filtering), and
the associated unit-sample responses are the antenna signatures.

In dual-form linear antenna precoding systems [29], the LPTV filtering takes
the form depicted in Figure 1.25. In particular, the symbol stream x[n] is first
processed by a common LPTV prefilter that is time-varying with some period®
K = 2 and has length L, and whose kernel we denote by g[#; k]. The result,

ylnl = > gln; klx[n — kI, (1.105)
k

is then subsequently processed at each of the antennas. Specifically, this prefiltered
stream is modulated at each antenna by a different L-periodic sequence, i.e.,

y[nl = hy[n]y[n), (1.106)

where J1,[1] is the generally complex-valued periodic sequence associated with the
Ith antenna. The signature k;[1] of the associated antenna element is defined to be
a single period of this modulating sequence, i.e.,

hmﬂ={mM] o=n=L=1

0 otherwise.

ZAgain, the period K in fact plays a relatively minor role in the development.
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Figure 1.25 Dual-form linear antenna precoding.

We first describe the design of the signatures i, [n] and then turn our attention to
the design of the prefilter kernel ¢[#; k].

To ensure that the total transmitted power is independent of the number of
antenna elements L, the following normalization is imposed. First, we constrain
the prefilter to be an orthogonal (energy-preserving) transformation, so that

var y[n] = var x[n]. (1.107)

In turn, using, in order, (1.106) and (1.107), we obtain that the total transmitted
power is

-1 L1
Z var y, [n] = var x[n] Z |1, [1] |2. (1.108)

m=0 m=0

Since this total transmitted power must equal var x[n], we obtain the condition

L-1
> | hlnl]* =1 (1.109)
m=0

This form of linear antenna precoding also has a powerful interpretation as a
channel transformation strategy, and one that is the dual for that for the direct-
form system. In particular, while direct-form linear antenna precoding transforms
nonselective fading channels into frequency-selective ones, the dual-form system
effectively transforms them into time-selective ones. To see this, it suffices to note
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that the response of the channel to the prefiltered symbol stream y[n] is, using
(1.106) in (1.85),

r[n] = a[n]y[n] + win], (1.110)
where
L-1
afn=> ahylnl (1.111)

1=0
is an L-periodic fading sequence. For future convenience, a [1] denotes one period
of this sequence, i.e.,

L-1
alnl = > ahyn). (1.112)
1=0
This interpretation leads to some important insights into system design. First,
it implies that the prefilter kernel g[r; k] should be so designed as to allow the
inherent temporal diversity introduced by the modulation process to be efficiently
exploited at the receiver. Second, we see that the maximum time-diversity benefit
is obtained when the fading is independent among time samples within a period,
and thus the signature sequences should be chosen to ensure that this condition is
met.
To develop these concepts further, it is convenient to collect the dual-form
signatures into a matrix of the form

mlo] ko[l - kIl —1]
| m ~[0] @[1] -. - h [L'— 1] .
h (0] R 11 o Ry [L—1]

as we did in the direct-form case. From (1.112) we see that the coefficients
a[0], a[1],...,a[L — 1] are zero-mean and jointly Gaussian. Moreover, the correla-
tion between an arbitrary pair of these coefficients is proportional to the inner
product between the corresponding columns of Hin (1.113), i.e.,
L1
cov (a[n], a[m]) = E [a[n]a"[m]] = 032 hy [nlh; [m]. (1.114)
1=0
Hence, the coefficients a[0], a[1],...,a [L — 1] are statistically independent when the
columns of Hare orthogonal. In addition, the normalization constraint (1.109) fur-
ther constrains the columns of Hto have unit norm. Thus, to achieve the maximum
diversity benefit, we require that Hin (1.113) be a unitary matrix. In turn, this uni-
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tary condition implies that the antenna signatures (i.e., the rows of H) should be
chosen to be orthogonal to one another.

From this perspective, it is clear that an unlimited number of signature sets
allow the independent fading condition to be met. For example, the choice H= I
corresponds to a strategy in which prefiltered symbols are dealt among the anten-
nas and transmitted in order. One potential disadvantage of this particular choice,
however, is the high peak-power requirement. An alternative is the choice H= F,
where F is again the DFT matrix. In this case, the result can be interpreted as an effi-
cient discrete-time variant of a phase-sweeping transmitter antenna diversity sys-
tem explored by both Hiroike et. al. [32] and Weerackody [33]. As a final example,
the choice H = E, where Z is again the Hadamard matrix, has some particularly at-
tractive characteristics. First, like the DFT-based signatures, the Hadamard-based
signatures have minimal peak power requirements. Second, since Hadamard-based
signatures are binary-valued, they result in very low computational complexity im-
plementations of (1.106), requiring sign changes but no multiplications.

The design of the prefilter follows immediately from earlier developments in
the chapter, specifically those in Section 1.5.7. In particular, the role of the prefilter
is to enable the time diversity generated by the signature modulation process to be
exploited.*® As such, the maximally spread LPTV spread-response precoders
developed in Section 1.5.7 are naturally suited as prefilters for this application, pro-
viding effectively optimum linear diversity benefit with very low computational
complexity. As discussed, those corresponding to an LPTV system with minimal
period (K = 2) suffice.

As in the case of direct-form antenna precoding, we focus on the use of a lin-
ear equalizer at the front end of our receiver. In the dual-form system, this equal-
izer takes the form depicted in Figure 1.26. Specifically,

Rl => g [-m; -kljln — k], (1.115)
k

vin] A
rin] g [-n;-k]—> x[n]

~
b[n]
Figure 1.26 Receiver structure for dual-form linear antenna precoding.
ZNote that more generally, this linear prefiltering can be replaced (or augmented) with nonlin-

ear processing in the form of error-correction coding. This can lead to still better performance, though
ata computational cost that may be prohibitive, particularly if the number of antennas is very large.
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where
ylnl = blnlr[nl, (1.116)

and where b [1] is a suitable equalizer for the time-selective fading. Note that since
the prefilter (with kernel g[r; k]) is an orthogonal system, ¢"[-1; -k] is the kernel of
its inverse, which has the implementation depicted earlier in Figure 1.19.

An equivalent-channel characterization for dual-form linear antenna pre-
coding is obtained by exploiting the close connection to spread-response precod-
ing. The key result [29] is that dual-form and direct-form precoding systems share
the same input-output characteristics when the number of antenna elements L
is large. Specifically, subject to only mild constraints on the equalizer, the postfil-
ter output x[n] is related to a white input symbol stream x[#] via (1.97), with g and
v[n] having the same properties and interpretations they did in the direct-form
context.

The connection between dual-form linear antenna precoding and spread-
response precoding can be further exploited in developing a suitable equalizer for
the system. In particular, it follows immediately that the SINR-optimizing equal-
izer is identical to that which arises in the context of spread-response precoding
when the fading is frequency-nonselective, viz.,

b[n] @ [n] =, (1.117a)
1+ |a[A]|
where
2
a[n]=—5/|\?0[;j\],!) . (1.117b)

The performance characteristics of these dual-form systems are also readily
obtained by adapting results from spread-response precoding. For example, it fol-
lows that with the equalizer (1.117), the resulting SINR is identical to that obtained
in the direct-form implementation, i.e.,

1 =1 (1.118)

y = — - — » —
1 £ E, (C)
aln] +1

with

(1.119)
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As a result, when the number of antenna elements L is large, the QPSK bit-error
probability for both direct-form and dual-form systems is well approximated by
(1.104) in general, and by (1.44) at high SNR. When smaller numbers of antenna
elements are involved, the bit-error behavior can be determined by reinterpreting
Figure 1.10. In particular, it suffices to exploit the fact that the average bit-error
probability in a dual-form linear antenna precoding system with L antenna ele-
ments is identical to that of a spread-response precoding system exploiting L
degrees of temporal diversity. Interpreting Figure 1.10 in this context, we see
that while additional antennas invariably give better performance, there are
clearly diminishing returns beyond a moderate value of L. Moreover, hardware
costs and system delay constraints typically limit values of L that can be used in
practice.

While dual-form precoding does not provide an improvement in perfor-
mance over ideal direct-form precoding, it is important to emphasize that dual-
form systems have some significant implementational advantages in many
contexts. In particular, unlike the direct-form implementations, dual-form imple-
mentations have the characteristic that the system delay is finite. Indeed, the fad-
ing equalizer (1.117) introduces no delay, whereas the pre- and postfiltering each
introduce delay L, so the overall delay is proportional to the number of antennas.

Finally, it is also important to emphasize that transmitter antenna diversity is
inherently less effective in improving system performance than receiver antenna
diversity with a similar number of antenna elements. In fact, comparing Figures
1.10 and 1.21, we see that even the relative advantage of receiver antenna diversity
grows dramatically with the number of antenna elements involved. Ultimately,
however, both transmitter and receiver arrays are equally efficient in exploiting the
available spatial diversity. The source of the performance gap is a fundamental dif-
ference in SNR behavior that exists even in the absence of any fading. Indeed, with-
out fading, transmit arrays cannot improve SNR over single antenna systems,
whereas receiver arrays yield a SNR enhancement that is linear in the number of
antenna elements.

Nevertheless, in many applications, such as broadcasting, where receiver
diversity is inherently less practical, exploiting transmitter diversity with even
only a few antennas can provide a substantial reduction in transmit power require-
ments for a given bit-error rate over a single antenna system, and at a very modest
cost in terms of additional system hardware.

1.6.2.4 Incorporating Bandwidth Expansion

Additional performance enhancements can be achieved by the combination of
transmitter antenna diversity with bandwidth expansion even on the nonselective
channels. In fact, with sufficient bandwidth expansion, it is possible to approach
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the bit-error rate performance achieved with infinite spectral diversity on the fre-
quency-selective fading channel >

To achieve this result with linear antenna precoding, we follow an approach
analogous to that used to enhance performance with spread-response precoding in
Section 1.4.2. In particular, prior to direct-form (dual-form) linear antenna pre-
coding, we upsample the symbol stream by an integer bandwidth expansion factor
of p, replace the SNR a(w) with a(w) /p (the SNR a[n] with a[n]/p) in the SINR-
optimizing equalizer, and finally downsample the output of the receiver by a factor
of p. The resulting SINR enhancement is identical to that obtained with spread-
response precoding as given by (1.45). As such, Figure 1.11 also characterizes the
improvement in bit-error probability that is obtained by augmenting a large trans-
mit antenna array with bandwidth expansion. Again, still better performance can
be achieved by more efficiently exploiting the excess bandwidth through the use of
suitably designed error-correcting codes, albeit generally at the expense of an
increase in complexity.

1.7 CONCLUDING REMARKS

This chapter provided an overview of the main forms of diversity that can be used
to enhance performance and improve reliability in both single-user and multiuser
wireless systems. In particular, we examined spectral, temporal, and spatial diver-
sity and developed—in a unified manner—ways that such diversity can be
exploited via linear processing. In the process, our development highlighted a nat-
ural and convenient multirate signal processing framework for describing, analyz-
ing, and relating these diversity strategies.

Ultimately, our development serves to underscore the crucial role that
sophisticated signal processing algorithms ultimately have to play in realizing and
exploiting diversity in wireless communication systems. Clearly, the rapidly esca-
lating growth in demand for wireless services means that future wireless systems
will have to be increasingly efficient in their use of all available forms of diversity.
The linear techniques described in this chapter can go a long way toward accom-
modating this growth in demand.

At the same time, still greater capacities can ultimately be achieved by
exploitation of diversity through specifically nonlinear algorithms either at the

24Again, a simple strategy for achieving such performance on the infinite-bandwidth nonselec-
tive channel with transmitter antenna diversity is described in Jakes [28]. In particular, if we let the
bandwidth grow in proportion to the number of antennas L and partition this bandwidth into L
nonoverlapping subbands of equal size, one to be used by each antenna element, then having each
antenna element transmit the symbol stream in its subband will suffice. This strategy also has the fea-
ture that it has bounded delay regardless of the number of antenna elements.




References 61

receiver or transmitter, or both. Indeed, the growing body of information-theoretic
analysis suggests that using nonlinear processing in the form of coding either in
conjunction with or as an alternative to the linear methods discussed in this chap-
ter can dramatically enhance system performance or equivalently increase system
capacity. More generally, novel and powerful techniques for exploiting diversity
through nonlinear signal processing continue to emerge, making this one of sev-
eral exciting and increasingly active areas of research within this important
domain.
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Adaptive Interference
Suppression

Michael L. Honig
H. Vincent Poor

As discussed in Chapter 1, one of the major features that distinguish modern wire-
less communication channels from wireline channels is the significant amount of
structured interference that must be contended with in wireless channels. This
interference is inherent in many wireless systems due to their operation as multiple-
access systems, in which multiple transmitter/receiver pairs communicate through
the same physical channel using nonorthogonal multiplexing. Structured interfer-
ence also arises because of other nonsystemic features of wireless systems, such as
the desire to share bandwidth with other, dissimilar, communication services.

Signal processing plays a central role in the suppression of the structured
interference arising in wireless communication systems. In particular, the use of
appropriate signal processing methods can make a significant difference in the
performance of such systems. Moreover, since many wireless systems operate
under highly dynamic conditions because of the mobility of the transceivers and of
the random nature of the channel access, adaptive signal processing is paramount
in this context.

The study of adaptive processing techniques for interference suppression in
wireless systems has been a very active area of research in recent years. This chap-
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ter introduces the reader both to the basic problems arising in this area and to the
key methods that have been developed for dealing with these problems. This pre-
sentation focuses primarily on the problem of suppressing multiple-access inter-
ference (MAI), which is the limiting source of interference for the wireless systems
being proposed for many emerging applications areas such as third-generation
mobile telephony [94, 125] and wireless personal communications [19, 70]. How-
ever, we also touch briefly on the related and important problems of multipath
mitigation and narrowband interference suppression. Multipath mitigation tech-
niques, specifically, are developed in more detail in Chapter 3.

2.1 MutnpLe-Access SIGNAL MODEL

In treating the problem of MAI suppression, it is useful to consider a general
multiple-access signal model that arises in the context of a wireless digital com-
munications network operating with a coherent modulation format. The wave-
form received by a given terminal in such a network can be modeled as consisting
of a set of superimposed modulated data signals observed in additive noise:

r()=S,b)+nt), —=<t<o, 2.1.1)

where §,(b) and n(f) represent the useful signal and the ambient channel noise,
respectively.

The useful signal S;(b) in this model consists of the data signals of K active
users in the channel and can be written as

K B
SO =D AD b5 (t—iT —1), (2.1.2)
k=1 i=-B

where 2B + 11is the number of symbols per user in the data frame of interest, T is the
symbol interval, and A4, 7, {b; ,} and {s,(H; 0=t =T} denote, respectively, the
received amplitude, delay, symbol stream, and normalized modulation waveform
(or pulse shape) of the kth user. The matrix bdenotes the K X (2B + 1) matrix whose
(k, Dtheelementis b, ;. The data signals of the individual users may be asynchronous,
in which case the relative delays with which the various data signals arrive at the
receiver are distinct. However, when considering analytical properties, it is often
sufficient to examine the synchronous case (i.e., 1, = 7, = --- = 1) since asynchro-
nous problems can be viewed as large synchronous problems. It should be noted
further that although this model does not explicitly include effects such as fading,
multipath, intersymbol interference, or narrowband interference, such effects can
be included without loss of tractability. (See also Chapter 3.) A further generaliza-
tion of this model allows for spatial diversity at the receiver, in which multiple
waveforms are observed, each of which contains information about the data
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sequences. As discussed in Chapter 1 and as further elaborated on below, such a
model arises in the consideration of the use of antenna arrays for reception.

The principal feature that distinguishes multiuser formats of the type
described in (2.1.1) and (2.1.2) from one another is the choice of the set of signaling
waveforms (i.e., the signal constellation, s,, Sy,...,5g). We are interested here in
problems in which these waveforms are not orthogonal. The principal, although
not exclusive, example of such nonorthogonal signaling arises in networks using
code-division multiple-access (CDMA) channel-sharing protocols, which have
several advantages over time-division and frequency-division multiple-access
schemes. However, with asynchronous channel access, it is not possible to main-
tain orthogonal signaling waveforms with CDMA. One of the most important for-
mats of this type is the direct-sequence, spread-spectrum, multiple-access format,
which corresponds to a set of signaling waveforms of the form

5.(t) = {Z%ak(t) sin(w,t+ ¢, tE[0,T] (2.1.3)
, t&[0,T],

where «_ is a common carrier frequency, ¢, is the phase of the kth user relative to
some reference, and the spreading waveforms a,(f) are of the form:

N-1
a (=D agw(t—jT). (2.1.4)
j=0

Here, a; o, a4y 1,--- A N—1 is a signature sequence of +1’sand -1’s assigned to the kth
user, and y is a normalized chip waveform of duration T, (where NT.=T). The
signature sequences (or spreading codes) and chip waveform are typically chosen
to have autocorrelation and cross-correlation properties that reduce multipath,
multiple-access interference, and unintended detectability, criteria that generally
lead to signaling waveforms with nearly flat spectral characteristics. Note that, in
this type of signaling, the bandwidth of the underlying data signal is spread by a
factor of N. This particular model, which is sometimes termed direct-sequence
code-division, multiple-access (DS-CDMA) signaling, is discussed further below.

It is the nonorthogonality of the signaling waveforms sy, s,,..., s that gives
rise to the multiple-access interference with which the receiver must contend. In
particular, if the receiver wishes to infer the data stream of a given user, say, user 1,
then the fact that the other users’ signaling waveforms are not orthogonal to s,
makes it impossible to isolate user 1's signal without diminishing the detectability
of user 1's data. However, through proper signal processing, the effects of the inter-
fering signals can be minimized so that little is lost to this source of error. The area
of study that deals with such problems is multiuser detection, and this chapter is pri-
marily concerned with performing this task efficiently and adaptively.
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This treatment is organized as follows. In Section 2.2, we provide a brief re-
view of the elements of multiuser detection, which provides a framework for the de-
velopment of most of the remainder of the chapter. In Section 2.3, we consider in
more detail a specific class of multiuser detectors—linear multiuser detectors—that
contains many of the most promising structures for introducing adaptivity into this
problem. This treatment generalizes the model (2.1.1)—(2.1.2) to include diversity
and other effects. Section 2.4 discusses the particularization of linear multiuser de-
tection to the DS-CDMA format described above. Next, in Section 2.5 we consider
the adaptation of linear, multiuser detectors. In particular, we discuss several basic
adaptive algorithms in the context of their complexity, convergence and perfor-
mance characteristics. Section 2.6 considers the implications of some nonideal ef-
fects arising in wireless channels and also discusses some systems issues impacting
the application of adaptive interference suppression in wireless systems. An exten-
sive, but not exhaustive, bibliography of key sources in this area is also included.

2.2 ELEMENTS OF MuLTIUSER DETECTION

Almost by definition, the performance characteristics of multiple-access channels
featuring traditional demodulation techniques are limited by multiple-access
interference. It can be shown, however, that such limitations are due largely to the
use of nonoptimal signal processing in the demodulator and are not due to funda-
mental characteristics of the channel. Multiuser detection seeks to remove this
MALI limitation by the use of appropriate signal processing. Essentially, through
the use of multiuser detection (or derivative signal processing techniques), perfor-
mance in multiple-access channels can be returned to that of corresponding single-
access channels, or at least to a situation in which performance is no longer MAI
limited. This property is obviously very desirable, even in radio networks using
power control or other protocols that seek to limit the effects of MAL

The basic problem of multiuser detection is that of inferring the data con-
tained in one or more signals embedded in a nonorthogonal multiplex, the entire
multiplex of which is received in ambient noise. Equations (2.1.1) and (2.1.2)
describe a model of such a received signal. Within this context, multiuser detection
refers to the problem of detecting all or part of the symbol matrix b from the multi-
plex (2.1.1)—(2.1.2) with nonorthogonal signaling waveforms, such as those arising
in DS-CDMA. In the demodulation of any given user in such a multiple, it is nec-
essary to process the received signal in such a way as to minimize two types of
detrimental effects—the multiple-access interference caused by the remaining
K — 1 users in the channel and the ambient channel noise. In order to focus on the
multiple-access interference, the great majority of research on this problem has
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ascribed the simplest possible model to the ambient channel noise; namely, that the
only ambient channel noise is additive white Gaussian noise (AWGN) with fixed
spectral height, say, o2, and that this noise is independent of the data signals. In the
following paragraphs, we also assume this model for the ambient noise.

Within the multiple-access signaling model are two general scenarios of inter-
est: an uplink (or reverse-link) scenario, in which all signaling waveforms and data
timing are known; and a downlink (or forward-link) scenario, in which sometimes
only a single user’s waveform and data timing are known. In the uplink scenario,
the general characteristics of optimal demodulation schemes for (2.1.1)-(2.1.2)
under an AWGN model can be inferred by examining the likelihood function of the
observed waveform (2.1.1), conditioned on the knowledge of all data symbols (i.e.,
conditioned on b). On assuming that the received amplitudes are known, this likeli-
hood function can be written via the Cameron-Martin formula [76] as

€({r(); -= < t<=}|b) = Cexp{Q(b)/25%}, (2.2.5)

where
Q(b) = 2r S,(b)r (tdt — r S (b)dt (2.2.6)

and where C is a constant. The part of (2.2.6) that depends on the received wave-
form can be written as

J SOyrdt=> AD b Vi p (2.2.7)
- k=1 i=-B
where
Vi = r st —iT = )r(t)dt (2.2.8)

is the output of a filter matched to the kth user’s signaling waveform shifted to the
ith symbol interval of the kth user.
It follows from (2.2.5)—(2.2.8) that the matrix of matched filter outputs,

y={y,sk=1...K i=-B,..,B, (22.9)

forms a sufficient statistic for the matrix bof data symbols; that is, all information in
the received waveform that is relevant to making inferences about bis contained in
y. So, the main job of optimal multiuser detection is to map the matrix y of observ-
ables to a matrix b of symbol decisions. Thus, the general structure of optimal sys-
tems for determining the data symbols from the received waveform consists of an
analog front end that extracts the matched filter outputs, followed by a decision al-
gorithm that infers optimal decisions from the collection of these outputs. The na-
ture of the decision algorithm in this process depends on the optimality criterion
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that one wishes to apply to the decision. If one adopts either a maximum-likelihood
criterion,

max €({r (t); -0 < t <} | b), (2.2.10)
b
or a minimum-error-probability criterion,
minP(b; , # b, | {r (5); - <t <}), (2.2.11)
bi

then, assuming the signaling waveforms s, satisfy s, (f) = 0 for t & [0, T], this opti-
mal decision algorlthm can be implemented as a dynamic program (i.e., a sequernce
detector) having O(|A| ) time complexity per binary decision (see [120]), where
| A] is the size of the symbol alphabet. In the case of synchronous signals, dynamic
programming is unnecessary and the optimal detectors essentially involve either
exhaustive search over the | A| : symbol ChOlces in each symbol interval in the case
of maximum-likelihood detection, or O( |A| computation of posterior probabili-
ties in the case of minimume-error-probability detection.

Using these techniques, Verdu ([118]) has shown that, for reasonably high
symbol-energy-to-ambient-noise ratios, performance very near that of single-user
communications is possible with the optimal multiuser detector. This is a consider-
able performance gain over conventional matched-filter detection (which de-
modulates b, , by simple scalar quantization of y, ,), which suffers from substantial
performance losses in some multiple-access situations. (Such situations include
the “near-far” situation, in which interfering users are received with much larger
power than are users of interest.) However, the much-improved performance af-
forded by optimal multluser algorithms comes at the expense of both computational
complexity (i.e., the O (| A| ) computational cost per binary decision); and informa-
tional complexity due to the need for knowing all delays, amplitudes, and modula-
tion waveforms to extract the matrix sufficient statistic y.

During the late 1980s and early 1990s, a significant amount of research
addressed the problem of reducing the computational complexity of multiuser
detection. A key approach to this problem is to restrict the optimal detector to be of
the form of a linear multiuser detector, in which the data is demodulated by scalar
quantization of a linear mapping on the matrix y. In view of the definition of y, |,
this type of detector effectively comprises a linear filter applied to the received
waveform, followed by a scalar quantizer. (Of course, the filter may depend on
both k and i.) Two types of linear detectors of interest are the decorrelating detector
(or decorrelator), which chooses the linear filter to have zero output multiple-access
interference [49]; and the MMSE detector, which chooses the linear filter to have
minimum output energy within the constraint that the response of the filter to
s (t —iT — 1) is fixed [31, 44, 51, 58, 82, 83, 93, 96, 133]. Such detectors can be
shown to also satisfy other optimality criteria. Although such detectors fall short of
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optimal (maximum-likelihood) detection in terms of error probability, they are still
far superior to conventional detection in terms of their error-probability perfor-
mance in interference-limited environments. Linear detectors form the basis for
the results described in the remainder of this chapter, and a detailed description of
their properties is found in Sections 2.3 and 2.4.

Several useful nonlinear, lower-complexity, multiuser detectors also have
been developed. These are based primarily on various techniques for successive
cancellation of interference. Also, methods for combating fading, multipath, etc.,
have been combined with multiuser detection as well. Some works in these areas
include [17, 45, 68, 73, 85, 89, 111, 112, 113, 114, 115, 116, 126, 127, 130, 135, 138, 139,
140, 141, 142], although this list is hardly exhaustive. A survey of basic multiuser
detection methods, and a more complete bibliography up to 1993, can be found in
[120]. (See also the forthcoming textbook [121].)

The issue of informational complexity in multiuser detection has been
addressed through the use of adaptivity. This issue is particularly critical in the
context of downlink demodulation, in which the direct implementation of non-
adaptive versions of the above-noted detectors is neither practical nor desirable.
However, uplink adaptivity is also of interest in practice because of the dynamic
nature of practical multiple-access channels. (Some discussion of this issue is
found in Section 2.6.) Recent progress on adaptive multiuser detection is the sub-
ject of the remainder of this chapter.

2.3 LINEAR INTERFERENCE SUPPRESSION

In this section, we look more carefully at linear multiuser detection, in which linear
filtering at the receiver can be used to suppress wideband multiple-access interfer-
ence. This general approach to interference suppression has its origins in the
related problem of linear equalization in the presence of synchronous interfering
data signals' and seems to have been first studied nearly thirty years ago [23, 43].
There are several reasons why linear interference suppression is attractive for wire-
less applications:

1. It can suppress both narrowband and wideband multiple-access interference.

2. It has modest complexity relative to other interference suppression and
multiuser detection techniques, as noted in the preceding section.
3. The linear filter can be implemented as a digital filter, or tapped-delay line,

making it convenient for adaptation by means of conventional adaptive algo-
rithms [25, 32].

IThe multiuser signaling model of (2.1.1)=(2.1.2) includes as a special case the single-user
intersymbol-interference channel, which corresponds to the case K = 1 with s; non-zero over more than
one symbol interval.
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Figure 2.1 Multiple-access channel model.

To discuss this approach, it is convenient to view the multiple-access channel
considered in Section 2.1 as a many-input linear system, as shown in Figure 2.1. In
this depiction, the (linear) operations of modulation and transmission of the data
sequences of the various users are lumped into the linear time-invariant transfer
functions PII (), H2(f),...,FIK (f). In particular, (2.1.1)-(2.1.2) is realized by this
model if we choose Hk( f) to be the system with impulse response

H () = As,(t— 1)) 2.3.1)

In this context, we first derive the optimal linear receiver for this type of channel,
where the optimality criterion is minimum mean-squared error (MSE). We then
discuss some properties of this detector, such as the number of users that can be
suppressed completely versus available bandwidth, and the implementation of
the detector as a fractionally spaced tapped-delay line. Application to the DS-
CDMA model of (2.1.3)—(2.1.4) is discussed in Section 2.4.

2.3.1 Multiple-input/Multiple-output (MIMO) Minimum
Mean-Squared Error (MMSE) Linear Detector

To examine the MMSE linear multiuser detector, we generalize the above signaling
model slightly. First, in order to treat some nonideal effects later, we will allow the
signaling waveforms and received amplitudes to be complex. And, second, we will
allow for Mth-order reception diversity, in which we have M observation channels
similar to the depiction in Figure 2.1. Usually, these M channels correspond to the
outputs of M elements in an antenna array. In this situation, it is convenient to
represent the multiple-access channel as a special case of a K-input/M-output lin-
ear channel with M X K transfer function ﬁ( .
Referring to Figure 2.1, the input to the channel H(f)is

s(f) = Z bo(t — iT), (2.3.2)
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Figure 2.2 Multi-input/multi-output (MIMO) channel and receiver model.

where b, is the K-vector of transmitted symbols at time i (that is, b, is the ith column
of the matrix b introduced in Section 2.1) and 1/T is the symbol rate, assumed to
be the same for all users. The kth component of b, denoted as b, ,, is the ith trans-
mitted symbol from user k. We assume that the signaling waveforms correspond-
ing to each user, as well as relative amplitudes and delays for each observation
channel, are included in the channel transfer function H( f)- (This model is general
enough to account for both transmitter and receiver diversity of types described in
Chapter 1.)

Both channel and receiver filters are illustrated in Figure 2.2. Let H(f) and R(t)
be the impulse responses associated with the filters H(f) and R( f), respectively.
The output of the receiver filter R at time kT is:

r(kT) = > {R=H[(k — ) T]}b, + R*n(kT), (2.3.3)

where * denotes convolution, and n(f) is a noise vector with M components. We
wish to find the receiver filter R that minimizes the MSE, E{||r(0) — b, ||?}. This filter
has been derived in [30] and [100] and is illustrated in Figure 2.3. It consists of a
front-end matched filter with K X M matrix transfer function H* (f )S,'f,1 (f), where
S,(f) is the noise spectral density matrix, followed by a MIMO discrete-time filter
with K X K matrix coefficients. The transfer function (i.e., z-transform) of this dis-
crete-time filter is

C(2) = S,(2)[S,(2)S,( + 1", (2.3.4)

where Sy(z) is the equivalent discrete-time transfer function that maps the
sequence of input symbol vectors {b} to the sequence of matched filter outputs
{r(iT)}, and S, (2) is the spectrum of the data sequence. We can therefore write S;,(z)
for z on the unit circle as the aliased version of I:I*Sr’llﬁ, ie., forz =" r

84" = & % ﬁ*(f - %) 5! (f - %)H(f - %) (2.3.5)

T
y(1)

YOl s 1(5) H(f) o o 10T

Ciz) ——

Figure 2.3 MIMO MMSE linear equalizer.
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and we have

S, => 2, (2.3.6)

where p, = E{b,b’  }. In Figure 2.3, d, denotes the output of the MIMO discrete-
time filter C at symbol time i.

If the noise and data sequences are both uncorrelated in time and have uncor-
related components, then the matched filter becomes H'( f)/a?, where a2 is the
noise variance per channel, and the discrete-time filter becomes

C(2) = o2[Sy(@ + <1l (2.3.7)

with
5" = - > (f - %)f{(f - %) ; (2.38)

¢ =0>/a;, and o} is the data variance per channel. (Note that the only difference
between S;; and S, is that S;; does not include the noise variance 2. This represen-
tation is convenient for what follows.) The minimum value of the MSE associated
with the MMSE filter R is then given by

MMSE = trace{TJl/m) C(e*7Tydf } (2.3.9)
-1/(21)

This form of the MMSE detector for the multiple-access channel is shown in
Figure 2.4. Only the detector for user 1 is shown; it consists of a bank of matched
filters, symbol-rate samplers, and discrete-time filters. The MMSE transfer func-
tion C, ,(z) in Figure 24 is the (1, k)th component of the matrix C(z) given by
(2.3.7).

In the remainder of this chapter, we assume that the sequences of noise and
symbol vectors are both uncorrelated in time and have uncorrelated components,
in which case Figure 2.4 gives the canonical, linear MMSE detector structure.

n(r)

: i uT
L bi®=il) [ty () fi\“’){ () o Vo€ (o) o) i)

° °
° °
° .

/T

;biKS(l_iT) HK(f) ‘ ﬁ;(f) —07<7 Cix(2)

Figure 2.4 MMSE linear detector for the multiple-access channel. Only the detector for user
1is shown.
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2.3.2 Zero-Forcing (Decorrelating) Detector

As the noise variance diminishes to zero, the MMSE linear filter approaches the
matched filter H'(f), followed by a symbol-rate sampler and a discrete-time
matrix filter with transfer function

C(@) =[Sy (2.3.10)
The resulting MSE is given by
1/(2T) ,
MSE ; = o> trace{TJ Cﬂ(eﬂ"ﬁ)df}. (2.3.11)
-1/7)

Because the transfer function C,(z) inverts the equivalent discrete-time transfer
function S;;, which maps the source symbols to the matched filter outputs, it elimi-
nates all intersymbol and multiple-access interference (at the expense of enhancing
the background noise). For this reason, the matched filter H' followed by the trans-
fer function C;(z) is known as the zero-forcing detector for the MIMO channel H(f).
When applied to the multiple-access channel in Figure 2.1, this detector is also
known as the decorrelating detector, or decorrelator, since it removes the correlation
among users due to nonorthogonal pulse shapes [49, 50].

It is apparent from (2.3.10) that the zero-forcing solution exists provided that
the matrix S}, (2) is nonsingular for z on the unit circle. 2 This condition has a special
interpretation for the multiple-access channel. Specifically, in this case, H(f) is a
1 X K row vector, so that H'(f )H(f) is an outer product matrix, which has rank
one. S (e’z”f Ty in (2.3.8) is therefore the sum of L rank-one matrlces where for each

el[- 1/ (2T), 1/(2T)], L is the number of Nyquist zones® where H(f) # 0. Since
S (e’Z”f Tyis a K X K matrix, a necessary condition for S (e’z’zf " to be nonsingular
for all f €[-1/(2T), 1/(2T)] is that K = L for each f. This implies that for the zero-
forcing solution to exist, there must be at least K Nyquist zones available to the
users. This property was first observed by Petersen and Falconer [74] in the context
of wire (twisted-pair) channels with crosstalk. (See also [4].) Note that these
Nyquist zones can be spread among the users so that (i) the users do not overlap in
frequency (namely, Frequency-Division Multiple-Access (FDMA)), (ii) all of the
users overlap at all frequencies (CDMA or TDMA), or (iii) some users overlap at
some frequencies but not at other frequencies (combined FDMA/TDMA /CDMA).

20f course, it is possible that S (2) is singular for some set of z on the unit circle and that the MSE
resulting from substituting (2.3.10) into (2.3.11) is finite. However, finite MSE requires that SH(e’Z"f B
cannot be singular for fin some interval with positive length.

3In this context, a Nyquist zone is a translate of the basic Nyquist interval, [-1/@T), 1/ 2T)] by
an integral multiple of 1/T.
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For the multiple-access channel, the availability of K Nyquist zones for K
users is necessary but not sufficient to ensure the existence of the zero-forcing solu-
tion. That is, it may happen that even with more than K Nyquist zones available,
the zero-forcing solution does not exist for f in some positive interval contained in
[-1/(2T), 1/(2T)]. For sufficiency, there must be at least K vectors H(f — k/T)
appearing in the sum (2.3.8), that are linearly independent at each f. (This set of K
vectors may depend on f.)

Consider the case where the channels for each user shown in Figure 2.1 are
the same, i.e., H.(f) = H(f) for each k. The preceding discussion suggests that each
additional Nyquist zone in H(f) can be viewed as an additional “dimension,” or
“degree of freedom,” that can support an additional user without causing inter-
ference to existing users. This “dimensionality” interpretation will be useful when
the tapped-delay line implementation of the linear MMSE detector is discussed in
the next section. Note that for “orthogonal” multiple-access systems such as
FDMA and TDMA, this observation is equivalent to stating that each user requires
at least one Nyquist zone to ensure the existence of the zero-forcing equalizer [46,
Ch. 10].

We now examine the effect of receiver diversity on the preceding results. In
this case, each channel H, (f) in Figure 2.1 becomes an M X 1 column vector, where
M s the order of the receiver diversity, so that FI( f)isan M X K matrix (K inputs, M
outputs). Consequently, the rank of H' ( f)H( f)is at most M, and we conclude that
a necessary condition for SH(ejQ“f ™ to be nonsingular for all f € [-1/(2T), 1/(2T)]
is that the number of users K = LM, where L is again the number of Nyquist
zones available to the users. This upper bound can be achieved if the matrices
f{( f —k/T) in the sum (2.3.8) contain LM linearly independent columns at each f.
The number of dimensions or degrees of freedom available to suppress users is
therefore given by the number of Nyquist zones times the number of antenna ele-
ments. (A similar treatment of dimensionality in the frequency and spatial domains
is given in [18].)

A final remark about the zero-forcing detector is that even when it does not
exist (i.e., Sy (* Nis singular), the MMSE detector is still well defined. Namely, it
is always possible to select a filter to minimize output MSE. Consequently, the
zero-forcing detector can be viewed more generally as the limit of the MMSE detec-
tor as the level of background noise tends to zero. This limit always exists even
though the zero-forcing solution may not exist. This representation for the zero-
forcing detector is useful in situations where the number of interferers exceeds the
available dimensions that the detector has to supress multiple-access interference.
Although the zero-forcing solution technically does not exist in this situation, the
more general representation may still offer a substantial performance improve-
ment relative to a simpler (e.g., matched-filter) detector.
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2.3.3 Implementation as a Tapped-Delay Line (TDL)

The preceding formulation of the MMSE and zero-forcing detectors assumes
knowledge of the user signaling waveforms along with relative timing and phase,
the channel characteristics for each user, and the noise spectral density. In Section
2.5 we show that the MMSE detector can be implemented without this knowledge.
This implementation depends on an alternative representation of the MIMO
MMSE linear filter as a bank of fractionally spaced tapped-delay lines or discrete-
time filters, which we now develop.

A classical result for single-user channels is that the optimal (MMSE) linear
equalizer can be implemented as a fractionally spaced tapped-delay line (TDL) [46,
Ch. 10], [91]. To see this, let W denote the two-sided bandwidth of the received data
signal. Referring to Figure 2.4, the combination of the matched filter H,(f), 1/T
sampler, and discrete-time filter C, (z) in each branch of the MMSE detector can be
replaced by a lowpass filter B( f) with two-sided bandwidth W, a sampler at rate W,
and a discrete-time filter C, (z) with frequency response that has period W. Stated
another way, each front-end continuous-time matched filter in the MMSE linear
equalizer can be moved to the associated discrete-time filter, provided that the
sampling rate is increased from 1/T to at least W.

The preceding discussion implies that each branch of the MMSE detector
shown in Figure 2.4 can be replaced by a low-pass filter B(f) followed by a rate W
sampler and fractionally spaced TDL, where the tap spacing is 1/W. Choosing B(f)
to be the same for each branch allows the K branches shown in Figure 2.4 to be col-
lapsed into a single branch consisting of B(f), a rate W sampler, and discrete-time fil-
ter with transfer function given by the sum of the transfer functions for each branch.

To summarize, the MMSE multiuser linear detector for the multiple-access
channel can be replaced by the bank of fractionally spaced TDLs as shown in
Figure 2.5. The filter C,(z), 1 =k =K, is selected to minimize MSE for user k. The
sampling rate, or tap spacing in the discrete-time filters thus depends on the band-
width of the received signal. If the zero-forcing solution exists, then the bandwidth
W must be at least K/T, where 1/T is the symbol rate for the users. To interpret this
result another way, observe that to distinguish K symbols transmitted by K (non-
cooperative) users, the receiver must sample at least K times per symbol. Further-
more, these K samples must be linearly independent. From Nyquist sampling
theory, this implies that the bandwidth of the received signal must be greater than
or equal to the sampling rate K/T.

With spatial diversity at the receiver, it is straightforward to show that the
MMSE receiver can be implemented by summing the outputs of fractionally
spaced TDLs associated with each antenna. This implementation is illustrated in
Figure 2.6 for the case of two antennas. Figure 2.6 shows the MMSE detector for
user 1, which contains two TDLs. Given M antennas, the MMSE detector has M
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Figure 2.5 Implementation of the linear multiuser detector as a bank of fraction-
ally spaced TDLs.
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Figure 2.6 MMSE linear filter for user 1 with two-branch diversity.

TDLs for each user (indicating an M-fold increase in computational complexity
associated with computing the filter outputs).

In general, the discrete-time impulse response associated with the MMSE fil-
ter C,(z) in Figure 2.5 can be of infinite length. Infinite-length impulse response
(IIR) filters are problematic, since they cannot be implemented as TDLs and are dif-
ficult to optimize when channel and interference parameters are changing. How-
ever, it is always possible to approximate each C,(z) with a finite-length impulse
response (FIR) filter. Of course, there is some performance degradation associated
with this truncation, which will depend on how fast the filter impulse response
associated with C,(z) decays to zero.

Finally, we remark that an important benefit of the fractionally spaced TDL
implementation is that it eases timing recovery. That is, it is well known that for
single-user channels a fractionally spaced adaptive equalizer (with taps spaced at
T/k, k > 1) is more robust with respect to timing offset than is an adaptive equalizer
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with T-spaced taps. For DS-CDMA signals, timing recovery can be combined with
interference suppression by using the adaptive algorithms discussed in Section 2.5
[52, 102, 130].

2.4 ArpLicaTioN TO DS-CDMA

We now apply the developments of Section 2.3 to the DS-CDMA model of
(2.1.3)-(2.1.4). It is convenient to write this signal by using a complex baseband
model, in which case the received signal can be written as

K
yHy=> Ak[z by oyt — iT — Tk)] +n(), (2.4.1)
k=1 i
where the pulse shape p, for user k is given by
N-1
pH=> a, w(t—nT); (2.4.2)

n=0

that is, p, is s, from (2.1.3) with w_ = ¢, =0. Here, as before, T_ is the chip duration
and v (f) is the normalized chip waveform, which are assumed to be the same for
all users, and A, 7,{b; . and {ak, _} are the received amplitude, delay, bit stream,
and spreading sequence of user k. In order to represent the phase differences
between signals, we allow the amplitudes A, to be complex. The noise n(f), repre-
senting noise in the complex baseband, is also assumed to be complex. For gener-
ality, we also allow y to be complex. For the purposes of exposition, in what
follows we assume that the desired user to be demodulated is user 1 and that
A =1land 7, =0.

Roughly speaking, the bandwidth spreading factor for DS-CDMA is the pro-
cessing gain N (assuming nonrectangular, bandwidth-efficient chip waveforms).
That is, each user spreads the transmitted bandwidth across N Nyquist bands, so
that the receiver has N dimensions available with which to suppress interferers.
We therefore conclude that the zero-forcing solution exists provided that K =N
and that the received pulse shapes are linearly independent.

For the TDL implementation of the MMSE detector, the front-end analog fil-
ter must cover the signal bandwidth, which is approximately N, /T, where T is the
symbol duration. (This assumes a bandwidth-efficient chip waveform. If rectangu-
lar chips are used, then the bandwidth is approximately 2N/T.) The sampling rate
is then N/T, and the TDL has taps spaced at T/N. If the TDL is of infinite length,
then in principle, it can effectively suppress N — 1 strong interferers. In what fol-
lows we assume that the front-end analog filter is a chip matched filter with
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impulse response y “(-t), which maximizes the signal-to-noise ratio at the output of
this filter in the absence of interference.

2.4.1 Discrete-Time Representation

We first specify the TDL coefficients in terms of the received samples at the output
of the chip matched filter. Define the vector of received samples at the output of the
chip matched filter during the ith symbol as*

1) = [r[iT], riT + T.,...,r[iT + (N — 1)T.]], (2.4.3)

where

r(t) = rx y(t— s)y" (-s)ds (2.4.4)

and y(1) is the channel output given by (2.4.1). If w (#) is confined to [0, T.], then the
integral is from f to f + T,. For the time being, we assume that all users are both
chip- and symbol-synchronous. That is, referring to (2.4.3), 7, = 0,1 = k = K. Com-
bining (2.4.1), (2.4.2), and (2.4.4), we can write the vector r, as a linear combination
of vectors contributed by each of the users plus noise:

L
r=> b Ap+n, (2.4.5)
k=1

where the upper index L depends on whether the multiuser data signal is syn-
chronous or asynchronous. For synchronous CDMA, L = K and p, is the vector of
samples at the output of the chip matched filter in response to the kth user’s input
waveform. The mth component of p, in this case is therefore

Bu= | Pt~ 9 (9. 246)

Assuming zero interchip interference (i.e., y,(t — iT,) are orthogonal waveforms
for different i), then this integral becomes

Pom = J ap |w(s—mT)|*ds =a, , (2.4.7)

since y (f) is a unit energy pulse, and where a; , is the mth spreading coefficient for
user k. Consequently, for the case of synchronous DS-CDMA, we have

K
r.=> b ,Aa +n, (2.4.8)
k=1

“The superscript T denotes the transpose operator.
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Figure 2.7 Illustration of interference from asynchronous user k. The dashed lines
designate the time window spanned by the detector c.

where a, is the vector of spreading coefficients assigned to user k.
To specify the received samples for asynchronous DS-CDMA, the delay asso-
ciated with user k is expressed as

.= (1, + )T, (2.4.9)

where 1, is an integer between 0 and N — 1, and J, = 7,/T. — 1, lies in the interval
[0, 1). The delay i, specifies the number of whole chips by which user k is shifted
relative to user 1, and J, represents the additional partial chip delay. (In chip-
synchronous DS-CDMA, ¢, = 0, although 7, # 0 in general.) The computation of p, ,,
for asynchronous DS-CDMA is illustrated in Figure 2.7. First note that user k trans-
mits two symbols, b, ; , and b, ,, within the time window (i — 1)T to iT associated
with b; ;. This implies that user k contributes two vectors to the sum (2.4.5), associ-
ated with the left and right parts of p,(t — iT — ;) within (i — 1)T to iT. We there-
fore rewrite (2.4.8) as

K
L=b Ap + > Abi 1 P +byp) (2.4.10)
k=2
where p, and pk+ are the sampled outputs of the matched filter during symbol i in

response to p, [t + (T — 7,)] and p,(t — ), respectively. The mth components of p,
and p, are then

pl:tm = J pe)y " [x — (T, — 1) + 6, T Jdx

B pyy1P2 + A ey fOrm=>u (2.4.11a)
ay 0?1 form=1,
0 form <u,

and
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pl:m = Jx PA—(X)W*[X —(m+N—1)T + T ]dx

B s N-3 91 T A i N1 192 form <y, (2.4.11b)
A N-1P2 form =1,
0 form=>1,

where

(pl = J»‘ l//(s)l//*(s + (SkTL‘)dS' (pz = Jl W(S)W*[S _ (1 _ (Sk)TC]dS, (2412)

and where we are accounting only for the contribution of the two chips from
pi(t — 7) (or p [t + (T — 7,)]) centered next to the mth chip of p, (f).

As an example, suppose that y () = 1/ \/i for 0 <t < T, and is zero elsewhere
(rectangular chips). Then, we have that

Ay 19k T gy (1 —0)  form=>y
Peow =101 —3) form =1, (2.4.13a)

0 form <1,

and
BN e mi Ok TN -m (1 —0)  form <y
Pe = 1T N- 19 form=1  (24.13b)
0 for m>1,.

Note that except for m = 1, if pk+ n# 0, thenp =0, and vice versa.

We therefore conclude that for both synchronous and asynchronous DS-
CDMA, the received vector of chip matched-filter outputs during time i can be
written as (2.4.5). For synchronous DS-CDMA, L = K, and the vectors in the sum
(2.4.5) are the spreading sequences assigned to the users. For asynchronous DS-
CDMA, L < 2K — 1, and the vectors in the sum (2.4.5) are given by p, and p; .

2.4.2 Computation of MMSE Coefficients

As noted in Section 2.3, the optimal discrete-time filter for MMSE detection is not
necessarily an FIR filter. Thus, in order to limit the complexity of the MMSE detec-
tor in this setting, it is desirable to truncate the number of taps in the TDL. To con-
sider this issue, let us define an “extended” received vector

T _ T T T T
[ Tpare e G Tl

i

(2.4.14)
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where 2M + 1 is the width of the truncated processing window to be considered.
That is, 1, consists of the vectors r,_,,,..., ;. ,,stacked on top of each other and has
dimension N(2M + 1). Letting ¢ denote the vector of TDL coefficients, the output of
the TDL at time iT can written as’

d;=c'1,. (2.4.15)

The estimate of the transmitted symbol b, ; can then be obtained by quantizing this
output. In the case of binary transmissions (b, , € {#1}), the detected (uncoded)
symbolis b, ; = sgn(d,).
For the MMSE detector, the TDL coefficient vector is selected to minimize
MSE = E{|c't;, — b, ;|?} = 1 + ¢'Re — 2Re{c'p}}, (2.4.16)
where

f’;r:[o "'Op{O 0], (2.4.17)

with the number of zeros that precede or succeed P*lr equal to NM; the covariance
matrix R is defined as

R=Eftr} (2.4.18)

the noise samples at the output of the chip matched filter are white with variance
o> ; we normalize E{ [b; 1] %} = 1; and the transmitted symbols are assumed to be
uncorrelated.

Selecting ¢ to minimize the MSE gives

=R'p, (2.4.19)

Crm‘se
and
MMSE=1-c¢ __p =1-pR'p,. (2.4.20)

For synchronous DS-CDMA, we note that R is a block-diagonal matrix, where each
N X N diagonal block is given by

K
Ry= > App, + oL (2.4.21)
k=1
Consequently, the MMSE TDL coefficient vector, specified by (2.4.19), has the form
Coomree = [0 - 0€7 0 --- 0], (2.4.22)

where NM zeros precede and succeed the N-vector ¢' = Ry/p,. We therefore con-
clude that for synchronous DS-CDMA, the MMSE detector consists of a chip

5The superscript T denotes the complex conjugate transpose.
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spans one symbol interval

Figure 2.8 N-tap MMSE detector for user k.

matched filter followed by a finite-length TDL that spans only one symbol (i.e., we
can set M = 01in (2.4.14)).

For asynchronous DS-CDMA, the MMSE TDL is no longer finite in general;
however, we can still consider a truncated version that spans one symbol. This
detector, assuming T -spaced taps and a front-end chip matched filter, is shown in
Figure 2.8. The only difference between this “N-tap MMSE detector” and the con-
ventional matched-filter detector is the way in which the TDL coefficients are
selected. For the matched-filter detector, ¢ = a, (the spreading coefficients for user
1), whereas for the MMSE detector,
=R'p, (2.4.23)

Cmmse

where R = Ry in (2.4.21). Note that in the absence of background noise, R is singu-
lar if L < N. However, it is easily shown that any c that satisfies Rc = P, minimizes
MSE even in this singular case.

2.4.3 Geometric Interpretation

Throughout the rest of this section we focus for simplicity on the N-tap detector
shown in Figure 2.8. The following discussion is easily generalized to account for a
TDL that spans multiple symbol intervals. The vectors p,,..., p, that appear in the
sum (2.4.21) are illustrated in Figure 2.9. The space spanned by these vectors is the sig-
nal subspace, denoted as S. The interference subspace, denoted as S, is the space spanned
by p,,..., p.. (We continue to assume that user 1 is the user of interest.) If py--- P are
linearly independent, then S has dimension L, and S, has dimension L — 1.

We first observe that the MMSE solution ¢ must lie in S. Otherwise, we can
write

c=c, +c7, (2.4.24)

where ¢, €S and csl is orthogonal to S. We then have that p,tcsl =0 for each
k=1,...,K, and (csl)*ri = (cj‘)fni. We therefore conclude that the component cj in
(2.4.24) adds a noise term to the filter output d,, which increases the MSE. To mini-
mize MSE, we must take csl =0.




84 Adaptive Interference Suppression Chap. 2

nterference Subspace S,

Figure 2.9 Geometric representation of desired signal and interference vectors. p}
is the projection of p; onto the interference subspace S;.

Because the MMSE solution ¢, € S, we can express ¢, . as a linear com-
bination of the signal vectors. Let P denote the N X L matrix with columns P P
Then, from (2.4.5), we can write the received vector as

r,= PAb, + n, (2.4.25)

where A = diag[A; A, -+ Ag]and biT =1[b;; b5 - b; ¢ ]. Now, define the N X K
matrix C, where the kth column of C is the vector of TDL coefficients used to
demodulate user k. The first column of Cis therefore the vector ¢ used in (2.4.15) to
demodulate user 1. From the previous discussion it follows that each column of
C e €an be expressed as a linear combination of the signal vectors. We therefore
write C= PI', where I" is a K X K matrix; note that C, = PI',, where the subscript k
denotes the kth column of the matrix. The total MMSE summed over all K users is

MSE=E{HCr[—b,»]|2} (2.426)
= trace{ (T"P'PA — I)(AP'PT" — 1) + o2T"P'PT} o
and selecting I" to minimize this expression gives (cf., [129])

I = A[AP'PA + 51] . (2.4.27)
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The matrix P'P is the cross-correlation matrix for the set of signal vectors p,, ..., py.
Since ¢ = PI', this relation gives an alternative method to (2.4.23) for computing
the MMSE solution ¢, .. When K < N and the background noise is small, it is bet-
ter to compute ¢ via (2.4.27) since the matrix R,, defined by (2.4.21) is likely to
be ill conditioned. Finally, we note that this expression is analogous to the expres-
sion (2.3.7) for the matrix (multiuser) discrete-time transfer function with a bank of
front-end matched filters.

2.4.4 Zero-Forcing (Decorrelating) Solution

In analogy with the zero-forcing solution for the MIMO MMSE detector discussed
in Section 2.3.2, it may be possible to choose the N-vector ¢ to completely remove
multiple-access interference. From Figure 2.9 it is apparent that this zero-forcing,
or decorrelating, solution is proportional to the orthogonal projection of the
desired user vector p; onto the interference subspace S;. Denoting the zero-forcing
solution for ¢ as ¢, the filter output is given by

d;= c X = c7f(bl 1P ). (2.4.28)

Namely, the output of the zero-forcing filter has only two components, one due to
the desired signal and one due to background noise. Let P; denote the N X (K — 1)
matrix with columns given by p,,..., ps. The orthogonal projection of p, onto S, is
denoted as

pl =p — P(PP) ' (Pp), (2.4.29)
and the zero-forcing solution is

pi/n (2.4.30)

where the scale factor 1/7 is selected so that |c;pl | = |by| = 1. (The quantity 7 is
known as the near-far resistance and has special significance, as explained later.) It
is easily shown that (p)'p, = ||pi'||% so that = ||p ||

It is apparent from Figure 2.9 that the zero-forcing solution for ¢ exists pro-
vided that p, is not contained in S;. In that case, the dimension of the signal sub-
space S must be no greater than N. If the vectors p,,..., p; are linearly independent,
then we must have L = N. For synchronous DS-CDMA, this implies that the num-
ber of users K = N, and for asynchronous DS-CDMA, 2K — 1 = N. Of course, even
if this latter condition does not hold (as in a heavily loaded cellular system), the
MMSE solution is still well defined. (Also, the addition of receiver diversity allows
one to increase K beyond this bound, as is discussed below.) As K increases, the
performance of the MMSE detector improves relative to the zero-forcing solution.




86 Adaptive Interference Suppression Chap. 2

2.4.5 Asymptotic Behavior of the MMSE Solution

Here, we examine the behavior of the MMSE solution as (i) the noise level dimin-
ishes to zero and (ii) the interferers increase in energy. If the noise variance a2=0,
then we observe that the zero-forcing solution, assuming it exists, gives zero MSE.
We therefore conclude that the MMSE solution converges to the zero-forcing solu-
tion as o> — 0. It can be shown by matrix manipulations that the zero-forcing solu-
tion (2.4.30) is equivalent to the preceding expressions (2.4.23) and (2.4.27), where
the noise variance o> = 0.

Now consider what happens as user k’s amplitude A — . It is easily seen
that ijmeﬂ_' 0. Otherwise, we would have (c:rmepk)2 >¢ >0, which implies
(Akcjmmepk)2 > eA,%. As A, — =, (2.4.16) implies that MSE — <, which contradicts the
fact that MMSE < 1 (i.e., ¢ = 0 gives MSE = 1). In fact, it can be shown that

Alkim (Ac. p)=0, (2.4.31)

which implies that as A, — o, the contribution to the MSE from user k diminishes
to zero [51, 82].

To generalize (2.4.31), if A, — o= for kin some subset K, then (2.4.31) applies for
each k € K (assuming ¢ has enough degrees of freedom to suppress these interfer-
ers). If the set K contains all K — 1 interferers, then clearly ¢, .. ™ icpll, where i is a
constant. Substituting for ¢ . in (2.4.28) and selecting x to minimize MSE gives
Kk =1/(n + o>). We therefore conclude that as the interfering amplitudes A — <,

k#1,
2

MMSE — —2— . (2.4.32)
’7 + O-n

—

1
P1
77+(ri !

CI’HI]’BQ

Note that the filter ¢, gives a biased estimate of b, ;.

2.4.6 Performance Measures

In addition to MMSE, two other performance measures of interest are signal-to-
interference-plus-noise ratio (SINR) and error probability. The SINR is defined to
be the ratio of the desired signal power to the sum of the powers due to noise and
multiple-access interference at the output of the filter c. That is,

(c'p)
S A + allel)?

SINR = (2.4.33)
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It can be shown that the MMSE solution ¢ also maximizes the SINR and that this
maximum SINR is

¥
Cmmsepl 1
= ~1. (2.4.34)
1-c__p  MMSE

To study the error probability, we restrict attention to the case in which all
users transmit binary, equally probable symbols. In this case, we have Pr {Bl #b,}
=Pr{lA71 # b, | b, = 1}. Conditioning on all users’ symbols and assuming white
Gaussian noise gives

T K T
P,p(®) = P(b, # b, | b b, = 1) = Q( P 2 bR ) (2.4.35)

allell

1
where Q(x) = (27) Tﬁe’tz /2dt. The average error probability is then obtained by
averaging (2.4.35) over the distribution for the bit vectors b, i.e., P, = E {Pelb}'

Two additional performance measures related to the asymptotic perfor-
mance discussed in the preceding section are asymptotic efficiency and near-far resis-
tance. Let P,(o,) denote the average error probability for a specific detector as a
function of the noise variance o>. The asymptotic efficiency of the detector is then
defined in [119, 120] as

y = sup{x: lim P, (7,) /Q(JxA Ja,) > 0} (2.4.36)

and is a limiting measure, as the noise tends to zero, of how well the detector per-
forms in the presence of MAI relative to optimal performance in the absence of
MALI Larger values of y correspond to more effective MAI suppression. The near-
far resistance of the detector is defined in [119] as

n= inf 7. (2.4.37)
Ay AL

That is, the near-far resistance is the asymptotic efficiency evaluated for worst case
interference energies and is a measure of the robustness of the detector with
respect to variations in the received interference energies.

As g, — 0, the error probability for the MMSE TDL detector satisfies

. P,(a,) . mingP(0,)
im im =

= _— = 2.4.38
WPl /ey oo a(lpr /o) (24.38)
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The asymptotic efficiency of the MMSE detector is therefore ||pi-||%. Since this quan-
tity is independent of the energies of the interference vectors, we also have that

n=|lplI~ (2.4.39)

That is, the near-far resistance of the MMSE detector considered is the squared
norm of the component of the desired signal vector that is orthogonal to the space
spanned by the interference vectors. From (2.4.39), it is clear that if 7> 0, then the
desired vector is not contained in the interference subspace S;, which in turn
implies that the number of vectors contributed by the users L = N.

From the discussion in Section 2.4.4, we observe that the near-far resistance is
closely related to the zero-forcing solution. Specifically, the zero-forcing solution is
given by (2.4.30), which includes # as a scale factor. Also, it is easily shown that the
MSE corresponding to the zero-forcing solution is

2

an
MSE, = —, (2.4.40)

so that the noise enhancement associated with the zero-forcing detector is 1/7.
Note that 0 < 7 = 1 implies that o> < MSE ; < . In particular, if p; lies in the space
spanned by the interferers (i.e., if rank(S;) > N), then # = 0 and MSE ; = .

2.4.7 Space-Time Filtering

It is conceptually straightforward to extend the preceding discussion to combined
space-time filtering. Given multiple receiver antennas, the MMSE linear filter for
user k is shown in Figure 2.6 (for two antennas) and consists of a chip matched fil-
ter and TDL for each antenna. The TDL outputs are simply added together to form
the symbol estimate. To compute the TDL coefficients in terms of the received sam-
ples on each branch, we define rg"’) as the N X 1 received vector of chip matched fil-
ter outputs for symbol i on branch m. Then, T; is the (MN) X 1 vector consisting of
rl(l),. .., rfm stacked on top of each other. (This extension assumes 1 / T,.sampling and
that each TDL spans a single symbol. The generalizations to other sampling rates
and to multisymbol TDLs are straightforward.)

Let ¢® be the vector of TDL coefficients associated with the kth branch. As

before, the filter output can be expressed as
d, =<', (2.4.41)

where ¢ is the (MN) X 1 vector of TDL coefficient vectors c(l),. .., ™ stacked on top
of each other. The preceding expressions for the MMSE coefficients, zero-forcing
solution, and performance measures can therefore be directly applied to this situa-
tion. Note, in particular, that with M antennas, a necessary condition for the exis-
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tence of the zero-forcing solution is that the number of “effective” users L < MN.
For asynchronous DS-CDMA (L = 2K — 1), adding an additional antenna therefore
increases the number of strong interferers that can be (completely) suppressed by
approximately N/2.

Increasing the amount of spatial diversity leads to a substantial increase in
system capacity, but at the expense of additional complexity. Specifically, analog
front-end filtering, as well as conversion to baseband (if necessary), is needed for
each antenna element. The number of TDL coefficients also increases from N to
MN, which can adversely affect the performance of the adaptive algorithms dis-
cussed in the next section.

2.4.8 Effect of Multipath

Multipath is discussed in more detail in Section 2.6. For now, recall from Chapter 1
that reflections of the transmitted signal off surrounding objects cause the received
signal to consist of the sum of weighted and delayed versions of the transmitted
signals:
K My
r)=> > a  Abp(t—iT =1, )+ n(®, (2.4.42)
k=1 m=1
where M, is the number of paths associated with user k, and 7, ,, and o, , are
respectively the delay and the (complex) coefficient associated with path m for user
k. (Without loss of generality, we assume that T ,=0,m= 1,...M;k=1,2,...,K.)
We can write the sampled received vector r, defined earlier as

K My
= Akl:z by kDL (1) + b,y Py (m))] +n, (2.4.43)
k=1

m=1

where p,: .and p, , contain the chip matched-filter output samples within the time
window spanned by r, in response to the inputs p,(t -7, ) and p,(t + T — 7, ),
respectively. According to the discussion in Section 2.4.1, the vectors p; , and p, ,,
can be computed according to (2.4.11), where 7,  replaces 7.

Note that we can rewrite (2.4.43) as

K
= Z Ak(bi,kplj +b b ) Ty (2.4.44)
k=1

where

My
P = D 0P (). (2.4.45)

m=1
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Consequently, the received vector can once again be expressed as (2.4.5), where the
vectors in the sum are computed according to (2.4.11) and (2.4.45). The MMSE and
zero-forcing solutions for ¢ and performance measures previously discussed can
then be directly applied. For DS-CDMA applications, it is typically assumed that
the path delays for user 1, 7, ,, m=1,..., M,, span at most a few chips. The inter-
symbol interference due to the multipath vectors p; () is then quite small and is
typically ignored.®

To summarize the preceding discussion, when multipath is present, the geo-
metric interpretation represented by Figure 2.9 applies, where the signal vectors
are the received vectors, including the effect of multipath. We therefore conclude
that the MMSE solution coherently combines all multipath within the window spanned
by the filter c. Of course, this interpretation applies in practice only when the MMSE
solution can be accurately estimated. That is, the estimation algorithm must be able
to compensate for the changing multipath amplitudes and phases of all strong
users. Techniques for performing combined, linear, multiuser detection and chan-
nel tracking are developed in [85], [126], and [127]. These methods are discussed
briefly below.

2.5 ADAPTIVE ALGORITHMS

The expressions for the MMSE vector ¢ given in the preceding section, (2.4.19) and
(2.4.27), give the impression that the MMSE receiver requires explicit knowledge of
all user and channel parameters (i.e., spreading sequences, relative timing, phase,
amplitudes, and multipath parameters). In this section, we show that the MMSE
solution for ¢ can be accurately estimated without this knowledge. In fact, if the
user and channel parameters are time-invariant, then the algorithms in this section
can estimate ¢ to arbitrary accuracy (given a sufficient number of received vec-
tors ).

The adaptive algorithms in this section require either (i) a training sequence of
transmitted symbols, which are known to the receiver for initial adaptation or (ii)
accurate knowledge of the received vector corresponding to the desired user (p;) and
associated timing. In the absence of multipath, the latter knowledge, which is sim-
ply the spreading code of the desired user and associated timing, is also required by
the matched-filter receiver. When multipath is present, the received vector can be
processed by a RAKE receiver [90, Ch. 7].

In high-data-rate systems, such as arise in some indoor wireless applications, ISI can be signifi-
cant. ISI is also severe in underwater acoustic transmission systems, as developed in Chapter 8. Linear
detection techniques for dealing jointly with ISI and MAI in such situations are discussed in detail in
Chapter 3 and the references therein; see also [89] and [130].
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Three categories of adaptive algorithms are presented herein. The first cate-
gory consists of the conventional stochastic gradient and least squares algorithms
well known in adaptive filtering [25, 32]. These have been applied to obtain MMSE
symbol estimates for DS-CDMA in [5, 58, 92]. (Prior to that, MMSE estimation
applied to DS-CDMA was considered in [133].) Application of these techniques to
narrowband TDMA systems with co- and adjacent-channel interference is
reported in [47, 48]. The algorithms in the second category are “blind” in the sense
that a training sequence is not required. Instead, knowledge of the received vector
p; and associated timing is assumed. Finally, the algorithms in the third category
are “subspace” algorithms, in which each received vector r, is projected onto a
lower-dimensional subspace. These techniques are potentially useful when the
dimension of the received vectors is much greater than the dimension of the signal
subspace. This may be the case when (i) the processing gain is very large relative to
the number of users, (ii) an adaptive antenna array is available with TDLs on each
branch, or (iii) the filter ¢ spans multiple symbol intervals.

2.5.1 Stochastic Gradient Algorithm

The stochastic gradient or LMS (least mean squares) algorithm has been success-
fully applied to many signal processing applications such as noise cancellation,
equalization, echo cancellation, and adaptive beamforming [25, 32]. The approach
to adaptive interference suppression presented here is, in fact, analogous to adap-
tive equalization for single-user channels. The main difference between the two
applications is that for adaptive equalization, the TDL must span multiple symbols
to suppress intersymbol interference (ISI), but can have as few as one tap per sym-
bol. In contrast, for interference suppression, the TDL must have multiple taps per
symbol but can span a single symbol interval. Of course, a TDL that spans multiple
symbols with multiple taps per symbol can suppress both ISI and multiple-access
interference.

Let ¢; denote the TDL vector at symbol time i. The LMS algorithm for updat-
ing c; is given by

¢ =c¢_, tuer, (2.5.1)
where
e;=b,,—c (2.5.2)

is the estimation error at time 7, and xis a constant step size, which controls the trade-
off between convergence speed and excess MSE due to random coefficient fluctua-
tions about the mean. Because the LMS algorithm (2.5.1) assumes knowledge of the
symbols b, ;, it must be implemented as a supervised or decision-directed algorithm. In
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practice, b, ; must be generated via a training sequence for initial adaptation (super-
vision), after which the symbol estimates 1;1»/ , are used (decision direction).

There have been numerous analyses of the convergence properties of the
LMS algorithm (e.g., see [25, 32]). A detailed analysis of this algorithm for the DS-
CDMA interference suppression application considered here is given in [59] (see
also [31]). A summary of the main results, given a stationary set of interferers and
channels, is as follows.

1. Assuming that the received vector r. is statistically independent” from past

vectors r,, m <1, for each 7, it can be shown that

¢, = (1— uR)dc; ,, (25.3)

where dc; = E{c} — c,,.... The mean coefficient vector therefore converges
exponentially to ¢ .. according to N normal modes. The time constant asso-

ciated with the nth mode is 1 — 4, where 4, is the nth eigenvalue of R.

2. An approximate analysis shows that the MSE remains bounded provided
that the step-size

2
If Ris given by (2.4.21), then
K
trace(R) = > A2+ No?. (2.5.5)
k=1

3. The asymptotic MSE achieved with the LMS algorithm is greater than the
MMSE due to random coefficient fluctuations about the mean. Denoting the

MMSE as ¢, the excess MSE due to these fluctuations can be approximated
as
-!2—‘- trace (R)
¢ ex = &min (2.5.6)

1- % trace (R)

where trace (R) is given by (2.5.5).

To interpret the preceding results, suppose that the vectors p,,..., p; in the
sum (2.4.5) are orthonormal. In that case, each of these vectors p, is an eigenvector

"This independence assumption holds for synchronous DS-CDMA but not for asynchronous DS-
CDMA. Nevertheless, even for asynchronous DS-CDMA, it gives substantial insight.
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of R with associated eigenvalue A; + o> The remaining eigenvectors of R form a
basis for the N — K dimensional subspace that is orthogonal to the signal space.
Each of these eigenvectors is associated with eigenvalue o2 If L < K, then there are
N — K modes of convergence for E{c} associated with exponential decay factor
1 — uo’. Typically, o2 is very small, so that convergence associated with these
modes is very slow. If ¢; is in (or close to) the signal space, then this slow conver-
gence is no problem since the dominant modes of convergence lie in the signal
space. However, if , lies outside the signal space (such as when the filter has con-
verged to a set of users and a user subsequently departs), then the excess MSE
due to the component of c; outside the signal space can take a very long time to
disappear.

We also note from the preceding discussion that the LMS algorithm is
adversely affected by a near-far situation in which A4, is very large. Namely, there
will be a slow mode corresponding to an exponential decay factor approximately
equal to 1 — ,u/A,% Also, note that according to (2.5.4) and (2.5.5), the larger the
interfering amplitudes, the smaller u must be for stability. To ensure that x satisfies
the stability condition (2.5.4) in the presence of a changing interference environ-
ment, it is useful to normalize the step size by an estimate of the input power. Specif-
ically, 1 in (2.5.1) can be replaced by 7 = u/¢ (i), where

S =wli-1+A-wgl? (257)
is a moving average estimate of the input energy, and w is the averaging constant.
2.5.2 Least Squares (LS) Algorithm

An alternative to the stochastic gradient method is to choose the vector ¢, to mini-
mize the least squares (LS) cost function

2 (2.5.8)

i
gls(i) = Z wl_nldn - bn,l
n=0

where d, = ¢'r,, and 0 <w <1 is an exponential weighting factor that discounts

past data. This weighting is important in nonstationary environments where the
vector ¢; is computed at each iteration i. The LS solution for c; is

¢ = R;li’z 17 (2.5.9)
where

f{i = Z w’l_”rnr{r (2.5.10)

n
n=0
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and

1
p=> w b x, (2.5.11)
n=0
Note that R; and p, 1 are estimates of Rand p;, respectively. In the absence of noise,
it is possible for f{i to be singular. In that case, any solution to the set of linear equa-
tions Ri¢; = p, ; minimizes the LS cost function ¢ (i).

The LS criterion is deterministic, as opposed to the stochastic gradient cost
criterion (MSE), which is defined in terms of a statistical expectation. In general, LS
algorithms converge much faster than do stochastic gradient algorithms but are
more complex to implement. Specifically, if the signal vectors p;,..., p; are linearly
independent and L < N, then in the absence of noise, the LS solution for the vector
¢; gives ¢ (i) = 0 for i> L, provided that the received vectors r,,...,r,_; used to
compute c from (2.5.9) are linearly independent. (This implies that the MSE is zero
as well.)

A precise analysis of the convergence properties of the LS algorithm in the
presence of noise is quite difficult; however, a useful rule of thumb is that it typi-
cally takes approximately 2N iterations for the LS algorithm to converge (again
assuming stationary noise and interference), where N is the filter order. In contrast,
the stochastic gradient algorithm typically takes between 5 to 10 times longer to
reach steady-state performance, assuming the spread in eigenvalues of the matrix
Ris relatively small. Because the convergence rate of the LS algorithm is insensitive
to this eigenvalue spread, a large eigenvalue spread, corresponding to a near-far
situation, will lead to a more dramatic difference in performance. Some numerical
examples that compare the performance of LS and LMS adaptive algorithms are
presented in Section 2.5.5.

Arecursive LS (RLS) algorlthm computes the LS solution c; for each i. In this
case, the matrix inverse R can be propagated in time by using the matrix inver-
sion lemma:

R'=R" ———gfg;'T , (25.12)
" 1+ (r'g)
where w =1 and
5 =R (255.13)
The vector p; ; can also be updated recursively as
1= WPyt bzlfi- (2.5.14)

Although the matrix inversion lemma substantially reduces the complexity of a
recursive LS (RLS) algorithm, the update (2.5.12) is sensitive to numerical roundoff
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errors and must therefore be closely monitored or stabilized in some manner. Also,
the basic complexity per update is O(N?) for RLS, as compared with O(N) for LMS.
(The complexity of RLS can be mitigated through parallelization, as discussed
below.) As with the LMS algorithm, the RLS algorithm defined by (2.5.9),
(2.5.12)—(2.5.14) requires estimates of the symbols {bm}. This estimate can be
accomplished initially through a training sequence and, subsequently, by switch-
ing to decision-directed mode.

Rather than compute ¢, for each i, it is also possible to update c; periodically
by means of the most recently received data vectors. Specifically, a block LS algo-
rithm computes ¢; every B iterations, using the data vectors r,__,,..., ;. An itera-
tive method for obtaining the estimates b, | in decision-directed mode is described
in [29]. The results in [29] indicate that this type of block decision-directed algo-
rithm can sometimes perform significantly better than the RLS algorithm with
exponential weighting.

2.5.3 Orthogonally Anchored (Blind) Algorithms

The decision-directed algorithms presented in the preceding section generally
require reliable symbol estimates. Numerical results indicate that the performance
of these algorithms begins to degrade when the error rate exceeds 10% [29, 33].
Much higher error rates sustained over many symbols can potentially cause the
algorithm to lose track of the desired user. For a mobile wireless channel, this situ-
ation can occur when the desired user experiences a deep fade or when a strong
interferer suddenly appears. It is therefore desirable to have an adaptive algorithm
that does not require symbol estimates. We refer to such an algorithm as a “blind”
adaptive algorithm.

An approach to blind adaptation, which was presented in [31], is illustrated
in Figure 2.10. The vector c at time 7 is expressed as

¢ =p +w, (2.5.15)

r; matched filter
P

Y

adaptive filter
w, | p

Figure 2.10 Orthogonally anchored adaptive filter.
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where w is constrained to be orthogonal to p, for all i. The filter output is then

L
d=cr=>b,+> Alp, +wl'p.+ (c'n), (2.5.16)

k=2
where it is assumed that A, ||p, [|* = 1. Note that w; affects only the interference and

noise at the output. Selecting w; to minimize the output variance E{|d,| ?} therefore
minimizes the output interference plus noise energy. In fact, the output MSE is
(again, we normalize E{|b, ,|*} = 1)

E{|bi,l _di|2}:] + E{|di|2}‘ 2Re{(P1 +Wi)+P1}

) (2.5.17)
=E{|d,|"} -1

since
(p,+w)p =cp =1 (2.5.18)

We therefore conclude that selecting w; to minimize the output variance E{ |d,| %}
also minimizes output MSE. Minimizing the output variance does not require
knowledge of the symbol estimates b; |, although it does require knowledge of the
desired user’s vector p, (and associated timing). This minimum variance technique
is analogous to the minimum variance technique in adaptive beamforming where
the direction of arrival of the desired signal is known [41].

The minimum variance vector ¢, can be derived by defining the Lagrangian

L(c) = E{|d,|?} — &c'p,, (2.5.19)

where ¢ is the Lagrange multiplier, and setting the gradient with respect to c equal
to zero. This gives

¢, = CR'p, = ¢c (2.5.20)

mmse /

where

f=Elc p|t= —— (25.21)
PR p

is the constrained minimum output variance. If the signal vectors p,,..., p; are
orthogonal and L < N, then the mean output energyis¢ =1 + a2

Both stochastic gradient and LS adaptive algorithms can be derived based on
the preceding minimum variance approach. Before deriving the stochastic gradi-
ent algorithm, we note that the constrained, minimum-variance cost function is the
intersection of the quadratic form | <'p | 2 with the hyperplane defined by (2.5.18).
This cost function has a unique global minimum, which can be found by gradient
search.
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Taking the gradient of the output energy with respect to w; gives
V. (E{] 4] }) = 2 Re{E{dx}}. (2.5.22)

To obtain the stochastic gradient algorithm, we drop the expectation and take the
orthogonal projection with respect to p,, which gives

di(r, =z ()py), (2.5.23)
where
z () =pir, (2.5.24)

is the matched-filter output. The orthogonally anchored stochastic gradient algo-
rithm is therefore

w,=w,_, — ud [r,— z ()p,]. (2.5.25)

The convergence properties of the algorithm (2.5.25) are analyzed in [31]. The
main results, which parallel the results for the LMS algorithm in Section 2.3.1, are
summarized as follows.

1. Defining
0¢; =¢;— Cpyy (2.5.26)

and assuming that the received vector r, is statistically independent from past

vectors r,, m <1, for each i, it can be shown that
oc; = (I— uR,)oc;_,, (2.5.27)
where
v,= (- pp)r, (2.5.28)
and
R, = E{ve} = (1 - pp)R (2.5.29)

The mean coefficient vector therefore converges exponentially to ¢ accord-
ing to N normal modes, associated with the eigenvalues of R ,..

2. An approximate analysis shows that the MSE remains bounded provided
that the step size satisfies (2.5.4).

3. The excess MSE, defined as the asymptotic MSE minus the MSE associated
with ¢, can be approximated as

% trace (R,,)
éex = ém]_n ’ (2530)

1- % trace (R,)
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where
K
trace (R,) = > A1 — |pyy|H) + (N — 1)0? (2.5.31)
k=1

and py; = pip.

If the vectors p,,..., p, in the sum (2.4.5) are orthonormal, then each of these
vectors is an eigenvector of R, . The eigenvalue associated with p, is zero, whereas
the eigenvalue associated with p,, k > 1is A7 + o> The remaining eigenvectors of R
form a basis for the N — K dimensional subspace that is orthogonal to the signal
space. Each of these eigenvectors is associated with eigenvalue a2

Given orthogonal signal vectors, the eigenvalues of R, are nearly the same
as those for R. The convergence of the mean coefficient vector should therefore be
similar for both the minimum variance and standard LMS algorithms, given the
same step size u. However, the excess MSE given by (2.5.30) is substantially larger

than the corresponding MSE for the LMS algorithm (2.5.6). Specifically,

é(m) imin
é(jjm) . (2.5.32)

ex

When the signal vectors are approximately orthogonal, it is easily shown that

i 1+a2
(14 07—, (2.5.33)
81’1’1].’[1 O-n

which can be quite large. Consequently, the blind algorithm (2.5.25) is quite
“noisy,” and it is best to switch to a decision-directed algorithm once reliable sym-
bol estimates are available.

An LS minimum-variance, adaptive algorithm is obtained by selecting c; to
minimize the cost function

i
Vi) =D w' )% (2.5.34)
n=0

subject to the constraint cjp1 = 1. The solution is given by

A

¢=ER'p, (2.5.35)

1

where R; is given by (2.5.10), and
&= (iR 'p) " (2.5.36)

The LS solution for ¢, therefore has the same form as (2.5.20), where expectations
are replaced by time averages.
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It is interesting to compare the minimum variance LS solution (2.5.35) with
the decision-directed LS solution (2.5.9). The only differences are (i) the scale factor
% appears in (2.5.35), and (ii) p; in (2.5.9) is replaced by p, in (2.5.35). If the magni-
tude of b; ; is constant for each i, which corresponds to phase modulation, then
the scale factor C in (2.5.35) is irrelevant. That is, omitting &; does not affect the
error rate. In that case, replacing p; by p, is the only real dlfference between the
minimum variance and decision-directed LS algorithms. As a first-order approxi-
mation, the minimum variance LS algorithm performs the same as the decision-
directed LS algorithm.

Both block and RLS versions of the minimum variance LS algorithm are pos-
sible, depending on how often the matrix ]A{I'l is updated. The matrix inversion
lemma can again be applied to the RLS version to reduce the amount of computa-
tion.

A potential problem with the minimum variance approach is that the vector
p, that appears in the adaptive algorithm may not be exactly equal to the received
vector contributed by user 1. This problem may be due to unknown multipath or
other types of distortion. This type of receiver mismatch can cause a substantial
degradation in performance due to suppression of the desired signal.

To illustrate the mismatch problem, suppose that the actual received vector
contributed by user 1 is p, but that the receiver uses the mismatched estimate p,.
These two vectors are shown in Figure 2.11. According to Figure 2.11, it is possible
to choose a vector w, which is orthogonal to p, and such that p; + w is orthogonal
to p;. Consequently, with mismatch, the minimum variance approach attempts to
suppress the desired signal down to the level of the interference.

Figure 2.11 indicates that the closer p, is to p;, the longer w must be to sup-
press the desired signal. Consequently, one way to mitigate the effect of mismatch
is to constrain the length of the vector w. Referring to Figure 2.11, let 0, denote the
angle between p, and p;, and let 0 denote the angle between p, and p;. Tvp1cally, we
expect that 6, > 0. As shown in Figure 2.11, ||w|| corresponding to the w needed to
suppress p, is much less than ||w]| corresponding to the wneeded to suppress the
desired signal. We can therefore mitigate the effect of mismatch by incorporating
the constraint

2
lwill” <% (2.5.37)

where y is a constant, into the adaptive algorithm. From the preceding discussion,
a reasonable choice for y is the length of w needed to suppress the user k corre-
sponding to the smallest value of 0,. Further discussion and numerical results
illustrating how the choice of y affects the performance of the minimum variance
approach are given in [31].

The constraint (2.5.37) is easily incorporated into the minimum variance
approach and results in a vector ¢, that again has the form (2.5.20). The only
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P«

(b)

Figure 2.11 Illustration of desired signal suppression with mismatch. (a) shows
the vector w needed to suppress the desired signal, and (b) shows the vector w
needed to suppress an interfering signal p;.

difference is that the noise variance 2, which appears in the definition of R (2.4.21),
is replaced by 2 + v, where v is a Lagrange multiplier selected to satisfy (2.5.37).
The constraint (2.5.37) therefore has the same effect on ¢, as increasing the back-
ground noise variance. Similarly, incorporating the constraint (2.5.37) into the LS

optimization results in the solution (2.5.35), where
i .
R = Z w’*”r[rj + VL (2.5.38)
n=0

Finally, incorporating this constraint into the stochastic gradient algorithm (2.5.25)
results in the algorithm

w = (1 — w)yw,_; — ud;[r,— z_()p], (2.5.39)

which is analogous to the tap-leakage algorithm introduced in [21].
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Another possible solution to the mismatch problem, presented in [28], is to
combine the orthogonally anchored approach with the decision-directed cost func-
tion E{|d; — sgn(d)| } (assuming b; ; € {+1}). This cost function eliminates the
problem of desired signal suppression; however, it can introduce local optima. The
stochastic gradient algorithm based on this approach has been observed to per-
form somewhat better than the analogous minimum variance algorithm in the
presence of mismatch.

2.5.4 Projection-Based Approaches

The discussion in preceding sections indicates that the performance (convergence
speed) of the adaptive algorithms discussed degrades as the number of filter coef-
ficients increases. Furthermore, increasing the number of filter coefficients gener-
ally increases the complexity of the adaptive algorithms. In some situations, it may
be desirable to have a TDL ¢ with high dimensionality. For example, ¢ may include
TDLs on multiple antennas or may span many symbols. Also, some military appli-
cations require a very large processing gain N for covertness. In these situations, it
is desirable to reduce the number of adaptive coefficients.

One way to reduce the number of adaptive coefficients is to project the
received vectors onto a lower-dimensional subspace. Specifically, let Sy be the
N X D matrix with columns that are the basis vectors for a D-dimensional sub-
space, where D < N. We wish to restrict c to lie in this subspace, so we can write

c=5S,a (2.5.40)

where a is a D X 1 vector of coefficients that must be estimated. Given S, it is
straightforward to derive stochastic gradient and LS algorithms for estimating a.
(Note that ¢'r, = a't, where ¥, = S| . is the projected received vector.)

A few different suggestions for the lower dimensional subspace represented
by S, have been proposed [35, 51, 101, 106, 129]. For example, in [101] the columns
of S, are taken to be nonoverlapping segments of the desired spreading sequence,
where each segment is of length N/D. (The interpretation is that partial despread-
ing is performed before the adaptive filtering.) Specifically,

[Splh =10 0P} (m) 0 - 0], (2.5.41)
wherel =m=D,

By (1) = [Py, (- 1ynys 17+ Pr ) (2.5.42)

(m— 1)N/D zeros precede p}, (D — m)N/D zeros succeed p;, and N/D is assumed
to be an integer. Note that D = N corresponds to the MMSE detector previously




102 Adaptive Interference Suppression Chap. 2

discussed (N adaptive coefficients), and D =1 corresponds to the matched-filter
detector. Choosing D between 1 and N therefore trades off complexity (D adaptive
coefficients) with performance (which is between that of the matched filter and
that of MMSE detectors).

If the dimension of the signal space Sis less than the dimension of ¢, then pro-
jecting the received vectors onto the signal space reduces the number of adaptive
coefficients without sacrificing optimality (cf. [129]). Generally, this reduction in
the number of adaptive components will improve convergence and tracking. Sig-
nal subspace methods have received considerable attention in the array processing
literature (see [41] and the references within). If the dimension of the signal space
is known to be L, then an orthogonal basis for the signal space is given by the L
eigenvectors of R that correspond to the L largest eigenvalues. In practice, a basis
for the signal space can be estimated by forming an eigen-decomposition of the
matrix f{i given by (2.5.10). The columns of S, in (2.5.40) are then the eigenvectors
corresponding to the D largest eigenvalues.

The dimension of the signal space is typically unknown a priori, so that D can
either be fixed in advance or be selected as a consequence of the threshold rule

A4 (R)>A, — includev,

. (2.5.43)
A R) <A, — discardv,,

where v, is the eigenvector associated with 4, and A is a constant. More-sophisti-
cated, alternative dimension estimation techniques can also be used [129].

Interference suppression based on a subspace decomposition is discussed in
several works, including [22, 29, 35,109, 129]. Timing estimation for DS-CDMA based
on an analogous type of subspace decomposition is presented in [8, 106, 129]. From
the viewpoint of adaptivity, the eigen-decomposition needed to estimate the signal
space nominally defeats any reduction in complexity achieved by reducing the num-
ber of adaptive coefficients. However, very recent work in [129] has shown that low-
complexity subspace-tracking algorithm of O (KN) complexity per update can be used
to provide subspace-based adaptivity with practical levels of complexity.

2.5.5 Numerical Examples

In this section, we present simulation results that illustrate the performance of some
of the adaptive interference-suppression algorithms discussed in the preceding sub-
sections. We first present some convergence results assuming a stationary environ-
ment and synchronous users. Figure 2.12 shows averaged SINR as a function of time
for each of the following algorithms: (i) decision-directed LMS, (ii) decision-directed
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Figure 2.12 Averaged SINR vs. time for the decision-directed LMS, decision-
directed RLS, and orthogonally anchored (blind) stochastic gradient algorithms.

RLS, and (iii) orthogonally anchored (blind) stochastic gradient. (The performance
of the orthogonally anchored RLS algorithm is nearly the same as the decision-di-
rected algorithm.) The curve for the blind algorithm assumes perfect knowledge of
the received pulse shape from the desired user (no mismatch). The convergence
curves are obtained by averaging 400 simulation runs, assuming that the spreading
codes assigned to all users are fixed. The received amplitudes corresponding to the
interferers are twice that of the desired signal. The processing gain is N = 10, there
are 7 users, and the SNR is 12 dB. In each case, the filter is initialized as the matched
filter.

This example shows that the LS algorithm converges much faster than do the
stochastic gradient algorithms. Specifically, the LS algorithm converges in approx-
imately 50 iterations, whereas the stochastic gradient algorithms require approxi-
mately 700 iterations to converge within 1 dB of the steady-state SINR. The step
sizes for both the blind stochastic gradient and LMS algorithms are the same, so
that the steady-state SINR for the blind algorithm is somewhat lower than the
steady-state SINR for the decision-directed LMS algorithm. This difference in
steady-state SINR becomes more significant as the power of the interferers
increases [31]. It is therefore desirable to switch to decision-directed mode when-
ever decisions are reliable.
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Figure 2.13 Averaged SINR vs. time for the orthogonally anchored (blind) LS and
stochastic gradient algorithms with a mismatched anchor. The blind LS and sto-
chastic gradient algorithms switch to decision-directed mode at times 100 and 300,
respectively. Also shown is SINR vs. time for the decision-directed RLS algorithm.

Figure 2.13 shows convergence plots for the blind stochastic gradient and LS
algorithms in the presence of mismatch. The mismatch was created by adding a
single multipath component offset by one chip and attenuated by 3 dB relative to
the main component. The blind algorithms are anchored to the strongest path. In
each case, the algorithm switches to decision-directed mode after a fixed number
of iterations (100 for the LS algorithm and 300 for the stochastic gradient algo-
rithm). The blind algorithms are able to improve the SINR initially but then subse-
quently suppress the signal. (Figure 2.13 does not show this since the algorithms
switch to decision-directed mode before the SINR starts to decrease.) The relatively
slow convergence of the LS algorithm is due to the large term added to the diago-
nal of the matrix ﬁi, given by (2.5.38), which constrains the length of the adaptive
filter vector. (Referring to (2.5.38), for this example, v = 50.) Note that the addi-
tional multipath component in this example improves the asymptotic SINR rela-
tive to that shown in Figure 2.12.

Figure 2.14 shows the how the arrival of a new strong interferer affects the
performance of the decision-directed RLS algorithm. The scenario used to generate
Figure 2.14 is the same as that used to generate Figure 2.12, except that there are
only six users initially, and the new (seventh) user appears at iteration 200. The
power of the new user is 18 dB above the desired user, representing a severe near-
far situation.
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Figure 2.14 Averaged SINR vs. time for the RLS algorithm. A new uscr appears at
time 200. The curve marked “ramp” corresponds to the situation where the new
user increases the transmitted power in equal increments (in dB) for a period of 50
iterations.

This example shows that the performance (average SINR) of the LS algorithm
is temporarily degraded by the appearance of the new user. This degradation in
performance is largely due to the sudden transient created by allowing the new
user to begin transmitting with full power. Also shown in Figure 2.14 is the perfor-
mance curve corresponding to the situation where the new user gradually
increases the transmitted power (linearly in dB) to the power limit within 50 itera-
tions. Although this technique mitigates the transient performance degradation, it
does add overhead in the form of additional training. (In a packet data system, this
additional overhead must be included in each packet.) Adaptive techniques that
detect the appearance of a new user are discussed in [34] and [66]. In principle, this
additional information can be used to mitigate the degradation in performance
caused by the associated transient without additional overhead.

Finally, Figure 2.15 shows a comparison of the subspace tracking algorithm of
[129] with RLS. This algorithm makes use of the projection approximation sub-
space tracking-dilation (PASTd) of [134]. Note that this simulation illustrates the
potential gain in SINR that can be obtained by reducing the number of dimensions
to be adapted from N to K. (In this example, we have increased the dimension of
the received signal to N = 31, while keeping the number of users small to illustrate
the dimension-reduction advantages of subspace methods.)
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Figure 2.15 Comparison of SINR vs. time for the subspace-tracking and RLS
algorithms (N= 31 and K = 6). Here, there are four MAIs 10 dB above the intended
user, and one MAI 20 dB above the intended user. The post-despreading SNR of
the intended user is 20 dB.

2.6 FURTHER ISSUES AND REFINEMENTS

In the preceding three sections, we have considered basic elements of adaptive lin-
ear multiuser detection. The actual application of these methods requires consid-
eration of a number of further issues, on which we touch in this section. In
particular, we discuss briefly some salient features of the mobile wireless commu-
nications environment and some additional issues arising with adaptive interfer-
ence suppression and multiuser detection in this context. Many of these issues
apply to multiuser detection in general, although the focus of our discussion is on
adaptive linear interference suppression.

2.6.1 The Mobile Wireless Environment

In the preceding sections, we have treated the adaptive multiuser detection prob-
lem primarily for the situation in which the parameters of the environment are
essentially stable. (An exception is the discussion concerning Figure 2.14, in which
the user population changes with time.) One of the primary challenges to multi-
user detection offered by the mobile wireless environment is that essentially all
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user parameters, such as received pulse shapes, amplitudes, relative carrier phase,
timing, and whether or not a particular user is active, are time-varying. Conse-
quently, these parameters must be estimated, either directly or indirectly, and the
detector must be robust with respect to inaccurate estimates. Also, the ideal model
(2.1.1)~(2.1.2) of a multiple-access data signal observed in white Gaussian noise is
not necessarily accurate for many situations. Thus, for the practical use of adaptive
interference suppression methods, many aspects of channel behavior beyond
those described in the preceding sections must be considered. In this section, we
briefly describe some of these impairments present in mobile wireless channels.
The purpose of this discussion is just to present the models of channel impairments
that are commonly used in the literature. More detailed treatments of propagation
along with justification for the channel models can be found elsewhere, for exam-
ple, in [40] or [94].

2.6.1.1 Distance-Related Attenuation and Shadowing

For terrestrial wireless communications, the received signal strength associated
with a particular user in general depends on (1) the transmitted power, (2) the dis-
tance between the transmitter and receiver, (3) the presence of large objects, such as
buildings, foliage, or vehicles, that lie between the transmitter and receiver line-of-
sight, and (4) the relative amplitudes and phases of received paths associated with
scattering off surrounding objects. The dynamic variation in signal strength due to
the motion of the transmitter relative to the receiver (or vice versa) is called fading,
or, as in Chapter 1, time-selective fading. The fade rate is the rate at which the sig-
nal experiences fades, depending on the speed of the mobile.

The second and third items listed above are considered large-scale effects,
whereas item four is a small-scale effect [94]. Large-scale effects determine the mean
signal strength averaged over a region spanning a few wavelengths in each direc-
tion. These cause relatively slow variations in the (mean) signal strength as a
mobile moves through space. Small-scale effects cause large swings in signal
strength over just a fraction of a wavelength and are superimposed on top of the
large-scale effects. As a transmitter moves relative to the receiver, the mean received
signal strength therefore varies relatively slowly, but the actual signal strength may
experience large rapid variations (i.e., 20 to 40 dB) around the mean.

Given an isolated transmitter and receiver in free space separated by distance
d, the received signal power is inversely proportional to d?. Although the presence
of buildings and other objects greatly complicates the modes of radio wave propa-
gation, both analysis and measurements indicate that the loss in signal strength, or
path loss, is proportional to d", where 7 is an integer. The value of 7 is typically cho-
sen between 2 and 5, depending on the environment considered. In general, the
denser the urban environment, the greater the path loss exponent. The value n = 4
is typically assumed for modeling urban cellular systems.
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In addition to the deterministic path loss due to distance, there is a random
component due to the location-dependent, spatial distribution of objects relative to
the mobile. That is, the path loss experienced by the mobile depends on both the
separation from the transmitter and on the particular placement of surrounding
objects that may prevent line-of-sight communications. This latter effect is called
shadowing. Measurements have shown that the random variations in path loss
around the distance-dependent mean can be modeled as a log-normal random
variable. That is, the received strength, measured in dB, has a Gaussian distri-
bution with mean specified by the distance-dependent path loss, and standard
deviation o also given in dB. A typical value of ¢ for urban cellular environments is
8 dB.

Based on the preceding discussion, we can write the received power, taking

into account distance-based attenuation and shadow fading, as
n

P(d) = P,¢ (id“—) , (2.6.1)

where P, is the benchmark received power at distance d,, and ¢ is a log-normal
Gaussian variable with probability density

p-(x) =101, (2.6.2)
2.6.1.2 Multipath

As discussed previously, multipath is caused by scattering and/or reflections of
the transmitted signal off surrounding objects. Given a complex baseband trans-
mitted signal s(f), the effect of multipath is to produce the sum of many delayed
and weighted versions of the transmitted signal. Specifically, the received signal
(in the absence of noise) is given by

M
Y= a,st=v,), (263)
m=1

where each term in the sum corresponds to a different path, M is the total number
of paths, and a,, and v,, are the the path weight and delay associated with path m.
Given a complex baseband transmitted signal s(t), the path weights a,, are also
complex in general. (Note that the multiuser multipath signal of (2.4.42) consists of
the superposition of K such signals, in which for the kth signal we have M = M,,
Ay = O, mAk’ and Vin = Thym )

If the delays v, in (2.6.3) are sufficiently large, then the paths represented by
the terms in the sum in (2.6.3) are said to be resolvable. That is, the receiver is able to
distinguish the different paths and possibly combine them. For two paths to be
resolvable, the relative time delay between them, v,, must be greater than 1 / W,
where W is the signal bandwidth. In urban environments where significant scat-
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tering occurs, each path in (2.6.3) generally represents the sum of many “micro-
paths,” which arrive within the resolution time. The relative phases of these
scattered paths cause the path weight a,, to fluctuate randomly. If there is no line-
of-sight path, as is often the case in an urban environment, then the real and imag-
inary parts of a,, are typically modeled as Gaussian random variables. In this case,
the magnitude of a,, has the Rayleigh probability density

LR =0
pr(r) =173 r , (2.6.4)
0 r<<0

where o7 determines the mean and variance. The phase of a,, is uniformly distrib-
uted. Adding a line-of-sight component to the received path results in an envelope
that has a Ricean distribution.

From (2.6.3), the transfer function of a single-user multipath channel can be
written as

M

H(f)= > a,e " (2.6.5)

m=1

If there is only a single resolvable path, then the magnitude of H(f) is the magni-
tude of a,, which is independent of frequency. This type of channel is called a “flat
fading” channel because the fading occurs uniformly across the entire signal band-
width. If there is more than one resolvable path, then the magnitude of H(f)
depends on f, so that, as discussed in Chapter 1, this type of channel is called a “fre-
quency selective” fading channel.

The average received power corresponding to each path specifies the multi-
path power delay profile of the multipath channel. This power delay profile can vary
considerably, depending on the mobile environment (e.g., rural, urban, hilly). An
assumption that is sometimes made for transmission of DS-CDMA signals is that
the power delay profile is continuous and decays exponentially. If the received sig-
nal is sampled at the chip rate, then the channel is modeled by (2.6.5), where the
delays are integer multiples of the chip duration.

It remains to describe how the multipath channel varies with time. The
resolvable paths, associated with the delays v,, tend to change slowly in compari-
son with the coefficients a,,. Consequently, it is reasonable to assume that the paths
are fixed but that the coefficients a,, are time-varying. The time variation in the
coefficient a,, is due to Doppler shift, which causes the phases associated with all
of the unresolvable paths contributing to path i to vary with time. If the mobile
is receiving a carrier with wavelength 4 and is traveling with velocity v at an
angle 0 relative to the transmitter, the change in frequency, or Doppler shift, is

fq=(v/7) cos@.
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The effect of the Doppler shift is to cause each coefficient a,, to rotate. This
model assumes, however, that the mobile receives a single path coming from a spe-
cific direction. If the mobile receives many such paths, arriving at different angles,
then the time variations of the multipath coefficients becomes more complicated.
In that case, a,, (f) is modeled as a random process. For urban mobile cellular sys-
tems, uniform scattering is often assumed, which means that the received spatial
power density is a constant function of angle. In that case, it can be shown that the
power spectral density associated with a, (f) is given by

Sp(f) = K (2.6.6)

fimf?
for |f| <fy, where K is a constant that determines the power of the random
process, and f, = v// is the maximum Doppler shift.

For the case of uniform scattering, the coefficients a,,(f) can therefore be mod-
eled as the output of a filter with frequency response ,/S,,(f) in response to a com-
plex white Gaussian noise input [94]. An alternative, known as Jake’s model [40],
is to generate a,(f) by summing complex sinusoids at different frequencies
between -f,and f;, each weighted by the associated value of \/?D .An example of a
Rayleigh fading process, which was generated according to the first method, is
shown in Figure 2.16.

Consider a wireless multiple access channel in which each user is subject to
flat fading. In principle, the MMSE solution for the time-varying linear filter (for a
desired user) must take into account the channels associated with all users. How-
ever, if the number of users is much less than the processing gain and the back-
ground SNR is very high, then the MMSE solution can be approximated by the
zero-forcing solution, which does not depend on the channel coefficients. That is,
the space spanned by the interferers does not depend on the complex channel coef-
ficients. The adaptive algorithm is therefore relieved from the task of tracking the
channels associated with the interferers. Furthermore, the adaptive algorithm does
not need to track the flat fading channel associated with the desired user when
either differential detection or a pilot signal is used. Consequently, we conclude
that for flat fading channels, when the number of users is small relative to the pro-
cessing gain, the performance of adaptive algorithms should be insensitive to the
fade rate (provided that the desired user’s channel can be tracked). Simulation
results that support this observation are presented in [33].

Now, consider the case where each user experiences frequency selective fad-
ing. Recall that the received signal vector contributed by user k after chip matched
filtering and sampling is given by (2.4.45) and depends on the time-varying com-
plex coefficients associated with each path. If each path fades independently, then
the interference space is time-varying, so that the adaptive algorithm attempts to
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Figure 2.16 Sample path of the magnitude of a Rayleigh fading process.

track the time-varying multipath coefficients associated with all users. If the fade
rate is sufficiently fast, then the adaptive algorithm is unable to track the combined
set of paths for each user and attempts to suppress each path individually. This
action, however, degrades the performance of the adaptive filter since it effectively
treats each path as a separate interferer. In the worst case, the multipath con-
tributed by the interferers exceeds the number of dimensions (e.g., the processing
gain) that the filter has available to suppress interferers, and the performance
becomes equivalent to the matched filter. Tracking is therefore a critical issue for
frequency-selective fast fading channels.

Results showing the performance of adaptive interference suppression algo-
rithms in the context of DS-CDMA with Rayleigh fading channels are presented in
[33, 60, 85, 126, 127]. In [60], a phase predictor is combine with differential coding
and detection, whereas in [85], [126], and [127], phase prediction is combined with
coherent detection by using a training sequence that must be transmitted periodi-
cally. A differential LS algorithm that does not rely on phase prediction is described
in [33], which also shows performance results for a cellular type of model with flat
Rayleigh fading channels.

2.6.1.3 Delay

Another time variation associated with mobile wireless channels is caused by prop-
agation delay. As the mobiles move, the arrival times of the transmitted signals
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change, which changes the cross-correlations between received signals. However,
this change in delay occurs very slowly relative to the chip duration for chip rates
and mobile speeds of interest. (For example, assuming a chip rate 0f 107 chips/s and
that the mobile is approaching the base station at a speed of 65 mph, the propaga-
tion delay changes by less than one chip/s.)

2.6.1.4 Power Conftrol

Power control is a technique used in currently implemented DS-CDMA mobile
telephony systems to alleviate the near-far problem. The basic idea of power con-
trol is to provide feedback to mobile transmitters to control their transmitted
power levels to yield equal power at the receiver from all mobile transmitters.
Since interference suppression techniques can potentially alleviate the near-far
problem in DS-CDMA, their use can loosen the requirements on power control.
However, as developed in detail in Chapter 5, power control can still benefit per-
formance, with or without interference suppression, and can also reduce the
power dissipated by mobile handsets, thereby extending battery life. For the
matched-filter detector, the objective of power control for the reverse link is to
ensure that all users detected at the base station are received with equal power. For
mobile cellular systems, effective power control requires a feedback channel
through which the receiver informs the transmitter to raise or lower the transmit-
ted power in small increments (e.g., 1 dB). The effectiveness of the power control
depends, of course, on how frequently the power updates are transmitted over the
feedback channel and the probability of power control errors (i.e., a “raise” com-
mand is received as a “lower” command, or vice versa).

For mobile cellular, it is generally assumed that a practical power control
algorithm can respond quickly enough to compensate for shadowing and dis-
tance-related attenuation but that it cannot compensate for fast Rayleigh fading
due to multipath. Consequently, the received power of a signal that experiences
flat Rayleigh fading will experience large, short-term variations in power, but the
power averaged over these short-term fades can be set at some target value. It is
observed in [123] that for the type of closed-loop adaptive power control previ-
ously described, the distribution of the average received power due to variations
caused by updates and power control errors is log-normal. The variance (in dB) of
the received power reflects how “tight” the power control is. For the matched filter
receiver, very tight power control is required for adequate performance, which
means that the standard deviation of the received signal power must be approxi-
mately 1 to 1.5 dB.

To optimize performance, the power control algorithm should ensure that the
error rate for each user is at the maximum acceptable value. For the matched filter
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receiver, this scheme is the same as equalizing received powers; however, this
equivalence is no longer true for receivers with interference suppression. Power
control issues and effects are discussed in significantly more detail in Chapter 5.

2.6.1.5 Time-Varying User Population

In addition to time-varying channels, in a mobile cellular environment the set of
interferers also varies with time. The interference suppression algorithm must be
able to compensate for the appearance of new users, as well as for the disappear-
ance of existing users. “Users” may be associated with calls, in the case of circuit-
switched traffic, or with individual packets, in the case of packet-switched traffic.
Note that in the latter case, packets may arrive and depart frequently, causing fre-
quent transients in the interference environment that an adaptive algorithm must
track. Even in the case of circuit-switched voice traffic, an adaptive algorithm must
adapt to the set of users currently speaking in order to obtain the potential gains in
capacity due to voice inactivity. (In practice, when a user is silent, the power of the
transmitted signal is not set to zero but is significantly reduced so that synchro-
nization and channel tracking can be maintained.)

The rate at which users arrive and depart determines the average traffic load,
measured in Erlangs per cell [124]. Specifically, assuming Poisson arrivals at rate .
per cell (assumed to be the same for all cells) and an average service rate (per call
or packet) given by u, the average number of users in the system is C(4/u), where
C is the number of cells and //u is measured in Erlangs per cell. It is typically the
case that in a DS-CDMA system, the average number of users present in the system
greatly exceeds the processing gain. This implies that the zero-forcing solutions
previously discussed do not exist. However, if the number of strong interferers is
significantly less than the processing gain, then the linear MMSE detector can
effectively suppress these interferers, while treating weak users (e.g., in other cells)
as background noise.

We saw from Figure 2.14 that the appearance of a new strong interferer can
cause a transient performance degradation in adaptive algorithms. As the traffic
load increases, these transients become more frequent. Since, in packet data sys-
tems, the appearance of a new user does not necessarily refer to a new call but rather
to a new data packet, rapid convergence in response to the appearance of new users
is therefore a requirement for adaptive interference suppression in a packet data cel-
lular system. Simulation results for a cellular type of model with stochastic arrivals
and departures indicate that an adaptive interference suppression filter using the
stochastic gradient algorithm is inadequate for this application, even under moder-
ate traffic loads [29]. Thus, more rapid adaptation techniques are needed for this
application.
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2.6.1.6 Narrowband Interference

The fact that DS-CDMA systems spread transmitter power over a wide bandwidth
allows the possibility that such systems can be overlaid on existing narrowband
communication services without undue degradation of either the narrowband or
the spread-spectrum service. (The same property allows antijamming capability in
military spread-spectrum systems.) Although spread-spectrum communications
are inherently resistant to the narrowband interference (N BI) caused by such coex-
istence with conventional communications, it has been demonstrated that the per-
formance of spread-spectrum systems in the presence of narrowband signals can
be enhanced significantly through the use of active NBI suppression prior to
despreading. In particular, not only does active suppression improve error-rate
performance [9], but it also can lead to increased CDMA cellular system capacity
[75] and improved acquisition capability [62].

Over the past two decades, a significant body of research has been concerned
with the development of techniques for active NBI suppression in spread-spec-
trum systems. All of these techniques essentially seek to form a replica of the nar-
rowband signals that can be subtracted from the received signal before data
demodulation takes place. The formation of the replica may use predictors or inter-
polators to explicitly exploit the narrowband nature of the NBI against the wide-
band nature of the DS-CDMA signal (cf. [61, 98, 122, 131]), or it may use more
detailed structural information in the case of digital NBI (which also arises in mul-
tirate CDMA systems) [83, 99]. In the latter case, a form of linear multiuser detec-
tion is essentially being used. Surveys of advances in this area are found in [61] and
[80]. More recently, the adaptive MMSE detection techniques described in Sections
2.3 through 2.5 have been shown to work quite well against combined MAI and
NBI of all types [87, 88].

2.6.1.7 Non-Gaussian Ambient Noise

Much of the development and analysis of interference suppression techniques for
wireless systems has focused on situations in which the ambient noise is Gaussian.
As noted in Section 2.2, this model has allowed the research in this area to focus on
the main interference sources, namely structured interference (MAI and NBI).
However, for many of the physical channels arising in wireless applications, the
ambient noise is known through experimental measurements to be decidedly non-
Gaussian. This is particularly true of urban and indoor radio channels [54, 55, 57]
and underwater acoustic modem channels [11, 12, 56]. For these channels, the
ambient noise is likely to have an impulsive component that gives rise to larger tail
probabilities than is predicted by the Gaussian model. When the structured inter-
ference dominates, the lack of realism of the ambient noise model is perhaps not
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crucial. However, with multiuser detection, the MAI-limited nature of multiple-
access channels is mitigated and the nature of the ambient noise is more important.

It is widely known in the single-user context that non-Gaussian noise can be
quite detrimental to the performance of conventional systems based on the Gauss-
ian assumption. On the other hand, the performance of signaling through non-
Gaussian channels can be much better than that for corresponding Gaussian
channels if the non-Gaussian nature of the channel is appropriately modeled and
ameliorated. (The latter typically involves the use of nonlinear signal processing.)
Neither of these properties is surprising. The first is a result of the lack of robust-
ness of linear and quadratic type signal processing procedures to many types of
non-Gaussian statistical behavior [42]. The second is a manifestation of the well-
known least-favorability of Gaussian channels.

In view of the lack of realism of an AWGN model for ambient noise arising in
many practical channels in which multiuser detection techniques can be applied,
natural questions arise concerning the applicability, optimization, and perfor-
mance of multiuser detection in non-Gaussian channels. Although performance
indices such as MSE and SINR for linear detectors are not affected by the distribu-
tion of the noise (only the spectrum matters), the more crucial bit-error rate can
depend heavily on the shape of the noise distribution. The results of an early study
of error rates in non-Gaussian DS-CDMA channels are found in [1, 2, 3], in which
the performance of conventional and modified conventional detectors is shown to
depend significantly on the shape of the ambient noise distribution. In particular,
impulsive noise can seriously degrade the error probability for a given level of
ambient noise variance in systems designed for Gaussian noise. In the context of
multiple-access capability, this implies that fewer users can be supported with con-
ventional detection in an impulsive channel than in a Gaussian channel. However,
since non-Gaussian noise can, in fact, be beneficial to system performance relative
to Gaussian noise if properly treated, the problem of joint mitigation of structured
interference and non-Gaussian ambient noise is of interest [79]. An approach to
this problem for NBI in spread-spectrum systems is described in [20]. Some very
recent results along these lines for the case of MAI are reported in [81] and [128],
the latter of which describes nonlinear adaptive methods that generalize the
MMSE approach described in Sections 2.3 through 2.5.

2.6.2 System Issues

In addition to algorithmic issues such as performance and complexity, it is impor-
tant to determine how adaptive interference suppression will affect other com-
munication system requirements. These system issues are currently not well




116 Adaptive Interference Suppression Chap.2

understood, so the following discussion is necessarily very brief (relative to impor-
tance).

2.6.2.1 Coding

As discussed in Chapter 1, coding and interleaving are typically used to achieve
reliable communications over fading channels. For example, in the commercial IS-
95 standard DS-CDMA air interface, a rate one-third binary convolutional code is
used on the aplink and simultaneously serves to spread the bandwidth. Conse-
quently, to achieve the same degree of spreading with coding, as compared to
without coding, the length of the pseudorandom (PN) sequence associated with
each bit must be reduced by a factor of three. When used with linear interference
suppression, this reduction in PN-sequence length reduces the degrees of freedom
available to suppress interference. (The trade-off is that the coding may be able to
compensate for the residual interference.) In other words, a low-rate code robs
“dimensions” from the interference suppression filter. This trade-off does not
apply to interference cancellation techniques, in which the interference is regener-
ated and substracted from the received signal [73]. (See also Section 2.2.)

The preceding observation implies that it is best to use high-rate codes with
linear interference suppression, rather than low-rate codes. This has also been
noted in [97] and [69]. However, existing high-rate codes, such as Ungerboeck
codes [110], rely on relatively dense constellations (such as 8-PSK), which may
pose additional problems (e.g., with phase tracking) in a fading environment.

Another issue is that if uncoded symbols are used for decision-directed adap-
tation, then a more powerful coding scheme implies a higher decision-error rate in
the adaptive algorithm (assuming a fixed target error rate). There is, therefore, a
trade-off between the performance gain due to coding and the performance loss
due to uncoded decision errors in the adaptive algorithm (assuming that the delay
associated with using decoded symbols to direct the adaptation is unacceptable in
a fast-fading environment).

2.6.2.2 Power Control

For DS-CDMA systems that use the conventional matched-filter receiver, power
control is crucial for mitigating the near-far problem. Also, as noted previously,
power control has the advantage of lowering the transmitted power for each user
and thereby extends battery life. For the conventional matched-filter receiver,
power control is typically used to equalize the received powers [123]. (A further
advantage of this use is that it helps avoid saturation of nonlinear receiver ele-
ments, such as fixed-point processors.) However, in general, the goal of optimum
power control is to adjust the transmitted powers so that the received SINRs corre-
sponding to all users being detected are equal [6]. Although multiuser detection
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and interference suppression techniques can alleviate power control requirements,
power control can enhance the performance of interference suppression tech-
niques. The interaction of adaptive power control with adaptive interference sup-
pression has only begun to receive attention. Chapter 5 develops a promising
framework for exploring this interaction.

2.6.2.3 Timing Recovery

The discussion in preceding sections has assumed that the receiver is perfectly
synchronized to the desired user. It has been observed that timing offsets can
significantly degrade the performance of some multiuser detectors [13, 137]. This
observation, however, is implementation dependent. An advantage of the adap-
tive TDL implementation for linear interference suppression is that it is analo-
gous to an adaptive, fractionally spaced equalizer (for a single-user channel),
which is known to be insensitive to timing offset [91]. Furthermore, timing recov-
ery for the multiple-access channel with an adaptive, fractionally spaced TDL can
be accomplished analogously to a single-user channel. The combination of timing
estimation with adaptive linear interference suppression is studied in [52, 102,
129].

2.6.2.4 Nonuniform Quality of Service

An important difference between linear interference suppression techniques and
the matched-filter receiver is that the former relies on the use of short spreading
sequences, whereas the latter can use either short or long spreading sequences. A
very long spreading sequence, such as used in IS-95, is equivalent to selecting a dif-
ferent random spreading sequence for each bit (“code hopping”). An advantage of
code hopping is that each user sees approximately the same performance, assum-
ing perfect power control, since averaging the performance over the sequence of
transmitted bits is equivalent to averaging over spreading sequences.

In contrast, the solution for MMSE, given by (2.4.20), implies that the MMSE
depends on the particular assignment of spreading codes to users (as well as rela-
tive amplitudes and phases). Furthermore, the MMSE will generally be different
for different users. Consequently, even though average performance (i.e., error
probability averaged over all spreading sequences) may be very good, some users
may have relatively poor performance because the spreading codes assigned to
two users may have relatively high cross-correlation. This observation is made in
[117] and is analyzed in [36].

To illustrate the preceding observation, Figure 2.17 shows the distribution
(computed via simulation) for SINR assuming that the user signature sequences
are selected randomly (i.e., each element of the vectors p,, k=1,..., K, is deter-
mined by a fair coin toss). In this example, the processing gain N = 30, there are 10
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Figure 2.17 Distributions for signal-to-interference ratio assuming random sig-
nature sequences. Results for both the linear MMSE detector and the matched fil-
ter are shown.

“strong” (i.e., intracell) users, 50 “weak” (i.e., other-cell) users, and the signal-to-
background noise ratio is 25 dB. The received powers (for members of each set of
strong and weak users) were selected from a log-normal distribution. The SINR
distribution for the matched-filter receiver is also shown.

The results in Figure 2.17 indicate that there is a significant spread in perfor-
mance ( > 10 dB) over the user population. Note that if a very long spreading
sequence (as in the IS-95 standard) is used, the distribution for the matched-filter
becomes a point mass at the average of the distribution shown in Figure 2.17 (-10
dB).

Power control may help to improve the performance of users experiencing
poor performance only in some situations. For example, two adjacent users may be
assigned “nearby” codes, meaning that their cross-correlation is large. If the adja-
cent users are transmitting to the same receiver, then power control cannot signifi-
cantly improve performance for both users. However, if the users are transmitting
to different receivers (i.e., if they are in different cells), then it may be possible for
one of the users to reduce power, thereby reducing interference to the other user.

Finally, we remark that the significant spread in performance shown in
Figure 2.17 assumes a static situation in which the set of users and relative ampli-
tudes and phases are fixed. In a mobile wireless network, these parameters are
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time-varying, which should alleviate this problem to some degree. In addition,
path or space diversity may also reduce the likelihood of having relatively high
cross-correlations with neighboring users.

2.6.2.5 Very Long Spreading Sequences

The model that we have proposed in this chapter has addressed primarily the sit-
uation in which the received signaling waveform of each user is the same in each
symbol interval (aside from fading and other channel effects). As discussed in the
previous section, in some current DS-CDMA systems (such as the IS-95 digital cel-
lular standard), this model is not accurate because the period of the spreading
waveform spans many bits. Theoretically, this distinction is not overly significant.
However, practically, it is quite significant. Since the key parameter determining
performance of DS-CDMA systems is the number of chips per symbol, not the
number of chips per period of the spreading code, this use of long spreading codes
is primarily of value in providing uniform quality of service over the user popula-
tion, as discussed in the preceding section, and in avoiding the need to assign (or
reassign) codes to each new call (or to an existing call that is handed off to an adja-
cent cell). In the decision whether or not to use short or long codes in future DS-
CDMA standards, these advantages should be weighed against the performance
advantages offered by practical multiuser detection.

2.6.2.6 Power Consumption

Since mobility is one of the main motivations for using wireless communications,
the practicality of many of the techniques described in this chapter depends heav-
ily on the ability to implement them in portable, battery-operated handsets. Thus,
the issue of energy consumption is of considerable importance in the development
of interference suppression algorithms for wireless systems. In cellular systems,
there is an asymmetry with respect to this issue, in that the base station (i.e., the
uplink transceiver) is relatively unconstrained by energy consumption, whereas
the mobiles (i.e., the downlink transceivers) are severely constrained. So, the use of
sophisticated signal processing, such as multiuser detection, at the base station
does not pose a serious energy-consumption problem. Since these techniques
allow better performance for a given level of received signal energy than do con-
ventional methods, the use of such methods in the base station can reduce required
transmitter power at the mobiles, thereby reducing overall battery requirements
for portable transceivers. However, the advantages of adaptive linear multiuser
detection, multipath mitigation, etc., can significantly enhance the downlink per-
formance as well. (Also, point-to-point systems do not necessarily feature fixed,
nonportable transceivers.) Thus, energy-efficient techniques for the linear adaptive
algorithms discussed in this chapter are of considerable interest.
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One technique for achieving energy efficiency in the MMSE detector is
described in [88]. In particular, energy consumption in integrated circuits is an
increasing function of gate speed. Since the algorithms of interest here should be
implemented at the signaling rate (i.e., at the symbol rate), the algorithms cannot
be slowed down to reduce energy consumption. However, as shown in [88], the
blind RLS MMSE detection algorithm can be implemented with a slower gate
speed by being mapped to a systolic array. This mapping allows the individual
gate speed to be reduced significantly without a corresponding reduction in the
speed at which the algorithm updates its coefficients.

2.7 CONCLUDING REMARKS

In this chapter, we have discussed the use of adaptive signal processing techniques
to suppress structured interference in wireless systems. We have focused on the
suppression of multiple-access interference and have primarily considered tech-
niques that are based on the MMSE method of linear multiuser detection. As we
have seen, MMSE detection provides many of the performance advantages of opti-
mal multiuser detection, without its attendant complexity. Moreover, the MMSE
detector lends itself to a great variety of adaptive methods, and it is relatively
robust to other types of interference (such as narrowband interference).

The results presented in this chapter have largely been of a research nature,
consistent with the primary mission of the present volume. However, we have also
mentioned, in Section 2.6, a variety of other issues that are of concern in bringing
these methods to practice. These practical issues present a wealth of other research
questions, many of which are currently being addressed by the community.
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Equalization of
Multiuser Channels

Haralabos C. Papadopoulos

In this chapter, we consider the scenario where multiple users are communicating
over a wireless channel of fixed bandwidth and focus our attention on the design
of receivers that compensate for distortion introduced by the propagation
medium. As discussed in Chapter 1, propagation of any of the transmitted signals
through the wireless channel results in a collection of several delayed and scaled
copies of the transmitted signal at the receiver (often referred to as multipath prop-
agation) giving rise to frequency-selective fading. In addition, due to the changing
environmental medium between the transmitters and the receivers, especially in a
mobile setting, the channel response varies with time, giving rise to time-selective
fading. From the point of view of the receiver design, these effects can be described
in terms of a random linear time-varying channel model and give rise to the need
for equalization in order to reliably demodulate the information-bearing signals of
interest.

A form of interference particular to multiuser communication systems arises
from the presence of the signals of additional users; the channel often exacerbates
interference between users, and so the receiver must also take into account and
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compensate for this additional form of interference. As discussed in detail in the
preceding chapters, this type of interference, usually referred to as cochannel or
multiple-access interference (MAI), is a dominant one in multiuser systems and
has often dictated practical system design. For instance, in conventional time-divi-
sion multiple-access (TDMA) systems where users transmit and receive informa-
tion in nonoverlapping time slots, guard times are often used to compensate for
imperfect synchronization and spreading of transmitted symbols over time due to
multipath effects, resulting in limiting the system efficiency. Similarly, MAT is also
present in code-division multiple-access (CDMA) systems in which each user’s
transmitted signal occupies all the available bandwidth at all times. Although in
CDMA systems that are synchronous (e.g., the forward link of cellular systems)
and that have a limited number of users, MAI can be made zero or negligible by
maintaining orthogonality among users, it is hard to maintain synchronization and
thus orthogonality in asynchronous CDMA systems (e.g., the reverse link of a cel-
lular system) [1]. Moreover, user nonorthogonality is often allowed in CDMA sys-
tems as a method for accommodating higher numbers of users at the expense of
MAL A number of equalization methods that we discuss in this chapter deal effec-
tively with MAI and can potentially result in increased system efficiency in terms
of the number of users that can be accommodated in a given bandwidth, as well as
system reliability and robustness.

This chapter is structured as follows. In Section 3.1 we briefly describe some
convenient and accurate models for fading channels that will serve as a basis for
our subsequent development of equalizer structures. In the process, we summa-
rize some of the key parameters that are used to characterize fading channels, sug-
gesting how they impact equalizer design in wireless systems.

Section 3.2 focuses on channel equalization and symbol detection in the sce-
nario that the channel is known at the receiver. This model inherently assumes that
reliable channel estimates can be formed at the receiver via training sequences,
which remain accurate during equalizer operation. We first summarize the charac-
terization of multiuser detectors over fading channels that minimize the probability
of making a symbol sequence error. Although the resulting maximum-likelihood
(ML) sequence detectors are, in general, impractical in terms of their computational
complexity, they provide insight into the structure of the detection problem. Fur-
thermore, an information-lossless front end arises in their construction, which is
employed in a variety of suboptimal but practical detectors. We examine a number
of such practical equalizers, including properly constructed multiuser generaliza-
tions of common single-user equalizers. In particular, we discuss the single-user
matched-filter (MF) detector for time-varying channels, multiuser linear equalizers,
and a number of nonlinear detectors including decision-feedback equalizers.
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In the design of all equalizers in Section 3.2 it is assumed that the channel is
known at the receiver, which, as discussed above, usually implies that some form
of training is used, either during initialization or, in the presence of time-selective
fading, as part of every transmitted frame. Unavoidably, the use of training results
in symbol rate reduction.

In Section 3.3 we discuss equalization and symbol estimation in the absence
of training, in which case the channel is effectively treated as unknown. In order to
simplify equalization and make it feasible in wireless applications, one class of
actively pursued approaches assumes that the receiver uses multiple antennas or,
in the context of excess bandwidth transmission, that it oversamples the received
signal and subsequently uses this additional information to recover both the sym-
bol stream and the channel responses from short observation intervals. A large
number of these approaches currently attracting extensive attention in the com-
munity focus on equalization of linear time-invariant (LTI) channels that have
finite impulse response (FIR). We present a few representative examples of such
approaches in the general single-user case and discuss some challenging issues
that can often arise in practice. These techniques are applicable to the forward link
of conventional multiuser mobile communication systems where the transmission
of the signals of all users is synchronous. Finally, we consider blind equalization on
the reverse link and, in particular, in the context of asynchronous CDMA systems,
where user signature information is exploited for separating the individual symbol
streams.

3.1 CHARACTERIZATION OF WIRELESS CHANNELS

Before we discuss equalizer design for multiple-access communication over wire-
less channels, it is important to briefly describe the models that are generally used
to characterize these channels, as well as some of the model parameters that may
play a role in the selection of the equalization strategy. See e.g., [2] for a more exten-
sive introduction in the characterization of fading multipath channels.

Throughout this chapter, we address the problem of equalization in terms of
the equivalent low-pass communication system. A real bandpass transmitted sig-
nal of bandwidth W is represented by an equivalent complex-valued circularly
symmetric baseband signal that is bandlimited in [-W/2, W/2]. If the (equivalent)
low-pass continuous-time signal x(f) is transmitted over the (equivalent) multipath
fading channel, it is received as

rt) = th(t; Ox(t— 1) dr + w(b), 3.1)
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where /i(t; T) denotes the (equivalent) complex-valued response of the medium at
time t to an impulse applied at t — 7, and w(t) corresponds to complex-valued mea-
surement noise. The impulse response /i(t; 7) is generally well modeled as a zero-
mean complex-valued Gaussian random process, which is stationary as a function
of t for any fixed 7. Its envelope | i(t; 7) | for any t and 7 is Rayleigh distributed, and
for this reason this channel is often referred to as a Rayleigh fading channel. Exam-
ination of the autocorrelation function of /i(f; 1)

00Ty, 1o A = E[h( 1))l (E+ AL 7,)]

reveals a number of key parameters in channel characterization that usually influ-
ence system design.' In most wireless media, the response with path delay 7, is
uncorrelated with the response with path delay 7,, where 7, # 7,, a phenomenon
referred to as uncorrelated scattering. Due to uncorrelated scattering, we need only
consider ¢, (7|, 7,; Af) for 7, =71, since ¢, W (T, Ty AD) =@, (T, A O (T — T5),
where

0, (t; Ay 2 E[h(t; Oh" (t + AL 7).

The function ¢, (z; 0) is generally referred to as the multipath intensity profile, or
the delay power spectrum, and corresponds to the average power output of the
channel as a function of the delay t; if an impulse is transmitted at time t = { , we
have

E[|rt, + 0|1 = 0,(; 0), (3.2)

where 7 () is given by (3.1) in the absence of additive noise. The range of values of
t over which ¢, (z; 0) is non-zero corresponds to the multipath (or delay) spread of
the channel and is henceforth denoted by Tr’l’]. Equation (3.2) is often used as a basis
for estimating the multipath intensity profile. For instance, an estimate of ¢, (z; 0)
for0=r= Tr/r’l can be formed by averaging the power of the r-delayed channel
response of each pulse in a sequence of T-spaced pulses of very short duration,
where T is chosen so that T > Tr/;.

The Fourier transform of ¢, (z; At) is denoted by @, (Af; At) and is typically
referred to as the spaced-frequency, spaced-time correlation function. The range of
Af values over which @, (Af; 0) is non-zero is a measure of the coherence band-
width of the channel and is denoted by (Af)!; due to the relationship between
®, (Af; 0) and ¢, (z; 0), (Af)lc’ equals the reciprocal of the multipath spread. If the
bandwidth of the information-bearing signal is small as compared to the coherence
bandwidth (Af )!, the channel is said to be frequency-nonselective; the channel fre-
quency response is effectively flat over the transmission bandwidth. If, on the
other hand, the bandwidth of the information-bearing signal is larger than (Af )",

'Throughout this chapter, we use the superscript * to denote complex conjugation.
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the channel is termed frequency-selective; the different frequency components of
the transmitted signal are affected differently by the channel.

The Doppler spectrum S, (4) is used in characterizing the time variations in
the channel; it corresponds to the Fourier transform of @, (Af; Af) with respect to
the At variable evaluated at Af = 0. If a pure tone exp (j 27/, ) is transmitted over a
channel with Doppler spectrum S, (4), then in the absence of noise,

S,(4,) = JE [r (7" (t + AD] dAL. (3.3)

In practice, (3.3) may form the basis of a strategy for estimating the Doppler spec-
trum. Specifically, we can obtain an estimate of S, (4) at a frequency 4, by transmit-
ting a pure tone exp (j 27/, t), cross-correlating the received signal with At-delayed
versions of itself so as to form estimates of E [r (f)r"(t + At)], and then using these
estimates in (3.3). For channels i (t; 7) that are time-invariant, S, (1) reduces to a Kro-
necker delta function. Therefore, when there are no time variations in the channel,
no spectral broadenin,cﬂy of the transmitted signal would be observed at the receiver.
The Doppler spread B corresponds to the range of / values over which S, (1) is es-
sentially non-zero, and its reciprocal is generally referred to as the coherence time of
the channel and is denoted by (AD!.In general, we refer to a channel as slowly time-
varying if the intersymbol period T, of the information-bearing signal is much
smaller than the associated coherence time (Af)] or, equivalently, if the Doppler
spread is much smaller than the symbol rate. In a number of wireless communica-
tion schemes where the fading channel is assumed to be known at the receiver, the
channel is slowly time-varying so that its measurements via training sequences re-
main accurate over reasonably long sequences of symbols.

The product T!'Bl; is usually referred to as the spread factor of the channel
and is often taken into account in communication system design. A channel i1(t; 1) is
said to be underspread if T'B" <1, and overspread otherwise. Consider, for
instance, a channel for which TTI;BZ < 1. Assume also that given an available band-
width W, the associated intersymbol time T satisfies T ~1 / W. Then, we can
choose the bandwidth so that W< 1/T/" and T, < 1/B/}, i.e., so that the channel is
frequency-nonselective and slowly time-varying. On the other hand, if the channel
is overspread, it is not possible to select T and W so that the resulting channel is fre-
quency-nonselective and slowly time-varying.

3.2 EquALizATION OF KNOWN MuLTIPATH FADING CHANNELS

In this section, we focus on multiuser equalization techniques for multipath fading
channels in the case that the channels are known at the receiver. As discussed ear-
lier, this assumption implies that channel measurements can be made via training




134 Equalization of Multiuser Channels Chap. 3

that result in reasonably accurate channel estimates, which can then be used in
symbol detection. In general, training can be introduced via a variety of methods
For instance, if the channel is slowly tlme -varying, i.e., the symbol rate T is larger
than the Doppler spread of the channel B 4 training can be temporally mterspersed
with the data; the transmission is temporally partitioned into frames during which
the channel can be first identified via a training stage and then assumed known
for the next several symbols. Alternatively, training can be interspersed spectrally
with the data; a (known) pilot tone occupying a fraction of the available bandwidth
may be included as part of the transmitted signal at all times. As discussed in
Chapter 2, yet another approach is the one used in a number of practical equaliza-
tion schemes which are known as decision-directed; there is an initial identification
period during which training data are used to identify the channel, followed by an
adaptation stage during which current estimates of the channel response are used
to obtain symbol estimates and subsequently these symbol decisions are used to
update or adapt the current channel estimates.

A number of distinct channel models may arise depending on the bandwidth
and the symbol rate of the signaling scheme and the channel parameters. As dis-
cussed in Section 3.1, the overall channel model we use is linear and time-varying
(LTV). The channel is often very slowly time-varying (i.e., (AD"> T ), so that during
the transmission of a long stream of data symbols the channel response remains ef-
fectively constant; in this case, the LTI model is often a naturally suited description
of the channel. When in addition the multipath spread of the channel is much
smaller than that the intersymbol period, i.e., Tr]; <T,,an additive white Gaussian
noise channel model may adequately capture the key channel characteristics. We
discuss equalization in the general case where the channel is LTV, often specializing
the resulting processors to LTI and additive white Gaussian noise channels.

We consider several equalizer design criteria that result in distinct systems
with diverse performance-complexity characteristics. In particular, we discuss a
number of equalizers for use in a multiuser setting that arise as natural extensions
or generalizations of known single-user equalizers.

In Section 3.2.1 we describe the general system model and also develop a dis-
crete-time system arising in chip-rate sampling equalizers, which are equalization
systems whose front ends consist of low-pass filtering followed by continuous- to
discrete-time conversion.

In Section 3.2.2 we describe the maximum-likelihood (ML) sequence detector
for the general LTV channel. This detector obtains an intermediate sequence of suf-
ficient statistics from which the ML sequence estimate can be determined.
Although their complexity makes ML sequence detectors impractical in general,
computation of the sufficient statistics sequence has been used as a front end for a
number of suboptimal but practical equalization algorithms.
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Section 3.2.3 discusses the matched-filter detector generalization in the LTV
case, which is the optimal single-user, single-symbol detector and is typically re-
ferred to as the RAKE receiver. The performance of this receiver in a single-user,
single-symbol transmission provides an upper bound on the detection performance
for any multiuser detector. In a multiuser setting, this low-complexity single-user
receiver suffers in general from intersymbol interference (ISI) and MAL.

In Section 3.2.4 we discuss multiuser extensions of the single-user, linear
zero-forcing (ZF) equalizer. These linear detectors operate on the sequence of suf-
ficient statistics and completely remove ISI and MAI, but generally suffer from
noise enhancement.

Section 3.2.5 discusses the multiuser extension of the single-user, linear min-
imum mean-square error (MMSE) equalizer, which is the best linear receiver in
terms of minimizing the expected mean-square estimation error between the sym-
bol estimates before the decision and the actual symbols. We present a framework
based on Kalman filtering for obtaining recursive algorithms for linear MMSE and
ZF equalizer design.

Section 3.2.6 discusses recursive implementations of decision-feedback
equalizers as well as more general successive cancellation schemes. All these detec-
tors present practical approaches to equalization that are significantly more resis-
tant to MAI than are single-user based receivers.

Finally, in Section 3.2.7 we briefly describe a class of recursive equalizers that
correspond to Kalman filtering solutions for properly formulated state-space mod-
els arising from the chip-rate sampling front end introduced in Section 3.2.1.

3.2.1 System Model

We consider a multiuser communication scenario where P users are communicat-
ing over a common bandwidth WW. We assume that the ith user is communicating a
symbol stream s;[n] at symbol rate W, =1 / T, and that the associated transmitted
waveform x;(t) is given as the following sum of T -delayed signals

x(H) = c(t—kT,; s,[K]),
k

where ¢;(f; s) is the transmitted waveform of the ith user associated with symbol s.
We will mainly focus on linear modulation schemes, in which case the ith symbol
stream is linearly modulated on the signature of the ith user, i.e.,

X0 =" s,[klc,(t—kT,), (3.4)

k
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where ¢, () is the signature of the ith user. The received signal r (t) is a noise-cor-
rupted sum of the received versions of the P transmitted signals x;(t) after these
have propagated through the wireless medium, i.e.,

P ox
rih=> j h(t 0)x,(t— 7) dT + w(b), (3.5)
i=17 7"

where w(t) is white circularly symmetric, complex-valued stationary Gaussian
noise of intensity A,. The task at the receiver is to estimate the P symbol sequences
s;[n], based on observation of r(f) and assuming knowledge of the channel
responses /.(t; 7) and the codewords ¢, ().

3.2.1.1 Discrete-Time Signal Model

A particular class of equalization schemes we consider employs sampling of the
received waveform r (f) in (3.5) at rate T = 1/W followed by discrete-time process-
ing. In this case, the sampling rate and the symbol rate are related as T = TJL,
where L is usually a large integer. In general, since P users are sharing a total fixed
bandwidth W = LW, the effective bandwidth per user is LW,/P. In CDMA sys-
tems, L equals the number of chips per symbol; for this reason, we refer to these
schemes as chip-rate sampling schemes. By using the representation of x,(f) in
terms of its Nyquist T-spaced samples x;[n] = x;(nT) (since x;(f) is bandlimited in
[-W/2, W/2]), (3.5) can be transformed to [2]
P

ri)=> > hyt klx,[k] + w(®), (3.6)
k

i=1

where

(o sin(u - kT)/T)
hi(t; k] £ th’(t' O T k)T

dr. (3.7)

Let y[11] denote the sequence arising from ideal low-pass filtering of r (f) with cutoff
frequency W/2, followed by continuous-to-discrete time conversion. Since low-
pass filtering is a linear operation on r(f) and using (3.6), we have

P
ylnl=> > hlm klx[n— k] + wln], (3.8)
i=1 k

where y[n] = r(nT), the noise sequence w[n] is zero-mean complex-valued circu-
larly symmetric white Gaussian sequence with variance o2 = N W, and the ker-
nels h.[1; k] provide a description of the linear transformations of the x;[n]’s that
produce y[n] in the absence of noise. The discrete-time model (3.8) arising from
chip-rate sampling of (t) is depicted in Figure 3.1. According to the model, the
impulse response of the LTV channel associated with the ith user’s sequence x;[1]
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[n] — hyln;kl

Xln] —— holnk] ——r | yln]
w(n]
x,[n] ——f hyln;k]

Figure 3.1 A discrete-time multiple-access fading channel model.

is given by the kernel /,[17; k], which corresponds to the response of the channel at
time 1 to a unit-impulse transmitted by the ith user at time n — k.

Clearly, (3.7) and (3.8) are both conceptually convenient expressions involv-
ing nonrealizable ideal low-pass filtering. Furthermore, significant information
loss can arise from low-pass filtering and sampling /i (t; k] in (3.7) to produce y[n] in
(3.8), unless the channel Doppler spread is much smaller than the available band-
width, i.e,, Bg < W. In practice, sampling rates higher than 1/ can be combined
with better-behaved low-pass filters (i.e., with gradually decaying transition
bands) with passband including [~ -W/2, W/2] to provide robust systems that can
be reasonably modeled via a discrete-time representatlon of the form (3.8).

Given the multipath spread of a channel T and the signal bandwidth of the
signaling scheme, there are [T/ W] + 1 resolvable paths in (3.5) [2]. For a given
sampling period T, this model corresponds to an equlvalent discrete-time FIR filter
kernel /1,[1; k] whose effective spread is L.+ 1 =~ [T - /T] + 1. Note, however, that
in the presence of additional filtering prior to sampling, the length of the equiva-
lent discrete-time filter may in general be significantly longer than [T m/ T]+ 1.

The model (3.8) for chip-rate sampling also suggests the following discrete-
time representation of the linear modulation scheme (3.4):

x[n] = s[kle,[n— kL], (3.9)
k

which arises from (3.4) and (3.8) by letting ¢;[11] = c,(1T). This equivalent discrete-
time baseband model describing the modulation of each symbol stream is depicted
in Figure 3.2. The sequence s;[11] corresponding to the (coded) sequence of symbols
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silnl — TL +— ¢lnl —— xln]

Figure 3.2 Modulation of the (coded) symbol sequence of the ith user onto a
sequence c; [n].

transmitted by the ith user is linearly modulated onto a unique signature sequence
¢,[n] with support K to produce x;[n], which is transmitted within the total avail-
able bandwidth W. A convenient interpretation of the common multiple-access
schemes can be obtained from this discrete-time model. For example, TDMA sys-
tems use c,[n] = o[n — n;] for some integer 0 =n, = L — 1, where the n;s are dis-
tinct. On the other hand, conventional CDMA systems use binary-valued
pseudorandom sequences of length K = L, whereas the spread-signature CDMA
systems that are developed in Chapter 1 use binary-valued pseudorandom
sequences of length K > L.

In the next section, we discuss processors that perform joint detection of all P
symbol streams from observation of r(f) in (3.5) and have the property that they
minimize the probability of error in a certain sense.

3.2.2 Limits on Equalizer Performance over Fading
Channels—Maximume-Likelihood Sequence Detection

Before discussing practical multiuser equalization strategies over fading channels,
it is important to develop some intuition regarding the limits of equalizer perfor-
mance by examining equalizers that are optimal in a certain useful sense. Specifi-
cally, consider the scenario of P users sharing a common bandwidth W, each
communicating a sequence of 2N + 1 symbols over a fading channel. In the limit
N — ¢, this scenario reduces to the one considered in Section 3.2.1. Let

sinl = [s, [1] syln] - splnl]’, (3.10)

where the superscript ” denotes transposition, and let the vector supersymbol S
denote the collection of all P(2N + 1) transmitted symbols:

S=[s"[-N] - s"IN]]. (3.11)

We will examine the detector that selects the value of Sbased on observation of ),
that maximizes the associated log-likelihood function. This ML sequence detector
is optimal in the sense that it minimizes the probability of making a supersymbol
error, provided that all possible supersymbols S are equally likely.

For simplicity, we assume that the coded symbol stream of the ith user
s;[-N], s;,[-N + 1], ---,s;[N] is linearly modulated on the signature waveform (code-
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word) ¢,(#) according to (3.4) and transmitted over the fading channel 4, (t 7).
Specifically, the ith transmitted signal is given by
N

(= > s[nlc,(t—nT,). (3.12)

n=-N

The received signal r (f) consists of the sum of the responses of the P transmitted
signals and measurement noise and is given by (3.5). By letting

Lt 7) = Jv h(t F)e,(t— T — 1) d, (3.13)

the response of the ith user’s transmitted signal to the ith channel can be recast as
follows:

u(t) = Jhi(t; )X, (t— 1) d7 (3.14)

M=z

;zi(t; nT )s;[n]. (3.15)

n=-N

Consequently, the sum response ug () = Zi u,(t) satisfies

N
ug()y= > h' (Ds[n], (3.16)
n=-N
where
h,(t) = [h, (& nT,) hy(t nT,) - hp(t; nT)]". (3.17)
Using (3.16), we can then rewrite (3.5) as
N
r(hy= > hl(®)s[n] + w(d). (3.18)
n=-N

The maximum-likelihood sequence detector for the set of P(2N + 1) symbols sum-
marized by S based on observation of (3.18) selects the supersymbol S that maxi-
mizes the associated log-likelihood function, or equivalently [3],

S= argminjx |7 (8) — ug(t) Izdt
S —-oc

N (3.19)
= arg max 2 Re { Z yT[n]s[n]]» + &,

S n=-N

where the superscript * denotes the conjugatze transpose operator, Re{ -} denotes
the real part of its argument, &g = [~ |ug(t) |~ dt, and

yln] = rx F(OR (8 dt. (3.20)
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The vector sequence y[#] is a set of sufficient statistics for sequence detection via
observation of the waveform r (f). The ML sequence detector first precomputes the
vector waveform l~1n(t) for any n, using knowledge of h,;(t; 7) and ¢;(f), then obtains
y[n] at time n as the response of r(t) to a matched filter B:(—t) at time t =0, and
finally solves (3.19). The sufficient statistic sequence y[n] in (3.20) also satisfies

ylnl = > Rylm kls[n — k] + v[nl, (3.21)
k

where the autocorrelation function of v[#n] is given by
R,[n, n— k] =E[v[n]vln— Kl = R;,[n; k1,
and where the P X P time-varying kernel R;[17; k] is given by
Ry[m; k] = Jﬁ,(t)f\f,_ (Bat.

Given the set of sufficient statistics y[11], one can, in principle, solve for Sin
(3.19) by exhaustive search. Since the number of all possible symbol sequences
grows exponentially with the number of users P and the number of symbols
2N + 1, such an exhaustive search method is, in general, computationally imprac-
tical. Furthermore, it requires observation of the whole sequence before any deci-
sion in made. Consequently, optimal detection is usually impractical. In general,
we seek to develop practical equalizers by reducing the complexity as much as
possible without significantly sacrificing performance.

As we shall see, many practical detectors operate on y[n], i.e., employ the (pos-
sibly time-varying) matched filter as their front end. In practice, the continuous-
time matched filter (3.20) can be implemented in a more robust fashion in discrete
time via a method that is a direct generalization of the discrete-time implementa-
tion of the continuous-time matched filter for LTI channels [4]. Specifically, band-
limited sampling of the continuous-time waveform is first performed at K times the
baud rate T;l, where K is an integer satisfying K > 2, so that the equivalent time-
varying channel response can be reconstructed from these samples. The resulting
sequence is then passed through a discrete-time filter followed by decimation by a
factor K.

3.2.2.1 Sufficient Statistics for LTI Channels

In certain cases, the channel h,(t; r) may be varying slowly enough compared to the
symbol rate (i.e., 1 /T, > Bg) that it may be convenient to view it as time-invariant
over a long sequence of symbols. In the absence of time-selective fading, the ith
channel has the following form:

hy(t; 7) = hy(7). (3.22)
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The corresponding effective channel B”(f) in (3.17) is given by
h(t—nT) 2 H,(t) =[h s c (t—=nT,) hysc,(t—=nT) - hp=cpt— nTO)]T, (3.23)

where * denotes convolution. The continuous-time matched filter (3.20) resulting
in the sufficient statistic y[n] is often used as a front end in a number of practical
detectors. In the LTI case, the sequence y[] is the response of the filter h'(-f) driven
by r(#) and sampled at time instant nT [5]. In particular, the sequence y[n] satisfies

y[n] = Z Ry [n — kls[k] + v[n] = Ry[n] = s[n] + v[n]. (3.24)
k

The Fourier transform of the sequence Rj [11] is given by the folded spectrum of h(p)
(2 6]

Sﬁ(t’j‘") = TL Z H(w + 27‘[’\’/T0)I~‘IT((/) +27k/T,),
0 f=-%
and the spectrum of the noise sequence v[n] satisfies S (z) = N S5;(2). As in the
single-user case, the frequency domain form of (3.24) will often prove convenient;
the z-transform of any sample path y[#] satisfies

y(2) = S;(2)s(2) + v(2), (3.25)

where S;,(2) is the z-transform of the autocorrelation function R;[n]in (3.24).

As we mentioned in the previous section, the continuous-time matched filter
(3.20) can be implemented in a more robust fashion in discrete time. In the special
case that the channels are LTI, this implementation is obtained by bandlimited
sampling of the continuous-time waveform at K times the baud rate T(;], followed
by a discrete-time matched filter and decimation by a factor of K, where K =2 [4].

3.2.2.2 Sufficient Statistics for Additive White Gaussian Noise Channels

In certain cases where the multipath spread is much smaller than the intersymbol
period T, (or even the chip duration T) and channel is very slowly time-varying
compared to the symbol rate, the channel may be well approximated as LTI with
impulse response equal to a delayed impulse. We refer to such channels as additive
white Gaussian noise (AWGN) channels. The ith channel in the AWGN scenario is
a special case of (3.22) and is given by

h(t; 1) = o;0(t — 1)), (3.26)

where q; is the (complex) gain of the ith channels, and 7, is the delay of the ith user
with respect to the receiver. The delay 7, represents the net effect of propagation
delay and transmission delay with respect to the (reference) receiver. Each delay
is assumed to be known at the receiver since it is part of the known channel /;(t; 7).
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We will sometimes consider the synchronous communication case which corre-
spondstot, =1,= " =T7p=T1.
The associated effective channel h, (#) in (3.17) is given by

B () = [oge, (F— 1T, — 7)) apey(t— 1Ty = 7)) = apcp(t—nTy =7, (3.27)

and the ith entry of the sufficient statistic y[r] satisfies [3]
y.[n] = afjx r(t)e; (t—nT, — t,)dt. (3.28)

Substituting for r () in (3.28), the expression in (3.18) and in conjunction with (3.26)
reveals that the contribution of the kth symbol of the jth user to the nth symbol of
the ith correlation is proportional to 0‘:“]‘/’1‘, ;[n, k], where

pyln Kl = r ¢ (t— KT, — T)c; (= nT, — ) d, (3.29)

which in the general case will be non-zero for some n — k, evenifi # j. Note that y; [11]
is generally not a sufficient statistic for the detection of s,[1], although the set of all
y,[n] for all i and 1 forms a set of sufficient statistics for S. In [3], a Viterbi algorithm,
which has O(2" ') complexity per binary decision, is presented for the implemen-
tation of the ML sequence estimator. In effect, the system is equivalent to a single-
user system, where the user codes the nth vector symbol s[n] = 0 on the sequence

P
pe 2D Oac,(t—1).
i=1
In this form, it is readily apparent that ML sequence estimation generally corre-
sponds to a Viterbi algorithm with |s | states, where |s| denotes the size of the
(common) alphabet from which s;[n] for any i is drawn. Consequently, ML
sequence detectionis a combinatorial optimization problem in the number of users
P. In [3], the specific structure of p, (f) is exploited to obtain an ML sequence detec-
tion algorithm that is more efficient in terms of computations but nevertheless still
of exponential complexity in the number of users.

Finally, consider the special case where transmission is synchronous and
each signature is time-limited in [0, T ]. In this case, p; ; [, k]in (3.29) is zero for all
i, j if n # k. This implies that the nth vector sample y[n] in (3.20) is a sufficient sta-
tistic for the nth vector symbol s[n], so that (3.19) decouples into a set of separate
maximizations for each vector symbol. However, unless p; ; 2 p; ;[n, 1] is of the
form p, ;= p; ;0[i —jl, the complexity of the computation of the ML estimate of
each supersymbol is still exponential in the number of users [7].

Next, we focus on suboptimal equalization schemes in the presence of fading,
which are significantly less computationally intensive than the ML sequence detec-
tor (3.19).
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3.2.3 The Matched-Filter Receiver for Time-Varying
Channels

A simple receiver often used if the channel is time-varying and known is a gener-
alized form of the matched-filter receiver for linear-time varying channels. As
mentioned in earlier chapters, this receiver is usually referred to as the (single-
user) RAKE receiver. Although this receiver combats time-selective fading, it does
not use knowledge of the surrounding symbols to reduce ISI and treats the signals
of the other users in the system as noise, so that it typically suffers from consider-
able cochannel interference.

The single-user RAKE receiver, invented by Price and Green [8], is optimal in
terms of minimizing the probability of a symbol error in the scenario that the chan-
nel is known, there is only one user, and only one symbol s is transmitted. Specifi-
cally, let the transmitted waveform associated with the symbol s be denoted by
c,(t). The signal c (t) passes through a linear channel with kernel /i (t; 7). From (3.5),
for any modulation scheme the received signal satisfies

r(t) = rx h(t; D)c,(t— 1) de + w(t). (3.30)

Since the channel is known, the signal
o.(h) A r h(t; 7)e,(t— 1) dr

can be computed for every possible value of s. Thus, (3.30) reduces to a test of the
following hypotheses:

r(H) =v,(t) +w() under H,.

The RAKE receiver comprises a bank of filters each matched to v, (f) corresponding
to a particular value of s, followed by subsequent energy adjustments and a deci-
sion. In this additive white Gaussian noise scenario, it is the detector that mini-
mizes the probability of error.

In the special case that the modulation scheme is linear such as in (3.9), ¢, (f) is
given by (3.12) for N = 0 and P = 1. In this case, a single sufficient statistic v, [0] is
obtained from (3.20). The statistic v, [0] corresponds to the output of r (f) through a
matched filter fq(—t; 0) in (3.13) sampled at t = 0, which can then be substituted in
(3.19) to obtain the ML estimate of s. In general, for linear modulation schemes, the
MF detector corresponds to first obtaining the set of sufficient statistics (3.20) and
then selecting as the estimate of the nth symbol of the ith user the symbol from the
ith alphabet that is closest to the ith element of y[#].

The single-user RAKE receiver provides one of the most elementary detec-
tors used in time-selective fading channels. Its performance for the model (3.30)
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provides an upper bound on the performance of all the schemes for which N> 0
(ISI is present), there is insufficient knowledge of the channel, and there are also
multiple users (P> 1). However, this receiver does not compensate for ISI and
MAI, and in fact its performance is generally MAI- and ISI-limited; even in the
absence of noise, the performance of this receiver can be very poor. Since it does
not eliminate MAI, this receiver has poor near-far resistance.’

We next briefly consider multiuser extensions of the single-user ZF detectors
which result in eliminating both MAI and ISL.

3.2.4 Linear Zero-Forcing Equalizers

Like any linear equalizer, the linear ZF equalizer applies to the received data a
linear transformation described by a linear kernel g, ,[1; k] followed by a slicer.
The linear ZF equalizer has the property that the linear kernel output is exactly the
original symbol sequence s[n] in the absence of noise. This receiver ignores the
effects of noise and undoes the effects of the channels, thus completely removing
the effects of ISI and MAIL However, in doing so, it generally enhances the noise.
The linear ZF equalizer filter kernel for LTV channels naturally arises as a special
case of the optimal linear MMSE equalizer, so we defer its development to Section
3.2.5. In the special case that the channel is LTI, considering (3.24) in its z-domain
form (3.25) reveals that the ZF equalizer reduces to an LTI filter matrix with fre-
quency response

G (@) = (S5@) " (3.31)

As in the single-user case, the linear ZF equalizer does not always exist; for
instance, if for some z on the unit circle S; (z) = 0, then a ZF equalizer does not exist.

We next consider in more detail the ZF equalizer in the special case that the
channel is AWGN.

3.2.4.1 AWGN Channel—The Decorrelating Receiver

As discussed in Chapter 2, in the special case that the channel is AWGN, the linear
ZF equalizer is usually referred to as a decorrelating receiver [7]. We first briefly
discuss synchronous communication, which corresponds to having 7; = 7; for all
i, j in (3.26) and where the o,’s are the received symbol amplitudes. In this case, the
decorrelating receiver represents an effective performance/complexity trade-off
between the optimal ML receiver and the single-user matched filter [7]. Specifi-

In general, as discussed in Chapter 2, a receiver is not near-far resistant if as the additive-noise
level goes to zero, there is a choice of MAI power levels that result in non-zero symbol-error probability.
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cally, consider the detection of s = s[0] from (3.10) at time 0. For convenience, we
drop the time-dependence from all variables for the remainder of this section. Let
Ry, correspond to the P X P matrix whose (i, j)th entry is given by [R;]; ; = a;:aj/)i/ jr
where p; ; is given by (3.29). Then, the sufficient statistic for s given by (3.20)

reduces to
y=Rys+w, (3.32)

where w is a zero-mean Gaussian random vector with covariance matrix AV R;,.

The single-user, matched-filter (RAKE) detector for the ith user treats all the
other users as noise and uses solely the ith entry of y, namely v, to estimate s,. Specif-
ically, it selects as its estimate the symbol from the ith alphabet that is closest to y, in
terms of its Euclidean distance. This receiver is optimal in terms of minimizing the
probability of error in the single-user case, as well as in the multiuser scenario in
which the user’s signature waveforms are orthogonal, i.e., p; ; = p; ;6[i — j]. In case
the codewords are not orthogonal, however, the performance of this receiver is
MAI-limited. Even in the absence of noise, the single-user detector may result in un-
acceptably high probability of error for any given user whose codeword is not or-
thogonal to all the others, for certain choices of received power levels, given by
w; = | 2/’1‘, i In this sense, even in the AWGN case, the conventional single-user de-
tector has poor near-far resistance characteristics [7].

Recall from Chapter 2 that the decorrelating receiver is a linear ZF receiver [2]
in that it is based on linear transformations of the received signal that result in pro-
ducing the desired symbols in the absence of noise. Let us assume that the code-
words c;(t) are all linearly independent, in which case R;, in (3.32) is invertible. In
the absence of noise, R‘:\ly provides the desired set of symbols s, i.e., it completely
removes MAL In the presence of noise, the detector would first obtain

§=R'y=s+R'w (3.33)

and then select as the ith symbol estimate $; the symbol from the ith alphabet that
is closest in terms of its Euclidean distance to the ith entry of §. Note that, as is usu-
ally the case with ZF equalizers, the noise term in (3.33) is colored, so basing the
decision on the ith symbol solely on the ith entry of § is, in general, suboptimal. If
the signatures c,(f) form a linearly dependent set, one can define decorrelating
receivers based on any generalized inverse Ri‘ of R;, namely, [7]

§=Ry. (3.34)

In the absence of noise, the detector (3.34) would make correct symbol decisions for
any user whose codeword c,(t) is linearly independent from all the other code-
words. However, there is still ambiguity regarding the symbols corresponding to
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users whose codewords are linearly dependent, and this ambiguity cannot be
resolved via linear methods. Note that such ambiguities are often resolvable by ML
detectors since these exploit the discrete alphabet property of the symbol streams.
A nice feature of the decorrelating receiver is that it achieves the near-far resistance
of the ML receiver [7] while maintaining low complexity.

In the asynchronous Gaussian channel case, where the user signatures over-
lap in time and space, MAl interference is inevitable. As we have seen, due to asyn-
chrony, ML detection is a dynamic programming problem where the number of
states grows exponentially with the number of users [3]. A large effort has been
devoted to developing practical near-far resistant algorithms for this channel,
which often arises in the reverse link of a direct line-of-sight wireless CDMA sys-
tem. Since the decorrelating receiver is a linear filter which, when applied to the
data, reproduces the original symbol sequences in the absence of noise, it clearly
constitutes a special case of the linear ZF equalizer for multiple-access LTI channels
[9]. Other aspects of the decorrelating receiver are considered in Chapter 2.

We next consider linear equalizers that are optimal in the sense that they
result in the minimum mean-square symbol estimation error among all linear
equalizers.

3.2.5 Linear MMSE Equalization

A linear equalizer applied on an observed waveform is a linear transformation of
the data resulting in a sequence of soft symbol estimates 5 [1], followed by a set of
P quantizers to obtain the (hard) symbol decisions s [n]. In this section, we develop
linear MMSE and ZF equalizers operating on the sufficient statistic sequence y[n],
in the case that the channel associated with each user is LTV and known to the
receiver. In [10], Klein et. al. develop linear and decision-feedback ZF and MMSE
equalizers via a method relying on block processing of long sequences of symbols.
Here, we present an alternative approach, which results in recursive equalizers
arising as Kalman filters based on appropriately formulated state-space models.

It is convenient to first whiten the noise by means of a linear, causal, invert-
ible transformation of y[n] in (3.21). Let b[n; k] denote the causal P X P matrix ker-

nel that whitens the noise sequence v([n] forn=0,1, ---, i.e,
Y[l = > blm klvin— k], (3.35)
k=0

where the noise sequence v[n] has jointly uncorrelated components and is white
with power-spectral density NV, i.e.,

R [n, kKl = N 16[n — k. (3.36)
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The coefficients b[n; k] can be obtained by Gram-Schmidt orthogonalization start-
ing with b[n; 0]. Note that for any n, b[n; k] =0 for k> n and k <0, due to the
method of its construction. Since no information is lost (i.e., we can retrieve v[n]
from V[n]), we can use the whitening filter as a front end for any equalizer without
loss of optimality. Consequently, let h[n; k] denote the cascade of b[n; k] with
R; [ k]. Then, the response of y[n] to the whitening filter b[n; k] satisfies

yInl = hln; kls[n — k] + ¥[n]. (3.37)
k

Since R;[n; k] and the whitening filter are known, so is h[#; k]. The linear matrix
kernel b[n; k] is a multiuser, time-varying generalization of the well-known, single-
user, whitened matched filter (WMF) for LTI channels.

In the approach that follows, we assume that we can find two integers
Nf, N, > 0 such that hm; k] =0 if k> N, or k < —Nf for all n. Also, we assume that
s[n] is a zero-mean WSS process with E [s[n]s' [n]] = EJ. We can then sketch the
form of the linear MMSE equalizer. Let

x[)=[s'[n+N+N] -+ s'n+1] s'[n] ~ '+ N-NJ,  (3.38)

where N denotes the smoothing window size and satisfies N = 0, and where N
equals the minimum of N and N,. A state-space description for this system is given
by the following set of equations:

x[n]=Fx[n—1]+ Gs[n+ N+ Nf] (3.39a)
y[n] = Hln]x[n] + v[n], (3.39b)

where y[n] = y[n + N] and V[n] = ¥[n + N]. The matrix F in (3.39a) is the following
(N'P) X (N'P), (P X P)-block delay matrix:

0 0 0 - 0
I 0 0 - 0

F=|lo 1 o - o, (3.40a)
0 - 0 I 0

where N' = N + Nf +N,+1- N, and the (N'P) X P matrix G satisfies
G=1[Ipyp Opxnpp) - (3.40b)

The measurement equation (3.39b) corresponds to rewriting (3.37) in terms of the
vector x[n] instead of s[n], and where the matrix H[n] is composed of blocks of the
WMEF kernel h[r; k] and is thus known.
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The Kalman filter for the state-space model (3.39) provides the soft symbol
estimates of the linear MMSE equalizer and has the following form:

x[nlnl=Fx[n—11n—1]+ pn[n)(y[n] — Hn]Fx[n —1|n—1]) (3.41a)

plnl=Aln|n—1H [n]H[A[n|n— 11H [n] + /\fOI)f1 (3.41b)
Aln|n]=d—-pnHMDA[n]|n—1] (3.41¢)
Alnln—=11=FA[n—1|n—1]F" + £EGG' (3.41d)

initialized with Xx[-1|-1] = 0 and A[-1|-1] = €I The vector X [n1| n] comprises the
equalizer’s soft estimates of symbols s[n— N, + NJ, ..., s[n], ..., s[n + N+ Nf],
given observations up to time n + N. For convenience, we use the following notation:

X[nlnl=["ln+N+N;1n+N] 8 [nln+N] -8 [n+N=-N,| n+N]. (3.42)

The matrix A[n| k] in (3.41) is the error covariance matrix associated with X [n| k]
and thus conveniently provides the mean-square error associated with the soft
symbol estimates. For instance, since x[1]| n] and 8 [in| n + N] are related via (3.42),
the (Nf +1, Ny + 1)st P X Pblock of A[n] k] is the error covariance associated with
the soft estimate s [n| n+ NJ.

The hard symbol estimates of s[1] associated with the linear MMSE equalizer
are given from the soft estimates in (3.42) via

[ = arg max [[3 [+ N = s[nl|,

S

which decouples to P separate optimizations

s,nln+ Nl —slll®  i=1,2 - P (3.43)

§.[n] = arg max |
5

The linear ZF equalizer can be obtained by letting ') — 0in (3.41b), i.e., it is given
by (3.41)-(3.43) where (3.41D) is replaced by

nlnl=Aln|n—1H [n]H[n]A[n|n— 1]H [a]) .

3.2.5.1 Linear Equalization for LTI Channels

In this section, we examine linear equalization schemes for multiuser LTI channels
that can be used to combat the three effects of noise, ISI, and MALI These equaliz-
ers arise as natural multiuser extensions of their single-user counterparts com-
monly used for equalization in known LTI channels.

As in single-user equalization over LTI channels, it is convenient to revert
from a state-space to an input/output problem description. We assume that the
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input sequence to the channel is the P X 1 wide-sense stationary (WSS) vector
sequence s[#] in (3.10). The received signal is efficiently described by the vector
y[n] given by (3.24), which can be conveniently viewed as providing P observa-
tions per vector sample of the information-bearing signal s[n]. In this section, we
assume that we know §;,(z), the z-transform of the autocorrelation function R [#] in
(3.24), and that S;(2) is rational and stable, i.e, all entries of its z-transform are
rational and stable transfer functions.

Alinear equalizer for the vector model (3.25) applies a matrix filter kernel to
the vector of outputs y[n] to obtain a sequence § [1], followed by a set of P quantiz-
ers to obtain the symbol decisions §[n]. We may then der%ve the linear MMSE
equalizer whose objective is to minimize E[||3[n] —s[n]||], where [|u|| is the
Euclidean norm of the vector u, and § [n] is the soft estimate of s[n]. Since s[n] is
WSS, from (3.24) the processes s[n] and y|[#] are jointly WSS. In particular, the spec-
trum of y[n] satisfies

5,2 = S3(2)5,(9 S (2) + N, S(2), (3.44)
while the cross-spectrum between y[n] and s[#] is given by
Sey(2) = 5,(2) Sy, (2). (3.45)

Since s[n] and y[n] are jointly WSS, the resulting linear MMSE filter is time-invari-
ant. Let G(z) be the P X P matrix MMSE filter, i.e., § (z) = G(2)y(z). The orthogonal-
ity condition

E[G[n+k —s[n+k)y [n]]=0 for all k
implies that Sgy(z) = Ssy(z). Using (3.45) and (3.44), we can deduce that [6]
Giamse @ = S, [S;,(@S,(2) + N 1T, (3.46)

where ILis the identity matrix. As in the single-user case, it can be shown that there
exists g[n] with transfer function G| \ ;g (2), which is stable [6]. Although concep-
tually convenient, the equalizer (3.46) is in general noncausal. In particular, in the
case that it has infinite impulse response (IIR) and is anticausal, delay constraints
imply that only approximate realizations of this equalizer can be implemented.
From this point of view, the Kalman filtering algorithm (3.41) appears very attrac-
tive both in terms of its recursive implementation and in terms of providing the lin-
ear MMSE equalizer output for a given delay constraint (which is directly related
to the smoothing factor N). In addition, an estimate for the mean-square error is
conveniently available via the covariance matrix A[n| n]. Finally, note that by set-
ting NV, = 0in (3.46), we obtain the linear ZF equalizer (3.31).
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3.2.6 Successive Cancellation and Decision-Feedback
Equalizers for Multiple-Access Channels

Optimal detection in known multiuser fading channels is prohibitively complex,
while the low-complexity, single-user detectors can greatly suffer in performance
due to MAI (and possibly ISI) and do not possess any near-far resistance. As we
have discussed above, the linear multiuser equalizers presented in Sections
3.2.4-3.2.5 often provide a reasonable trade-off between detector complexity and
performance. Successive cancellation schemes may be employed as an alternative
to linear multiuser techniques, or, more often, they can be used in conjunction with
linear approaches to further improve performance at some additional cost in com-
plexity. These often arise as extensions of single-user techniques in a multiuser set-
ting created in such a way that the resulting equalizer complexity is linear or at
most polynomial in the number of users.

To illustrate how a successive cancellation scheme can remove MAI, consider
a two-user scenario where user 2 experiences a lot of interference from user 1 due
to their nonorthogonality and a large difference in terms of their relative received
power levels, i.e., w; > w,. Let us also assume that only one symbol per user is
sent, so that there is no ISI. The ML receiver performs the optimization in (3.19),
where the adjustment for the immense power-level difference (and the resulting
strong MAI that user 2 is experiencing) is reflected in the term £_.. On the other
hand, it is easy to show that a single-user RAKE receiver would perform poorly
in this two-user scenario. Specifically, the RAKE receiver of the first user receives
negligible interference from user 2, so that at high signal-to-noise ratio (SNR) we
have $, = s; with high probability. However, the second user’s RAKE receiver is
MAI-limited since its output strongly depends on the actual symbol that user 1 is
transmitting.

An obvious successive cancellation scheme for detecting the signal of user 2
in this scenario would first estimate the symbol of user 1 (by means of a RAKE
receiver), subtract its contribution from r(f) (assuming §; =s;), and set up the
single-user RAKE receiver for user 2. If the modulation scheme is linear, user 2 may
substitute $; in (3.19) and perform the optimization over s,. Although in general
suboptimal, this scheme does not suffer from the very poor near-far performance
experienced by the single-user receiver. Furthermore, this scheme can be easily
generalized to the P-user case. The users are first ordered in terms of their power
level, ie., w = w, = -+ = wp. Having detected the symbols of users 1,2, -, i —1,a
decision for the ith user’s symbol can be formed by first regenerating x, (f) through
x,_, () based on the decoded symbols 5,, 3,, -, §,_,, stripping off their response
from the received signal r (f), and consequently feeding the resulting signal to the
ith user RAKE detector.
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A number of successive cancellation methods employ several stages of inter-
ference rejection to improve performance. Such approaches have their roots in the
original multistage MAI rejection method for CDMA systems developed in [11],
which is very similar to the successive cancellation approach presented above.
Specifically, in [11] Varanasi and Aazhang consider a scenario of P users where ISI
from past and future symbols is negligible. At the mth stage, a decision for the ith
user symbol is formed by first removing all MAI from the received signal by using
the (m — 1)st stage symbol estimates and consequently feeding the resulting signal
to a single-user receiver for the ith user. The performance of this multistage algo-
rithm greatly depends on the choice of the initial symbol estimates (1st stage). In
the algorithm described in [11], these estimates are formed via a linear receiver,
e.g., a decorrelating receiver.

Although its performance can often be inferior to the one obtained by linear
methods and even by conventional single-user receivers, the algorithm in [11] gen-
erated considerable interest in the area of successive cancellation. Several other
decision-based detectors have subsequently been developed; see, e.g., [12] and the
references therein. For instance, a number of other successive cancellation algo-
rithms have been proposed for CDMA systems [13-16]. Successive cancellation
methods that can approach ML optimal performance in terms of symbol error-rate
and near-far resistance have also been developed for spread-signature CDMA
systems [17]. More generally, developing robust, low-complexity, multistage-
successive-cancellation schemes with improved performance and well-behaved
dynamical behavior is a rich and active area of research. In addition, obtaining a
better assessment of the performance-complexity trade-offs of successive cancella-
tion schemes, as well as of the performance limits as compared to the optimal
detectors, constitute issues that are worth further investigation.

Use of successive cancellation to remove MAI is similar to the use of decision-
feedback equalization in single-user settings to remove ISI. Specifically, the design
of a conventional, single-user, decision-feedback equalizer (DFE) is based on the
assumption that past symbol decisions are correct, so that ISI from past symbols
can be stripped off before detection of the current symbol. In this sense, DFEs con-
stitute a particular class of successive cancellation schemes that remove MAI and
ISI based on hard estimates of detected symbols.

We next consider a number of natural multiuser extensions of single-user
DFEs that attempt to further improve immunity to MAI and ISL

3.2.6.1 Decision-Feedback Equalization

A DFE in a multiuser setting uses past symbol decisions from all users in order to
remove ISI and MAI, and soft symbol estimates for removal of ISI and MAI from
future symbols. When designing DFEs, it is assumed that all the past decisions are
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correct; this assumption implies that the equalizer is operating at a sufficiently
high SNR that the decisions it makes are correct with high probability [2]. Asin the
single-user case, analysis based on the minimum probability of error criterion is
usually difficult. As a result, simpler suboptimal criteria such as MMSE or ZF are
usually selected.

In this section, we present DFEs operating on the sufficient statistic sequence
y[n] from (3.20) for known multiuser LTV channels. In developing the MMSE DFE,
it is convenient to use the observations in the form of the output of the WMF y[n]
in (3.37), which is an equivalent description of y[r] in (3.20). In particular, this
approach allows us to develop a recursive algorithm for obtaining the soft estimate
of the vector symbol s[r] for any given time index n. Specifically, consider a fixed
index n. As discussed above, it is assumed that the MMSE DFE hard symbol esti-
mates § [n — k] with k > 0 have been obtained and satisfy

s[n—kl=s[n—k] forallk> 0. (3.47)

Assuming that (3.47) is true, and since the noise sequence v[k]in (3.37) is white and
h[n; k] =0 fork > —Nf or k < N,, we need only consider y[n + klfork= —Nf in deter-
mining the MMSE DFE soft estimate of the vector symbol s[n]. We may thus con-
sider a state-space model where the state at time k = -N; includes s[n] as well as all
the symbols that contribute to y[n + k]. Specifically, consider the following vector
sequence as the state of the state-space model
T T
x,[k] 2 [s [n+k+N;J s [n+k+N — 1] (3.48)
Sn+k—N,] s'n+k-N,—1]],

where
= k if—Nf—lskSNb+1
N,+1 ifk>N,+1

as k increases from —Nf to N,, the vector symbol of interest, namely s[n], “slides”
from the first to the last P X 1block of x, [k], where it remains for k = N, + 1. Astate-
space description that generates (3.48) consists of the following set of equations:

x,[k] = F[k]x,[k — 1] + Gs[n + k + N;] (3.49a)
¥, [kl = B, [k]x, [k] + ¥,[K], (3.49b)

where y, [k] = y[n + k] and V,[k] = ¥[n + k]. In the recursion (3.49a), Gis given by
(3.40b) for N'= N, + N; + 2. Also, F[k] is given by (3.40a) with N'=N,+N;+2
fork=N,+1,and
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0
0 - 0 0
0 | o - 0 O
Flkl={. . . . . . fork>N, + 1.
I 0 0
R 0 A

As aresult, when initialized with x, [-N; — 1] from (3.48), the recursion (3.49a) gen-
erates the entire sequence x, [k] in (3.48). Similarly to (3.39b), the set (3.49b) denotes
(3.37) rewritten in terms of x [k] instead of s[n]. In particular, by letting H,[#]
denote the matrix H[n] used in (3.39b) for a particular N, the matrix I:Iﬂ [k]in (3.49Db)
satisfies

v

H [kl = [H[n] 0p.p]-

The state-space model (3.49) can be readily used for designing Kalman filter-
ing algorithms employing fixed-point smoothing [18] and is thus naturally suited
for the design of the MMSE DFE. Specifically, the Kalman filter for the state-space
model (3.49) has the following form:

%, [k 1kl = FLkIx, [k = 11k = 1]+ p, [K]1(3,[K]
— H,[KIF[K]%, [k = 11k —1])

(3.50a)

w, Ikl = A, [k | k — 115 [K] (L, [K1A [k | K — 1] [k] + N, D) ! (3.50b)
ALk 1K) = (@ — p, [KIFL DA, [k | k — 1] (3.50¢)
A lklk—=1]=F[kA, [k — 11k —1]F" [k] + £GG'. (3.50d)

With proper initialization, the algorithm (3.50) provides the MMSE DFE soft esti-
mate of s[n] for the particular index n. Specifically, the assumption that all past
symbol decisions are correct can easily be incorporated in the form of prior infor-
mation; the Kalman filter (3.50) is initialized with

X,[-N; = 11 -N; = 1] =%,[-N; = 1| -N; — 1], (3.51a)
where
%[N, = 11-N; = 1]=[8"[n = 1] - 8" [n=N, =N, —1] 8'[n— N, =N, - 2]
and

n

AN, —1]-N, —1]=0. (3.51b)
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The initialization step (3.51) is an equivalent description of (3.47). As a result, the
MMSE DFE soft estimate of the vector symbol s[#] given all observations up to and
including time n + N is given by

s[n|ln+ N]
[0p (N +N)P Ioyp OPX(Nb—NH)P]in[Nl N] if — Nf =N=N, ( )
= - . 3.52
[0px (Ny+Ny+ 1P Loy plX, [N N] ifN=N, +1,

where X, [N | N]is given by (3.50)—(3.51). In practice, the smoothing window size N
may be dictated by physical constraints, e.g., delay constraints or limitations in
computational complexity. The MMSE DFE makes P symbol decisions at time n by
solving the P separate optimizations (3.43), where §[n|n+ N] is obtained via
(3.50)~(3.52). In agreement with the conventional single-user MMSE DFE for LTI
channels, the detector described by (3.50)—(3.52) and (3.43) removes (MAI and ISI)
interference from past symbols, based on their hard estimates §[n — m] for m>0
(incorporated in (3.50) via in[—Nf —-1] —Nf — 1] from (3.51)), and interference from
current symbols (MAI) and future symbols (MAI and ISI), based on the soft esti-
mates §[n+ m|n+ N]form>0.

The matrix A, [N | N] is precisely the error covariance matrix that would be
associated with X,[N|N] from (3.50) in the case that f(n[—Nf —-1] —Nf —-1] =
x,[-N; = 1| -N; — 1]. Consequently, the diagonal P X P block entry of A, [N|N]
that is associated with s[n] often provides an accurate estimate of the error covari-
ance associated with § [n| n + NJ] at high SNR.

We can readily obtain the corresponding ZF DFE by letting N, — 0 in (3.50b).
Specifically, the ZF DFE is given by (3.50)~(3.52) and (3.43), where (3.50b) is
replaced by

(K] = A, [k L — 1190 [k] (B [KIA, Tk | & — 11 [K]) .

Note that we can also construct successive cancellation DFE structures that
make decisions on one symbol at a time (rather than a block of P symbols at a time).
Specifically, we can rearrange the users in order of decreasing relative received sig-
nal power, i.e., w; = w, = - = wp, and view the sequence of vector symbols as a
time sequence of single-user symbols

o, 8[nl, s,0nl, -, splnl, s+ 1], sy[n+ 1], -+, sp[n+ 1], -

As (3.36) reveals, the kernel b[#; k] also whitens the noise for this equivalent single-
user formulation, in which the observed sequence is a sequence of scalar observa-
tions

Yy i/l[n]/ ?2[71]/ Yy yp[n]/ ?1[”+ 1]/ ?2[’7 + 1]/ Yy ?p[”“” 1]/
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Consequently, we can determine the corresponding Kalman filter for the appropri-
ately modified “single user” state-space model (3.49). At any step, the resulting
DFE makes a single decision on a single symbol of a specific user. This DFE
removes MAI and ISl interference from past symbols, based on hard estimates, and
MALI and ISI from future symbols, based on soft estimates. Regarding ISI from cur-
rent symbols: in detecting the symbol of any given user, this DFE uses hard esti-
mates to remove MAI from users with higher, relative, received signal power, and
soft estimates otherwise.

Although optimal in a certain sense, DFEs of the form (3.50)—(3.52) are in gen-
eral computationally intensive since they often require a modest number of steps
(ie., N+ Np) of the Kalman filtering algorithm to produce a single symbol decision
per user. Obtaining lower-complexity DFE structures (or successive cancellation
solutions, in general) which also possess high performance characteristics is, as
discussed above, an active and rich area of research.

3.2.6.2 Adaptive Equalization Algorithms

The concepts behind single-user adaptive DFE structures can be used to suppress
MAI in a multiuser setting in slowly time-varying scenarios. Specifically, stochas-
tic gradient algorithms can be constructed for this purpose [19-21]. Such algo-
rithms may employ a training stage where the equalizer taps are first determined,
followed by an adaptation stage where symbol estimates are instead used in the
stochastic gradient algorithm for adjusting the equalizer filter taps. Similarly,
adaptive MAl-suppressing equalizers can be designed based on least-squares
algorithms. Examples of these and other decision-directed approaches are
described in Chapter 2.

3.2.6.3 Decision-Feedback Equalizers for LTI channels

As in the single-user case, if the channels are all LTI, the pre- and post-cursor
(matrix) filters associated with the MMSE and ZF DFEs are time-invariant. A typi-
cal block diagram for the DFE is shown in Figure 3.3. The z-transform of § [1]
(denoting the soft estimate of the vector symbol s[n] before the decision) satisfies

5(2) = A(2)y(2) — B(2)5(2),

where A(z) is a P X P feed-forward matrix filter, B(z) is a P X P strictly causal feed-
back matrix filter, and s[n] is the nth symbol estimate. As in the LTV case, when
designing a DFE, we assume that it is operating at a high enough SNR so that
the decisions are correct with high probability. Then, the design of A(z) and B(z)
is based on placing a criterion for quality on the symbol estimated before the
decision.
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Figure 3.3 DFE block diagram for multiple-access LTI channels.

For illustration, we next consider consider the ZF DFE [22]. Similarly, a multi-
user MMSE DFE for LTI channels that is a generalization of its single-user coun-
terpart can be derived [6, 23]. The ZF DFE is the equalizer that eliminates all ISl and
MAI at the input of the decision device, assuming that all past decisions were cor-
rect. By use of the spectral factorization theorem for matrix spectra that are non-
singular on the unit circle, we can write

S@W!=F@F'@E"),

where F(z) is a P X P causal and stable matrix filter with a stable and causal
inverse. The matrix W is a diagonal matrix such that the coefficients multiplying z°
along the diagonal of S; (z)W ! are all equal to one. Its significance is that it denotes
the received power of the signal of each user, i.e.,

[Ry[O1]; = [W1,; = w,
Based on the assumption that s [1] = s[n], we must also have
§(2) = s(2) + n(z),

where n(z) is a noise process with spectrum A(z) N USB(Z)AT (z'1). Since B(z) is a
strictly causal filter, the feed-forward filter must remove all the ISI and MAI caused
by future samples, i.e.,

A(2)y(z) = M(z2)Wx(z) + n(2),

where the M(z) = Zki ()M[k]z’k is a causal filter. For a given A(z), the corresponding
feedback filter B(z) can be written as

B(z) = (M(z) — diag M[0])W.
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We are interested in the choice of A(z) that would maximize the SNR before the
decision or, equivalently, minimize the noise variance for a fixed signal energy. Let
C(2) = M(2)F ! (2), and set diag(M[0]) = diag(F [0]) (without loss of generality).
Note that diag(C[0]) = I and that A(z) = C(2)F T(l /z), which implies that the spec-
trum of n(z) is given by N ,C(2)C '(1/2). The resulting noise variance is minimized
by C(z) =1, i.e., the ZF DFE that minimizes the mean-square error is given by
A(2) = (F'(1/2)) ', and B(2) = (F (z) — diag F [0])W.

Detection of the current symbol ith user can, in principle, be enhanced if in
addition to stripping ISI and MAI from all past symbols, we strip MAI from the
current symbol of users whose power level is larger than w, [6].

3.2.7 Chip-Rate, State-Space Approaches for Time-Varying
Channels

The equalizer schemes we have considered in Sections 3.2.2-3.2.6 perform equal-
ization based on discrete-time processing of the set of sufficient statistics y[n] in
(3.20). An alternative approach consists of oversampling the continuous-time sig-
nal r(t) many times the symbol rate and obtaining an alternative discrete-time
description of the original signal, such as the one in (3.8). Although not a sufficient
statistic in general, the resulting sequence y[n] has uncorrelated noise components,
which result in significant simplification of equalization. Furthermore, higher
oversampling factors will generally result in smaller “information loss” in the A/D
stage, while the noise components remain uncorrelated.

In such scenarios, Isabelle and Wornell [24] have developed a collection of
state-space methods that recast the equalization problem into one where Kalman
filtering methods can be readily applied. We consider the general multiuser chan-
nel depicted in Figure 3.1 and described by (3.8).

In the context of this section, we use notation p[n] and q[#; k] to denote the Lth
order polyphase decompositions of a sequence p[n] and a time-varying channel
response 4 [1; k], respectively, i.e.,

pln] 2 [p[uL] p[nL+1] - plL +L—1]]"
qlm; k1 2 [q[nL; kL] g[nL+ 1; kL +1] - gnL+L—1; kL +L—1]]"
Specifically, we can rewrite (3.8) as

ylnl => hinm kls[n — k] + win], (3.53)
k

where s[n] is given by (3.10), h[n; k] is given by
h[n; k] = [b [ k] byl k] - byl K,
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and where y[n], w[n], and h[1; k] denote the Lth order polyphase decompositions
of the received signal y[n], the noise sequence w[n], and

hlm k] = Zh [ €]c,[k — €],

respectively. From the model (3.8), w[n] is a white sequence with autocorrelation
function R, [n] = afvl d[n]. Note that (3.8) assumes chip-rate sampling (i.e., the vec-
tor y[n] does not denote the sufficient statistic sequence from (3.20)). It is also
assumed that all filters are causal and FIR, i.e., for all n we have h;[m; k] = 0 for
k> L. and k <0. Based on (3.53), we can construct a state-space model describing
the evolution of the state [24]

x[m] 2 [s"[n] s'[n—1] - s'ln—N+1]],

where N can be viewed as a smoothing window and must be selected at least as
large as the effective length of the polyphase components of the time-varying ker-
nel responses fzi[n; k],ie., N= [(LC + K)/L]. Specifically, (3.53) can be written as

x[n+ 1] = Fx[n] + Gs[n + 1] (3.54a)
y[n] = H[n]x[n] + w{n], (3.54b)

where F denotes the (NP) X (NP), (P X P)-block delay matrix of the form (3.40a), G
is given by (3.40b) for N' = N, and H[n] is the following filtering matrix containing
all the channel and codeword information

5 N - T
H[n] = [h[r; 0] h[; 1] -+ him; N-1]] .

The linear MMSE estimator for the state-space model (3.54) can be recursively
computed via the Kalman filtering algorithm. The vector X [1| k] denotes the esti-
mate of the vector x[n], using all observations y([#] up to and including time k, and
the matrix A[n|k] to denote the error covariance associated with X[n|k]. The
Kalman filter algorithm corresponding to (3.54) is described by the following set of
equations [18]:

x[nln]=Fx[n—11n—1]+ p[nl(y[n] - Hn]Fx[n—1|n—1])  (3.55a)

plnl = Aln|n— 1H [n](H[n]A[n ]| n — 1]H [n] + 621) "' (3.55b)
Aln|n] =0 - p[nH[n)A[n|n— 1] (3.55¢)
Alnln—1=FA[n—1|n—1]F" + £EGG' (3.55d)

initialized with X[-1|-1] = 0 and A[-1|-1] = €I The soft estimate § 1] of the nth
vector symbol s[n] is given by

§[n=[0py y_1)p LpsplX[n+N—=1]n+N-1]. (3.56)
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Finally, the linear MMSE equalizer based on observation of (3.8) selects as the esti-
mate of the nth symbol of the ith user the symbol from the ith alphabet that is clos-
est in Euclidean distance to the ith element of § [1] in (3.56).

Other related implementation structures can be obtained from (3.55) by
appropriate selection of the gain p[n]. For example, the linear ZF and MF equaliz-
ers can be obtained by replacing the gain in (3.55b) with

nln = Alnln— 1H [n](H[n]Aln | n — 1]H [1]) ', (3.57)
and

uinl = Alnln—11H [n] /o>

w’

respectively [24]. In these cases, however, the associated matrices A[n|n — 1] no
longer correspond to the associated estimation-error covariance matrices except
for limiting cases: o2, — 0 in the ZF case and o2, — = in the MF case. Finally, we
should emphasize that the framework presented in this section can be easily
extended to perform equalization in the context of systems employing antenna
diversity techniques [24].

3.2.7.1 Decision-Feedback Equalization

DFE extensions of the recursive equalizer structures for linear time-varying chan-
nels operating on chip-rate sampling can be easily developed. Specifically, obser-
vation of the update equation for the state estimate (3.55a) reveals that this
estimate consists of two terms. The first term corresponds to prediction of the state
based on the state estimate at the previous symbol time. The second term is a cor-
rection term based on the difference between the predicted estimate and the most
recently received observation. Performance can often be enhanced (especially at
high SNR) by replacing the soft estimates X[r1| 1] with the associated decisions
obtained by thresholding. By letting x[11] denote the vector of hard decisions result-
ing from passing each element of the vector X[1| 1] through the slicer function, we
obtain a recursive DFE structure given by (3.55), where (3.55a) is replaced by

x[n|nl=Fxn—1|n—1]+pnl(yln] — Hn]Fx[n—1|n—1]). (3.58)

ZF extensions can also be obtained by replacing (3.55b) with (3.57).

3.3 BLND EQuUALIZATION IN MuLTIPATH, SLowLY TIME-VARYING CHANNELS

Blind equalization refers to equalizing the effects of an unknown channel so that
the information-bearing signal can be recovered without the use of training. Tradi-
tional blind-equalization approaches involving observation of an information-
bearing signal through a single unknown channel rely on higher-order statistics
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[25-28]. Many of these techniques require a large number of samples to perform
equalization reliably and are consequently inadequate for most wireless channels.
Recently, Tong et. al. [29] have shown that observations of the same information-
bearing signal via multiple unknown channels possess enough structure to render
methods based on second-order statistics feasible. These techniques have the
potential to allow practical channel equalization with notably fewer observation
samples per channel and constitute a very active area of research.

In Section 3.3.1, we present several different formulations of the single-input
multiple-channel blind-deconvolution problem. These arise in the forward link of
mobile communication channels, in which a single transmitted signal corresponds
to the sum of multiple information-bearing signals. We also discuss some of the
issues that may potentially attract attention and briefly highlight a few of several
different directions that have been taken by the research community to address
some of these issues.

In Section 3.3.2, we focus our attention on the reverse link where each user’s
transmitted waveform is received via a number of distinct channels. In particular,
we examine a representative blind-deconvolution method in the context of asyn-
chronous CDMA systems.

3.3.1 The Forward Link: Blind Equalization of Single-Input,
Multiple-Output FIR Channels

We first discuss blind equalization in the forward link of a multiuser wireless sys-
tem. Due to the synchronous transmission in the forward direction, it is conceptu-
ally simpler to view symbol detection in two stages. In the first stage, the receiver
of any given user attempts to determine a single signal, namely, the sum of the P
information-bearing signals; the second stage involves the recovery of the particu-
lar symbol stream via despreading. In this section, we focus our attention only on
the first stage since the second is straightforward.

In an effort toward providing computationally efficient schemes based on short
observation sequences, Tong et. al. [29] suggest identification of a white WSS data se-
quence via its observation through multiple unknown LTI channels. The general sit-
uation is depicted in Figure 3.4. The problem reduces to estimating hy[nl, -+, hyln]
and the information-bearing signal s[1], based on observation of x, [n], -, xlnl,
without making any overly restrictive assumptions about the input sequence s[n].

In a mobile communication setting, this multichannel approach can result ei-
ther from using multiple receiver antennas or, in the context of excess bandwidth
transmission, from simply oversampling the received signal. In the single-user case,
oversampling corresponds to sampling faster than the baud rate of the signal. This
case is depicted in Figure 3.5, where hi[n] is the oversampled system impulse re-
sponse, and y[#] the corresponding output. In CDMA and other multiuser systems,
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w, [n]
> H2) Y [n]
w,[n
>  Hy2) y,lnl
sln]
w,[n]
Figure 3.4 Observation of a single information-bearing sequence via multiple
channels.
win]
1 sln] x[n]
sln] —=1  TMm >  H() yln]

Figure 3.5 Equivalent block diagram for single-sensor oversampling system.

where s[n] corresponds to the aggregate transmitted signal from which all the indi-
vidual user streams can be decoded, oversampling is equivalent to sampling faster
than the chip rate of the signal. The received signal y[n] can be written as

yln 2 yMn+il= Y slklhn—k+wlnl,  i=1-,M, (359

k

where h;[n] 2 h[Mn + i] and w;[n] 2 w[Mn + i]. The set of (3.59) reveals that both
the oversampled and the multiple sensor representations can be addressed with
the same mathematical framework, i.e.,

y;[nl = x;[n] + w,[n] = s[n] * h;[n] + w,[n] n=0,1,--,N,—1. (3.60)
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The original approach [29] sparked a lot of interest since it is based on forming
second-order statistics from the observed data in (3.60). To appreciate how second-
order statistics can be adequate for this deconvolution problem, consider the follow-
ing example. Suppose, for instance, a white WSS sequence s[n] is observed via two
particular FIR channels, h, [n1] and h,[n], with length 2. Figure 3.6 shows the pole-
zero diagrams associated with the spectra of the output sequences y, [1] and y, [1]
and with the cross-spectrum S, (2). In practice, accurate estimates of these spectra
can be obtained from sufficiently large data sets (assuming the FIR filter lengths are
known). From these pole-zero diagrams, we can easily determine the zero associated
with H, (z) by finding the zero that S}/m (z)and S; 11 (z) have in common. Similarly, we
can also determine the response of H,(z) within a scaling constant. Clearly, identifi-
cation is possible via this method only if the channels have distinct zeros. This ap-
proach also holds if noise is present, i.e., in the case that w, [n] and w, [1] are white
WSS noises uncorrelated with one another and the data s[n], and where the noise
variances are known; in this case, we can still obtain estimates of the associated pole-
zero diagrams such as those depicted in Figure 3.6 by removing from each spectrum
estimate the DC component associated with the particular additive noise term. Tech-
niques of this form can also be extended to identification of H,(z)’s with rational
transfer functions that do not share any common zeros and poles and for which the
maximum numerator and denominator orders are known [30].

We next examine a representative sample of the approaches that followed
and improved on [29], both in terms of exposition of the structure of the blind-
deconvolution problem and in terms of performance.

3.3.1.1 The Cross-Relation Method

In many common communication scenarios, the transmitted data samples may be
correlated, and, furthermore, the exact statistical description of s[n] may not be
available. Moreover, a statistical description of the data may be inadequate such as
when very few data samples are available, e.g., in relatively fast time-varying chan-
nel scenarios. This scenario can be best dealt with by considering the transmitted
signal as a particular unknown deterministic signal [31]. In this section, we assume
that all filters are FIR with maximum length L.+ 1, ie., h;j[n] =0 for all i, for
n<0,n>L, and there exists an 7 such that #,[0] # 0 and /;[L.] # 0. Furthermore,
the noise vector win] = [w, [n] w,[n] - ZUM[H]]T is a zero-mean WSS process with
unknown second-order statistics and is independent of the unknown sequence s[#].

It is interesting to note that in the noise-free case (i.e., w;[n] = O for all i), the
set of (3.60) can in principle be used directly to solve for the coefficients ,[1] and
the sequence s[n]. There are MN, equations and M(L, + 1) + N, + L, unknowns.
Thus, if M =2 and we pick a large enough N, the resulting system of equations
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will be overdetermined. This nonlinear set of equations can be transformed to a
linear one by convolving both sides of (3.60) with hj [11] for a given j # i (and setting
w,;[n] = 0), which results in

y;[n] = hj [1] = h;[n] * yj[n]. (3.61)
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Equation (3.61) is referred to as the cross-relation (CR) property. Its significance lies
in that it is linear in the unknown channel coefficients f,[1] and h;[n], and thus stan-
dard linear methods can be used. In matrix notation, (3.61) can be written in terms
of h, given by

b =[[0] k(1] - WL, (3.62)

and the measurements as

[V +1) Y@+ )] [:] =0,

which holds for every i#j, 1 =i, j =M. The matrix 511-(LC +1) is the (N— L))
X (L. + 1) Hankel matrix associated with the vector

y; = IN, =11 yIN, - 2] - ylo]l",

that is,
_yi[Ns - 1] yi[Ns - 2] yi[Ns - Lc - 1]
. IN. —2 IN. —3] - IN.—L . —2
P+ 1) = UlN: =21 wl : ] UlN, = L. =21
yilL ] ylL.—1] - v (0]
_ 3.63
VIN, = 1] oo
_|yIN-2
AN
and where y,[#] is the following (L. + 1) X 1 vector
vilnl & [ylnl yln—1] - yn—LJ". (3.64)
LetY, = [572 —5/1], and
Y, | o
5 &
v=| ! (3.65)
j)i ‘521—1

for 3 =i= M. The set of equations that arises from the cross-relation property can
then be summarized as follows

Yh=0, (3.66)

where we write Y = Y, , for simplicity, and where his given by
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h=[n 1 - hl', (3.67)

with h; given by (3.62). If the null space of Y has dimension 1, then h (and thus the
h;[n]’s) can be uniquely identified within a complex scaling constant.

It is important to determine under what circumstances the channels are iden-
tifiable based on (3.66) in the absence of noise. In principle, there are two funda-
mental conditions that may render a channel identifiable. The first condition is
related to whether the sequence s[rn] is “rich” enough to make identification of the
channels possible and can typically be satisfied by increasing the length of the
observation window [31]. The second and most important condition regarding
channel identifiability is related to whether the transfer functions H, (2), ‘-, H,,(2)
share any common zeros. Assuming that the symbol sequence s[n] is rich enough
in terms of its linear complexity, channel identifiability reduces to [31]

channel identifiability <« the H,(z)’s share no common zeros.

We can gain insight regarding this identifiability condition by considering the case
where all the H;(z)’s contain common zeros, which is depicted in Figure 3.7. The
common zeros are grouped in the filter term G(2), i.e.,

hi[n] = g[n] *f,[n],

w, [n]
" K@ ylnl
w,[n]
slnl — G zlnl > E® A
w,[n]
> By [l

Figure 3.7 Equivalent block diagram for a multichannel system where the H;(2)’s
share common zeros.
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where f,[n], -+, f,,[n] are all FIR filters sharing no common zeros, and the FIR fil-
ter g[n] is at least 2 samples long. If we assume that z[n] in Figure 3.7 can be
uniquely determined from the y,[1]’s, the identification problem reduces to deter-
mining s[n] from z[n] without knowing g[n]. Assuming we have the following
measurements

Le

zln]=> glklsln—k  n=0,1,--, N, -1,
k=0

we have N, equations where g[0], -+, g[Lg], and s[—Lg], --+, 5[N] are all unknown,
i.e.,, we have an underdetermined systems of equations; the system cannot be
solved uniquely without additional knowledge about s[n].

In the presence of additive noise, the least-squares solution to (3.66) provides
a fairly computationally efficient, although generally suboptimal, solution. Specif-
ically, the cross-relation algorithm selects f\CR 0 as to minimize the energy in Yh,
ie., [31]
hep = argminh'Y'Yh. (3.68)

(b =1

Consequently, in the presence of noise, 1A1CR is given by the eigenvector associated
with the smallest eigenvalue of the matrix Y'Y.

3.3.1.2 Subspace-Based Methods

The subspace-based methods originally introduced by Moulines et. al. [32] provide
additional perspective to the single-input multiple-output deconvolution problem
of Figure 3.4. Initially, for the exposition of these methods, we may assume that s [1]
is a WSS process whose statistics are not known and that w[r] is a zero-mean WSS
process with known second-order statistics, independent of s[n]. Then, we con-
sider the scenario where s[n] is deterministic and consider subspace-based meth-
ods that are natural extensions of the original algorithm presented in [32].

We introduce an additional variable N, which corresponds to the length of
the smoothing window in the matrix formulation of the problem. Specifically, let

y;[11] be the N X 1 vector resulting from substituting N for L, + 1 in (3.64), and
T
ylrl 2 lyi 1l yylnl - yylnl] (3.69)

For convenience, we denote by V,(R; K) the R X (R + K) single-channel filtering

matrix associated with the vector v, = [,[0] -+ 7,[K ]]T, ie.,
v,[0] v,[K] 0 0

Ui[O] Ui[K]

Vi(R) = V(R K) = . (3.70)

0 0 Ui[ol vi[K]
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and let V(R; K) be the M-channel filtering matrix associated with v=[v] --- v, ],
ie.,
V1 (R)
V(R)=V(R; K) =
Vu(R)

We can then recast the original problem (3.60) as

y[n] = H(N)s[n] + w[n] forn=N, ---,N,, (3.71)

S
where w[n] is defined in similar fashion to y[n] in (3.69), the data vector s[#] is given
by
sln] = [s[n] s[n—1] + slh—N—-L, +1]]",

and H(N)is the N X (N + L) M-channel filtering matrix associated with h from (3.67).

For simplicity (and without loss of generality), we focus on the white noise
case, ie, let R, = ofUI. Since s[n] and w[n] are WSS (and independent), y[#] is also
WSS and its autocorrelation function is given by

R, =HN)RH'(N) + a2, (3.72)

where the (L, + N) X (L. + N) matrix R, denotes the autocorrelation of s[n]. Equa-
tion (3.72) forms the basis of the subspace-based blind equalization algorithms.
Assuming for the moment that one knows Ry, the question is whether one can
obtain from it #(N) and subsequently identify h. If the filters k;[n] share no com-
mon zeros, then H#(N) has full column rank (i.e., N + L ). If R_ also has full rank, the
subspace associated with the signal part in R has dimension N + L and is spanned
by the columns of H(N). Since H(N)RS’HT (N) is nonnegative definite and the eigen-
decomposition of 21 is invariant to rotation, the eigenvectors associated with the
(N + L) largest eigenvalues of R span the signal subspace, i.e.,

= Sdiag(d,, A, -+ A ST+ e2ULT,
g4y 4 LA+N w

where /,> 2 fori=1, -+, L_+ N. Then, since H(N) spans S and if u, denotes the
nth column of U, we have

uH(N)=0. (3.73)
Equivalently, due to the commutativity of convolution,
hu (L. +1)=0, (3.74)

where (with a little abuse of notation) ¢/, (L. + 1) is the (L. + 1) X (N + L) M-channel
filtering matrix associated with the vector u,. It can be shown [32] that if (3.73) is
satisfied by both H(N) and H'(N), then H(N) = oH'(N), and h= oh, where a is a
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complex scalar. Thus, from an eigen-decomposition of Ry, S and U can be recov-
ered and subsequently #(N) and h. Moulines et. al. [32] define their estimator as
the vector i‘ss that has the minimum energy contribution to the empirical noise
subspace U obtained from an estimate of R,. Specifically, let Qa Z” U U, then
hgs = argminh'Qh, (3.75)
(b =1

ie, f‘ss is the eigenvector associated with the smallest eigenvalue of Q

The question that remains to be addressed is how one selects Ry, the estimate
of the correlation matrix of the data, upon which the subspace decomposition will
be based. A good choice for K/ that would provide the desired decomposition in
the absence of noise would have to satisfy an equation of the form

Ry =HMNRH' (), (3.76)

since in that case its rank can be readily seen to be upper bounded by (N + L ). This
can be accomplished by using a sample covariance matrix estimator, i.e.,

Ny-1
A 1 < .
A _— T
R vy v n:%‘ly[n]y [n]. (3.77)
In the absence of noise, (3.77) can be conveniently expressed in the form (3.76), where
Ny—1
N 1 < N
A o 1
R 2 N-N+1 n:%ﬂ s[n]s' [n].

Inspection of (3.76) suggests that in the absence of noise, IAS, is singular (its rank is
upper bounded by (N + L)), and if it is used in (3.75), it results in hgg = h as
desired. In fact, we may consider the deterministic counterpart of (3.72), namely,

R, = HIN)RH'(N) + HIN)R ,, + R, H'(N) + R,,, (3.78)

where IAZSIW and Rw are the sample signal-noise cross-covariance and sample noise
covariance matrices, respectively. Furthermore, in the presence of zero-mean white
noise independent of the data s[n], (3.72) holds for R, since

E[R]=R,, E[R,]J=0, E[R J=0.

This property can be readily verified by replacing R, with Rs in (3.72), substituting
the expression (3.71) for y[n] in (3.78) and taking the expectation of both sides. The
noise-signal subspace decomposition still holds, even if s[n] is not WSS, i.e., even if
s[n] is unknown. The only conditions that we still need in order for this decomposi-
tion to provide an estimator structure resulting in perfect estimation as 02— 0is
that w[n] is a zero-mean WSS process independent of s[n].

An interesting question is how to make a judicious choice for N. Larger N val-
ues correspond to noise subspaces of higher dimension. Presumably, depending
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on the method used to compute Q, the more noise eigenvectors, the higher the
accuracy of the estimate Q in the presence of noise. However, larger N values also
correspond to obtaining RY(N) based on fewer measurement vectors, as (3.77)
reveals. So, as N becomes comparable to N,, estimates of RY(N) become more and
more noisy, resulting in a deterioration in performance. Furthermore, the case
N = L+ 1is the least expensive in terms of computations, so unless increasing N
prov1des significant performance improvement, it is not recommended. In fact, for
M =2, the hCR method is a special case of the hss method, corresponding to the
choice N=L_+ 1.

In certain cases such as the oversampling receiver depicted in Figure 3.5, the
noise samples are correlated (provided the front-end filter has rejected all out-of-
band noise), i.e., E[w,[n]w] [1]] # 0. The case of R, = o2R,,, where R is full rank and
known (not an unrealistic assumption in certain cases such as the one depicted in
Figure 3.5), can be easily accommodated [32]. We can whiten the noise by pre- and
post-multiplying (3.72) by V' and V, respectively, where V = R . Consequently, if
we simply substitute u, = Vi, for , in (3.74), the rest of the analy51s applies.

3.3.1.3 Direct Symbol Estimation

In the two preceding algorithms, estimates of the channel parameters are initially
formed and are then used to equalize the channels and obtain §[n]. However, in
multiuser communication, we are interested in estimating the symbols without nec-
essarily obtaining a channel estimate. Liu and Xu [33] have suggested a method
based on second-order statistics, where the dependence on /,[n] is eliminated and
thus a relationship involving only the measurements and s[n] is formed. This ap-
proach may be attractive in fast time-varying channels, where estimates of the cur-
rent channel coefficients may not be useful in equalization of many subsequent data
samples.
We first rewrite (3.60) in the following matrix form:

VN =HN)ST(N),
where S(N) is the N, X (L. + 1) Hankel matrix associated with the vector
s=[s[N,— 1] - s[-L]]".
The Hankel matrix Y (N) is given by the right-hand side of (3.63) if we substitute
ylnl =y, [n] voln] - ypylall”

for y,[n]. The matrix H(N) corresponds to the vector-channel filtering matrix given
by the right-hand side of (3.63) if we substitute

hn] = [y [n] hyln] - hyn]]"
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forv,and forK =L
If s[n] is rich enough in linear complexity and the channels do not share any
common zeros, the vector sis given as the unique nontrivial solution to [33]

Vs =0. (3.79)

The matrix V in (3.79) has block diagonal structure and consists of N + L, blocks of
V,(N),ie., V= diag{Vo N, V,(N), -+, V, (N)}, and where V,(N) is the null space of
the row vectors of Y (N) [33]. It is straightforward to show that

V,(N)S(N) =0

implies (3.79) due to the Hankel nature of S(N).

In the presence of noise, the least-squares solution to (3.79) can be employed.
In that case, V,(N) is formed by selection of the r least significant eigenvectors of
y (N)jiT (N). The number r denotes the dimension of the noise subspace and can
be readily determined from the noise-free case to be

r=N,+L —QL.+K)+1
Finally, the estimate of the information-bearing signal is given by

§ =argmint' V'V, (3.80)
t

i.e., § is the least significant eigenvector of V'V. For instance, in the forward link of
a CDMA system, the estimate § [1] arising from (3.80) can be despread to obtain the
particular symbol subsequence of interest.

If the number of samples in s[n] is comparable to the number of channel para-
meters, this approach may be advantageous since it bypasses the channel estima-
tion step. Furthermore, this method outperforms the cross-relation method in
terms of mean-square estimation error in the data [33]. A main disadvantage of this
approach, however, is that for any subsequent set of data, either the procedure
must be repeated or an estimate of each 4, [n] must be formed.

3.3.1.4 Issues in the Multiple FIR, Channel-Deconvolution Problem

Since the publication of [29], the problem of blind deconvolution of multiple FIR
systems has been addressed from several different perspectives. Even though
many conceptually appealing formulations have been formed, several challenging
issues remain to be addressed before such methods can be practical. As a result,
there continues to be considerable activity in this area.

Selecting the right filter order, L, is of primary importance in the algorithms we
have presented. Let L_ be the assumed filter order and L, denote the actual maxi-
mal order among the filters H, (2), -*-, H,,(2). Also, assume that if L_ is picked cor-
rectly, the system is uniquely identifiable based on the cross-relation-based method
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by Xu et. al. [31]. It can be readily shown [34] that in the absence of noise, if L, > Lo
then dim null(Y) = L. — L+ 1. In other words, the zero-padded filters have com-
mon zeros which render them unidentifiable. If L. < L__, then Y has full rank, i.e.,
precise identification is not possible. In principle, we can identify L by increasing
L, until dim null(Y) = 1. However, a single, common zero would be indistinguish-
able from a delay. In general, all parametric FIR methods are sensitive to the choice
of L, [31]. Furthermore, the time-varying nature of the channel can only complicate
matters. Assume, for example, that one of the filters is given by h,[n] = 6[n — n,] (di-
rect line of sight scenario), corresponding to k() = 6 (t — n,T). If the actual delay of
the channel response changes from n,T to n, T + T/2, the corresponding discrete-
time sampled filter can have considerable length.? It would be very appealing if we
could circumvent the channel identification step and bypass issues such as the max-
imum filter order ambiguity problem that make such parametric methods sensitive
to the modeling parameters. Not surprisingly, if more information is available about
s[n], better solutions can be obtained. For example, when s[n] is discrete-valued
(such as in digital communication systems), more channels can be identifiable. First,
the channel identifiability problem in the case that H,(z)'s share common zeros can be
reduced to the single-channel problem with a shorter FIR filter deconvolution prob-
lem. Provided that Lg is very small, methods that are based on blind deconvolution
through LTI channels driven by discrete-valued alphabet inputs are possible [35].
Furthermore, in [36], Tong presents a blind sequence estimation method, which
exploits second-order statistical information of s[n] and is very appealing in time-
varying channel contexts. A collection of the recent developments in the problem of
the blind multiple-channel equalization is given by Liu et. al. in [37].

Another limitation of many existing algorithms in this area is their nonrecur-
sive structure, which effectively limits their applicability to batch mode operation.
For instance, in a time-selective fading environment, any of the discussed algo-
rithms could be used to initialize an equalizer. However, in the case of a long fade,
during which the equalizer may lose track of the time-varying channel, such an
algorithm may suffer. Structures that recursively compute the new symbol esti-
mates by considering past channel and symbol estimates may be naturally suited
for such channels. Giannakis and Halford [38] develop a recursive approach to
blind deconvolution by means of an FIR equalizer, where the taps are selected so as
to satisfy the ZF criterion, i.e.,

hn] = g[n] = Cd[n— m]

*The discrete-time filter associated with a half-sample delay in the context of ideal low-pass fil-
tering has infinite length. Furthermore, the filter tails decay to zero very slowly. However, since most
practical systems employ excess bandwidth modulation schemes, conversion from continuous to dis-
crete time involves filters whose transition band is fairly wide. In this case, the tails of the associated
discrete-time half-sample delay filter decay to zero much faster. Although less pronounced in these sys-
tems, the variable filter length problem still occurs.
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for some complex scalar C and some integer m, and where g[n] denote the equal-
izer taps. In the absence of noise, this method recursively obtains a ZF equalizer for
the model depicted in Figure 3.5, and (3.59). In the presence of noise, [38] also pre-
sents FIR solutions that minimize the mean-square error in the estimate subject to
a ZF constraint.

3.3.2 Blind Equalization in the Reverse Link via Multiple
Observations

The reverse link of a multiuser wireless communication system is depicted in Fig-
ure 3.1, where the channels are assumed to be unknown and LTI. Again, the addi-
tional channels can arise from the use of additional antennas, oversampling, or, in
general, both. The blind equalization problem in the multiuser context where the
codes are unknown is more challenging than its single-user counterpart. Specifi-
cally, the linear interaction among the multiple sources may be impossible to
resolve with algebraic relationships [33]. For instance, a natural extension of the
direct symbol estimation method (presented in the preceding section) results in the
construction of a matrix V that is orthogonal to all input vectors s, ---, sp, i.e., it has
null space dimension equal to P. If no more constraints are provided, the input vec-
tors s, -, sp, cannot be determined from the null space of V.

Several methods have been proposed that use additional information about
the transmitted data in order to resolve the ambiguity with reasonably low com-
plexity. In an extension to their blind symbol estimation algorithm, Liu and Xu
[33] propose a method for multiple-input multiple-output (MIMO) blind symbol
equalization in which they take advantage of the discrete-alphabet property of the
underlying digital communication signals by means of methods such as those
described in [35] and [39]. Using the finite alphabet nature of the symbols, [35] and
[39] show that the input vectors are identifiable, given sufficient data samples.
Unfortunately, with the method in [35], the number of symbols needed for sepa-
rating the users grows exponentially with the number of users, and the method
developed in [39] is not guaranteed to produce the correct symbol estimates in the
absence of noise.

Knowledge of the particular codeword associated with each user is a natural
form of additional information, which, if properly exploited, can help resolve the
remaining ambiguity. We next discuss one such algorithm for asynchronous
CDMA systems which uses knowledge of the user signatures and their relative
delays to extract the input symbol sequences [40]. The algorithm employs multiple
antennas sampling at the chip rate and uses the resulting sequences to construct a
ZF equalizer for each user.
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3.3.2.1 Blind Equalization Using Multiple Antennas in CDMA Systems

As we have noted in the previous section, in MIMO blind-channel deconvolution, it
is impossible to uniquely identify the multiple symbol sequences by using second-
order statistics. With such methods, one can, at most, isolate the subspace of dimen-
sionality P spanned by the symbol vectors s, = [s,[-L.] -~ s,[N, — 1] si[NS]]T for
i=1, -, P. The remaining ambiguity can often be resolved if the receiver knows the
user signature waveforms and their relative delays. Intuitively, one would use
knowledge of any particular codeword to isolate the subspace of the P-dimensional
subspace corresponding to the signal of the associated user.

In this section, we consider a representative blind ZF equalizer that can be
used with asynchronous CDMA systems in the case that the user signatures are
known to the receiver [40]. Specifically, consider the following modification of the
modulator of Figure 3.2 where

x,[nl = s;[klc,ln— kL — n],
k

where 1, is the relative delay of each user with respect to the receiver modulo L, i.e.,
0=mn,<L. In this scenario, we assume that all relative delays are known at the
receiver. This assumption implies that upon obtaining an estimate for Zi x,[n], the
symbol sequence for each i can be recovered by despreading in the standard man-
ner. We assume chip rate sampling at multiple (M = 2) receiver antennas. The
received signals at the M antennas are described by the M X 1 vector

P

ylnl=> > hlklx.[n— k] + win]

i=1 k

where R [1, k] = 625[n — k]I, and

h[n] = iy ] By [l - iy D]

corresponds to the vector channel response of the ith user. We seek M X 1 vector
FIR equalizers of length K + 1 for combining the M received channel signals to
obtain an estimate of x,[n] and, subsequently, s;[n]. Specifically, we denote the
equalizer for the ith user by the M X 1 vector [40]

glnl=1g[nl & [l - gM,i[””T'

Assuming that the vector equalizer has finite support in [0, K], it is convenient to
collect all the equalizer taps for the ith user in the vector g, i.e.,

g =g [Kl g'[K—1] - g[01]".
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Then, the estimate of x,[n — K] will be given by

K
[n— K= g[klyln -kl
k=0 (3.81)

= glyxlnl,

where y, [n] = [yT[n — K] yT[n -K+1] - yT[n]]T. By despreading, the esti-
mate of the kth symbol of the ith user can be obtained, i.e.,

L—-1
3.0k =S &KL + n, + €]c,(6)
ZO (3.82)

= g'X,[K],

where the entries of the vector X,[k] are correlations of segments of the received
sequence y[n] with the signature of the ith user, c;[n]. Specifically, we have
X, [k] = Y,[k]c; where

Y,[k] = [yg [KL + n; + K] yi [kKL +n;+ K +1] - yg[kL +n,+ K+ L —1]],

and ¢, = [¢;[0] ¢;[1] - ¢[L— 1]]T. In the absence of noise, a ZF equalizer for the
ith channel satisfies [40]

g/Y, [k] = s;[K]c]. (3.83)

If N symbols are considered, i.e., if (3.83) is satisfied for k=1, 2, ---, N, we can
rewrite this set of equations in the following matrix form:

Yl[l] - 0 0 8

L T | 1 Y (3.84)
: : . .0 :

Y,[N] O 0 —c. | Ls;[N]

For convenience, we refer to the matrix in (3.84) by the symbol Y. If the dimension of
the null space of Y equals one, then the null space completely determines g; and the
ith symbol sequence. If the dimension of the null space is higher, there are multiple
ZF solutions. In the presence of noise, a solution in the least-square sense can be
obtained, i.e., one that minimizes the mean-square error Zk ||gIY [k] — s;[K]¢c; H

This solution is given by the least significant eigenvector of Y'Y. In [40] it is
shown that g; . is the least significant eigenvector of G; = R R / L, where R

and R ,are the sample covariances formed from Y, [k] and X [k] respectlvely, for
k=1, -, N. Consequently, the equalizer g; is determmed by first forming the
sample covariance matrices R ~and R for the ith user, then the corresponding ma-
trix G, and finally by 1dent1fy1ng as g , the least significant eigenvector of G;. Pro-
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vided that K satisfies K = PLC/ (M — P), the ZF criterion can be satisfied, i.e., a ZF
equalizer of length K exists [40].

We emphasize that this scheme is not blind in the true sense since the receiver
knows both the signature of each user and the corresponding relative delay. In a
sense, the signature of each user plays the role of a training/identifying sequence
that enables the receiver to isolate a particular symbol stream based on a set of over-
sampled observations. In the special case where n; = n; for all 7, j (synchronous
transmission), we may note that for all i, j, we have R = R . Thus, knowledge of
the codewords in this case is exploited in the form of R to separate the symbol
streams. Furthermore, in a CDMA system where only one user is present, consider
a receiver that samples at the chip rate and has no prior knowledge of the user sig-
nature. Such a receiver can obtain an estimate of the symbol sequence by means of
one of the single-input, multiple-output blind strategies described in Section 3.3.1.
However, the detector we considered here requires knowledge of the signature so
that the sample covariance R _can be formed, and from its use, superior and more
robust symbol and channel estimates can be obtained.

One additional appealing aspect of this equalizer is that it does not require
knowledge of the channel length. However, this advantage is implicitly due to the
assumption that the receiver knows the relative delay of each of the users. A simi-
lar blind equalization scheme for CDMA systems is presented in [41]. More gener-
ally, many other strategies for the reverse link are also being pursued, as recent
literature attests.

3.4 CONCLUDING REMARKS

In this chapter, we have focused on the problem of equalization in wireless chan-
nels in the context of multiple users. We first discussed the problem of equalization
in the context of known wireless channels. This situation arises in systems where
reliable estimates of the time-varying channels are first obtained via training and
are subsequently used for equalization. We also discussed a class of equalization
schemes that do not require a priori estimates of the wireless channels, which rely
on signal reception via multiple unknown channels to obtain accurate channel and
symbol estimates via short observation windows. Although in this chapter we
have presented a number of potentially appealing strategies for multiuser equal-
ization, equalizer design is a currently active area of research. In particular, many
important and challenging issues remain in the development of practical band-
width-efficient multiple-access systems which are robust to the fundamental
impairments arising in multiple-access wireless scenarios. For the signal process-
ing community, these are likely to constitute a rich set of research challenges for
many years to come.
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As discussed in Chapters 1-3, signal processing functions in wireless communica-
tions include modulation/demodulation, channel coding/decoding, channel
equalization and estimation of transmitted signals, and reduction of cochannel
interference (CCI). One promising approach to improve signal processing perfor-
mance is space-time (S-T) processing, which operates simultaneously on multiple
antennas. A key leverage of this spatial dimension is CCI reduction. This reduction
is possible since the CCI and the desired signal almost always arrive at the antenna
array (even in complex multipath environments) with distinct and often well-sep-
arated spatial signatures, thus allowing the modem to exploit this difference to
reduce the CCIL. Likewise, the space-time transmit processing can use spatial selec-
tivity to deliver signals to the desired mobile while minimizing the interference for
other mobiles. Another leverage is the exploitation of blind methods. Use of train-
ing for equalization consumes bandwidth and is not efficient in rapidly time-vary-
ing channels. Therefore, blind channel equalization and estimation of multiple
users’ signals can improve network capacity and performance.
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The spatial dimension can also be used to enhance other aspects of space-
time modem performance. In reception, the antennas can be used to provide
enhanced array gain, improve signal to thermal noise ratio, and enhance diversity
gain, as discussed in Chapter 1. In transmission, the spatial dimension can enhance
array gain, improve transmit diversity, as is also discussed in Chapter 1, and
reduce delay spread.

The chapter focuses on the receiver S-T processing for nonspread modulation
and is organized as follows. In Section 4.1, we summarize the propagation model.
In Section 4.2, we develop a model for signals received at an antenna array and dis-
cuss the spatial and temporal structures in this model. In Section 4.3, we discuss a
zero-forcing view of channel identifiability and equalizability and discuss the sim-
ilarities and differences between intersymbol interference (ISI) and CCI cancella-
tion. In Section 4.4, we present some recently proposed techniques for blind
multiuser detection using block and recursive techniques. Section 4.5 concludes
with a summary of the chapter.

4.1 THE WIRELESS PROPAGATION ENVIRONMENT

As discussed in earlier chapters, the propagation of radio signals on both the for-
ward (base-station-to-subscriber unit) and reverse (subscriber unit-to-base-station)
links is affected by a channel in several ways. Multipath propagation results in the
spreading of the signal in three dimensions. These are the delay (or time) spread,
Doppler (or frequency) spread and angle spread. These spreads (see Figure 4.1)
have significant effects on the signal and are summarized below together with the
terminology we will use in this chapter.

Doppler Spread: Time-Selective Fading. Doppler spread results from
mobile motion and local scattering near the mobile. If one assumes uniformly dis-
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Figure 4.1 The three spreads of the wireless channel.
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tributed local scatterers, then, as discussed in Chapter 2, the baseband power spec-
trum of the received vertical electrical field due to a continuous-wave tone has a U-
shaped form, called the classical (or Jakes” model) spectrum [9].

If there is a direct line-of-sight path, the channel spectrum is modified by an
additional line at a frequency corresponding to the relative velocity between the
base and the mobile. Doppler spread causes time-selective fading and can be char-
acterized by the coherence time of the channel. The larger the Doppler spread, the
smaller the coherence time.

Delay Spread: Frequency-Selective Fading. Due to the multipath propaga-
tion, several time-shifted and scaled versions of the transmitted signal will arrive
at the receiver. Typically, a double negative exponential model is observed: the
delay separation between paths increases negative exponentially with path delay,
and the path amplitudes also fall off negative exponentially with delay. This
spread of path delay is called delay spread. Delay spread causes frequency-selective
fading and is also measured in terms of coherence bandwidth. The larger the delay
spread, the smaller the coherence bandwidth.

Angle Spread: Space-Selective Fading. Angle spread on receive refers to the
spread of arrival angles of the multipaths at the antenna array. Likewise, angle
spread in transmit refers to the spread of departure angles of the multipaths. The
angle of arrival (or departure) of a path can be statistically related to the path delay.
With a constant-delay, ellipse-scattering model, it can be shown that angle spread
is proportional to delay spread and inversely proportional to the transmitter-
receiver separation. Angle spread causes space-selective fading and is character-
ized by the coherence distance. The larger the angle spread, the shorter the coherence
distance.

Multipath Propagation in Large Cells. Multipath scattering underlies the
three spreading effects described above and Doppler spread, which in addition
requires subscriber unit motion. It is important to understand the types of scatter-
ers and their contribution to channel behavior. These scatterers are illustrated in
Figure 4.2.

Scatterers Local to Mobile. Scattering local to the mobile is caused by
buildings in the vicinity of the mobile (a few tens of meters). Mobile motion and
local scattering give rise to Doppler spread, which causes time-selective fading.
For a mobile traveling at 65 mph, the Doppler spread is about =200 Hz in the 1900
MHz band. Although local scattering contributes to Doppler spread, the delay
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Figure 4.2 Multipath propagation has three distinct scattering sources, each of
which gives rise to different channel effects.

spread will usually be insignificant because of the small scattering radius. Like-
wise, the angle spread will also be small.

Remote Scatterers. The emerging wavefront from the local scatterers may
then travel directly to the base or may be scattered toward the base by remote dom-
inant scatterers, giving rise to specular multipath. These remote scatterers can be
either terrain features or high-rise building complexes. Remote scattering can
cause significant delay and angle spreads.

Scatterers Local to Base. Once these multiple wavefronts reach the base
station, they may be scattered further by local structures such as buildings or other
structures that are in the vicinity of the base. Such scattering will be more pro-
nounced for low elevation and below-rooftop antennas. The scattering local to the
base can cause severe angle spread, which in turn can cause space-selective fading.
This fading is coherent, unlike the time-varying, space-selective fading caused by
remote scattering.

Space-Time Channel Model. A multipath channel [9] is illustrated in Figure
4.3. Typical path amplitude, delay, and fading statistics can be obtained from pub-
lished propagation models. The signal from the mobile travels through a number
of paths, each with its own power fading and delay. The fading can be either
Rayleigh or Rician and can have a Doppler spectrum that is flat or classical. These
paths arrive at the receive antenna array with varying angles of arrival. The com-
posite multipaths induce a different multipath channel at each antenna because of
differences in relative phasing of the paths.
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Figure 4.3 Multipath model.

A typical example of a macrocellular channel in a hilly terrain in the case of
the European cellular system GSM (Groupe Speciale Mobile) is shown in Figure
4.4. We plot the frequency response at each antenna. Since the channel bandwidth
is high (200 KHz), the channel is highly frequency-selective in a hilly terrain envi-
ronment where delay spreads can reach 10 to 15 us. Also, the large angle spread
causes variations of the channel from antenna to antenna. The channel variation in
time depends upon the Doppler spread. Note that since GSM uses a short time slot,
the channel variation during the time slot is negligible.
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Figure 44 Channel frequency response at four different antennas for GSM.
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4.2 SIGNAL MODEL AND STRUCTURE

In this section, we describe analytical models for the received signals at the
antenna elements in a wireless system.

4.2.1 Signal Model

In this section, we develop suitable receive signal models for the single and multi-
ple user cases shown in Figure 4.5. First, we develop the single-user (SU) model
and later extend it to the multiple-user (MU) case. In both cases, on the reverse link,
the subscriber uses a single antenna input (SI) and base station uses multiple
antenna outputs (MO).

Let c () denote the continuous-time impulse response of the multipath chan-
nel to an omnidirectional antenna (excluding that of transmitter and receiver fil-
ters), which we refer to as the physical channel impulse response. Assuming a
specular multipath model of the type considered in earlier chapters, we can
express c(t) as

L

c(h=> aBot—r1), (4.1)
1=1

where o, (f) and 7, denote the complex path fading and the propagation delay of /th
path, respectively, L is the number of multipaths, and 6 (+) is the Dirac delta function.
Let u(t) denote the baseband equivalent of the transmitted signal that de-
pends on the modulation waveform and the information data stream. In the IS-54
TDMA standard, u(-) is a 7/4-shifted DQPSK (differential quadrature phase-shift
keying), gray-coded signal that is modulated by a pulse with square-root raised
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Figure 4.5 Single and multiple user receive configurations.
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cosine spectrum with excess bandwidth of 0.35. In GSM, a Gaussian minimum
shift keying (GMSK) modulation is used. See [4, 13, 33] for more details.
For a linear modulation (e.g., DQPSK), we can write

u() => g(t—kTs(k), 4.2)
k

where s (k) denote the transmitted symbols, T denotes the baud (or symbol) period,
and g (f) denotes the effective continuous-time pulse shape that includes the effects
of the transmitting and receiving filters.

We now consider an m-element antenna array. We can express the noiseless
baseband signal at the ith element of the array, x;(f), as

L
()= a,0)qbult—r1), (4.3)
=1

where a,(0)) is the response of the ith sensor for an /th path from direction ¢, and
o, () represents the complex path fading for the /th path. We can rewrite (4.3) as

L
() => > a,0)e,Hg(t— 1, —kT)s(k) (4.4)
k =1

In the above model, we have assumed that the inverse of the signal bandwidth is
large compared to the travel time across the array (and that the channel fading
bandwidth is assumed to be negligible compared to the signal bandwidth). This is
the so-called narrowband assumption of the transmitted signal. Therefore, the sig-
nal complex envelope received by each antenna is identical except for phase (and
perhaps amplitude) differences that depend on the path angle-of-arrival. This
angle-of-arrival dependent phase shift along with any amplitude-phase response
differences is included in a,(0,) [19]. The complex reverse link signal fading ampli-
tude |, (#) | is Rayleigh- or Rician-distributed.

The channel model described above uses physical path parameters such as
path gain, delay, and angles-of-arrival, none of which are known nor are easily esti-
mated. The noiseless baseband signal received at the ith antenna output can also be
written as

()= h(t—kT)s(k), (4.5)
k

where I1,(f) represents the composite baseband impulse response of the channel
from the user’s transmitter to the output of the ith sensor and is the convolution of
the physical channel impulse response and the pulse shaping function. Since
hi(t) = c,(H* g(f), it follows that

L
B => a0, bgt—1)  i=1..m. (4.6)

=1
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This impulse response /,(t) has a finite duration called the channel length. In the
following, we assume that the fading coefficients {0} remain constant over the
time interval during which we collect the data and therefore treat /,(f) as time-
invariant. Defining the vector impulse responsel h(f) = [y (D - h, (t)]T, (4.6) can
be written as

L

h() = > a@)e (O3t — 1), (47)
=1
where a(0) = [a,(0) -~ am(ﬁ)]T is the array response vector.

Sampling h;,(t) at the symbol rate, we get h; (1) = h;(#) | =4, +n1, which is called
the symbol-spaced channel, where {; is the initial sampling instant. The symbol-
rate sampled received signal at the output of the ith antenna element can be
expressed as

N-1
() =D himsk—n), i=1,.,m, 4.8)
n=0
where we have assumed, without loss of generality, the impulse response corre-
sponding to each antenna to span N symbol periods (corresponding to a channel
length of NT). Again, defining the array output x(k) = [x; (k) - xm(k)]T, we can
rewrite (4.8) as

x(k) = Nzl h(n)s(k — n), 4.9)
n=0
where h(1) = h(f) | =4 +nr. If we define H as
H=[h(©) --- h(N—-1)], (4.10)
(an m X N channel matrix), then (4.9) can be rewritten as
x (k) = Hs(k), (4.11)
where
s (k)
s(k) = : . (4.12)
stk—N+1)

In terms of the physical channel parameters and the pulse shaping function, H can
be expressed as

H=A(O)AG(7), (4.13)
where A(0) = [a(f;) a(d,) -~ a(¢,)], A= diagey, -+, &;_,, o; } and

1The superscript T denotes the transpose operator.
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gty —19) gty+T—7) - gty+NT—T-—r1)
G : : : . 414
ghy—11) &g+ T—7_) - gy+NT—-T—17_) @i

gty — 1) gty +T—1)) . gty +NT—T—1))

In the following, we refer to the rows of H as the subchannel responses. From (4.13)
we get the following expression for each coefficient of H in terms of the channel
parameters [32]:

L
Hy = l; ;08 (ly — 7, + (= DT). (4.15)

As we will see later, there are advantages if ,(t) is sampled at a rate greater
than the symbol rate. This oversampling can be easily incorporated in our signal
model. Let the fractional sampling interval be T, = T/P, where P is an integer. We
define the pth phase, p = 1, 2,..., P, of the fractionally spaced response channel cor-
responding to ith antenna as

hp(n) =h(t) I t=ty+nT+ _(;Ll) T- (4.16)

Now, the new mP X 1 vector channel impulse response can be redefined as
hy ()
hmy=| : |. (4.17)
hy, (1)

Similarly to (4.16), we define the pth phase of the vector received signal X, (k) as

N-1
x,(N) = > h, (n)s (k — n), (4.18)
n=0
where we have assumed again, for convenience, that the impulse response of each
phase spans N symbol periods. H (now of dimension mP X N) will correspond to a
fractionally spaced vector channel with number of subchannels as mP and each
channel length as N, and will still obey the definition (4.10) with h given in (4.17).
The channel model is again

x (k) = Hs(k), (4.19)

with x(k) = [xlT k) --- x}; (k)]T. Notice that with this definition of H, the factoriza-
tion (4.13) is no longer valid (an alternative definition that would keep (4.13) valid
would be to use H' of dimension m X PN).
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We now collect M vector samples of the received signal during M symbol pe-
riods. Stacking these samples (in increasing order) in a polyphase mMP X 1 vector,
e, X,k =["(k) x"(k+1) - x"(k+M—1)]", we obtain the factorization

X, (k) = HS(k), (4.20)

where H is the mMP X (N + M — 1) matrix,

o [H]
H= — (4.21)
0
and
stk+M—1)
S(k) = : . (4.22)
stk—N+1)

Notice the block-Hankel structure of H (an equivalent formulation of (4.20) with a
decreasing time index in X,, would result in a block-Toeplitz instead of a block-
Hankel matrix—see [12, 20]).

If H is of full column rank, then

Column span (X) = Column span (H), (4.23)

and full column rank of # is guaranteed if mMP = (N + M — 1) and if the subchan-
nel polynomials of H do not share a common root [12]. As will be seen later, the full
column rank of # is an important property linked both to the identifiability and the
equalizability of the channel.

Suppose we have M’ polyphase vector samples of data and we wish to use
these in blocks. We can then extend the data vector X, (k) to a block-Hankel matrix
by left-shifting and stacking M’ times:

x (k) xtkk+1) .- x(k+M — M)
x(k + 1) x(k + 2) o

X, = . (4.24)
- x(k+M' —2)
x(k+M-1) .- x(k+M =2) x(k+M —1)

which has size mMP X (M'— M + 1). In terms of H and the transmitted symbol
matrix, this augmented matrix can be expressed as
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Xy =HS = (4.25)
sk+M—1) sk+M' —2) sk+ M —1)
o [A] . . ,
T - - stk+M' —2)
H . 7
0 s(k—N+2) s(k—N+23) :
sk—N+1) sk—N+2) sk+M —M-N+1)

where H is mMP X (N+ M —1) and Sis N+ M—1) X (M ' — M+ 1). Equation
(4.25) shows that the augmented data matrix admits a factorization into two matri-
ces, a block-Hankel space-time channel matrix and a block-Toeplitz transmitted
symbol matrix. This observation, too, is crucial to the blind identification of H from
the observations X, .

In the MU case, we assume that multiple subscribers transmit their informa-
tion signals towards the antenna array at the same base station. The MU-SIMO
model is a straightforward extension of the SU-SIMO model. Assuming Q users,
the symbol-rate sampled, received signal at the antenna array is the sum of the sig-
nals from Q subscribers, and using (4.19) we have

Q
x(k)= > H,s, (K. (4.26)
q=1

A data model for the MU case will have Q channels corresponding to Q users, and
we assume, for ease of exposition, that each user’s channel impulse response spans
N symbol periods. We interleave the sampled impulse responses of the Q users,
sample by sample, taking the size of H to mP X QN. Defining the Q-tuple symbol
vector as s(k) = [s?V (k)s® (k)...s(Q) (k)]T, where s (k) denotes the kth symbol of ith
user, we get the following signal model:

Xy, = (4.27)
sk +M—1) stkk+M —2) stk+M —1)
o [H] . ) . )
g . stk+M —2)
III_TI o |[sk-N+2 sk-N+3) /
sk—N+1) s(k—N+2) sk+M —M+N+1)

so that # is mMP X QIN+ M —1), and S is QN+ M —1) X (M — M + 1), and
where the M shifts of H to the left are now each over Q positions. Again, as in the
single-user case, the blind identification and equalization of the channel will be
affected by the size and conditioning of H.
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4.2.2 Spatial and Temporal Signal Structure

Given the signal model at (4.25), an important question is whether the unknown
channel H and data S can be determined from the observations X,,. This ques-
tion leads us to examine the underlying constraints on % and S, which we call
structure.

4.2.2.1 Spatial Structure

The spatial structure of H is apparent from (4.15). The vector a(0)) lies on the array
manifold A, which is the set of array response vectors indexed by ¢

A=1{a) |06}, (4.28)

where the set @ is the set of all possible values of . Knowledge of A helps deter-
mine a(0;). A includes the effect of array geometry, element patterns, interelement
coupling, scattering from support structures, and objects near the base station. A,
when measured at the receiver baseband after digitization, includes the effects by
cable and receiver gain/phase response, in-phase/quadrature (I-Q) imbalance,
and analog-to-digital (A /D) converter errors. A is frequency-dependent and needs
to be calibrated at multiple points within the operating band.

4,2.2.2 Temporal Structure

The temporal structure relates to the properties of the signal u(f) and includes mod-
ulation format, pulse-shaping function, and symbol constellation. Some typical
temporal structures are described below.

Constant Modulus (CM). In many wireless applications, the transmitted
waveform has a constant envelope (e.g., in FM modulation). A typical example of
a constant envelope waveform is the GMSK modulation used in the GSM cellular
system, which has the following general form:

u(t) = ol @tto®)

where ¢(f) is a Gaussian-filtered phase output of a minimum shift keyed (MSK)
signal [23].

Finite Alphabet (FA). Another important temporal structure in mobile
communication signals is the finite alphabet. This structure underlies all digitally
modulated schemes. The modulated signal is a linear or nonlinear map of an
underlying finite alphabet. For example, the 1S-54 signal is a 7/4-shifted DQPSK
signal given by
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uh) =" A g(t—pT)+j> B,g(t—p), (4.29)
P P

where
A, =cos(p,), B,=sin(p,), ¢,= ¢, +Ap,

<(+) is the pulse shaping function (which is a square root raised cosine function in
the case of 1S-54), and Ap,is chosen from a set of finite phase shifts {% % , —Z— , 7T”
depending on the data s(-). This finite set of phase shifts represents the FA structure.

Distance from Gaussianity. The distribution of digitally modulated signals
is not Gaussian,? and this property can be exploited to estimate the channel from
higher-order statistical quantities such as cumulants. See, e.g., [7] and [16]. Clearly
CM signals are non-Gaussian. These higher-order statistics (HOS) based methods
are usually slower converging than those based on second-order statistics.

Cyclostationarity. As discussed in Chapter 3, recent theoretical results [5,
12, 22, 25] suggest that exploiting the cyclostationary characteristic of the communi-
cation signal can lead to algorithms requiring only second-order statistics to identify
the channel H and therefore are a more attractive approach than HOS techniques.

It can be shown [2] that the continuous-time stochastic process x(t) defined in
(4.3) (assuming the fade amplitudes o, are constant) is cyclostationary. Moreover,
the discrete sequence {x} obtained by sampling x(f) at the symbol rate % is wide-
sense stationary, whereas the sequence obtained by temporal oversampling (i.e., at
a rate higher than 1/T ) or spatial oversampling (multiple antenna elements) is
cyclostationary. The cyclostationary signal consists of a number of phases (poly-
phase components), each of which is stationary. A phase corresponds to a shift in
the sampling point in temporal oversampling and different antenna element in
spatial oversampling. The duality between temporal and spatial oversampling is
illustrated in Figure 4.6.

The cyclostationary property of sampled communication signals carries
important information about the channel phase, and this information can be
exploited in several ways to identify the channel. The cyclostationarity property
can also be interpreted as a finite duration property. Put simply, the oversampling
increases the number of samples in the signal x(f) and phases in the channel H but
does not change the value of the data for the duration of the symbol period. This
oversampling is what allows H to become tall (more rows than columns) and full
column rank. Also, the stationarity of the channel makes H Hankel (or rather,

2 . . . ~ . . . .
“The distribution may, however, approach a Gaussian when constellation shaping is used for
spectral efficiency [34].
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Figure 4.6 Antennas and/or oversampling result in polyphase SIMO channels.

block-Hankel). As indicated earlier, tallness and Hankel properties are key to the
blind estimation of H.

The Temporal Manifold. Just as the array manifold captures spatial wave-
front information, the temporal manifold captures the temporal pulse-shaping func-
tion information (see [32, 35]). We define the temporal manifold k(z) as the
sampled response of a receiver to an incoming pulse with delay 7. The temporal
manifold is a powerful structure for channel identification and tracking. Moreover,
unlike the array manifold, it can be estimated with good accuracy since it depends
only on our knowledge of the pulse-shaping function. Table 4.1 shows the duality
between the array and the temporal manifold.

The different structures and properties inherent in the nature of the transmitted
signals and the employed receivers in space-time processing are shown in Figure 4.7.

TaBLE4.1 The duality between the array and the time

manifold
Manifold Indexed by Characterizes
Array angle 6 antenna array response

Time delay 7 transmitted pulse shape
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Figure 4.7 Space-time structures.

4.3 CHANNEL IDENTIFICATION AND EQUALIZATION

Given the model (4.25) or (4.27) and the received signal, the task of the receiver is
to estimate the data S that were transmitted. This estimation is usually performed
using one of two approaches. The first approach is to determine the channel H and
then use a maximume-likelihood sequence estimator (MLSE) to find the data S.
Another approach is to sidestep the channel estimation and invert or equalize the
channel to reveal the data directly.

If we wish to equalize the channel, a key question is: What conditions on the
channel make it invertible? On the other hand, if we wish to estimate the channel
first, the corresponding question is under what conditions the received signal sta-
tistics alone can provide identification (this is called blind channel identification).
Of course, the answers to these questions depend on the type of filters used for
equalization and the type of signal statistics used for identification. We address
these issues next, focusing on linear equalizers and blind identification based on
second-order statistics (SOS).

4.3.1 Single-User Channels

We begin, in this section, with the equalization of single-user channels. The multi-
user case is treated in the following section.
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4.3.1.1 Conditions for Channel Equalization/Identification

We consider the problem of zero-forcing (ZF) equalization for an m-sensor receiver
with a P-oversampled channel. Namely, we are interested in finding an equalizer
of order M, F,, = [£(0) --- f(M — 1)]T (an mMP X 1 vector), such that the following
zero-forcing condition is satisfied for the equalizer output y(k):

y(k) = F1, X, (k) =s(k — 6), (4.30)
where 6 € [-M + 1, N — 1], which results according to (4.20) to
FI/I’H =[0---0 1 0---0], (4.31)

where the position of the single non-zero element in the right-hand side of (4.31)
depends of course on the choice of . To satisfy (4.31), the generalized Sylvester
matrix H needs to be left-invertible, hence full column rank, which requires that it
has at least as many rows as columns and that the different columns are linearly
independent. This requirement results in the following two conditions:

(1) mMP=M+N-1=M=M=[N-1]

(C2) The polynomials H;(z), i = 1,...,mP — 1 corresponding to the different rows
of H must have no common roots.

Therefore, zero-forcing equalization is indeed possible with a finite-length equal-
izer, provided that the received signal is oversampled (or received with multiple
antennas) so as to satisfy (C1) and that the mP channel phases have no common
zeros. Notice that this is still possible if only oversampling (m =1, P >1) or only
antennas (P = 1, m> 1) are used. This fact was noticed by Slock in [20].3

The same conditions that hold for perfect noiseless ZF equalization turn out
to be necessary and sufficient for the blind identification of a polyphase channel
with the use of second-order-only (cyclostationary) statistics. The cyclostationarity
of the sampled received signal is crucial in obtaining this result. The result was first
obtained by Tong et al. in [25] and was stated as follows.

TheoremI. The channel transfer function H(z) is uniquely determined (iden-
tified) by the cyclic spectrum of the oversampled channel output if and only if H(z)
does not have zeros uniformly spaced on a circle with separation of 27/T radians.

In this theorem, H(z) = Z:’flz”H (2™ represents the z-transform of the inter-

leaved channel response. It is easy to show [28] that H(z) has zeros equispaced on
a circle if and only if the mP channel phase polynomials H,(z) have no common root
(condition (C2) above).

31t turns out that similar conditions had appeared in a different context earlier (Massey and Sain

[11)).
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Hence, the common root condition is important for both the existence of
finite-length linear equalizers and for SOS-based blind channel identification.

Whereas in theory it may be unlikely that all the subchannels share common
roots, in practice they may have several roots that are very close to each other. This
can make SOS-based methods ill conditioned. We show below that there exist
some channel classes that will suffer from the common zeros problem and we pre-
sent some approaches to overcome it.

4.3.1.2 Avoiding the Problem of Zeros in Common

According to Theorem I, SOS-based identifiability will fail when the phases of the
different channels share common roots. Two questions are then of interest: how
likely this is to happen and what can be done in practice to avoid it?

A partial answer to the first question was given in [28] and in [3]. In [28], it
was observed that the following class of channels will always suffer from the
zeros-in-common problem when oversampled in time:

¢ Class I: channels with delays that are all multiples of T

This case can be easily seen as follows. The impulse response of Class I channels
will have the general form
L-1
h))=> a,g(t—IT); (4.32)
1=0
hence, the ith phase h;(k) = h(t, + kT + (i — 1)T/P will be given by
L-1
h)=> a,8(k—10), (4.33)
1=0
where g;(k) = g(tO + kT + (i — 1)/T). Taking the z- transform of (4.33) gives
H;(2) = A(2)G;(2), (4.34)

where A(z) is the z-transform of 0 It is clear from (4.34) that the channel phases
obtained from oversampling Class I channels have common zeros.

Some other channel classes that have the same identifiability problem when
oversampled were reported in [3]. One of these classes is the following:

_2(l-p) n(l—/)’)]

¢ Class II: band-limited channels with frequency nulls in [ T T

where f is the roll-off parameter

An example of such band-limited channels is shown in Figure 4.8.
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Figure 4.8 Typical example of a Class Il band-limited channel.

The existence of the above channel classes suggests that the zeros-in-common
identifiability problem is likely to arise in some practical cases. We now present
some proposed approaches that avoid this problem.

Space-Time Oversampling. We consider first Class I channels. Instead of
using time oversampling to obtain a polyphase channel (4.33), we could use space
oversampling: the received signal is sampled at the symbol rate and received by an
array of m sensors. Assuming a uniform linear array (ULA), the continuous-time im-
pulse response corresponding to the ith sensor of the array would then be given by

L—-1

(6 = ( > o D s ¢ lT)) +g ()
=0

(4.35)

L—1
_ (z a]e,} sz (i—1) Sin(),g(t _ lT)) i
1=0

where d is the interelement spacing, and 4 is the wavelength of the carrier frequency.
Defining the discrete impulse response of each antenna i as h, (k) = h,(f) ] P
and the corresponding sampled pulse shaping function g(k) = g(f) | =4 47, the
z-transform of £, (k) is given by [18]
L-1
H@=> 7,2'G@, (4.36)
1=0
where y, = a,e’/ 2d(i-1) sinf According to (4.36), in the multiple sensors case, the
common factor among the subchannels comes from the pulse shape (while in the
oversampling case it comes from the multipath channel—cf. (4.34)). Now, if g(f) is
a Nyquist pulse (e.g., a pulse with raised cosine spectrum) and perfect synchro-
nization has been achieved (¢, is a multiple of T), then G(z) = 1. In this case, accord-
ing to (4.36), the m subchannels will have no common roots as long as the arrival
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angles of all the L multipaths are not the same or they do not correspond to array
ambiguities. This reasoning establishes that for a Class I channel, the use of spatial
instead of temporal oversampling helps avoid the identifiability problem. If syn-
chronization is not perfect, then G(z) # 1; however, the identifiability problem can
again be avoided if combined spatial and temporal oversampling is used [18].

We now consider the Class II channels, in which the identifiability problem
comes from the fact that each frequency null in [ — (1 — f)/T, n(1 — B)/T] gives
rise, in the oversampled response, to a set of P roots that are located uniformly
around the unit circle.

For example, we consider the class of multipath channels with two paths [3],

c(t)=(5(t)+(5<t— ),;7>/f, (4.37)

T
)
which has a frequency null at = n(l; 1 or w="0"1 We consider again the
subchannels obtained from the m sensors of a uniform linear array. Following the
steps similar to those used in arriving at (4.36), the ith antenna channel response is
given in the z-domain by

2m

H,(2) = e PEH0500(G(2) + 9,6, (), (4.38)

where g (k) =g(t— 1) | t=ty+kT- Observe that there is no common polynomial factor
shared by the subchannels.* Thus, again, the use of an antenna array instead of
oversampling can be used to allow the SOS identifiability of channels that would
otherwise be unidentifiable.

Cyclostationarity Through Decision Feedback. A different approach to ob-
tain cyclostationarity at the receiver without using temporal or spatial oversampling
is the use of a decision-feedback equalizer (DFE) receiver. As we show below, after
sufficient opening of the channel eye by the receiver, decision feedback can provide
a polyphase signal that does not suffer from the zeros-in-common problem [14].

Consider the receiver shown in Figure 4.9, where symbol-rate sampling has
been assumed:

When the switch is at position 2, the setup corresponds to a standard symbol-
rate decision-feedback receiver. Assuming that the channel eye has been suffi-
ciently opened (as is typically assumed in the analysis of DFEs), the following
condition holds:

a(k)=a(k—j), (4.39)

where j is some inherent delay. In this case, the DFE receiver corresponds to the
setup of Figure 4.9, where the switch is at position 1. One may now notice that the

*For 1 =kT, however, G,(z) = G (z)z”‘, and it corresponds to a special case of the Class I channels.
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Figure 4.9 An equivalent DFE setup, assuming correct decisions.

\

vector input to the two filters x (k) = [x(k) a (k)]T can be seen as the output of the fol-
lowing single-input-two-output channel:

H,(2) = H(2)

Hy(2) =z (4.40)

Therefore, the following theorem holds:

Theorem II.  If (4.39) holds, the vector input X (k) to the feedforward and
feedback filters is equal to the output of a single-input-two-output channel whose
subchannels H, (z) and H,(z) have no common factor, except for a possible pure
delay z .

Based on the above theorem, the problem of zeros in common can be avoided
with the use of decision feedback, provided that the channel eye has been suffi-
ciently opened to provide correct decisions. A description of blind methods for
DFE can be found in [14]. As compared to the above method of spatial oversam-
pling, this approach requires less computational complexity since we need to com-
pute only the values of a few coefficients in the feed-forward and feedback filters.
On the other hand, the implementation of fully blind DFE techniques needs some
care to guarantee cyclostationary structure (see [14]).

Transmission-Induced Cyclostationarity. An alternative approach to avoid
the channel conditioning problem is to design communication signals that are cy-
clostationary prior to transmission. This cyclostationarity can either be artificially
introduced by redundancy in transmission or arise naturally through the cyclosta-
tionary character of the transmitted signal. For example, in [27] it is shown that if
one uses repetitive interleaving of a factor 2 at the transmitter, one obtains a SIMO
channel model that does not suffer from identifiability problems. Of course, this is
done at the cost of reduced bandwidth efficiency (if no extra bandwidth is used, this




Sec.4.3 Channel ldentification and Equalization 199

approach will result in controlled ISI, whereas increasing the bandwidth will result
in a repetition coding scheme). Similar results were presented in [1], where chip in-
terleaving was used for the same reason prior to transmission in a CDMA system.
The use of filter-bank-based precoding to induce cyclostationarity at the transmitter
and avoid the zeros-in-common problem is also presented in [6]. Finally, in [8] it is
shown that the SAT tone signal that is superimposed on the information bearing sig-
nal in the Advanced Mobile Phone Service (AMPS) analog cellular system used in
North America also results in a cyclostationary transmitted signal.

4.3.2 Multiple-User Problem

Additional issues arise in multiuser problems, which we consider in the subsec-
tions that follow.

4.3.2.1 Joint ISI/CCI Cancellation

We consider again the general case of an m-antenna receiver with an oversampling
factor of P. Assuming Q users, the ZF equalization condition is

Fy Xy, (k) = sV (K —9), (4.41)

where F,{A and X, , (k) are now mMP X 1 and where we have assumed without loss of
generality that we are interested in the recovery of the first user’s signal (up to some
delay). Using (4.27), this will give again

Fy,H=[0 010 - 0] (1 X QN+ M—1)). (4.42)
Again, H needs to be left-invertible; hence, it is necessary that
QIN-1)
M= =0 | (4.43)

Again, (4.43) will not be sufficient to achieve perfect ISI/CCI cancellation unless
the row polynomials of H are guaranteed to share no common roots [15, 21].

We may notice from (4.43) that even if pure temporal processing is used
(m=1), it is still theoretically possible to cancel perfectly both the channel ISI and
CCIif oversampling is used (P > 1). However, in practice, this type of performance
will be limited by the channel conditioning, as we discuss below.

4.3.2.2 Channel Condition and ISI/CCI Cancellation

The preceding ZF analysis for ISI and CCI canceling with linear filters did not
address the important aspect of performance deterioration of the ZF equalizer in
the presence of noise. It is well known that in the presence of noise, zero-forcing
equalizers can cause severe noise amplification, especially when the channel has
deep spectral notches. This picture also holds, broadly, for the oversampled case.
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We now discuss how path parameters affect ZF equalizer performance in the
ISI and CCI channel cases. Based on the previous discussion on ISI and CCI can-
celing, one might infer that the ISI and CCI cancellation appear to be much the
same. A ZF equalizer cannot distinguish which interference it combats, and only
the differences in the two channels distinguish them from each other.

However, there are some critical differences in the way the ISl and CCI channels
are influenced by the channel parameters. For example, consider the case of L paths
arriving at the antenna array with near equal delays (7, = --- =7, =1). If all paths
come from the same user, this corresponds to a low delay spread case: the channel eye
is open (assuming synchronization is achieved), and no equalization is needed.

On the other hand, if the paths correspond to different users, the different
user channels are similar to each other, making ZF CCI cancellation very ill condi-
tioned (H is near singular). This ill-conditioning causes severe noise amplification.
It is clear from the above that in this case the ISI and CCI cancellation are affected
by the path parameters in opposite ways!

Denoting by F the fractionally spaced ZF equalizer that completely nulls
interference in the absence of noise and assuming the noise at the equalizer input
to be white of variance o2, the noise variance at the equalizer output is given by

= ?|F|. (4.44)

Hence, we can use the quantity ||F|[2 as a measure of noise amplification at the
equalizer output.

To compare the performance between the ISI and the CCI case, we consider
both an ISI and a CCI channel with two equipower signal paths with the interfer-
ing path arriving with a small delay equal to r = T/20. The received signal is of the
form x(f) = u(f) + u(t — T/20) in the ISI case and x(f) = u, (f) + w,(t — T/20) in the
CCI case. We have assumed linear modulation (see (4.2)) where g(t) is a raised
cosine pulse with roll-off parameter f = 0.3 (see [17]). The received signal is sam-
pled with an offset of = T/20 and oversampled by a factor of two. To evaluate the
performance of zero-forcing equalization in this experiment, we have calculated
for both cases the minimal-length zero-forcing equalizers that correspond to all
possible cursor positions (J in (4.30) or (4.41)).

In Figure 4.10, we have plotted the quantity 1/||F H for each of the two cases
(ISI and CCI). Notice from the figure both the effect on performance of the choice
of ¢ and the dramatic noise amplification in the CCI case. As expected from the pre-
vious arguments, in the CCI case the two channels are very similar, leading to
severe noise amplification, whereas in the ISI case the problem is well conditioned
and good performance can be achieved.

We now consider a large delay-spread case: now the delay r = 1.05T for both
the ISI and the CCI channels. The performance in this case is shown in Figure 4.11.
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Observe that whereas in the ISI case the performance is still superior, the gap
between the two cases has reduced. Also, the performance of the ISI channel has
considerably deteriorated. The first effect is due to the fact that now the two user
channels in the CCI case are no longer similar; hence, the channel will be better
conditioned. On the other hand, in the ISI case, the delay spread is now significant,
leading to a performance reduction as compared to the earlier low delay spread.

These differences will vary depending on the channel and equalizer; e.g., if
linear MMSE equalization is used instead of ZF equalization, the noise enhance-
ment problem will be less pronounced. Also, if nonlinear equalization is used after
the channels have been well identified, joint maximum-likelihood sequence detec-
tion will provide optimal performance irrespective of channel characteristics.

4.4 BLIND TECHNIQUES

To this point, we have studied channel identifiability, equalizability, and the
ISI/CCI cancellation problem. However, we have not yet addressed the important
question of how signal recovery can be achieved. In the following discussion, we
present two approaches for blind signal recovery from the channel output data in
the multiple-user channel case. The single-user problem can be seen as a special
case of this problem and will not be addressed in this chapter.

As derived in Section 4.2, if the channel is FIR, then the oversampled output
signal can be written as

X =HS.

The objective is to blindly identify S.
A number of properties of the signal can be used, as was listed in Section 4.2.
In particular, in this section we use the following properties.

1. The fixed symbol rate of the signals (equivalent to the finite duration property
mentioned in Section 4.2.2.2), which allows one to obtain independent linear
combinations of the same symbols by using oversampling and/or multiple
antennas (assuming linear modulation). This property gives rise to the
Toeplitz structure of S and is due to the (assumed) time invariant nature of the
channel.

2. The constant modulus (CM) of the signals or their finite alphabet (FA).

We begin with the presentation of a block technique that makes use of the
finite duration and FA properties. Then, we present a recursive technique that
relies on the CM property.
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4.4.1 Block Methods

The method presented below consists of two steps. The first step is a straightfor-
ward extension from scalars to vectors of the blind single-user equalization algo-
rithm proposed by Moulines et al. in [12] and by Slock in [20] and discussed in
Chapter 3. At this point, the ISI caused by the channel is removed and the input sig-
nals are synchronized. However, the symbol sequences can be determined only up
to a fixed linear combination of them. This problem can then be treated with the
methods proposed in [10, 30, 31].

4.4.1.1 Linear Data Model

To describe the FIR-MIMO (multiple-input multiple-output) scenario, consider the
linear data model as detailed in Section 4.2, which we repeat here for convenience.
Assuming m antennas, P times oversampling, and an equalizer length of M sym-
bols, the MP-dimensional complex-valued data vectors x, received at the antenna
array during M symbol periods are collected in the MmP X (M' — M + 1) block-
Hankel matrix

Xo X1 Xpm'-M
X X, .°
1 2
x,= . . (4.45)
. R Xp1'—o
Xpm-1 7 Xp'-2 Xy

(see (4.24)). Let N] be the channel length of the gth user. With Q users and a maxi-
mum channel length of N = mqaxN , symbols per channel, & has a factorization (Sec-
tion 4.2)

s Sp'—n  Spp’
M-1 M'-2 Sm'-1
0[] S
R M2
T = HS= [H ] S-N+2 SN+3
H 0

S N+1 SN+2 - Spm'-M-N+1

where we recall that # is an MmP X Q(N + M — 1) block-Hankel matrix, and S is a
QN+M-1) X (M —M+1) block-Toeplitz, finite alphabet matrix. The block H
contains the impulse response of the channel, convolved with the modulating
pulse shape function; s, isa Q X 1 vector containing the symbols transmitted by the
Q users in the kth interval. For digital sources, the entries of s, belong to a specific
alphabet Q, such as Q = {+1} for BPSK signals.

If MmP is large enough and H has full column rank, then X is rank-deficient
and is expected to have rank

Qy=QIN+M-1). (4.46)
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Our goal is to factor X, into H and S with the indicated structures as above. The
necessary conditions for X, to have a unique factorization X', = ‘HS are that His a
“tall” matrix and S is a “wide” matrix, which for N > 1 leads to

mP > Q
N - Q
M= 57211’_—5 (4.47)

M'>QON+ (Q+1)M—1).

The common root condition mentioned in the single-user case now extends to the
condition that H is “irreducible and column reduced.” (See also (4.43).) Given suffi-
cient data, only mP > Q poses a fundamental identification restriction since M and
M’ are usually large enough.

Note that these conditions are nof sufficient for H and S to have full rank. One
case where H does not have full rank is when the channels do not have equal
lengths, in which case the rank of X' is at most 2. N, + QM —1).

4.4.1.2 Blind Multiuser Identification

The blind FIR-MIMO identification problem may be stated as a matrix factoriza-
tion problem: given &, find factors H and S with the indicated structure.

Suppose that the conditions (4.47) are satisfied and that H has full column
rank Q(N + M — 1). Then, row(X) = row(S), so that we can determine the row
span of S from that of X. The first step of the algorithm is to compute an orthonor-
mal basis V of row(X). The next step is to find linear combinations of the rows of 1%
such that the result both belongs to the finite alphabet (FA) and has a Toeplitz
structure.

Forcing the Toeplitz Property: Subspace Intersections. A standard proce-
dure to find S as a block-Toeplitz matrix with row(S) = row(X) (but not forcing the
FA property) is to rewrite this as

[sp-1 Sy Sy—1l €  row(X)
[sp- Sm— Sy o] €  row(X)
M-—2 M-1 w2l o (4.48)
[Sni1 Sniz 7 Swenmal € TOW(A).

These conditions can be aligned to apply to the same block-vector in several ways.
We choose to work with

§:=[s.n+1 Sns2 7 Swral:
Let V be a basis for row(X).
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Figure 4.12 Multistage equalization/separation filter.

The conditions (4.48) can be transformed into

. . 1% 0
S € rowVv®, V(l):=r ],
[0 INimo
[0 V 0 ] (4.49)
S € rowf/(z), v@.= 11 o 0
[0 0 Tyim-s]
S € rowpyWM-D \A/(NJ“M”)::[ oV )
Inipm—2 0

Indeed, the identity matrices in each V® reflect the fact that, at that point, there are
no range conditions on the corresponding entries of s. Thus, S is in the intersection
of the row spans of VD until vV M=) and we have to determine a basis for the
intersection of a set of given subspaces. If all channel lengths are equal, then we
expect to have Q signal sequences in the intersection.

To compute the intersection, we can use the fact that, for orthonormal bases
V® as we have in (4.49), the subspace intersection is obtained by computing the
singular-value decomposition (SVD) of a stacking of all the basis vectors or, more
conveniently, (for n intersections, n = N + M — 1) by an SVD of

[

v

| o

VT(n) =

|

I

4

, (4.50)
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where the 1 copies of V are each shifted over one entry, and

Jn—1 0 1 0
]1:

0 1 0 Jyn—1

The matrices | ;, | , summarize the identity matrices present in (4.49), which is pos-
sible because we are interested only in row spans.

The estimated basis for the intersection (hence, for S) is given by the right
singular vectors of V., that correspond to the large singular values of Vz,: those
that are close to 7. This subspace intersection algorithm has complexity
O(Q*(N + ]\/I)3M/) and is linear in M.

Let Y be a matrix containing the estimated basis for the row span intersection.
For 1= N+ M — 1, this matrix ideally consists of Q row vectors. To find S itself
(hence, S as well), we have to determine which linear combination of the basis vec-
tors gives a finite alphabet structure. Effectively, the subspace intersections per-
form a blind equalization jointly on all signals, but their separation is done based
on the FA property.

Forcing the FA Property. For a given matrix Y, the iterated least-squares
algorithms ILSP/E/F [24], and the constant modulus algorithm RACMA [29] (for
BPSK or QPSK) solve the factorization

(Y = AS: A, S full rank, [S]; € Q), (4.51)

where Qs a prespecified finite alphabet, and A is any resulting nonsingular matrix.

Since the factorization X = HS is of the form (4.51), we could, in principle,
use the ILSP or RACMA algorithm directly on X. However, & is generally a large
matrix with many rows, limiting the performance of ILSP (mainly in the context of
finding all independent signals) and giving an unacceptably large computational
complexity in RACMA. A second problem is that the algorithm does not force the
Toeplitz structure of S. After finding a candidate S, we must compare the rows and
detect which rows are shifted copies (echos) of other rows.

Detection of Q and L. 1f H and S have full column rank and row rank,
respectively, then the rank of X' = X, is Qy 1= O(N + M — 1). (See (4.46).) In prin-
ciple, the number of signals Q can be estimated by increasing the blocking factor M
of X, by one and looking at the increase in rank of X. This property provides a
useful detection mechanism even if the noise level is quite high since it is indepen-
dent of the actual (observable) channel length N. Furthermore, the property still
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holds if all channels do not have equal lengths. If they do, then N can be estimated
from the estimated rank of X, QX, and the estimated number of signals, Q, by
N=0Q,/0-M+1.

If the channels do not have equal length, but, say, lengths N, then H is not
full rank and a modification of the algorithm for estimating S is necessary. The
approach in this case is to base the number of intersections on the shortest channel
length among all sources. Doing so will equalize the corresponding channel and
partially equalize the others. The remaining equalization is best carried out by
means of the finite alphabet property. The details of this scheme are in [24]. Blind
equalization is notoriously hard when channels have ill-conditioned and differing
lengths.

4.4.2 Recursive Methods

We now summarize a recursive approach based on the CM property of the trans-
mitted signals. Assuming Q users, we consider a linear mM X Q spatio-temporal
equalization structure

F= [Fl"'FQ]/

where F o= 1,..., Q denotes the filter corresponding to the gth signal. Then, the
Q X 1 equalizer output at time instant k can be written as

y(k) =F" (k) X(k), (4.52)

where X(k) = [x" (k) -+ x"(k+M—1)]", with x(k) = [x,(k) -+ x,,(k)]". The MU-

CM algorithm [15] is a simple blind technique to determine the coefficients of the

spatio-temporal equalizer W. We can set up a standard CM cost function and

derive a set of coupled CM recursions that converge to the desired S-T equalizers.

Global convergence to optimal settings can be guaranteed under most conditions.
The algorithm minimizes the following criterion:

()2

I‘rE_n](F EZ(|y] _1) +2 Z Z '?’[”

I,n=1;1#n 0=0,

(4.53)

where 7, (9) is the cross-correlation function between users [ and 1 defined as

r1,0) = E (y,(k)y, (k — 9)), (4.54)

and 0,, J, are integers that should be chosen in compliance with the channel delay
spread in order to take into account all the achievable delays between different
users. The cost function (4.53) is the sum of a CM term and a cross-correlation term:
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the CM term penalizes the deviations of the equalized signals’ magnitudes from a
constant modulus, whereas the cross-correlation term penalizes the correlations
between them. The corresponding stochastic-gradient algorithm has the form

Fk+1)=F(k) — ulA, (0)--Ag(®)], (4.55)
where
5 Q X
AR =4E{(|y(0| = Dy(0X 0} +4 > > ry@Ely(k—9)X ()}, (4.56)
1=1; 1] 0=,

and A. is an estimate of A, based on instantaneous values or sample averaging.
Equation (4.55) describes a stochastic gradient algorithm derived from the MIMO
“constant modulus” criterion (4.53) and is suitable for the spatio-temporal equal-
ization of multiple user signals in the presence of both ISI and CCI. Simulations
and analysis have shown its MMSE behavior at steady state, as well as its robust-
ness to the power imbalance of different users.

The parameters employed are the equalizer length M, the number of users Q,
and the step-size parameter x. The number as well as the weight of the autocorre-
lation functions in the criterion (4.53) can be made variable. Equation (4.55) has a
low computational complexity (depending on the number of terms present in the
criterion as well as the length of the averaging window). Notice that (4.55) may
reduce to the standard CMA 2-2 algorithm [26] in the case of one user (Q = 1).

4.5 CONCLUDING REMARKS

Space-time processing is a rapidly growing field that is still in its infancy. In this
chapter, we have surveyed several aspects of this important research area that inte-
grate and extend many of the concepts developed in earlier chapters. We hope that
the results presented in the chapter will stimulate fresh research in this fascinating
field.
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Network Capacity,
Power Conftrol,
and Effective Bandwidth

David N. C. Tse
Stephen V. Hanly

As the preceding chapters have emphasized, the mobile wireless environment
provides several unique challenges to reliable communication not commonly
found in wireline networks. These include scarce bandwidth, limited transmit
power, interference between users, and time-varying channel conditions. A central
problem in the design of wireless networks is how to use the limited resources
most efficiently in such adverse environments, in order to meet the quality-of-
service (QoS) requirements of applications as quantified in terms of bit rate and
loss. The problem will become more acute for next-generation, integrated-services
networks that aim to support a heterogeneous mix of high bandwidth media types
with diverse QoS requirement and bursty traffic characteristics. As the demand for
ubiquitous access to the backbone wireline network grows, the capacity of the
wireless link will likely be a severe bottleneck.

To meet these challenges, there have been intense efforts in developing more
sophisticated physical layer communication techniques, examples of which are
described in preceding chapters. A significant thrust of work has been on develop-
ing multiuser receiver structures of the type described in Chapter 2, which mitigate
the interference between users in spread spectrum systems. (See also, for example,
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[10, 11, 12, 15, 16, 20, 23].) Recall that, unlike the conventional matched-filter
receiver used in the IS-95 CDMA system, these techniques take into account the
structure of the interference from other users when decoding a user. Another
important line of work is the development of processing techniques in systems
with antenna arrays, a class of which is described in Chapter 4. As discussed in
Chapter 1 as well, while spread-spectrum techniques provide frequency diversity to
the wireless system, antenna arrays provide spatial diversity, both of which are
essentially degrees of freedom through which communication can take place.

Despite significant work done in the area, there is still much debate about the
network capacity of the various approaches to deal with multiuser interference in
spread-spectrum and multiple-antenna systems. One important reason is that the
networking level problems of resource allocation and power control are less well
understood in the context of multiuser techniques than with more traditional mul-
tiaccess schemes, such as TDMA, FDMA, and conventional-receiver CDMA sys-
tems. For example, in a TDMA or FDMA system, the network resource is shared
among users via disjoint frequency and time slots, and this sharing provides a sim-
ple abstraction for resource allocation problems at the networking layer. Such clean
separation between the networking and the physical layers does not exist when
more sophisticated multiuser techniques are used. This in turn hampers the under-
standing of the capacity of networks with multiuser receivers and of the associated
network-level resource allocation problems such as call admissions control, cell
handoffs, and resource allocation for bursty traffic.

In this chapter, we show that under some conditions, a simple abstraction of
the amount of resource consumed by a user is indeed possible for several impor-
tant multiuser receivers. The specific scenario is a set of power-controlled mobile
users communicating to a base-station in a single cell. Assuming that each user’s
QoS can be expressed in terms of a target signal-to-interference ratio (SIR), we
show that a notion of effective bandwidth can be defined such that the QoS require-
ments of all the users can be met if and only if the sum of the effective bandwidths
of the users is less than the total number of degrees of freedom in the system. These
degrees of freedom can be provided by the processing gain in a spread-spectrum
system or by the number of antenna elements in a system with an antenna array.
These capacity characterizations are simple in that the effective bandwidth of a
user depends only on its SIR requirement and nothing else. While these results are
proved in an idealized model, they have the potential to provide a first step in
bridging between resource allocation problems at the networking layer and multi-
user techniques at the physical layer.

The effective bandwidth of a user depends on the multiuser receiver
employed. Results for three receivers are obtained. They are the minimum mean-
square error (MMSE) receiver [12, 15, 16, 23], the decorrelator [10, 11], and the con-
ventional matched filter receiver. We show that the effective bandwidths are
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respectivelye . (f) = 1%/;/ € (P) =1,and e () = f, where f is the SIR require-
ment of the user. These effective bandwidth expressions also provide a succinct
basis for performance comparison between different receiver structures. The
MMSE receiver occupies a special place since it can be shown to lead to the mini-
mum effective bandwidth among all linear receivers.

These effective bandwidth characterizations also illustrate the inherent flexi-
bility in resource-sharing among users with heterogeneous SIR requirements in a
CDMA system: the total degrees of freedoms can be divided arbitrarily according
to each user’s SIR. This case is in contrast to traditional FDMA or TDMA system
where the resource allocation is much more rigid and coarse-grained. Such flexi-
bility is supported by appropriate power control, and this philosophy is behind
much of recent work in power control for conventional CDMA systems. (See, for
example, [1, 3, 6, 25, 26, 27]). Our work can be viewed as an extension of this phi-
losophy to more sophisticated multiuser receivers.

The outline of this chapter is as follows. In Section 5.1, we introduce our nota-
tion for the basic model of a multiple-access spread-spectrum system and the
structure of the MMSE receiver. In Section 5.2, we present our key result: that in a
large system with each user using random spreading sequences, the limiting inter-
ference effects under the MMSE receiver can be calculated as if they were additive;
to each interferer can be ascribed a level of ¢ffective interference that it provides to
the user to be decoded. In Sections 5.3 and 5.4, we apply this result to study the per-
formance under power control and obtain a notion of effective bandwidth. In Section
5.5, we obtain analogous results for the decorrelating receiver. In Section 5.6, we
show that similar ideas carry through for systems with antenna diversity. Section
5.7 contains some concluding remarks.

Proofs of results are not presented here but can be found in [18].

5.1 Basic SPREAD-SPECTRUM MOoDEL AND THE MMSE RECEIVER

In a spread-spectrum system, each of the user’s information or coded symbols is
spread onto a much larger bandwidth via modulation by its own signature or
spreading sequence. The following is a model for a symbol-synchronous, multiple-
access, spread-spectrum system:
M
Y = Z Xmsm + W’
m=1
where X, is a real scalar and s, is a real L-dimensional vector that denote the trans-
mitted symbol and signature spreading sequence of user m, respectively, and W is
zero-mean, variance-o> Gaussian background noise. The length of the signature
sequences is L, which one can also think of as the number of degrees of freedom or
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diversity. The L-dimensional received vector is Y. We assume the X, s are inde-
pendent and identically distributed (i.i.d.) and that E [X,]=0and E [Xi,] =P
where P, is the received power of user 1.

Rather than looking at symbol-by-symbol detection, we are interested in the
more general problem of demodulation, extracting good estimates of the (coded)
symbols of each user as soft decisions to be used by the channel decoder [16]. From
this point of view, the relevant performance measure is the SIR of the estimates.

We shall now focus on the demodulation of user 1, assuming that the receiver
has already acquired the knowledge of the spreading sequences. The optimal lin-
ear demodulator that generates a soft decision X,, maximizing the SIR at the out-
put of the demodulator, is the MMSE receiver [12, 15, 16].

As a comparison, note that the conventional CDMA approach simply
matches the received vector to s, the signature sequence of user 1. This is indeed
the optimal receiver when the interference from other users is white. However, in
general, the multiple-access interference is not white and has structure as defined
by s,, s,,..., 8, assumed to be known to the receiver. The MMSE receiver exploits
the structure in this interference in maximizing the SIR of user 1.

The formulae for the MMSE demodulator and its performance are well
known (cf. Chapter 2):!

m’

1
s (SDS" + °I) s,

X e (Y) = s| (SDS" + a’I) 'Y, (5.1)

and the signal to interference ratio f§; for user 1is
B, =s|(SDS" + ¢°I) 's,P;, (5.2)
where S = [s,,..., sl and D = diag(P,,..., Py,).

5.2 PERFORMANCE UNDER RANDOM SPREADING SEQUENCES

Equation (5.2) is a formula for the performance of the MMSE receiver, which one can
compute for specific choice of signature sequences. However, it is not easy to obtain
qualitative insights directly from this formula. For example, the effect of an individ-
ual interferer on the SIR for user 1 cannot be seen directly from this expression. In
practice, it is often reasonable to assume that the spreading sequences are randomly
and independently chosen (see, e.g., [13]). For example, they may be pseudorandom
sequences, or the users may choose their sequences from a large set of available se-
quences as they are admitted into the network. In this case, the performance of the

IThe superscript T denotes the transpose operator.
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optimal demodulator can be modeled as a random variable since it is a function of
the spreading sequences. In this section, we show that, unlike the deterministic case,
there is a great deal of analytical information one can obtain about this random per-
formance in a large network. In the development below, we assume that though the
sequences are randomly chosen, they are known to the receiver once they are
picked. In practice, this means that the change in the spreading sequences is at a
much slower time scale than the symbol rate, so that the receiver has the time to ac-
quire the sequences. (There are known adaptive algorithms for which this can even
be done blindly; see [8].) However, the performance of the MMSE receiver depends
on the initial choice of the sequences and, hence, is random.

As a model for random sequences, let s, = %(Vlm,. LV N m=1,M,
where the random variables V,, s are iii.d., zero-mean, and unit-variance. The nor-
malization by Vlf ensures that E [||smH ] = 1. In practice, it is common that the en-
tries of the spreading sequences are 1 or -1, but we want to keep the model general
so that we can later apply our results to problems with other modes of diversity.

Our results are asymptotic in nature, for a large network. Thus, we consider
the limiting regime where the number of users are large, i.e., M— . To support a
large number of users, it is reasonable to scale up L as well, keeping the number of
users per degree of freedom (equivalently, per unit bandwidth), a = %, tfixed. We
also assume that as we scale up the system, the empirical distribution of the pow-
ers of the users converges to a fixed distribution, say F (P). The following is the
main result of [18], giving the asymptotic information about the SIR for user 1. The
proof of this result makes use of the theory of random matrices [14,17].

Theorem 5.1 Let [f(lL) be the (random) SIR of the MMSE receiver for user 1
when the spreading length is L. Then, [)’SL ) converges to f3; in probability as L— =,
where ;" is the unique solution to the equation

Py

=T w, v, podE ) 63
and
1P, Py, )= ——
P, + Pp;

Heuristically, this means that in a large system, the SIR f3; is deterministic and
approximately satisfies

P
b~ ——T—w : (5.4)
o+ T (P, Py, By)
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where, as before, P; is the received power of user i. This result yields an interesting
interpretation of the effect of each of the interfering users on the SIR of user 1: for a
large system, the total interference can be decoupled into a sum of the background
noise and an interference term from each of the other users. (The factor % results
from the processing gain of user 1.) The interference term depends only on the re-
ceived power of the interfering user, the received power of user 1, and the attained
SIR. It does not depend on the other interfering users except through the attained
SIR f,.

One must be cautioned not to think that this result implies that the inter-
fering effect of the other users on a particular user is additive across users. It is not:
the interference term I (P, P, ;) from interferer i depends on the attained SIR
which in turn is a function of the entire system. However, it can be shown that the
equation:

P,
x= T (5.5)

2 M
7+ > (P, Py )

has a unique fixed point x*, and moreover, the equation has the following monoto-
nicity property: for any x, x” = xif and only if

Py

7 v =x. (5.6)
ot + 1 2l (P Py )
It follows then that to check if the target for user 1’s SIR, f1, can be met for a given

system of users, it suffices to check the following condition:

P,

A » = fr.

ot T (P, Py, Br)

Based on this interpretation, it is natural to refer to the term I (P;, P, fi7) as the effec-
tive interference of user i on user 1, at a target SIR of fi;.

To gain further insight into this concept of effective interference, it is helpful
to compare the above situation with that when the conventional matched filter s, is
used for the demodulation. For that case, it can be shown that if f; is the (ran-
dom) SIR of the conventional matched-filter receiver for user 1, then for large pro-
cessing gain L, fi; . converges in probability to

I L
1, mf 02+aI:PdF(P)'

(5.7)
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where, as before, F is the limiting distribution of the powers of the users and « is the
number of users per degree of freedom. Hence, for large L, the performance of the
matched receiver is approximately

P
ﬂl,mf = 5 1 l . (58)
g+ T ?jzpi

Comparing this expression with (5.4), we see that the interference due to user
I is simply P; in place of I (P, P, f3,). Since the matched-filter receiver is indepen-
dent of the signature sequences of the other users, it is not surprising that the inter-
ference is linear in the received powers of the interferers. In the case of the MMSE
receiver, the filter does depend on the signature sequences of the interferers, thus
resulting in the interference being a nonlinear function of the received power of the
interferer. Also, observe that I (P, P, ;) < P,, which is expected since the MMSE
receiver maximizes the SIR among all linear receivers. But more importantly, we
see that while for the conventional receiver the interference grows without bound
as the received power of the interferer increases, for the MMSE receiver, the effec-
tive interference from user i is bounded and approaches ;—]‘ as P; goes to infinity.
Thus, while the SIR of the matched-filter receiver goes to zero for large interferers’
powers, the SIR of the MMSE receiver does not. This is the well-known near-far
resistance property of the MMSE receiver discussed in Chapter 2 [see also [12]). The
intuition is that as the power of an interferer grows to infinity, the MMSE receiver
will null out its signal. While the near-far resistance property has been reported by
previous authors, Theorem 5.1 goes beyond that as it not only quantifies the worst-
case performance (i.e., large interferer’s power) but also the performance for all
finite values of the interference. This quantification is useful for example in situa-
tions when power control is exercised, as we turn to in the next section.

In general, we have no explicit solution for the SIR /] in (5.3). However, for
the special case when the received powers of all users are the same, the equation is
quadratic in ] and a simple solution is obtained:

A-0P 1 | (1-a’P> (1+a)P
T +

257 2 \J 4a 202

p = + —31—.
We see that the f3] is positive for all values of a and approaches 0 as «, the number
of users per degree of freedom, goes to infinity.

Two performance measures commonly used in the literature for multiuser
receivers (and discussed in Chapter 2) are their efficiency and their asymptotic effi-
ciency [21]. In the context of linear receivers, the efficiency for user 1 is defined to
be the ratio of the achieved SIR to the SIR when there is no interferer and only
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background noise. For the MMSE receiver with random spreading sequences and
equal received power for all users, the efficiency is given by:

* 2
10'

P 4
where f] is given by the above expression. Recall from Chapter 2 that the asymp-
totic efficiency 7, is the limiting efficiency as the background noise level goes to
zero. If a =1, this asymptote is given by

* 2

o
7 := lim 1

lim =5 =1-oa.

For a > 1, the limiting SIR is positive but bounded:

lim ] = —

o—0 a—1"

(5.9

and so the asymptotic efficiency is zero.

5.3 CAPACITY AND PERFORMANCE UNDER POWER CONTROL

We observed in Section 5.2 that in the conventional receiver case, the interference
of a user is proportional to its power, and hence a strong interferer can completely
overcome a weaker signal. This is the so-called near-far problem, and a well-
known consequence is that the conventional receiver can only avoid this problem
via tight power control. We also observed that the MMSE receiver does not suffer
arbitrarily poorly from the near-far problem, and indeed, this is one of the key
motivations for the original work on multiuser detection [20]. Nevertheless, a
MMSE receiver still suffers interference from other users, and it follows that capac-
ity can be increased and power consumption reduced if power control is
employed.

In this section, we consider the case in which all users require an SIR of
exactly /8, given a processing gain of L degrees of freedom per symbol. For a given
number of users, we compute the minimum power consumption required to
achieve " for all users and then look at the maximum number of users per degree
of freedom supportable for a given power constraint under power control. Of par-
ticular interest is the maximum number without power constraint, which we
define to be the capacity of the system (in terms of number of users per degree of
freedom.) This coincides with the definition of capacity taken in [5]; “capacity” is
then the point at which saturation occurs as we put in so many users that we drive
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the required power level to infinity. We show that this capacity is different but
finite for both the conventional and the MMSE receivers; thus, both are interfer-
ence-limited systems. As before, our results are asymptotic as the the processing
gain L goes to infinity.

Let us focus first on the conventional receiver. With the matched filter
receiver, (5.7) tells us that, asymptotically, users receive the same level of interfer-
ence and hence must be received at the same power level to get the same SIR " It
is easy to compute that with Lo users, and a processing gain of L, the common
received power required for the conventional receiver is given asymptotically as
L— by

* 2
P_ (") = 1—’1‘-;%— . (5.10)

For a given constraint P on the received power, the maximum number of users sup-
portable is then

2
O = L o users/degree of freedom.
The capacity of the conventional receiver when P = «is then
Cs(6)= ;* users/degree of freedom. (5.11)

Phrased differently, as o — p} , the system saturates and the required power level

goes to infinity.

Now, let us turn to the MMSE receiver. To satisfy given target SIR require-
ments for each user, [9, 19] showed that there is an optimal solution for which the
received power of every user is minimized; moreover, they gave an iterative algo-
rithm to compute it. However, here we can give an explicit solution and character-
ize the resulting system capacity.

To begin, we fix the number of users per degree of freedom at a. As in the con-
ventional receiver case, it turns out that the system saturates if a is too high, so we
first obtain a necessary and sufficient condition for feasibility. It can be shown,
from the monotonicity property of (5.6), that in the limit of a large number of
degrees of freedom, the system is feasible if and only if the SIR can be met with
equal received powers for all users. Setting the received powers of all users to
be equal in (5.6) tells us that a given target SIR requirement " can be met if and
only if

1+ p
B

a<
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If this condition is satisfied, it can further be shown that the minimum power solu-
tion is given by having the received powers of all users be

P B) = S X a— —. (5.12)
1—oat
o -
1+p5
Hence, the capacity of the system under MMSE receiver is
W 1+ p
CormeB) = [)’*ﬁ users/degree of freedom. (5.13)

Moreover, for a given received power constraint P, the maximum number of users
that can be supported is attained by assigning each user the same received power,
and that number is given by

1+ 4 fo?
Cpax = - 1-
B P

Contrasting (5.10) and (5.11) with (5.12) and (5.13), we note that if a is feasible
for both types of receiver, then the power consumption of the MMSE receiver sys-
tem is less than that of the matched-filter system, and the MMSE system has poten-
tially much greater capacity. Indeed, if a < 1, then we can accommodate arbitrarily
large f° without saturating the MMSE receiver, whereas the the conventional
receiver saturates as f° approaches % For fixed f*, we also note that the MMSE
receiver system saturates at a higher value of o, yielding a capacity of precisely 1
more user per degree of freedom than the system with a conventional receiver. On
the other hand, the relative gain of the MMSE receiver system is not so large for
small values of f”.

) users/degree of freedom.

5.4 MuwripLe CLAsSES, MAXIMUM POWER CONSTRAINTS,
AND EFFECTIVE BANDWIDTHS

It is straightforward to generalize these results to the case in which there are |
classes, with all class j users requiring an SIR of 8 - We denote the number of users
of class j by o;L and again consider the limiting regime L — .

The conventional matched-filter receiver results generalize very easily to

i

i
N 57
1 i=1%h;

P(j) =

where P_((}) denotes the common, received power level of all users of class j (see
[7]). Thus, the capacity constraint on feasible values of (ay,..., 1) s the linear con-
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straint Z’ _,0;#;<1. Furthermore, if class j users have a maximum power con-
straint that me( = P for each j, then the tighter capacity constraint

J Bo
2 1<,<,[1_ P']

1

emerges [5]. It is convenient to refer to §; as the bandwidth of class j users, in degrees
of freedom per class j user. Let us denote this bandwidth by

e (B;) = B; degrees of freedom per class j user.

We now show that the MMSE receiver results generalize in a similar manner.
It is clear in this case also that the minimal power solution consists of the same
received power for each class: let all users in class j be received at power P;. Then,
the power control equations become

P,
U+Z]17 IPi//))i)

=8, i=1,2..,], (5.14)

where, as in Theorem 5.1, [ (sz [)’ )2 B +’ Pg, But (5.14) implies that ﬁ is a con-
stant, which allows us to simphfy (5.14) down to
. Bo’ ‘
P = i=1,2,...,]. (5.15)
1->7 ﬁj
Y TER

The capacity constraint for the MMSE receiver with | classes is therefore given by

5.
> 4T g <t (5.16)

j=1

which is linear in oy, ..., .
As above, maximum power constraints provide tighter capacity constraints,
and in this context we note that (5.15) implies that

o’ :
>, =1-=t—, i=12..,].
Pl 1+/f P

Thus, if P, (i) = P; is a maximum power constraint on class i, then the linear
constraint
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defines the restricted capacity region of the system. It is natural to define the effec-
tive bandwidth of class j users as e, () degrees of freedom per user, where

p’.
Crmee () = 3 JE,/)’j '

Linearity in the matched-filter case is a straightforward consequence of the
fact that powers add. However, our MMSE effective bandwidth results are rather
surprising, as the receiver itself depends on the signature sequences and the
received powers of the users. Another interesting observation is that no matter
how high f is, the MMSE effective bandwidth of a user is upper bounded by unity.
We will gain further insight into why this is so in the next section.

5.5 THE DECORRELATOR

To this point, we have contrasted the performance of the MMSE receiver with that
of the conventional matched-filter receiver. It is also illuminating to compare the
performance of the MMSE receiver with that of the decorrelator. The decorrelator
was in fact the first linear “multiuser detector” described by Lupas and Verdu [10].
As discussed in Chapter 3, this receiver is known to have optimal near-far resistance
[11], as measured by the worst-case performance over all choices of interferers’
powers and in the limit of vanishing background noise power. Here, we focus on
the SIR performance for finite noise power and random sequences and obtain sim-
ple answers. It can be shown that in a large system with a users per degree of free-
dom, the (random) SIR under the decorrelating receiver for user 1 converges in
probability to /3, given by

Py(1—a)
. ——— a<1
B = 1 . (5.17)
0 a=1

We observe that as the number of users a per degree of freedom approaches
1, the SIR goes to zero. Geometrically, as the dimensionality of the orthogonal com-
plement to the span of the interference decreases to zero, the length of the projec-
tion of the desired signal onto this orthogonal complement tends to zero, and so in
the limit the projected signal is lost in the background noise. This behavior is the
high price paid for ignoring the background noise. In contrast, the MMSE receiver
can support more users than the number of degrees of freedom because it takes
both the interference and the background noise into account.

By comparing (5.17) and (5.3), one can see that the effective interference for

an interferer on user 1 under the decorrelator is ;—], which does not depend on the
1
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power of the interferers. Equation (5.17) further implies that the capacity constraint
on the system is a < 1.

We also observe that if all users require an SIR of f and employ power con-
trol, then it is sufficient for each user to be received with power at least o2/ (1 — o).
Thus, for a given received power constraint P, the maximum number of users with
SIR requirement f§ supportable is 1 — fio*/ P (per degree of freedom). Similarly, for
multiple classes of users with SIR requirement f; and power constraint D, for the jth
class, the system can support o; users (per degree of freedom) from each class if

/ pa?
Z o, = min [1 - —L ]
= e P.

J

Thus, the capacity region under the decorrelator is given by

/

d>a=1 (5.18)
j=1

when there are no power constraints or, equivalently, when the background noise

power g goes to zero. So, each user occupies an effective bandwidth of 1 degree of

freedom, independent of the value of /5.

From (5.17), it can be immediately inferred that the efficiency of a decorrelator
in a large system with random spreading sequences is 1 — « if a, the number of users
per degree of freedom, is less than 1, and is zero otherwise. Since this efficiency does
not depend on the background noise power o2, it is also the asymptotic efficiency.

It is well known [12] that the MMSE receiver has the same asymptotic effi-
ciency as the decorrelator, and hence the decorrelator is optimal in this sense
among all linear receivers. However, comparing (5.16) and (5.18), one can see that
the capacity region under the MMSE receiver is strictly larger than that under the
decorrelator, even as the background noise goes to zero. In particular, the MMSE
receiver can in general accommodate more users than the number of available
degrees of freedom, while the decorrelator cannot. This apparent paradox can be
resolved by noting that when o > 1, the SIR attained by the decorrelator is zero
(5.17) while the attained SIR by the MMSE receiver is strictly positive but bounded
as the noise power ¢° goes to zero. Since the asymptotic efficiency measures only
the rate at which the SIR goes to infinity as o” goes to zero, they are the same (zero)
for both receivers. On the other hand, the capacity region quantifies the number of
users with fixed SIR requirements a receiver can accommodate; hence the differ-
ence between the decorrelator and the MMSE receiver is reflected. In practice,
users have target SIR requirements and hence the capacity region characterization
seems to be a more natural performance measure than the asymptotic efficiency. In
this context, the decorrelator remains suboptimal even as the noise power o°
approaches zero.




224 Network Capacity, Power Control, and Effective Bandwidth ~ Chap. 5
5.6 ANTENNA DIVERSITY

In spread-spectrum systems, diversity gain is obtained by spreading over a wider
bandwidth. However, there are other ways to obtain diversity benefits in a wireless
system. A technique, particularly effective for combating multipath fading, is the use
of an adaptive antenna array at the receiver. Multipath fading can be very detrimental
because the received signal power can drop dramatically due to destructive interfer-
ence between different paths of the transmitted signal. By placing the antenna ele-
ments greater than half the carrier wavelength apart, one can ensure that the received
signal fades more or less independently at the different antenna elements. By appro-
priately weighing, delaying and combining the received signals at the different an-
tenna elements, one can obtain a much more reliable estimate of the transmitted sig-
nal than with a single antenna. Such antenna arrays are said to be adaptive since the
combining depends on the strengths of the received signals at the various antenna el-
ements. This signal strength in turn depends on the location of the users. Moreover,
the combining weights will be different for different users, allowing the array to
focus on specific users while mitigating the interference from other users. This
process is called beamforming. From our previous results, it turns out that the capacity
of such an antenna array system can again be characterized by effective bandwidths.

The following is a model for a synchronous, multiple-access antenna-array
system:

M
Y= Xh +W.
m=1

Here, X, is the transmitted symbol of the mth user, and Y is an L-dimensional vec-
tor of received symbols at the L antenna elements of the array. The vector h, repre-
sents the fading of the mth user at each of the antenna array elements. The entries
are complex to incorporate both phase and magnitude information. The vector W
is zero-mean, variance-o* Gaussian background noise.

The fading is time-varying, as the mobile users move, but usually at a much
longer time scale than the symbol rate of the system. Assuming then that the chan-
nel fading of the users can be measured and tracked perfectly at the receiver, we
would like to combine the vector of received symbols appropriately to maximize
the SIR of the estimates of the transmitted symbols of the users. The optimal linear
receiver is clearly the MMSE. Assuming that the fading of each user is independent
and identically distributed from antenna element to antenna element, we are
essentially in the same setup as for spread-spectrum systems. Thus, for a system
with a large number of antenna elements and large number of users, we can treat
each of the interfering users as contributing an additive effective interference. Under
perfect power control, the system capacity is characterized by sharing the L degree
of freedom among the users according to their effective bandwidths given by the pre-
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vious expressions for the different receivers. The only difference here is that the L
degrees of freedom are obtained by spatial rather than frequency diversity.

These results should be compared with that of Winters et al. [22], which
showed that for a flat Rayleigh fading channel, a combiner that attempts to null out
all of the interferers costs one degree of freedom per interferer. This combiner is, of
course, the suboptimal decorrelator, which we have shown earlier to be very
wasteful of degrees of freedom if interferers are weak. While Winters’ result holds
for the Rayleigh model and any number of antennas, our results hold for any fad-
ing distribution but are asymptotic in the number of antennas.

5.7 CONCLUDING REMARKS

It is illuminating to compare the effective interference and effective bandwidths
of the users in the three cases: the conventional matched filter, the MMSE filter,
and the decorrelating filter. This comparison is shown in Figures 5.1 and 5.2. The

_effective
interference

7 Ly(P)=P;

7/

g PP,
Imnse(Pi) = W

received power of interferer P;

Figure 5.1 Effective interference for the three receivers as a function of interferer’s received power P;.
Here, P is the received power of the user to be demodulated, and f is the achieved SIR.

effective L
bandwidth r % e ()= B
€dec ®B)=1 .7
T
Vi ’ emrrse (ﬂ) = 1 fﬁ

desired SIR f3

Figure 5.2 Effective bandwidths for three receivers as a function of SIR.
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effective interference under MMSE is nonlinear and depends on the received
power P of the user to be demodulated as well as on the achieved SIR f. The effec-
tive interference under the conventional matched filter is simply P, the received
power of the interferer. Under the decorrelator, the effective interference is f—, inde-
pendent of the actual power of the interferer. The intuition here is that the de-
correlator completely nulls out the interferer, no matter how strong or weak it is.

Assuming perfect power control, we can define effective bandwidths that
characterize the amount of network resources a user consumes for a given target
SIR. The effective bandwidths under the conventional, MMSE, and decorrelating re-
ceivers are f3, %, and 1, respectively. We note that the conventional receiver is
more efficient than the decorrelator when £ is small and far less efficient when pis
large. Intuitively, at high SIR requirements, a user has to transmit at high power,
thus causing a lot of interference to other users under the conventional receiver. Not
surprisingly, since it is by definition optimal, the MMSE filter is the most efficient in
all cases. When f is small, the MMSE filter operates more like the conventional re-
ceiver, allowing many users per degree of freedom; but when £ is large, each user is
decorrelated from the rest, much as in the decorrelator receiver, and therefore the in-
terferers can still occupy no more than one degree of freedom per interferer.

The effective bandwidth concept for the MMSE receiver is valid only in the
perfectly power-controlled case. By contrast, the concept of effective interference
applies with or without perfect power control and may prove more useful in the
multicell context.

While these results provide much insight into the performance of these fil-
ters, we must emphasize that they pertain only to a single cell, without fading, and
in the time-synchronous case. It remains to be seen how these filters perform in
more realistic scenarios.
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Architectural Principles
for Multimedia Networks

Paul Haskell
David G. Messerschmitt
Louis Yun

Many treatments of wireless communications focus on a wireless link as an isolated
entity. Our concern here is with networks that support all multimedia services (in-
cluding data, graphics, audio, images, and video) for tetherless (not physically
wired to the network), nomadic (able to access the network from many locations),
and mobile (accessing the network while moving) users. Such a network is termed
an integrated-services multimedia network with wireless access. Wireless access is a key
component of tetherless and mobile access in particular. Important components of
such a multimedia network include a (typically broadband) backbone network,
wireless access links to that backbone, terminals associated with each user (where
some terminals are tetherless and others are not), and centralized data and compu-
tational servers. It is expected that an integrated-services multimedia network will
serve a large and heterogeneous mix of applications. Overall, in this large and com-
plex system, the fact that there is wireless access should have broad implications to
all the system components, not just to the wireless access link. Conversely, design is-
sues in the remainder of the system impact the wireless access link design. A pri-
mary objective of this chapter is to identify these cross-cutting issues. As such, the
issues explored in this chapter are complementary to many of those discussed in the
preceding chapters of this volume.

229



230 Architectural Principles for Multimedia Networks Chap.6

Most of our attention is focused on the signal processing technologies in a mul-
timedia network, including compression, modulation, forward error-correction coding,
and encryption, as well as limited attention to other elements that interact with sig-
nal processing (such as protocols). Additional compression and coding issues are
explored in detail in Chapter 7. From a networking perspective, we define as sig-
nal processing those functions that modify or hide basic syntactical and semantic
components of a bit stream payload, as opposed to those functions that are oblivi-
ous to the payload bits (such as protocols, routing, etc.).

In treating these issues, it is important to identify the objectives that are to be
achieved. We can list those objectives relevant to this chapter as follows:

* For continuous-media services like audio and video, as well as graphics, the
relevant “quality” criterion is subjective.

* As discussed further below, the most critical objective performance criteria
are low interactive delay and high traffic capacity for wireless access links.

Privacy by end-to-end encryption will be important for some users; it also is
one aspect of intellectual property protection and authorized access control.

Applications, terminal capabilities (from desktop to various flavors of
portable terminals with different processing and resolution), and transport
media (especially wireless and fiber backbones) will be heterogeneous. It is
important to support both desktop and portable terminals with a common
set of applications. It is also important that applications deploy seamlessly to
the network without the application developer needing to deal explicitly
with a diversity of transport and terminal capabilities.

¢ Not only point-to-point connections, but also point-to-multipoint and multi-
point-to-point connections will exist [1, 2].

* Propagation characteristics will vary widely, depending on assumptions
about carrier frequency, bandwidth, propagation characteristics (especially
in-building vs. wide-area networks), terminal velocity, etc. This chapter is
primarily focused on broadband in-building wireless networks, where we
expect relatively slow terminal velocity and hence relatively slowly varying
channel characteristics. However, most considerations discussed in this
chapter apply to more general situations, and we will mention the impact of
less ideal channel characteristics.

It is quite challenging to meet all these objectives simultaneously. To have any
hope requires a carefully crafted architecture. One clear conclusion is that the wire-
less access link typically will be the limiting factor in achieving good subjective
quality, as it is inherently unreliable and typically has limited bandwidth resources
relative to backbone networks. Thus, any architectural constructs should first and
foremost be aimed at achieving the best subjective quality as limited by the wire-
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less access link, making compromises in other components (terminals, servers, and
backbone network) as necessary. The wireless access link should not be considered
just an “add on” to an existing backbone infrastructure, as is unfortunately the
most common design philosophy today.

Another important consideration is complexity management [4]. The internet
protocols have managed to contain complexity by partitioning most functionality
within the terminals and keeping the internet layer relatively simple and state-free.
As a result, a rich suite of applications has been deployed swiftly. In contrast, the
public telephone network, with a relatively limited set of services based on 64 kb /s
circuits and a centralized control model, is straining at the limits of complexity
within the switching-node software. Because the central-control telephone model is
not extensible to achieving the flexibility required in future multimedia networks,
distributed “intelligent networking” approaches to control are being deployed [5]
and even more sophisticated approaches are being considered [6, 7]. The internet
model also becomes considerably more complicated when extended to continuous
media (CM) services, due to the need for resource reservations and multicast con-
nections [2]. Careful attention should be paid to complexity management from the
outset.

In this chapter, we propose some architectural principles and discuss their
implications to the constituent signal processing technologies listed above. These
principles suggest many new requirements for the signal processing and present
opportunities to signal processing researchers and developers for years to come. A
more general perspective on the convergence of communications and computing
as embodied in multimedia networking is available [8, 9], as is a treatise on some
of the societal impacts [10].

6.1 Basic CONSIDERATIONS

In this section, we describe some of the constituent technologies and their relation-
ship to multimedia networking.

6.1.1 High-Level Network Architecture

One group has made a proposal for an architecture for the future Global Information
Infrastructure (GII), and for consistency, we draw upon their architecture [3].' Asin
[9], we use the terminology shown in Figure 6.1, which differs slightly from that in
[3]. Applications draw upon the services layer (termed transport services in [3]), which
calls upon the bitway layer (called bearer services in [3]). The bitway layer establishes

1Actually, [3] adds a fourth layer, middleware services, which we delete here because it is gener-
ally unrelated to signal processing functions of concern in this chapter.
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Applications
Services TCP Audio, video
Bitway P ATM/AAL

Figure 6.1 An architecture for the GII, including both CM and data services. Each
layer may be subdivided into appropriate sublayers.

connections between endpoints, carries data between the endpoints, and monitors
its own performance. The services layer provides a set of common generic capabili-
ties that are available to all applications; examples include reliable streams (sup-
porting applications like file transfer), reliable transactions, electronic payments, di-
rectory services, and audio or video transport (for multimedia applications). One of
the functionalities in the services layers is the conditioning of data for the bitway (for
example, the compression of audio or video) and compensating for impairments in
the bitway (for example, resequencing of packets, as in the Transport Control Proto-
col (TCP), or retransmission of lost packets, as in TCP, or resynchronization of audio
and video streams, as in the MPEG-2 transport stream [11, 12]).

A concrete example of the functional groupings of these layers is shown
in Figure 6.2 for a video application. The application presents a stream of raw

Application Services Bitway
Raw » Compressed  pmmmmmmm—m— * Stream
video video
Service quality: Bitway quality:
Resolution Rate
Frame rate Loss
Fidelity Delay

Figure 6.2 Illustration of the three layers in a video service and an incomplete list
of service and bitway quality attributes.
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(uncompressed) video frames to the services layer, where the quality attributes
describing the video service to the application include resolution, frame rate, pixel
depth, compression fidelity, etc. The services layer does video compression, as well
as perhaps encryption, and presents to the bitway a compressed video stream (to
save bandwidth on the transport). The service is described to the bitway by its rate
attributes (average and peak rate), and the bitway to the service by its quality-of-
service (QoS) attributes including loss, corruption, and delay characteristics.

6.1.2 Signal Processing Functions and Constraints

In this section, we discuss briefly and qualitatively some of the interactions
between signal processing functions and the CM systems and network architecture
within which they are embedded.

Compression removes signal redundancy as well as signal components that are
subjectively unimportant, so as to increase the traffic-carrying capacity of transmis-
sion links within the bitway layer. Compression typically offers a trade-off between
a signal’s decoded fidelity and its transmitted bandwidth and often has the side ef-
fect of increasing the reliability requirements (loss and corruption) for an acceptable
subjective quality. Compression can be divided into two classes: signal semantics
based (such as conventional video and audio compression), and lossless, which
processes a bit stream without cognizance of the underlying signal semantics. The
compression typically has to make some assumptions about the bitway characteris-
tics, such as the relative importance of rate and reliability (see Section 6.1.5).

Encryption reversibly transforms one bit stream into another such that a rea-
sonable facsimile of the original bit stream is unavailable to a receiving terminal
without knowledge of appropriate keys [13]. Encryption is one component of a
conditional access system, with which a service provider can choose whether and
when any individual receiver can access the provided service, and is also useful in
ensuring privacy. It precludes any processing of a bit stream because it hides the
underlying syntactical and semantic components, except in a secure server that has
keys available to it. It also increases susceptibility to bit errors and synchronization
failures, as discussed in Section 6.3.1.

Forward error-correction coding (FEC) adds a controlled redundancy so that
transmission impairments such as packet loss or bit errors can be reversed. We dis-
tinguish binary FEC techniques from signal-space techniques. Binary FEC is applied
to a bit stream and produces a bit stream; examples include Reed-Solomon coding
and convolutional coding. Binary FEC has the virtue of flexibility, as it can be
applied on a network end-to-end basis in a manner transparent to the individual
links. FEC can be combined with other techniques, such as interleaving (to change
the temporal pattern of errors) and retransmission (to repeat lost or corrupted
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information), if the temporal characteristics or error mechanisms are known. Signal-
space coding, on the other hand, is tightly coupled with the modulation method
(used to encode bits onto waveforms) and the physical characteristics of the
medium and is often accompanied by soft decoding. Examples include lattice and
trellis coding. It is usually custom tailored to the physical characteristics of each link
and, as a result, can offer significantly higher performance. Wireless link modula-
tion methods often incorporate power control and temporal and spatial diversity re-
ception as well, as discussed in earlier chapters.

Figure 6.3 illustrates some fundamental syntactical constraints that we
should keep in mind while designing a network architecture for CM services:

e Compression must precede encryption, and decryption must precede
decompression. Encryption would hide basic statistical characteristics of an
uncompressed audio or video signal, such as spatial and temporal correla-
tions, that are heavily exploited by compression algorithms.

» Compression must precede FEC, and decompression must follow FEC since
there is no point to “correcting” the benign and desired changes in a bit
stream due to compression and decompression.

The relationship between encryption and error-correction coding is more
complicated. Since encryption, like binary coding, transforms one bit stream into
another, it can precede or follow binary error-correction coding. However, since a
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Figure 6.3 Illustration of some fundamental syntactical constraints on signal pro-
cessing functions.
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signal-space code generates an output in the real-number field, it cannot precede
encryption and signal-space decoding cannot follow decryption. The purpose of
binary coding before encryption is to attempt to correct postdecryption errors. The
purpose of binary or signal-space coding after encryption is to prevent errors in the
transport of the encrypted bit stream, which will indirectly prevent postdecryption
errors.

6.1.3 Bitway Architecture

A bitway is the layer of a CM system responsible for transmitting data bits from
one place (and time, for storage applications) to another. As part of this task, the
bitway commonly carries out:

* Routing, establishment of a path from one communication endpoint to
another;

* QoS establishment, the negotiation of service bit-rate characteristics and bit-
way impairment characteristics;

* Resource reservation, the assignment of resources to a particular connection
to ensure compliance with the “QoS contract”; and

* Monitoring of network component status, source rate behavior, and QoS of
active connections.

CM services commonly rely on a combination of several underlying trans-
mission sublinks. This is especially true for wireless-based services, e.g., paging
and cellular telephony. Heterogeneous sublinks certainly complicate the imple-
mentation of the bitway functions listed above. However, they also complicate the
design and configuration of the signal processing functions described in Section
6.1.2.

The best trade-off between signal fidelity and bandwidth appropriate for a
high-speed wired sublink may be very unreasonable for a wireless link. Fre-
quently, this motivates system designs that include transcoders within the net-
work, as with the IS-54 digital cellular system described in Section 6.1.5. Of course,
if decompression and recompression are performed at transcoders within the
network, there is a requirement for a secure server to perform decryption and
encryption.

However, it is with FEC that the existence of multiple heterogeneous subnet-
works complicates CM system design the most. It would be simplest to provision
a single end-to-end FEC system across a heterogeneous network; however, the effi-
ciencies of closely coupled error-correction coding, suitably designed modulation,
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and specific subnet characteristics may be too significant to pass up in some cases.
Section 6.1.5 and Section 6.4.1 discuss this further.

6.1.4 Corruption, Loss, and Delay Effects

Packet-based communications networks inevitably introduce three types of
impairments. There is packet loss (failure to arrive), packet corruption (bit errors
occurring within the payload), and packet delay. Packet loss can occur due to sev-
eral mechanisms, such as bit errors in the header, or buffer overflow during peri-
ods of network congestion.

Data networks do not make a distinction between loss and corruption since a
packet that is corrupted is useless and hence is discarded. CM services can tolerate
some level of loss and corruption without undue subjective impairment, especially
if appropriate masking is built into the signal decoders. This is fortunate, since
absolute reliability such as afforded by data networks, requires retransmission
mechanisms, which can introduce indeterminate delay, often excessive to interac-
tive applications like telephony and video conferencing. Another distinct charac-
teristic of CM services is that loss and corruption are different effects. Lost data
must be masked, for example, in video by repeating information from a previous
frame or in audio substituting a zero-level signal. Under some circumstances, it is
possible to make good use of corrupted information, for example, by displaying it
as if it were correct. The resulting subjective impairment may be less severe than if
the corrupted data were discarded and masked.

Some CM compression standards, generally those presuming a reliable trans-
port mechanism (such as MPEG video [14, 15, 16, 17]) discard corrupted data and
attempt to mask the discarded information. Other standards—those designed for
a very unreliable transport (such as the voice compression in digital cellular tele-
phony [18] and video compression designed for multiple access wireless applica-
tions [19])—use corrupted data as if it were error free and minimize the subjective
impact of the errors. An important research agenda for the future is audio and
video coding algorithms that are robust to loss and corruption introduced by wire-
less networks, recognizing that these effects are more severe than in backbone net-
works.

CM services are real-time, meaning that they require transport-delay bounds.
However, there is a wide variation in delay tolerance, depending on the applica-
tion. For example, a video-on-demand application will be relatively tolerant of
delay, whereas it is critical that transport delay be very small (on the order of 50 ms
or so0) for a multimedia editing or video conferencing application. Much recent
attention is focused on achieving bounded delay through appropriate resource
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reservation protocols [2, 20, 21]. Given this wide range of delay tolerance, it is clear
that the highest traffic capacity can be obtained only by segmenting services by
delay, coupled with delay-cognizant scheduling algorithms within the bitway sta-
tistical multiplexers.

Audio and video services are usually considered to be synchronous, imply-
ing that network transport jitter is removed by buffering before reconstruction of
the audio or video. For the special case of voice, it is possible to change the tempo-
ral relationship of talkspurts somewhat without any noticeable effect, but video
display is organized into periodic frames (at 24, 25, or 30 frames/s), and all infor-
mation destined for a frame must arrive before it can be displayed. (We make an
alternative proposal in Section 6.4.3.)

Packets arriving after some prescribed delay bound are usually considered to
be lost, as if they did not arrive at all.? This illustrates another important character-
istic of CM services: the existence of stale information that will be discarded by the
receiver if it does not arrive in timely fashion. As another example, the bitway may
be working feverishly to deliver a pause-frame video when the motion suddenly
resumes. Any state residing in the bitway relevant to the pause-frame will not be
used at the receiver. The purging of stale information within the bitway layer will
increase traffic capacity.

6.1.5 Joint Source/Channel Coding

Joint source/channel coding (JSCC) is a way to increase the traffic capacity of a net-
work, subject to a subjective quality objective. While a classic “separation theo-
rem” of Shannon states that it is possible to separate the source and channel coding
without loss of performance, his result requires conditions (on channel memory
and time variation) not usually satisfied on wireless channels [22, 23] and, further,
takes no account of delay or complexity. In fact, substantial gains can be achieved
in traffic capacity for a given subjective quality using JSCC on wireless channels,
for three reasons:

* Since wireless channels typically do not satisfy the assumptions of the sepa-
ration theorem, that theorem does not rule out greater performance through
better source-channel coordination.

* For some interactive applications like video conferencing, we are particularly
concerned about minimizing delay, which is outside the scope of the separa-
tion theorem.

?We argue in Section 6.4.3 that this model for the reconstruction of video may not be the best in
case of packet networks with substantial delay jitter.
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* For applications like audio, video, and graphics, the only meaningful crite-
rion of quality is subjective. This implies that we must improve the system
through experimentation; subjective quality falls outside the scope of the sep-
aration (or any other) theorem.

We can divide JSCC roughly into two classes: tightly coupled and loosely cou-
pled. Tightly coupled JSCC, which predominates in the literature, designs the
source coding, modulation, and channel coding jointly, assuming therefore that
the channel coding and modulation are cognizant of the full details of the source
coding, and vice versa [24, 25, 26, 27]. This approach is applicable when designing
a stand-alone system, such as wireless transmission of high-definition television
(HDTV) [27].

If JSCC is to be applied to an integrated services multimedia network, we
have to deal with complications like the fact that a single source coder must be
able to deal with a variety of transport links (broadband backbone and wireless in
particular), the concatenation of heterogeneous transport links, and multicast con-
nections with common source representations flowing over heterogeneous links
in parallel. In this environment, it is appropriate to consider loosely coupled JSCC,
which is the only variety we pursue in this chapter. Loosely coupled JSCC
attempts to abstract those attributes of the source and the channel that are most
relevant to the other and to make those attributes generic; that is, broadly applic-
able to all sources and channels and not tightly coupled to the specific type.

Loosely coupled JSCC is thus viewed differently from the perspective of the
“source” and the “channel,” where channel is usually taken to mean a given phys-
ical-layer medium, but which we take here to mean the entire bitway network.
From the perspective of the bitway, JSCC ideally adjusts the allocation of network
resources (buffer space, bandwidth, power, etc.) to maximize the network traffic
capacity subject to a subjective quality objective. From the perspective of the
source, JSCC ideally processes the signal in such a way that bitway network
impairments have minimal subjective effect, subject to maximizing the network’s
traffic capacity. This suggests that the source coding must take account of how the
bitway allocates resources, and the effect this allocation has on end-to-end impair-
ments as well as on traffic capacity, and conversely the bitway needs to know the
source coding strategy and the subjective impact of the bitway resource alloca-
tions. However, to embed such common knowledge would be a violation of the
loosely coupled assumption, creating an unfortunate coupling of source and chan-
nel that precludes further evolution of each. Rather, we propose a model in which
the source is abstracted in terms of its bitrate attributes only, and the bitway is
abstracted in terms of its QoS attributes only. The benefits of JSCC can still be
achieved with this limited knowledge, but only if the source and channel are
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allowed to negotiate at session establishment. During negotiation, each source or
channel is fully cognizant of its internal characteristics and can influence the other
only through a give-and-take in establishing the rate and QoS attributes, taking
into account some measure of cost. The substream architecture discussed in Sec-
tion 6.2 will increase the effectiveness of loosely coupled JSCC.

A simple example of JSCC is compression [33]. The classical goal of compres-
sion is to minimize bit rate, which is intended to maximize the traffic capacity of
the network without harming the subjective quality appreciably. However, mini-
mizing the bit rate (say, in the average sense) is simplistic because traffic capacity
typically depends on more than average bit rate. To cite several examples:

* The statistical multiplexing advantage in congestion-dominated subnets
depends on the peakiness of the offered bit streams, at least for a constant loss
and delay objective, and the manner in which the bit rate varies with time is
an important factor in the traffic capacity.

L[]

A side effect of compression, at least at a relatively constant subjective qual-
ity, is usually to generate a variable bit rate, and exploiting that variable bit
rate through statistical multiplexing often results in packet losses under high
traffic loads. This, in turn, causes subjective impairment.

¢ Compression normally results in an increase in the susceptibility to bit errors.
On interference-dominated subnets, such as cellular radio wireless access
links, it is expensive (in terms of traffic capacity) to provision consistently
low error probability since doing so requires large transmitted power and
hence increased interference to other users.? Thus, the traffic capacity of such
a subnet depends strongly on the reliability requirement, as well as the bit
rate, and it is not automatically the case that minimizing the bit rate is equiv-
alent to maximizing the traffic capacity [19, 29, 30, 31, 32].

Having stated our objective for JSCC in multimedia networks, let us now
examine some current examples of tightly coupled JSCC and point out their short-
comings for an integrated-services network. Some systems effectively ignore the
benefits of J[SCC by focusing on a limited set of environments. Even standards
such as MPEG targeted at widespread use commonly make specific limiting
assumptions about the transport. The MPEG designers assume that uncorrected
errors are infrequent enough that blocks of data with errors can be discarded and
masked, with the resulting artifacts propagating until the next intraframe coded
video frame. This results in error rate requirements on the order of 10 to 102

3For example, for wireless CDMA, the traffic capacity is related to the product of average bit rate
and a monotonic function of bit error rate [28].
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(depending on the application) [34, 35]. While this rate is feasible in storage, fiber,
and broadcast wireless applications (such as terrestrial HDTV [33]), this is likely
not feasible in multiple-access wireless applications.? (Voice standards intended
for multiple-access channels and mobile receivers with fading generally assume a
worst-case error rate in the range of 10  to 10 *, which is more representative on
these types of channels during deep fades [18].) MPEG illustrates the difficulty in
designing compression standards with sufficient flexibility and scalability to
accommodate a variety of transport scenarios.

MPEG-1 is limited not just to low-error-rate bitways but to low-delay-jitter
bitways as well. Fortunately, this limitation was addressed during the design of
MPEG-2. The MPEG-2 Real-Time Interface (RTI) permits system designers to
choose the maximum delay jitter expected in their systems; given this value, the
RTI specifies how decoders can handle the specified jitter. The generic nature of the
RTI came about specifically because the MPEG-2 designers wanted to handle delay
jitter in a variety of bitways: satellite, terrestrial, fiberoptic, cable, etc. This is an
example of transport characteristics influencing compression design. See Section
6.4.2 for further discussion of MPEG.

The critical role of traffic capacity in wireless access subnets typically results
in systems with intricate but inflexible schemes for J[SCC, as can be illustrated by a
couple of concrete recent examples. These examples also illustrate some of the pit-
falls of the coupling of the CM service and the network, and they point to some
opportunities to reduce this coupling.

One example is the IS-54 digital cellular telephony standard. This standard
uses radio time-division multiple-access (TDMA) transport, which due to vehicular
velocity is subject to rapid fading. Due to fading and also in an effort to increase traf-
fic capacity by an aggressive cellular frequency reuse pattern, worst-case error rates
on the order of 10 are tolerated (the error rate could be reduced at the expense of
traffic capacity, of course). The speech is aggressively compressed, and as a result,
the error susceptibility is increased, particularly for a subset of the bits. Therefore,
the speech coder bits are divided into two groups, one of which is protected by a
convolutional code and the other left unprotected. Interleaving is used to spread out
errors (which are otherwise grouped at the demodulator output). What do we con-
sider undesirable about this system design? At least a few things:

¢ The close coupling between the speech compression algorithm (which deter-
mines which bits require more FEC protection) and the transport (FEC and
modulation) makes it impossible to modify one without the other. This situa-
tion will not be acceptable in a heterogeneous bitway.

*While FEC may be able to achieve such error rates, countering the worst-case error rate environ-
ment during deep fades will require very high levels of redundancy, which, because it is present even dur-
ing favorable channel conditions, will severely restrict the traffic capacity [19].
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e The bitway (including FEC) is designed with a particular CM service in
mind, namely, speech. It would be better if the transport were more flexible
so that other services could easily be introduced.

¢ The transcoder (which converts from 64 kb /s speech to a compressed speech)
introduces a substantial delay of about 80 ms. Two subscribers conversing via
two digital cellular telephones encounter two tandem transcoders (where
neither is necessary) and a round-trip delay on the order of 320 ms.

¢ The pulse code modulation (PCM) landline network connecting the cellular
base station to another subscriber is carrying a much higher bit rate than nec-
essary. While this bit rate does not affect the traffic capacity of the circuit-
switched telephone network, a more flexible network would have a reduced
traffic capacity (expressed in terms of simultaneous telephone calls) due to
this mismatch of resources.

These issues are addressed in a more general context in Section 6.3.

A final example illustrates an architecture that begins to redress some of these
problems. The Advanced Television Research Consortium (ATRC) proposal for ter-
restrial broadcast TV [36] attempts to separate the design of the video compression
from the transport subsystem by defining an intermediate packet interface with
fixed-length packets (cells). Above this interface is an adaptation layer that converts
the video compression output byte stream into cells, and below this interface the
cells are transported by error-correction coding and radio frequency (RF) modula-
tion. Much more enlightening is the way in which a modicum of JSCC is achieved.
First, the compression algorithm splits its output into two substreams, where,
roughly speaking, the more subjectively important information is separated from
the less subjectively important (and a reasonable rendition of the video can be
obtained from the first substream).” This separation is maintained across the packet
interface and is thus visible to the bitway. The bitway transmits these two sub-
streams via separate modulators on separate RF carriers, where the first substream
is transmitted at a higher power level. The motivation for doing so illustrates
another important role of JSCC on wireless access links; namely, achieving graceful
degradation in quality as the transmission environment deteriorates. In this case, in
the fringe reception area the quality will deteriorate because the second substream
is received unreliably, but a useful picture, based on the first substream, is still avail-
able. This system illustrates some elements of an architecture that will be proposed
later. Chapter 7 focuses on these and other aspects of JSCC and also proposes some
specific JSCC structures.

SReference [36], and other work on packet video, use the term priority to distinguish between the
substreams. We avoid that term here because it is usually applied to control the order of arrival or discard
in congestion-dominated packet networks, and can be misleading when applied in more general contexts.
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6.2 MODULARITY OF SERVICES AND BITWAY LAYERS

To allow different transmission media to work with the same source coding, and
different source coders to work with different transmission media, it is especially
important that we logically separate the design of source coders (in the services
layer) from the transmission (in the bitway layer) as much as possible. (As dis-
cussed in Section 6.3, this separation is even more advantageous in heterogeneous
transport environments.) This separation requires a careful partitioning of func-
tionality between these layers and appropriate abstractions at their interface. This
section concentrates on this partitioning and interface and describes a basic bitway
model appropriate for multimedia services. See [31] for a description of the video
compression problem in this heterogeneous environment.

6.2.1 Partitioning of Functionality

While [3] does not attempt a detailed partitioning of functions between services
and bitway layers, we make a proposal here specifically with respect to signal pro-
cessing functions, as shown in Figure 6.4. FEC has been placed in the bitway layer,
and compression and encryption in the services layer, where we have termed the
interface between these two layers the medley gateway [45]; the term gateway refers
to the connection between layers, and medley refers to the heterogeneous sub-
stream structure we envision at this gateway, as we discuss later.

Compression is inherently a “conditioning for transport” function and hence
belongs in the services layer. We explicitly avoid compression, or transcoding (con-
verting from one compression to another), within the bitway layer. The reasons for
this are elaborated further in Section 6.3.

The reasons that we include encryption within the services layer are more
subtle:

¢ Encryption must follow compression (and precede decompression) and
hence cannot reside in the application layer.

Medley gateway

Services 1 Bitway

|
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Compression 1 Error-control coding

Encryption 1 Modulation Figure 6.4 Partitioning of signal-
i rocessing functions between the
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] service and bitway layers.
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There may be two or more bitway layers in a given connection in a heteroge-
neous environment (Section 6.3). Including encryption in the services layer
opens the possibility of doing encryption on an end-to-end basis, with result-
ing simplified key management and higher level of security. Encryption in
the bitway layer could result in two or more encryption/decryption opera-
tions, with complications to key management and reduced security due to
“in the clear” signals available at intermediate points. Also, encryption
would not be under the control of the user, but rather the service provider,
dramatically reducing the security from the perspective of the user.

The proposed architecture eliminates the increased burden of error multipli-
cation due to encryption (see Section 6.3.1) on the FEC algorithms since FEC
decoding occurs prior to decryption.

The reasons we have placed FEC in the bitway layer include the following:

The most unreliable transmission media, wireless, are also the most critical
with respect to spectral efficiency. On such media, signal-space coding tech-
niques (for example, trellis coding and multidimensional signal constella-
tions [46]) are tightly integrated into the modulation system and hence are
inherently localized to each transmission link in the connection.

There are many error correction techniques available, such as retransmission,
FEC, interleaving, etc. It is most efficient for these techniques to be tightly
coupled to the transmission environment. For example, the temporal charac-
teristics of wireless access links depend heavily on the level of mobility, and
the level of interleaving (to counter error-correlation effects) and the coding
techniques are best coordinated with that mobility.

Achieving high traffic capacity on time-varying media (such as wireless
channels in the presence of terminal motion) requires techniques that take
account of the state of the channel, so that parameters such as FEC redun-
dancy, transmit power, etc., are varied with time. This important class of tech-
niques is practical to implement only within the bitway because of the close
coupling to the physical layer and the need for low-latency feedback between
modulation and coding and the physical layer.

As discussed in Section 6.3.3.2, performing FEC on an end-to-end basis
implies codes that deal with a variety of different loss and corruption mecha-
nisms, such as packet loss due to congestion (erasure codes), independent
errors, and correlated errors due to interference in wireless access links (inter-
leaving). In practice, this implies that different codes would have to be con-
catenated to deal with every possible contingency, and the resulting multiple
layers of redundancy would be carried by every link with a resultant traffic
penalty.
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e End-to-end FEC would require sufficient redundancy for the worst-case link,
resulting in a rate penalty on links with less severe impairments. In the
absence of adaptive configuration, the redundancy has to be adjusted for the
global worst case.

e End-to-end acknowledgment and repetition protocols will generally impose
too large a delay for critical interactive CM services like video conferencing.

While we propose that the primary responsibility for error correction fall to the bit-
way, there is no reason to dogmatically preclude the involvement of the service, as
discussed further in Section 6.2.5. For example, in “best effort” data services with-
out delay guarantees, services retransmission protocols (as in TCP) may be accept-
able. As another example, a subset of the data in a CM service may require
extraordinary reliability but be relatively insensitive to delay, as, for example,
coder configuration and state information. In the latter case, relying on a reliable
transport protocol may be a better solution than imposing a high reliability
requirement on the bitway layer. More generally, experience has shown that:

e Turning a poor reliability channel into one with moderate reliability is best
done within the physical layer and utilizing signal space or binary coding
techniques with soft decoding.

* Turning a modest reliability channel into one with almost complete reliabil-
ity is best done with acknowledgment and retransmission protocols. These
protocols are best done on an end-to-end basis, rather than embedded into
each link, because of the delay that they introduce.

Thus, the best approach depends on circumstances, but very high reliability
streams will involve a combination of FEC in the bitway layer and retransmission
in the services layer. This is yet another reason to place encryption in the services
layer—so as to perform decryption on the most reliable representation of the bit
stream and thus minimize error multiplication effects.

6.2.2 Abstracted View of the Bitway

To maintain flexibility and contain complexity, it is important that abstractions of
both services and bitway be defined at the medley gateway. These abstractions
should retain information that is relevant and critical, while hiding unnecessary
details. One of our major goals is to separate, insofar as is possible, the design of
the service from the bitway. Not only is this an important complexity management
technique, but it is critical to our ability to deal with complex bitway entities such
as concatenated heterogeneous links and multicast connections.
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Figure 6.5 Abstracted model of the bitway from the perspective of the service, for
a single substream.

Since the bitway core function is to transport packets, the abstract view
should focus on the fundamental packet transport impairments of corruption, loss,
and delay. A basic model incorporating these three elements is shown schemati-
cally in Figure 6.5. Often, the service will be interested in the temporal properties
of these impairments; that is, a characterization of whether impairments like
losses, corruption, or excessive delays are likely to be bunched together, or if they
are statistically spread out in time. This issue is discussed further later.

The description of the properties of the connection that the bitway provides
to the service is called a flowspec [2]. The most relevant of these properties are:

* Rate attributes, such as average rate, peak rate, and a characterization of the
temporal characteristics of the rate.

* QoS attributes, including loss, corruption, and delay, and the temporal char-
acteristics of these impairments. Other QoS attributes also may be specified
explicitly, for example, whether a connection guarantees to deliver packets in
sequence.

Note what information is not included in the bitway model. We deliberately
exclude knowledge of the detailed transmission and switching structure within
the bitway. For example, we hide from the service any knowledge of whether loss
and delay is caused by congestion or by FEC and interleaving techniques, etc. Sim-
ilarly, knowledge of whether corruption is caused by thermal noise, or interfer-
ence, or is affected by time-varying mechanisms like Ricean or Rayleigh fading, is
omitted. This strategy places on the bitway modeling the burden of specifying fun-
damental impairments with sufficient detail that the transmission characteristics
are sufficiently characterized for purposes of the service.

6.2.3 Abstracted View of the Service

In considering the abstraction of the service as seen by the bitway, a primary objec-
tive is to allow JSCC, in spite of our careful separation of the design of the two lay-
ers. To this end, we include in the services layer abstraction the substream structure
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Figure 6.6 Abstracted view of the ser-

1 vice from the perspective of the bitway.

shown in Figure 6.6. The stream of packets is logically divided into substreams,
which are visible to the bitway. The integrity of substreams is maintained across
multiple links (see Section 6.3). Each substream is associated with distinct QoS and
rate attributes established by negotiation with the application. The QoS attributes
are aggregated values from the individual links, so that each substream on each
link has a potentially different QoS objective. Thus, within the bitway, each packet
is identified as to its substream, which implicitly specifies the QoS objective for
that packet. JSCC then takes a specific form: each source coder segments its pack-
ets according to QoS objectives and then associates that packet with the appropri-
ate substream. The system is also cognizant of the traffic it has generated for each
substream.

For example, the two-level priority schemes in video coding can be thought of
as associating high-importance packets with one substream and low-importance
packets with another substream. The higher-importance substream would have a
QoS requirement associated with a lower loss probability than the lower-importance
substream. The bitway can exploit the relaxed QoS requirement of the lower-
importance substream to achieve a higher traffic capacity.

More generally, the service, knowing the QoS to be expected on the sub-
streams, can associate packets with substreams in a way that results in acceptable
subjective quality. The bitway, knowing the QoS expectations and rates, can allo-
cate its internal resources, such as buffer capacity, power, etc., in a way that maxi-
mizes the traffic capacity. In the absence of the substream structure, the bitway
would have to provide the tightest or most expensive QoS requirements to the
entire stream in order to achieve the same overall subjective quality.

Fortunately, the substream model is consistent with the most important exist-
ing protocols. Substreams have been proposed in ST-II, the second-generation
Internet Stream Protocol [47]. Version 6 of the Internet Protocol (IP) includes the con-
cept of a flow, which is similar to our substream, by including a flow label in the
packet header [48]. Asynchronous transfer mode (ATM) networks incorporate vir-
tual circuits (VC), and associate QoS classifications with those VCs, where nothing
precludes a single application from using multiple VCs. The notion of separating
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packets into (usually two) priority classes is often proposed for video [49, 50, 51],
usually with the view toward congestion networks. In particular, a two-level prior-
ity for video paired with different classes of service in the transmission has been
proposed for broadcast HDTV [36]. We believe that substreams should be the uni-
versal paradigm for interconnection of services and bitways for a number of reasons
elucidated below, and especially the support of wireless access and encryption. By
attaching the name “medley gateway” to such an interface, we are not implying that
a totally new gateway function is required. Rather, we propose this name as a com-
mon terminology applying to these disparate examples of a similar concept.

The distinction between a stream composed of a set of substreams and a set of
streams with different QoS requirements is that a stream composed of substreams
can have the rate and QoS descriptions of the substreams “linked together.” For
example, a service could specify that the temporal rate characteristics of all of its
substreams are highly correlated (or that two substreams’ rates are very negatively
correlated).® Also, a service could request “loss priorities” from a bitway by explic-
itly specifying that packets on one substream should not be discarded while pack-
ets on another substream are delivered successfully. Another example is a service
that requests one substream be given a higher “delay priority” than another sub-
stream to ensure that packets on the first substream experience less delay than
packets on the second.

Combining the bitway and service abstractions, the overall situation is illus-
trated in Figure 6.7. Each of a set of substreams receives different QoS attributes

1 |
1 Loss |
M Corruption * Delay
1 1
1 1
1 I
1 1
I Loss I
1 1
*J Corruption Delay
1 1
1 |

Figure 6.7 The abstracted bitway for a set of substreams.

®A little thought confirms that correlations can be expected among substreams emanating from
a single source. For example, in video, high- and low-motion information will typically have negatively
correlated rates attributes.



248 Architectural Principles for Multimedia Networks Chap. 6

and hence a quantitatively different bitway model. As discussed in Section 6.4.4,
this bitway abstraction opens up some interesting new possibilities in the design of
services.

6.2.4 Loosely Coupled Joint Source/Channel Coding

The abstractions introduced in the bitway model make opportunities in loosely
coupled JSCC more transparent. The JSCC functionality is now divided between
the services layer and the bitway layer. The bitway, in an effort to maximize its traf-
fic-carrying capacity, does the following:

e Affords each packet a loss or corruption probability lower than required by
the QoS specified for the substream with which it is associated.

* Takes maximum advantage of the delay flexibility afforded by the QoS on a
per packet basis. This is a new opportunity in JSCC not anticipated in previ-
ous approaches and is discussed further in Section 6.4.3.

Simultaneously, the service attempts to maximize the subjective quality afforded
to the application or user within the constraints of the agreed flowspec. For exam-
ple, packets less sensitive to delay are associated with a substream with a relaxed
delay specification.

In the absence of the substream structure, the bitway would have to provide
the tightest or most expensive QoS requirements to the entire stream in order to
achieve the same overall subjective quality (and the QoS needs of different packets
may vary over several orders of magnitude, e.g., for MPEG video headers vs.
chrominance coefficients). Thus, the bitway has the option of exploiting the sub-
stream structure to achieve more efficient resource use through JSCC. Critically,
substreams are generic and not associated with any particular service (for exam-
ple, audio or video or a specific audio or video coding standard).

The medley gateway model does impose one limitation on JSCC. It does not
include a feedback mechanism by which information on the current conditions in
the bitway layer can be fed back to affect the services layer. Nor does it allow the
flowspec to be time-dependent. One can envision scenarios under which this
“closed loop” feedback would be useful. One example is flow control, in which
compression algorithms are adjusted to the current information-carrying capacity
of a time-varying channel. Another is an adjustment of compression algorithms to
the varying bit-error rate due to time-varying noise or interference effects. We do
not include these capabilities because we question their practicality in the general
situation outlined in Section 6.3, where the services layer implementation may be
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geographically separated from the bitway entity in question, implying an unac-
ceptably high delay in the feedback path. This does raise questions of how to deal
with time-varying wireless channels. In this case, we do not preclude feedback
within a bitway link, adapting various functions like FEC and power control in an
attempt to maintain a fixed QoS.

6.2.5 Substream-Based Transport Protocols

Within the services layer, there is typically a transport protocol, the purpose of which
is to serve as a “translation” between the characteristics of the bitway layer and the
differentiated needs of the applications. An example in the Internet would be TCD,
which adds, among other things, retransmission and acknowledgment to ensure re-
liable and in-sequence delivery of packets for data applications. TCP adds signifi-
cant delay and hence may not be appropriate for critical interactive CM services, es-
pecially those that do not require reliable delivery, as discussed in Section 6.1.4. The
question then arises, what is the appropriate transport protocol? Since the transport
protocol by definition impacts the QoS as seen by the application, of course con-
strained by the QoS provisioned by the bitway, any consideration of QoS and JSCC
must incorporate the transport protocols.

The multiple substream model of the medley gateway has several character-
istics that may particularly require a transport protocol:

* Each substream is simply a packet delivery mechanism. There are configured
QoS attributes relative to packet loss, corruption, and delay, but no guarantee
that a particular packet is actually delivered, nor any guarantee that packets
are delivered in the same order in which they were transmitted.

* The substreams are asynchronous at the receiver, implying that there is no pre-
dictable temporal relationship between their delivery. This asynchrony is
quite deliberate, since the substreams may have different delay QoS attributes.

Should the application desire more control, for example, guaranteed packet
delivery, guaranteed order of delivery, or synchronization of the substreams at the
receiver, an appropriate transport protocol can be invoked. A general architecture
for such a protocol in the context of a medley bitway is shown in Figure 6.8. The
medley transport protocol presents a service with N substreams to the application
and makes use of M medley bitway substreams. While it would be likely that
M = N, that is not necessarily the case, as will be illustrated by a concrete example
in Section 6.4.4. The general purpose of the transport protocol is to modify the
semantics of the bitway so as to ensure ordered delivery or synchronization among
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Figure 6.8 Abstract medley transport protocol making use of a medley bitway.

substreams. The transport protocol may require a feedback stream not shown, for
example, carrying acknowledgments or requests for retransmission. Generally,
QoS attributes such as reliability and delay will be substantially affected by the
transport protocol. For example, ordered delivery will add delay since it will be
necessary to buffer packets arriving before one or more of their predecessors, and
synchronization of substreams will make all substreams suffer the worst-case bit-
way delay.

Thus far, to our knowledge there have been no proposals for substream-
based transport protocols, although of course an existing transport protocol such
as User Datagram Protocol (UDP) could be used independently on each sub-
stream. Medley transport protocols should be a profitable area for research.

6.2.6 Scalability and Configurability Issues

Requiring services and bitway to be mixed and matched arbitrarily puts a much
greater burden on each. A service entity that is designed to utilize any bitway
entity must exhibit scalability to deal, for example, with both a broadband back-
bone bitway and a wireless access bitway. Similarly, the bitway must be prepared
to allocate its resources differently for different rate attributes and QoS require-
ments, for example, to provision both an audio and a video service.

In the loosely coupled JSCC model, we envision a connection establishment
flowspec negotiation between service source and sink and bitway. These three enti-
ties can iterate through multiple sets of flowspec attributes to find a set that bal-
ances service performance and connection cost goals well. For example:

e The service entity, based on subjective quality criteria requested by the appli-
cation, requests a flowspec of the bitway. However, since the bitway can con-
ceivably be anything between a broadband backbone and a wireless access
link, this request may be wildly unrealistic or too expensive.
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¢ The bitway entity determines the feasibility of the flowspec, and if feasible,
passes back to the service a cost” associated with that flowspec.

¢ The service and the bitway exchange sets of flowspecs, choosing flowspecs
that improve service performance or reduce cost. This process results in a
final agreed-to flowspec.

* Both the service and the bitway configure themselves. This action implies
appropriate resource allocation by the bitway to guarantee that the agreed
flowspec will be achieved. This also implies that the service chooses signal
processing operations and a substream decomposition to conform to the rate
attributes in the flowspec to maximize subjective quality subject to the
agreed-to flowspec.

During the negotiation, the bitway entity must aggregate QoS impairments and
costs for all sublinks in a connection. Suitable modeling of these impairments, their
costs, and their aggregation will be a big challenge.

Unfortunately, an establishment negotiation in this form is not advisable for
multicast connections because it is not scalable and is likely to be overly complex.
The service source would have to negotiate with an unknown number of service
sinks and associated bitway entities—potentially, thousands. Further, sinks will
typically be joining and leaving the multicast connection during the session, and it
is not reasonable to expect that the source will reconfigure (e.g., new compression
algorithm or substream decomposition) on each of these events, especially if doing
so requires all other sinks to reconfigure as well. Mobility of receiving terminals
raises similar issues.

To avoid this problem, we can envision a different form of configuration for
multicast groups, with some likely compromise in performance, inspired by the
multicast backbone (MBone) [52] and the resource reservation protocol (RSVP) [2].
The service source generates a substream decomposition that is designed to sup-
port a variety of bitway scenarios, unfortunately without knowing in advance
their details. It also indicates to the bitway (and potential service sinks) informa-
tion as to the trade-offs between QoS and subjective quality for each substream.
Each new sink joining the multicast group subscribes to this static set of sub-
streams, based on resources and subjective quality objectives, and this subscription
would be propagated to the nearest feasible splitting point. The QoS up to this
splitting point would be predetermined, but possibly configurable downstream to
the new sink. The resulting compromise—the bitway QoS to each new sink would

’In a commercial context, cost is likely to be expressed in monetary terms, or in other contexts, it
may be expressed in other terms. In any case, an important component of the cost will be the traffic
capacity implications of the requested flowspec.
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be constrained by the QoS to the splitting point established by other sinks—could
be mitigated by allowing a sink to request the addition of bitway resources
upstream from the splitting point.

For wireless links, the ability to configure QoS depends on assumptions about
the propagation environment and terminal speed. For well-controlled, indoor, wire-
less local-area networks, it may be relatively easy to configure reproducible QoS at-
tributes because low terminal speeds will result in a slowly varying propagation
condition due to fading. In that case, the media-access layer may be able to adap-
tively maintain a reasonably constant QoS over time. In contrast, in wide-area wire-
less networks with high terminal velocities and high carrier frequencies, fading and
shadowing effects may make it extremely difficult to adaptively maintain QoS. In
this case, it may be more appropriate to view the configured QoS as an objective
rather than as a guarantee and to assume that there is an outage probability (possi-
bly configurable but at least provided to the application); that is, probability that the
QoS objective is violated. Many intermediate situations are surely possible.

6.3 EDGE Vs. LINK ARCHITECTURE FOR SERVICE LAYER

In Section 6.2, we addressed the problem of separating the designs of the service
from the bitway while leaving open most possibilities for JSCC. Our motivation
was to allow the flexibility to substitute freely the service or bitway realizations. In
this section, we consider a related set of issues in the provision of CM services
through two or more heterogeneous subnets. Many of the issues addressed in Sec-
tion 6.2 become more important.

Consider two basic architectures, illustrated in Figure 6.9, for concatenated
links, where each link corresponds to one homogeneous bitway subnet. For exam-
ple, in wireless access toa broadband network, the wireless subnet would constitute
one bitway link, and the broadband subnet would constitute the second link. The
distinction between the link architecture and the edge architecture is whether or not a
services layer is included within each subnet.® The back-to-back services layers in
the link architecture include, for CM services like audio and video, a decompression
signal processing function followed by a compression function. These functions to-
gether constitute a transcoder.

A transcoder is functionally equivalent to introducing an analog link in the
network by converting from one compressed digital representation to analog (by
decompressing and D/ A converting) and then converting from analog to a differ-
ent compression standard (by A/D converting with a synchronous sampling clock
and compressing). This virtual analog link circumvents many interoperability

8The term edge denotes the entry point to the first bitway link in the network.
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Figure 6.9 Contrast of link and edge architectures for concatenated heteroge-
neous subnets, where the former includes a transcoder function at the gateway
between the two subnets.

issues, such as ensuring an allocation of the same bit rate on all network links. In
some situations, such as introducing new technology into a legacy system, trans-
coding may be unavoidable. For example, in the telephone network, in a call from
a wired to a digital cellular telephone, one voice coding technique (8 kHz sampled
PCM) is used on the wired network and another vector-sum-excited linear predic-
tion (VSELP) coding, in the case of the North American I5-54 standard) is used on
the digital cellular subnet [18]. This approach is for valid and important technical
reasons; namely, the desire for spectral efficiency on the digital cellular subnet,
resulting in more aggressive compression (traded off against implementation cost
and reduced subjective quality) and the need for JSCC between speech coder and
wireless link.

In the Internet, services layers like TCP or UDP are realized at the edges. That
is, the Internet uses today the edge architecture. In extensions to the Internet archi-
tecture for realizing CM services, under some limited circumstances transcoders are
proposed to be included within the network’; thus, the Internet is currently pro-
posed to move (at least to a minor extent) in the direction of the link architecture.

In designing a new infrastructure, it should be possible to avoid transcoders,
and we believe very desirable as well. We argue that the edge architecture is supe-
rior and should be adopted for the future. The resulting architecture is structured as
in Figure 6.10. Compression, encryption, and QoS negotiation occur in the services
layer, at the network edge. FEC, modulation, and resource reservation occur in the

“Specifically, in multicast CM services, bridges incorporating transcoder functionality are
allowed at the nodes of the multicast spanning tree as a method of accommodating heterogeneous
downstream terminals [53]. We later propose an alternative method to solve this problem.
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Figure 6.10 A proposed architecture including compression, encryption, and
error-correction encoding. Encryption is performed independently on each sub-
stream so that the QoS after decryption can be controlled within the bitway.

bitway layer, at each network link. In favor of this architecture, we mention five
factors:

Privacy and security. The link architecture is incapable of providing privacy by
end-to-end encryption under user control since an encrypted signal cannot
be transcoded. The best that can done is encryption on a link basis by the ser-
vice provider(s), with no ability for the user to verify that encryption has been
performed. In our opinion, this problem alone should preclude serious con-
sideration of the link architecture."

Openness to change. The edge architecture is open to substitution of different
services layers at the network edge (user terminal or access point). This flex-
ibility leads to an economically viable method to upgrade services over time,
as well as to introduce new ones, as discussed in Section 6.3.2.

Performance. The link architecture suffers from the accumulation of delay and
subjective impairment through tandem compressions and decompressions
of the CM signal. This problem has already become serious in digital cellular
telephony, where each transcoder introduces on the order of 80 ms of delay.
This delay is inherent to the compression in transcoding since compression

19T his issue is discussed in [54], where it is pointed out that end-to-end encryption alone allows

routing information to be intercepted internal to the network. It is argued that a combination of both
end-to-end and link-by-link encryption is the most secure option.
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is at its heart a time-averaging process. In more complicated heterogeneous
scenarios, delay could become unacceptable for delay-sensitive interactive
applications.

e Complexity. The edge architecture has a number of challenges, as discussed
later, but overall we believe it substantially reduces the complexity of estab-
lishment and configuration.

* Mobility. The link architecture embeds considerably more state within the
network associated with the realization of a CM service, creating additional
requirements for migration of state when terminals are mobile (requiring the
movement or the disestablishment/establishment of multipoint connection
spanning trees).

The impairment accumulation and mobility considerations are relatively straight-
forward; the following subsections discuss the other factors.

6.3.1 Privacy and Security

Encryption is an important requirement for privacy and for preventing unautho-
rized interception in intellectual property protection schemes. Of course, encryp-
tion is accompanied by a host of other issues, such as key management and
distribution, that are beyond the scope of this chapter. Not all services will require
encryption, but the network architecture has to accommodate it for those cases
where it is required. One issue with encryption is whether it is applied end-to-end
or only on selected links of the network (especially the wireless link). End-to-end
encryption affords much greater protection to the user than does link-by-link
encryption because keys are known only to the user. Since encryption deliberately
hides the syntactical and semantic components of the signal, no compression can
be incorporated into the network where streams may be encrypted, including the
conversion from one compression standard to another.

Encryption techniques can be divided into two classes [13]. In the binary ad-
ditive stream cipher, which is used, for example, to encrypt the speech signal in
the Groupe Speciale Mobile (GSM) digital cellular system [41], the data is exclu-
sive-or’ed with the same random-looking running key generator (RKG) bit sequence
at the transmitter and receiver. The RKG depends on a secret key known to both
encryption and decryption [42]. The stream cipher has the advantage of no error
multiplication and propagation effects; however, the loss of synchronization of the
RKG will be catastrophic. A block cipher algorithm applies a functional transforma-
tion to a block of data plus a secret key to yield the encrypted block, and an inverse
function at the receiver can recover the data if the key is available. For example, the
Data Encryption Standard (DES) applies its transformation to blocks of 64 bits by
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means of a 56-bit key [43]. In fact, error propagation within the block is considered
a desirable property of the cryptosystem; that is, block ciphers should on average
modify an unpredictable half of the plaintext bits whenever a single ciphertext bit
is changed (this behavior is called the “strict avalanche property” [44]). There are
variations on block ciphers with feedforward and feedback of delayed ciphertext
blocks that cause error propagation beyond a single block.

Another important issue is the impact of encryption on QoS. In a general,
integrated-services multimedia network, encryption techniques with error propa-
gation should not be used for CM services since this use will preclude strategies
designed to tolerate errors rather than mask them.

Neither a stream nor block cipher is ideal: the stream cipher introduces seri-
ous synchronization issues in a packet network, while the block cipher has severe
error propagation. This is a serious issue for wireless multimedia networks that
should be addressed by additional research.

6.3.2 Openness to Change

The history of signal processing operations like compression is one of relentless im-
provement in performance parameters like compression ratio, subjective quality, and
delay. Algorithm improvements are usually accompanied by increasing processing
requirements, but fortuitously the cost/performance of electronics also advances re-
lentlessly. It would, given this history, be unfortunate to “freeze” existing perfor-
mance attributes through an architecture that discourages or precludes change.

In this regard, the argument in favor of the edge architecture is economic: it
allows the latest technologies to be introduced into the network in an economically
viable way. New signal processing technologies are initially more expensive than
older technologies since innovation and engineering costs must be recovered and
because such technologies usually require more processing power. In the edge
architecture, the services signal processing is realized within the user terminal or at
a user access point; that is, it is provisioned specifically for the user. Only users
who are willing to pay the cost penalty of the latest technology need upgrade, and
only services desired for that user need be provisioned.

In contrast, in the link architecture, service signal processing elements are
embedded widely throughout the network. At each point, it is necessary to deploy
all services, including the latest and highest performance. The practical result is
that for any users to benefit from a new technology, a global upgrade through-
out the network is required. If only a relatively few users are initially willing to
pay the incremental cost of new technology, there is no business case for this
upgrade. There is also the question of who provisions and pays for the substan-
tial infrastructure that would be required to support transcoding in or near base
stations.
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Further, the link architecture also requires that, for N different performance
flavors of a given service, internal nodes in the network be prepared to implement
N(N — 1) distinct transcoders, and that nodes be prepared to implement all distinct
services. These nodes must also implement all feasible encryption algorithms and
must be cognizant of encryption keys. In contrast, in the edge architecture, the
edge nodes need implement only those services desired by the local applica-
tion/user and only the flavor with the highest desired performance (as well as fall-
back to lower-performance flavors).

Past examples of these phenomena are easy to identify. The voiceband data
modem, realized on an end-to-end basis, has advanced through two orders of
magnitude in performance while simultaneously coming down in price. Users
desiring state-of-the-art performance must pay a cost increment, but other users
need not upgrade. If a higher-performance modem encounters a less capable
modem, it falls back to that mode. Realizing the older modem standards intro-
duces only a tiny cost increment since the design costs have been amortized and
the lower performance standard requires less processing power. This example pro-
vides a useful model of how a service can be incrementally upgraded over time in
the edge architecture. It illustrates that each terminal does not have to implement a
full suite of standards, but rather needs to include only those services and the high-
est performance desired by the local application or user, as well as fallback modes
to all lower speed standards.! The fallback modes, which are the only concession
to interoperability with other terminals, do not add appreciable cost—the lower
performance standards require less processing power, and the design costs of the
older standards have been previously amortized.!? The total end-to-end perfor-
mance will be dictated by the lowest performance at the edges.

Contrast this behavior with the circuit-switched telephone network, where
the same voice coding has been entrenched since the dawn of digital transmission.
This voice coding standard is heavily embedded in the network, which was origi-
nally envisioned as a voice network. Today, it would be feasible to provide a much-
improved voice quality (especially in terms of bandwidth) at the same bit rate, but
there is no economically viable way to introduce this technology into the network.

The ability for users or third-party vendors to add new or improved services,
even without the involvement of the network provider, is perceived as one of the key
features of the Internet, leading to the rapid deployment of new capabilities such as
the World Wide Web (WWW). In the link architecture, the necessary involvement of
network service providers in services is undoubtedly a major barrier to innovation
within the services domain of functionality, such as signal compression.

NThis style of progressive improvement in a standard is already evident in MPEG, where

MPEG-2 decoders are required to also be MPEG-1 compliant. Numerous examples of this methodology
exist in other domains, such as microprocessor architectures.

12This argument is valid for software-defined standards, and is valid today in audio applications
and will be increasingly valid in video as well.
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6.3.3 Performance and Efficiency

In this section we examine the relative performance and efficiency of the architec-
tures discussed above.

6.3.3.1 Modulation

Packet loss, corruption, and delay are especially problematic in wireless commu-
nication, which is limited by low bandwidth, time-varying multipath fading and
interference. Moving to higher radio frequencies may alleviate spectrum conges-
tion, but this solution is attended by a host of other difficulties, including suscepti-
bility to atmospheric attenuation from fog and rain. Thus, the application of
physical layer signal processing to combat impairments is more important in a
wireless context than in a wireline backbone network.

We can distinguish between two categories of physical layer signal process-
ing. As discussed in earlier chapters, transmit waveform shaping, spatial and tem-
poral diversity-combining, and equalization are commonly employed wireless
physical layer techniques that strive to unilaterally improve the reliability of all
information bits. These methods trade off reliability for signal processing overhead
(hardware cost), delay, and reduced traffic capacity. In contrast, power control and
signal-space codes (such as trellis-coded modulation and shell mapping) form a
class of methods with an additional dimension: given a fixed amount of
resources—transmit power in the case of the former, hardware complexity and
radio spectrum in the case of the latter—these strategies can selectively allocate
impairments to different information bits, thereby controlling QoS. The ability to
match transmit power to loss and corruption requirements is essential for maxi-
mizing capacity in wireless cellular networks, where excessive power creates
unnecessary interference to other users.

The substream abstraction (Section 6.2.3) enables this matching. As shown in
Figure 6.11, each bitway link is obligated to maintain the structure of the medley
gateway at its output. That is, the medley gateway is the interface between service

Medley Gateway

Service

Figure 6.11 Each bitway link maintains the structural integrity of the medley
gateway, making the structure available to downstream bitway links.
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and bitway layers and also the interface between distinct bitway entities. This is
why we call it a gateway—since it serves as a common protocol interface between
heterogeneous bitway subnets. The substream structure is visible to each bitway
link, which is able to allocate resources and to tailor its modulation efficiently in
accordance with JSCC.

6.3.3.2 Forward Error-Correcting Coding

With end-to-end FEC, the transport may provision reliability by applying binary
FEC on an end-to-end basis. The FEC-encoded information bitstream may then
transparently pass through multiple transport links to be FEC decoded (again at
the network edge) by the sink. Priority encoding transmission (PET) [37] is an
example of the end-to-end FEC approach. The goal of PET is to provide reliable
transmission of compressed video over wired packet networks. The primary error
mechanism in these networks is congestion, leading to excessively delayed pack-
ets or buffer overflow. PET combats congestion losses by using a form of binary
FEC known as erasure coding: B packets are encoded into N packets, such that all
B packets can be recovered from any B out of N packets successfully received. This
approach is appealing for its simplicity and, in fact, can be efficient for a homoge-
neous wired transport whose links have very similar characteristics.

An alternative architecture is to provision reliability by applying physical
layer signal processing on a link-by-link basis: each link is made cognizant of the
loss and corruption requirements of an application, then applies its own specific
physical layer processing to meet these requirements. This is the architecture we
prefer, for reasons we now elaborate.

The link-by-link approach to providing reliability necessitates a mechanism
for QoS negotiation on each link so that it can configure itself in accordance with
the requirements of a particular source stream. With binary FEC, we can do away
with QoS negotiation altogether, which is certainly an advantage. However, con-
sider the reliability requirements of the wireless link. Since the wireless link has no
knowledge of the source requirements, it must be designed for a homogeneous
QoS across all streams. There are two options. First, the designer can adjust the
reliability for the most stringent—or most demanding—source. This conservative
design approach will, for less stringent source requirements, overprovision
resources such as bandwidth and power and overly restrict interference, thus
reducing traffic capacity. While we don’t expect this to be a major issue on back-
bone networks, it may severely decrease the capacity of the bottleneck wireless
access network if there is a wide variation in source QoS needs.

The second option is to design the wireless access link to be suitable for the
least stringent source requirement and compensate by FEC on an end-to-end basis,
as in PET. This option introduces several sources of inefficiency for heterogeneous
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networks with wireless access. As noted earlier, binary erasure codes are very effi-
cient in combatting congestion-based losses in a wired packet network. Their per-
formance is significantly poorer in a wireless environment, where packets are
likely to be corrupted due to the inherently high bit-error rate (BER). For the 10
uncoded BER typical of high mobility wireless and a packet size of M = 120 bits,
the packet loss rate after applying an (N = 8, B = 2) erasure code is:

N
Pr[packet error] = z ;71(1 — p)Nf" = 0.26, (6.1)
i=N-B+1
where
p=1-(1-BER, )" 6.2)

This performance is a modest improvement over the uncoded packet error rate of
70% but was achieved by quadrupling the bandwidth. A better way of lowering
losses is to attempt to reduce the corruption rate instead, for example, by using a
convolutional code. For the same bandwidth expansion as an (8,2) erasure code, a
convolutional code can lower the BER by two orders of magnitude [38, 39], thereby
lowering the packet error rate to 1%. On a wireless link with rapid fading, this code
will usually be accompanied by interleaving to turn correlated errors into quasi-
independent errors. While convolutional coding may be attractive for wireless
links, it is largely ineffective in a wired network, where losses are congestion-
derived. Thus, it will be necessary with end-to-end FEC to concatenate different
codes and interleaving designed to combat all anticipated error mechanisms,
implying that the wireless link traffic will be penalized by redundancy intended
for the other links in the network as well as its own.

The link-by-link architecture also permits us to apply physical layer signal
processing techniques not possible in end-to-end binary FEC. In end-to-end binary
FEC, one has no choice but to perform a hard decision on the information bits as
they cross from one link to another. On a wireless link, we have control over the
modulation and demodulation process and thus can apply soft decoding to the
information bits. Hard decisions made prior to the final decoding result in an irre-
versible loss of information. This loss is equivalent to a 2 dB drop in the signal-to-
noise ratio (SNR) [40], and the effect on loss and corruption is cumulative across
multiple links. In addition, we can consider making the FEC and interleaving
adaptive to the local traffic and propagation conditions on the wireless link.

Overall, active configuration of the QoS on a wireless link based on individ-
ual source requirements will substantially increase traffic capacity. The price to be
paid is an infrastructure for QoS negotiation and configuration and the need to
provision variable QoS in a wireless network; the latter issue is addressed further
in Section 6.4.1. Fully quantifying this benefit requires further research since it
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depends on the characteristics and requirements of the source traffic, as well as on
the benefits of variable QoS.

6.3.4 Complexity and Resource Allocation

Both the link and the edge architectures raise important issues in resource allocation
in session establishment. In both cases, for CM services the overriding objective is to
obtain acceptable and controllable subjective quality in the audio or video service.
Subjective quality is measured objectively by attributes such as frame rate and reso-
lution (for video), bandwidth (for audio), and delay (for both video and audio). It is
also measured by other factors more difficult to characterize, such as the perceptual
impact of artifacts introduced in the process of decompression by information cor-
rupted or discarded in the service (i.e., in the compression) and in the bitway
(packet losses), and also artifacts introduced by corruption in the bitway.

Inherently, resources belong to individual links, not to end-to-end connec-
tions. However, the QoS negotiation between the services and bitway layers that
establishes each link’s resource use can be done end-to-end or link-by-link.

In the link architecture, overall subjective quality objectives must be refer-
enced back to the individual links, since each link will contribute artifacts that
impair subjective quality (such as quantization, blocking effects, error masking
effects, etc.). These artifacts will accumulate across links in a very complicated and
difficult-to-characterize way. (For example, how is a blocking or masking artifact
represented in the next compression/decompression stage?) It is relatively
straightforward to partition objective impairments like delay among the links.
Other objective attributes like frame rate, bandwidth, and resolution will be dic-
tated by the worst-case link and are thus also straightforward to characterize. Sub-
jective impairments due to loss and corruption artifacts will, however, be very
difficult, if not impossible, to characterize in a heterogeneous bitway environment.
Simple objective measures like mean-square error are fairly meaningless in the face
of complex impairments like the masking of bitway losses. Thus, as a practical
matter, it will be very difficult to predict and control end-to-end subjective quality.

The situation in the edge architecture is quite different. The first step is to gen-
erate an aggregated bitway model for all the concatenated bitway links. That is, the
loss models for the individual links must be referenced to a loss model for the over-
all connection, and similarly for corruption and delay. There are no doubt serious
complications in this aggregation, for example, correlations of loss mechanisms in
successive links due to common traffic. Nevertheless, this is a relatively straightfor-
ward task susceptible to analytical modeling. Once this analysis is done, the aggre-
gate bitway model must be related back to service subjective quality, much in the
fashion of a single link in the link architecture. There is no need to characterize the
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accumulation of artifacts in multiple compression/decompression stages. Accurate
prediction and control of subjective quality in the edge architecture should be feasi-
ble, and this is an additional advantage over the link architecture.

6.3.5 Multicast Connections

The problem of multicast connections is illustrated in Figure 6.12. With heteroge-
neous receiving terminals, or heterogeneous subnets, we may need different rep-
resentations (say, with different bandwidth or resolution) of the CM service after a
splitting bridge, but to conserve bitway resources we want to share a common
stream before the bridge. An obstacle to this is encryption, which will hide the syn-
tax of the originating stream. One solution is to locate transcoding at the bridge,
preceded by decryption and followed by encryption, but this solution introduces
all the disadvantages of the link architecture.’® The medley gateway provides a
framework for the solution to this problem, as shown in Figure 6.13. At the point
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Wireless

Figure 6.12 Illustration of a multicast connection with heterogeneous receiving
terminals.

Backbone

Wireless

Figure 6.13 The medley gateway substream structure allows multicast bridging
to be performed within the bitway layer, without interference from encryption.

B A transcoding approach to multicast splitting is currently envisioned as part of the future Inter-
net architecture [53].
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where two representations are split, a (not necessarily proper) subset of the medley
substreams is extracted for each downstream branch. From the perspective of the
bitway, different endpoint terminals receive different subsets of substreams, with
the great simplification that the bridging function can be accomplished entirely
within the bitway layer. If each substream is independently encrypted, encryption
does not interfere with this bridging function. Substreams in this context play a
similar role to multicast groups in the MBone [52].

Support for heterogeneous terminals in the edge architecture presents to the
service a well-defined design problem: perform a layered compression, such that a
subset of the substreams embodies a minimal representation of the source, and the
additional substreams provide additional information (higher resolution, higher
sampling rate, etc.) to terminals with greater capabilities. Thus, in the edge architec-
ture, the substream structure is used for three distinct but complementary purposes:

* JSCC. It allows the service to present to each bitway entity, in a generic fash-
ion separated from particular service standards, the differing QoS require-
ments of different packets, thus allowing the bitway to efficiently allocate its
resources.

* Layered coding. It allows the service to decompose its layered encoding in a
way that is also generic and visible to the bitway layer, so that the splitting
function required in multicast connections with heterogeneous terminals can
be performed entirely within the bitway.

® Privacy and security. Independent encryption of the substreams allows the
privacy and security of end-to-end encryption without interfering with
either JSCC or multicast splitting.

6.4 DEeSIGN EXAMPLES

JSCC for the medley gateway model has serious implications to the design of the
wireless bitway, source coding, and services. In this section, we illustrate this by a
few design examples.

6.4.1 Variable QoS in Wireless Bitways

In Section 6.2, we discussed two design philosophies for multimedia networks:
homogeneous QoS in the network with end-to-end unequal error protection
(UEP), and active configuration of QoS within the individual links of the network.
In the latter case, the approach is to adjust the QoS, and hence resources, of indi-
vidual links in accordance with the requirements of each constituent stream. As we
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believe the latter is a superior approach for wireless bitway design, we now discuss
the provisioning of variable QoS. Our development complements that of Chapter 5.
For generality, we consider a medley bitway (with substreams), although these
results would apply equally well to the more restrictive case of QoS provisioned on
a stream rather than substream granularity.

A variable QoS medley bitway has two design challenges: provide flexibility
in loss/corruption/delay attributes with a substream granularity, and exploit the
configured characteristics to maximize the traffic capacity. We illustrate the design
issues for a wireless direct-sequence code-division multiple-access (CDMA) sys-
tem. We focus on achieving variable reliability and ignore the issue of variable
delay discussed elsewhere [60].

There are two handles for controlling reliability in CDMA: FEC and power
control. Achieving variable reliability with FEC would require UEP. Many forms of
UEP coding have been developed, notably algebraic codes for UEP and embed-
ding asymmetric constellations in trellis-coded modulation [61]. However, the
number of different levels of reliability provided by these techniques is limited,
and it is difficult to apply them to hierarchical UEP. Variable rate (VR) convolu-
tional codes have also been suggested for UEP coding of speech [62]. By adopting
UEP, we can increase the reliability of a substream by adjusting the coding rate, at
the expense of bandwidth expansion from the redundancy. Signal space codes
such as trellis-coded modulation are particularly attractive for wireless networks
because they provide redundancy without increasing bandwidth. However, it is
difficult to generate (by varying the constellation size) the trellis equivalent of a
variable rate convolutional code since, as Ungerboeck has shown, virtually all of
the coding gain is attained by doubling the alphabet size [40].

As developed in Chapter 5, an alternative mechanism to control reliability
QoS would be to adjust the signal-to-interference + noise ratio (SINR) by adjusting
the transmitted power, taking into account the interference from other user’s traf-
fic being simultaneously transmitted on different spreading codes. Of course, it is
beneficial for overall traffic capacity to minimize the transmitted power for any
given user in order to minimize the interference to other users. Hence, overall traf-
fic capacity is maximized by achieving, for each packet, no greater SINR than is
necessary to meet the QoS objective. If we use power control only, then ina CDMA
system we will be transmitting to a particular user at less than 100% duty cycle
whenever the bit rate required by that user is less than the peak rate enabled by the
chip rate and processing gain. Power control has some important advantages:

¢ |t is easy to achieve variable reliability over a wide range of bit error rates by
changing the power level. The power level can be dynamically varied to track
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time-varying channel conditions and maintain relatively constant reliability
for any substream.
* Power control is transparent to the receiver, requiring no special processing.
* For CDMA, using a fixed-rate code to provide maximum coding gain with-
out bandwidth expansion is easy, since the spectrum has already spread; i.e.,
channel coding and spreading can be combined to provide redundancy with-
out bandwidth expansion [63].

The first question is whether, ignoring implementation issues, it is most
advantageous to use UEP or power control. To address this issue, let us examine
UEP and power control from an information theory perspective, using the follow-
ing elementary calculation. In a CDMA system, focus on a single user’s data and
approximate the total interference as white Gaussian noise with power spectrum
N,, and let the bandwidth be B. Let P be the average transmitted power for this par-
ticular user, and transmit with a duty cycle y = 1. Then, the transmitted power dur-
ing that duty cycle is P/;. The channel capacity using this duty cycle is y times the
capacity if we transmitted at this same power level at 100% duty cycle, where the

latter is B - log (1 + 2117\{,’8 ). Thus, the overall channel capacity is

B P
C=yB-log (1 + —ZNO;V’B ) (6.3)

which is precisely the same as the capacity of a channel with bandwidth yB with
100% duty cycle transmission and transmitted power P. Since this capacity is max-
imum for y = 1, we conclude that it is advantageous to transmit with 100% duty
cycle in order to minimize the average transmitted power P for a fixed bit rate C.
To minimize P, and hence the interference to other users, we should always trans-
mit at 100% duty cycle by adding channel coding redundancy as necessary. Intu-
itively, it is advantageous to use coding to increase the duty cycle of transmission
to 100%, regardless of the required bit rate, and take advantage of the coding gain
to reduce the average transmit power.

Thus, information theory teaches us that in an interference-dominated wire-
less channel such as CDMA, it is best to use coordinated UEP and power control.
Either UEP or power control in isolation is suboptimum at the fundamental limits.
If the bit rate for a given CDMA spreading code is low, coding redundancy should
be added and the transmitted power simultaneously reduced. The bitway coding
and power control layers in a wireless cellular bitway design are illustrated in Fig-
ure 6.14. A set of substreams is applied to a coding layer that is cognizant of the
propagation characteristics of the channel and that configures itself to provide the
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Figure 6.14 Internal architecture of a CDMA bitway.

negotiated QoS contract.'* Based on the coding selected, each substream is associ-
ated with a required SINR. The power control layer then associates a transmitted
power with each substream, taking into account a maximum power requirement,
the SINR requirement for each substream, and which substreams currently have
packets awaiting transmission. '

Finally, let us quantify the capacity gain in a wireless CDMA system attain-
able by using joint power and error control for variable QoS. The traffic capacity is
the amount of traffic that the system can support, subject to the (possibly distinct)
QoS demands of the traffic. Let M be the number of users and K, be the number of
substreams of user m. Specify a user (CDMA spreading code) by subscript m and a
substream by subscript k. The SINR experienced by the kth substream of user m on
the uplink is
Gmxk, m

experienced = Tlin;a_ /
m

SINR (6.4)

where G, is the path loss from user m to the base station; x ,, is the transmit power
assigned to substream k; ™™ is the intracell interference experienced by user m,
and ¢? is the lump sum of background noise and intercell interference experienced
at the base station.

4For example, in the design of the trellis code, using a metric different from the Euclidean metric
typically used for the additive Gaussian noise channel is advantageous for Rayleigh fading channels [64].

5In practice, we would also like to schedule the most opportune time for a packet transmission
to take advantage of allowed delay jitter. This problem is considered elsewhere [60].




Sec.6.4 Design Examples 267

The intracell interference experienced by a substream of user m is

Iztra = me n nZ [))k nxk n (65)

n=1
n#m

where ﬁk, ., is an indicator function, equaling one if substream k of user m is cur-
rently active, zero otherwise. Each user’s traffic can be decomposed into multiple
substreams, but the substreams are statistically multiplexed together onto one user
stream so that only one of the user’s substreams is active at any time. In (6.5), f,, ,
is the partial correlation coefficient (or degree of nonorthogonality) between chan-
nels of users m and n: because signals from different mobile users travel through
different multipath channels to reach the base station, perfect orthogonality
between user codes may be lost and f,, , may be non-zero. Uplink transmission is
inherently asynchronous, so f,, , is well modeled by f, the correlation between ran-
dom signature sequences, with E [ f] = 2/3 [65].

The indicator function of a substream as it evolves over time f8;, , (#), t € [0, %)
is a random process. Let [)’k ,» denote the long-term time average of f5, . (f); e.g.,
B . m = 1/4 if the average bit rate of substream k is 500 kbps and it belongs to a
2-Mbps user stream. We assume ergodicity in the mean, so that E[f, (5] = /_’)k, -
This assumption is based on the intuition that at any given time slot, the probabil-
ity that you receive a packet from substream k equals the average rate of that sub-
stream, divided by the aggregate rate of the user stream to which it belongs. The
expected value of the total power is then

K M Kn
E [P] =E |:Z Z k m(t)xk, nz] = Z Z Bk, m xk, m (66)
m=1 k=1

m=1 k=1

Our objective is to minimize the average overall power E [P] while promising
each substream that the expected value of the SINR it experiences will meet or
exceed the desired SINR:

i M;f

M
minimize E [P] = Z B X m such that (6.7)
G
vk, m, A’A"x" e = SINR, ,, (6.8)
?+EI1Y G B,
n=1 j=1
n#m

%, =0, SINR, ,,>0
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In (6.8), SINR, , is the SINR requested by substream k of user m, and the
inequality in 6.8 implies that the expected value of the SINR achieved at the
receiver must equal or exceed the desired SINR.

It can be shown [66] that the feasible capacity region of a CDMA system is
given by

y<1, (6.9)
where
M
=2 T (6.10)
m=1
KHI
VT E [f] Z (lk, m’ and (611)
k=1
SINR, , /i,
Q= - 1\,111/ k,m (612)

1+ E[f]z /—)),',mSINR/,m
j=1

k=1,.,K m=1,..., M.

v m

The left hand side of (6.9), y, represents the load of the system. The closer y is to
unity, the closer the system is to violating the QoS requirements for all users and
substreams. If the QoS requirements are too stringent, then the interference will be
too great and no solution exists, regardless of the transmit power. Examining (6.12)
we see that for a cellular wireless system whose capacity is interference-limited,
the “cost” of transmitting an information substream is the product of its reliability
requirement (specified by an SINR) and bandwidth requirement (specified by its
average rate p).

As noted earlier, information theory suggests that the application of VR cod-
ing to adapt a variable-rate information source to a bandlimited channel is neces-
sary in order to maximize capacity. Ina CDMA system, a user is associated with a
code, and the bandwidth afforded by the code is shared by the user’s substreams.
Each substream is allocated a time-averaged fraction of the bandwidth, p. To
ensure optimal capacity in the information theoretic system, the bandwidth asso-
ciated with the code should be used at 100% duty cycle; i.e., in (6.9)—(6.12), {Bj, J
should satisfy

K”
> B, =1 forallusersj, (6.13)
=1

with the SINR requirements of all substreams adjusted for the resulting coding
gain. We note that the interference-limited capacity result as stated in (6.9)-(6.12) is
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quite general and can also be applied toward suboptimal systems that do not
achieve 100% utilization of the channel bandwidth.

We can apply these results to find the capacity gain of power control for vari-
able QoS with substreams over power control without substreams. In the absence
of substreams, each stream’s reliability requirement would be equal to the reliabil-
ity need of its worst-case (most error-sensitive) information component. A fine-
grained substream architecture therefore achieves a capacity gain of

Z Z z ul(::;‘,X)pi, k,m

user m streamk substream i
(6.14)

CapaCity gain B Z z Z (’Yi, k, m/_}i,k, m I

user /1 streamk substream /

ZHEX) corresponds to the maximum SINR requirement among the sub-

streams of stream k.

where «

6.4.2 MPEG-2 Compression

The International Organization for Standardization’s Moving Pictures Experts’
Group (ISO/MPEG) has developed several well-known audiovisual compression
standards:

* MPEG-1 is designed for VCR-quality audio and video compression and for
delivery via reliable media such as CD-ROMs [16].

* MPEG-2 is designed for high-quality broadcast applications, including enter-
tainment, remote learning, electronic publishing, and more [17].

* MPEG-3 was intended to address high-definition television, but this effort
was folded into MPEG-2.

* MPEG-4, just beginning development, is intended to address wireless inter-
active multimedia coding and transmission [67]. MPEG-4 currently borrows
some technology from the ITU-T Study Group 15, for example, SG15’s wire-
less multiplexing protocol, H.245.

MPEG-2 is not designed for wireless multiaccess but rather for wireless and
wired broadcast; as such, the decisions made in the design of MPEG-2 are quite dif-
ferent from those that would be made for a wireless multiaccess system. Broadcast
channels differ from wireless multiaccess channels in that they are noise rather
than interference-limited and thus can be provisioned to deliver lower bit-error
rates and very much lower burst-error rates. Thus, error resiliency tools for broad-
cast applications should be designed and optimized differently than those for
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wireless multiaccess systems. Nevertheless, it is instructive to review the error
resiliency features included in MPEG-2. In Section 6.4.3, we illustrate a much dif-
ferent approach.

MPEG-2 is a service layer standard and today is used with a range of bit-
ways: direct broadcast satellite, digital switched line, cable television, ATM, and
more. As a suite of service layer standards, MPEG-2 does not provide bitway QoS-
enhancing functionality such as data interleaving, selective packet discard, or FEC.
Still, MPEG-2 does provide a range of functionality to help resynchronize and
recover quickly from bitway errors and to configure to trade off efficiently between
bandwidth, delay, loss, and service quality.

6.4.2.1 Features

MPEG-2 contains three subparts that define bitstream formats: The audio specifi-
cation defines a compressed representation of a multichannel audio signal. The
video specification defines a compressed representation of a moving picture
sequence. The systems specification defines, among other things, how to multiplex
multiple audio, video, and data streams into a single packetized bit stream.

The audio and video compression methods defined by MPEG-2 contain many
predictive coding steps. For example, the video specification includes interframe
motion-compensated DPCM, predictive coding of motion vectors within a frame,
predictive coding of DCT brightness coefficients within a frame. Predictive coding,
which represents a signal’s difference from a predicted value rather than repre-
senting the signal value directly, removes signal redundancy very effectively but
suffers from error propagation. Errors cause predictive decoders to incorrectly ren-
der data which is used in future predictions. These subsequent predictions with
errors lead to more incorrectly decoded data; this propagates errors throughout
spatio-temporally nearby audio or video. Fortunately, MPEG-2 allows an encoder
to define “resynchronization points” almost as often or infrequently as the designer
desires, to trade between bandwidth efficiency and rapid error recovery. At a resyn-
chronization point, signal values are coded directly rather than via a predictor.

Both the audio and video compression algorithms use Huffman coding,
which uses short bitstrings to represent frequently occurring values and long bit-
strings to represent infrequent values. A property of Huffman codes is that they
cannot be decoded without some context—knowledge of the bit position of the
start of some bitstring. Huffman codes also suffer error propagation: one bit error
destroys the decoder’s context, and the decoder may incorrectly decode a long
sequence of values. To alleviate this problem, the audio and video specifications
both define “startcodes,” which are patterns in the bit streams that decoders can
find easily and at which Huffman codes are known to be at the start of a bitstring.
These startcodes do consume a small but non-zero percentage of audio and video
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stream bandwidth, but they enable decoder recovery after a transmission error.
The video specification allows bitstream encoders to insert “slice” startcodes at
either a default minimum rate or at a higher rate to enable faster-than-default error
recovery.

The systems specification defines a bitstream format (“transport streams”)
that consists of short (compared to TCP/IP) fixed-length packets. Short packets
ensure that if a receiver identifies a packet as corrupted, comparatively little data
is suspect. Fixed-length packets facilitate rapid identification of packet delineators
after errors.

MPEG-2 transport streams can contain “duplicate packets.” A duplicate
packet is a copy of the previous packet with the same source identifier. Duplication
is a simple (but not efficient) flavor of FEC. Combined with bitway interleaving,
duplication greatly reduces the occurrence of uncorrectable burst errors, however.
A sensible strategy is to duplicate all packets that contain the highest-level start-
codes.

Example

Suppose we transmit an MPEG-2 transport stream with 30 packets per second that con-
tain critical video headers (one such packet per picture). Suppose the bitway layer uses
interleaving to ensure that the probability of bit error is uniform and identically dis-
tributed and uses FEC to ensure a probability of bit error of 10™. The probability
that any packet contains an erroris 1 — (1 — 10°8)!®¥ =15 x 10 ° since there are 188
bytes in an MPEG-2 transport stream packet. This means that without duplicate pack-
ets, we can expect a packet with a critical header to be corrupted about once every 2,216
seconds or every 37 minutes. If we send duplicate packets for each packet with a criti-
cal header, the probability that both an original critical packet and its duplicate are cor-
ruptedis (1 — (1 - 107%)! 8X8)2 =23x10"" Both an original critical packet and its du-
plicate are lost about once every 1.5 X 10% seconds, or once per 4.7 years.

The MPEG-2 systems specification defines a timing recovery and synchro-
nization method that utilizes two types of timestamps. “Program clock references”
(PCRs) allow receivers to implement accurate phase-locked loop clock recovery.
Stringent limitations on the encoder clock frequency accuracy and drift rate allow
decoders to identify and discard corrupted PCRs. Video frames and audio seg-
ments are identified by decode/presentation timestamps (DTS/PTS), which tell
the decoder the proper time to decode and present the associated video and audio
data. Since each frame has a fixed (and known to the decoder) duration, there is a
lot of redundancy in the DTS/PTS values. However, the small amount of band-
width spent on PCRs and DTS/PTSs helps decoders properly prefill their input
buffers and properly synchronize their video and audio outputs after errors.

The MPEG-2 systems, video, and audio subparts specify only bitstream for-
mats. Another part of MPEG-2, the RTI, defines constraints on real-time delivery of
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systems bit streams to actual decoders. The RTI defines a method for measuring
the delay jitter present when a bit stream is delivered to a decoder; this approach
aids in ensuring interoperability between bitstream providers and decoders. The
RTI does not mandate a specific delay jitter value; the designer chooses a value
suitable for the system, e.g., 50 us for a low-jitter connection between a digital VCR
and a decoder, or more than 1 ms for an international ATM connection. The RTI
defines decoder memory requirements and bitstream delivery constraints based
on the chosen jitter value. The specification of decoder memory requirements as a
function of delay jitter is very important for many MPEG-2 applications, where
decoder cost, largely driven by memory, is the biggest determinant of commercial
viability.

6.4.2.2 Scalability Tools

Hierarchical or layered coders are good candidates for use with QoS-impaired bit-
ways. As shown in Figure 6.15, the base layer of a hierarchical coder represents the
input signal at some coarse fidelity. Higher layers code the residual between the
base layer decoded output and the original input; the output of the base layer com-
bined with higher-layer decoded output is more accurate than the base layer out-
put alone. For a given service quality level, the aggregate bit rate of a good
hierarchical coder is close to that achievable by the best nonhierarchical coders.

A hierarchical coder’s outputs have different QoS requirements; often it is
acceptable for only the base layer to be decoded for short periods of time. Thus,
only the base substream requires high QoS in order to achieve acceptable applica-
tion quality; if data from other substreams is lost, the decoded signal is corrupted,
but not catastrophically.

A simple example of a hierarchical video coder simply transmits the most sig-
nificant bits of a picture’s pixels on one substream and the least significant bits on
another. If some of the least significant bits are lost, affected picture regions appear
coarsely quantized but certainly recognizable.

——TV Base coder
4_...
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Figure 6.15 Structure of a hierarchical
encoder.
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The MPEG-2 video specification defines several much more sophisticated
ways by which an encoder can produce a two- or three-layer hierarchically
encoded bit stream. MPEG-2 video allows an encoder to generate hierarchical bit
streams that decompose a signal into low frame-rate vs. high frame-rate compo-
nents, small picture size vs. large picture size, or low image fidelity vs. high image
fidelity (called “SNR scalability”) components. Several of these decompositions
can be used in tandem as well.

MPEG-2 video defines another scalability tool, called data partitioning. Data
partitioning defines how to split a non-hierarchically-encoded bit stream into two
substreams. The high-priority substream contains video headers and other impor-
tant syntax elements such as motion vectors. The low-priority bit stream contains
lower-priority syntax elements such as high-frequency discrete cosine transform
(DCT) coefficients. The encoder can choose its definition of high-priority and low-
priority syntax elements to achieve its best trade-off between high-priority band-
width, high-priority QoS, low-priority bandwidth, and low-priority QoS.

6.4.3 JSCC for Delay: Delay-Cognizant Video Compression

Having described MPEG, an established standard, let us now illustrate a dramati-
cally different approach motivated by the need for efficient use of wireless chan-
nels. The design of today’s CM services are a holdover from the circuit switched
era, when bitways did not introduce significant delay jitter. Existing compression
standards for both audio and video thus assume a fixed-delay transport model,
imposing on the bitway the need to emulate a fixed-delay circuit. This emulation
requires the artificial delay of packets arriving early. In the context of delay-critical
interactive services, it seems intuitively unattractive to artificially add delay, and
one wonders if it is not possible to take advantage of these early-arriving packets.

Since substreams have different delay characteristics, it is inherent that they
are asynchronous at the receiving terminal. They can be resynchronized by an
appropriate medley transport protocol, but not resynchronizing them allows the
delay characteristics of the bitway to be exploited. To this end, the medley gateway
abstractions offer several key benefits:

* The service is allowed to specify different delay characteristics for different
substreams. This is a direct way for the service to control which packets arrive
earlier and which arrive later, which in turn makes the differential delays
more useful. The model also encourages the medley bitway to deliver certain
packets earlier, whereas conventional approaches do not.

* For a fixed traffic capacity, bitways generally trade higher reliability for
increased delay (through techniques like FEC, interleaving, retransmission,
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etc.). The medley gateway model allows the service to explicitly control as
well as exploit this trade-off and to force this trade-off to be quantitatively
different for different packets.

* Since the overall delay is no longer determined by the worst-case delay, the
bitway worst-case delay can be relaxed, which can in turn be traded for
increased traffic capacity through traffic smoothing.

What we have just described is JSCC in the delay dimension. By making the source
coding delay-cognizant, that is, segmenting its information into delay classes,
we hope to achieve a more desirable combination of perceptual delay and traffic
capacity.

An early example of delay-cognizant video coding is asynchronous video [68],
a coding technique that exploits variations in the temporal dimension of video to
segment information into distinct delay classes. We leave the details to other refer-
ences [68] but illustrate the basic idea in Figure 6.16. The frame is block-segmented
into different delay and reliability classes in accordance with motion estimation
(three classes are shown). These different classes are allowed to be offset at the
receiver by one or more frames in the reconstruction process. The hope is that low-
motion blocks are less susceptible to multiple-frame delay jitter at the receiver than
are high-motion blocks and that the user perception of delay will be dominated by
the high-motion blocks. If this is the case, low-motion blocks can be assigned to a
medley bitway substream with a relaxed delay objective, and the bitway can

High motion
R BN BERE MR ENE N e

Low delay, high loss

W owee e B waE wemm o aem

Low motion
E N N NN B ]

High delay, low loss

Source Bitway Sink

Figure 6.16 Asynchronous video as an example of delay-cognizant video coding.
Blocks of video are reconstructed in different frames at the sink, based on motion
segmentation.
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exploit this relaxed delay jitter objective to achieve higher traffic capacity. In addi-
tion, high-motion blocks are assigned to substreams with a relaxed reliability
objective since the motion tends to subjectively mask losses or corruption. Fortu-
itously, the bitway naturally provides precisely the needed exchange of higher reli-
ability for higher delay.

6.4.4 Multiple-Delivery Transport Protocol

The importance of the transport protocol as a way to change the characteristics of
the bitway to the benefit of the application was discussed in Section 6.2.5. An
example of a transport protocol tailored to the needs of CM services is a multiple
delivery service [70, 71]. Interference-limited wireless access links typically have
two undesirable characteristics: restricted bandwidth and low reliability. Error
control techniques to compensate for the latter increase the rate (for redundancy or
retransmissions), and this rate increase trades unfavorably against delay because
of the restricted bandwidth. Thus, reliable delivery mechanisms increase delay
substantially. This will be problematic for interactive applications, for example
refreshing a graphics window in a WWW browser. If graphics are treated as a pixel
map (as in the InfoPad™ system [72]), it is advantageous to display corrupted
information early, but it is also important that corruption artifacts do not stay on
the screen indefinitely (asymptotic reliability). This corruption control can be
accomplished without a traffic capacity penalty by exploiting the redundancy needed
anyway to deliver two or more copies of a packet to the receiver, each with increas-
ing reliability, as illustrated in Figure 6.17. The application delivers a single copy of
each packet to the transport protocol. The transport delivers, in general, more than

Ack --t—

T Application Iil

|

Time

Time diversity

B - low fidelity
[ = hign fidelity

Figure 6.17 A multiple-delivery transport protocol.
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one copy of the packet to the receiver, where it is agreed that each copy has statis-
tically greater fidelity (fewer bit errors) than the previous copy. Internally, the
transport protocol can utilize packet combining techniques, where it transmits the
packet as many times as required and caches all received renditions of the packet,
delivering to the application its best estimate of the packet based on all the cached
information. Acknowledgments built into the protocol allow the number of trans-
missions to be adjusted dynamically to channel conditions. This protocol has
proven useful for video [32].

Protocols such as the multiple-delivery transport protocol should also have a
mechanism to purge stale packets; that is, packets that will not be used by the
receiver if they are delivered.

6.5 CONCLUDING REMARKS

The most important point of this chapter is that in an integrated-services multime-
dia network, it is advantageous to take an overall systems perspective, rather than
designing wireless access networks in isolation. We have seen how, by coordinating
the design of the backbone network, terminals, and servers with the wireless access
network, greater traffic capacity can be achieved subject to subjective quality objec-
tives. At the same time, it is important to adhere to good principles of complexity
management and ensure that the different parts of the multimedia network are
made modular and as independent as possible, with appropriate levels of scalabil-
ity and configurability. Achieving modularity requires a carefully crafted architec-
ture for the network. We have proposed the medley gateway model based on
substreams or flows (supported by existing or emerging protocols in both IP and
ATM networks) as a basic unifying principle of the architecture. Once an architec-
tural approach is chosen, many opportunities for research in the various modules
open up. We have illustrated the design of a video source coder, a variable QoS
wireless CDMA media access layer, and a transport protocol within the context of
this architecture.

The considerations covered in this chapter suggest many opportunities for
research, which include:

* The design of medley services that take advantage of the medley bitway
(such as delay/loss trade-offs and segmentation) and that have the needed
level of scalability and configurability.

* The design of medley bitways that maintain the structural integrity of the
substreams, which have the ability to configure to different impairment pro-
files for different substreams and which exploit the substream structure to
achieve higher traffic capacity.
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* An understanding of JSCC, as constrained by the structure of the medley
gateway model. Similarly, an understanding of the design of hierarchical
compression algorithms for multicast heterogeneous terminals, as con-
strained by the same substream structure.

¢ An understanding of issues inherent in the aggregation of concatenated bit-
way links for CM services.

* Development of negotiation strategies for resolving the trade-off between
subjective quality vs. bitway QoS and cost.

¢ The upgrade of signaling systems to provide the needed capabilities in sup-
port of the edge architecture, including aggregation of bitway links and nego-
tiation between the endpoint terminals and the aggregated links.

REFERENCES

[1]1 G. M. Parulkar and J. S. Turner, “Towards a framework for high-speed communica-
tion in a heterogeneous networking environment,” [EEE Network, vol. 4, no. 2, March
1990, pp. 19-27.

[2] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: a new resource
ReSerVation Protocol,” IEEE Network, vol. 7, no. 5, Sept. 1993, pp. 8-18.

[3] National Research Council, Computer Science and Telecommunications Board, Real-
izing the Information Future; The Internet and Beyond. Washington, DC: National Acade-
mies Press, 1994.

[4] D. G. Messerschmitt, “Complexity management: A major issue for telecommunica-
tions,” International Conference on Communications, Computing, Control, and Signal Pro-
cessing in Honor of Prof. Thomas Kailath, A. Paulraj, V. Roychowdhury, C. Schaper,
editors, Boston: Kluwer Academic Press, 1996.

[5] IEEE Commun. Mag., Issue on Intelligent Networks, Feb. 1992, vol. 30:2.

[6] M. Lengdell, J. Pavon, M. Wakano, M. Chapman, and others, “The TINA network
resource model,” IEEE Communications Magazine, March 1996, vol. 34:3, pp. 74-79.

[7] E Dupuy, C. Nilsson, and Y. Inoue, “The TINA consortium: toward networking
telecommunications information services,” IEEE Commun. Mag., Nov. 1995, vol. 33:11,
pp. 78-83.

[8] D.G. Messerschmitt, “The future of computer telecommunications integration,” I[EEE
Commun. Mag., Special Issue on “Computer-Telephony Integration,” vol. 34, no. 4,
April 1996, pp. 66—69.

[9] D.G. Messerschmitt, “The convergence of telecommunications and computing: What
are the implications today?,” Proc. IEEE, vol. 84, no. 8, August 1996, pp. 1167-1186.

[10] D. G. Messerschmitt, “Convergence of telecommunications with computing,” Special
Issue on Impact of Information Technology, Technology in Society, Elsevier Science Ltd.,
to appear.

[11] A. G. MacInnis, “The MPEG systems coding specification,” Signal Processing: Image
Communication, April 1992, vol. 4:2, pp. 153-159.




278 Architectural Principles for Multimedia Networks Chap. 6

[12] C.Holborow, “MPEG-2 Systems: a standard packet multiplex format for cable digital
services,” Proc. 1994 Conference on Emerging Technologies, Society of Cable Television Engi-
neers, Phoenix, AZ., Jan. 1994.

[13] J. Massey, “An introduction to contemporary cryptology,” Proc. I[EEE, Special Section
on Cryptology, vol. 76, no. 5, May 1988, pp. 533-549.

[14] D.J.Le Gall, “The MPEG video compression algorithm,” Signal Processing: Image Com-
munication, April 1992, vol. 4:2, pp. 129-140.

[15] D.J. Le Gall, “MPEG: a video compression standard for multimedia applications,”
Commun. ACM, April 1991, vol. 34:4, pp. 46-58.

[16] ISO/IEC Standard 11172, “Coding of Moving Pictures and Associated Audio at up to
about 1.5 Mbits/s.” (MPEG-1).

[17] ISO/IEC Standard 13818, “Generic Coding of Moving Pictures and Associated
Audio.” (MPEG-2).

[18] J. E. Natvig, S. Hansen, and J. de Brito, “Speech processing in the pan-European digital
mobile radio system,” Proc. GLOBECOM, Dallas, TX, vol. 2, Nov. 1989, pp. 1060-1064.

[19] T. H. Meng, B. M. Gordon, E. K. Tsern, and A. C. Hung, “Portable video-on-demand
in wireless communication,” Proc. IEEE, April 1995, vol. 83:4, pp. 659-680.

[20] D. Ferrari, “Real-time communication in an internetwork,” J. High Speed Networks,
1992, vol. 1:1, pp. 79-103.

[21] D. Ferrari, “Delay jitter control scheme for packet-switching internetworks,” Com-
puter Communications, July-Aug. 1992, vol. 15:6, pp. 367-373.

[22] S. Vembu, S. Verdu, and Y. Steinberg, “The source-channel separation theorem revis-
ited,” IEEE Trans. Inform. Theory, Jan. 1995, vol. IT-41:1, pp. 44-54.

[23] A. Goldsmith, “Joint source/channel coding for wireless channels,” 1995 IEEE 45th
Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century,
Chicago, IL, July 1995.

[24] S. McCanne, and M. Vetterli, “Joint source/channel coding for multicast packet
video,” Proceedings International Conference on Image Processing, Washington, DC,
23-26 Oct. 1995.

[25] M. Khansari, and M. Vetterli, “Layered transmission of signals over power-constrained
wireless channels,” Proceedings International Conference on Image Processing, Washing-
ton, DC, vol. 3, Oct. 1995, pp. 380-383.

[26] M. W. Garrett, and M. Vetterli, “Joint source/channel coding of statistically multi-
plexed real-time services on packet networks,” [EEE/ACM Trans. Networking, Feb.
1993, vol. 1:1, pp. 71-80.

[27] K. Ramchandran, A. Ortega, K. M. Uz, and M. Vetterli, “Multiresolution broadcast for
digital HDTV using joint source/channel coding,” IEEE J. Select. Areas Commun., Jan.
1993, vol. 11:1, pp. 6-23.

[28] L. Yun, and D. G. Messerschmitt, “Power control and coding for variable QoS on a
CDMA channel,” Proc. IEEE Military Communications Conference, vol. 1, Oct. 1994,
pp. 178-182.

[29] N. Chaddha, and T. H. Meng, “A low-power video decoder with power, memory,
bandwidth and quality scalability,” VLSI Signal Processing, VIII, Sakai, Japan, Sept.
1995, pp. 451-460.




References 279

[30] T.H.Meng, E.K. Tsern, A. C. Hung, S. S. Hemami, and others, “Video compression for
wireless communications,” Virginia Tech’s Third Symposium on Wireless Personal Com-
munications Proceedings, Blacksburg, VA, June 1993.

[31] R. Han, L. C. Yun, and D. G. Messerschmitt, “Digital video in a fading interference
wireless environment,” IEEE Int. Conf on Acoustics, Speech, and Signal Processing,
Atlanta, GA, May 1996.

[32] J. M. Reason, L. C. Yun, A.Y Lao, and D. G. Messerschmitt, “Asynchronous video:
coordinated video coding and transport for heterogeneous networks with wireless
access,” Mobile Computing, H. F. Korth and T. Imielinski, editors, Boston: Kluwer Aca-
demic Press, 1995.

[33] D. Anastassiou, “Digital television,” Proceedings of the IEEE, April 1994, vol. 82:4,
pp- 510-519.

[34] S.-M. Lei, “Forward error correction codes for MPEG2 over ATM,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 4, no. 2, April 1994, pp. 200-203.

[35] L. Montreuil, “Performance of coded QPSK modulation for the delivery of MPEG-2
stream compared to analog FM modulation,” Proc. National Telesystems Conference,
1993.

[36] R.]. Siracusa, K. Joseph, J. Zdepski, and D. Raychaudhuri, “Flexible and robust packet
transport for digital HDTV,” IEEE |. Select. Areas Commun., Jan. 1993, vol. 11:1, pp. 88-98.

[37] A. Albanese, J. Blomer, . Edmonds, and M. Luby. “Priority encoding transmission,”
International Computer Science Institute Technical Report TR-94-039, Berkeley, CA,
Aug. 1994.

[38] J. Hagenauer, N. Seshadri, and C. E. Sundberg, “The performance of rate-compatible
punctured convolutional codes for digital mobile radio,” IEEE Trans. Commun., July
1990, vol. 38:7, pp. 966-980.

[39] J. Proakis, Digital Communications, 2nd edition., New York: McGraw Hill, 1989.

[40] G. Ungerboeck, “Channel coding with multilevel /phase signals,” IEEE T. on Informa-
tion Theory, Jan. 1982, vol. IT-28:1, pp. 55-67.

[41] E. Zuk, “GSM security features,” Telecommunication Journal of Australia, 1993, vol. 43:2,
pp- 26-31.

[42] D. Gollmann, and DW. G. Chambers, “Clock-controlled shift registers: a review,”
IEEE ]. Select. Areas Commun., May 1989, vol. 7:4, pp. 525-533.

[43] M. Smid, and D. Branstad, “The Data Encryption Standard: past and future,” Proc.
IEEE, Special Section on Cryptology, vol. 76, no. 5, May 1988, pp. 550-559.

[44] A.E Webster and S. E. Tavares, “On the design of S-boxes,” in Advances in Cryptology
- Proc. of CRYPTO ’85, H. C. Williams, editor, New York: Springer-Verlag, 1986,
pp- 523-534.

[45] P. Haskell, “Flexibility in the Interaction Between High-Speed Networks and Com-
munication Applications,” Electronics Research Laboratory Memorandum UCB/ERL
M93/83, University of California at Berkeley, Dec. 2, 1993.

[46] E. A. Lee and D. G. Messerschmitt, Digital Communication, 2nd Edition, Boston:
Kluwer Academic Press, 1993.

[47] C. Topolcic, “Experimental Internet Stream Protocol, Version 2 (ST-1I),” Internet RFC
1190, October 1990.




280 Architectural Principles for Multimedia Networks Chap.6

[48] C.Bradner and A. Mankin, “The Recommendation for the IP Next Generation Proto-
col,” Internet Draft, NRL, October 1994.

[49] P. Pancha and M. El Zarki, “MPEG coding for variable bit rate video transmission,”
[EEE Commun. Mag., May 1994, vol. 32:5, pp. 54-66.

[50] P.Panchaand M. El Zarki, “Prioritized transmission of variable bit rate MPEG video,”
Proc. IEEE GLOBECOM, vol. 2,1992, pp. 1135-1139.

[51] Q.-F. Zhu, Y. Wang, and L. Shaw, “Coding and cell-loss recovery in DCT-based packet
video,” IEEE Transactions on Circuits and Systems for Video Technology, June 1993, vol.
3:3, pp. 248-258.

[52] H. Eriksson, “MBone: the multicast backbone,” Commun. ACM, Aug. 1994, vol. 37:8,
pp- 54-60.

[53] “RTP: A transport protocol for real-time applications,” Internet Engineering Task
Force Draft Document, July 18, 1994.

[54] B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C. New
York: John Wiley & Sons, 1994.

[55] H. R. Liu, “A layered architecture for a programmable data network,” Proc. Sympo-
sium on Communications Architectures & Protocols, Austin, TX, March 1983.

[56] D.A. Keller and F. P. Young, “DIMENSION AIS/System 85-the next generation meet-
ing business communications needs,” Proc. [EEE International Conference on Communi-
cations, Boston, MA, vol. 2, June 1983, pp. 826-830.

[57] H. O. Burton and T. G. Lewis, “DIMENSION AIS/System 85 system architecture and
design,” Proc. IEEE International Conference on Communications, Boston, MA, vol. 2,
June 1983, pp. 831-836.

[58] J. M. Cortese, “Advanced Information Systems/NET 1000 service,” Proc. IEEE Inter-
national Conference on Communications, Boston, MA, vol. 2, June 1983, pp. 1070-1074.

[59] S. A. Abraham, H. A. Bodner, C. G. Harrington, and R. C. White, Jr., “Advanced Infor-
mation Systems (AIS)/Net 1000 service: technical overview,” Proc. [EEE INFOCOM,
San Diego, CA, April 1983, pp. 87-90.

[60] L. C. Yun, Transport of Multimedia on Wireless Networks, Ph.D. dissertation, University
of California at Berkeley, 1995.

[61] L.-E. Wei, “Coded modulation with unequal error protection,” IEEE Trans. Commun.,
Oct. 1993, vol. 41:10, pp. 1439-1449.

[62] R.V.Cox,]. Hagenauer, N. Seshadri, and C.-E. W. Sundberg, “Subband speech coding
and matched convolutional channel coding for mobile radio channels,” IEEE Trans.
Signal Processing, Aug. 1991, vol. 39:8, pp. 1717-1731.

[63] A.]. Viterbi, “Very low rate convolutional codes for maximum theoretical perfor-
mance of spread-spectrum multiple-access channels,” IEEE |. Select. Areas Commun.,
May 1990, vol. 8:4, pp. 641-649.

[64] D. Divsalar and M. K. Simon, “The design of trellis coded MPSK for fading channels:
performance criteria,” I[EEE Trans. Communications, Sept. 1988, vol. 36:9,
pp. 1004-1012.

[65] M. B. Pursley, “Performance evaluation for phase coded spread-spectrum multiple
access communication - Part I: System Analysis,” IEEE Trans. Commun., August 1977,
vol. COM-25, pp. 795-799.




Acknowledgments 281

[66] L. C. Yun and D. G. Messerschmitt, “Variable quality of service in CDMA systems by
statistical power control,” Proc. International Conf. on Communications, Seattle, WA,
vol. 2, June 1995, pp. 713-719.

[67] 1SO/IEC standard 14496, “Coding of Audio-Visual Objects.” (MPEG-4).

[68] A.Lao,]. Reason, and D. G. Messerschmitt, “Layered asynchronous video for wireless
services,” IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
CA., Dec. 1994.

[69] M. Kawashima, C.-T. Chen, F.-C. Jen, and S. Singhal, “Adaptation of the MPEG video-
coding algorithm to network applications,” IEEE Transactions on Circuits and Systems
for Video Technology, Aug. 1993, vol. 3:4, pp. 261-269.

[70] R. Han and D. G. Messerschmitt, “Asymptotically reliable transport of text/graphics
over wireless channels,” Proc. Multimedia Computing and Networking, San Jose, CA,
January 1996.

[71] R. Han and D. G. Messerschmitt, “Asymptotically reliable transport of text/graphics
over wireless channels,” ACM/Springer Verlag Multimedia Systems Journal, to appear
1998.

[72] S. Sheng, and others, “A portable multimedia terminal,” IEEE Commun. Mag., Dec.
1992, vol. 30:12, pp. 64-75.

ACKNOWLEDGMENTS

The authors appreciate the contributions of their colleagues Jonathan Reason,
Richard Han, and Yuan-Chi Chang to the insights reported in this chapter. This
research is supported by Bell Communications Research, Pacific Bell, Tektronix,
MICRO, and the Defense Advanced Research Projects Agency.




Multiresolution Joint
Source-Channel Coding

Kannan Ramchandran
Martin Vetterli

With the rapid growth of wireless communications systems, there is an increasing
demand for wireless multimedia services. Wireless image and video transmission,
an essential component of wireless multimedia, poses a particularly important
challenge that deserves attention for several reasons. In particular, image and
video transmission is the main system bottleneck because it requires far more
bandwidth than the transmission of other information sources such as speech or
data. Moreover, it is a more difficult problem due to the inherent complexity of the
coding methods.

While Chapter 6 discussed multimedia networks broadly, in this chapter we
specifically focus on the image/video source. For such sources it is important to
consider the end-to-end image communication problem very carefully. Current
communication link designs are typically mismatched for wireless video because
they fail to take into account important considerations such as (i) highly time-
varying source and channel characteristics, (ii) high source tolerance to channel
loss, and (iii) unequal importance of transmitted bits. This mismatch comes from a
long history of data communications, where loss of bits is disastrous (e.g., data
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files), and where every bit is equally important. Some salient attributes of the
image/video source are summarized below.

e The performance metric is the delivered visual quality (e.g., mean-square
error, or more correctly, the perceptual distortion) of the source due to both
source quantization and channel distortion under constraints of fixed system
resources like bandwidth and transmission energy. This metric contrasts with
commonly used performance criteria like bit error rates, which are appropri-
ate for data communications.

The existence of unequal error sensitivities in a typical video bit stream (e.g.,
bits representing motion vectors or synchronization/header information ver-
sus bits representing high-frequency, motion-compensated error residue or
detail in textured image areas) emphasizes the desirability of a layered
approach to both source and channel coding, and calls for a rehauling of con-
ventional “single resolution” digital transmission frameworks with their
multiresolution counterparts.

Due to the stringent delay requirements of synchronous video applications,
there is a need to include finite buffer constraints (efficient rate control strate-
gies). These requirements will influence the choice of error control coding
strategies like forward error correction (FEC) versus automatic repeat request
(ARQ) techniques, as well as more powerful hybrid FEC/ARQ choices [3].

Wireless image and video transmission comes in various application-driven vari-
eties. Of particular interest are point-to-point transmission and broadcast/multi-
cast scenarios. A key challenge of wireless transmission is the time-varying nature
of the mobile point-to-point transmission on the one hand and the diversity of
channels in the broadcast case on the other hand. There are fundamental differ-
ences between the time-varying point-to-point case and the broadcast case. In the
broadcast channel, the same information is sent and read by two or more different
users, each seeing another corrupted version of the data that was sent at the same
time. In the point-to-point time-varying channel, the data sent is seen by the same
user but is corrupted differently at different times. As we will see, despite these dif-
ferences, similar techniques, based on multiresolution ideas, can be used to achieve
good performance at reasonable cost.

The problem of transmitting image and video signals naturally involves both
source coding and channel coding. The image or video source has an associated
rate-distortion characteristic that quantifies the optimal trade-off between com-
pression efficiency and the resulting distortion. The classical goal of source coding
is to operate as closely as possible to this rate-distortion bound. Then comes the
task of reliably transmitting this source-coded bit stream over a noisy channel,
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which is characterized by a channel capacity that quantifies the maximum rate at
which information can be reliably transmitted over the channel. The classical goal
of channel coding is to deliver information at a rate that is as close to the channel
capacity as possible. For point-to-point communications with no delay constraints,
one can theoretically separate the source and channel coding tasks with no loss in
performance. This was shown by Shannon [2] and is discussed shortly in more
depth. In the presence of delay constraints, however, or for broadcast or multicast
scenarios, Shannon’s results do not apply and there is a need for closer interaction
between the source and channel coding functions. A key issue in the design of effi-
cient image and video transmission systems for these cases involves the investiga-
tion of joint design of these source and channel coding components. This issue is
the theme of this chapter. Our perspective is primarily from a lossy source coding
viewpoint but with an eye on channel coding issues. We emphasize the elegance of
multiresolution-based techniques for both source coding and channel coding and
show how one can efficiently “match” these resolutions to improve the overall sys-
tem performance, measured as the delivered image quality.

The framework for both source coding and channel coding is, of course, Shan-
non’s groundbreaking work on information theory [2]. An important information-
theoretic result, which goes back to Shannon’s work, is the separation principle,
alluded to earlier, which allows the separate design of a source compression/
decompression scheme and a channel coding/decoding scheme, as long as the
source code produces a bit rate that can be carried by the channel code. The separa-
tion principle is illustrated in Figure 7.1.

Separate design

Source Source Channel
1 coder P coder —1
Channel
Sink Source Channel
| decoder[ "% decoder[ ¥

Figure 7.1 Separation principle. Optimality is achieved by separate design of the
source and channel codecs.
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It is nevertheless important to recall that Shannon’s result relies on two
important assumptions, namely, (i) the use of arbitrarily long block length for both
source and channel codes and (ii) the availability of arbitrarily large computational
resources (and associated delays). It is obvious that such conditions are not met in
practice, both because of delay constraints, and practical limits on computational
resources.

As an example, speech transmission for interactive communication is delay
sensitive, and thus block sizes need to be bounded for source coding. Complexity
is a major cost factor in compression and channel coding systems, while the strate-
gies implied by usual random coding arguments used in information-theoretic
proofs generally have exponential complexity. Thus, many practical source com-
pression algorithms have evolved quite differently from what pure information
theory would suggest. The random coding argument of source coding leads to a
situation where all bits from the source code are of equal importance (they repre-
sent indices into coding tables), but, as mentioned, practical image and video
coders typically produce some bits that are more important than others for the
reconstruction quality.

Channel coding practice is also quite different from the information-theoretic
idealization. While large block sizes allow vanishingly small block error probabil-
ities, practical transmission schemes operate at some finite block error or bit error
probabilities.

Because both source and channel coding differ in practice from their
information-theoretic idealizations, it is unclear whether the separation principle
still holds under these conditions. What is certain is that examples abound of
practical systems where a coupling between source and channel coding has led to
substantial gains in performance or reduction in complexity. We provide examples
of this coupling in this chapter. In the context of time-varying point-to-point trans-
mission as applicable for wireless communications, we consider two important
cases of interest related to the presence or absence of a feedback channel from the
receiver to the sender: (i) where the receiver alone is informed of the channel state
information (CSI) and (ii) where both the transmitter and receiver are informed of
the CSL

The outline of the chapter is as follows. Section 7.1 reviews multiresolution
source compression methods. These are source coding schemes that are naturally
suited for rate adaptation and unequal error protection. Representative examples
are subband coders and wavelet coders, which are popular in image compres-
sion. Section 7.2 concentrates on multiresolution channel codes, which allow vary-
ing degrees of noise immunity, or decoding qualities. Section 7.3 ties the source
and channel coding mechanisms together by matching their respective multireso-
lutions. The result is a natural and efficient paradigm for joint source-channel
coding.
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7.1 MULTIRESOLUTION SOURCE CODING FOR IMAGES AND VIDEO

This section gives a brief overview of multiresolution-based techniques in source
coding for images and video. Multiresolution-based methods in source coding
(such as those based on wavelets, pyramids, etc.) are theoretically elegant. At least
as importantly, a key motivation for considering multiresolution environments
comes from the fact that due to exploding demands on interconnectivity and het-
erogeneity (e.g., driven by the Internet and wireless communications), traditional
single-resolution coding and transmission are being replaced by flexible scalable
source-coding architectures and multirate transmission capabilities.

7.1.1 Successive Approximation of Information

The problem of lossy source compression is one of a trade-off between representa-
tion complexity and quality, that is, a trade-off between bit rate and distortion.!
Given a source with certain statistical characteristics, rate-distortion theory [3, 4]
states that there exists a distortion-rate function D(R) such that, at a given bit rate
per sample R, it is possible to represent the source with a distortion D, = D(R,) — ¢
with ¢ > 0 arbitrarily small.

The important point to note is that in general the distortion-rate curve cannot
be travelled in the sense of retaining the successive approximation property. More
precisely, each point of the curve is constructed independently of the others. That
is, if we pick two rates R, and R,, R, > R, and d,, = R, — Ry, then knowledge of the
coded version at rate R, plus an additional information of d,, bits is generally not
enough to construct the coded version at rate R, that meets the rate-distortion
bound [5]. This property follows because being able to construct the rate R, version
incrementally from a rate R, version is an added constraint, which in general will
decrease the quality. As a simple example, consider scalar quantizers. It is clear
that an optimal Lloyd-Max quantizer for 2N bits does not necessarily have a sub-
set of levels corresponding to an optimal quantizers for N bits. (Of course, excep-
tions are possible, for example, the uniform distribution when N is even.)

More generally, a successive approximation code is optimal if and only if the
successive versions form a Markov chain. More precisely, assume X is the original
signal, X; a fine approximation, and X, a coarse approximation. Then, if
X— X, — X, form a Markov chain, successive approximation coding is optimal,
since knowing X, to code X, is as good as knowing X.

TFor the sake of this discussion, we assume the distortion to be the squared norm of the error
between the original and the approximation.
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Despite the fact that most sources do not strictly meet this Markovian prop-
erty, it turns out that many practical compression schemes achieve successive
approximation with a negligible loss of quality. That is, many source compression
algorithms can produce a bit stream that can be decoded successively, up to some
very fine granularity. Such algorithms thus allow the possibility of traveling a
practical distortion-rate curve that is not much worse than that achievable with the
best coders that do not have the successive approximation property (e.g., about
1-2 dB worst case and typically less than 1 dB loss in performance on typical test
images). We therefore briefly consider a number of such successive approximation
source codes.

7.1.2 Practical Successive Approximation Source Coders

7.1.2.1 Pyramid Coding

Pyramid coding is the first instance of hierarchical source coding that had an
impact on compression practice. First formally proposed by Burt and Adelson [6],
pyramid coding codes two versions of the signal. First, a coarse version of the orig-
inal signal or image is derived using, for example, lowpass filtering and subsam-
pling. Based on this coarse approximation, the original signal is predicted (using
upsampling and interpolation, for example) and a prediction error or difference
signal is calculated. This prediction error represents the detail features that are
missing in the coarse approximation. An example is shown in Figure 7.2.

The scheme can be iterated on the coarse image, leading to a sequence of lower
and lower resolution images of geometrically decreasing sizes, hence the name
pyramid. Each time a lower-resolution image is derived, a difference image is cre-
ated. The compression problem is now reduced to finding methods to efficiently
represent the various difference images, as well as the last low-resolution version.
The difference images are usually treated, in a first approximation, as independent
identically distributed samples, for example, having a Laplacian distribution.

A simple counting argument shows that the pyramid representation is over-
complete. If the original is a picture of size N X N, the difference image is of the
same size, while the coarse image is of size N/2 by N/2. This is an increase of 25%
in the number of pixels. If iterated, it can lead to an increase of up to 33% in the
number of pixels. While theoretically this extra redundancy can be removed
through compression, it creates an additional burden.

The idea of pyramid coding can be applied to three-dimensional data as well,
leading to video pyramids. This multiresolution representation of video is useful
for compatibility and for robustness with unequal error protection [7].




288 Multiresolution Joint Source-Channel Coding Chap.7
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Figure 7.2 Pyramid coding scheme showing coarse-to-fine hierarchy.

7.1.2.2 Subband Coding

The problem of overcompleteness—i.e., the redundancy in the pyramid represen-
tation—is solved by subband coding. In that scheme, an orthonormal or biorthog-
onal expansion is calculated using filter banks [8], and the expansion coefficients
are quantized appropriately. Subband coding is a generalization of transform cod-
ing, a popular method in image compression [9]. Unlike transform coding, how-
ever, subband coding is not plagued by blocking artifacts. Subband coding has
been used in speech compession [10, 11] and was proposed for images in [12]. Prac-
tical coders followed [13, 14, 15], and the results spurred substantial work in sub-
band image coding.
Several questions arise around subband image coding:

(i) What subband decomposition is best suited to images: how many subbands
should be used, what frequency partitioning, what time resolution?
(ii) What filters are best used: orthogonal or biorthogonal filters, linear phase fil-
ters, what extension schemes should be used at boundaries?
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(iii) What subband quantization scheme should be applied: scalar quantization,
vector quantization, uniform or nonuniform (Lloyd-Max) quantization [16]?

(iv) What are efficient lossless compression schemes to handle the quantized sub-
band coefficients: static entropy codes, adaptive entropy codes?

These issues have been explored extensively in the literature and results are sum-
marized in, for example, [8]. The idea of subband coding has been extended to
video in [17] and has led to interesting compression results recently [18, 19].

7.1.2.3 Wavelet Coding

An important variant of subband coding is what is now popularly called wavelet
coding [20, 21, 22]. This variant uses an octave-band tree structure and filters that
possess a regularity property (related to a notion of smoothness of an iterated func-
tion). Such schemes have the ability to compactly capture the space-frequency
characterization of natural images. Early wavelet-based image coding algorithms
were patterned after standard transform-coding principles in that they were
designed to exploit (only) the wavelet transform’s ability to do frequency com-
paction, i.e., to efficiently pack most of the image energy into a few, low-frequency
coefficients. Coding gain was achieved by optimizing the matching of quantizers
(scalar and vector) to the statistics of the frequency subbands. These techniques
reported modest gains over standard block transform-coded algorithms, with the
primary source of the gains coming from the improved frequency energy com-
paction property of the wavelet over the block transform.

A new class of algorithms developed recently has achieved significantly
improved performance over the previous class [21, 23, 24, 25, 26] by exploiting the
wavelet’s space-frequency compaction properties. The wavelet is able both to “fre-
quency compact” energy into a small set of low-frequency coefficients and to “spa-
tially compact” energy into a small set of localized high-frequency coefficients,
with the exact extent of the localization depending on the spatial support of the
wavelet filters. The incorporation of a mechanism to exploit this spatial character-
ization is vital to improving efficiency: the most popular data structure for this is
the zerotree structure developed by Shapiro [23].

A wavelet image representation can be thought of as a tree-structured spatial
set of coefficients, providing a hierarchical data structure for representing images,
with each wavelet transform coefficient corresponding to a spatial area in the image.
Figure 7.3 illustrates the parent-children dependencies in the tree-structured repre-
sentation of a typical wavelet image decomposition.

As shown, each parent node has 4 children nodes, the coefficients of the 2 X 2
region that corresponds to the same spatial location and orientation but in the
immediately finer scale of the decomposition. A zerotree symbol refers to a spatial
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Figure 7.3 Wavelet decomposition of Lena image: spatial tree structure.

tree of zeros: it is designed to capture the high conditional probability of low-
energy coefficients at a particular scale, given the low-energy state of parent coeff-
icents at the same spatial orientation at a coarser scale. This approach is obviously
well suited to capturing the typical decaying spectral energy profile exhibited by
natural images (barring localized singularities like edges and textures). Shapiro
combined the use of this zerotree symbol (as a sort of spatial pointing mechanism
to indicate low-variance spatial regions) with the concept of bitplane coding
(which dyadically refines the threshold with respect to which the zerotree “zeros”
are defined) to devise a remarkably efficient embedded wavelet coding algorithm
that could refine its resolution by the bit, and yet which thoroughly outperformed
the existing (nonembedded) JPEG standard (see Figure 7.4).

Also shown in Figure 7.4 is a rate-distortion optimized version of Shapiro’s
zerotree coder, dubbed the space-frequency quantization (SFQ) based zerotree
coder in [25, 27], that gives up the embedding feature for attaining rate-distortion
optimality (within the zerotree framework). The SFQ coder is so named because it
optimizes the application of two simple quantization modes—a zerotree spatial
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Figure 7.4 Rate-distortion performance of JPEG, the embedded zerotree wavelet
coder of Shapiro [23], and the space-frequency-quantization wavelet coder of
Xiong, Ramchandran, and Orchard [27], which is a rate-distortion optimized ver-
sion of Shapiro’s zerotree coder. The image is again “Lena.”

quantizer and a uniform scalar frequency quantizer—designed to capture the
space-frequency characterization of the wavelet image decomposition. The basic
idea arises from the desirability, in a rate-distortion sense, of “creating” zerotrees
where there are none in reality: i.e., where certain tree-structured sets of coefficients
are not all zeros, as needed to qualify for the privileged zerotree status. The SFQ
coder can realize sizable performance gains, on the order of 1-2 dB in peak signal-
to-noise ratio (PSNR), over Shapiro’s generic zerotree-based framework and ranks
among the best coders in the image coding literature. These gains are achieved by
(1) optimally weighing the savings in bit-rate cost from the extra zerotrees against
the distortion from the “killing” of coefficients that enable these new zerotrees; and
by (ii) balancing this zerotree quantizer with a simple scalar frequency quantizer
applied to coefficients that survive the zerotree pruning operation.

Although the zerotree structure is the most celebrated way of exploiting the
space-frequency characterization of the wavelet decomposition, it is by no means
the only one. Efficient alternative structures are complementary to, and often out-
perform, the zerotree structure. Such structures include spatial classification-based
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methods [28, 29, 30] and a novel framework based on morphological dilation [31].
The latter has the added advantage over the zerotree structure of being “object ori-
ented,” and is capable of a flexible embedded /nonembedded mode of operation
that may be suitable for many evolving multimedia-driven applications, such as
supporting object-indexing, etc., without giving up compression performance [32].

7.1.3 Successive Approximation Source Coding
in the Context of Standards

Successive approximation source coding is found in several image and video cod-
ing standards. These are reviewed briefly in the following paragraphs.

7.1.3.1 Scalability in JPEG

The standard image compression method JPEG [33] has a hierarchical mode. A mul-
tiresolution representation is obtained by scaling the size of the encoded image. The
base layer carries the data for the lowest spatial resolution. Each subsequent layer is
constructed from the previous layer using a predictor (known to the encoder and
decoder), and the prediction error is encoded as the data corresponding to this layer.
Obviously, all the preceding layers have to be decoded correctly in this case.

Other examples are the spectral selection (SS) and successive approximation
(SA) modes in JPEG [33].2 Spectral selection allows the separate encoding of trans-
form coefficients for each block of data (this separation is useful because the
human visual system has different sensitivity to different spatial frequencies). The
SA option allows one to separately encode transform coefficient bits. Both modes
can be used together, thus providing a possibility for very flexible system design
(which has not yet been fully explored, even by researchers).

7.1.3.2 Scalable Modes in Video Compression Standards

The dominant video compression standards are H.261/H.263 and MPEG. The
H.261 video compression algorithm is a motion predictive coding method that is
akin to the adaptive differential pulse coded modulation (ADPCM) loop over time.
It is therefore difficult to make the algorithm hierarchical without loss of perfor-
mance, and thus, the standard does not currently include any scalability feature.
The reason is the following: in an ADPCM prediction loop, both encoder and
decoder need to compute the same prediction, that is, they need to be in the same
state. To facilitate low-resolution (only) operation, low-resolution reconstruction
has to be possible on its own, and therefore this is the only state usable in the
prediction loop (see also Chapter 6). This restriction leads in general to a subopti-

2This mode of progressive JPEG is popular in Internet applications. For example, the Netscape®
image browser uses progressive JPEG.
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mal prediction for the full-resolution mode of operation and, therefore to a loss in
full-resolution quality.

The video coding standard MPEG [34] comes in two varieties, namely,
MPEG-1 for 1 Mbits/s, and MPEG-2 for the 5-20 Mbits/s range. Only the MPEG-2
version includes scalable or hierarchical modes, which we briefly describe below.
There are two main purposes for an embedded bit stream in MPEG-2 coding:

* Layering for prioritizing of video data (e.g., unequal error protection).

e Scalability for complexity division (e.g., a standard TV set that can decode
only a part of the HDTV bit stream).

A brief summary of the MPEG-2 video scalability modes follows.

(i) Spatial Scalability is essentially a pyramid coding mode, in which a low-
resolution (subsampled) version is coded first, and its decoded version is
interpolated and used as a prediction for the full resolution.

(ii) Data Partitioning is similar to JPEG'’s frequency progressive mode. This fre-
quency domain method breaks motion information and transform coeffi-
cients into two bit streams. The first, higher-priority bit stream contains the
more critical, lower-frequency coefficients and side information (such as DC
values, motion vectors). The second, lower-priority bit stream carries higher-
frequency data.

(iii) SNR Scalability is a spatial domain method where channels are coded at iden-
tical sampling rates but different picture qualities (through control of quantiza-
tion step sizes). The higher-priority bit stream contains base layer data to which
a lower-priority refinement layer can be added to construct a higher-quality
picture.

(iv) Temporal Scalability allows one to play with frame rates and is thus based
on multiresolution in time. A first, higher-priority bit stream codes video at a
lower frame rate, and the intermediate frames can be coded in a second bit
stream by use of the first bit stream reconstruction as prediction.

7.2 MuLtnresoLUTION CHANNEL CODING

When dealing with an image or video source, we have seen that having a mul-
tiresolution architecture enables efficient adaptation to changing bit rates and
bandwidths. Just as it is important to have an adaptive source coding strategy to
efficiently adapt to changing bit rate requirements, it is equally important to match
this strategy with an adaptive channel coding framework that can offer a hierarchy
of “resolutions” of noise immunity to adapt to varying channel conditions. We




294 Multiresolution Joint Source-Channel Coding Chap.7

refer to these codes as multiresolution channel codes. Our goal here is not to survey
the state-of-the-art in channel coding theory, which is a very active area of research
that has resulted in significant technological advancements, e.g., in modem tech-
nology. Rather, our motivation is to establish the conceptual dual in channel cod-
ing to the multiresolution source coding framework covered in Section 7.1.
Multiresolution channel codes allow efficient adaptation to different levels of
channel impairment and to different levels of “importance” of the source (e.g.,
motion vectors and low-frequency information versus high-frequency residue
detail). This strategy leads naturally and efficiently to joint source and channel
coding in a multiresolution framework, where the multiresolution source and
channel codes are efficiently matched to each other—more on this in Section 7.3.

Multiresolution channel codes offer unequal error protection. Unequal error
protection channel codes have been studied extensively in the forward error-
correction coding literature over the past 10-20 years [1], and there exist systematic
ways of designing efficient unequal error protection codes for several families of
channel codes, including block codes and convolutional codes. We are additionally
interested in unequal error protection codes that are endowed with the “embed-
ding” property. Families of embedded unequal error protection codes have the
desirable property that high-rate codes in the family (offering lower noise immu-
nity) can be embedded in their low-rate members (offering increased noise immu-
nity). This property is very useful for applications requiring compatibility of a
single transmitted information stream with several channel capacities or receiver
resolutions, as in broadcast or multicast or even point-to-point communication
over time-varying channels where there is no feedback, i.e., where the transmitter
is uninformed of the instantaneous channel “capacity.” For example, in a two-
resolution case, both receiver resolutions have access to the “coarse” information
layer, while the stronger receiver can additionally extract the embedded “detail”
information layer. This has been shown to be superior to naive multiplexing using
non-embedded unequal error protection codes [35, 36].

We shall see that the idea of multiresolution channel coding can be extended
to cover modulation and demodulation systems, for example, in defining embed-
ded modulation schemes like embedded quadrature amplitude modulation
(QAM) [36]. Indeed, embedded modem schemes can coexist with unequal error
protection, forward-error correction codes to form a powerful multiresolution
channel coding infrastructure.

7.2.1 Error Control Coding

In the following paragraphs, we describe briefly the two types of error-control codes
mentioned above—namely, unequal error-protection codes and embedded codes.
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7.2.1.1 Unequal Error Protection Codes

As described above, unequal error protection codes are families of channel codes
that can change their coding strengths flexibly and efficiently. These codes are
obviously useful for protecting information sources such as images and video that
are typically characterized by unequal importance of bits (due to the properties of
practical coding algorithms). They are also useful for dealing with time-varying
channel conditions, where the degree of needed protection varies. Unequal error
protection codes have been studied for both block codes (e.g., BCH codes [37]) and
convolutional codes (e.g., rate-compatible punctured convolutional (RCPC) codes
[38]). RCPC codes have become very popular due to their combination of flexibil-
ity and efficiency. The basic idea is that one can define an array of codes of differ-
ing strengths by simply “puncturing” parity bits appropriately to control the rate
of the code. This method is implementationally attractive because the codes come
from a single family defined by an underlying finite state machine (FSM), with the
various decoding resolutions being based on the same Viterbi decoding trellis
structure [38]. As an example, consider an RCPC code family of rates ranging from
8/9 to 8/24. In this family, all codes are nested versions of the 8/24 code and are
derived from the same FSM. Puncturing tables specifying the parity bits to be sup-
pressed are used to control the rate of the code. RCPC codes have become popular
of late for protecting image and video sources, where different components of the
bit stream have different error sensitivities and are therefore deserving of different
degrees of protection [39].

7.2.1.2 Embedded Codes

While the unequal error protection codes such as the RCPC codes are powerful,
they are not optimally suited to applications where the transmitter is unable to
alter its configuration dynamically, and one needs to have a code that is simulta-
neously decodable at multiple resolutions. Examples of such scenarios are broad-
cast and multicast (a single transmitter to several users, each having different
channel capacities) or a point-to-point link without channel feedback information
(uninformed transmitter). For example, if one were to use an RCPC family of codes
as described above in a broadcast scenario, the worst channel would become the
bottleneck for the system, and parity bits needed for the worst channel would
waste the higher bandwidth of the better channels. In such scenarios, embedded
codes are an attractive alternative. These codes would allow each receiver to
extract the amount of information commensurate with the available capacity.

For example, a two-level embedded unequal error protection code can be de-
scribed as an (1, k,, k,, t,, t,) code (where t, represents the number of channel errors
the code can withstand for the k; information bits). Note that one could use multi-
plexing schemes to achieve unequal error protection, e.g., to combine two separate
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(ny, ky, ) and (ny, k,, t,) codes into a composite (11, + 1y, ky, ky, t, ;) code. However,
multiplexing is inferior to embedding [35, 36]. In other words, the combined
(n, + 1y, ky, ky, 1, t,) code above can be potentially outperformed by an (1, ky, ky, , t)
embedded code. As an example, consider a (63, 12, 24, 5, 3) binary cyclic unequal
error protection embedded code listed in [40]. Alternatively, one can consider two
smaller BCH codes with characteristics (31, 11, 5) and (31, 12, 3). Combining these
codes to yield a (62, 11, 12, 5, 3) code is clearly inferior to the embedded option.
While embedded unequal error protection codes are more efficient than those
derived from separate foward error-correction codes, unequal error protection
codes are hard to find, and no structured method has been described to design
them. Lin et al. [40] tabulate all possible embedded codes of odd lengths up to 65,
using exhaustive computer search. The list is fairly sparse, meaning that only a
limited discrete set of rates and correction capabilities exist with embedding in the
error correction coding domain. We will see that if one turns to doing unequal error
protection in the modulation domain, more flexible and efficient possibilities exist.

7.2.2 ARQ in Universal Channel Coding

In our discussion of channel coding, we stressed the need to adapt the transport
mechanism to changing channel conditions. It is worthwhile pointing out that for
channels with feedback, one can use automatic repeat request (ARQ), which per-
fectly adapts to channel conditions. From an information theoretic standpoint (i.e.,
where infinite complexity and delay are permissible), there is surprisingly no
advantage to having feedback when communicating over memoryless channels
[4], i.e., the capacity is unchanged.? In fact, the ARQ scheme reaches channel capac-
ity over a binary memoryless erasure channel,* irrespective of what the erasure
probability actually is [4], i.e., it is a universal code for this channel. This feature is
very powerful since without feedback, universality would be hard to achieve.
Other coding schemes in the literature, e.g., [41], are universal in the sense that
they can be applied to channels with unknown parameters. In [41], chaotic
sequences for encoding of analog sources are shown to be better (in the end-to-end
mean-square error (MSE) sense) than any digital (finite-alphabet) codes for addi-
tive white Gaussian noise (AWGN) channels in some power-bandwidth regimes.
In the case of channels with memory, feedback is known to provide theo-
retical advantages even in the Shannon sense, although feedback increases the
capacity for a nonwhite (i.e., correlated) Gaussian additive noise channel by at

SHowever, the complexity needed to attain this capacity may well be significantly lower if feed-
back is present [85].

*Recall that in an erasure channel, the receiver knows which symbols are erased: this is typical of
packet losses in networks, for example.
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most half a bit [4]. It is useful to note that if delay constraints are stringent, then
feedback may be useless. Similarly, in the case of a single transmitter and multiple
receivers (e.g., broadcast or multicast), the issue of ARQ is rendered moot by the
presence of several unequal capacity receivers but only one transmitter.

7.2.3 Embedded Modulation

Although embedded channel codes are difficult to design, one need not restrict
oneself to the forward error correction domain in order to achieve embedding. The
justification for embedded transmission has its roots in Cover’s classic work on
broadcast channels [35]. Consider a typical broadcast scenario, where a source
wishes to convey information {r, s,} to a stronger receiver and {r, s,} to a weaker
one. Note that  represents the common message to be conveyed to both receivers.
Cover established in an information-theoretic setting that the optimal strategy
involves superimposing the detail information intended for the stronger receiver
in the coarse information intended for the noisier receiver. That is, the superior
receiver 1, in an optimal scenario, necessarily has access to the information {r, s,}
meant for the weaker receiver 2. While this is a theoretical result (in the Shannon
sense), a practical way of realizing this embedding gain was described in [36].

Cover’s concept of embedding is generic in scope and places no restrictions
on the domain in which this embedding should be performed. The benefits of
embedding in the modulation domain, versus in the forward error protection
channel coding domain, were laid out in [36] in the form of a novel, multiresolu-
tion, embedded modulation structure that offers the embedded unequal error pro-
tection property directly in the modulation domain. The idea is simple: see Figure 7.5
for examples of “generic” two-level multiresolution constellations that have
“clouds” of “satellites,” characterized by an intracloud-to-intercloud distance ratio
4, as shown. Unequal levels of noise immunity are offered by these constellations,
as represented by the satellites and the clouds in which they are embedded.” The
goal is to match these optimally to different levels of bit error rate requirements;
e.g., for the appropriate choice of 4 the clouds may offer a bit error rate of 107,
whereas the satellites may offer only 10>,

A modulation-domain-based unequal error protection scheme, similar to that
outlined above, has been considered for European digital audio and video broad-
cast [42]. Each layer of different error protection corresponds to the specific type of
the receiving monitor (typically, there are three layers or resolutions) and each has

5For example, in the multiresolution-64QAM example shown, for every two important cloud
bits/symbol having increased protection, four less important satellite bits/symbol get decreased pro-
tection.
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Figure 7.5 Some multiresolution modulation constellations. u parametrizes the
intracloud-to-intercloud ratio of the constellation.

different bit error rate requirements. Thus, the quality of the received video varies
gracefully with the receiver type as well as with its distance from the transmitter.

The added attraction of the embedded modulation scheme comes from being
able to combine it naturally with standard error correction techniques, as was pro-
posed in [36] and later in [43], as well as with other techniques described in the fol-
lowing section.

7.2.4 Hybrid Embedded Options

One can combine the concept of embedded modulation with other tools and strate-
gies to obtain powerful hybrids. Examples include the combination of embedded
modulation with unequal error protection channel codes (e.g., to increase the
number of resolution layers), with Ungerboeck’s trellis coded modulation (TCM)
[44] to achieve embedded TCM [36], with multicarrier systems to attain embedded
multicarrier modulation, etc. To illustrate the power of these hybrids, we pick mul-
ticarrier modulation as a representative example [45].
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We begin with a very brief review of multicarrier modulation, referring the
reader to [46, 47, 48] for details. Multicarrier modulation has become a topic of
great interest recently due to the demand for high-speed data transmission over
twisted-pair copper wiring, an environment where severe intersymbol interfer-
ence (ISI) can occur. Instead of employing single-carrier modulation with a very
complex adaptive equalizer, the channel is divided into many subchannels that are
essentially ISI-free. One multicarrier method in particular, discrete multitone mod-
ulation (DMT), has become extremely popular due to its efficient implementation,
which uses fast Fourier transforms (FFTs) to modulate and demodulate data. DMT
has been adopted as the standard for asymmetric digital subscriber loop (ADSL)
telecommunications transmission technology [49, 50].

The fundamental idea behind multicarrier modulation is to divide a single
communications channel into a large number of QAM subchannels that could be
treated as independent additive Gaussian noise (AGN) channels—but with white,
rather than colored, noise. Since each of these channels is memoryless, an equalizer
is not needed. Data is divided among the subchannels, which are then modulated
and summed to form a composite channel signal. At the receiver, each subcarrier is
demodulated, and the data from each subchannel is combined to reconstruct the
original. The “loading” problem of optimizing the power and deliverable bit rate
per symbol for each QAM subchannel for a given total power budget can be done
elegantly in theory with the “inverse water-pouring” principle [51]. The idea is to
invert the multichannel SNR spectral profile and pour water into it. The optimal
energy allocation in each subchannel is simply the amount of water it contains,
with the water-level depending on the total energy budget.

Adaptivity to changing channel conditions is relatively simple in multicarrier
modulation and involves periodic reloading. Thus, if a particular subchannel
should become extremely noisy, it can be shut down very easily by allocating no
power or bits to it, as the waterpouring algorithm would dictate. Current DMT sys-
tems [49] are channel-adaptive but are single-resolution based, i.e., there is a notion
of a single, fixed quality of service (QoS), which is typically measured by a single
fixed bit error rate for the entire bit stream (e.g., typically 107 bit error rate for
xDSL [48]). In keeping with the multiresolution theme of this chapter, it is both use-
ful and interesting to consider extensions of the single-bit error-rate regime to a
multiple-bit error-rate regime, equivalent to having multiple qualities of service.
This extension would result in the formulation of a multiresolution-DMT scheme
that is useful whenever the source representation, due to practical constraints,
has layers of unequal importance that are deserving of unequal QoS, e.g., MPEG-
compressed video bit streams that have critical components, like motion vectors,
and supplemental components, like high-frequency DCT coefficients. As the
video-over-DSL application is one of the main catalysts for this technology, a mul-
tiresolution-DMT framework is all the more relevant and useful to consider. In
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such a case, a hierarchy of appropriate bit error rates are of interest. Overlaying the
concept of embedded constellations of Figure 7.5 on the multicarrier modulation
framework gives an embedded, multicarrier modulation system that is character-
ized by multiple embedded constellations, one for each multicarrier subchannel. Fig-
ure 7.6 gives a simple example showing a three-carrier embedded modulation
system. An optimal way of designing the embedded modulation system based on
a fast, table-lookup power allocation (or loading) method has been described in
[45], with performance gains of the order of 25% in actual delivered throughput
(or equivalently 1-2 dB in delivered image quality for image transmission appli-
cations) for an embedded two-resolution multicarrier system over “naive” time-
division multiplexing of the two priorities.

7.2.5 Channel Models Used in Multiresolution
Channel Coding

An obviously important question is the choice of realistic yet analytically tractable
channel models in our communication system analysis. Consider the general setup
of the digital communication system shown in Figure 7.7. The data from the infor-
mation source enters the source encoder, where it is compressed to achieve a more
compact digital representation. The channel coder usually adds some controlled
redundancy to the source-encoded data to mitigate the effect of channel errors.
The modulator converts the discrete-alphabet sequence into a waveform suitable
for transmission over the channel by means of digital modulation. The demodula-
tor and source/channel decoders perform the inverse operations and deliver the
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Figure 7.6 Multiresolution QAM constellations for a typical multicarrier system.
Each subchannel supports embedded modulation that can carry more important
and less important bits, that can be optimally allocated across the subchannels,
using multiresolution power loading algorithms [45].
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Figure 7.7 Block diagram of a standard communication system.

reconstructed data to the destination. The modulator/demodulator (modem), to-
gether with the continuous waveform channel, may be considered to be a discrete-
alphabet noisy channel with input X and output Y taken from finite sets X and ), re-
spectively. The discrete channel is characterized by the collection of transitional
probability mass functions py,x (v | x), one for each x € X [4]. This channel is called a
discrete memoryless channel if the following condition is satisfied:

Prob(Y, =y [ X, = %, Y,y = ¥—y) = Prob(Y, = y, | X, = x)).

This model is almost exclusively used for designing error-correction codes. It also
includes the binary symmetric channel as a special case.

Although the discrete memoryless channel model is certainly a useful high-
level channel model, it has the drawback of not explicitly including critical low-
level communications channel parameters, such as power and bandwidth, which
are hidden, and only indirectly captured in the symbol transitional probabilities. A
family of somewhat more informative models is obtained if the analog waveform
channel is considered. The simplest example is an AWGN channel where a signal
waveform is assumed to be corrupted by AWGN independently from the signal.
The performance of the communication system in AWGN is completely character-
ized by the signal-to-noise power ratio. The AWGN channel model and its gener-
alization—AGN, where the noise is not necessarily white—are well suited for
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stationary communication channels, when parameters of the channel are constant
or changing very slowly (e.g., telephone lines).

If the channel parameters are not constant in time or frequency (such as in
typical AWGN channels with fading, a popular model for wireless communica-
tions), it is reasonable to approximate the channel as a mixture of several AWGN
channels indexed by states. Transition between states may be modeled by a
Markov process [52]. Consider a typical fading channel for wireless communica-
tions, as in Figure 7.8. The distribution of the fading parameter a depends on the
actual communication channel. For example, as discussed in Chapters 1-3, in cel-
lular communications, a good model for a is that it has a Rayleigh distribution,
while for line-of-sight communications, a Rice distribution is often used [53].

Each particular channel state is modeled as a discrete-time, continuous
amplitude, AWGN channel with a distinct noise variance, and it is assumed that all
channels are statistically independent. To justify this model, interleaving/deinter-
leaving is assumed to be present and to have sufficient depth to enable indepen-
dent treatment of the received signals. Interleaving shuffles the sequence of data
before transmission to ensure that, at the receiver after deinterleaving, two consec-
utive signals will have noise components that are almost independent. The reason
for using interleaving is that the channel conditions in real-life fading channels
have high temporal correlation and may cause bursts of errors. Since these bursts
of errors are very challenging for error-correction codes, interleaving is a popular
technique used in practice to randomize errors, which are easier to handle. No loss
of performance occurs with this method if perfect CSI is available at the receiver.
This multistate model allows approximation of a wide variety of realistic channels,
such as slow fading channels or multicarrier channels, while maintaining only a
moderate complexity of the analysis. To understand the multistate model, consider
the following example. Suppose it is desired to approximate a memoryless
Rayleigh channel by a multistate AWGN channel. By allowing W* = /N, to be the
received carrier-to-noise power ratio, the instantaneous / parameter has Rayleigh
probability density function:

f(h) = 2h/I exp (-h%/15),

X Y

Y

Figure 7.8 Fading communication
channel. The transmitted signal X is
multiplied by a fading factor a. Then, an

a N AWGN sample N is added to the result
to yield the received signal Y.
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Figure 7.9 Example of approximation of memoryless Rayleigh channel by a multi-
state AWGN channel model.

where h, = %E {h}. By approximating this distribution by a piecewise constant
probability density having N regions, we achieve a multistate AWGN representa-
tion that becomes exact as N becomes arbirtarily large (see Figure 7.9). This approx-
imation can be made for other carrier-to-noise ratio distributions as well, as long as

the channel is memoryless.

7.3 MULTIRESOLUTION JOINT SOURCE-CHANNEL CODING

As mentioned above, Shannon’s pioneering result showing the separation without
loss of optimality of source and channel coding [2] does not apply in practice in the
face of finite delay and complexity constraints. The understanding of the superior-
ity of a joint approach to source and channel coding in such cases has recently ini-
tiated numerous research activities in this area, a partial list of which can be found
among [54, 55, 56].
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In keeping with the theme of this chapter, we focus on multiresolution-based
frameworks for joint source-channel coding. A natural and efficient starting point
is to combine the multiresolution-based source and channel coding frameworks of
Sections 7.1 and 7.2, respectively.

7.3.1 Brief History of Joint Source-Channel Coding
of Images/Video

A joint approach to source and channel coding has been motivated primarily by
emerging communications applications involving speech, image, and video trans-
port. These applications typically involve strict delay and complexity require-
ments that do not meet the assumptions of Shannon’s separation principle.
Source-channel coding schemes have been relatively recent in the literature since
they have been primarily driven by these emerging applications. At a high level,
two approaches present themselves naturally when joint source-channel coding is
considered historically. Very roughly, these approaches may be classified as being
inspired by digital versus analog transmission methods.

The digital class of techniques is based on optimally allocating bits between
digital source and channel codes. Source-coding bits correspond to a digitally
compressed and entropy-coded stream. Channel-coding bits correspond to the
parity information of a digital error-correction code. It is of historical importance to
note that the idea of unequal error protection-based joint source-channel coding
has been around for quite a while. For example, the idea of unequal error protec-
tion channel codes (such as unequal-strength convolutional codes) that are appro-
priately designed to unequally protect different source components having
different error sensitivities (e.g., quantized source bit-planes) goes back at least to
[54]. More efficient frameworks fashioned after similar principles have become
popular recently [57]. It should be noted that this “digital” approach, while allow-
ing higher source compression because of entropy coding, can also lead to
increased risk of error propagation. The popular solution is to insert periodic
resynchronization capabilities by means of packetization. The resulting synchro-
nization and packetization overheads that are needed to increase error resilience
obviously reduce the compression efficiency. The problem becomes one of opti-
mizing this balance.

The other approach has been inspired essentially by the “graceful degra-
dation” philosophy reminiscent of analog transmission. Thus, while the single-
resolution digital philosophy adopts an all-or-nothing approach (within the
packetization operation) resulting in the well-known “cliff effect,” the analog-
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inspired approach carries a “bend but do not break” philosophy. The idea is to do
intelligent mappings of source codewords into channel constellation points, so as
to have a similarity mapping between “distances” in the source coding domain
and “distances” in the channel modulation domain [55, 58, 59, 60, 61]. Thus, large
source distortions are effectively mapped to high noise immunity, i.e., to low prob-
ability error events, and vice versa, with intelligently chosen index assignments.
Among the advantages of such an approach are increased robustness and graceful
degradation. The disadvantage is the lack of a guaranteed QoS (there is no notion
of “perfect” noise immunity).

It is interesting to consider hybrid versions of these two philosophies that are
aimed at exploiting the best of both worlds advocated above. We dedicate Section
7.3.5 to this idea, but we provide a preview here to underline the historical per-
spective. A practical hybrid analog/digital transmission scheme was first pro-
posed by Schreiber [62], using a novel analog-under-digital scheme. An all-digital
solution in the same spirit was proposed in [36], where the goal was to merge the
benefits of both approaches without giving up an all-digital representation. These
methods enjoy the important embedding property covered in Section 7.2, making
them ideally suited to applications like broadcast and multicast (see Section 7.3.3).

Joint source-channel coding schemes in the literature have been based on a
variety of channel models. Historically, discrete memoryless channels and espe-
cially binary symmetric channels came first. The typical assumption was to fix the
channel symbol transition probability matrix (i.e., specifying the channel symbol
error probabilities of receiving symbol j given that i was sent: Prob( | 7)), which
fully characterize these channel models. Based on this, the optimization of source
coders or mappings from source to channel alphabets was performed. This
approach was advocated for example, in [63], where an algorithm similar in spirit
to the celebrated Lloyd-Max design algorithm for an optimal scalar quantizer [16]
was proposed to design an optimal scalar quantizer for a discrete memoryless
channel. Recall that the Lloyd-Max quantization algorithm consists of iterative
optimizations of the encoder and decoder, respectively, while holding the other
fixed. The encoder function deals with finding cell (or Voronoi region) partitions.
The decoder function deals with finding representative codewords (or centroids)
for each partition. The algorithm iteratively updates the cell partitions (for fixed
representative levels), using a weighted nearest neighbor condition, and the repre-
sentative levels (for fixed cell partitions), using a weighted centroid condition. The
“channel-optimized” extension to the Lloyd-Max clean-channel source quantiza-
tion algorithm basically involves the incorporation of the symbol error probabili-
ties appropriately in defining the weights for the nearest neighbor and centroid
rules of the algorithm.




306 Multiresolution Joint Source-Channel Coding Chap.7

The joint design of channel-optimized vector quantizers (VQ) and the map-
ping of these VQ indices to channel alphabets were presented in [58] and later in
[64], where the value of “intelligent” mappings between source and channel
domains was demonstrated. Due to the use of a high-dimensional VQ framework,
finding these intelligent mappings is, however, generally a computationally inten-
sive process that usually results in only locally optimal solutions.

Joint source-channel coding approaches based on the discrete memoryless
channel model are useful but somewhat limiting, as this model is basically a black-
box approach that does not directly and fully address the physics of the communi-
cation system, i.e., parameters like bandwidth, average/peak transmission power,
delay, etc. are not explicitly included in this approach. Several joint source-channel
coding schemes that include more basic communication channel parameters like
transmission power and bandwidth have been studied. AWGN channels have
been studied in [65, 66, 67], and extensions to Rayleigh channels were considered
in [56] with a view to optimizing joint performance subject to an average transmis-
sion power constraint. The framework in [56] was based on maximum a posteriori
estimation of the input source (based on tractable statistical signal models like
autoregressive processes, etc.). By considering appropriate extensions of the gen-
eralized Lloyd algorithm [16] (which is a VQ extension of the scalar Lloyd-Max
algorithm described earlier), an optimized signal constellation design was
included in the optimization loop, leading to performance improvement over tra-
ditional separately designed systems. These schemes use fixed-length codewords,
ie., they sacrifice the increased performance of variable-length codewords
(through entropy coding) for robustness. A relevant attribute of these schemes,
e.g., the scalar quantizer design for binary symmetric channels in [63] and the VQ
design for AWGN channels in [56], has to do with the notion of reducing the num-
ber of codewords when the channel gets noisier, i.e., to correctly match the source
and channel resolutions. This matching can be very efficiently performed with the
multiresolution representations, as we describe below.

The trend in the evolution of joint source-channel coding systems in recent
times has been to use more accurate source and channel models, as well as more
sophisticated state-of-the-art source- and channel-coding techniques. Further, as
more system components are jointly designed, better performance has resulted,
but at the expense of higher system complexity. As an example, inclusion of the
modem in the optimization loop results in increased performance (see Section
7.3.3.3) but with increased complexity.

Let us now take a brief look at a few recent examples that consider source-
channel coding in more sophisticated frameworks. An interesting combination
involves the joint design of trellis coded quantization (TCQ) and TCM in [61] by
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exploiting the fact that the two frameworks are duals of each other, one in the mod-
ulation (channel) domain and the other in the quantization (source) domain. The
idea is to maintain a similarity relationship between distances in the source code-
word space and the channel codeword space, implementationally facilitated
through the use of the same finite state machine (or trellis structure). This is con-
ceptually akin to the analog transmission philosphy introduced earlier.

Binary symmetric channel transmission of still images with RCPC codes [68]
was addressed in [57] and more recently in [69], where a popular embedded wavelet-
based zerotree coder [24] was combined with RCPC codes and a series-concatenated
channel coder based on the “list-Viterbi decoding” principle [70]. The list-Viterbi de-
coding paradigm is a conceptually simple but powerful extension of the conven-
tional Viterbi decoding paradigm in that it keeps, at each state of the trellis, a list of
the N best-metric paths, with the traditional Viterbi decoder having N = 1. The work
in [70] reported substantial performance improvement over the conventional Viterbi
decoder by combining a first-stage list-Viterbi convolutional coder with a second-
stage error-detection coder, using a block cyclic-redundancy-check (CRC) code. This
combination was achieved by declaring the correct Viterbi path as the highest-
ranked candidate Viterbi path in the trellis (from the ranked top-N list) that addi-
tionally passes the CRC test. A more sophisticated extension of the list-Viterbi
framework has been recently considered in [71] through the use of a continuous-
error-detection second stage based on arithmetic coding that dynamically checks the
validity of subtrellis paths and maintains a legal top-N list at each state.

By simply cascading this sophisticated channel coder with a sophisticated
embedded wavelet zerotree image source coder (such as [24]) as is done in [69], one
can obtain robust image transmission systems. With more powerful channel
coders (such as that of [71]) and more powerful source coders (such as that of [29]),
even better systems can result, as pointed out in [71]. Note that these are examples
of separately designed systems that have state-of-the-art source and channel cod-
ing components. However, a subtle point is that the use of an embedded source
representation, such as the wavelet coders of [23, 24], results naturally in a grace-
fully degraded digital system because each succeeding bit effectively represents a
resolution layer. Decoding can be stopped when an uncorrectable error is detected,
with the resulting quality depending on how far along the bit stream the error has
occurred. This capability points to the advantages of having an embedded source
representation (see Section 7.1.1). In [72], a joint design that used the distortion-rate
characteristics of scalar wavelet-based source coder and RCPC channel coder was
suggested. Joint source-channel coding schemes for images based on many-to-
many mappings between source domain and modulation domain have also been
studied, for example, in [67].
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7.3.2 Basic Infrastructure of Multiresolution Joint
Source-Channel Coding

We now explore a basic, high-level philosophy for multiresolution joint source
channel coding, which is useful in addressing a number of relevant scenarios of
interest.

Recall our terminology from previous sections of source resolution as the
source quality level, and of channel resolution as the noise immunity level. A use-
ful conceptualization involves looking at these in terms of trees having various
depths or resolutions. In this framework, the set of resolutions in both channel and
source coders in a very general setup can be associated with this tree structure.
This multiresolution infrastructure can be illustrated compactly, as in Figure 7.10.
Two source resolutions are mapped into two channel resolutions. If a feedback
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Figure 7.10 General infrastructure for multiresolution joint source-channel cod-
ing (MR-JSCC). Channel and source models are used to jointly optimize the system
parameters: source encoder/decoder, channel modem, and encoder/decoder. A
multiresolution representation is used at all stages in matching different system
components.
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channel is present, the transmitter chooses whether to send both resolutions, only
the coarse one, or perhaps neither. If there is no feedback, then all resolutions are
sent simultaneously.

To summarize, we assume, as is often realistic, that the receiver is always
informed of the channel state information,® and propose the following strategy:

(i) If no feedback channel is present (we call this the uninformed transmitter
case), then at the transmitter, optimally design a multiresolution source and
channel encoder whose layers are optimized to the average channel condi-
tions (i.e., statistically optimized for good and bad channel states). At the
receiver, match the decoder resolution optimally to the instantaneous chan-
nel state information. See Figure 7.11(a).

(ii) If a feedback channel is present (we call this the informed transmitter case),
then both transmitter and receiver match the resolution of the encoder and
decoder, respectively, to the instantaneous channel state information in a syn-
chronized fashion. See Figure 7.11(b). Note that in this case, the use of a mul-
tiresolution framework is not theoretically optimal (except if the source obeys
a certain Markov property [5]—see Section 7.1.1), but a multiresolution
design is more flexible and attractive from an engineering perspective (due to
its architectural simplicity). There is little loss in performance typically (see,
for example, [73]), with the encoder and decoder both selecting the resolu-
tions they want, based on the channel state information.

At a high level, the proposed infrastructure of Figure 7.10 supports the key idea of
efficiently matching source and channel resolution trees to maximize system per-
formance and transcends the details of any algorithmic or implementation details
that are scenario- and application-specific.

7.3.3 Uninformed Transmitter Scenarios

We consider the following representative scenarios under this category. Recall that
this category refers to the case where the receiver is informed of the channel state
information, but the transmitter is not.

7.3.3.1 Broadcast: Embedded Modulation

As stated earlier, the idea of embedded modulation derives its roots from Cover’s
information-theoretic results on broadcast channels [35]. The merging of the com-
pression advantages of digital transmission systems with the natural robustness of

“The receiver in general has access to relevant parameters that allow it to infer the channel quality.
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Figure 7.11 (a) Uninformed transmitter case: All resolutions are communicated
to the receiver, which decides at which resolution to operate. (b) Informed trans-
mitter case: Both transmitter and receiver select the resolution that matches the
channel state.

analog systems was proposed by Schreiber [62] in a hybrid analog-under-digital
transmission scheme for the broadcast of HDTV. The idea was to have analog
information “ride on top” of digital modulation information (to form analog
“clouds”) with the essential information being sent digitally (to ensure lossless
delivery) and the detail information riding in the analog clouds. The partitioning




Sec.7.3 Multiresolution Joint Source-Channel Coding 311

between analog and digital modes of transmission was, however, done in a some-
what ad hoc manner. In the same spirit, [36] described an all-digital solution,
which was aimed at more efficiently retaining the compression advantages of dig-
ital systems and optimally matching the source and channel resolutions by a step-
wise, graceful degradation philosophy. Embedding was done directly in the
modulation domain, using the idea of clouds and satellites depicted in Figure 7.5,
offering unequal levels of protection in an efficient and continuously controllable
way (through the i parameter for a two-resolution system). Using a multiresolu-
tion embedded approach rather than naive multiplexing of the resolutions (such as
by time-division-multiplexing or frequency-division-multiplexing methods), sig-
nificant gains were obtained in HDTV broadcast applications. This approach can
be viewed as a practical way of realizing the theoretical results of Cover.

A modulation-domain-based, unequal error protection scheme similar to that
of [36] has been considered for European digital audio and video broadcast [42].
Each layer of different error protection corresponds to the specific type of the
receiving monitor (typically, there are three layers or resolutions) and has different
bit error rate requirements. Thus, the quality of the received video varies gracefully
with the receiver type and with distance from the transmitter.

7.3.3.2 Multicast: Layered Coding

An area where joint source-channel coding ideas have had an impact is in communi-
cating over heterogeneous networks. In particular, the case of multicast in a hetero-
geneous environment is well suited for multiresolution source and channel coding.

The idea is very simple: give each user the best possible quality by deploying
a flexible networking infrastructure that will reach each user at its target bit rate.
More precisely, a multicast transmission can be conceptualized as existing on a
multiresolution tree. Each user then reaches as many levels of the multiresolution
tree as is possible, given its access capabilities. Such a scheme was proposed in [74]
for a heterogeneous packet environment, such as the Internet. Figure 7.12 suc-
cinctly captures the basic idea.

While currently mostly wired links are involved in multicast applications, it
is clear that mobile components are also becoming more and more important. Such
a scheme would be suitable for such an environment as well, possibly with bridges
between wired and wireless components.

7.3.3.3 Point-to-Point Image Transmission with No Feedback

Consider the example of point-to-point communication over slowly time-varying
channels, efficiently modeled as an AWGN mixture multistate channel with no
feedback. This case is conceptually similar to the broadcast case discussed in
Section 7.3.3.1 in that it is a multichannel communications problem where the
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Figure 7.12 Illustration of joint source-channel coding for multicast scenario.

transmitter cannot adapt individually to different receiver capacities. An efficient
(and, in practice, near-optimal) solution can be attained by using a multiresolution
design of source and channel coders, and by an optimal matching of the source-
channel coding resolutions to the instantaenous channel state. At a high level, we
propose the following strategy: at the transmitter, design an optimal multiresolu-
tion source and channel encoder whose layers are matched to a discrete set of tar-
get channel states having known, long-term statistical weights corresponding to
the channel model. At the receiver , optimally match the decoder resolution to the
channel state information.

Example We will now use a simple but illustrative example (from [60]) to
show the usefulness of having a multiresolution approach to joint source-channel
coding that incorporates the techniques advocated in the previous sections, i.e.,
multiresolution embedded signal constellations, a modified Lloyd-Max design for
source scalar quantization, and a multistate channel model. This example is based
on jointly designing source and channel coders in a tree-structured way and opti-
mally matching the resolutions of these trees.

Consider the example of point-to-point communication over a flat fading
Rayleigh channel, which can be modeled as an N-state AWGN channel character-
ized by different noise variances, with the approximation improving as N
increases.

Consider the source-channel coder illustrated in Figure 7.13. Suppose the
channel can be in one of only two different states. In each state s (with p, denot-
ing the probability of occurrence of the state s), the channel is AWGN with a given
noise variance ¢ *, with the states being labeled good and bad. Suppose that the re-
ceiver knows the actual channel state whereas the transmitter has knowledge only
of long-term channel statistics, i.e., the state probabilities. Suppose we want to trans-
mitanii.d. (scalar) source X with probability density function f(x) quantized to four
levels through this channel, using a 4-PAM modulation constellation, assuming the
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optimal one-to-one mapping between the encoder-partitioning {z} , and the con-
stellation points {in};_, as also shown in Figure 7.13. The joint encoder/modulator
operation is therefore to partition the source x into intervals {;}7_, and map each
7', to the corresponding constellation point ;. Suppose that at the receiver a hard-
decision demodulator is used to declare, based on optimized demodulator thresh-
olds {t}, which m. was transmitted. Finally, the decoder performs a one-to-one
mapping between the 17;s and the source reconstruction codewords c;.

Given this setting, the question is then how to choose all the system design
parameters to maximize the delivered image quality for a fixed, average transmis-
sion energy (per channel symbol). The system parameters include:

* Source encoder partitions I' = {3}
¢ Channel modulation constellation M={im}
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Figure 7.13 Two-resolution, joint source-channel coding scheme for multiresolu-
tion 4-PAM and source codebooks having 2/4 levels.
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* Receiver decision thresholds 7 = {t, }s =0, 1
* Source decoder codebooks C,, s =0, 1, containing the reconstruction code-
words {c, ;}

Our goal is to minimize the expected distortion

1 3 3
E{DX X} => p> J @D (- csfj)ZProbS (G 1i)dx, (7.1)

s=0 =077 j=0

subject to the fixed energy constraint
Ep=>m 3J f(x)dx, (7.2)

where the transitional probabilities of decoding c; ;, given that x € 7, in the channel
state s, are in the form

Prob, (j1) = Q((t, ;= m)/a) = Q(t, ;,, — m)/a), (7.3)

. 1 <42
with Q(x)ZTJ' et
2n X

The (i, s)th integral in (7.1) is equal to the individual expected distortion if
index i is sent (i.e., given that x € y,). These individual contributions are summed
among all source symbols and averaged over two possible channel states, yielding
the total expected distortion.

To solve the constrained problem of (7.1, 7.2) we introduce a Lagrange multi-
plier 4 [75] and solve the unconstrained problem of the form:

min [ (M, T, T, €)= E{D(X, X} + €,], (7.4)
M, T,C,
where /4 > 0 is chosen to satisfy the energy constraint (7.2) and can be interpreted as
a coefficient that trades off energy for distortion in the optimization process. If a so-
lution for the unconstrained problem (7.4) exists, it is also a solution to the con-
strained optimization problem (7.1), (7.2). Given the expression for the cost function
(7.4) the following encoding and decoding rules can be derived. Assign x to ;; where
103
i= arglmin[)t (’”1)2 + z pSZ Prob,(j|1)(x — Cs,j)z]’ (7.5)
s=0 j=0

i.e.,, where i is a value of / for which the expression in square brackets is minimum.

Then reconstruct the jth codeword with

2L Prob. (1) of () dx
s,j z ?:OProbS(j | i)Lif(x) 12 .

c (7.6)
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It is insightful to note that the cost of assigning x to y; in (7.5) is a weighted
sum of distortion and energy associated with this decision, which is a variation of
the entropy-constrained vector quantization (ECVQ) [76] problem in which an
equivalent entropy term in ECVQ is replaced by an energy term. At this step, we
find the optimal position for the boundary between regions y; and ;. ;, which min-
imizes the cost function (7.4) with all other parameters being fixed. The decoding
rule (7.6) is a variation of the weighted centroid condition in the channel-opti-
mized Lloyd-Max quantizer. The decoding rule (7.6) simply assigns the expected
value of the transmitted signal X to the reconstruction level ¢, ;, thereby minimiz-
ing the mean-squared error. (Recall that the minimum MSE estimator for a random
variable X from the observation Y is the one that estimates X as E{X| Y}.) It is pos-
sible to formulate the optimal encoding (values of m;) and decoding ( 7 ) rules
given the cost-function in (7.4), but it appears that an analytical solution is not fea-
sible because of nonlinear relations (through the O-function) between transitional
probabilities Prob,(j | 7) in the optimal receiver and channel coder parameters. On
the other hand, if a suboptimal receiver (for example, a maximum-likelihood
receiver) is used, then the performance of the system degrades dramatically
because the constellation points are not equiprobable.

For our simple example, it is clear that the optimal solution would be the one
that allows two different distortion-optimized decoders, one for each channel state.
The receiver should use the channel state information to switch between these two
decoders. Such a design, while manageable for a two-state AWGN channel model,
is clearly impractical when the number of states gets large (as needed to approxi-
mate the desired channel arbitrarily closely) since this would require a separate de-
sign for each channel state and hence would significantly increase the complexity.
This problem can be addressed by allowing only a few multiresolution codebooks
and devising an optimal decoding strategy for deciding which codebook should be
used in each channel state (see Figure 7.11(a)). Embedded modulation is used to
provide different levels of noise immunity. In our example, the lowest resolution
codebook C, has only two reconstruction levels and is used during the bad channel
state, while the full-resolution codebook C; is used in the good state. Thus, in this
simplified example, we can guarantee that the all-important sign information will
be delivered in both channel states, while refinement of this information will be pos-
sible only during good channel states. The important message is that this two-mode
approach is better than trying to decode at full-resolution at all times.

The degradation in performance due to constraining the number of codebooks
to a multiresolution codebook, rather than having separate codebooks for each
channel state, has been shown in [73] to be insignificant—the key observation is that
in bad channel conditions, the optimal design naturally chooses a lower source codebook
resolution, validating the simpler and more elegant multiresolution approach. The
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results of this simplified example are easily extended to more practical real-world
scenarios by a similar concept of optimally matching the source resolution and sig-
nal constellation resolution “trees” in accordance with the time-varying channel.
This matching leads to improved performance over separately designed source and
channel coders with the real-time operation needing only table lookups. The results,
when applied to wavelet image transmission, reveal substantial gains, of the order
of 2-3 dB in PSNR, over conventional systems in fading channels.

We note that for the special case of a Gaussian memoryless source and an
AWGN channel, the mapping from the source domain into the signal constellation
will tend to become linear as the number of levels in the source-channel coder
increases (see Section 7.3.5.1 below). Actually, linear one-to-one mapping (when
the channel signal amplitude is determined by scaling the source sample ampli-
tude) will achieve the optimal performance theoretically attainable (OPTA) for this
source and AWGN channel within an energy constraint [3]. Unfortunately, for
other source distributions, linear mappings are no longer optimal, and optimal
mappings are not known in most cases; in such cases, numerical techniques are
necessary [56, 60].

7.3.4 Informed Transmitter Case

We now turn to the situation in which a feedback channel is available so that both
the transmitter and the receiver have knowledge of the channel state.

7.3.4.1 Point-to-Point Image/Video Transmission with Feedback

If the current channel state or feedback from the receiver is available at the trans-
mitter, this information can often be used to improve the system performance for
channels with memory. In the case of perfect channel state information availability
to both transmitter and receiver, they can both tune to the instantaneous channel
state information (see Figure 7.11(b)). Clearly, with other conditions being equal,
the performance for this case will be superior to that of the uninformed transmitter
case, where the receiver alone can tune the resolution, while the transmitter has
to transmit all resolutions. As noted earlier, the use of a multiresolution framework
is not theoretically optimal, but a multiresolution design is far more flexible and
convenient, and in practice, there is little performance loss [73, 77]. The use of chan-
nel-matched hierarchical vector quantization for image transmission over noisy
channels with feedback has been described in [77], building on the hierarchical VQ
source coding framework of [78].

A significant advantage of having feedback channels is that for applications
where delay requirements are not overly stringent, they can be used to signal
errors in the received digital stream if additional redundancy is spent on error
detection (ARQ schemes). Indeed, ARQ can be used as a universal channel coding
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scheme, as pointed out in Section 7.2.2. One of the most effective ARQ schemes is
called the Class 2 hybrid ARQ [40], which basically uses an ARQ-based scheme to
alternately send data and parity. (A half-rate invertible code is used from which,
given the parity information, the data can be obtained by simple inversion.)

Note that improved versions of this hybrid ARQ scheme can be obtained ac-
cording to a multiresolution concept by using the idea of incremental parity. For ex-
ample, this idea can be implemented very efficiently by using systematic versions of
a family of UEP channel codes like RCPC, as was shown in [79]. The idea is simple.
The data is sent first with a few parity bits (highest rate code). If this data is ac-
knowledged without error (as detected with a block CRC check), the next data
packet is transmitted; otherwise, only incremental parity bits (corresponding to the
next level of channel code) are sent. Thus, the strength of the channel code is gradu-
ally adapting to the channel conditions, permitting the channel bandwidth to be
used efficiently. Note that there is a price to be paid in terms of increased redun-
dancy (i.e., bits spent on error detection) and, more importantly for real-time appli-
cations, delays due to retransmissions. There exists an interesting trade-off between
delay and redundancy that can be explored in a continuous way that uses a frame-
work based on error-detection via arithmetic coding [80]. Typically, a 16-bit CRC
code performs error detection in ARQ protocols [40]. Though efficient, the CRC can
detect errors only after an entire block of data is received. In [80], a method of error
detection is used that provides a continuous trade-off between the amount of re-
dundancy added and the amount of time before an error is detected. The method of
detection, achieved with an arithmetic codec, has the attractive feature that it can be
combined very easily with an arithmetic-coding based source coder, as is popular in
state-of-the-art image coders [23, 24]. When this method of error detection is applied
to ARQ protocols, significant gains in throughput performance (or equivalently, de-
livered image quality) are obtained over conventional ARQ schemes [80].

Recent results [71] also demonstrate the gains of continuous error detection
applied to serial concatenated coding schemes with convolutional codes. As
mentioned in Section 7.3.1, continuous error detection can be integrated into list-
Viterbi decoding to improve system performance in the face of limited memory/
complexity constraints. By combining both ARQ and serial, concatenated forward
error correction with continuous error detection, powerful hybrid ARQ schemes
can be devised.

7.3.5 Hybrid Techniques in Image Transmission

We have hinted at the potential of hybrid analog/digital techniques (or, in other
words, compressed /uncompressed methods) for image transmission. Before we
explore this topic in more detail, let us summarize the facts. The compressed mode
of operation has a much more compact representation but is maximally vulnerable
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to channel errors. Therefore, this mode needs controlled redundancy via channel
coding to ensure that these errors are not catastrophic, but this insurance may
come at a steeper price than is necessary. On the other hand, the uncompressed
mode has increased error-resilience due to the lack of error propagation, but com-
pression efficiency is potentially compromised. This situation leads to the obvious
question of whether it is possible to get the best of both worlds.

As a prelude to addressing this interesting question, we consider a fundamen-
tal but little-referenced result from Berger’s book on rate-distortion theory [3] that is
highly relevant to the approach one might adopt in devising hybrid solutions; see
also [41].

7.3.5.1 Transmission of Gaussian Signals over Gaussian
Noise Channels

Shannon taught us that a theoertically optimal way of transmitting information
from point to point is via the separation theorem. This approach involves the source
coder doing the best it can (in the rate-distortion sense) in tandem and in separation
from the channel coder doing the best it can (in the sense of transmitting at a rate
that is within an arbitrary positive ¢ of the channel capacity). Thus, the smallest dis-
tortion attainable by any source-channel system where the channel capacity is C is
given by D(C), i.e., the source distortion-rate D(R) function evaluated at R = C. As
with all Shannon-like results, this result comes with the usual package of potentially
infinitely complex codes for both source and channel coding.

There is an illuminating special case, however, that dispenses with this infi-
nite complexity argument without losing theoretical optimality. This case serves as
a great motivator for considering hybrid joint source-channel coding methods in
image transmission, as we describe shortly. Suppose we wish to communicate over
an AWGN channel with X being a discrete-time, continuous-amplitude source,
and N the AWGN noise that is uncorrelated with X. Suppose Y = f(X) is the
encoder function such that Y is the transmitted signal. The received signal is
Y =Y + N. The decoder function g(+) performs an optimal estimation of X, i.e., it
reconstructs X = g(Y) The problem is to determine f (-) and g(-) to minimize the
expected distortion E[(X — X) | subject to the variance of Y being fixed (the last
constrains the transmitted energy). In [3] (p. 162), Berger showed that:

“The optimum PAM system for transmitting a memoryless N(0,6,%) source at
the Nyquist rate over an ideal bandlimited channel with additive, zero mean,
white Gaussian noise and an average input power constraint achieves the least
MSE theoretically attainable with any communication system whatsoever.”

"Note that X, Y, Y, and X are vectors of possibly different dimensions. In our discussion, we sup-
press the issue of different dimensionalities for clarity of presentation and assume that they are all
scalar random variables.
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The version of this result applied to discrete memoryless AWGN channels
rather than continuous Gaussian noise channels can easily be shown by observing
that the distortion-rate function for the Gaussian source evaluated at the capacity
of a power-constrained AWGN channel is equal to

ElX =X =021+ P/Ny)",

where N, = E [N?] is the variance of the noise and P = E[Y?] is the energy of the
transmitted signal per source symbol. The smallest possible theoretical MSE dis-
tortion (above) is, interestingly, at the same time that of the optimal PAM system
for the same power constraint, where the encoder function f(-) is a simple linear
scaling of the signal by the factor |P/s? and the function g(-) is the linear mini-
mum mean square error estimator of X:

X=02/P(1+N,/P)'Y.

These results clearly show that no digital compression and channel coding scheme can
outperform the simple linear mappings for a Gaussian source and an ideal, band-
limited AWGN channel. Also observe that source and channel coding are not
performed separately but in a joint linear mapping operation. This is a simple
but powerful example of the potential of joint source-channel coding. When the
source is not Gaussian, however (e.g., even generalized Gaussian [81]), linear map-
pings are no longer optimal. For this case, optimal analytical mappings are not
known, and one has to resort to numerical methods [60], as illustrated in Sec-
tion 7.3.3.3.

Further, the optimality of linear mappings does not hold for the case of com-
posite or mixture sources, even in the Gaussian case [82]. This case is of interest
because Gaussian mixture distributions have been shown to be very accurate for
modeling wavelet image coefficients [29], where a coding algorithm based on this
model attains performance that ranks among the very best in the cited literature.
For clarity of the presentation, we consider a slightly simpler version of this prob-
lem here. Suppose the source (typically, the wavelet image decomposition) consists
of independently distributed Gaussian random variables having different stan-
dard deviations g, i = 1,2,...N. This source is to be transmitted over N identical par-
allel Gaussian channels with a total power constraint. Let P and Dpp, be the
average energy and distortion per source sample. Then, the optimal performance
theoretically attainable is obtained by “inverse waterfilling” for source coding and
“waterfilling” for channel capacity [4], and, in a low target distortion case, can be
shown to be

2/N
- 1
D, = of _
OPTA (ll'—! ) (l +P/NO)
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Unfortunately, the optimal PAM for each channel will not achieve this perfor-
mance, and the distortion will increase by a factor K given by

2
1N
Dpam (W ,-,16,')

Dopra ( N )2/ N

i=17i
Nevertheless, K typically is small (empirical results reveal that it is typically about
0.5 dB for wavelet coefficients of typical natural images [82]); then, considering the
complexity needed to approach the theoretical upper bound by use of conven-
tional Shannon-type arguments, the simplicity of a joint source-channel mapping
approach becomes very attractive.

7.3.5.2 Applications to Image Transmission

For recovery from channel errors, some amount of the communication link load
has to be reserved for redundant information. This fact, however, does not neces-
sarily imply that this redundancy should be inserted in toto by channel-coding
techniques into a maximally compressed data stream. In [2], Shannon mentioned
the possibility of using the redundancy left in the source to combat channel errors.
For many practical image and video applications, it may well be better to optimally
split the redundant information between source data and channel code parity.
Indeed, the task of assigning all redundancy to the channel coder is a corollary of
the separation principle and may well be suboptimal for finite complexity systems.

We illustrate by a specific example the advantage of this approach [83]. The
basic idea is that the source redundancy, which is still present in practical state-of-
the-art image and video source coders (and which enables postprocessing, error
concealment, etc.) can be used to improve the performance of the channel decoder
or to recover from channel errors in the decoding process as early as possible. One
promising approach to using source redundancy is based on the philosophy that if
there is any a priori information about the source, obtained by observing the pre-
viously received channel signals, this information can be used to aid the channel
decoding. Instead of making errors in the channel decoder and then trying to cor-
rect for them with postprocessing techniques, it may be smarter to put forth the
best effort up-front to avoid having to do error concealment in the first place. This
approach was advocated in [84], where the a priori information about the source
was used to help the Viterbi decoder in estimating the correct path for RCPC-
encoded data. This idea was developed further in [79], where the usefulness of dig-
ital compression via entropy coding was questioned. It was demonstrated that, for
certain situations, it pays to leave the redundancy in the source instead of trying to
get rid of it by compression and than reinserting it with the channel coding. How-
ever, the question of optimal partitioning of the parity information between source
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and channel coders was not addressed. Also, lossless transmission was enforced
with a hybrid ARQ scheme, which is typically suboptimal for video communica-
tions applications due to the high loss tolerance of the source and strict delay
requirements.

The question of efficient allocation of redundancy between source and chan-
nel coders for delivery of visual data over low-power wireless channels has been
recently addressed in [83] as the question of how to efficiently represent an image
or video source into compressed and uncompressed subsets. The motivation is
based on integrating the two classes of joint source-channel coding techniques
(based on analog and digital transmission techniques, respectively) mentioned in
Section 7.3.1.

To summarize, the first class consists of a quantized, entropy-coded, com-
pressed layered source representation illustrated with the conventional digital sys-
tem (upper path) in Figure 7.14. The goal here is to minimize the total distortion

coder

|
|
|
Source —»~ T H Q H E P+ gf;md /l/r Receiver
|
|
|

T - transform
Q - quantization

source coder : E - entropy
[ uep coding
—_ Q H E L1 channel
} coder
|
______________ ]
Source Receiver

H Q |—»|PAM

Proposed hybrid system.

Figure 7.14 Conventional digital and hybrid system diagrams. The upper path of
the hybrid system corresponds to the conventional entropy-coded digital system
(first approach). The lower path of the hybrid system corresponds to a non-
entropy-coded system (second approach).
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due both to source quantization and to channel noise, subject to a total bit rate con-
straint on source and channel codes. This minimization could be done with a state-
of-the-art image compression platform based on entropy coding (variable code
lengths), such as the zerotree wavelet-based SFQ coder of Section 7.1.2.3, followed
by a power-efficient modulation scheme such as BPSK [53]. The second class of
methods involves the combined design of source quantizers without entropy-coding
(fixed code lengths) jointly with a PAM modulation scheme (recall Section 7.3.5.1),
with a view to minimizing the total distortion subject to a total transmission power
constraint (lower path in Figure 7.14). The joint source-channel coding algorithm
of [60] (see the example of Section 7.3.3.3) based on energy-optimized, multireso-
lution, codebook design is a representative of this class.

The intuition behind trying to integrate these classes comes from understand-
ing the fundamental trade-offs associated with a mixed mode of operation. When
the channel is clean, high compression ratios are desirable because bit errors are
rare, and the compressed mode is preferred. When the channel quality degrades,
however, the unequal importance of the source bits that is typical of compressed
imagery requires unequal error protection techniques. When the channel degrades
to a certain point, lowering the source resolution and transmitting it more reliably is
more important (see the example of Section 7.3.3.3). A drawback of the uncom-
pressed mode is that there is no notion of guaranteed QoS (i.e., bit error rate) as is
typical of conventional digital communication systems. This property limits its util-
ity in multistage transmission systems, where, for example, perfect error recovery is
possible with the use of line repeaters. However, for a large class of single-hop end-
user links, e.g., mobile terminals and “backpack” mobile units, this lack of guaran-
teed QoS is not an issue. Another drawback of the uncompressed mode of operation
is that the number of channel uses is likely to be needlessly large. For example, an
N X N image sent using scalar quantization and a 1 to 1 mapping between quanti-
zation and modulation points as in [60]—see lower path of Figure 7.14—would re-
quire N” channel uses, which could exceed available resources for even moderate
values of N. This problem could be tackled with vector mappings from source do-
main to modulation domain as in [67]. An alternate and simpler method based on
scalar mappings has been described in [83], where the key idea is to dispense with
the need to transmit N” coefficients through the use of the wavelet zerotree struc-
ture, and combine this structure with simple scalar quantization of the significant
image wavelet coefficients. This approach results in a high-performance image
coder for slow-fading, energy-constrained channels.

The idea in [83] is to induce a source decomposition into two components,
each suited to the appropriate mode of transmission outlined. Thus, while a subset
of the image decomposition is treated much more effectively with the compressed
mode above, its complementary subset can fairly accurately approximate the
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above assumptions for which PAM is theoretically optimal (see Section 7.3.5.1).
Taking as a platform the zerotree-based, wavelet SFQ image coder of [27] (see Sec-
tion 7.1.2.3), the coded data, consisting of the digital zerotree significance map
information and the residue subband coefficients, is partitioned into two subsets,
one of which is compressed, using entropy-coding, and unequally error-protected,
using appropriate RCPC channel coding. The other component is transmitted
uncompressed, using a one-to-one PAM-mapping. The key idea is that the number
of analog channel uses can be reduced with the aid of the digital zerotree data
structure, which requires the transmission of only significant wavelet coefficients.
By efficiently controlling the trade-off between these two modes in a simple way, it
was shown that significant gains (2-3 dB in PSNR) can be attained by this hybrid
system over fully compressed UEP digital systems. An interesting observation is
that the lower the delay requirement, i.e., the lower the rate of channel usage per
source symbol, the higher the fraction of the uncompressed mode that is used by
the optimal hybrid system [83]. See the reconstructed images of Figure 7.15 and

Figure 7.15 Reconstructed image in the conventional reference system in the
Rayleigh channel 31.9 dB PSNR. E./No = 17dB. BPSK with soft decisions and per-
fect channel state information is assumed. The total rate is 0.2 channel usages per
source symbol.
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Figure 7.16 Reconstructed image in the hybrid system in Rayleigh channel 34.7
dB PSNR. £, /No =17 dB. Perfect channel state information is assumed. The total
rate is 0.2 channel usages per source symbol.

Figure 7.16 for a subjective comparison of the conventional and hybrid systems,
respectively.

7.4 CONCLUDING REMARKS

In this chapter, we have outlined some of the key research issues related to the
design of practical, efficient, robust image communications systems for appli-
cations like wireless communications and video transport over heterogeneous
networks. We have stressed the use of flexible and elegant multiresolution frame-
works for designing joint source-channel coding algorithms for such systems. The
field of joint source-channel coding, as pertaining to the research, design, and
deployment of fundamentally sound and practical end-to-end efficient image
communications systems and algorithms, is in its relative infancy. There are many
interesting open questions, and in this multimedia age, where one is in constant
danger of being unable to separate hype from substance, this field stands out as
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offering an attractive arena for the fusion of sound theory with important applica-
tions and promises to be a research area with high impact.
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Underwater Acoustic
Communications

David Brady
James C. Preisig

Much of the development of the preceding chapters is applicable to a broad range
of wireless networks, although there is a strong emphasis on radio-frequency (RF)
systems and their applications. And while underwater acoustic channels and sys-
tems share many features with their RF counterparts, there are also important dif-
ferences. In this chapter, we describe the special characteristics of underwater
acoustic channels and show how they impact system design.

The underwater acoustic channel (UAC) is quite possibly nature’s most
unforgiving wireless communication medium. Multipath delay spreads exceed
60 ms for horizontal medium-range channels, and frequency responses may ex-
hibit deep nulls. Fading processes may be fast or slow, frequency selective or
frequency nonselective, depending on the direction of propagation and conditions
of the water column. Battery and mission lifetimes restrict the transmitter powers
of practical modems to 30W. High-frequency absorption losses and low-frequency
ship noise confine the transmission bandwidth to less then 40 kHz for medium-
range shallow-water applications. The UAC is a broadcast channel, and the aggre-
gate bandwidth must be shared by an asynchronous group of noncooperating
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users. The low propagation velocity of sound in water (1500 m/s) translates wave
or modest platform motion to significant Doppler compression and permits the
use of a slowly time-varying channel model only if phase and synchronization
tracking are given special attention.

Underwater communication has been used since the beginning of the 20th
century to permit a data link between the surface and the water column [20].!
Today underwater acoustic telemetry is used to communicate between untethered
platforms, such as underwater vehicles (UV) and data logging stations. Manned or
unmanned oceanographic exploration, ocean monitoring, and the offshore oil
industry all rely on underwater acoustic telemetry.

This chapter presents an overview of the state of underwater acoustic com-
munications and the role of signal processing in this field. We begin with the devel-
opment of an appropriate channel model. We describe the relationship between
environmental conditions and the characteristics of the channel model, then we
analyze the impact of these characteristics on the communications problem. We
then turn our attention to digital modulation and signal processing techniques
that facilitate demodulation: adaptive equalization, estimation, and detection in
sparse systems, multiuser detection, and multisensor detection. We present adap-
tive techniques that are especially suited for the UAC to reduce convergence
time, tracking error, or computational complexity. The chapter also highlights
current problems in this active research area and reviews approaches to their
solutions.

8.1 THE UNDERWATER AcousTic CHANNEL

From the communications perspective, the underwater acoustic channel poses
many challenges to the realization of reliable, high-rate communications. In this sec-
tion, we summarize many of the salient physical characteristics of the channel and
their effects on the communications problem. The section begins with a discussion
of the ray model for acoustic propagation, its dependence on the speed of propaga-
tion of sound in the ocean, and the dominant mechanisms for sound speed varia-
bility in the ocean. Then, we address the bandwidth constraints imposed by the
absorption and spreading of sound in the ocean, the sources of noise in the ocean,
and their effects on achievable signal to noise ratios. Finally, we discuss the domi-
nating influence of both time-invariant and time-varying multipath propagation
and relate these effects to the input/output response and statistical characterization

"However, the possibilities of underwater communication were envisioned by Leonardo da

Vinci as early as 1490: “If you cause your ship to stop, and place the head of a long tube in the water
and place the outer extremity to your ear, you will hear ships at a great distance from you.” (See [1].)
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of the communications channel. Excellent material covering the general topic of
sound propagation in the ocean is contained in [2, 3].

8.1.1 The Ray Propagation Model

In most conditions, sound waves at middle and high frequencies (> 5 kHz) can
be reasonably modeled as propagating along paths or rays through the ocean. A
good rule of thumb is that this model is valid when the spatial scale of the inho-
mogeneities in the ocean is larger than the wavelength of the sound. Since the
speed of sound is approximately 1500 m/s in the ocean, the wavelength in this
region is less than one-third of a meter. In a homogeneous environment, the rays’
paths would follow straight lines radiating from the source. However, the sound
speed structure of the ocean is highly variable, both spatially and temporally. In
accordance with Snell’s Law, the spatial variability induces a bending of the rays
referred to as refraction. Consider a simplified, two-dimensional model for the
ocean, shown in Figure 8.1, in which the sound speed c is a function of depth z.

In this case, the path of a refracted ray in this environment is described by the
pair of differential equations

0.

=@ —dgf) 8.1)

Sea Surface

Receivers /‘\

L ansmi
° @ Transmitter

— N\

Sea Floor

Figure 8.1 The ray model for acoustic propagation.




Sec.8.1 The Underwater Acoustic Channel 333

and

% = ~tan (A (x)). (8.2)
Here, x denotes the horizontal distance from the source, z(x) denotes the depth of
the ray at that range, and ¢/ (x) denotes the angle of the path with respect to the hor-
izontal (0 (x) < 0 indicates a ray pointed downward). In an environment in which
the speed of sounds varies in all three physical dimensions (x, y, and z), the ray
paths refract horizontally as well as vertically. However, the spatial gradient of the
speed of sound tends to be much smaller in the horizontal than in the vertical, so
the horizontal refraction is usually much smaller than the vertical refraction.

In addition to refraction within the water column, rays experience reflection
from the sea surface and sea floor. The nature and strength of the reflections or scat-
tering depend primarily on the amplitude and spatial scale of the roughness of the
water/air or water /bottom interface and the density, sound speed, and absorption
properties of the bottom material. Accounting for both the refraction of rays as
described by Snell’s Law and the reflection of rays at the sea surface and sea floor,
the sound propagates along many paths from a source to a receiver, as shown by
the solid lines in Figure 8.1. The nature and effects of this multipath propagation
are discussed more fully in Section 8.1.4.

8.1.2 Sources of Sound Speed Variability

The spatial and temporal variability of the speed of sound in water is a result of the
inhomogeneity of the physical properties of the water. A reasonable approximation
of the sound speed in sea water is given by [2]

c(T, S, z) = 1449.2 + 4.6T — 0.055T> + 0.00029T° (8.3)
+ (1.34 — 0.01T)(S — 35) + 0.016z

Here, ¢ is the sound speed in meters/second, T is the water temperature in degrees
Celsius, S is the salinity in parts per thousand, and z is the depth in meters of the
point at which the sound speed is evaluated. The dependence of sound speed on
depth is due to the dependence of sound speed on the hydrostatic pressure. The
functional dependence of the speed of sound on environmental conditions yields
different sound speed characteristics in different environments.

In the deep oceans at mid-latitudes, the approximately isosaline water com-
bined with solar heating of the upper portion of the water column yields the char-
acteristic sound velocity profile shown in Figure 8.2. When this type of sound
velocity profile is encountered, the refraction of rays towards the region of minimal
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sound speed creates a natural waveguide in which rays are trapped. This region is
referred to as the sound channel, or SOFAR channel.

In shallow waters, a greater variety of sound speed conditions is often
encountered. Following the passage of a storm when the entire water column has
been well mixed or in the winter months when solar heating is minimal, the sound
speed is nearly constant with depth. At other times, solar heating, the presence of
less saline water flowing from rivers and bays, and the tidally driven mixing of this
water with oceanic water masses yield a characteristic sound speed profile, shown
in Figure 8.3. With no mid-water sound channel present, sound propagating in
shallow water experiences a greater extent of interaction with the sea surface and
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sea floor than generally occurs in the deep oceans. In general, this interaction
results in higher signal losses and temporal variability.

8.1.3 Signal Losses and Ambient Noise

The signal losses encountered by propagating sound and the ambient noise pre-
sent in the ocean significantly influence the received signal-to-noise ratio (SNR).
The primary mechanisms of signal loss are spreading loss, absorption loss in both the
water and the bottom, and scattering loss at the sea surface and sea floor. The
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spreading loss associated with the propagation of sound occurs in primarily two
types. In regions close to the sound source where the wavefront radiates spheri-
cally, the conservation of energy results in an attenuation of the signal energy by a
factor of 7 2, where r is the range from the source. Further from the source, the ver-
tical propagation of the sound energy reaches the limits imposed by the sea bot-
tom, sea surface, or sound channel. At this point, the wavefront begins to radiate in
a cylindrical fashion from the source, and the resulting attenuation of the signal
energy is by a factor of .

While the speed of sound and spreading losses are independent of the fre-
quency of the sound, the absorption of sound by the water is highly dependent on
frequency. The absorption of sound by the water is the result of the conversion of
acoustic energy into heat. A number of physical mechanisms govern this conver-
sion (see [3] for a complete description). Formulas such as Eq. (3.3.6) in [3] are
available to compute the attenuation rate of sound due to absorption in sea water.
Figure 8.4 shows the attenuation coefficient in dB/kilometer as a function of fre-
quency for sound in sea water at the sea surface with a temperature of 14 degrees
Celsius and salinity of 35 parts per thousand. As can be seen, the attenuation coef-
ficient rises rapidly with frequency, effectively limiting the channel bandwidth at
all but very short ranges.

Acoustic signals are attenuated by interaction with the sea surface and sea
floor. The losses are caused by rough surface scattering at both interfaces and
absorption losses within the bottom. When the sea surface is rough, the reflection
of the acoustic energy from the surface is not specular but is scattered in a multi-
tude of directions. Most of the energy that is scattered in a direction other than the
direction of the receiver is effectively lost. While the sea floor does not perfectly
reflect acoustic signals, the reflected signals also contain a mixture of specularly
reflected and scattered signals. Once again, the energy in the scattered signal is
lost. In addition, since the reflection of energy at the sea floor is incomplete, sound
will penetrate into the bottom. The absorption of sound in the bottom is signifi-
cantly higher than that in the water, resulting in further signal losses.

In the deep oceans, the presence of the sound channel limits the surface and
bottom interaction. Sound propagating in the SOFAR channel interacts with neither
the sea surface nor sea floor and can travel for long distances with no attenuation
other than spreading losses and absorption by the water. Any sound that leaves the
sound channel and interacts with the sea surface or sea floor is attenuated quickly
and is often ignored at ranges past a few times the water depth. However, in shal-
low water the lack of a mid-water sound channel makes surface and bottom re-
flected signals a significant portion of the propagating sound. On all but the calmest
of days, the rough characteristic of the sea surface yields nonspecular scattering of
the sound. The scattering loss associated with sound interaction with the sea surface
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and the scattering and absorption loss associated with sound interaction with the
sea floor conspire to reduce the effective range over which sound will travel in shal-
low water. Bottom interaction losses are most prevalent in the presence of down-
ward refracting sound speed profiles, such as that shown in Figure 8.3. See [2] for a
more complete treatment of these effects.

A second major determinant of the received signal-to-noise ratio is the ambi-
ent noise present in the ocean. There are many sources of ambient noise in the
ocean, including breaking waves, marine life, and passing ships. The nature of the
noise depends strongly on its source. Significant noise can be generated by marine
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organisms such as whales, fish, and shrimp. In the case of shrimp, the noise is
highly impulsive and can severely disrupt the operation of a communications sys-
tem [4, 5]. Another significant natural source of ambient noise is that generated
near the surface of the ocean by breaking waves and rain. Since the generation of
breaking waves is primarily driven by the winds, noise generated by these sources
is highly dependent on the weather conditions [38]. Man-made sources of noise in
the ocean contribute to the ambient noise as well. Predominant among these
sources are ships’ propulsion machinery. With a large number of possible sources
in the ocean, the level of the total ambient noise field can vary widely. In one loca-
tion over a several-week period, measured noise levels ranging from 90 dB to 120
dB were reported [6].

Ignoring the losses due to surface and bottom interaction, signal fading due
to multipath effects, and the effects of shadow zones (regions where rays of sound
will not reach), the average signal power at a range r from a narrowband source
can be estimated by

SL =169 dB + 101og,, (P) — agr — 201og,, (d/2) — 10log,, (r —d/2). (8.4)

Here, SL is the signal level in dB, P is the radiated signal power in watts, o is the
absorption coefficient in dB/meter, r is the range in meters, and d is the ocean
depth in meters. It has been assumed here that the radiating transducer is omnidi-
rectional and that r > d. The first two terms account for the radiated power, the
third term accounts for absorption loss, the fourth term approximates spherical
spreading loss, and the final term approximates cylindrical spreading loss. Assum-
ing a center frequency of 15 kHz, the water conditions used to generate Figure 8.4,
a water depth of 50 m, and a radiated power of 20 W, the average signal power as
a function or range (in kilometers) is shown in Figure 8.5. Assuming that ambient
noise conditions range between 90 dB and 120 dB, as reported above, signal-to-
noise levels can be seen to range from 32 dB to 2 dB at 1-km range and 8 dB to
-22 dB at 10-km range.

8.1.4 The Multipath Propagation Model

As in the case of RF systems discussed in earlier chapters, multipath propagation
is one of the dominant environmental influences on the performance of acoustic
communications systems in the ocean. This multipath is usually time-varying, and
there are many sources of the temporal fluctuations. These include internal waves
(i.e., vertical movement of the inhomogeneous layers of the water mass), internal
turbulence, tidal flows, surface waves, and platform motion. Researchers have
long attempted to develop a stochastic framework for characterizing and analyz-
ing the effect these fluctuations have on acoustic signals. The seminal work in this
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area was published in 1979 and reviewed in 1983 [7, 8]. These works concentrate
on analyzing the effect of internal waves on acoustic propagation in deep water.
However, the paradigm developed therein of decomposing the path followed by
sound into micro- and macro-multipath structure serves as a useful starting point
for analyzing more general environmental fluctuations. Analyzing these fluctua-
tions in the shallow-water environment continues to be an active area of research.
Chapter 10 of [2] also contains a good treatment of the subject. The analysis in [7]
and the many derivative publications consider the propagation fluctuations for a
propagating monochromatic signal. In Section 8.1.4.1, this method of analysis is
detailed. In Section 8.1.4.2, the results from Section 8.1.4.1 are extended to include
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wideband signals and yield a description of the fluctuations in the input/output
response of the channel.

8.1.4.1 Micro- and Macro-Multipath

The micro- and macro-multipath classification decomposes the acoustic channel into
that portion whose characteristics depend on slowly varying and quasi-deterministic
properties of the ocean and that portion whose characteristics depend on rapidly
varying stochastic properties of the ocean. We begin by representing the spatially and
temporally varying sound speed structure of the ocean, using

c(z, h=c,(1 + U,z D+ uzt). (8.5)

Here, ¢, represents the nominal sound speed, z is the spatial position vector, and
U, (z, 1) represents the spatially and temporally variant changes to the index of
refraction caused by static or slowly changing environmental factors. Such factors
include pressure changes with depth and the variations in water temperature and
salinity caused by tidal cycles, daily heating and cooling, seasonal changes, and
large-scale geographic variations. The term u(z, f) represents the rapid changes to
the index of refraction caused by such sources as internal waves and turbulence.

Suppose a source at a particular location transmits a signal ¢/ and suppose
that signal is received by a sensor at another location. Assume that there are no
rapid stochastic fluctuations in the environment (i.e., u(z,t) = 0), that the sea sur-
face is flat, and that the sea floor has only large-scale features. Here, the terms small
and large scale refer to spatial scales that are small or large with respect to the nom-
inal acoustic wavelength, 2rc_ /. Let X, (t, w) be the portion of the received signal
that would propagate along the Ith ray connecting the source to the receiver. We
can express X ((t, w) as

X,(t w) = H(t, w)e'”, (8.6)

where H,(t, ») is a complex-valued function that accounts for the slowly varying
phase delay and attenuation of the signal propagating along the Ith ray. H, (¢, @)
depends not only on ¢, and U, (z, 1) but also on the source and receiver positions
and the large-scale bathymetric features of the sea floor. The rays defined under the
above assumptions (e.g., the solid lines in Figure 8.1) are referred to as the macro-
multipath structure of the channel.

If we remove the three aforementioned assumptions, the sound would not
necessarily follow the rays defined by the macro-multipath structure. Instead, the
sound would be refracted and scattered by the small-scale features represented by
u(z, t) and the roughness of the sea surface and sea floor. In this case, the actual
path followed by the sound is modeled as staying within a ray tube surrounding
the nominal ray. In Figure 8.1, the gray regions represent the ray tubes surround-
ing each nominal ray. For small-amplitude or large-scale environmental fluctua-
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tions, the sound may follow a single perturbed path within a ray tube. As the
amplitude of the fluctuations increases and their scale decreases, the single path
followed by the sound may split into many micropaths within the ray tube. Thus,
the portion of the received signal that propagates within the /th ray tube will be the
sum of signals that propagate along the one or more micropaths within the tube.
These micropaths constitute the micro-multipath structure of the channel. Account-
ing for the combination of signals propagating along the micropaths within the ray
tube, we can express the portion of the received signal that propagates through the
Ith ray tube as

X,(t, ) = W,(t, )X, (t, ) = ¥, (t, w)H,(t, w)e". (8.7)

Here, ¥, (t, ») accounts for the fluctuations in the received signal due to the micro-
multipath structure of the /th ray tube.
Accounting for all of the rays between the source and receiver, the received

signal can be expressed as
1

X(t, )= X,(t o), (8.8)
I=1
where it is assumed that there are L rays. For different rays between the source and
receiver, the ray tubes in the channel generally have little overlap. Thus, unless the
scale of the environmental fluctuations is as large as the separation between rays,
the micro-multipath-induced signal fluctuations in different ray tubes will show
little correlation. This behavior is discussed more fully in Section 8.1.4.3.

The amplitude and spatial scale of the stochastic component of the envi-
ronmental fluctuations determine the nature of the fluctuations in the micro-
multipath structure of the channel. When these environmental fluctuations have a
very small amplitude or the scale of the environmental fluctuations is greater
than or equal to the radius of a ray tube, the signal will follow a single perturbed
path within each ray tube. The channel in this case is said to be unsaturated. For
slightly stronger fluctuations and with the same scale of fluctuations, the signal
will simultaneously propagate along several perturbed paths within each tube
and the perturbations in the paths will be coherent. A channel showing these
characteristics is said to be partially saturated. If the strength of the fluctua-
tions increases beyond this level or if the spatial scale of the environmental fluctu-
ations becomes smaller than the radius of a ray tube while the strength of the
fluctuations remains modest, the channel will be fully saturated. In this case, the sig-
nal will follow many perturbed paths within the ray tube, and the path perturba-
tions will be independent.

The likelihood of encountering a fully saturated channel will increase if either
the range from source to receiver is increased or the frequency of the signal is in-
creased. Results in [25] indicate fully saturated channel conditions at a frequency of
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50 kHz and range of 1 km. Reference [38] indicates the onset of full channel satura-
tion at a range of 60 km for a frequency of 1 kHz. Analysis in [9, 10] indicates this
onset at a range of around 5 km for a frequency of 20 kHz. Reference [40] reports ex-
perimental results indicating either an unsaturated or partially saturated channel at
ranges of 2 to 5 km and frequency of 10 kHz. While these results provide rough
guides as to what channel conditions yield saturation, the actual degree of satura-
tion will be highly dependent on the dominant local sources of micro-multipath
fluctuations in the region of propagation.

The theoretical analysis in [9, 10] does not consider the fluctuations caused by
surface scattering. References [11, 12, 13, 14] as well as Chapter 9 of [2] contain
explicit treatments of surface scattering effects. Experimental evidence [15] also in-
dicates that bottom scattering can have a significant effect on the micro-multipath
fluctuations in the shallow-water acoustic communications channel.

8.1.4.2 Wideband Channel Characterization

The monochromatic signal results from the preceding section can be extended to
yield a wideband characterization of the channel between source and receiver [16].
The particular characterization we use is the input delay-spread function [17]
denoted by g(t, 7) and discussed in Chapters 1 and 3. The channel input/output
relationship using the input delay-spread function is

() = Ji g(t, D)s(t— 1) dr. 8.9)

Here, s(f) is the channel input and x(f) is the channel output. We can see that if the
input delay-spread function is independent of the time f, g (f, 7) reduces to the time-
invariant impulse response. Denote the Fourier transform of s(#) by S(w) and define
the time-variant transfer function, G(t, ), using the Fourier transform relation

G, w) = J C g, 1)el dr. (8.10)
It is then straightforward to show that
x()= 5= r G(t, »)S(@)e do. (8.11)

With the Fourier transform of the transmitted signal denoted by S(w), we can
exploit the linearity of the channel to express the portion of the received signal that
propagated through the Ith ray tube as

5 () = 5 J: S(@)X,(t, w) do. (8.12)
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Substituting (8.7) into (8.12) and defining
Gt w) =", w)H,(t, w) (8.13)
yields

(D = % Jl G, (t, )S(w)e!™ do. (8.14)

Comparing (8.11) and (8.14), we see that G, (t, w) is the time-variant transfer func-
tion of the /th ray tube.

To calculate the input delay-spread function of the Ith ray tube, g, (¢, 1), we
begin with

1 * jot _ 1 ” jwt
&t D)= 5— J Gt ) do= 5~ L ¥, (t, w)H, (t, w)e/ dw. (8.15)

Denote the micro-multipath input delay-spread function of the Ith ray tube as y, (t, ).
Then,

¥, (t, w) = r w (b A)e ™ d. (8.16)
Substituting (8.16) into (8.15) and rearranging yields

gt )= J : w(t, ;t)[%r H,(t, w)e*t dw] di. (8.17)

Note that the term in the brackets is the macro-multipath input delay-spread function
of the /th ray, which we denote as /1,(t, T — 1). We can then rewrite (8.17) as

gt 1) = r wy(t Dhy(t 7 — 2) da. (8.18)
The input delay-spread function of the /th ray tube is therefore equal to the convo-
lution in the delay variable of the macro- and micro-multipath input delay-spread
functions for the /th ray and ray tube, respectively.

Combining the input delay-spread functions for all ray tubes, the channel
input delay-spread function is given by

L
gt )= gt ). (8.19)
=1

Figure 8.6 shows a snapshot in time of the input delay-spread functions that
could correspond to the propagation paths shown in Figure 8.1. The solid black
impulses represent the macro-multipath input delay-spread function for each of
the rays, and the gray shaded regions represent the scaled and translated micro-
multipath input delay-spread functions for each of the ray tubes. For each ray tube,
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Figure 8.6 Snapshots of acoustic channel input delay-spread functions.

the total input delay-spread function is the convolution of the micro and macro-
multipath functions. Note that the slowly varying macro-multipath structure
influences primarily the delay and amplitude of the cluster of arrivals for each ray
tube. Thus, the relative delays and amplitudes of the clusters of arrivals at one or
more sensors will change on a time scale commensurate with that of the macro-
multipath structure. The rapidly varying micro-multipath structure for each ray
tube influences the detailed shape of the arrival for that ray tube and induces a
temporal spreading of the arrivals for each tube. Thus, the particular structure of
the arrivals within each cluster will change on a time-scale commensurate with the
micro-multipath structure. Note that the temporal spreading function is different
for each of the tubes.

Figure 8.7 shows a snapshot of the amplitude of the estimate of the complex
baseband input delay-spread function for a channel in shallow water. For this
example, the water depth was approximately 20 m, the distance from transmitter
to receiver was approximately 200 m, and the signal covered a frequency range of
11.5 to 17.5 kHz.

Figure 8.8 shows the temporal evolution of the amplitude of the same esti-
mated input delay-spread function over a 1.75-s interval. The estimates were made
with a deterministic least squares algorithm with an averaging window of 0.02 s.
The horizontal axis represents delay, the vertical axis represents absolute time, and
the amplitude is represented in the gray scale. Here, there are two major clusters of
arrivals. The first shows small temporal fluctuations while the second path fades in
and out over intervals of 0.4 s.
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Figure 8.7 Snapshot of short range input delay-spread function.

Finally, Figure 8.9 shows the temporal evolution of the phase of the same esti-
mated input delay-spread function.

Notice that the taps corresponding to the first significant cluster of arrivals as
identified in Figure 8.8 show a slow but continuous phase drift. However, during
the intervals when the taps corresponding to the second cluster of arrivals have
significant amplitude, those taps show no such phase drift. The phase drift in the
taps for the first cluster is the result of a Doppler shift along the corresponding ray
tube and is discussed in Section 8.1.5. While the delay spread for this very short-
range channel is only 6 ms, spreads exceeding 80 ms are common in longer-range
channels (e.g., see Figure 8.10).

8.1.4.3 Spatial/Temporal Channel Statistics

The micro- and macro-multipath decomposition of the channel allows us to pre-
dict the spatial and temporal channel statistics as a function of the level of satura-
tion of the channel. We can represent the input delay-spread function for a channel
by clusters of taps in a tapped delay line, each tap having a time-varying and
complex-valued weight applied to its output. Each cluster corresponds to the input
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Figure 8.8 Evolution of input delay-spread function (amplitude).

delay-spread function for a particular ray tube. When the channel is either unsatu-
rated or partially saturated, the fluctuations of the tap weights within a cluster
will be coherent. However, when the channel is fully saturated, the incoherent fluc-
tuations on each micropath within the ray tube will induce independent fluctua-
tions in the tap weights within a cluster [25]. Whenever the spatial scale of
environmental fluctuations is smaller than the separation between ray tubes, the
fluctuations of the tap weights in different clusters will be independent of one
another.

When examining the coherence among tap weights corresponding to the
channels from a transmitter to two spatially separated receivers, we must first
establish a pairing of the clusters of arrivals in each of the channels. Assume that
we start with the two receivers located at the same point and establish a pairing
between the individual clusters of arrivals at each receiver. Then, as we move
one of the receivers and adjust the ray tubes to follow that receiver, we maintain
the same pairings between the clusters of arrivals at that receiver and the clusters
of arrivals at the stationary receiver. As long as the adjusted ray tube in a pair can
be treated as a continuous perturbation of the original ray tube, we may continue
to treat the two clusters of arrivals corresponding to the two ray tubes as belonging
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Figure 8.9 Evolution of input delay-spread function (phase).

to the same basic ray. When the channel is either unsaturated or partially saturated,
there will exist some coherence between the tap weight fluctuations for the clusters
of arrivals at each receiver belonging to the same basic ray. This coherence will
decrease as the spatial separation of the receivers increases. At some point, when
the separation between the paired ray tubes exceeds the spatial scale of the envi-
ronmental fluctuations, this coherence will be lost. When the channel is fully satu-
rated, coherence between the corresponding taps of paired clusters will be lost
whenever the receivers are separated.

For the case of unsaturated or partially saturated channels, it is interesting
to compare the interpath coherence at a single sensor (i.e., the coherence between
taps in different clusters at one receiver) with the intersensor coherence for a sin-
gle path (i.e., the coherence between taps in paired clusters at different receivers).
Our analysis above tells us that for channels that are not fully saturated, the in-
tersensor coherence for a single path will be greater than the interpath coherence at
a single sensor. This coherence structure can be exploited in the development of
multichannel demodulation algorithms, as discussed in Section 8.4.4.

Correlation analysis of the estimates of the input delay-spread function,
using the same experimental data used to generate Figures 8.7 through 8.9, gives
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Figure 8.10 Sparse channel estimate history.

us examples of this coherence structure. The transmitted signal was received at 4
sensors. The sensors were located on a vertical line with an intersensor spacing of
1 m (approximately 10 wavelengths at the center frequency). For each sensor, the
taps corresponding to the largest clusters of arrivals were identified. In each case,
there were two significant clusters of arrivals. Let the estimate of the mth
significant tap of the complex baseband, discrete-time input delay-spread function
for the kth sensor at time n be denoted by g, , [11]. Assuming that there are M sig-
nificant taps, we let

8k, 1 (1]

gl =]
wmlnl

The time-averaged auto- and cross-correlation coefficient matrices for g, [n]

through g, [11] are shown in Figure 8.11. The top row contains the auto-correlation

coefficient matrices. The second row shows the cross-correlation matrices between
g,[n] and g, [n] through g, [11]. The third row shows the cross-correlation matrices
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Figure 8.11 Channel tap correlation coefficient matrices.

between g,[n] and g,[n] and between g,[n] and g,[n]. Finally, the fourth row
shows the cross-correlation matrix between between g, [n] and g, [#]. In all cases,
the coherent averaging window was 1 s.

The block diagonal correlation structure of the matrices in the first row
clearly shows the strong correlation between the taps belonging to the same ray
tube and the much weaker correlation between the taps belonging to different ray
tubes. Notice that for some of the matrices, the off-diagonal elements for one of the
clusters of arrivals are slightly smaller than those for the other cluster, indicating a
higher level of saturation for the ray tube corresponding to the cluster with the
smaller off-diagonal elements. As predicted by our analysis above, the intersensor
correlation for the taps in the first cluster of arrivals at each sensor is much stronger
than the interpath correlation at each sensor. However, note that the taps in the
second cluster of arrivals at the fourth sensor have a relatively weak correlation
with the corresponding taps at the other sensors, indicating either a higher level of
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saturation on the corresponding ray tubes or a greater spatial separation between
these ray tubes. The significant spatial coherence between arrivals at locations sep-
arated by 10, 20, and 30 wavelengths implies strong possibilities for coherent spa-
tial filtering with arrays of receivers. In addition, it implies that significant
separations between receivers are necessary for spatial diversity techniques which
rely on independent channel fading to be effective.

Strong spatial coherence over an even larger effective aperture has been
reported from another experiment [18]. In this experiment, the range from source
to receivers was 660 m, the water depth was 17 m, the frequency of transmission
was 86 kHz, and the two receivers were vertically separated by 0.992 m (57.7 wave-
lengths). Even with this large receiver separation, significant coherence between
the signals received at the two sensors was observed.

8.1.4.4 The Vertical Multipath Channel

The preceding discussion of the characteristics of the multipath channel is most
applicable to the horizontal channel (i.e., the case where the primary spatial sepa-
ration between the transmitter and receiver is in the horizontal dimension).
However, in some cases, the transmitter and receiver lie on a nearly vertical line
and their spatial separation is primarily vertical. The multipath characteristics of
the resulting vertical channel can deviate significantly from those described above.

The difference in characteristics of the horizontal and vertical channels is pri-
marily due to the different scales of environmental fluctuations in the horizontal
and vertical dimensions. In general, the horizontal gradient of these fluctuations is
much smaller than their vertical gradient. Thus, ray paths connecting a source and
receiver that lie in a vertical line will have little refraction, and the cluster of
arrivals corresponding to a ray tube will show little spreading. The multipath that
does exist will be due to successive reflections of the sound off the sea surface and
sea floor. The resulting multipath structure will show narrow clusters of arrivals
separated by the round-trip propagation time from the receiver to either the sea
surface or sea floor. There will be almost no arrival energy in the spaces between
the clusters. The input delay-spread function of the channel will thus have a sparse
structure in the delay parameter. Algorithms exploiting this sparse structure are
discussed in Section 8.4.2.

8.1.5 Doppler Effects

Until now, we have not paid special attention to channel fluctuations caused by rel-
ative motion of the transmitter, receiver, or significant scattering surfaces in the
environment. As discussed in earlier chapters, when any of these objects moves in
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a manner that causes an increase (or decrease) in the length of a propagation path
between the source and receiver, it induces a corresponding expansion (or com-
pression) of the time axis for the received signal. That is, if the speed of sound prop-
agation is ¢ m/s, the length of a single propagation path is increasing at a rate of
v m/s, and the narrowband signal Re[s (t)ej(”"f] is transmitted, then the noiseless,
undistorted received signal will be

r(t) = Re[s(t(1 = ofc) = 7)ot F) 7],

where 7, is a fixed delay. If the bandwidth of s(t) is small with respect to its center
frequency this scaling of the time axis is modeled as a frequency shift of the signal.
That is, the received signal is given by

r(H) = Re[s(t -7 )gﬂ”o"(l* %)“j")nfo].
0

The mean of the frequency shift of the signal over some window of time is referred
to as the Doppler shift of the signal. Removing this mean, the remaining frequency
fluctuations in the signal are referred to as the Doppler spread of the signal. A signif-
icant source of Doppler spread is the scattering of the sound by the time-varying
sea surface. See [23] for a discussion of this type of Doppler spread.

If a receiver does not compensate for the Doppler shift in the received signal,
there remains an apparent phase rotation in the tap weights of the channel input
delay-spread function at a rate of et Assuming a center frequency of
@y/2n = 15 kHz, the Doppler shift associated with a velocity of 1 m/s is approxi-
mately 10 Hz. Such a phase rotation of the taps of a channel can cause severe track-
ing problems with many adaptive algorithms. However, an important property of
this type of time variation is that it is highly correlated from tap to tap. The recog-
nition and exploitation of this fact in [44] led to a suitable equalizer structure for
phase-coherent communications and is discussed in Sections 8.3 and 8.4.1.

In some situations, the different clusters of taps associated with different ray
tubes can experience different Doppler shifts. A simple example of this is the
situation where two ray tubes lead from the transmitter to the receiver. The first
tube goes upward from the transmitter, bounces off the sea surface, and is reflected
down to the receiver. The other tube goes down from the transmitter, bounces off
the sea floor, and is reflected up to the receiver. Then, if the transmitter moves in an
upward direction, the channel taps associated with the first tube will experience a
negative Doppler shift while the taps associated with the second tube will experi-
ence a positive Doppler shift. Recent research has indicated that the techniques

2As in previous chapters, Re[-] and Im[-] denote the real and imaginary parts, respectively, of
their complex arguments.
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developed in [44] and described in Section 8.4.1 are often incapable of providing
reliable communications when such multiple Doppler shifts are present [19].

8.1.6 Channel Latency and Coherence Times

A final distinguishing characteristic of the underwater acoustic channel is the rela-
tionship between the channel latency (i.e., the time it takes for a signal to propagate
through the channel) and the coherence time of the channel fluctuations. Data pre-
sented and referenced herein indicate that the characteristics of a channel can
change significantly in one-half of a second or less. However, for a channel with a
range of just 1 km, the one-way propagation time from transmitter to receiver is
greater than two-thirds of a second. Therefore, in many situations, the channel can
change significantly in the time it takes for the signal to propagate from the trans-
mitter to the receiver. Such a situation makes it difficult to implement modulation
or coding algorithms that require accurate knowledge of the particular realization
of the channel through which communication is being attempted. Platform motion
can also have a significant effect on multiple-access techniques that require precise
timing of signal receptions. Motion of just a single meter can shift the arrival time
of a signal by two-thirds of a millisecond. This shift can span many channel sym-
bols in a high-rate system and can occur in much less time than it takes a signal to
propagate through all but very short-range channels. Thus, the synchronization of
the user’s transmissions to achieve reception without multiple-access interference
or the use of significant guard bands will be difficult in many channels.

8.2 PLATFORM CONSTRAINTS IN UNDERWATER
Acoustic COMMUNICATIONS

Many applications of underwater acoustic communications involve communica-
tion with or between autonomous underwater vehicles or remotely deployed
instrumentation. In both situations, the communications system faces significant
constraints on the permissible size of the communications equipment and on the
power available to this equipment.

The size constraint can limit the choice of the operating frequency of the sys-
tem. In general, the power efficiency of an acoustic transducer is proportional to
the ratio of its size to the acoustic wavelength. So, in order to obtain an efficient
transducer with which to transmit the sound, a high frequency must often be used.
However, the high-frequency sound will experience greater attenuation in the
water than would lower-frequency sound. Thus, the frequency must be chosen to
obtain a balance between transducer efficiency and signal absorption.




Sec.8.3 A Brief History of Underwater Acoustic Communications 353

The constraint on available power most obviously limits the signal energy
that can be radiated. However, this constraint also places limits on the complexity
of the modulation and demodulation algorithms that can be used in a system. In
general, the power consumed by a processor is proportional to the computational
capability provided by that processor. Thus, the power constraint also constrains
the computational capability available to implement modulation and demodula-
tion algorithms. Combining the rapidly changing multipath channels whose delay
spreads approach a hundred symbols with significant power limitations on
oceanographic instrumentation or autonomous underwater vehicles, the compu-
tational complexity of demodulation algorithms can quickly exceed the available
computational capability. For this reason, the development of computationally
efficient algorithms is an important and active area of research. Some past and cur-
rent work in this area is discussed in Sections 8.4.2 and 8.4.4.

8.3 A BRIEF HiSTORY OF UNDERWATER AcousTiIC COMMUNICATIONS

There has been considerable progress in improving communications over the
channels discussed in the preceding sections. Here we identify those communica-
tion techniques that have advanced the field. This section is not intended to be an
exhaustive historical review, and the reader is directed to [21] for a review of
underwater acoustic communications prior to 1967, to [22] and the references
therein for a review of acoustic telemetry prior to 1983, to [23] for a review of recent
advances in phase-coherent underwater acoustic communications, and to the arti-
cles in [24] for reviews of modulation techniques, equalization and coded modula-
tion as applied to the UAC.

Underwater acoustic communication systems can be classified according to
how the transmitter and receiver combat the effects of multipath fading. Important
to this classification is the concept of diversity, which, as discussed in Chapter 1, is
the transmission of the communication message through independently faded
channels [31]. Explicit diversity is characterized by intentional transmissions through
distinct subchannels in time, frequency, geometric space, or waveform space. Due to
the independence of the subchannel fading processes, the channel error probability
is exponentially decreasing in the number of retransmissions, or diversity order.
Coding across these subchannels (other than repetition coding) is known to make
efficient use of the channel bandwidth [31]. Implicit diversity can be achieved by
spectrally spreading the message signal over a single transmission band having a
width W much larger than the coherence bandwidth of the channel. This wideband
signal can be used at the receiver to resolve and identify the individual multipath
arrivals spaced in delay by more than 1/W [32]. If these complex amplitudes can be
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accurately estimated and tracked, a receiver can use implicit diversity to achieve an
error-rate improvement identical to that of explicit diversity [33]. Using the concept
of diversity, underwater acoustic communication systems can be grouped into three
classes, as to whether the links use (1) no diversity techniques, (2) only explicit di-
versity reception, or (3) at least implicit diversity processing.

The first class of underwater acoustic communication systems includes those
that did not employ diversity techniques. This class includes most of the early
analog communication systems, which used careful hydrophone placement to com-
pensate for multiple path propagation via distinct angles of arrival. The develop-
ment of reliable underwater acoustical communications began after World War II
with the Gertrude, an analog, amplitude-modulation system that permitted com-
munication to submarines [25]. Single-sideband derivatives of the Gertrude are still
used in modern diver communication systems [26] and perform well for vertical or
ultrashort-range horizontal links with negligible multipath propagation.

Several digital underwater acoustic communication systems also belong to
this first class. The development of digital UAC links were reported as early as 1960
[27, 28]. These systems dealt with multipath by acoustic baffling and by using very
low rate channel codes [29]. A typical digital communication system of this type, de-
scribed in [30], permitted 4800 bits per second (BPS). Early implementations of
multiuser detectors for UACs did not employ diversity methods and minimized
multipath-induced distortion by transmitting vertically through the water column
[36]. Digital communication links through horizontal, shallow-water channels have
also been designed without diversity techniques [39]. In this case, multipath propa-
gation was avoided through the use of many transmit transducers.

The second class of underwater communication systems use explicit diversity
reception. Most of these systems employed digital modulation. Perhaps the most
carefully documented communication link of this class is the digital acoustic teleme-
try system (DATS) [34]. The DATS was designed for transmission of digital data in
an environment that exhibited frequency-selective multipath fading and extreme
phase instability. The DATS transmitted coded data using on-off, multiple-
frequency shift keying modulation in the 45-55 kHz frequency band, provided a
coarse word synchronization reference with a gated 30 kHz header tone, and a pro-
vided continuous 60 kHz pilot tone for Doppler tracking. In one implementation
of DATS, a 400 BPS digital data stream was transmitted at a baud (symbol) rate of
100 Hz by encoding 4 bits per baud with an (8,4)-Hamming code. The Hamming
codeword elements selected from eight tones spanning 2 kHz at each baud period.
A slow frequency-hopping scheme translated the set of eight tones for each baud pe-
riod to minimize intersymbol interference. The receiver coherently estimated the
Doppler shift with a phase-locked loop (PLL) whose output was used to adapt the
downconversion carrier, nominally at 50 kHz. The DATS detector tracked the hop-
ping pattern to determine the frequency span for the current word and implemented
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an inverse FFT to extract the squared magnitudes of the received gated tones. Non-
coherent, soft-decision detection was used to estimate the 8-bit codeword.

Since the coherence bandwidth of the UAC in [34] was 2 kHz, the above sys-
tem did not utilize frequency diversity per se. However, trivial changes in the
implementation would permit eightfold diversity reception. Variants of this com-
munication system are still under investigation [35]. Several commercially pro-
duced acoustic modems follow the DATS format and permit reliable transmission
through highly reverberant multipath channels at modest complexity [37]. This
communication link is quite insensitive to Doppler shifts as well. In the configura-
tion described above, the DATS system can tolerate about 600 Hz of Doppler shift
if the PLL is successfully tracking the pilot tone, and about 25-50 Hz of Doppler
shift when the pilot PLL loses lock on the received tone. Since 0.5 m/s corresponds
to 17 Hz of Doppler shift for an underwater acoustical tone at 50 kHz, this Doppler
tolerance translates to a relative platform drift between 1 m/s and 8 m/s. Other
configurations of the DATS have been reported for deep water channels [43].

The third class of underwater acoustic communication systems includes
those modems that utilize implicit diversity reception. Specific examples of
implicit diversity reception include RAKE filtering, fractionally spaced decision-
feedback equalization, wideband array processing, and echo cancellation. Explicit
diversity reception can be used in these systems as well. Digital underwater
acoustic links in this class have demonstrated the greatest spectral efficiency to
date (measured in BPS per Hertz of transmission bandwidth) of all systems oper-
ating with the same number of sensor elements, input signal-to-noise ratio (SNR)
and bit error rate [23]. Communication links that employ implicit diversity pro-
cessing have shown the greatest promise to provide reliable, high-speed, and
power-efficient links. As of this writing, research is most active for these types of
communication systems, and digital signal processing techniques for implicit
diversity systems are the focus of the remainder of this chapter.

Perhaps the earliest reference to single-sensor implicit diversity for UACs is
[41]. In that work, coherent echo cancellation compensated for intersymbol interfer-
ence in a phase-shift keying (PSK) communication system. References to adaptive
equalization as a means to provide high-speed underwater acoustic communica-
tions appeared in the literature in the early 1990s [42]. Much work has been done on
the development of demodulation algorithms for multichannel receivers, and it re-
mains an area of active research [16, 39, 45, 47, 86, 87, 88, 89, 90].

An impetus for current signal processing research in UACs is provided by
the results in [44] for single-sensor reception and [45] for multisensor reception.
These works demonstrated the feasibility of high-rate phase-coherent digital com-
munications through highly reverberant shallow-water channels, by means of
adaptive channel equalization. With regard to current research in this field, the
most important contribution of [44] was a decomposition of the time-varying input
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delay-spread function of shallow-water channels into two tandem subsystems: a
complex baseband input delay-spread function whose coherence time spanned
hundreds of milliseconds, and a unit-gain complex amplifier whose instantaneous
phase is approximately affine over tens of milliseconds. This second subsystem
accounts for the Doppler shift introduced by relative platform motion, as was dis-
cussed in Section 8.1.5. Prior to this work, it was thought that shallow-water chan-
nel taps exhibited mutually uncorrelated temporal trajectories, both in magnitude
and phase. Adaptive channel identification under this hypothesis would usually
not produce convergence within the coherence time of the overall channel. In
hindsight, the (common) phase variation of all taps yielded a rapidly time-varying
channel over the averaging window for the estimator. The work in [44] presented
the first demonstrable evidence that the phase trajectories for significant input
delay-spread function taps were strongly correlated and that the common phase
rotation of these taps could be tracked by a single, second-order, digital PLL.
Employing a common phase correction, an adaptive, fractionally spaced, decision-
feedback equalizer (DFE) was shown to converge and compensate for the channel
distortion. Convergence of equalizer taps is not possible in some shallow-water
channels without this phase compensation. This result is quite different from
equalization for twisted-pair links, whose (few) equalizer taps may converge in the
absence of common phase tracking, even for similar frequency offsets. An analysis
of the effects of residual phase errors on adaptive equalization is presented in [46].

8.4 SIGNAL PROCESSING IN DiGITAL UNDERWATER COMMUNICATIONS

In the remainder of this chapter, we describe some of the ways that advanced signal
processing can enhance the performance of underwater communication systems.

8.4.1 Detection of Linear Digital Modulation

We begin by reviewing the detection strategy presented in [44] for coherent detec-
tion of single-sensor reception of linear digital modulation. Multisensor reception
is reviewed in another section. Both the channel model and the adaptive filtering
metric are described in the deterministic, weighted least squares framework. Pro-
vided a scalar 2 € (0, 1), there is a temporal window ending at time f, and having
an approximate duration of T/(1 — %) seconds, over which the baseband complex
channel output is modeled as

r(h)=> d,g(tt—nT)+ n()

n

~> d it —nT)e O+ n(, t—t,€[-T/(1—4),0).

n
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Here, g (t, 7) denotes the input delay-spread function as discussed in Section 8.1.4.2,
{d }o~L represents a known or accurately detected complex symbol sequence,
|1, — t,/T] = 0, T denotes the channel symbol (or baud) period, ¢ (£) is an unknown
affine function described in Section 8.1.5, h(7) is an unknown, deterministic, time-
invariant impulse response, and n(t) is baseband, complex, stationary Gaussian
noise with a flat power spectral density over the transmission bandwidth. It is
assumed that the “forgetting factor” A was chosen to maximize the temporal win-
dow width for which g(¢, 7) = h(1)e/”®. 1t is also assumed that coarse synchroniza-
tion has provided an approximate temporal reference for the impulse response and
that Doppler compression is expressed as a phase rotation. Coarse synchronization
may be achieved by preceding a data packet by a brief signal whose energy spec-
tral density is broad.

An adaptive, fractionally spaced, DFE was proposed in [44] as a receiver
structure and is shown in Figure 8.12.

The feedforward filter samples the observation at rate 1 / T,, an integer multi-
ple of the symbol rate 1/T, and produces outputs at times nT. After phase correc-
tion, the output at time n,T is Pyr where®

-i )
pn — aHr(Tl, T)E ]((UdVH'[)’

8.20
t(n, 1) = [r(T + N,T,+ 1) - r(nT — N,T, + 7)]", (520

where a, w,;, and 0 and r are filter coefficients. The fractionally spaced front end
is especially adept at correcting for an error between 7, and the true timing
phase [48]. The filter’s temporal span T,(N; + N, + 1) should be chosen to allow

Te-spaced
feedforward filter
rate 1/Tj rate 1/T P 4 -
r(t) — N =\ - decision | dy
device
contents: r(n)
coefficients: a(n) T-spaced
feedback filter

contents: d(n)
coefficients: b(n)

Figure 8.12 Adaptive, fractionally spaced, decision-feedback equalizer.

3The superscript " denotes the conjugate-transpose operator. The superscript T denotes the trans-
pose operator.
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for nonminimum phase responses, such as the one shown in Figure 8.9, and resid-
ual timing jitter due to Doppler dilation/compression.

The feedback filter in Figure 8.12 linearly combines M previous symbol deci-
sions to suppress residual causal intersymbol interference and forms g, at time
n,T, where

q,="b"d(n)

d(?’l) = [anfl gin—M]T‘

The complex predecision variables &n =p, — q, are quantized to form final deci-
sionsd,.

The adaptation rules presented in [44] yield extremal solutions for the deter-
ministic weighted squares metric

(8.21)

T @b w,0)=S |, —alk e s vlam |t (8.22)
k=0

Gradients of 7, with respect to the receiver parameters can be obtained
directly from the observations and take the form*

= (Z }L”kv(k)vH(k))a— (z ok k)d“(k)) (Z 2k, )
k=0 k=0

%Vbj” = (—Z VAR (5)'a (k)) a+ (Z 2 kd(kd” (k)) b+ (Z Rk, )

k=0 k=0

A
S
|

a B n P
-::)-?)—‘7;1 = +2Im Z. 2 pk nek )7] 4
k=0
- (8.23)
n
(:) _ ~n—k £
a(ud ‘7'1 = +2Im kg'() A" kpk, nek, n:I ’
J . - R ﬂkpk,n_pk—l,n *
orIn = T2Re kgoﬂ” —Ts—ek,n]/
wherep, , = a’(n)v(k), and € n = Prn — b m)d(k) - El In these equations, we have

made the subst1tut1on v(k) = r(k, r)e /@an*"%) and we have suppressed the nota-
tional dependence of v on the receiver’s phase and synchronization parameters. We
have denoted extremal values of filter parameters for cost 7, with the index 7 in the
defining expressions for p;, , and ¢, ,. A backward difference approximates the for-

“The gradient of J with respect to a complex vector v=x+ jyis defined as V.7 = V,J +jV, 7. A
complex vector w is normal to this gradient if Re CAME
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mal derivative in the last expression. The gradients for aand b are usually decoupled
from the unknowns 0, @,, and 7 by use of precomputed estimates. The extremal equa-
tions for a and b can be rewritten to reveal the recursive structure of their solutions,

R(n)[f)] = y(n),

. < | V()
y(n) =/iy(n—1)+d (n)[

~-d(n)
v -v(nd’ <n>], RCD -0

], y(-1) =0, (8.24)

RO =Re= 1+ [—d(n)vH () dmd ()

The sequence of extremal equalizer parameters {a(n), b(n)} can be found by
any version of the recursive least-squares (RLS) algorithm, as this structure shows.
A numerically stable implementation of an order 10N (per update) RLS algorithm
was suggested for the shallow-water acoustic channel [44], and a development of
this algorithm can be seen in [50]. Here, N is the number of real coefficients in the
recursion 2(1 + N; + N, + M). Estimation for the synchronization and phase can
proceed in a variety of ways. For modest Doppler shifts, the phase estimate can be
obtained via a second-order phase-locked loop (to track the affine trajectory). The
synchronization update can be achieved by an early delay-lock loop, as suggested
by the gradient 4.7, /97,. An extension of these results can be found in [45] for the
multiple-sensor case and in [51] for high Doppler environments.

Adaptive linear equalization has also been applied successfully to the verti-
cal acoustic channel, which usually exhibits longer coherence times. Since the
direction of propagation is tangential to the thermal gradient, multipath due to
refraction is minimal. However, transmission from mid-depth to the surface is
known to produce an extremely high multipath spread due to bottom reflections,
as discussed in Section 8.1.4.4 and in [52]. In at least three instances, coherent or dif-
ferentially coherent phase modulation was achieved in the vertical acoustic chan-
nel by adapting a linear equalizer according to a least mean squares (LMS)
algorithm for well-conditioned input data [52, 53, 54]. The extremal conditions for
linear equalization may be seen by forcing b = 0 and ignoring the gradients for b,
in (8.23). Several approaches suggest self-adaptive versions of the LMS algorithm,
which varies the step sizes for each gradient in order to reduce both the conver-
gence time and tracking error, e.g., [52]. The reader is referred to [55] for a review
of self-adaptive LMS algorithms and to [56] for a review of the convergence and
tracking properties of the LMS family of algorithms.

The work in [44] has suggested that RLS-based adaptive equalization is
required for rapidly varying shallow-water acoustical channels. Once the channel
taps are derotated by the phase compensator, as shown in Figure 8.12, then the
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coherence time of the residual channel is lengthened considerably and permits
accurate channel tracking. Despite several well-known reports of the superior con-
vergence properties of RLS algorithms over LMS algorithms [31], there exists a
preference for the latter in the underwater acoustic communications literature.
Most authors prefer LMS because of the order O(N) complexity (floating-point
operations (flops) per update) of LMS to the order O(N?) complexity of the (stable)
conventional RLS algorithm. These authors cite improvements in convergence
time of newer members of the LMS family, as reviewed in [56] and references
therein. RLS proponents counter with the O(N) complexity of the numerically sta-
ble, fast transversal RLS (FTRLS) algorithm [49]. At least one work has employed
an RLS-based update for the feedforward taps, for which the input data is not well
conditioned, and an LMS-based update for the feedback taps, for which the input
data is usually white [79]. Regardless of the vantage point of these works, two
attributes are considered crucial for an adaptive receiver in shallow water: fast con-
vergence time and low computational complexity.

In the next section, we summarize research efforts to combine these features
in detection algorithms. Rather than focusing on the usual attempts to reduce
complexity by minimizing computational redundancies, we concentrate on work
that exploits the natural sparseness of the impulse response magnitude of the
UAG, as well as cases for which the baud rate dominates the Doppler spread (re-
ciprocal coherence time) of the channel.

8.4.2 Complexity Reduction in Adaptive Detection

Implicit diversity, which is usually attained via wideband signaling, permits the
resolution of paths spaced by no less than the reciprocal of the transmission band-
width. As the channel symbol rate has increased in underwater acoustic applica-
tions during the last decade, both the channel resolution and the channel memory
have increased as well. The memory of the communication channel refers to the
multipath delay spread, normalized by the channel symbol period. The channel
memory is an important characterization in partially coherent reception of linear
digital modulation because the number of parameters in an adaptive receiver is
typically proportional to the worst-case channel memory. For example, a fraction-
ally spaced DFE requires enough feedforward parameters to span the group of
delay taps corresponding to the principal arrival, including uncorrected tap drift,
and the symbol-spaced feedback taps should span the memory of the residual
impulse response. Consider a medium-range horizontal acoustic link with a worst-
case multipath spread of 40 ms and a baud rate of 2,500. The channel memory for
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this link is 100 channel symbols. If the T/2-spaced feedforward filter spans 16
channel symbols, then the dimension of the feedback filter might be as high as 120.
Doubling the channel symbol rate would double the number of receiver parame-
ters. Since it has been demonstrated that higher baud rates improve the phase
tracking properties of the adaptive receiver [23], the baud rate and channel mem-
ory will tend to increase in future deployments of phase coherent systems.

We begin by establishing a complexity benchmark for our subsequent devel-
opment in this section. To this end, we shall assume single-sensor acquisition and
that O(u) complex parameters will be adapted at the baud rate of R symbols/s (SPS)
for a channel of memory u =T, R, where T, seconds is the temporal multipath
spread. Regardless of whether LMS or FTRLS is used to update the receiver para-
meters, the computational requirements for adaptation will be proportional to
O(T,,R3) flops per second. Thus, the computational burden imposed on battery-
powered acoustic modems operating in a channel with the above dimensions is
roughly 10 times that of modems in an average telephony channel operating at the
same baud rate (see [31], p. 537). In addition, the demodulation complexity for a DFE
is also of order O(T,,R2) flops per second, excluding decoding complexity. Real-time
demodulation of these signals on board an autonomous undersea vehicle (AUV) re-
quires careful design of the hardware and algorithms for onboard modems, which
are usually constrained to use less than 20 W for both hardware and acoustic power.

There are two general approaches for reducing the O(uRj) complexity of the
adaptive receiver described earlier. One class attempts to reduce the complexity
through the parameter update rate, which coincides with the channel baud rate
(Rp) in the above scenario. If the channel baud rate would exceed substantially the
reciprocal coherence time of the channel (often called the Doppler spread), then the
channel taps at one update time are strongly correlated with those of the previous
update time, and the channel estimator (or equalizer parameters) may be updated
less frequently. We describe this class as reduced updating techniques. While these
techniques play a vital role in reducing the computational complexity in some
adaptive receivers, space does not permit a thorough review of current ap-
proaches. Instead, we focus on approaches that find special application in under-
water systems. This second, broader class of algorithms attempts to reduce the
number of receiver parameters relative to the scenario described earlier. Through
these techniques, the parameter dimension in the complexity product is consider-
ably less than the channel memory u. Regardless of whether LMS- or RLS-type
updates are used, we also expect the convergence time to be smaller for this
reduced set of receiver coefficients if the system is not underparameterized. We
refer to algorithms of this type as reduced parameterization techniques. In the
remainder of this section, we review algorithms in this class.
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8.4.2.1 Reduced Parameterization Techniques

There are three well-documented approaches to the reduction of the number of
receiver parameters: waveform shaping, indirect adaptive equalization, and memory
truncation.

Waveform shaping attempts to reduce the memory of the overall input delay-
spread function through signal design at the transmitter. In effect, the transmitter
introduces an additional filter tandem to the communication channel, which yields
an overall input delay-spread function with less memory. While this approach has
been most often employed in time-invariant communication channels, it may be
employed for time-varying systems, using accurate channel information supplied
by the far-end receiver. In underwater systems, this enhancement may be achieved
through a reverse link with a propagation delay that is less than the coherence
time of the phase-compensated channel. Waveform shaping may be performed
with single transducer transmission in this environment but is considerably more
effective when long transmitter arrays are used, as described in [39]. As was noted
in this work, this approach works best in the shallow-water channel with station-
ary platforms and short-range links. Latency and coherence issues for horizontal
channels was presented in Section 8.1.6. For single-transducer transmission, wave-
form shaping may also be achieved by designing a receiver filter to produce an
output with a prescribed and controlled amount of interference. With respect to
overall computational burden, the trade-off in this approach, sometimes called
partial-response equalization, balances the complexities of the front-end filter and the
residual interference suppression. This distortion can be mitigated in slowly time-
varying, 2-way links by channel precoding at the transmitter or by subsequent equal-
ization at the receiver. As an example of the latter approach for long memory
channels, a linear equalizer followed by a maximum likelihood sequence detector
has been considered. Complexity was reduced in part by the design of the linear
equalizer and by a reduction of memory in the subsequent dynamic programming
(Viterbi) algorithm [57]. Linear partial-response equalization followed by Viterbi-
type equalization has been used in a (time-invariant) magnetic recording channel
to reduce complexity.

Indirect adaptive equalization has also demonstrated an ability to reduce the
computational complexity in some time-varying multipath fading channels.
Rather than (directly) adapting the equalizer coefficients in a receiver, this
approach first identifies the unknown channel taps (using a tapped-delay-line
model) and noise statistics and then sets the equalizer to compensate for the chan-
nel model. It has been demonstrated recently that the method of indirect channel
equalization is more robust to the time variation of some multipath fading chan-
nels [62]. Other work has suggested that indirect adaptive DFEs may be imple-
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mented at a lower computational complexity than an equalizer with directly
adapted coefficients [63]. In effect, the indirect adaptation method yields fewer
degrees of freedom in these circumstances, which reduces the convergence time,
tracking error, and misadjustment of an adaptive algorithm. As we discuss shortly,
there may be other, channel-specific ways to reduce the degrees of freedom of this
channel identification even further.

Memory truncation is a deliberate mismatch of the receiver structure with
respect to the channel model, to provide fewer adapted parameters than with an
unconstrained structure. Memory truncation has traditionally been achieved by
ignoring scattered paths beyond a fixed delay and advance from the principal
arrival and is usually determined with a knowledge of the performance sensitivity
to the receiver mismatch. Many studies of performance sensitivity to mismatch
exist and quantify tolerable levels of memory truncation. The sensitivity to channel
mismatch was investigated for maximum-likelihood-type receivers in intersymbol
interference (ISI) channels [58, 59] and to linear equalizers and DFEs in [60, 89] and
references therein.

8.4.2.2 Sparse Channel Identification

We now address current work on channel-specific approaches to parameter reduc-
tion that are especially suited for underwater acoustic applications. Of relevance
are channel identification techniques that reduce the computational complexity
according to the sparseness of slowly time-varying linear systems. For purposes of
this presentation, sparseness applies to a slowly time-varying linear system if its
multipath intensity profile (MIP), maximally truncated in the delay axis without
loss, shows a concentration of power in relatively few taps. Intuitively, a sparse
system exhibits clean echoes spaced by large temporal gaps. These gaps may incur
an increase in the computational complexity for both conventional channel track-
ing and demodulation of linear, digital data passed through this sparse system, rel-
ative to a system possessing a similar MIP, but without the delay gaps. A typical
example of a sparse system is the medium-range shallow-water UAC, and a his-
tory of input delay-spread function magnitude estimates can be found in Figure
8.10. Tap magnitudes below a very small threshold were suppressed in this fig-
ure in order to more clearly exhibit the sparse nature of the channel. Note in the
figure that while the multipath delay spread for this channel exceeds 80 ms, about
12% of the channel taps contribute significantly to the output. Channels such as the
UAC are especially suited for sparse channel identification techniques.

The UAC has exhibited sparseness in a variety of wideband transmission
experiments. Sparseness has been observed from a surface-deployed receiver in
the vertical acoustic channel, in which echoes were observed due to reflections of
the transmitted signal off the sea floor [52]. The medium-range, horizontal UAC
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has also exhibited sparseness for shallow-water transmissions near Fort Laud-
erdale, Florida [66], New England harbor sites [64] and for deep-water transmis-
sions in the Arctic circle [65]. A presentation of sparse UACs can be found in [67].
While an underwater channel is not always sparse, it can be approximated as
sparse with enough frequency to motivate an incorporation of sparse techniques
into wideband acoustic modem designs [66]. An ideal algorithm for sparse channel
identification would include full-order identification as a special case and would
permit low convergence times for all system orders. In this section, we shall refer
to a channel identification technique as a sparse channel identification algorithm if it
exploits the sparseness in a system to reduce the computational complexity, con-
vergence time, or estimation error. Sparse adaptive equalization will refer to simi-
larly tailored techniques for coherent demodulation of linear, digital modulation
through sparse dispersive systems.

There is a significant amount of prior work on rapidly converging or low
complexity channel! identification for sparse systems. In some of these cases, prior
knowledge about the channel is presumed, such as the number of significant input
delay-spread function taps (the system order), their location in delay, or the sys-
tem multipath spread. In short, all of these (or their approximations) may be pro-
vided without major changes of several current modem designs [66]. These
modems will initiate communication by preceding a phase-modulated data packet
with a packet consisting of a short carrier-modulated Barker sequence followed by
a silent period. While the purpose of the Barker sequence is to remove the receive
modem from standby mode, a temporal window of the observation (or its correla-
tion magnitude with the Barker sequence) can be stored for future processing. This
magnitude sequence provides an estimate of system order, approximate locations
of significant taps, and delay spread.

Reference [70] proposed a method of sparse channel identification that incre-
ments the order of the channel estimator until a prescribed squared-error criterion
is satisfied. At each increment, the best delay for a new input delay-spread function
tap is determined, using a criterion that is independent of this tap’s magnitude and
phase. Once the best tap location is determined, the magnitude and phase are esti-
mated. This approach is suited for very sparse systems, and its order-recursive ap-
proach may impose a lengthy convergence for full-order systems. However, this
technique is quite effective in rapidly identifying the location of a new tap in other
sparsing methods. At least three independently derived efforts in sparse adaptive
equalization appeared during the same year, suggesting that the solution had
strong relevance [64, 76, 77]. In [77] and in subsequent work [52], a sparse imple-
mentation of an adaptive linear equalizer was considered for suppression of inter-
symbol interference in a vertical acoustic channel. Direct adaptive equalization was
implemented, and the coefficients of the symbol-spaced transversal filter were ad-
justed with the LMS-based stochastic-gradient algorithm with time-varying step
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sizes. Time was partitioned into epochs lasting hundreds of symbols, over which the
channel is presumed to be statistically stationary. The approach in [77] tailored its
complexity for sparse systems by selecting a different subset of the transversal filter
taps to adapt during each of these epochs. The two largest tap magnitudes are se-
lected from an estimation of the tranbversal filter taps at the beginning of an epoch;

from the relation —— =1 + z P + 22 , |z| <1, the tap delay spacing D be-

tween these two taps estlmates the mulhpath delay spread of a 2-tap system and,

hence, the spacing of significant taps in a suitable zero-forcing equalizer (high SNR
is presumed). These two taps and those at delays 2D, 3D,... are updated during this
epoch, and the remaining taps are fixed. The work demonstrated successful, low-
complexity demodulation of 4-PSK data in both 2- and 3-path channels using this
approach, and comparisons between full-order filter updates and the sparse ap-
proach showed little performance degradation.

Identification of sparse systems is also an active topic of research in the con-
trols area, where it is motivated from a model-reduction perspective [71,72,73,74,
75]. A model-reduction approach was used to develop the sparse adaptive equal-
izer in [76]. Both the system order and the set of significant delays were presumed
to be known in this work. As stated earlier, this knowledge may be approximated
from Barker probes. The result is similar to a concurrent paper [64] which did not
require such knowledge and which we summarize below. Details beyond this
summary and experimental results can be found in [78].

8.4.2.3 Sparse Adaptive Equalization

We begin our presentation of sparse adaptive equalization by creating a frame-
work for the sparse channel identification problem. To this end, we focus on the
T,-spaced, phase-compensated channel and ignore the common tap-phase trajec-
tory. We will refer to Figure 8.13, which illustrates the estimation of a D-dimensional
vector h, using the known input scalar sequence {4, } and the observed output se-
quence {y,} satisfying

Y = th(’”) +v

m’

where d(1) denotes D consecutive elements of the 5equence {d,}. To determine the
best estimated output sequence of the form j , = =h(n)''d(k), ¥ k = n, we shall con-
sider the deterministic least squares criterion C, (h)

C,(h) = Z T (8.25)

k=0
As shown in Figure 8.13, we are interested in representing the channel estimate in a
two-step process: through a D, X Dselection matrix S (D, < D) and a D,-dimensional
vector h (1) such that h(n) SH hg(17). The matrix S is so named since its row vec-
tors form a subsequence of D, rows from the D X Didentity matrix, I. Note that SS"
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Figure 8.13 Sparse channel estimation.

is the D, X D, identity matrix, and that S allows the D, components of fls(71) to esti-
mate a channel having a delay spread much greater than T,D, seconds. We are
interested in selecting D,, S, and hs(”) at each time 1 to estimate the observation
sequencey,, 0 =k=n w1th an accuracy measured by C“(h)
. We begin with the special case of S=1 to develop the solution for
hg(n) = I(n) and to relate this to the general case. When S is the identity matrix,
the estimator h ((n), which minimizes C,, is found via weighted least squares
regression,
h,(n) = R, ()p(n), (8.26)
where
R,, (1) = /Ry, (n— 1)+ d(md"” (n)
(8.27)
p(n) = ip(n — 1) + y . d(n),

with initial conditions R;;(-1) = 0, p(-1) = 0. Note that both y; and 4, which are
used to form the linear estimator, are available to the receiver via observation,
training sequences, or accurately detected data. The minimal cost for S = Iis

C,(hy) = R, (n) — hi'(m)p(), (8.28)

EZ
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where R (m) =3} " "y )

An update complexity of O(D) for the series {h; (i1} can be provided by an
RLS-type algorithm. However, for a judicious choice of the selection matrix S and
for sparse systems, the update complexity for the series {S” fls(n)} can be lessened
by an additional order of magnitude. The added cost C”(SH f\S) — C”(BI) for this
complexity decrease can also be precomputed. To see this, we quantify the accom-
panying increase in C,, when the estimator uses S # I, relative to the case S = I. For

a fixed S, the estimator ﬁs(rl) that minimizes C”(SH fls(;z)) from (8.25) is
f\s(iz) = [SRdd (rz)SH]AIS p(n). (8.29)

Due to the selection matrix S, the channel estimator is constrained to have a sparse
structure. Since SRdd(rz)SH and Sp(i7) have similar recursions as for the case S=1,
the RLS algorithms can be used to update SHf\S(n). Since the minimum cost associ-
ated with any selection matrix Sis

C,(8"hg) = R, (m) — h{ () Sp(), (8.30)
the incremental cost in reducing the estimator order to D, = Dis
C,(8"hg) — C,(h) = p' ()[R, — S"(S"R,, (m9) 'S]p(n). (8.31)

A critical step in an efficient sparsing algorithm is to find, in a simple fashion, the
selection matrix S that minimizes D, while satisfying a prescribed upper bound to
the incremental cost given by the left-hand side of (8.31). Unfortunately, no simple
rule exists for the general sparsing problem, and this fact will be shown to restrict
the approach to sparse adaptive equalization. There are special cases of practical
interest that permit efficient sparsing, however. For the case of white channel
inputs, E[R,(1n)] = a’l, the incremental cost associated with the sparse estimator
has strong intuitive appeal. In this case, the increase in squared error is

C (S"hy) — C, () = % o (][I~ S"S]p(n). (8.32)

For the case of white inputs, the incremental error is the total energy in the compo-
nents of p(n) corresponding to the rows of Inot taken to form S. As seen from (8.27),
the energy in a component of p(1) is proportional to the energy of the channel tap
at that location, and E [p(n)] = h. If the true channel, h, has negligible energy at the
ignored taps, then the increased cost due to a substantially simpler estimator is also
negligible.

The squared error C, () is directly related to the performance of the equalizer.
For this reason, a careful selection of S is needed to maximally reduce the compu-
tational burden throughout a data packet without increasing C, (S" fls) beyond a
prescribed limit. There are at least two ways in which to proceed. The first
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approach, suggested in [66] and [79], uses the magnitude sequence output from the
modem’s Barker correlator as an MIP estimator. This estimator provides important
information for sparse systems, such as the number of tap groups (a group is a set of
adjacent, significant taps), their centroids and spans. Adjacent or nearly adjacent
tap groups are usually combined so as to minimize the total number of groups in
the response, . This decomposition relates any sparse approximation to the super-
position of ¢ subsystems and suggests an application of the fast modular RLS algo-
rithm [69], whose update complexity is O(D,g + ¢°). Provided D, <D and the
group count g is small, then D_g + ¢* < D, and a fast modular RLS algorithm is sig-
nificantly simpler than FTRLS.

The second approach does not require a priori knowledge of the input delay-
spread function structure, and was suggested in [64]. In this case, it is assumed
that a data packet consists of an initial training sequence followed by an information
sequence, and that full-order channel estimation (S = I) occurs for a brief period at
the beginning of the packet. Full-order estimation provides Cn(i’l[) and p(n), which
are required for the selection of D,, S and fls. Experimental results have shown that
full-order estimation must be implemented for only a short period (about 2D sym-
bols) at the beginning of the packet, usually within the training period. While this
application of full-order channel estimation does preserve the peak processing load,
it does not substantially affect the average computational burden. The average com-
putational burden is determined strongly by the choice of S.

We now address the connection between reduced-complexity channel identi-
fication and channel equalization. We focus in particular on fractionally spaced
DFEs. Does an accurate, low-order channel estimate fls, with D, < D, guarantee a
reduced number of computations for equalizer tap adjustment? Not in general, as
can be seen by the condition for the extremal equalizer coefficients for a minimum-
MSE DEE. For jointly stationary vectors r(n), d(n) and for a zero-mean, unit-vari-
ance white sequence {d, }, the vectors a, b must satisfy

s )L
-RY Ry [Lb Lo (839

Row = E V()W (n)]

.

where

f=[h(N,T,) h((N, = 1)T) ... h(-N,T)]".
The statistical cross-correlations take the form
[Rgli =h(T+N,T,— (i—1)T,)
[Rpli = 0%, + > h(@Dh (T + (j = )T,

¢}
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where ¢° is the additive noise variance. While a sparse, fractionally spaced chan-
nel hyields a sparse form for f and R 4, the reduction in complexity for the solu-
tion of a and b is not readily apparent. One approach proposed in [78] is to
apply the channel sparsing matrix S to the feedforward coefficient vector a. This
method preserves the adaptive matched-filter property of the feedforward filter
and reduces the complexity of the solution for the equalizer coefficients. Sparse
equalization of this form has been shown to reduce the average computational
complexity per update by more than an order of magnitude in shallow-water
acoustic channels.

8.4.3 Multiuser Detection

One of the first applications of multiuser detection (see Chapters 2 and 3) to the
UAC is described in [80] and [36]. Vertical channel transmission with negligible
multipath was considered. An adaptive K-user detector was used to resolve the
temporal overlap of at most K short packets in a common request channel for a
dynamic time division multiple access (TDMA) system. This receiver structure
was a soft-decision two-stage detector and was provided information about the
signature waveforms from packet headers. Using soft decisions to reconstruct and
suppress cochannel interference has been shown to decrease the symbol error rate
for low thermal noise conditions [82]. The parameter K was much smaller than the
modem population size, and the sensitivity of request-channel throughput with K
was explored [81]. This receiver was implemented and tested at sea for K = 2.

Multiple access techniques for shallow-water networks usually do not include
time and frequency division because of the frequency-selective fading, limited sys-
tem bandwidth, and the increased difficulties with global time slotting associated
with platform mobility, as discussed in Section 8.1. Code-division multiple access
(CDMA) is the preferred method for resource sharing in this environment. Until the
early 1990s, however, little work was available on multiuser detection in time-vary-
ing dispersive channels, other than a bank of independently operating RAKE filters.
In [83], two multiuser detectors were presented for a fixed frequency-selective chan-
nel which removed the bit-error-rate floor (versus average SNR) of the conventional
RAKE detector. The floor was attributed to dominating cochannel interference,
which was compensated for by the multiuser receivers. Fully adaptive, single-sen-
sor multiuser receivers tailored for the shallow-water acoustic channel were pre-
sented first in [84] and most recently in [85] and are summarized below.

Figure 8.14 presents a block diagram description of this detector, which we
refer to as a multiuser DFE, or MDFE, and which can be compared with the multi-
user DFE structures described in Chapters 3 and 4.
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Figure 8.14 Multiuser decision feedback equalizer.

Note the strong similarity of this receiver to a bank of K conventional, frac-
tionally spaced DFEs, with the exception of the “crossover” feedback filters
b, i #j in Figure 8.14. This single-sensor multiuser receiver consists of one frac-
tionally spaced feedforward filter and K symbol-spaced feedback filters for each of
the K users in the system. The sampled input signal in every feedforward section

at time 1T is given by
r(n) = [r(iT + N,T)) r(nT + (N, = DT) -~ r(T—N,T)I".  (8.34)

The scalar output of the feedforward transversal filter for the kth user at time nT is
given by a;'r(17), where the combining coefficients are

_ T
a=lag N, Gl

We also define the output of the kth phase correction circuit at time nT as

P = a/'r(n)e 75, Similarly, the symbol-rate feedback filter for the ith receiver con-

taining decisions from user j has an output at time nT given by b;'d/- (n), where

~ T
d(m=I[d ., dj,n'/\/l]
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and
el e r
b, = [b; bijpl -
As suggested by the notation, d i denotes the final decision for the nth symbol for
user k, d, . The sum of all K feedback transversal filters for user j at time nT is
denoted as q; . For the two-user case, the MDFE receiver produces for user 1 the
feedback aggregate g, b“d (n) + bi’l , (1), while the corresponding feedback
aggregate for the conventional DFE would beq, , = =blld, (n).
As shown in Figure 8.14, the decision variable for user k at time n is
dy = Py~ 4, 1t is convenient to represent this variable as the inner product

L}'k no C;\'—luk(”)f
where ' -
¢ = [al bII] b21] ,
) . (8.35)
u, () = [yy (md3 (],
and

y,(n) = [rT(H)L”“m ”d'f (n)]'['.

Final decisions for the data d, , are denoted as d, (1) and are given by quantization
(slicing) of the decision variable. The performance metric is a weighted sum of
squared errors ¢, =d, , — cAfk when the symbol is known by the receiver in a
training mode and ¢, ~i,\ 0 Ai, , in a decision-directed mode. The receiver
parameters at time #T are adjusted to minimize the weighted squared error £ (1) =
LAY 01/”|2 + ey ’}. Defining the cross-correlation matrix between the
column vector sequences x (1) and w(in) as R_,(n) = 2R (n— 1) + ()I)W‘H(H), the

receiver parameters {CLOpt , @1} for user 1 which minimize & (1) are given by

Y opt = Ru:/ " (n)Rup b, (n)

and
o€ (n)
(5(2) -

=-2 Im[pl,”e;”] =0.

Since u, depends on ¢, , , and ¢, , depends on u, (1), an approximate and compu-
tationally efficient solution to these equations can be achieved through the decou-
pling approach discussed earlier.

In this section, we have reviewed an adaptive receiver structure for the
MDFE for K asynchronous users. A bank of K conventional DFEs is a special case
of this presentation and is given by the substitution of y, (1) for u, (1) in this section.
In [85], the improvement due to the crossover filters by, is quantified. It is shown
there that

-1
E{SMDFE} ~1- ’R’d]ulRululR’u,d,’

E{EDFE} = RdleRhYxR-Vld"
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where R, denotes a statistical cross-correlation matrix. These expressions are valid
under the additional assumption that the data symbols {d ko } are uncorrelated with
zero mean and unit variance and can be used to show that the MDFE outperforms
the DFE in a multiple-access setting [85]. The two detectors have comparable per-
formance in the unusual case when d, and y, are statistically uncorrelated.

8.4.4 Wideband Array Signal Processing

As discussed in Chapters 1, 2, and 4, the use of a spatial arrays of receivers, which
we refer to as multichannel receivers, can improve the demodulation capabilities
of communications systems. If the receivers are widely separated so that the fluc-
tuations in the channels from the transmitter to one receiver are independent of
those to another receiver, explicit diversity techniques can be exploited to enable
the overall system to overcome fading in one or more of the independent channels.
If the fluctuations in the channels to different receivers are not independent, then
the coherent spatial structure of the received signal can be exploited. One of two
different approaches is usually taken in coherently combining the signals at the
receivers. The first approach is to attempt to capture all of the signal energy that
has propagated from the transmitter to the receivers. The second is to attenuate the
signals that have propagated through some ray tubes while accentuating signals
that have propagated through other ray tubes. The latter approach corresponds to
traditional beamforming. In the multiuser environment, the multichannel receiver
can use the differences in the spatial structure of the signals transmitted by differ-
ent users to distinguish between interfering arrivals [16, 90].

We begin with the approach developed in [45], which is an extension of the
adaptive single-channel equalizer discussed in Section 8.4.1 and shown in Figure
8.12. The single input channel is replaced by K input channels, K feedforward fil-
ters, and K PLLs. The input to the kth channel is r,(f), the coefficient vector of the

kth feedforward filter is a, (17), and the phase of the kth PLLis ¢, , = w, , 1+ 0, .
The outputs of the individual channels are summed to form
K
p,= Z a;j (n)r (m)e 17k, (8.36)
k=1
The tap weight vector given by
a, (n)
u(n) = ’ (8.37)
ag (n)

b(n)
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is determined with a least squares metric, as in Section 8.4.1 for the single-channel
equalizer. The optimal phase correction terms ¢, ; through ¢,  are individually
estimated using a second-order digital PLL.

The computational complexity required to compute the optimal tap weight
vector grows with K?, yielding an often unacceptable level of complexity.
Approaches to reducing the complexity associated with multichannel algorithms
in the underwater environment have been developed [16, 89]. Like the sparsing
approach to complexity reduction described in Section 8.4.2, these multichannel
algorithms achieve their complexity reduction by exploiting particular features of
the propagation environment.

The approach in [89] is built around an essentially deterministic ray propa-
gation model. Let P denote the number of rays from the transmitter to the receiver
array, and assume that P < K. Then, assuming that the ray paths are known, it is
shown that there is no loss in performance if a K-input, P-output beamformer is
used to transform the outputs of the K sensors into P-channel signal, with the pth
channel carrying the signal that propagated along the pth ray. This P-channel
beamformer output is followed by a P-channel equalizer. A complexity reduction
is realized in calculating the weights of the multichannel equalizer since the
dimension of the receiver parameter vector u(n) is proportional to P. When the
characteristics of the P ray paths are not known or are time varying, the front-end
beamformer is required to adapt. The beamformer adaptation algorithm in [89] is
based on three assumptions. The first is that the signals can be reasonably modeled
as narrowband signals. The second is that the transmitter is far enough from the
receiver array and the environment is sufficiently homogeneous that the propagat-
ing signal is a plane wave across the aperture of the array. The final assumption is
that the array is linear with uniform spacing between sensors. When these assump-
tions are fulfilled, a memoryless beamformer with complex-valued, unit-norm
weights is sufficient to achieve the desired signal separation and a relatively sim-
ple PLL algorithm can be used to calculate the needed beamformer weights. An ad
hoc approach to updating the unconstrained weights of a memoryless beamformer
is described for the case where the above assumptions are not valid.

The reduced complexity multichannel beamformers developed in [16] are
based upon the micro-/macro-multipath propagation model developed in Section
8.1.4. The multichannel demodulator consists of a K input, single-output tapped-
delay-line beamformer followed by a single-channel equalizer such as the one de-
scribed in Section 8.4.1. This structure is based upon several assumptions. The first is
that the intersensor correlation of the clusters of arrivals for the dominant ray tube is
reasonably strong. The second assumption is that the macro-multipath provides suf-
ficiently different spatial/temporal structure to signals that propagate through dif-
ferent ray tubes so that the front-end beamformer can distinguish between these
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different signals by using only that structure. Given these assumptions, the front-
end beamformer can eliminate most of the intersymbol interference from multipath
arrivals from other than the dominant ray tube and the multiple-access interference
from other transmitters without having to adapt to the fluctuations in the micro-
multipath structure of the environment. Complexity reduction is achieved because
the macro-multipath structure of the channel to which the beamformer must adapt
changes fairly slowly and therefore the weights of the beamformer can be updated
infrequently. This method of complexity reduction therefore belongs to the reduced
update class of techniques described in Section 8.4.2. The single-channel output of the
beamformer contains only a modest amount of intersymbol interference due to the
micro-multipath spread of the dominant ray tube and a greatly reduced amount of
multiple-access interference. A small single-channel equalizer is used to complete
the demodulation process.

8.5 CONCLUDING REMARKS

In this chapter, we have presented a first-principles model for the UAC, and we
have discussed many of the characteristics that distinguish this channel from the
RF channels discussed in earlier chapters. Our model was developed using the
concept of ray propagation through random nonhomogeneous media, by intro-
ducing the notion of ray tubes. The effect of environmental fluctuations on the
communication channel were decomposed into macro- and micro-multipath input
delay-spread functions. This model was used to relate channel saturation to the
temporal and spatial coherence of the input delay-spread functions. We have
focused on signal processing techniques for situations when the input delay-
spread function exhibited a separable decomposition g(t, 1) =~ hi(r)e "™, This
explicit modeling of the Doppler shift permits reliable phase-coherent demodula-
tion in time-varying shallow-water UACs. We have presented techniques to
reduce the computational complexity for both single-sensor and multisensor
receivers; these techniques exploited features germane to the underwater channel.
Multiuser detectors find a natural application in this channel and were presented
in this chapter as extensions of the single-channel equalizers.

We have also presented current research on several open problems in phase-
coherent communications through UACs. Current and future research topics
include adaptive detection in multipath channels that exhibit path-dependent
Doppler shifts, wideband coherent detection for severe Doppler dilation, and
coherent demodulation algorithms with reduced computational complexity. We
conclude this chapter with an extensive bibliography detailing past and recent
work in the field.




References 375

REFERENCES

[1] T. G. Bell, “Sonar and Submarine Detection,” U.S. Navy Underwater Sound Lab. Rep.
545, 1962.

[2] L. M. Brekhovskikh, Y. P. Lysonov, Fundamentals of Ocean Acoustics, 2nd Edition,
Springer-Verlag, Berlin, 1991.

[3] C.S.Clay, H. Medwin, Acoustical Oceanography: Principles and Applications, John Wiley
and Sons, New York, 1977.

[4] D. Kilfoyle, J. Catipovic, “Dynamic Viterbi Decoding in Underwater Acoustic Chan-
nels under Burst Noise Conditions,” in Proc. OCEANS'96, Fort Lauderdale, FL, 1996,
pp.- 832-838.

[5] M. Buckingham, C. Epifanio, M. Readhead, “Passive Imaging of Targets with Ambi-
ent Noise: Experimental Results,” |. Acoust. Soc. Am., Vol. 100, No. 4, Pt. 2, October
1996, pp. 27-36.

[6] J. Bellingham, H. Schmidt, M. Deffenbaugh, “Acoustically Focused Oceanographic
Sampling in the Haro Strait Experiment,” J. Acoust. Soc. Am., Vol. 100, No. 4, Pt. 2,
October 1996, p. 2612.

[7] S. Flatte, ed., Sound Transmission Through a Fluctuating Ocean, Cambridge University
Press, Cambridge, 1979.

[8] S. Flatte, “Wave Propagation Through Random Media: Contributions from Ocean
Acoustics,” Proc. IEEE, Vol. 71, No. 11, November 1983, pp. 1267-1294.

[9] T. Duda, S. Flatte, D. Creamer, “Modelling Meter-Scale Acoustic Intensity Fluctua-
tions from Oceanic Fine Structure and Microstructure,” Journal of Geophysical Research,
Vol. 93, No. C5, May 1988, pp. 5130-5142.

[10] T. Duda, “Modeling Weak Fluctuations of Undersea Telemetry Signals,” IEEE ].
Oceanic Eng., Vol. 16, No. 1, January 1991, pp. 3-11.

[11] L. Ziomek, “Generalized Kirchhoff Approach to the Ocean Surface Scatter Communi-
cation Channel. Part 1. Transfer Function of the Ocean Surface,” J. Acoust. Soc. Am.,
Vol. 71, No. 1, January 1982, pp. 116-126.

[12] L. Ziomek, “Generalized Kirchhoff Approach to the Ocean Surface Scatter Communi-
cation Channel. Part II. Second-order Functions,” |. Acoust. Soc. Am., Vol. 71, No. 6,
June 1982, pp. 1487-1495.

[13] D. Dowling, D. Jackson, “Coherence of Acoustic Scattering from a Dynamic Rough
Surface,” J. Acoust. Soc. Am., Vol. 93, No. 6, June 1993, pp. 3149-3157.

[14] R. Owen, B. Smith, R. Coates, “An Experimental Study of Rough Surface Scattering
and Its Effects on Communication Coherence,” in Proc. OCEANS’94, Brest, France,
Vol. 111, 1994, pp. 483-488.

[15] H. Schmidt, Personal communications regarding results of 1996 Haro Strait experi-
ment.

[16] S.Gray, ]. Preisig, D. Brady, “Multi-user Detection in a Horizontal Underwater Acoustic
Channel Using Array Observations,” IEEE Trans. Signal Process. Special Issue on Signal
Processing for Advanced Communications,Vol. 45, No. 1, January 1997, pp. 148-160.

[17] P. Bello, “Characterization of Randomly Time-Variant Linear Channels,” IEEE Trans.
Commun. Systems, CS-11, December 1963, pp. 360-393.




376 Underwater Acoustic Communications Chap. 8

[18] D. Farmer, S. Clifford, J. Verral, “Scintillation Structure of a Turbulent Tidal Flow,”
Journal of Geophysical Research, Vol. 92, No. C5, May 1987, pp. 5369-5382.

[19] T. Eggen, “Underwater Acoustic Communications over Doppler Spread Channels,”
Ph.D. Thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic
Institution, Cambridge, MA, June 1997.

[20] B. Woodward, H. Sari, “Digital Underwater Acoustic Voice Communications,” IEEE ]
Oceanic Eng., Vol. 21, No. 2, April, 1996, pp- 181-192.

[21] H. O. Berktay, B. Gasey, and C. A. Teer, “Underwater Communication: Past, Present
and Future,” |. Sound Vib., Vol. 7, pp. 62-70, 1968.

[22] A.Baggeroer, “Acoustic Telemetry—An Overview,” IEEE |. Oceanic Eng., Vol. 9, No. 4,
October, 1984, pp. 229-235.

[23] M. Stojanovic, “Recent Advances in High-Speed Underwater Acoustic Communica-
tions,” IEEE ]. Oceanic Eng., Vol. 21, No. 2, April, 1996 pp. 125-136.

[24] IEEE ]. Oceanic Eng. Special issue on Ocean Acoustic Data Telemetry, Vol. 16, No. 1,
January, 1991, pp. 1-177.

[25] J. A. Catipovic, Design and Performance Analysis of a Digital Acoustic Telemetry System,
Doctoral Dissertation, Woods Hole Oceanographic Institution/MIT, May, 1988.

[26] A. Clark, “Diver Communications—The Case for Single Sideband,” Underwater Sys-
tem Design, 1989, pp. 16-18.

[27] W. Dow, “A Telemetering Hydrophone,” Deep-Sea Research, Vol. 7, 1960, pp. 142-147.

[28] P. Hearn, “Underwater Acoustic Telemetry,” IEEE Trans. Commun. Tech., Vol. CT-14,
Dec. 1966, pp. 839-843.

[29] G. M. Walsh, A. P. Alair, A. S. Westneat, “Establishing Reliability and Security in an
Offshore Command Link,” Proc. Offshore Tech. Conference, 1969.

[30] F R. Mackelburg, S. J. Watson, A. Gordon, “Benthic 4800 bits/second Acoustic
Telemetry,” Proc. OCEANS, 1981, p. 78.

[31] J. G. Proakis, Digital Communications, 3rd edition, New York, McGraw-Hill, 1995.

[32] R. Price, P. E. Green, Jr., “A Communication Technique for Multipath Channels,” Proc.
IRE, Vol. 46, March, 1958, pp. 555-570.

[33] P. Monsen, “Theoretical and Measured Performance of a DFE Modem on a Fading
Multipath Channel,” IEEE Trans. Commun., Vol. COM-25, Oct. 1977, pp- 1144-1153.

[34] J. Catipovic, A. B. Baggeroer, K. Von Der Heydt, D. Koelsch, “Design and Performance
Analysis of Digital Acoustic Telemetry Systems for the Short Range Underwater
Channel,” IEEE |. Oceanic Eng., Vol. OE-9, No. 4, October, 1984, pp- 242-252.

[35] S. Coatelan, A. Glavieux, “Design and Test of a Multicarrier Transmission System on
the Shallow Water Acoustic Channel,” Proc. OCEANS 94, Brest, France, Vol. 3, 1994,
pp- 472-477.

[36] D.Brady,]. Catipovic, “Adaptive Multiuser Detection for Underwater Acoustic Chan-
nels,” [EEE ]. Oceanic Eng., Vol. 19, April 1994, pp. 158-165.

[37] http://www.datasonics.com/ products/modems/atm850.htm

[38] ]. Catipovic, “Performance Limitations in Underwater Acoustic Telemetry,” IEEE ].
Oceanic Eng., Vol. 15, July, 1993, pp. 205-216.

[39] R. Galvin, R. F. W. Coates, “Analysis of the Performance of an Underwater Acoustic

Communication System and Comparison with a Stochastic Model,” in Proc.
OCEANS’94, Brest, France, 1994, pp- 478-482.




References 377

[40] A. Essebbar, F. Loubet, F. Vial, “Underwater Acoustic Channel Simulations for Com-
munication,” in Proc. OCEANS’94, Brest, France, 1994, pp. 495-500.

[41] S.]. Roberts, “An Echo Canceller Technique Applied to an Underwater Acoustic Data
Link,” Ph.D. Thesis, Department of Electrical and Electronic Engineering, Herriot
Watt University, Edinburgh, Scotland, September, 1983.

[42] G.Sandsmark, The Feasibility of Adaptive Equalization in High Speed Underwater Acoustic
Data Transmission, Ph.D. thesis, NTH, Trondheim, Norway, 1990.

[43] J. Catipovic, M. Deffenbaugh, L. Freitag, D. Frye, “An Acoustic Telemetry System for
Deep Ocean Mooring Data Acquisition and Control,” Proc. OCEANS’89, Seattle, WA,
1989, pp. 887-892.

[44] M. Stojanovic, J. Catipovic, J. G. Proakis, “Phase-Coherent Digital Communications
for Underwater Acoustic Channels,” IEEE ]. Oceanic Eng., Vol. 19, No. 1, January, 1994,
pp. 100-111.

[45] M. Stojanovic, ]J. Catipovic, and J. Proakis, “Adaptive Multichannel Combining and
Equalization for Underwater Acoustic Communications,” J. Acoust. Soc. Am., Vol. 94,
No. 3, Pt. 1, Sept. 1993, pp. 1621-1631.

[46] D. Falconer, “Jointly Adaptive Equalization and Carrier Phase Recovery in Two
Dimensional Digital Communication Systems,” Bell Syst. Techn. ]., Vol. 55, March,
1976, pp. 317-334.

[47] R. Coates, “Underwater Acoustic Communications,” Proc. OCEANS’93, Victoria, BC,
Canada, Vol. 3, October, 1993, pp. 420-425.

[48] R.Gitlin, S. Weinstein, “Fractionally Spaced Equalization: An Improved Digital Trans-
versal Equalizer,” Bell Syst. Techn. |., Vol. 60, Feb. 1981, pp. 275-296.

[49] D.T. M. Slock, T. Kailath, “Fast Transversal RLS Algorithms,” in Adaptive System Iden-
tification and Signal Processing Algorithms, N. Kalouptsidis, S. Theodoridis, Editors,
Englewood Cliffs, NJ: Prentice Hall, 1993, pp. 123-190.

[50] D. T. M. Slock, T. Kailath, “Numerically Stable Fast Transversal Filters for Recursive
Least Squares Adaptive Filtering,” IEEE Trans. Signal Process., Vol. 39, Jan., 1991,
pp- 92-114.

[51] M. Johnson, L. Freitag, M. Stojanovic, “Improved Doppler Tracking and Correction
for Underwater Acoustic Communications,” Proc. ICASSP, 1996 Atlanta, Ga., Vol. 1,
pp. 575-578.

[52] B. Geller, V. Capellano, J.-M. Brossier, A. Essebbar, G. Jourdain, “Equalizer for Video
Rate Transmission in Multipath Underwater Communications,” IEEE ]. Oceanic Eng.,
Vol. 21, No. 2, April, 1996, pp. 150-155.

[53] A. Kaya, S. Yauchi, “An Acoustic Communication System for Subsea Robot,” Proc.
OCEANS'89, Seattle, WA, Oct. 1989, pp. 765-770.

[54] M. Suzuki, T. Sasaki, “Digital Acoustic Image Transmission System for Deep Sea
Research Submersible,” Proc. OCEANS’92, Newport, RI, Oct. 1992, pp. 567-570.

[55] A. Benveniste, M. Metivier, P. Priouret, Adaptive Algorithms and Stochastic Approxima-
tions, New York: Springer-Verlag, 1990.

[56] W. A. Sethares, “The Least Mean Square Family,” in Adaptive System Identification and
Signal Processing Algorithms, N. Kalouptsidis and S. Theodoridis, editors, Englewood
Cliffs, NJ: Prentice Hall, 1993, pp. 84-122.

[57] L. Barbosa, “Maximum Likelihood Sequence Estimators: A Geometric View,” IEEE
Trans. Inform. Theory, Vol. 35, No. 2, March 1989, pp. 419-427.




378 Underwater Acoustic Communications Chap. 8

[58] D. Divsalar, “Performance of Mismatched Receivers on Bandlimited Channels,” Ph.D.
thesis, UCLA, 1978.

[59] ]J. Habermann, D. Dzung, “Performance of Coherent Data Transmission with Imperfect
Channel Estimation in Frequency-Selective Rayleigh Fading Channels: Cochannel and
Adjacent Channel Interference,” AEU, Vol. 44, No. 5, Sept./Oct., 1990, pp. 1680-1686.

[60] E. Gozzo, “Robust Sequence Estimation in the Presence of Channel Mismatch,” IBM
Federal Systems Report 92-OTP-050.

[61] M. Stojanovic, J. Proakis, J. Catipovic, “Analysis of the Impact of Channel Estimation
Errors on the Performance of a Decision-Feedback Equalizer in Fading Multipath
Channels,” IEEE Trans. Commun., Vol. 43, Feb./Mar./ Apr., 1995, pp. 877-886.

[62] S. Fechtel, H. Meyr, “An Investigation of Channel Estimation and Equalization Tech-
niques for Moderately Rapid Fading HF-Channels,” Proc. ICC’91, Denver, CO, 1991,
pp. 768-772.

[63] P.D. Shukla, L. F. Turner, “Channel-Estimation-Based Adaptive DFE for Fading Mul-
tipath Radio Channels,” IEE Proceedings, Part 1, Vol. 138, No. 6, Dec. 1991, pp. 525-543.

[64] M. Kocic, D. Brady, “Complexity-Constrained RLS Algorithm for Sparse Channels,”
Proc. Conf. Inform. Science Sys.’94, Princeton, NJ, March, 1994, pp. 420-425.

[65] M. Kocic, D. Brady, M. Stojanovic, “Sparse Equalization for Real-Time Digital Under-
water Acoustic Communications,” Proc. OCEANS'95, San Diego, CA, 1995,
pp. 1417-1422.

[66] L. Freitag, M. Johnson, “A Robust and Efficient Receiver for Coherent Acoustic Com-
munications,” submitted to IEEE ]. Oceanic Eng., 1997.

[67] Haro Straits data at http:/ /telem.whoi.edu/.

[68] P. Anderson, “Adaptive Forgetting in Recursive Identification Through Multiple
Models,” Int. |. Control, 42(5), 1984, pp. 1175-1193.

[69] D. Slock, L. Chisci, H. Lev-Ari, T. Kailath, “Modular and Numerically Stable Fast
Transversal Filters for Multichannel and Multiexperiment RLS,” IEEE Tran. Acoust.
Speech Sig. Process., vol. ASSP-40, April 1992, pp. 784-802.

[70] Y. E. Cheng and D. M. Etter, “Analysis of an Adaptive Technique for Modeling Sparse
Systems,” IEEE Trans. Acoust. Speech Sig. Process., Vol. ASSP-37, No. 2, Feb. 1989,
pp. 254-264.

[71] D. Wilson, “Optimum Solution of Model-Reduction Problem,” Proc. IEE, Vol. 117,
No. 6, June 1970, pp. 1161-1165.

[72] K. Nagpal, R. Hemlick, C. Sims, “Reduced-order Estimation: Part 1. Filtering,” Inter-
national Journal of Control, Vol. 45, No. 6, 1987, pp. 1867-1888.

[73] B. Moore, “Principal Component Analysis in Linear Systems: Controllability, Observ-
ability and Model Reduction,” IEEE Trans. Autom. Control, Vol. AC-26, No. 1, February
1981, pp. 17-32.

[74] H. Kim, C. Sims, K. Nagpal, “Reduced Order Filtering in H-Infinity Setting,” Proceed-
ings of American Control Conference, 1992, pp. 1876-1877.

[75] N. Siddiqui, C. Sims: “Filter Order Reduction Using Mean Value and Covariance
Matching Technique,” Proceedings of American Control Conference, 1992, pp. 1789-1793.

[76] D. Reynolds, C. Sims, L. Tong, “Adaptive Equalization of a Digital Communications
Channel with a Reduced-Order Equalizer,” Proc. 1994 Asilomar Conf, Monterey, CA,
November 1994, pp. 1428-1432.




Acknowledgment 379

[77] B. Geller, V. Capellano, J. M. Brossier, “Equalizer for High Data Rate Underwater
Communications,” Proc. OCEANS'94, Brest, France, 1994.

[78] M. Kocic, D. Brady, M. Stojanovic, “Reduced Complexity Equalization for Acoustic
Telemetry in Shallow Water,” submitted to IEEE |. Oceanic Eng.

[79] M. Johnson, D. Brady, M. Grund, “Reducing the Computational Requirements of
Adaptive Equalization in Underwater Acoustic Communications,” Proc. OCEAN'95,
San Diego, CA, Vol. 3, 1995, pp. 1405-1410.

[80] D. Brady, J. Catipovic, “Adaptive Soft-Decision Multiuser Receiver for Underwater
Acoustical Channels,” Proc. 1992 Asilomar Conf., Pacific Grove, CA, Vol. 2, Oct. 1992,
pp. 1137-1141.

[81] D. Brady, L. Merakos, “Throughput Performance of Multiuser Detection in Unslotted
Contention Channels,” Proc. INFOCOM, Toronto, Canada, Vol. 2, June, 1994,
pp. 610-617.

[82] X. Zhang, D. Brady, “Asymptotic Multiuser Efficiencies for Decision-Directed Multi-
user Detectors,” I[EEE Trans. Info. Theory, Vol. 44, No. 2, March 1998, pp. 502-515.

[83] Z. Zvonar, D. Brady, “Coherent and Differentially Coherent Multiuser Detectors for
Asynchronous CDMA Frequency-Selective Channels,” Proc. MILCOM, 1992,
pp- 17.6.1-17.6.5.

[84] Z. Zvonar, D. Brady, “Adaptive Multiuser Receiver for Fading CDMA Channels With
Severe ISI,” Proc. Conf. Inform. Sc. Sys., 1993, pp. 324-329.

[85] Z. Zvonar, D. Brady, J. Catipovic, “Adaptive Detection for Shallow-Water Acoustic
Telemetry with Cochannel Interference,” IEEE Trans. Oceanic Eng., Vol. 21, No. 4, 1996,
pp- 528-536.

[86] J. Catipovic, L. Freitag, “Spatial Diversity Processing for Underwater Acoustic
Telemetry,” IEEE |. Oceanic Eng., Vol. OE-15, 1991, pp. 205-216.

[87] Q. Wen, ]. Ritcey, “Spatial Equalization for Underwater Acoustic Communications,”
in Proc. 22nd Asilomar Conference on Signals, Systems and Computers, 1992,
pp- 1132-1136.

[88] O. Hinton, G. Howe, A. Adams, “An Adaptive, High Bit Rate, Sub-sea Communica-
tions System,” in Proc. of the European Conference on Underwater Acoustics, Brussels,
Belgium, editor, M. Weydert, Amsterdam, Elsevier Applied Science, 1992, pp. 75-79.

[89] M. Stojanovic, J. Catipovic, J. Proakis, “Reduced-complexity Spatial and Temporal
Processing of Underwater Acoustic Communication Signals,” J. Acoust. Soc. Am.,
Vol. 98, No. 2, Pt. 1, August 1995, pp. 961-972.

[90] M. Stojanovic, Z. Zvonar, “Multichannel Processing of Broad-Band Multiuser Com-
munication Signals in Shallow Water Acoustic Channels,” [EEE ]. Oceanic Eng.,
Vol. OE-21, 1996, pp. 156-166.

ACKNOWLEDGMENT

This work was supported by Grant N0014-95-1-1316 from the Office of Naval
Research.




Wireless Communications
Signal Processing Perspectives

H. Vincent Poor

Princeton University

Gregory W. Wornell
Massachusetts Institute of Technology

EDITORS

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http:/ /www.phptr.com




PRENTICE HALL SIGNAL PROCESSING SERIES
Alan V. Oppenheim, Series Editor

BRACEWELL  Two Dimensional Imaging

BRIGHAM  The Fast Fourier Transform and Its Applications (AOD)

Buck, DANIEL & SINGER ~ Computer Explorations in Signals and Systems Using
MATLAB

COHEN  Time-Frequency Analysis

CROCHIERE & RABINER  Multirate Digital Signal Processing (AOD)

JOHNSON & DUDGEON  Array Signal Processing

Kay Fundamentals of Statistical Signal Processing, Vols. 1 & 11

KAY  Modern Spectral Estimation

LM Two-Dimensional Signal and Image Processing

MENDEL  Lessons in Estimation Theory for Signal Processing, Communications,
and Control, 2/E

NIKIAS & PETROPULU  Higher Order Spectra Analysis

OPPENHEIM & SCHAFER  Digital Signal Processing

OPPENHEIM & SCHAFER  Discrete-Time Signal Processing

OPPENHEIM & WILLSKY, WITH NAWAB  Signals and Systems, 2/E

ORFANIDIS  Introduction to Signal Processing

PHiLLIPS & NAGLE  Digital Control Systems Analysis and Design, 3/E

POOR & WORNELL, EDs.  Wireless Communications: Signal Processing Perspectives

RABINER & JUANG ~ Fundamentals of Speech Recognition

RABINER & SCHAFER  Digital Processing of Speech Signals

STEARNS & DAvID  Signal Processing Algorithms in MATLAB

STEARNS, DAVID & SALAS  Signal Processing Algorithms in Fortran and C

TekALP  Digital Video Processing

THERRIEN  Discrete Random Signals and Statistical Signal Processing

VAIDYANATHAN  Multirate Systems and Filter Banks

VETTERLI & KOVACEVIC ~ Wavelets and Subband Coding

WIDROW & STEARNS  Adaptive Signal Processing

WORNELL ~ Signal Processing with Fractals: A Wavelet-Based Approach



Library of Congress Cataloging-in-Publication Data

Wireless communications: signal processing perspectives / [edited by]
H. Vincent Poor, Gregory W. Wornell.
p.  cm.—(Prentice Hall signal processing series)

Includes bibliographical references and index.

ISBN 0-13-620345-0

1. Wireless communication systems. 2. Signal processing.
I. Poor, H. Vincent. II. Wornell, Gregory W. III. Series.
TK5103.2.W5718 1998 98-9676
621.382—dc21 CIp

Editorial / production supervision: Jane Bonnell
Cover design director: Jerry Votta

Cover design: Anthony Gemmellaro
Copyeditor: Mary Lou Nohr

Manufacturing manager: Alan Fischer
Acquisitions editor: Bernard M. Goodwin
Editorial assistant: Diane Spina

Marketing manager: Miles Williams

© 1998 by Prentice Hall PTR
Prentice-Hall, Inc.

A Simon & Schuster Company

Upper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies

for training, marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities.

For more information, contact Corporate Sales Department, Phone: 800-382-3419;

FAX: 201-236-7141; E-mail: corpsales@prenhall.com

Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River,
NJ 07458.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 87 6 5 4 3 21

ISBN 0-13-620345-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



Contents

PREFACE ixX
LisT oF CONTRIBUTORS Xvii

LINEAR DIVERSITY TECHNIQUES FOR FADING CHANNELS
Gregory W. Wornell 1

1.1 System and Fading Channel Models 4
1.2 Transmission without Diversity 8
1.3 Spectral Diversity 10
1.4 Temporal Diversity 16
1.5 Diversity Methods for Multiuser Systems 25
1.6 Spadatial Diversity 42
1.7 Concluding Remarks 60
References 6]
Acknowledgments 63



vi

ADAPTIVE INTERFERENCE SUPPRESSION

Michael L. Honig and H. Vincent Poor

2.1 Multiple-Access Signal Model 65

2.2 Elements of Multiuser Detection 67

2.3 Linear Interference Suppression 70

2.4 Application to DS-CDMA 78

2.5 Adaptive Algorithms 90

2.6 Further Issues and Refinements 106

2.7 Concluding Remarks 120
References 120
Acknowledgments 128

EQuUALIZATION OF MuLTIUSER CHANNELS
Haralabos C. Papadopoulos
3.1 Characterization of Wireless Channels 131
3.2 Equalization of Known Multipath Fading Channels
3.3 Blind Equalization in Multipath, Slowly
Time-Varying Channels 159
3.4 Concluding Remarks 175
References 176
Acknowledgments 178

BLIND SPACE-TIME SIGNAL PROCESSING
Arogyaswami J. Paulraj, Constantinos B. Papadias,
Vellenki U. Reddy, and Alle-Jan van der Veen
4.1 The Wireless Propagation Environment 180
4.2 Signal Model and Structure 184
4.3 Channel Identification and Equalization 193
4.4 Blind Techniques 202
4.5 Concluding Remarks 208
References 208
Acknowledgment 210

133

Contents

64

129

179



Contents vii

NEetwork CaApacITY, POWER CONTROL,
AND EFFECTIVE BANDWIDTH

David N. C. Tse and Stephen V. Hanly 211
5.1 Basic Spread-Spectrum Model and the MMSE Receiver 213
5.2 Performance under Random Spreading Sequences 214
5.3 Capacity and Performance under Power Control 218
5.4 Multiple Classes, Maximum Power Constraints,

and Effective Bandwidths 220
5.5 The Decorrelator 222
5.6 Antenna Diversity 224
5.7 Concluding Remarks 225

References 226

Acknowledgments 228

ARCHITECTURAL PRINCIPLES FOR MULTIMEDIA NETWORKS
Paul Haskell, David G. Messerschmitt, and Louis Yun 229
6.1 Basic Considerations 231
6.2 Modularity of Services and Bitway Layers 242
6.3 Edge vs. Link Architecture for Service Layer 252
6.4 Design Examples 263
6.5 Concluding Remarks 276
References 277
Acknowledgments 281

MULTIRESOLUTION JOINT SOURCE-CHANNEL CODING
Kannan Ramchandran and Martin Vetterli 282
7.1 Multiresolution Source Coding for Images and Video 286
7.2 Mulfiresolution Channel Coding 293
7.3 Multiresolution Joint Source-Channel Coding 303
7.4 Concluding Remarks 324
References 325
Acknowledgment 329




viii

Contents

8 UNDERWATER AcousTiC COMMUNICATIONS
David Brady and James C. Preisig 330

8.1
8.2

8.3

8.4
8.5

EPILOGUE

The Underwater Acoustic Channel 331

Platform Constraints in Underwater Acoustic

Communications 352

A Brief History of Underwater Acoustic Communications 353
Signal Processing in Digital Underwater Communications 356
Concluding Remarks 374

References 375

Acknowledgment 379

Four LAws oF NATURE AND SOCIETY:
THE GOVERNING PRINCIPLES OF DIGITAL WIRELESS
CoMMUNICATION NETWORKS

Andrew J. Viterbi 380

E.1
E.2
E.3
E4

E.5
E.6

Overview 380

Wireless Propagation and Its Anomalies 381

Shannon Theory: Limitations on Signal Processing 384

Half a Century of Wireless Spread Spectrum:

From Military to Commercial Applications 386

Moore’s Law: The Socio-Economic Basis for Digital Wireless 388
Metcalfe’s Law: Implications for Wireless Networks 389

LisT OF ACRONYMS 393

INDEX 397




List of Acronyms

ADPCM
ADSL
AGN
AMPS
ARQ
ATM
ATRC
AUV
AWGN
BCH
BER
BPCM
BPS
BPSK
BSC
CClI
CDMA

adaptive differential pulse code modulation
asymmetric digital subscriber loop
additive Gaussian noise

Advanced Mobile Phone Service
automatic repeat requests

asynchronous transfer mode

Advanced Television Research Consortium
autonomous undersea vehicle

additive white Gaussian noise
Bose-Chauduri-Hocquenghem

bit-error rate

binary pulse code modulation

bits per second

binary phase-shift keying

binary symmetric channel

cochannel interference

code-division multiple-access

393




394

M
CMA
CNR

CR

CRC

CsI

CW
DATS
DCT
DES

DFE

DFT
DMT
DPCM
DQPSK
DS-CDMA
DSL (xDSL)
DSP
DTS/PTS
ECVQ
EZW

FA
FDMA
FEC

FFT

FIR

FSM
FTRLS
GII
GMSK
GSM
HDTV
HOS

IC

1D (i.id.)
IR

ILSE
ILSP

P

IR

List of Acronyms

constant modulus or continuous media
constant modulus algorithm
carrier-to-noise ratio

cross-relation

cyclic redundancy check

channel state information
continuous-wave

digital acoustic telemetry system
discrete cosine transform

Data Encryption Standard
decision-feedback equalizer

discrete Fourier transform

discrete multitone modulation
differential pulse code modulation
differential quadrature phase-shift keying
direct-sequence code-division multiple-access
digital subscriber loop

digital signal processor

decode/ presentation timestamp
entropy-constrained vector quantization
embedded zerotree wavelet

finite alphabet

frequency-division multiple-access
forward error-correction coding

fast Fourier transform

finite impulse response

finite state machine

fast transversal recursive least-squares
global information infrastructure
Gaussian minimum-shift keying
Groupe Speciale Mobile

high-definition television

higher-order statistics

integrated circuit

independent, identically distributed
infinite impulse response

iterative least-squares with enumeration
iterative least-squares with projection
Internet Protocol

infrared




List of Acronyms 395

ISI
ISO
JPEG
JSCC
LMS
LPTV
LS

LTI
LTV
MAI
MBone
MDEFE
MF
MIMO
MIP
ML
MLSE
MMSE
MPEG
MR-JSCC
MSE
MSK
MO
MU
NBI
OPTA
OSI
PAM
PASTd
PCM
PCR
PET
PLL
PN
PSK
PSNR
PTS
QAM
QoS
QPSK

intersymbol interference

International Organization for Standards
Joint Photographic Experts Group

joint source-channel coding

least mean squares

linear periodically time-varying
least-squares

linear time-invariant

linear time-varying

multiple-access interference

multicast backbone

multiuser decision-feedback equalizer
matched filter

multiple-input multiple-output
multipath intensity profile

maximum likelihood

maximum likelihood sequence estimator
minimum mean-square error

Moving Pictures Experts Group
multiresolution joint source-channel coding
mean-square error

minimum-shift keying

multiple output

multiple user/multiuser

narrowband interference

optimal performance theoretically obtainable
Open System Interconnection

pulse amplitude modulation

projection approximation subspace tracking-dilation
pulse code modulation

program clock reference

priority encoding transmission
phase-locked loop

pseudonoise

phase-shift keying

peak signal-to-noise ratio

public telephone service

quadrature amplitude modulation
quality of service

quadrature phase-shift keying




396

RACMA
RCPC
R-D
RF
RKG
RLS
RTI
SA
SFQ

SI
SIMO
SINR
SIR
SNR
SOFAR
SOS
SPS

SS

S-T

SU
SvD
TCM
TCP
TCQ
TDL
TDMA
UAC
ubr
UEP
ULA
[OAY
VC
VQ
VR
VSELP
WMF
WSS
WWW
ZF
ZFE

List of Acronyms

real analytical constant modulus algorithm
rate-compatible punctured convolutional
rate-distortion

radio frequency

running key generator

recursive least squares

real-time interface

successive approximation
space-frequency quantization

single input

single-input multiple-output
signal-to-interference-plus-noise ratio
signal-to-interference ratio
signal-to-noise ratio

sound fixing and ranging
second-order statistics

symbols per second

spectral selection or spread spectrum
space-time

single user

singular-value decomposition
trellis-coded modulation

Transport Control Protocol
trellis-coded quantization

tapped delay line

time-division multiple-access
underwater acoustic channel

User Datagram Protocol

unequal error protection

uniform linear array

underwater vehicles

virtual circuits

vector quantizer

variable rate

vector sum excited linear predictor
whitened match filter

wide-sense stationary

World Wide Web

zero-forcing

zero-forcing equalizer




List of Contributors

David Brady
Northeastern University

Stephen V. Hanly
University of Melbourne, Australia

Paul Haskell
DiviComm, Inc.

Michael L. Honig
Northwestern University

David G. Messerschmitt
University of California, Berkeley

Constantinos B. Papadias
Lucent Technologies (Bell Labs Research)

Haralabos C. Papadopoulos
Massachusetts Institute of Technology

Xvii




xviii

Arogyaswami J. Paulraj
Stanford University

H. Vincent Poor
Princeton University

James C. Preisig
Woods Hole Oceanographic Institution

Kannan Ramchandran
University of Illinois, Urbana-Champaign

Vellenki U. Reddy
Indian Institute of Science, Bangalore, India

David N. C. Tse
University of California, Berkeley

Alle-Jan van der Veen
Delft University of Technology, The Netherlands

Martin Vetterli
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Andrew ]. Viterbi
Qualcomm, Inc.

Gregory W. Wornell
Massachusetts Institute of Technology

Louis Yun
ArrayComm, Inc.

Conftributors




	Chapter1.pdf
	Chapter1.pdf
	1 Linerar Diversity Techniques for Fading Channels
	1.1. System and Fading Channel Models
	1.2. Transmision without diversity
	1.3. Spectral Diversity
	1.4. Temporal Diversity
	1.4.1. Spread-Response Precoding
	1.4.2. Incorporating Bandwidth Expansion
	1.4.3. Coherence-Time Scaling

	1.5. Diversity Methods for Multiuser Systems
	1.5.1. Multiuser Fading Channels
	1.5.2. Multiple Access and Multiplexing formats
	1.5.3. Orthogonal Multiuser Modulation
	1.5.4. Spread-Signature CDMA Systems
	1.5.5. CDMA Performance Characteristics
	1.5.6. Coherence-Time Scaling
	1.5.7. Efficient Implementations of Spread-Response Precoding

	1.6. Spatial Diversity
	1.6.1. Receiver Antenna Diversity
	1.6.2. Transmitter Antenna Diversity
	1.6.2.1. Beamforming Diversity with Feedback
	1.6.2.2. Linear Antenna Precoding
	1.6.2.3. Dual-form Linear Antenna Precoding
	1.6.2.4. Incorporating Bandwidth Expansion


	1.7. Concluding Remarks



	Chapter2.pdf
	2 Adaptative Interference Suppresion
	2.1. Multiple-Access Signel Model
	2.2. Elements of Multiuser Detection
	2.3. Linear Interference Suppression
	2.3.1. Multiple-Input/Multiple-output (MIMO) Minumum Mean-Squared Error (MMSE) Linear Detector
	2.3.2. Zero-Forcing (Decorrelating) Detector
	2.3.3. Inplementation as a Tapped-Delay Line (TDL)

	2.4. Application to DS-CDMA
	2.4.1. Discrete-Time Representation
	2.4.2. Complutation of MMSE Coefficients
	2.4.3. Geometric Interpretation
	2.4.4. Zero-Forcing (Decorrelating) Solution
	2.4.5. Asymptotic Behavior of MMSE Solution
	2.4.6. Preformance Measures
	2.4.7. Space-Time Filtering
	2.4.8. Effect of Multipath

	2.5. Adaptative Algoritms
	2.5.1. Stochastic Gradient Algorithm
	2.5.2. Least Squares (LS) Algorithm
	2.5.3. Orthogonally Anchored (Blind) Algoritms
	2.5.4. Projection-Based Approached
	2.5.5. Numerical Examples

	2.6 Further Issues and Refinements
	2.6.1. The Mobile Wireless Environment
	2.6.1.1. Distance-Related Attenuation and Shadowing
	2.6.1.2. Multipath
	2.6.1.3. Delay
	2.6.1.4. Power Control
	2.6.1.5. Time-Varying User Population
	2.6.1.6. Narrowband Interference
	2.6.1.7. Non-Gaussian Ambient Noise

	2.6.2. System Issues
	2.6.2.1. Coding
	2.6.2.2. Power Control
	2.6.2.3. Timing Recovery
	2.6.2.4. Nonuniform Quality of Service
	2.6.2.5. Very Long Spreading Sequences
	2.6.2.6. Power Consumption


	2.7. Concluding Remarks
	References
	Acknowlegments


	Chapter3.pdf
	3 Equalization of Multiuser channels
	3.1 Characterization of Wireless Channels
	3.2 Equalization of Known Multipath Fading Channels
	3.2.1 System Model
	3.2.2 Limits on Equalizer Performance over Fading Channels-Maximum Ukelihood Sequence Detection
	3.2.2.1 Sufficient Statistics for LTI Channels
	3.2.2.2 Sufficient Statistics for Additive White Gaussian Noise Channels

	3.2.3 The Matched-Filter Receiver for Time-Varying Channels
	3.2.4 Linear Zero-Forcing Equalizers
	3.2.4.1 AWGN Channel The Descorrelating Receiver

	3.2.5 Linear MMSE Equalization
	3.2.5.1 Linear Equalization for LTI Channels

	3.2.6 Successive Correlation and Detection-Feedback Equalizers for Multiple-Access Channels
	3.2.6.1 Decision-Feedback Equalization
	3.2.6.2 Adaptative Equalization Algorithms
	3.2.6.3 Decision-Feedback Equalizers for LTI Channels

	3.2.7 Chip-Rate, State-Space Approaches for Time-Varying Channels
	3.2.7.1 Decision-Feedback Equalization


	3.3 Blind Equalization in Multipath, slowly Time-Varying Channels
	3.3.1 The Fordward Link: Blind Equalization of Single-Input Multiple-Output FIR Channels
	3.3.1.1 The Cross-Relation Method
	3.3.1.2 Subspace-Based Methods
	3.3.1.3 Direct Symbol Estimation
	3.3.1.4 Issues in the Multiple FIR Channel Deconvolution Problem

	3.3.2 Blind Equalization in the Reverse Link via Multiple Observations
	3.3.2.1 Blind Equalization Using Multiple Antennas in CDMA Systems


	3.4 Concluding Remarks
	References
	Acknowledgements





