

VISUAL QUICKPRO GUIDE

PHP 5 ADVANCED

Larry Ullman

Peachpit Press

Visual QuickPro Guide
PHP 5 Advanced
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2007 by Larry Ullman

Editor: Rebecca Gulick
Copy Editor: Robert Campbell
Technical Reviewer: Jay Blanchard
Proofreader: Liz Welch
Production Coordinator: Becky Winter
Compositor: Kate Kaminski
Indexer: Karin Arrigoni
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit Press
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson
Education.

MySQL is a registered trademark of MySQL AB in the United States and in other countries.
Macintosh and Mac OS X are registered trademarks of Apple Inc. Microsoft, Windows, Windows
XP, and Windows Vista are registered trademarks of Microsoft Corp. Screenshots of Web sites in
this book are copyrighted by the original holders.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware
of a trademark claim, the designations appear as requested by the owner of the trademark. All
other product names and services identified throughout this book are used in editorial fashion
only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affilia-
tion with this book.

ISBN-13: 978-0-321-37601-5 ISBN-10: 0-321-37601-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

Dedication
To my good friend Michael K. and his family:
I cannot thank you all enough for your con-
tinuing friendship, generosity, and kindness
over these many years.

My utmost thanks to…
Jessica, the love of my life, for just about
everything.

Zoe and Sam, for making my world a
better place.

The grandparents, who traveled far and
often, pitching in with babysitting and
housework so that I might write this book.

Everyone at Peachpit Press for their support,
for their dedication to putting out quality
books, and for everything else they do to
make all this happen.

The most excellent editor, Rebecca Gulick,
for so many reasons.

Bob Campbell, for his spot-on copy editing
and attention to detail.

The production coordinator, Becky Winter,
the compositor, Kate Kaminski, the proof-
reader, Liz Welch, and the indexer, Karin
Arrigoni, who turn my mess of files into an
actual book.

Jay Blanchard, for his technical review.

The readers, the readers, the readers!

Introduction ix

Chapter 1: Advanced PHP Techniques 1

Chapter 2: Developing Web Applications 43

Chapter 3: Advanced Database Concepts 81

Chapter 4: Security Techniques 123

Chapter 5: E-commerce Techniques 169

Chapter 6: Basic Object-Oriented
Programming 233

Chapter 7: Advanced OOP 263

Chapter 8: Real-World OOP 309

Chapter 9: Networking with PHP 347

Chapter 10: PHP and the Server 373

Chapter 11: PHP’s Command-Line Interface 417

Chapter 12: Using PEAR 443

Chapter 13: Ajax 481

Chapter 14: XML and PHP 529

Index 569

v

Co
n

ten
ts at a G

lan
ce

Contents at a Glance

vi

Ta
bl

e
o

f
Co

n
te

n
ts

Introduction ix

Chapter 1: Advanced PHP Techniques 1
Multidimensional Arrays . 2
Advanced Function Definitions 18
The Heredoc Syntax . 31
Using printf() and sprintf() 37

Chapter 2: Developing Web Applications 43
Documenting Code . 44
Code Style and Structure . 47
Modularizing a Web Site . 49
Affecting the Browser Cache 74

Chapter 3: Advanced Database Concepts 81
Storing Sessions in a Database 82
Working with U.S. Zip Codes 96
Creating Stored Functions 110
Displaying Results Horizontally 116

Chapter 4: Security Techniques 123
Remembering the Basics . 124
Validating Form Data . 126
Using PECL Filter . 136
Authentication with PEAR Auth 143
Using MCrypt . 157

Chapter 5: E-commerce Techniques 169
E-commerce Concepts . 170
Creating the Database . 171
Creating the Configuration File 183
Making the Template . 190
Creating the Index Page . 197

Table of Contents

Browsing by Category . 199
Showing a Product . 205
Implementing a Shopping Cart 212
Validating Credit Cards . 224

Chapter 6: Basic Object-Oriented
Programming 233
OOP Theory . 234
Defining a Class . 235
Creating an Object . 240
The $this Attribute . 244
Creating Constructors . 251
Creating Destructors . 256
Autoloading Classes . 260

Chapter 7: Advanced OOP 263
Advanced Theories . 264
Inheriting Classes . 266
Inheriting Constructors and Destructors 271
Overriding Methods . 276
Access Control . 281
Using the Scope Resolution Operator 289
Creating Static Members . 294
Abstract Classes and Methods 300

Chapter 8: Real-World OOP 309
Catching Exceptions . 310
Extending the Exception Class 317
Creating a Shopping Cart Class 328
Using the Cart Class . 340

Chapter 9: Networking with PHP 347
Accessing Other Web Sites 348
Working with Sockets . 355
Performing IP Geolocation 363
Using cURL . 368

Chapter 10: PHP and the Server 373
Compressing Files . 374
PHP-GTK . 385
Establishing a cron . 399
Scheduling Tasks on Windows 402
Using COM with PHP . 404

vii

Table o
f Co

n
ten

ts

Table of Contents

Chapter 11: PHP’s Command-Line Interface 417
Testing Your Installation . 418
Executing Bits of Code . 422
Creating a Command-Line Script 424
Running a Command-Line Script 428
Working with Command-Line Arguments 432
Taking Input . 437

Chapter 12: Using PEAR 443
Using Benchmark . 444
Using HTML_QuickForm 456
Using Mail_Mime . 469

Chapter 13: Ajax 481
Introduction to Ajax . 482
A Simple Example . 484
Full-Fledged Ajax . 506
Debugging Ajax Applications 523

Chapter 14: XML and PHP 529
What Is XML? . 530
XML Syntax . 532
Attributes, Empty Elements, and Entities 536
Document Type Definitions 540
Parsing XML . 548
Creating an RSS Feed . 562

Index 569

viii

Ta
bl

e
o

f
Co

n
te

n
ts

Table of Contents

If you’re looking at this book, then I probably don’t need to tell you how great PHP is.
Presumably, since you’re perusing the pages of an advanced text on the topic, you are
already using PHP for developing dynamic Web sites. Maybe you’ve been doing so for
a couple of years, perhaps just a couple of months. You could have learned PHP on your
own, in a class, or by reading one of the many excellent books on the subject. (I’m
referring not just to my own, of course!) Whatever the case, with some experience
under your belt, you probably don’t want another “here’s how to use PHP and isn’t it
swell” book. What you probably want to learn is how to use PHP more efficiently, more
securely, faster, and all-around better than you already are. If so, you’ve found the
right book.

In this humble author’s (or not-so-humble author’s) opinion, advanced PHP is about
learning: how to do different things, how to improve upon the basic things, and about
technologies that intersect with PHP. In short, you know how to make a dynamic Web
site with PHP, but you’d like to know how to make a better Web site, with every possible
meaning of “better.” That’s the approach I’ve taken in writing this book. I’ve not set
out to blow your mind discussing esoteric idiosyncrasies the language has, rewriting
the PHP, MySQL, or Apache source code, or making theoretically interesting but
practically useless code. In short, I present to you several hundred pages of beyond-the-
norm but still absolutely necessary (and often cool) tips and techniques.

ix

Introduction
i

In
tro

du
ctio

n

About This Book
Simply put, I’ve tried to make this book’s
content accessible and useful for every
PHP programmer out there. As I suggest
in the introductory paragraphs, I believe
that “advanced” PHP is mostly a matter
of extended topics. You already possess
all the basic knowledge—you retrieve data-
base query results in your sleep—but want
to go further. This may mean learning object-
oriented programming (OOP), using PEAR
(PHP Extension and Application Repository),
incorporating Ajax (Asynchronous JavaScript
and XML) into a site, or improving upon
aspects of your existing skill set.

My definition of advanced PHP program-
ming covers three loosely grouped skills:

◆ Doing what you already do better, faster,
and more securely

◆ Learning more sophisticated PHP tech-
niques

◆ Doing standard things using PHP and
other technologies (like PEAR, Ajax,
or OOP)

This book can be divided into three sections,
corresponding to those skills. The first five
chapters cover advanced PHP knowledge
in general: programming techniques, Web
applications, databases, security, and e-com-
merce. They all cover information that the
average PHP programmer may not be famil-
iar with but should be able to comprehend,
providing useful code in the process.

The next six chapters focus on extending
your knowledge to areas of PHP with which
you might not be as familiar. Half of this sec-
tion goes over object-oriented programming
in great detail, from the fundamentals to
advanced topics to some real-world examples.
The other three chapters are on different ways
you might use PHP: to communicate with

x

Introduction

In
tr

o
du

ct
io

n

networked servers, to communicate with
the host server, or from a command-line
interface. The remaining three chapters each
deal with a specific technology tied into
PHP: PEAR, Ajax, and XML.

Two bonus chapters, “Image Generation” and
“Creating PDFs”, can be downloaded from
Peachpit’s Web site. Those two chapters,
which are available for free, provide another
100 pages of content showing how PHP ties
into related, and very useful, technologies.
Visit www.peachpit.com/title/0321376013
to learn how to register this book and
download the chapters.

Most examples used in this book are intended
to be applicable in the real world, omitting
the frivolous code you might see in other
books, tutorials, and manuals. I focus as much
on the philosophies involved as on the coding
itself so that, in the end, you will come away
with not just how to do this or that but also
how to apply the overarching mentality to
your own, individual projects.

Unlike with most of my other books, I do
not expect that you’ll necessarily read this
book in sequential order, for the most part.
Some chapters do assume that you’ve read
others, like the object-oriented ones, which
have a progression to them. Some later
chapters also reference examples completed
in earlier ones. If you read the later ones
first, you’ll just need to quickly hop over to
the earlier ones to generate whatever data-
base or scripts the later chapter requires.

Finally, I’ll be using XHTML in my scripts
instead of HTML. I’ll also use some CSS, as
warranted. I do not discuss either of these
subjects in this book (and, to be frank, may
not adhere to them perfectly). If you are not
already familiar with the subjects, you should
look at some online resources or good books
(such as Elizabeth Castro’s excellent Visual
QuickStart Guides) for more information.

xi

Introduction

In
tro

du
ctio

n

www.peachpit.com/title/0321376013

What’s new in this edition
The most important change in this edition
of the book is that every bit of code has been
updated, rewritten, or replaced to ensure
100 percent compatibility with PHP 5. Many
of the examples have also been modified
to take advantage of features added to the
language.

What is also new is my approach. The first
edition of this text was the second book I
ever wrote. I’ve learned a lot since then, both
in terms of PHP and in terms of what read-
ers expect in a book. A lot of my valuable
experience in this latter category comes
from the constant interactions with other
readers through email and my supporting
forums (www.DMCInsights.com/phorum/). A
fair amount of material is therefore based
upon frequently asked questions I see.

How this book compares to my
others
Those readers who have come to this book
from my PHP for the World Wide Web: Visual
QuickStart Guide may find themselves in a
bit over their heads. This book does assume
comfort with standard PHP programming,
in particular debugging your own scripts.
I’m not suggesting you put this book down,
but if you find it goes too fast for you, or
assumes knowledge you don’t currently pos-
sess, you may want to check out my PHP
and MySQL for Dynamic Web Sites: Visual
QuickPro Guide instead.

If you have read the PHP and MySQL book,
or the first edition of this one, I’m hoping
that you’ll find this to be a wonderful addi-
tion to your library and skill set.

xii

Introduction

In
tr

o
du

ct
io

n

www.DMCInsights.com/phorum/

About PHP 5
Although version 5 of PHP has been out
since July 2004 (when the first non-beta
version was released), there are still a large
number of servers running older versions
of PHP, particularly outside of the United
States. This book does assume you’re using
PHP 5, although some examples will work
with older versions of the language.

The most important change in PHP 5,
with respect to this book, is the completely
different object model and syntax. Object-
oriented programming in PHP 4 is a rather
watered-down concept, really not worth
using in comparison to PHP 5’s OOP. The
object-oriented chapters use PHP 5 syntax
exclusively, and that code will not work on
older versions of the language.

In addition, PHP 5 added support for the
Improved MySQL extension, designed for
use with MySQL 4.1 or later. With only one
or two exceptions, I use these Improved
MySQL functions instead of the older, “regu-
lar” MySQL functions. If your PHP installa-
tion (or MySQL installation) does not sup-
port these functions, you’ll need to change
the code accordingly.

xiii

Introduction

In
tro

du
ctio

n

What You’ll Need
Just as this book assumes that you already
possess the fundamental skills to program in
PHP (and, more important, to debug it when
things go awry), it also assumes that you
already have everything you need to follow
along with the material. For starters, this
means a PHP-enabled server. At the time of
this writing, the latest version of PHP was
5.2, and much of the book depends upon
your using at least PHP 5.0.

Along with PHP, you’ll often need a database
application. I use MySQL for the examples,
but you can use anything. And, for the scripts
in some of the chapters to work—particularly
the last five—your PHP installation will have
to include support for the corresponding
technology, and that technology’s library
may need to be installed, too. Fortunately
PHP 5 comes with built-in support for many
advanced features. If the scripts in a par-
ticular chapter require special extensions,
that will be referenced in the chapter’s intro-
duction. This includes the few times where
I make use of a PEAR or PECL class. Nowhere
in this book will I discuss installation, though,
as I expect you should already know or have
accomplished that.

As with any issue, should you have questions
or problems, you can always search the Web
or post a message in my support forums for
assistance.

Beyond PHP, you need the things you should
already have: a text editor or IDE, an FTP
application (if using a remote server), and a
Web browser. All of the code in this book
has been tested on both Windows XP and
Mac OS X; you’ll see screen shots in both
operating systems.

xiv

Introduction

In
tr

o
du

ct
io

n

Support Web Site
I have developed a Web site to support this
book, available at www.DMCinsights.com/
phpvqp2/. This site:

◆ Has every script available for download

◆ Has the SQL commands available for
download

◆ Has extra files, as necessary, available
for download

◆ Lists errors that have been found in
the book

◆ Has a support forum where you can get
help or assist others

◆ Provides a way to contact me directly

When using this site, please make sure
you’ve gone to the correct URL (the book’s
title and edition are plastered everywhere).
Each book I’ve written has its own support
area; if you go to the wrong one, the down-
loadable files won’t match those in the book.

Two bonus chapters, “Image Generation”
and “Creating PDFs,” can be downloaded
for free. Visit www.peachpit.com/title/
0321376013 to learn how to register this
book and access the chapters.

xv

Introduction

In
tro

du
ctio

n

www.DMCinsights.com/phpvqp2/
www.DMCinsights.com/phpvqp2/
www.peachpit.com/title/0321376013
www.peachpit.com/title/0321376013

This page intentionally left blank

At the most basic level good programming is determined by whether or not an appli-
cation or script works as intended. This is where the beginning programmer will leave
things, and there is nothing wrong with that. However, the advanced programmer
will work past that point, striving toward improved efficiency, reliability, security,
and portability. This book teaches you how to develop the skills of an advanced PHP
programmer.

One thing the advanced PHP programmer does better than the beginner is learning to
take advantage of more obscure or harder-to-comprehend features of the language. For
example, while you probably already know how to use arrays, you may not have mas-
tered multidimensional arrays: creating them, sorting them, and so on. You have writ-
ten your own functions by this point but may not understand how to use recursion and
static variables. Issues like these will be discussed as well as other beyond-the-basics
concepts, like the heredoc syntax and the printf()/sprintf() family of functions.

1

Advanced
PHP Techniques

1
A

dvan
ced P

H
P

tech
n

iq
u

es

Multidimensional Arrays
Because of their power and flexibility, arrays
are widely used in all PHP programming. For
advanced uses, the multidimensional array
often solves problems where other variable
types just won’t do.

For the first of the two examples, I’ll demon-
strate how to sort a multidimensional array.
It’s a common question users have and isn’t
as hard as one might think. For the second
example, I’ll create a database-driven to-do
list, which can have limitless dimensions
(Figure 1.1).

Sorting multidimensional arrays
Sorting arrays is easy using PHP, thanks to
the sort(), ksort(), and related functions.
You can sort a one-dimensional array by key,
by value, in reverse order, etc. But these func-
tions will not work on multidimensional
arrays (not as you’d probably like, at least).

Say you have an array defined like so:

$a = array (

array (‘key1’ => 940, ‘key2’ => ‘blah’),

array (‘key1’ => 23, ‘key2’ => ‘this’),

array (‘key1’ => 894, ‘key2’ => ‘that’)

);

This is a simple two-dimensional array (an
array whose elements are also arrays) that
you might need to sort using key1 (a numeric
sort) or key2 (an alphabetical sort). To sort a
multidimensional array, you define your own
sort function and then tell PHP to use that
function via the usort(), uasort(), or
uksort() function. The function you define
must take exactly two arguments and return
a value indicating which should come first.

Figure 1.2 The multidimensional array
sorted by numeric value (key1).

Figure 1.1 One use of multidimensional
arrays will be to create a nested to-do
list.

2

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

Figure 1.4 An alphabetical sort on
the example array using key2.

Figure 1.3 By printing out the values
of $x[‘key1’] and $y[‘key1’], one
can see how the user-defined sorting
function is invoked.

To sort the preceding array on the first key,
the sorting function would like this:

function mysort1 ($x, $y) {

return ($x[‘key1’] > $y[‘key1’]);

}

Then the PHP code would use this function
by doing:

usort ($a, ‘mysort1’);

Figure 1.2 shows the same array at this
point.

PHP will continue sending the inner arrays
to this function so that they may be sorted. If
you want to see this in detail, print the values
being compared in the function (Figure 1.3).

The usort() function sorts by values and does
not maintain the keys (for the outermost
array). If you used uasort(), the keys would
be maintained, and if you used uksort(), the
sort would be based upon the keys.

To sort on the second key in the preceding
example, you would want to compare two
strings. That code would be (Figure 1.4
shows the result):

function mysort2 ($x, $y) {

return strcasecmp($x[‘key2’],

➝ $y[‘key2’]);

}

usort ($a, ‘mysort2’);

Or you could just use strcmp(), to perform a
case-sensitive sort.

To see this in action for yourself, let’s run
through an example.

3

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

To sort a multidimensional array:

1. Create a new PHP script in your text edi-
tor or IDE, starting with the HTML code
(Script 1.1).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Sorting Multidimensional

➝ Arrays</title>

</head>

<body>

<?php # Script 1.1 - sort.php

2. Define a multidimensional array.

$students = array (

256 => array (‘name’ => ‘Jon’,

➝ ‘grade’ => 98.5),

2 => array (‘name’ => ‘Vance’,

➝ ‘grade’ => 85.1),

9 => array (‘name’ => ‘Stephen’,

➝ ‘grade’ => 94.0),

364 => array (‘name’ => ‘Steve’,

➝ ‘grade’ => 85.1),

68 => array (‘name’ => ‘Rob’,

➝ ‘grade’ => 74.6)

);

The outer array, $students, has five ele-
ments, each of which is also an array. The
inner arrays use the student’s ID for the
key (a made-up value) and store two
pieces of data: the student’s name and
their grade.

continues on page 6

4

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Sorting Multidimensional Arrays</title>

7 </head>

8 <body>

9 <?php # Script 1.1 - sort.php

10

11 /* This page creates a multidimensional array

12 * of names and grades.

13 * The array is then sorted twice:

14 * once by name and once by grade.

15 */

16

17 // Create the array:

18 // Array structure:

19 // studentID => array ('name' => 'Name', 'grade' => XX.X)

20 $students = array (

21 256 => array ('name' => 'Jon', 'grade' => 98.5),

22 2 => array ('name' => 'Vance', 'grade' => 85.1),

23 9 => array ('name' => 'Stephen', 'grade' => 94.0),

24 364 => array ('name' => 'Steve', 'grade' => 85.1),

25 68 => array ('name' => 'Rob', 'grade' => 74.6)

26);

27

28 // Name sorting function:

29 function name_sort ($x, $y) {

30 return strcasecmp($x['name'], $y['name']);

31 }

32

33 // Grade sorting function:

34 // Sort in DESCENDING order!

35 function grade_sort ($x, $y) {

36 return ($x['grade'] < $y['grade']);

37 }

38

39 // Print the array as is:

40 echo '<h3>Array As Is</h3><pre>' . print_r($students, 1) . '</pre>';

41

42 // Sort by name:

43 uasort ($students, 'name_sort');

44

45 // Print the array now:

46 echo '<h3>Array Sorted By Name</h3><pre>' . print_r($students, 1) . '</pre>';

47

48 // Sort by grade:

49 uasort ($students, 'grade_sort');

50

51 // Print the array now:

52 echo '<h3>Array Sorted By Grade</h3><pre>' . print_r($students, 1) . '</pre>';

53

54 ?>

55 </body>

56 </html>

Script 1.1 This script defines a two-dimensional array, which is then sorted based upon the inner array values.

5

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

3. Define the name sorting function.

function name_sort ($x, $y) {

return strcasecmp($x[‘name’],

➝ $y[‘name’]);

}

The strcasecmp() function returns a
number—negative, 0, or positive—indi-
cating how similar two strings are. If a
negative value is returned, the first string
comes before the second alphabetically; if
a positive value is returned, the second
string comes first. If 0 is returned, the
strings are the same.

4. Define the grade sorting function.

function grade_sort ($x, $y) {

return ($x[‘grade’] <

➝ $y[‘grade’]);

}

This example is like the demo in the
introduction to these steps. One signifi-
cant difference is that I want to perform
a descending sort, so that the highest
grades are listed first. This is easily
accomplished: change the comparison
operator from greater than to less than.

5. Print the array as it’s initially defined.

echo ‘<h3>Array As Is</h3><pre>’ .

➝ print_r($students, 1) . ‘</pre>’;

For improved legibility, I’ll use the <pre>
tags and print_r() to quickly reveal the
arrays’ structure and values.

6. Sort the array by name and print the
results.

uasort ($students, ‘name_sort’);

echo ‘<h3>Array Sorted By

➝ Name</h3><pre>’ .

➝ print_r($students, 1) . ‘</pre>’;

Here the uasort() function is used so
that the keys—the student IDs—are not
lost. Figure 1.5 shows the result if just
usort() was used instead.

Figure 1.5 Failure to use uasort() would
cause the keys, which store meaningful
values (see Script 1.1), to be lost.

6

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

Figure 1.6 The initial array and sorted
by name.

7. Sort the array by grade and print the
results.

uasort ($students, ‘grade_sort’);

echo ‘<h3>Array Sorted By

➝ Grade</h3><pre>’ .

➝ print_r($students, 1) . ‘</pre>’;

7

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

8. Complete the page.

?>

</body>

</html>

9. Save the file as sort.php, place it in your
Web directory, and test in your Web
browser (Figures 1.6 and 1.7).

Figure 1.7 The array sorted by grade, in
descending order (this is the same Web
page as in Figure 1.6, but it couldn’t all
fit in one screenshot).

Database-driven arrays
If you think about it, most database queries
return a multidimensional array (Figure 1.8).
If the query results are immediately sent to
the Web browser one at a time, the multidi-
mensional structure doesn’t add any compli-
cation to your code. However, if you need to
do something more elaborate with the results,
you’ll need a way to comprehend and man-
age the nested structure.

For this example, I want to create a database-
driven, Web-based to-do list system. If the
to-do list were one-dimensional, this wouldn’t
be that hard. But the list should be nestable,
where each item can have multiple steps.
The result will be a tree-like structure, where
each branch can have its own offshoots
(Figure 1.9).

Figure 1.8 Selecting multiple columns from multiple
rows in a database results in a multidimensional
array.

8

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

Figure 1.9 How a nested to-do list looks as a tree.

Figure 1.10 This table represents the same data as in
Figures 1.8 and 1.9. There will be a pseudo–foreign
key–primary key relationship between the task_id
and parent_id columns.

The database required by this is surprisingly
simple (Table 1.1). The trick is that each item
has a parent_id attribute. If an item is a sub-
step, its parent_id would be the task number
of the item that it falls under (Figure 1.10).
If an item is not a substep, its parent_id
would be 0. It’s a very simple setup, but han-
dling this in PHP will take some effort.

Over the next few pages, you’ll create the
database table and a PHP script for adding
new tasks. In the next sections of the chap-
ter, you’ll see how to use recursive functions
to handle the multidimensional array.

9

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

C o l u m n N a m e Ty p e E x t r a

task_id INT UNSIGNED AUTO_INCREMENT, Primary Key
parent_id INT UNSIGNED NOT NULL, DEFAULT 0

task VARCHAR(100) NOT NULL

date_added TIMESTAMP NOT NULL

date_completed TIMESTAMP

The tasks Table

Table 1.1 This one database table is all that is required to manage a nested to-do list.

To create the database:

1. Access MySQL using the mysql client or
other interface.

I’ll be using MySQL in this example, but
you can use any database application, of
course. To create the table, I’ll use the
command-line mysql client, but you could
use phpMyAdmin or one of MySQL’s
graphical interfaces instead.

2. Select the test database (Figure 1.11).

USE test;

I’ll just throw this one table within the
test database, as it’s not part of any
larger application. You can put it in a
different database, if you prefer.

3. Create the table (Figure 1.12).

CREATE TABLE tasks (

task_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

parent_id INT UNSIGNED NOT NULL

➝ DEFAULT 0,

task VARCHAR(100) NOT NULL,

date_added TIMESTAMP NOT NULL,

date_completed TIMESTAMP,

PRIMARY KEY (task_id),

INDEX parent (parent_id),

INDEX added (date_added),

INDEX completed (date_completed)

);

The task_id is an automatically incre-
mented primary key. The value will also
be used as the parent_id if a task is a sub-
step. The task itself goes into a VAR-
CHAR(100) column, which you could also
define as a text type if you wanted to
allow for longer descriptions. Two time-
stamp columns round out the table, one
documenting when the task was added
and another to indicate its completion.
Three standard indexes are placed on
columns that might be used in queries.

Figure 1.12 Creating the tasks table.

Figure 1.11 The table will be created within the test
database.

10

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

Figure 1.13 The tasks will normally be added using a
PHP script, but a test insertion is run just to make
sure everything is on the up and up.

4. Test the table by adding a dummy task
(Figure 1.13):

INSERT INTO tasks (task) VALUES

➝ (‘Must Do This!’);

SELECT * FROM tasks;

For a simple task that’s not a subset of
another task, only the one column needs
to be provided with a value. The SELECT
query confirms that the parent_id,
date_added, and date_completed columns
are automatically given default values
(0000-00-00 00:00:00 is the TIMESTAMP
equivalent of 0).

5. Empty the table.

TRUNCATE tasks;

11

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

To add tasks to the database:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 1.2).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Add a Task</title>

7 </head>

8 <body>

9 <?php # Script 1.2 - add_task.php

10

11 /* This page adds tasks to the tasks table.

12 * The page both displays and handles the form.

13 */

14

15 // Connect to the database:

16 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('<p>Could not
connect to the database!</p></body></html>');

17

18 // Check if the form has been submitted:

19 if (isset($_POST['submitted']) && !empty($_POST['task'])) {

20

21 // Sanctify the input...

22

23 // The parent_id must be an integer:

24 if (isset($_POST['parent_id'])) {

25 $parent_id = (int) $_POST['parent_id'];

26 } else {

27 $parent_id = 0;

28 }

29

30 // Escape the task:

31 // Assumes Magic Quotes are off!

32 $task = mysqli_real_escape_string($dbc, $_POST['task']);

33

34 // Add the task to the database.

35 $q = "INSERT INTO tasks (parent_id, task) VALUES ($parent_id, '$task')";

36 $r = mysqli_query($dbc, $q);

37

38 // Report on the results:

39 if (mysqli_affected_rows($dbc) == 1) {

Script 1.2 Tasks are added to the database using this script. Tasks can even be filed under other tasks using the
drop-down menu.

12

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Add a Task</title>

</head>

<body>

<?php # Script 1.2 - add_task.php

continues on page 14

40 echo '<p>The task has been added!</p>';

41 } else {

42 echo '<p>The task could not be added!</p>';

43 }

44

45 } // End of submission IF.

46

47 // Display the form:

48 echo '<form action="add_task.php" method="post">

49 <fieldset>

50 <legend>Add a Task</legend>

51

52 <p>Task: <input name="task" type="text" size="60" maxlength="100" /></p>

53

54 <p>Parent Task: <select name="parent_id"><option value="0">None</option>

55 ';

56

57 // Retrieve all the uncompleted tasks:

58 $q = 'SELECT task_id, parent_id, task FROM tasks WHERE date_completed="0000-00-00 00:00:00"
ORDER BY date_added ASC';

59 $r = mysqli_query($dbc, $q);

60

61 // Also store the tasks in an array for use later:

62 $tasks = array();

63

64 while (list($task_id, $parent_id, $task) = mysqli_fetch_array($r, MYSQLI_NUM)) {

65

66 // Add to the select menu:

67 echo "<option value=\"$task_id\">$task</option>\n";

68

69 // Add to the array:

70 $tasks[] = array('task_id' => $task_id, 'parent_id' => $parent_id, 'task' => $task);

71

72 }

73

74 echo '</select></p>

75

76 <input name="submitted" type="hidden" value="true" />

77 <input name="submit" type="submit" value="Add This Task" />

78

79 </form>

80 </fieldset>

81 ';

82

83 // Sort the tasks by parent_id:

84 function parent_sort ($x, $y) {

85 return ($x['parent_id'] > $y['parent_id']);

86 }

87 usort ($tasks, 'parent_sort');

88

89 // Display all the tasks:

90 echo '<h3>Current To-Do List</h3>';

91 foreach ($tasks as $task) {

92 echo "{$task['task']}\n";

93 }

94 echo '';

95 ?>

96 </body>

97 </html>

Script 1.2 continued

13

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

2. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘test’) OR

➝ die (‘<p>Could not connect to the

➝ database!</p></body></html>’);

I’ll be using MySQL and the Improved
MySQL functions in this script. These are
available as of PHP 5 and MySQL 4.1. If
you are using older versions of either, you’ll
need to change the code accordingly.

If a database connection couldn’t be
made, an error is printed and the script
terminated (Figure 1.14).

3. Check if the form has been submitted.

if (isset($_POST[‘submitted’]) &&

➝ !empty($_POST[‘task’])) {

The form (Figure 1.15) has one main
text box and a drop-down menu. To test
for the form’s submission, the conditional
checks that a hidden input named sub-
mitted is set and that the text box
(named task) isn’t empty.

4. Ensure that the parent_id value is an
integer.

if (isset($_POST[‘parent_id’])) {

$parent_id = (int)

➝ $_POST[‘parent_id’];

} else {

$parent_id = 0;

}

The parent_id value is another task’s
task_id. It will come from the drop-down
menu, which means that it should be an
integer. But one shouldn’t make assump-
tions (because if someone hacked the
form to send text as the parent_id, it
would break the query), so this variable is
typecast to an integer. If a valid value is
submitted, this casting will have no effect.
Any invalid values will be turned into 0.
The same applies if the script does not
receive a $_POST[‘parent_id’] value.

Figure 1.15 The HTML form for adding tasks.

Figure 1.14 If a database connection cannot be made,
this is the result.

14

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

8. Complete the submission conditional
and start the form.

} // End of submission IF.

echo ‘<form action=”add_task.php”

➝ method=”post”>

<fieldset>

<legend>Add a Task</legend>

<p>Task: <input name=”task” type=

➝ ”text” size=”60” maxlength=”100”

➝ /></p>

<p>Parent Task: <select name=

➝ ”parent_id”><option value=

➝ ”0”>None</option>

‘;

The form has one text input and one
drop-down menu. The menu will be pop-
ulated from the list of existing tasks. The
first possible value will be 0, for tasks that
are not subservient to other tasks.

9. Retrieve all the uncompleted tasks.

$q = ‘SELECT task_id, parent_id, task

➝ FROM tasks WHERE its date_

➝ completed=”0000-00-00 00:00:00”

➝ ORDER BY date_added ASC’;

$r = mysqli_query($dbc, $q);

The query returns three pieces of infor-
mation for every uncompleted task
(once a task has been completed, its
date_completed column would have a
nonzero value). The task_id and the task
itself will be used in the drop-down
menu. The parent_id will be used later
to nest the tasks.

continues on next page

15

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

5. Secure the task value.

$task =

➝ mysqli_real_escape_string($dbc,

➝ $_POST[‘task’]);

The mysqli_real_escape_string() func-
tion will make whatever submitted task
value safe to use in the query.

6. Add the task to the database.

$q = “INSERT INTO tasks (parent_id,

➝ task) VALUES ($parent_id,

➝ ‘$task’)”;

$r = mysqli_query($dbc, $q);

This query differs from the test query
run earlier in that it also populates the
parent_id field in the table.

7. Report on the query results.

if (mysqli_affected_rows($dbc) == 1)

{

echo ‘<p>The task has been

➝ added!</p>’;

} else {

echo ‘<p>The task could not be

➝ added!</p>’;

}

10. Create an array for storing the tasks.

$tasks = array();

This script will list all the tasks twice:
once in the drop-down menu and once
after the form (Figure 1.16). This array
will store the second list.

11. Retrieve a database record and use it
accordingly.

while (list($task_id, $parent_id,

➝ $task) = mysqli_fetch_

➝ array($r, MYSQLI_NUM)) {

echo “<option value=\

➝ ”$task_id\”>$task</option>\n”;

$tasks[] = array(‘task_id’ =>

➝ $task_id, ‘parent_id’ =>

➝ $parent_id, ‘task’ => $task);

}

Within the while loop the retrieved
record is used to populate the drop-
down menu (Figure 1.17) and is also
stored in the $tasks array. This array will
be multidimensional.

12. Complete the form.

echo ‘</select></p>

<input name=”submitted” type=

➝ ”hidden” value=”true” />

<input name=”submit” type=”submit”

➝ value=”Add This Task” />

</form>

</fieldset>

‘;

The hidden input here is a trick I use
to check for a form’s submission. Doing
this is sometimes necessary as just
pressing Enter within Internet Explorer
for Windows will submit a form without
ever setting the $_POST[‘submit’]
variable.

Figure 1.17 The PHP-generated HTML source code for
the drop-down menu.

Figure 1.16 The page contains the list of tasks two
times.

16

Chapter 1

M
u

lt
id

im
en

si
o

n
al

 A
rr

ay
s

Figure 1.19 Adding a task that’s a subset of an
existing task.

Figure 1.18 Adding a new task that’s not linked to
another task.

13. Sort the tasks by parent_id.

function parent_sort ($x, $y) {

return ($x[‘parent_id’] >

➝ $y[‘parent_id’]);

}

usort ($tasks, ‘parent_sort’);

The parent_id value is what separates
primary tasks from secondary ones,
so working with this value in PHP is
important. Using the information dis-
cussed earlier in the chapter, a user-
defined function will sort the multidimen-
sional array.

14. Display the full list of tasks.

echo ‘<h3>Current To-Do

➝ List</h3>’;

foreach ($tasks as $task) {

echo “{$task[‘task’]}

➝ \n”;

}

echo ‘’;

This loop will display each task in order
of its parent_id. This is the first step
toward making the list shown in Figure 1.1,
although as you can see in Figure 1.16,
the list isn’t organized as it should be.
This will be solved later in the chapter.

15. Complete the page.

?>

</body>

</html>

16. Save the file as add_task.php, place it in
your Web directory, and test in your Web
browser (Figures 1.18 and 1.19).

✔ Tip

■ If you wanted to implement this idea in a
live site, one improvement you could
make would be the ability to add multi-
ple tasks at once. I’ll provide further tips
on fleshing out this example over the
course of the chapter.

17

Advanced PHP Techniques

M
u

ltidim
en

sio
n

al A
rrays

Advanced Function
Definitions
Being able to define and use your own func-
tions is integral to any programming lan-
guage. After even a modicum of PHP experi-
ence, you’ve no doubt created many. But
there are three potential features of user-
defined functions that arise in more
advanced programming. These are:

◆ Recursive functions

◆ Static variables

◆ Accepting values by reference

While not often used, sometimes these con-
cepts are indispensable. In discussing and
demonstrating these first two concepts, I’ll
continue to build upon the tasks example
just begun in the chapter.

Recursive functions
Recursion is the act of a function calling
itself.

function somefunction() {

// Some code.

somefunction();

// Possible other code.

}

The end result is that your functions can act
both as originally intended and as a loop.
The one huge warning when using this tech-
nique is to make sure your function has an
“out” clause. For example, the following code
will run ad infinitum:

function add_one ($n) {

$n++;

add_one ($n);

}

add_one (1);

18

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

The lack of a condition that determines
when to stop execution of the function cre-
ates a big programming no-no, the infinite
loop. Compare that function to this one:

function count_to_100 ($n) {

if ($n <= 100) {

echo $n . '
';

$n++;

count_to_100 ($n);

}

}

count_to_100 (1);

This function will continue to call itself until
$n is greater than 100, at which point it will
stop executing the function. (That’s obvi-
ously a trivial use of this concept; a loop
would do the same thing.)

Recursive functions are necessary when you
have a process that may be followed to an
unknown depth. For example, a script that
searches through a directory may have to
search through any number of subdirecto-
ries. Or an array might have an unknown
number of dimensions....

With the tasks table created earlier in the
chapter, retrieving and displaying all the
tasks is not hard (see Figures 1.17 and 1.18).
However, the method used in add_task.php
(Script 1.2) does not properly nest the tasks
like that in Figure 1.1. To accomplish that
desired end, a multidimensional array and a
recursive function are required.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>View Tasks</title>

7 </head>

8 <body>

9 <h3>Current To-Do List</h3>

10 <?php # Script 1.3 - view_tasks.php

11

12 /* This page shows all existing tasks.

13 * A recursive function is used to show the

14 * tasks as nested lists, as applicable.

15 */

16

17 // Function for displaying a list.

18 // Receives one argument: an array.

19 function make_list ($parent) {

20

21 // Need the main $tasks array:

22 global $tasks;

23

24 // Start an ordered list:

25 echo '';

26

27 // Loop through each subarray:

28 foreach ($parent as $task_id => $todo) {

29

(script continues on next page)

Script 1.3 One recursive function and a potentially bottomless multidimensional array will properly display the
nested list of tasks.

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>View Tasks</title>

</head>

<body>

<h3>Current To-Do List</h3>

<?php # Script 1.3 - view_tasks.php

continues on page 21

19

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

To use recursion:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 1.3).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

20

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

30 // Display the item:

31 echo "$todo";

32

33 // Check for subtasks:

34 if (isset($tasks[$task_id])) {

35

36 // Call this function:

37 make_list($tasks[$task_id]);

38

39 }

40

41 // Complete the list item:

42 echo '';

43

44 } // End of FOREACH loop.

45

46 // Close the ordered list:

47 echo '';

48

49 } // End of make_list() function.

50

51

52 // Connect to the database:

53 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('<p>Could not

connect to the database!</p></body></html>');

54

55 // Retrieve all the uncompleted tasks:

56 $q = 'SELECT task_id, parent_id, task FROM tasks WHERE date_completed="0000-00-00 00:00:00"

ORDER BY parent_id, date_added ASC';

57 $r = mysqli_query($dbc, $q);

58

59 // Initialize the storage array:

60 $tasks = array();

61

62 while (list($task_id, $parent_id, $task) = mysqli_fetch_array($r, MYSQLI_NUM)) {

63

64 // Add to the array:

65 $tasks[$parent_id][$task_id] = $task;

66

67 }

68

69 // For debugging:

70 //echo '<pre>' . print_r($tasks,1) . '</pre>';

71

72 // Send the first array element

73 // to the make_list() function:

74 make_list($tasks[0]);

75

76 ?>

77 </body>

78 </html>

Script 1.3 continued

2. Begin defining a function.

function make_list ($parent) {

global $tasks;

echo ‘’;

The purpose of the function will be
to display an array of items in an
ordered list:

Item 1

Item 2

Item 3

This function will take one argument,
which will always be an array. Within the
function, the $tasks array (the main
array) needs to be available—you’ll soon
see why. Then the ordered list is begun.

3. Loop through the array, printing
each item.

foreach ($parent as $task_id

➝ => $todo) {

echo “$todo”;

A foreach loop will go through the array,
printing each item within tags.
Those are begun here.

continues on next page

21

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

4. Check if any subtasks exist.

if (isset($tasks[$task_id])) {

make_list($tasks[$task_id]);

}

This is the most important part of the
script. The tasks retrieved from the data-
base will be tossed into a multidimen-
sional array like that in Figure 1.20. For
the main array, each key is a parent_id
and the elements are arrays of tasks that
fall under that parent_id. So after print-
ing the initial task, the function
needs to check if this task has any sub-
tasks; in other words: is there an array
element in $tasks whose key is this task
ID? If so, then this function should be
called again, sending that other part of
the array (the element whose key is this
task_id and whose value is an array of
subtasks) as the argument. That will
result in the code:

Item 1

Item 2

Subitem 1

Subitem 2

Item 3

5. Complete the foreach loop and the
function.

echo ‘’;

} // End of FOREACH loop.

echo ‘’;

} // End of make_list() function.

Figure 1.20 The PHP script takes the tasks
from the database and creates this
multidimensional array.

22

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

The $tasks array will store every task.
Figure 1.20 shows the final structure. As
described in Step 4, the array’s outer-
most key is the parent_id value from
the table. The value of this outermost
array is an array of the tasks with that
parent_id.

9. Add a debugging line, if desired.

//echo ‘<pre>’ . print_r($tasks,1) .

➝ ‘</pre>’;

When dealing with multidimensional
arrays, it’s vitally important to know and
understand the structure you’re working
with. When you uncomment this line (by
removing the two slashes), the script will
print the array like you see in Figure 1.20.

10. Call the make_list() function, sending it
the array of top-level tasks.

make_list($tasks[0]);

Although the $tasks variable is a multi-
dimensional array, the make_list() func-
tion needs to be called only once, send-
ing it the first array element. This ele-
ment’s value is an array of tasks whose
parent_id is 0. Within the function, for
each of these tasks, a check will see if
there are subtasks. So the function will
end up accessing every task thanks to its
recursive nature.

11. Complete the page.

?>

</body>

</html>

continues on next page

23

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

6. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘test’) OR

➝ die (‘<p>Could not connect to the

➝ database!</p></body></html>’);

With the recursive function defined, the
rest of the script needs to retrieve all the
tasks, organize them in an array, and then
call the make_list() function.

7. Define and execute the query.

$q = ‘SELECT task_id, parent_id, task

➝ FROM tasks WHERE

date_completed=”0000-00-00 00:00:00”

➝ ORDER BY parent_id, date_added

➝ ASC’;

$r = mysqli_query($dbc, $q);

The query retrieves three pieces of infor-
mation for each task: its ID, its parent_id,
and the task itself. The conditional
means that only noncompleted tasks are
selected. The results are also ordered by
the parent_id, so that every top-level task
(with a parent_id of 0) is returned first. A
secondary ordering by the date_added
returns the tasks in the order they were
added (an assumption being that’s how
they are prioritized).

8. Add each task to an array.

$tasks = array();

while (list($task_id, $parent_id,

➝ $task) = mysqli_fetch_

➝ array($r, MYSQLI_NUM)) {

$tasks[$parent_id][$task_id]

➝ = $task;

}

Figure 1.22 There is no limit to the number of
subtasks that this system supports.

Figure 1.21 The page of tasks, as a bunch of
nested lists.

12. Save the file as view_tasks.php, place it
in your Web directory, and test in your
Web browser (Figure 1.21).

13. Add some more subtasks and retest in
your Web browser (Figure 1.22).

✔ Tips

■ The PHP manual suggests that you
should avoid any recursive function that
may call itself over 100 to 200 times.
Doing so could crash the script or the
Web server.

■ This page does assume that some tasks
were returned by the database. You may
want to add a conditional checking that
$tasks isn’t empty prior to calling the
make_list() function.

24

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

Using static variables
When working with recursion or, in fact,
any script in which the same function may
be called multiple times, you might want to
consider using the static statement. static
forces the function to remember the value of
a variable from function call to function call,
without using global variables. The example
count_to_100() function (see the preceding
section of this chapter) could be rewritten
like so with the same result:

function count_to_100 () {

static $n = 1;

if ($n <= 100) {

echo $n . '
';

$n++;

count_to_100 ();

}

}

count_to_100 ();

Of course, that’s not a very useful implemen-
tation of the concept. The very astute reader
may have wondered how I achieved the result
in Figure 1.3. Showing the values being com-
pared is not hard, but counting the iterations
requires the use of static. Toward this end,
sort.php will be modified.

25

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

Completing This Example

This example was primarily written to
demonstrate multidimensional arrays and
recursive functions. Still, it’s a nice exam-
ple and worth implementing in a live site
(the ability to nest tasks is great). If you
wanted to do so, one feature you’d likely
need is the ability to mark a task as com-
pleted. An example later in the chapter
will do just that. Another alteration would
be to change the add_task.php page so
that the drop-down menu reflects the
hierarchy as well.

Another likely addition would be the
ability to add multiple tasks at once. And
you may want to consider an edit task
option. While you’re at it, the view tasks
page could have a link that passes a
value in the URL indicating whether all
tasks should be displayed or just uncom-
pleted ones. These are just some ideas.
Turn to the book’s supporting forum
(www.dmcinsights.com/phorum/) for
assistance and more!

www.dmcinsights.com/phorum/

To use static variables:

1. Open sort.php (Script 1.1) in your text
editor or IDE.

2. Modify the name_sort() function to read
(Script 1.4):

function name_sort ($x, $y) {

static $count = 1;

echo “<p>Iteration $count:

➝ {$x[‘name’]} vs. {$y[‘name’]}

➝ </p>\n”;

$count++;

return strcasecmp($x[‘name’],

➝ $y[‘name’]);

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Sorting Multidimensional Arrays</title>

7 </head>

8 <body>

9 <?php # Script 1.4 - sort2.php

10

11 /* This page creates a multidimensional array

12 * of names and grades.

13 * The array is then sorted twice:

14 * once by name and once by grade.

15 * A static variable has been added to both

16 * functions to see how many times they are called.

17 */

18

19 // Create the array:

20 // Array structure:

21 // studentID => array ('name' => 'Name', 'grade' => XX.X)

22 $students = array (

23 256 => array ('name' => 'Jon', 'grade' => 98.5),

Script 1.4 This modified version of the sorting script will reveal how many times each sorting function is invoked,
thanks to a static variable.

26

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

Three lines of code have been added to
the function. The first is the declaration
of a static variable called $count. It’s ini-
tially set to 1, but that assignment only
applies the first time this function is
called (because it’s a static variable).
Then the iteration number is printed
(how many times this function has
been called), along with the values being
compared. Finally, the $count variable is
incremented.

continues on page 28

24 2 => array ('name' => 'Vance', 'grade' => 85.1),

25 9 => array ('name' => 'Stephen', 'grade' => 94.0),

26 364 => array ('name' => 'Steve', 'grade' => 85.1),

27 68 => array ('name' => 'Rob', 'grade' => 74.6)

28);

29

30 // Name sorting function:

31 function name_sort ($x, $y) {

32 static $count = 1;

33 echo "<p>Iteration $count: {$x['name']} vs. {$y['name']}</p>\n";

34 $count++;

35 return strcasecmp($x['name'], $y['name']);

36 }

37

38 // Grade sorting function:

39 // Sort in DESCENDING order!

40 function grade_sort ($x, $y) {

41 static $count = 1;

42 echo "<p>Iteration $count: {$x['grade']} vs. {$y['grade']}</p>\n";

43 $count++;

44 return ($x['grade'] < $y['grade']);

45 }

46

47 // Print the array as is:

48 echo '<h3>Array As Is</h3><pre>' . print_r($students, 1) . '</pre>';

49

50 // Sort by name:

51 uasort ($students, 'name_sort');

52

53 // Print the array now:

54 echo '<h3>Array Sorted By Name</h3><pre>' . print_r($students, 1) . '</pre>';

55

56 // Sort by grade:

57 uasort ($students, 'grade_sort');

58

59 // Print the array now:

60 echo '<h3>Array Sorted By Grade</h3><pre>' . print_r($students, 1) . '</pre>';

61

62 ?>

63 </body>

64 </html>

Script 1.4 continued

27

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

3. Modify the grade_sort() function
to read:

function grade_sort ($x, $y) {

static $count = 1;

echo “<p>Iteration $count:

➝ {$x[‘grade’]} vs.

➝ {$y[‘grade’]}</p>\n”;

$count++;

return ($x[‘grade’] <

➝ $y[‘grade’]);

}

The same three lines of code that were
added to name_sort() are added to
grade_sort(), except the key being
compared here is grade, not name.

4. Save the file as sort2.php, place it in your
Web directory, and test in your Web
browser (Figures 1.23 and 1.24).

Figure 1.24 Sorting the same array by grade
also requires six iterations.

Figure 1.23 Sorting the original five-element
array by name requires six calls of the sorting
function.

28

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

Figure 1.26 …but the grade sort can be done in 18.

Figure 1.25 After adding three more elements
to the main array, the name sort now takes 20
iterations…

5. Add more items to the $students
array and rerun the script (Figures 1.25
and 1.26).

For the result in the figures, I changed the
array definition to:

$students = array (

256 => array (‘name’ => ‘Jon’,

➝ ‘grade’ => 98.5),

2 => array (‘name’ => ‘Vance’,

➝ ‘grade’ => 85.1),

9 => array (‘name’ => ‘Stephen’,

➝ ‘grade’ => 94.0),

364 => array (‘name’ => ‘Steve’,

➝ ‘grade’ => 85.1),

68 => array (‘name’ => ‘Rob’, ‘grade’

➝ => 74.6),

56 => array (‘name’ => ‘Ed’, ‘grade’

➝ => 88.6),

365 => array (‘name’ => ‘Samantha’,

➝ ‘grade’ => 92.5),

424 => array (‘name’ => ‘John’,

➝ ‘grade’ => 96.0)

);

29

Advanced PHP Techniques

A
dvan

ced Fu
n

ctio
n

 D
efin

itio
n

s

References and Functions

As a default, functions receive arguments on a call-by-value basis. This means that a function
receives the value of a variable, not the actual variable itself. The function can also be described
as making a copy of the variable. This is fine, as long as that variable does not need to be altered
within the function. To alter the value of a variable within a function, you need to either use
the global statement or pass the variable by reference.

To pass a variable by reference instead of by value, precede the variable in the argument list
with the ampersand (&).

function increment (&$var) {

$var++;

}

$num = 2;

increment($num);

echo $num; // 3

Alternatively, the function definition can stay the same and how the function is called would
change:

function increment ($var) {

$var++;

}

$num = 2;

increment(&$num);

echo $num; // 3

You probably won’t (or shouldn’t) find yourself passing values by reference often, but like the
other techniques in this chapter, it’s often the perfect solution to an advanced problem.

30

Chapter 1

A
dv

an
ce

d
Fu

n
ct

io
n

 D
ef

in
it

io
n

s

The Heredoc Syntax
Heredoc, in case you’ve never heard the term
before, is an alternative way for encapsulat-
ing strings. It’s used and seen much less often
than the standard single or double quotes,
but it fulfills the same role. Heredoc is like
putting peanut butter on bananas: you either
grow up doing it or you don’t. The heredoc
method works just like a double quote in
that the values of variables will be printed,
but you can define your own delimiter, which
is particularly nice when printing oodles of
HTML (with its own double-quotation marks).
The only catch to heredoc is that its syntax
is very particular!

The heredoc syntax starts with <<<, immedi-
ately followed by an identifier. The identifier
is normally a word in all caps. It can only
contain alphanumeric characters plus the
underscore (no spaces), and it cannot begin
with a number. There should be nothing on
the same line after the initial identifier, not
even a space! So usage of heredoc might
begin like

echo <<<EOT

blah…

or

$string = <<<EOD

blah…

continues on next page

31

Advanced PHP Techniques

Th
e H

eredo
c Syn

tax

At the end of the string, use the same identi-
fier without the <<<. The closing identifier
has to be the very first item on the line (it
cannot be indented at all) and can only be
followed by a semicolon! Examples:

echo <<<EOT

Somevar $var

Thisvar $that

EOT;

$string = <<<EOD

string with $var \n

EOD;

Using EOD and EOT as delimiters is common
(they’re unlikely to show up in the string)
but not required. The heredoc syntax is a
nice option but—and I’m trying to drive this
point home—it’s very particular. Failure to
get the syntax 100 percent correct—even an
errant space—results in a parse error.

As an example of this, let’s write a new
version of the view_tasks.php page that
allows for marking tasks as updated
(Figure 1.27).

Figure 1.27 The page for viewing tasks will now have
check boxes to mark tasks as complete.

32

Chapter 1

Th
e

H
er

ed
o

c
Sy

n
ta

x

To use the heredoc syntax:

1. Open view_tasks.php (Script 1.3) in your
text editor or IDE.

2. Within the make_list() function, change
the printing of the task to (Script 1.5):

echo <<<EOT

<input type=”checkbox”

➝ name=”tasks[$task_id]” value=”done”

➝ /> $todo

EOT;

This is a good use of the heredoc syntax,
as it’s an alternative to:

echo “<input type=\”checkbox\”

➝ name=\”tasks[$task_id]\”

➝ value=\”done\” />$todo”;

That syntax, in my opinion, has way too
many double quotation marks to escape.
The single quotation mark example isn’t
as bad but requires concatenation:

echo ‘<input type=”checkbox”

➝ name=”tasks[‘. $task_id . ‘]”

➝ value=”done” /> ‘ . $todo;

With the heredoc code, be absolutely cer-
tain that nothing follows the opening
identifier (EOT) except a return (a carriage
return or newline) and that the closing
identifier starts as the very first thing on
its own line.

continues on page 35

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>View Tasks</title>

7 </head>

8 <body>

9 <h3>Current To-Do List</h3>

10 <?php # Script 1.5 - view_tasks2.php

11

12 /* This page shows all existing tasks.

13 * A recursive function is used to show the

14 * tasks as nested lists, as applicable.

15 * Tasks can now be marked as completed.

16 */

17

18 // Function for displaying a list.

19 // Receives one argument: an array.

20 function make_list ($parent) {

21

22 // Need the main $tasks array:

23 global $tasks;

24

25 // Start an ordered list:

26 echo '';

27

28 // Loop through each subarray:

29 foreach ($parent as $task_id => $todo) {

30

31 // Display the item:

32 // Start with a checkbox!

33 echo <<<EOT

34 <input type="checkbox" name="tasks[$task_id]" value="done" /> $todo

35 EOT;

36

37 // Check for subtasks:

38 if (isset($tasks[$task_id])) {

39

40 // Call this function:

41 make_list($tasks[$task_id]);

42

43 }

44

45 // Complete the list item:

46 echo '';

47

48 } // End of FOREACH loop.

49

50 // Close the ordered list:

51 echo '';

52

53 } // End of make_list() function.

54

55 // Connect to the database:

56 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('<p>Could not
connect to the database!</p></body></html>');

57

(script continues on next page)

Script 1.5 The original view_tasks.php page (Script 1.3) has been modified as a form so that tasks can be checked
off. The heredoc syntax aids in the creation of some of the HTML.

33

Advanced PHP Techniques

Th
e H

eredo
c Syn

tax

58 // Check if the form has been submitted:

59 if (isset($_POST['submitted']) && isset($_POST['tasks']) && is_array($_POST['tasks'])) {

60

61 // Define the query:

62 $q = 'UPDATE tasks SET date_completed=NOW() WHERE task_id IN (';

63

64 // Add each task ID:

65 foreach ($_POST['tasks'] as $task_id => $v) {

66 $q .= $task_id . ', ';

67 }

68

69 // Complete the query and execute:

70 $q = substr($q, 0, -2) . ')';

71 $r = mysqli_query($dbc, $q);

72

73 // Report on the results:

74 if (mysqli_affected_rows($dbc) == count($_POST['tasks'])) {

75 echo '<p>The task(s) have been marked as completed!</p>';

76 } else {

77 echo '<p>Not all tasks could be marked as completed!</p>';

78 }

79

80 } // End of submission IF.

81

82 // Retrieve all the uncompleted tasks:

83 $q = 'SELECT task_id, parent_id, task FROM tasks WHERE date_completed="0000-00-00 00:00:00"
ORDER BY parent_id, date_added ASC';

84 $r = mysqli_query($dbc, $q);

85

86 // Initialize the storage array:

87 $tasks = array();

88

89 while (list($task_id, $parent_id, $task) = mysqli_fetch_array($r, MYSQLI_NUM)) {

90

91 // Add to the array:

92 $tasks[$parent_id][$task_id] = $task;

93

94 }

95

96 // For debugging:

97 //echo '<pre>' . print_r($tasks,1) . '</pre>';

98

99 // Make a form:

100 echo '<p>Check the box next to a task and click "Update" to mark a task as completed (it, and any
subtasks, will no longer appear in this list).</p>

101 <form action="view_tasks2.php" method="post">

102 ';

103

104 // Send the first array element

105 // to the make_list() function:

106 make_list($tasks[0]);

107

108 // Complete the form:

109 echo '<input name="submitted" type="hidden" value="true" />

110 <input name="submit" type="submit" value="Update" />

111 </form>

112 ';

113

114 ?>

115 </body>

116 </html>

Script 1.5 continued

34

Chapter 1

Th
e

H
er

ed
o

c
Sy

n
ta

x

3. After connecting to the database, begin
a conditional that checks for the form
submission.

if (isset($_POST[‘submitted’]) &&

➝ isset($_POST[‘tasks’]) &&

➝ is_array($_POST[‘tasks’])) {

The database update (marking the tasks
as complete) will only occur if the form
has been submitted, $_POST[‘tasks’] has
a value, and it is an array. Even if only one
check box is selected, $_POST[‘tasks’]
would still be an array.

4. Write the update query.

$q = ‘UPDATE tasks SET

➝ date_completed=NOW() WHERE task_id

➝ IN (‘;

foreach ($_POST[‘tasks’] as $task_id

➝ => $v) {

$q .= $task_id . ‘, ‘;

}

$q = substr($q, 0, -2) . ‘)’;

$r = mysqli_query($dbc, $q);

The update query will be something like

UPDATE tasks SET date_completed=NOW()

➝ WHERE task_id IN (X, Y, Z)

This will set each applicable task’s
date_completed column to the current
date and time, so that it will no longer
show up in the view list (because that
query checks for a 0 date_completed
value).

35

Advanced PHP Techniques

Th
e H

eredo
c Syn

tax

5. Report on the results and complete the
submission conditional.

if (mysqli_affected_rows($dbc)

➝ == count($_POST[‘tasks’])) {

echo ‘<p>The task(s)

➝ have been marked as

➝ completed!</p>’;

} else {

echo ‘<p>Not all tasks

➝ could be marked as completed!</p>’;

}

} // End of submission IF.

6. Before calling the make_list() function,
add the initial form tag.

echo ‘<p>Check the box next to a task

➝ and click “Update” to mark a task

➝ as completed (it, and any subtasks,

➝ will no longer appear in this

➝ list).</p>

<form action=”view_tasks2.php”

➝ method=”post”>

‘;

Because of the way the make_list() func-
tion works, if a parent task is marked as
completed, its subtasks will never be
shown. A comment indicating such is
added to the form.

continues on next page

7. After calling the make_list() function,
complete the form.

echo ‘<input name=”submitted”

➝ type=”hidden” value=”true” />

<input name=”submit” type=”submit”

➝ value=”Update” />

</form>

‘;

8. Save the file as view_tasks2.php, place it
in your Web directory, and test in your
Web browser (Figures 1.28 and 1.29).

Figure 1.29 The updated tasks list (some of the tasks
had the exact same date_added value, hence the
slight reshuffling of the order—see Figure 1.28).

Figure 1.28 Selecting tasks to be marked as
completed.

36

Chapter 1

Th
e

H
er

ed
o

c
Sy

n
ta

x

C h a r a c t e r M e a n i n g

b binary integer
c ASCII integer
d standard integer
e scientific notation
u unsigned decimal integer
f floating-point number
o octal integer
s string
x hexadecimal integer

Type Specifiers

Table 1.2 These type specifiers are used to format
values used in the printf() and sprintf() functions.

Using printf() and sprintf()
For most PHP programmers, the print()
and echo() functions are all they need for
printing text and variables. The advanced
PHP programmer might occasionally use the
more sophisticated printf() function. This
function prints text but also has the ability
to format the output. The PHP manual defi-
nition of this function is

printf(string format [, mixed

➝ arguments]);

The format is a combination of literal text
and special formatting parameters, begin-
ning with the percent sign (%). After that you
may have any combination of (in order):

◆ A sign specifier (+/-) to force a positive
number to show the plus sign.

◆ A padding specifier that indicates the
character used for right-padding (space is
the default, but you might want to use 0
for numbers).

◆ An alignment specifier (default is right-
justified, use - to force left-justification).

◆ A number indicating the minimum width
to be used.

◆ A precision specifier for how many deci-
mal digits should be shown for floating-
point numbers (or how many characters
in a string).

◆ The type specifier; see Table 1.2.

continues on next page

37

Advanced PHP Techniques

U
sin

g prin
tf() an

d sprin
tf()

This all may seem complicated, and well, it
kind of is. You can start practicing by playing
with a number (Figure 1.30):

printf(‘b: %b
c: %c
 d: %d

➝
 f: %f
’, 80, 80, 80, 80);

That’s four different representations of the
same number. The first format will print 80
as a binary number, the second as 80’s corre-
sponding ASCII character (the capital letter
P), the third as an integer, and the fourth as a
floating-point number.

From there, take the two most common
number types—d and f—and add some for-
matting (Figure 1.31):

printf(‘%0.2f
%+d
%0.2f <br

➝ />’, 8, 8, 1235.456);

First, the number 8 is printed as a floating-
point number, with two digits after the deci-
mal and padded with zeros. Next, the num-
ber 8 is printed as a signed integer. Finally,
the number 1235.456 is printed as a floating-
point number with two digits after the deci-
mal (resulting in the rounding of the number).

Taking this idea further, mix in the string
type (Figure 1.32):

printf(‘The cost of %d %s at $%0.2f each

➝ is $%0.2f.’, 4, ‘brooms’, 8.50,

➝ (4*8.50));

The sprintf() function works exactly like
printf(), but instead of printing the format-
ted string, it returns it. This function is great
for generating database queries, without an
ugly mixing of SQL and variables (and poten-
tially function calls).

Figure 1.32 Printing a mix of
numbers and strings.

Figure 1.31 Using printf()
to format how numbers are
printed.

Figure 1.30 The same
number printed using four
different type specifiers.

38

Chapter 1

U
si

n
g

pr
in

tf
()

 a
n

d
sp

ri
n

tf
()

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Add a Task</title>

7 </head>

8 <body>

9 <?php # Script 1.6 - add_task2.php

10

11 /* This page adds tasks to the tasks table.

12 * The page both displays and handles the form.

13 *

14 */

15

16 // Connect to the database:

17 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('<p>Could not

connect to the database!</p></body></html>');

18

19 // Check if the form has been submitted:

20 if (isset($_POST['submitted']) && !empty($_POST['task'])) {

21

22 // Sanctify the input...

23

24 // The parent_id must be an integer:

25 if (isset($_POST['parent_id'])) {

26 $parent_id = (int) $_POST['parent_id'];

27 } else {

28 $parent_id = 0;

29 }

30

(script continues on next page)

Script 1.6 A minor modification to the add_task.php page (Script 1.1) shows a cleaner way to create a database query.

To use sprintf():

1. Open add_task.php (Script 1.1) in your
text editor or IDE.

2. Delete the call to the
mysqli_real_escape_string() function
(Script 1.6).

I’ll now call this function in the line that
defines the query (Step 3).

continues on page 41

39

Advanced PHP Techniques

U
sin

g prin
tf() an

d sprin
tf()

31 // Add the task to the database.

32 $q = sprintf("INSERT INTO tasks (parent_id, task) VALUES (%d, '%s')", $parent_id,

mysqli_real_escape_string($dbc, $_POST['task']));

33 $r = mysqli_query($dbc, $q);

34

35 // Report on the results:

36 if (mysqli_affected_rows($dbc) == 1) {

37 echo '<p>The task has been added!</p>';

38 } else {

39 echo '<p>The task could not be added!</p>';

40 }

41

42 } // End of submission IF.

43

44 // Display the form:

45 echo '<form action="add_task2.php" method="post">

46 <fieldset>

47 <legend>Add a Task</legend>

48

49 <p>Task: <input name="task" type="text" size="60" maxlength="100" /></p>

50

51 <p>Parent Task: <select name="parent_id"><option value="0">None</option>

52 ';

53

54 // Retrieve all the uncompleted tasks:

55 $q = 'SELECT task_id, parent_id, task FROM tasks WHERE date_completed="0000-00-00 00:00:00"

ORDER BY date_added ASC';

56 $r = mysqli_query($dbc, $q);

57 while (list($task_id, $parent_id, $task) = mysqli_fetch_array($r, MYSQLI_NUM)) {

58

59 // Add to the select menu:

60 echo "<option value=\"$task_id\">$task</option>\n";

61

62 }

63

64 echo '</select></p>

65

66 <input name="submitted" type="hidden" value="true" />

67 <input name="submit" type="submit" value="Add This Task" />

68

69 </form>

70 </fieldset>

71 ';

72

73 ?>

74 </body>

75 </html>

Script 1.6 continued

40

Chapter 1

U
si

n
g

pr
in

tf
()

 a
n

d
sp

ri
n

tf
()

3. Change the line that defines the INSERT
query to read:

$q = sprintf(“INSERT INTO tasks

➝ (parent_id, task) VALUES (%d,

➝ ‘%s’)”, $parent_id,

➝ mysqli_real_escape_string($dbc,

➝ $_POST[‘task’]));

By using the sprintf() function, the
query can be created without interspers-
ing SQL and variables. While doing so
wasn’t too ugly in the original script, in
more complex queries the result can be
hideous (lots of {$var[‘index’]} and
such), prone to errors, and hard to debug.
This syntax separates the query from the
data being used and is still able to incor-
porate a function call, all without using
concatenation or other techniques.

4. Change the action attribute of the form
to add_task2.php.

echo ‘<form action=”add_task2.php”

➝ method=”post”>

<fieldset>

<legend>Add a Task</legend>

<p>Task: <input name=”task”

➝ type=”text” size=”60”

➝ maxlength=”100” /></p>

<p>Parent Task: <select

➝ name=”parent_id”><option

value=”0”>None</option>

‘;

This file will be renamed, so the form
needs to be adjusted, too.

continues on next page

41

Advanced PHP Techniques

U
sin

g prin
tf() an

d sprin
tf()

5. If you want, remove all the lines required
to view the list of tasks.

The view_tasks.php page (and its sec-
ond version) both do this much better,
so there’s no need to still include that
code here.

6. Save the file as add_task2.php, place it in
your Web directory, and test in your Web
browser (Figures 1.33 and 1.34).

✔ Tips

■ To use a literal percent sign in a string,
escape it with another percent sign:

printf(‘The tax rate is %0.2f%%’,

➝ $tax);

■ The vprintf() function works exactly
like printf() but only takes two argu-
ments: the format and an array of values.

■ The scanf() and fscanf() functions also
work exactly like printf() and sprintf()

in terms of formatting parameters. The
scanf() function is used for reading
input; fscanf() is used to read data
from a file.

Figure 1.34 Another thing to do!

Figure 1.33 The page should still work exactly as it
had before.

42

Chapter 1

U
si

n
g

pr
in

tf
()

 a
n

d
sp

ri
n

tf
()

The life of a PHP programmer normally begins with individual scripts, dedicated to a
single purpose. From there one begins using more and more files, building up Web
applications. Eventually you might get to developing sites on your own server and, if
you’re lucky, balanced over multiple servers. No matter how large your projects are,
learning new and improved ways to develop Web applications is an important part of
the life of the PHP programmer. As is being reminded to abide by the fundamentals.

In this chapter, the focus is on developing Web applications beyond the beginner or
intermediate level. Assuming a mastery of standard Web application tools, like using
sessions and templates, the topics here range from a reassertion of the fundamentals
(which become more vital in larger projects) to changing the way you create pages.
The chapter ends on two kinds of caching, both used to influence the client/server
relationship.

43

Developing
Web Applications

2
D

evelo
pin

g
 W

eb A
pplicatio

n
s

Documenting Code
Properly documenting one’s code is so vitally
important that I wish PHP would generate
errors when it came across a lack of com-
ments! Having taught PHP and interacted
with readers for years, I am amazed at how
often comments are omitted, occasionally
under the guise of waiting until later. Proper
documentation is something that should be
incorporated into code for your own good,
for your client’s, for your co-workers’ (if
applicable), and for the programmer in the
future who may have to alter or augment
your work. Even—or especially—if that pro-
grammer is you.

Arguably, one cannot over-document one’s
work. Make notes about functions, variables,
sections of code, and pages as a whole. And
remember that documentation is some-
thing you should implement when you
begin coding and continue to do as you
work. Attempting to go in after the fact to
make notes just isn’t the same (and fre-
quently won’t happen at all). What seems
obvious at the time of creation will be per-
plexing just three months later.

Comments and White
Space in Book Code

Because of the confines of the book for-
mat, the scripts developed in my books
are never as well documented or organ-
ized as I would prefer (or as you should).
But there’s reasonably a limit as to how
much valuable book space should be
taken up with lines like

// Developed by: Larry E. Ullman.

Assuming that you are learning things
from me and this book (that is the think-
ing, right?), then, when it comes to code
documentation and layout, use what you
see here as the base: the absolute mini-
mum of what you should do. The amount
of comments in my books may be suffi-
cient but could be safely doubled.

44

Chapter 2

D
o

cu
m

en
ti

n
g

 C
o

de

To document your code:

1. At the top of a script, thoroughly docu-
ment all the meta-properties.

“Meta-properties” refers to information
about the file: who created it, when, why,
as part of what site, etc. Also include
information about yourself, even if you
don’t think anyone else will ever see the
source code.

2. Document any contingencies.

This is just a more specific type of docu-
mentation than that in Step 1. By “con-
tingency,” I mean what things must exist
or happen for this script to do its job.
Does it receive information from a form
or a database? Does it rely upon PEAR or
other external code? Does it use a tem-
plate? Basically make a note of any other
file that this script interacts with or
includes. If the script assumes a mini-
mum version of PHP, note that too.

3. Thoroughly describe every function.

Functions should be commented like
scripts: note their purpose, their contin-
gencies, what values they take, what
value(s) they return, etc.

4. Indicate the purpose of a variable if it
would not be already completely obvious
to the most basic programmer.

Hopefully a variable’s name is a good
indicator of its purpose, but don’t always
assume such things are crystal clear.

5. Explain what sequences of code are
going to do.

continues on next page

45

Developing Web Applications

D
o

cu
m

en
tin

g
 Co

de

6. Indicate the purpose of a conditional.

Make sure it’s clear why you’re using the
condition you’re using and what the
desired results are. If a conditional refer-
ences a specific number or value, com-
ment on why that number or value is
being used.

7. Mark the closing brackets for complex
functions and control structures (condi-
tionals, loops, etc.).

You’ll see this commonly in my scripts:

} // End of some_name() function.

8. Update your comments when you
change your code!

This is a common and problematic mis-
take: you update your code but don’t
update the comment. Then, when you
come back to review the code later, you
read that the code does X but it actually
does Y and you can’t tell which is sup-
posed to be correct.

Figure 2.1 The home page of phpDocumentor.

46

Chapter 2

D
o

cu
m

en
ti

n
g

 C
o

de

✔ Tips

■ The popular phpDocumentor (www.
phpdoc.org, Figure 2.1) is used by PEAR
to automatically generate package docu-
mentation. This tool, written in PHP and
similar to the common JavaDoc (for Java
programmers), creates comments within
your scripts by actually reading the code
itself. This shouldn’t be used in lieu of
your own comments, but it can add stan-
dardized documentation to a page.

■ Somewhat outdated but still useful is
the PHP Coding Standard. It’s worth a
read, even if you don’t abide by all its
suggestions. Unfortunately it tends to
float around the Web a lot (its URL has
changed several times over), so do a
search to find it.

■ You can also find many suggestions
on comments, style, and structure by
checking out coding standards for other
languages.

www.phpdoc.org
www.phpdoc.org

Code Style and Structure
As the second topic to be discussed under
the implied heading of “you know you
should be doing these things but aren’t for
some reason,” I want to take a couple pages
to talk about code style and structure. The
fundamentals of code structure refer to how
you indent your code, skip blank lines, use
braces and parentheses, and so forth. Proper
syntax implies a certain amount of struc-
ture, but there are really two golden rules:

◆ Be consistent!

◆ Make your code easy to read.

I cannot stress enough that consistency
is the most important consideration.
Inconsistency will lead to unnecessary
errors and extra hours of debugging.

Style is a much more subjective guideline,
involving naming conventions (pages, vari-
ables, classes, and functions), where you
define and how you organize functions, and
so forth. Style is entirely a matter of user
preference. Any recommendations anyone,
including myself, has on the subject are
merely suggestions. The only absolute must
is that you be consistent!

47

Developing Web Applications

Co
de Style an

d Stru
ctu

re

To structure and style your code:

◆ Always use curly braces, even if syntacti-
cally speaking you don’t have to.

Many programmers will ignore this rec-
ommendation, but it’s so much more
foolproof to use curly braces all the time.

◆ Indent blocks of code (e.g., results of
conditionals or function content) one
tab stop or four spaces. (Formally, one
should use spaces in lieu of tabs, but
coders use the more convenient tab
option regardless.)

How you indent your code goes directly
toward how easy it is to read.
Indentation should make clear the rela-
tionship between code and the control
structures (loops, conditionals, etc.),
functions, classes, and so on that the
code is part of.

◆ Use blank lines to visually separate relat-
ed sections of code.

48

Chapter 2

Co
de

 S
ty

le
 a

n
d

St
ru

ct
u

re

◆ Put spaces between words, function
arguments, operators, and so forth, as
allowed (PHP is generally, but not univer-
sally, insensitive to white space).

◆ Place functions at the beginning of a
document or in a separate file.

◆ Always use the formal PHP tags.

Because XML uses short tags (<? ?>)
for its own purpose, you must use the
formal PHP tags (<?php ?>) when using
XML, as you’ll see in Chapter 14, “XML
and PHP.” The recommendation is to
use the formal tags regardless because
that is the best way to ensure cross-server
compatibility.

◆ It is suggested that .php always be used
as the file extension for pages that are to
be treated as PHP scripts. (Includes such
as classes and configuration pages may
use different extensions.)

Acceptable file extensions are deter-
mined by the Web server’s configuration,
but within the PHP community the
movement is toward making .php the
default.

Site Structure

Much like your code structure and documentation, another overarching issue when develop-
ing larger Web applications is that of site structure: how the files are organized and stored on
the server. Proper site structure is intended to improve security and administration of a site,
as well as promote scalability, portability, and ease of modifications.

The key to site structure is to break up your code and applications into different pages and
directories according to use, purpose, and function. Within the primary Web documents
folder, which I’ll call html, you would have one directory for images (most everyone does do
this, at least), another for classes (if using object-oriented programming), another for func-
tions, and so forth. Further, I would suggest that you use your own personalized folder names
for security purposes. Anytime that a malicious user is blind to the names of folders and doc-
uments, the better. If you use the name admin for the administration section of a site, you’re
not doing yourself any favors, security-wise.

Modularizing a Web Site
In my experience, the arc of a programmer’s
development starts with writing one-page
applications that do just a single thing.
These turn into two-page tools, and eventu-
ally into multipage sites, using templates,
sessions, and/or cookies to tie them all
together. For many programmers, though,
the arc is actually a bell curve. After more
and more experience, the seasoned PHP
developer starts doing the same amount of
work in fewer pages, like having the same
script both display and handle a form. Or,
conversely, the advanced PHP programmer
may start making individual scripts that
actually do less, by focusing each on a par-
ticular task. This is the premise behind
modularizing a Web site.

For this example, I’ll create a dummy Web
site (i.e., it won’t do much) that’s broken
into pieces. The new knowledge here will be
how those features are separated, organized,
and put back together. Instead of having
individual pages (contact.php, about.php,
index.php, etc.), the entire application will
be run through one index page. That page
will include the appropriate content module
based upon values passed in the URL.

49

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

To create the configuration file:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 2.1).

<?php # Script 2.1 - config.inc.php

continues on page 53

Creating the configuration file
Every Web application I build begins with a
configuration file. Configuration files serve
several purposes, the four most important
being:

◆ Defining constants

◆ Establishing site-wide settings

◆ Creating user functions

◆ Managing errors

Basically, any piece of information that every
page in a site might need to access should
be stored in a configuration file. (As a side
note, if a function would not likely be used
by the majority of site pages, I would put it
in a separate file, thereby avoiding the extra
overhead of defining it on pages where it
won’t be called.)

50

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

1 <?php # Script 2.1 - config.inc.php

2

3 /*

4 * File name: config.inc.php

5 * Created by: Larry E. Ullman of DMC Insights, Inc.

6 * Contact: LarryUllman@DMCInsights.com, http://www.dmcinsights.com

7 * Last modified: November 8, 2006

8 *

9 * Configuration file does the following things:

10 * - Has site settings in one location.

11 * - Stores URLs and URIs as constants.

12 * - Sets how errors will be handled.

13 */

14

15 # ******************** #

16 # ***** SETTINGS ***** #

17

18 // Errors are emailed here.

19 $contact_email = 'address@example.com';

20

21 // Determine whether we're working on a local server

22 // or on the real server:

23 if (stristr($_SERVER['HTTP_HOST'], 'local') || (substr($_SERVER['HTTP_HOST'], 0, 7) ==
'192.168')) {

24 $local = TRUE;

25 } else {

26 $local = FALSE;

27 }

28

29 // Determine location of files and the URL of the site:

30 // Allow for development on different servers.

31 if ($local) {

32

33 // Always debug when running locally:

34 $debug = TRUE;

35

36 // Define the constants:

37 define ('BASE_URI', '/path/to/html/folder/');

38 define ('BASE_URL', 'http://localhost/directory/');

39 define ('DB', '/path/to/mysql.inc.php');

40

41 } else {

42

43 define ('BASE_URI', '/path/to/live/html/folder/');

44 define ('BASE_URL', 'http://www.example.com/');

45 define ('DB', '/path/to/live/mysql.inc.php');

46

47 }

48

49 /*

50 * Most important setting...

51 * The $debug variable is used to set error management.

52 * To debug a specific page, add this to the index.php page:

53

54 if ($p == 'thismodule') $debug = TRUE;

55 require_once('./includes/config.inc.php');

56

(script continues on next page)

Script 2.1 The configuration file is the key back-end script. It defines site-wide constants and dictates how errors are
handled.

51

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

57 * To debug the entire site, do

58

59 $debug = TRUE;

60

61 * before this next conditional.

62 */

63

64 // Assume debugging is off.

65 if (!isset($debug)) {

66 $debug = FALSE;

67 }

68

69 # ***** SETTINGS ***** #

70 # ******************** #

71

72

73 # **************************** #

74 # ***** ERROR MANAGEMENT ***** #

75

76 // Create the error handler.

77 function my_error_handler ($e_number, $e_message, $e_file, $e_line, $e_vars) {

78

79 global $debug, $contact_email;

80

81 // Build the error message.

82 $message = "An error occurred in script '$e_file' on line $e_line: \n
$e_message\n
";

83

84 // Add the date and time.

85 $message .= "Date/Time: " . date('n-j-Y H:i:s') . "\n
";

86

87 // Append $e_vars to the $message.

88 $message .= "<pre>" . print_r ($e_vars, 1) . "</pre>\n
";

89

90 if ($debug) { // Show the error.

91

92 echo '<p class="error">' . $message . '</p>';

93

94 } else {

95

96 // Log the error:

97 error_log ($message, 1, $contact_email); // Send email.

98

99 // Only print an error message if the error isn't a notice or strict.

100 if (($e_number != E_NOTICE) && ($e_number < 2048)) {

101 echo '<p class="error">A system error occurred. We apologize for the
inconvenience.</p>';

102 }

103

104 } // End of $debug IF.

105

106 } // End of my_error_handler() definition.

107

108 // Use my error handler:

109 set_error_handler ('my_error_handler');

110

111 # ***** ERROR MANAGEMENT ***** #

112 # **************************** #

113

114 ?>

Script 2.1 continued

52

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

➝ (substr($_SERVER[‘HTTP_HOST’],

➝ 0, 7) == ‘192.168’)) {

$local = TRUE;

} else {

$local = FALSE;

}

I almost always develop on a local server
and then upload the completed site to
the live server. The two environments will
have server-specific settings, so the con-
figuration file ought to confirm which is
the current environment. To see if the
site is running locally, I check two condi-
tions against $_SERVER[‘HTTP_HOST’]. If
that variable contains the word local (as
in http://localhost or http://power-
book.local) or if the IP address begins
with 192.168 (indicating a local network),
then a $local variable is set as TRUE.
Otherwise, it is FALSE.

5. Set the server-specific constants.

if ($local) {

$debug = TRUE;

define (‘BASE_URI’,

➝ ‘/path/to/html/folder/’);

define (‘BASE_URL’,

➝ ‘http://localhost/directory/’);

define (‘DB’,

➝ ‘/path/to/mysql.inc.php’);

} else {

define (‘BASE_URI’,

➝ ‘/path/to/live/html/folder/’);

define (‘BASE_URL’,

➝ ‘http://www.example.com/’);

define (‘DB’,

➝ ‘/path/to/live/mysql.inc.php’);

}

continues on next page

53

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

2. Add some comments discussing the
nature and purpose of this page.

/*

* File name: config.inc.php

* Created by: Larry E. Ullman of

➝ DMC Insights, Inc.

* Contact:

➝ LarryUllman@DMCInsights.com,

➝ http://www.dmcinsights.com

* Last modified: November 8, 2006

*

* Configuration file does the

➝ following things:

* - Has site settings in one

➝ location.

* - Stores URLs and URIs as

➝ constants.

* - Sets how errors will be

➝ handled.

*/

Because the configuration file is a
common file, it ought to be the best-
documented script in a site.

3. Set the email address to be used for
errors.

$contact_email =

➝ ‘address@example.com’;

For live sites, I prefer to be emailed when
errors occur. So I declare a variable with
the “to” email address. This may be my
address while developing a site or a
client’s once the site goes live.

4. Determine if the script is running on the
live server or a test server.

if (stristr($_SERVER[‘HTTP_HOST’],

➝ ‘local’) ||

I always use these three constants in my
Web applications. The BASE_URI is the
absolute path to where the site’s root
folder is on the server (Figure 2.2). This
constant makes it easy to use absolute
URLs when any script includes a file. The
BASE_URL constant is the hostname and
directory (if applicable). On a test server,
that might be just http://localhost/
ch02/. Finally, the DB constant is the
absolute path to the file that contains
the database connectivity information.
For security purposes, it’s best to keep
this stored outside of the Web directory.

Note that each constant is represented
twice: once for a test server and once for
the live server. If this is a test server
($local is TRUE), I also turn on debug-
ging, which will mean more shortly.

6. Set the debugging level.

if (!isset($debug)) {

$debug = FALSE;

}

I use a $debug variable to indicate how
errors should be handled. If the site is
being run locally, $debug will be TRUE. To
debug a live site, a page would need to
use the line

$debug = TRUE;

prior to including the configuration file.

In all other cases, debugging is turned off.

Figure 2.2 The root folder is where the site’s index
page may be found. Within the root folder, other
subfolders—such as images, includes, and modules—
would be found.

54

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

Figure 2.3 This is just some of the data reported when an error occurs.

7. Begin a function for handling errors.

function my_error_handler ($e_number,

➝ $e_message, $e_file, $e_line,

➝ $e_vars) {

global $debug, $contact_email;

PHP allows you to define your own func-
tion for handling errors, rather than using
the built-in behavior. For more informa-
tion on this process or the syntax, see
the PHP manual or my PHP and MySQL
for Dynamic Web Sites: Visual QuickStart
Guide book (Peachpit Press, 2005).

Two global variables will be used in this
function.

55

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

8. Build up the error message.

$message = “An error occurred in

➝ script ‘$e_file’ on line $e_line:

➝ \n
$e_message\n
”;

$message .= “Date/Time: “ . date(‘n-

➝ j-Y H:i:s’) . “\n
”;

$message .= “<pre>” . print_r

➝ ($e_vars, 1) . “</pre>\n
”;

For debugging purposes, the error mes-
sage should be as informative as possible.
To start, it will include the name of the
file where the error occurred and on
what line. Then the date and time of
the error are appended to the message.
Finally, every existing variable is added.
This can be a lot of data (Figure 2.3),
but that’s a good thing when you need
to find and fix a problem.

continues on next page

9. If debugging is turned on, print the error.

if ($debug) {

echo ‘<p class=”error”>’ .

➝ $message . ‘</p>’;

If debugging is turned on, then the full
message will appear in the Web browser
(Figure 2.4). This is great when devel-
oping a site but a huge security flaw on
a live site. You can also edit this code to
fit into your site’s design.

10. If debugging is turned off, send the mes-
sage in an email and print a default
message.

} else {

error_log ($message, 1,

➝ $contact_email);

if (($e_number != E_NOTICE) &&

➝ ($e_number < 2048)) {

echo ‘<p class=

➝ ”error”>A system error occurred.

➝ We apologize for the

➝ inconvenience.</p>’;

}

} // End of $debug IF.

For a live site, the detailed error message
should not be shown (unless debugging
is temporarily enabled for that page)
but should be emailed instead. The
error_log() function will do this, if
provided with the number 1 as its sec-
ond argument. But the user probably
needs to know that something didn’t go
right, so a generic message is displayed
(Figure 2.5). If the error happens to be
a notice or a strict error (having a value
of 2048), no message should be printed,
as the error is likely not interfering with
the operation of the page.

Figure 2.5 On a live site, errors are handled more
modestly (and securely).

Figure 2.4 How errors appear when debugging a
page.

56

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

Creating the Database File

I have not, for this application, created
a database configuration file, as the site
does not involve any databases. If a
database were required, I would write a
mysql.inc.php (or postgresql.inc.php
or oracle.inc.php or whatever) file that
establishes the database connection. Such
a file should also define any functions
that involve the database application.

This file could also be stored in the
includes directory but would preferably
be stored outside of the Web directory.
The config.inc.php file has a constant
named DB that should be an absolute
path to this file on the server.

Any page that needs a database connec-
tion could then include it by just using

require_once(DB);

Because DB represents an absolute
path to that file, it wouldn’t matter if
the including script was in the main
folder or a subdirectory.

11. Complete the function, tell PHP to
use this error handler, and complete
the page.

} // End of my_error_handler()

➝ definition.

set_error_handler

➝ (‘my_error_handler’);

?>

12. Save the file as config.inc.php and
place it in your Web directory (in an
includes subfolder).

Figure 2.2 shows the directory layout I’ll
use for this site.

57

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

Creating the HTML template
Using an HTML template is a virtual cer-
tainty with any larger-scale application. You
can use Smarty (http://smarty.php.net) or
many other templating systems, but I prefer
to use just two simple files: a header that
contains everything in a page up until the
page-specific content, and a footer that con-
tains the rest of the page (Figure 2.6).

For this template, I’ll use a design found on
Open Source Web Design (www.oswd.org), an
excellent Web design resource. This particu-
lar design (Figure 2.7) is by Anthony Yeung
(www.smallpark.org) and is gratefully used
with his kind permission.

To create the template pages:

1. Design an HTML page in your text or
WYSIWYG editor.

To start creating a template for a Web
site, design the layout like a standard
HTML page, independent of any PHP
code. For this example, as I already said,
I’ll be using the Leaves CSS design
(Figure 2.7).

Note: In order to save space, the CSS file
for this example (which controls the lay-
out) is not included in the book.You can
download the file through the book’s
supporting Web site (www.DMCInsights.
com/phpvqp2/, see the site’s Extras page)
or do without it (the template will still
work; it just won’t look as nice).

Figure 2.6 A very crude representation of how to
create a template for a site by wrapping two included
files around the page-specific content area.

58

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

2. Copy everything from the first line of the
layout’s source to just before the page-
specific content and paste it in a new
document (Script 2.2). That is, start
from

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml”>

<head>

and continue through

<div id=”content”>

<!-- End of header. -->

This first file will contain the initial HTML
tags (from DOCTYPE through the head and
into the beginning of the page body). It
also has the code that makes the column
of links on the left side of the browser
window and the sidebar on the right (see
Figure 2.7). I’ve omitted a good chunk of
the HTML from this step. For the com-
plete code, see Script 2.2 or just down-
load the file from the book’s Web site.

continues on page 60

Figure 2.7 The template this site will use for all
its pages.

www.oswd.org
www.smallpark.org
www.DMCInsights.com/phpvqp2/
www.DMCInsights.com/phpvqp2/
http://smarty.php.net

1 <?php # Script 2.2 - header.html

2

3 // This page begins the HTML header for the site.

4

5 // Check for a $page_title value:

6 if (!isset($page_title)) $page_title = 'Default Page Title';

7 ?>

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

9 <html xmlns="http://www.w3.org/1999/xhtml">

10 <head>

11 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />

12 <title><?php echo $page_title; ?></title>

13 <link href="./includes/style.css" rel="stylesheet" type="text/css" />

14 </head>

15 <body>

16 <div id="container">

17 <div id="header">

18 <h1>Your Site</h1>

19 <p>i like bylines</p>

20 <form name="form1" id="form1" method="get" action="index.php">

21 <input type="text" name="terms" value="Search..." />

22 <input type="hidden" name="p" value="search" />

23 <input class="button" type="submit" name="Submit" value="GO" />

24 </form>

25 </div>

26

27 <div id="navigation">

28 <ul id="navlist">

29 Home

30 About Us

31 This

32 That

33 Contact

34 <p>A tiny little service announcement.
Put all your little tidbits of
information or pictures in this small yet useful little area. </p>

35

36

37 </div>

38 <div id="sidebar">

39 <h2>The Sidebar</h2>

40 <p>You have reached the sidebar, put news, links, or anything textual in here. I think
I'll drag on with typing nonsense text, until you feel really really sleepy. Of course, you
wouldn't waste time reading this. Some Latin would be more useful.</p>

41 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas venenatis enim ut
purus. In hac habitasse platea dictumst. Sed rutrum tempus turpis. Sed rhoncus dui eu ipsum.
Pellentesque tincidunt. Quisque pulvinar. Morbi quis leo sit amet neque tempor fringilla.
Pellentesque faucibus metus vitae erat. Quisque a urna ut sapien accumsan ornare. Nulla porta
pretium eros. Fusce velit erat, accumsan pellentesque, porttitor eu, commodo quis, augue. Fusce convallis ipsum eget felis. </p>

42 <p>Aenean eros arcu, condimentum nec, dapibus ut, tincidunt sit amet, urna. Quisque
viverra, eros sed imperdiet iaculis, est risus facilisis quam, id malesuada arcu nulla luctus
urna. </p></div>

43

44 <div id="content">

45 <!-- End of header. -->

Script 2.2 The header file begins the HTML template. It also includes the CSS file and uses a PHP variable for the
browser window’s title.

59

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

3. Change the page’s title line to read:

<title><?php echo $page_title;

➝ ?></title>

I’ll want the page title (which appears at
the top of the Web browser; Page Title in
Figure 2.7) to be changeable on a page-
by-page basis. To do so, I set this as a
variable that will be printed out by PHP.

4. Before any HTML, create a PHP section
that checks for a $page_title.

<?php # Script 2.2 - header.html

if (!isset($page_title)) $page_title

➝ = ‘Default Page Title’;

?>

Just in case a PHP script includes
the header file without having set a
$page_title first, this PHP code declares
a default page title (which you’ll likely
want to make more meaningful). If you
don’t do this and error reporting is turned
on, the browser title could end up like
Figure 2.8.

Figure 2.8 Make sure that a $page_title value is set, or else the error reporting system will end up printing a
detailed error message there instead.

60

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

1 <!-- # Script 2.3 - footer.html -->

2 </div>

3

4 <div id="footer">

5 <p><a href="http://

validator.w3.org/check?uri=referer"

target="_blank">Valid

6 XHTML | <a href="http://

jigsaw.w3.org/css-

validator/check/referer"

target="_blank">Valid

7 CSS | Copyright © Your Name

Here | Design by <a href="http://

smallpark.org">SmallPark</p>

8 </div>

9 </div>

10 </body>

11 </html>

Script 2.3 The footer file completes the HTML template. 5. Save the file as header.html.

Included files can use just about any
extension for the filename. Some pro-
grammers like to use .inc to indicate
that a file is used as an include. In this
case, you could also use .inc.html, which
would indicate that it’s both an include
and an HTML file (to distinguish it from
includes full of PHP code).

6. Copy everything in the original template
from the end of the page-specific content
to the end of the page and paste it in a
new file (Script 2.3).

<!-- # Script 2.3 - footer.html -->

</div>

<div id=”footer”>

<p><a

href=”http://validator.w3.org/check?

➝ uri=referer” target=”_blank”>Valid

XHTML | <a

href=”http://jigsaw.w3.org/

➝ css-validator/check/referer”

➝ target=”_blank”>Valid

CSS | Copyright © Your

➝ Name Here | Design by <a

➝ href=”http://smallpark.org”>Small

➝ Park</p>

</div>

</div>

</body>

</html>

The footer file contains the remaining
formatting for the page body, including
the page’s footer, and then closes the
HTML document.

7. Save the file as footer.html.

8. Place both files in the Web server’s
includes directory.

61

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

1 <?php # Script 2.4 - index.php

2

3 /*

4 * This is the main page.

5 * This page includes the configuration file,

6 * the templates, and any content-specific modules.

7 */

8

9 // Require the configuration file before any PHP code:

10 require_once ('./includes/config.inc.php');

11

12 // Validate what page to show:

13 if (isset($_GET['p'])) {

14 $p = $_GET['p'];

15 } elseif (isset($_POST['p'])) { // Forms

16 $p = $_POST['p'];

17 } else {

18 $p = NULL;

19 }

20

21 // Determine what page to display:

22 switch ($p) {

23

(script continues on next page)

Script 2.4 The index page is the script through which everything happens. It determines what module should be
included, requires the configuration file, and pulls together the HTML template.

Creating the index page
The index page is the main script in the
modularized application. In fact, it’s the
only page that should ever be loaded in
the Web browser. The index page has but
a single purpose: to assemble all the proper
pieces to make the complete Web page.
Accomplishing this might involve:

◆ Including a configuration file

◆ Including a database connectivity file

◆ Incorporating an HTML template

◆ Determining and including the proper
content module

With this in mind, it’s really just a matter of
thinking out all the code and making sure
it’s securely handled. I’ll explain in more
detail in the following steps.

62

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

To create the main page:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 2.4).

<?php # Script 2.4 - index.php

2. Include the configuration file

require_once (‘./includes/

➝ config.inc.php’);

The configuration file defines many
important things, so it should be
included first.

continues on page 64

63

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

24 case 'about':

25 $page = 'about.inc.php';

26 $page_title = 'About This Site';

27 break;

28

29 case 'this':

30 $page = 'this.inc.php';

31 $page_title = 'This is Another Page.';

32 break;

33

34 case 'that':

35 $page = 'that.inc.php';

36 $page_title = 'That is Also a Page.';

37 break;

38

39 case 'contact':

40 $page = 'contact.inc.php';

41 $page_title = 'Contact Us';

42 break;

43

44 case 'search':

45 $page = 'search.inc.php';

46 $page_title = 'Search Results';

47 break;

48

49 // Default is to include the main page.

50 default:

51 $page = 'main.inc.php';

52 $page_title = 'Site Home Page';

53 break;

54

55 } // End of main switch.

56

57 // Make sure the file exists:

58 if (!file_exists('./modules/' . $page)) {

59 $page = 'main.inc.php';

60 $page_title = 'Site Home Page';

61 }

62

63 // Include the header file:

64 include_once ('./includes/header.html');

65

66 // Include the content-specific module:

67 // $page is determined from the above switch.

68 include ('./modules/' . $page);

69

70 // Include the footer file to complete the template:

71 include_once ('./includes/footer.html');

72

73 ?>

Script 2.4 continued

3. Validate the page being shown.

if (isset($_GET[‘p’])) {

$p = $_GET[‘p’];

} elseif (isset($_POST[‘p’])) {

$p = $_POST[‘p’];

} else {

$p = NULL;

}

The specific content being shown will
be based upon a value sent to this page.
When clicking links, the value will be
sent in the URL. When most forms are
submitted, the value will be sent in
$_POST. If neither is the case, set $p
to NULL.

4. Begin a switch conditional that deter-
mines the page title and file.

switch ($p) {

case ‘about’:

$page = ‘about.inc.php’;

$page_title = ‘About

➝ This Site’;

break;

Each module has a name of something.
inc.php, which is my way of indicating
that it’s both a PHP script but also an
included file. Due to the way computers
handle extensions, only the final exten-
sion really matters (i.e., if you were to
run the file directly, it would be treated
as a PHP script).

For each module, the page’s title (which
will appear in the browser window) is
also set.

64

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

5. Complete the switch.

case ‘this’:

$page = ‘this.inc.php’;

$page_title = ‘This is

➝ Another Page.’;

break;

case ‘that’:

$page = ‘that.inc.php’;

$page_title = ‘That is

➝ Also a Page.’;

break;

case ‘contact’:

$page =

➝ ‘contact.inc.php’;

$page_title =

➝ ‘Contact Us’;

break;

case ‘search’:

$page =

➝ ‘search.inc.php’;

$page_title = ‘Search

➝ Results’;

break;

default:

$page = ‘main.inc.php’;

$page_title = ‘Site Home

➝ Page’;

break;

} // End of main switch.

For each possible content module, another
switch case is provided. For security
purposes, the default case is critical. If $p
does not have a value or does not have a
valid value—one of the specific cases—
then the main.inc.php file will be used.
This is a necessary security step because
some ill-intended person will see that
your site has a URL like index.php?p=
contact and will attempt to do something
like index.php?p=/path/to/something/

useful. In such a case, the page’s main
content will be included.

My Security Anecdote

In the summer of 2006, I revamped my
company’s Web site (www.DMCInsights.com),
using a modularized layout, to a small
extent. Literally the first night the new
version of the site went live, someone
tried hacking the server by changing
URLs like about.php?i=phpmysql2 into
about.php?i=http://somesite.com/

file.txt. The file.txt script on that
other server contained PHP code that
would reveal every file on my server. Had
it run, my site’s security would have been
compromised.

The attempt did not work for two rea-
sons. First, I was smart about validating
my $_GET[‘i’] data, associating proper
values to scripts. Second, I was careful
about how files were included. Just as
important, though, was the error report-
ing I had implemented. As the site was
live, the user saw nothing informative
when they tried to include an invalid file
but I was notified via email of the attempt.

6. Confirm that the module file exists.

if (!file_exists(‘./modules/’ .

➝ $page)) {

$page = ‘main.inc.php’;

$page_title = ‘Site Home Page’;

}

This isn’t absolutely necessary as long as
the right module file exists for each case
in the switch. However, including this
code provides an extra layer of security.

7. Include the header file.

include_once

(‘./includes/header.html’);

This is the start of the HTML template.

8. Include the module.

include (‘./modules/’ . $page);

This brings in all the specific content.

9. Include the footer file.

include_once

(‘./includes/footer.html’);

This completes the HTML template.

10. Complete the page.

?>

11. Save the file as index.php and place it in
your Web directory.

You can’t test it until you’ve created
some of the content modules (at least
main.inc.php).

✔ Tip

■ The switch conditional that validates
proper $p values is an important securi-
ty measure. Another is using a separate
variable for the name of the included file
(i.e., $page). The following code would be
highly insecure:

include ($_GET[‘p’]);

65

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

www.DMCInsights.com

To create the main module:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 2.5).

<?php # Script 2.5 - main.inc.php

continues on page 68

Creating content modules
Now that all the legwork has been done and
the configuration, template, and index files
have been written, it’s time to start creating
the actual content modules. With this sys-
tem, a content module is stunningly simple
to implement. The content files do not need
to include the configuration or the template
files, as the main script already does that.
And because all the content files are
includes, they can contain literal HTML or
PHP code.

There is one catch: the modules should not
be loadable directly. If one were to directly
access main.inc.php (or any other module)
in their Web browser, they’d see the result
without the HTML template (Figure 2.9),
without the proper error management, and
possibly without the database connectivity.
So every module should have some code
that redirects the user to the proper page, if
accessed directly.

Figure 2.9 Content modules shouldn’t be accessed directly through a URL, since they would then lack the HTML
template (among other things).

66

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

1 <?php # Script 2.5 - main.inc.php

2

3 /*

4 * This is the main content module.

5 * This page is included by index.php.

6 */

7

8 // Redirect if this page was accessed directly:

9 if (!defined('BASE_URL')) {

10

11 // Need the BASE_URL, defined in the config file:

12 require_once ('../includes/config.inc.php');

13

14 // Redirect to the index page:

15 $url = BASE_URL . 'index.php';

16 header ("Location: $url");

17 exit;

18

19 } // End of defined() IF.

20 ?>

21

22 <h2>Welcome to Leaves.</h2>

23 <p>Welcome to Leaves, a static, 3 column layout made with your usual CSS and XHTML. It is
able to correctly accommodate any font size increases or shrinkages (Is that a word?). It seems
to work fine in Firefox, Opera, Internet Explorer and Safari. It's more minimal than other
designs, because I think images (drop shadows, giant header images) are being obsessively over
used these days. I think it detracts from the content and shoves way too much information to a
viewer all at the same time, so here you go: Leaves, a minimalist design. Feel free to massacre
or change the design to your liking. Well, I guess it's time for some more Latin. If you
want me to create a custom design for you, feel free to drop me a line anytime at
web@smallpark.org </p>

24 <h2>Why I like Latin Filler Text. </h2>

25 <p>Aenean eros arcu, condimentum nec, dapibus ut, tincidunt sit amet, urna. Quisque
viverra, eros sed imperdiet iaculis, est risus facilisis quam, id malesuada arcu nulla luctus
urna. Nullam et est. Vestibulum velit sem, faucibus cursus, dapibus vestibulum, pellentesque et,
urna. Donec luctus. Donec lectus. Aliquam eget eros facilisis tortor feugiat sollicitudin.
Integer lobortis vulputate sapien. Sed iaculis erat ac nunc. Etiam eu enim.
Mauris ipsum urna, rhoncus at, bibendum sit amet, euismod eget, dolor. Mauris fermentum quam
vitae ligula. Vestibulum in libero feugiat justo dictum consectetuer. Vestibulum euismod purus
eget elit. Nunc sed massa porta elit bibendum posuere. Nunc pulvinar justo sit amet odio. In sed
est. Phasellus ornare elementum nulla. Nulla ipsum neque, cursus a, viverra a, imperdiet at,
enim. Quisque facilisis, diam sed accumsan suscipit, odio arcu hendrerit dolor, quis aliquet
massa nulla nec sem. </p>

26 <h2>Because I just do. </h2>

27 <p>Proin sagittis leo in diam. Vestibulum vestibulum orci vel libero. Cras
molestie pede quis odio. Phasellus tempus dolor eu risus. Aenean tellus tortor, dignissim sit
amet, tempus eu, eleifend porttitor, ipsum. Fusce diam. Suspendisse potenti. Duis consequat
scelerisque lacus. Proin et massa. Duis adipiscing, lectus a euismod consectetuer, pede libero
ornare dui, et lacinia ipsum ipsum nec lectus. Suspendisse sed nunc quis odio aliquet feugiat.
Pellentesque sapien. Phasellus sed lorem eu augue luctus commodo. Nullam interdum convallis nunc.
Fusce varius. Ut egestas. Fusce interdum iaculis pede. Sed vehicula vestibulum odio. Donec id diam. </p>

Script 2.5 The first content module has the HTML for the main page. Some PHP code redirects the Web browser if
this script was accessed directly.

67

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

2. Check that this page has not been
accessed directly.

if (!defined(‘BASE_URL’)) {

There are any number of things you could
check for, like whether $page or $p is set.
But if register globals was enabled and
the user went to main.inc.php?p=true,
that check would fail. Instead, I’ll see if a
constant is defined. This constant is
created in the configuration file, which
should be included first thing in the
index file, prior to including this page.

3. Redirect the user.

require_once (‘../includes/

➝ config.inc.php’);

$url = BASE_URL . ‘index.php’;

header (“Location: $url”);

exit;

The user should be redirected to the
index page. Because an absolute URL
redirection is desired (which is best), the
configuration file must be included to
get the BASE_URL value.

4. Complete the PHP section.

} // End of defined() IF.

?>

68

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

5. Add whatever content.

<h2>Welcome to Leaves.</h2>

<p>Welcome to Leaves, a static,

➝ 3 column layout made with your

➝ usual CSS and XHTML. It is able to

➝ correctly accommodate any font size

➝ increases or shrinkages (Is that a

➝ word?). It seems to work fine in

➝ Firefox, Opera, Internet Explorer

➝ and Safari. It’s more minimal than

➝ other designs, because I think

➝ images (drop shadows, giant header

➝ images) are being obsessively over

➝ used these days. I think it

➝ detracts from the content and

➝ shoves way too much information to

➝ a viewer all at the same time, so

➝ here you go: Leaves, a minimalist

➝ design. Feel free to massacre or

➝ change the design to your liking.

➝ Well, I guess it’s time for some

➝ more Latin. If you want me

➝ to create a custom design for you,

➝ feel free to drop me a line anytime

➝ at web@smallpark.org </p>

This can be any combination of HTML
and PHP, just like any other PHP page.
I’m omitting some of the content from
this step, but you can find it in the
downloadable version of the script.

Figure 2.10 The complete, modularized, template-driven site home page.

6. Save the file as main.inc.php, place it
in your Web directory (in the modules
folder, Figure 2.2), and test by going
to index.php in your Web browser
(Figure 2.10).

69

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

To create the search module:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 2.6).

<?php # Script 2.6 - search.inc.php

continues on page 72

Creating the search module
In the last example I created the main con-
tent module. It was surprisingly simple, so I
want to run through another example to
show some variety. As a demonstration of a
PHP-driven module, I’ll sketch out the
search feature. Keep in mind that, having no
real content and no database back end, it’s
impossible to implement a real search with
this example. But that’s not important any-
way. The focus here is on how you would use
PHP to handle forms within the modular
structure. Once again, I think you’ll be sur-
prised by how uncomplicated it is.

70

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

71

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

1 <?php # Script 2.6 - search.inc.php

2

3 /*

4 * This is the search content module.

5 * This page is included by index.php.

6 * This page expects to receive $_GET['terms'].

7 */

8

9 // Redirect if this page was accessed directly:

10 if (!defined('BASE_URL')) {

11

12 // Need the BASE_URL, defined in the config file:

13 require_once ('../includes/config.inc.php');

14

15 // Redirect to the index page:

16 $url = BASE_URL . 'index.php?p=search';

17

18 // Pass along search terms?

19 if (isset($_GET['terms'])) {

20 $url .= '&terms=' . urlencode($_GET['terms']);

21 }

22

23 header ("Location: $url");

24 exit;

25

26 } // End of defined() IF.

27

28 // Print a caption:

29 echo '<h2>Search Results</h2>';

30

31 // Display the search results if the form

32 // has been submitted.

33 if (isset($_GET['terms']) && ($_GET['terms'] != 'Search...')) {

34

35 // Query the database.

36 // Fetch the results.

37 // Print the results:

38 for ($i = 1; $i <= 10; $i++) {

39 echo <<<EOT

40 <h4>Search Result #$i</h4>

41 <p>This is some description. This is some description. This is some description. This is some
description.</p>\n

42 EOT;

43 }

44

45 } else { // Tell them to use the search form.

46 echo '<p class="error">Please use the search form at the top of the window to search this
site.</p>';

47 }

48 ?>

Script 2.6 The search module pretends to return some results as a way of demonstrating how easy it is to handle
forms, even in a modularized structure.

2. Redirect the browser if the page has been
accessed directly.

if (!defined(‘BASE_URL’)) {

require_once (‘../includes/

➝ config.inc.php’);

$url = BASE_URL .

➝ ‘index.php?p=search’;

if (isset($_GET[‘terms’])) {

$url .= ‘&terms=’ .

➝ urlencode($_GET[‘terms’]);

}

header (“Location: $url”);

exit;

}

The bulk of the code here is like that in
main.inc.php. There are two changes.
First, the redirection URL is changed to
BASE_URL plus index.php?p=search. This
technique can be used for any module
so that the user is redirected to the page
they want—via index.php. Second, if, for
some inexplicable reason, the user arrived
on this page while submitting a form,
then the search terms would be present
in the URL. If so, those terms will be
passed along as well. The end result will
be that going directly to www.example.
com/modules/search.inc.php?terms=blah

still results in a valid search.

3. Print a caption.

echo ‘<h2>Search Results</h2>’;

4. Check for a proper search term.

if (isset($_GET[‘terms’]) &&

➝ ($_GET[‘terms’] != ‘Search...’)) {

The database search would only take
place if a search term were passed along
in the URL. The search box uses Search…
as the default value, so that needs to be
ruled out.

Using Frameworks

Frameworks are libraries of established
code meant to facilitate development.
There are many well-conceived frame-
works available for PHP, well over 40 at
last count. Zend, the company behind
the PHP engine, has recently entered the
framework discussion with its own ver-
sion (http://framework.zend.com).

Frameworks normally use a modular sys-
tem, like the one implemented in this
chapter, but on a much more elaborate
scale. The arguments for using frame-
works are the same as those for using
OOP or PEAR: they allow you to quickly
build applications with (hopefully) better
features and security. The arguments
against using frameworks are also com-
parable to OOP and PEAR: they require
time and effort to learn, let alone master,
and may be difficult to customize. It’s
also probable that framework-driven sites
will run more slowly (due to extra pro-
cessing required).

Personally, I’m not a framework person,
as I like to get my hands dirty with code,
but you may like them. For a good dis-
cussion and comparison of ten popular
frameworks, see www.phpit.net/article/
ten-different-php-frameworks/

72

Chapter 2

M
o

du
la

ri
zi

n
g

 a
 W

eb
 S

it
e

www.phpit.net/article/ten-different-php-frameworks/
www.phpit.net/article/ten-different-php-frameworks/
http://framework.zend.com

Figure 2.12 Any search term will turn up these dummy
results.

Figure 2.11 No search is performed without a term
being submitted.

5. Print the search results.

for ($i = 1; $i <= 10; $i++) {

echo <<<EOT

<h4>Search Result

➝ #$i</h4>

<p>This is some description. This is

➝ some description. This is some

➝ description. This is some

➝ description.</p>\n

EOT;

}

Since there’s no database to search, I’ll
just use a for loop to print ten search
results. I’m using the heredoc syntax
here, as described in Chapter 1,
“Advanced PHP Techniques.”

6. Complete the page.

} else {

echo ‘<p class=”error”>Please

➝ use the search form at the top of

➝ the window to search this

➝ site.</p>’;

}

?>

This conditional applies if no valid
search terms were entered (Figure 2.11).

7. Save the file as search.inc.php, place it
in your Web directory (in the modules
folder), and test by submitting the form
(Figure 2.12).

73

Developing Web Applications

M
o

du
larizin

g
 a W

eb S
ite

Affecting the
Browser Cache
Web browsers and proxy servers (something
ISPs and other corporations create to improve
network efficiency) habitually cache Web
pages. Caching a page is a matter of storing
its content (or part of its content, like an
image or video) and then providing that
stored version, rather than the version on
the server, when a request is made.

For most end users, this is not a problem. In
fact, they may not be aware that they are
receiving an outdated version of a page or
image. But if, while developing a site, you’ve
struggled to get your Web browser (let’s face
it: the likely culprit is Internet Explorer) to
recognize changes you know you’ve made in
a page, then you’ve seen the dark side of
caching. With your dynamic, PHP-driven
sites, sometimes you want to make certain
that end users are getting the most up-to-
date version of your pages.

Caching—both in Web browsers and proxy
servers—can be affected using PHP’s head-
er() function. There are four header types
involved:

◆ Last-Modified

◆ Expires

◆ Pragma

◆ Cache-Control

The first three header types are part of the
HTTP 1.0 standard. The Last-Modified head-
er uses a UTC (Universal Time Coordinated)
date-time value. If a caching system sees
that the Last-Modified value is more recent
than the date on the cached version of the
page, it knows to use the new version from
the server.

74

Chapter 2

A
ff

ec
ti

n
g

 t
h

e
B

ro
w

se
r

C
ac

h
e

D i r e c t i v e M e a n i n g

public Can be cached anywhere
private Only cacheable by browsers
no-cache Cannot be cached anywhere
must-revalidate Caches must check for newer

versions
proxy-revalidate Proxy caches must check for newer

versions
max-age A duration, in seconds, that the

content is cacheable
s-maxage Overrides the max-age value for

shared caches

Cache-Control Directives

Table 2.1

Expires is used as an indicator as to when a
cached version of the page should no longer
be used (in Greenwich Mean Time). Setting
an Expires value in the past should always
force the page from the server to be used:

header (“Expires: Mon, 26 Jul 1997

➝ 05:00:00 GMT”);

Pragma is just a declaration for how the
page data should be handled. To avoid
caching of a page, use:

header (“Pragma: no-cache”);

The Cache-Control header was added in
HTTP 1.1 and is a more finely tuned option.
(You should still use the HTTP 1.0 headers
as well.) There are numerous Cache-Control
settings (Table 2.1).

Putting all this information together, to keep
all systems from caching a page, you would
use these headers:

header (“Last-Modified: Thu, 9 Nov 2006

➝ 14:26:00 GMT”); // Right now!

header (“Expires: Mon, 26 Jul 1997

➝ 05:00:00 GMT”); // Way back when!

header (“Pragma: no-cache”);

header (“Cache-Control: no-cache”);

While all too common, this is a heavy-
handed approach. Certainly not every PHP
script you use is uncacheable. Even the
most active site could cache some of its
scripts for a minute or more (and a very
active site would get many requests within a
minute; the cached version would save the
server all those hits). As a more focused and
proper use of these concepts, let’s rewrite
the view_tasks.php page (Script 1.3) from
Chapter 1.

75

Developing Web Applications

A
ffectin

g
 th

e B
ro

w
ser C

ach
e

To affect caching:

1. Open view_tasks.php in your text editor
or IDE (Script 2.7).

1 <?php # Script 2.7 - view_tasks.php

2

3 // Connect to the database:

4 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('<p>Could not
connect to the database!</p></body></html>');

5

6 // Get the latest dates as timestamps:

7 $q = 'SELECT UNIX_TIMESTAMP(MAX(date_added)), UNIX_TIMESTAMP(MAX(date_completed)) FROM tasks';

8 $r = mysqli_query($dbc, $q);

9 list($max_a, $max_c) = mysqli_fetch_array($r, MYSQLI_NUM);

10

11 // Determine the greater timestamp:

12 $max = ($max_a > $max_c) ? $max_a : $max_c;

13

14 // Create a cache interval in seconds:

15 $interval = 60 * 60 * 6; // 24 hours

16

17 // Send the header:

18 header ("Last-Modified: " . gmdate ('r', $max));

19 header ("Expires: " . gmdate ("r", ($max + $interval)));

20 header ("Cache-Control: max-age=$interval");

21 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

22 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

23 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

24 <head>

25 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

26 <title>View Tasks</title>

27 </head>

28 <body>

29 <h3>Current To-Do List</h3>

30 <?php

31

32 /* This page shows all existing tasks.

33 * A recursive function is used to show the

34 * tasks as nested lists, as applicable.

35 */

36

37 // Function for displaying a list.

38 // Receives one argument: an array.

39 function make_list ($parent) {

40

(script continues on next page)

Script 2.7 This modified version of Chapter 1’s view_tasks.php page (Script 1.3) uses the header() function to make
caching recommendations.

76

Chapter 2

A
ff

ec
ti

n
g

 t
h

e
B

ro
w

se
r

C
ac

h
e

2. Before anything is sent to the Web browser,
add the initial PHP tag (Script 2.7).

<?php # Script 2.7 - view_tasks.php

As you hopefully know, the header()
function can only be called before any-
thing is sent to the Web browser, includ-
ing plain text, HTML, or even a blank
space.

continues on page 78

41 // Need the main $tasks array:

42 global $tasks;

43

44 // Start an ordered list:

45 echo '';

46

47 // Loop through each subarray:

48 foreach ($parent as $task_id => $todo) {

49

50 // Display the item:

51 echo "$todo";

52

53 // Check for subtasks:

54 if (isset($tasks[$task_id])) {

55

56 // Call this function:

57 make_list($tasks[$task_id]);

58

59 }

60

61 // Complete the list item:

62 echo '';

63

64 } // End of FOREACH loop.

65

66 // Close the ordered list:

67 echo '';

68

69 } // End of make_list() function.

70

71 // Retrieve all the uncompleted tasks:

72 $q = 'SELECT task_id, parent_id, task FROM tasks WHERE date_completed="0000-00-00 00:00:00"
ORDER BY parent_id, date_added ASC';

73 $r = mysqli_query($dbc, $q);

74

75 // Initialize the storage array:

76 $tasks = array();

77

78 while (list($task_id, $parent_id, $task) = mysqli_fetch_array($r, MYSQLI_NUM)) {

79

80 // Add to the array:

81 $tasks[$parent_id][$task_id] = $task;

82

83 }

84

85 // For debugging:

86 //echo '<pre>' . print_r($tasks,1) . '</pre>';

87

88 // Send the first array element

89 // to the make_list() function:

90 make_list($tasks[0]);

91

92 ?>

93 </body>

94 </html>

Script 2.7 continued

77

Developing Web Applications

A
ffectin

g
 th

e B
ro

w
ser C

ach
e

3. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘test’) OR

➝ die (‘<p>Could not connect to the

➝ database!</p></body></html>’);

To accurately determine when this
page was last modified, the script will
look at the database it uses. The tasks
table contains two date/time columns—
date_added and date_completed. Any
time the page’s content is updated, these
two values are set to the current date
and time (there is no delete option).

4. Get the latest date values from the table.

$q = ‘SELECT UNIX_TIMESTAMP(MAX

➝ (date_added)), UNIX_TIMESTAMP

➝ (MAX(date_completed)) FROM tasks’;

$r = mysqli_query($dbc, $q);

list($max_a, $max_c) =

mysqli_fetch_array($r, MYSQLI_NUM);

$max = ($max_a > $max_c) ? $max_a :

➝ $max_c;

The query returns the largest date_added
and date_completed values. Because they
would be returned in a less usable format
(Figure 2.13), the UNIX_TIMESTAMP()
function is applied to make them both
integers (Figure 2.14). Then, the ternary
operator is used to assign the largest
value (and therefore the most recent
date) to the $max variable.

Figure 2.14 The query result used by this script.

Figure 2.13 How the timestamp fields would ordinarily
be returned by the query.

78

Chapter 2

A
ff

ec
ti

n
g

 t
h

e
B

ro
w

se
r

C
ac

h
e

Figure 2.15 The cache-controlled Web page.

5. Define a reasonable caching interval.

$interval = 60 * 60 * 6;

“Reasonable” depends upon your page,
how many visitors you get (i.e., the serv-
er load), and how often it’s updated. For
this value, which is in seconds, I use six
hours (60 seconds times 60 minutes
time 6).

6. Send the Last-Modified header.

header (“Last-Modified: “ . gmdate

➝ (‘r’, $max));

This header sets the modification date
of this script as the last time the data-
base was updated. The “r” gmdate() (and
date()) option will return the date for-
matted per the HTTP specifications.

7. Set the Expires header.

header (“Expires: “ . gmdate (“r”,

➝ ($max + $interval)));

The expiration value is the current time
plus the defined interval.

8. Set the Cache-Control header.

header (“Cache-Control: max-age=

➝ $interval”);

?>

This is just the HTTP 1.1 equivalent of
the Expires header. Instead of giving a
date value, max-age is set in seconds.

9. Delete the database connection that
existed later on in the original script.

This has been moved to the top of the
script in Step 3.

10. Save the file as view_tasks.php, place in
your Web directory, and test in your
Web browser (Figure 2.15).

continues on next page

79

Developing Web Applications

A
ffectin

g
 th

e B
ro

w
ser C

ach
e

Server-Side Caching

There is an alternative type of caching
you can use to affect the client/server
relationship. When a PHP script is
requested, the Web server asks the PHP
module to read and process that code.
Server-side caches store preprocessed
versions of a script, so that they may be
served without processing. Server-side
caching can greatly improve your applica-
tion’s performance but normally requires
more control over the server than the
average user has (read: those using a
shared hosting service).

If you want to look into and possibly
implement server-side caching, there are
many options. APC (Alternative PHP
Cache) is very popular, so much so that
it’s now part of PECL (http://pecl.php.
net). It’s free, but installation can be tricky.
Zend (www.zend.com) offers the free Zend
Optimizer. It’s fairly easy to install, but
you must remember to upgrade it when
you upgrade PHP (it’s version-specific).

For options that do not require software
installation on a server, there are the PEAR
Cache and Cache_Lite packages. It’s also
possible to write your own caching system,
although that’s probably not the most
efficient idea.

✔ Tips

■ Note that caching is, in theory, a very
good thing, designed to minimize unnec-
essary server requests. If properly con-
trolled, caches are great for both the
server and the client.

■ If you have cURL installed on your sys-
tem, you can run this command to see a
page’s headers (Figure 2.16):

curl --head http://www.example.com/

➝ page.php

Curl is discussed in Chapter 9,
“Networking with PHP.”

■ If your applications make use of sessions,
you can adjust session caching with the
session_cache_limit() function. See the
manual for more information.

■ Page caching can also be affected using
the META tags, placed within an HTML
document’s head. This may not work
as reliably with some browsers as the
header() method.

■ Client/server performance can also be
improved—for large scripts—using Zlib
output compression or the function
ob_gzhandler() . See the PHP manual
for more on both.

Figure 2.16 Using cURL to view the headers returned
by the view_tasks.php page.

80

Chapter 2

A
ff

ec
ti

n
g

 t
h

e
B

ro
w

se
r

C
ac

h
e

www.zend.com
http://pecl.php.net
http://pecl.php.net

I had many goals in writing this second edition of my PHP Advanced book. The pri-
mary aim is to demonstrate what I consider to be “advanced” PHP programming:
doing the things you already do but better, doing things tangentially related to PHP,
and taking advantage of aspects of the language with which the average user may not
be familiar. A second goal is to help solve some of the problems often put forth (to
me or otherwise) in emails, forums, and newsgroups. This chapter addresses both
goals equally.

For the first example, you’ll see how to use a database to store session data. Doing so
offers many advantages, improved security being at the forefront. Next, a thorough
discussion on how to work with U.S. zip codes, demonstrated with a distance calcu-
lation script (i.e., how far various stores are from a given zip code). The third example
introduces stored functions, a new addition to MySQL in version 5 (but present in
other databases for some time). After that, a common question is addressed: how do
you lay out query results horizontally?

Please note: for every example in this chapter I will be using MySQL as the data-
base application. Most of these techniques are implementations of theories that
are not database-specific. It shouldn’t be difficult to translate them to whatever
database application you’re using. Second, I’ll be exclusively using the Improved
MySQL functions, available as of PHP 5 and MySQL 4.1. If you are using earlier ver-
sions of either, you’ll need to modify the code to the earlier (the old standard) MySQL
functions.

81

Advanced
Database
Concepts

3
A

dvan
ced D

atabase Co
n

cepts

Figure 3.3 Confirming the table’s structure.

Figure 3.2 This one table will handle all the
session data.

Figure 3.1 I’ll put the sessions table within the
test database for this example.

Storing Sessions
in a Database
By default PHP stores all session data
in text files in the server. Normally these
files are stored in a temporary folder (like
/tmp on Unix and Mac OS X) with file-
names matching the session IDs (e.g.,
ei26b4i2nup742ucho9glmbh84). PHP also
supports the ability to store the same
session data in a database.

The main reason I would recommend mak-
ing this change is improved security. On
shared hosting servers, every Web site is
using the same temporary directory. This
means that dozens upon dozens of applica-
tions are all reading and writing in the same
place. It would be very easy to create a script
that reads all the data from all the files in
the sessions folder.

Second, moving the session data to a data-
base would allow you to easily retrieve more
information about your Web site’s sessions
in general. Queries could be run indicating
the number of active sessions and session
data can be backed up.

A third reason to store session data in a
database is if you have a site running on
multiple servers. When this is the case, the
same user may be fed pages from different
servers over the course of the same session.
The session data stored in a file on one serv-
er would be unavailable to the pages on
other servers. This isn’t a situation that the
majority of developers face, but if you do,
there’s really no other option but to go the
database route.

82

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

✔ Tip

■ Another fix for the security concern on
a shared host is to change the session
directory for your site. To do so, call the
session_save_path() function prior to
every session_start() call. You’ll also
need to make sure that the new directory
exists, of course, and that it has the
proper permissions.

Creating the session table
The session data will be stored in a special
table. This table can be part of an already
existing database (like the rest of your appli-
cation) or in its own. At a bare minimum,
the table needs three columns (Table 3.1).

The session table can have more than those
three columns, but it must have those three.
Keep in mind, though, that many things you
might be inclined to represent in another
column—a user’s ID, for example—would
likely be stored in the session data.

To create the sessions table:

1. Access your MySQL database using the
mysql client.

You can also use phpMyAdmin or what-
ever other interface you prefer.

2. Select the test database (Figure 3.1).

USE test;

Since this is just an example, I’ll create
the table within the test database.

83

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

C o l u m n Ty p e S t o r e s

CHAR(32) The session ID
TEXT The session data
TIMESTAMP The last time the session data was

accessed

Session Table Columns

Table 3.1 A table with just three columns will suffice
for storing session data in a database.

3. Create the sessions table (Figure 3.2).

CREATE TABLE sessions (

id CHAR(32) NOT NULL,

data TEXT,

last_accessed TIMESTAMP NOT NULL,

PRIMARY KEY (id)

);

The table contains the basic three fields.
The id is the primary key. It will always
contain a string 32 characters long and
can never be NULL. The data column is a
TEXT type and it can be NULL (when the
session is first started, there is no data).
The last_accessed column is a TIME-
STAMP. It will therefore always be updated
when the session is created (on INSERT)
or modified (on UPDATE).

4. Confirm the sessions table structure
(Figure 3.3).

DESCRIBE sessions;

✔ Tips

■ You don’t have to use MySQL for this
example; you could use PostgreSQL,
Oracle, SQLite, or any other database.

■ If your application stores a lot of data in
sessions, you’d want to change the size of
the session data column to MEDIUMTEXT or
LONGTEXT.

Defining the session functions
After creating the database table, storing
session data in a database is a two-part
process (from a PHP perspective):

1. Define the functions for interacting with
the database.

2. Tell PHP to use these functions.

For this second step, the session_set_save_
handler() function is called. This function
should be called with six arguments, each a
function name (Table 3.2).

I’ll briefly discuss what each function should
receive (as arguments) and do while creating
them in the next script. I’ll say up front that
every function must return a Boolean value,
except for the “read” function. That function
must always return a string, even if that
means an empty string.

For an understanding of when the different
functions are called (from the perspective
of what you’d do in the PHP code), see
Figure 3.4.

Figure 3.4 Every time a session is started, the “open”
and “read” functions are called. When the “read”
function is called, garbage collection may take place
(depending upon various factors). At the end of a
script, the data is written, and then the “close”
function is called, unless the session was destroyed,
in which case the “write” function is not invoked.

84

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

O r d e r F u n c t i o n t o B e C a l l e d W h e n …

1 A session is started
2 A session is closed
3 Session data is read
4 Session data is written
5 Session data is destroyed
6 Old session data should be deleted (aka

garbage collection performed)

session_set_save_handler() Arguments

Table 3.2 The session_set_save_handler() function
takes six arguments. Each should be the name of a
function that is called when a particular event occurs.

1 <?php # Script 3.1 - db_sessions.inc.php

2

3 /*

4 * This page creates the functional

5 * interface for storing session data

6 * in a database.

7 * This page also starts the session.

8 */

9

10 // Global variable used for the database

11 // connections in all session functions:

12 $sdbc = NULL;

13

14 // Define the open_session() function:

15 // This function takes no arguments.

16 // This function should open the database connection.

17 function open_session() {

18

19 global $sdbc;

20

21 // Connect to the database.

22 $sdbc = mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('Cannot connect
to the database.');

23

24 return true;

25

26 } // End of open_session() function.

27

(script continues on next page)

Script 3.1 This script defines all the functionality required to store session data in a database. It can be included by
any page that wants that feature.

To create new session handlers:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 3.1).

<?php # Script 3.1 -

➝ db_sessions.inc.php

$sdbc = NULL;

The $sdbc variable will store the database
connection. I initialize it here and then
make it global in each function.

continues on page 88

85

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

28 // Define the close_session() function:

29 // This function takes no arguments.

30 // This function closes the database connection.

31 function close_session() {

32

33 global $sdbc;

34

35 return mysqli_close($sdbc);

36

37 } // End of close_session() function.

38

39 // Define the read_session() function:

40 // This function takes one argument: the session ID.

41 // This function retrieves the session data.

42 function read_session($sid) {

43

44 global $sdbc;

45

46 // Query the database:

47 $q = sprintf('SELECT data FROM sessions WHERE id="%s"', mysqli_real_escape_string($sdbc,
$sid));

48 $r = mysqli_query($sdbc, $q);

49

50 // Retrieve the results:

51 if (mysqli_num_rows($r) == 1) {

52

53 list($data) = mysqli_fetch_array($r, MYSQLI_NUM);

54

55 // Return the data:

56 return $data;

57

58 } else { // Return an empty string.

59 return '';

60 }

61

62 } // End of read_session() function.

63

64 // Define the write_session() function:

65 // This function takes two arguments:

66 // the session ID and the session data.

67 function write_session($sid, $data) {

68

69 global $sdbc;

70

71 // Store in the database:

72 $q = sprintf('REPLACE INTO sessions (id, data) VALUES ("%s", "%s")',
mysqli_real_escape_string($sdbc, $sid), mysqli_real_escape_string($sdbc, $data));

73 $r = mysqli_query($sdbc, $q);

74

(script continues on next page)

Script 3.1 continued

86

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

75 return mysqli_affected_rows($sdbc);

76

77 } // End of write_session() function.

78

79 // Define the destroy_session() function:

80 // This function takes one argument: the session ID.

81 function destroy_session($sid) {

82

83 global $sdbc;

84

85 // Delete from the database:

86 $q = sprintf('DELETE FROM sessions WHERE id="%s"', mysqli_real_escape_string($sdbc, $sid));

87 $r = mysqli_query($sdbc, $q);

88

89 // Clear the $_SESSION array:

90 $_SESSION = array();

91

92 return mysqli_affected_rows($sdbc);

93

94 } // End of destroy_session() function.

95

96 // Define the clean_session() function:

97 // This function takes one argument: a value in seconds.

98 function clean_session($expire) {

99

100 global $sdbc;

101

102 // Delete old sessions:

103 $q = sprintf('DELETE FROM sessions WHERE DATE_ADD(last_accessed, INTERVAL %d SECOND) <
NOW()', (int) $expire);

104 $r = mysqli_query($sdbc, $q);

105

106 return mysqli_affected_rows($sdbc);

107

108 } // End of clean_session() function.

109

110 # **************************** #

111 # ***** END OF FUNCTIONS ***** #

112 # **************************** #

113

114 // Declare the functions to use:

115 session_set_save_handler('open_session', 'close_session', 'read_session', 'write_session',
'destroy_session', 'clean_session');

116

117 // Make whatever other changes to the session settings.

118

119 // Start the session:

120 session_start();

121

122 ?>

Script 3.1 continued

87

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

2. Define the function for opening a session.
function open_session() {

global $sdbc;

$sdbc = mysqli_connect

➝ (‘localhost’, ‘username’,

➝ ‘password’, ‘test’) OR die (‘Cannot

➝ connect to the database.’);

return true;

}

This function takes no arguments (which
is to say that when PHP does whatever to
open a session, it will call this function
without sending any values to it). The
intent of this function is to establish a
database connection.

3. Define the function for closing a session.
function close_session() {

global $sdbc;

return mysqli_close($sdbc);

}

This function also takes no arguments.
It will close the database connection,
returning the success of that operation.

4. Define the function for reading the ses-
sion data.
function read_session($sid) {

global $sdbc;

$q = sprintf(‘SELECT data FROM

➝ sessions WHERE id=”%s”’,

➝ mysqli_real_escape_string($sdbc,

➝ $sid));

$r = mysqli_query($sdbc, $q);

if (mysqli_num_rows($r) == 1) {

list($data) =

➝ mysqli_fetch_array($r, MYSQLI_NUM);

return $data;

} else {

return ‘’;

}

}

88

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

This function will receive one
argument: the session ID (e.g.,
ei26b4i2nup742ucho9glmbh84). The
function needs to retrieve the data for
that session ID from the database and
return it. If it can’t do that, it should
return an empty string instead. Although
the session ID should be safe to use in a
URL, one shouldn’t make assumptions
when it comes to security, so the mysqli_
real_escape_string() function is used
to make it safe (alternatively, you could
use prepared statements).

If you’re not familiar with the sprintf()
function, which I use to compile the
query, see Chapter 1, “Advanced PHP
Techniques.”

5. Define the function for writing data to
the database.
function write_session($sid, $data) {

global $sdbc;

$q = sprintf(‘REPLACE INTO

➝ sessions (id, data) VALUES (“%s”,

➝ “%s”)’,

mysqli_real_escape_string($sdbc,

➝ $sid), mysqli_real_escape_

➝ string($sdbc, $data));

$r = mysqli_query($sdbc, $q);

return mysqli_affected_

➝ rows($sdbc);

}

This function receives two arguments:
the session ID and the session data. The
session data is a serialized version of the
$_SESSION array (Figure 3.5). For the
query, an INSERT must be run the first
time the session record is created in the
database and an UPDATE query every time
thereafter. The lesser-known REPLACE
query will achieve the same result. If a
record exists whose primary key is the
same as that given a value in this query
(i.e., the session ID), an update will occur.
Otherwise, a new record will be made.

Figure 3.5 Session data is stored in the database (or in a file) as a serialized array. This serialized value says that
indexed at blah is a string six characters long with a value of umlaut. Indexed at this is a decimal with a value of
3615684.4500 (and so on). Indexed at that is a string four characters long with a value of blue.

6. Create the function for destroying the
session data.
function destroy_session($sid) {

global $sdbc;

$q = sprintf(‘DELETE FROM

➝ sessions WHERE id=”%s”’,

➝ mysqli_real_escape_string($sdbc,

➝ $sid));

$r = mysqli_query($sdbc, $q);

$_SESSION = array();

return mysqli_affected_

➝ rows($sdbc);

}

This function receives one argument, the
session ID, when called. Normally this
occurs when the session_destroy()
function is invoked. This function then
runs a DELETE query in the database and
clears the $_SESSION array.

7. Define the garbage collection function.
function clean_session($expire) {

global $sdbc;

$q = sprintf(‘DELETE FROM

➝ sessions WHERE DATE_ADD(last_

➝ accessed, INTERVAL %d SECOND) <

➝ NOW()’, (int) $expire);

$r = mysqli_query($sdbc, $q);

return mysqli_affected_

➝ rows($sdbc);

}

89

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

Garbage collection is something most
PHP programmers do not think about.
The premise is that PHP will automati-
cally delete old sessions. There are two
relevant settings in PHP: what is consid-
ered to be “old” and how likely it is that
garbage collection is performed. For all
session activity in a site, there is an X
percent chance that PHP will go into
garbage collection mode (the exact per-
cent is a PHP setting; the default value is
1%). If it does, then all “old” session data
will be destroyed. So garbage collection is
triggered by any session but attempts to
clean up every session.

As for the garbage collection function,
it will receive a time, in seconds, as to
what is considered to be old. This can be
used in a DELETE query to get rid of any
session that hasn’t been accessed in
more than the set time.

8. Tell PHP to use the session handling
functions.

session_set_save_handler(‘open_

➝ session’, ‘close_session’,

➝ ‘read_session’, ‘write_session’,

➝ ‘destroy_session’,

➝ ‘clean_session’);

continues on next page

9. Start the session.

session_start();

Two important things to note here.
First, the session_set_save_handler()
function does not start a session. You
still have to invoke session_start().
Second, you must use these two lines in
this order. Calling session_start() prior
to session_set_save_handler() will
result in your handlers being ignored.

10. Complete the page.

?>

11. Save the file as db_sessions.inc.php and
place it in your Web directory.

✔ Tips

■ The “write” session function is never
called until all of the output has been
sent to the Web browser. Then the
“close” function is called. See Figure 3.4.

■ If session.auto_start is turned on in
your PHP configuration (meaning that
sessions are automatically started for
each page), then you cannot use the
session_set_save_handler() function.

90

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

Using the new session handlers
Using the newly created session handlers
is only a matter of invoking the function
session_set_save_handler() function, as
discussed in the preceding section of the
chapter. Everything else you would do with
sessions is unchanged, from storing data in
them to accessing stored data to destroying
a session.

To demonstrate this, the next script will
create some session data if it doesn’t exist,
show all the session data, and even destroy
the session data if a link back to this same
page is clicked. As is often the case, there is
one little tricky issue…

All of the session activity requires the data-
base and, therefore, the database connec-
tion. The connection is opened when the
session is started and closed when the ses-
sion is closed. No problem there except that
the “write” and “close” functions will be
called after a script has finished running
(see Figure 3.4). As you may already know,
PHP does you the favor of automatically
closing any database connections when a
script stops running. For this next script,
this means that after the script runs, the
database connection is automatically closed,
and then the session functions attempt to
write the data to the database and close the
connection. The result will be some confus-
ing errors (and the—trust me on this—long
“Where in the World Is My Database
Connection?” search). To avoid this sequen-
tial problem, the session_write_close()
function should be called before the script
terminates. This function will invoke the
“write” and “close” functions, while there’s
still a good database connection.

91

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

To use the new session handlers:

1. Begin a new PHP script in your text
editor or IDE (Script 3.2).

<?php # Script 3.2 - sessions.php

1 <?php # Script 3.2 - sessions.php
2
3 /* This page does some silly things with sessions.
4 * It includes the db_sessions.inc.php script
5 * so that the session data will be stored in
6 * a database.
7 */
8
9 // Include the sessions file:
10 // The file already starts the session.
11 require_once('db_sessions.inc.php');
12 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
13 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
14 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
15 <head>
16 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
17 <title>DB Session Test</title>
18 </head>
19 <body>
20 <?php
21
22 // Store some dummy data in the session,
23 // if no data is present.
24 if (empty($_SESSION)) {
25
26 $_SESSION['blah'] = 'umlaut';
27 $_SESSION['this'] = 3615684.45;
28 $_SESSION['that'] = 'blue';
29
30 // Print a message indicating what's going on:
31 echo '<p>Session data stored.</p>';
32
33 } else { // Print the already-stored data.
34 echo '<p>Session Data Exists:<pre>' . print_r($_SESSION, 1) . '</pre></p>';
35 }
36
37 // Log the user out, if applicable:
38 if (isset($_GET['logout'])) {
39
40 session_destroy();
41 echo '<p>Session destroyed.</p>';
42
43 } else { // Print the "Log Out" link:
44 echo 'Log Out';
45 }
46
47 // Print out the session data:
48 echo '<p>Session Data:<pre>' . print_r($_SESSION, 1) . '</pre></p>';
49
50 ?>
51 </body>
52 </html>
53 <?php session_write_close(); ?>

Script 3.2 This script includes the db_sessions.inc.php page (Script 3.1) so that session data is stored in a
database. In order to have one page create a new session, access existing data, and close the session, a couple of
conditionals are used in lieu of writing out multiple pages.

92

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

2. Include the db_sessions.inc.php file.

require_once(‘db_sessions.inc.php’);

?>

The session_start() function, which is
in db_sessions.inc.php, must be called
before anything is sent to the Web
browser, so this file must be included
prior to any HTML.

3. Create the initial HTML.

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/

➝ 1999/xhtml” xml:lang=”en”

➝ lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>DB Session Test</title>

</head>

<body>

4. Store some dummy data in a session if it
is empty.

<?php

if (empty($_SESSION)) {

$_SESSION[‘blah’] = ‘umlaut’;

$_SESSION[‘this’] = 3615684.45;

$_SESSION[‘that’] = ‘blue’;

echo ‘<p>Session data

➝ stored.</p>’;

} else {

echo ‘<p>Session Data

➝ Exists:<pre>’ . print_r

➝ ($_SESSION, 1) . ‘</pre></p>’;

}

93

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

Storing data in a database-managed ses-
sion is no different than the regular
method. This conditional is being used
to replicate sessions on multiple pages.
The first time the page is loaded, new
data will be stored in the session. The
second time the page is loaded, the exist-
ing data will be available. As a quick way
to print the session data, the print_r()
function will be used.

5. Create the logout functionality.

if (isset($_GET[‘logout’])) {

session_destroy();

echo ‘<p>Session

➝ destroyed.</p>’;

} else {

echo ‘<a href=”sessions.php?

➝ logout=true”>Log Out’;

}

Again, this conditional is used to fake a
multipage site. When the page is
accessed, a “Log Out” link is displayed. If
the user clicks that link, ?logout=true is
passed in the URL, telling this same page
to destroy the session.

6. Print the session data.

echo ‘<p>Session Data:<pre>’ .

➝ print_r($_SESSION, 1) .

➝ ‘</pre></p>’;

This is mostly a repeat of the code in
Step 4. Unlike that line, this one will
apply the first time the page is loaded. It
will also be used to reveal the effect of
destroying the session.

7. Complete the PHP and HTML.

?>

</body>

</html>

continues on next page

8. Call the session_write_close() function.

<?php session_write_close(); ?>

It really doesn’t matter where in the
script this function is called, as long as
all the modifications to the session data
are over. If you don’t use this function,
you might see results like those in
Figure 3.6.

Figure 3.6 Because PHP is nice enough to close open
database connections after a script runs, the
write_session() and close_session() functions—
called after that point—would be without a database
connection.

94

Chapter 3

St
o

ri
n

g
 S

es
si

o
n

s
in

 a
 D

at
ab

as
e

Figure 3.9 Clicking the “Log Out” link
ends up destroying the session.

Figure 3.8 Reloading the page allows it to
access the already-stored session data.

Figure 3.7 The result the first time the page
is loaded.

9. Save the file as sessions.php, place it in
your Web directory (in the same folder as
db_sessions.inc.php), and test in your
Web browser (Figures 3.7, 3.8, and 3.9).

✔ Tips

■ The session_write_close() function is
also necessary if your site uses frames. By
calling it, you can close one page’s access
to a session so that the other page can
load faster (because only one script can
access the same session at a time).

■ You should also call session_write_
close() before redirecting the browser
with a header() call. This only applies
when using your own session handlers.

95

Advanced Database Concepts

Sto
rin

g
 S

essio
n

s in
 a D

atabase

Working with U.S.
Zip Codes
One common need for Web sites is to be
able to perform distance calculations between
addresses. Although you can always go the
full Mapquest or Google Maps route, simple
distance estimates can be managed using
just zip codes (in the United States, that is).

For every zip code, there is an associated
longitude and latitude. Take two of these
points on the earth, throw in some compli-
cated math, and you have an approximate
distance. In this section, I’ll discuss how to
obtain the necessary zip code data, create a
“stores” table that will provide one of the two
points, and then go over the formula used to
calculate distances.

96

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

Creating the zip code table
This whole example is predicated upon hav-
ing a database with the latitude and longi-
tude points for every zip code in the United
States. You’ll find three sources for this
information:

◆ Commercial zip code databases

◆ Free zip code databases

◆ Free ZCTA databases

The first option will provide you with the
most accurate, up-to-date information,
but you’ll have to pay for it (not a terrible
amount, normally). The second option is
free (free!) but harder to find and likely to
be out of date. At the time of this writing,
the Web site www.cfdynamics.com/zipbase/
provides this information, although there’s
no guarantee how long that will last. You
can also search the Web for “free zip code
database” to find alternatives.

As for the last option, ZCTA, the Zip Code
Tabulation Areas, is a database created by
the U.S. Census Bureau for its own purposes.
This database ignores around 10,000 zip
codes that are used by the U.S. Post Office or
by specific corporations. It also groups some
zip codes together and uses characters to
represent others. For the vast majority of zip
codes, this information will do just fine.
Once source of a ZCTA database is
http://zips.sourceforge.net, found by
searching SourceForge.net for “zip code”.

www.cfdynamics.com/zipbase/
http://zips.sourceforge.net

Figure 3.11 The main table, whose structure is based
upon the data to be inserted (Figure 3.12).

Figure 3.10 Creating a new database to be used in this
example.

To create the zip code database:

1. Find your data source.

Which source (of the types and specific
ones outlined) you use depends upon your
situation. How important is accuracy?
How much are you willing to spend? As a
secondary consideration, what resources
exist as you’re reading this (search the
Web and SourceForge)? I’ll use the version
from www.cfdynamics.com/zipbase/ for
my example.

2. Create the database (Figure 3.10).

CREATE DATABASE zips;

I’m creating a database called zips, in
MySQL, using the mysql command-line
client. You could do most of the follow-
ing using phpMyAdmin, the MySQL
Administrator, or another tool.

3. Create a table that matches the data in
the data file (Figure 3.11).

CREATE TABLE zip_codes (

zip_code INT(5) UNSIGNED ZEROFILL NOT

➝ NULL,

latitude DOUBLE(8,6),

longitude DOUBLE(8,6),

city VARCHAR(60) NOT NULL,

state CHAR(2) NOT NULL,

county VARCHAR(60) NOT NULL,

zip_class VARCHAR(12) NOT NULL,

PRIMARY KEY (zip_code)

);

continues on next page

97

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

www.cfdynamics.com/zipbase/

Some sources may already provide the
necessary SQL commands to create the
table and even insert the data, in which
case you could skip Steps 3 and 4. If not,
you should create a table whose struc-
ture matches the data to be inserted.
Figure 3.12 shows the file that I down-
loaded. The zip code column, which is
the primary key, should be an unsigned,
zero-filled integer five digits in length.
The latitude and longitude columns
should be some type of floating-point
number. Because, in my case, some of the
records have no values for the latitude
and longitude, these two columns can’t
be defined as NOT NULL. My data contains
four more columns: the city’s name, a
two-character state abbreviation, the
county, and the “zip code class.”

4. Import the data (Figure 3.13).

LOAD DATA INFILE

‘/tmp/ZIP_CODES.txt’

INTO TABLE zip_codes

FIELDS TERMINATED BY ‘,’

ENCLOSED BY ‘“‘

LINES TERMINATED BY ‘\r\n’;

It may take you a while to get this step
working properly (you may also have
more luck using phpMyAdmin for this).
The LOAD DATA INFILE query takes the
contents of a text file and inserts them
into the given table. For this step to work,
the number of columns in the table must
match the number of values on each
row in the text file. You might also need
to change the FIELDS TERMINATED BY,
ENCLOSED BY, and LINES TERMINATED BY
values to match the text file you have.
See the MySQL manual for more infor-
mation on this syntax.

The name of the text file should match
the absolute path to the file on your
computer.

Figure 3.13 Importing the data into the table.

Figure 3.12 The data file I’m working with.

98

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

Figure 3.15 The information for a single zip code.

Figure 3.14 Getting rid of unnecessary columns.

5. Drop any columns you will not need
(Figure 3.14).

ALTER TABLE zip_codes DROP COLUMN

➝ zip_class;

The zip class data came with the
downloaded file but isn’t something
I’ll ever use.

6. Add indexes and update the data, if
necessary.

One additional step I took was to turn
empty latitude and longitude values into
formal NULL values. That query is:

UPDATE zip_codes SET latitude=NULL,

➝ longitude=NULL WHERE latitude=’’;

7. Check the information for your (or any)
zip code (Figure 3.15).

SELECT * FROM zip_codes

WHERE zip_code=63501;

99

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

Figure 3.16 Creating the second, and final, table.

Creating the stores table
After creating the zip code table, it’s time
to create the other required table. For this
example, I’ll want to be able to calculate the
distance between a given zip code (like a
user’s home address) and a list of stores.
Therefore, a stores table is necessary.

This table can contain whatever information
you want. Likely, it would be something like
Table 3.3.

Since the city and state are tied to the zip
code, and that information is already in
the zip_codes table, those columns can be
removed. I’ll also make the Address 2 column
have a NULL option, as not all stores will use
this field.

To create the stores table:

1. Access the zips database using the mysql
client or another interface.

2. Create the stores table (Figure 3.16).

CREATE TABLE stores (

store_id SMALLINT(5) UNSIGNED NOT

➝ NULL AUTO_INCREMENT,

name VARCHAR(60) NOT NULL,

address1 VARCHAR(100) NOT NULL,

address2 VARCHAR(100) default NULL,

zip_code INT(5) UNSIGNED ZEROFILL NOT

➝ NULL,

phone VARCHAR(15) NOT NULL,

PRIMARY KEY (store_id),

KEY (zip_code)

);

The table models the data suggested in
Table 3.3, except for the omission of the
city and state (which are present in the
zip_codes table). The zip_code column
here should be defined exactly like that
in the zip_codes table because the two
fields will be used in a join (see the side-
bar “Optimizing Joins,” on page 102).

C o l u m n E x a m p l e

Name Ray’s Shop
Address 1 49 Main Street
Address 2 Suite 230
City Arlington
State Virginia
Zip Code 22201
Phone (123) 456-7890

A Store’s Information

Table 3.3 An example record for a store.

100

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

3. Populate the stores table (Figure 3.17).

INSERT INTO stores (name, address1,

➝ address2, zip_code, phone) VALUES

(‘Ray’’s Shop’, ‘49 Main Street’,

➝ NULL, ‘63939’, ‘(123) 456-7890’),

(‘Little Lulu’’s’, ‘12904 Rockville

➝ Pike’, ‘#310’, ‘10580’, ‘(123) 654-

➝ 7890’),

(‘The Store Store’, ‘8200 Leesburg

➝ Pike’, NULL, ‘02461’, ‘(123) 456-

➝ 8989’),

(‘Smart Shop’, ‘9 Commercial Way’,

➝ NULL, ‘02141’, ‘(123) 555-7890’),

(‘Megastore’, ‘34 Suburban View’,

➝ NULL, ‘31066’, ‘(555) 456-7890’),

(‘Chain Chain Chain’, ‘8th &

➝ Eastwood’, NULL, ‘80726’, ‘(123)

➝ 808-7890’),

(‘Kiosk’, ‘St. Charles Towncenter’,

➝ ‘3890 Crain Highway’, ‘63384’,

➝ ‘(123) 888-4444’),

(‘Another Place’, ‘1600 Pennsylvania

➝ Avenue’, NULL, ‘05491’, ‘(111) 456-

➝ 7890’),

(‘Fishmonger’’s Heaven’, ‘Pier 9’,

➝ NULL, ‘53571’, ‘(123) 000-7890’),

(‘Hoo New’, ‘576b Little River

➝ Turnpike’, NULL, ‘08098’, ‘(123)

➝ 456-0000’),

(‘Vamps ‘’R’’ Us’, ‘Our Location’,

➝ ‘Atwood Mall’, ‘02062’, ‘(222) 456-

➝ 7890’),

(‘Five and Dime’, ‘9 Constitution

➝ Avenue’, NULL, ‘73503’, ‘(123) 446-

➝ 7890’),

(‘A & P’, ‘890 North Broadway’, NULL,

➝ ‘85329’, ‘(123) 456-2323’),

(‘Spend Money Here’, ‘1209 Columbia

➝ Pike’, NULL, ‘10583’, ‘(321) 456-

➝ 7890’);

continues on next page

101

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

Figure 3.17 Putting some sample records into the
stores table.

You can enter whatever records you’d
like. Or you can download this SQL from
the book’s corresponding Web site
(www.DMCInsights.com/phpvqp2/).

4. Select the complete address for a couple
of stores (Figure 3.18).

SELECT stores.*, zip_codes.city,

➝ zip_codes.state

FROM stores LEFT JOIN zip_codes USING

➝ (zip_code) LIMIT 2\G

To get a store’s complete address, includ-
ing the city and state, a join must be
made across the two tables, using the
zip_code column, which is common to
both. If you’re not familiar with it, using
the \G closing character in the mysql
client just returns the results in vertical
groupings, not horizontal rows.

Figure 3.18 By performing a join on the two tables, a
store’s complete address can be fetched.

102

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

Optimizing Joins

The MySQL database does a lot of work to improve efficiency, often unbeknownst to the
common user. This may involve changing the definition of a column or secretly altering how
a query is run. But sometimes MySQL needs a little help.

Joins are expensive queries (in terms of database resources) because they require conditional
matches to be made across two or more tables. In this example, a join will occur between the
zip_codes and stores tables, using the zip_code column from both. To encourage MySQL to
perform these joins faster, you should do two things.

First, an index should exist on both columns. Second, both columns should be defined in
exactly the same way. If one column is a TINYINT and the other is an INT, MySQL will not use
any indexes (which is bad).

www.DMCInsights.com/phpvqp2/

Figure 3.20 The result of the distance calculation,
using the latitudes and longitudes from Figure 3.19.

Figure 3.19 To check the distance between two points,
I select the information for two random zip codes.

Performing distance
calculations
Now that two tables exist and are populated
with data, it’s time to perform the distance
calculations. In PHP, the formula for doing
so is:

$distance = sin(deg2rad($a_latitude))

* sin(deg2rad($b_latitude))

+ cos(deg2rad($a_latitude))

* cos(deg2rad($b_latitude))

* cos(deg2rad($a_longitude -

$b_longitude));

$distance = (rad2deg(acos($distance))) *

➝ 69.09;

I could explain that formula in detail, except
I don’t really understand it (or, in truth,
haven’t tried to). All I know is that this
works, and sometimes that’s enough.

In MySQL, that same formula (requiring a
couple of different functions) is:

SELECT (DEGREES(ACOS(SIN(RADIANS(lat_a))

* SIN(RADIANS(lat_b))

+ COS(RADIANS(lat_a))

* COS(RADIANS(lat_b))

* COS(RADIANS(long_a - long_b))))) *

➝ 69.09

For example, taking the latitude and longi-
tude for two random zip codes (Figure 3.19),
this calculation returns a value of approxi-
mately 1,170 miles (Figure 3.20).

SELECT (DEGREES(ACOS

➝ (SIN(RADIANS(40.347017))

* SIN(RADIANS(29.362879))

+ COS(RADIANS(40.347017))

* COS(RADIANS(29.362879))

* COS(RADIANS(-79.500729 - -

95.276050))))) * 69.09 AS distance;

To finally put all of this good knowledge into
action, I’ll create a PHP script that returns
the three closest stores to a given zip code.

103

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Distance Calculator</title>

7 <style type="text/css" title="text/css" media="all">

8 .error {

9 color: #F30;

10 }

11 h3 {

12 color: #00F;

13 }

14 </style>

15 </head>

16 <body>

17 <?php # Script 3.3 - distance.php

18

19 /* This page uses the zips database to

20 * calculate the distance between a given

21 * point and some stores.

22 * The three closest stores are returned.

23 */

24

25 $zip = 64154; //User's zip code.

26

27 // Print a caption:

28 echo "<h2>Nearest stores to $zip:</h2>\n";

(script continues on next page)

Script 3.3 This PHP script will return the three closest stores, using a zip code calculation, to a given zip code.

To calculate distances in MySQL:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 3.3).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/

➝ 1999/xhtml” xml:lang=”en”

➝ lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Distance

➝ Calculator</title>

104

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

<style type=”text/css”

➝ title=”text/css” media=”all”>

.error {

color: #F30;

}

h3 {

color: #00F;

}

</style>

</head>

<body>

<?php # Script 3.3 - distance.php

I’ve thrown two CSS classes in here to be
able to mark up the page a bit.

continues on page 106

105

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

29

30 // Connect to the database:

31 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'zips') OR die ('<p
class="error">Cannot connect to the database.</body></html>');

32

33 // Get the origination latitude and longitude:

34 $q = "SELECT latitude, longitude FROM zip_codes WHERE zip_code='$zip' AND latitude IS NOT NULL";

35 $r = mysqli_query($dbc, $q);

36

37 // Retrieve the results:

38 if (mysqli_num_rows($r) == 1) {

39

40 list($lat, $long) = mysqli_fetch_array($r, MYSQLI_NUM);

41

42 // Big, main, complex, wordy query:

43 $q = "SELECT name, CONCAT_WS('
', address1, address2), city, state, stores.zip_code,
phone, ROUND(DEGREES(ACOS(SIN(RADIANS($lat))

44 * SIN(RADIANS(latitude))

45 + COS(RADIANS($lat))

46 * COS(RADIANS(latitude))

47 * COS(RADIANS($long - longitude))))) * 69.09 AS distance FROM stores LEFT JOIN zip_codes USING
(zip_code) ORDER BY distance ASC LIMIT 3";

48 $r = mysqli_query($dbc, $q);

49

50 if (mysqli_num_rows($r) > 0) {

51

52 // Display the stores:

53 while ($row = mysqli_fetch_array($r, MYSQLI_NUM)) {

54 echo "<h3>$row[0]</h3>

55 <p>$row[1]
" . ucfirst(strtolower($row[2])) . ", $row[3] $row[4]

56 $row[5]

57 (approximately $row[6] miles)</p>\n";

58

59 } // End of WHILE loop.

60

61 } else { // No stores returned.

62

63 echo '<p class="error">No stores matched the search.</p>';

64

65 }

66

67 } else { // Invalid zip code.

68

69 echo '<p class="error">An invalid zip code was entered.</p>';

70

71 }

72

73 // Close the connection:

74 mysqli_close($dbc);

75

76 ?>

77 </body>

78 </html>

Script 3.3 continued

2. Identify the point of origin.

$zip = 64154;

echo “<h2>Nearest stores to

➝ $zip:</h2>\n”;

This value could also be taken from a
form (after validating it, of course).

3. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘zips’) OR

➝ die (‘<p class=”error”>Cannot

➝ connect to the database.</body>

➝ </html>’);

4. Define and execute the query.

$q = “SELECT latitude, longitude FROM

➝ zip_codes WHERE zip_code=’$zip’ AND

➝ latitude IS NOT NULL”;

$r = mysqli_query($dbc, $q);

This first query—the script contains
two—both validates the zip code (that
it’s an actual U.S. zip code) and retrieves
that zip code’s latitude and longitude.
That information will be necessary for
calculating distances between the given
zip code and each store. Because the
data I used lacks the latitude and longi-
tude for some zip codes, I’ve added an
AND latitude IS NOT NULL condition to
the WHERE clause. This may not be neces-
sary for all data sets.

5. Retrieve the results of the query.

if (mysqli_num_rows($r) == 1) {

list($lat, $long) =

➝ mysqli_fetch_array($r, MYSQLI_NUM);

If one row was returned, the zip code is
valid and the returned data is assigned to
these two variables.

106

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

Figure 3.21 The result of the main, rather unwieldy,
query.

6. Perform the main query.

$q = “SELECT name, CONCAT_WS

➝ (‘
’, address1, address2),

➝ city, state, stores.zip_code,

➝ phone, ROUND(DEGREES(ACOS(SIN

➝ (RADIANS($lat))

* SIN(RADIANS(latitude))

+ COS(RADIANS($lat))

* COS(RADIANS(latitude))

* COS(RADIANS($long - longitude)))))

* 69.09 AS distance FROM stores LEFT

➝ JOIN zip_codes USING (zip_code)

➝ ORDER BY distance ASC LIMIT 3”;

$r = mysqli_query($dbc, $q);

Getting to this main query is really the
point of the whole script. As you can see
in Figure 3.21, this query returns a store’s
name, full address, phone number, and
distance from the given zip code. The two
addresses lines are concatenated using
CONCAT_WS(), which will place a

between the lines if address2 has a value,
but return just address1 otherwise. The
store’s city and state values come from
the zip_codes table, and the zip_code
could come from either. The phone
number is also returned.

The big, complex calculation is also
selected. For the “A” latitude and longi-
tude, the values for the original zip code
are used (already retrieved by the earlier
query). For the “B” latitude and longitude,
values from this query will be used. Only
three stores are going to be returned, and
they are ordered by the distance value,
from smallest to largest. Whew!

continues on next page

107

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

7. Print the results.

if (mysqli_num_rows($r) > 0) {

while ($row = mysqli_fetch_

➝ array($r, MYSQLI_NUM)) {

echo “<h3>$row[0]</h3>

<p>$row[1]
” . ucfirst

➝ (strtolower($row[2])) . “, $row[3]

➝ $row[4]

$row[5]

(approximately $row[6] miles)</p>\n”;

}

} else {

echo ‘<p class=”error”>No stores

➝ matched the search.</p>’;

}

The results are going to be printed with
just a modicum of formatting. If no store
was returned for some reason (which
shouldn’t happen), that message is dis-
played (Figure 3.22).

8. Complete the conditional begun in
Step 5.

} else {

echo ‘<p class=”error”>An

invalid zip code was entered.</p>’;

}

This message applies if an invalid zip
code is provided (Figure 3.23).

Figure 3.23 The result should an invalid zip code (like
77777 here) be used.

Figure 3.22 Because no restriction is made as to how
close a store should be, this message should never
appear. Still, best not to make assumptions.

108

Chapter 3

W
o

rk
in

g
 w

it
h

 U
.S

. Z
ip

 C
o

de
s

Figure 3.25 The closest stores to the
01026 zip code.

Figure 3.24 The closest stores to the
64154 zip code.

9. Complete the page.

mysqli_close($dbc);

?>

</body>

</html>

10. Save the file as distance.php, place it in
your Web directory, and test in your
Web browser (Figure 3.24).

11. Change the zip code and test again
(Figure 3.25).

To use a zip code that begins with a 0,
put it in quotes:

$zip = ‘01026’;

If you don’t, PHP will think you’re using
another number form and translate it.

✔ Tips

■ Chapter 13, “Ajax,” will use this example
to demonstrate the magic of Ajax.

■ You could easily limit the stores
returned to a certain area by adding
WHERE distance<=X to the main query.

109

Advanced Database Concepts

W
o

rkin
g

 w
ith

 U
.S

. Zip Co
des

Creating Stored Functions
Stored functions are half of a larger concept
called stored routines (the other half are
stored procedures). Present in many data-
base applications but new to MySQL as of
version 5, stored routines allow you to save a
set sequence of code in the MySQL server,
and then call that sequence as needed.
Think of it like being able to write your own
PHP functions but in SQL.

The topic of stored routines can be expan-
sive, but I want to give you a little taste here.
For more information, see the MySQL man-
ual or my MySQL: Visual QuickStart Guide
(Peachpit Press, 2006), where I dedicate
many more pages to the subject. Before you
follow this example, make sure that you
have at least version 5 of MySQL (or are
using a database application that supports
them, like PostgreSQL).

The basic syntax for creating stored func-
tions is:

CREATE FUNCTION name (arguments) RETURNS

➝ type code

For the routine’s name, you should not use
an existing keyword, SQL term, or function
name. As with most things you name in
MySQL, you should stick to alphanumeric
characters and the underscore.

The arguments section is used to pass val-
ues to the routine. The listed arguments are
named and given types that correspond to
the available data types in MySQL:

CREATE FUNCTION myfunc (myvar1 INT,

➝ myvar2 CHAR) RETURNS type code

Declaring Local Variables

Stored routines are like small programs,
and they can even have their own vari-
ables. To do so, use the DECLARE statement:

DECLARE var_name var_type

The naming rules are pretty much the
same as for everything else, but you
absolutely want to make sure that your
variables have unique identifiers. The
types correspond to the MySQL data
types:

DECLARE var1 INT

DECLARE var2 DECIMAL(5,2)

DECLARE var3 VARCHAR(20)

The only restrictions to declaring vari-
ables are:

◆ The declarations must take place
within a BEGIN…END code block.

◆ The declarations must take place
before any other statements (i.e., dec-
larations must be immediately after
the BEGIN).

Once you’ve declared a variable, you can
assign it a value using SET:

SET name = value

Note, as well, that unlike variables in PHP,
these stored routine variables do not
begin with a dollar sign.

110

Chapter 3

Cr
ea

ti
n

g
 S

to
re

d
Fu

n
ct

io
n

s

Figure 3.26 You have to be careful when attempting
to create stored routines within the mysql client.

The code section of this syntax is the most
important. As your routines will normally
contain multiple lines, you’ll want to create
a block by using BEGIN and END:

CREATE FUNCTION name (arguments) RETURNS

➝ type BEGIN

statement1;

statement2;

END

Within the code block, each statement ends
with a semicolon. This can cause a problem:
when you go to add this stored function
using the mysql client, it will think that the
semicolon indicates the end of a command
to be executed immediately (Figure 3.26).
To prevent this, one solution is to change
the delimiter (the semicolon) to something
else. Another option is to use the MySQL
Administrator, instructions for which you’ll
soon see.

Stored functions must contain a RETURNS
clause, indicating the type of value returned
by the function. Functions return scalar
(single) values, like a number or a string.
To do so, use

RETURNS data

within the function’s code body. The type of
the data returned must match the type indi-
cated in the function’s initial definition line.
You cannot return a list of values from a
stored function, but because stored func-
tions return scalar values, they can be used
in queries like any of the existing MySQL
functions.

All of this information, along with the blip in
the accompanying sidebar “Declaring Local
Variables,” is the five-minute guide to stored
functions. In the next sequence of steps, I’ll
show you how to turn the complicated dis-
tance calculation formula (see Script 3.3)
into a callable stored function.

111

Advanced Database Concepts

Creatin
g

 Sto
red Fu

n
ctio

n
s

To create a stored function:

1. Download and install the MySQL
Administrator.

This free tool is part of MySQL’s GUI
Tools package, a wonderful suite of appli-
cations. Versions are available for most
operating systems (Windows, Mac OS X,
and Linux) and you can compile your
own version if necessary.

2. Start the application.

Windows users can use the Start menu
shortcut. Mac users can double-click the
application itself.

3. At the first prompt (Figure 3.27), enter
the correct username, hostname, and
password combination.

To administer MySQL running on the
same computer, you’ll likely want to
enter localhost as the host. You’ll then
want to use either root or another admin-
istrative account, and the correct pass-
word for that user. These values corre-
spond to the users and permissions
established within the MySQL server.

4. Click OK or Connect, depending upon
your version of the application, to take
you into the application.

Assuming that you used a valid adminis-
trative username/hostname/password
combination, this will connect to the
MySQL server. Figure 3.28 shows the
result on Windows; Figure 3.29 is the
Mac OS X view.

Figure 3.29 MySQL Administrator on Mac OS X.

Figure 3.28 MySQL Administrator on Windows, just
after logging in.

Figure 3.27 The MySQL Administrator connection
prompt, where you enter the access information for
the database server with which you will interact.

112

Chapter 3

Cr
ea

ti
n

g
 S

to
re

d
Fu

n
ct

io
n

s

Figure 3.32 At this prompt, click Create FUNCTION.

Figure 3.31 The next step on Windows is to click
Stored procedures.

Figure 3.30 The view of the zips database.

5. Click Catalogs.

The Catalogs section is where you can
look at and edit your databases.

6. Click on the zips database in the
Schemata column (Figure 3.30).

Not sure why they don’t just say
Databases instead of Schemata (or
Catalogs), but…

7. Find the stored function editor.

How the MySQL Administrator behaves
on the different operating systems is
stunningly varied. On Windows, you
would:

1. Click Stored procedures (Figure 3.31).

2. Click Create Stored Proc.

3. Click Create FUNCTION at the next
prompt (Figure 3.32).

continues on next page

113

Advanced Database Concepts

Creatin
g

 Sto
red Fu

n
ctio

n
s

On Mac OS X, you would:

1. Click Functions (Figure 3.33).

2. Click Create Function.

8. In the resulting window, enter
(Figure 3.34):

CREATE FUNCTION zips.return_

➝ distance (lat_a DOUBLE, long_

➝ a DOUBLE,

lat_b DOUBLE, long_b DOUBLE)

➝ RETURNS DOUBLE

BEGIN

DECLARE distance DOUBLE;

SET distance =

➝ SIN(RADIANS(lat_a)) *

➝ SIN(RADIANS(lat_b))

+ COS(RADIANS(lat_a))

* COS(RADIANS(lat_b))

* COS(RADIANS(long_a - long_b));

RETURN((DEGREES(ACOS(distance)))

➝ * 69.09);

END

This code wraps the complicated calcu-
lation within a stored function. The
function is called return_distance. The
databasename.functionname syntax
associates the function with a specific
database (here, zips). The function
takes four arguments, all of type DOUBLE.
It will return a DOUBLE value as well.

The first step in the function is to create
a variable of type DOUBLE. Doing so will
simplify the calculation to a degree
(pardon the pun). The variable is assigned
the value of most of the calculation. This
variable is then run through a couple
more functions and some arithmetic,
then returned.

9. Click OK (Mac OS X) or Execute SQL
(Windows).

Figure 3.34 Using the SQL Editor (on Windows) to
enter the stored function.

Figure 3.33 In the Catalogs pane on Mac OS X, click
Functions.

114

Chapter 3

Cr
ea

ti
n

g
 S

to
re

d
Fu

n
ct

io
n

s

Figure 3.35 The stored function is used to simplify the
SQL query.

10. Test the function by running the
following query in the mysql client
(Figure 3.35):

SELECT return_distance(40.347017, -

➝ 79.500729, 29.362879,

➝ --95.276050);

This is the same query run in Figure 3.20,
except now it calls the stored function.

11. If you want, modify distance.php
(Script 3.3) to call the stored procedure.

To do so, just change the main query to

SELECT name, CONCAT_WS(‘
’,

➝ address1, address2), city,

➝ state, stores.zip_code, phone,

➝ ROUND(return_distance($lat,

➝ $long, latitude, longitude)) AS

➝ distance FROM stores LEFT JOIN

➝ zip_codes USING (zip_code) ORDER

➝ BY distance ASC LIMIT 3

✔ Tips

■ All stored routines are associated with a
specific database. This has the added
benefit of not needing to select the data-
base (USE databasename) when invoking
them. This also means that you cannot
have a stored routine select a database.

■ Because stored routines are linked with
databases, if you drop the database,
you’ll also drop any associated stored
routine.

115

Advanced Database Concepts

Creatin
g

 Sto
red Fu

n
ctio

n
s

Displaying Results
Horizontally
Another of the common questions I see
involves displaying query results horizontal-
ly. It’s quite easy to fetch the results and dis-
play them vertically (Figure 3.36), but cre-
ating an output like that in Figure 3.37
does stymie some programmers. The code in
Figure 3.37 uses an HTML table to create
this output, with five records per row.

To achieve this effect using PHP, a counter is
required that tracks how many records have
been placed on a row. When zero records
have been placed, the new row should be
started. When the maximum number of
records have been placed, the old row should
be concluded. That’s the premise, which I’ll
develop in this next script. For the data, I’ll
use the zip_codes table in the zips database
(but you could use anything).

Figure 3.37 The same data as in Figure 3.36, laid out
in table form.

Figure 3.36 A traditional vertical
display of some records.

116

Chapter 3

D
is

pl
ay

in
g

 R
es

u
lt

s
H

o
ri

zo
n

ta
ll

y

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Cities and Zip Codes</title>

7 <style type="text/css" title="text/css" media="all">

8 h2 {

9 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

10 font-size: 14pt;

11 color : #960;

12 text-align: center;

13 }

14 td {

15 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

16 font-size: 10pt;

17 color : #333

18 }

(script continues on next page)

Script 3.4 All of the cities and zip codes for a given state are retrieved by this PHP script. Instead of displaying them
as a vertical list, they’ll be displayed in a table with five cells per row.

font-size: 14pt;

color : #960;

text-align: center;

}

td {

font-family: Verdana, Geneva,

➝ Arial, Helvetica, sans-serif;

font-size: 10pt;

color : #333

}

.error {

color: #F30;

}

</style>

</head>

<body>

<?php # Script 3.4 - display.php

To make the result a little nicer, I’ve
defined formatting for the error CSS
class and the <h2> and <td> tags.

continues on page 120

117

Advanced Database Concepts

D
isplayin

g
 R

esu
lts H

o
rizo

n
tally

To display results horizontally:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 3.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Cities and Zip

➝ Codes</title>

<style type=”text/css”

➝ title=”text/css” media=”all”>

h2 {

font-family: Verdana, Geneva,

➝ Arial, Helvetica, sans-serif;

19 .error {

20 color: #F30;

21 }

22 </style>

23 </head>

24 <body>

25 <?php # Script 3.4 - display.php

26

27 /* This page retrieves and displays all of the

28 * cities and zip codes for a particular state.

29 * The results will be shown in a table.

30 */

31

32 // Abbreviation of state to show:

33 $state = 'AK';

34

35 // Items to display per row:

36 $items = 5;

37

38 // Print a caption:

39 echo "<h2>Cities and Zip Codes found in $state</h2>\n";

40

41 // Connect to the database:

42 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'zips') OR die ('<p
class="error">Cannot connect to the database.</body></html>');

43

44 // Get the cities and zip codes, ordered by city:

45 $q = "SELECT city, zip_code FROM zip_codes WHERE state='$state' ORDER BY city";

46 $r = mysqli_query($dbc, $q);

47

48 // Retrieve the results:

49 if (mysqli_num_rows($r) > 0) {

50

51 // Start a table:

52 echo '<table border="2" width="90%" cellspacing="3" cellpadding="3" align="center">

53 ';

54

55 // Need a counter:

56 $i = 0;

57

58 // Retrieve each record:

59 while (list($city, $zip_code) = mysqli_fetch_array($r, MYSQLI_NUM)) {

60

61 // Do we need to start a new row?

62 if ($i == 0) {

(script continues on next page)

Script 3.4 continued

118

Chapter 3

D
is

pl
ay

in
g

 R
es

u
lt

s
H

o
ri

zo
n

ta
ll

y

63 echo "<tr>\n";

64 }

65

66 // Print the record:

67 echo "\t<td align=\"center\">$city, $zip_code</td>\n";

68

69 // Increment the counter:

70 $i++;

71

72 // Do we need to end the row?

73 if ($i == $items) {

74 echo "</tr>\n";

75 $i = 0; // Reset counter.

76 }

77

78 } // End of while loop.

79

80 if ($i > 0) { // Last row was incomplete.

81

82 // Print the necessary number of cells:

83 for (;$i < $items; $i++) {

84 echo "<td> </td>\n";

85 }

86

87 // Complete the row.

88 echo '</tr>';

89

90 } // End of ($i > 0) IF.

91

92 // Close the table:

93 echo '</table>';

94

95 } else { // Bad state abbreviation.

96

97 echo '<p class="error">An invalid state abbreviation was used.</p>';

98

99 } // End of main IF.

100

101 // Close the database connection:

102 mysqli_close($dbc);

103

104 ?>

105 </body>

106 </html>

Script 3.4 continued

119

Advanced Database Concepts

D
isplayin

g
 R

esu
lts H

o
rizo

n
tally

2. Establish the necessary variables and
print a caption.

$state = ‘AK’;

$items = 5;

echo “<h2>Cities and Zip Codes found

➝ in $state</h2>\n”;

3. Connect to and query the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘zips’) OR

➝ die (‘<p class=”error”>Cannot

➝ connect to the database.</body>

➝ </html>’);

$q = “SELECT city, zip_code FROM

➝ zip_codes WHERE state=’$state’

➝ ORDER BY city”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 0) {

The query will return every city and zip
code in the state in alphabetical order
by city.

4. Begin a table and initialize a counter.

echo ‘<table border=”2” width=”90%”

➝ cellspacing=”3” cellpadding=”3”

➝ align=”center”>

‘;

$i = 0;

The $i counter will track how many
items have already been placed on a row.

5. Retrieve each record.

while (list($city, $zip_code) =

➝ mysqli_fetch_array($r,

➝ MYSQLI_NUM)) {

120

Chapter 3

D
is

pl
ay

in
g

 R
es

u
lt

s
H

o
ri

zo
n

ta
ll

y

Figure 3.38 The HTML source for part of the table.

6. Start a new row, if necessary.

if ($i == 0) {

echo “<tr>\n”;

}

Every time, within this while loop, the
first item on a row is to be placed, a new
row should be created by printing the
<tr>. This applies the first time the loop
is entered (because $i is initially 0) and
after $i is reset (upon completing a row).

7. Print the record and increment the
counter.

echo “\t<td align=\”center\”>$city,

➝ $zip_code</td>\n”;

$i++;

To better format the HTML source of the
page (Figure 3.38), each item appears
on its own line and one tab in.

8. Complete the row, if necessary.

if ($i == $items) {

echo “</tr>\n”;

$i = 0;

}

Once the counter equals the number of
items to be placed on a row, it’s time to
end that row by printing </tr>. Then the
counter needs to be reset so that the
next time the loop is entered, a new row
will be started.

9. Complete the while loop.

} // End of while loop.

121

Advanced Database Concepts

D
isplayin

g
 R

esu
lts H

o
rizo

n
tally

Figure 3.40 With two quick changes, the script now
displays all the cities for another state (here, Hawaii),
four per row.

10. Complete the last row, if necessary.

if ($i > 0) {

for (;$i < $items; $i++) {

echo

➝ “<td> </td>\n”;

}

echo ‘</tr>’;

}

This is a step that’s easy to miss. Unless
the number of items displayed is easily
divisible by the number to be displayed
per row (i.e., there’s no remainder of that
division), the last row will be incomplete
(Figure 3.39).

If $i has a value other than 0, some
extra cells must be added (if it has a
value of 0, then the last row was com-
pleted). A for loop can accomplish this
task easily, starting with the current
value of $i and stopping when $i equals
$items. A little-known trick with the for
loop is that each of the three parts is
optional. Since no initial expression
must be evaluated (like setting $i to
some value), the loop begins with (;.

Figure 3.39 The last row had only four items in it, so
one blank table cell had to be created.

122

Chapter 3

D
is

pl
ay

in
g

 R
es

u
lt

s
H

o
ri

zo
n

ta
ll

y

11. Close the table and complete the condi-
tional started in Step 3.

echo ‘</table>’;

} else {

echo ‘<p class=”error”>An

➝ invalid state abbreviation was

➝ used.</p>’;

}

12. Complete the page.

mysqli_close($dbc);

?>

</body>

</html>

13. Save the file as display.php, place it in
your Web directory, and test in your
Web browser (Figure 3.37).

14. Change the value of $items, change the
value of $state, and retest in your Web
browser (Figure 3.40).

With more and more personal information being stored on the Web—credit card
data, social security numbers, maiden names, favorite pets—today’s PHP developer
cannot afford to be ignorant when it comes to security. Sadly, most beginning pro-
grammers fail to understand the truth about security: there is no such thing as
“secure” or “insecure.” The wise programmer knows that the real question is how
secure a site is. Once any piece of data is stored in a database, in a text file, or on a
Post-it note in your office, its security is compromised. The focus in this chapter is
therefore how to make your applications more secure.

This chapter will begin by rehashing the fundamentals of secure PHP programming.
These are the basic things that I hope/assume you’re already doing. After that a quick
example shows ways to validate different kinds of data that might come from an
HTML form. The third topic is the new-to-PHP 5 PECL library called Filter. Its usage
isn’t very programmer-friendly, but the way it wraps all of the customary data filter-
ing and sanitizing methods into one interface makes it worth knowing. After that,
two different uses of the PEAR Auth package show an alternative way to implement
authorization in your Web applications. The chapter will conclude with coverage of
the MCrypt library, demonstrating how to encrypt and decrypt data.

123

Security
Techniques

4
S

ecu
rity Tech

n
iq

u
es

Avoiding Mail Abuses

A security concern exists in any Web
application that uses the mail() func-
tion with form data. For starters, if
someone enters their “to” email address
as someone@example.com,someone.else
@example.com, you’ll now be sending
two emails. If a malicious user enters
500 addresses (perhaps by creating their
own form that submits to your same
page), you’re now sending out spam! You
can avoid this by using regular expres-
sions to guarantee that the submitted
value contains just one address. Or you
could search for a comma in the submit-
ted email address, which wouldn’t be
allowed. But that won’t solve the problem
entirely.

Although the mail() function takes sepa-
rate arguments for the “to” address,
“from” address (or other additional head-
ers), subject, and body, all four values are
put together to create the actual message.
By submitting specifically formatted text
through any of these inputs, bad people
can still use your form to send their
spam. To guard against this, you should
watch for newline (\n) and carriage
returns (\r) within the submitted data.
Either don’t send emails with these val-
ues or replace them with spaces to invali-
date the intended message format. You
should probably also make sure that you
(or someone involved with the site)
receives a copy of every email sent so that
close tabs can be kept on this area of the
server.

124

Chapter 4

R
em

em
be

ri
n

g
 t

h
e

B
as

ic
s

Remembering the Basics
Before getting into demonstrations of more
particular security techniques, I want to
take a moment to go over the basics: those
fundamental rules that every PHP program-
mer should abide by all of the time.

To ensure a basic level of security:

1. Do not rely upon register_globals.

The advent of register_globals once
made PHP so easy to use, while also
making it less secure (convenience often
weakens security). The recommendation
is to program as if register_globals is off.
This is particularly important because
register_globals will likely disappear in
future versions of PHP.

2. Initialize variables prior to using them.

If register_globals is still enabled—even
if you aren’t using them—a malicious
user could use holes created by nonini-
tialized variables to hack your system.
For example:

if (condition) {

$auth = TRUE;

}

If $auth is not preset to FALSE prior
to this code, then a user could easily
make themselves authorized by passing
$_GET[‘auth’], $_POST[‘auth’], or
$_COOKIE[‘auth’] to this script.

3. Verify and purify all incoming data.

How you verify and purify the data
depends greatly upon the type of data.
You’ll see many different techniques in
this chapter and the book.

8. Watch for HTML (and more important,
JavaScript) in submitted data if it will be
redisplayed in a Web page.

Use the strip_tags() or similar func-
tions to clear HTML and potential
JavaScript from submitted text.

9. Do not reveal PHP errors on live sites.

One of the most common ways to hack
a site is to try to “break” it—do some-
thing unexpected to cause errors—in
the hopes that the errors reveal impor-
tant behind-the-scenes information.

10. Nullify the possibility of SQL injection
attacks.

Use a language-specific database escap-
ing function, like mysqli_real_escape_
data(), to ensure that submitted values
will not break your queries.

11. Program with error reporting on its
highest level.

While not strictly a security issue, pro-
gramming with error reporting on its
highest level can often show potential
holes in your code.

12. Never keep phpinfo() scripts on the
server.

Although vital for developing and
debugging PHP applications, phpinfo()
scripts reveal too much information and
are too easily found if left on a live site.

125

Security Techniques

R
em

em
berin

g
 th

e B
asics

4. Be careful if you use variables for included
files.

If your code does something like

require($page);

then you should either make sure that
$page does not come from an outside
source (like $_GET) or, if it does, that
you’ve made certain that it has an
appropriate value. See the technique
in Chapter 2, “Developing Web
Applications.”

5. Be extra, extra careful when using any
function that runs commands on the
server.

This includes eval(), exec(), system(),
passthru(), popen(), and the backticks
(``). Because each of these runs com-
mands on the server itself, they should
never be used casually. And if you must
use a variable as part of the command to
execute, perform any and all security
checks on that variable first. Also use the
escapeshellarg() and escapeshellcmd()

functions as an extra precaution.

6. Consider changing the default session
directory or using a database to store
session data.

An example as to how you would do this
is discussed in Chapter 3, “Advanced
Database Concepts.”

7. Do not use browser-supplied filenames
for storing uploaded files on the server.

When you move a file onto your server,
rename it to something safe, preferably
something not guessable.

Validating Form Data
Handling form data is still far and away the
most common use of PHP (in this author’s
humble opinion, anyway). The security con-
cern lies in the fact that the PHP page han-
dling the form will do something with the
information the user enters: store it in a
database, pass it along to another page, or
use it in an email. If the information the
user enters is tainted, you could have a
major problem on your hands. As a rule,
do not trust the user! Mistakes can happen,
either on purpose or by accident, that could
reveal flaws in your code, cause the loss of
data, or bring your entire system to a crash-
ing halt.

Some good validation techniques are:

◆ Use the checkdate() function to confirm
that a given date is valid.

◆ Typecast numbers.

◆ Use regular expressions to check email
addresses, URLs, and other items with
definable patterns (see the sidebar).

126

Chapter 4

Va
li

da
ti

n
g

 F
o

rm
 D

at
a

When to Use Regular
Expressions

I often see what I would call an overuse
of regular expressions. You should under-
stand that regular expressions require
extra processing, so they shouldn’t be
used flippantly. Many types of data—
comments and addresses being just two
examples—really don’t have a definable
pattern. A regular expression that allows
for any valid comment or address would
allow for just about anything. So skip the
server-intensive regular expressions in
such cases.

As a guide, regular expressions may be
the most exacting security measure, but
they’re almost definitely the least effi-
cient and possibly the most problematic.
I’m not suggesting you shouldn’t use
them—just make sure they’re really the
best option for the data being validated.

Figure 4.1 When users first come to the registration
page, this is the form they will see.

As with the basic security techniques already
reviewed, the hope is that as a somewhat-
experienced PHP programmer, you already
know most of these things. To be certain,
this next example will present a sample reg-
istration form (Figure 4.1), taking various
types of information, which will then be pre-
cisely validated. In doing so, I’ll make use of
a couple of Character Type functions, added
to PHP in version 4.3. Listed in Table 4.1,
these functions test a given value against
certain constraints for the current locale
(established by the setlocale() function).

127

Security Techniques

Validatin
g

 Fo
rm

 D
ata

F u n c t i o n C h e c k s I f Va l u e C o n t a i n s

ctype_alnum() Letters and numbers
ctype_alpha() Letters only
ctype_cntrl() Control characters
ctype_digit() Numbers
ctype_graph() Printable characters, except spaces
ctype_lower() Lowercase letters
ctype_print() Printable characters
ctype_punct() Punctuation
ctype_space() White space characters
ctype_upper() Uppercase characters
ctype_xdigit() Hexadecimal numbers

Character Type Functions

Table 4.1 The Character Type functions provide
validation specific to the given environment
(i.e., the locale setting).

To validate a form:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.1).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Registration Form</title>

7 </head>

8 <body>

9 <?php # Script 4.1 - register.php

10

11 /* This page creates a registration form

12 * which is then validated using various functions.

13 */

14

15 if (isset($_POST['submitted'])) { // Handle the form.

16

17 // Store errors in an array:

18 $errors = array();

19

20 // Check for non-empty name:

21 if (!isset($_POST['name']) OR empty($_POST['name'])) {

22 $errors[] = 'name';

23 }

24

25 // Validate the email address using eregi():

26 if (!eregi('^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,4})$',
$_POST['email'])) {

27 $errors[] = 'email address';

28 }

29

30 // Validate the password using ctype_alnum():

31 if (!ctype_alnum($_POST['pass'])) {

32 $errors[] = 'password';

33 }

(script continues on next page)

Script 4.1 This page both displays a registration form and processes it. The script validates the submitted data using
various functions, and then reports any errors.

128

Chapter 4

Va
li

da
ti

n
g

 F
o

rm
 D

at
a

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Registration Form</title>

</head>

<body>

<?php # Script 4.1 - register.php

continues on page 131

34

35 // Validate the date of birth using check_date():

36 if (isset($_POST['dob']) AND

37 (strlen($_POST['dob']) >= 8) AND

38 (strlen($_POST['dob']) <= 10)) {

39

40 // Break up the string:

41 $dob = explode('/', $_POST['dob']);

42

43 // Were three parts returned?

44 if (count($dob) == 3) {

45

46 // Is it a valid date?

47 if (!checkdate((int) $dob[0], (int) $dob[1], (int) $dob[2])) {

48 $errors[] = 'date of birth';

49 }

50

51 } else { // Invalid format.

52 $errors[] = 'date of birth';

53 }

54

55 } else { // Empty or not the right length.

56 $errors[] = 'date of birth';

57 }

58

59 // Validate the ICQ number using ctype_digit():

60 if (!ctype_digit($_POST['icq'])) {

61 $errors[] = 'ICQ number';

62 }

63

64 // Check for non-empty comments:

65 if (!isset($_POST['comments']) OR empty($_POST['comments'])) {

66 $errors[] = 'comments';

67 }

68

69 if (empty($errors)) { // Success!

70

71 // Print a message and quit the script:

72 echo '<p>You have successfully registered (but not really).</p></body></html>';

73 exit();

74

75 } else { // Report the errors.

76

77 echo '<p>Problems exist with the following field(s):';

78

79 foreach ($errors as $error) {

80 echo "$error\n";

81 }

82

(script continues on next page)

Script 4.1 continued

129

Security Techniques

Validatin
g

 Fo
rm

 D
ata

83 echo '</p>';

84

85 }

86

87 } // End of $_POST['submitted'] IF.

88

89 // Show the form.

90 ?>

91 <form method="post">

92 <fieldset>

93 <legend>Registration Form</legend>

94 <p>Name: <input type="text" name="name" /></p>

95 <p>Email Address: <input type="text" name="email" /></p>

96 <p>Password: <input type="password" name="pass" /> (Letters and numbers only.)</p>

97 <p>Date of Birth: <input type="text" name="dob" value="MM/DD/YYYY" /></p>

98 <p>ICQ Number: <input type="text" name="icq" /></p>

99 <p>Comments: <textarea name="comments" rows="5" cols="40"></textarea></p>

100

101 <input type="hidden" name="submitted" value="true" />

102 <input type="submit" name="submit" value="Submit" />

103 </fieldset>

104 </form>

105

106 </body>

107 </html>

Script 4.1 continued

130

Chapter 4

Va
li

da
ti

n
g

 F
o

rm
 D

at
a

2. Create the section of the script that han-
dles the submitted form.

if (isset($_POST[‘submitted’])) {

$errors = array();

Your script should always handle the
form before it could possibly redisplay it
(on errors found). I like to use a hidden
form input to check if a form was sub-
mitted. The hidden form input will
always be passed to the page upon sub-
mission, unlike any other input (on
Internet Explorer, if a user submits a but-
ton by pressing Enter, then the submit
button won’t be set).

One way I like to validate forms is to use
an array that stores the errors as they
occur. By checking if this array is empty,
the script can tell if all validation tests
have been passed. If the array isn’t empty,
its values can be used to print the error
messages.

3. Check for a name.

if (!isset($_POST[‘name’]) OR

➝ empty($_POST[‘name’])) {

$errors[] = ‘name’;

}

A person’s name is one of those things
that you can use regular expressions on,
but it may not be worthwhile. A valid
name can contain letters, spaces, peri-
ods, hyphens, and apostrophes. Under
most circumstances, just checking for a
nonempty name is sufficient.

131

Security Techniques

Validatin
g

 Fo
rm

 D
ata

4. Validate the submitted email address.

if (!eregi(‘^[_a-z0-9-]+(\.[_a-z0-

➝ 9-]+)*@[a-z0-9-]+(\.[a-z0-9-]

➝ +)*(\.[a-z]{2,4})$’,

➝ $_POST[‘email’])) {

$errors[] = ‘email address’;

}

There are any number of patterns you
can use to validate an email address,
depending on how strict or liberal you
want to be. This one is commonly seen.
Certainly some invalid email addresses
could slip through this expression, but it
does add a sufficient level of security.
Feel free to use a different pattern if you
have one to your liking. Keep in mind
that a user could enter a valid e-mail
address that does not actually exist. Only
some sort of activation process (sending
the user an email containing a link back
to the Web site) can confirm a real
address.

5. Validate the submitted password.

if (!ctype_alnum($_POST[‘pass’])) {

$errors[] = ‘password’;

}

The form indicates that the password
must contain only letters and numbers.
To validate such values, the function
ctype_alnum() works perfectly.

In a real registration form, I would also
recommend confirming the password
with a second password input, then mak-
ing sure both values match. I’m skipping
that step here for brevity’s sake.

continues on next page

6. Begin checking to see if the user entered
a valid date of birth.

if (isset($_POST[‘dob’]) AND

(strlen($_POST[‘dob’]) >= 8) AND

(strlen($_POST[‘dob’]) <= 10)) {

$dob = explode(‘/’,

➝ $_POST[‘dob’]);

if (count($dob) == 3) {

There is really no way of knowing if the
information users enter is in fact their
birthday, but PHP’s built-in checkdate()
function can confirm whether or not
that date existed. Since the form takes
the date of birth as a simple string in the
format MM/DD/YYYY, the script must
first confirm that something was entered.
I also check if the string’s length is at least
eight characters long (e.g., 1/1/1900) but
no more than ten characters long (e.g.,
12/31/2000).

This string is then exploded on the slash-
es to theoretically retrieve the month,
day, and year values. Next, a conditional
checks that exactly three parts were cre-
ated by the explosion.

7. Check if the date of birth is a valid date.

if (!checkdate((int) $dob[0], (int)

➝ $dob[1], (int) $dob[2])) {

$errors[] = ‘date of birth’;

}

The checkdate() function confirms that
a date is valid. You might want to also
check that a user didn’t enter a date of
birth that’s in the future or the too-
recent past. Each value is typecast as
an integer as an extra precaution.

132

Chapter 4

Va
li

da
ti

n
g

 F
o

rm
 D

at
a

8. Complete the date of birth conditionals.

} else {

$errors[] = ‘date of

➝ birth’;

}

} else {

$errors[] = ‘date of birth’;

}

The first else applies if the submitted
value cannot be exploded into three
parts. The second else applies if the
value isn’t of the right length.

9. Validate the ICQ number.

if (!ctype_digit($_POST[‘icq’])) {

$errors[] = ‘ICQ number’;

}

The ICQ number can only contain dig-
its, so it makes sense to use the
ctype_digit() function.

10. Check for some comments.

if (!isset($_POST[‘comments’]) OR

➝ empty($_POST[‘comments’])) {

$errors[] = ‘comments’;

}

Comments really cannot be run through
a regular expression pattern because any
valid pattern would allow just about
anything. Instead, a check for some
value is made.

Figure 4.3 A lot of mistakes were made in this
registration attempt, each reported back to the user.

Figure 4.2 If all of the data passed through the
various checks, this message is displayed.

11. If there were no errors, report upon the
success.

if (empty($errors)) {

echo ‘<p>You have successfully

➝ registered (but not

➝ really).</p></body></html>’;

exit();

If no errors occurred, then $errors
would still be empty. The script could
then register the user (probably in a
database). Here it just prints a message
and terminates the script (so that
the form isn’t redisplayed) instead
(Figure 4.2).

12. Report the errors.

} else {

echo ‘<p>Problems exist with

➝ the following field(s):’;

foreach ($errors as $error) {

echo

➝ “$error\n”;

}

echo ‘</p>’;

}

If $errors isn’t empty, it contains all
of the fields that failed a validation
test. These can be printed in a list
(Figure 4.3).

13. Complete the main conditional and the
PHP code.

} // End of $_POST[‘submitted’] IF.

?>

continues on next page

133

Security Techniques

Validatin
g

 Fo
rm

 D
ata

14. Create the HTML form.

<form method=”post”>

<fieldset>

<legend>Registration Form</legend>

<p>Name: <input type=”text”

➝ name=”name” /></p>

<p>Email Address: <input type=”text”

➝ name=”email” /></p>

<p>Password: <input type=”password”

➝ name=”pass” /> (Letters and

➝ numbers only.)</p>

<p>Date of Birth: <input type=”text”

➝ name=”dob” value=”MM/DD/YYYY” />

➝ </p>

<p>ICQ Number: <input type=”text”

➝ name=”icq” /></p>

<p>Comments: <textarea

➝ name=”comments” rows=”5”

➝ cols=”40”></textarea></p>

<input type=”hidden”

➝ name=”submitted” value=”true” />

<input type=”submit” name=”submit”

➝ value=”Submit” />

</fieldset>

</form>

There’s not much to say about the form
except to point out that it does indicate
the proper format for the password and
date of birth fields. If you are validating
data to a specification, it’s important
that the end user be made aware of the
requirements as well, prior to submit-
ting the form.

15. Complete the page.

</body>

</html>

16. Save the file as register.php, place it
in your Web directory, and test in your
Web browser.

134

Chapter 4

Va
li

da
ti

n
g

 F
o

rm
 D

at
a

Using Captcha

Popular in many of today’s forms is
captcha, short for “completely automated
public Turing test to tell computers and
humans apart” (now that’s an acronym!).
A captcha test displays an image with a
word or some letters written in it, nor-
mally in a nonlinear fashion. In order to
successfully complete the form, the text
from the image has to be typed into a
box. This is something a human user
could do but a bot could not.

If you do want to add this feature to your
own sites, using the PEAR Text_CAPTCHA
package would be the easiest route.
Otherwise, you could generate the images
yourself using the GD library. The word
on the image should be stored in a ses-
sion so that it can be compared against
what the user typed.

The main caveat with captcha tests is
that they do restrict the visually impaired
from completing that form. You should
be aware of this, and provide alternatives.
Personally, I think that bots can be effec-
tively stopped by just adding another
input to your form, with an easy-to-answer
question (like “What is 2 + 2?”). Humans
can submit the answer, whereas bots
could not.

✔ Tips

■ If possible, use the POST method in your
forms. POST has a limitation in that the
resulting page cannot be bookmarked,
but it is far more secure and does not
have the limit on transmittable data size
that GET does. If a user is entering pass-
words, you really must use the POST
method lest the password be visible.

■ Placing hidden values in HTML forms
can be a great way to pass information
from page to page without using cookies
or sessions. But be careful what you hide
in your HTML code, because those hid-
den values can be seen by viewing a page’s
source. This technique is a convenience,
not a security measure.

■ Similarly, you should not be too
obvious or reliant upon information
PHP passes via the URL. For example, if a
homepage.php page requires receipt of a
user ID—and that is the only mandatory
information for access to the account—
someone else could easily break in (e.g.,
www.example.com/userhome.php?user=2

could quickly be turned into www.example.
com/userhome.php?user=3, granting access
to someone else’s information).

135

Security Techniques

Validatin
g

 Fo
rm

 D
ata

Using PECL Filter
New in PHP 5 and quite promising is the
Filter library of PECL code. Being developed
by PHP’s creator and other major contribu-
tors, the future of Filter looks bright, even
though it’s still in beta form (at the time of
this writing). The Filter package provides
two types of security:

◆ Data validation by type

◆ Data sanitization

What Filter offers is a unified interface for
performing common types of validation and
sanitization. For example, I might common-
ly use code like this:

if (isset($_GET[‘id’])) {

if (is_numeric($_GET[‘id’])) {

$id = (int) $_GET[‘id’];

if ($id > 0) {

// Do whatever.

}

}

}

I could instead do this:

$id = filter_input(INPUT_GET, ‘id’,

➝ FILTER_VALIDATE_INT, array(‘options’

➝ =>array(‘min_range’=>1)));

if ($id) { …

That might look like jabberwocky, but once
you get the hang of Filter, the amount of
work you can do in just a line of code will be
worth the learning curve.

136

Chapter 4

U
si

n
g

 P
EC

L
Fi

lt
er

Figure 4.4 This new registration form lacks the
password and date of birth inputs.

To filter individual variables, there are two
functions you’ll use: filter_input() and
filter_var(). The first one is for working
with variables coming from an outside
source, like forms, cookies, sessions, and the
server. The second is for variables within
your own code. I’ll focus on filter_input()
here. Its syntax is:

$var = filter_input($variable_source,

➝ $variable_name, $filter, $options);

The sources, which the PHP manual calls
“types,” are: INPUT_GET, INPUT_POST,
INPUT_COOKIE, INPUT_SERVER, INPUT_ENV,
INPUT_SESSION, and INPUT_REQUEST. As you
can probably guess, each of these corre-
sponds to a global variable ($_GET, $_POST,
etc.). For example, if a page receives data in
the URL, you’d use INPUT_GET (not $_GET).

The second argument—the variable name—
is the specific variable within the source
that should be addressed. The $filter argu-
ment indicates the filter to apply, using the
constants in Table 4.2. This argument is
optional, as a default filter will be used if
none is specified. Some filters also take
options, like the FILTER_VALIDATE_INT in the
preceding example (which can take a range).

The filter_input() function will return the
filtered variable if the filtration or validation
was successful, the Boolean FALSE if the fil-
ter didn’t apply to the data, or the value NULL
if the named variable didn’t exist in the
given input. Thus you have multiple levels
of validation in just one step.

There’s really a lot of information packed
into just a few functions here, but I want to
present a sample of how you would use the
Filter library. To do so, I’ll create a modified
version of the registration form (Figure 4.4).
Note that as of PHP 5.2, Filter is built into
PHP. If you’re using an earlier version, you
may need to install it using the pecl installer
(see the PHP manual for more).

137

Security Techniques

U
sin

g
 P

ECL
Filter

C o n s t a n t N a m e A c t i o n

FILTER_VALIDATE_INT Confirms an integer,
optionally in a range

FILTER_VALIDATE_FLOAT Confirms a float
FILTER_ VALIDATE_REGEXP Matches a PCRE pattern
FILTER_ VALIDATE_URL Matches a URL
FILTER_ VALIDATE_EMAIL Matches an email

address
FILTER_SANITIZE_STRING Strips tags
FILTER_SANITIZE_ENCODED URL-encodes a string

Filters by Name

Table 4.2 These constants represent some of the
filters that can be applied to data. For a complete list,
see the PHP manual or invoke the filter_list()
function.

To use PECL Filter:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.2).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Filter</title>

7 <style type="text/css" title="text/css" media="all">

8 .error {

9 color: #F30;

10 }

11 </style>

12 </head>

13 <body>

14 <?php # Script 4.2 - filter.php

15

16 /* This page uses the Filter functions

17 * to validate form data.

18 * This page will print out the filtered data.

19 */

20

21 if (isset($_POST['submitted'])) { // Handle the form.

22

23 // Sanitize the name:

24 $name = filter_input(INPUT_POST, 'name', FILTER_SANITIZE_STRING,
FILTER_FLAG_NO_ENCODE_QUOTES);

25 if ($name) {

(script continues on next page)

Script 4.2 With this minimalist registration form, the Filter library is used to perform data validation and sanitization.

138

Chapter 4

U
si

n
g

 P
EC

L
Fi

lt
er

<title>Filter</title>

<style type=”text/css”

➝ title=”text/css” media=”all”>

.error {

color: #F30;

}

</style>

</head>

<body>

<?php # Script 4.2 - filter.php

The script has one CSS class for printing
errors in a different color.

continues on page 140

26 echo "<p>Name: $name
\$_POST['name']: {$_POST['name']}</p>\n";

27 } else {

28 echo '<p class="error">Please enter your name.</p>';

29 }

30

31 // Validate the email address using FILTER_VALIDATE_EMAIL:

32 $email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);

33 if ($email) {

34 echo "<p>Email Address: $email</p>\n";

35 } else {

36 echo '<p class="error">Please enter your email address.</p>';

37 }

38

39 // Validate the ICQ number using FILTER_VALIDATE_INT:

40 $icq = filter_input(INPUT_POST, 'icq', FILTER_VALIDATE_INT);

41 if ($icq) {

42 echo "<p>ICQ Number: $icq</p>\n";

43 } else {

44 echo '<p class="error">Please enter your ICQ number.</p>';

45 }

46

47 // Strip tags but don't encode quotes:

48 $comments = filter_input(INPUT_POST, 'comments', FILTER_SANITIZE_STRING);

49 if ($comments) {

50 echo "<p>Comments: $comments
\$_POST['comments']: {$_POST['comments']}</p>\n";

51 } else {

52 echo '<p class="error">Please enter your comments.</p>';

53 }

54

55 } // End of $_POST['submitted'] IF.

56

57 // Show the form.

58 ?>

59 <form method="post" action="filter.php">

60 <fieldset>

61 <legend>Registration Form</legend>

62 <p>Name: <input type="text" name="name" /></p>

63 <p>Email Address: <input type="text" name="email" /></p>

64 <p>ICQ Number: <input type="text" name="icq" /></p>

65 <p>Comments: <textarea name="comments" rows="5" cols="40"></textarea></p>

66

67 <input type="hidden" name="submitted" value="true" />

68 <input type="submit" name="submit" value="Submit" />

69 </fieldset>

70 </form>

71

72 </body>

73 </html>

Script 4.2 continued

139

Security Techniques

U
sin

g
 P

ECL
Filter

2. Check for the form submission.

if (isset($_POST[‘submitted’])) {

3. Filter the name data.

$name = filter_input(INPUT_POST,

➝ ‘name’, FILTER_SANITIZE_STRING,

➝ FILTER_FLAG_NO_ENCODE_QUOTES);

For the name field, there’s no type to
validate against, but it can be filtered
to remove any HTML tags. The FILTER_
SANITIZE_STRING filter will accomplish
that. The last argument, FILTER_FLAG_
NO_ENCODE_QUOTES, says that any quota-
tion marks in the name (e.g., O’Toole)
shouldn’t be turned into an HTML
entity equivalent.

4. Print the name value or an error.

if ($name) {

echo “<p>Name: $name<br

➝ />\$_POST[‘name’]:

➝ {$_POST[‘name’]}</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your name.</p>’;

}

The conditional if ($name) will be true
if the $_POST[‘name’] variable was set
and passed the filter. In that case, I’ll
print the filtered version and the original
version, just for comparison.

5. Validate the email address.

$email = filter_input(INPUT_POST,

➝ ‘email’, FILTER_VALIDATE_EMAIL);

if ($email) {

echo “<p>Email Address:

➝ $email</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your email address.</p>’;

}

140

Chapter 4

U
si

n
g

 P
EC

L
Fi

lt
er

The FILTER_VALIDATE_EMAIL filter is per-
fect here. If the submitted email address
has a valid format, it will be returned.
Otherwise, $email will equal either FALSE
or NULL.

6. Validate the ICQ number.

$icq = filter_input(INPUT_POST,

➝ ‘icq’, FILTER_VALIDATE_INT);

if ($icq) {

echo “<p>ICQ Number:

➝ $icq</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your ICQ number.</p>’;

}

This is validated as an integer.

7. Filter the comments field.

$comments = filter_input(INPUT_POST,

➝ ‘comments’, FILTER_SANITIZE_

➝ STRING);

if ($comments) {

echo “<p>Comments: $comments<br

➝ />\$_POST[‘comments’]:

{$_POST[‘comments’]}</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your comments.</p>’;

}

For the comments, any tags will be
stripped (as with the name), but the quo-
tation marks will also be encoded.

8. Complete the main conditional and the
PHP code.

} // End of $_POST[‘submitted’] IF.

?>

Figure 4.6 At the top of the form the filtered values
are displayed.

Figure 4.5 These values will be submitted, then
filtered, resulting in Figure 4.6.

9. Create the HTML form.

<form method=”post”

➝ action=”filter.php”>

<fieldset>

<legend>Registration Form</legend>

<p>Name: <input type=”text”

➝ name=”name” /></p>

<p>Email Address: <input type=”text”

➝ name=”email” /></p>

<p>ICQ Number: <input type=”text”

➝ name=”icq” /></p>

<p>Comments: <textarea

➝ name=”comments” rows=”5”

➝ cols=”40”></textarea></p>

<input type=”hidden”

➝ name=”submitted” value=”true” />

<input type=”submit” name=”submit”

➝ value=”Submit” />

</fieldset>

</form>

10. Complete the page.

</body>

</html>

11. Save the file as filter.php, place it in
your Web directory, and test in your
Web browser (Figures 4.5 and 4.6).

12. View the HTML source of the page to
see how the name and comments fields
were treated (Figure 4.7).

continues on next page

141

Security Techniques

U
sin

g
 P

ECL
Filter

Figure 4.7 The HTML source code shows how all tags are stripped from the name and comments fields, plus how
quotation marks in the comments are encoded.

✔ Tips

■ The filter_has_var() function checks
to see if a variable with a given name
exists within a greater array of variables.
In this script, you could use this code to
see if the form has been submitted:

if (filter_has_var(INPUT_POST,

➝ ‘submitted’)) {

■ To filter an array of variables, use filter_
input_array(). In filter.php, you could
just do this:

$filters = array(

‘name’ => FILTER_SANITIZE_STRING,

‘email’ => FILTER_VALIDATE_EMAIL,

‘icq’ => FILTER_VALIDATE_INT,

‘comments’ => array(‘filter’ =>

➝ FILTER_SANITIZE_STRING, ‘flags’ =>

➝ FILTER_FLAG_NO_ENCODE_QUOTES)

);

$data = filter_input_array

➝ (INPUT_POST, $filters);

From that point, you could just refer to
$data[‘name’], etc.

■ The filter_var_array() applies a filter,
or an array of filters, to an array of data.

142

Chapter 4

U
si

n
g

 P
EC

L
Fi

lt
er

Authentication with
PEAR Auth
One of the more common elements in
today’s Web sites is an authentication sys-
tem: users register with a site, they log in to
gain access to some parts, and restricted
pages allow or deny access accordingly. Such
systems aren’t hard to implement—I’ve done
so in some of my other books—but here I’d
like to look at what PEAR has to offer.

The PEAR Auth package provides a really
easy, yet customizable authentication sys-
tem. To show it off, I’ll start with one very
simple example. This will mostly demon-
strate its basic usage. Then I’ll show how to
customize the authentication system to fit
it into a larger application. For both exam-
ples, you’ll need to install the PEAR Auth
package. Because the authentication infor-
mation is stored in a database, the PEAR DB
package must also be installed. If you’re not
familiar with PEAR and its installation, see
Chapter 12, “Using PEAR,” or
http://pear.php.net.

✔ Tip

■ For these examples I will put both the
authentication code and the restricted
page data in the same file. In a larger
Web site, you’ll likely want to separate
the authentication code into its own file,
which is then included by any file that
requires authentication.

143

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

http://pear.php.net

Simple authentication
This first, simple authentication example
shows how easily you can implement authen-
tication in a page. I’ll run through the syntax
and concepts first, and then create a script
that executes it all.

To begin, require the Auth class:

require_once (‘Auth.php’);

Next, you’ll need to define a function that
creates a login form. This function will be
called when an unauthorized user is trying
to access a page. The form should use the
POST method and have inputs called user-
name and password.

Then, for database-driven authentication,
which is the norm, you’ll need to create a
“DSN” within an options array. DSN stands
for data source name. It’s just a string of
information that indicates the type of data-
base application being used, the username,
password, and hostname to connect as, and
the database to select. That code might be:

$options = array(‘dsn’ =>

➝ ‘mysql://username:password@localhost/

➝ databasename’);

Now that those two things have been
defined—the function that makes the login
form and the DSN—you can create an object
of Auth type. Provide this object three argu-
ments: the type of authentication back end
to use (e.g., database or file), the options
(that correspond to the authentication type),
and the name of the login function:

$auth = new Auth(‘DB’, $options,

➝ ‘login_form_function_name’);

144

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

Figure 4.8 Creating the database and table required
by the simple authentication example.

The DB option tells Auth to use the PEAR
DB package. If you wanted to use a file sys-
tem instead, you would use File as the first
argument and the name of the file as the
second.

Now, start the authentication process:

$auth->start();

From there, you can check if a user is
authenticated by calling the checkAuth()
method:

if ($auth->checkAuth()) {

// Do whatever.

And that’s simple authentication in a nut-
shell! This next example will implement all
this. It will also invoke the addUser()
method to add a new authenticated user,
which can then be used for logging in. One
last note: this example will make use of a
database called auth, which must be created
prior to writing this script. It should have a
table called auth, defined like so:

CREATE TABLE auth (

username VARCHAR(50) NOT NULL,

password VARCHAR(32) NOT NULL,

PRIMARY KEY (username),

KEY (password)

)

Be certain that you’ve created this database
and table (Figure 4.8), and that you have
created a MySQL user that has access to
them, prior to going any further.

145

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

To perform simple authentication:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 4.3).

<?php # Script 4.3 - login.php

Because Auth relies on sessions (it’ll
start the sessions for you), it’s best to do
as much as you can before sending any
HTML to the Web browser. So I’ll write
most of the authentication code, and
only then begin the HTML page.

continues on page 148

1 <?php # Script 4.3 - login.php

2

3 /* This page uses PEAR Auth to control access.

4 * This assumes a database called "auth",

5 * accessible to a MySQL user of "username@localhost"

6 * with a password of "password".

7 * Table definition:

8

9 CREATE TABLE auth (

10 username VARCHAR(50) default '' NOT NULL,

11 password VARCHAR(32) default '' NOT NULL,

12 PRIMARY KEY (username),

13 KEY (password)

14)

15 * MD5() is used to encrypt the passwords.

16 */

17

18 // Need the PEAR class:

19 require_once ('Auth.php');

20

21 // Function for showing a login form:

22 function show_login_form() {

23

24 echo '<form method="post" action="login.php">

25 <p>Username <input type="text" name="username" /></p>

26 <p>Password <input type="password" name="password" /></p>

(script continues on next page)

Script 4.3 Using PEAR Auth and a MySQL table, this script enforces authentication.

146

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

27 <input type="submit" value="Login" />

28 </form>

29 ';

30

31 } // End of show_login_form() function.

32

33 // Connect to the database:

34 $options = array('dsn' => 'mysql://username:password@localhost/auth');

35

36 // Create the Auth object:

37 $auth = new Auth('DB', $options, 'show_login_form');

38

39 // Add a new user:

40 $auth->addUser('me', 'mypass');

41

42 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

43 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

44 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

45 <head>

46 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

47 <title>Restricted Page</title>

48 </head>

49 <body>

50 <?php

51

52 // Start the authorization:

53 $auth->start();

54

55 // Confirm authorization:

56 if ($auth->checkAuth()) {

57

58 echo '<p>You are logged in and can read this. How cool is that?</p>';

59

60 } else { // Unauthorized.

61

62 echo '<p>You must be logged in to access this page.</p>';

63

64 }

65

66 ?>

67 </body>

68 </html>

Script 4.3 continued

147

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

2. Include the Auth class.

require_once (‘Auth.php’);

If you haven’t installed PEAR Auth yet,
do so now. See the PEAR manual for
instructions.

3. Define the function that creates the login
form.

function show_login_form() {

echo ‘<form method=”post”

➝ action=”login.php”>

<p>Username <input type=”text”

➝ name=”username” /></p>

<p>Password <input type=”password”

➝ name=”password” /></p>

<input type=”submit” value=”Login” />

</form>

‘;

}

The only requirements are that this form
has one input called username and
another called password.

4. Create the options array.

$options = array(‘dsn’ =>

➝ ‘mysql://username:password@

➝ localhost/auth’);

This code says that a connection should
be made to a MySQL database called
auth, using username as the username,
password as the password, and localhost
as the host.

5. Create the Auth object.

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

148

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

Figure 4.9 One user has been added to the table. The
password is encrypted using the MD5() function.

6. Add a new user and complete the PHP
section.

$auth->addUser(‘me’, ‘mypass’);

?>

The addUser() functions takes the user-
name as its first argument and the pass-
word as the second. This record will be
added to the database as soon as the
script is first run (Figure 4.9). Because
the username column in the table is
defined as a primary key, MySQL will
never allow a second user with the name
of me to be added.

In a real application, you’d have a regis-
tration process that would just end up
calling this function in the end.

7. Add the initial HTML code.

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Restricted Page</title>

</head>

<body>

8. Start the authentication.

<?php

$auth->start();

continues on next page

149

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

9. Display different messages based upon
the authentication status.

if ($auth->checkAuth()) {

echo ‘<p>You are logged in and

➝ can read this. How cool is

➝ that?</p>’;

} else {

echo ‘<p>You must be logged in

➝ to access this page.</p>’;

}

When a user first comes to this page,
and $auth->checkAuth() is false, they’ll
see the login form plus this second mes-
sage (Figure 4.10). After logging
in with a valid username/password com-
bination, they’ll see this first message
(Figure 4.11).

10. Complete the page.

?>

</body>

</html>

11. Save the file as login.php, place it in
your Web directory, and test in your
Web browser.

Use me as the username and mypass as
the password.

Figure 4.11 The result after successfully logging in.

Figure 4.10 When first arriving at this page, or after an
unsuccessful login attempt, a user sees this.

150

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th Implementing Optional

Authentication

If some of your Web site’s pages do not
require authentication but could still
acknowledge logged-in users, that’s an
option with Auth, too. To make authenti-
cation optional, add a fourth parameter
when creating the Auth object:

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’, true);

To limit aspects of a page to authenticat-
ed users, invoke the getAuth() method:

if ($auth->getAuth()) {

// Restricted access content.

}

O p t i o n I n d i c a t e s

dsn The Data Source Name
table The database table to use
usernamecol The name of the username column
passwordcol The name of the password column
db_fields What other table fields should be

selected
cryptType The function used to encrypt the

password

DB Container Options

Table 4.3 These are some of the parameters you can
set when creating a new Auth object that uses DB.

Three other functions you can use to cus-
tomize the authentication are setExpire(),
setIdle(), and setSessionName(). The first
takes a value, in seconds, when the session
should be set to expire. The second takes a
value, in seconds, when a user should be
considered idle (because it’s been too long
since their last activity). The third function
changes the name of the session (which is
PHPSESSID, by default).

For this next example, a new table will be
used, still in the auth database. To create it,
use this SQL command (Figure 4.12):

CREATE TABLE users (

user_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

email VARCHAR(60) NOT NULL,

pass CHAR(40) NOT NULL,

first_name VARCHAR (20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

PRIMARY KEY (user_id),

UNIQUE (email),

KEY (email, pass)

)

This table represents how you might already
have some sort of user table, with its own
columns, that you’d want to use with Auth.

151

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

Custom authentication
The preceding example does a fine job of
showing how easy it is to use PEAR Auth,
but it doesn’t demonstrate how you would
actually use it in a more full-fledged applica-
tion. By this I mean a site that has a table
with more than two columns and needs to
store, and retrieve, other information as well.

The first change you’ll need to make is to
the options array used when creating the
Auth object. Different storage types (“con-
tainers” in Auth parlance) have different
options. Table 4.3 lists some of the other
options you can use with DB.

For example, the DB container will use a
combination of the usernamecol and pass-
wordcol (encrypted using cryptType) to
authenticate the user against the submitted
values. The preceding example used the
defaults, but you can change this informa-
tion easily. Just as important, you can speci-
fy what other database columns should be
retrieved. These will then be available in the
session data and can be retrieved in your
script through the getAuthData() function:

echo $auth->getAuthData(‘column_name’);

Figure 4.12 Creating the table used by the custom
authentication system.

To use custom authentication:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.4).

<?php # Script 4.4 - custom_auth.php

require_once (‘Auth.php’);

continues on page 154

1 <?php # Script 4.4 - custom_auth.php

2

3 /* This page uses PEAR Auth to control access.

4 * This assumes a database called "auth",

5 * accessible to a MySQL user of "username@localhost"

6 * with a password of "password".

7 * Table definition:

8

9 CREATE TABLE users (

10 user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

11 email VARCHAR(60) NOT NULL,

12 pass CHAR(40) NOT NULL,

13 first_name VARCHAR (20) NOT NULL,

14 last_name VARCHAR(40) NOT NULL,

15 PRIMARY KEY (user_id),

16 UNIQUE (email),

17 KEY (email, pass)

18)

19

20 * SHA1() is used to encrypt the passwords.

21 */

22

23 // Need the PEAR class:

24 require_once ('Auth.php');

25

26 // Function for showing a login form:

27 function show_login_form() {

28

29 echo '<form method="post" action="custom_auth.php">

30 <p>Email <input type="text" name="username" /></p>

31 <p>Password <input type="password" name="password" /></p>

32 <input type="submit" value="Login" />

33 </form>

34 ';

35

(script continues on next page)

Script 4.4 In this script, Auth uses a different table, different column names, and a different encryption function for
the password. It selects every column from the table, making all the previously stored data available to the page.

152

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

36 } // End of show_login_form() function.

37

38 // All options:

39 // Use specific username and password columns.

40 // Use SHA1() to encrypt the passwords.

41 // Retrieve all fields.

42 $options = array(

43 'dsn' => 'mysql://username:password@localhost/auth',

44 'table' => 'users',

45 'usernamecol' => 'email',

46 'passwordcol' => 'pass',

47 'cryptType' => 'sha1',

48 'db_fields' => '*'

49);

50

51 // Create the Auth object:

52 $auth = new Auth('DB', $options, 'show_login_form');

53

54 // Add a new user:

55 $auth->addUser('me@example.com', 'mypass', array('first_name' => 'Larry', 'last_name' =>
'Ullman'));

56

57 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

58 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

59 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

60 <head>

61 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

62 <title>Restricted Page</title>

63 </head>

64 <body>

65 <?php

66

67 // Start the authorization:

68 $auth->start();

69

70 // Confirm authorization:

71 if ($auth->checkAuth()) {

72

73 // Print the user's name:

74 echo "<p>You, {$auth->getAuthData('first_name')} {$auth->getAuthData('last_name')}, are
logged in and can read this. How cool is that?</p>";

75

76 } else { // Unauthorized.

77

78 echo '<p>You must be logged in to access this page.</p>';

79

80 }

81

82 ?>

83 </body>

84 </html>

Script 4.4 continued

153

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

2. Define the show_login_form() function.
function show_login_form() {

echo ‘<form method=”post”

➝ action=”custom_auth.php”>

<p>Email <input type=”text”

➝ name=”username” /></p>

<p>Password <input type=”password”

➝ name=”password” /></p>

<input type=”submit” value=”Login” />

</form>

‘;

}

The function is mostly the same as it
was before, except this time the action
points to this script, custom_auth.php.
The form also labels the one input as
Email (Figure 4.13), even though it’s
named username (as required).

3. Establish the authorization options and
create the object.
$options = array(

‘dsn’ => ‘mysql://username:password@

➝ localhost/auth’,

‘table’ => ‘users’,

‘usernamecol’ => ‘email’,

‘passwordcol’ => ‘pass’,

‘cryptType’ => ‘sha1’,

‘db_fields’ => ‘*’

);

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

The DSN is the same as it was before.
Next, the table, usernamecol, and pass-
wordcol values are all specified. These
match the table already created (Figure
4.12). The cryptType value says that the
passwords should be encoded using
SHA1(), instead of the default MD5(). The
final element in the $options array says
that every column from the table should
be retrieved. In this particular script, this
will allow the page to refer to the logged-
in user by name.

Figure 4.13 The customized login form.

154

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

Creating a Logout Feature

To add a logout to your authentication
system, place this code on a logout page:

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

$auth->start();

if ($auth->checkAuth()) {

$auth->logout();

$auth->start();

}

Just as when using sessions, you need to
start the authentication in order to destroy
it. You should then confirm that the user
is authenticated, using checkAuth(), prior
to logging out. Then call the logout()
method to de-authenticate the user.
Calling the start() method again will
redisplay the login form.

Figure 4.14 A sample user has been added to the users table.

4. Add a new user and complete the initial
PHP section (Figure 4.14).
$auth->addUser(‘me@example.com’,

➝ ‘mypass’, array(‘first_name’ =>

➝ ‘Larry’, ‘last_name’ => ‘Ullman’));

?>

Because the table has more than just the
two columns, the extra columns and val-
ues have to be provided, as an array, as
the third argument to the addUser()
method. This call of the function is the
equivalent of running this query:
INSERT INTO users (email, pass,

➝ first_name, last_name) VALUES

➝ (‘me@example.com’, SHA1(‘mypass’),

➝ ‘Larry’, ‘Ullman’)

155

Security Techniques

A
u

th
en

ticatio
n

 w
ith

 P
EA

R
 A

u
th

5. Create the initial HTML code.
<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Restricted Page</title>

</head>

<body>

continues on next page

6. Start the authorization.
<?php

$auth->start();

7. Print the authorization status.
if ($auth->checkAuth()) {

echo “<p>You, {$auth->get

➝ AuthData(‘first_name’)}

➝ {$auth->getAuthData(‘last_name’)},

➝ are logged in and can read this.

➝ How cool is that?</p>”;

} else {

echo ‘<p>You must be logged in

➝ to access this page.</p>’;

}

The result if the user isn’t logged in
looks like Figure 4.13. When the user
does log in, they are greeted by name
(Figure 4.15). The getAuthData() func-
tion can access the values selected from
the table and stored in the authentica-
tion session.

8. Complete the page.
?>

</body>

</html>

9. Save the file as custom_auth.php, place it
in your Web directory, and test in your
Web browser.

✔ Tips

■ You can add, on the fly, other data to the
authentication session using
setAuthData():

setAuthData($name, $value);

■ You can also improve authentication
security via the setAdvancedSecurity()
method. It uses both cookies and
JavaScript to lessen the possibility of
someone hacking an authenticated
session.

Figure 4.15 After successfully logging in, the user is
greeted by name. The name was pulled from the table
and stored in the session.

156

Chapter 4

A
u

th
en

ti
ca

ti
o

n
 w

it
h

 P
EA

R
 A

u
th

Using Auth_HTTP

One of the potential problems with
Auth is that it relies upon sessions, which
can introduce some security concerns.
A more secure option is to use HTTP
authentication via Auth_HTTP. HTTP
authentication uses a pop-up window,
separate from the HTML page, that takes
a username and password.

The benefits of HTTP authentication are
these:

◆ The entered username and password
are remembered without needing to
send cookies or establish sessions.

◆ The clean interface will not interfere
with your page design.

The downsides are:

◆ Inability to create a logout feature

◆ Inability to establish user groups or
specify access levels

◆ Inability to set an expiration time

Figure 4.16 Run a phpinfo() script to confirm your
server’s support for MCrypt.

Using MCrypt
Frequently Web applications will encrypt and
decrypt data stored in a database, using the
database-supplied functions. This is appro-
priate, as you want the database to do the
bulk of the work whenever possible. But what
if you want to encrypt and decrypt data
that’s not being stored in a database? In that
situation, MCrypt is the best solution. To
use MCrypt with PHP, you’ll need to install
the MCrypt library (libmcrypt, available
from http://mcrypt.sourceforge.net) and
configure PHP to support it (Figure 4.16).

For this example, I’ll show you how to
encrypt data stored in a cookie, making it
that much more secure. Because the encryp-
tion process creates binary data, the
base64_encode() function will be applied to
the encrypted data prior to storing it in a
cookie. Therefore, the base64_decode() func-
tion needs to be used prior to decoding the
data. Other than that little tidbit, the focus
in the next two scripts is entirely on
MCrypt.

Do keep in mind that in the next several
pages I’ll be introducing and teaching con-
cepts to which people have dedicated entire
careers. The information covered here will
be secure, useful, and valid, but it’s just the
tip of the proverbial iceberg.

157

Security Techniques

U
sin

g
 M

Crypt

http://mcrypt.sourceforge.net

Encrypting data
With MCrypt libraries 2.4.x and higher,
you start by identifying which algorithm
and mode to use by invoking the mcrypt_
module_open() function:

$m = mcrypt_module_open (algorithm,

➝ algorithm_directory, mode,

➝ mode_directory);

MCrypt comes with dozens of different algo-
rithms, or ciphers, each of which encrypts
data differently. If you are interested in how
each works, see the MCrypt home page or
search the Web. In my examples, I’ll be using
the Rijndael algorithm, also known as the
Advanced Encryption Standard (AES). It’s a
very popular and secure encryption algo-
rithm, even up to United States government
standards. I’ll be using it with 256-bit keys,
for extra security.

As for the mode, there are four main modes:
ECB (electronic codebook), CBC (cipher
block chaining), CFB (cipher feedback), and
OFB (output feedback). CBC will suit most
of your needs, especially when encrypting
blocks of text as in this example. So to indi-
cate that you want to use Rijndael 256 in
CBC mode, you would code:

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

The second and fourth arguments fed to the
mcrypt_module_open() function are for
explicitly stating where PHP can find the
algorithm and mode files. These are not
required unless PHP is unable to find a
cipher and you know for certain it is
installed.

158

Chapter 4

U
si

n
g

 M
Cr

yp
t

Once the module is open, you create an IV
(initialization vector). This may be required,
optional, or unnecessary depending upon
the mode being used. I’ll use it with CBC, to
increase the security. Here’s how the PHP
manual recommends an IV be created:

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size ($m),

➝ MCRYPT_DEV_RANDOM);

By using the mcrypt_enc_get_iv_size()
function, a properly sized IV will be created
for the cipher being used. Note that on
Windows, you should use MCRYPT_RAND
instead of MCRYPT_DEV_RANDOM, and call the
srand() function before this line to ensure
the random generation.

The final step before you are ready to
encrypt data is to create the buffers that
MCrypt needs to perform encryption:

mcrypt_generic_init ($m, $key, $iv);

The second argument is a key, which should
be a hard-to-guess string. The key must be
of a particular length, corresponding to the
cipher you use. The Rijndael cipher I’m using
takes a 256-bit key. Divide 256 by 8 (because
there are 8 bits in a byte and each character
in the key string takes one byte) and you’ll
see that the key needs to be exactly 32 char-
acters long. To accomplish that, and to ran-
domize the key even more, I’ll run it through
MD5(), which always returns a 32-character
string:

$key = MD5(‘some string’);

Once you have gone through these steps,
you are ready to encrypt data:

$encrypted_data = mcrypt_generic ($m,

➝ $data);

Finally, after you have finished encrypting
everything, you should close all the buffers
and modules:

mcrypt_generic_denit ($m);

mcrypt_module_close($m);

For this example, I’m going to create a cook-
ie whose value is encrypted. The cookie data
will be decrypted in the next example. The
key and data to be encrypted will be hard-
coded into this script, but I’ll mention alter-
natives in the following steps. Also, because
the same key and IV are needed to decrypt
the data, the IV will also be sent in a cookie.
Surprisingly, doing so doesn’t hurt the secu-
rity of the application.

159

Security Techniques

U
sin

g
 M

Crypt

To encrypt data:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 4.5).

<?php # Script 4.5 -

➝ set_mcrypt_cookie.php

Because the script will send two cookies,
most of the PHP code will come before
any HTML.

2. Define the key and the data.

$key = md5(‘77 public drop-shadow

➝ Java’);

$data = ‘rosebud’;

For the key, some random words and
numbers are run through the MD5() func-
tion, creating a 32-character-long string.
Ideally, the key should be stored in a safe
place, such as a configuration file located
outside of the Web document root. Or it
could be retrieved from a database.

The data being encrypted is the word
rosebud, although in real applications
this data might come from the database
or another source (and be something
more worth protecting).

3. Open the cipher.

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

This is the same code outlined in the
text before these steps.

continues on page 162

160

Chapter 4

U
si

n
g

 M
Cr

yp
t

1 <?php # Script 4.5 - set_mcrypt_cookie.php

2

3 /* This page uses the MCrypt library

4 * to encrypt some data.

5 * The data will then be stored in a cookie,

6 * as will the encryption IV.

7 */

8

9 // Create the key:

10 $key = md5('77 public drop-shadow Java');

11

12 // Data to be encrypted:

13 $data = 'rosebud';

14

15 // Open the cipher:

16 // Using Rijndael 256 in CBC mode.

17 $m = mcrypt_module_open('rijndael-256', '', 'cbc', '');

18

19 // Create the IV:

20 // Use MCRYPT_RAND on Windows instead of MCRYPT_DEV_RANDOM.

21 $iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($m), MCRYPT_DEV_RANDOM);

22

23 // Initialize the encryption:

24 mcrypt_generic_init($m, $key, $iv);

25

26 // Encrypt the data:

27 $data = mcrypt_generic($m, $data);

28

29 // Close the encryption handler:

30 mcrypt_generic_deinit($m);

31

32 // Close the cipher:

33 mcrypt_module_close($m);

34

35 // Set the cookies:

36 setcookie('thing1', base64_encode($data));

37 setcookie('thing2', base64_encode($iv));

38 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

39 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

40 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

41 <head>

42 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

43 <title>A More Secure Cookie</title>

44 </head>

45 <body>

46 <p>The cookie has been sent. Its value is '<?php echo base64_encode($data); ?>'.</p>

47 </body>

48 </html>

Script 4.5 This script uses MCrypt to encrypt some data to be stored in a cookie.

161

Security Techniques

U
sin

g
 M

Crypt

4. Create the IV.

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size($m),

➝ MCRYPT_DEV_RANDOM);

Again, this is the same code outlined ear-
lier. Remember that if you are running
this script on Windows, you’ll need to
change this line to:

srand();

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size($m),

➝ MCRYPT_RAND);

5. Initialize the encryption.

mcrypt_generic_init($m, $key, $iv);

6. Encrypt the data.

$data = mcrypt_generic($m, $data);

If you were to print the value of
$data now, you’d see something like
Figure 4.17.

7. Perform the necessary cleanup.

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

8. Send the two cookies.

setcookie(‘thing1’,

➝ base64_encode($data));

setcookie(‘thing2’,

➝ base64_encode($iv));

For the cookie names, I’m using mean-
ingless values. You certainly wouldn’t
want to use, say, IV, as a cookie name!
For the cookie data itself, you have to
run it through base64_encode() to make
it safe to store in a cookie. This applies to
both the encrypted data and the IV
(which is also in binary format).

If the data were going to be stored in a
binary file or in a database (in a BLOB col-
umn), you wouldn’t need to use
base64_encode().

Figure 4.17 This gibberish is the encrypted data in
binary form.

162

Chapter 4

U
si

n
g

 M
Cr

yp
t

Figure 4.20 The second cookie stores the
base64_encode() version of the IV.

Figure 4.19 The first cookie stores the actual data.

Figure 4.18 The result of running the page.

9. Add the HTML head.

?><!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>A More Secure

➝ Cookie</title>

</head>

<body>

10. Print a message, including the encoded,
encrypted version of the data.

<p>The cookie has been sent. Its

➝ value is ‘<?php echo

➝ base64_encode($data); ?>’.</p>

I’m doing this mostly so that the page
shows something (Figure 4.18), but
also so that you can see the value stored
in the cookie.

11. Complete the page.

</body>

</html>

12. Save the file as set_mcrypt_cookie.php,
place it in your Web directory, and test
in your Web browser.

If you set your browser to show cookies
being sent, you’ll see the values when you
run the page (Figures 4.19 and 4.20).

✔ Tips

■ There’s an argument to be made that
you shouldn’t apply the MD5() function
to the key because it actually decreases
the security of the key. I’ve used it here
regardless, but it’s the kind of issue that
legitimate cryptographers think about.

163

Security Techniques

U
sin

g
 M

Crypt

■ If you want to determine the length of
the key on the fly, use the mcrypt_end_
get_key_size() function:

$ks = mcrypt_end_get_key_size($m);

Decrypting data
When it’s time to decrypt encrypted data,
most of the process is the same as it is for
encryption. To start:

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

mcrypt_generic_init($m, $key, $iv);

At this point, instead of using mcrypt_
generic(), you’ll use mdecrypt_generic():

$data = mdecrypt_generic($m,

➝ $encrypted_data);

Note, and this is very important, that to suc-
cessfully decrypt the data, you’ll need the
exact same key and IV used to encrypt it.

Once decryption has taken place, you can
close up your resources:

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

Finally, you’ll likely want to apply the
rtrim() function to the decrypted data, as
the encryption process may add white space
as padding to the end of the data.

164

Chapter 4

U
si

n
g

 M
Cr

yp
t

To decrypt data:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.6).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>A More Secure

➝ Cookie</title>

</head>

<body>

<?php # Script 4.6 -

➝ read_mcrypt_cookie.php

continues on page 166

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>A More Secure Cookie</title>

7 </head>

8 <body>

9 <?php # Script 4.6 - read_mcrypt_cookie.php

10

11 /* This page uses the MCrypt library

12 * to decrypt data stored in a cookie.

13 */

14

15 // Make sure the cookies exist:

16 if (isset($_COOKIE['thing1']) && isset($_COOKIE['thing2'])) {

17

18 // Create the key:

19 $key = md5('77 public drop-shadow Java');

20

21 // Open the cipher:

22 // Using Rijndael 256 in CBC mode.

23 $m = mcrypt_module_open('rijndael-256', '', 'cbc', '');

24

25 // Decode the IV:

26 $iv = base64_decode($_COOKIE['thing2']);

27

28 // Initialize the encryption:

29 mcrypt_generic_init($m, $key, $iv);

30

31 // Decrypt the data:

32 $data = mdecrypt_generic($m, base64_decode($_COOKIE['thing1']));

33

34 // Close the encryption handler:

35 mcrypt_generic_deinit($m);

36

37 // Close the cipher:

38 mcrypt_module_close($m);

39

40 // Print the data.

41 echo '<p>The cookie has been received. Its value is "' . trim($data) . '".</p>';

42

43 } else { // No cookies!

44 echo '<p>There\'s nothing to see here.</p>';

45 }

46 ?>

47 </body>

48 </html>

Script 4.6 This script reads in a cookie with encrypted data (plus a second cookie that stores an important piece for
decryption); then it decrypts and prints the data.

165

Security Techniques

U
sin

g
 M

Crypt

2. Check that the cookies exist.

if (isset($_COOKIE[‘thing1’]) &&

➝ isset($_COOKIE[‘thing2’])) {

There’s no point in trying to decrypt
the data if the page can’t read the two
cookies.

3. Create the key.

$key = md5(‘77 public drop-shadow

➝ Java’);

Not to belabor the point, but again, this
must be the exact same key used to
encrypt the data. This is another reason
why you might want to store the key out-
side of these scripts.

4. Open the cipher.

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

This should also match the encryption
code (you have to use the same cipher
and mode for both encryption and
decryption).

5. Decode the IV.

$iv = base64_decode

➝ ($_COOKIE[‘thing2’]);

The IV isn’t being generated here; it’s
being retrieved from the cookie (because
it has to be the same IV as was used to
encrypt the data). The base64_decode()
function will return the IV to its binary
form.

6. Initialize the decryption.

mcrypt_generic_init($m, $key, $iv);

7. Decrypt the data.

$data = mdecrypt_generic($m,

➝ base64_decode($_COOKIE[‘thing1’]));

The mdecrypt_generic() function will
decrypt the data. The data is coming
from the cookie and must be decoded
first.

166

Chapter 4

U
si

n
g

 M
Cr

yp
t

Figure 4.21 The cookie data has been successfully
decrypted.

8. Wrap up the MCrypt code.

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

9. Print the data.

echo ‘<p>The cookie has been

➝ received. Its value is “‘ .

➝ trim($data) . ‘“.</p>’;

10. Complete the page.

} else {

echo ‘<p>There\’s nothing to

➝ see here.</p>’;

}

?>

</body>

</html>

The else clause applies if the two cook-
ies were not accessible to the script.

11. Save the file as read_mcrypt_cookie.php,
place it in your Web directory, and test
in your Web browser (Figure 4.21).

✔ Tip

■ If you rerun the first script, you’ll see
that the encrypted version of the data is
actually different each time, even though
the data itself is always the same. This is
because the IV will be different each
time. Still, the decryption will always
work, as the IV is stored in a cookie.

167

Security Techniques

U
sin

g
 M

Crypt

This page intentionally left blank

In this chapter, a Web site explicitly for selling products will be developed. The infor-
mation you learn will help you to understand the mechanics of an online store while
giving you some viable code. The example will focus on the PHP coding itself, along
with the database requirements, and it will lead you to the point of implementing a
payment system. (Due to the vast number of online payment systems, attempting to
demonstrate any one would be of limited use.)

This e-store will sell the ubiquitous widget. Unlike many similar examples, these will
be some fancy widgets, organized under various categories and available in different
sizes and colors. The specifics of these products are irrelevant; all I’m really trying to
do is establish real-world factors for what might be sold online. You could also sell
shirts in small, medium, and large that come in different colors or music available on
compact disc, cassette tape, LP, or 8-track (admittedly not much of a market). Rarely
will you get the chance to develop a site that sells only a handful of items, each in a
singular format, so the example focuses on representational diversity.

169

E-commerce
Techniques

5
E-co

m
m

erce Tech
n

iq
u

es

E-commerce Concepts
Even the most basic e-commerce site
requires multiple features. For example, an
administrator should be able to:

◆ Add new products

◆ Edit existing products

◆ Update product availability

◆ View orders

◆ Fulfill orders

Customers should be able to:

◆ Register and log in

◆ Possibly purchase without registration

◆ Browse for products

◆ Search for products

◆ Add products to a shopping cart

◆ Check out to complete an order

◆ View an order’s status

To fully implement an e-commerce site with
all of these features, addressing every possible
security concern, would require a book in its
own right. Instead, I’m going to focus on the
most critical components. Features not
implemented are those that are well docu-
mented elsewhere (like in my other books)
or easy enough to add on your own. I will,
throughout the chapter, make suggestions
as to other things you could do. Additional
information and code relating to this chap-
ter is available on the companion Web site
(www.DMCinsights.com/phpvqp2/), and you
can also ask questions via the supporting
forum (www.DMCinsights.com/phorum/).

170

Chapter 5

E-
co

m
m

er
ce

 C
o

n
ce

pt
s

www.DMCinsights.com/phpvqp2/
www.DMCinsights.com/phorum/

C o l u m n D a t a Ty p e

customer_id INT UNSIGNED

email VARCHAR(40)

pass CHAR(40)

first_name VARCHAR(20)

last_name VARCHAR(30)

address1 VARCHAR(60)

address2 VARCHAR(60)

city VARCHAR(30)

state CHAR(2)

zip VARCHAR(10)

phone VARCHAR(15)

C o l u m n D a t a Ty p e

order_id INT UNSIGNED

customer_id INT UNSIGNED

total DECIMAL(10,2)

credit_card_number INT(4)

order_date TIMESTAMP

Table orders

Table 5.2 The orders table records the customer (via
the customer’s ID), the total amount of the order, the
last four digits of the credit card used, and the date
and time the order was placed.

Table customers

Table 5.1 The customers table keeps a list of every
customer the site has. One update to the database
would be to make the information in this table more
international in scope by allowing for non-American
addresses.

Creating the Database
The foundation for the store will be a data-
base containing all the tables required for
recording the customers, products, and
orders. Under the premise of selling widgets
that are categorized and can come in any
color or size, I’ve come up with eight tables:
five for the products, two for the orders, and
another for the customer data.

This last table is roughed out in Table 5.1.
This is a straightforward template for con-
taining all of the customer information. I’m
making the zip code and phone numbers
text rather than number formats to allow
for parentheses and dashes. This table also
assumes only United States clients, but you
can easily modify it for international address-
es. One important note is that the database
will not store the customer’s credit card
information. This means a slight inconven-
ience to the user (in having to reenter a
credit card for each order), but it also signifi-
cantly decreases the security risks involved.

In the database I suggest using two tables
for the orders. The first (Table 5.2) records
the metadata for the order: an order ID, the
customer ID, the total amount, the credit
card number used, and the order date. This
table could also have fields indicating a ship-
ping amount, the type of shipping selected,
what coupons were applied and for how
much, and so on. Now you might be think-
ing: didn’t I just say I wasn’t going to store
the credit card information? Yes, I did. All
that the credit_card_number field in this
table plans on storing is the last four digits
of the credit card used by the customer for
that order. By recording this information,
customers can review their orders and see
they used card number ************1234,
which will mean something to them but
nothing to a potential thief.

continues on next page

171

E-commerce Techniques

Creatin
g

 th
e D

atabase

The second orders table stores the specific
items in an order (Table 5.3). Each product
purchased will be represented as one record
in this table (so if a person ordered five dif-
ferent things, there would be five rows for
that order). This table stores the product ID
(called sw_id; you’ll see why soon), the quan-
tity purchased, and the price paid apiece.
Each item also has its own shipping date, in
case an order is shipping incrementally.

As I said, there are five tables just to repre-
sent the products. Of the five product tables,
there are two “product attributes” tables:
colors (Table 5.4) and sizes (Table 5.5).
Both are required by a normalized design, as
multiple products will be in the same color
or same size. Plus, these tables would make
it easy to search or sort by color and size. A
third table allows the widgets to be catego-
rized (Table 5.6). This makes browsing easi-
er for the customer.

With the last two tables, a successful
e-commerce database requires that each
unique product sold has a unique ID (or
SKU, in retail terms). Red, medium T-shirts
are different than black, medium T-shirts,
which are different than black, large T-shirts.
Each variation of a unique thing gets its own
ID! Getting to that point is the only way for
an e-commerce system to work. If a family
of products had the same identifier, regard-
less of size, color, and so on, there would be
no way to track inventory or fulfill the order.

Toward that end, there will be a general
widgets (or products) table that contains
the generic information for an item: its
name, its default price, a description, and
the category under which it falls (Table 5.7).
Second, there is a specific widgets table. It
acts as the glue between general widgets,

C o l u m n D a t a Ty p e

oc_id INT UNSIGNED

order_id INT UNSIGNED

sw_id INT UNSIGNED

quantity TINYINT UNSIGNED

price DECIMAL(6,2)

ship_date DATETIME

C o l u m n D a t a Ty p e

color_id TINYINTINT UNSIGNED

color VARCHAR(10)

C o l u m n D a t a Ty p e

size_id TINYINTINT UNSIGNED

size VARCHAR(10)

C o l u m n D a t a Ty p e

category_id TINYINTINT UNSIGNED

category VARCHAR(30)

description TEXT

Table categories

Table 5.6 The categories table stores a category
name, its ID, and a text description.

Table sizes

Table 5.5 The sizes table also only has two columns.

Table colors

Table 5.4 The colors table only has two columns.

Table order_contents

Table 5.3 The order_contents table has the details of
an order; the actual products purchased, in what
quantity, and at what price.

172

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

C o l u m n D a t a Ty p e

gw_id MEDIUMINT UNSIGNED

category_id TINYINT UNSIGNED

name VARCHAR(30)

default_price DECIMAL(6,2)

description TEXT

C o l u m n D a t a Ty p e

sw_id INT UNSIGNED

gw_id MEDIUMINT UNSIGNED

color_id TINYINT UNSIGNED

size_id TINYINT UNSIGNED

price DECIMAL(6,2),

in_stock CHAR(1)

Table specific_widgets

Table 5.8 The specific_widgets table combines the
general widgets, the colors, and the sizes, to define a
distinct, sellable product.

Table general_widgets

Table 5.7 The general_widgets table stores general
information about product lines. It also has a foreign
key–primary key relationship with the categories
table.

the colors, and the sizes (Table 5.8). In this
table, a widget of one general kind in a cer-
tain color and a certain size is represented
as a row, with a unique ID. The same general
widget in the same color but a different size
is another record with a different ID, and so
on. This table ensures that each unique prod-
uct sold has its own ID. This table also has a
field stating whether or not the product is
currently in stock. That column could be
used to reflect on-hand inventory instead.

A note on prices, which are reflected upward
of three times for each product: This might
seem like a violation of normalization
(redundancy being a very bad thing), but it’s
really not. The general_widgets table stores
the default price: what a product is assumed
to sell for. The specific_widgets table pro-
vides for the ability to override a price. You
might do this to put an item on sale, charge
more for a different size or color, or close
out an item. Finally, the order_contents
table has the price actually paid for an item.
It’s very important that this field exist, as
the price an item sells for might change,
making that value different than what cus-
tomers in the past paid for it.

Once you have all of the tables sketched out
on paper, you can create them in your data-
base. I’ll be using MySQL, so if you use
another RDMS (relational database manage-
ment system), change the SQL and instruc-
tions as needed.

Also, to start things off, I’ll populate all of
the products tables here, rather than creat-
ing an administrative interface for that
purpose. The PHP scripts required to do
that would be easy enough for you to create.
If you don’t want to type all this text your-
self, you can download the SQL commands
from the book’s corresponding Web site.

173

E-commerce Techniques

Creatin
g

 th
e D

atabase

To create the database:

1. Connect to your server via a command-
line interface and connect to MySQL.

If you’d rather, or are forced to, use
phpMyAdmin or whatever other tool
instead, that’s fine.

2. Create the database.
CREATE DATABASE ecommerce;

3. Choose the database (Figure 5.1).
USE ecommerce;

4. Create the customers table (Figure 5.2).
CREATE TABLE customers (

customer_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

email VARCHAR(40) NOT NULL,

pass CHAR(40) NOT NULL,

first_name VARCHAR(20) NOT NULL,

last_name VARCHAR(30) NOT NULL,

address1 VARCHAR(60) NOT NULL,

address2 VARCHAR(60),

city VARCHAR(30) NOT NULL,

state CHAR(2) NOT NULL,

zip_code VARCHAR(10) NOT NULL,

phone VARCHAR(15),

PRIMARY KEY (customer_id),

UNIQUE (email),

KEY email_pass (email, pass)

) ENGINE=MyISAM;

The customer_id will be the primary key
(automatically incremented), but email
will also be unique and indexed. Although
you won’t directly use this table within
the confines of this chapter, it’s a viable
part of any e-commerce site and it would
be remiss of me not to include it. The
assumption is that customers would reg-
ister and then be able to log in using a
combination of their email address and
their password (encrypted using SHA1()
or a similar function).

Figure 5.2 Creating the customers table.

Figure 5.1 Creating and selecting the database used
in this chapter’s example.

174

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

Figure 5.4 Creating the order_contents table, which
lists the details for every order.

Figure 5.3 Creating the orders table, which stores the
metadata about the orders and uses a transaction-
safe table type.

5. Create the orders table (Figure 5.3).
CREATE TABLE orders (

order_id INT(10) UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

customer_id INT(5) UNSIGNED NOT NULL,

total DECIMAL(10,2) NOT NULL,

order_date TIMESTAMP,

PRIMARY KEY (order_id),

KEY customer_id (customer_id),

KEY order_date (order_date)

) ENGINE=InnoDB;

All of the orders fields are required, and
three indexes have been created. Notice
that a foreign key column here, like
customer_id, is of the same exact type
as its corresponding primary key
(customer_id in the customers table).
The order_date field will store the date
and time an order was entered. Being
defined as a TIMESTAMP, it will automati-
cally be given the current value when a
record is inserted.

Finally, because I’ll want to use transac-
tions with the orders and order_contents

tables, both will use the InnoDB storage
engine.

6. Create the order_contents table
(Figure 5.4).
CREATE TABLE order_contents (

oc_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

order_id INT UNSIGNED NOT NULL,

sw_id INT UNSIGNED NOT NULL,

quantity TINYINT UNSIGNED NOT NULL

➝ DEFAULT 1,

price DECIMAL(6,2) NOT NULL,

ship_date DATETIME default NULL,

PRIMARY KEY (oc_id),

KEY order_id (order_id),

KEY sw_id (sw_id),

KEY ship_date (ship_date)

) ENGINE=InnoDB;

continues on next page

175

E-commerce Techniques

Creatin
g

 th
e D

atabase

In order to have a normalized database
structure, I’ve separated out each order
into its general information—the cus-
tomer, the order date, and the total
amount—and its specific information—
the actual items ordered and in what
quantity. This table has foreign keys to
the orders and specific_widgets tables.
The quantity has a default value of 1.
The ship_date is defined as a DATETIME,
so that it can have a NULL value, mean-
ing that the item has not yet shipped.
Again, this table must use the InnoDB
storage engine in order to be part of a
transaction.

7. Create the categories table (Figure 5.5).

CREATE TABLE categories (

category_id TINYINT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

category VARCHAR(30) NOT NULL,

description TEXT,

PRIMARY KEY (category_id)

) ENGINE=MyISAM;

The categories table is just an added
layer so that general widgets can be clas-
sified. In other e-commerce stores, the
categories might be: shirts, sweaters,
pants, etc., or music, movies, books, etc.

8. Create the colors table (Figure 5.6).

CREATE TABLE colors (

color_id TINYINT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

color VARCHAR(10) NOT NULL,

PRIMARY KEY (color_id)

) ENGINE=MyISAM;

A very simple little table, this has just
two columns, one of which is a primary
key. Creating this table is implied by nor-
malization, as you wouldn’t want to use
color names in the specific widgets table
over and over again.

Figure 5.6 Creating the colors table, which will be
tied to general widgets to define specific widgets.

Figure 5.5 Creating the categories table, which
provides categorization for the general widgets.

176

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

Figure 5.8 Creating the general_widgets table, which
stores information about generic products.

Figure 5.7 Creating the sizes table, which, along with
colors, will define specific widgets.

9. Create the sizes table (Figure 5.7).

CREATE TABLE sizes (

size_id TINYINT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

size VARCHAR(10) NOT NULL,

PRIMARY KEY (size_id)

) ENGINE=MyISAM;

10. Create the general_widgets table
(Figure 5.8).

CREATE TABLE general_widgets (

gw_id MEDIUMINT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

category_id TINYINT UNSIGNED NOT

➝ NULL,

name VARCHAR(30) NOT NULL,

default_price DECIMAL(6,2) NOT NULL,

description TEXT,

PRIMARY KEY (gw_id),

UNIQUE (name),

KEY (category_id)

) ENGINE=MyISAM;

The general_widgets table is the second
most important of the product tables.
It links to the categories table and
records a widget’s name, default price,
and description.

continues on next page

177

E-commerce Techniques

Creatin
g

 th
e D

atabase

11. Create the specific_widgets table
(Figure 5.9).

CREATE TABLE specific_widgets (

sw_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

gw_id MEDIUMINT UNSIGNED NOT NULL,

color_id TINYINT UNSIGNED NOT NULL,

size_id TINYINT UNSIGNED NOT NULL,

price DECIMAL(6,2),

in_stock CHAR(1),

PRIMARY KEY (sw_id),

UNIQUE combo (gw_id, color_id,

➝ size_id),

KEY (gw_id),

KEY (color_id),

KEY (size_id)

) ENGINE=MyISAM;

This final product table is an intermedi-
ary between general widgets, colors, and
sizes. A widget’s price can be overridden
here and availability indicated.

12. Populate the categories table
(Figure 5.10).

INSERT INTO categories (category)

➝ VALUES

(‘Widgets That Wiggle’),

(‘Widgets That Bounce’),

(‘Widgets That Sit There’),

(‘Non-widget Widgets’),

(‘Fuzzy Widgets’),

(‘Razor-sharp Widgets’);

As each widget falls under a category,
the categories should be entered into the
database first.

Figure 5.10 Adding some records to the categories
table, which will then be used when adding records to
the general_widgets table.

Figure 5.9 Creating the final table, specific_widgets,
whose IDs will be used as the product SKUs.

178

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

Figure 5.12 Adding some widget sizes.

Figure 5.11 Adding some sample colors to the colors

table.

13. Populate the colors table (Figure 5.11).

INSERT INTO colors (color) VALUES

(‘Red’),

(‘Blue’),

(‘Heather’),

(‘Stone’),

(‘Dirt Brown’),

(‘Mud Brown’);

14. Populate the sizes table (Figure 5.12).

INSERT INTO sizes (size) VALUES

(‘Wee’),

(‘Little’),

(‘Huge’),

(‘Vast’),

(‘Medium’),

(‘Venti’);

continues on next page

179

E-commerce Techniques

Creatin
g

 th
e D

atabase

15. Populate the general_widgets table.

INSERT INTO general_widgets

➝ (category_id, name, default_price,

➝ description) VALUES

(1, ‘Wiggle Widget 1’, 234.45, ‘This

➝ is the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

(1, ‘Wiggle Widget 2’, 200.99, ‘This

➝ is the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

(1, ‘Wiggle Widget 3’, 164.00, ‘This

➝ is the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

(2, ‘Bouncy Widget 1’, 1.16, ‘This is

➝ the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

(2, ‘Bouncy Widget 2’, 32.20, ‘This

➝ is the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

180

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

(3, ‘Useless Widget’, 985.00, ‘This

➝ is the description of this widget.

➝ This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. ‘),

(6, ‘Barbed-wire Widget’, 141.66,

➝ ‘This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. This is

➝ the description of this widget. ‘),

(6, ‘Rusty Nails Widget’, 45.25,

➝ ‘This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. This is

➝ the description of this widget. ‘),

(6, ‘Broken Glass Widget’, 8.00,

➝ ‘This is the description of this

➝ widget. This is the description of

➝ this widget. This is the

➝ description of this widget. This is

➝ the description of this widget. ‘);

The general widgets should be placed
in categories; given names and default
values; and optionally, they should have
a description. So that you see in the
e-commerce site where the description
shows up, I’m putting in some text (the
same text) for each widget.

Figure 5.13 The specific products are entered into the
database.

16. Populate the specific_widgets table
(Figure 5.13).

INSERT INTO specific_widgets (gw_id,

➝ color_id, size_id, price,

➝ in_stock) VALUES

(1, 1, 2, NULL, ‘Y’),

(1, 1, 3, NULL, ‘Y’),

(1, 1, 4, NULL, ‘Y’),

(1, 3, 1, NULL, ‘Y’),

(1, 3, 2, NULL, ‘Y’),

(1, 4, 1, NULL, ‘Y’),

(1, 4, 2, NULL, ‘N’),

(1, 4, 3, NULL, ‘N’),

(1, 4, 6, NULL, ‘Y’),

(2, 1, 1, NULL, ‘Y’),

(2, 1, 2, NULL, ‘Y’),

(2, 1, 6, NULL, ‘N’),

(2, 4, 4, NULL, ‘Y’),

(2, 4, 5, NULL, ‘Y’),

(2, 6, 1, NULL, ‘N’),

(2, 6, 2, NULL, ‘Y’),

(2, 6, 3, NULL, ‘Y’),

(2, 6, 6, NULL, ‘Y’),

(3, 1, 1, 123.45, ‘N’),

181

E-commerce Techniques

Creatin
g

 th
e D

atabase

(3, 1, 2, NULL, ‘Y’),

(3, 1, 6, 846.45, ‘Y’),

(3, 1, 4, NULL, ‘Y’),

(3, 4, 4, NULL, ‘Y’),

(3, 4, 5, 147.00, ‘Y’),

(3, 6, 1, 196.50, ‘Y’),

(3, 6, 2, 202.54, ‘Y’),

(3, 6, 3, NULL, ‘N’),

(3, 6, 6, NULL, ‘Y’),

(4, 2, 5, NULL, ‘Y’),

(4, 2, 6, NULL, ‘Y’),

(4, 3, 2, NULL, ‘N’),

(4, 3, 3, NULL, ‘Y’),

(4, 3, 6, NULL, ‘Y’),

(4, 5, 4, NULL, ‘Y’),

(4, 5, 6, NULL, ‘N’),

(4, 6, 2, NULL, ‘Y’),

(4, 6, 3, NULL, ‘Y’);

This ends up being the most important
query, as it populates the specific_
widgets table with the actual products
to be purchased: particular combina-
tions of general widgets, colors, and
sizes. To mix it up, I use a varying com-
bination of general widgets, colors, sizes,
availability, and overridden prices.

continues on next page

✔ Tips

■ The InnoDB storage engine will disap-
pear in future versions of MySQL, being
replaced with a different transaction-safe
table type.

■ Selling books, music, and videos is rela-
tively straightforward, as these industries
provide item-specific SKUs for the ven-
dor (e.g., each book has its own ISBN
number and the hardcover edition has a
different ISBN than the paperback).

■ If you wanted to store multiple addresses
for users—home, billing, friends, etc.—
create a separate addresses table. In
this table store all of that information,
including the address type, and link
those records back to the customers
table using the customer ID as a
primary-foreign key.

182

Chapter 5

Cr
ea

ti
n

g
 t

h
e

D
at

ab
as

e

Creating the
Configuration File
Every multipage Web application requires
a configuration file, and certainly this is
no exception. To make things easy—and
because reusing code is just a smart thing
to do—most of this configuration file will
mimic the one developed in Chapter 2,
“Developing Web Applications.” For more
information on most of this code, see that
chapter. Also, because every page in the
e-commerce site requires a database con-
nection (and to save time and book space),
I’ll throw the database connectivity code
into this file as well.

As with nearly every example in the book,
I’ll be using the Improved MySQL functions,
available as of PHP 5 and MySQL 4.1. If you’re
using an earlier version of either, or a differ-
ent database application entirely, you’ll need
to change the code accordingly.

183

E-commerce Techniques

Creatin
g

 th
e Co

n
fig

u
ratio

n
 File

To create the configuration file:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 5.1).

<?php # Script 5.1 - config.inc.php

1 <?php # Script 5.1 - config.inc.php

2

3 /*

4 * Configuration file does the following things:

5 * - Has site settings in one location.

6 * - Stores URLs and URIs as constants.

7 * - Sets how errors will be handled.

8 * - Establishes a connection to the database.

9 */

10

11

12 # ******************** #

13 # ***** SETTINGS ***** #

14

15 // Errors are emailed here.

16 $contact_email = 'address@example.com';

17

18 // Determine whether we're working on a local server

19 // or on the real server:

20 if (stristr($_SERVER['HTTP_HOST'], 'local') || (substr($_SERVER['HTTP_HOST'], 0, 7) ==
'192.168')) {

21 $local = TRUE;

22 } else {

23 $local = FALSE;

24 }

25

26 // Determine location of files and the URL of the site:

27 // Allow for development on different servers.

28 if ($local) {

29

30 // Always debug when running locally:

31 $debug = TRUE;

32

33 // Define the constants:

34 define ('BASE_URI', '/path/to/html/folder/');

35 define ('BASE_URL', 'http://localhost/directory/');

36

37 } else {

38

39 define ('BASE_URI', '/path/to/live/html/folder/');

(script continues on next page)

Script 5.1 The config.inc.php file is essentially the same as that written in Chapter 2, although it now also connects
to the database.

184

Chapter 5

Cr
ea

ti
n

g
 t

h
e

Co
n

fi
g

u
ra

ti
o

n
 F

il
e

2. Set the email address to be used for errors.

$contact_email =

➝ ‘address@example.com’;

continues on page 187

40 define ('BASE_URL', 'http://www.example.com/');

41

42 }

43

44 /*

45 * Most important setting...

46 * The $debug variable is used to set error management.

47 * To debug a specific page, do this:

48

49 $debug = TRUE;

50 require_once('./includes/config.inc.php');

51

52 * on that page.

53 *

54 * To debug the entire site, do

55

56 $debug = TRUE;

57

58 * before this next conditional.

59 */

60

61 // Assume debugging is off.

62 if (!isset($debug)) {

63 $debug = FALSE;

64 }

65

66 # ***** SETTINGS ***** #

67 # ******************** #

68

69

70 # **************************** #

71 # ***** ERROR MANAGEMENT ***** #

72

73 // Create the error handler.

74 function my_error_handler ($e_number, $e_message, $e_file, $e_line, $e_vars) {

75

76 global $debug, $contact_email;

77

78 // Build the error message.

79 $message = "An error occurred in script '$e_file' on line $e_line: \n
$e_message\n
";

80

81 // Add the date and time.

82 $message .= "Date/Time: " . date('n-j-Y H:i:s') . "\n
";

83

84 // Append $e_vars to the $message.

85 $message .= "<pre>" . print_r ($e_vars, 1) . "</pre>\n
";

86

87 if ($debug) { // Show the error.

88

(script continues on next page)

Script 5.1 continued

185

E-commerce Techniques

Creatin
g

 th
e Co

n
fig

u
ratio

n
 File

89 echo '<p class="error">' . $message . '</p>';

90

91 } else {

92

93 // Log the error:

94 error_log ($message, 1, $contact_email); // Send email.

95

96 // Only print an error message if the error isn't a notice or strict.

97 if (($e_number != E_NOTICE) && ($e_number < 2048)) {

98 echo '<p class="error">A system error occurred. We apologize for the
inconvenience.</p>';

99 }

100

101 } // End of $debug IF.

102

103 } // End of my_error_handler() definition.

104

105 // Use my error handler:

106 set_error_handler ('my_error_handler');

107

108 # ***** ERROR MANAGEMENT ***** #

109 # **************************** #

110

111

112 # ************************** #

113 # ***** DATABASE STUFF ***** #

114

115 // Connect to the database:

116 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'ecommerce') OR
trigger_error("Could not connect to the database!\n
MySQL Error: " .
mysqli_connect_error());

117

118 // Create a function for escaping the data.

119 function escape_data ($data) {

120

121 // Need the connection:

122 global $dbc;

123

124 // Address Magic Quotes.

125 if (ini_get('magic_quotes_gpc')) {

126 $data = stripslashes($data);

127 }

128

129 // Trim and escape:

130 return mysqli_real_escape_string($dbc, trim($data));

131

132 } // End of escape_data() function.

133

134 # ***** DATABASE STUFF ***** #

135 # ************************** #

136

137 ?>

Script 5.1 continued

186

Chapter 5

Cr
ea

ti
n

g
 t

h
e

Co
n

fi
g

u
ra

ti
o

n
 F

il
e

3. Determine if the script is running on the
live server or a test server.

if (stristr($_SERVER[‘HTTP_HOST’],

➝ ‘local’) || (substr($_SERVER

➝ [‘HTTP_HOST’], 0, 7) == ‘192.168’))

➝ {

$local = TRUE;

} else {

$local = FALSE;

}

4. Set the server-specific constants.

if ($local) {

$debug = TRUE;

define (‘BASE_URI’,

➝ ‘/path/to/html/folder/’);

define (‘BASE_URL’,

➝ ‘http://localhost/directory/’);

} else {

define (‘BASE_URI’,

➝ ‘/path/to/live/html/folder/’);

define (‘BASE_URL’,

➝ ‘http://www.example.com/’);

}

Unlike in the script in Chapter 2, I am
not defining a path to the database file
here, as that code will appear later in
this script. If you want to keep the data-
base information separate, then define a
DB constant here, with the full path to
that file.

If necessary, you could also define server-
specific database access constants here.
You might do this if you use one set of
username/password/hostname for your
local server and another for the live server.

5. Set the debugging mode.

if (!isset($debug)) {

$debug = FALSE;

}

continues on next page

187

E-commerce Techniques

Creatin
g

 th
e Co

n
fig

u
ratio

n
 File

6. Define the function for handling errors.

function my_error_handler ($e_number,

➝ $e_message, $e_file, $e_line,

➝ $e_vars) {

global $debug, $contact_email;

$message = “An error occurred in

➝ script ‘$e_file’ on line $e_line:

➝ \n
$e_message\n
”;

$message .= “Date/Time: “ .

➝ date(‘n-j-Y H:i:s’) . “\n
”;

$message .= “<pre>” . print_r

➝ ($e_vars, 1) . “</pre>\n
”;

if ($debug) {

echo ‘<p class=”error”>’

➝ . $message . ‘</p>’;

} else {

error_log ($message, 1,

➝ $contact_email); // Send email.

if (($e_number !=

➝ E_NOTICE) && ($e_number < 2048)) {

echo ‘<p

class=”error”>A system error

➝ occurred. We apologize for the

➝ inconvenience.</p>’;

}

}

}

If debugging is turned on, a full, detailed
message will appear in the Web browser
(Figure 5.14). For a live site, the detailed
error message should not be shown
(unless debugging is temporarily enabled
for that page) but should be emailed
instead. The error_log() function will
do this, if provided with the number 1 as
its second argument. But the user proba-
bly needs to know that something didn’t
go right, so a generic message is dis-
played (Figure 5.15). If the error hap-
pens to be a notice or a strict error (hav-
ing a value of 2048), no message should
be printed, as the error is likely not inter-
fering with the operation of the page.

Figure 5.15 Generic error messages are used on live
sites so as not to give away anything important.

Figure 5.14 Detailed error messages aid in debugging
problems.

188

Chapter 5

Cr
ea

ti
n

g
 t

h
e

Co
n

fi
g

u
ra

ti
o

n
 F

il
e

7. Tell PHP to use this error handler.

set_error_handler

➝ (‘my_error_handler’);

8. Establish a database connection.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’,

➝ ‘ecommerce’) OR

➝ trigger_error(“Could not connect to

➝ the database!\n
MySQL Error: “

➝ . mysqli_connect_error());

If a database connection cannot be
made, the trigger_error() function will
invoke my_error_handler(), managing
the error as appropriate for a live or local
site. The error message will begin with
Could not connect to the database!, fol-
lowed by the MySQL connection error.

189

E-commerce Techniques

Creatin
g

 th
e Co

n
fig

u
ratio

n
 File

9. Define a function for escaping
query data.

function escape_data ($data) {

global $dbc;

if (ini_get

➝ (‘magic_quotes_gpc’)) {

$data =

➝ stripslashes($data);

}

return mysqli_real_escape_

➝ string($dbc, trim($data));

}

This bit of code is one of my favorite
creations, if I do say so myself. It takes a
piece of data, strips any slashes if Magic
Quotes is enabled (if the function didn’t
do this, the data would be over-escaped),
and then trims and escapes the data
using the secure mysqli_real_escape_
string() function. Any data run through
this function should be safe to use in
a query.

10. Complete the page.

?>

11. Save the file as config.inc.php and
place it in your Web directory (in an
includes subfolder).

Making the Template
This e-commerce application will also use
a template, of course, just like the example
in Chapter 2. For this template, I’ll use
another design found on Open Source
Web Design (www.oswd.org). This particular
design (Figure 5.16) is by Tjobbe Andrews
(www.sitecreative.net) and is gratefully
used with his kind permission.

I’ve modified it slightly (Figure 5.17) to
show the store’s name. The right-side col-
umn lists the categories of widgets for brows-
ing purposes and also has areas that could
be used to promote other products, reflect
the contents of the shopping cart, or contain
a search form. I haven’t modified the top
navigation, but you might want to make a
spot there for quickly accessing the cart
(such as a tab to cart.php).

In Chapter 2 I go through the steps involved
in turning a sample page into a template.
Here I’ll just create the templates outright.
In order to save space, the CSS file for this
example (which controls the layout) is not
included in the book. You can download the
file through the book’s supporting Web site
(www.DMCInsights.com/phpvqp2/, see the
Extras page).

Figure 5.17 The slightly modified version of the design
that will be used in this chapter.

Figure 5.16 Tjobbe Andrews’ original design.

190

Chapter 5

M
ak

in
g

 t
h

e
Te

m
pl

at
e

www.oswd.org
www.sitecreative.net
www.DMCInsights.com/phpvqp2/

1 <?php # Script 5.2 - header.html

2

3 /*

4 * This page begins the HTML header for the site.

5 * The header also creates the right-hand column.

6 * This page calls session_start().

7 */

8

9 // Need sessions!

10 session_start();

11

12 // Check for a $page_title value:

13 if (!isset($page_title)) $page_title = 'WoW::World of Widgets!';

14 ?><!DOCTYPE html

15 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

16 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

17 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

18 <head>

19 <title><?php echo $page_title; ?></title>

20 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

21 <link href="./includes/style.css" rel="stylesheet" type="text/css" />

22 </head>

(script continues on next page)

Script 5.2 The header.html document contains the beginnings of an HTML page and starts the session.

To create the template pages:

1. Begin a new PHP page in your text editor
or IDE (Script 5.2).

<?php # Script 5.2 - header.html

2. Start the session and check for a
$page_title variable.

session_start();

if (!isset($page_title)) $page_title

➝ = ‘WoW::World of Widgets!’;

?>

The shopping cart relies upon sessions,
so every page must have session access.
As for the $page_title variable, that’s
used to set the browser window’s title on
a page-by-page basis. If one is not
defined prior to including this file, a
default title is used.

191

E-commerce Techniques

M
akin

g
 th

e Tem
plate

23 <body>

24 <div class="all">

25

26 <div class="box">

27 <div class="menu">homeaboutproductscontact</div>

28 <div class="header"><img alt="" style="float:right; " src="./images/www.jpg" width="225"
height="95" />

29 <h1>[WoW] World of Widgets</h1>

30 <div class="clearfix"></div>

31 </div>

32

33 <div class="newsbar">

34 <h1>Browse Widget Categories</h1>

35 <div class="p2">

36 <?php

37 // Get all the categories and

38 // link them to category.php.

39

40 // Define and execute the query:

41 $q = 'SELECT category_id, category FROM categories ORDER BY category';

42 $r = mysqli_query($dbc, $q);

43

44 // Fetch the results:

45 while (list($fcid, $fcat) = mysqli_fetch_array($r, MYSQLI_NUM)) {

46

47 // Print as a list item.

48 echo "$fcat\n";

49

50 } // End of while loop.

51

52 ?></div>

53

54 <h1>Cart Contents?</h1>

55 <div class="p2">You could use this area to show something regarding the cart.</div>

56

57 <h1>Specials?</h1>

58 <div class="p2">

59 <p>Maybe place specials or new items or related items here.</p>

60 </div>

61

62 </div>

63

64 <div class="content">

Script 5.2 continued

192

Chapter 5

M
ak

in
g

 t
h

e
Te

m
pl

at
e

3. Create the HTML head.

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0

➝ Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-strict.dtd”>

<html

xmlns=”http://www.w3.org/1999/xhtml”

➝ xml:lang=”en” lang=”en”>

<head>

<title><?php echo $page_title;

➝ ?></title>

<meta http-equiv=”Content-Type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<link href=”./includes/

➝ style.css” rel=”stylesheet”

➝ type=”text/css” />

</head>

The $page_title variable is printed
between the <title></title> tags.

193

E-commerce Techniques

M
akin

g
 th

e Tem
plate

4. Begin the body of the page.

<body>

<div class=”all”>

<div class=”box”>

<div class=”menu”><a

➝ href=”#”>home<a

➝ href=”#”>about<a

➝ href=”#”>products<a

➝ href=”#”>contact</div>

<div class=”header”><img

➝ alt=”” style=”float:right; “

➝ src=”./images/www.jpg” width=”225”

➝ height=”95” />

<h1>[<span

➝ class=”style1”>WoW] World of

➝ Widgets</h1>

<div

➝ class=”clearfix”></div>

</div>

<div class=”newsbar”>

<h1>Browse Widget

➝ Categories</h1>

<div class=”p2”>

The body starts by printing the header
and then goes into the right-side column.
The first item in that column should be a
list of widget categories, based upon the
categories table in the database.

continues on next page

5. Print each category as a link.

<?php

$q = ‘SELECT category_id, category

➝ FROM categories ORDER BY category’;

$r = mysqli_query($dbc, $q);

while (list($fcid, $fcat) = mysqli_

➝ fetch_array($r, MYSQLI_NUM)) {

echo “<a href=\”category.

➝ php?cid=$fcid\”>$fcat\n”;

}

?>

The query fetches the category ID and
category name from the categories table,
in alphabetical order (Figure 5.18). Each
is then printed as a link to category.php,
with the category ID appended to the
URL (Figure 5.19).

6. Complete the header.

</div>

<h1>Cart Contents?</h1>

<div class=”p2”>You

➝ could use this area to show

➝ something regarding the cart.</div>

<h1>Specials?</h1>

<div class=”p2”>

<p>Maybe place

➝ specials or new items or related

➝ items here.</p>

</div>

</div>

<div class=”content”>

7. Save the file as header.html.

The file should be placed in an includes
folder within your Web directory. You’ll
also want to place style.css (download-
able from the book’s corresponding Web
site) in that same place.

Figure 5.19 The HTML source code shows how each
category is linked to the category.php page.

Figure 5.18 The results of running the same query
directly in the mysql client.

Chapter 5

M
ak

in
g

 t
h

e
Te

m
pl

at
e

194

1 <?php # Script 5.3 - footer.html

2

3 // Close the database connection.

4 if (isset($dbc)) {

5 mysqli_close($dbc);

6 unset($dbc);

7 }

8 ?>

9 </div>

10 <div class="clearfix"></div>

11 <div class="footer">© 2005, design by <a href="http://www.now-

design.co.uk/">NOW:design |

12 Template from oswd.org</div>

13 </div>

14 </div>

15

16 </body>

17 </html>

Script 5.3 The footer.html file completes the HTML begun in header.html. It also closes an open database
connection.

8. Begin a new document in your text edi-
tor or IDE (Script 5.3).

<?php # Script 5.3 - footer.html

if (isset($dbc)) {

mysqli_close($dbc);

unset($dbc);

}

?>

The footer file will forcibly close the
database connection, if it’s still open.
Referring to the $dbc variable checks
that status.

continues on next page

195

E-commerce Techniques

M
akin

g
 th

e Tem
plate

9. Complete the HTML page.

</div>

<div class=

➝ ”clearfix”></div>

<div

class=”footer”>© 2005, design

➝ by <a href=”http://www.now-

➝ design.co.uk/”>NOW:design |

Template from <a

➝ href=”http://www.oswd.org/”>oswd.

➝ org</div>

</div>

</div>

</body>

</html>

10. Save the file as footer.html, placing
it your Web directory’s includes
folder (along with header.html,
config.inc.php, and style.css).

✔ Tips

■ Any variable you define in an included
file that is only used in that file (like the
category ID and name in the header)
should be given a unique name. If you
don’t do that, you’ll likely run into odd,
hard-to-debug errors. For example, if I
used $cid and $cat instead of $fcid and
$fcat in header.html, I’d have conflicts
with the $cid and $cat variables used in
the category.php page (developed later
in the chapter).

■ One of the right-hand sections could be
used for new products. To retrieve, say,
the three latest products, you could just
fetch those from the specific_widgets
table with the highest sw_id values
(since it’s an automatically incrementing
number).

196

Chapter 5

M
ak

in
g

 t
h

e
Te

m
pl

at
e

1 <?php # Script 5.4 - index.php

2

3 /*

4 * This is the main page.

5 * This page doesn't do much.

6 */

7

8 // Require the configuration file before any PHP code:

9 require_once ('./includes/config.inc.php');

10

11 // Include the header file:

12 include_once ('./includes/header.html');

13

14 // Page-specific content goes here:

15 echo '<h1>[WoW] World of Widgets</h1>

16 <p>Put introductory information here. Marketing. Whatever. Put introductory information here.

Marketing. Whatever. Put introductory information here. Marketing. Whatever. Put introductory

information here. Marketing. Whatever. </p>

17 <p>Put introductory information here. Marketing. Whatever. Put introductory information here.

Marketing. Whatever. Put introductory information here. Marketing. Whatever. Put introductory

information here. Marketing. Whatever. </p>

18

19 <h1>[WoW] World of Widgets</h1>

20 <p>Put introductory information here. Marketing. Whatever. Put introductory information here.

Marketing. Whatever. Put introductory information here. Marketing. Whatever. Put introductory

information here. Marketing. Whatever. </p>

21 <p>Put introductory information here. Marketing. Whatever. Put introductory information here.

Marketing. Whatever. Put introductory information here. Marketing. Whatever. Put introductory

information here. Marketing. Whatever. </p>';

22

23 // Include the footer file to complete the template:

24 include_once ('./includes/footer.html');

25

26 ?>

Script 5.4 This script acts as the public home page.

Creating the Index Page
The site’s home page won’t really do much,
but it needs to exist regardless. It will show
how all of the other pages are assembled,
though. Let’s whip that out quickly.

To create the index page:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 5.4).

<?php # Script 5.4 - index.php

continues on next page

197

E-commerce Techniques

Creatin
g

 th
e In

dex Pag
e

2. Include the configuration file.

require_once (‘./includes/

➝ config.inc.php’);

This file ought to be included first thing
on every page, as it controls how the site
handles errors and defines many settings.

3. Include the HTML header file.

include_once (‘./includes/

➝ header.html’);

Because I haven’t defined a $page_title
variable prior to this inclusion, the
default title will be used.

4. Add the page-specific content.

echo ‘<h1>[WoW] World of Widgets</h1>

<p>Put introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. </p>

<p>Put introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. </p>

198

Chapter 5

Cr
ea

ti
n

g
 t

h
e

In
de

x
Pa

g
e

<h1>[WoW] World of Widgets</h1>

<p>Put introductory information

➝ here. Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. </p>

<p>Put introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. Put

➝ introductory information here.

➝ Marketing. Whatever. </p>’;

This page’s content is pure drivel, but it
could be made useful on a real site.

5. Include the footer file that completes
the HTML.

include_once (‘./includes/

➝ footer.html’);

6. Complete the page.

?>

7. Save the file as index.php, place it in your
Web directory, and test in your Web
browser (see Figure 5.17 for the result).

Figure 5.20 The category page shows information
about general widgets.

Browsing by Category
Now that the database has been implement-
ed and all of the base PHP files written, it’s
time to begin adding functionality to the
site. With the example as I’m developing
it, all of the products will be accessed by
browsing. This starts with a widget category
page, which is found by clicking a link in the
right-hand column.

The category page should put the category’s
name in the browser window’s title as well
as on the page itself. After that, the page
should contain a description of the category,
if it exists, and every widget that falls under
this category (Figure 5.20). These widgets
would be linked to the widget-specific pages.

199

E-commerce Techniques

B
ro

w
sin

g
 by C

ateg
o

ry

To create the category page:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 5.5).

<?php # Script 5.5 - category.php

require_once (‘./includes/

➝ config.inc.php’);

continues on page 202

1 <?php # Script 5.5 - category.php

2

3 /*

4 * This page represents a specific category.

5 * This page shows all the widgets classified

6 * under that category.

7 * The page expects to receive a $_GET['cid'] value.

8 */

9

10 // Require the configuration file before any PHP code:

11 require_once ('./includes/config.inc.php');

12

13 // Check for a category ID in the URL:

14 $category = NULL;

15 if (isset($_GET['cid'])) {

16

17 // Typecast it to an integer:

18 $cid = (int) $_GET['cid'];

19 // An invalid $_GET['cid'] value would

20 // be typecast to 0.

21

22 // $cid must have a valid value.

23 if ($cid > 0) {

24

25 // Get the information from the database

26 // for this category:

27 $q = "SELECT category, description FROM categories WHERE category_id=$cid";

28 $r = mysqli_query($dbc, $q);

29

30 // Fetch the information:

31 if (mysqli_num_rows($r) == 1) {

32 list ($category, $description) = mysqli_fetch_array($r, MYSQLI_NUM);

33 } // End of mysqli_num_rows() IF.

34

(script continues on next page)

Script 5.5 The category page is the first step in the browsing process (for the customer). It lists all the general
widgets found in that category.

200

Chapter 5

B
ro

w
si

n
g

 b
y

C
at

eg
o

ry

35 } // End of ($cid > 0) IF.

36

37 } // End of isset($_GET['cid']) IF.

38

39 // Use the category as the page title:

40 if ($category) {

41 $page_title = $category;

42 }

43

44 // Include the header file:

45 include_once ('./includes/header.html');

46

47 if ($category) { // Show the products.

48

49 echo "<h1>$category</h1>\n";

50

51 // Print the category description, if it's not empty.

52 if (!empty($description)) {

53 echo "<p>$description</p>\n";

54 }

55

56 // Get the widgets in this category:

57 $q = "SELECT gw_id, name, default_price, description FROM general_widgets WHERE
category_id=$cid";

58 $r = mysqli_query($dbc, $q);

59

60 if (mysqli_num_rows($r) > 1) {

61

62 // Print each:

63 while (list($gw_id, $wname, $wprice, $wdescription) = mysqli_fetch_array($r, MYSQLI_NUM))
{

64

65 // Link to the product.php page:

66 echo "<h2>$wname</h2><p>$wdescription
\$$wprice</p>\n";

67

68 } // End of while loop.

69

70 } else { // No widgets here!

71 echo '<p class="error">There are no widgets in this category.</p>';

72 }

73

74 } else { // Invalid $_GET['cid']!

75 echo '<p class="error">This page has been accessed in error.</p>';

76 }

77

78 // Include the footer file to complete the template:

79 include_once ('./includes/footer.html');

80

81 ?>

Script 5.5 continued

201

E-commerce Techniques

B
ro

w
sin

g
 by C

ateg
o

ry

2. Begin validating the category ID.
$category = NULL;

if (isset($_GET[‘cid’])) {

$cid = (int) $_GET[‘cid’];

if ($cid > 0) {

First, a flag variable is created, called
$category. The script will refer to this
later on to tell if a valid category ID
was received. Next, a check confirms
that some $_GET[‘cid’] value was
received, which is then typecast to an
integer. This forces $cid to be an integer.
Even if someone changed the URL to
category.php?cid=/path/to/file, $cid
would now equal 0. The next check
confirms that the integer has a positive
value.

3. Retrieve the category information.
$q = “SELECT category, description

➝ FROM categories WHERE

➝ category_id=$cid”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) == 1) {

list ($category, $description) =

➝ mysqli_fetch_array($r, MYSQLI_NUM);

}

4. Complete the validation conditionals.
} // End of ($cid > 0) IF.

} // End of isset($_GET[‘cid’]) IF.

5. Make the category name be the page title
and include the header file.
if ($category) {

$page_title = $category;

}

include_once (‘./includes/

➝ header.html’);

If the query in Step 3 did return a row,
then that value (e.g., Fuzzy Widgets)
should be used in the browser window.

202

Chapter 5

B
ro

w
si

n
g

 b
y

C
at

eg
o

ry

Figure 5.22 The HTML source reveals how each
general widget is linked to the product page, passing
along the general widget ID in the URL.

Figure 5.21 The main query and its results for one of
the category pages.

6. If a valid category ID was used, print the
category name and description.
if ($category) {

echo “<h1>$category</h1>\n”;

if (!empty($description)) {

echo “<p>$description

➝ </p>\n”;

}

The description field in the database is
optional (it can be NULL), so a conditional
here checks for a value prior to printing it.

7. Retrieve all the widgets that are in this
category.
$q = “SELECT gw_id, name,

➝ default_price, description FROM

➝ general_widgets WHERE

➝ category_id=$cid”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 1) {

This query retrieves all the general widg-
et information for widgets associated
with this category (Figure 5.21).

8. Print each widget, linking it to the prod-
ucts page.
while (list($gw_id, $wname, $wprice,

➝ $wdescription) = mysqli_fetch_

➝ array($r, MYSQLI_NUM)) {

echo “<h2><a href=\”product.php?

➝ gwid=$gw_id\”>$wname</h2><p>$w

➝ description
\$$wprice</p>\n”;

}

It’s not the most attractive layout, but I’ll
just print each widget in a vertical list.
You could use the technique shown in
Chapter 3, “Advanced Database Concepts,”
to lay the widgets out in horizontal rows.
As you can see from the HTML source
code of the page (Figure 5.22), each
widget’s name is linked to product.php,
passing along the widget’s ID (from the
database), in the URL. The widget’s
description and default price are then
under each name.

203

E-commerce Techniques

B
ro

w
sin

g
 by C

ateg
o

ry

9. Complete the conditionals begun in
Steps 7 and 6.

} else {

echo ‘<p

➝ class=”error”>There are no widgets

➝ in this category.</p>’;

}

} else {

echo ‘<p class=”error”>This

➝ page has been accessed in

➝ error.</p>’;

}

The first else clause applies if there are
no widgets in this category. A message
stating such will be printed in the brows-
er (Figure 5.23). The second else
applies if an invalid category ID is
passed to this page (Figure 5.24).

10. Complete the page.

include_once (‘./includes/

➝ footer.html’);

?>

11. Save the file as category.php, place it in
your Web directory, and test in your
Web browser by using the links in the
right-hand column (Figure 5.25).

Figure 5.25 Another category of widgets.

Figure 5.24 If a malicious user hacks the category ID
value in the URL (or if something just goes wrong),
this will be the result.

Figure 5.23 If a category has no products (general
widgets) in it, the customer will see this message.

204

Chapter 5

B
ro

w
si

n
g

 b
y

C
at

eg
o

ry

Figure 5.26 The specific products page.

Showing a Product
By clicking an individual product in the cat-
egory page, customers will be taken to the
product-specific page. This page should show
all the general details about a widget—name
and description, plus all of the specific ver-
sions of the widget available (Figure 5.26).
Here is where all the widget colors and sizes
get pulled out of the database and revealed.

The other feature of this page is a method
that enables the customer to add an item to
their shopping cart. This could be handled
in any number of ways; I’ll create a link that
passes the specific product ID to cart.php.
For the most part, this script will behave,
and be written, like category.php.

205

E-commerce Techniques

S
h

o
w

in
g

 a Pro
du

ct

To make the product page:

1. Begin a new PHP script in your text
editor or IDE (Script 5.6).

<?php # Script 5.6 - product.php

require_once (‘./includes/

➝ config.inc.php’);

continues on page 208

1 <?php # Script 5.6 - product.php

2

3 /*

4 * This is the product page.

5 * This page shows all the specific

6 * products available for a given $_GET['gw_id'].

7 * Links allow customers to add items to their cart.

8 */

9

10 // Require the configuration file before any PHP code:

11 require_once ('./includes/config.inc.php');

12

13 // Check for a general product ID in the URL.

14 $name = NULL;

15 if (isset($_GET['gw_id'])) {

16

17 // Typecast it to an integer:

18 $gw_id = (int) $_GET['gw_id'];

19

20 // $gw_id must have a valid value.

21 if ($gw_id > 0) {

22

23 // Get the information from the database

24 // for this product:

25 $q = "SELECT name, default_price, description FROM general_widgets WHERE gw_id=$gw_id";

26 $r = mysqli_query($dbc, $q);

27

28 if (mysqli_num_rows($r) == 1) {

29 list ($name, $price, $description) = mysqli_fetch_array($r, MYSQLI_NUM);

30 } // End of mysqli_num_rows() IF.

31

32 } // End of ($gw_id > 0) IF.

33

34 } // End of isset($_GET['gw_id']) IF.

35

36 // Use the name as the page title:

37 if ($name) {

38 $page_title = $name;

39 }

(script continues on next page)

Script 5.6 The product page shows all the specific versions of a widget available for purchase.

206

Chapter 5

S
h

o
w

in
g

 a
 P

ro
du

ct

40

41 // Include the header file:

42 include_once ('./includes/header.html');

43

44 if ($name) { // Show the specific products.

45

46 echo "<h1>$name</h1>\n";

47

48 // Print the product description, if it's not empty.

49 if (!empty($description)) {

50 echo "<p>$description</p>\n";

51 }

52

53 // Get the specific widgets for this product.

54 $q = "SELECT sw_id, color, size, price, in_stock FROM specific_widgets LEFT JOIN colors using
(color_id) LEFT JOIN sizes USING (size_id) WHERE gw_id=$gw_id ORDER BY size, color";

55 $r = mysqli_query($dbc, $q);

56

57 if (mysqli_num_rows($r) > 1) {

58

59 // Print each:

60 echo '<h3>Available Sizes and Colors</h3>';

61

62 while ($row = mysqli_fetch_array($r, MYSQLI_ASSOC)) {

63

64 // Determine the price:

65 $price = (empty($row['price'])) ? $price : $row['price'];

66

67 // Print most of the information:

68 echo "<p>Size: {$row['size']}
Color: {$row['color']}
 Price: \$$price
In Stock?: {$row['in_stock']}";

69

70 // Print cart link:

71 if ($row['in_stock'] == 'Y') {

72 echo "
 Add to Cart";

73 }

74

75 echo '</p>';

76

77 } // End of WHILE loop.

78

79 } else { // No specific widgets here!

80 echo '<p class="error">There are none of these widgets available for purchase at this
time.</p>';

81 }

82

83 } else { // Invalid $_GET['gw_id']!

84 echo '<p class="error">This page has been accessed in error.</p>';

85 }

86

87 // Include the footer file to complete the template:

88 include_once ('./includes/footer.html');

89

90 ?>

Script 5.6 continued

207

E-commerce Techniques

S
h

o
w

in
g

 a Pro
du

ct

2. Begin validating the general widget ID.

$name = NULL;

if (isset($_GET[‘gwid’])) {

$gwid = (int) $_GET[‘gwid’];

if ($gwid > 0) {

First, a flag variable is created, called
$name. The script will refer to this later on
to tell if a valid general widget ID was
received. Next, a check confirms that
some $_GET[‘gwid’] value was received,
which is then typecast to an integer. This
forces $gwid to be an integer. The next
check confirms that the integer has a
positive value. All of this is exactly like
the code in category.php.

3. Retrieve the general widget information
and complete the validation conditionals.

$q = “SELECT name,

➝ default_price, description FROM

➝ general_widgets WHERE gw_id=$gwid”;

$r = mysqli_query($dbc,

➝ $q);

if (mysqli_num_rows($r)

➝ == 1) {

list ($name,

➝ $price, $description) =

➝ mysqli_fetch_array($r, MYSQLI_NUM);

}

} // End of ($gwid > 0) IF.

} // End of isset($_GET[‘gwid’]) IF.

This first query retrieves the general wid-
get’s name, description, and default price.
This last value may or may not be over-
ridden by a specific product’s price.

208

Chapter 5

S
h

o
w

in
g

 a
 P

ro
du

ct

Figure 5.27 The products page must retrieve all the
particular information for the variety of specific
widgets available. It does so using this query.

4. Make the widget name be the page title
and include the header file.

if ($name) {

$page_title = $name;

}

include_once (‘./includes/

➝ header.html’);

If the query in Step 3 did return a row,
then that value (e.g., Bouncy Widget 1)
should be used in the browser window.

5. If a valid general widget ID was used,
print the widget name and description.

if ($name) {

echo “<h1>$category</h1>\n”;

if (!empty($description)) {

echo “<p>$description

➝ </p>\n”;

}

The description field in the database
is optional (it can be NULL), so a check
makes sure it has a value before attempt-
ing to print it.

6. Retrieve all the specific widgets that are
of this general widget type.

$q = “SELECT sw_id, color, size,

➝ price, in_stock FROM

➝ specific_widgets LEFT JOIN colors

➝ USING (color_id) LEFT JOIN sizes

➝ USING (size_id) WHERE gw_id=$gwid

➝ ORDER BY size, color”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 1) {

echo ‘<h3>Available Sizes and

➝ Colors</h3>’;

This query needs to get the specific
widget ID, color, size, price, and stock
status for every widget of the general
widget type. This requires a join across
three tables (Figure 5.27). If at least one
item was returned, a caption is printed.

continues on next page

209

E-commerce Techniques

S
h

o
w

in
g

 a Pro
du

ct

7. Begin printing each specific widget.

while ($row = mysqli_fetch_array($r,

➝ MYSQLI_ASSOC)) {

$price = (empty($row[‘price’]))

➝ ? $price : $row[‘price’];

echo “<p>Size: {$row[‘size’]}<br

➝ />Color: {$row[‘color’]}

➝ Price: \$$price
In Stock?:

➝ {$row[‘in_stock’]}”;

As with the category page, this isn’t the
most attractive layout, just a vertical
list. For each item, the price to use has
to be determined. This is the default
price (associated with the general
widget) unless the specific widget has
a new price.

The size, color, price, and availability are
then printed.

8. Print a link to the shopping cart. Then
complete the item and the while loop.

if ($row[‘in_stock’] == ‘Y’) {

echo “
 <a

➝ href=\”cart.php?sw_id={$row[‘sw_

➝ id’]}&do=add\”>Add to Cart”;

}

echo ‘</p>’;

} // End of WHILE loop.

If the product is in stock, it should be
purchasable. Customers can purchase an
item just by clicking the link (this is a
common method in most e-commerce
sites). The link passes the specific widget
ID to cart.php (Figure 5.28). Each link
also passes another variable called do,
with a value of add. This will provide an
easy way, on the cart page, to know what
should be done (the cart page will allow
for both adding new items and updating
quantities).

Figure 5.28 The HTML source page shows how each
available item is linked to the shopping cart, passing
along the specific item ID in the URL.

210

Chapter 5

S
h

o
w

in
g

 a
 P

ro
du

ct

Figure 5.30 Viewing another product.

Figure 5.29 General widgets may not have any
specific widgets available, resulting in this message.

9. Complete the conditionals begun in
Steps 6 and 5.

} else {

echo ‘<p class=

➝ ”error”>There are none of these

➝ widgets available for purchase at

➝ this time.</p>’;

}

} else {

echo ‘<p class=”error”>This

➝ page has been accessed in

➝ error.</p>’;

}

The first else clause applies if there
are no specific widgets in this category
(Figure 5.29). A message stating such
will be printed in the browser. The sec-
ond else applies if an invalid general
widget ID is passed to this page.

10. Complete the page.

include_once (‘./includes/

➝ footer.html’);

?>

11. Save the file as product.php, place it in
your Web directory, and test in your
Web browser by using the links in
category.php (Figure 5.30).

211

E-commerce Techniques

S
h

o
w

in
g

 a Pro
du

ct

Implementing a
Shopping Cart
The most important aspect of the
e-commerce site is the shopping cart
itself. A shopping cart should:

◆ Allow the customer to add items to
the cart

◆ Allow for different quantities of each item

◆ Allow the customer to alter the
quantities of an item

◆ Allow the customer to remove an item

◆ Not allow the customer to hack an
item’s price

All of the other functionality of an
e-commerce site—from displaying prod-
ucts to processing the order—is separate
from the cart. I’m going to write a shopping
cart page that does all of this as well as
display the cart’s contents (Figure 5.31).
There are a number of ways you can handle
the cart contents, normally storing them
in either a database or a session. I prefer
the latter method, although this does mean
you could potentially have session problems.

This page would be invoked under two
situations: after the user clicks an “Add to
Cart” link and after the user updates the
cart’s contents. The main if-else condition-
al checks for these two situations. Every
time the cart is accessed, even directly with-
out clicking “Add to Cart” or updating the
form, the page will show the current cart’s
contents.

Figure 5.31 The shopping cart page shows the cart’s
current contents as an updatable form.

212

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

1 <?php # Script 5.7 - cart.php

2

3 /*

4 * This is the shopping cart page.

5 * This page has two modes:

6 * - add a product to the cart

7 * - update the cart

8 * The page shows the cart as a form for updating quantities.

9 */

10

11 // Require the configuration file before any PHP code:

12 require_once ('./includes/config.inc.php');

13

14 // Include the header file:

15 $page_title = 'Shopping Cart';

16 include_once ('./includes/header.html');

17

18 echo '<h1>View Your Shopping Cart</h1>';

19

20 // This page will either add to or update the

21 // shopping cart, based upon the value of $_REQUEST['do'];

22 if (isset($_REQUEST['do']) && ($_REQUEST['do'] == 'add')) { // Add new item.

23

24 if (isset($_GET['sw_id'])) { // Check for a product ID.

25

26 // Typecast to an integer:

27 $sw_id = (int) $_GET['sw_id'];

28

29 // If it's a positive integer,

30 // get the item information:

31 if ($sw_id > 0) {

32

33 // Define and execute the query:

34 $q = "SELECT name, color, size FROM general_widgets LEFT JOIN specific_widgets USING
(gw_id) LEFT JOIN colors USING (color_id) LEFT JOIN sizes USING (size_id) WHERE sw_id=$sw_id";

35 $r = mysqli_query($dbc, $q);

(script continues on next page)

Script 5.7 The shopping cart script is the heart of the e-commerce application. It uses a simple multidimensional
session array to store the specific item IDs and the quantities purchased. The script also shows the cart as an
editable form (the quantities only), which is submitted back to this same page.

To make a shopping cart page:

1. Create a new PHP document in your text
editor or IDE (Script 5.7).

<?php # Script 5.7 - cart.php

require_once (‘./includes/

➝ config.inc.php’);

continues on page 217

213

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

36

37 if (mysqli_num_rows($r) == 1) {

38

39 // Get the information:

40 list ($name, $color, $size) = mysqli_fetch_array($r, MYSQLI_NUM);

41

42 // If the cart already contains

43 // one of these widgets, increment the quantity:

44 if (isset($_SESSION['cart'][$sw_id])) {

45

46 $_SESSION['cart'][$sw_id]++;

47

48 // Display a message:

49 echo "<p>Another copy of '$name' in color $color, size $size has been added to
your shopping cart.</p>\n";

50

51 } else { // New to the cart.

52

53 // Add to the cart.

54 $_SESSION['cart'][$sw_id] = 1;

55

56 // Display a message:

57 echo "<p>The widget '$name' in color $color, size $size has been added to your
shopping cart.</p>\n";

58

59 }

60

61 } // End of mysqli_num_rows() IF.

62

63 } // End of ($sw_id > 0) IF.

64

65 } // End of isset($_GET['sw_id']) IF.

66

67 } elseif (isset($_REQUEST['do']) && ($_REQUEST['do'] == 'update')) {

68

69 // Change any quantities...

70 // $k is the product ID.

71 // $v is the new quantity.

72 foreach ($_POST['qty'] as $k => $v) {

73

74 // Must be integers!

75 $pid = (int) $k;

76 $qty = (int) $v;

77

78 if ($qty == 0) { // Delete item.

79 unset ($_SESSION['cart'][$pid]);

80 } elseif ($qty > 0) { // Change quantity.

81 $_SESSION['cart'][$pid] = $qty;

82 }

83

(script continues on next page)

Script 5.7 continued

214

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

84 } // End of FOREACH.

85

86 // Print a message.

87 echo '<p>Your shopping cart has been updated.</p>';

88

89 } // End of $_REQUEST IF-ELSE.

90

91 // Show the shopping cart if it's not empty:

92 if (isset($_SESSION['cart']) && !empty($_SESSION['cart'])) {

93

94 // Retrieve all of the information for the products in the cart:

95 $q = "SELECT sw_id, name, color, size, default_price, price FROM general_widgets LEFT JOIN
specific_widgets USING (gw_id) LEFT JOIN colors USING (color_id) LEFT JOIN sizes USING (size_id)
WHERE sw_id IN (";

96

97 // Add each product ID.

98 foreach ($_SESSION['cart'] as $sw_id => $v) {

99 $q .= (int) $sw_id . ',';

100 }

101 $q = substr ($q, 0, -1) . ') ORDER BY name, size, color';

102 $r = mysqli_query ($dbc, $q);

103

104 if (mysqli_num_rows($r) > 0) {

105

106 // Create a table and a form:

107 echo '<table border="0" width="90%" cellspacing="2" cellpadding="2" align="center">

108 <tr>

109 <td align="left" width="20%">Widget</td>

110 <td align="left" width="15%">Size</td>

111 <td align="left" width="15%">Color</td>

112 <td align="right" width="15%">Price</td>

113 <td align="center" width="10%">Qty</td>

114 <td align="right" width="15%">Total Price</td>

115 </tr>

116 <form action="cart.php" method="post">

117 <input type="hidden" name="do" value="update" />

118 ';

119

120 // Print each item:

121 $total = 0; // Total cost of the order.

122 while ($row = mysqli_fetch_array ($r, MYSQLI_ASSOC)) {

123

124 // Determine the price:

125 $price = (empty($row['price'])) ? $row['default_price'] : $row['price'];

126

127 // Calculate the total and sub-totals:

128 $subtotal = $_SESSION['cart'][$row['sw_id']] * $price;

129 $total += $subtotal;

130 $subtotal = number_format($subtotal, 2);

(script continues on next page)

Script 5.7 continued

215

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

131

132 // Print the row:

133 echo <<<EOT

134 <tr>

135 <td align="left">{$row['name']}</td>

136 <td align="left">{$row['size']}</td>

137 <td align="left">{$row['color']}</td>

138 <td align="right">\$$price</td>

139 <td align="center"><input type="text" size="3" name="qty[{$row['sw_id']}]"
value="{$_SESSION['cart'][$row['sw_id']]}" /></td>

140 <td align="right">\$$subtotal</td>

141 </tr>\n

142 EOT;

143

144 } // End of the WHILE loop.

145

146 // Print the footer, close the table, and the form:

147 echo ' <tr>

148 <td colspan="5" align="right">Total:</td>

149 <td align="right">$' . number_format ($total, 2) . '</td>

150 </tr>

151 <tr>

152 <td colspan="6" align="center">Set an item\'s quantity to 0 to remove it from your
cart.</td>

153 </tr>

154 </table><div align="center"><button type="submit" name="submit" value="update">Update
Cart</button>

155 <button type="button" name="checkout"
value="Checkout">Checkout</button></div>

156 </form>';

157

158 } // End of mysqli_num_rows() IF.

159

160 } else {

161 echo '<p>Your cart is currently empty.</p>';

162 }

163

164 // Include the footer file to complete the template:

165 include_once ('./includes/footer.html');

166

167 ?>

Script 5.7 continued

216

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

2. Include the header file.

$page_title = ‘Shopping Cart’;

include_once (‘./includes/

➝ header.html’);

echo ‘<h1>View Your Shopping

➝ Cart</h1>’;

3. Check for a $_REQUEST[‘do’] variable.

if (isset($_REQUEST[‘do’]) &&

➝ ($_REQUEST[‘do’] == ‘add’)) {

When an item is added to the cart by
clicking the link on the products page,
$_GET[‘do’] will have a value of add.

4. Validate the specific widget ID.

if (isset($_GET[‘sw_id’])) {

$sw_id = (int) $_GET[‘sw_id’];

if ($sw_id > 0) {

Just to be safe, you should make sure
that the specific widget ID is a positive
integer.

5. Retrieve the product information from
the database.

$q = “SELECT name, color, size FROM

➝ general_widgets LEFT JOIN

➝ specific_widgets USING (gw_id) LEFT

➝ JOIN colors USING (color_id) LEFT

➝ JOIN sizes USING (size_id) WHERE

➝ sw_id=$sw_id”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) == 1) {

list ($name, $color, $size) =

mysqli_fetch_array($r, MYSQLI_NUM);

In order to both confirm that a valid
product ID was received, and to be able
to display on this page the name and
details of the product just added, this
query is necessary. It performs a join
across four tables in order to get the gen-
eral widget name as well as the specific
widget’s color and size.

continues on next page

217

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

6. Update the cart.

if (isset($_SESSION[‘cart’]

➝ [$sw_id])) {

$_SESSION[‘cart’][$sw_id]++;

echo “<p>Another copy of ‘$name’

➝ in color $color, size $size has

➝ been added to your shopping

➝ cart.</p>\n”;

} else {

$_SESSION[‘cart’][$sw_id] = 1;

echo “<p>The widget ‘$name’ in

➝ color $color, size $size has been

➝ added to your shopping

➝ cart.</p>\n”;

}

The $_SESSION[‘cart’] array uses the
specific product IDs for the keys and the
quantities ordered for the values. If the
item is already represented in the shop-
ping cart, the assumption is that the
customer wants to add another. In that
case, $_SESSION[‘cart’][$sw_id] is
incremented. Otherwise, a new array
element is added to the cart, with a
value of 1. Messages indicating what
just happened are then printed
(Figures 5.32 and 5.33).

7. Complete the conditionals started in
Steps 4 and 5, and then check to see if
$_REQUEST[‘do’] equals update.

} // End of

➝ mysqli_num_rows() IF.

} // End of ($sw_id > 0)

IF.

} // End of

➝ isset($_GET[‘sw_id’]) IF.

} elseif (isset($_REQUEST[‘do’]) &&

➝ ($_REQUEST[‘do’] == ‘update’)) {

$_REQUEST[‘do’] will have a value of
update when the user updates their cart
by submitting the form. At this point the
shopping cart should attempt to update
every quantity.

Figure 5.33 Adding a new product to the shopping cart.

Figure 5.32 This is the message a customer will see if
they click the same “Add to Cart” link for a product
already in the cart.

218

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

8. Update the cart quantities.

foreach ($_POST[‘qty’] as $k => $v)

{

$pid = (int) $k;

$qty = (int) $v;

if ($qty == 0) {

unset

➝ ($_SESSION[‘cart’][$pid]);

} elseif ($qty > 0) {

$_SESSION[‘cart’][$pid]

➝ = $qty;

}

}

This is pretty simple. Both the key,
which is the product ID, and the value,
which is the quantity, are first typecast
to integers. If the quantity equals 0, then
the item is removed from the cart. This
will also apply if a noninteger is entered
as the quantity. Otherwise, as long as
the quantity is positive, the cart is
updated.

9. Print a message and complete the
$_REQUEST if-else.

echo ‘<p>Your shopping cart has

➝ been updated.</p>’;

} // End of $_REQUEST IF-ELSE.

10. Show the cart contents, if it’s not empty.

if (isset($_SESSION[‘cart’]) &&

➝ !empty($_SESSION[‘cart’])) {

If the customer goes directly to the cart
page, then $_SESSION[‘cart’] will not
be set. If the user deletes everything
from their cart, then $_SESSION[‘cart’]
will be empty.

continues on next page

219

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

11. Create the query for retrieving the cart
content details.

$q = “SELECT sw_id, name, color,

➝ size, default_price, price FROM

➝ general_widgets LEFT JOIN

➝ specific_widgets USING (gw_id)

➝ LEFT JOIN colors USING (color_id)

➝ LEFT JOIN sizes USING (size_id)

➝ WHERE sw_id IN (“;

foreach ($_SESSION[‘cart’] as $sw_id

➝ => $v) {

$q .= (int) $sw_id . ‘,’;

}

$q = substr ($q, 0, -1) . ‘) ORDER

➝ BY name, size, color’;

$r = mysqli_query ($dbc, $q);

The query needs to perform a join
across four tables in order to retrieve
each item’s name, color, size, and price.
An IN clause will append each specific
widget ID to the query. Figure 5.34
shows the query and its result.

12. Begin creating the table and form.

if (mysqli_num_rows($r) > 0) {

echo ‘<table border=”0”

➝ width=”90%” cellspacing=”2”

➝ cellpadding=”2” align=”center”>

<tr>

<td align=”left”

➝ width=”20%”>Widget</td>

<td align=”left”

➝ width=”15%”>Size</td>

<td align=”left”

➝ width=”15%”>Color</td>

<td align=”right”

➝ width=”15%”>Price</td>

<td align=”center”

➝ width=”10%”>Qty</td>

<td align=”right”

➝ width=”15%”>Total

Price</td>

Figure 5.34 The query used by the shopping cart to
retrieve each item’s details.

220

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

</tr>

<form action=”cart.php”

➝ method=”post”>

<input type=”hidden” name=”do”

➝ value=”update” />

‘;

The table generated by this cart will list
the products ordered, as well as how
many and at what price. It will be creat-
ed as an HTML form allowing the cus-
tomer to alter the quantities, even delet-
ing an item altogether. The recipient of
the form will be the cart.php script, this
same page. A hidden input named do
with a value of update will indicate to
this page that a cart update is in order
once the form has been submitted (see
Step 7).

13. Initialize a total variable and begin
retrieving each item.

$total = 0;

while ($row = mysqli_fetch_array

➝ ($r, MYSQLI_ASSOC)) {

14. Calculate the price of the item, the
subtotal, and the total thus far.

$price = (empty($row[‘price’])) ?

➝ $row[‘default_price’] :

➝ $row[‘price’];

$subtotal = $_SESSION[‘cart’]

➝ [$row[‘sw_id’]] * $price;

$total += $subtotal;

$subtotal = number_

➝ format($subtotal, 2);

Remember that the price of an item
could be the default price or the specific
widget price, if it exists. The ternary oper-
ator helps assign the price to use to the
$price variable. Then the subtotal is cal-
culated as the price times the quantity.
This is added to the $total variable and
then formatted (for display purposes).

continues on next page

221

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

15. Print each item in the cart.
echo <<<EOT

<tr>

<td

align=”left”>{$row[‘name’]}</td>

<td

align=”left”>{$row[‘size’]}</td>

<td align=”left”>{$row

➝ [‘color’]}</td>

<td align=”right”>\$$price</td>

<td align=”center”><input

➝ type=”text” size=”3”

➝ name=”qty[{$row[‘sw_id’]}]”

➝ value=”{$_SESSION[‘cart’][$row

➝ [‘sw_id’]]}” /></td>

<td

align=”right”>\$$subtotal</td>

</tr>\n

EOT;

} // End of the WHILE loop.

Because I’m using a mix of HTML
and PHP variables here, the heredoc
syntax is a good way to print it all out
(see Chapter 1 for details). Each record
from the query is a row in the table,
with the name, size, and color printed
as is. Then the price, quantity, and
subtotal are printed. Notice that the
quantity is printed as an HTML
text input, with the current quantity as
the value (Figure 5.35). This will make
it easy for the customer to change the
quantities as needed.

Figure 5.35 Part of the HTML source of the form. For
each input, the name is qty[X], where X is the
specific widget ID and the value is preset as the
current quantity in the cart.

222

Chapter 5

im
pl

em
en

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t

Figure 5.37 The shopping cart after updating two
quantities and deleting another item (compare with
Figure 5.36).

Figure 5.36 The shopping cart after adding
another item.

16. Complete the table and the form.
echo ‘ <tr>

<td colspan=”5”

➝ align=”right”>Total:</td>

<td align=”right”>$’ .

➝ number_format ($total, 2) . ‘</td>

</tr>

<tr>

<td colspan=”6” align=

➝ ”center”>Set an item\’s quantity

➝ to 0 to remove it from your

➝ cart.</td>

</tr>

</table><div align=”center”>

➝ <button type=”submit” name=

➝ ”submit” value=”update”>Update

➝ Cart</button>

➝

➝ <button type=”button”

➝ name=”checkout” value=”Checkout”>

➝ Checkout</button>➝ </div>

</form>’;

The table and form conclude with the
total being printed. Then instructions
show how to remove an item. Finally,
the user is given two buttons: one for
updating the cart (submitting the
form back to this page) and another
for checking out.

17. Complete the page.
}

} else {

echo ‘<p>Your cart is currently

➝ empty.</p>’;

}

include_once

➝ (‘./includes/footer.html’);

?>

18. Save the script as cart.php, upload it to
your server, and test it in your Web
browser (Figures 5.36 and 5.37).

223

E-commerce Techniques

im
plem

en
tin

g
 a S

h
o

ppin
g

 C
art

✔ Tip

■ Chapter 8, “Real-World OOP,” creates a
shopping cart class with this same basic
functionality. By comparing that code
with this code, you can get a glimpse
into procedural versus object-oriented
programming.

Validating Credit Cards
The next step for the consumer in the e-
commerce process would be to check out.
It’s at this point that the site would take or
confirm their name, shipping address, and
other information. If using a registration
and login system, this information would
be pulled out of the database (the customers
table already allows for it). A checkout page
might also apply discounts or gift certifi-
cates to an order, allow the customer to
specify the shipping method (calculating the
shipping accordingly) or choose gift wrap-
ping, and more.

All checkout systems begin the payment
process. For some sites, this is a link to
PayPal or another online payment handler.
For other sites, this is where the credit card
information is taken. This next script will be
a bare-bones implementation of a checkout
page, taking the credit card type, number,
and expiration date, and then validating this
information. For validating credit cards,

224

Chapter 5

Va
li

da
ti

n
g

 C
re

di
t

C
ar

ds

there are certain rules the numbers must
abide by. Different types of cards have dif-
ferent lengths and potentially different set
numbers (e.g., all Visa cards begin with a 4,
all MasterCards with a 5). Every credit card
number, no matter the type, must also pass
the Luhn/Mod 10 algorithm. It’s a compli-
cated little scheme and, coupled with the
card type–specific checks, I find it best to
use existing card validation code, rather
than rolling your own. Toward that end, this
next script will use the PEAR Validate_
Finance_CreditCard class. Although in alpha
stage at this writing, it works just fine. If you
can’t or don’t want to use this PEAR class,
just search the Web for other PHP credit
card validation code. Note that this, or any
similar code, doesn’t test if a credit card
number is approved for purchases. Rather, it
confirms that a number is syntactically cor-
rect. The payment gateway (see the accom-
panying sidebar “Handling Payments”) would
still have to be used to approve a purchase;
this code prevents an attempted purchase
using an knowingly invalid card number.

1 <?php # Script 5.8 - checkout.php

2

3 /*

4 * This is a bare-bones checkout page.

5 * For demonstration purposes, this page only

6 * takes and validates the credit card information.

7 * The assumption is that other information--

8 * name, address, etc.

9 * --would be retrieved from the database after logging in

10 * and also confirmed on this page.

11 */

12

13 // Require the configuration file before any PHP code:

14 require_once ('./includes/config.inc.php');

15

16 // Include the header file:

17 $page_title = 'Checkout';

18 include_once ('./includes/header.html');

19

20 echo '<h1>Checkout</h1>';

21

22 // Set the time zone:

23 date_default_timezone_set('GMT');

24

25 // Check for form submission.

26 if (isset($_POST['submitted'])) {

27

28 // Validate the credit card...

29

30 // Check the expiration date:

31 $year = (int) $_POST['cc_exp_year'];

(script continues on next page)

Script 5.8 This, the final script in the chapter, primarily demonstrates one way to validate a credit card number. It
uses the PEAR Validate_Finance_CreditCard class.

To validate credit cards:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 5.8).

<?php # Script 5.8 - checkout.php

require_once (‘./includes/

➝ config.inc.php’);

$page_title = ‘Checkout’;

include_once (‘./includes/

➝ header.html’);

echo ‘<h1>Checkout</h1>’;

continues on page 228

225

E-commerce Techniques

Validatin
g

 Credit C
ards

32 $month = (int) $_POST['cc_exp_month'];

33

34 // Get the current date:

35 $today = getdate();

36

37 // Validate the expiration date:

38 if (($year > $today['year']) OR

39 (($year == $today['year']) AND ($month >= $today['mon']))

40) {

41

42 // Include the class definition:

43 require ('Validate/Finance/CreditCard.php');

44

45 // Create the object:

46 $cc = new Validate_Finance_CreditCard();

47

48 // Validate the card number and type:

49 if ($cc->number($_POST['cc_number'], $_POST['cc_type'])) {

50

51 // Use XXX to process the order!!!

52 // If payment goes through, complete the order!

53 echo '<p>Your order is complete (but not really).</p>';

54 include_once ('./includes/footer.html');

55 exit();

56

57 } else { // Invalid card number or type.

58 echo '<p class="error">Please enter a valid credit card number and type.</p>';

59 }

60

61 } else { // Invalid date.

62 echo '<p class="error">Please enter a valid expiration date.</p>';

63 }

64

65 }

66

67 // Show the form.

68 ?>

69 <form action="checkout.php" method="post">

70 <input type="hidden" name="submitted" value="true" />

71 <table border="0" width="90%" cellspacing="2" cellpadding="2" align="center">

72 <tr>

73 <td align="right">Credit Card Type:</td>

74 <td align="left"><select name="cc_type">

75 <option value="amex">American Express</option>

76 <option value="visa">Visa</option>

77 <option value="mastercard">MasterCard</option>

(script continues on next page)

Script 5.8 continued

226

Chapter 5

Va
li

da
ti

n
g

 C
re

di
t

C
ar

ds

78 <option value="diners club">Diners Club</option>

79 <option value="enroute">enRoute</option>

80 </select></td>

81 </tr>

82

83 <tr>

84 <td align="right">Credit Card Number:</td>

85 <td align="left"><input type="text" name="cc_number" maxlength="20" /></td>

86 </tr>

87

88 <tr>

89 <td align="right">Expiration Date:</td>

90 <td align="left"><select name="cc_exp_month">

91 <option value="">Month</option>

92 <option value="1">Jan</option>

93 <option value="2">Feb</option>

94 <option value="3">Mar</option>

95 <option value="4">Apr</option>

96 <option value="5">May</option>

97 <option value="6">Jun</option>

98 <option value="7">Jul</option>

99 <option value="8">Aug</option>

100 <option value="9">Sep</option>

101 <option value="10">Oct</option>

102 <option value="11">Nov</option>

103 <option value="12">Dec</option>

104 </select> <select name="cc_exp_year">

105 <option value="">Year</option>

106 <?php for ($start = date('Y'), $end = date('Y') + 10; $start < $end; $start++) {

107 echo "<option value=\"$start\">$start</option>\n";

108 }

109 ?>

110 </select></td>

111 </tr>

112

113 <tr>

114 <td align="center" colspan="2"><button type="submit" name="submit"
value="update">Checkout</button></td>

115 </tr>

116 </table>

117 </form>

118

119 <?php

120 // Include the footer file to complete the template:

121 include_once ('./includes/footer.html');

122

123 ?>

Script 5.8 continued

227

E-commerce Techniques

Validatin
g

 Credit C
ards

228

Chapter 5

Va
li

da
ti

n
g

 C
re

di
t

C
ar

ds

2. Set the default time zone.

date_default_timezone_set(‘GMT’);

As of PHP 5.1, you should set the time
zone using date_default_timezone_set()
prior to calling a date function. This line
could also logically go into the configura-
tion file.

3. Check for a form submission.

if (isset($_POST[‘submitted’])) {

This page will both display and handle
the form.

4. Typecast the expiration month and year.

$year = (int) $_POST[‘cc_exp_year’];

$month = (int) $_POST[‘cc_

➝ exp_month’];

Even though these values should come
from pull-down menus, they should
still be typecast as integers for sake of
security.

5. Make sure the expiration date is in the
future.

$today = getdate();

if (($year > $today[‘year’]) OR

(($year == $today[‘year’]) AND

➝ ($month >= $today[‘mon’]))

) {

This conditional verifies that the expira-
tion year is in the future or, if the year is
this year, that the month is not earlier
than the current month.

6. Create a Validate_Finance_CreditCard
object and use its number() method.

require (‘Validate/Finance/

➝ CreditCard.php’);

$cc = new Validate_Finance_

➝ CreditCard();

if ($cc->number($_POST[‘cc_number’],

➝ $_POST[‘cc_type’])) {

See Chapter 6, “Basic Object-Oriented
Programming,” if you don’t understand
these lines. You can also refer to
Chapter 12, “Using PEAR.”

The number() function is called, provid-
ing the credit card number and type. It
returns a Boolean value indicating the
validity of that number for that type.

7. If the credit card number is valid, com-
plete the checkout process.

echo ‘<p>Your order is complete (but

➝ not really).</p>’;

include_once (‘./includes/

➝ footer.html’);

exit();

Instead of these steps, a real e-commerce
site would now connect to the payment
gateway (see the sidebar). Here, a simple
message is printed, then the footer
included, and the script exited.

8. Complete the conditionals begun in
Steps 2, 5, and 6.

} else {

echo ‘<p

➝ class=”error”>Please enter a valid

➝ credit card number and type.</p>’;

}

} else {

echo ‘<p class=”error”>

➝ Please enter a valid expiration

➝ date.</p>’;

}

}

The first else applies if the submitted
number and type do not pass the $cc-
>number() test. The second applies if the
expiration date is in the past or invalid.

Figure 5.38 The form for taking the credit card
information.

9. Begin the HTML form.

?>

<form action=”checkout.php”

➝ method=”post”>

<input type=”hidden”

➝ name=”submitted” value=”true” />

10. Create the form elements for the credit
card type and number.

<table border=”0” width=”90%”

➝ cellspacing=”2” cellpadding=”2”

➝ align=”center”>

<tr>

<td align=”right”>Credit

➝ Card Type:</td>

<td align=”left”><select

➝ name=”cc_type”>

<option value=”amex”>

➝ American Express</option>

<option value=”visa”>

➝ Visa</option>

<option value=

➝ ”mastercard”>MasterCard</option>

<option value=”diners

➝ club”>Diners Club</option>

<option

value=”enroute”>enRoute</option>

</select></td>

</tr>

<tr>

<td align=”right”>Credit

➝ Card Number:</td>

<td align=”left”><input

➝ type=”text” name=”cc_number”

➝ maxlength=”20” /></td>

</tr>

The HTML form is pretty simple
(Figure 5.38).

continues on next page

229

E-commerce Techniques

Validatin
g

 Credit C
ards

11. Create the form elements for the
expiration date.

<tr>

<td align=”right”>Expiration

➝ Date:</td>

<td align=”left”><select

➝ name=”cc_exp_month”>

<option value=””>Month</option>

<option value=”1”>Jan</option>

<option value=”2”>Feb</option>

<option value=”3”>Mar</option>

<option value=”4”>Apr</option>

<option value=”5”>May</option>

<option value=”6”>Jun</option>

<option value=”7”>Jul</option>

<option value=”8”>Aug</option>

<option value=”9”>Sep</option>

<option value=”10”>Oct</option>

<option value=”11”>Nov</option>

<option value=”12”>Dec</option>

</select> <select name=”cc_

➝ exp_year”>

<option value=””>Year</option>

<?php for ($start = date(‘Y’),

➝ $end = date(‘Y’) + 10; $start <

➝ $end; $start++) {

echo “<option value=\”$start\”>

➝ $start</option>\n”;

}

?>

</select></td>

</tr>

One thing I like to do with the expira-
tion year is use PHP’s date() function
to automatically list the next ten years
as options (Figure 5.39). This way, the
HTML will always be correct.

Figure 5.39 The HTML source code shows the
dynamically generated years.

230

Chapter 5

Va
li

da
ti

n
g

 C
re

di
t

C
ar

ds

Figure 5.41 Invalid numbers result in an error, with the
form redisplayed.

Figure 5.40 Valid card numbers and types create this
result.

12. Complete the HTML form.

<tr>

<td align=”center”

➝ colspan=”2”><button type=”submit”

➝ name=”submit” value=”update”>

➝ Checkout</button></td>

</tr>

</table>

</form>

13. Complete the page.

<?php

include_once (‘./includes/

➝ footer.html’);

?>

14. Save the file as checkout.php, place it
in your Web directory, and test in your
Web browser (Figures 5.40 and 5.41).

For valid test credit card numbers to
use, search the Web.

✔ Tip

■ For more information and code to
complete this example, see the book’s
corresponding Web site and supporting
forum.

231

E-commerce Techniques

Validatin
g

 Credit C
ards

Handling Payments

Unfortunately it’s really impossible to create a complete e-commerce application in a book.
The reason is that how the most important aspect—the commerce—is handled varies
greatly. This requires some system, called a payment gateway, to get the money from the
customer’s account to the store’s account.

Normally a store creates an account with a chosen gateway. Every gateway I’ve ever worked
with provides an API (application programming interface) for connecting your site to their
system. What this really comes down to is submitting a form with certain information—the
store’s ID, the customer’s information, the credit card information, the amount of the trans-
action, and so on—to the gateway’s server. The server processes the information and then
returns to the store’s site a code indicating the success of the transaction.

When it comes time for you to implement a complete e-commerce solution, you’ll need
to choose a gateway and then program the final steps of your site to match the gateway’s
methodologies. It’s not at all hard; it’s just not something that can really be done in a book.

232

Chapter 5

Va
li

da
ti

n
g

 C
re

di
t

C
ar

ds

Object-oriented programming (commonly abbreviated OOP) is a relative newcomer
to the world of programming. Before the advent of OOP, languages such as Pascal
and BASIC solved problems through linear programming. As projects get bigger,
perhaps requiring teams of developers, this approach becomes too time-consuming
and error-prone. Hence OOP, which allows programmers to more rapidly develop,
use, and manage sophisticated applications.

Similarly, OOP is quite new to PHP. Version 3 of the language had rudimentary sup-
port, and version 4 made some nice improvements on this front. It’s in PHP 5 that
OOP support has become closer to what true OOP languages, like Java and C#, offer.
Although PHP is still not as strong in its OOP feature set as it could be, object-oriented
programming in PHP has a lot going for it. While expert PHP programmers can go
through their entire careers without ever using objects without significant limitations
on what they can do, most find some knowledge of the subject beneficial.

In this chapter, and the next (Chapter 7, “Advanced OOP”), I will only be using objects
as they function in PHP 5 and later. This is very important: If you’re using PHP 4, most
of this code will not work! (And, frankly, compared with PHP 5, objects in PHP 4 aren’t
even worth learning.) Here, I will use somewhat mundane examples, as the focus of
the chapter is more on explaining OOP theory and syntax to the uninitiated. In sub-
sequent chapters, practical, real-world code will be used. Through multiple examples
and plenty of explanation, I hope in this book to fully demonstrate not just how you
do object-oriented programming in PHP but also when and why.

233

Basic Object-
Oriented
Programming

6
B

asic O
bject-O

rien
ted Pro

g
ram

m
in

g

OOP Theory
The first thing that you must understand
about OOP is that it presents not just new
syntax but a new way of thinking about a
problem. By far the most common mistake
beginning OOP programmers make is to
inappropriately apply OOP. PHP will tell you
when you make a syntactical mistake, but
you’ll need to learn how to avoid theoretical
mistakes, too.

The two most important terms for OOP are
class and object. A class is a generalized
definition of a thing. Think of classes as a
blueprint. An object is the implementation
of that thing. Think of objects as the house
built using the blueprint. To program using
OOP, you design your classes and then
implement them in your programs as needed.

One of the tenets of OOP is modularity:
breaking applications into specific subparts.
Web sites do many, many things: interact
with databases, handle forms, send emails,
generate HTML, etc. Each of these things
can be a module, which is to say a class. By
separating unrelated (albeit interacting) ele-
ments, code can be developed independent-
ly, maintenance and updates may be less
messy, and debugging can be simplified.

Related to modularity is abstraction: classes
should be defined broadly. This is a common
and understandable beginner’s mistake. As
an example, instead of designing a class for
interacting with a MySQL database, you
should make one that interacts with a non-
specific database. From there, using inheri-
tance and overriding, you would define a
more particular class for MySQL. This class
would look and act like the general database
class, but some of its functionality would be
customized.

234

Chapter 6

O
O

P
Th

eo
ry

Another principle of OOP is encapsulation:
separating out and hiding how something is
accomplished. A properly designed object
can do everything you need it to do without
your ever knowing how it’s being done.
Coupled with encapsulation is access control
or visibility, which dictates how accessible
aspects of the object are.

Those are the main concepts behind OOP.
You’ll see how they play out in the many OOP
examples in this book. But before getting
into the code, I’ll talk about OOP’s dark side.

First of all, OOP is not a better way to program,
just a different way. In some cases, it may be
better and in some cases worse, but OOP is
not the Mount Everest of all things program-
ming. And in PHP in particular, you can
have a long, happy, and viable programming
career without OOP. However, you might
have a more productive, easier, and lucrative
career using it (emphasis on “might”).

As for the technical negatives of OOP, use of
objects can (often) be less efficient than a
procedural approach (just as defining and
invoking your own functions can be less effi-
cient). The performance difference between
using an object or not may be imperceptible
in some cases, but you should be aware of
this potential side effect.

A second issue that arises is what I have
already pointed out: misuse and overuse of
objects. Making this mistake isn’t the end of
the world, of course, or even cause for your
applications to fail, but like trying to use a
screwdriver to drive a nail, it’s just not a
good thing to do.

True object-oriented programming is smart,
purposeful object-oriented programming!

Design Patterns

A subject you’ll hear in correlation to
OOP is patterns (or design patterns). By
following the principles of OOP, you’ll
come up with a class, which is a blueprint
for building a thing. Every time you have
an application that requires that thing,
you use that class. If your application
requires a variant of that thing, you use
an extension of that class.

The more you program, the more you
realize that most applications do the
same things (or variants of those things).
This is to say that most programs have
the same problems that must be solved.
With this in mind, design patterns are
accepted solutions to common problems.
They aren’t necessarily specific code
implementations but more like a tem-
plate to apply. Smart people have thought
about these issues and come up with the
best approach. If you find yourself faced
with a common problem, use a design
pattern instead of reinventing the wheel.

Defining a Class
OOP programming begins with classes, a
class being an abstract definition of a thing:
what information must be stored and what
functionality must be possible. A philosoph-
ical example of a class would be Human. A
Human class would be able to store informa-
tion such as gender, height, weight, birth
date, and so forth. The functionality of a
Human could be eating, sleeping, working,
and more.

Syntactically, a class definition begins with
the word class, followed by the name of the
class. The class name cannot be a reserved
word and is often written in uppercase, as a
convention (I always use lowercase for my
variables but stick with uppercase classes).
After the class name, the class definition is
placed within curly braces:

class ClassName {

}

Classes contain variables and functions,
which are referred to as attributes (or proper-
ties) and methods, respectively (you’ll see
other terms, too). Functions are easy to add
to classes:

class ClassName {

function function_name() {

// Function code.

}

}

The methods you define within a class are
defined just like functions outside of a
class. They can take arguments, have
default values, return values, and so on.

continues on next page

235

Basic Object-Oriented Programming

D
efin

in
g

 a Class

Attributes within classes are a little different
than variables outside of classes. First of all,
all attributes must be prefixed with a key-
word indicating the variable’s visibility. The
options are: public, private, and protected.
Unfortunately these values won’t mean any-
thing to you until you understand inheri-
tance (in Chapter 7), so until then, just use
public:

class ClassName {

public $var1, $var2;

function function_name() {

// Function code.

}

}

As shown here, a class’s attributes are listed
before any method definitions.

The second distinction between attributes
and normal variables is that, if an attribute
is initialized with a set value, that value
must be a constant and not the result of an
expression.

class GoodClass {

public $var1 = 123;

public $var2 = ‘string’;

public $var3 = array(1, 2, 3);

}

class BadClass {

// These won’t work!

public $today = get_date();

public $square = $num * $num;

}

236

Chapter 6

D
ef

in
in

g
 a

 C
la

ss

Note that you don’t have to initialize the
attributes with a value. And, aside from
declaring variables, all of a class’s code goes
within its methods. You could not do this:

class BadClass {

public $num = 2;

public $square;

$square = $num * $num; // No!

}

With all of this in mind, let’s create an easy,
almost useless class just to make sure it’s all
working fine and dandy. Naturally, I’ll use a
Hello, world! example (it’s either that or foo
and bar). To make it a little more interesting,
this class will be able to say Hello, world! in
different languages.

1 <?php # Script 6.1 - HelloWorld.php

2

3 /* This page defines the HelloWorld
class.

4 * The class says “Hello, world!” in
different languages.

5 */

6

7 class HelloWorld {

8

9 // This method prints a greeting.

10 // It takes one argument: the
language to use.

11 // Default language is English.

12 function say_hello ($language =
‘English’) {

13

14 // Put the greeting within
P tags.

15 echo ‘<p>’;

16

(script continues on next page)

Script 6.1 This simple class will allow you to say Hello,
world! through the magic of objects! (Okay, so it’s
completely unnecessary, but it’s a fine introductory
demonstration.)

To define a class:

1. Create a new PHP document in your text
editor or IDE (Script 6.1).

<?php # Script 6.1 - HelloWorld.php

2. Begin defining the class.

class HelloWorld {

Using the syntax outlined earlier, start
with the keyword class, followed by the
name of the class, followed by the open-
ing curly brace (which could go on the
next line, if you prefer).

For the class name, I use the “camel”
capitalization: initial letters capitalized
as are the first letter of new words. This
is a pseudo-standardized convention in
many OOP languages.

3. Begin defining the first (and only)
method.

function say_hello ($language =

➝ ‘English’) {

This class currently contains no attrib-
utes (variables), which would have been
declared before the methods. This
method is called say_hello(). It takes
one argument: the language for the
greeting.

For the methods, I normally use all low-
ercase and separate words with an
underscore. This is the same naming
scheme I use for functions outside of
classes.

4. Start the method’s code.

echo ‘<p>’;

The method will print Hello, world! in
one of several languages. The message
will be wrapped within HTML paragraph
tags, begun here.

continues on next page

237

Basic Object-Oriented Programming

D
efin

in
g

 a Class

5. Add the method’s switch.

switch ($language) {

case ‘Dutch’:

echo ‘Hello, wereld!’;

break;

case ‘French’:

echo ‘Bonjour, monde!’;

break;

case ‘German’:

echo ‘Hallo, Welt!’;

break;

case ‘Italian’:

echo ‘Ciao, mondo!’;

break;

case ‘Spanish’:

echo ‘¡Hola, mundo!’;

break;

case ‘English’:

default:

echo ‘Hello, world!’;

break;

}

The switch prints different messages
based upon the chosen language. English
is the default language, both in the
switch and as the value of the $language
argument (see Step 3). Obviously you can
easily expand this switch to include
more languages, like non-Western ones.

17 // Print a message specific to a
language.

18 switch ($language) {

19 case ‘Dutch’:

20 echo ‘Hello, wereld!’;

21 break;

22 case ‘French’:

23 echo ‘Bonjour, monde!’;

24 break;

25 case ‘German’:

26 echo ‘Hallo, Welt!’;

27 break;

28 case ‘Italian’:

29 echo ‘Ciao, mondo!’;

30 break;

31 case ‘Spanish’:

32 echo ‘¡Hola, mundo!’;

33 break;

34 case ‘English’:

35 default:

36 echo ‘Hello, world!’;

37 break;

38 } // End of switch.

39

40 // Close the HTML paragraph.

41 echo ‘</p>’;

42

43 } // End of say_hello() function.

44

45 } // End of HelloWorld class.

46

47

48 ?>

Script 6.1 continued

238

Chapter 6

de
fi

n
in

g
 a

 C
la

ss

6. Complete the say_hello() method.

echo ‘</p>’;

}

You just need to close the HTML para-
graph tag.

7. Complete the class and the PHP page.

}

?>

8. Save the file as HelloWorld.php.

You’ve now created your first class. This
isn’t, to be clear, a good use of OOP, but
it starts the process and you’ll learn
better implementations of the concept
in due time.

✔ Tips

■ In PHP 4, attributes (class variables) were
identified using:

var $variable_name;

This is still supported in PHP 5, although
not recommended unless you need to
program for backward compatibility.

■ Class methods can also have a visibility,
by preceding the function definition with
the appropriate keyword. If not stated, all
methods have an assumed definition of

public function function_name() {…

■ The class stdClass is already in use inter-
nally by PHP and cannot be declared in
your own code.

239

Basic Object-Oriented Programming

D
efin

in
g

 a Class

Creating an Object
Using OOP is a two-step process. The first—
defining a class—you just did when you
wrote the HelloWorld class. The second step
is to make use of that class by creating an
object (or a class instance).

Going back to my Human class analogy, an
instance of this class may be called Jude.
Jude’s attributes are a gender of male, a
height of about 50 inches, a weight of 65
pounds, and a birth date of November 15,
1998. Jude is one instance of the Human class
and, as you may have noticed, is also a child.
A second instance, Kelsey, has a female gen-
der, a height of 5 feet, a weight of 90 pounds,
and a birth date of April 11, 1996. Both Jude
and Kelsey are separate objects derived from
the same class. They are similar in theory,
different in actuality.

Creating an object is remarkably easy in
PHP once you’ve defined your class. It
involves the keyword new:

$object = new ClassName();

Now the variable $object exists and is of
type ClassName (instead of type string or
array).

To call the methods of the class, you use this
syntax:

$object->method_name();

If a method takes arguments, you would use:

$object->method_name(‘value’, 32, true);

Once you’ve finished with an object, you can
delete it as you would any variable:

unset($object);

Simple enough! Let’s go ahead and quickly
make use of the HelloWorld class.

240

Chapter 6

Cr
ea

ti
n

g
 a

n
 O

bj
ec

t

To create an object:

1. Create a new PHP document in your text
editor or IDE, beginning with the stan-
dard HTML (Script 6.2).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Hello, world!</title>

</head>

<body>

<?php # Script 6.2 - hello_object.php

The class definition file itself contains
no HTML, as it’s not meant to be used
on its own. This PHP page will include
all of the code necessary to make a valid
XHTML page.

2. Include the class definition.

require_once (‘HelloWorld.php’);

In order to create an instance of a class,
the PHP script must have access to that
class definition. As the definition is
stored in a separate file, that file must be
included here. By using require_once()
(as opposed to include_once()), the
script will stop executing with a fatal
error if the file could not be included
(and there really is no point in continu-
ing without this file).

continues on next page

241

Basic Object-Oriented Programming

Creatin
g

 an
 O

bject

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

6 <title>Hello, world!</title>

7 </head>

8 <body>

9 <?php # Script 6.2 - hello_object.php

10

11 /* This page uses the HelloWorld class.

12 * This page just says “Hello, world!”.

13 */

14

15 // Include the class definition:

16 require_once (‘HelloWorld.php’);

17

18 // Create the object:

19 $obj = new HelloWorld();

20

21 // Call the say_hello() method:

22 $obj->say_hello();

23

24 // Say hello in different languages:

25 $obj->say_hello(‘Italian’);

26 $obj->say_hello(‘Dutch’);

27 $obj->say_hello(‘French’);

28

29 // Delete the object:

30 unset($obj);

31

32 ?>

33 </body>

34 </html>

Script 6.2 In this page, PHP uses the defined class in
order to say Hello, world! in several different
languages.

3. Create the object.

$obj = new HelloWorld();

This one line of code is all there is to it!
You can name the object variable any-
thing you’d like, of course.

4. Invoke the say_hello() method.

$obj->say_hello();

This line of code will call the say_hello()
method, which is part of the $obj object.
Since the method is not being given any
arguments, the greeting will be in the
default language of English.

5. Say hello in a few more languages.

$obj->say_hello(‘Italian’);

$obj->say_hello(‘Dutch’);

$obj->say_hello(‘French’);

An object’s methods can be called

multiple times, like any other function.
Different arguments are provided to

vary the result.

6. Delete the object and complete
the page.

unset($obj);

?>

</body>

</html>

You don’t technically have to delete the
object, as it will be deleted as soon as the
script ends. Still, I think it’s better pro-
gramming form to tidy up like this.

242

Chapter 6

Cr
ea

ti
n

g
 a

n
 O

bj
ec

t

Analyzing the
HelloWorld Example

As I state in the first section of this
chapter, OOP is both syntax and theory.
For this first example, the HelloWorld
class, the emphasis is on the syntax.
Hopefully you can already see that this
isn’t great use of OOP. But why? Well, it’s
both too specific and too simple. Having
an object print one string is a very focused
idea, whereas classes should be much
more abstract. It also makes absolutely
no sense to use all this code—and the
extra memory required—for one echo
statement. It’s nice that the object han-
dles different languages, but still…

The HelloWorld class does succeed in a
couple of ways, though. It does demon-
strate some of the syntax. And it is
reusable: if you have a project that needs
to say Hello, world! dozens of times, this
one object will do it. And if you need to
change it to Hello, World! (with a capital
“W”), edit just the one file and you’re
golden. Finally, this class kind of reflects
the notion of encapsulation: you can
use the object to say Hello, world! in mul-
tiple languages without any knowledge of
how the class does that.

Figure 6.1 The resulting Web page (the examples will
get better, I promise).

7. Save the file as hello_object.php and
place it in your Web directory, along
with HelloWorld.php.

You don’t have to place both documents
in the same directory, but if they are
stored separately, you would need to
change the require_once() line
accordingly.

8. Test hello_object.php by viewing it in
your Web browser (Figure 6.1).

Note that you should run hello_
object.php, not HelloWorld.php in
your Web browser.

✔ Tips

■ Class names are not case-sensitive.
However, object names, like any variable
in PHP, are case-sensitive.

■ Because function names in PHP are
not case-sensitive, the same is true for
method names in classes.

243

Basic Object-Oriented Programming

Creatin
g

 an
 O

bject

1 <?php # Script 6.3 - Rectangle.php

2

3 /* This page defines the Rectangle
class.

4 * The class contains two attributes:
width and height.

5 * The class contains four methods:

6 * - set_size()

7 * - get_area()

8 * - get_perimeter()

9 * - is_square()

10 */

11

12 class Rectangle {

13

14 // Declare the attributes:

15 public $width = 0;

16 public $height = 0;

17

18 // Method to set the dimensions.

19 function set_size($w = 0, $h = 0) {

20 $this->width = $w;

21 $this->height = $h;

22 }

23

24 // Method to calculate and return the
area.

25 function get_area() {

26 return ($this->width *
$this->height);

27 }

28

(script continues on next page)

Script 6.3 This class is much more rounded than the
HelloWorld example. It contains two attributes—for
storing the rectangle’s width and height—and four
methods.

The $this Attribute
The HelloWorld class does actually do
something, which is nice, but it’s a fairly
minimal example. The class does include a
method, but it does not contain any attrib-
utes (variables).

As I mention in the section “Defining a
Class,” class attributes:

◆ Are variables

◆ Must be declared as public, private, or
protected (I’ll use only public in this
chapter)

◆ If initialized, must be given a static value
(not the result of an expression)

Those are the rules for defining a class’s attrib-
utes, but using those attributes requires one
more piece of information. The problem is
that there’s no easy way to access a class’s
attributes within the methods. For example:

class MyClass {

public $var;

function do() {

// This won’t work:

print $var;

}

}

The do() method cannot access $var like
that. The solution is a special variable called
$this. Within a method, you can refer to
the instance of a class and its attributes by
using the $this->attribute_name syntax.

Rather than over-explaining this concept,
it’d be best just to go right into another
example putting this new knowledge into
action. This next, much more practical,
example will define a class representing a
rectangle.

244

Chapter 6

Th
e

$t
h

is
 A

tt
ri

bu
te

To use the $this variable:

1. Create a new PHP document in your text
editor or IDE (Script 6.3).

<?php # Script 6.3 - Rectangle.php

2. Begin defining the class.

class Rectangle {

3. Declare the attributes.

public $width = 0;

public $height = 0;

This class has two attributes: one for the
rectangle’s width and another for its
height. Both are initialized to 0.

4. Create a method for setting the rectangle’s
dimensions.

function set_size($w = 0, $h = 0) {

$this->width = $w;

$this->height = $h;

}

The set_size() method takes two argu-
ments, corresponding to the width and
height. Both have default values of 0, just
to be safe.

Within the method, the class’s attrib-
utes are given values using the numbers
to be provided when this method is
called (assigned to $w and $h). Using
$this->width and $this->height refers
to this class’s $width and $height

attributes.

continues on next page

245

Basic Object-Oriented Programming

Th
e $th

is Attribu
te

29 // Method to calculate and return the
perimeter.

30 function get_perimeter() {

31 return (($this->width +
$this->height) * 2);

32 }

33

34 // Method to determine if the
rectangle

35 // is also a square.

36 function is_square() {

37

38 if ($this->width == $this-
>height) {

39 return true; // Square

40 } else {

41 return false; // Not a square

42 }

43

44 }

45

46 } // End of Rectangle class.

47

48 ?>

Script 6.3 continued

To use the Rectangle class:

1. Create a new PHP document in your text
editor or IDE, beginning with the stan-
dard HTML (Script 6.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Rectangle</title>

</head>

<body>

<?php # Script 6.4 - rectangle1.php

2. Include the class definition.

require_once (‘Rectangle.php’);

3. Define the necessary variables and print
an introduction.

$width = 42;

$height = 7;

echo “<h3>With a width of $width and

➝ a height of $height...</h3>”;

continues on page 248

5. Create a method that calculates and
returns the rectangle’s area.

function get_area() {

return ($this->width *

➝ $this->height);

}

This method doesn’t need to take any
arguments, as it can access the class’s
attributes via $this. Calculating the area
of a rectangle is simple: multiply the
width times the height. This value is
then returned.

6. Create a method that calculates and
returns the rectangle’s perimeter.

function get_perimeter() {

return (($this->width +

➝ $this->height) * 2);

}

This method is like get_area(), except it
uses a different calculation.

7. Create a final method that indicates if
the rectangle is also a square.

function is_square() {

if ($this->width ==

➝ $this->height) {

return true;

} else {

return false;

}

}

This final method compares the rectan-
gle’s dimensions. If they are the same, the
Boolean true is returned, indicating the
rectangle is a square. Otherwise, false is
returned.

8. Complete the class and the PHP page.

}

?>

9. Save the file as Rectangle.php.

246

Chapter 6

Th
e

$t
h

is
 A

tt
ri

bu
te

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Rectangle</title>

7 </head>

8 <body>

9 <?php # Script 6.4 - rectangle1.php

10

11 /* This page uses the Rectangle class.

12 * This page shows a bunch of information

13 * about a rectangle.

14 */

15

16 // Include the class definition:

17 require_once (‘Rectangle.php’);

18

19 // Define the necessary variables:

20 $width = 42;

21 $height = 7;

22

23 // Print a little introduction:

24 echo “<h3>With a width of $width and a height of $height...</h3>”;

25

26 // Create a new object:

27 $r = new Rectangle();

28

29 // Assign the rectangle dimensions.

30 $r->set_size($width, $height);

31

32 // Print the area.

33 echo ‘<p>The area of the rectangle is ‘ . $r->get_area() . ‘</p>’;

34

35 // Print the perimeter.

36 echo ‘<p>The perimeter of the rectangle is ‘ . $r->get_perimeter() . ‘</p>’;

37

38 // Is this a square?

39 echo ‘<p>This rectangle is ‘;

40 if ($r->is_square()) {

41 echo ‘also’;

42 } else {

43 echo ‘not’;

44 }

45 echo ‘ a square.</p>’;

46

47 // Delete the object:

48 unset($r);

49

50 ?>

51 </body>

52 </html>

Script 6.4 The Rectangle class is used in this PHP script. The rectangle’s dimensions are first assigned to the class’s
attributes by invoking the set_size() method, and then various properties of the rectangle are reported.

247

Basic Object-Oriented Programming

Th
e $th

is Attribu
te

4. Create the object and assign the rectan-
gle’s dimensions.

$r = new Rectangle();

$r->set_size($width, $height);

The first line creates an object of type
Rectangle. The second line assigns the
values of the variables in this script—
$width and $height—to the object’s
attributes. The values here are assigned
to $w and $h in the set_size() method
when it’s called, which are then assigned
to $this->width and $this->height with-
in that method.

5. Print the rectangle’s area.

echo ‘<p>The area of the rectangle is

➝ ‘ . $r->get_area() . ‘</p>’;

To print the rectangle’s area, you only
need to have the object tell you what that
value is by referring to the get_area()
method. As this method returns the area
(instead of printing it), it can be used in
an echo statement like this.

6. Print the rectangle’s perimeter.

echo ‘<p>The perimeter of the

➝ rectangle is ‘ .

➝ $r->get_perimeter() . ‘</p>’;

This is a variation on the code in Step 5.

248

Chapter 6

Th
e

$t
h

is
 A

tt
ri

bu
te

Analyzing the
Rectangle Example

The Rectangle class as defined isn’t per-
fect, but it’s pretty good, if I do say so
myself. It encapsulates all the things you
might want to do with or know about a
rectangle. The methods also only handle
calculations and return values; no HTML
is used within the class, which is a better
way to design.

One criticism may be that the class is too
specific. Logically, if you’re doing a lot of
geometry, the Rectangle class might be
an inherited class from a broader Shape.

From the first two examples you can see
the benefit of objects: the ability to create
your own data type. Whereas a string is a
variable type whose only power is to con-
tain characters, the Rectangle is a new,
powerful type with all sorts of features.

Figure 6.4 If the width and height are the same, the
rectangle is also a square.

Figure 6.3 Changing just the $width and $height
values in the script results in all new calculations
(compare with Figure 6.2).

Figure 6.2 Various attributes for a rectangle are
revealed using the Rectangle class.

7. Indicate whether or not this rectangle is
also a square.

echo ‘<p>This rectangle is ‘;

if ($r->is_square()) {

echo ‘also’;

} else {

echo ‘not’;

}

echo ‘ a square.</p>’;

Since the is_square() method returns a
Boolean value, I can invoke it as a condi-
tion. This code will print either This rec-
tangle is also a square. or This rectangle
is not a square.

8. Delete the object and complete the page.

unset($r);

?>

</body>

</html>

9. Save the file as rectangle1.php and
place it in your Web directory, along
with Rectangle.php.

10. Test rectangle1.php by viewing it in
your Web browser (Figure 6.2).

11. Change the variables’ values in
rectangle1.php and rerun it in
your Web browser (Figures 6.3
and 6.4).

continues on next page

249

Basic Object-Oriented Programming

Th
e $th

is Attribu
te

✔ Tips

■ Having get_ and set_ methods in a class
is a common convention. Methods start-
ing with set_ are used to assign values to
class attributes. Methods starting with
get_ are used to return values: either
attributes or the results of calculations.

■ Methods can call each other, just as they
would any other function. To do so, you’ll
need to use $this again. The following is
unnecessary but valid:

function get_area() {

if ($this->is_square()) {

return ($this->width * 2);

} else {

return ($this->width *

➝ $this->height);

}

}

■ Suppose you do this:

$r1 = new Rectangle();

$r1->set_size(10, 25);

$r2 = $r1;

Then $r1 and $r2 are objects with the
same dimensions. But what if you
then do

$r2->set_size(8, 40);

Then $r2 is an object with different
dimensions than $r1, and $r1 retains
its original values.

250

Chapter 6

Th
e

$t
h

is
 A

tt
ri

bu
te

Creating Constructors
A constructor is a special kind of method
that differs from standard ones in two ways:

◆ Its name is always __construct().

◆ It is automatically and immediately
called whenever an object of that class is
created.

The syntax for defining a constructor is
therefore:

class ClassName {

public $var;

function __construct() {

// Function code.

}

}

A constructor could be used to connect to
a database, set cookies, or establish initial
values. Basically you’ll use constructors to
do whatever should always be done (and done
first) when an object of this class is made.

Because the constructor is still just another
method, it can take arguments, and values
for those arguments can be provided when
the object is created:

class Human {

function __construct($name) {

// Function code.

}

}

$me = new Human(‘Henry’);

The Rectangle class could benefit from hav-
ing a constructor that assigns the rectangle’s
dimensions when the rectangle is created.

251

Basic Object-Oriented Programming

Creatin
g

 Co
n

stru
cto

rs

To add and use a constructor:

1. Open Rectangle.php (Script 6.3) in your
text editor or IDE.

2. After declaring the attributes and before
defining the set_size() method, add the
constructor (Script 6.5).

function __construct($w = 0, $h = 0)

{

$this->width = $w;

$this->height = $h;

}

This method is exactly like the
set_size() method, albeit with a
different name. Note that constructors
are normally the first method defined
in a class (but still defined after the
attributes).

252

Chapter 6

Cr
ea

ti
n

g
 C

o
n

st
ru

ct
o

rs

1 <?php # Script 6.5 - Rectangle.php

2

3 /* This page defines the Rectangle
class.

4 * The class contains two attributes:
width and height.

5 * The class contains four methods:

6 * - set_size()

7 * - get_area()

8 * - get_perimeter()

9 * - is_square()

10 * In this new version of the class,

11 * a constructor is also present.

12 */

13

14 class Rectangle {

15

16 // Declare the attributes:

17 public $width = 0;

18 public $height = 0;

19

20 // Constructor:

21 function __construct($w = 0, $h = 0)
{

22 $this->width = $w;

23 $this->height = $h;

24 }

25

26 // Method to set the dimensions.

27 function set_size($w = 0, $h = 0) {

28 $this->width = $w;

29 $this->height = $h;

30 }

(script continues on next page)

Script 6.5 A constructor has been added to the
Rectangle class. This makes it possible to assign the
rectangle’s dimensions when the object is created.

31

32 // Method to calculate and return the
area.

33 function get_area() {

34 return ($this->width * $this-
>height);

35 }

36

37 // Method to calculate and return the
perimeter.

38 function get_perimeter() {

39 return (($this->width + $this-
>height) * 2);

40 }

41

42 // Method to determine if the
rectangle

43 // is also a square.

44 function is_square() {

45

46 if ($this->width ==
$this->height) {

47 return true; // Square

48 } else {

49 return false; // Not a square

50 }

51

52 }

53

54 } // End of Rectangle class.

55

56 ?>

Script 6.5 continued 3. Save the file as Rectangle.php.

4. Open rectangle1.php (Script 6.4) in your
text editor or IDE.

continues on next page

253

Basic Object-Oriented Programming

Creatin
g

 Co
n

stru
cto

rs

5. If you want, change the values of the
$width and $height variables (Script 6.6).

$width = 160;

$height = 75;

6. Change the way the object is created so
that it reads:

$r = new Rectangle($width, $height);

The object can now be created and the
rectangle assigned its dimensions in
one step.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

6 <title>Rectangle</title>

7 </head>

8 <body>

9 <?php # Script 6.6 - rectangle2.php

10

11 /* This page uses the revised Rectangle
class.

12 * This page shows a bunch of
information

13 * about a rectangle.

14 */

15

Script 6.6 This new version of the script assigns the
rectangle’s dimensions when the object is created
(thanks to the constructor).

254

Chapter 6

Cr
ea

ti
n

g
 C

o
n

st
ru

ct
o

rs

16 // Include the class definition:

17 require_once (‘Rectangle.php’);

18

19 // Define the necessary variables:

20 $width = 160;

21 $height = 75;

22

23 // Print a little introduction:

24 echo “<h3>With a width of $width and a
height of $height...</h3>”;

25

26 // Create a new object:

27 $r = new Rectangle($width, $height);

28

29 // Print the area.

30 echo ‘<p>The area of the rectangle is ‘ .
$r->get_area() . ‘</p>’;

31

32 // Print the perimeter.

33 echo ‘<p>The perimeter of the rectangle
is ‘ . $r->get_perimeter() . ‘</p>’;

34

35 // Is this a square?

36 echo ‘<p>This rectangle is ‘;

37 if ($r->is_square()) {

38 echo ‘also’;

39 } else {

40 echo ‘not’;

41 }

42 echo ‘ a square.</p>’;

43

44 // Delete the object:

45 unset($r);

46

47 ?>

48 </body>

49 </html>

Script 6.6 continued

Figure 6.5 The resulting output is not affected by
the incorporation of a constructor in the Rectangle
class.

7. Delete the invocation of the set_size()
method.

This method is still part of the class,
though, which makes sense. By keeping it
in there, a rectangle object’s size can be
changed after the object is created.

8. Save the file as rectangle2.php, place it
in your Web directory along with the
new Rectangle.php (Script 6.5), and test
in your Web browser (Figure 6.5).

✔ Tips

■ A constructor like the one just added to
the Rectangle class is called a default
constructor, as it provides default values
for its arguments. This means that a
Rectangle object can be created using
either of these techniques:

$r = new Rectangle($width, $height);

$r = new Rectangle();

■ You can, although rarely do, call a
constructor:

$o = new SomeClass();

$o->__construct();

With the Rectangle example, this would
let you get rid of the set_size() method
without losing the ability to resize a
rectangle.

■ In PHP 4 and in other programming
languages (like C++), a constructor is
declared by creating a method whose
name is the same as the class itself. So
in PHP 4, the Rectangle class would
have a constructor named Rectangle().

■ If PHP 5 cannot find a __construct()
method in a class, it will then try to find
a constructor whose name is the same as
the class (the PHP 4 constructor naming
scheme).

255

Basic Object-Oriented Programming

Creatin
g

 Co
n

stru
cto

rs

Creating Destructors
The corollary to the constructor is the
destructor. Whereas a constructor is auto-
matically invoked when an object is created,
the destructor is called when the object is
destroyed. This may occur when you overtly
remove the object:

$obj = new ClassName();

unset($obj);

Or this may occur when a script ends (at
which point PHP releases the memory used
by variables).

Being the smart reader that you are, you
have probably already assumed that the
destructor is created like so:

class ClassName {

function __destruct() {

// Function code.

}

}

Destructors do differ from constructors and
other methods in that they cannot take any
arguments.

The Rectangle class used in the last two
examples doesn’t lend itself to a logical
destructor (there’s nothing you need to do
when you’re done with a rectangle). And
rather than do a potentially confusing but
practical example, I’ll run through a dummy
example that shows how and when con-
structors and destructors are called.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

6 <title>Constructors and
Destructors</title>

7 </head>

8 <body>

9 <?php # Script 6.7 - demo.php

10

11 /* This page defines a Demo class

12 * and a demo() function.

13 * Both are used to show when

14 * constructors and destructors are
called.

15 */

16

17 // Define the class:

18 class Demo {

19

20 // No attributes.

21

22 // Constructor:

23 function __construct() {

24 echo ‘<p>In the
constructor.</p>’;

25 }

26

(script continues on next page)

Script 6.7 This script doesn’t do anything except best
convey when constructors and destructors are called.

256

Chapter 6

Cr
ea

ti
n

g
 D

es
tr

u
ct

o
rs

27 // Destructor:

28 function __destruct() {

29 echo ‘<p>In the destructor.</p>’;

30 }

31

32 } // End of Demo class.33

34 // Define a demo() function:

35 function demo () {

36

37 echo ‘<p>In the function. Creating a
new object...</p>’;

38 $f = new Demo();

39 echo ‘<p>About to leave the
function.</p>’;

40

41 }

42

43 // Create the object:

44 echo ‘<p>Creating a new object...</p>’;

45 $o = new Demo();

46

47 // Call the demo function:

48 echo ‘<p>Calling the function...</p>’;

49 demo();

50

51 // Delete the object:

52 echo ‘<p>About to delete the
object...</p>’;

53 unset($o);

54

55 echo ‘<p>End of the script.</p>’;

56 ?>

57 </body>

58 </html>

Script 6.7 continued To create a destructor:

1. Create a new PHP document in your text
editor or IDE, beginning with the stan-
dard HTML (Script 6.7).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Constructors and

➝ Destructors</title>

</head>

<body>

<?php # Script 6.7 - demo.php

2. Begin defining the class.

class Demo {

To make this example even simpler, I’ll
define and use the class in the same
script.

3. Create the constructor.

function __construct() {

echo ‘<p>In the

➝ constructor.</p>’;

}

The constructor doesn’t do anything but
print a message indicating that it has
been invoked. This will allow you to trace
when the class’s automatic methods are
called.

continues on next page

257

Basic Object-Oriented Programming

Creatin
g

 D
estru

cto
rs

Figure 6.6 The flow of the two objects’ creation and
destruction over the execution of the script is revealed
by this figure. In particular, you can see how the demo()
function’s object, $f, lives and dies in the middle of
this script.

4. Create the destructor.

function __destruct() {

echo ‘<p>In the

➝ destructor.</p>’;

}

5. Complete the class.

}

It’s a very simple class!

6. Define a simple function that also
creates an object.

function demo () {

echo ‘<p>In the function.

➝ Creating a new object...</p>’;

$f = new Demo();

echo ‘<p>About to leave the

➝ function.</p>’;

}

To best illuminate the life of objects,
which affects when constructors and
destructors are called, I’m adding this
simple function. It prints messages and
creates its own object, which will be local
to this function.

7. Create an object of class Demo.

echo ‘<p>Creating a new

➝ object...</p>’;

$o = new Demo();

When this object is created, the con-
structor will be called. So this script first
prints this line (Creating a new object…)
and will then print In the constructor.

8. Call the demo() function.

echo ‘<p>Calling the

➝ function...</p>’;

demo();

After printing the first two lines (in
Step 7), this third line is printed. Then
the function is entered, wherein In the

258

Chapter 6

Cr
ea

ti
n

g
 D

es
tr

u
ct

o
rs

function. Creating a new object... will first
be printed. Then, in that function, a new
object is created (called $f). Therefore,
the constructor will be called again, and
the In the constructor. message printed.

After the object is created in the func-
tion, the About to leave the function.
message is printed. Then the function is
exited, at which point in time the object
defined in the function—$f—goes away,
thus invoking the $f object’s destructor,
printing In the destructor.

9. Delete the $o object.

echo ‘<p>About to delete the

➝ object...</p>’;

unset($o);

Once this object is deleted, its destruc-
tor is invoked.

10. Complete the page.

echo ‘<p>End of the script.</p>’;

?>

</body>

</html>

11. Save the file as demo.php and place it in
your Web directory, and test by viewing
it in your Web browser (Figure 6.6).

12. Delete the unset($o) line, save the file,
and rerun it in your Web browser
(Figure 6.7).

Also check the HTML source code of
this page (Figure 6.8) to really under-
stand the flow.

✔ Tip

■ In C++ and C#, the destructor’s name
for the class ClassName is ~ClassName,
the corollary of the constructor, which
is ClassName. Java does not support
destructors.

259

Basic Object-Oriented Programming

Creatin
g

 D
estru

cto
rs

Figure 6.8 The $o object’s destructor is called as the
very last script event, when the script stops running.
Thus, the In the destructor. messages gets sent to the
browser after the closing HTML tag.

Figure 6.7 If you don’t forcibly delete the object
(demonstrated by Figure 6.6), it will be deleted when
the script stops running. This means that the $o
object’s destructor is called after the final printed
message, even after the closing HTML tags (Figure 6.8).

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

6 <title>Rectangle</title>

7 </head>

8 <body>

9 <?php # Script 6.8 - rectangle3.php

10

11 /* This page uses the revised Rectangle
class.

12 * This page shows a bunch of
information

13 * about a rectangle

14 * This version incorporates
__autoload().

15 */

16

17 // Define the __autoload() function:

18 function __autoload ($class) {

19 require_once($class . ‘.php’);

20 }

21

22 // Define the necessary variables:

23 $width = 56;

24 $height = 1475;

(script continues on next page)

Script 6.8 An __autoload() function is added to the
script so that class definition files, such as Rectangle,
don’t have to be individually required.

Autoloading Classes
With OOP, a logical way to modularize the
files in an application is to place each class
definition in its own file. You’ve now done
this with both the HelloWorld and Rectangle

classes. In these examples, the class file has
to be required by the script that needs to
create an object of that type:

require_once(‘Rectangle.php’);

$r = new Rectangle(43, 902);

When including just one class file, this isn’t
much of a hardship, but as your programs
use more and more objects, including all the
requisite files can become very tedious. The
developers behind PHP, big brains that they
are, added a simple work-around to the tire-
some process of always including class defi-
nition files.

PHP 5 supports a special function called
_ _ autoload (note that functions in PHP
beginning with two underscores are special
ones). The __autoload() function is invoked
when an object is requested of a class that
hasn’t yet been defined. You define how this
function works in your scripts. In simplest
form, this would be:

function __autoload ($class) {

require_once($class . ‘.php’);

}

260

Chapter 6

A
u

to
lo

ad
in

g
 C

la
ss

es

For each new object type created in the fol-
lowing code, the function will be invoked:

$obj = new Class();

$me = new Human();

$r = new Rectangle();

Thanks to the __autoload() function,
those three lines will automatically include
Class.php, Human.php, and Rectangle.php
(within the current directory).

Notice that this __autoload() function is
defined outside of any class; instead, it is
placed in a script that instantiates the
objects.

To autoload class definition files:

1. Open rectangle2.php (Script 6.6) in
your text editor or IDE.

2. Remove the require_once() line
(Script 6.8).

3. Add the definition of the __autoload()
function.

function __autoload ($class) {

require_once($class . ‘.php’);

}

4. If you want, change the values of the
$width and $height variables.

$width = 56;

$height = 1475;

continues on next page

261

Basic Object-Oriented Programming

A
u

to
lo

adin
g

 Classes

25

26 // Print a little introduction:

27 echo “<h3>With a width of $width and a
height of $height...</h3>”;

28

29 // Create a new object:

30 $r = new Rectangle($width, $height);

31

32 // Print the area.

33 echo ‘<p>The area of the rectangle is ‘ .
$r->get_area() . ‘</p>’;

34

35 // Print the perimeter.

36 echo ‘<p>The perimeter of the rectangle
is ‘ . $r->get_perimeter() . ‘</p>’;

37

38 // Is this a square?

39 echo ‘<p>This rectangle is ‘;

40 if ($r->is_square()) {

41 echo ‘also’;

42 } else {

43 echo ‘not’;

44 }

45 echo ‘ a square.</p>’;

46

47 // Delete the object:

48 unset($r);

49

50 ?>

51 </body>

52 </html>

Script 6.8 continued

5. Save the file as rectangle3.php, place
it in your Web directory along with
Rectangle.php (Script 6.5), and test in
your Web browser (Figure 6.9).

✔ Tips

■ If you store your class definition files in
their own directory, change the defini-
tion of the __autoload() function to
something like:

function __autoload ($class) {

require_once(‘classes/’ .

➝ $class . ‘.php’);

}

■ Although class names in PHP are case-
insensitive, some operating systems use
case-sensitive file structures. If your class
is called MyClass, then you’ll be better off
naming the file exactly MyClass.php and
creating objects using:

$obj = new MyClass();

Figure 6.9 As with other OOP examples, incorporating
features like the __autoload() function (see Script 6.8)
has no bearing on the end result.

262

Chapter 6

A
u

to
lo

ad
in

g
 C

la
ss

es

Chapter 6, “Basic Object-Oriented Programming,” covers the fundamental concepts of
OOP in PHP. Those concepts include: defining a class, creating an object, accessing
class attributes (variables) using $this, creating constructors, and creating destructors.
A fair amount of theory is also discussed there, as that’s half the OOP battle. Complete
comfort with the contents of that chapter is a prerequisite for this one.

Here, things get more advanced (hence the chapter title!), really getting into the more
abstract aspects of OOP. Again, ample time will be given to theory. Almost all of the
dozen-ish topics discussed herein involve inheritance. Fully understanding inheritance
is crucial. Some of the topics get to be rather esoteric, and the need for implementing
such features may not be apparent at first. My best recommendation is not to over-
whelm yourself with the material in this chapter. Take little bites and chew the mate-
rial thoroughly. Forging ahead in the hopes that it’ll all make sense eventually will
only make matters worse (I think) as each new advanced idea is added to the pile. All
that being said, don’t be too afraid. Advanced object-oriented programming isn’t the
scariest programming technique you’ll encounter, and you can begin to really see the
beauty of OOP on this higher level.

263

Advanced
OOP

7
A

dvan
ced O

O
P

Advanced Theories
I want to begin this chapter with a brief dis-
cussion of a few key concepts in advanced
OOP. Chapter 6 introduced some of the
basic terms: class, object, modularity, and
abstraction. A few more were also refer-
enced: inheritance, overriding, encapsulation,
and visibility. Of these latter four notions, all
of which arise in this chapter, inheritance is
far and away the most important in
advanced object-oriented programming.

Object inheritance is where one class is
derived from another, just as humans inherit
qualities from their parents. Of course, the
“qualities” in the object-oriented world are
attributes (variables) and methods (functions).
Through inheritance, you can define one
class that is born with the same attributes
and methods as another (Figure 7.1). The
inherited child class can even have its own
unique qualities that the parent doesn’t have
(Figure 7.2).

But inheritance isn’t a simple one-to-one
relationship. There’s no limit to how many
times inheritance can occur: multiple classes
can inherit from the same parent (Figure 7.3)
or a class can be a child of a child (Figure 7.4).
This speaks to the powerful reusablity of
class code.

Once you’ve defined a class that inherits from
another, it doesn’t take long to start thinking
how nice it’d be if it behaved just slightly dif-
ferently. You can add new attributes and
methods, but what if you wanted to change
the behavior of the parent class’s methods? It
would be wrong to change the definition of
the parent class (presumably it works as it
should, and besides, other classes might
inherit from it too, as shown in Figure 7.3).
Instead, you can override a parent class’s
method to customize it for the new class.
This is polymorphism: where calling the same

Figure 7.2 Child classes
can add their own
members to the ones
they inherited. In this
way a child can separate
itself (functionally
speaking) from its
parent.

Figure 7.1 A child class
inherits (i.e., has) all
of the attributes and
methods of its parent
class (there can be
exceptions to this, but
assume this to be true
for now).

264

Chapter 7

A
dv

an
ce

d
Th

eo
ri

es

Figure 7.4 Inheritance
can theoretically have
limitless depth, with
each child inheriting all
the members of its
parent (again, not
always so, but…).

Figure 7.3 A single parent class can have unlimited
offspring, each customized in its own way.

method can have different results, depending
upon the object type. This probably doesn’t
mean much yet, but you’ll understand in time.

Acknowledging (as I just did) that it’s not a
good thing for one class to muck around in
another, the concept of visibility exists.
Visibility controls what qualities of a class
can be accessed or altered by other classes
(or even outside of any class).

As you can tell already, once you introduce
inheritance, the OOP world expands expo-
nentially. Just as in the last chapter, I’ll
attempt to go through this sea of informa-
tion slowly, to make sure that it really settles
in. Some of the examples will be designed
for illumination of a concept, rather than
real-world implementations (Chapter 8,
“Real-World OOP,” works toward that end).

265

Advanced OOP

A
dvan

ced Th
eo

ries

Inheritance Terminology

With class definitions, the main terms
are attributes and methods, meaning vari-
ables and functions, respectively. You’ll
also see properties used instead of attrib-
utes, but both refer to a class’s variables.
The combination of attributes and meth-
ods make up the members of a class.

With inheritance you have a parent class
and a child class: the latter is inherited
from the former. You’ll also see these
described as a base class or superclass
and its derived class or subclass.

Inheriting Classes
One of the ways in which objects make
programming faster is the ability to use
one class definition as the basis for another.
From there, the second class can add its
own attributes (variables) and methods
(functions). This is referred to as inheritance.

Going back to the Human example introduced
in Chapter 6, if the Human class has the attrib-
utes gender, height, weight, and birth date
and it has the methods eating and sleeping,
you could create another class called Adult
that is an extension of Human. Along with
the aforementioned variables and functions,
an Adult object might also have the attrib-
ute of married and the method of working
(Figure 7.5).

To make a child class from a parent, you use
the extends statement. Assuming you have
already defined the ClassName class, you can
create a child like so:

class ChildClass extends ClassName { }

The class ChildClass will possess all the
members of its parent, ClassName. Now you
can modify this class to adapt it to your spe-
cific needs without altering the original class.
Ideally, once you’ve created a solid parent
class, you will never need to modify it again
and can use child classes to tailor the code
to your individual requirements.

For an example implementation of this, I’ll
start with a silly (but comprehensible) pets
example. Say you have two pets: a cat and a
dog. Both animals have a name, and they
both eat and sleep. Cats differ from dogs in
that they can climb trees and dogs differ
from cats in that they can fetch. Being able
to describe these qualities and relationships
in plain language leads to the inheritance
structure you would create (Figure 7.6).

Figure 7.6 How the pet-cat-dog relationship
would be implemented objectively.

Figure 7.5 The Adult
class can have all the
same members as
Human, while adding
its own.

266

Chapter 7

In
h

er
it

in
g

 C
la

ss
es

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Pets</title>

7 </head>

8 <body>

9 <?php # Script 7.1 - pets1.php

10

11 /* This page defines and uses

12 * the Pet, Cat, and Dog classes.

13 */

14

15 # ******************* #

16 # ***** CLASSES ***** #

17

18 /* Class Pet.

19 * The class contains one attribute: name.

20 * The class contains three methods:

21 * - __construct()

22 * - eat()

23 * - go_to_sleep()

24 */

25 class Pet {

26

27 // Declare the attributes:

28 public $name;

29

30 // Constructor assigns the pet's name:

31 function __construct($pet_name) {

32 $this->name = $pet_name;

33 }

34

35 // Pets can eat:

36 function eat() {

(script continues on next page)

Script 7.1 This example script shows how two classes can be derived from the same parent. Each can access all the
members of the parent, and each has defined its own custom method.

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Rectangle</title>

</head>

<body>

<?php # Script 7.1 - pets1.php

To make things easier, I’m going to put all
the class definitions and the usage of these
classes in this same script. In a real appli-
cation, you would separate out your class
files from the program files that use them.

continues on page 269

267

Advanced OOP

In
h

eritin
g

 Classes

To inherit from a class:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 7.1).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

37 echo "<p>$this->name is eating.</p>";

38 }

39

40 // Pets can sleep:

41 function go_to_sleep() {

42 echo "<p>$this->name is sleeping.</p>";

43 }

44

45 } // End of Pet class.

46

47

48 /* Cat class extends Pet.

49 * Cat has additional method: climb().

50 */

51 class Cat extends Pet {

52 function climb() {

53 echo "<p>$this->name is climbing.</p>";

54 }

55 } // End of Cat class.

56

57

58 /* Dog class extends Pet.

59 * Dog has additional method: fetch().

60 */

61 class Dog extends Pet {

62 function fetch() {

63 echo "<p>$this->name is fetching.</p>";

64 }

65 } // End of Dog class.

66

67

68 # ***** END OF CLASSES ***** #

69 # ************************** #

70

71 // Create a dog:

72 $dog = new Dog('Satchel');

73

74 // Create a cat:

75 $cat = new Cat('Bucky');

76

77 // Feed them:

78 $dog->eat();

79 $cat->eat();

80

81 // Nap time:

82 $dog->go_to_sleep();

83 $cat->go_to_sleep();

84

85 // Do animal-specific thing:

86 $dog->fetch();

87 $cat->climb();

88

89 // Delete the objects:

90 unset($dog, $cat);

91

92 ?>

93 </body>

94 </html>

Script 7.1 continued

268

Chapter 7

In
h

er
it

in
g

 C
la

ss
es

2. Start declaring the Pet class.

class Pet {

public $name;

Pet has one attribute: the pet’s name.

3. Create the constructor.

function __construct($pet_name) {

$this->name = $pet_name;

}

The constructor takes one argument: the
name of the pet. This gets assigned to
the class’s $name attribute.

4. Define the eat() method.

function eat() {

echo “<p>$this->name is

➝ eating.</p>”;

}

This method simply reports the name of
the animal eating.

5. Define the go_to_sleep() method and
complete the class.

function go_to_sleep() {

echo “<p>$this->name is

➝ sleeping.</p>”;

}

} // End of Pet class.

This function could be named sleep(),
but there’s already a PHP function with
that same name. While no conflict would
occur (because this function is built into
a class), it’s best to avoid confusion.

269

Advanced OOP

In
h

eritin
g

 Classes

6. Declare the Cat class.

class Cat extends Pet {

function climb() {

echo “<p>$this->name is

➝ climbing.</p>”;

}

} // End of Cat class.

The Cat class extends Pet, meaning that
it has all the attributes and methods of
Pet. Added to those is one new method,
climb(). The method can refer to the
$name attribute via $this->name because
the attribute is also part of this class
(thanks to inheritance).

7. Declare the Dog class.

class Dog extends Pet {

function fetch() {

echo “<p>$this->name is

➝ fetching.</p>”;

}

} // End of Dog class.

8. Create two new pets.

$dog = new Dog(‘Satchel’);

$cat = new Cat(‘Bucky’);

9. Make the pets do the things they do.

$dog->eat();

$cat->eat();

$dog->go_to_sleep();

$cat->go_to_sleep();

$dog->fetch();

$cat->climb();

Each subclass object can invoke the
methods in the parent class as well as its
own new methods (fetch() and climb()).
Note that $dog could not invoke the
climb() method, nor could $cat call
fetch().

continues on next page

10. Complete the page.

unset($dog, $cat);

?>

</body>

</html>

You don’t have to unset the objects, but
it makes for tidier code.

11. Save the file as pets1.php, place it in
your Web directory, and test in your
Web browser (Figure 7.7).

✔ Tips

■ In this example, you could create an
object of type Pet. That object would
have a name and could eat() and
go_to_sleep(), but it could not fetch()
or climb().

■ You cannot create a child class that
inherits fewer properties than its parent.
In fact, if that was something you were
hoping to do, then the design of the
child and the parent should be switched.
As classes are extended, they should
contain more features, never fewer.

■ You can determine the parent class of an
object using PHP’s get_parent_class()
function, a companion to the
get_class() function. These two are
part of a handful of functions PHP has
for getting information about classes.

Figure 7.7 Two objects are created from
different derived classes. Then the various
methods are called. Understanding this
result and the code in pets1.php is key to
the rest of the chapter’s material.

270

Chapter 7

In
h

er
it

in
g

 C
la

ss
es

Figure 7.8 When an object is created, PHP will always
call the constructor of that object’s class type.

Inheriting Constructors
and Destructors
The pets example shows how you can
create one class (i.e., Pet) and then
derive other classes from it (Dog and Cat).
These other classes can have their own
methods, unique to themselves, such as
climb() and fetch().

Two methods are common to many classes:
constructors and destructors (see Chapter 6
for a detailed description). The Pet class has
a constructor but no need for a destructor.
What would happen, then, if Cat or Dog also
had a constructor? By definition, this method
is always called __construct(). How does
PHP determine which to call when?

As a rule, PHP will always call the constructor
for the class just instantiated (Figure 7.8).
The same rule applies for destructors.

This next, somewhat more practical, example
will extend the Rectangle class (Script 6.5,
defined in Chapter 6) to create a Square class
(because all squares are rectangles but not
all rectangles are squares).

271

Advanced OOP

In
h

eritin
g

 Co
n

stru
cto

rs an
d D

estru
cto

rs

To create subclass constructors:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 7.2).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

272

Chapter 7

In
h

er
it

in
g

 C
o

n
st

ru
ct

o
rs

 a
n

d
D

es
tr

u
ct

o
rs

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Square</title>

</head>

<body>

<?php # Script 7.2 - square.php

continues on page 274

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Square</title>

7 </head>

8 <body>

9 <?php # Script 7.2 - square.php

10

11 /* This page declares and uses the Square class

12 * which is derived from Rectangle (Script 6.5).

13 */

14

15 // Include the class definition:

16 require_once ('Rectangle.php');

17

18 // Create the Square class.

19 // The class only adds its own constructor.

20 class Square extends Rectangle {

21

22 // Constructor takes one argument.

23 // This value is assigned to the

24 // Rectangle width and height attributes.

25 function __construct($side = 0) {

26 $this->width = $side;

27 $this->height = $side;

28 }

29

30 } // End of Square class.

(script continues on next page)

Script 7.2 The Square class is derived from Rectangle but has its own constructor. That constructor, not Rectangle’s
will be called when an object of type Square is created.

31

32 // Rectangle dimensions:

33 $width = 21;

34 $height = 98;

35

36 // Print a little introduction:

37 echo "<h3>With a width of $width and a height of $height...</h3>";

38

39 // Create a new rectangle:

40 $r = new Rectangle($width, $height);

41

42 // Print the area.

43 echo '<p>The area of the rectangle is ' . $r->get_area() . '</p>';

44

45 // Print the perimeter.

46 echo '<p>The perimeter of the rectangle is ' . $r->get_perimeter() . '</p>';

47

48 // Square dimensions:

49 $side = 60;

50

51 // Print a little introduction:

52 echo "<h3>With each side being $side...</h3>";

53

54 // Create a new object:

55 $s = new Square($side);

56

57 // Print the area.

58 echo '<p>The area of the square is ' . $s->get_area() . '</p>';

59

60 // Print the perimeter.

61 echo '<p>The perimeter of the square is ' . $s->get_perimeter() . '</p>';

62

63 // Delete the objects:

64 unset($r, $s);

65

66 ?>

67 </body>

68 </html>

Script 7.2 continued

273

Advanced OOP

In
h

eritin
g

 Co
n

stru
cto

rs an
d D

estru
cto

rs

2. Include the Rectangle class.

require_once (‘Rectangle.php’);

You’ll need to make sure that the
Rectangle.php file (Script 6.5) is in the
same directory as this script.

3. Declare the Square class.

class Square extends Rectangle {

function __construct($side = 0)

{

$this->width = $side;

$this->height = $side;

}

}

The premise is simple: there’s no reason
to have to pass both a height and a width
value to the Rectangle class when you
know you’re creating a square. So a new
constructor is defined that only takes
one argument. That value will be assigned,
within the constructor, to the parent
class’s attributes.

Note that in order for this class exten-
sion to work, it must be able to access
the Rectangle definition (so that file
must be included prior to this point).

4. Create a rectangle and report on it.

$width = 21;

$height = 98;

echo “<h3>With a width of $width and

➝ a height of $height...</h3>”;

$r = new Rectangle($width, $height);

echo ‘<p>The area of the rectangle

➝ is ‘ . $r->get_area() . ‘</p>’;

echo ‘<p>The perimeter of the

➝ rectangle is ‘ . $r-

➝ >get_perimeter() . ‘</p>’;

This code is also from Chapter 6. It just
creates a rectangle and prints its area
and perimeter.

Inheritance Theory

Any time one class inherits from another,
the result should be a more specific descrip-
tion of a thing. Hence, I go from Pet to
Dog or Cat and from Rectangle to Square.
When deciding where to place methods,
including constructors and destructors,
you have to think about whether that
functionality is universal or specific.

In the Pet example, the constructor sets
the pet’s name, which is universal for all
pets. So the Dog and Cat classes don’t need
their own constructors. In the Rectangle
example, its constructor sets the height
and width. But a square doesn’t have both,
so having a new constructor for it is valid.

274

Chapter 7

In
h

er
it

in
g

 C
o

n
st

ru
ct

o
rs

 a
n

d
D

es
tr

u
ct

o
rs

Figure 7.9 Even though the Square constructor only
takes one argument (Script 7.2), the use of the
Rectangle methods, and the end result, work just
the same.

5. Repeat Step 4 for a square.

$side = 60;

echo “<h3>With each side being

➝ $side...</h3>”;

$s = new Square($side);

echo ‘<p>The area of the square

➝ is ‘ . $s->get_area() . ‘</p>’;

echo ‘<p>The perimeter of the square

➝ is ‘ . $s->get_perimeter() .

➝ ‘</p>’;

This code differs from that in Step 4 in
that only one value needs to be passed to
the Square constructor. Then all the
other methods can be called just the
same.

6. Complete the page.

unset($r, $s);

?>

</body>

</html>

7. Save the file as square.php, place it in
your Web directory, and test in your Web
browser (Figure 7.9).

275

Advanced OOP

In
h

eritin
g

 Co
n

stru
cto

rs an
d D

estru
cto

rs

Figure 7.10 When related classes
have overridden methods, which
method is called depends upon the
type of the object calling it. Note that
for $obj2, the code of the overridden
scream() method in SomeOtherClass
is used in lieu of the original scream()
(hence the different scream in the
last three lines).

Overriding Methods
So far I’ve covered how one class can inherit
from another class and how the child classes
can have their own new methods. The last
example demonstrated that subclasses can
even define their own constructors (and
destructors, implicitly), which will be used
in lieu of the parent class’s constructors and
destructors. This same thinking can be
applied to the other class methods. This
concept is called overriding a method.

To achieve this in PHP, the subclass must
define a method with the exact same name
and number of arguments as the parent class:

class SomeClass {

function scream($count = 1) {

for ($i = 0; $i < $count; $i++) {

echo ‘Eek!
’;

}

}

}

class SomeOtherClass extends SomeClass{

function scream($count = 1) {

for ($i = 0; $i < $count; $i++) {

echo ‘Whohoo!
’;

}

}

}

$obj1 = new SomeClass();

$obj1->scream();

$obj1->scream(2);

$obj2 = new SomeOtherClass();

$obj2->scream();

$obj2->scream(2);

276

Chapter 7

O
ve

rr
id

in
g

 M
et

h
o

ds

Figure 7.10 shows the result of the preced-
ing code.

Overriding methods is a common and useful
feature of advanced object-oriented program-
ming. As a simple example of this, I’ll return
to the Pet, Dog, and Cat classes. Instead of
having separate climb() and fetch() meth-
ods, that functionality will be implemented
as an overridden play() method.

277

Advanced OOP

O
verridin

g
 M

eth
o

ds

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Pets</title>

7 </head>

8 <body>

9 <?php # Script 7.3 - pets2.php

10

11 /* This page defines and uses

12 * the Pet, Cat, and Dog classes.

13 */

14

15 # ******************* #

16 # ***** CLASSES ***** #

17

18 /* Class Pet.

19 * The class contains one attribute: name.

20 * The class contains four methods:

21 * - __construct()

22 * - eat()

23 * - go_to_sleep()

24 * - play()

25 */

26 class Pet {

27

28 // Declare the attributes:

29 public $name;

30

31 // Constructor assigns the pet's name:

32 function __construct($pet_name) {

33 $this->name = $pet_name;

34 }

35

36 // Pets can eat:

37 function eat() {

38 echo "<p>$this->name is eating.</p>";

39 }

40

41 // Pets can sleep:

42 function go_to_sleep() {

43 echo "<p>$this->name is sleeping.</p>";

44 }

(script continues on next page)

Script 7.3 The Cat and Dog classes override the Pet play() method, giving it new functionality. Which version of
play() gets called depends upon the type of the object calling it.

This is the method that will be overrid-
den. It just prints the name of the pet
that is playing.

3. In the Cat class, change the name of
climb() to play().

Now the Pet class’s play() method has
been overridden in the Cat class.

continues on page 279

To override methods:

1. Open pets1.php (Script 7.1) in your text
editor or IDE.

2. Add a play() method to the Pet class
(Script 7.3).

function play() {

echo “<p>$this->name is

➝ playing.</p>”;

}

45

46 // Pets can play:

47 function play() {

48 echo "<p>$this->name is playing.</p>";

49 }

50

51 } // End of Pet class.

52

53

54 /* Cat class extends Pet.

55 * Cat overrides play().

56 */

57 class Cat extends Pet {

58 function play() {

59 echo "<p>$this->name is climbing.</p>";

60 }

61 } // End of Cat class.

62

63

64 /* Dog class extends Pet.

65 * Dog overrides play().

66 */

67 class Dog extends Pet {

68 function play() {

69 echo "<p>$this->name is fetching.</p>";

70 }

71 } // End of Dog class.

72

73

74 # ***** END OF CLASSES ***** #

75 # ************************** #

76

77 // Create a dog:

78 $dog = new Dog('Satchel');

79

80 // Create a cat:

81 $cat = new Cat('Bucky');

82

83 // Create an unknown type of pet:

84 $pet = new Pet('Rob');

85

86 // Feed them:

87 $dog->eat();

88 $cat->eat();

89 $pet->eat();

90

91 // Nap time:

92 $dog->go_to_sleep();

93 $cat->go_to_sleep();

94 $pet->go_to_sleep();

95

96 // Have them play:

97 $dog->play();

98 $cat->play();

99 $pet->play();

100

101 // Delete the objects:

102 unset($dog, $cat, $pet);

103

104 ?>

105 </body>

106 </html>

Script 7.3 continued

278

Chapter 7

O
ve

rr
id

in
g

 M
et

h
o

ds

Final Methods

Most methods in classes can be overrid-
den. The exception is if a function is
defined as final:

final function myfunc () {…}

A final method’s definition cannot be
altered by any subclass.

A class can also be declared final, mean-
ing that it cannot be extended.

4. In the Dog class, change the name of
fetch() to play().

5. After the class declarations, create an
object of type Pet.

$pet = new Pet(‘Rob’);

To see the impact of overriding a method,
I’ll create an object of the parent class
as well.

6. Add activities for the Pet object.

$pet->eat();

$pet->go_to_sleep();

7. Make all three objects play.

$dog->play();

$cat->play();

$pet->play();

These three lines will reveal which class’s
method gets called by which object.

8. Delete the calls to $dog->fetch() and
$cat->climb().

continues on next page

279

Advanced OOP

O
verridin

g
 M

eth
o

ds

9. Also unset the $pet object toward the
end of the script.

unset($dog, $cat, $pet);

10. Save the file as pets2.php, place it in
your Web directory, and test in your
Web browser (Figure 7.11).

✔ Tips

■ The combination of a function’s name
and its arguments (the number of argu-
ments, specifically) is referred to as the
function’s signature. In PHP 5, except for
constructors, any derived class must use
the same signature when overriding a
method.

■ The Square class could logically override
the Rectangle is_square() method. It
would be defined as simply:

function is_square() {

return true;

}

■ Overriding a method in such a way
that it also takes a different number of
arguments than the original is referred
to as overloading a method. This can be
accomplished in PHP but not as easily
as overriding one. One option is to add
dummy (unused) arguments to one
method (the original or the derived) so
that they both have the same number.
The second option is to use PHP’s
magic __call() method to emulate
overloading.

Figure 7.11 The end result isn’t that much
different from Figure 7.7, although cat-
specific and dog-specific play() methods
were introduced. A third object, of type
Pet, was also added.

280

Chapter 7

O
ve

rr
id

in
g

 M
et

h
o

ds

Figure 7.12 The more restricted the visibility, the
smaller the realm where the attribute or method is
accessible.

Access Control
Access control, which is also called visibility,
dictates how accessible a class’s properties
and methods are. There are three levels of
visibility: public, protected, and private. To
establish the visibility of an attribute, prefix
the variable’s declaration with one of these
keywords:

class ClassName {

public $var1 = ‘Hello’;

private $var2 = ‘world’;

protected $var3 = 234;

}

You’ve already been doing this, in making
everything public thus far.

To establish the visibility of a method, prefix
the function’s declaration with one of these
keywords:

class ClassName {

public function my_function() {

// Function code.

}

}

Methods lacking the accessibility declaration
are considered to be public. And because
methods often are public, the visibility for
them is frequently omitted.

Think of each term as prescribing a more
limited circle in which the member can be
accessed (Figure 7.12). A public member is
accessible everywhere: in the class itself, in
inherited classes, in other classes, and in
scripts without using objects. Protected
members can only be accessed within the
class and derived subclasses. Private is the
most restrictive; those members are only
accessible within the class that defines them.

continues on next page

281

Advanced OOP

A
ccess Co

n
tro

l

As with most concepts in OOP, there are two
issues: how it works and how you’d use it. To
make clear how access control works, I’ll run
through a dummy example that just plays
around with the accessibility of attributes.
How you’d use visibility will become clearer
as you see other examples.

To control member access:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 7.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Visibility</title>

7 </head>

8 <body>

9 <?php # Script 7.4 - visibility.php

10

11 /* This page defines and uses

12 * the Test and LittleTest classes.

13 */

14

15 # ******************* #

16 # ***** CLASSES ***** #

17

18 /* Class Test.

19 * The class contains three attributes:

20 * - public $public

21 * - protected $protected

22 * - private $private

23 * The class defines one method: print_var().

24 */

25 class Test {

26

27 // Declare the attributes:

28 public $public = 'public';

29 protected $protected = 'protected';

30 private $private = 'private';

31

32 // Function for printing a variable's value:

33 function print_var($var) {

34 echo "<p>In Test, \$$var equals '{$this->$var}'.</p>";

35 }

36

37 } // End of Test class.

Script 7.4 This script demonstrates access control by showing what can and cannot be done with attributes of
different visibility.

282

Chapter 7

A
cc

es
s

Co
n

tr
o

l

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Visibility</title>

</head>

<body>

<?php # Script 7.4 - visibility.php

continues on page 284

38

39

40 /* LittleTest class extends Test.

41 * LittleTest overrides print_var().

42 */

43 class LittleTest extends Test {

44 // Function for printing a variable's value:

45 function print_var($var) {

46 echo "<p>In LittleTest, \$$var equals '{$this->$var}'.</p>";

47 }

48

49 } // End of LittleTest class.

50

51

52 # ***** END OF CLASSES ***** #

53 # ************************** #

54

55 // Create the objects:

56 $parent = new Test();

57 $child = new LittleTest();

58

59 // Print the current value of $public:

60 echo '<h2>Public</h2>';

61 echo '<h3>Initially...</h3>';

62 $parent->print_var('public');

63 $child->print_var('public');

64

65 // Modify $public and reprint:

66 echo '<h3>Modifying $parent->public...</h3>';

67 $parent->public = 'modified';

68 $parent->print_var('public');

69 $child->print_var('public');

70

71 // Print the current value of $protected:

72 echo '<hr /><h2>Protected</h2>';

73 echo '<h3>Initially...</h3>';

74 $parent->print_var('protected');

75 $child->print_var('protected');

76

77 // Attempt to modify $protected and reprint:

78 echo '<h3>Attempting to modify $parent->public...</h3>';

79 $parent->protected = 'modified';

80 $parent->print_var('protected');

81 $child->print_var('protected');

82

83 // Print the current value of $private:

84 echo '<hr /><h2>Private</h2>';

85 echo '<h3>Initially...</h3>';

86 $parent->print_var('private');

87 $child->print_var('private');

88

89 // Attempt to modify $private and reprint:

90 echo '<h3>Attempting to modify $parent->private...</h3>';

91 $parent->private = 'modified';

92 $parent->print_var('private');

93 $child->print_var('private');

94

95 // Delete the objects:

96 unset($parent, $child);

97

98 ?>

99 </body>

100 </html>

Script 7.4 continued

283

Advanced OOP

A
ccess Co

n
tro

l

2. Begin declaring the Test class.

class Test {

public $public = ‘public’;

protected $protected =

➝ ‘protected’;

private $private = ‘private’;

This class contains three attributes, one
of each type. To make things even more
obvious, the name and value of each
attribute match its visibility.

3. Add a print_var() method and complete
the class.

function print_var($var) {

echo “<p>In Test, \$$var

➝ equals ‘{$this->$var}’.</p>”;

}

} // End of Test class.

The print_var() method prints the value
of a variable whose name it receives as
an argument. It will print the attribute’s
name and value out like this:

In Test, $public equals ‘public’.

The \$$var will end up printing a dollar
sign followed by the value of $var (the
argument). The $this->$var code will be
evaluated as $this->public, $this->pro-
tected, and $this->private so that it can
access the class attributes.

4. Create a class that extends Test.

class LittleTest extends Test {

function print_var($var) {

echo “<p>In LittleTest,

➝ \$$var equals ‘{$this->$var}’.

➝ </p>”;

}

}

284

Chapter 7

A
cc

es
s

Co
n

tr
o

l

The instanceof Keyword

The instanceof keyword can be used to
see if a particular object is of a certain
class type.

if ($obj instanceof SomeClass) { …

Notice that you don’t put the class’s name
in quotation marks. Also—and this is
important—if the object is not an instance
of the given class, the entire script termi-
nates. For a less drastic result, you could
use the is_a() function:

if (is_a($obj, ‘SomeClass’)) {…

There’s also the is_subclass_of() function.

The LittleTest class, as an extension of
Test, will inherit its own $public and
$protected attributes. It will not have the
$private attribute, as that variable’s visi-
bility is private, meaning it cannot be
inherited.

This class will override the print_var()
method, changing the printed text slightly.

5. Create an object of each type.

$parent = new Test();

$child = new LittleTest();

6. Print the current value of the $public
variable by calling the print_var() method.

echo ‘<h2>Public</h2>’;

echo ‘<h3>Initially...</h3>’;

$parent->print_var(‘public’);

$child->print_var(‘public’);

Because the $public variable is public,
it can be accessed by either class’s
print_var() method.

7. Modify the Test $public attribute and
reprint.

echo ‘<h3>Modifying $parent-

➝ >public...</h3>’;

$parent->public = ‘modified’;

$parent->print_var(‘public’);

$child->print_var(‘public’);

Because $public has public visibility, it
can be accessed (and therefore modified)
anywhere. Figure 7.13 shows the result
of running this script so far. You should
note that these lines only change the
value of $public in $parent. The $child
object’s $public variable still has the orig-
inal value (because the $public attribute
is represented as a separate entity in
each class).

continues on next page

285

Advanced OOP

A
ccess Co

n
tro

l

Figure 7.13 Public variables can be accessed,
and modified, anywhere.

8. Repeat Steps 6 and 7 for the protected
variable.

echo ‘<hr /><h2>Protected</h2>’;

echo ‘<h3>Initially...</h3>’;

$parent->print_var(‘protected’);

$child->print_var(‘protected’);

echo ‘<h3>Attempting to modify

➝ $parent->public...</h3>’;

$parent->protected = ‘modified’;

$parent->print_var(‘protected’);

$child->print_var(‘protected’);

As you’ll see when you run this script
(Figure 7.14), you can access the $pro-
tected variable from within either class.
But you cannot access it (which also
means you cannot modify it) from out-
side the class. Doing so causes a fatal
error.

9. Complete the page.

unset($parent, $child);

?>

</body>

</html>

Ignore the rest of what you see in
Script 7.4 for now, as I’m working
you through a process!

Figure 7.14 Attempting to modify the
value of the protected variable using
the syntax $obj->var results in a fatal
error (which is bad).

286

Chapter 7

A
cc

es
s

Co
n

tr
o

l

Figure 7.15 Attempting to refer to $this->private
within the LittleTest class—which is what happens
when you call $child->print_var(‘private’)—
creates a notice, as the class does not contain that
attribute (because it neither inherited one nor defined
one itself). As in Figure 7.14, attempting to refer to
$parent->private results in a fatal error.

10. Save the file as visibility.php, place it
in your Web directory, and test in your
Web browser (Figures 7.13 and 7.14).

This is one of those rare times where
I actually want you to see the error,
so that you may better understand
visibility. A public class member can
be accessed anywhere, including outside
of a class. A protected member can only
be accessed in the class or in derived
classes. Attempting to access the mem-
ber elsewhere results in a fatal error.
Thus, a protected class member is more
insulated.

11. Comment out this line:

$parent->protected = ‘modified’;

This is the line that caused the fatal
error, so let’s make it inert.

12. Before unsetting the objects, repeat
Steps 6 and 7 for the private attribute.

echo ‘<hr /><h2>Private</h2>’;

echo ‘<h3>Initially...</h3>’;

$parent->print_var(‘private’);

$child->print_var(‘private’);

echo ‘<h3>Attempting to modify

➝ $parent->private...</h3>’;

$parent->private = ‘modified’;

$parent->print_var(‘private’);

$child->print_var(‘private’);

To finalize this example, let’s look at
where you can access private class
members.

13. Save the file and retest (Figure 7.15).

As you can see in the figure, not even
the $child object, which is an instance
of the inherited LittleTest class, can
access $private. And the script cannot
refer to $parent->private, which, again,
causes a fatal error.

continues on next page

287

Advanced OOP

A
ccess Co

n
tro

l

✔ Tips

■ Using access control to limit how a
class is used is encapsulation. Simply
put, encapsulation is the hiding of infor-
mation (actual data or processes).
A good class is a usable entity without
your necessarily knowing how it works
internally.

■ Looking at the Pet class, its name attrib-
ute should be made protected. It makes
sense for the class and its subclasses to
be able to access the name, but you
shouldn’t be able to do this:

$cat->name = ‘Fungo’;

The same applies to the $width and
$height attributes in Rectangle.

■ As I already mentioned, you can
restrict access to methods, but that’s
less common than restricting access
to attributes.

■ You should know that the LittleTest
class doesn’t actually need its own
print_var() method. It can use the
(public) print_var() in Test. Because
of inheritance, LittleTest would have
a print_var(), just as it has a $public
and a $protected.

Visibility Suggestions

The visibility.php script demonstrates
the realms in which variously visible vari-
ables can be accessed. It does not, how-
ever, demonstrate how you would really
use access control in your own classes.
You’ll see that better in other examples
in this chapter and the next. In the
meantime, some quick tips:

Start by thinking of access control as a
firewall between your class and everything
else. Use visibility to prevent bugs and
other inappropriate behavior (e.g., being
able to change class attributes). Err on the
side of making your classes too restrictive!
If the restriction ends up being a problem,
then adjust. Ask yourself: Are there meth-
ods that should only ever get called by the
class itself? Then make them protected
or private. Also consider that most attrib-
utes can be restricted, as the class’s
methods can be used to access them.

288

Chapter 7

A
cc

es
s

Co
n

tr
o

l

Using the Scope
Resolution Operator
The scope resolution operator is the combi-
nation of two colons together (::). It’s used
to specify to which class a member belongs
(and avoiding confusion is often necessary
with inherited classes that have the same
attributes and methods).

Outside of a class, assuming the method is
not protected or private, you could call a
method directly using:

ClassName::method_name();

The scope resolution operator can also be
used within a class to refer to its own prop-
erties and members. In that case, you would
use the keyword self:

class SomeClass {

function __construct() {

self::do();

}

protected function do() {

echo ‘do!’;

}

}

289

Advanced OOP

U
sin

g
 th

e S
co

pe R
eso

lu
tio

n
 O

perato
r

In that code, self::do() is the same as
using $this->do().

To refer to a member of a parent class, use
the keyword parent:

class SomeOtherClass extends SomeClass{

function __construct() {

parent::do();

}

}

(As a side note on understanding visibility,
the do() function defined in SomeClass
can only be called by other methods within
SomeClass or by methods within inherited
classes, because do() is defined as protected.)

For the most part, you’ll use the scope reso-
lution operator to access overridden mem-
bers. You’ll also use it with static and con-
stant members, two topics yet to be dis-
cussed. As a simple demonstration of how
you might use this, I’ll touch up the Pet, Dog,
and Cat classes.

continues on next page

To use the scope resolution operator:

1. Open pets2.php (Script 7.3) in your text
editor or IDE.

2. Modify the Pet constructor so that the
animals immediately sleep (Script 7.5).

function __construct($pet_name) {

$this->name = $pet_name;

self::go_to_sleep();

}

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Pets</title>

7 </head>

8 <body>

9 <?php # Script 7.5 - pets3.php

10

11 /* This page defines and uses

12 * the Pet, Cat, and Dog classes.

13 */

14

15 # ******************* #

16 # ***** CLASSES ***** #

17

18 /* Class Pet.

19 * The class contains one attribute: name.

20 * The class contains four methods:

21 * - __construct()

22 * - eat()

23 * - go_to_sleep()

24 * - play()

25 */

26 class Pet {

27

28 // Declare the attributes:

29 public $name;

30

31 // Constructor assigns the pet's name:

32 function __construct($pet_name) {

33 $this->name = $pet_name;

34 self::go_to_sleep();

35 }

36

(script continues on next page)

Script 7.5 The scope resolution operator makes it easy to refer to overridden methods.

290

Chapter 7

U
si

n
g

 t
h

e
S

co
pe

 R
es

o
lu

ti
o

n
 O

pe
ra

to
r

It seems that many animals go to sleep
as one of the first things they do (and
there is no go_to_bathroom() method!).
By placing this new line in the construc-
tor, the go_to_sleep() method will be
called as soon as the object is created.

continues on page 293

37 // Pets can eat:

38 function eat() {

39 echo "<p>$this->name is eating.</p>";

40 }

41

42 // Pets can sleep:

43 function go_to_sleep() {

44 echo "<p>$this->name is sleeping.</p>";

45 }

46

47 // Pets can play:

48 function play() {

49 echo "<p>$this->name is playing.</p>";

50 }

51

52 } // End of Pet class.

53

54

55 /* Cat class extends Pet.

56 * Cat overrides play().

57 */

58 class Cat extends Pet {

59 function play() {

60

61 // Call the Pet::play() method:

62 parent::play();

63

64 echo "<p>$this->name is climbing.</p>";

65

66 }

67 } // End of Cat class.

68

69

70 /* Dog class extends Pet.

71 * Dog overrides play().

72 */

73 class Dog extends Pet {

74 function play() {

75

76 // Call the Pet::play() method:

77 parent::play();

78

79 echo "<p>$this->name is fetching.</p>";

80 }

81 } // End of Dog class.

82

83

84 # ***** END OF CLASSES ***** #

85 # ************************** #

86

87 // Create a dog:

88 $dog = new Dog('Satchel');

(script continues on next page)

Script 7.5 continued

291

Advanced OOP

U
sin

g
 th

e S
co

pe R
eso

lu
tio

n
 O

perato
r

89

90 // Create a cat:

91 $cat = new Cat('Bucky');

92

93 // Create an unknown type of pet:

94 $pet = new Pet('Rob');

95

96 // Feed them:

97 $dog->eat();

98 $cat->eat();

99 $pet->eat();

100

101 // Nap time:

102 $dog->go_to_sleep();

103 $cat->go_to_sleep();

104 $pet->go_to_sleep();

105

106 // Have them play:

107 $dog->play();

108 $cat->play();

109 $pet->play();

110

111 // Delete the objects:

112 unset($dog, $bucky, $pet);

113

114 ?>

115 </body>

116 </html>

Script 7.5 continued

292

Chapter 7

U
si

n
g

 t
h

e
S

co
pe

 R
es

o
lu

ti
o

n
 O

pe
ra

to
r

Figure 7.16 The modified code (Script 7.5) now
calls the Pet play() method each time a Cat or
Dog plays.

3. Modify the Cat play() method so that it
calls Pet play().

function play() {

parent::play();

echo “<p>$this->name is

➝ climbing.</p>”;

}

The play() method in the Pet and Cat

classes do slightly different things. The
Pet method says that the object is play-
ing. The Cat method says specifically
what kind of play. To have the functional-
ity of both methods, call parent::play()
within the Cat method.

4. Repeat Step 3 for the Dog class.

function play() {

parent::play();

echo “<p>$this->name is

➝ fetching.</p>”;

}

5. Save the file as pets3.php, place it in your
Web directory, and test in your Web
browser (Figure 7.16).

✔ Tips

■ In the Pet class it would be more com-
mon to see $this->go_to_sleep() than
self::go_to_sleep(), but I was trying to
demonstrate self:: versus parent::.

■ In PHP 4, you could access any class
member without objects using the scope
resolution operator:

ClassName::method_name();

This worked in PHP 4 in part because it
did not employ the concept of visibility.
In PHP 5, only static members (a concept
discussed next) can be referred to this way.

293

Advanced OOP

U
sin

g
 th

e S
co

pe R
eso

lu
tio

n
 O

perato
r

■ In Dog and Cat, you could also use the code
Pet::play(). But by using parent::play(),
you minimize the chance of future prob-
lems should the class definitions change.

■ You will often see documentation use the
ClassName::method_name() syntax. When
you see this, it’s not suggesting that you
should call the method this way, but rather
that method_name() is part of ClassName.

Creating Static Members
Static class attributes are the class equivalent
of static function variables (see Chapter 1,
“Advanced PHP Techniques”). A static func-
tion variable remembers its value each time
a function is called:

function test () {

static $n = 1;

echo “$n
”;

$n++;

}

test();

test();

test();

As Figure 7.17 shows, each call of the test()
function increments the value of $n by one.
If $n was not declared as static, each call to
the function would print the number 1.

With static class attributes, the concept is
just the same except that a static variable is
remembered across all instances of that class
(across all objects based upon the class). To
declare a static attribute, use the static key-
word after the visibility:

class SomeClass {

public static $var = ‘value’;

}

Figure 7.17 A static variable in a function
retains its value over multiple calls (in
the same script).

294

Chapter 7

Cr
ea

ti
n

g
 S

ta
ti

c
M

em
be

rs

Class Constants

Class constants are like static attributes
in that they are accessible to all instances
of that class (or derived classes). But as
with any other constant, the value can
never change. Class constants are created
using the const keyword, followed by the
name of the constant (without a dollar
sign), followed by the assignment opera-
tor and the constant’s value:

class SomeClass {

const PI = 3.14;

}

Constants can only be assigned a value
like in that example. The value cannot be
based upon another variable, and it can’t
be the result of an expression or a func-
tion call.

Constants, like static attributes, also can-
not be accessed through the object. You
cannot do:

$obj->PI

or

$obj::PI

But you can use ClassName::constant_
name (e.g., SomeClass::PI) anywhere. You
can also use self::constant_name within
the class’s methods.

Static variables differ from standard attrib-
utes in that you cannot access them within
the class using $this. Instead, you’ll use self,
followed by the scope resolution operator
(::), followed by the variable name, with its
initial dollar sign:

class SomeClass {

public static $counter = 0;

function __construct() {

self::$counter++

}

}

The preceding code creates a counter for how
many objects of this class exist. Each time a
new object is created:

$obj = new SomeClass();

$counter goes up by one.

Static methods are created in much the
same way:

class SomeClass {

public static function do() {

// Code.

}

}

But once defined, static methods cannot
be called using an object. You could never
execute:

$obj = new SomeClass();

$obj->do(); // NO!

Instead you would have to use:

SomeClass::do();

To play this out, let’s create a new Pet class
that uses a static attribute and a static
method. The attribute will be used to count
the number of pets in existence. The static
method will return the number of pets. As
this is a demonstration, no other methods
will be created.

295

Advanced OOP

Creatin
g

 Static M
em

bers

To create static members:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 7.6).
<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Pets</title>

7 </head>

8 <body>

9 <?php # Script 7.6 - static.php

10

11 /* This page defines and uses

12 * the Pet, Cat, and Dog classes.

13 */

14

15 # ******************* #

16 # ***** CLASSES ***** #

17

18 /* Class Pet.

19 * The class contains two attributes:

20 * - protected name

21 * - private static count

22 * The class contains three methods:

23 * - __construct()

24 * - __destruct()

25 * - public static get_count()

26 */

27 class Pet {

28

29 // Declare the attributes:

30 protected $name;

31

32 private static $count = 0;

33

34 // Constructor assigns the pet's name

35 // and increments the counter.

36 function __construct($pet_name) {

37

38 $this->name = $pet_name;

39

40 // Increment the counter:

41 self::$count++;

42

43 }

44

Script 7.6 A static attribute and a static method are used to count the number of pets created in this script.

296

Chapter 7

Cr
ea

ti
n

g
 S

ta
ti

c
M

em
be

rs

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Pets</title>

</head>

<body>

<?php # Script 7.6 - static.php

continues on page 298

45 // Destructor decrements the counter:

46 function __destruct() {

47 self::$count--;

48 }

49

50 // Static method for returning the counter:

51 public static function get_count() {

52 return self::$count;

53 }

54

55 } // End of Pet class.

56

57

58 /* Cat class extends Pet. */

59 class Cat extends Pet {

60 } // End of Cat class.

61

62 /* Dog class extends Pet. */

63 class Dog extends Pet {

64 } // End of Dog class.

65

66 /* Ferret class extends Pet. */

67 class Ferret extends Pet {

68 } // End of Ferret class.

69

70 /* PygmyMarmoset class extends Pet. */

71 class PygmyMarmoset extends Pet {

72 } // End of PygmyMarmoset class.

73

74

75 # ***** END OF CLASSES ***** #

76 # ************************** #

77

78 // Create a dog:

79 $dog = new Dog('Old Yeller');

80

81 // Print the number of pets:

82 echo '<p>After creating a Dog, I now have ' . Pet::get_count() . ' pet(s).</p>';

83

84 // Create a cat:

85 $cat = new Cat('Bucky');

86 echo '<p>After creating a Cat, I now have ' . Pet::get_count() . ' pet(s).</p>';

87

88 // Create another pet:

89 $ferret = new Ferret('Fungo');

90 echo '<p>After creating a Ferret, I now have ' . Pet::get_count() . ' pet(s).</p>';

91

92 // Tragedy strikes!

93 unset($dog);

94 echo '<p>After tragedy strikes, I now have ' . Pet::get_count() . ' pet(s).</p>';

95

96 // Pygmy Marmosets are so cute:

97 $pygmymarmoset = new PygmyMarmoset('Toodles');

98 echo '<p>After creating a Pygmy Marmoset, I now have ' . Pet::get_count() . ' pet(s).</p>';

99

100 // Delete the objects:

101 unset($cat, $ferret, $pygmymarmoset);

102

103 ?>

104 </body>

105 </html>

Script 7.6 continued

297

Advanced OOP

Creatin
g

 Static M
em

bers

2. Begin declaring the Pet class.

class Pet {

protected $name;

private static $count = 0;

The class still has the $name attribute,
but it’s now marked as protected so that
only this and derived classes can access
it. The $count variable, which is initial-
ized as 0, is both private and static. By
making it private, only this class can
access it, which is smart, because you
don’t want anything else to be able to
adjust the counter. By making $count
static, it retains its value for all instances
of Pet or any derived classes.

3. Create the constructor.

function __construct($pet_name) {

$this->name = $pet_name;

self::$count++;

}

The constructor still assigns the name to
the $name attribute, but now it also incre-
ments the counter. Note the unique syn-
tax for referring to a static attribute.

Every time an object of type Pet or of a
derived type is created, this constructor
gets called. So for every qualifying object,
$count is incremented.

4. Create the destructor.

function __destruct() {

self::$count--;

}

Just as the constructor should increase
the value of $count, the destructor
should decrease it. Every time an object
of a qualifying type (Pet or a derived
class) is destroyed, this destructor is
called.

298

Chapter 7

Cr
ea

ti
n

g
 S

ta
ti

c
M

em
be

rs

5. Create the static method and complete
the class.

public static function

➝ get_count() {

return self::$count;

}

} // End of Pet class.

The get_count() method is public and
static. This means that it’s available to be
called anywhere but cannot be called
through an object. It returns the value of
$count.

6. Create a Cat class.

class Cat extends Pet {

}

Since the focus here is on the static mem-
bers, the derived classes don’t need to do
anything.

7. Create a couple more subclasses.

class Dog extends Pet {

}

class Ferret extends Pet {

}

class PygmyMarmoset extends Pet {

}

8. Create a new object and print the number
of pets.

$dog = new Dog(‘Old Yeller’);

echo ‘<p>After creating a Dog, I now

➝ have ‘ . Pet::get_count() . ‘

➝ pet(s).</p>’;

When $dog is created, the Pet construc-
tor is called, incrementing $count to 1.
To return this value, refer to
Pet::get_count().

To avoid confusion, I’ll point out that the
Pet constructor is called when making
an object of Dog type because Dog does
not have its own constructor.

Figure 7.18 As the Pet class contains a static attribute,
it can be used to count the number of objects created
from derived classes.

9. Create a couple more pets.

$cat = new Cat(‘Bucky’);

echo ‘<p>After creating a Cat, I now

➝ have ‘ . Pet::get_count() . ‘

➝ pet(s).</p>’;

$ferret = new Ferret(‘Fungo’);

echo ‘<p>After creating a Ferret, I

➝ now have ‘ . Pet::get_count() . ‘

➝ pet(s).</p>’;

10. Have the unthinkable happen (my
condolences).

unset($dog);

echo ‘<p>After tragedy strikes, I

➝ now have ‘ . Pet::get_count() . ‘

➝ pet(s).</p>’;

When the Dog (or any other subclass)
object is destroyed (here using unset()),
the Pet destructor is invoked, subtract-
ing 1 from $count. (Again, the Pet
destructor is called because no derived
class has its own destructor.)

11. Recover by getting another pet.

$pygmymarmoset = new

PygmyMarmoset(‘Toodles’);

echo ‘<p>After creating a Pygmy

➝ Marmoset, I now have ‘ .

➝ Pet::get_count() . ‘ pet(s).</p>’;

12. Complete the page.

unset($cat, $ferret,

➝ $pygmymarmoset);

?>

</body>

</html>

13. Save the file as static.php, place it in
your Web directory, and test in your
Web browser (Figure 7.18).

299

Advanced OOP

Creatin
g

 Static M
em

bers✔ Tips

■ If you did want to have overridden con-
structors and destructors in the derived
classes in this example (Cat, Dog, et al.),
you would need them to call the Pet con-
structor and destructor in order to prop-
erly manage the page count. You would
do so by adding parent::__construct()
and parent::__destruct() to them.

■ Static methods are almost always public
because they can’t be called through an
object.

Abstract Classes and
Methods
To wrap up the chapter, I’m going to intro-
duce abstract classes and methods. Abstract
classes are template versions of a parent
class. By defining an abstract class, you can
indicate the general behavior of a class. It
starts with the keyword abstract:

abstract class ClassName {

}

Abstract classes differ from normal classes
in that attempting to create an object of an
abstract class’s type results in a fatal error
(Figure 7.19). Instead, abstract classes are
meant to be extended, and then you create
an instance of that extended class.

Abstract classes often have abstract meth-
ods. These are defined like so:

abstract function function_name();

abstract function function_name($var1,

➝ $var2);

Figure 7.19 The fatal error created by trying to make
an object of an abstract class.

300

Chapter 7

A
bs

tr
ac

t
Cl

as
se

s
an

d
M

et
h

o
ds

That’s it! You do not define the functionality
of the method; instead, that functionality
will be determined by the class that extends
the abstract class. If you want to add visibili-
ty to the definition, add the corresponding
keyword after the word abstract:

abstract public function

function_name();

The implementation of the abstract method
in the extended class must abide by the same
visibility or weaker. If the abstract function
is public, the extended version must also
be public. The implemented version of the
method must also have the same number of
arguments as the abstract definition.

To put this into action, let’s return to geom-
etry examples, like Rectangle. That class
could be an extension of a more generic
Shape class. Figure 7.20 shows just part of
the Shape family tree. Let’s institute the
Shape abstract class and its child, Triangle.

Figure 7.20 The abstract Shape class can be the parent
to many types of (two-dimensional) shapes.

1 <?php # Script 7.7 - Shape.php

2

3 /* This page defines the Shape abstract

class.

4 * The class contains no attributes.

5 * The class contains two abstract

methods:

6 * - get_area()

7 * - get_perimeter()

8 */

9

10 abstract class Shape {

11

12 // No attributes to declare.

13

14 // No constructor or destructor

defined here.

15

16 // Method to calculate and return the

area.

17 abstract protected function

get_area();

18

19 // Method to calculate and return the

perimeter.

20 abstract protected function

get_perimeter();

21

22 } // End of Shape class.

23

24 ?>

Script 7.7 The abstract Shape class, with two abstract
methods, will be the template for more specific
shapes, like Triangle (Script 7.8).

To create abstract classes and
methods:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 7.7).

<?php # Script 7.7 - Shape.php

2. Start defining the Shape class.

abstract class Shape {

Remember that when a class is abstract,
it means you’ll never create an object
of that type. So you wouldn’t make an
abstract Rectangle class because you do
need to occasionally make rectangles.

3. Define the first abstract method.

abstract protected function

➝ get_area();

This line says that any class that extends
Shape needs to define a get_area()
method. Furthermore, this method
should not take any arguments and have
either public or protected visibility (the
same visibility or weaker). Defining this
as an abstract method makes sense, as
every two-dimensional shape should
have the ability to calculate its own area
(three-dimensional shapes have volumes,
not areas).

4. Define the second abstract method.

abstract protected function

➝ get_perimeter();

5. Complete the class and the page.

} // End of Shape class.

?>

6. Save the file as Shape.php and place it in
your Web directory.

301

Advanced OOP

A
bstract Classes an

d M
eth

o
ds

To create the Triangle class:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 7.8).

<?php # Script 7.8 - Triangle.php

1 <?php # Script 7.8 - Triangle.php

2

3 /* This page defines the Triangle class.

4 * The class contains two attributes:

5 * - private $sides (array)

6 * - private $perimeter (number)

7 * The class contains three methods:

8 * - __construct()

9 * - get_area()

10 * - get_perimeter()

11 */

12

13 class Triangle extends Shape {

14

15 // Declare the attributes:

16 private $sides = array();

17 private $perimeter = NULL;

18

19 // Constructor:

20 function __construct($s0 = 0, $s1 = 0, $s2 = 0) {

21

22 // Store the values in the array:

23 $this->sides[] = $s0;

24 $this->sides[] = $s1;

25 $this->sides[] = $s2;

26

27 // Calculate the perimeter:

28 $this->perimeter = array_sum($this->sides);

29

30 } // End of constructor.

31

32 // Method to calculate and return the area:

33 public function get_area() {

34

35 // Calculate and return the area:

36 return (SQRT(

37 ($this->perimeter/2) *

38 (($this->perimeter/2) - $this->sides[0]) *

39 (($this->perimeter/2) - $this->sides[1]) *

40 (($this->perimeter/2) - $this->sides[2])

41));

42

43 } // End of get_area() method.

44

45 // Method to return the perimeter:

46 public function get_perimeter() {

47 return $this->perimeter;

48 } // End of get_perimeter() method.

49

50 } // End of Triangle class.

51

52 ?>

Script 7.8 The Triangle class is an extension of Shape. It is therefore responsible for defining how the get_area()
and get_perimeter() methods work.

302

Chapter 7

A
bs

tr
ac

t
Cl

as
se

s
an

d
M

et
h

o
ds

2. Begin declaring the Triangle class.

class Triangle extends Shape {

3. Declare the attributes.

private $sides = array();

private $perimeter = NULL;

The first attribute will store the size of
the three sides (you could make three
separate variables instead). The second
will store the perimeter. I’m only adding
this one because the perimeter will be
used in calculating the area (a lot), so it’s
nice to have it in a variable instead of
retrieving it through a method call.

All the attributes are private, as they
shouldn’t be accessed outside of any class
and I can’t imagine how a Triangle class
would be inherited (in which case they
may need to be protected).

4. Define the constructor.

function __construct($s0 = 0, $s1 =

➝ 0, $s2 = 0) {

$this->sides[] = $s0;

$this->sides[] = $s1;

$this->sides[] = $s2;

$this->perimeter =

➝ array_sum($this->sides);

}

The constructor takes three arguments
for the three sides of the triangle. Those
values are placed in the $sides array,
and then the perimeter is calculated. The
array_sum() function adds up all the ele-
ments of an array.

continues on next page

303

Advanced OOP

A
bstract Classes an

d M
eth

o
ds

5. Create the get_area() method.

public function get_area() {

return (SQRT(

($this->perimeter/2) *

(($this->perimeter/2) -

➝ $this->sides[0]) *

(($this->perimeter/2) -

➝ $this->sides[1]) *

(($this->perimeter/2) -

➝ $this->sides[2])

));

}

If you remember your geometry, you
know that the area of a triangle is equal
to one-half the base times the height
(Figure 7.21). Of course, to make that
calculation, the class would need to
determine the base (the longest side,
not a problem) and the height (requiring
trigonometry, yikes!). So instead I’ll use
the formula in Figure 7.22. This code
implements that formula in PHP.

6. Create the get_perimeter() method.

public function get_perimeter() {

return $this->perimeter;

}

This is the second of the abstract meth-
ods in Shape that must be implemented
here. For this example, it simply returns
the perimeter attribute. Had I not created
a perimeter attribute, this method would
instead return array_sum($this->sides).

7. Complete the class and the page.

} // End of Triangle class.

?>

8. Save the file as Triangle.php and place it
in your Web directory.

Figure 7.22 Heron’s Formula says that the area of a
triangle is equal to the square root of z times z minus
a times z minus b times z minus c, where z is half the
perimeter and a, b, and c are the three sides. (And no,
I didn’t know this offhand, Mr. Friendly Internet
helped out.)

Figure 7.21 To calculate the area of a triangle the easy
way, you would need to know the height value.

304

Chapter 7

A
bs

tr
ac

t
Cl

as
se

s
an

d
M

et
h

o
ds

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Triangle</title>

7 </head>

8 <body>

9 <?php # Script 7.9 - abstract.php

10

11 /* This page uses the Triangle class (Script 7.8)

12 * which is derived from Shape (Script 7.7).

13 */

14

15 // Define the __autoload() function:

16 function __autoload ($class) {

17 require_once($class . '.php');

18 }

19

20 // Set the triangle's sides:

21 $side1 = 5;

22 $side2 = 12;

23 $side3 = 13;

24

25 // Print a little introduction:

26 echo "<h3>With sides of $side1, $side2, and $side3...</h3>";

27

28 // Create a new triangle:

29 $t = new Triangle($side1, $side2, $side3);

30

31 // Print the area.

32 echo '<p>The area of the triangle is ' . $t->get_area() . '</p>';

33

34 // Print the perimeter.

35 echo '<p>The perimeter of the triangle is ' . $t->get_perimeter() . '</p>';

36

37 // Delete the object:

38 unset($t);

39

40 ?>

41 </body>

42 </html>

Script 7.9 This script makes an object of type Triangle, which is derived from the abstract Shape class.

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Triangle</title>

</head>

<body>

<?php # Script 7.9 - abstract.php

continues on next page

305

Advanced OOP

A
bstract Classes an

d M
eth

o
ds

To use the Triangle class:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 7.9).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

2. Define the __autoload() function.

function __autoload ($class) {

require_once($class . ‘.php’);

}

As discussed at the end of Chapter 6,
this function will automatically load files
when an object is created for a type that’s
not defined. In this script, it will load
both Triangle.php and Shape.php.

3. Set the sides of the triangle.

$side1 = 5;

$side2 = 12;

$side3 = 13;

Technically a valid triangle abides by a
certain rule regarding the three sides: the
sum of any two sides has to be greater
than the third side (I seriously brushed
up on my geometry skills for this).

4. Print an introduction and create a new
triangle.

echo “<h3>With sides of $side1,

➝ $side2, and $side3...</h3>”;

$t = new Triangle($side1, $side2,

➝ $side3);

306

Chapter 7

A
bs

tr
ac

t
Cl

as
se

s
an

d
M

et
h

o
ds

Figure 7.23 The use of the Triangle class.

5. Print the area.

echo ‘<p>The area of the triangle is

➝ ‘ . $t->get_area() . ‘</p>’;

This code is much like the Square and
Rectangle examples already demonstrated
(usage redundancy is a hallmark of OOP).

6. Print the perimeter.

echo ‘<p>The perimeter of the

➝ triangle is ‘ . $t->get_perimeter()

➝ . ‘</p>’;

7. Complete the page.

unset($t);

?>

</body>

</html>

8. Save the file as abstract.php, place it in
your Web directory, and test in your Web
browser (Figures 7.23).

✔ Tips

■ If a class has even one abstract method,
the class itself must be abstract.

■ Similar in theory to abstract classes
are interfaces. Interfaces have an added
advantage of allowing a derived class to
inherit from multiple parent classes.

307

Advanced OOP

A
bstract Classes an

d M
eth

o
ds

Where to Go from Here

In this chapter I focus on the most important aspects of so-called advanced object-oriented
programming. It all starts with inheritance, which is what you really need to master.

Although I formally discussed seven topics and included sidebars on many others, another
entire chapter could be dedicated to “more advanced object-oriented programming.” But I
strongly believe that you can’t go from little-to-no OOP knowledge to advanced OOP in just
a few chapters or even an entire book.

If you are interested in expanding your OOP skills, you’ll need to practice, practice, practice. Also
look at how existing classes are defined, in particular looking at some of the PEAR stuff. Keep
reading, keep experimenting, but start slow and really think things through! If you get stuck or
confused, feel free to make use of my supporting forum (www.DMCInsights.com.com/phorum/).

308

Chapter 7

A
bs

tr
ac

t
Cl

as
se

s
an

d
M

et
h

o
ds

www.DMCInsights.com.com/phorum/

The preceding two chapters each discuss object-oriented programming, as it pertains
specifically to version 5 of PHP (which has a drastically new object model and syntax).
The majority of the examples in those chapters tend to be more demonstrative than
practical (the Rectangle, Square, Shape, and Triangle classes are useful, though, but
only if you’re doing geometric work). Philosophical examples are best for teaching OOP,
I believe, but real-world object-oriented programming hammers the points home.

In this chapter I focus on two popular uses of OOP: exception handling and a shop-
ping cart. The first subject is new to PHP 5 and worth knowing, even if you don’t reg-
ularly do object-based programming. The shopping cart example will be an alternative
to the procedural method implemented in Chapter 5, “E-Commerce Techniques.” My
hope is that by having both the procedural and objective implementations of this
example, you’ll be best able to grasp the OOP concepts.

309

Real-World OOP
8

R
eal-W

o
rld O

O
P

Catching Exceptions
One of the OOP additions in PHP 5 is the
ability to handle errors using try and catch

statements. The premise is that you try to
do certain things in your PHP code, specifi-
cally the kinds of things that might fail (like
connecting to a database or including a file).
If an error occurs, you then throw an excep-
tion. Your code will then catch the exception
and respond accordingly. Simply put, an
exception is when something other than
what you expected happens.

The basic syntax is

try {

// Do something.

// Throw an exception on error.

} catch (exception) {

// Do whatever now.

}

This is a more sophisticated version of

if (/* Do something. */) {

} else {

/* Do whatever because a problem

➝ occurred. */

}

The benefit that the exception handling has
over the conditional is that it further sepa-
rates the functionality and logic from the
error handling. Furthermore, multiple errors
can be handled without having to use lots of
nested conditionals.

There are two ways exceptions might be
thrown. The first is to forcibly throw an
exception, using the syntax

throw new Exception(‘error message’);

Exceptions vs. Error Handling

Catching exceptions, like all object-
oriented programming, shouldn’t be
used just because you can or know how.
Exceptions can be overused, cluttering
up code with unnecessary try…catch
blocks. Exception handling also intro-
duces a new potential problem: any
exception that’s not caught results in a
fatal error. A third concern is that every
time you create an object, including an
Exception object, quite a bit of server
overhead is required.

You’ll see in this book that I tend to
use exception handling most frequently
when using secondary libraries. For
example, in later chapters, try…catch
blocks will be used when working with
COM (Chapter 10, “PHP and the Server”)
and the PDFlib (download the free
bonus chapter, “Creating PDFs,” from
www.peachpit.com/title/0321376013.).

310

Chapter 8

C
at

ch
in

g
 E

xc
ep

ti
o

n
s

www.peachpit.com/title/0321376013

N a m e R e t u r n s

getCode() The code received, if any
getMessage() The message received, if any
getFile() The name of the file where the

exception occurred
getLine() The line number from which

the exception was thrown
getTrace() An array of information, like

the file name, line number,
and so on

getTraceAsString() The same information as
getTrace() but as a string

__toString() All of the preceding informa-
tion as a string

Exception Class Methods

Table 8.1 These methods are all part of the Exception
class and will be necessary to properly handle
exceptions that occur.

This code throws an object of type Exception,
a class defined in PHP. To catch this excep-
tion, you would have:

catch (Exception $e)

where $e is an object of the Exception type.

The Exception class contains the methods
(functions) indicated in Table 8.1, which
you can use to access information about the
error. A try…catch example might therefore
look like:

try {

// Do something.

} catch (Exception $e) {

echo $e->getMessage();

}

You should note that any code after an exe-
cuted throw will never run. Conversely, if no
exception ever occurs, the code in the catch
block will never be executed.

The second way an exception might be
thrown is if the try block is executing
code that throws exceptions itself. You’ll
see this later in the chapter. For this first
example, some sample data will be written
to a text file.

311

Real-World OOP

C
atch

in
g

 Exceptio
n

s

To use exception handling:

1. Begin a new PHP script in your text
editor or IDE, starting with the HTML
(Script 8.1).

<!DOCTYPE html PUBLIC “-//W3C//DTD

XHTML ➝ 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Handling

Exceptions</title>

</head>

<body>

<?php # Script 8.1 -

write_to_file.php

continues on page 314

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Handling Exceptions</title>

7 </head>

8 <body>

9 <?php # Script 8.1 - write_to_file.php

10

11 /* This page attempts to write some data

12 * to a text file.

13 * Errors are handled using try...catch.

14 */

15

16 // Identify the file:

17 $file = 'data.txt';

18

(script continues on next page)

Script 8.1 If any of three different steps in this code cannot be completed, exceptions are thrown, to be handled by
the catch.

312

Chapter 8

C
at

ch
in

g
 E

xc
ep

ti
o

n
s

19 // Data to be written:

20 $data = "This is a line of data.\n";

21

22 // Start the try...catch block:

23 try {

24

25 // Open the file:

26 if (!$fp = @fopen($file, 'w')) {

27 throw new Exception('could not open the file.');

28 }

29

30 // Write to the file:

31 if (!@fwrite($fp, $data)) {

32 throw new Exception('could not write to the file.');

33 }

34

35 // Close the file:

36 if (!@fclose($fp)) {

37 throw new Exception('could not close the file.');

38 }

39

40 // If we got this far, everything worked!

41 echo '<p>The data has been written.</p>';

42

43 } catch (Exception $e) {

44 echo '<p>The process could not be completed because the script ' . $e->getMessage() . '</p>';

45 }

46

47 echo '<p>This is the end of the script.</p>';

48

49 ?>

50 </body>

51 </html>

Script 8.1 continued

313

Real-World OOP

C
atch

in
g

 Exceptio
n

s

2. Identify the file used for storing the data
and the data to be written.

$file = ‘data.txt’;

$data = “This is a line of data.\n”;

The $file variable should store the full
path (relative or absolute) to the text file.
This code is outside of a try…catch struc-
ture and will therefore always be execut-
ed, like any other PHP code.

3. Begin a try block.

try {

The bulk of the functionality of the script
will go within this block.

4. Attempt to open the file.

if (!$fp = @fopen($file, ‘w’)) {

throw new Exception(‘could not

➝ open the file.’);

}

Opening a file for writing is a common
cause of problems, most likely because
the file doesn’t exist, the file’s name and
path are incorrect, or the file does not
have the proper permissions. If the file
could not be opened in writing mode, an
exception is thrown with the message
could not open the file.

Any errors generated by the function
calls will be suppressed by @ (the error
suppression operator).

314

Chapter 8

C
at

ch
in

g
 E

xc
ep

ti
o

n
s

5. Attempt to write data to the file.

if (!@fwrite($fp, $data)) {

throw new Exception(‘could not

➝ write to the file.’);

}

This piece of code will only be executed
if no exception was thrown by the code
in Step 4. Logically, if the file could be
opened for writing, the script should be
able to use fwrite() here. But, just as an
example, if you accidentally coded

!fwrite($file, $data)

here, that mistake would be caught, too.

6. Attempt to close the file.

if (!@fclose($fp)) {

throw new Exception(‘could not

➝ close the file.’);

}

Each exception thrown within the try
block is of the Exception type, but each
has a unique message.

7. Print a message indicating success of the
operation.

echo ‘<p>The data has been

➝ written.</p>’;

This line of code will be executed only if
no exceptions were thrown prior to this
point.

Figure 8.2 If no problems occurred, this is the end
result.

Figure 8.1 Although it may not be apparent in the end
result, this script uses a try…catch block to throw, and
then catch, an object of Exception type.

8. Catch, and handle, the exception.

} catch (Exception $e) {

echo ‘<p>The process could not

➝ be completed because the

➝ script ‘ . $e->getMessage() .

➝ ‘</p>’;

}

The variable $e will be an object of
Exception type, matching the kinds of
exceptions thrown. Within this block,
the received message is printed (by call-
ing the getMessage() method) within
context.

9. Print another message.

echo ‘<p>This is the end of the

➝ script.</p>’;

This code, outside of the try…catch
block, will always be executed, even if
exceptions occur.

10. Complete the page.

?>

</body>

</html>

11. Save the file as write_to_file.php, place
it in your Web directory, and test in your
Web browser (Figure 8.1).

Without first creating a text file called
data.txt, with the proper permissions,
Figure 8.1 shows the result.

12. Create a file called data.txt in the same
directory as write_to_file.php, and
adjust its permissions if necessary. Then
rerun the PHP page in your Web brows-
er (Figure 8.2).

continues on next page

315

Real-World OOP

C
atch

in
g

 Exceptio
n

s

✔ Tips

■ To see the other exception error mes-
sages (Figures 8.3 and 8.4), you’ll need
to introduce errors into the code. For
example, changing the fopen() mode
to r will create the result in Figure 8.3.
Changing !fclose($fp) to !fclose($Fp)

will create the result in Figure 8.4.

■ Failure to catch a thrown exception
results in a fatal error (Figure 8.5).

■ Every try statement requires at least one
catch. You can have multiple catch state-
ments, each catching a different excep-
tion type. You’ll see this in the next
example.

■ The Exception class’s constructor can
take anywhere from zero to two argu-
ments. The first argument is an error
message, and the second is an error code.

■ A catch block can also throw an excep-
tion to be caught by a later catch block.
The object thrown can be new or the
current exception object:

try {

// Code.

} catch (Exception $e) {

// Do whatever.

throw $e;

} catch (Exception $e) {

// Now do this.

}

Figure 8.5 When using try, you must ensure that all
exceptions are caught, lest you’re left with ugly fatal
errors like this one.

Figure 8.4 An inability to close the opened file
generates this result.

Figure 8.3 If the script could not write to the data file,
an exception with a different message is thrown
(compare with Figures 8.1 and 8.4).

316

Chapter 8

C
at

ch
in

g
 E

xc
ep

ti
o

n
s

1 <?php

2 class Exception

3 {

4 protected $message = 'Unknown exception'; // exception message

5 protected $code = 0; // user defined exception code

6 protected $file; // source filename of exception

7 protected $line; // source line of exception

8

9 function __construct($message = null, $code = 0);

10

11 final function getMessage(); // message of exception

12 final function getCode(); // code of exception

13 final function getFile(); // source filename

14 final function getLine(); // source line

15 final function getTrace(); // an array of the backtrace()

16 final function getTraceAsString(); // formatted string of trace

17

18 /* Overrideable */

19 function __toString(); // formatted string for display

20 }

21 ?>

Script 8.2 This code, which comes from the PHP manual, shows the basic definition of the Exception class.

Extending the
Exception Class
The preceding example demonstrates basic
usage of a try…catch block, using the built-
in Exception class. This class is very basic,
designed to be extended so that you can
add, or change, functionality as needed.
Script 8.2 shows the basic outline of this
class.

Extending the Exception class is accom-
plished just like extending any class (see
Chapter 7, “Advanced OOP”):

class MyException extends Exception {…

continues on next page

317

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

Note that only the Exception constructor
and __toString() methods can be overrid-
den, because the others are all defined as
final.

To use your extended class, you would
change the try…catch block to:

try {

// Some code.

throw new MyException(‘error

➝ message’);

} catch (MyException $e) {

}

Thanks to object type hinting (see the side-
bar), you can catch different kinds of excep-
tions from the same try block:

try {

// Some code.

throw new MyException1(‘error

➝ message’);

// Some more code.

throw new MyException2(‘error

➝ message’);

} catch (MyException1 $e) {

} catch (MyException2 $e) {

}

In the preceding section of the chapter I
mention the two ways exceptions are nor-
mally thrown: forcibly in the try code or by
using code that throws exceptions itself. I’ll
demonstrate this other method in the next
example. This script will do the same thing
as the preceding example—write data to a
file—but will use an object to do so. This
object will throw exceptions of a specific
class. To save time and book space, both
new classes and the code that uses them
will be put into this one file. In a real appli-
cation, you’d likely want to separate the
code into three distinct files.

318

Chapter 8

Ex
te

n
di

n
g

 t
h

e
Ex

ce
pt

io
n

 C
la

ss

Object Type Hinting

Not discussed in Chapter 7 but more of an advanced topic is object type hinting. This is
accomplished by preceding a variable with a class name, as in a catch block:

catch (ClassName $e)

You’ll also come across type hinting in functions or methods that must take a specific type
of object as an argument:

function my_func (ClassName $e) {…

The intent of type hinting is to only accept a value if it’s of the proper type (or class, when it
comes to objects). PHP’s loosely typed nature is fine for numbers and strings, as you can treat
variables of these types just the same without complaint. But thinking you have an object of
a certain class when you don’t will be a real problem when you go to invoke the object’s class-
specific methods. Object type hinting prevents this from being an issue.

The last thing to know about type hinting is that it matches a class or any derived
class. The code

catch (Exception $e)

will catch exceptions thrown of type MyException or Exception (given that MyException is
derived from Exception). If your code might catch both kinds of exceptions, you would want
to catch the derived types first:

try {

// Code

} catch (MyException $me) {

} catch (Exception $e) {

}

In that code, any exception of type MyException will be caught by the first catch.

319

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

To extend the Exception class:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 8.3).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Handling Exceptions, Part

➝ 2</title>

</head>

<body>

<?php # Script 8.3 - write_to_

➝ file2.php

continues on page 324

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Handling Exceptions, Part 2</title>

7 </head>

8 <body>

9 <?php # Script 8.3 - write_to_file2.php

10

11 /* This page attempts to write some data

12 * to a text file.

13 * A special class is used for this purpose.

14 * An extended exception class is used for errors.

15 */

16

17 # ******************* #

18 # ***** CLASSES ***** #

(script continues on next page)

Script 8.3 This script first extends the Exception class to create a more specific type of exception handler. Then it
defines and uses a WriteToFile class, which throws exceptions of type FileException.

320

Chapter 8

Ex
te

n
di

n
g

 t
h

e
Ex

ce
pt

io
n

 C
la

ss

19

20 // Define the extended exception class...

21 // This class adds a get_detail() method.

22 class FileException extends Exception {

23

24 // Define the get_details() method...

25 // Method takes no arguments and

26 // returns a detailed message.

27 function get_details() {

28

29 // Return a different message based

30 // upon the code:

31 switch ($this->code) {

32 case 0:

33 return 'No filename was provided';

34 break;

35 case 1:

36 return 'The file does not exist.';

37 break;

38 case 2:

39 return 'The file is not a file.';

40 break;

41 case 3:

42 return 'The file is writable.';

43 break;

44 case 4:

45 return 'An invalid mode was provided.';

46 break;

47 case 5:

48 return 'The data could not be written.';

49 break;

50 case 6:

51 return 'The file could not be closed.';

52 break;

53 default:

54 return 'No further information is available.';

55 break;

56 } // End of SWITCH.

57

58 } // End of get_details() function.

59

60 } // End of FileException class.

61

62

63 // Create a class for writing to a file...

64 // Class has one attribute for storing the file pointer.

65 // Class has a constructor, that performs validation

66 // and assigns the pointer.

67 // Class has a write() method for writing data.

68 // Class has a close() method to close the pointer.

(script continues on next page)

Script 8.3 continued

321

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

69 class WriteToFile {

70

71 // Attributes:

72 private $fp = null;

73 private $message = '';

74

75 // Constructor:

76 function __construct($file = null, $mode = 'w') {

77

78 // Assign the file name and mode

79 // to the message attribute:

80 $this->message = "File: $file Mode: $mode";

81

82 // Make sure a file name was provided:

83 if (empty($file)) {

84 throw new FileException($this->message, 0);

85 }

86

87 // Make sure the file exists:

88 if (!file_exists($file)) {

89 throw new FileException ($this->message, 1);

90 }

91

92 // Make sure the file is a file:

93 if (!is_file($file)) {

94 throw new FileException ($this->message, 2);

95 }

96

97 // Make sure the file is writable:

98 if (!is_writable($file)) {

99 throw new FileException ($this->message, 3);

100 }

101

102 // Validate the mode:

103 if (!in_array($mode, array('a', 'a+', 'w', 'w+'))) {

104 throw new FileException($this->message, 4);

105 }

106

107 // Open the file:

108 $this->fp = fopen($file, $mode);

109

110 } // End of constructor.

111

112 // Method for writing the data:

113 function write($data = null) {

114

115 if (!fwrite($this->fp, $data)) {

116 throw new FileException($this->message . " Data: $data", 5);

117 }

118

(script continues on next page)

Script 8.3 continued

322

Chapter 8

Ex
te

n
di

n
g

 t
h

e
Ex

ce
pt

io
n

 C
la

ss

119 } // End of write() method.

120

121 // Method for closing the file:

122 function close() {

123

124 if (!fclose($this->fp)) {

125 throw new FileException($this->message, 6);

126 }

127

128 $this->fp = null;

129

130 } // End of close() method.

131

132 } // End of WriteToFile class.

133

134 # ***** END OF CLASSES ***** #

135 # ************************** #

136

137 // Identify the file:

138 $file = 'data.txt';

139

140 // Data to be written:

141 $data = "This is a line of data.\n";

142

143 // Start the try...catch block:

144 try {

145

146 $fp = new WriteToFile($file);

147 $fp->write($data);

148 $fp->close();

149

150 // If we got this far, everything worked!

151 echo '<p>The data has been written.</p>';

152

153 } catch (FileException $fe) {

154

155 echo '<p>The process could not be completed. Debugging information:
' .
$fe->getMessage() . '
' . $fe->get_details() . '</p>';

156

157 }

158

159

160 ?>

161 </body>

162 </html>

Script 8.3 continued

323

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

2. Begin defining an extension to the
Exception class.
class FileException extends

➝ Exception {

This class, called FileException, will
specifically handle file opening, writing,
and closing errors. It will add one method
to the inherited Exception methods.

3. Begin defining the get_details()
method.
function get_details() {

switch ($this->code) {

case 0:

return ‘No

➝ filename was provided’;

break;

Any time an exception occurs, up to
two arguments can be passed to the
Exception class: the message and the
error code. The WriteToFile class, to be
written shortly, will generate its own
error codes. This class, FileException,
will associate those error codes with
more specific error messages. This
get_details() method returns the
message that goes with each code,
using a switch.

4. Complete the switch.
case 1:

return ‘The file does

➝ not exist.’;

break;

case 2:

return ‘The file is not

➝ a file.’;

break;

case 3:

324

Chapter 8

Ex
te

n
di

n
g

 t
h

e
Ex

ce
pt

io
n

 C
la

ss

return ‘The file is not

➝ writable.’;

break;

case 4:

return ‘An invalid mode

➝ was provided.’;

break;

case 5:

return ‘The data could

➝ not be written.’;

break;

case 6:

return ‘The file could

➝ not be closed.’;

break;

default:

return ‘No further

➝ information is available.’;

break;

} // End of SWITCH.

Each of these messages will mean more
once you see the WriteToFile class.

5. Complete the get_details() method and
the FileException class.

} // End of get_details()

➝ function.

} // End of FileException class.

6. Begin defining the WriteToFile class.
class WriteToFile {

private $fp = null;

private $message = ‘’;

This class is going to wrap up under one
umbrella all the validation and code
required for writing to a file. It has two
attributes, the first of which will be the
file pointer. The second attribute will be
assigned an error message. Both attrib-
utes are private, as they should not be
accessible outside of this class.

10. Confirm that the file is writable.
if (!is_writable($file)) {

throw new FileException

➝ ($this->message, 3);

}

11. Confirm that a valid mode was used.
if (!in_array($mode, array(‘a’,

➝ ‘a+’, ‘w’, ‘w+’))) {

throw new FileException

➝ ($this->message, 4);

}

As I don’t want to try to open the file in
an invalid mode, this check is necessary.
I’ve omitted some valid modes (like ab)
and all reading modes (because I’m cre-
ating a write-specific class) to keep it
simple.

12. Open the file and complete the
constructor.

$this->fp = fopen($file,

➝ $mode);

} // End of constructor.

If all of the validation tests were passed,
the file is opened in the given mode,
assigning the result to the $fp attribute.

13. Create the method for writing data to
the file.
function write($data = null) {

if (!fwrite($this->fp, $data))

{

throw new

➝ FileException($this->message . “

➝ Data: $data”, 5);

}

} // End of write() method.

This method has its own validation test
and throws an exception with its own
error code.

continues on next page

325

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

7. Begin defining the constructor.
function __construct($file = null,

➝ $mode = ‘w’) {

$this->message = “File: $file

➝ Mode: $mode”;

The constructor is called when a new
WriteToFile object is created. It takes
two arguments: the file and the mode,
whose default value is w. The purpose of
the constructor is to confirm that the file
exists and is writable, and then to open
that file for writing. The constructor also
helps build the error message, which, for
debugging purposes, will contain the file-
name and the mode.

8. Make sure that a filename was provided.
if (empty($file)) {

throw new FileException

➝ ($this->message, 0);

}

The first validation routine checks that
some filename was passed to the class. If
not, an exception of type FileException is
thrown, using the default message and an
error code of 0. This error code matches
the more specific message in the
FileException get_details() method.

9. Make sure that the file exists and that it
is a file.
if (!file_exists($file)) {

throw new FileException

➝ ($this->message, 1);

}

if (!is_file($file)) {

throw new FileException

➝ ($this->message, 2);

}

The file_exists() function will return
TRUE even if provided with a directory
name, so the second check is also neces-
sary. If either check fails, an exception is
thrown, providing different error codes
accordingly.

Analyzing the WriteToFile Class

The focus in this section of the chapter is
on extending the Exception class, but I
do want to take a minute to analyze the
WriteToFile class, as part of my ongoing
attempt to convey good OOP theory.
The class is good in that it puts every-
thing involved with writing to a file in
one place. It also has a ton of validation
built in, which makes using the class real-
ly easy (see Script 8.3). Tying the class to
an extended Exception class also works
nicely.

The class is a bit too specific, though. In
reality, you’d probably want to create a
FileIO class, that handles both writing
and reading. I would probably, in hind-
sight, place the code that closes the file
in the destructor instead of a separate
close() method.

14. Create the method for closing the file.

function close() {

if (!fclose($this->fp)) {

throw new

➝ FileException($this->message, 6);

}

$this->fp = null;

} // End of close() method.

15. Complete the WriteToFile class.

} // End of WriteToFile class.

16. Identify the file to use and the data
to write.

$file = ‘data.txt’;

$data = “This is a line of data.\n”;

17. Create a try block that uses the
WriteToFile class.

try {

$fp = new WriteToFile($file);

$fp->write($data);

$fp->close();

echo ‘<p>The data has been

➝ written.</p>’;

Because all of the validation resides in
the WriteToFile class, using this class
is remarkably simple. Compare this
code with that in write_to_file.php
(Script 8.1).

326

Chapter 8

Ex
te

n
di

n
g

 t
h

e
Ex

ce
pt

io
n

 C
la

ss

18. Catch the exceptions.

} catch (FileException $fe) {

echo ‘<p>The process could not

➝ be completed. Debugging

➝ information:
’ .

➝ $fe->getMessage() . ‘
’ .

➝ $fe->get_details() . ‘</p>’;

}

This catch expects exceptions of type
FileException, which will be thrown by
the WriteToFile object. Within the
catch, debugging information is printed
using both the Exception getMessage()
method (which should print the file,
mode, and possibly data) and the
FileException get_details() method.

19. Complete the page.

?>

</body>

</html>

20. Save the file as write_to_file2.php,
place it in your Web directory, and
test in your Web browser (Figures 8.6,
8.7, and 8.8).

This example really emphasizes two
things. First, it shows how you can
extend the Exception class to make your
error handling as detailed as possible
(the default errors you might encounter
when opening, writing to, and closing
files are generally not very informative).
Second, it shows how much of an appli-
cation’s functionality can be stored in a
class, making the rest of the code quite
simple. This is just one of the benefits of
object-oriented programming.

✔ Tips

■ Because PHP generates an ugly error
should an uncaught exception occur,
you can create your own exception
handler to handle this situation more
gracefully:

function my_exception_handler

(Exception $e) {

// Do whatever.

}

set_exception_handler(‘my_exception_

➝ handler’);

■ If your extended class has its
own constructor, it should also
call the Exception constructor using
parent::__construct().

327

Real-World OOP

Exten
din

g
 th

e Exceptio
n

 Class

Figure 8.8 Attempting to open the file in reading
mode will also fail.

Figure 8.7 If the data cannot be written to the file, the
debugging information also shows what data was
received (here, nothing).

Figure 8.6 The result if the file exists but is not
writable. The first line of debugging information
comes from the Exception getMessage() class. The
rest comes from FileException get_details().

Creating a Shopping
Cart Class
For the second “real-world” use of object-
oriented programming, I want to implement
as a class the shopping cart system created
in Chapter 5, “E-Commerce Techniques.” If
you look back at cart.php (Script 5.7), you’ll
see that the one page does several things:

◆ Adds items to the cart

◆ Updates the quantities in the cart

◆ Removes items from the cart (when the
user enters a quantity of 0)

◆ Displays the shopping cart in an
HTML form

In an object-oriented structure, this
can be implemented in many ways. You
could start with an abstract ShoppingCart
class that is then extended by a more
specific WidgetShoppingCart class. I’m
going to keep this simple and just go with
the WidgetShoppingCart, but check out the
Shape and Triangle classes in Chapter 7 for
how an inherited abstract class would work.

For this class, each of the preceding fea-
tures can be turned into a method. Only
one attribute, which will store an array of
items in the cart, will be required. Unlike
the session variable in Chapter 5, which only
stored the product IDs and their respective
quantities, this cart will store everything
about each product: ID, name, color, size,
quantity, and price.

328

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

1 <?php # Script 8.4 - WidgetShoppingCart.php

2

3 /* This page defines the WidgetShoppingCart class.

4 * The class contains one attribute: an array called $items.

5 * The class contains five methods:

6 * - is_empty()

7 * - add_item()

8 * - update_item()

9 * - delete_item()

10 * - display_cart()

11 */

12

13 class WidgetShoppingCart {

14

15 // Attribute:

16 protected $items = array();

17

18

19 // Method that returns a Boolean

20 // value indicating if the cart is empty:

21 public function is_empty() {

22 if (empty($this->items)) {

23 return true;

24 } else {

25 return false;

26 }

27 }

28

29

30 // Method for adding an item to a cart.

31 // Takes two arguments: the item ID and an array of info.

32 public function add_item($id, $info) {

33

34 // Is it already in the cart?

35 if (isset($this->items[$id])) {

36

37 // Call the update_item() method:

(script continues on next page)

Script 8.4 The WidgetShoppingCart class implements all of the shopping cart functionality required by the “World of
Widgets” e-commerce store.

To create a shopping cart class:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 8.4).

<?php # Script 8.4 -

➝ WidgetShoppingCart.php

continues on page 333

329

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

38 $this->update_item($id, $this->items[$id]['qty'] + 1);

39

40 } else {

41

42 // Add the array of info:

43 $this->items[$id] = $info;

44

45 // Add the quantity.

46 $this->items[$id]['qty'] = 1;

47

48 // Print a message:

49 echo "<p>The widget '{$info['name']}' in color {$info['color']}, size {$info['size']}
has been added to your shopping cart.</p>\n";

50

51 }

52

53 } // End of add_item() method.

54

55

56 // Method for updating an item in the cart.

57 // Takes two arguments: the item ID and the quantity.

58 public function update_item($id, $qty) {

59

60 // Delete if $qty equals 0:

61 if ($qty == 0) {

62

63 $this->delete_item($id);

64

65 } elseif (($qty > 0) && ($qty != $this->items[$id]['qty'])) {

66

67 // Update the quantity:

68 $this->items[$id]['qty'] = $qty;

69

70 // Print a message:

71 echo "<p>You now have $qty copy(ies) of the widget '{$this->items[$id]['name']}' in
color {$this->items[$id]['color']}, size {$this->items[$id]['size']} in your shopping
cart.</p>\n";

72

73 }

74

75 } // End of update_item() method.

76

77

78 // Method for deleting an item in the cart.

79 // Takes one argument: the item ID.

80 public function delete_item($id) {

81

82 // Confirm that it's in the cart:

83 if (isset($this->items[$id])) {

84

(script continues on next page)

Script 8.4 continued

330

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

85 // Print a message:

86 echo "<p>The widget '{$this->items[$id]['name']}' in color {$this-
>items[$id]['color']}, size {$this->items[$id]['size']} has been removed from your shopping
cart.</p>\n";

87

88 // Remove the item:

89 unset($this->items[$id]);

90

91 }

92

93 } // End of delete_item() method.

94

95

96 // Method for displaying the cart.

97 // Takes one argument: a form action value.

98 public function display_cart($action = false) {

99

100 // Print a table:

101 echo '<table border="0" width="90%" cellspacing="2" cellpadding="2" align="center">

102 <tr>

103 <td align="left" width="20%">Widget</td>

104 <td align="left" width="15%">Size</td>

105 <td align="left" width="15%">Color</td>

106 <td align="right" width="15%">Price</td>

107 <td align="center" width="10%">Qty</td>

108 <td align="right" width="15%">Total Price</td>

109 </tr>

110 ';

111

112 // Print form code, if appropriate.

113 if ($action) {

114 echo '<form action="' . $action . '" method="post">

115 <input type="hidden" name="do" value="update" />

116 ';

117 }

118

119 // Initialize the total:

120 $total = 0;

121

122 // Loop through each item:

123 foreach ($this->items as $id => $info) {

124

125 // Calculate the total and subtotals:

126 $subtotal = $info['qty'] * $info['price'];

127 $total += $subtotal;

128 $subtotal = number_format($subtotal, 2);

129

130 // Determine how to show the quantity:

131 $qty = ($action) ? "<input type=\"text\" size=\"3\" name=\"qty[$id]\"
value=\"{$info['qty']}\" />" : $info['qty'];

(script continues on next page)

Script 8.4 continued

331

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

132

133 // Print the row:

134 echo <<<EOT

135 <tr>

136 <td align="left">{$info['name']}</td>

137 <td align="left">{$info['size']}</td>

138 <td align="left">{$info['color']}</td>

139 <td align="right">\${$info['price']}</td>

140 <td align="center">$qty</td>

141 <td align="right">\$$subtotal</td>

142 </tr>\n

143 EOT;

144

145 } // End of FOREACH loop.

146

147 // Complete the table:

148 echo ' <tr>

149 <td colspan="5" align="right">Total:</td>

150 <td align="right">$' . number_format ($total, 2) . '</td>

151 </tr>';

152

153 // Complete the form, if appropriate:

154 if ($action) {

155 echo '<tr>

156 <td colspan="6" align="center">Set an item\'s quantity to 0 to remove it from your
cart.</td>

157 </tr>

158 <tr>

159 <td colspan="6" align="center"><button type="submit" name="submit" value="update">Update
Cart</button></td>

160 </tr>

161 </form>';

162 }

163

164 echo '</table>';

165

166 } // End of display_cart() method.

167

168 } // End of WidgetShoppingCart class.

169

170 ?>

Script 8.4 continued

332

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

2. Start defining the class.

class WidgetShoppingCart {

protected $items = array();

The class contains only the one
attribute. By making it protected,

it cannot be manipulated outside of
WidgetShoppingCart (or derived) type
objects.

3. Define the is_empty() method.

public function is_empty() {

if (empty($this->items)) {

return true;

} else {

return false;

}

}

This method returns a Boolean value
indicating whether or not the cart is
empty. It’ll be used by scripts to know
whether or not the cart should be
displayed.

333

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

4. Begin defining the add_item() method.

public function add_item($id,

➝ $info) {

if (isset($this->items[$id])) {

$this->update_item($id,

➝ $this->items[$id][‘qty’] + 1);

This method receives two arguments: the
item ID and an array of information. The
ID will be the index in the $items array.
The array of information will contain the
product’s name, color, size, and price, to
which will be added the quantity.

The method starts by checking if
the item is already in the cart. If so, the
update_item() method is called, sending
it the item ID and the new quantity
(which is the current quantity plus 1).
Although the item’s quantity could be
updated within this method, since the
other method with the appropriate func-
tionality already exists, it’s best not to
replicate that functionality here (creating
redundancies).

continues on next page

5. Complete the add_item() method.

} else {

$this->items[$id] =

➝ $info;

$this->items[$id][‘qty’]

➝ = 1;

echo “<p>The widget

➝ ‘{$info[‘name’]}’ in color

➝ {$info[‘color’]}, size

➝ {$info[‘size’]} has been added to

➝ your shopping cart.</p>\n”;

}

} // End of add_item() method.

The else clause applies if the item is
not already in the cart. In that case, the
item is put into the virtual cart by adding
a new element to the $items array. The
$info variable will be sent to this method
as an array, defined like so:

$info = array (

‘name’ => $name,

‘color’ => $color,

‘size’ => $size,

‘price’ => $price);

To this array, a fifth element is added: a
quantity of 1, indexed at qty.

Finally, this method prints a message
indicating what just happened
(Figure 8.9).

Figure 8.9 The message generated when a new item
is added to the shopping cart.

334

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

Figure 8.10 When the quantity of an item in the cart is
updated, a message like this is printed.

6. Create a method for updating an item.

public function update_item($id,

$qty) {

if ($qty == 0) {

$this->delete_item($id);

} elseif (($qty > 0) && ($qty

➝ != $this->items[$id][‘qty’])) {

$this->items[$id][‘qty’]

➝ = $qty;

echo “<p>You now have

➝ $qty copy(ies) of the widget

➝ ‘{$this->items[$id][‘name’]}’ in

➝ color {$this->items[$id][‘color’]},

➝ size {$this->items[$id][‘size’]} in

➝ your shopping cart.</p>\n”;

}

} // End of update_item() method.

The first check sees if the new quantity
is 0, in which case the item should be
deleted. To do so, the delete_item()
method is called, which contains that
functionality. Otherwise, as long as the
quantity is positive and it’s not the same
as the current quantity (because that
wouldn’t be an update, would it?), the
quantity in the cart will be updated.
Again, a message reports on what just
happened (Figure 8.10).

continues on next page

335

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

7. Create a method for deleting an item.

public function delete_item($id) {

if (isset($this->items[$id])) {

echo “<p>The widget

➝ ‘{$this->items[$id][‘name’]}’ in

➝ color {$this->items[$id][‘color’]},

➝ size {$this->items[$id][‘size’]}

➝ has been removed from your shopping

➝ cart.</p>\n”;

unset($this->items

➝ [$id]);

}

} // End of delete_item() method.

The only thing this method should do
is confirm that the item is in the cart
prior to unsetting it. A message indicat-
ing what just happened is also printed
(Figure 8.11). Note that you have to
print the message before unsetting the
item or else you won’t be able to refer to
$this->items[$id][‘name’], etc.

Figure 8.11 Unlike the cart in Chapter 5, this version
now indicates what item(s) are removed when the
user sets a quantity to zero.

336

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

Figure 8.13 The cart viewed without the HTML form,
so it is uneditable. This feature might be used on the
final checkout page.

Figure 8.12 The cart viewed as an HTML form so that
the user can update the quantities.

8. Begin the method for displaying the
cart’s contents.

public function display_cart($action

➝ = false) {

echo ‘<table border=”0”

➝ width=”90%” cellspacing=”2”

➝ cellpadding=”2” align=”center”>

<tr>

<td align=”left”

➝ width=”20%”>Widget</td>

<td align=”left”

➝ width=”15%”>Size</td>

<td align=”left”

➝ width=”15%”>Color</td>

<td align=”right”

➝ width=”15%”>Price</td>

<td align=”center”

➝ width=”10%”>Qty</td>

<td align=”right”

➝ width=”15%”>Total Price</td>

</tr>

‘;

if ($action) {

echo ‘<form action=”’ .

➝ $action . ‘“ method=”post”>

<input type=”hidden” name=”do”

➝ value=”update” />

‘;

}

I want this method to display the
cart either as part of an HTML form
(Figure 8.12) or not (Figure 8.13). To
distinguish between these two modes,
the method takes an optional $action
argument. If provided, this should be
the name of the file to which the form
should be submitted.

The method begins by printing a table
and its header. If an action was received,
the initial form tags are generated.

continues on next page

337

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

9. Initialize a total variable and begin loop-
ing through each item in the cart.

$total = 0;

foreach ($this->items as $id =>

➝ $info) {

$subtotal = $info[‘qty’] *

➝ $info[‘price’];

$total += $subtotal;

$subtotal =

➝ number_format($subtotal, 2);

The first thing that happens within the
loop is the calculation of the subtotals
and total. This code is similar to that in
the original script.

10. Determine how the item’s quantity
should be displayed.

$qty = ($action) ? “<input

➝ type=\”text\” size=\”3\”

➝ name=\”qty[$id]\”

➝ value=\”{$info[‘qty’]}\” />” :

➝ $info[‘qty’];

If the cart is being displayed as a form,
then the quantities should be shown
as an input box with a preset value
(Figure 8.14). Otherwise, the quantity
should just be the quantity. The ternary
operator helps makes this decision,
using the $action variable. This is the
equivalent of writing:

if ($action) {

$qty = “<input type=\”text\”

➝ size=\”3\” name=\”qty[$id]\”

➝ value=\”{$info[‘qty’]}\” />”;

} else {

$qty = $info[‘qty’];

}

Figure 8.14 The HTML source code of the form shows
how each item’s quantity is a text input.

338

Chapter 8

Cr
ea

ti
n

g
 a

 S
h

o
pp

in
g

 C
ar

t
Cl

as
s

13. Complete the form, if necessary.

if ($action) {

echo ‘<tr>

<td colspan=”6”

➝ align=”center”>Set an item\’s

➝ quantity to 0 to remove it from

➝ your cart.</td>

</tr>

<tr>

<td colspan=”6”

➝ align=”center”><button

➝ type=”submit” name=”submit”

➝ value=”update”>Update

➝ Cart</button></td>

</tr>

</form>’;

}

If this cart is being displayed as part of a
form, it must also inform the user how
to delete an item, and create a submit
button.

14. Complete the method.

echo ‘</table>’;

} // End of display_cart() method.

15. Complete the class and the page.

} // End of WidgetShoppingCart

➝ class.

?>

16. Save the file as WidgetShoppingCart.php
and place it in your Web directory.

339

Real-World OOP

Creatin
g

 a S
h

o
ppin

g
 C

art Class

11. Print the item and complete the
foreach loop.

echo <<<EOT

<tr>

<td

➝ align=”left”>{$info[‘name’]}</td>

<td align=”left”>{$info[‘size’]}

➝ </td>

<td align=”left”>{$info

➝ [‘color’]}</td>

<td align=”right”>\${$info

➝ [‘price’]}</td>

<td align=”center”>$qty</td>

<td

align=”right”>\$$subtotal</td>

</tr>\n

EOT;

} // End of FOREACH loop.

Because this code involves both variables
and HTML, I use the heredoc syntax, as
described in Chapter 1, “Advanced PHP
Techniques.”

12. Print the order total.

echo ‘ <tr>

<td colspan=”5”

➝ align=”right”>Total:</td>

<td align=”right”>$’ .

➝ number_format ($total, 2) . ‘</td>

</tr>’;

Using the Cart Class
Having created the WidgetShoppingCart class,
a script now has to be made that uses an
object of that type. This next script will
replace cart.php (Script 5.7), doing every-
thing the original file did, but using OOP for
the cart management. However, the page
must still uses sessions, because any created
object will still only exist for the life of the
page. Therefore, this script will now store the
object in the session at the end of the script
and refer to that session-stored object at the
beginning of the script, if it exists. Other
than that, much of the basic functionality of
this page will mimic that in the original file.

340

Chapter 8

U
si

n
g

 t
h

e
C

ar
t

Cl
as

s

To use the WidgetShoppingCart class:

1. Create a new PHP document in your text
editor or IDE (Script 8.5).

<?php # Script 8.5 - cart.php

require_once (‘./includes/

➝ config.inc.php’);

$page_title = ‘Shopping Cart’;

include_once (‘./includes/

➝ header.html’);

echo ‘<h1>View Your Shopping

➝ Cart</h1>’;

continues on page 343

1 <?php # Script 8.5 - cart.php

2

3 /*

4 * This is the shopping cart page.

5 * This page has two modes:

6 * - add a product to the cart

7 * - update the cart

8 * The page shows the cart as a form for updating quantities.

9 * The cart is an object of WidgetShoppingCart type,

10 * which is stored in a session.

11 */

12

13 // Require the configuration file before any PHP code:

14 require_once ('./includes/config.inc.php');

15

16 // Include the header file:

17 $page_title = 'Shopping Cart';

18 include_once ('./includes/header.html');

19

20 echo '<h1>View Your Shopping Cart</h1>';

21

22 // Create the shopping cart:

23 require_once('WidgetShoppingCart.php');

24 if (isset($_SESSION['cart'])) {

25 $cart = unserialize($_SESSION['cart']);

(script continues on next page)

Script 8.5 The cart.php page handles all cart management through an object of type WidgetShoppingCart. The
object must be serialized and stored in the session in order to be available over multiple page views.

26 } else {

27 $cart = new WidgetShoppingCart();

28 }

29

30 // This page will either add to or update the

31 // shopping cart, based upon the value of $_REQUEST['do'];

32 if (isset($_REQUEST['do']) && ($_REQUEST['do'] == 'add')) { // Add new item.

33

34 if (isset($_GET['sw_id'])) { // Check for a product ID.

35

36 // Typecast to an integer:

37 $sw_id = (int) $_GET['sw_id'];

38

39 // If it's a positive integer,

40 // get the item information:

41 if ($sw_id > 0) {

42

43 // Define and execute the query:

44 $q = "SELECT name, color, size, default_price, price FROM general_widgets LEFT JOIN
specific_widgets USING (gw_id) LEFT JOIN colors USING (color_id) LEFT JOIN sizes USING (size_id)
WHERE sw_id=$sw_id";

45 $r = mysqli_query($dbc, $q);

46

47 if (mysqli_num_rows($r) == 1) {

48

49 // Get the information:

50 $row = mysqli_fetch_array($r, MYSQLI_ASSOC);

51

52 // Determine the price:

53 $price = (empty($row['price'])) ? $row['default_price'] : $row['price'];

54

55 // Add to the cart:

56 $cart->add_item($sw_id, array('name' => $row['name'], 'color' => $row['color'],
'size' => $row['size'], 'price' => $price));

57

58 } // End of mysqli_num_rows() IF.

59

60 } // End of ($sw_id > 0) IF.

61

62 } // End of isset($_GET['sw_id']) IF.

63

64 } elseif (isset($_REQUEST['do']) && ($_REQUEST['do'] == 'update')) {

65

66 // Change any quantities...

67 // $k is the product ID.

68 // $v is the new quantity.

69 foreach ($_POST['qty'] as $k => $v) {

70

(script continues on next page)

Script 8.5 continued

341

Real-World OOP

U
sin

g
 th

e C
art Class

71 // Must be integers!

72 $pid = (int) $k;

73 $qty = (int) $v;

74

75 // Update the cart:

76 $cart->update_item($pid, $qty);

77

78 } // End of FOREACH.

79

80 // Print a message:

81 echo '<p>Your shopping cart has been updated.</p>';

82

83 } // End of $_REQUEST IF-ELSE.

84

85 // Show the shopping cart if it's not empty:

86 if (!$cart->is_empty()) {

87 $cart->display_cart('cart.php');

88 } else {

89 echo '<p>Your cart is currently empty.</p>';

90 }

91

92 // Store the cart in the session:

93 $_SESSION['cart'] = serialize($cart);

94

95 // Include the footer file to complete the template:

96 include_once ('./includes/footer.html');

97

98 ?>

Script 8.5 continued

342

Chapter 8

U
si

n
g

 t
h

e
C

ar
t

Cl
as

s

2. Create the shopping cart object.

require_once(‘WidgetShoppingCart.

➝ php’);

if (isset($_SESSION[‘cart’])) {

$cart = unserialize

➝ ($_SESSION[‘cart’]);

} else {

$cart = new

➝ WidgetShoppingCart();

}

To create the object, the class definition
file must first be included. Next, the
script checks to see if the cart object
exists in the session (which is to say
that the user has accessed this page
before). If so, the $cart variable will be
assigned the unserialized version of
$_SESSION[‘cart’]. You have to use
the unserialize() function to access
it, as the cart object will be serialized
prior to storing it in the session.

If $_SESSION[‘cart’] does not exist, a
new object of type WidgetShoppingCart()
will be created.

3. Check for a $_REQUEST[‘do’] variable.

if (isset($_REQUEST[‘do’]) &&

➝ ($_REQUEST[‘do’] == ‘add’)) {

When an item is added to the cart by
clicking the link on the products page,
$_GET[‘do’] will have a value of add.

4. Validate the specific widget ID.

if (isset($_GET[‘sw_id’])) {

$sw_id = (int) $_GET[‘sw_id’];

if ($sw_id > 0) {

Just to be safe, you should make sure
that the specific widget ID is a positive
integer.

continues on next page

343

Real-World OOP

U
sin

g
 th

e C
art Class

5. Retrieve the product information from
the database.

$q = “SELECT name, color, size,

➝ default_price, price FROM

➝ general_widgets LEFT JOIN

➝ specific_widgets USING (gw_id) LEFT

➝ JOIN colors USING (color_id) LEFT

➝ JOIN sizes USING (size_id) WHERE

➝ sw_id=$sw_id”;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) == 1) {

In order both to confirm that a valid
product ID was received and to be able
to add it to the shopping cart, this query
is necessary. It performs a join across
four tables in order to get the general
widget name as well as the specific wid-
get’s color and size (Figure 8.15).

Because a widget could have a default
price or a specific price (which overrides
the default), both prices are selected.
Code in Step 6 will determine which
price to use.

6. Update the cart.

$row = mysqli_fetch_array($r,

➝ MYSQLI_ASSOC);

$price = (empty($row[‘price’])) ?

➝ $row[‘default_price’] :

➝ $row[‘price’];

$cart->add_item($sw_id, array(‘name’

➝ => $row[‘name’], ‘color’ =>

➝ $row[‘color’], ‘size’ =>

➝ $row[‘size’], ‘price’ => $price));

First, the record is retrieved from the data-
base. Second, the correct price is deter-
mined by checking if $row[‘price’] has
a value. If so, this new price should be used;
otherwise, the default price is correct.

Then, the item is added to the cart using
the add_item() method. The first argu-
ment should be the item ID, which is
$sw_id. The second argument is an array
of information.

Figure 8.15 The query retrieves all the required
information for an individual product.

344

Chapter 8

U
si

n
g

 t
h

e
C

ar
t

Cl
as

s

The Standard PHP Library

More “real-world” object-oriented pro-
gramming can be found in PEAR (see
Chapter 12, “Using PEAR”) or in the
Standard PHP Library (SPL). The Standard
PHP Library (no doubt inspired by the
very popular Standard C++ Library) con-
tains class definitions and other code
meant to address common problems. For
more information see www.php.net/spl.

7. Complete the conditionals started in
Steps 5 and 4, and then check to see if
$_REQUEST[‘do’] equals update.

} // End of

➝ mysqli_num_rows() IF.

} // End of ($sw_id > 0)

➝ IF.

} // End of

➝ isset($_GET[‘sw_id’]) IF.

} elseif (isset($_REQUEST[‘do’]) &&

➝ ($_REQUEST[‘do’] == ‘update’)) {

$_REQUEST[‘do’] will have a value of
update when the user updates their cart
by submitting the form. At this point the
shopping cart should attempt to update
every quantity.

8. Update the cart quantities.

foreach ($_POST[‘qty’] as $k => $v) {

$pid = (int) $k;

$qty = (int) $v;

$cart->update_item($pid, $qty);

}

This is pretty simple. Both the key, which
is the product ID, and the value, which is
the quantity, are first typecast to inte-
gers. Then the update_item() method is
called. That method will only update the
quantity if it has a positive value differ-
ent from the current quantity (see
WidgetShoppingCart.php, Script 8.4). The
method also removes any items whose
quantity is set to 0.

9. Print a message and complete the
$_REQUEST if-else.

echo ‘<p>Your shopping cart has

➝ been updated.</p>’;

} // End of $_REQUEST IF-ELSE.

continues on next page

345

Real-World OOP

U
sin

g
 th

e C
art Class

www.php.net/spl

10. Show the cart contents, if it’s not empty.

if (!$cart->is_empty()) {

$cart->display_cart

➝ (‘cart.php’);

} else {

echo ‘<p>Your cart is currently

➝ empty.</p>’;

}

Invoking the display_cart() method is
all that’s required to show the cart. By
passing this method one argument
with a value of cart.php, the method
will create a form that is submitted
back to this page.

11. Store the cart object in a session.

$_SESSION[‘cart’] =

➝ serialize($cart);

The cart must be stored in the session,
or else the cart will be empty each time
the user comes to the page.

12. Complete the page.

include_once (‘./includes/

➝ footer.html’);

?>

13. Save the script as cart.php, upload it
to your server (in the same directory as
all of the Chapter 5 files), and test it in
your Web browser (Figures 8.16, 8.17
and 8.18).

✔ Tip

■ Even if the cart object being used by the
script is stored in a session, the script
still has to include the object’s class defi-
nition file. This is true for all objects, as
PHP would otherwise have no way of
accessing a class’s methods.

Figure 8.18 If the WidgetShoppingCart is_empty()
function returns a value of true, the cart will not be
displayed.

Figure 8.17 Specific messages show what changes
were made to the cart’s contents.

Figure 8.16 These values will update the cart’s
contents (Figure 8.17) upon submitting the form.

346

Chapter 8

U
si

n
g

 t
h

e
C

ar
t

Cl
as

s

The vast bulk of what PHP is used to do is based upon taking information from the
server (like a database or a text file) and sending it to the client (the end user’s Web
browser) or vice versa. But PHP also supports a slew of features for the purpose of
interacting with other Web sites, communicating with other servers, and even FTP’ing
files. In this chapter, I’ll discuss and demonstrate a couple of network-related PHP
functions and capabilities.

In the first example, you’ll see how to read data from another Web site as if it were
any old text file. In the second, a URL validator will be created (a tool for checking if
a link is still good). In the third section of the chapter, you’ll learn how to identify
from what country a user is connecting to your server. And finally, you’ll get a quick
introduction to cURL, a powerful networking utility.

347

Networking
with PHP

9
N

etw
o

rkin
g

 w
ith

 P
H

P

Accessing Other
Web Sites
Even though PHP itself is normally used to
create Web sites, it can also access and inter-
act with Web pages on its own. This can be
useful for retrieving information, writing
spiders (applications that scour the Internet
for particular data), and more. Surprisingly,
you can access other Web sites in much the
same way you would access a text file on
your hard drive: by using fopen().

fopen (‘http://www.example.com/’, ‘r’);

The fopen() function used for opening files
can also open Web pages because they are,
after all, just files on a server. The parame-
ters for using fopen() are the same (r, w,
and a), although you will be limited to open-
ing a file only for reading unless the file’s
permissions are open (which hopefully they
are not).

One caveat, though, is that you must use
a trailing slash after a directory because
fopen() will not support redirects. The pre-
ceding example and this one are fine:

fopen (‘http://www.example.com/

➝ index.php’, ‘r’);

But this will fail:

fopen (‘http://www.example.com/

➝ dir’, ‘r’);

(Many people are unaware that the URL
www.example.com/dir is redirected to
www.example.com/dir/.)

Once you have opened a file, you can treat
it as you otherwise would, using file(),
fgets(), etc., to retrieve (or place) the data.

I’ll demonstrate this concept by making use
of Yahoo!’s financial pages to return New York
Stock Exchange quotes for different stocks.

Before proceeding, I should state that the
legality of retrieving information from
another Web site is an issue you would
want to investigate before permanently imple-
menting something like this. Most sites con-
tain copyrighted information, and using it
without permission would be a violation.
This demonstration with Yahoo! is just a
demonstration, not a suggestion that you
make a habit of this!

To read a Web site with PHP:

1. Create a new PHP document in your text
editor or IDE, beginning with the HTML
(Script 9.1):

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Get Stock Quotes</title>

<style type=”text/css”

➝ title=”text/css” media=”all”>

.error {

color: #F30;

}

.quote {

font-weight : bold;

}

</style>

</head>

<body>

<?php # Script 9.1 - get_quote.php

continues on page 351

348

Chapter 9

A
cc

es
si

n
g

 O
th

er
 W

eb
 S

it
es

www.example.com/dir
www.example.com/dir/

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Get Stock Quotes</title>

7 <style type="text/css" title="text/css" media="all">

8 .error {

9 color: #F30;

10 }

11 .quote {

12 font-weight : bold;

13 }

14 </style>

15 </head>

16 <body>

17 <?php # Script 9.1 - get_quote.php

18

19 /* This page retrieves a stock price from Yahoo!.

20 */

21

22 if (isset($_GET['symbol']) && !empty($_GET['symbol'])) { // Handle the form.

23

24 // Identify the URL:

25 $url = sprintf('http://quote.yahoo.com/d/quotes.csv?s=%s&f=nl1', $_GET['symbol']);

26

27 // Open the "file".

28 $fp = @fopen ($url, 'r') or die ('<div align="center" class="error">Cannot access

Yahoo!</div></body></html>');

29

30 // Get the data:

31 $read = fgetcsv ($fp);

32

33 // Close the "file":

34 fclose ($fp);

35

36 // Check the results for improper symbols:

(script continues on next page)

Script 9.1 The code in this example will retrieve stock quotes by opening up Yahoo!’s quote page and parsing the
data therein.

349

Networking with PHP

A
ccessin

g
 O

th
er W

eb S
ites

37 if (strcasecmp($read[0], $_GET['symbol']) != 0) {

38

39 // Print the results:

40 echo '<div align="center">The latest value for ' . $read[0] .

' (' . $_GET['symbol'] . ') is $' .

$read[1] . '.</div>
';

41

42 } else {

43 echo '<div align="center" class="error">Invalid symbol!</div>';

44 }

45

46 }

47

48 // Show the form:

49 ?>

50 <form action="get_quote.php" method="get">

51 <table border="0" cellspacing="2" cellpadding="2" align="center">

52 <tr align="center" valign="top">

53 <td align="center" valign="top" colspan="2">Enter a NYSE stock symbol to get the

latest price:</td>

54 </tr>

55 <tr align="center" valign="top">

56 <td align="right" valign="top">Symbol:</td>

57 <td align="left" valign="top"><input type="text" name="symbol" size="5" maxlength="5"

/></td>

58 </tr>

59 <tr>

60 <td align="center" valign="top" colspan="2"><input type="submit" name="submit"

value="Fetch the Quote!" /></td>

61 </tr>

62 </table>

63 </form>

64 </body>

65 </html>

Script 9.1 continued

350

Chapter 9

A
cc

es
si

n
g

 O
th

er
 W

eb
 S

it
es

You’ll notice here that I’ve thrown in a
little CSS to format the results. There are
two classes: error and quote.

2. Check if the form has been submitted.

if (isset($_GET[‘symbol’]) &&

➝ !empty($_GET[‘symbol’])) {

This page will both display and handle a
form. The form itself takes just one input:
the symbol for a stock. As the form uses
the GET method, the handling PHP
code checks for the presence of a
$_GET[‘symbol’].

3. Define the URL to be opened.

$url = sprintf(‘http://

➝ quote.yahoo.com/d/quotes.csv?s=

➝ %s&f=nl1’, $_GET[‘symbol’]);

The most important consideration when
accessing and reading other Web pages
is to know exactly what data will be
there and in what form. In other words,
unless you are merely copying the entire
contents of a file, you’ll need to develop
some system for gleaning the parts of the
page you want according to how the data
is structured.

In this example, a URL such as http://
quote.yahoo.com/d/quotes.csv takes two
arguments: the stock (or stocks) to check
and the formatting parameters. It will
then return a CSV (comma-separated
value) file.

For this example, I want to know the
stock’s name and the latest price, so
the formatting would be nl1 (see www.
gummy-stuff.org/Yahoo-data.htm for the
options and what they mean). Throw in
the ticker symbol and the result will be
in the format (where XX.XX is the price):

“STOCK NAME”,XX.XX

continues on next page

351

Networking with PHP

A
ccessin

g
 O

th
er W

eb S
ites

www.gummy-stuff.org/Yahoo-data.htm
www.gummy-stuff.org/Yahoo-data.htm
http://quote.yahoo.com/d/quotes.csv
http://quote.yahoo.com/d/quotes.csv

Once I know that this is a comma-
delineated list of the stock’s name and
its latest price, I can then parse exactly
what I am looking for. More complex
Web pages might require use of regular
expressions to retrieve the particular
pieces you want.

4. Open the Web page and read in the data.
$fp = @fopen ($url, ‘r’) or die

➝ (‘<div align=”center”

➝ class=”error”>Cannot access

➝ Yahoo!</div></body></html>’);

$read = fgetcsv ($fp);

fclose ($fp);

Now that the URL is defined, I can open
the “file” for reading. Since I know that
the returned data is in CSV form, I can
use fgetcsv() to read it. This function
will automatically turn the line it reads
into an array, using commas as the
delimiter. Then I close the file pointer.
Note that if the URL were a proper HTML
document (this one is not), the first line
read would be something like <!DOCTYPE
html PUBLIC “-//W3C/.

If the URL could not be opened, an error
message is printed and the script termi-
nated (Figure 9.1).

5. Validate that a legitimate stock symbol
was used.
if (strcasecmp($read[0],

➝ $_GET[‘symbol’]) != 0) {

If an invalid stock symbol is used, then
the Yahoo! page will return that symbol
as the stock name and $0.00 as the price.
To weed these instances out, check if the
returned name is the same as the sym-
bol. I use the strcasecmp() function to
perform a case-insensitive equality check
between them. If they are the same, the
function will return 0. If they are not the
same, a nonzero value is returned, mean-
ing it’s safe to print the result.

Figure 9.1 The result if the URL could not be opened.

352

Chapter 9

A
cc

es
si

n
g

 O
th

er
 W

eb
 S

it
es

Figure 9.2 The resulting HTML, including the CSS
references.

6. Print the stock’s value.
echo ‘<div align=”center”>The latest

➝ value for ’ .

➝ $read[0] . ‘ (<span

➝ class=”quote”>’ . $_GET[‘symbol’] .

➝ ‘) is $

➝ ’. $read[1] . ‘.</div>

➝
’;

The code in Step 4 takes the information
retrieved (e.g., “STOCK NAME”,24.34)
and turns it into an array. The first ele-
ment in the array is the stock’s name,
and the second is the current stock
value. Both are printed, along with the
stock’s symbol, within some CSS format-
ting (Figure 9.2). Note that the fgetcsv()

function will strip the quotes from
around the stock’s name.

7. Complete the strcasecmp() conditional.
} else {

echo ‘<div align=

➝ ”center” class=”error”>Invalid

➝ symbol!</div>’;

}

}

8. Complete the $_GET[‘symbol’] condi-
tional and the PHP section.
}

?>

9. Create the HTML form.
<form action=”get_quote.php”

➝ method=”get”>

<table border=”0” cellspacing=”2”

➝ cellpadding=”2” align=”center”>

<tr align=”center” valign=”top”>

<td align=”center”

➝ valign=”top” colspan=”2”>Enter a

➝ NYSE stock symbol to get the latest

➝ price:</td>

</tr>

<tr align=”center” valign=”top”>

continues on next page

353

Networking with PHP

A
ccessin

g
 O

th
er W

eb S
ites

<td align=”right”

➝ valign=”top”>Symbol:</td>

<td align=”left”

➝ valign=”top”><input type=”text”

➝ name=”symbol” size=”5”

➝ maxlength=”5” /></td>

</tr>

<tr>

<td align=”center”

➝ valign=”top” colspan=”2”><input

➝ type=”submit” name=”submit”

➝ value=”Fetch the Quote!” /></td>

</tr>

</table>

</form>

The form takes just one input: a text box
for the stock’s symbol (Figure 9.3).

10. Complete the page.

</body>

</html>

11. Save the file as get_quote.php, place it
in your Web directory, and test in your
Web browser (Figures 9.4, 9.5, and 9.6).

✔ Tips

■ PEAR (PHP Extension and Application
Repository) contains dozens of networking-
related classes. See Chapter 12, “Using
PEAR,” and the Web site http://pear.
php.net for more.

■ The Zend Framework (http://
framework.zend.com) has some network-
related classes as well. At the time of
this writing, there are ones specifically
for connecting to Amazon, Flickr, and
Yahoo!.

Figure 9.6 The result if an invalid ticker symbol is
entered.

Figure 9.5 General Electric is currently worth $35.59.

Figure 9.4 The script has determined, by accessing
the Yahoo! page, that Apple Computer is currently at
$82.19.

Figure 9.3 The form takes just a stock symbol from
the user.

354

Chapter 9

A
cc

es
si

n
g

 O
th

er
 W

eb
 S

it
es

http://pear.php.net
http://pear.php.net
http://framework.zend.com
http://framework.zend.com

N u m b e r P r i m a r y P u r p o s e

21 FTP
22 SSH
23 Telnet
25 SMTP
80 Web
81 Web (alternate)
110 POP
143 IMAP
389 LDAP
443 SSL

Common Ports

Table 9.1 These are just the most popular of the
60,000+ ports computers can use for communication.

Working with Sockets
The fopen() function is one way to access
Web pages, but a more sophisticated method
would be to use sockets. A socket, in case
you are not familiar, is a channel through
which two computers can communicate
with each other. To open a socket in PHP,
use fsockopen():

$fp = fsockopen ($url, $port, $error_

➝ number, $error_string, $timeout);

You use fsockopen() to establish a file point-
er as you would use fopen(). The parameters
the function takes are the URL, the port, an
error number variable, an error string vari-
able, and the timeout (only the first argu-
ment is required).

In layman’s terms, a port is the door through
which different protocols (methods of com-
munication) go. For Web pages, the port is
normally 80 (see Table 9.1). The error num-
ber and string variables are interesting in
that they are not really sent to the function
(as they have no value initially) so much as
they are returned by the function should an
error occur. Finally, the timeout simply states
for how many seconds the function should
try to connect.

Once the file has been successfully opened,
you can again use fwrite(), fgets(), and so
forth to manipulate the data.

Another function I’ll explain before writing
the fsockopen() example is parse_url().
This function takes a URL and turns it into
an associative array by breaking the struc-
ture into its parts:

$url_pieces = parse_url ($url);

continues on next page

355

Networking with PHP

W
o

rkin
g

 w
ith

S
o

ckets

The primary pieces of the URL will be scheme,
host, port, path, and query. Table 9.2 shows
how the URL

http://www.example.com/view.php?week=1

would be broken down by parse_url().

The parse_url() function can be handy in
all sorts of instances. I’ll demonstrate one
example in the following script. The code
developed there will run through a list of
URLs and check each to make sure they are
still valid. To do so, a user-defined function
will take a provided URL, parse it, and then
use fsockopen() to connect to it. The serv-
er’s HTTP response code will indicate the
validate of that link. (Table 9.3 lists some
common HTTP status codes, which you can
also find by searching the Web.)

To use fsockopen():

1. Create a new PHP document in your text
editor or IDE, beginning with the HTML
(Script 9.2):

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Validate URLs</title>

<style type=”text/css” title=

➝ ”text/css” media=”all”>

.bad {

color: #F30;

}

.good {

continues on page 359

I n d e x Va l u e

scheme http
host www.example.com
port 80
user
pass
path view.php
query week=1
fragment

C o d e M e a n i n g

200 OK
204 No content
400 Bad request
401 Unauthorized
403 Forbidden
404 Not found
408 Timeout
500 Internal server error

Common HTTP Status Codes

Table 9.3 Every requested server page returns an
HTTP status code. For URL validation purposes,
200 is the preferred code to see.

parse_url() Example

Table 9.2 How parse_url() breaks down a sample
URL. The fragment value corresponds to anything after
a #. The user and pass values would exist if the URL
were of the format http://username:password@
www.example.com.

356

Chapter 9

W
o

rk
in

g
 w

it
h

S
o

ck
et

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Validate URLs</title>

7 <style type=”text/css” title=”text/css” media=”all”>

8 .bad {

9 color: #F30;

10 }

11 .good {

12 color: #0C0;

13 }

14 </style>

15 </head>

16 <body>

17 <?php # Script 9.2 - check_urls.php

18

19 /* This page validates a list of URLs.

20 * It uses fsockopen() and parse_url() to do so.

21 */

22

23 // This function will try to connect to a URL:

24 function check_url ($url) {

25

26 // Break the URL down into its parts:

27 $url_pieces = parse_url ($url);

28

29 // Set the $path and $port:

30 $path = (isset($url_pieces[‘path’])) ? $url_pieces[‘path’] : ‘/’;

31 $port = (isset($url_pieces[‘port’])) ? $url_pieces[‘port’] : 80;

32

33 // Connect using fsockopen():

34 if ($fp = @fsockopen ($url_pieces[‘host’], $port, $errno, $errstr, 30)) {

35

36 // Send some data:

37 $send = “HEAD $path HTTP/1.1\r\n”;

38 $send .= “HOST: {$url_pieces[‘host’]}\r\n”;

39 $send .= “CONNECTION: Close\r\n\r\n”;

40 fwrite($fp, $send);

41

42 // Read the response:

43 $data = fgets ($fp, 128);

44

45 // Close the connection:

46 fclose($fp);

47

(script continues on next page)

Script 9.2 By making a socket connection, this script can quickly check if a given URL is still valid.

357

Networking with PHP

W
o

rkin
g

 w
ith

S
o

ckets

48 // Return the response code:

49 list($response, $code) = explode (‘ ‘, $data);

50

51 if ($code == 200) {

52 return array($code, ‘good’);

53 } else {

54 return array($code, ‘bad’);

55 }

56

57 } else { // No connection, return the error message:

58 return array($errstr, ‘bad’);

59 }

60

61 } // End of check_url() function.

62

63 // Create the list of URLs:

64 $urls = array (

65 ‘http://zirzow.dyndns.org/php-general/NEWBIE/’,

66 ‘http://video.google.com/videoplay?docid=-5137581991288263801&q=loose+change’,

67 ‘http://www.securephpwiki.com/index.php/Email_Injection/’,

68 ‘http://www.uic.rsu.ru/doc/web/php_coding_standard.html’,

69 ‘http://nfl.dmcinsights.com/MadminY/’,

70 ‘http://seagull.phpkitchen.com/’

71);

72

73 // Print a header:

74 echo ‘<h2>Validating URLs</h2>’;

75

76 // Kill the PHP time limit:

77 set_time_limit(0);

78

79 // Validate each URL:

80 foreach ($urls as $url) {

81

82 list($code, $class) = check_url ($url);

83 echo “<p>$url ($code)

</p>\n”;

84

85 }

86 ?>

87 </body>

88 </html>

Script 9.2 continued

358

Chapter 9

W
o

rk
in

g
 w

it
h

S
o

ck
et

s

color: #0C0;

}

</style>

</head>

<body>

<?php # Script 9.2 - check_urls.php

As with get_quote.php (Script 9.1), I’ve
thrown in two CSS classes to format the
results.

2. Begin defining the check_url() function.

function check_url ($url) {

The function takes one argument: the
URL to be validated.

3. Parse the URL.

$url_pieces = parse_url ($url);

4. Set the proper path and port values.

$path = (isset($url_pieces[‘path’]))

➝ ? $url_pieces[‘path’] : ‘/’;

$port = (isset($url_pieces[‘port’]))

➝ ? $url_pieces[‘port’] : 80;

I want to make sure that I’ve got the
right path and port when testing the
connection later on, so I set the $path
variable to be either the existing path, if
any, or a slash, as the default. For the
URL www.example.com/dir, the path
would be /dir. For www.example.com,
the path would be /.

The same treatment is given to the
$port, with the default as 80.

5. Attempt to connect using fsockopen().

if ($fp = @fsockopen ($url_

➝ pieces[‘host’], $port, $errno,

➝ $errstr, 30)) {

continues on next page

359

Networking with PHP

W
o

rkin
g

 w
ith

S
o

ckets

6. If a connection is established, write some
data to the server.

$send = “HEAD $path HTTP/1.1\r\n”;

$send .= “HOST: {$url_

➝ pieces[‘host’]}\r\n”;

$send .= “CONNECTION: Close\r\n\r\n”;

fwrite($fp, $send);

These lines may seem confusing, but
what they are essentially doing is send-
ing a series of HTTP headers to the serv-
er to initiate communication. The type
of request being made is HEAD. Such a
request is like GET, except that the serv-
er will only return a response and not
the entire page (compare Figures 9.7
and 9.8). The fsockopen() line connects
to the server; the HEAD $path line here
requests a specific page. This could be
just / or /somefolder/somepage.php.

The \r\n code is required for properly
formatting the request.

7. Retrieve the response code.

$data = fgets ($fp, 128);

fclose($fp);

list($response, $code) = explode

➝ (‘ ‘, $data);

Once the URL has been hit with a header,
it will respond with its own HTTP head-
ers. The code will read in the first 128
characters of the response and then
break this down into an array. The sec-
ond element returned will be the HTTP
code. Table 9.3 lists some of the possible
response codes, and Figure 9.7 shows a
sample response.

Figure 9.8 A normal (GET) request returns the entire
page (this figure just shows the first few lines of the
HTML source code returned).

Figure 9.7 A HEAD request only returns the basic
headers for a page.

360

Chapter 9

W
o

rk
in

g
 w

it
h

S
o

ck
et

s

8. Return the code and a class message.

if ($code == 200) {

return array($code, ‘good’);

} else {

return array($code, ‘bad’);

}

This function should indicate, via its
return values, what code was received
and whether that code is good or bad
(these strings match up to the CSS
classes). An HTTP status code of 200 is
considered normal (OK, technically);
anything else indicates some sort of
problem.

9. Finish the conditional begun in Step 5
and the function.

} else {

return array($errstr,

‘bad’);

}

} // End of check_url() function.

If a socket connection was not made,
the returned error message will be sent
back from the check_urls() function.

10. Create a list of URLs.

$urls = array (

‘http://zirzow.dyndns.org/

➝ php-general/NEWBIE/’,

‘http://video.google.com/videoplay?

➝ docid=-5137581991288263801&q=

➝ loose+change’,

‘http://www.securephpwiki.com/

➝ index.php/Email_Injection/’,

‘http://www.uic.rsu.ru/doc/web/

➝ php_coding_standard.html’,

‘http://nfl.dmcinsights.com/

➝ MadminY/’,

‘http://seagull.phpkitchen.com/’

);

continues on next page

361

Networking with PHP

W
o

rkin
g

 w
ith

S
o

ckets

For sake of simplicity, I’m creating an
array of hard-coded URLs. You might
retrieve your own URLs from a database
or file instead.

11. Print a header and adjust the PHP
scripts’ time limit.

echo ‘<h2>Validating URLs</h2>’;

set_time_limit(0);

Making these socket connections can
take some time, especially if you have a
lot of URLs to validate. By calling the
set_time_limit() function with a value
of 0, the PHP script is given limitless
time to do its thing.

12. Validate each URL.

foreach ($urls as $url) {

list($code, $class) = check_url

➝ ($url);

echo “<p><a href=\”$url\”

➝ target=\”_new\”>$url (<span

➝ class=\”$class\”>$code)

➝ </p>\n”;

}

The foreach loop goes through each
URL in the array. Then the check_url()
function is called. It returns two values:
the code (or an error message) and the
CSS class name to use (either good or
bad). Then the URL is printed, as a link,
followed by the code or error message
(Figure 9.9).

13. Finish the PHP and the HTML.

?>

</body>

</html>

14. Save the file as check_urls.php, place it
in your Web directory, and test in your
Web browser (Figure 9.10).

Figure 9.10 How the validation panned out for the
provided five URLs.

Figure 9.9 Part of the resulting HTML source code
after validating the links.

362

Chapter 9

W
o

rk
in

g
 w

it
h

S
o

ck
et

s

✔ Tips

■ Another benefit that fsockopen() has
over the fopen() method used in the
first section of the chapter is that the
fopen() technique will fail unless PHP’s
allow_url_fopen setting is true.

■ This is just one example of using sockets
in PHP. You can create your own socket
server using PHP and the socket func-
tions. If you don’t already know why
you might want to do this, you’ll likely
never need to touch these functions.
But for more information, see
www.php.net/sockets.

www.php.net/sockets

Choosing an IP
Geolocation Option

Unfortunately the online resources used
by the Net_Geo PEAR class aren’t that
up-to-date, so its accuracy could fade
over time. In the interest of most readily
demonstrating the IP geolocation con-
cept, I think it’s a fine enough option.

A more accurate option is to use the
Net_GeoIP PEAR class. Unfortunately,
this is still in beta form at the time of this
writing and relies upon a commercial
database for best accuracy and informa-
tion. In fact, as a rule of thumb, if you’re
writing an application that relies upon IP
geolocation, you’ll want to pay someone
for a commercial database, which is likely
to be most accurate.

Performing IP Geolocation
One of the questions that I commonly see in
my support forums (www.dmcinsights.com/
phorum/) or in the PHP newsgroups is how
to identify what country a user resides in.
Although the server where PHP is located
could be anywhere in the world and the user
could be located anywhere in the world, it is
possible to make a geographic match. The
premise is this:

Every computer must have an IP address to
have Internet access (or to connect to any
network). An Internet service provider (ISP)
assigns a computer an IP address from a pool
of valid addresses only they have access to.
By knowing a computer’s IP address, which
PHP puts in $_SERVER[‘REMOTE_ADDR’], one
can know the ISP and therefore, the country.
Hence, the name IP geolocation. New GeoIP
databases can even predict the city and state,
although with less accuracy.

The easiest way to implement this is to use
the PEAR Net_Geo class. It uses online serv-
ices to retrieve the information for a provided
IP address. This class has its downsides, which
I discuss in the sidebar.

This next example will make use of
another network-related PHP function.
The gethostbyname() function returns
the IP address for a given domain name.

363

Networking with PHP

P
erfro

m
in

g
 IP

G
eo

lo
catio

n

www.dmcinsights.com/phorum/
www.dmcinsights.com/phorum/

To find a user’s location:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the HTML
(Script 9.3).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/

➝ 1999/xhtml” xml:lang=”en”

➝ lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>PEAR::Net_Geo</title>

</head>

<body>

<?php # Script 9.3 - net_geo.php

2. Include the class definition and create
the object.

require_once(‘Net/Geo.php’);

$net_geo = new Net_Geo();

This is standard PEAR and OOP. See
Chapter 6, “Basic Object-Oriented
Programming,” and Chapter 12, “Using
PEAR,” for more.

3. Get the user’s IP address.

$ip = $_SERVER[‘REMOTE_ADDR’];

4. Fetch the information.

$results = $net_geo->getRecord($ip);

The class’s getRecord() method does all
the work, returning an associative array
of values (Figure 9.11).

continues on page 366

Figure 9.11 The array of data returned by the
getRecord() method.

364

Chapter 9

P
er

fr
o

m
in

g
 IP

G
eo

lo
ca

ti
o

n

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 ”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>PEAR::Net_Geo</title>

7 </head>

8 <body>

9 <?php # Script 9.3 - net_geo.php

10

11 /* This page uses the PEAR Net_Geo class

12 * to retrieve a user’s geographic location.

13 */

14

15 // Include the class definition:

16 require_once(‘Net/Geo.php’);

17

18 // Create the object:

19 $net_geo = new Net_Geo();

20

21 // Get the client’s IP address:

22 $ip = $_SERVER[‘REMOTE_ADDR’];

23

24 // Get the information:

25 $results = $net_geo->getRecord($ip);

26

27 // Print whatever about the user:

28 echo “<p>Our spies tell us the following information about you:

29 IP Address: $ip

30 Country: {$results[‘COUNTRY’]}

31 City, State: {$results[‘CITY’]}, {$results[‘STATE’]}

32 Latitude: {$results[‘LAT’]}

33 Longitude: {$results[‘LONG’]}</p>”;

34

35 // Print something about a site:

36 $url = ‘www.entropy.ch’;

37

38 // Get the IP address:

39 $ip = gethostbyname($url);

40

41 // Get the information:

42 $results = $net_geo->getRecord($ip);

43

44 // Print whatever about the URL:

45 echo “<p>Our spies tell us the following information about the URL $url:

46 IP Address: $ip

47 Country: {$results[‘COUNTRY’]}

48 City, State: {$results[‘CITY’]}, {$results[‘STATE’]}</p>”;

49 ?>

50 </body>

51 </html>

Script 9.3 The PEAR Net_Geo class is used to provide geographic location information based upon IP addresses.

365

Networking with PHP

P
erfro

m
in

g
 IP

G
eo

lo
catio

n

5. Print the results.

echo “<p>Our spies tell us the

➝ following information about

➝ you:

IP Address: $ip

Country: {$results[‘COUNTRY’]}

City, State: {$results[‘CITY’]},

➝ {$results[‘STATE’]}

Latitude: {$results[‘LAT’]}

Longitude: {$results[‘LONG’]}</p>”;

Looking at the array in Figure 9.11, you
can see the options available. For the first
IP address (the user’s), the script will
print the country, city, state, and—why
not?—the latitude and longitude.

6. Identify a URL to report upon and get its
IP address.

$url = ‘www.entropy.ch’;

$ip = gethostbyname($url);

While playing around, the script will
fetch the information for a Web site,
which is to say where the server it’s
running on is located. In this case, I’m
choosing Marc Liyanage’s invaluable
site, www.entropy.ch.

7. Retrieve the information and report
upon the results.

$results = $net_geo->getRecord($ip);

echo “<p>Our spies tell us the

➝ following information about the URL

➝ $url:

IP Address: $ip

Country: {$results[‘COUNTRY’]}

City, State: {$results[‘CITY’]},

➝ {$results[‘STATE’]}</p>”;

366

Chapter 9

P
er

fr
o

m
in

g
 IP

G
eo

lo
ca

ti
o

n

www.entropy.ch

Figure 9.13 Running the script again, after flying to
Berlin, Germany. I also changed the URL to
www.apple.com to see those results.

Figure 9.12 The IP geolocation results for my IP
address and the URL www.entropy.ch.

8. Complete the page.

?>

</body>

</html>

9. Save the file as net_geo.php, place it in
your Web directory, and test in your
Web browser (Figure 9.12).

10. Hop into a plane, train, or automobile,
travel to another country, get online, and
retest the script in your Web browser
(Figure 9.13).

✔ Tips

■ One resource I found suggested that IP
geolocation is very accurate on the
country level, probably close to 95 per-
cent. On the city and state level, that
accuracy may dip down to 50–80 per-
cent, depending upon the database
being used. In my case, it did not accu-
rately pick the city but suggested one
about 20 miles away (in another state).
As I suggest in the sidebar, using a com-
mercial database would garner more
accurate results.

■ If you have need to find out the host
name of associated with an IP address,
use the corresponding gethostbyaddr()
function.

■ If a URL might be on multiple servers,
the gethostbynamel() function returns
all the possible IP addresses. You can
then check one or every IP.

367

Networking with PHP

P
erfro

m
in

g
 IP

G
eo

lo
catio

n

www.entropy.ch
www.apple.com

Using cURL
The last network-related topic to be dis-
cussed in this chapter is a technology called
cURL. This utility, which stands for client
URLs (and is also written as just curl or
Curl), is a command-line tool for working
with URLs. With cURL you can access Web
sites, FTP files, and do much, much more.
PHP can use cURL via the shell_exec()
and other system functions. But PHP also
supports libcurl, a cURL library.

The process starts by using curl_init(),
providing this function the name of the URL
being accessed:

$curl = curl_init(‘www.example.com’);

The value returned by the function should
be assigned to a variable, which will act as a
pointer or a handle to the transaction.

Next, the curl_setopt() function is used (a
lot) to set any options. The syntax is:

curl_setopt($curl, CONSTANT, value);

Unfortunately, there are way too many
options to even provide a subset here. In
the following example I’ll highlight a hand-
ful of them. If you take to cURL, check out
the PHP manual for the full list of settings.

368

Chapter 9

U
si

n
g

 c
U

R
L

Figure 9.15 Until a user successfully logs in, this is
what they see.

Figure 9.14 After the user logs in (providing a valid
username/password combination, of course), they’re
rewarded with this impressive result.

After setting all the options (and note that
you can set them in any order), use
curl_exec() to execute the transaction:

$result = curl_exec($curl);

You should assign the result of the
curl_exec() command to a variable, in case
you need to print the result.

Finally, close the connection:

curl_close($curl);

The great thing about cURL is that it could
also do everything that the other examples
in the chapter accomplish. But for this next
example, let’s use it for something that
fopen(), fsockopen(), and the rest can’t do:
open a Web page and post data to it (as if
it submitted a form). In Chapter 4, “Security
Techniques,” the PEAR Auth module is
used to add a database-driven username/
password restriction to a Web page. After a
user submits a valid username/password
combination, they can access the page
(Figure 9.14). Otherwise, they’ll get a
message indicating the need to log in
(Figure 9.15).

369

Networking with PHP

U
sin

g
 cU

R
L

To use cURL:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the HTML
(Script 9.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Using cURL</title>

</head>

<body>

<?php # Script 9.4 - curl.php

2. Begin the cURL transaction.

$url = ‘http://localhost/login.php’;

$curl = curl_init($url);

You don’t have to assign the URL to use
to a variable prior to the curl_init()
line, of course. But do make sure you
change this URL to point to the
login.php script you made (and put in
your Web directory) in Chapter 4. If you
haven’t done that yet, get thyself over to
Chapter 4 and do so before continuing.

3. Tell cURL to fail if an error occurs.

curl_setopt($curl, CURLOPT_

➝ FAILONERROR, 1);

The first of the options is CURLOPT_
FAILONERROR. By setting this to true (or
1), you tell cURL to stop the process if an
error occurs (rather than continuing on).

4. Tell cURL to allow for redirects.

curl_setopt($curl, CURLOPT_

➝ FOLLOWLOCATION, 1);

370

Chapter 9

U
si

n
g

 c
U

R
L

This second option sets whether or
not redirections (think of a PHP header
(‘Location: somepage.php’) call)
should stop the transaction or if redirec-
tions should be followed.

5. Opt to assign the returned data to a
variable.

curl_setopt($curl, CURLOPT_

➝ RETURNTRANSFER,1);

If you’ll not use the data that would be
returned by a cURL request, then you
don’t need to enable this option. In this
script, that data will be printed for veri-
fication, so this value is set to 1.

6. Set the timeout.

curl_setopt($curl, CURLOPT_

➝ TIMEOUT, 5);

This is the maximum amount of time to
attempt the transaction, in seconds.

7. Tell cURL to use the POST method.

curl_setopt($curl, CURLOPT_POST, 1);

In this example, data will be posted to
the page (http://localhost/login.php)
as if a form were submitted.

8. Set the POST data.

curl_setopt($curl, CURLOPT_

➝ POSTFIELDS, ‘username=me&password=

➝ mypass’);

The CURLOPT_POSTFIELDS option is where
you set the POST data. The syntax is a
series of name=value pairs, separated by
ampersands. The values you use here
should match those registered in the
database back in Chapter 4.

9. Execute the transaction.

$r = curl_exec($curl);

10. Close the connection.

curl_close($curl);

continues on page 372

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Using cURL</title>

7 </head>

8 <body>

9 <?php # Script 9.4 - curl.php

10

11 /* This page uses cURL to post a usernamme/password

12 * combination to a password-protected Web page.

13 */

14

15 // Identify the URL:

16 $url = ‘http://localhost/login.php’;

17

18 // Start the process:

19 $curl = curl_init($url);

20

21 // Tell cURL to fail if an error occurs:

22 curl_setopt($curl, CURLOPT_FAILONERROR, 1);

23

24 // Allow for redirects:

25 curl_setopt($curl, CURLOPT_FOLLOWLOCATION, 1);

26

27 // Assign the returned data to a variable:

28 curl_setopt($curl, CURLOPT_RETURNTRANSFER,1);

29

30 // Set the timeout:

31 curl_setopt($curl, CURLOPT_TIMEOUT, 5);

32

33 // Use POST:

34 curl_setopt($curl, CURLOPT_POST, 1);

35

36 // Set the POST data:

37 curl_setopt($curl, CURLOPT_POSTFIELDS, ‘username=me&password=mypass’);

38

39 // Execute the transaction:

40 $r = curl_exec($curl);

41

42 // Close the connection:

43 curl_close($curl);

44

45 // Print the results:

46 echo ‘<h2>cURL Results:</h2><pre>’ . htmlentities($r) . ‘</pre>’;

47

48 ?>

49 </body>

50 </html>

Script 9.4 The cURL library is used by PHP to post data to a page that requires logging in for access.

371

Networking with PHP

U
sin

g
 cU

R
L

11. Print the results.

echo ‘<h2>cURL Results:</h2><pre>’ .

➝ htmlentities($r) . ‘</pre>’;

Everything returned by the request is
assigned to the $r variable. I want
to print this, but since I know it’s a
bunch of HTML, I’ll print it within
the preformatted tags, and apply the
htmlentities() function. The end
result will be the other page’s HTML
shown as the HTML tags.

12. Complete the page.

?>

</body>

</html>

13. Save the file as curl.php, place it in
your Web directory, and test in your
Web browser (Figure 9.16).

14. Change the POST data to an invalid
username/password combination
and retest in your Web browser
(Figure 9.17).

✔ Tips

■ If a page is protected by HTTP authenti-
cation, use this option:

curl_setopt($curl, CURLOPT_USERPWD,

➝ ‘username:password’);

■ The curl_getinfo() function, which
must be called prior to closing the con-
nection, returns an array of information
about the transaction (Figure 9.18).

■ The cURL utility can also be used to
send and receive cookies, handle file
uploads, work over SSL connections,
even FTP files.

■ Use the curl_errno() and curl_error()

functions to retrieve the error number
and message, should one occur.

Figure 9.18 The array returned by the curl_getinfo()
function.

Figure 9.17 The cURL request was not able to log in.

Figure 9.16 The cURL request was able to successfully
log in.

372

Chapter 9

U
si

n
g

 c
U

R
L

Most of the chapters in this book focus on creating dynamic Web sites with PHP,
which is, after all, the original intention of the language. Chapter 9, “Networking with
PHP,” approaches some behind-the-scenes features of the language, specifically toward
the goal of communicating between servers. Continuing along this vein, there’s plenty
to discuss when it comes to PHP interacting with, or just how it runs on, the server
itself.

A lot of very standard PHP actions, such as communicating with databases and
sending emails, actually occur between applications on the server and PHP. As PHP
is increasingly used for advanced purposes and not simply to generate Web content,
its ability to manipulate and use the features the server has to offer becomes more
important.

This chapter will show you how to better take advantage of the other services and
applications that your server may have. Starting off is a demonstration of how to
compress files using PHP. The second example takes off into a whole new world: cre-
ating graphical programs using PHP-GTK. The third and fourth topics are related to
each other: how to automatically run your PHP scripts, first using cron on Unix (and
Mac OS X), then using Scheduled Tasks on Windows. In the final example, COM is
used on Windows to create an Excel spreadsheet.

373

PHP and
the Server

10
P

H
P

an
d th

e S
erver

Compressing Files
Most users are familiar with client-based
GUI compression utilities such as WinZip
or StuffIt, which will compress and decom-
press files. Thanks to zlib, available from
www.zlib.net, you can have PHP automati-
cally compress files as well. The zlib library
was written by two of the major compres-
sion/decompression developers as a patent-
free, lossless data-compression tool. Zlib is
available on every major platform (even for
Palm handhelds!) and is frequently built into
a server’s configuration. I would be surprised
if a Unix brand of operating system did not
include zlib, and you can use a dynamic
link library (DLL) version of the library on
Windows. In fact, PHP has built-in support
for zlib ever since version 4.3.

Once zlib is installed and PHP is made to
support it (Figure 10.1), you can use it for
writing to or reading from compressed files.
Most of the functions work exactly like the
standard file functions (fopen(), fwrite(),
fclose(),…). You start by opening a file,
indicating the mode:

$fp = gzopen(‘filename.gz’, ‘mode’);

The modes, shown in Table 10.1, are the
same as those used with fopen(). Added
to this can be a compression level on a
scale of 1 (least compressed) to 9 (most).
With an open file, you can then write data
to it:

$fp = gzopen(‘filename.gz’, ‘w5’);

gzwrite($fp, ‘data’);

Finally, close the file:

gzclose($fp);

M o d e O p e n f o r …

r Reading only, starting at the beginning of
the file.

r+ Reading and writing, starting at the beginning
of the file.

w Writing only, starting at the beginning of the
file; empty the file if it exists, create it if it
doesn’t.

w+ Reading and writing, starting at the beginning
of the file; empty the file if it exists, create it if
it doesn’t.

a Writing only, starting at the end of the file;
create the file if it doesn’t exist.

a+ Reading and writing, starting at the end of
the file; create the file if it doesn’t exist.

x Writing only, starting at the beginning of the
file; create the file if it doesn’t exist, indicate
failure if it does.

x Reading and writing, starting at the beginning
of the file; create the file if it doesn’t exist, indi-
cate failure if it does.

f Filtered data
h Huffman-only compression
b Binary mode

File Open Modes

Table 10.1 Use these letters to set the mode when
opening a file. For gzopen(), you can also set the level
of compression from 1 to 9 and indicate f, h, and b to
further modify the mode.

374

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

Figure 10.1 Before attempting to use the zlib
functions, run a phpinfo() script to confirm PHP’s
support for the library.

www.zlib.net

375

PHP and the Server

Co
m

pressin
g

 Files

Reading from files can be even easier. You
can use readgzfile(), which reads in a com-
pressed file, decompresses the data, and sends
it to the output. There is also the gzfile()
function, which reads in compressed file,
decompresses it, and returns it as an array
(one element for each line in the file).

In this next example I’ll have PHP create a
compressed file on the fly. The PHP script
itself will retrieve all of the data stored in a
named database and will create files listing
said data in comma-delineated format. In
short, this PHP script will create a com-
pressed backup of a database’s records.

To compress a file:

1. Create a new PHP document in your text
editor or IDE, beginning with the stan-
dard HTML (Script 10.1).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Database Backup</title>

</head>

<body>

<?php # Script 10.1 - db_backup.php

2. Set the name of the database.

$db_name = ‘test’;

First, I set a variable with the name of
the database to be backed up. I do so
mostly because the database name will
be referenced several times over in this
script and I want to make changes easily.

continues on page 378

376

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Database Backup</title>

7 </head>

8 <body>

9 <?php # Script 10.1 - db_backup.php

10

11 /* This page retrieves all the data from a database

12 * and writes that data to a text file.

13 * The text file is then compressed using zlib.

14 */

15

16 // Establish variables and setup:

17 $db_name = ‘test’;

18

19 // Backup directory:

20 $dir = “backups/$db_name”;

21

22 // Make the database-specific directory, if it doesn’t exist.

23 if (!is_dir($dir)) {

24 if (!@mkdir($dir)) {

25 die (“<p>The backup directory--$dir--could not be created.</p>\n</body>\n</html>\n”);

26 }

27 }

28

29 // Get the current time for using in all filenames:

30 $time = time();

31

32 // Connect to the database:

33 $dbc = @mysqli_connect (‘localhost’, ‘username’, ‘password’, $db_name) OR die (“<p>The

database--$db_name--could not be backed up.</p>\n</body>\n</html>\n”);

34

35 // Retrieve the tables:

36 $q = ‘SHOW TABLES’;

37 $r = mysqli_query($dbc, $q);

38

39 // Back up if at least one table exists:

40 if (mysqli_num_rows($r) > 0) {

41

42 // Indicate what is happening:

43 echo “<p>Backing up database ‘$db_name’.</p>\n”;

44

45 // Fetch each table name.

46 while (list($table) = mysqli_fetch_array($r, MYSQLI_NUM)) {

(script continues on next page)

Script 10.1 This very useful script will back up a database, table by table, to a compressed, comma-separated text file.

377

PHP and the Server

Co
m

pressin
g

 Files

47

48 // Get the records for this table:

49 $q2 = “SELECT * FROM $table”;

50 $r2 = mysqli_query($dbc, $q2);

51

52 // Back up if records exist:

53 if (mysqli_num_rows($r2) > 0) {

54

55 // Attempt to open the file:

56 if ($fp = gzopen (“$dir/{$table}_{$time}.sql.gz”, ‘w9’)) {

57

58 // Fetch all the records for this table:

59 while ($row = mysqli_fetch_array($r2, MYSQLI_NUM)) {

60

61 // Write the data as a comma-delineated row:

62 foreach ($row as $value) {

63

64 gzwrite ($fp, “‘$value’, “);

65 }

66

67 // Add a new line to each row:

68 gzwrite ($fp, “\n”);

69

70 } // End of WHILE loop.

71

72 // Close the file:

73 gzclose ($fp);

74

75 // Print the success:

76 echo “<p>Table ‘$table’ backed up.</p>\n”;

77

78 } else { // Could not create the file!

79 echo “<p>The file--$dir/{$table}_{$time}.sql.gz--could not be opened for

writing.</p>\n”;

80 break; // Leave the WHILE loop.

81 } // End of gzopen() IF.

82

83 } // End of mysqli_num_rows() IF.

84

85 } // End of WHILE loop.

86

87 } else {

88 echo “<p>The submitted database--$db_name--contains no tables.</p>\n”;

89 }

90

91 ?>

92 </body>

93 </html>

Script 10.1 continued

3. Make sure that the backup directory
exists.

$dir = “backups/$db_name”;

if (!is_dir($dir)) {

if (!@mkdir($dir)) {

die (“<p>The backup

➝ directory--$dir--could not be

➝ created.</p>\n</body>\n</html>\n”);

}

}

The backups will be stored in a directory
called backups. Within this directory,
each database will have its own directory.
First, a variable is given the value of the
final destination. Next, the script checks
to see if that directory already exists. If
not, the script attempts to create it. The
script terminates if the directory could
not be created (Figure 10.2), as there’d
be no point in continuing.

One assumption here is that an existing
directory is already writable, something
you could easily check for (using the
is_writable() function). This section of
the code, which is secondary to what’s
really being taught, assumes you already
understand what permissions must exist
for PHP to write to directories.

4. Get the current time.

$time = time();

This value will be used in each table
backup’s filename. Because every file
should have the same time, I assign this
to a variable once, instead of invoking
the function once for each file.

5. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, $db_name)

➝ OR die (“<p>The database--$db_

➝ name--could not be backed

➝ up.</p>\n</body>\n</html>\n”);

Figure 10.2 The result if the destination directory
could not be created.

378

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

Figure 10.5 The main query, the results of which will
be written to a file.

Figure 10.4 Running the same query that
the script runs (the first of two) using the
mysql client.

Figure 10.3 The result if a database
connection could not be made.

The script attempts to connect to the
named database. If it can’t, a message
indicating a problem is displayed in the
Web browser (Figure 10.3), and the
HTML page is concluded. You can
change the error message to incorporate
a MySQL error function, if you want a
more informative response.

Note, also, that I’m using the Improved
MySQL extension functions, available as
of PHP 5 and MySQL 4.1. If your setup
doesn’t support them, switch to the older
MySQL functions instead (changing all
the code in the script as needed).

6. Retrieve the tables in this database.

$q = ‘SHOW TABLES’;

$r = mysqli_query($dbc, $q);

This query will return a list of every table
in the current database (Figure 10.4).

7. Confirm that at least one record was
returned and print a message.

if (mysqli_num_rows($r) > 0) {

echo “<p>Backing up database

➝ ‘$db_name’.</p>\n”;

No need to back up an empty database!

8. Create a loop that fetches each table
name.

while (list($table) = mysqli_

➝ fetch_array($r, MYSQLI_NUM)) {

9. Retrieve all the records for this table.

$q2 = “SELECT * FROM $table”;

$r2 = mysqli_query($dbc, $q2);

Since this query is run within a while
loop for another query, you have to use a
different result variable ($r2 here instead
of $r), or else you’ll overwrite the first
query’s results. Figure 10.5 shows the
result of this query based upon the
results in Figure 10.4.

379

PHP and the Server

Co
m

pressin
g

 Files

10. If the table contains some records, open
the text file for writing.

if (mysqli_num_rows($r2) > 0) {

if ($fp = gzopen

(“$dir/{$table}_{$time}.sql.gz”,

➝ ‘w9’)) {

Each table will be backed up to its own
file, the name of which is derived from
the table name ($table), the current
time stamp ($time), and a .sql.gz exten-
sion. All of the files will be written to a
database-specific folder within a backup
folder. Both directories must have appro-
priate permissions for PHP to write to
them.

The gzopen() function takes two param-
eters: the filename and the mode of
opening. The modes correspond directly
to fopen()’s modes (w, r, a along with b
for writing binary data) but can also
indicate a level of compression. The
acceptable compression levels are on a
scale from 1 (minimal compression) to
9 (maximum) with a trade-off between
compression and performance. For rela-
tively small files like these text docu-
ments, maximum compression is fine.

380

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

11. Retrieve all of the table’s data, and write
it to the file.

while ($row = mysqli_fetch_array

➝ ($r2, MYSQLI_NUM)) {

foreach ($row as $value) {

gzwrite ($fp, “‘$value’,

➝ “);

}

gzwrite ($fp, “\n”);

}

This loop will take every row out of the
table and write that to a text file in the
format ‘value’,[SPACE]. Instead of
using the fwrite() function that you
may be familiar with, there is gzwrite(),
which works just the same (except that
it writes to a compressed file).

12. Close the file and print a message to the
browser.

gzclose ($fp);

echo “<p>Table ‘$table’ backed

➝ up.</p>\n”;

13. Complete the conditionals.

} else {

echo

➝ “<p>The file--$dir/{$table}_

➝ {$time}.sql.gz--could not be

➝ opened for writing.</p>\n”;

break;

}

}

}

} else {

echo “<p>The submitted database-

➝ -$db_name--contains no

➝ tables.</p>\n”;

}

Figure 10.6 What the Web page shows after
successfully backing up the one table found
within the test database.

14. Complete the page.

}

?>

</body>

</html>

15. Save the file as db_backup.php and place
it in your Web directory.

16. Create a folder called backups, in the
same directory as db_backup.php, and
change its permissions (if necessary).

How you do this depends upon your
operating system, which I assume, as
an experienced PHP developer, you’ve
already discovered. If you don’t know
how to change a directory’s permissions,
search the Web or check out the book’s
corresponding support forum
(www.DMCInsights.com/phorum/).

17. Test the PHP script in your Web browser
(Figure 10.6).

381

PHP and the Server

Co
m

pressin
g

 Files

www.DMCInsights.com/phorum/

18. Change the code to use another database
(also changing the MySQL connection
parameters, if necessary) and rerun the
script in your Web browser (Figures 10.7
and 10.8).

✔ Tips

■ For security purposes, you’d likely want
to place the backups folder outside of
the Web directory (considering its open
permissions.)

■ The zlib functions can also work with
compressed binary files. (Windows
makes a distinction between binary and
plain text files, but Unix and Mac OS X
do not.) Binary files offer the advantage
of being able to read from, and write to,
the file in a nonlinear fashion.

Figure 10.7 The browser will display
what tables were backed up by the
db_backup.php script.

382

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

Figure 10.8 The db_backup.php script has created compressed backup files of the databases and
stored them in the backups folder.

Figure 10.9 The benefits of compression in small
tables, like stores, are negligible (559 bytes vs. 1,077).
But in large tables, like zip_codes, the benefits can be
huge (approximately 568 KB vs. 2.2 MB!).

■ To see the effect that compression has
on your file, rewrite backup_db.php to
use fopen(), fwrite(), and fclose()
instead (Script 10.2). On one table that
contained about 150 rows of 6 columns
each, the compressed file was 40 percent
of the size of the noncompressed form
(Figure 10.9).

383

PHP and the Server

Co
m

pressin
g

 Files

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Database Backup</title>

7 </head>

8 <body>

9 <?php # Script 10.2 - db_backup2.php

10

11 /* This page retrieves all the data from a database

12 * and writes that data to a text file.

13 * The text file is NOT compressed.

14 */

15

16 // Establish variables and setup:

17 $db_name = ‘test’;

18

19 // Backup directory:

20 $dir = “backups/$db_name”;

21

22 // Make the database-specific directory, if it doesn’t exist.

23 if (!is_dir($dir)) {

24 if (!@mkdir($dir)) {

25 die (“<p>The backup directory--$dir--could not be created.</p>\n</body>\n</html>\n”);

26 }

27 }

28

29 // Get the current time for using in all filenames:

30 $time = time();

31

32 // Connect to the database:

33 $dbc = @mysqli_connect (‘localhost’, ‘username’, ‘password’, $db_name) OR die (“<p>The

database--$db_name--could not be backed up.</p>\n</body>\n</html>\n”);

34

35 // Retrieve the tables:

36 $q = ‘SHOW TABLES’;

37 $r = mysqli_query($dbc, $q);

38

39 // Back up if at least one table exists:

(script continues on next page)

Script 10.2 To tell how much impact compression has on a file’s size, rewrite Script 10.1 like so, and then compare
the results.

40 if (mysqli_num_rows($r) > 0) {

41

42 // Indicate what is happening:

43 echo “<p>Backing up database ‘$db_name’.</p>\n”;

44

45 // Fetch each table name.

46 while (list($table) = mysqli_fetch_array($r, MYSQLI_NUM)) {

47

48 // Get the records for this table:

49 $q2 = “SELECT * FROM $table”;

50 $r2 = mysqli_query($dbc, $q2);

51

52 // Back up if records exist:

53 if (mysqli_num_rows($r2) > 0) {

54

55 // Attempt to open the file:

56 if ($fp = fopen (“$dir/{$table}_{$time}.sql”, ‘w’)) {

57

58 // Fetch all the records for this table:

59 while ($row = mysqli_fetch_array($r2, MYSQLI_NUM)) {

60

61 // Write the data as a comma-delineated row:

62 foreach ($row as $value) {

63

64 fwrite ($fp, “‘$value’, “);

65 }

66

67 // Add a new line to each row:

68 fwrite ($fp, “\n”);

69

70 } // End of WHILE loop.

71

72 // Close the file:

73 fclose ($fp);

74

75 // Print the success:

76 echo “<p>Table ‘$table’ backed up.</p>\n”;

77

78 } else { // Could not create the file!

79 echo “<p>The file--$dir/{$table}_{$time}.sql--could not be opened for

writing.</p>\n”;

80 break; // Leave the WHILE loop.

81 } // End of fopen() IF.

82

83 } // End of mysqli_num_rows() IF.

84

85 } // End of WHILE loop.

86

87 } else {

88 echo “<p>The submitted database--$db_name--contains no tables.</p>\n”;

89 }

90

91 ?>

92 </body>

93 </html>

Script 10.2 continued

384

Chapter 10

Co
m

pr
es

si
n

g
 F

il
es

Figure 10.10 The home page of PHP-GTK.

PHP-GTK
GTK+, which stands for GIMP Tool Kit
(GIMP being the GNU Image Manipulation
Program), is an open-source toolkit that
works on multiple platforms. This resource
makes it easy for programmers to generate
graphical elements—windows, buttons, and
so on—for their applications. The GTK home
page, www.gtk.org, describes the system’s
origins and usage but from a C programming
perspective (GTK, like PHP, is written in C).

The PHP-GTK Web site, http://gtk.php.net
(Figure 10.10), discusses how GTK can be
used with PHP. To do so, you need a binary
version of PHP, GTK+, and the php_gtk
module. You can download and configure all
of these for a Unix (Linux, etc.) system or
retrieve preconfigured binaries for Windows.
The Web site Gnope (www.gnope.org) pro-
vides a lot of help in this area.

385

PHP and the Server

P
H

P
-G

TK

GTK is way too deep to thoroughly discuss
in just a few pages or even a whole chapter.
But I can provide you with a taste of how it
works and then develop a practical, real-
world application with only a little bit of
know-how.

GTK uses widgets to make applications. A
widget can be anything from a window to a
button to a table to a text label. To build an
application, you create new instances of
widgets (PHP uses an OOP interface to GTK)
and then apply different properties by calling
that widget’s methods. There are special
widgets called containers that are used as
parents for other widgets. The primary con-
tainer will be a window. The entire applica-
tion will exist within this window.

www.gtk.org
www.gnope.org
http://gtk.php.net

Besides creating widgets that make up an
application, you associate user-defined PHP
functions with different widgets so that, for
example, when this button is clicked, this
function is invoked. A widget listens for sig-
nals—user events—and then enacts a call-
back—the function that gets called upon for
that event. You assign a function to an event
using the connect_simple() method.

$widget->connect_simple(‘event’,

➝ ‘function_name’);

The primary event I’ll demonstrate is
clicked, indicating that the mouse button
was clicked on the widget.

You can pass a value to the callback func-
tion by adding it as a parameter to the
connect_simple() call.

$widget->connect_simple(‘event’,

➝ ‘function_name’, $var);

These are just the basics of how you’ll use GTK
with PHP. Every widget has its own methods
and attributes, and GTK includes dozens
upon dozens of widgets. I’ll explain in more
detail in this example, a simple graphical
calculator (Figure 10.11). For each action
that takes place in the calculator—entering
a number, selecting an operator, clicking
clear, and clicking equals—a user-defined
function must exist. Those will be written
first. These functions will work with the
three main variables the calculator requires:
two numbers for the operands (the numbers
used in the math) and one variable storing
the selected operator.

To use PHP-GTK:

1. Begin a new PHP document in your text
editor or IDE (Script 10.3).

<?php # Script 10.3 - calculator.php

Since this page will not be accessed via
a Web browser, there is no need to use
any HTML.

continues on page 391

Figure 10.11 This calculator is actually a PHP script
that uses PHP-GTK.

386

Chapter 10

P
H

P
-G

TK

1 <?php # Script 10.3 - calculator.php

2

3 /* This page uses GTK to create

4 * a graphical calculator.

5 */

6

7 // Make sure that the GTK module has been loaded:

8 if (!class_exists(‘gtk’)) die(‘The PHP-Gtk2 module has not been loaded!’);

9

10 // Function for resetting the calculator:

11 function clear () {

12

13 // Reset the vars:

14 global $n1, $n2, $operator;

15 $n1 = false;

16 $n2 = false;

17 $operator = false;

18

19 // Clear the display:

20 set_display ();

21

22 } // End of clear() function.

23

24 // Function for displaying value in the calculator ‘window’:

25 function set_display ($value = 0) {

26 global $display;

27 $display->set_text ($value);

28 } // End of set_display() function.

29

30 // The calculate() function does the actual math:

31 function calculate () {

32

33 global $n1, $n2, $operator;

34

35 // Set initial value, just in case:

36 $value = $n1;

37

38 // What mathematical operation?

39 switch ($operator) {

40 case ‘add’:

41 $value = $n1 + $n2;

42 break;

43 case ‘subtract’:

44 $value = $n1 - $n2;

45 break;

46 case ‘multiply’:

47 $value = $n1 * $n2;

48 break;

49 case ‘divide’:

50 $value = $n1 / $n2;

51 break;

52 }

53

54 // Display the calculated value:

55 set_display ($value);

56

(script continues on next page)

Script 10.3 This PHP script makes use of PHP-GTK in order to make a graphical calculator.

387

PHP and the Server

P
H

P
-G

TK

57 // Reset the values:

58 $n1 = $value;

59 $operator = false;

60 $n2 = false;

61

62 } // End of calculate() function.

63

64 // Function for assigning the operator being used:

65 function set_operator ($which) {

66 global $operator;

67

68 // If the $operator is already set,

69 // calculate using the current values.

70 if ($operator) calculate();

71

72 $operator = $which;

73

74 } // End of set_operator() function.

75

76 // Function for assigning values:

77 function set_number ($value) {

78

79 global $n1, $n2, $operator;

80

81 // Concatenate to either the $n1 or $n2 value:

82 if (!$operator) {

83 $n1 .= $value;

84 set_display($n1);

85 } else {

86 $n2 .= $value;

87 set_display($n2);

88 }

89 }

90

91 // *******************

92 // End of Functions

93 // *******************

94

95 // Define the main variables:

96 $n1 = false;

97 $n2 = false;

98 $operator = false;

99

100 // Create a new window:

101 $window = new GtkWindow();

102 $window->set_title (‘Calculator’);

103 $window->set_default_size (320, 320);

104

105 // Create another container:

106 $box = new GtkVBox();

107 $window->add($box);

108

109 // Make a table:

110 $table = new GtkTable(5, 6);

111 $table->set_row_spacings(2);

112 $table->set_col_spacings(2);

113 $table->set_border_width(5);

Script 10.3 continued

388

Chapter 10

P
H

P
-G

TK

114

115 // Put the table into the box:

116 $box->pack_start($table);

117

118 // Make a display:

119 $display = new GtkLabel(‘display’);

120 $table->attach($display, 1, 4, 1, 2);

121

122 // Make the 0-9 buttons.

123 for ($i = 0; $i <= 9; $i++) {

124

125 // Determine the table coordinates

126 // for each number:

127 switch ($i) {

128 case 0:

129 $x = 1;

130 $y = 5;

131 break;

132 case 1:

133 $x = 1;

134 $y = 4;

135 break;

136 case 2:

137 $x = 2;

138 $y = 4;

139 break;

140 case 3:

141 $x = 3;

142 $y = 4;

143 break;

144 case 4:

145 $x = 1;

146 $y = 3;

147 break;

148 case 5:

149 $x = 2;

150 $y = 3;

151 break;

152 case 6:

153 $x = 3;

154 $y = 3;

155 break;

156 case 7:

157 $x = 1;

158 $y = 2;

159 break;

160 case 8:

161 $x = 2;

162 $y = 2;

163 break;

164 case 9:

165 $x = 3;

166 $y = 2;

167 break;

168 }

169

(script continues on next page)

Script 10.3 continued

389

PHP and the Server

P
H

P
-G

TK

170 // Make the button for the number:

171 $button = new GtkButton($i);

172 $button->connect_simple (‘clicked’, ‘set_number’, $i);

173 $table->attach($button, $x, ($x+1), $y, ($y+1));

174

175 } // End of 0-9 FOR loop.

176

177

178 // Place the remaining buttons...

179

180 // Decimal point:

181 $decimal = new GtkButton(‘.’);

182 $decimal->connect_simple (‘clicked’, ‘set_number’, ‘.’);

183 $table->attach($decimal, 2, 3, 5, 6);

184

185 // Equals sign:

186 $equals = new GtkButton(‘=’);

187 $equals->connect_simple (‘clicked’, ‘calculate’);

188 $table->attach($equals, 3, 4, 5, 6);

189

190 // Clear:

191 $clear = new GtkButton(‘C’);

192 $clear->connect_simple (‘clicked’, ‘clear’);

193 $table->attach($clear, 4, 5, 1, 2);

194

195 // Plus sign:

196 $add = new GtkButton(‘+’);

197 $add->connect_simple (‘clicked’, ‘set_operator’, ‘add’);

198 $table->attach($add, 4, 5, 2, 3);

199

200 // Minus sign:

201 $subtract = new GtkButton(‘-’);

202 $subtract->connect_simple (‘clicked’, ‘set_operator’, ‘subtract’);

203 $table->attach($subtract, 4, 5, 3, 4);

204

205 // Multiplication sign:

206 $multiply = new GtkButton(‘*’);

207 $multiply->connect_simple (‘clicked’, ‘set_operator’, ‘multiply’);

208 $table->attach($multiply, 4, 5, 4, 5);

209

210 // Division sign:

211 $divide = new GtkButton(‘/’);

212 $divide->connect_simple (‘clicked’, ‘set_operator’, ‘divide’);

213 $table->attach($divide, 4, 5, 5, 6);

214

215 // Reset the calculator to start:

216 clear();

217

218 // Connect the quit function:

219 $window->connect_simple (‘destroy’, array(‘Gtk’, ‘main_quit’));

220

221 // Show everything:

222 $window->show_all();

223

224 // Start the application:

225 Gtk::main();

226 ?>

Script 10.3 continued

390

Chapter 10

P
H

P
-G

TK

391

PHP and the Server

P
H

P
-G

TK

Figure 10.12 The calculator is started from the
command line. If the GTK module isn’t supported, it
won’t even try to run.

2. Make sure that the GTK module has
been loaded.

if (!class_exists(‘gtk’)) die(‘The

➝ PHP-Gtk2 module has not been

➝ loaded!’);

With GTK2 and PHP 5, you cannot load
the library dynamically using the dl()
function. Instead, you must be using a
version of PHP with built-in support for
the library. This line checks that the GTK
class has been defined, killing the script
otherwise (Figure 10.12).

3. Create a function for clearing the
calculator.

function clear () {

global $n1, $n2, $operator;

$n1 = false;

$n2 = false;

$operator = false;

set_display ();

}

This function will reset the three main
global variables. The first two—$n1 and
$n2—store the two numbers used in any
calculation (even if you add 30 numbers
together, that’s really just adding two
numbers at a time, repeatedly). The
third variable, $operator, will store a
string indicating what operation was
selected. Finally, this function calls the
user-defined set_display() function,
which sets the value of the calculator’s
display (the default value being 0).

4. Write the function that will set the value
of the display window.

function set_display ($value = 0) {

global $display;

$display->set_text ($value);

}

continues on next page

The global $display variable refers to the
widget that is the calculator’s display win-
dow. The widget itself is a label, which is
merely a display of text. The set_text()
method will place a string (or, in this case,
a number) on that label. Anytime a num-
ber is entered or a calculation is made,
this function will be called so that the
resulting number is shown in the display.

5. Begin the calculate() function.

function calculate () {

global $n1, $n2, $operator;

$value = $n1;

The calculate() function will do the
actual math. It uses three global vari-
ables—the $n1 number, the $n2 number,
and the $operator. This function is
called when the equals sign is clicked or
when a second operator is selected. For
example, if a user clicks 10 + 9 + 8 =,
the calculate() function is called twice
(once after the second plus, to add
10 + 9, and again after the equals, to
add 19 + 8).

The $value variable is used internally by
this function. It’s initialized as $n1.

6. Create the main switch.

switch ($operator) {

case ‘add’:

$value = $n1 + $n2;

break;

case ‘subtract’:

$value = $n1 - $n2;

break;

case ‘multiply’:

$value = $n1 * $n2;

break;

case ‘divide’:

$value = $n1 / $n2;

break;

}

392

Chapter 10

P
H

P
-G

TK

This calculator performs four kinds of
calculations, depending upon the value
of $operator.

7. Complete the function.

set_display ($value);

$n1 = $value;

$operator = false;

$n2 = false;

} // End of calculate() function.

After doing the math, the determined
value will be shown in the calculator dis-
play via the set_display() function. Then
the $n1 value is assigned the value of the
current $value, allowing for a continued
calculation. An entry of 2 + 3 + 4 is
really 2 + 3 = 5 (which is assigned to $n1),
plus 4.

8. Write a function for assigning the operator.

function set_operator ($which) {

global $operator;

if ($operator) calculate();

$operator = $which;

}

This function is called whenever one of
the four operators—+, –, *, /—is clicked.
It assigns the string version of that oper-
ator to the global $operator variable.
Before doing so, it will check if a calcula-
tion should be made. To explain…

The $operator variable starts with a value
of false (also the case when the calculator
is cleared). If a user clicks 2 + 3 + 4, then
$n1 is assigned the value of 2 (in the
set_number() function, written next),
$operator is assigned the value of add,
and then $n2 is assigned the value of 3.
When the user clicks the next +,
set_operator() is called again. This func-
tion sees that $operator already has a value
and knows that the calculations thus far
must be completed (because the calcula-
tor only stores two numbers at a time).

9. Make a function for building up numbers.

function set_number ($value) {

global $n1, $n2, $operator;

if (!$operator) {

$n1 .= $value;

set_display($n1);

} else {

$n2 .= $value;

set_display($n2);

}

}

When any of the number buttons are
clicked, along with the decimal point, the
calculator will need to keep track of the
$n1 and $n2 values (which will be used for
the calculations). If, for example, the user
clicks 1 and then 2, that should be 12. To
accomplish this, the function works like
so: It receives the $value every time a
number or the decimal is clicked. If the
$operator variable is equal to false,
which means that it has been reset or has
no value, then the user is building up the
$n1 number and the new value should be
concatenated to the old. If $operator has
a value such as add or subtract, then the
user has stopped entering the $n1 num-
ber and is working on entering the $n2
number.

The number that the user is making will
be displayed in the calculator window
(Figure 10.13).

continues on next page

393

PHP and the Server

P
H

P
-G

TK

Figure 10.13 Allowing for multidigit numbers, like 12,
requires a little thought. My trick is to track the
$operator variable.

10. Make the global variables.

$n1 = false;

$n2 = false;

$operator = false;

All of the functions have been written,
so now it’s into the heart of the code.
These are the three global variables used
by the functions. Initializing them like
so isn’t strictly necessary but is good
programming form.

11. Make the window widget.

$window = new GtkWindow();

$window->set_title (‘Calculator’);

$window->set_default_size (320,

➝ 320);

The $window variable is the first and
most important of all the widgets. It
acts as a container for everything. The
GtkWindow() widget has multiple meth-
ods, including set_title(), which ends
up in the taskbar (Figure 10.14), and
set_default_size().

Figure 10.14 The window widget’s title value applies when the operating system refers to the application, as in the
taskbar.

394

Chapter 10

P
H

P
-G

TK

12. Make a secondary container.

$box = new GtkVBox();

$window->add($box);

The box is another container widget
into which I’ll place the calculator. I
could have multiple boxes within my
window, should I choose (perhaps
another box would contain a Close
button). I use the window’s add()

method to physically place the box in
the window.

13. Create a table.

$table = new GtkTable(5, 6);

$table->set_row_spacings(2);

$table->set_col_spacings(2);

$table->set_border_width(5);

$box->pack_start($table);

Making tables with GTK is slightly trick-
ier than it is with HTML. I first make a
new table object, setting the number of

$y = 4;

break;

case 3:

$x = 3;

$y = 4;

break;

case 4:

$x = 1;

$y = 3;

break;

case 5:

$x = 2;

$y = 3;

break;

case 6:

$x = 3;

$y = 3;

break;

case 7:

$x = 1;

$y = 2;

break;

case 8:

$x = 2;

$y = 2;

break;

case 9:

$x = 3;

$y = 2;

break;

}

$button = new GtkButton($i);

$button->connect_simple

➝ (‘clicked’, ‘set_number’, $i);

$table->attach($button, $x,

➝ ($x+1), $y, ($y+1));

} // End of 0-9 FOR loop.

continues on next page

395

PHP and the Server

P
H

P
-G

TK

rows and columns I intend to use. The
tricky part is that although I want my
table to have four rows and five columns,
I need to add one extra of each. This is
because elements are placed from, say,
row 1 to row 2 and column 1 to column
2. Thus, an element in the fourth row
will go from row 4 to row 5.

The final line in this section of code—

$box->pack_start($table);

—says to place the table just created
onto the box made earlier.

14. Create a display window.

$display = new GtkLabel(‘display’);

$table->attach($display, 1, 4, 1,

➝ 2);

The display window of the calculator
is a label—a simple noneditable text
field. After creating the label (whose
name is display), it should be placed
on, or attached to, the table.

The attach() method takes the following
arguments: the widget being attached,
the x starting point, the x stopping point,
the y starting point, and the y stopping
point. I want the label to go from 1 to 4
along the x-axis (i.e., across three columns)
and from 1 to 2 on the y (just one row).

15. Place all of the number buttons.

for ($i = 0; $i <= 9; $i++) {

switch ($i) {

case 0:

$x = 1;

$y = 5;

break;

case 1:

$x = 1;

$y = 4;

break;

case 2:

$x = 2;

To make these ten buttons, I loop
through the numbers 0 through 9. I then
determine the x- and y-coordinates of
each on my table (use Figure 10.11 as a
reference). Once I know the coordinates,
I can create a new button.

The button will then be told to watch
for when the user clicks it, by attaching
the set_number() function to the clicked
event. When that occurs, I also want to
pass the value of the button, which is
the number ($i), to the function as well.

Looking back at the set_number()
function written earlier, you will see
that it receives a $value, which is this
$i value here.

The final step is to place this button on
the table, using the predetermined x-
and y-coordinates.

16. Create the decimal button.

$decimal = new GtkButton(‘.’);

$decimal->connect_simple (‘clicked’,

➝ ‘set_number’, ‘.’);

$table->attach($decimal,

➝ 2, 3, 5, 6);

The decimal point has a value of a peri-
od. When clicked, the set_number()
function should be called, so that the
decimal is concatenated to the operand.

17. Create the equals button.

$equals = new GtkButton(‘=’);

$equals->connect_simple (‘clicked’,

➝ ‘calculate’);

$table->attach($equals, 3, 4, 5, 6);

This button differs from the decimal
button in that the calculate function
should be called when it is clicked. It
passes no values to that function.

396

Chapter 10

P
H

P
-G

TK

18. Create the clear button.

$clear = new GtkButton(‘C’);

$clear->connect_simple (‘clicked’,

➝ ‘clear’);

$table->attach($clear, 4, 5, 1, 2);

This button just calls the clear() func-
tion when clicked.

19. Create the operator buttons.

$add = new GtkButton(‘+’);

$add->connect_simple (‘clicked’,

➝ ‘set_operator’, ‘add’);

$table->attach($add, 4, 5, 2, 3);

$subtract = new GtkButton(‘-’);

$subtract->connect_simple

➝ (‘clicked’, ‘set_operator’,

➝ ‘subtract’);

$table->attach($subtract,

➝ 4, 5, 3, 4);

$multiply = new GtkButton(‘*’);

$multiply->connect_simple

➝ (‘clicked’, ‘set_operator’,

➝ ‘multiply’);

$table->attach($multiply,

➝ 4, 5, 4, 5);

$divide = new GtkButton(‘/’);

$divide->connect_simple (‘clicked’,

➝ ‘set_operator’, ‘divide’);

$table->attach($divide, 4, 5, 5, 6);

Each of these operator buttons is linked
to the set_operator() function. They
pass a string value to it: add, subtract,
multiply, divide.

20. Call the clear() function to reset the
calculator.

clear();

If you look at the code in Step 3, you will
see that this function voids out any value
for $n1 and $n2 and resets the $operator.
It also sets the value of the display win-
dow to 0 (by calling the set_display()
function).

Figure 10.15 The calculator will need to be started
through a command-line interface. I’m using Windows
here; see Chapter 11, “PHP’s Command-Line
Interface,” for more on Windows or Unix command-
line operations.

21. Finish the script.

$window->connect_simple (‘destroy’,

➝ array(‘Gtk’, ‘main_quit’));

$window->show_all();

Gtk::main();

?>

One of the events you will want to
watch for is when the user quits or
closes the application. At that time, the
GTK’s main_quit() method should be
called. The line of code that associates
main_quit() with a destroy event is
something you’ll have verbatim in every
PHP-GTK application.

Next, I call the show_all() method,
which reveals every element—the box,
the table, the buttons, and the label—
within the window. The opposite of
show_all() (or show() for a specific
widget) is hide(), which makes a widget
invisible without destroying it.

Finally, I call the main() method, the
most important line of all. This function
starts a loop in which the application
will watch for user events. Unlike a
standard PHP script, which does noth-
ing else once it has completed running,
this script will continue to be active
until the user quits the application. It’s
the main() method that gives it this
dimension.

22. Save the file as calculator.php and load
it on your computer or server that sup-
ports PHP-GTK.

23. Access the command-line interface on
your server/computer (Figure 10.15).

Because this script will not be run
through a Web browser, you need to
start it through a direct command.

continues on next page

397

PHP and the Server

P
H

P
-G

TK

24. Type in the location of your PHP binary
followed by the location of the script
(Figure 10.16).

C:\PHP-Gtk2\php C:\PHP-Gtk2\

➝ calculator.php

The is the standard command-line
method for running a file with an
application.

25. Test the calculator that appears
(Figures 10.17 and 10.18).

Hopefully this script has given you the
know-how to make your own improve-
ments to it, should you desire. It would
not be that hard to add, for example,
memory buttons (M+, M–, MC, MR) or
to create a second window that shows a
“paper tape” of the calculations.

✔ Tips

■ The calculator as created relies upon the
clicking of the buttons using the mouse.
There is also a way to tie specific keys to
specific buttons, allowing for use of the
calculator with just the keyboard.

■ When creating programs that use PHP-
GTK, you can still use the print() or
echo() functions to send text to the
command-line window. This will give
you a way to debug your scripts.

■ You can connect multiple callback func-
tions to a single widget using multiple
$widget->connect_simple() lines. The
callback functions will be called in order
when the event signal is sent.

Figure 10.18 Calculations are made when the equals
button is clicked (or when repeated operators are
clicked).

Figure 10.17 The calculator allows me to enter
multiple-digit numbers for addition, subtraction,
multiplication, and division.

Figure 10.16 Make sure you run the script using a
version of PHP with support for GTK.

398

Chapter 10

P
H

P
-G

TK

Establishing a cron
A cron is a service on Unix servers that allows
tasks to be scheduled and executed automat-
ically. The cron application runs constantly
and will, according to instructions, carry out
its orders. These orders are stored in a file
called crontab. This file is a to-do list that
contains lines that might look like this:

30 22 * * * lynx --dump http://

➝ www.DMCinsights.com > /dev/null

The crontab format dictates that each line
contain six fields separated by spaces or
tabs. The first five fields represent, in order,
minutes, hours, days, months, and day of the
week (from 0 to 6, with 0 being Sunday).
Notice that you can specify the day of opera-
tion as either a day of the month (1–31) or a
day of the week (Sunday through Saturday),
the latter being date-indifferent.

An asterisk as one of the first five parameters
means that value is not limited (i.e., it always
applies). In the preceding example, the
instruction is to be carried out at 10:30 P.M.
(22 being 10 P.M. on the 24-hour clock) every
day of the month, every month of the year.

You can also set ranges using the hyphen
(1–6 for the month field would mean that
the job applies to the first six months of the
year) or list elements separated by comma
(1, 3, 5 for Monday, Wednesday, Friday). The
sixth field on each line is the task itself.

Looking at the preceding example, the
actual command is to open the URL
www.DMCinsights.com with Lynx, a text-
based Web browser built into Unix. The
--dump and > /dev/null tell Lynx to close
itself after viewing the site and not to store
the information accessed.

399

PHP and the Server

Establish
in

g
 a cro

n

Another example would be:

0 1 * * 1-5 mail –s ‘Howdy’

➝ phpvqp2@DMCinsights.com

This line states that from Monday through
Friday (1–5), at 1 A.M. (0 minutes, 1 hour)
every day of the month and every month of
the year (* *) it will send me an email
(apparently I like email).

To use cron to run a PHP script, you have a
couple of options. The first is to use the
server’s own Web browser—like Lynx or
Wget—to run a PHP script. Another would
be to use the server’s installation of cURL.
This program works very well with URLs,
although it’s not a Web browser, per se. A
final option is to run the PHP script using
the Command-Line Interface (see Chapter
11, “PHP’s Command-Line Interface”).

For this example, I’ll run the db_backup.php
script (Script 10.1) created earlier in the
chapter, using cURL. The syntax for using
cURL is easy:

curl yourURLhere

So:

curl http://www.example.com/page.php

To add an item to the crontab file, you can
manually edit it by typing crontab -e in a
command prompt. This will allow you to
edit the file using your default command-
line text editor. Unfortunately, if you don’t
know how to already use said text editor—a
surprisingly daunting task—this does you no
good. So instead I’ll show you another
method….

www.DMCinsights.com

To establish a cron for a PHP file:

1. Access your server via a command-line
interface.

For Mac OS X and other Unix users,
this likely means opening the Terminal
application.

2. Test the command (Figure 10.19).

curl http://localhost/db_backup.php

It’s always best to test the command
you’ll have cron execute so that you
know that it works. Do so just by enter-
ing the command within the Terminal
application. You’ll obviously need to
change your URL to match where you
put your copy of db_backup.php. In this
case, it’s running on the same server.

3. View the current contents of the
crontab file.

crontab -l

This command will show you the current
crontab, which you should be careful
with, as the following steps will replace
any existing instructions. If you’ve never
worked with the crontab before, it’s prob-
ably blank, but better safe than sorry!

4. Create a new document in your text
editor or IDE (Script 10.4).

1 0 * * 5 curl http://localhost/

➝ db_backup.php

First you’ll write a dummy cronjob file,
and then you’ll install this into the actual
crontab. This file should contain the
entire command. Make sure you press
Enter/Return once at the end of the line.

The command itself says that cURL
should be invoked with that URL every
Friday (5) at 12:01 A.M.

1 1 0 * * 5 curl http://localhost/

db_backup.php

Script 10.4 The cronjob1 file lists the command to be
added to crontab.

Figure 10.19 Before entering the command into the
crontab file, I test it once to confirm the results.

400

Chapter 10

Es
ta

bl
is

h
in

g
 a

 c
ro

n

Figure 10.21 Confirming the contents of the crontab
file.

Figure 10.20 Adding the new instruction to the
crontab file.

5. If Step 3 revealed anything in the current
crontab, add it to the text document
begun in Step 4.

Just copy-paste whatever was returned in
Step 3 to the text document. Each task
should be on its own line.

6. Save this file as cronjob1 (without any
extension) and upload it to the server in
a convenient location (not necessarily
within the Web document root).

7. Within your server’s command prompt,
enter the following code and then press
Enter/Return once:

crontab /path/to/cronjob1

In my example (Figure 10.20), cronjob1
is stored on the desktop of user larryull-
man. The full path is therefore /Users/
larryullman/Desktop/cronjob1. Replace
that part of the code with the applicable
location of your cronjob1 file on the
server.

8. Confirm the cron task list by viewing the
crontab file (Figure 10.21).

crontab –l

✔ Tips

■ If you are using a hosted Web site, the
hosting company will often provide a
Web-based interface to the cron utility.

■ The crontab is unique for each user on
the server. This also means that the
instructions in the crontab file will run
as that user, so permissions conflicts
may arise.

401

PHP and the Server

Establish
in

g
 a cro

n

■ A couple more helpful cURL options…

The -o option lets you specify a text file
where the output will be written:

curl -o /path/to/filename.txt

➝ http://www.example.com

The -s option runs cURL in silent mode
(so it doesn’t return the results):

curl -s http://www.example.com

The -retry option tells cURL to attempt
to access the URL X number of times
(if it fails):

curl -retry X http://www.example.com

■ To see more information about using
cron, type man cron or man crontab in the
command line.

Scheduling Tasks on
Windows
The cron utility works on Unix for schedul-
ing tasks, but it is not present on Windows.
Windows users can instead work with
Scheduled Tasks. The operating system pro-
vides a wizard for easily adding a task, which
I’ll run through in the following steps. The
specific task to be scheduled will be the exe-
cution of the db_backup.php script.

To schedule a task on Windows:

1. Click Start menu > All Programs >
Accessories > System Tools > Scheduled
Tasks (Figure 10.22).

Figure 10.23 The Scheduled Tasks window.

Figure 10.22 Begin by navigating to the Scheduled
Tasks window.

402

Chapter 10

S
ch

ed
u

li
n

g
 T

as
k

s
o

n
 W

in
do

w
s

2. In the resulting window (Figure 10.23),
double-click Add Scheduled Task.

3. In the first window of the Scheduled
Task Wizard, click Next.

4. In the next window (Figure 10.24), click
Browse.

5. Using the Select Program to Schedule
window, select the PHP script to execute
(Figure 10.25), and then click Open.

6. In the next window (Figure 10.26),
enter a name for this task, choose when
the task should run, and click Next.

The running options are: Daily, Weekly,
Monthly, One time only, When my com-
puter starts, and When I log on.

Figure 10.25 Find the PHP script that you want to run.

Figure 10.24 In this prompt, you select which
application should be scheduled.

Figure 10.27 Setting the specific details for a weekly
scheduled task.

Figure 10.26 Tasks can be given a descriptive name
and scheduled in all sorts of ways.

✔ Tips

■ This method of directly running a PHP
script in Windows assumes that you have
already configured Windows to run PHP
scripts using the PHP executable. This is
discussed in Chapter 11.

■ To edit an existing task, follow Step 1,
and then double-click the name of the
task listed in the window (under Add
Scheduled Task).

403

PHP and the Server

S
ch

edu
lin

g
 Task

s o
n

 W
in

do
w

s

7. Fine-tune how and when the task runs.

The choice made in Step 6 will dictate
what options appear. Figure 10.27
shows the weekly scheduling options. If
in Step 6 you chose either of the last two
options, you’ll go straight to Step 8.

8. Enter the username and password of the
user for whom the task should run, and
then click Next (Figure 10.28).

9. In the last window, click Finish.

Figure 10.28 Tasks can be run under different users.

Using COM with PHP
Added in PHP 4 is support for COM on
Windows operating systems. COM, which
stands for Component Object Module, is a
technology developed by Microsoft to con-
trol its applications via a programming lan-
guage, notably Visual Basic. It is related to
other Microsoft technologies such as OLE
(Object Linking and Embedding) and
ActiveX.

Microsoft has defined every function and
attribute that an application—such as Word
or Excel—has as an object with methods
and properties. Using the proper notation,
you can then control the application with
Visual Basic or, in this case, PHP. You begin
by creating a new object using the name of
the application and PHP’s com() function.

$word = new COM(‘word.application’);

You can set the application to run either vis-
ibly on the computer or invisibly by setting
the Visible value (this step is not required).

$word->Visible = 1; // Visible

Once the application is running, you begin
by creating a new document.

$word->Documents->Add();

Now, in the case of a Word document, you
can start adding text to the page.

$word->Selection->

➝ TypeText(‘mmmm…COM...’);

Finally, save the document and quit Word.

$word->Documents[1]->SaveAs(‘com.doc’);

$word->Quit();

404

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

Figure 10.30 The Object Browser lists all the
properties and methods of existing objects.

Figure 10.29 The Visual Basic editor provides useful
tools for working with COM elements.

As you can see from those lines, accessing
COM with PHP is fairly simple and direct;
the most complicated issue will be under-
standing what objects are available in an
application and how exactly you should
refer to them. You have several options:

◆ Pick up a book that covers COM for the
specific application you are using.

◆ Learn Visual Basic, which will help with
knowing the different objects available.

◆ Use the Visual Basic Help aspect of the
application itself.

◆ Search the Internet!

I’ve taken all of these steps, and still, under-
standing how to do certain things can be a
challenge. But if you work with Windows a
lot, mastering this skill can be very useful.

For some assistance, once you have opened
an application, like Word or Excel, press
Alt+F11 to bring up the Visual Basic editor
(Figure 10.29). Then press F2 to view the
Object Browser (Figure 10.30). By clicking
and viewing the different elements in the
Object Browser, you can see how the differ-
ent objects, methods, and attributes you’ll
need relate. To get a jump-start on under-
standing COM for an application, use the
Visual Basic Help application.

As an example of using COM technology
with PHP, I’ll write a script similar to
db_backup.php. Instead of creating a CSV
file, this version will create an Excel spread-
sheet containing the database’s data.

Note that support for COM is built into
PHP but that it only exists on Windows.
You should also have some familiarity with
OOP before proceeding, as COM is entirely
object-based.

405

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

To use COM with PHP:

1. Create a new PHP document in your text
editor or IDE, beginning with the HTML
(Script 10.5).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Excel Backup</title>

</head>

<body>

<?php # Script 10.5 -

excel_backup.php

2. Increase the allowable time limit for
script execution.

set_time_limit(300);

The set_time_limit() function deter-
mines, in seconds, at what point the
script has taken too long. Because this
script will need to open, write to, save,
and quit an application, the default time
limit—probably 30 seconds, depending
on the setting in your php.ini file—
needs to be increased. Five minutes
should be adequate, but there would be
little harm in doubling or tripling that
value, depending on the complexity of
the script.

continues on page 410

406

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Excel Backup</title>

7 </head>

8 <body>

9 <?php # Script 10.5 - excel_backup.php

10

11 /* This page uses COM to back up

12 * a MySQL database to an Excel file.

13 */

14

15 // Increase the PHP time limit:

16 set_time_limit(300);

17

18 // Load the COM:

19 $excel = new COM (“excel.application”) or die (“Cannot start Excel.</body></html>”);

20

21 echo “<p>Loaded Excel Version $excel->Version</p>\n”;

22

23 try {

24

25 // Don’t show the application:

26 $excel->Visible = 0;

27

28 // Connect to the database:

29 $db_name = ‘mysql’;

30 $dbc = @mysqli_connect (‘localhost’, ‘username’, ‘password’, $db_name) OR die (“<p>The

database--$db_name--could not be backed up.</p>\n</body>\n</html>\n”);

31

32 // Retrieve the tables:

33 $q = ‘SHOW TABLES’;

34 $r = mysqli_query($dbc, $q);

35

36 // Back up if at least one table exists:

37 if (mysqli_num_rows($r) > 0) {

38

39 // Indicate what is happening:

40 echo “<p>Backing up database ‘$db_name’.</p>\n”;

41

42 // Create a new workbook:

43 $workbook = $excel->Workbooks->Add();

44

(script continues on next page)

Script 10.5 This PHP script makes use of COM to back up a MySQL database to an Excel spreadsheet. Each table in
the database will be represented in its own Excel worksheet.

407

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

45 // Go ahead and save the file:

46 $workbook->SaveAs(“C:\Documents and Settings\Larry Ullman\Desktop\db_backup.xls”);

47

48 // Each table gets its own sheet:

49 $sheet_number = 1;

50

51 // Fetch each table name.

52 while (list($table) = mysqli_fetch_array($r, MYSQLI_NUM)) {

53

54 // Get the records for this table:

55 $q2 = “SELECT * FROM $table”;

56 $r2 = mysqli_query($dbc, $q2);

57

58 // Back up if records exist:

59 if (mysqli_num_rows($r2) > 0) {

60

61 // Add the sheet:

62 $sheet = ‘Sheet’ . $sheet_number;

63 if ($sheet_number > 3) $workbook->Sheets->Add;

64 $worksheet = $workbook->Worksheets($sheet);

65 $worksheet->Activate;

66 $worksheet->Name = $table;

67

68 // Start at row 1 for each table:

69 $excel_row = 1;

70

71 // Fetch all the records for this table:

72 while ($row = mysqli_fetch_array($r2, MYSQLI_NUM)) {

73

74 // Each record starts in the first column:

75 $excel_col = 1;

76

77 // Write the data to the spreadsheet:

78 foreach ($row as $value) {

79

80 // Reference the cell:

81 $cell = $worksheet->Cells($excel_row,$excel_col);

82

83 // Need to change the formatting if

84 // the data isn’t numeric:

85 if (is_numeric($value)) {

86 $cell->Value = $value;

87 } else {

88 $cell->NumberFormat = ‘@’;

89 $cell->Value = $value;

90 }

91

Script 10.5 continued

408

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

92 // Increase the column:

93 $excel_col++;

94

95 } // End of FOREACH.

96

97 // Increase the row:

98 $excel_row++;

99

100 } // End of table WHILE loop.

101

102 // Print the success:

103 echo “<p>Table ‘$table’ backed up.</p>\n”;

104

105 // Increase the sheet number:

106 $sheet_number++;

107

108 // Save the workbook:

109 $workbook->Save();

110

111 } // End of mysqli_num_rows() IF.

112

113 } // End of WHILE loop.

114

115 // Quit the application.

116 $excel->Quit();

117

118 } else { // No tables to backup!

119 echo “<p>The submitted database--$db_name--contains no tables.</p>\n”;

120 }

121

122 } catch (com_exception $e) { // Catch COM exceptions.

123 echo “<p>$e</p>”;

124 } catch (exception $e) { // Catch other exceptions.

125 echo ‘<p>’ . $e->getMessage() . ‘</p>’;

126 }

127

128 ?>

129 <body>

130 <html>

Script 10.5 continued

409

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

3. Create an instance of the COM object.

$excel = new COM

(“excel.application”) or die (“Cannot

➝ start Excel.</body></html>”);

echo “<p>Loaded Excel Version

➝ $excel->Version</p>\n”;

You may need to change the name of the
application if your system has trouble
with excel.application. (I am running this
script on a server with Windows XP and
Office 2003.) Just for the heck of it, I’m
going to print the version of Excel loaded
to the Web browser so that I know it’s
working (Figure 10.31).

If the COM object cannot be created, the
script terminates immediately.

The script may function differently on
your computer, but in my case, each cre-
ation of a new COM object will open up
a new copy of that application, so be
careful not to overburden the server
when using COM.

4. Begin a try…catch block and set the
visibility of the application.

try {

$excel->Visible = 0;

By using try and catch, I can easily
handle any COM errors that occur (see
Chapter 8, “Real-World OOP,” for more
on this concept). I set the Visible prop-
erty to 0 so that Excel is opened in an
invisible manner.

Figure 10.31 The PHP script starts by
reporting to the Web browser the version
of Excel being used.

410

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

5. Connect to the database and fetch all the
tables.

$db_name = ‘mysql’;

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, $db_name)

➝ OR die (“<p>The database--$db_

➝ name--could not be backed

➝ up.</p>\n</body>\n</html>\n”);

$q = ‘SHOW TABLES’;

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 0) {

echo “<p>Backing up database

➝ ‘$db_name’.</p>\n”;

This code is all very basic and exactly
like that in the original db_backup.php
(Script 10.1).

6. Create a new workbook and save the
document.

$workbook = $excel->Workbooks->Add();

$workbook->SaveAs(“C:\Documents and

➝ Settings\Larry Ullman\Desktop\

➝ db_backup.xls”);

The first line creates a workbook, which
Excel itself would normally do if it were
opened as a regular application. Then
I immediately save the file to the com-
puter. You’ll need to provide a valid full
pathname and a unique filename for
your server.

7. Set the initial sheet number.

$sheet_number = 1;

An Excel document is called a workbook
and is made up of sheets. For backing up
a MySQL database, I’ll want to put one
table on each sheet, so I need to track
the number of sheets to reference them.

continues on next page

411

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

8. Fetch each table name and fetch the data
in that table.

while (list($table) = mysqli_fetch_

➝ array($r, MYSQLI_NUM)) {

$q2 = “SELECT * FROM $table”;

$r2 = mysqli_query($dbc, $q2);

if (mysqli_num_rows($r2) > 0) {

9. Create a new sheet for each table.

$sheet = ‘Sheet’ . $sheet_number;

if ($sheet_number > 3)

➝ $workbook->Sheets->Add;

$worksheet =

➝ $workbook->Worksheets($sheet);

$worksheet->Activate;

$worksheet->Name = $table;

This is starting to get a little compli-
cated. First, understand that Excel, by
default, creates a workbook with three
sheets, called Sheet1, Sheet2, and Sheet3
(Figure 10.32). So to reference a sheet
by name, I use the syntax SheetX, which is
why I want to track the sheet number. For
the first three tables, I can use these first
three sheets. The last three lines of code
here select a sheet, assigning it to $work-
sheet, make it active, and then rename it
to the table name (Figure 10.33). But if
a database has more than three tables,
extra sheets are necessary. In those
cases, a new sheet is added (line 2 of
this step’s code).

Figure 10.33 The sheet names will reflect the MySQL
table names.

Figure 10.32 Excel starts off
with three sheets.

412

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

10. Initialize a row value.

$excel_row = 1;

Each table’s data should begin in the
first row, so I set a variable to this value
for each table.

11. Fetch all the records and initialize a col-
umn counter.

while ($row =

mysqli_fetch_array($r2,

➝ MYSQLI_NUM)) {

$excel_col = 1;

Each record of each table should start in
the first column, so I initialize another
variable inside of this loop.

12. Place the data into the Excel spreadsheet.

foreach ($row as $value) {

$cell = $worksheet-

➝ >Cells($excel_row,$excel_col);

if (is_numeric($value)) {

$cell->Value = $value;

} else {

$cell->NumberFormat

➝ = ‘@’;

$cell->Value = $value;

}

$excel_col++;

}

The foreach loop will loop through
each record returned, accessing a single
column’s value at a time. This value
should be placed in a column of the
spreadsheet.

Within the loop, the cell is identified
using the $excel_row and $excel_col

variables, going from 1, 1 to X, Y, where
X is the number of rows in the MySQL
table and Y is the number of columns.

413

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

Once you’ve identified the column, you
can put some data there by referring to
$cell->Value. Unfortunately, if the value
being stored has certain characters in it
(if, for instance, it starts with an equals
sign), it’ll cause errors. So I first check if
the value is numeric, in which case it
can just be written to the spreadsheet.
Otherwise, I change the formatting of
the cell to text, and then set the value.

Finally, the column count is increased so
that the next MySQL column goes into
the next spreadsheet column.

It is possible to define a range of cells and
place all of the data at once, but I’m trying
to keep this as straightforward as possible.

13. Complete the while loop, print a mes-
sage to the browser, increase the sheet
count, and save the file.

$excel_row++;

} // End of table WHILE loop.

echo “<p>Table ‘$table’ backed

➝ up.</p>\n”;

$sheet_number++;

$workbook->Save();

The while loop closed here is the one
that returned all the records for a single
table. Within the while loop, the row
variable needs to be increased (so that
the next record is placed on the next
row of the spreadsheet). After that, a
message is printed in the browser and
the sheet count is increased (because
each sheet matches a table). To be safe,
the spreadsheet is then saved.

14. Complete the control structures begun
in Step 8.

} // End of mysqli_num_rows()

➝ IF.

} // End of WHILE loop.

continues on next page

15. Quit the application.

$excel->Quit();

16. Complete the conditional begun in Step 5.

} else {

echo “<p>The submitted

➝ database--$db_name--contains no

➝ tables.</p>\n”;

}

17. Catch the exceptions.

} catch (com_exception $e) {

echo “<p>$e</p>”;

} catch (exception $e) {

echo ‘<p>’ . $e->getMessage() .

‘</p>’;

}

The com_exception class is for any COM
exceptions. I find it to be rather unhelpful
for debugging purposes (Figure 10.34),
but you should catch them anyway.

18. Complete the page.

?>

<body>

<html>

19. Save the file as excel_backup.php, place
it in your Web directory, and test in your
Web browser (Figure 10.35).

20. Open the generated spreadsheet in Excel
(Figure 10.36).

Figure 10.35 The resulting Web page.

Figure 10.34 An example of the awkward and often
uninformative COM exceptions.

414

Chapter 10

U
si

n
g

 C
O

M
 w

it
h

 P
H

P

Figure 10.36 The generated Excel spreadsheet.

Running Server Commands

Another server-related topic not discussed
in this chapter is how to run commands
on the server. There are many PHP func-
tions available for executing server com-
mands. For starters, there is exec():

exec(command, $output);

This function takes a command and
assigns to $output an array where each
element is a line of the generated output.

There is also system(), which just returns
the output (so that it could be immedi-
ately sent to the Web browser):

system(command);

The passthru() function is similar, but it
can also return binary output:

passthru(command);

Finally, you could use shell_exec() or the
backticks, both of which just return the
output:

$var = shell_exec(command);

$var = `command`;

For security purposes, you should use
escapeshellarg() or escapeshellcmd()
to sanctify any command that isn’t
hard-coded.

✔ Tips

■ Within the Unix family of operating
systems you can connect to other appli-
cations using popen() and pclose(),
which create pipes—avenues of
communication.

■ Another way to see what COM properties
you’ll need is to record a macro in the
application that does what you intend to
do. Then view this macro in the macro
editor to see what terminology it uses.

■ There are already COM classes available
such as the Excel class at http://
sourceforge.net/projects/psxlsgen.

■ PHP 5 also supports interactions with
.NET objects.

415

PHP and the Server

U
sin

g
 CO

M
 w

ith
 P

H
P

http://sourceforge.net/projects/psxlsgen
http://sourceforge.net/projects/psxlsgen

This page intentionally left blank

PHP is known and loved as one of the best technologies for generating dynamic Web
sites. Inevitably, developers started asking: If I can use PHP for Web pages, why can’t
I use it for other things, too? Why not, indeed! The people behind PHP came around
to this way of thinking circa PHP 4.2, and PHP CLI (Command Line Interface) was
born. As of PHP 4.3, it’s part of the default configuration for all installations. Now
you can do the equivalent of shell scripting (command-line programming) using your
favorite language, PHP.

PHP CLI lets you run PHP scripts and even snippets of PHP code outside of a Web
browser. On Windows, the action takes place within a DOS prompt (aka a console or
command window). On Unix and Mac OS X, you’ll use Terminal (or a similar program).
The CLI is best used for:

◆ Quickly testing bits of PHP code

◆ Performing routine maintenance

◆ Creating your own system utilities

◆ Making installers for your PHP applications

In this chapter I’ll cover what you need to know to accomplish these tasks. As an
understanding of PHP itself is assumed, the focus will be on the fundamentals of
using this new interface.

417

PHP’s
Command-
Line Interface

11
P

H
P

’s Co
m

m
an

d-Lin
e In

terface

Testing Your Installation
To get the ball rolling, the first thing you’ll
need to do is confirm that you have an
available PHP CLI and to see what version
you have (see the sidebar “CLI vs. CGI”).
Hopefully, this is just a matter of:

1. Opening a command-line interface.

2. Typing php -v and pressing Return
or Enter.

If the CLI version of PHP is installed and is
in your PATH (a list of locations on your com-
puter where the operating system is likely
to find executable files), this should work.
Worst-case scenario—assuming PHP CLI is
installed, you’ll need to use the full path to
the CLI executable or move into the PHP
directory first.

Along with the -v option, there are three
others to point out up front:

◆ -i reveals information about the PHP
installation.

◆ -h accesses the help file.

◆ -m lists the modules compiled into this
PHP installation.

I’ll formally run through these steps for both
Windows and Unix/Mac OS X users.

CLI vs. CGI

There are two versions of PHP that can
be used for command-line scripting.
The older version is the CGI (Common
Gateway Interface). It’s intended for Web
pages but could also be used for shell
scripts. The only drawback is that it
needs to be told to behave differently or
else it’s likely to clutter up the command-
line interface.

The CLI version is really a pared-down
CGI, lacking GET and POST variables. It
also does not send out MIME headers,
which are needed for Web pages but not
for consoles. The CLI version also does
not use HTML in its errors, and it has no
maximum execution time.

418

Chapter 11

Te
st

in
g

 Y
o

u
r

In
st

al
la

ti
o

n

Figure 11.3 The command php -v shows the version of
PHP CLI installed.

Figure 11.2 The Run prompt.

Figure 11.1 My Start menu; the Run option appears in
the second column.

To test your installation on
Windows XP:

1. Click the Start menu.

2. In the Start menu, click Run (Figure 11.1).

3. At the Run prompt, type cmd (Figure 11.2)
and click OK (or press Enter).

4. In the console window, type php -v and
press Enter (Figure 11.3).

This should show you the PHP and CLI
versions installed.

5. Still in the console window, type php -i
and press Enter to learn more about the
installation.

This is the equivalent of running a
phpinfo() script within a Web browser.
There’s a ton of information available
here, although you’ll need to scroll back
to view it all (and possibly increase the
console’s buffer size before running this
command).

continues on next page

419

PHP’s Command-Line Interface

Testin
g

 Yo
u

r In
stallatio

n

6. (Having not left the console window…)
Type php -m and press Enter to see what
modules are installed (Figure 11.4).

This lists the extensions that the PHP
installation supports.

7. (Where else but…) In the console win-
dow, type php -h and press Enter to see
the help menu.

The help file, should you need…um…help,
is mostly just a listing of the few basic
options.

8. In the console window, type exit and
press Enter to close the window.

✔ Tips

■ My Windows console window may not
look like yours, so don’t be alarmed. I’ve
tried to “pretty it up” by changing from
the default colors to black text on a
white background. To do so, click the
icon in the upper-left corner, and then
click Properties.

■ Another change I make in my console
window is that I change the prompt from
the default (which is the current directo-
ry followed by >) to a simple colon. To do
so, type prompt X and press Enter, where
X is whatever you want the prompt to be.

■ At the time of this writing, the next ver-
sion of Windows after XP—Vista—hasn’t
yet been released. Regardless, the early
reviews suggest that Vista will still have a
Start menu, within which you can access
the Run prompt. So these instructions
should continue to work when Windows
Vista finally hits the scene.

Figure 11.4 The list of modules
built into this PHP CLI installation.

420

Chapter 11

Te
st

in
g

 Y
o

u
r

In
st

al
la

ti
o

n

Figure 11.7 The PHP CLI man page, quite similar to the
help file (Figure 11.6).

Figure 11.6 The PHP CLI help file.

Figure 11.5 The command php -v shows the version of
PHP CLI installed.

To test your installation on Unix
and Mac OS X:

1. Open your Terminal application.

Most flavors of Unix that I’m familiar
with as well as Mac OS X provide an
application called Terminal, which is
used for command-line operations. It’s
likely present in your Applications folder,
or wherever your OS keeps its programs.

2. In the console window, type php -v and
press Enter (Figure 11.5).

This should show you the PHP and CLI
versions installed.

3. Still in the console window, type php -i
and press Enter to learn more about the
installation.

This is the equivalent of running a
phpinfo() script within a Web browser.
There’s a ton of information available
here, although you’ll need to scroll back
to catch it all (and possibly increase the
console’s buffer size).

4. (Having not left the console window…)
Type php -m and press Enter to see what
modules are installed.

This lists the extensions that the PHP
installation supports.

5. (Where else but…) In the console win-
dow, type php -h and press Enter to see
the help menu (Figure 11.6).

The help file, should you need…um…help,
is mostly just a listing of the few basic
options.

6. In the console window, type exit and
press Enter to close the window.

✔ Tip

■ There is, on Unix and Mac OS X, a man-
ual page installed for the PHP CLI. To
access it, type man php (Figure 11.7).

421

PHP’s Command-Line Interface

Testin
g

 Yo
u

r In
stallatio

n

Executing Bits of Code
One of the first uses I find for PHP CLI is
to be able to test snippets of code without
going through the process of:

1. Writing a formal PHP script.

2. Placing it in a Web directory.

3. Running it in a Web browser.

You can test small sections of code using
this syntax:

php -r ‘php_code_here’

For a predictable example:

php -r ‘echo “Hello, world!”;’

A couple of things to memorize with this
syntax: First, using PHP tags will cause parse
errors (Figure 11.8). Second, it’s safest to
use single quotes around the code block.
Without getting too deep into the reasons
why, if you have variables in your code and
use double quotation marks for the whole
block, you’ll get wonky results (Figure 11.9).

Finally, you should end each statement in
PHP with a semicolon, just as you would in
a script.

Using a Remote Server

If you want to work with PHP CLI on a
remote server instead of a local one, that
may also be an option. To do so, you
must first make sure that the server’s
administrator—be it an ISP, hosting com-
pany, or whoever—allows remote logins.
If so, they should provide you with a user-
name and password.

Next, you need an SSH application to
connect to that server (SSH provides a
secure connection between two comput-
ers). If running Unix or Mac OS X, you
can use SSH within a Terminal, typing

ssh -l username address

After the lowercase “L”, enter your user-
name. For the address, this can be either
a URL—www.example.com—or an IP
address (123.123.123.123). You’ll then be
prompted for the password.

For Windows users, I recommend PuTTY
(search the Web for the current URL).
This simple and free application provides
a graphical interface along with the SSH
and Telnet clients.

Once connected to the remote server, you
can follow the other steps in this chapter.

Figure 11.9 It’s best not to use double quotation
marks around your PHP code, or else any variables
used might create parse errors or worse.

Figure 11.8 Do not use PHP tags with the php -r option.

422

Chapter 11

Ex
ec

u
ti

n
g

 B
it

s
o

f
Co

de

Figure 11.12 Thanks to the printed newlines,
the command prompt no longer appears
immediately after the result of the code
(compare with Figure 11.10).

Figure 11.11 Using two lines of PHP code, I can print a
formatted version of a file’s last modification date.

Figure 11.10 Among its many
benefits, PHP CLI provides yet
another way to say Hello, world!

To use PHP CLI for code blocks:

1. Follow the steps in the first section of this
chapter so that you can access PHP CLI.

By this I just mean: open a Terminal
application (Mac OS X and Unix), bring
up a DOS prompt (Windows), or connect
to your remote server.

2. Test an echo() statement (Figure 11.10).

php -r ‘echo “Hello, world!”;’

The PHP code being tested is

echo “Hello, world!”;

This is wrapped within single quotes and
placed after php -r to execute it.

3. Print the modification date of a file
(Figure 11.11).

php -r ‘$ts =

filemtime(“/Users/larryullman/Desktop

➝ /php/number.php”);

echo date (“F j Y H:i:s”, $ts);’

Here I’m actually executing two lines of
PHP code. In the first line, the $ts vari-
able is assigned the timestamp value of
the last time the number.php file was
modified. In the second line, that time-
stamp is formatted using the date()
function, and printed. Because of the sin-
gle quotes surrounding the entire PHP
code block, I can enter this over multiple
lines (see the figure).

Obviously you’ll need to change the path
to the file so that it’s appropriate for a
file—any file—on your server.

4. Add a newline or two to the printed
result (Figure 11.12).

php -r ‘echo “Hello, world! \n\n”; ‘

By printing newline characters, I can add
spacing to the output.

423

PHP’s Command-Line Interface

Execu
tin

g
 B

its o
f Co

de

✔ Tip

■ In truth, what PHP CLI offers is a way for
PHP programmers to do things they
might otherwise do using Perl, awk, or
shell scripts. Or in some cases, PHP CLI
might replicate what is already possible
using built-in utilities that you’re unfa-
miliar with. This is fine, of course, as the
benefit of PHP CLI is having a new way
to use the knowledge you already possess.

Creating a
Command-Line Script
Being able to test little bits of PHP code
from the command line is nice, but it won’t
take you far. What you’ll really want to do is
run entire PHP scripts from the command-
line interface. Such scripts could perform
file or database maintenance, run updates
for your Web sites, and more.

A PHP script to be used by PHP CLI is dif-
ferent from a Web script in three ways:

1. It won’t use or create any HTML.

2. It doesn’t need to use the .php extension
(although it’s fine if it does).

3. The very first line of the script will be:

#!/usr/bin/php

You can use HTML, if you like, but it’ll just
clutter up the result in the console window.
As for the file’s extension, how the script is
run will change (covered in the next section
of the chapter), so you could literally use
anything. But .php is still a fine idea. Or you
could use a different extension to differentiate
your Web PHP scripts from the command-
line ones (or no extension at all!). But of the
three rules, only the last one matters (and,
frankly, it only matters on Unix and Mac OS X).

The CLI php.ini

Most PHP installations will end up with
two or more usable command-line ver-
sions of PHP. The one I’m focusing on in
this chapter is CLI. But there are probably
other PHPs lingering on your server, like
the one used by Apache or IIS for han-
dling Web pages.

One interesting point about PHP CLI is
that it uses a different php.ini file than
the Web PHP module. This file, of course,
is where you dictate how PHP behaves.
So it’s important to remember that PHP
CLI may run differently than you’re used
to. (For that matter, your PHP CLI instal-
lation may support different modules
than your Web installation.)

In this same vein, you can, when invoking
PHP CLI, use options to change the
php.ini behavior:

◆ -c tells PHP CLI where to look for a
php.ini file.

◆ -n tells PHP CLI not to use a php.ini.

◆ -d sets a php.ini value for PHP CLI.

424

Chapter 11

Cr
ea

ti
n

g
 a

 C
o

m
m

an
d-

Li
n

e
S

cr
ip

t

Figure 11.13 Text outside of the PHP tags is revealed in
the console.

That line of code is called the shebang line.
It tells the operating system where to find
the executable that should be used to run
this script. For Unix and Mac OS X, that
executable should have been installed in
/usr/bin. If you know that PHP CLI was
installed elsewhere, change the shebang
line accordingly. For Windows, this line is
ignored, but you should keep it in there for
cross-platform reliability.

After that line, all PHP code goes within the
normal PHP tags. Anything outside of the
PHP tags is sent to the standard output just
like Web-based PHP scripts (Figure 11.13):

#!/usr/bin/php

<?php

// Do whatever.

?>

This text is also displayed.

<?php

// Do whatever.

?>

As the first implementation of this concept,
I’ll create a script that reads in a text file and
reprints it, numbering the lines along the way.

425

PHP’s Command-Line Interface

Creatin
g

 a Co
m

m
an

d-Lin
e S

cript

To create a command-line script:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the shebang
line (Script 11.1).

#!/usr/bin/php

<?php # Script 11.1 - number.php

Remember that the first line is the most
important and that you might need to
change it if PHP CLI was installed in a
place other than /usr/bin. And although
Windows users can skip this line, it’s best
to leave it in there.

Finally, you still need to use the PHP tags.

2. Identify what file will be numbered.

$file = ‘number.php’;

Later in the chapter you’ll see how to
write this script so that this information
can be assigned when the script is run.
As for number.php, I’m actually having
this script number itself. You can use any
plain text file, like another PHP script
from the book.

3. Print an introductory message.

echo “\nNumbering the file named

➝ ‘$file’...

-------------------\n\n”;

4. Read in the file.

$data = file($file);

The file() function reads an entire file
into an array. Each line becomes one
array element. You could use fopen()
and the other file functions instead, if
you prefer.

1 #!/usr/bin/php

2 <?php # Script 11.1 - number.php

3

4 /* This page reads in a file.

5 * It then reprints the file, numbering

the lines.

6 * This script is meant to be used with

PHP CLI.

7 */

8

9 // The file to number:

10 $file = ‘number.php’;

11

12 // Print an intro message:

13 echo “\nNumbering the file named

‘$file’...

14 -------------------\n\n”;

15

16 // Read in the file:

17 $data = file($file);

18

19 // Line number counter:

20 $n = 1;

21

22 // Print each line:

23 foreach ($data as $line) {

24

25 // Print number and line:

26 echo “$n $line”;

27

28 // Increment line number:

29 $n++;

30

31 } // End of FOREACH loop.

32

33 echo “\n-------------------

34 End of file ‘$file’.\n”;

35 ?>

Script 11.1 This PHP script will be run from the command
line. It reads in a text file and prints it out, line by line,
with the lines numbered.

426

Chapter 11

Cr
ea

ti
n

g
 a

 C
o

m
m

an
d-

Li
n

e
S

cr
ip

t

5. Print each line with its number.

$n = 1;

foreach ($data as $line) {

echo “$n $line”;

$n++;

}

To start, a counter is initialized so that
the first line is numbered at 1. Then a
foreach loop goes through the array.
Within the loop, each line is printed, pre-
fixed by the line number and a couple of
spaces. You do not need to print a new-
line here, as the line read in from the
original file retained that newline.
Finally, the counter is incremented.

6. Print a closing message.

echo “\n-------------------

End of file ‘$file’.\n”;

7. Complete the PHP script.

?>

8. Save the file as number.php.

✔ Tips

■ PHP CLI can be used in combination with
PHP-GTK to create stand-alone applica-
tions. Check out Chapter 10, “PHP and
the Server,” or http://gtk.php.net for
more information.

■ The original CGI version of the command-
line PHP would send out HTTP headers
as part of its duties (as it was meant to
work with Web servers). To avoid that
step, it could be invoked using -q, which
stands for quiet mode. This is no longer
required with PHP CLI, but you’ll some-
times see that flag used anyway, like so:

#!/usr/bin/php -q

427

PHP’s Command-Line Interface

Creatin
g

 a Co
m

m
an

d-Lin
e S

cript

http://gtk.php.net

Running a
Command-Line Script
Now that you’ve written a script especially
meant for a command-line execution (and
wasn’t it nice not to mess with all that pesky
HTML?), it’s time to learn how to run it.
There are two methods:

The first is to directly invoke PHP CLI, as
you did when executing a bit of code, this
time providing it with the name of a script
to execute:

php scriptname.php

You’ll also see the -f flag used. It stands for
file, and whether you use it or not makes no
difference on the end result:

php -f scriptname.php

This method should work just fine, as long
as php is in your PATH and you are in the same
directory as scriptname.php. Variations to
circumvent these limitations might be:

/usr/bin/php scriptname.php

php /path/to/scriptname.php

C:\php\php.exe scriptname.php

The second method for executing PHP
scripts is to treat the script as if it were an
application in its own right:

scriptname.php (Windows)

./scriptname.php (Unix and Mac OS X)

This method, which is preferred, can have
some tricks to it, so I’ll run through the
details in the following steps.

428

Chapter 11

R
u

n
n

in
g

 a
 C

o
m

m
an

d-
Li

n
e

S
cr

ip
t

Figure 11.15 The execution of the number.php script.

Figure 11.14 Start by moving into the same directory
where the PHP script you want to execute is located.

To run a command-line script
in Windows:

1. Use the instructions outlined earlier in
the chapter to access a DOS prompt.

2. Move into the directory where number.php
was saved (Figure 11.14).

cd C:\path\to\directory

In my case, this was a matter of just typ-
ing cd Desktop, as the file was saved on
my Desktop.

3. Run the file using the php scriptname.php
syntax (Figure 11.15).

php number.php

Hopefully this should work for you. If
you get an error message, it’s most likely
because php is not in your PATH. If you
don’t know how to change your PATH,
either search the Web for tutorials or
turn to my support forums (www.
dmcinsights.com/phorum/).

continues on next page

429

PHP’s Command-Line Interface

R
u

n
n

in
g

 a Co
m

m
an

d-Lin
e S

cript

www.dmcinsights.com/phorum/
www.dmcinsights.com/phorum/

4. Run the file using the scriptname.php
syntax.

number.php

If this doesn’t immediately work, it’s
because you’ll need to tell Windows what
program to use for running .php scripts
(Figure 11.16). To do so:

a. Choose Select the program from a list
and click OK.

b. Click Browse in the Open With
prompt (Figure 11.17).

c. Find and select the php executable
(Figure 11.18), and then click Open.

From here on out, all .php scripts will
run just fine from the command-line
interface (assuming that you kept the
Always use the selected program to
open this kind of file box checked.
See Figure 11.17.)

Figure 11.18 Find the installed php executable to
finish the association.

Figure 11.17 You’ll need to tell Windows what
application to use for your scripts. The php
executable will not likely come up as an option.

Figure 11.16 If Windows doesn’t know what program
to run the script in, you’ll see a prompt like this.

430

Chapter 11

R
u

n
n

in
g

 a
 C

o
m

m
an

d-
Li

n
e

S
cr

ip
t

Figure 11.20 Executables can be run using the ./thing
syntax, assuming you are in the same directory as the
thing to be run.

Figure 11.19 The first method for running the PHP
script.

To run a command-line script in Unix
and Mac OS X:

1. Use the instructions outlined earlier in
the chapter to access a command-line
prompt.

2. Move into the directory where
number.php was saved.

cd /path/to/directory

In my case, this was a matter of just typ-
ing cd ~/Desktop, as the file was saved
on my Desktop.

3. Run the file using the php scriptname.php
syntax (Figure 11.19).

php number.php

Hopefully this should work for you.
If you get an error message, it’s most
likely because php is not in your PATH.
If you don’t know how to change
your PATH, either search the Web for
tutorials or turn to my support forums
(www.dmcinsights.com/phorum/).

4. Make the file executable.

chmod +x number.php

If you’re not familiar with chmod, it’s a
utility for changing the properties of files
and directories. The +x code says to add
executable status to number.php.

5. Run the file using the ./scriptname.php
syntax (Figure 11.20).

./number.php

✔ Tip

■ You can use php -l scriptname.php to
have PHP check a script’s syntax, with-
out actually running it. The only caveats
are that this doesn’t work with the -r
option (for testing bits of code) and it
doesn’t check for fatal errors.

431

PHP’s Command-Line Interface

R
u

n
n

in
g

 a Co
m

m
an

d-Lin
e S

cript

www.dmcinsights.com/phorum/

Working with Command-
Line Arguments
The number.php example (Script 11.1) is a
reasonable-enough application of PHP CLI.
The script provides a viable service but has
one limitation: the file to be numbered is
hard-coded into the script. It’d be better to
set that value when the application is used.
This can be easily achieved by rewriting
the script so that it uses command-line
arguments.

Command-line arguments are values passed
to an application when it is run. For example,
the PHP CLI takes several configuration
options, the name of a script to be run, or
some code to be executed. Arguments are
passed to the invoked application by adding
them after the application’s name:

scriptname.php arg1 arg2…

In your PHP script, you can then access these
arguments by referring to $argv and $argc

(or the more formal $_SERVER[‘argv’] and
$_SERVER[‘argc’]. The $argv array stores
every argument provided; $argc stores the
number of arguments provided. The only
catch to using these is that the name of the
script itself is the first listed argument
($_SERVER[‘argv’][0]). To get a better
understanding of this, Figure 11.21 shows
the execution of this code:

#!/usr/bin/php

<?php

echo “\n{$_SERVER[‘argc’]} arguments

➝ received. They are...\n”;

foreach ($_SERVER[‘argv’] as $k => $v) {

echo “$k: $v\n”;

}

?>

Let’s write a new number.php script so that it
accepts an argument: the name of the script
to number.

Figure 11.21 The args.php script just prints
out the number and values of the arguments
used when calling it. Notice that the script
name itself is always the first received
argument.

432

Chapter 11

W
o

rk
in

g
 w

it
h

 C
o

m
m

an
d-

Li
n

e
A

rg
u

m
en

ts

1 #!/usr/bin/php

2 <?php # Script 11.2 - number2.php

3

4 /* This page reads in a file.

5 * It then reprints the file, numbering the lines.

6 * This script is meant to be used with PHP CLI.

7 * This script expects one argument (plus the script’s name):

8 * the name of the file to number.

9 */

10

11 // Check that a filename was provided:

12 if ($_SERVER[‘argc’] == 2) {

13

14 $file = $_SERVER[‘argv’][1];

15

16 // Make sure the file exists and is a file.

17 if (file_exists($file) && is_file($file)) {

18

19 // Read in the file.

20 if ($data = file($file)) {

21

22 // Print an intro message:

23 echo “\nNumbering the file named ‘$file’...\n-------------------\n\n”;

24

25 // Line number counter:

26 $n = 1;

27

28 // Print each line:

29 foreach ($data as $line) {

30

31 // Print number and line:

32 echo “$n $line”;

33

34 // Increment line number:

35 $n++;

(script continues on next page)

Script 11.2 This PHP script expects to receive the name of the file to number as a command-line argument.

To use command-line arguments:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the shebang
line (Script 11.2).

#!/usr/bin/php

<?php # Script 11.2 - number2.php

continues on page 435

433

PHP’s Command-Line Interface

W
o

rkin
g

 w
ith

 Co
m

m
an

d-Lin
e A

rg
u

m
en

ts

36

37 } // End of FOREACH loop.

38

39 echo “\n-------------------\nEnd of file ‘$file’.\n”;

40

41 } else {

42 echo “The file could not be read.\n”;

43 return 1;

44 }

45

46 } else {

47 echo “The file does not exist.\n”;

48 return 1;

49 }

50

51 } else {

52

53 // Print the usage:

54 echo “\nUsage: number2.php <filename>\n\n”;

55

56 // Kill the script, indicate error.

57 return 1;

58 }

59

60 ?>

Script 11.2 continued

434

Chapter 11

W
o

rk
in

g
 w

it
h

 C
o

m
m

an
d-

Li
n

e
A

rg
u

m
en

ts

5. Complete the conditional started in
Step 4.

} else {

echo “The file could not be

➝ read.\n”;

return 1;

}

If the file couldn’t be read for some rea-
son, likely a permissions issue, a message
should be printed. The return 1 line is
used to indicate a problem. Returning a
nonzero number when a problem occurs
is a convention for command-line appli-
cations (see the sidebar “Creating an
Interface” later in this chapter).

6. Complete the conditional started in Step 3.

} else {

echo “The file does not

➝ exist.\n”;

return 1;

}

continues on next page

435

PHP’s Command-Line Interface

W
o

rkin
g

 w
ith

 Co
m

m
an

d-Lin
e A

rg
u

m
en

ts

2. Check that a filename was provided.

if ($_SERVER[‘argc’] == 2) {

Since the script will receive the script’s
name as its first argument, it would need
to receive two arguments to be properly
used. This conditional checks for that.

3. Make sure that the file exists.

$file = $_SERVER[‘argc’][1];

if (file_exists($file) &&

➝ is_file($file)) {

First, the name of the file is identified as
the second argument provided (the argu-
ments list being an array, the indexing
begins at 0). Then two conditionals con-
firm that the given file does exist and is a
file (because a directory would pass the
first test). You’d likely want to add code
restricting the files to a certain directory,
for security purposes.

4. Read in the file and print each line.

if ($data = file($file)) {

echo “\nNumbering the file named

➝ ‘$file’...\n-------------------

➝ \n\n”;

$n = 1;

foreach ($data as $line) {

echo “$n $line”;

$n++;

}

echo “\n-------------------\nEnd

➝ of file ‘$file’.\n”;

This code matches that in number.php,
except for reading the file’s contents as a
conditional.

7. Complete the conditional started in Step 2.

} else {

echo “\nUsage: number2.php

➝ <filename>\n\n”;

return 1;

}

If the script was not invoked with the
proper number of arguments, how it
should be used is indicated (Figure 11.22).
This is a command-line convention, also
discussed in the sidebar.

8. Complete the PHP script.

?>

9. Save the file as number2.php.

10. Run the script (Figures 11.23 and 11.24).

Note that on Windows, you’ll need to
use this syntax:

php number2.php filename

If you use

number2.php filename

the script will only recognize one argu-
ment (with a value of number2.php).

✔ Tip

■ To get really professional with your
command-line arguments, check
out the PEAR Console_Getargs and
Console_Getopt packages. They both
help establish and manage the list of
long and short options that your pro-
gram will accept.

Figure 11.24 If the script cannot find the given file, an
error is displayed.

Figure 11.23 The args.php script is numbered by
number2.php.

Figure 11.22 If no filename is provided,
the utility’s proper usage is shown.

436

Chapter 11

W
o

rk
in

g
 w

it
h

 C
o

m
m

an
d-

Li
n

e
A

rg
u

m
en

ts

Figure 11.25 Any function that attempts to
read from the standard input will create a
prompt where the user can type.

Taking Input
An alternative to using command-line
arguments is to request input from the user
(although you could use both techniques in
combination). By doing so, you can create an
interactive application, where it prompts the
user for information and does something
with what is entered.

Strange as it may seem, taking input in a
command-line application is exactly like
reading in data from a file. But in this case,
instead of using a file handle (a pointer to an
opened file), you’ll use a special constant,
STDIN. This stands for standard input, which
would be the keyboard by default. One easy
way to read in standard input would be to
use the fgets() function:

$data = fgets(STDIN);

This line of code creates a prompt
(Figure 11.25). Anything typed there
is assigned to $data.

To be more precise with input, I like to use
the fscanf() function. Like printf() and
sprintf(), discussed in Chapter 1, “Advanced
PHP Techniques,” this function takes for-
matting parameters to handle specific types
of data. By using this function, instead of a
more generic one, some basic validation as
to the type of data read in can take place. In
this next example, fscanf() will be used to
create an application that converts tempera-
tures between degrees Fahrenheit and Celsius
(in either direction).

437

PHP’s Command-Line Interface

Takin
g

 In
pu

t

Creating an Interface

Using PHP in a command-line situation
opens up a whole new world that PHP for
Web development doesn’t have: the user
interface. Sure, presentation and usage of
Web pages is a vitally important HTML
issue, but on the command line it’s a dif-
ferent beast.

For starters, most command-line appli-
cations indicate how the command is to
be used, should it be used incorrectly.
Type php -varmit and you’ll see what I
mean. The number2.php script does this
a little bit (showing the usage) but com-
mands normally do more, like offer help
if commandname -h or commandname --help

is entered.

Finally, command-line applications often
return a code indicating how successful
the operation was. The number 0 is
returned to indicate no problems, and
some nonzero number otherwise. In
number2.php, the integer 1 is returned
when things go wrong (you could also
write it as exit(1) in your PHP code).

To take user input:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the shebang
line (Script 11.3).

#!/usr/bin/php

<?php # Script 11.3 - temperature.php

2. Prompt the user for the input.

echo “\nEnter a temperature and

➝ indicate if it’s Fahrenheit or

➝ Celsius [##.# C/F]: “;

The prompt (Figure 11.26) clearly indi-
cates to the user what information is
expected and in what format. Because
there is no newline character printed at
the end of this text, the user will be able
to type immediately after the colon.

3. Read in a floating-point number and a
string.

if (fscanf (STDIN, “%f %s”, $temp_i,

➝ $which_i) == 2) {

There’s a lot going on in this one line.
First, the fscanf() function will attempt
to read in, from the standard input, one
floating-point number and one string.
These should match up to the tempera-
ture (e.g., 98.6) and the indicator as to
the current temperature type (C or F).
There is no “character” format with
fscanf(), so the %s for string will have
to do. If fscanf() can read in exactly
these two data types in that order,
they’ll be assigned to the variables
$temp_i and $which_i.

The last bit of trickery is that the
fscanf() function can return the number
of values it assigned to variables. So if it
reads in two values, assigned to $temp_i
and $which_i, the conditional knows that
the proper data was entered.

continues on page 440

Figure 11.26 The initial prompt.

438

Chapter 11

Ta
ki

n
g

 In
pu

t

1 #!/usr/bin/php

2 <?php # Script 11.3 - temperature.php

3

4 /* This page convers temperatures between

5 * Fahrenheit and Celsius.

6 * This script is meant to be used with PHP CLI.

7 * This script requests input from the user.

8 */

9

10 // Prompt the user:

11 echo “\nEnter a temperature and indicate if it’s Fahrenheit or Celsius [##.# C/F]: “;

12

13 // Read the input as a conditional:

14 if (fscanf (STDIN, “%f %s”, $temp_i, $which_i) == 2) {

15

16 // Make the conversion based upon $which_i:

17 switch (trim($which_i)) {

18

19 // Celsius, convert to Fahrenheit:

20 case ‘C’:

21 case ‘c’:

22 $temp_o = ($temp_i * (9.0/5.0)) + 32;

23 $which_o = ‘F’;

24 $which_i = ‘C’;

25 break;

26

27 // Fahrenheit, convert to Celsius:

28 case ‘F’:

29 case ‘f’:

30 $temp_o = ($temp_i - 32) * (5.0/9.0);

31 $which_o = ‘C’;

32 $which_i = ‘F’;

33 break;

34

35 // Problem: neither C nor F entered, set $which_o to FALSE:

36 default:

37 $which_o = FALSE;

38 break;

39

40 } // End of SWITCH.

41

42 // Print the results:

43 if ($which_o) {

44 printf (“%0.1f %s is %0.1f %s.\n”, $temp_i, $which_i, $temp_o, $which_o);

45 } else {

46 echo “You failed to enter C or F to indicate the current temperature.\n”;

47 }

48

49 } else { // Didn’t enter the right input.

50

51 echo “You failed to use the proper syntax.\n”;

52

53 } // End of main IF.

54 ?>

Script 11.3 User input is requested when this script runs. The input is read in from STDIN and validated; if proper, a
temperature conversion occurs.

439

PHP’s Command-Line Interface

Takin
g

 In
pu

t

4. Make the appropriate conversion.

switch (trim($which_i)) {

case ‘C’:

case ‘c’:

$temp_o = ($temp_i *

➝ (9.0/5.0)) + 32;

$which_o = ‘F’;

$which_i = ‘C’;

break;

case ‘F’:

case ‘f’:

$temp_o = ($temp_i - 32)

➝ * (5.0/9.0);

$which_o = ‘C’;

$which_i = ‘F’;

break;

default:

$which_o = FALSE;

break;

} // End of SWITCH.

The switch checks to see if degrees
Celsius is being converted to Fahrenheit
or vice versa. If the second piece of input
submitted is not C, c, F, or f, no conver-
sion takes place.

Taking CLI Further

This chapter covers what you need to
know about running PHP code from a
command-line interface. For the most
part this just means that you’ll take what
you already know how to do with PHP
and execute it in a non-Web interface.
That alone is perfect for many automated
tasks that you might want to do.

On a more sophisticated level, PHP CLI
can be used to really interact with the
operating system on a low level. One thing
to look into is the pcntl (process control)
extension. The extension, which isn’t
available when using PHP for Web pages,
lets you fork your processes (split them
off). From there you can go on to the con-
cept of signals. If you don’t know what
these things are, that’s fine: you probably
shouldn’t be messing with them in PHP
anyway. But if you do understand these
concepts, knowing that you can work with
them in PHP is a welcome bit of news.

Finally, with PHP CLI you can use the
backticks, exec(), system(), and similar
functions to call system utilities. Using
these functions with PHP CLI doesn’t really
differ from using them in a Web script,
but your need to use them might increase.

440

Chapter 11

Ta
ki

n
g

 In
pu

t

Figure 11.28 One of the possible error messages if the
script is not used properly.

Figure 11.27 The result of the calculation is printed as
a floating-point number with one decimal.

5. Print the results.

if ($which_o) {

printf (“%0.1f %s is %0.1f

➝ %s.\n”, $temp_i, $which_i,

➝ $temp_o, $which_o);

} else {

echo “You failed to enter C or F

➝ to indicate the current

➝ temperature.\n”;

}

If $which_o is equal to C or F, then the
conditional is true and the conversion is
printed, using the printf() function to
handle the formatting (Figure 11.27).
Otherwise, a default message is printed
(Figure 11.28).

continues on next page

441

PHP’s Command-Line Interface

Takin
g

 In
pu

t

6. Complete the conditional started in Step 3.

} else {

echo “You failed to use the

➝ proper syntax.\n”;

}

This else clause applies if the fscanf()
function does not return the number 2,
meaning it didn’t read in two values
(Figure 11.29). In neither this case nor
the else clause in Step 5 did I return a
number indicating a problem, but that
could be added.

7. Complete the PHP script.

?>

8. Save the file as temperature.php.

9. Run the script (Figure 11.30).

✔ Tips

■ This script could have been simplified by
taking the temperature and the tempera-
ture type as two separate inputs. But
doing so would have been far less cool
than using just one prompt and showing
off what fscanf() can do.

■ Any of PHP’s file functions can be used
on STDIN. This means, for example, that
you could use fgetc() to retrieve just a
single character or fgetcsv() to retrieve
and parse an entire line.

Figure 11.30 Successfully converting from Fahrenheit
to Celsius.

Figure 11.29 The second of the possible error
messages for misuse.

442

Chapter 11

Ta
ki

n
g

 In
pu

t

One part of my definition of “advanced” PHP is simply: Do the things you already do
but better and faster. Toward this end, PEAR is a miraculous tool. PEAR, the PHP
Extension and Application Repository (http://pear.php.net), is a shared library of PHP
code that you can use to develop your own applications. The library is made up of
packages, each package providing functionality within a specific area.

In some other chapters, I have either mentioned related PEAR packages or outright
used them (because why reinvent the wheel, right?). In this chapter I am going to
demonstrate three more PEAR packages, which did not fit in elsewhere. These pack-
ages address common problems PHP programmers encounter, and frequently asked
questions on my support forums.

A couple last words on PEAR: as much as it’s great, it has some limitations. How cur-
rent and how well documented a package is varies greatly (both being good indica-
tors as to the package’s usability). And installation can be troublesome. But you can
also learn a lot from PEAR: it’s an excellent model of object-oriented design (see
Chapter 6, “Basic Object-Oriented Programming,” and Chapter 7, “Advanced OOP”).
By looking at PEAR source code, you can learn much about defining classes, docu-
menting your work, extending classes, or even how to use an otherwise undocument-
ed package. I will be using OOP terminology in this chapter, so an understanding of
those fundamentals (again, see Chapter 6) will help comprehension of this material.

443

Using PEAR
12

U
sin

g
 P

EA
R

http://pear.php.net

Using Benchmark
The first of the PEAR packages to discuss
in this chapter is Benchmark. As the name
implies, this is a simple class for benchmark-
ing code. Benchmarking, in case you’re not
familiar, is the process of timing how long
code blocks, entire scripts, or whole applica-
tions take to run. Doing so can be a useful
tool for finding bottlenecks in your sites
and improving performance.

In this next section I’ll run through two uses
of the Benchmark package. The first will
time three different ways of printing text in
PHP, because which method is fastest is a
common question. The second will show
how fast PHP executes a particular user-
defined function.

I’ll say up front that the Benchmark class is
nice and simple, but the documentation for
it is lacking. There is simply no end-user
documentation available. But through these
next two pages, and by looking at the class
definitions in the downloadable files, you’ll
be able to start benchmarking your scripts.

444

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

Understanding Benchmarks

In the first two examples of this chapter, I
benchmark some PHP code. While the
results of the benchmarks are clear and
easy to understand, they are not univer-
sal. For the first example, several execu-
tions of this script show that using single
quotes is faster, for that exact example on
my computer. This is not to say that single
quotes are always faster.

Benchmarking is a good way to give you
an understanding of execution tendencies:
is it generally better to do this or that?
When it comes time to really fine-tune
your applications, you should benchmark
your exact code (i.e., what you’ve written
versus alternative methods) on the server
it will run on. Only then will you know for
certain that you’ve got the best perform-
ance possible.

It should also be remembered that the
benchmarking itself affects a script’s per-
formance. Because of the extra memory
required by the Benchmark object, and
the extra processing required by calling
its methods, any benchmarked script will
perform worse than its unbenchmarked
version (not that there’s a way to test for
that, of course).

Figure 12.2 Part of the structure of the array returned
by the getProfiling() method.

Figure 12.1 The benchmark results for timing the
execution of a script (this being a QuickForm example
developed later in the chapter) are revealed using the
display() method.

Benchmarking some code
To simply benchmark some sections of code
in a PHP script, use the Benchmark Timer
class. Start by including the file and creating
the object:

require (‘Benchmark/Timer.php’);

$timer = new Benchmark_Timer();

Once you have a timer object, you can start
the timer at any point:

$timer->start();

Stopping the timer is a matter of:

$timer->stop();

Commonly, you’ll want to see how long spe-
cific parts of your code take to run. You can
set place markers using:

$timer->setMarker(‘Marker Name’);

When you’re done doing whatever, you can
easily report on the results by invoking the
display() method (Figure 12.1):

$timer->display();

Or you can manually access the intervals
between points using:

$timer->timeElapsed(‘Marker1’,

➝ ‘Marker2’)

A final option is to get an array of results via:

$profile = $timer->getProfiling();

This array (see Figure 12.2) can then be
used however you see fit.

As a practical example, I’m going to run a
test to see what the execution difference is
between using echo with single quotes, dou-
ble quotes, or the heredoc syntax (if you’re
not familiar with the heredoc syntax, see
Chapter 1, “Advanced PHP Techniques”).
Because PHP has to look for variables to be
extrapolated within double quotes and here-
doc, the performance difference is often
questioned.

445

Using PEAR

U
sin

g
 B

en
ch

m
ark

Installing PEAR Packages

One PEAR-related thing I do not discuss in this book is the installation process, for two good
reasons. First, with the variations of available operating systems, it’s too tough to nail down
comprehensive instructions for all potential readers. Second, experience tells me that many
users are on hosted servers, where they cannot directly install anything.

Still, installing PEAR is not impossibly hard, and once you master the installation of a single
package, installing more is a snap. If you want to try your hand at installing PEAR packages,
start by checking out the PEAR manual, which has instructions (you have to set up the installer
first). If you’re still not clear as to what you should do, search the Web for articles on the sub-
ject and/or post a question in the book’s supporting forum, where I’ll be happy to assist.

Some installation tips up front:

◆ You may need to invoke the pear installer as a superuser (or using sudo).

◆ Make sure that the location of your PEAR directory is in your PHP include path.

◆ If using PHP 5, you may want to set error reporting below E_STRICT, as not all PEAR pack-
ages have been upgraded to the new object model.

◆ Run the command pear help install to see what options are available.

If you are on a hosted server, the hosting company should be willing to install PEAR packages
for you (which benefit every user on the server). If they won’t do that, you ought to consider a
different hosting company (seriously). Barring that, for some PEAR classes, you can just
download a package from the PEAR site, copy its files onto your server, and include them as
if they were any other class definition files.

446

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

To benchmark your code:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the standard
HTML (Script 12.1).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Benchmarking Code</title>

</head>

<body>

<?php # Script 12.1 - timer.php

2. Define at least one variable.

$data = ‘This is some text.’;

To really test the performance differ-
ence, I want to print some HTML and
a variable.

3. Include the Timer class definition.

require (‘Benchmark/Timer.php’);

Assuming that you’ve installed the
Benchmark package and that the PEAR
directory is in your include path, this
one line is all you need to use the class.

continues on page 448

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML

1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/

xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”

content=”text/html; charset=

iso-8859-1” />

6 <title>Benchmarking Code</title>

7 </head>

8 <body>

9 <?php # Script 12.1 - timer.php

10

11 /* This page performs benchmarks on

three

12 * different types of echo() statements.

13 * This page requires the PEAR Benchmark

package.

14 */

15

16 // Some dummy data to be printed:

17 $data = ‘This is some text.’;

18

19 // Include the Timer class definition:

20 require (‘Benchmark/Timer.php’);

21

22 // Create and start a timer:

23 $timer = new Benchmark_Timer();

24 $timer->start();

25

26 // Time a single-quote example:

27 $timer->setMarker(‘echo1’);

28 echo ‘<h1>echo() with single quotes</h1>

29 <table border=”0” width=”90%”

cellspacing=”3” cellpadding=”3”

align=”center”>

30 <tr>

31 <td>’ . $data . ‘</td>

32 <td>’ . $data . ‘</td>

33 <td>’ . $data . ‘</td>

34 </tr>

35 <tr>

36 <td>’ . $data . ‘</td>

Script 12.1 How long it takes PHP to execute three
different echo() statements is benchmarked in this
script.

447

Using PEAR

U
sin

g
 B

en
ch

m
ark

37 <td>’ . $data . ‘</td>

38 <td>’ . $data . ‘</td>

39 </tr>

40 </table>

41 <p>End of echo() with single quotes.</p>

42 ‘;

43

44 // Time a double-quote example:

45 $timer->setMarker(‘echo2’);

46 echo “<h1>echo() with double quotes</h1>

47 <table border=\”0\” width=\”90%\”

cellspacing=\”3\” cellpadding=\”3\”

align=\”center\”>

48 <tr>

49 <td>$data</td>

50 <td>$data</td>

51 <td>$data</td>

52 </tr>

53 <tr>

54 <td>$data</td>

55 <td>$data</td>

56 <td>$data</td>

57 </tr>

58 </table>

59 <p>End of echo() with double quotes.</p>

60 “;

61

62 // Time a heredoc example:

63 $timer->setMarker(‘heredoc’);

64 echo <<<EOT

65 <h1>heredoc Syntax</h1>

66 <table border=”0” width=”90%”

cellspacing=”3” cellpadding=”3”

align=”center”>

67 <tr>

68 <td>$data</td>

69 <td>$data</td>

70 <td>$data</td>

71 </tr>

72 <tr>

73 <td>$data</td>

74 <td>$data</td>

75 <td>$data</td>

76 </tr>

77 </table>

78 <p>End of heredoc syntax.</p>

(script continues on next page)

Script 12.1 continued

4. Create and start a timer.

$timer = new Benchmark_Timer();

$timer->start();

5. Time a single-quote example.

$timer->setMarker(‘echo1’);

echo ‘<h1>echo() with single

➝ quotes</h1>

<table border=”0” width=”90%”

➝ cellspacing=”3” cellpadding=”3”

➝ align=”center”>

<tr>

<td>’ . $data . ‘</td>

<td>’ . $data . ‘</td>

<td>’ . $data . ‘</td>

</tr>

<tr>

<td>’ . $data . ‘</td>

<td>’ . $data . ‘</td>

<td>’ . $data . ‘</td>

</tr>

</table>

<p>End of echo() with single

➝ quotes.</p>

‘;

I begin by setting a marker; any name is
fine for it. Then I print out, using echo(),
some HTML. Within the HTML, a vari-
able will be concatenated several times
over.

6. Time a double-quote example.

$timer->setMarker(‘echo2’);

echo “<h1>echo() with double

➝ quotes</h1>

<table border=\”0\” width=\”90%\”

➝ cellspacing=\”3\” cellpadding=\”3\”

➝ align=\”center\”>

<tr>

79 EOT;

80

81 // Set a final marker and stop the timer:

82 $timer->setMarker(‘end’);

83 $timer->stop();

84

85 // Print the results:

86 echo ‘<hr /><h1>Results:</h1>’;

87

88 echo ‘<p>Time required for the single

quote echo(): ‘ . $timer->timeElapsed

(‘echo1’, ‘echo2’) . ‘</p>’;

89

90 echo ‘<p>Time required for the double

quote echo(): ‘ . $timer->timeElapsed

(‘echo2’, ‘heredoc’) . ‘</p>’;

91

92 echo ‘<p>Time required for the heredoc

echo(): ‘ . $timer->timeElapsed

(‘heredoc’, ‘end’) . ‘</p>’;

93

94 // Delete the object:

95 unset($timer);

96 ?>

97 </body>

98 </html>

Script 12.1 continued

448

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

</table>

<p>End of heredoc syntax.</p>

EOT;

This is the heredoc syntax, discussed in
Chapter 1. Variables can be kept in the
string, but double quotation marks do
not need to be escaped.

8. Set a final marker and stop the timer.

$timer->setMarker(‘end’);

$timer->stop();

So that the timing of each code block is
consistent, I set a marker and then stop
the timer. This way each chunk begins
and ends with a setMarker() call.

9. Print the results.

echo ‘<hr /><h1>Results:</h1>’;

echo ‘<p>Time required for the

➝ single quote echo(): ‘ . $timer-

➝ >timeElapsed(‘echo1’, ‘echo2’) .

➝ ‘</p>’;

echo ‘<p>Time required for the

➝ double quote echo(): ‘ . $timer-

➝ >timeElapsed(‘echo2’, ‘heredoc’) .

➝ ‘</p>’;

echo ‘<p>Time required for the

➝ heredoc echo(): ‘ . $timer-

➝ >timeElapsed(‘heredoc’, ‘end’) .

➝ ‘</p>’;

To find out how long each section of
code took to execute, invoke the
timeElapsed() method, providing two
markers as the start and stop points.

10. Delete the object and complete the page.

unset($timer);

?>

</body>

</html>

continues on next page

449

Using PEAR

U
sin

g
 B

en
ch

m
ark

<td>$data</td>

<td>$data</td>

<td>$data</td>

</tr>

<tr>

<td>$data</td>

<td>$data</td>

<td>$data</td>

</tr>

</table>

<p>End of echo() with double

➝ quotes.</p>

“;

This is a variation on the code in Step 5,
except that double quotes are used. This
means that all double quotes in the
HTML must be escaped but that the
variables can be kept within the string
(and not concatenated).

7. Time a heredoc example.

$timer->setMarker(‘heredoc’);

echo <<<EOT

<h1>heredoc Syntax</h1>

<table border=”0” width=”90%”

➝ cellspacing=”3” cellpadding=”3”

➝ align=”center”>

<tr>

<td>$data</td>

<td>$data</td>

<td>$data</td>

</tr>

<tr>

<td>$data</td>

<td>$data</td>

<td>$data</td>

</tr>

11. Save the file as timer.php, place it in
your Web directory, and test in your
Web browser (Figure 12.3).

12. Run the page several times to confirm
the results (Figures 12.4 and 12.5).

✔ Tips

■ As I mention in the introduction to this
section of the chapter, the Benchmark
package does not come with much in
the way of documentation. But if you
download the package files and view the
class definitions, you’ll find some sample
code and, what is more important, be
able to see what each method does.
Doing so only requires an understanding
of basic object-oriented programming
(see Chapter 6).

■ If you do this when creating a new timer:

$timer = new Benchmark_Timer(true);

then the timer will automatically be
started at that point. The timer will also
automatically stop at the end of the
script (or when the variable is deleted)
with the results shown as in Figure 12.1.

Figure 12.4 Rerun the same page (compare with
Figures 12.3 and 12.5) multiple times to confirm and
compare the benchmarking numbers.

Figure 12.3 The first part of the page is the tested
code: three different ways to achieve the same result.
The bottom of the page shows how long, in seconds,
each code block took to execute.

450

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

Figure 12.6 The array returned by the get() method of
the Benchmark_Iterate class.

Figure 12.5 Using echo() with single quotes is
consistently the fastest option, followed by the
heredoc syntax, and finally, double quotes.

Benchmarking functions
The previous example uses the Timer class
to perform a simple timing operation on
some code. The drawback of those tests
is that they represent a single execution.
Part of the Benchmark package is the
Benchmark_Iterate class, which can test the
performance of functions by invoking them
for a repeated number of times. To use it,
create an object of type Benchmark_Iterate:

require (‘Benchmark/Iterate.php’);

$b = new Benchmark_Iterate();

Then, just tell the object what function to
run and how many times:

$b->run($iterations, ‘function_name’);

Finally, invoke the get() method to retrieve
all the results.

$r = $b->get();

The returned data is an associative array,
listing the time taken by each iteration of
the function, plus the mean and a confirma-
tion of the number of iterations (Figure 12.6).

451

Using PEAR

U
sin

g
 B

en
ch

m
ark

2. Define the function to test.

function dummy() {

$data = ‘This is some text.’;

echo ‘<!--<h1>echo() with single

➝ quotes</h1>

<table border=”0” width=”90%”

➝ cellspacing=”3” cellpadding=”3”

➝ align=”center”>

<tr>

<td>’ . $data .

➝ ‘</td>

<td>’ . $data .

➝ ‘</td>

<td>’ . $data .

➝ ‘</td>

</tr>

<tr>

<td>’ . $data .

➝ ‘</td>

<td>’ . $data .

➝ ‘</td>

<td>’ . $data .

➝ ‘</td>

</tr>

</table>

<p>End of echo() with single

➝ quotes.</p>-->’;

}

continues on page 454

To benchmark a function:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the standard
HTML (Script 12.2).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Benchmarking

➝ Functions</title>

</head>

<body>

<?php # Script 12.2 - iterate.php

452

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Benchmarking Functions</title>

7 </head>

8 <body>

9 <?php # Script 12.2 - iterate.php

10

11 /* This page performs benchmarks on a function.

12 * This page requires the PEAR Benchmark package.

13 */

14

15 // Function to be tested:

16 function dummy() {

17 $data = ‘This is some text.’;

18 echo ‘<!--<h1>echo() with single quotes</h1>

19 <table border=”0” width=”90%” cellspacing=”3” cellpadding=”3” align=”center”>

20 <tr>

21 <td>’ . $data . ‘</td>

22 <td>’ . $data . ‘</td>

23 <td>’ . $data . ‘</td>

24 </tr>

25 <tr>

26 <td>’ . $data . ‘</td>

27 <td>’ . $data . ‘</td>

28 <td>’ . $data . ‘</td>

29 </tr>

30 </table>

31 <p>End of echo() with single quotes.</p>-->’;

32 }

33

34 // Include the Iterate class definition:

35 require (‘Benchmark/Iterate.php’);

36

37 // Create and start an iteration:

38 $b = new Benchmark_Iterate();

39 $b->run(100, ‘dummy’);

40

41 // Get the results:

42 $r = $b->get();

43

44 // Print the results:

45 echo “<h1>Results: {$r[‘iterations’]} iterations of the dummy() function took an average of

{$r[‘mean’]} seconds.</h1>”;

46

47 // Delete the object:

48 unset($b);

49 ?>

50 </body>

51 </html>

Script 12.2 A dummy function is benchmarked in this script. By increasing the number of times the function is
executed, you’ll get a more accurate sense of the function’s performance.

453

Using PEAR

U
sin

g
 B

en
ch

m
ark

I know what you’re thinking: this really
isn’t a very good use of user-defined
functions. True. But to demonstrate the
performance hit between straight-up
executing a bit of code (Script 12.1 and
Figures 12.3 through 12.5) and having a
function do the same thing, I want to
repeat the single-quotes echo() state-
ment. I have made one alteration: the
data is being written within HTML com-
ments so that it doesn’t all appear in the
Web browser (Figure 12.7).

3. Include the Iterate class definition.

require (‘Benchmark/Iterate.php’);

4. Create and start an iteration of the
dummy() function.

$b = new Benchmark_Iterate();

$b->run(100, ‘dummy’);

I’ll invoke this function 100 times and
average the results of using it.

5. Fetch the results.

$r = $b->get();

6. Print the results.

echo “<h1>Results: {$r[‘iterations’]}

➝ iterations of the dummy() function

➝ took an average of {$r[‘mean’]}

➝ seconds.</h1>”;

In the array returned by get() (see
Figure 12.6) the number of iterations
can be found indexed at iterations and
the mean result at mean.

7. Delete the object and complete the page.

unset($b);

?>

</body>

</html>

Figure 12.7 When using the Benchmark_Iterate class,
remember that the function is being executed, so
whatever that function does, like print some HTML,
will happen X number of times.

454

Chapter 12

U
si

n
g

 B
en

ch
m

ar
k

Figure 12.9 The second 100 executions of the
dummy() function took slightly less time (compare
with Figure 12.8).

Figure 12.8 The first 100 executions of the function
each took an average of .000041 seconds.

8. Save the file as iterate.php, place it in
your Web directory, and test in your Web
browser (Figure 12.8).

9. Run the page several times to confirm
the results (Figure 12.9).

✔ Tips

■ You can provide arguments to the func-
tion being called by adding them as
arguments to the run() method.

$b->run($iterations, ‘function_name’,

➝ 21, ‘value’);

■ You can even use the Benchmark_Iterate
class to test methods defined in classes.

■ Not to put too much stock in these
examples, but the results suggest that
executing the same bit of code in your
own function (iterate.php, Script 12.2)
is slightly slower than executing it out-
side of a function (timer.php, Script 12.1).
This does make sense.

455

Using PEAR

U
sin

g
 B

en
ch

m
ark

Using HTML_QuickForm
Of the several hundred PEAR packages avail-
able, HTML_QuickForm may well be my
favorite. And with great reason: it helps you
create and process HTML forms. Even after
all these years working with PHP, displaying
and then handling an HTML form is the
overwhelming majority of what I do with
the language.

I could write a whole book (maybe a small
book) on the subject, and it breaks my heart
to know that there isn’t room here to discuss
everything I love about this package. But I
can provide you with enough real-world code
to whet your appetite and start you down
the path of HTML_QuickForm adulation.

One of the reasons that QuickForm is so
usable and successful is that it places all of
the form-related events—creating the form,
filtering the form data, validating the form,
and processing the form data—into one
object and one PHP page. This ensures con-
sistency and a minimum of code, two hall-
marks of the advanced PHP programmer.

✔ Tip

■ At the time of this writing, HTML_
QuickForm2 is just in the works, without
any releases. This is going to be a PHP 5
rewrite of the HTML_QuickForm pack-
age. I expect it will function exactly the
same as the original, albeit using the
PHP 5 object model behind the scenes.

N a m e C r e a t e s a (n) …

button button
checkbox single check box
file file upload prompt
hidden hidden input
image image input
password password input
radio radio button
reset reset button
select select menu
submit submit button
text text input
textarea textarea field

N a m e C r e a t e s a …

advcheckbox smarter type of check box
autocomplete JavaScript-enhanced text box
date series of select menus for the month,

day, and year
group group of related elements
header label
hiddenselect hidden select menu of set values
hierselect two chained select inputs, the second

controlled by the first
link URL link
static block of text

Custom QuickForm Element Types

Table 12.2 The HTML_QuickForm class improves upon
the standard HTML form element types by creating
some of its own.

Standard HTML Element Types

Table 12.1 The HTML_QuickForm class starts by
accepting all of the standard HTML form element
types.

456

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

Figure 12.11 The HTML source of the page (see Figure 12.10) reveals the code
generated by the QuickForm class, including an HTML table.

Figure 12.10 The form contains five elements: one text
input, one hidden input, two radio buttons, and a
submit button.

These lines create the inputs seen in
Figures 12.10 and 12.11:

$form->addElement(‘text’, ‘email’,

➝ ‘Email Address: ‘, array(‘size’ => 30,

➝ ‘maxlength’ => 100));

$form->addElement(‘hidden’, ‘secret’,

➝ ‘hidden data’);

$form->addElement(‘radio’, ‘gender’,

➝ ‘Gender: ‘, ‘Male’, ‘M’);

$form->addElement(‘radio’, ‘gender’,

➝ NULL, ‘Female’, ‘F’);

$form->addElement(‘submit’, ‘submit’,

➝ ‘Submit!’);

Once you’ve added all the elements, you
show the form using

$form->display();

457

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

Creating a basic form
Like all PEAR classes, QuickForm uses an
objective interface. Begin by creating the
object:

require_once (‘HTML/QuickForm.php’);

$form = new HTML_QuickForm();

When creating this object, you can pass
parameters to the constructor, giving the
form a name, choosing a method other
than POST (the default), setting a target,
and so on.

From there you want to add elements to the
form. There are many element types, from
the standard HTML ones with which you
are accustomed (Table 12.1) to useful ones
defined by QuickForm (Table 12.2). The
syntax for adding a form element is:

$form->addElement(‘type’, ‘name’,

➝ ‘prompt’, $options);

4. Add the elements for the person’s name.

$form->addElement(‘select’,

➝ ‘salutation’, ‘Salutation: ‘,

➝ array(

‘Mr.’ => ‘Mr.’,

‘Miss’ => ‘Miss’,

‘Mrs.’ => ‘Mrs.’,

‘Dr.’ => ‘Dr.’)

);

$form->addElement(‘text’,

➝ ‘first_name’, ‘First Name: ‘);

$form->addElement(‘text’,

➝ ‘last_name’, ‘Last Name: ‘);

The person’s name will require three
inputs. The first is a select menu called
salutation. The prompt for this item is
Salutation: and its possible values are
Mr., Miss, Mrs., and Dr. The next two
elements are simple text boxes.

5. Add an element for an email address.

$form->addElement(‘text’, ‘email’,

➝ ‘Email Address: ‘, array(‘size’ =>

➝ 30, ‘maxlength’ => 100));

This is another text box, like those for
the person’s name, but the box’s dimen-
sions are set as well.

continues on page 460

To make a registration form:

1. Create a new PHP script in your text edi-
tor or IDE, beginning with the standard
HTML (Script 12.3).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>QuickForm</title>

</head>

<body>

<?php # Script 12.3 - quickform.php

2. Create the QuickForm object.

require_once (‘HTML/QuickForm.php’);

$form = new HTML_QuickForm();

3. Add a header.

$form->addElement(‘header’, NULL,

➝ ‘Registration Form’);

The header element type is a QuickForm
invention. It adds a label to the top of
the form.

458

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>QuickForm</title>

7 </head>

8 <body>

9 <?php # Script 12.3 - quickform.php

10

11 /* This page creates a registration form.

12 * This page requires the PEAR HTML_QuickForm package.

13 */

14

15 // Include the class definition:

16 require_once (‘HTML/QuickForm.php’);

17

18 // Create the form object:

19 $form = new HTML_QuickForm();

20

21 // Add a header:

22 $form->addElement(‘header’, NULL, ‘Registration Form’);

23

24 // Ask for the person’s name:

25 $form->addElement(‘select’, ‘salutation’, ‘Salutation: ‘, array(

26 ‘Mr.’ => ‘Mr.’,

27 ‘Miss’ => ‘Miss’,

28 ‘Mrs.’ => ‘Mrs.’,

29 ‘Dr.’ => ‘Dr.’)

30);

31 $form->addElement(‘text’, ‘first_name’, ‘First Name: ‘);

32 $form->addElement(‘text’, ‘last_name’, ‘Last Name: ‘);

33

34 // Ask for an email address:

35 $form->addElement(‘text’, ‘email’, ‘Email Address: ‘, array(‘size’ => 30, ‘maxlength’ => 100));

36

37 // Ask for a password:

38 $form->addElement(‘password’, ‘pass1’, ‘Password: ‘);

39 $form->addElement(‘password’, ‘pass2’, ‘Confirm Password: ‘);

40

41 // Add the submit button:

42 $form->addElement(‘submit’, ‘submit’, ‘Register!’);

43

44 // Display the form:

45 $form->display();

46

47 // Delete the object:

48 unset($form);

49 ?>

50 </body>

51 </html>

Script 12.3 The HTML_QuickForm class is used to make a registration form.

459

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

6. Add two elements for the passwords.

$form->addElement(‘password’,

➝ ‘pass1’, ‘Password: ‘);

$form->addElement(‘password’,

➝ ‘pass2’, ‘Confirm Password: ‘);

The inputs are both of type password. I
think it’s best to take passwords twice,
since what is typed is not visible to the
end user (Figure 12.12).

7. Add a submit button.

$form->addElement(‘submit’,

➝ ‘submit’, ‘Register!’);

8. Display the form.

$form->display();

If you don’t include this line, the form
will never appear.

Figure 12.14 The HTML generated by QuickForm.

Figure 12.13 The simple HTML form.Figure 12.12 What’s typed in a password input is
replaced by stars (or other characters) in the Web
browser (but you probably already knew that).

460

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

9. Delete the object and complete the page.

unset($form);

?>

</body>

</html>

10. Save the file as quickform.php, place it
in your Web directory, and test in your
Web browser (Figure 12.13).

11. View the HTML source of the page
to see what QuickForm created
(Figure 12.14).

✔ Tip

■ Naturally, you can tweak how forms are
displayed. Check out the discussion of
renderers in the QuickForm manual.

Setting Default Form Values

If you need to establish default values for
your form inputs, rest assured that doing
so is possible and stunningly simple.
Begin by defining an array whose keys are
the element names and whose values are
the default values:

$defaults = array (‘username’ =>

➝ ‘jellyhead’,

‘age’ => 8,

‘email’ => ‘jellyhead@thejelly.org’

);

Then invoke the setDefaults() method:

$form->setDefaults($defaults);

All there is to it!

Often the default form values will be
based upon data stored in a database. In
such a case, if your database columns
have the same names as your form ele-
ments (which is a good idea anyway),
using this data as the default values is a
snap:

$q = ‘SELECT username, age, email

➝ FROM users WHERE user_id=3453’;

$r = mysql_query($q);

// Check that a row was returned.

$defaults = mysql_fetch_array($r,

➝ MYSQL_ASSOC);

$form->setDefaults($defaults);

Filtering and validating
form data
In the quickform.php example (Script 12.3),
I show how to start using QuickForm to cre-
ate an HTML form. Those steps generate the
HTML required to make the elements. But
that’s just a drop in the bucket as for what
QuickForm can do.

Commonly you’ll want to apply some sort of
filter to your form data. The applyFilter()
method does this, taking the name of the
element to which this should be applied and
the function to apply as its arguments:

$form->applyFilter(‘element_name’,

➝ ‘function_name’);

To have an element’s submitted data
trimmed, use:

$form->applyFilter(‘email’, ‘trim’);

Or you might want to apply nl2br() to a
text area field:

$form->applyFilter(‘comments’, ‘nl2br’);

To apply a filter to every element, use the
special identifier __ALL__:

$form->applyFilter(‘__ALL__’,

➝ ‘function_name’);

Along with filters, you can add rules to form
elements. Rules can apply validation tech-
niques to the form data. The addRule()
method is used here:

$form->addRule(‘element_name’, ‘error

➝ message’, ‘rule_type’);

continues on next page

461

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

Table 12.3 lists the available rule types. To
make a field required, use:

$form->addRule(‘city’, ‘Enter your

➝ city.’, ‘required’);

If a rule, like maxlength, takes another argu-
ment, that would come after the rule type:

$form->addRule(‘age’, ‘Please enter your

➝ age.’, ‘rangelength’, array(1, 120));

Better yet, you can have QuickForm perform
not only server-side validation (using PHP)
but also client-side (by generating the neces-
sary JavaScript). Just add the word client as
the fifth argument:

$form->addRule(‘city’, ‘Enter your

➝ city.’, ‘required’, NULL, ‘client’);

$form->addRule(‘age’, ‘Please enter your

➝ age.’, ‘rangelength’, array(1, 120) ,

➝ ‘client’);

To filter and validate form data:

1. Open quickform.php (Script 12.3) in your
text editor or IDE, if it is not already.

2. After adding all the elements but before
displaying the form, apply a trim() filter
(Script 12.4).

$form->applyFilter(‘__ALL__’,

➝ ‘trim’);

This one line will run all of the submitted
data through PHP’s trim() function.
Although it may be overkill to do so to
the select menu (the salutation) and the
submit button, the convenience of trim-
ming all form data through this one line
of code more than makes up for the
potential performance hit.

continues on page 464

N a m e M e a n i n g

required Some value required
maxlength Cannot have more characters than
minlength Must be at least this many characters
rangelength Within a range
regex Matches a regular expression pattern
email Is a valid email address
emailorblank Is a valid email address or is empty
lettersonly Only uses letters
alphanumeric Only uses letters and numbers
numeric Only uses numbers
nopunctuation Anything but punctuation
nonzero A number not starting with zero
compare Compare two or more elements
uploadedfile Element must contain an uploaded file
maxfilesize Uploaded file cannot be bigger than

this value
mimetype Uploaded file must be of this type

(or types)
filename Uploaded file must have a certain

filename

QuickForm Validation Rules

Table 12.3 These rule types are used in the addRule()
method to add validation routines to a form.

462

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>QuickForm</title>

7 </head>

8 <body>

9 <?php # Script 12.4 - quickform.php

10

11 /* This page creates a registration form.

12 * This page requires the PEAR HTML_QuickForm package.

13 * This version adds a filter and validation rules.

14 */

15

16 // Include the class definition:

17 require_once (‘HTML/QuickForm.php’);

18

19 // Create the form object:

20 $form = new HTML_QuickForm();

21

22 // Add a header:

23 $form->addElement(‘header’, NULL, ‘Registration Form’);

24

25 // Ask for the person’s name:

26 $form->addElement(‘select’, ‘salutation’, ‘Salutation: ‘, array(

27 ‘Mr.’ => ‘Mr.’,

28 ‘Miss’ => ‘Miss’,

29 ‘Mrs.’ => ‘Mrs.’,

30 ‘Dr.’ => ‘Dr.’)

31);

32 $form->addElement(‘text’, ‘first_name’, ‘First Name: ‘);

33 $form->addElement(‘text’, ‘last_name’, ‘Last Name: ‘);

34

35 // Ask for an email address:

36 $form->addElement(‘text’, ‘email’, ‘Email Address: ‘, array(‘size’ => 30, ‘maxlength’ => 100));

37

38 // Ask for a password:

39 $form->addElement(‘password’, ‘pass1’, ‘Password: ‘);

40 $form->addElement(‘password’, ‘pass2’, ‘Confirm Password: ‘);

41

42 // Add the submit button:

43 $form->addElement(‘submit’, ‘submit’, ‘Register!’);

44

45 // Apply the filter:

46 $form->applyFilter(‘__ALL__’, ‘trim’);

47

48 // Add the rules:

49 $form->addRule(‘first_name’, ‘Please enter your first name.’, ‘required’, NULL, ‘client’);

50 $form->addRule(‘last_name’, ‘Please enter your last name.’, ‘required’, NULL, ‘client’);

51 $form->addRule(‘email’, ‘Please enter your email address.’, ‘email’, NULL, ‘client’);

(script continues on next page)

Script 12.4 The form (started in Script 12.3) is improved upon by applying one filter and four validation rules.

463

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

3. Add rules requiring the name fields.

$form->addRule(‘first_name’, ‘Please

➝ enter your first name.’,

➝ ‘required’, NULL, ‘client’);

$form->addRule(‘last_name’, ‘Please

➝ enter your last name.’, ‘required’,

➝ NULL, ‘client’);

The first argument should be the name
of the element to which the rule applies.
The second is the error message that
should appear if the rule isn’t obeyed.
The message could show in a JavaScript
alert window (Figure 12.15) or in the
HTML page (Figure 12.16).

4. Add a rule for the email address.

$form->addRule(‘email’, ‘Please enter

➝ your email address.’, ‘email’,

➝ NULL, ‘client’);

This rule is of type email, meaning that
the entered value must be a valid email
address.

Figure 12.16 If the client’s JavaScript is disabled, then
the error messages will be printed when PHP handles
the form.

Figure 12.15 The client-side validation will use alert
windows to warn of rule violations.

464

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

52 $form->addRule(‘pass1’, ‘Please enter a password.’, ‘required’, NULL, ‘client’);

53 $form->addRule(array(‘pass1’, ‘pass2’), ‘Please make sure the two passwords are the same.’,

‘compare’, NULL, ‘client’);

54

55 // Display the form:

56 $form->display();

57

58 // Delete the object:

59 unset($form);

60 ?>

61 </body>

62 </html>

Script 12.4 continued

Figure 12.18 QuickForm generates a slew of
JavaScript to perform the client-side validation.

Figure 12.17 Required fields are automatically marked
by QuickForm.

5. Add rules to validate the passwords.

$form->addRule(‘pass1’, ‘Please enter

➝ a password.’, ‘required’, NULL,

➝ ‘client’);

$form->addRule(array(‘pass1’,

➝ ‘pass2’), ‘Please make sure the two

➝ passwords are the same.’,

➝ ‘compare’, NULL, ‘client’);

Two rules are required to validate the
passwords. The first makes sure that
something is entered for the first pass-
word field. The second checks if the two
password fields have the same value. This
is accomplished using the compare rule,
whose default comparison is equality.
This particular rule takes as its first
argument an array of the elements to be
compared.

6. Save the file, place it in your Web direc-
tory, and test in your Web browser
(Figure 12.17).

7. Check the HTML source of the page to
see the generated JavaScript (Figure 12.18).

✔ Tips

■ You can create your own validation rules
and then declare them for use using
registerRule(). This could be used, for
example, to make sure that a username
or email address has not already been
registered. The function involved would
check your database for that name or
address’s presence.

■ Constants in the form of __NAME__ (like
__ALL__ in the QuickForm class) are
called “magic” constants.

465

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

Processing form data
The final step in the whole form dance
is to do something with the form data.
QuickForm provides a method that returns
a Boolean value indicating if the form passes
the server-side validation (if the form fails
client-side validation, it’ll never get to the
server side). This method can be used in a
conditional:

if ($form->validate()) {

// Good to go!

}

The form data will pass the validate() test
if every form element passes all of the appli-
cable rules you’ve established.

To then access the form values, refer to
$form->exportValue(‘element_name’). This

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>QuickForm</title>

7 </head>

8 <body>

9 <?php # Script 12.5 - quickform.php

10

11 /* This page creates a registration form.

12 * This page requires the PEAR HTML_QuickForm package.

13 * This is the final version of the page.

14 */

15

16 // Include the class definition:

17 require_once (‘HTML/QuickForm.php’);

18

19 // Create the form object:

20 $form = new HTML_QuickForm();

21

22 // Add a header:

23 $form->addElement(‘header’, NULL, ‘Registration Form’);

(script continues on next page)

Script 12.5 The final step in the form process is to do something with the submitted data. A conditional added here
lists all the submitted data if the form passes validation, and shows the form otherwise.

466

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

method returns the “safe” version of the sub-
mitted data: the results after running the
data through the filters. You can also fetch
all the safe form data as an associative array
using:

$form->exportValues();

To wrap up the QuickForm example, the
submitted form data will be displayed if it
passes validation.

To process a QuickForm:

1. Open quickform.php (Script 12.4) in your
text editor or IDE, if it is not already.

2. Remove the current invocation of the
display() method (Script 12.5).

I will change when this method is called.

continues on page 468

24

25 // Ask for the person’s name:

26 $form->addElement(‘select’, ‘salutation’, ‘Salutation: ‘, array(

27 ‘Mr.’ => ‘Mr.’,

28 ‘Miss’ => ‘Miss’,

29 ‘Mrs.’ => ‘Mrs.’,

30 ‘Dr.’ => ‘Dr.’)

31);

32 $form->addElement(‘text’, ‘first_name’, ‘First Name: ‘);

33 $form->addElement(‘text’, ‘last_name’, ‘Last Name: ‘);

34

35 // Ask for an email address:

36 $form->addElement(‘text’, ‘email’, ‘Email Address: ‘, array(‘size’ => 30, ‘maxlength’ => 100));

37

38 // Ask for a password:

39 $form->addElement(‘password’, ‘pass1’, ‘Password: ‘);

40 $form->addElement(‘password’, ‘pass2’, ‘Confirm Password: ‘);

41

42 // Add the submit button:

43 $form->addElement(‘submit’, ‘submit’, ‘Register!’);

44

45 // Apply the filter:

46 $form->applyFilter(‘__ALL__’, ‘trim’);

47

48 // Add the rules:

49 $form->addRule(‘first_name’, ‘Please enter your first name.’, ‘required’, NULL, ‘client’);

50 $form->addRule(‘last_name’, ‘Please enter your last name.’, ‘required’, NULL, ‘client’);

51 $form->addRule(‘email’, ‘Please enter your email address.’, ‘email’, NULL, ‘client’);

52 $form->addRule(‘pass1’, ‘Please enter a password.’, ‘required’, NULL, ‘client’);

53 $form->addRule(array(‘pass1’, ‘pass2’), ‘Please make sure the two passwords are the same.’,

‘compare’, NULL, ‘client’);

54

55 // Display or handle the form:

56 if ($form->validate()) { // Handle

57

58 // Just print out the received data:

59 echo ‘<h1>The following information has been received:</h1>’;

60 $data = $form->exportValues();

61 foreach ($data as $k => $v) {

62 echo “<p>$k $v</p>\n”;

63 }

64

65 } else { // Show

66 $form->display();

67 }

68

69 // Delete the object:

70 unset($form);

71 ?>

72 </body>

73 </html>

Script 12.5 continued

467

Using PEAR

U
sin

g
 H

TM
L_Q

u
ickFo

rm

3. Just before deleting the object, begin a
conditional that checks if the form
passes validation.

if ($form->validate()) {

This conditional checks if the form passes
all the validation tests. If so, the form
data should be handled in some way.

4. Print out the filtered data.

echo ‘<h1>The following information

➝ has been received:</h1>’;

$data = $form->exportValues();

foreach ($data as $k => $v) {

echo “<p>$k $v</p>\n”;

}

In all likelihood you’ll want to store this
data in a database, send it in an email, or
whatever, but for demonstration purposes,
it’ll be reprinted in the Web browser.

Escaping Data for Databases

For any incoming data that will be used in a query, I like to make sure it’s safe by using a
database-specific escaping function, like mysql_real_escape_string() for MySQL. I wrap this
function call inside of my own function, which will also strip any existing slashes if Magic
Quotes is on. My resulting function looks like:

function escape_data ($data) {

global $dbc;

if (get_magic_quotes_gpc()) $data = stripslashes($data);

return mysql_real_escape_string (trim ($data), $dbc);

}

Having defined this function, I can apply it to all form data using applyFilter():

$form->applyFilter(‘__ALL__’, ‘escape_data’);

Now all of the form data will be safe to use in a query. Because this function also trims the
data, I don’t need to apply that as a filter.

468

Chapter 12

U
si

n
g

 H
TM

L_
Q

u
ic

kF
o

rm

5. Complete the conditional.

} else {

$form->display();

}

6. Save the file, place it in your Web direc-
tory, and test in your Web browser
(Figures 12.19 and 12.20).

✔ Tip

■ Another way to handle the form is to
establish a function to process the data:

function process_data($data) {

// Do something with $data.

// Use $data[‘element_name’].

}

$form->process(‘process_data’);

Figure 12.20 The processed form data.

Figure 12.19 The complete HTML form. The data
entered here is validated, filtered, and then
redisplayed (Figure 12.20).

Using Mail_Mime
Next up on my march through PEAR is the
Mail_Mime package (and, ever so slightly,
Mail). PHP’s built-in mail() function is sim-
ple to use, but it does have its shortcomings.
For starters, you cannot use it with an SMTP
server that requires authentication. Second,
it’s not very easy to use it for sending HMTL
email or email with attachments. A solution
is to use PEAR’s Mail and Mail_Mime classes.
The documentation for both is slight, but I
can provide you with more than enough
functional knowledge.

As a preview to what you’ll see in the next
two examples, the Mail_Mime class is used to
create the proper email code (there are pages
and pages of documentation as to how emails
are formatted). In layman’s terms, Mail_Mime
turns the information you need to send—be
it HTML or attachments—into the proper
syntax for an email message. The Mail class
is then used to send that message.

Sending HTML email
To start, you’ll need to include two class def-
initions (after having installed both PEAR
packages, of course):

require_once (‘Mail.php’);

require_once (‘Mail/mime.php’);

You’ll also want to establish your message
body. For HTML emails, you should create
a plain text and an HTML equivalent. For
the HTML content, it should be a complete
HTML document:

$text = ‘Plain text version’;

$html = ‘<!DOCTYPE html…

</body>

</html>’;

Now create a new Mail_Mime object:

$mime = new Mail_Mime();

continues on next page

469

Using PEAR

U
sin

g
 M

ail_M
im

e

Using the object’s methods, set the email’s
body for both the plain text and the HTML
versions:

$mime->setTXTBody($text);

$mime->setHTMLBody($html);

Before sending the email, the extra headers
have to be generated: who the email is from
and what the subject is. There are separate
methods for each:

$mime->setFrom(‘this@address.com’);

$mime->setSubject(‘Your Email Subject’);

You can also use addCc() and addBcc() to
carbon copy and blind carbon copy other
addresses.

Now that all this information has been
stored in the object, use the get() and head-

ers() methods to fetch the generated code
for use with the Mail class:

$body = $mime->get();

$headers = $mime->headers();

Note that you must call these two functions
in this order as the headers() method partly
uses the result of the get() method.

Using SMTP with Mail

One of the features of the Mail class is
that it can send an email using three dif-
ferent methods: PHP’s mail() function,
the server’s sendmail application, or an
SMTP server. PHP’s mail() function can
also use an SMTP server, but not if that
server requires authentication.

If running PHP on your own computer,
you can install a free SMTP server or just
tap into one likely provided by your
Internet provider or Web host. To do so,
first create an array containing the SMTP
server address and your authentication
information:

$smtp[‘host’] = ‘smtp.hostname.com’;

$smtp[‘auth’] = true;

$smtp[‘username’] =

➝ ‘username@hostname.com’;

$smtp[‘password’] = ‘password’;

The auth element just indicates that
authentication should be used. Now use
this array as the second parameter in the
Mail factory() method:

$mail =& Mail::factory(‘smtp’,

➝ $smtp);

470

Chapter 12

U
si

n
g

 M
ai

l_
M

im
e

Figure 12.21 Aside from the all-capital BODY and
HEADERS, this is the code generated by the
Mail_Mime class.

The result is two pieces of data that can be
used in an email (print their values to see
the end result, Figure 12.21). Finally, the
Mail class can be used to send the actual
email.

To do so, you don’t actually create an object
of type Mail but rather invoke the class’s
factory() method directly:

$mail =& Mail::factory($backend);

For the $backend value, this can be: mail
(PHP’s built-in mail() function); sendmail
(if installed on the server); or smtp (to use
an SMTP server). Assuming you can use the
mail() function or sendmail on the server
already, either of those options is fine. To
use an SMTP server, see the sidebar “Using
SMTP with Mail.”

The final step is to send the email, providing
the to address, the headers, and the body:

$mail->send(‘to@address.com’, $headers,

➝ $body);

471

Using PEAR

U
sin

g
 M

ail_M
im

e

To send HTML email:

1. Create a new PHP script in your text edi-
tor or IDE, starting with the standard
HTML (Script 12.6).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html

xmlns=”http://www.w3.org/1999/xhtml”

➝ xml:lang=”en” lang=”en”>

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Sending HTML Email</title>

7 </head>

8 <body>

9 <?php # Script 12.6 - mail_html.php

10

11 /* This page sends an HTML email.

12 * This page requires the PEAR Mail and Mail_Mime packages.

13 */

14

15 // Include the class definitions:

16 require_once (‘Mail.php’);

17 require_once (‘Mail/mime.php’);

18

19 // Define the data to use in the email body:

20 $text = ‘Testing HTML Email

21 ----------

22 Just some simple HTML.’;

23

24 $html = ‘<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

25 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

26 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

27 <head>

28 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

29 <title>Testing HTML Email</title>

Script 12.6 This sequence of potentially confusing code simplifies the complex process of sending HTML email
(Figure 12.23).

472

Chapter 12

U
si

n
g

 M
ai

l_
M

im
e

<head>

<meta http-equiv=”content-type”

content=”text/html; charset=iso-8859-

1” />

<title>Sending HTML

Email</title>

</head>

<body>

<?php # Script 12.6 - mail_html.php

continues on page 474

30 </head>

31 <body>

32 <h1>Testing HTML Email</h1>

33 <hr />

34 <p>Just some simple HTML.</p>

35 </body>

36 </html>’;

37

38 // Create the Mail_Mime object:

39 $mime = new Mail_Mime();

40

41 // Set the email body:

42 $mime->setTXTBody($text);

43 $mime->setHTMLBody($html);

44

45 // Set the headers:

46 $mime->setFrom(‘me@address.com’);

47 $mime->setSubject(‘Testing HTML Email’);

48

49 // Get the formatted code:

50 $body = $mime->get();

51 $headers = $mime->headers();

52

53 // Invoke the Mail class’s factory() method:

54 $mail =& Mail::factory(‘mail’);

55

56 // Send the email.

57 $mail->send(‘you@address.com’, $headers, $body);

58

59 // Delete the objects:

60 unset($mime, $mail);

61

62 // Print a message, if you want.

63 echo ‘<p>The mail has been sent (hopefully).</p>’;

64 ?>

65 </body>

66 </html>

Script 12.6 continued

473

Using PEAR

U
sin

g
 M

ail_M
im

e

2. Include the class definitions.

require_once (‘Mail.php’);

require_once (‘Mail/mime.php’);

3. Define the email body, in both plain text
and HTML formats.

$text = ‘Testing HTML Email

Just some simple HTML.’;

$html = ‘<!DOCTYPE html PUBLIC “-

➝ //W3C//DTD XHTML 1.0

➝ Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Testing HTML

➝ Email</title>

</head>

<body>

<h1>Testing HTML Email</h1>

<hr />

<p>Just some simple

➝ HTML.</p>

</body>

</html>’;

The important part here is that the
HTML version is a complete HTML
page, like one you would view in your
Web browser.

474

Chapter 12

U
si

n
g

 M
ai

l_
M

im
e

4. Create the Mail_Mime object.

$mime = new Mail_Mime();

5. Set the email body.

$mime->setTXTBody($text);

$mime->setHTMLBody($html);

These two methods establish the body of
the email, one in plain text and the other
in HTML.

6. Set the headers.

$mime->setFrom(‘me@address.com’);

$mime->setSubject(‘Testing HTML

➝ Email’);

You should obviously change the from
value to something meaningful. If using
an SMTP server, you’ll likely need to use
that server’s corresponding address.

7. Retrieve the formatted code.

$body = $mime->get();

$headers = $mime->headers();

These two functions retrieve the generat-
ed result of using the Mail_Mime class.

8. Invoke the Mail class’s factory() method.

$mail =& Mail::factory(‘mail’);

I’m glossing over this piece of syntax,
which isn’t that important so long as you
follow it exactly. For the factory() func-
tion’s argument, use mail, sendmail, or
smtp. For details on the SMTP option,
see the sidebar “Using SMTP with Mail.”

9. Send the email.

$mail->send(‘you@address.com’,

➝ $headers, $body);

Change the to address here to your email
address.

Figure 12.24 The version of the message seen by mail
clients that do not allow HTML email.

Figure 12.23 The simple, but functionally valid, HTML
email.

Figure 12.22 The resulting Web page is
nothing to be excited about; the real magic
occurs behind the scenes.

10. Delete the objects and complete
the page.

unset($mime, $mail);

echo ‘<p>The mail has been sent

➝ (hopefully).</p>’;

?>

</body>

</html>

The echo() statement is used here just
so that something shows in the Web
browser.

11. Save the file as mail_html.php, place it in
your Web directory, and test in your
Web browser (Figure 12.22).

12. Check your email to see the result
(Figure 12.23).

13. If possible, view the plain text alterna-
tive version of the email (Figure 12.24).

Most mail clients have some way for you
to view the plain text alternative. Check
your menus, help files, or documentation
for suggestions.

475

Using PEAR

U
sin

g
 M

ail_M
im

e

Sending HTML with images
One of the reasons the resulting email in the
preceding example is so plain (Figure 12.23)
is that it lacks any images, a rudimentary
element in Web pages. There are two ways
you can incorporate images in your HTML
emails. The first is easy and foolproof: just
use the img tag, with an absolute URI for the
image.

<p>Some HTML</p>

<img src=”http://www.yoursite.com/path/

➝ to/image.ext” />

Using this method, when the email is
received, the mail client will attempt to
download that image from that URI. But this
method can also be frowned upon because
it’s used by very bad people to track when
spam reaches an address (the request for the
image sends a signal to that server indicat-
ing that the address was good).

476

Chapter 12

U
si

n
g

 M
ai

l_
M

im
e

An alternative is to use the Mail_Mime
addHTMLImage() method. Start by putting the
img tag in the HTML, but just use the
image’s exact name as the source:

$html = ‘......’;

Then, add the image using the class:

$mime->addHTMLImage(‘/path/to/

➝ image.ext);

Then add the HTML to the email:

$mime->setHTMLBody($html);

To send email with images:

1. Open mail_html.php (Script 12.6) in your
text editor or IDE, if it is not already open.

2. If you want, change the page title (line 6,
Script 12.7).

<title>Sending HTML Email with an

➝ Image</title>

continues on page 478

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Sending HTML Email with an Image</title>

7 </head>

8 <body>

9 <?php # Script 12.7 - mail_image.php

10

11 /* This page sends an HTML email.

12 * This page requires the PEAR Mail and Mail_Mime packages.

13 * The email now contains an image.

14 */

15

16 // Include the class definitions:

17 require_once (‘Mail.php’);

18 require_once (‘Mail/mime.php’);

19

20 // Define the data to use in the email body:

21 $text = ‘Testing HTML Email with an Image

22 ----------

23 Just some simple HTML.

Script 12.7 An image is built into the HTML email sent by this script.

24 You are not going to see the logo.’;

25

26 $html = ‘<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

27 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

28 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

29 <head>

30 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

31 <title>Testing HTML Email with an Image</title>

32 </head>

33 <body>

34 <h1>Testing HTML Email with an Image</h1>

35 <hr />

36 <p>Just some simple HTML.</p>

37

38 <p>That is what my logo would look like randomly placed in an email.</p>

39 </body>

40 </html>’;

41

42 // Create the Mail_Mime object:

43 $mime = new Mail_Mime();

44

45 // Add the image:

46 $mime->addHTMLImage(‘logo2.png’);

47

48 // Set the email body:

49 $mime->setTXTBody($text);

50 $mime->setHTMLBody($html);

51

52 // Set the headers:

53 $mime->setFrom(‘me@address.com’);

54 $mime->setSubject(‘Testing HTML Email with an Image’);

55

56 // Get the formatted code:

57 $body = $mime->get();

58 $headers = $mime->headers();

59

60 // Invoke the Mail class’ factory() method:

61 $mail =& Mail::factory(‘mail’);

62

63 // Send the email.

64 $mail->send(‘you@address.com’, $headers, $body);

65

66 // Delete the objects:

67 unset($mime, $mail);

68

69 // Print a message, if you want.

70 echo ‘<p>The mail has been sent (hopefully).</p>’;

71 ?>

72 </body>

73 </html>

Script 12.7 continued

477

Using PEAR

U
sin

g
 M

ail_M
im

e

3. If you want, update the plain text version
of the email.

$text = ‘Testing HTML Email with an

➝ Image

Just some simple HTML.

You are not going to see the logo.’;

4. Change the definition of the HMTL ver-
sion of the email body so that it includes
an image.

$html = ‘<!DOCTYPE html PUBLIC “-

➝ //W3C//DTD XHTML 1.0

➝ Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html

xmlns=”http://www.w3.org/1999/xhtml”

➝ xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Testing HTML Email with

➝ an Image</title>

</head>

<body>

<h1>Testing HTML Email with an

➝ Image</h1>

<hr />

<p>Just some

➝ simple HTML.</p>

<p>That is what my logo would look

➝ like randomly placed in an

➝ email.</p>

</body>

</html>’;

The important addition here is the

➝ line

I’ve also made minor modifications to
the title and other text.

Sending Email with Attachments

How to send emails with attachments is
another common question PHP program-
mers have. Thanks to Mail_Mime, it’s sur-
prisingly simple. Whether you’re creating
plain text or HTML emails, just use the
addAttachment() method:

$mime->addAttachment($file_name,

➝ $file_type);

The first argument used is the full name
and path to the file on the server. This
might be ../path/to/mydoc.doc or
C:\data\spreadsheet.xls. The second
argument is the file’s type, like applica-
tion/pdf.

With this one line of code, assuming that
it can find the file on the server, you can
quickly send attachments with your
emails.

478

Chapter 12

U
si

n
g

 M
ai

l_
M

im
e

Figure 12.27 The plain text alternative of the message
shows the image as an attachment (in my mail client).

Figure 12.26 The received email now includes an
image (built into the message, not fetched from a
server).

Figure 12.25 Not much new happening here, but
check your email (Figure 12.26)!

5. After creating the object, add the image.

$mime->addHTMLImage(‘logo2.png’);

Because the src of the image in the
HTML is logo2.png, the name of the file
here must match that exactly. This code
assumes that the file logo2.png is in the
same directory as this script. To include
an image located elsewhere, use an
absolute or relative path:

$mime->addHTMLImage(‘/path/to/

➝ logo2.png’);

Whatever the location of the file on the
server, the src in the HTML should
remain just logo2.png.

6. If you want, update the email’s subject.

$mime->setSubject(‘Testing HTML Email

➝ with an Image’);

7. Save the file as mail_image.php, place it
in your Web directory, and test in your
Web browser (Figure 12.25).

8. Check your email to see the result
(Figure 12.26).

9. If possible, view the plain text alternative
version of the email (Figure 12.27).

479

Using PEAR

U
sin

g
 M

ail_M
im

e

This page intentionally left blank

Of all the buzzwords to enter the computer lexicon in the past couple of years, Ajax
may be the “buzziest.” Ajax, which stands for Asynchronous JavaScript and XML (or
not, depending upon whom you ask), changes the client/server relationship so that
server interactions can take place without any apparent action on the part of the
client. In truth, Ajax is just a label given to functionality that’s been present for years,
but sometimes a good label helps, and when a powerhouse like Google uses Ajax (for
Gmail, Google Suggest, and more), people pay attention.

In this chapter I provide an introduction to the Ajax concept, with PHP and MySQL
as its back end. As Ajax is still comparatively new, there are new ideas and debates
for each aspect of the technology, but in two different examples I can demonstrate
the entire soup-to-nuts of what Ajax is about and, in the process, provide real-world
code. Because the heart of Ajax really is JavaScript and the Document Object Model
(DOM), the PHP in this chapter will be basic. As sophisticated JavaScript may be new
territory for you, the chapter concludes with a discussion of debugging techniques, as
resolving Ajax problems requires special approaches.

481

Ajax
13

A
jax

Introduction to Ajax
Before getting into the code, you should
understand what, exactly, Ajax is and how it
differs from what you currently do with PHP.
As you know, PHP is primarily a Web-based
technology (although it can be used from
the command line—see Chapter 11, “PHP’s
Command-Line Interface”). This means that
PHP does its thing whenever a server request
is made. A user goes to a Web page or submits
a form; the request is made of the server;
PHP handles that request and returns the
result. Each execution of some PHP code
requires an active request and a redrawing of
the Web browser (Figure 13.1). For the end
user, this means they see their browser leave
the current page, access the new one, down-
load the new page’s content, and display the
content, repeating as necessary.

The secret to Ajax is that it can make the
server request happen behind the scenes
while still changing what the user sees as
if they actively made the server request.
JavaScript is really the key technology here.

With an Ajax transaction, JavaScript, which
does its thing within a Web browser, makes
the request of the server and then handles
that request. The Web page can then be
updated without ever seeming to leave the
current page (Figure 13.2). In action, this
might mean:

1. The end user goes to a Web page.

2. The user types something in a box, clicks
a button, or drags something with their
cursor.

Figure 13.2 The Ajax model, where the client/server
data transfer can happen unbeknownst to the end
user.

Figure 13.1 The typical client/server model, where
each data transfer is apparent to the end user.

482

Chapter 13

In
tr

o
du

ct
io

n
 t

o
 A

ja
x

What Is Asynchronous?

One of the key components of Ajax is its
asynchronous behavior. This term, which
literally means not synchronous, refers to
a type of communication where one side
(say, the client) does not have to wait for
the other side (the server) before doing
something else.

In an asynchronous transaction, the
user can do something that makes the
JavaScript request data from the server.
While the JavaScript is awaiting that
data, which it’ll then display in the
Web browser, the user is free to do
other things, including other things that
involve JavaScript. So the asynchronicity
makes the experience more seamless.

On the other hand, you can perform
synchronous transactions, if you are in
a situation where the user should wait
until the data is in.

3. Whatever the user does in Step 2 triggers
JavaScript to request something from the
server.

4. The server handles that request (using
PHP in this chapter), returning some data.

5. JavaScript receives that data and uses it
to update the Web page, without reload-
ing it.

Looking at all the technologies involved,
you start with (X)HTML, which is the
foundation of all Web pages. Then there’s
JavaScript, which runs in the Web browser,
asks for and receives data from the server,
and manipulates the HTML by referring to
the Document Object Model (DOM, an
object-based representation of the elements
of a Web page). And finally, on the server,
you have our friend PHP. The last technolo-
gy commonly involved is XML (Extensible
Markup Language), which can be used in the
data transfer. I say “can be,” because you don’t
have to use XML. In fact, this chapter has
two examples—one simple, one complex—
without any XML.

✔ Tip

■ Jesse James Garrett coined the term Ajax
in February 2005. He has since claimed
that Ajax is not an acronym. It just, you
know, seems like an acronym.

483

Ajax

In
tro

du
ctio

n
 to

 A
jax

A Simple Example
One of my personal favorite best uses of Ajax
starts with a commonplace Web presence: a
registration form (Figure 13.3). When using
PHP to validate a registration form, there are
many steps you’d take, from checking that all
the required fields are filled out to validating
the values in certain fields (e.g., a valid email
address, a valid date of birth). If the registra-
tion process requires a username for logging
in, PHP would also check the database to see
if that username is available. With a tradi-
tional model, this check couldn’t take place
until the form was submitted. With Ajax, this
check can take place prior to form submis-
sion (Figure 13.4), saving the user from hav-
ing to go back, think up a new username, and
resubmit the form, repeating as necessary.

In developing this Ajax example, I’ll work
the application backward, which I think
makes it easiest to understand the whole
process (it also leaves the newer information
toward the end). For the server-side stuff, it’s
really basic PHP and MySQL. I won’t develop
it fully, but you shouldn’t have a problem
fleshing it out when it comes time for you to
implement this in a real site.

Figure 13.4 The availability of the requested username
will be indicated prior to submitting the form to the
server.

Figure 13.3 The basic registration form.

484

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Figure 13.6 Creating the table.

Figure 13.5 I’ll be creating the table in the test
database, using the mysql client.

Creating the database
This example will involve user registration.
This might be part of a forum, e-commerce
site, or whatever. At the very minimum, a
users table is necessary, with fields for the
user ID, username, password, first name, last
name, and email address. For demonstration
purposes, some sample data needs to be
entered as well.

To create and populate the database:

1. Access your MySQL database using the
mysql client.

You can also use phpMyAdmin or what-
ever other interface you prefer.

2. Select the test database (Figure 13.5).

USE test;

Since this is just an example, I’ll create
the table within the test database.

3. Create the users table (Figure 13.6).

CREATE TABLE users (

user_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

username VARCHAR(20) NOT NULL,

userpass CHAR(40) NOT NULL,

first_name VARCHAR(20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

email VARCHAR(60) NOT NULL,

PRIMARY KEY (user_id),

UNIQUE (username)

);

The table contains just six fields; you’ll
likely want to expand it for your real-
world needs. The user_id is the primary
key, and the username field must be
unique for each row. I set the userpass
field as a CHAR(40), as I’ll encrypt pass-
words using SHA(), which returns a string
40 characters long. The table also has slots
for the user’s name and email address.

485

Ajax

A
 S

im
ple Exam

ple

4. Populate the users table (Figure 13.7).

INSERT INTO users (username,

➝ userpass, first_name, last_name,

➝ email) VALUES

(‘sherif’, SHA(‘deadwood1’), ‘Seth’,

➝ ‘Bullock’, ‘seth@address.com’),

(‘Al’, SHA(‘deadwood2’), ‘Al’,

➝ ‘Swearengen’, ‘al@thegem.org’),

(‘Garret’, SHA(‘deadwood3’), ‘Alma’,

➝ ‘Garret’, ‘agarret@address.net’),

(‘starman’, SHA(‘deadwood4’), ‘Sol’,

➝ ‘Star’, ‘solstar@bank.com’);

I’m just throwing in a few random
records. You can use your own, type this
query exactly as it is, or download the
SQL commands from the book’s corre-
sponding Web site.

5. Confirm the contents of the users table
(Figure 13.8).

SELECT * FROM users;

I’m going to focus on debugging quite a
bit in this chapter because there are
many technologies being used and you
are probably less familiar with some of
them. The first debugging technique is to
know—for certain—what data you have
in the server.

✔ Tip

■ You don’t have to use MySQL for this
example; you could use PostgreSQL,
Oracle, SQLite, a text file, or even a
simple array.

Figure 13.8 Make sure you know what’s in your
database before proceeding! Doing so will make
debugging that much easier.

Figure 13.7 Populating the table.

486

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Programming the PHP
In discussing this example, I state that the
Ajax aspect of the application will be to
check that a username is available prior to
submitting the form to the server. This PHP
script, which is the server side of the Ajax
process, just needs to check the availability
of a provided username.

The script will be written so that it accepts a
username in the URL; the script is invoked
using:

http://hostname/checkusername.php?

➝ username=XXXX

The PHP script then runs a query on the
database to see if this username—XXXX—
has already been registered. Finally the
script should return a message indicating
the availability of that username. This
should all be quite easy for even a beginning
PHP programmer.

One little quirk with this page: It will not
use any HTML (gasp!). As this page won’t
be intended to be viewed directly in a Web
browser, HTML is unnecessary.

487

Ajax

A
 S

im
ple Exam

ple

To create the PHP script:

1. Create a new PHP script in your text edi-
tor or IDE (Script 13.1).

<?php # Script 13.1 -

➝ checkusername.php

1 <?php # Script 13.1 - checkusername.php

2

3 /* This page checks a database to see if

4 * $_GET['username'] has already been registered.

5 * The page will be called by JavaScript.

6 * The page returns a simple text message.

7 * No HTML is required by this script!

8 */

9

10 // Validate that the page received $_GET['username']:

11 if (isset($_GET['username'])) {

12

13 // Connect to the database:

14 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'test') OR die ('The

availability of this username will be confirmed upon form submission.');

15

16 // Define the query:

17 $q = sprintf("SELECT user_id FROM users WHERE username='%s'", mysqli_real_escape_string($dbc,

trim($_GET['username'])));

18

19 // Execute the query:

20 $r = mysqli_query($dbc, $q);

21

22 // Report upon the results:

23 if (mysqli_num_rows($r) == 1) {

24 echo 'The username is unavailable!';

25 } else {

26 echo 'The username is available!';

27 }

28

29 mysqli_close($dbc);

30

31 } else { // No username supplied!

32

33 echo 'Please enter a username.';

34

35 }

36 ?>

Script 13.1 This simple PHP script takes a submitted username (passed in the URL) and sees if it is already recorded
in the database. Simple text messages are displayed, indicating the status.

488

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Figure 13.9 If the PHP script could not connect to the
database, then the availability of the username could
not be determined. That information could be shown
in the registration form.

2. Validate that the page received a
username.

if (isset($_GET[‘username’])) {

No use in querying the database without
a username!

3. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘test’) OR

➝ die (‘The availability of this

➝ username will be confirmed upon

➝ form submission.’);

For sake of simplicity, I’m hard-coding
the database connection into this script
(as opposed to including a MySQL file for
that purpose). Note that I’m using the
MySQL Improved extension, available as
of PHP 5 and MySQL 4.1. If you’re using
older versions of either technology, you’ll
want to switch to the mysql_* functions.

You will likely need to change the MySQL
access information provided here to val-
ues that correspond to a valid username/
password/hostname for your server.

If a connection to the database cannot be
established, this page returns a generic
message. This isn’t strictly necessary, but
remember that anything returned by this
script will be displayed on the HTML
form page (Figure 13.9).

continues on next page

489

Ajax

A
 S

im
ple Exam

ple

4. Define and execute the query.

$q = sprintf(“SELECT user_id FROM

➝ users WHERE username=’%s’”,

➝ mysqli_real_escape_string($dbc,

➝ trim($_GET[‘username’])));

$r = mysqli_query($dbc, $q);

The query will be

SELECT user_id FROM users WHERE

➝ username=’XXXX’

To create it, I use the sprintf()
function (see Chapter 1, “Advanced
PHP Techniques,” if you are not familiar
with it). The provided username will be
trimmed and run through the mysqli_
real_escape_string() function for
improved security.

5. Report upon the results of the query.

if (mysqli_num_rows($r) == 1) {

echo ‘The username is

➝ unavailable!’;

} else {

echo ‘The username is

➝ available!’;

}

This script just prints a string indicating
the results of the query. These are the
two primary responses, assuming there
were no errors.

6. Close the database connection and com-
plete the page.

mysqli_close($dbc);

} else {

echo ‘Please enter a username.’;

}

?>

The else clause here applies if no user-
name was supplied when calling the
script.

7. Save the file as checkusername.php and
place it in your Web directory.

490

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Figure 13.13 If the PHP script could not connect to the
database in order to perform the query, this message
is shown.

Figure 13.12 If the provided username has been
taken, this is the result.

Figure 13.11 If the provided username has not been
registered, the PHP script displays this message (and
nothing more).

Figure 13.10 Without providing a username in the
URL, this is the result.

Testing the PHP
To fully understand what’s happening in
the client, it’s best to understand what the
server side of things is doing. Toward that
end, you should quickly confirm what
checkusername.php does in different situa-
tions. To do so, run it directly in your Web
browser, offering different usernames in
the URL.

You should know by now how to test a PHP
script, of course. The important point here is
that debugging an Ajax application begins
by confirming what the server is sending
back to the client.

To test the PHP script:

1. Load checkusername.php in your Web
browser (Figure 13.10).

2. Rerun the script, providing an available
username in the URL (Figure 13.11).

Doing so is just a matter of adding
?username=XXXX to the end of the URL.

3. Rerun the script, providing an unavailable
username in the URL (Figure 13.12).

Use one of the registered usernames
(see Figure 13.8 or your own users table
contents). So I might test the script with
?username=al.

4. If you want, check the result if the PHP
script couldn’t connect to the database
(Figure 13.13).

The easiest way to do so is to change the
connection parameters so that they are
invalid.

491

Ajax

A
 S

im
ple Exam

ple

Writing the JavaScript, part 1
For many PHP programmers the JavaScript
will be the most foreign part of the Ajax
process. It’s also the most important, so I’ll
go through the thinking in detail. I’m break-
ing the JavaScript code into two sections:
the creation of the XMLHttpRequest object
and the use of said object. The first chunk of
code will be used by both examples in this
chapter (and can pretty much be used by
any Ajax application you write). The second
chunk of code will be application-specific.

To start, you’ll need to create an object
through which all the magic happens. For
this purpose, there is the XMLHttpRequest
class. The functionality defined within this
class is at the heart of all Ajax capabilities.

If the user’s browser supports the
XMLHttpRequest (which I’ll show you
how to test for in the next script), you’ll
want to make an object of this type:

var ajax = new XMLHttpRequest();

Windows Internet Explorer 5.x and 6.x do
not support XMLHttpRequest and instead
need to use an ActiveXObject:

var ajax = new

ActiveXObject(“Microsoft.XMLHTTP”);

And that’s really it to creating the object.
Even if you’ve never done any JavaScript
programming before, this is easy enough to
follow. In this next script, I’ll formally imple-
ment the two lines of code but wrap it in
some conditionals and try…catch blocks
(see Chapter 8, “Real-World OOP,” for a
discussion of PHP try…catch) to make sure
it’s done right.

492

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

1 // Script 13.2 - ajax.js

2

3 /* This page creates an Ajax request

object.

4 * This page is included by other pages

that

5 * need to perform an XMLHttpRequest.

6 */

7

8 // Initialize the object:

9 var ajax = false;

10

11 // Create the object...

12

13 // Choose object type based upon what's

supported:

14 if (window.XMLHttpRequest) {

15

16 // IE 7, Mozilla, Safari, Firefox,

Opera, most browsers:

17 ajax = new XMLHttpRequest();

18

19 } else if (window.ActiveXObject) { //

Older IE browsers

20

21 // Create type Msxml2.XMLHTTP, if

possible:

22 try {

23 ajax = new

ActiveXObject("Msxml2.XMLHTTP");

24 } catch (e1) { // Create the older

type instead:

25 try {

26 ajax = new

ActiveXObject("Microsoft.XMLHTTP");

27 } catch (e2) { }

28 }

29

30 }

31

32 // Send an alert if the object wasn't

created.

33 if (!ajax) {

34 alert ('Some page functionality is

unavailable.');

35 }

36

Script 13.2 This JavaScript file creates an object called
ajax of a browser-supported type. This object will be
used by the other JavaScript files (Scripts 13.3 and 13.6).

To write some of the JavaScript:

1. Create a new JavaScript script in your
text editor or IDE (Script 13.2).

// Script 13.2 - ajax.js

2. Initialize a variable.

var ajax = false;

In JavaScript you should declare variables
using the keyword var. Here I declare the
variable (called ajax, but it could be called
anything) and initially set its value to
false.

3. Create the XMLHttpRequest object, if
supported.

if (window.XMLHttpRequest) {

ajax = new XMLHttpRequest();

If the browser supports the
XMLHttpRequest object type, a new
object of that type will be created.
This will be the case for most browsers,
including Internet Explorer 7 (but not
earlier versions), Firefox, Mozilla, Safari,
and Opera.

4. Check if ActiveXObject is supported.

} else if (window.ActiveXObject) {

If the browser does not support
XMLHttpRequest, then an object of
type ActiveXObject should be created.
This only applies to Internet Explorer
versions prior to 7.

5. Try to create the ActiveXObject object.

try {

ajax = new

➝ ActiveXObject(“Msxml2.XMLHTTP”);

} catch (e1) {

try {

ajax = new

➝ ActiveXObject(“Microsoft.XMLHTTP”);

} catch (e2) { }

}

continues on next page

493

Ajax

A
 S

im
ple Exam

ple

Microsoft has developed several differ-
ent flavors of ActiveXObject XMLHTTP.
Ideally, you’d like to use the most current
one. Since there’s no way of testing what
versions are supported by the current
browser, two try…catch blocks will
attempt to make the object. If an object
of type Msxml2.XMLHTTP cannot be creat-
ed, then an attempt is made to make one
of type Microsoft.XMLHTTP.

Nothing is done with any caught excep-
tions, as a more general error handling
later in the script will suffice.

6. Complete the main conditional.

}

This closes the else if clause begun in
Step 4.

7. Send an alert if the object wasn’t created.

if (!ajax) {

alert (‘Some page functionality

➝ is unavailable.’);

}

If ajax is false, meaning that none of
the attempts to declare it as an object
succeeded, then the entire Ajax applica-
tion won’t work. In such a case, a simple
message is displayed to the end user
(Figure 13.14), although you don’t have
to do that.

8. Save the file as ajax.js and place it in
your Web directory.

This file should be put in the same direc-
tory as checkusername.php.

Figure 13.14 If the user’s browser supports JavaScript
but none of the attempts to make the XMLHttpRequest
object succeeds, this alert is displayed.

494

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

✔ Tips

■ If you have an Ajax application that per-
forms multiple Ajax transactions in the
same Web browser, you’ll want to modify
the code in ajax.js so that a JavaScript
function returns an XMLHttpRequest
object. Then you would call this function,
assigning the returned value to a new
variable for each separate Ajax transac-
tion. This may make more sense to you
once you’ve completed the first Ajax
example.

■ People are often (understandably) con-
fused about this point, but JavaScript is
unrelated to the programming language
Java. JavaScript is an implementation of a
scripting language called ECMAScript.

P r o p e r t y C o n t a i n s t h e …

onreadystatechange Name of the function to be
called when the readyState
property changes.

readyState Current state of the request
(see Table 13.2).

responseText Returned data as a string.
responseXML Returned data as XML.
status HTTP status code returned.

XMLHttpRequest Properties

Table 13.1 You’ll rely upon these XMLHttpRequest
properties in your JavaScript code.

Writing the JavaScript, part 2
The first sequence of JavaScript instructions
creates the ajax.js file. The code in that file
creates an XMLHttpRequest object, tailored for
the Web browser in use. Once you’ve estab-
lished the object, you can begin using it, start-
ing by opening a connection. Provide to the
open() method the type of request to make—
GET, POST, or PUT—and the URL to use:

ajax.open(‘get’, ‘scriptname.php’);

The object is called ajax, defined in the
ajax.js file. It opens a connection to
scriptname.php on the server, to which it
will make a GET request.

With this first example (checking a user-
name’s availability), you’ll need to modify
that open() code to pass the username
along to the script. You already know how
to do this:

ajax.open(‘get’, ‘checkusername.php?

➝ username=XXXX’);

Adding ?username=XXXX to the URL achieves
the desired result. If you look back at how
the checkusername.php script is used (Figures
13.11 and 13.12), this will make more sense.

The next step is to name the JavaScript user-
defined function to be called when the PHP

495

Ajax

A
 S

im
ple Exam

ple

script returns its results. The onreadystate-
change property takes this value. This prop-
erty is one of five important XMLHttpRequest
object properties listed in Table 13.1. Assign
to this property the name of the function,
without any parentheses:

ajax.onreadystatechange =

➝ call_this_function;

So the JavaScript will send the request to the
server, the server will send back a reply, and,
at that time, the call_this_function() func-
tion will be called. This function, defined in
a little bit, will take the returned data and
update the Web page accordingly.

The last step in this sequence is to send the
request. For GET requests, you should provide
the value null as its only argument:

ajax.send(null);

That wraps up the “making the request”
JavaScript; next is the handling of the returned
results (what the server-side PHP script sends
back). The first thing you’ll want to do is con-
firm that the request was successful. To do so,
check that the readyState is equal to 4 (see
Table 13.2 for the list of readyState values).

if (ajax.readyState == 4) {

// Handle the returned data.

continues on next page

Va l u e M e a n i n g

0 uninitialized
1 loading
2 loaded
3 interactive
4 complete

XMLHttpRequest readyState Values

Table 13.2 The five readyState values, of which the
last one is the most important for knowing when to
handle the returned data.

The readyState just indicates the status of
the request process: at first it’s uninitialized,
then the server page is loading, then it’s
completely loaded; next up is some interac-
tion and eventually the request is complet-
ed. Often these states will change very
quickly.

Along with the readyState value, you can
also check the status property to know if it’s
safe to process the returned data.

if ((ajax.readyState == 4) &&

(ajax.status == 200)) {

The status corresponds to the possible
HTTP status codes, with which you might
already be familiar. Table 13.3 has a small
sampling of them.

Having created the XMLHttpRequest object,
having performed the transaction, and
having confirmed the server results, the
final step is to use the returned data to
alter the Web browser content. The easiest
way to access that data is by referring to the
responseText property. This attribute stores
the results of the server request (i.e., the PHP
page), which, in this case, is one of the string
messages (The username is unavailable!, The
username is available!, etc.).

In this example, the JavaScript will take
this message and place it in the HTML.
To do that, the JavaScript uses the DOM
(Document Object Model, see the accompa-
nying sidebar “The Document Object Model”)
to identify where on the page the text should
go. Then the innerHTML property is assigned
a value:

document.getElementById(‘location_name’)

➝ .innerHTML = ‘Some message’;

C o d e M e a n i n g

200 OK
204 No content
400 Bad request
401 Unauthorized
403 Forbidden
404 Not found
408 Timeout
500 Internal server error

Common HTTP Status Codes

Table 13.3 Every requested server page returns an
HTTP status code. For Ajax purposes, 200 is the code
to watch for.

496

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

The Document Object Model

The Document Object Model is a repre-
sentation of an HTML page (also XML
data) in a tree form. For example, the
base of an HTML tree is the entire page,
found within HTML tags. From that base
there are two main branches: the HEAD
and the BODY. Within each of these there
are going to be many other branches, like
the TITLE in the HEAD or a P in the BODY.

The DOM provides an object-oriented
way to reference each branch and leaf on
this tree. For example, document.form.
username refers to the username input
in a form.

Rather than navigating the entire
tree, you can quickly address a
specific element by using document.
getElementById(‘id_name’). Thus
document.form.username and document.

getElementById(‘username’) are the
same thing (provided that the form has
an input with an ID of username).

This is just a basic introduction to the
DOM. You can either trust me and go
with the examples as is, or search the Web
for more information on this concept.

1 // Script 13.3 - checkusername.js

2

3 /* This page does all the magic for applying

4 * Ajax principles to a registration form.

5 * The users's chosen username is sent to a PHP

6 * script which will confirm its availability.

7 */

8

9 // Function that starts the Ajax process:

10 function check_username(username) {

11

12 // Confirm that the object is usable:

13 if (ajax) {

14

15 // Call the PHP script.

16 // Use the GET method.

17 // Pass the username in the URL.

18 ajax.open('get', 'checkusername.php?username=' + encodeURIComponent(username));

19

20 // Function that handles the response:

21 ajax.onreadystatechange = handle_check;

22

23 // Send the request:

24 ajax.send(null);

25

26 } else { // Can't use Ajax!

27 document.getElementById('username_label').innerHTML = 'The availability of this username

will be confirmed upon form submission.';

28 }

29

30 } // End of check_username() function.

31

32 // Function that handles the response from the PHP script:

33 function handle_check() {

34

35 // If everything's OK:

36 if ((ajax.readyState == 4) && (ajax.status == 200)) {

37

38 // Assign the returned value to a document element:

39 document.getElementById('username_label').innerHTML = ajax.responseText;

40

41 }

42

43 } // End of handle_check() function.

Script 13.3 The second JavaScript file defines two functions specific to the Ajax application being developed. One
function makes the request, and the second handles it.

To complete the JavaScript:

1. Create a new JavaScript script in your
text editor or IDE (Script 13.3).

// Script 13.3 - checkusername.js

continues on next page

497

Ajax

A
 S

im
ple Exam

ple

2. Begin defining the main function.

function check_username(username) {

This is the function that will be called
when something happens in the Web
browser. It takes one argument: the user-
name. This will be passed to the PHP script.

3. Check that the request object has a value.

if (ajax) {

A conditional checks if ajax has a value.
This is an important check because the
ajax.js code may not have been able to
make a valid request object.

As for variable scope, you can reference
ajax in this function because in JavaScript,
variables declared outside of any func-
tion are automatically available within
them. This differs from PHP.

4. Open the connection.

ajax.open(‘get’,

➝ ‘checkusername.php?username=’ +

➝ encodeURIComponent(username));

This code is similar to what I show in the
introduction to these steps. In JavaScript,
you cannot place variables within quota-
tion marks, so the username must be
concatenated (using the plus sign) to
the URL. For safety’s sake, I’m using the
encodeURIComponent() function, which
makes any submitted value safe to pass
in the URL (for example, it’ll turn spaces
into URL-safe pluses).

5. Declare what function handles the
response.

ajax.onreadystatechange =

➝ handle_check;

This line states that when the
readyState value of the object
changes, the handle_check()
function should be called.

498

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

6. Send the request.

ajax.send(null);

7. Complete the if (ajax) conditional.

} else {

document.getElementById

➝ (‘username_label’).innerHTML =

➝ ‘The availability of this username

➝ will be confirmed upon form

➝ submission.’;

}

The easiest way to change the HTML
page using JavaScript (and without
reloading the browser) is to refer to an
element’s innerHTML value. In the page’s
HTML, there will be a SPAN tag with a
name of username_label. This line of code
says that that element’s “innerHTML”—the
stuff between the tags—should be set to
The availability of….

8. Complete the check_username() function.

}

9. Begin defining the function for handling
the request result.

function handle_check() {

if ((ajax.readyState == 4) &&

➝ (ajax.status == 200)) {

Because the handle_check() function
will be called every time the readyState
changes, it should check to make sure
that the request is complete before doing
its thing. This conditional checks two
things: that the readyState is completed
(4) and that the server returned an OK
status (200).

11. Save the file as checkusername.js and
place it in your Web directory.

This file should be put into the same
directory as checkusername.php and
ajax.js.

499

Ajax

A
 S

im
ple Exam

ple

✔ Tips

■ Some Ajax examples you might come
across will use escape() instead of
encodeURIComponent() for safeguarding
data passed to the server. The escape()
method only works on ASCII characters,
leaving out-of-range characters unencoded.
Conversely, encodeURIComponent() works
on all UTF-8 characters, making it safer.

■ One modification you could make is to
separate the handle_check() conditional
so that the readyState and status prop-
erties are validated separately:

if (ajax.readyState == 4) {

if (ajax.status == 200) {

document.getElementById

➝ (‘username_label’).innerHTML =

➝ ajax.responseText;

} else {

document.getElementById(‘username_

➝ label’).innerHTML = ‘The

➝ availability of this username will

➝ be confirmed upon form

➝ submission.’;

}

}

10. Complete the handle_check() function.

document.getElementById

➝ (‘username_label’).innerHTML =

➝ ajax.responseText;

}

} // End of handle_check() function.

Like the code in Step 7, the HTML will
be changed using the innerHTML attrib-
ute. Here, after a successful request,
that attribute is assigned the value of
ajax.responseText. That property stores,
as a string, whatever was returned by
the server.

The main benefit would be that you
could take separate steps if the process
completes (readyState ==4) but the sta-
tus was something other than OK (200).

■ One of the constant Ajax debates is
whether or not one should use the
innerHTML property. It has been deprecat-
ed by the W3C (World Wide Web
Consortium, which governs Web stan-
dards), meaning that it could disappear
in future standards. But browsers don’t
really live and die by standards, and
using innerHTML is so popular, that I
doubt your Ajax code will be rendered
useless in the near future. The alternative
is to use something called nodes, which
can be tedious, and are not universally
supported.

Creating the HTML
By this point in time in the Ajax application’s
development, all of the challenging coding
has been completed. Besides actually making
the HTML page with the registration form,
two things still need to be accomplished:

◆ An event defined that starts the Ajax
process

◆ A place created in the HTML where the
resulting message will be placed

For the first item, some JavaScript event
must call the check_username() function.
Table 13.4 lists some common events. For
this form, I’ll attach an onchange() event to
the username form input.

For the second item, some understanding of
the Document Object Model (see the side-
bar “The Document Object Model” earlier in
the chapter) is required. For this example,
where one string is returned by the server,
you can make an empty SPAN to be filled by
the JavaScript.

E v e n t O c c u r s w h e n …

onfocus An element gains focus.
onblur An element loses focus.
onchange A form element’s value or state changes.
onreset The form is reset.
onsubmit The form is submitted.
onclick A mouse is clicked on an element.
onload The HTML page has completely loaded.

Common JavaScript Events

Table 13.4 A handful of the available JavaScript
events. The word “element” can refer to a form field,
an image, a button, even a link. The word “focus”
means that the cursor is placed within that form
element (as one common example).

500

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml">

4 <head>

5 <title>Registration Form</title>

6 <script src="ajax.js" type="text/javascript" language="javascript"></script>

7 <script src="checkusername.js" type="text/javascript" language="javascript"></script>

8 </head>

9 <body>

10 <!-- Script 13.4 - register.html

11 /* This page has the HTML registration form.

12 * The JavaScript code is included in the HEAD.

13 */

14 -->

15 <form action="register.php" method="post">

16 <fieldset>

17 <legend>Registration Form</legend>

18

19 <p>Username: <input name="username" type="text" size="20" maxlength="20"
onchange="check_username(this.form.username.value)" /> </p>

20

21 <p>Password: <input name="pass1" type="password" /></p>

22

23 <p>Confirm Password: <input name="pass2" type="password" /></p>

24

25 <p>First Name: <input name="first_name" type="text" size="20" maxlength="20" /></p>

26

27 <p>Last Name: <input name="last_name" type="text" size="20" maxlength="20" /></p>

28

29 <p>Email Address: <input name="email" type="text" size="20" maxlength="60" /></p>

30

31 <input name="submit" type="submit" value="Register" />

32

33 </form>

34 </fieldset>

35 </body>

36 </html>

Script 13.4 The HTML page that includes the two JavaScript files, makes the form, and ties the form into the JavaScript.

<title>Registration Form</title>

<script src=”ajax.js”

type=”text/javascript”

➝ language=”javascript”></script>

<script src=”checkusername.js”

➝ type=”text/javascript”

➝ language=”javascript”></script>

</head>

<body>

<!-- Script 13.4 - register.html

continues on next page

501

Ajax

A
 S

im
ple Exam

ple

To create the HTML form:

1. Create a new HTML page in your text
editor or IDE (Script 13.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html

xmlns=”http://www.w3.org/1999/xhtml”>

<head>

In the first part of this page, the most
important consideration is the inclusion
of both JavaScript files: ajax.js and
checkusername.js.

2. Begin the HTML form.

<form action=”register.php”

➝ method=”post”>

<fieldset>

<legend>Registration Form</legend>

To clarify one possible point of confusion,
the action value here is register.php.
This is a separate script from checkuser-
name.php. That file is used for Ajax
purposes and only confirms the availabil-
ity of a username. The purpose of regis-
ter.php is to handle the entire form. That
would likely also involve confirming the
username’s availability, but it would vali-
date the entire form as well, and then
actually record the new registrant in the
database.

I have not, in this chapter, created
register.php, but it should be pretty
easy to put together.

3. Create the username input.

<p>Username: <input name=”username”

➝ type=”text” size=”20”

➝ maxlength=”20”

➝ onchange=”check_username(this.form.

➝ username.value)” /> <span

➝ id=”username_label”></p>

For the HTML page, this line ties into
all the JavaScript functionality. First, the
input is called username and a JavaScript
event is attached to it. That event says
that when the value of this input changes,
the check_username() function should
be called, passing that function the user-
name input’s value. This gets the Ajax
ball rolling.

502

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Figure 13.15 The registration form when the user first
arrives.

After the input, a SPAN is added, with an
id (not a name) of username_label. This is
part of the DOM, and the JavaScript func-
tion that handles the server result will
dynamically assign text to this SPAN. When
the form is first loaded, this area after
the username is blank (Figure 13.15).

4. Complete the HTML form.

<p>Password: <input name=”pass1”

➝ type=”password” /></p>

<p>Confirm Password: <input

➝ name=”pass2” type=”password” /></p>

<p>First Name: <input

➝ name=”first_name” type=”text”

➝ size=”20” maxlength=”20” /></p>

<p>Last Name: <input name=”last_name”

➝ type=”text” size=”20”

➝ maxlength=”20” /></p>

<p>Email Address: <input name=”email”

➝ type=”text” size=”20”

➝ maxlength=”60” /></p>

<input name=”submit” type=”submit”

➝ value=”Register” />

</form>

5. Complete the HTML page.

</fieldset>

</body>

</html>

6. Save the file as register.html and place
it in your Web directory.

All four files—checkusername.php,
ajax.js, checkusername.js, and
register.html—should be in the
same directory.

503

Ajax

A
 S

im
ple Exam

ple

Testing the application
That’s it! You’ve now created an entire Ajax
application from scratch. You have created
four files:

◆ checkusername.php

◆ ajax.js

◆ checkusername.js

◆ register.html

These should all be in the same folder in
your Web directory. Now, to test the applica-
tion…but first: If yours does not work as it
should (as it does in the following figures),
you’ll need to use some good old-fashioned
debugging work to solve the problem. I dis-
cuss how to debug Ajax applications at the
end of this chapter.

504

Chapter 13

A
 S

im
pl

e
Ex

am
pl

e

Figure 13.17 The result (without reloading the Web
page) if a username is unavailable.

Figure 13.16 The result (without reloading the Web
page) if a username is available.

To test the Ajax application:

1. Load register.html in a Web browser.

How you load register.html is very
important. You absolutely must access
it through a URL! This might mean
http://localhost/register.html or
http://www.example.com/register.html.
If you just open the HTML file without
going through a URL, then the request
for the PHP script will not be made to
the server and it won’t work.

2. Type an available username in the
first text box, and then press Tab
(Figure 13.16).

Nothing will happen until you press Tab
or click in one of the other text inputs.
At that point, the JavaScript will see that
the value of the username has changed,
triggering the event, and calling the
check_username() function.

3. Change the username value to an
unavailable one (Figure 13.17).

You don’t have to reload the page or do
anything special; just delete what you
typed in Step 2, type something new,
and press Tab.

✔ Tip

■ If you submit the form, you’ll get a page
not found error, because the form is sent
to a register.php script, which has not
been created. When you want to imple-
ment this application in a live Web site,
write your own register.php that vali-
dates and handles the form as you other-
wise would.

505

Ajax

A
 S

im
ple Exam

ple

Full-Fledged Ajax
This chapter begins with a “simple” demon-
stration of Ajax, which turns out to be not all
that simple. The overall premise was that the
server returns a string that is put into the
HTML page. Accomplishing this requires
one PHP script, two JavaScript files, and an
HTML document. But what if you want to
return a lot of data to the client? You can
take heart in knowing that doing so won’t
require that much more work.

In this next, “full-fledged” example, the user
will enter their U.S. zip code in a form field
(Figure 13.18) and click the submit button.
Using Ajax, the browser will then be updated
to show a list of stores in order of how close
they are (in miles) to the supplied zip code
(Figure 13.19). Much of the technology
involved will be the same as it was in the
“simple” example. The main difference is that
a new idea is required for conveying between
the server and the client not only the data
but also what that data is. In particular, the
server will send back to the JavaScript sever-
al pieces of information—a name, an address,
a city, a state, and so on—for several stores.
The receiving page must be able to differen-
tiate between each piece of data.

The old-school and common way of doing
just that is to use XML. But XML can be a bit
of a pain to work with, and there is an easier
answer: JSON (JavaScript Object Notation).
JSON is a “lightweight data-interchange for-
mat” (see www.json.org) that JavaScript can
intuitively work with. So in this next exam-
ple, the biggest changes will involve creating
and using JSON instead of working with a
plain string.

Figure 13.19 The Ajax-generated result (without
reloading the page) after the user clicks the submit
button.

Figure 13.18 The simple form as the user sees it upon
first loading the page.

506

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

www.json.org

Figure 13.21 A JSON representation of the query
results in Figure 13.20.

Figure 13.20 One sample MySQL result using the
query from the PHP script.

Programming the PHP
The database for this example does not need
to be created as it was created in Chapter 3,
“Advanced Database Concepts.” See the side-
bar for details or if you have not yet created
the database. As for the PHP script used by
this Ajax example, it’ll differ from
checkusername.php in three ways:

◆ The MySQL query will return a table of
data (Figure 13.20).

◆ The PHP script needs to return this array
of data, or an indication that no data is
being returned.

◆ If an array of data is returned, it should
be in JSON format.

In the preceding example, it really didn’t
matter what, if anything, MySQL returned
because the PHP script was going to return
(i.e., print) a string message no matter what.
Here, there’ll be a distinction between
returning an array of data or nothing.

As for returning the data in the JSON format,
that format isn’t too hard to understand (go
to www.json.org for specifics of the syntax)
or to create for yourself in PHP. Figure 13.21
shows the data in Figure 13.20 in JSON for-
mat. That being said, the success of the
JavaScript using the JSON data relies upon
this format being exactly correct. To better
guarantee that end, I recommend using the
PECL json package (see http://pecl.php.
net/package/json). If you can’t or don’t want
to install a PECL package for this example,
then there are several JSON scripts written
in PHP available online. Just download and
use one of them.

507

Ajax

Fu
ll-Fledg

ed A
jax

Creating the Database

The database in this example will be
the zips database, exactly the same as it
was created in Chapter 3. The database
contains two tables: stores, which lists a
bunch of stores, and zip_codes, which
contains the latitude and longitude values
for every U.S. zip code.

If you have not yet created this database
on your server, get thee to Chapter 3 and
follow the steps therein.

Note that this database also contains one
stored function, called return_distance().
This function performs the math that cal-
culates the distance between two latitudes
and longitudes. Stored functions, and the
creation of this one in particular, are also
covered in Chapter 3. If you are not using
at least version 5 of MySQL (or a data-
base application that supports stored
procedures), you’ll need to see Chapter 3
for alternatives because the query used in
this example’s PHP script will not work
for you.

www.json.org
http://pecl.php.net/package/json
http://pecl.php.net/package/json

To create the PHP script:

1. Create a new PHP script in your text edi-
tor or IDE (Script 13.5).

<?php # Script 13.5 - stores_json.php

continues on page 510

1 <?php # Script 13.5 - stores_json.php

2

3 /* This page queries a database, returning

4 * a list of 10 stores and how far away

5 * they are from the submitted zip code.

6 * The page will be called by JavaScript.

7 * No HTML is required by this script!

8 */

9

10 $zip = FALSE; // Flag variable.

11

12 // Validate that the page received $_GET['zip']:

13 if (isset($_GET['zip']) &&

14 ((strlen($_GET['zip']) == 5) || (strlen($_GET['zip']) == 10))

15) {

16

17 // Chop off the last four digits, if necessary.

18 if (strlen($_GET['zip']) == 10) {

19 $zip = substr($_GET['zip'], 0, 5);

20 } else {

21 $zip = $_GET['zip'];

22 }

23

24 // Make sure it's numeric:

25 if (is_numeric($zip)) {

26

27 // Connect to the database:

28 $dbc = @mysqli_connect ('localhost', 'username', 'password', 'zips') OR die ('null');

29

30 // Get the origination latitude and longitude:

31 $q = "SELECT latitude, longitude FROM zip_codes WHERE zip_code='$zip'";

32 $r = mysqli_query($dbc, $q);

33

34 // Retrieve the results:

35 if (mysqli_num_rows($r) == 1) {

36

37 list($lat, $long) = mysqli_fetch_array($r, MYSQLI_NUM);

38

39 } else { // Invalid zip.

(script continues on next page)

Script 13.5 This PHP script accepts a U.S. zip code in the URL and uses it to fetch a list of stores from the database.
The list is then returned in JSON format.

508

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

40 $zip = FALSE;

41 mysqli_close($dbc);

42 }

43

44 } else { // Invalid zip.

45 $zip = FALSE;

46 }

47

48 }

49

50 if ($zip) { // Get the stores and distances.

51

52 // Big, important query:

53 $q = "SELECT name, CONCAT_WS('
', address1, address2), city, state, s.zip_code, phone,

round(return_distance($lat, $long, latitude, longitude)) AS dist FROM stores AS s LEFT JOIN

zip_codes AS z USING (zip_code) ORDER BY dist ASC LIMIT 5";

54 $r = mysqli_query($dbc, $q);

55

56 if (mysqli_num_rows($r) > 0) {

57

58 // Initialize an array:

59 $json = array();

60

61 // Put each store into the array:

62 while (list($name, $address, $city, $state, $zip, $phone, $distance) =

mysqli_fetch_array($r, MYSQLI_NUM)) {

63

64 $json[] = array('name' => $name,

65 'address' => $address,

66 'city' => ucfirst(strtolower($city)),

67 'state' => $state,

68 'zip' => $zip,

69 'phone' => $phone,

70 'distance' => $distance);

71

72 }

73

74 // Send the JSON data:

75 echo json_encode($json) . "\n";

76

77 } else { // No records returned.

78 echo 'null';

79 }

80

81 mysqli_close($dbc);

82

83 } else { // Invalid zip.

84 echo 'null';

85 }

86 ?>

Script 13.5 continued

509

Ajax

Fu
ll-Fledg

ed A
jax

2. Validate that the page received a zip code.

$zip = FALSE;

if (isset($_GET[‘zip’]) &&

((strlen($_GET[‘zip’]) == 5) ||

➝ (strlen($_GET[‘zip’]) == 10))

) {

To start, I assume that no valid zip
code has been received. Then I use a
conditional that checks if a zip code was
passed to this script in the URL and, if so,
if it’s either exactly five or ten characters
in length. A U.S. zip code will be either
12345 or 12345-6789, so this script should
accept both lengths.

3. Trim off the last four digits of the zip
code, if necessary.

if (strlen($_GET[‘zip’]) == 10) {

$zip = substr($_GET[‘zip’],

➝ 0, 5);

} else {

$zip = $_GET[‘zip’];

}

This conditional results in having a zip
code, now stored in $zip, that’s exactly
five characters long. The zip codes in the
database never use the -6789 extensions,
so that can be chopped off.

4. Confirm that the zip code is numeric.

if (is_numeric($zip)) {

This is the last validation routine for the
zip code. By this point in the script, the
zip code must be exactly five characters
long. All that is left to do is confirm that
it is numeric (because a submitted zip
code of pizza would match every check
thus far).

510

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

5. Connect to the database.

$dbc = @mysqli_connect (‘localhost’,

➝ ‘username’, ‘password’, ‘zips’) OR

➝ die (‘null’);

As with the other PHP script, I’m hard-
coding the database connection instead
of including an external file. Unlike the
last example, though, if a database con-
nection couldn’t be made, I don’t want
to return a message, just a null value
(which, in truth, is a string with a value
of null, not a real null). You’ll see how
this is used in the following JavaScript.

6. Define and execute the query.

$q = “SELECT latitude, longitude FROM

➝ zip_codes WHERE zip_code=’$zip’”;

$r = mysqli_query($dbc, $q);

This first query—the script contains
two—both validates the zip code (that
it’s an actual U.S. zip code) and retrieves
that zip code’s latitude and longitude.
That information will be necessary for
calculating distances between the given
zip code and each store.

7. Retrieve the results of the query.

if (mysqli_num_rows($r) == 1) {

list($lat, $long) =

➝ mysqli_fetch_array($r, MYSQLI_NUM);

} else {

$zip = FALSE;

mysqli_close($dbc);

}

If one row was returned, the zip code is
valid. Otherwise, the $zip variable should
be set as false, because it’s invalid.

10. Fetch the data from the query.

if (mysqli_num_rows($r) > 0) {

$json = array();

while (list($name, $address,

➝ $city, $state, $zip, $phone,

➝ $distance) =

➝ mysqli_fetch_array($r,

➝ MYSQLI_NUM)) {

If at least one row was returned, it
should be fetched. Before using a loop
that does that, an array is initialized.
This array will store the JSON data.

11. Add each record to the $json array.

$json[] = array(‘name’ => $name,

‘address’ => $address,

‘city’ =>

➝ ucfirst(strtolower($city)),

‘state’ => $state,

‘zip’ => $zip,

‘phone’ => $phone,

‘distance’ => $distance);

The while loop builds up a multidimen-
sional array, where the main array has
one array for each store. The subarrays
contain each store’s data, indexed by
data type (name, address, …). Because the
zip code database I used in Chapter 3
has each city’s name in all capital letters
(again, see Figure 13.20), I make the name
all lowercase, then capitalize the first
letter, prior to storing this information
in the array.

12. Complete the while loop and print
the data.

}

echo json_encode($json) . “\n”;

If you’ve installed the json PECL pack-
age, this is all you need to do to have
the script return properly formatted
JSON data (Figure 13.21).

continues on next page

511

Ajax

Fu
ll-Fledg

ed A
jax

8. Complete the conditionals begun in
Steps 4 and 2.

} else {

$zip = FALSE;

}

}

If the first five characters of the provided
zip code are not numeric, the flag vari-
able is set as false.

9. If the zip code is valid, perform the main
query.

if ($zip) {

$q = “SELECT name,

➝ CONCAT_WS(‘
’, address1,

➝ address2), city, state,

➝ s.zip_code, phone,

➝ round(return_distance($lat, $long,

➝ latitude, longitude)) AS dist FROM

➝ stores AS s LEFT JOIN zip_codes

➝ AS z USING (zip_code) ORDER BY

➝ dist ASC LIMIT 5”;

$r = mysqli_query($dbc, $q);

Getting to this main query is really the
point of the whole script. As you can see
in Figure 13.20, this query returns a store’s
name, full address, phone number, and
distance from the given zip code. It cal-
culates that distance using the return_
distance() stored procedure. For more
discussion of this query, see Chapter 3.

13. Complete the page.

} else {

echo ‘null’;

}

mysqli_close($dbc);

} else {

echo ‘null’;

}

?>

If no records were returned by the query,
then null is printed. The same applies if
no valid zip code was provided.

14. Save the file as stores_json.php, place
it in your Web directory, and test in your
Web browser (Figures 13.22, 13.23,
and 13.24).

Remember that you’ll need to test
this by appending ?zip=XXXXX or
?zip=XXXXX-XXXX to the URL.

Figure 13.24 The result using another valid zip code.

Figure 13.23 The result if no or an invalid zip code was
supplied.

Figure 13.22 The result if a valid zip code was
supplied.

512

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

Performing Synchronous
Transactions

This chapter’s examples perform asyn-
chronous transactions. You might, how-
ever, want to perform synchronous ones.
You’d do so in situations where you don’t
want the user to be doing anything else
while the JavaScript is waiting for the
server response.

To do this, set the open() method’s third
argument to false:

ajax.open(‘get’, ‘scriptname.php’,

➝ false);

If not provided, this third argument has a
default value of true, which is to say that
performing asynchronous transactions is
the default behavior.

Writing the JavaScript
Once you’ve written the server side of
things (the PHP script), you can move to
the JavaScript. The ajax.js file will still
be used by this application to create the
XMLHttpRequest object. But another JavaScript
file will be required that makes the server
request and handles the returned data. In
this example, the first part of that equation
will be simple, very much like the checkuser-
name.js check_username() function. The
second part of the equation—handling the
returned data and displaying it in the Web
page—will require new code, as the returned
data is in the JSON format.

For starters, the returned data will still be
accessed through the responseText attrib-
ute. But that value will be a string (as shown
in Figure 13.24), not easily usable. To turn it
into a more accessible format, you’ll run it
through the eval() function. You could do
something like

var data = eval(‘(‘ + ajax.responseText

➝ + ‘)’);

The extra parentheses are necessary in order
for this to work—just trust me on this one.
After running the JSON data through eval(),
you can refer to individual elements using
the data[x].attribute syntax. The overall
variable—data—is an array, meaning a spe-
cific element is at data[0], data[1], and so
on. Each array element is an object, whose
attributes are at .attribute. You’ll see this
better in the following script.

513

Ajax

Fu
ll-Fledg

ed A
jax

To write the JavaScript:

1. Create a new JavaScript script in your
text editor or IDE (Script 13.6).

// Script 13.6 - stores.js

continues on page 516

1 // Script 13.6 - stores.js

2

3 /* This page does all the magic for applying

4 * Ajax principles to a store retrieval form.

5 * The users's zip code is sent to a PHP

6 * script which will return data in JSON format.

7 */

8

9 // Function that starts the Ajax process:

10 function get_stores(zip) {

11

12 if (ajax) {

13

14 // Call the PHP script.

15 // Use the GET method.

16 // Pass the zip code in the URL.

17 ajax.open('get', 'stores_json.php?zip=' + encodeURIComponent(zip));

18

19 // Function that handles the response:

20 ajax.onreadystatechange = handle_stores;

21

22 // Send the request:

23 ajax.send(null);

24

25 return false;

26

27 } else { // Can't use Ajax!

28 return true;

29 }

30

31 } // End of get_stores() function.

32

(script continues on next page)

Script 13.6 In this JavaScript page, data is received in the JSON format, which is then accessed using object notation.

514

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

33 // Function that handles the response from the PHP script:

34 function handle_stores() {

35

36 // If everything's OK:

37 if ((ajax.readyState == 4) && (ajax.status == 200)) {

38

39 // Check the length of the response:

40 if (ajax.responseText.length > 10) {

41

42 // Send the response, in object form,

43 // to the show_stores() function:

44 show_stores(eval('(' + ajax.responseText + ')'));

45

46 } else {

47 document.getElementById('list').innerHTML = '<p>No stores matched your search.</p>';

48 }

49

50 }

51

52 } // End of handle_stores() function.

53

54 // Function that shows the list of stores:

55 function show_stores(stores) {

56

57 // Initialize a string:

58 var message = '';

59

60 // Get each store:

61 for (var i = 0 ; i < stores.length ; i++) {

62

63 // Add to the string:

64 message += '<h2>' + stores[i].name + '</h2>'

65 + '<p>' + stores[i].address + '
'

66 + stores[i].city + ', ' + stores[i].state + ' '

67 + stores[i].zip + '
'

68 + stores[i].phone + '
(approximately '

69 + stores[i].distance + ' miles)</p>';

70

71 }

72

73 // Place the string in the page:

74 document.getElementById('list').innerHTML = message;

75

76 } // End of show_stores() function.

Script 13.6 continued

515

Ajax

Fu
ll-Fledg

ed A
jax

2. Begin defining the main function.

function get_stores(zip) {

if (ajax) {

This is the function that will be called
when something happens in the Web
browser. It takes one argument: the zip
code. This will be passed to the PHP
script. Prior to that, though, a condi-
tional confirms that ajax has a value.

3. Create the request.

ajax.open(‘get’,

➝ ‘stores_json.php?zip=’ +

➝ encodeURIComponent(zip));

ajax.onreadystatechange =

➝ handle_stores;

ajax.send(null);

All of this code is much like that in
checkusername.js, although a different
URL and variable are used.

4. Complete the get_stores() function.

return false;

} else {

return true;

}

} // End of get_stores() function.

Unlike check_username() this function
will return a Boolean value. I’m doing this
because of the way that the function will
be called in the HTML page. Specifically,
it’ll be called when the user clicks the
submit button. That code is:

onclick=”return

➝ get_stores(this.form.zip.value)”

Because of the return in that statement,
whether or not the form is submitted
depends upon what value is returned by
the get_stores() function. If an ajax
request could be made, then false is
returned, stopping the form from being
submitted to the server (because the data
is already accessible). If an ajax request
could not be made, true is returned and

516

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

Figure 13.25 If the PHP script does not return any
data, this message is displayed in the HTML page.

the form will be sent to the server. This is
desired because if an ajax request could
not be made, the user should still be able
to get the information somehow.

5. Begin defining the function for handling
the request result.

function handle_stores() {

if ((ajax.readyState == 4) &&

➝ (ajax.status == 200)) {

This code is the same as it was in
checkusername.js.

6. Handle the returned data.

if (ajax.responseText.length > 10) {

show_stores(eval(‘(‘ +

➝ ajax.responseText + ‘)’));

} else {

document.getElementById(‘list’).

➝ innerHTML = ‘<p>No stores matched

➝ your search.</p>’;

}

The PHP script will return either the data
in JSON format (if the query worked) or
the word null (if the query doesn’t return
any results, if an invalid zip code is used,
or if the database connection cannot be
made). As a simple test to see if the stores
were returned, check if the length of the
response is greater than 10 (or some other
small number, allowing for both null
and some extra spaces). So if just null is
returned, the length will be less than 10
and the form will show that no match
was made (Figure 13.25). If any JSON
data was returned, then the length will
be greater than 10 and the show_stores()
function is called. This function is sent
one argument: the eval() version of the
responseText. The end result will be that
show_stores() receives an array of JSON
objects containing all the store data.

continues on next page

517

Ajax

Fu
ll-Fledg

ed A
jax

7. Complete the handle_stores() function.

}

} // End of handle_stores() function.

8. Begin defining the show_stores()
function.

function show_stores(stores) {

var message = ‘’;

As I mention in Step 6, this function
receives one argument: a bunch of JSON
data, assigned to the variable stores.
Then a string is initialized. This function
will take all the JSON data and concate-
nate it to the message variable, which will
then be assigned to the HTML.

9. Loop through the JSON data.

for (var i = 0 ; i < stores.length ;

➝ i++) {

message += ‘<h2>’ +

➝ stores[i].name + ‘</h2>’

+ ‘<p>’ + stores[i].address +

➝ ‘
’

+ stores[i].city + ‘, ‘ +

➝ stores[i].state + ‘ ‘

+ stores[i].zip + ‘
’

+ stores[i].phone + ‘<br

➝ />(approximately ‘

+ stores[i].distance + ‘

➝ miles)</p>’;

}

Ajax Frameworks

If you’d rather not mess with all this hand-
coding of JavaScript, there are tons of
freely available Ajax frameworks floating
about the Internet. Just a couple of exam-
ples are Rico (www.openrico.org), Dojo
(www.dojotoolkit.org), script.aculo.us
(http://script.aculo.us), XAJAX
(www.xajaxproject.org), and SAJAX
(www.modernmethod.com/sajax). What
you can do with these frameworks is
quite impressive!

The main downside to these is that they
often use Ruby (or Ruby on Rails) or
some other technology for the back end.
This means that while the client side of
things can be a snap to put together,
you’ll need to put more effort into figur-
ing out how to tie the client to the server
(your PHP code). But doing so isn’t
impossible, particularly with decent doc-
umentation and many Web searches, and
may be well worth your time.

It would also be worth your while to con-
sider the PEAR HTML_AJAX package
(Arpad Ray, one its developers, was kind
enough to help out on this chapter). It’s a
PHP-specific option, of course, so it may
be much easier to integrate into your
Web sites.

518

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

www.openrico.org
www.dojotoolkit.org
www.xajaxproject.org
www.modernmethod.com/sajax
http://script.aculo.us

Figure 13.26 The HTML of a single returned store
record (I use a JavaScript alert to display it—see the
debugging section at the end of the chapter).

A simple for loop can access every
stores element. The variable is an array
of objects, each object representing one
of the records returned by the MySQL
database. In the loop, you can refer to
stores.length to see how many items
are in the array (like count($stores) in
PHP). For each element in the array, the
loop refers to stores[i].

Then, all you need to do is refer to the
attributes of that object (the object being
stores[i]). These attributes correspond
to the array indexes set in the PHP script:
name, address, city, state, zip, phone, and
distance. Each of these values is concate-
nated to the message variable, along with
some HTML. Figure 13.26 shows an
individually formatted record.

10. Complete the show_stores() function.

document.getElementById(‘list’).

➝ innerHTML = message;

} // End of show_stores() function.

All that’s left to do is assign the com-
piled message variable to the proper
HTML element’s innerHTML.

11. Save the file as stores.js and place it in
your Web directory.

This file should be put into the same
directory as stores_json.php and
ajax.js.

✔ Tip

■ Using the JavaScript eval() function can
be unsafe if the source of the evaluated
code cannot be trusted. In such cases, a
JSON parser could be used instead:

show_stores(ajax.responseText.

➝ parseJSON());

519

Ajax

Fu
ll-Fledg

ed A
jax

Creating the HTML
The last step for this second example is to
make the HTML page. Like register.html,
this file must:

◆ Include the required JavaScript.

◆ Define an event that triggers the Ajax
process.

◆ Have a place in the HTML page for the
result to go.

As I mention in the steps for stores.js, the
event will be the clicking of the submit but-
ton. As for the last item, a DIV with an id of
list (matching that in the JavaScript) will be
defined.

To create the HTML form:

1. Create a new HTML page in your text
editor or IDE (Script 13.7).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml”>

<head>

<title>Find Stores</title>

<script src=”ajax.js”

➝ type=”text/javascript”

➝ language=”javascript”></script>

<script src=”stores.js”

➝ type=”text/javascript”

➝ language=”javascript”></script>

</head>

<body>

<!-- Script 13.7 - stores.html

Make sure that you include ajax.js and
stores.js.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"

2 "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/

xhtml">

4 <head>

5 <title>Find Stores</title>

6 <script src="ajax.js"

type="text/javascript"

language="javascript"></script>

7 <script src="stores.js"

type="text/javascript"

language="javascript"></script>

8 </head>

9 <body>

10 <!-- Script 13.7 - stores.html

11 /* This page has a simple HTML form.

12 * The JavaScript code is included in

the HEAD.

13 */

14 -->

15 <form action="find_stores.php"

method="post">

16

17 <p>Your Zip Code: <input name="zip"

type="text" size="10" maxlength="10" />

<input name="submit" type="submit"

value="Find a Store" onclick="return

get_stores(this.form.zip.value)" /></p>

18

19 </form>

20

21 <div id="list"></div>

22

23 </body>

24 </html>

Script 13.7 This HTML page includes the two required
JavaScript files and shows an HTML form.

520

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

Figure 13.27 The HTML page upon first loading it.

2. Make the HTML form.

<form action=”find_stores.php”

➝ method=”post”>

<p>Your Zip Code: <input name=”zip”

➝ type=”text” size=”10”

➝ maxlength=”10” /> <input

➝ name=”submit” type=”submit”

➝ value=”Find a Store”

➝ onclick=”return

➝ get_stores(this.form.zip.value)”

➝ /></p>

</form>

The form contains two elements: the
input box for the zip code and the sub-
mit button. The JavaScript onclick()
event is tied to this button.

If the get_stores() function returns the
value true, the form would be submitted
to find_stores.php. I have not, in this
chapter, created find_stores.php, but it
would do exactly what stores.php does,
except it would display the data in an
HTML page instead of printing it in
JSON format.

3. Create the DIV.

<div id=”list”></div>

After the form, a DIV is added, with an
id (not a name) of list. This is part of the
DOM that JavaScript will dynamically
assign text to. When the form is first
loaded, this area after the zip code is
blank (Figure 13.27).

continues on next page

521

Ajax

Fu
ll-Fledg

ed A
jax

4. Complete the HTML page.

</body>

</html>

5. Save the file as stores.html, place
it in your Web directory, along with
stores.php, ajax.js, and stores.js,
and test in your Web browser
(Figures 13.28 and 13.29).

Figure 13.29 Enter a different zip code and click the
button to fetch the new data.

Figure 13.28 Enter a zip code and click the button to
fetch the data.

522

Chapter 13

Fu
ll

-F
le

dg
ed

 A
ja

x

Making POST Requests

I didn’t have the need to in this chapter’s
two examples, but you can perform POST
requests with Ajax instead of GET ones. To
do so, start by naming that method when
invoking the open() function:

ajax.open(‘post’, ‘scriptname.php’);

Then you’ll need to pass the data when
calling the send() method. The data
should be a string in the format of

arg1=value&arg2=value&arg3=value…

You might accomplish this by doing
something like:

var post_data = ‘first_name=’ +

encodeURIComponent(first_name) +

‘&last_name=’ +

encodeURIComponent(last_name)

+’&city=’ + encodeURIComponent(city);

Finally:

ajax.send(post_data);

Debugging Ajax
Applications
Debugging your Ajax applications can be
quite challenging because:

◆ There are so many technologies
involved (PHP, MySQL, JavaScript,
DOM, and HTML).

◆ You may be less familiar with JavaScript
and DOM.

◆ Much of what happens goes on behind
the scenes.

◆ Because of the JavaScript, you really need
to test your applications on multiple
browsers and platforms to ensure univer-
sal reliability.

In my experience developing Ajax applica-
tions from scratch, I’ve picked up quite a
few useful debugging techniques, outlined
in the following steps.

523

Ajax

D
ebu

g
g

in
g

 A
jax A

pplicatio
n

s

To debug Ajax applications:

1. Run your applications through a URL!

For the PHP to work, it must be accessed
through http://. This means that you
must load your HTML page through
http://.

2. Test your PHP script separately.

This is something I include as a step for
both Ajax examples. Be in the habit of
doing this automatically, not just when
things go awry.

3. Test your database queries separately.

This, and many other unmentioned tech-
niques, are essential to debugging your
PHP scripts, should Step 2 indicate a
problem. Print out the exact query(ies)
PHP is running (Figure 13.30) and use
another interface, like the mysql client or
phpMyAdmin, to confirm the results.

4. Validate, if appropriate, the data returned
by the PHP script.

If the JavaScript function handling the
returned data expects to receive XML or
JSON, then the returned text must be in
strict XML or JSON format. To validate
that, follow Step 2, and then use a valida-
tion tool (search the Web) to confirm that
the data conforms to the proper format.

Figure 13.30 When PHP pages run dynamically
generated queries on a database, it’s best to know
exactly what that query is.

524

Chapter 13

D
eb

u
g

g
in

g
 A

ja
x

A
pp

li
ca

ti
o

n
s

Figure 13.32 This alert reveals the data, in JSON
format, received by the JavaScript from the PHP page.

Figure 13.31 JavaScript alert prompts, while generally
annoying, can be valuable debugging tools.

5. Use JavaScript alerts to indicate what’s
going on.

Since so much is going on behind the
scenes, it’s often necessary to shed some
light on the processes. Add code like

alert(‘in the check_username()

function’);

to your JavaScript code (e.g., put that alert
as the first line in the check_username()
function). Then, when you test the appli-
cation, you’ll see what the JavaScript is
trying to do (Figure 13.31).

6. Use JavaScript alerts to indicate the val-
ues of variables.

There are three families of values you’ll
need to confirm:

◆ Values received by a function:

alert(zip);

Use this for any JavaScript function,
like the one triggered by the HTML
event or the one called when the PHP
script returns its value.

◆ Values returned by the PHP script:

alert(ajax.responseText);

Since responseText stores the data
you’ll deal with in the JavaScript, con-
firming its value is a great debugging
technique (Figure 13.32).

◆ Values to be assigned to HTML
elements:

alert(message);

You could also have problems in writ-
ing new HTML to the Web page. In
such cases, you’ll need to confirm if
the problem is in the message being
written (tested using such an alert) or
in the writing process itself (i.e.,
assigning a value to innerHTML).

continues on next page

525

Ajax

D
ebu

g
g

in
g

 A
jax A

pplicatio
n

s

7. Make sure you reload your Web browser
after making changes.

Failure to do so is a common, and very
frustrating, mistake.

8. Test with multiple browsers.

With JavaScript and HTML, different
browsers can behave differently, so see
how your applications behave in multiple
browsers. Of the multiple browsers you
test on, the first one should be good, like
Firefox, and not quirky, like Internet
Explorer.

9. Watch the method—GET or POST—
being used.

Some browsers (I’m looking at you,
Internet Explorer) cache GET page requests,
so it might look as if the changes you
made didn’t take effect. Also, it’s possible
that using POST in your Ajax won’t work
properly with the PHP script (it’s odd,
but I’ve witnessed it myself), so try
switching methods to rule that out as a
culprit. To allow for any method in your
PHP script, use $_REQUEST instead of
$_POST or $_GET.

526

Chapter 13

D
eb

u
g

g
in

g
 A

ja
x

A
pp

li
ca

ti
o

n
s

Figure 13.34 Safari’s Debug menu, which needs
to be enabled in order to appear.

Figure 13.33 Firefox’s JavaScript console.

527

Ajax

D
ebu

g
g

in
g

 A
jax A

pplicatio
n

s

10. Use a JavaScript console.

Good browsers, like Firefox and Safari,
can show JavaScript errors in a separate
window (Figure 13.33), which will
save you some grief. To enable this on
Firefox, you’ll need to opt for installing
the Development Tools during installa-
tion. On Safari, enable the Debug menu
(Figure 13.34), where you can access
the JavaScript console.

11. Use a JavaScript debugger.

Firefox users benefit greatly from the
Venkman debugger (www.mozilla.org/
projects/venkman/). Internet Explorer
users have the Microsoft Script Debugger.

www.mozilla.org/projects/venkman/
www.mozilla.org/projects/venkman/

Know When You Shouldn’t Use Ajax

Ajax is, without a doubt, pretty cool, but what’s cool isn’t always what’s best (despite what
you thought in high school). As with any technology, employ Ajax because you should (when
it adds useful features without adding more problems and excluding users), not because you
can or know how.

Since Ajax relies upon JavaScript, one potential problem is that not all users enable JavaScript
and it can run differently on different browsers. A well-implemented Ajax example can work
seamlessly on any browser, but you really need to be thorough. You can also create a non-Ajax
version of a system for those with JavaScript disabled: not difficult, but again, something you
do need to think about.

Another problem is that Ajax renders the browser’s history feature unusable. For that matter,
you can’t bookmark Ajax pages the way you can search results (the page itself can be book-
marked, but not after some interaction). So by adding functionality, your Ajax application
will remove common features. And Ajax requests still require a server connection and the
data transfer, so they don’t save any resources, just reallocate them.

Finally, I’ll point out that there’s an argument to be made that IFrames offer similar function-
ality to Ajax but without some of its downsides.

528

Chapter 13

D
eb

u
g

g
in

g
 A

ja
x

A
pp

li
ca

ti
o

n
s

XML, the Extensible Markup Language, is one of the most used technologies for shar-
ing data between computers and applications. XML provides a format for storing not
just information but also information about the information (aka meta-information).
XML, like HTML, is based on Standard Generalized Markup Language, or SGML,
which means that you’ll see numerous similarities between the two (in fact, XHTML,
is a combination of them). Early versions of PHP supported XML, PHP 4 improved
upon that support, and PHP 5 took things even further.

This chapter begins with a basic introduction to XML: what it is, the proper XML
syntax, and how to make your own XML document. From there, PHP will take over,
both for reading and creating XML documents. You’ll learn about and use the two
primary XML handling methods. The chapter wraps up with a demonstration of
creating RSS (Really Simple Syndication) feeds, an increasingly popular feature of Web
sites and just one use of XML.

529

XML and PHP
14

X
M

L
an

d P
H

P

What Is XML?
XML, which is governed by the World Wide
Web Consortium (W3C), was created with
several goals in mind:

◆ To be a regulated standard, not the pro-
prietary technology of any one company

◆ To act as a highly flexible way to store
nearly any type of information

◆ To be easily readable by humans and still
usable by computers

◆ To be able to check itself for validity and
integrity

While XML itself is not actually a markup
language—despite its name—it provides a
foundation for you to manufacture your
own markup language. A markup language
is used to help define or describe pieces of
information. For example, the HTML code
Giant indicates that the
word Giant should be displayed in empha-
sized text.

With XML you use tags to encapsulate
pieces of information in defined chunks.
XML tags (or elements as they are formally
called) are the opposite of HTML tags in
that they define what something is but do
not reveal how that something should be
displayed. Whereas the purpose of HTML
is to present information, the purpose of
XML is to identify information.

XML and…

Because XML is all about providing an
independent way to store and transmit
data, it’s often intertwined with other
networking technologies. You’ll see
other acronyms, like RPC (Remote
Procedure Calls), SOAP (which used to
be an acronym but technically isn’t any-
more), WSDL (Web Services Description
Language), and REST (Representational
State Transfer). All of these help create
Web services: where part of the content
of one Web site is based upon data
requested from another Web site. Google,
eBay, PayPal, Amazon, Yahoo!, and
others all offer ways to use their data
in your applications.

Every book having its limitations,
you won’t find examples of these here.
Sadly, this chapter alone can only offer
a mere introduction to XML. But that
knowledge—basic XML—is key to imple-
menting Web services in your own site
when you’re ready.

530

Chapter 14

W
h

at
 Is

 X
M

L?

Figure 14.3 Internet Explorer (on Windows)
is also able to render XML data.

Figure 14.2 Safari (also for Macintosh) shows XML
files as plain text, with the tags treated as unknown
HTML (you can still see them in the source of the page).

Figure 14.1 Firefox (here, on Macintosh) automatically
parses an XML document to display it in a more
meaningful form.

The power of XML is that you are not limit-
ed to any predetermined set of tags; you
can actually use XML to come up with your
own. Once you have created your markup
language (your own definition of elements),
you can begin to store data formatted with-
in the newly defined tags.

XML documents can be created in any text
editor or IDE. But they cannot necessarily
be read in a Web browser like any old Web
page (Figures 14.1, 14.2, and 14.3). You
can use PHP to turn XML data into a
browser-readable format, as you’ll see by
chapter’s end.

531

XML and PHP

W
h

at Is X
M

L?

XML Syntax
Before doing anything with XML, you must
understand how XML documents are struc-
tured. An XML document contains two
parts:

◆ The prolog or XML declaration

◆ The data

The XML prolog is the first line of every
XML file and should be in the form

<?xml version=”1.0”?>

It indicates the XML version and, sometimes,
the text encoding or similar attributes. There
are actually two versions of XML—1.0 and
1.1—but the differences aren’t important
here and using version 1.0 is fine.

The main part of the XML document is the
content itself. This section, like an HTML
page, begins and ends with a root element.
Each XML document can have only one root.

Within that root element will be more nest-
ed elements. Each element contains a start
tag, the element data, and an end tag:

<tag>data</tag>

One example might involve products for an
e-commerce store (Script 14.1). In this
example, store is the root element.

The XML rules for elements insist upon the
following:

◆ XML tags must be balanced in that they
open and close (for every <tag> there
must be a </tag>).

◆ Elements can be nested but not inter-
twined. HTML will let you get away
with a construct like Soul
Mining, but XML will not.

1 <?xml version="1.0"?>

2 <!-- Script 14.1 - store.xml -->

3 <!DOCTYPE store SYSTEM "store.dtd">

4 <store>

5 <product>

6 <name>T-Shirt</name>

7 <size>XL</size>

8 <color>White</color>

9 <price>12.00</price>

10 </product>

11 <product>

12 <name>Sweater</name>

13 <size>M</size>

14 <color>Blue</color>

15 <price>25.50</price>

16 <picture filename="sweater.png" />

17 </product>

18 </store>

Script 14.1 An XML document representing two
products in a virtual store.

532

Chapter 14

X
M

L
Sy

n
ta

x

As for the tag names, they are case-sensitive.
You can use letters, numbers, and some other
characters, but tag names cannot contain
spaces or begin with the letters xml. They
can only begin with either a letter or the
underscore.

Before getting into an example, two last
pieces of information. First, it is safe to use
white space outside of elements but not
within the tags or between them (XML is
generally sensitive to white space, unlike
PHP or HTML). Second, you can place com-
ments within an XML file—for your own
use, not for any technical purposes—by
using the same syntax as HTML:

<!-- This is my comment. -->

To start down the XML path, you’ll hand-
code an XML document: a partial listing of
the books I’ve written (with apologies for the
self-centeredness of the example).

533

XML and PHP

X
M

L
Syn

tax

To write XML:

1. Begin a new XML document in your text
editor or IDE (Script 14.2).

<?xml version=”1.0”?>

<!-- Script 14.1 - books1.xml -->

2. Open with the root element.

<collection>

For a file to be proper XML, it must use a
root element. All of the content of the
page will be stored between the opening
and closing tags of this element. You can
make up the name of this element, as is
the case with all of your elements.

3. Add a book to the file.

<book>

<title>PHP 5 Advanced: Visual

➝ QuickPro Guide</title>

<author>Larry Ullman</author>

<year>2007</year>

</book>

This book is represented by one element,
book, with three nested elements: title,
author, and year.

4. Add another book.

<book>

<title>PHP and MySQL for Dynamic Web

➝ Sites: Visual QuickPro

➝ Guide</title>

<author>Larry Ullman</author>

<year>2005</year>

<pages>725</pages>

</book>

This book has a fourth nested element:
pages. It is perfectly acceptable, even
common, for similar elements to have
different subelements.

1 <?xml version="1.0"?>

2 <!-- Script 14.2 - books1.xml -->

3 <collection>

4 <book>

5 <title>PHP 5 Advanced: Visual QuickPro

Guide</title>

6 <author>Larry Ullman</author>

7 <year>2007</year>

8 </book>

9 <book>

10 <title>PHP and MySQL for Dynamic Web

Sites: Visual QuickPro Guide</title>

11 <author>Larry Ullman</author>

12 <year>2005</year>

13 <pages>725</pages>

14 </book>

15 <book>

16 <title>C++ Programming: Visual QuickStart

Guide</title>

17 <author>Larry Ullman</author>

18 <author>Andreas Signer</author>

19 <year>2006</year>

20 <pages>500</pages>

21 </book>

22 </collection>

Script 14.2 This is a basic XML document containing
information about three books.

534

Chapter 14

X
M

L
Sy

n
ta

x

Figure 14.4 How Firefox displays the books1.xml file.

5. Add a third and final book.

<book>

<title>C++ Programming: Visual

➝ QuickStart Guide</title>

<author>Larry Ullman</author>

<author>Andreas Signer</author>

<year>2006</year>

<pages>500</pages>

</book>

This record is different from the other
two in that it has two authors. Each
piece of author data (the name) is placed
within its own author element (rather
than putting both names within one
element).

6. Complete the XML document.

</collection>

This closes the root element.

7. Save this file as books1.xml.

If you want, view it in a Web browser
(Figure 14.4).

535

XML and PHP

X
M

L
Syn

tax

Attributes, Empty
Elements, and Entities
The preceding section of the chapter and
the books1.xml file demonstrate the basic
syntax of an XML document. There are three
more concepts to cover before learning how
to handle XML with PHP.

An element, as already described, has both
tags and data. This is like HTML:

<p>some text here</p>

Also like HTML, XML elements can have
attributes:

<tag attribute_name=”value”>data</tag>

<p class=”highlight”>some text here</p>

XML elements can have an unlimited num-
ber of attributes, the only restriction being
that each attribute must have a value. You
could not do:

<tag attribute_name>data</tag>

You can use either single or double quotes
for quoting your attribute values, but you
must use quotes and you should be consis-
tent about which type you use.

Attributes are often used with empty ele-
ments. An empty element is one that doesn’t
encapsulate any data. As an HTML example,

 is an empty element. Just as XHTML
requires the space and the slash at the end
of an empty element, so does XML:

<tag attribute_name=”value” />

For example, you might have this:

<picture image_name=”me.jpg” />

The last little idea to throw out here is the
entity. Some characters cannot be used in
XML data, as they cause conflicts. Instead, a
character combination is used, starting with
the ampersand (&) and ending with the
semicolon (;). Table 14.1 lists five of the
predeclared XML entities.

E n t i t y M e a n i n g

& &
< <

> >

' ‘
" “

XML Entities

Table 14.1 Use these five entities in your data whenever
one of these special characters is required.

536

Chapter 14

At
tr

ib
u

te
s,

 E
m

pt
y

El
em

en
ts

, a
n

d
En

ti
ti

es

1 <?xml version="1.0"?>

2 <!-- Script 14.3 - books2.xml -->

3 <collection>

4 <book>

5 <title edition="2">PHP 5 Advanced: Visual QuickPro Guide</title>

6 <author>Larry Ullman</author>

7 <year>2007</year>

8 <chapter number="11">PHP's Command-Line Interface</chapter>

9 <chapter number="14">Image Generation</chapter>

10 <chapter number="15">Creating PDFs</chapter>

11 <cover filename="php5adv.jpg" />

12 </book>

13 <book>

14 <title edition="2">PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide</title>

15 <author>Larry Ullman</author>

16 <year>2005</year>

17 <pages>725</pages>

18 <chapter number="1" pages="34">Introduction to PHP</chapter>

19 <chapter number="2" pages="46">Programming with PHP</chapter>

20 <chapter number="3" pages="44">Creating Dynamic Web Sites</chapter>

21 </book>

22 <book>

23 <title>C++ Programming: Visual QuickStart Guide</title>

24 <author>Larry Ullman</author>

25 <author>Andreas Signer</author>

26 <year>2006</year>

27 <pages>500</pages>

28 <chapter number="12">Namespaces & Modularization</chapter>

29 </book>

30 </collection>

Script 14.3 Attributes, empty elements, and entities have been added to the XML document to better describe the data.

To use attributes, empty elements,
and entities:

1. Open books1.xml in your text editor or
IDE, if it is not already open.

2. Add edition numbers to the first two
books (Script 14.3).

<title edition=”2”>PHP 5 Advanced:

➝ Visual QuickPro Guide</title>

<title edition=”2”>PHP and MySQL for

➝ Dynamic Web Sites: Visual QuickPro

➝ Guide</title>

537

XML and PHP

Attribu
tes, Em

pty Elem
en

ts, an
d En

tities

To indicate that these two titles are sec-
ond editions, an attribute is added to
their title elements, with values of 2.
The third book, which is in its first edi-
tion, won’t have this attribute, although
you could add it with a value of 1.

continues on next page

3. Add a couple chapters to the first book.

<chapter number=”11”>PHP's

➝ Command-Line Interface</chapter>

<chapter number=”14”>Image

➝ Generation</chapter>

<chapter number=”15”>Creating

➝ PDFs</chapter>

Three chapters are added, each having
an attribute of number, with a value of
the chapter’s number. Chapter 11, whose
name is PHP’s Command-Line Interface,
requires the apostrophe entity (').

4. Add a couple chapters to the second
book.

<chapter number=”1”

➝ pages=”34”>Introduction to

➝ PHP</chapter>

<chapter number=”2”

➝ pages=”46”>Programming with

➝ PHP</chapter>

<chapter number=”3”

➝ pages=”44”>Creating Dynamic Web

➝ Sites</chapter>

To demonstrate multiple attributes,
these chapters contain information
about their number and page count. It is
not a problem that the XML file contains
both elements called pages and attrib-
utes with the same name.

5. Add a chapter to the third book.

<chapter number=”12”>Namespaces &

➝ Modularization</chapter>

I’m entering just this one chapter, to
demonstrate the ampersand entity.

538

Chapter 14

At
tr

ib
u

te
s,

 E
m

pt
y

El
em

en
ts

, a
n

d
En

ti
ti

es

Figure 14.5 The updated books2.xml in Internet
Explorer.

6. Add an empty element to the first book.

<cover filename=”php5adv.jpg” />

The cover element contains no data but
does have an attribute, whose value is
the name of the cover image file.

7. Save this file as books2.xml.

If you want, view it in a Web browser
(Figure 14.5).

✔ Tips

■ Whether you use a nested element or an
attribute is often a matter of choice. The
first book in books2.xml could also be
reflected as (omitting a couple elements
for brevity):

<book>

<title>PHP 5 Advanced: Visual

➝ QuickPro Guide</title>

<edition>2</edition>

<chapter>

<number>11</number>

<name>PHP's Command-Line

➝ Interface</name>

</chapter>

<chapter>

<number>14</number>

<name>Image Generation</name>

</chapter>

<cover>php5adv.jpg</cover>

</book>

■ HTML has dozens upon dozens of prede-
clared entities, including the five listed in
Table 14.1.

■ You can also create your own entities in a
Document Type Definition file, discussed
next in the chapter.

539

XML and PHP

Attribu
tes, Em

pty Elem
en

ts, an
d En

tities

Document Type Definitions
XML files primarily contain data, as you’ve
already seen in the first three scripts. That
data can also be associated with a schema,
which is a guide for how the XML docu-
ment should be formatted. A schema can
be put together in many kinds of ways, the
DTD, a Document Type Definition, being
one of the older, standard methods (includ-
ed in the definition of XML 1.0). For the
simple examples in this chapter, a DTD will
suffice. A DTD or any other schema is used
to validate an XML document. They are
optional, though, as XML data can be used
with or without validation.

To associate a DTD with an XML file, a
reference line is placed after the prolog but
before the data:

<?xml version=”1.0”?>

<!DOCTYPE name SYSTEM “filename.dtd”>

<name>

The syntax begins <!DOCTYPE name. This is
similar to HTML documents that begin with
<!DOCTYPE html, stating that the root ele-
ment of the file is the html tag. Within the
document type declaration, you can define
your elements or you can reference an exter-
nal document that contains these defini-
tions. For the declaration to point to an
external file, your document type declara-
tion would be

<!DOCTYPE name SYSTEM

➝ “/path/to/filename.dtd”>

where filename.dtd is the included file and
/path/to is a Uniform Resource Indicator, or
URI, pinpointing where that file is on the
server.

Now that the XML file references the DTD,
that file must be created. This process is
called document modeling, because you are
creating a paradigm for how your XML

540

Chapter 14

D
o

cu
m

en
t

Ty
pe

 D
ef

in
it

io
ns

Ty p e A s s o c i a t i o n

(#PCDATA) Generally text (specifically Parsed-
Character Data)

EMPTY Nothing
ANY Anything

S y m b o l M e a n i n g

? Optional (zero or one)
+ At least one
* Zero or more
| Or

Element Type Symbols

Table 14.3 The four symbols here reflect their regular
expression counterparts and are used to more
specifically define an element.

Element Types

Table 14.2 These are the three main element types,
although an element can also consist of other
elements or mixed data.

data should be organized. A DTD defines
every element and attribute in your markup
language.

The syntax for defining an element is

<!ELEMENT name TYPE>

where name is the name of the new tag and it
will contain content of type TYPE.

Table 14.2 lists the three primary element
types and their meanings.

Applying this to the e-commerce example
(Script 14.1), some of the elements could be
defined like so:

<!ELEMENT name (#PCDATA)>

<!ELEMENT size (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT picture EMPTY>

The last element, picture, is of type EMPTY
because it has no content (it has an attrib-
ute of filename).

The rules just defined seem to cover the XML
in Script 14.1, but there are still a couple of
missing pieces. First, there’s another element
used, that of product, which contains all of
the other elements. To define it:

<!ELEMENT product (name, size, price,

➝ picture)>

This states that product contains four other
elements in the order of name, size, price,
and picture. Definitions can be more flexi-
ble by using regular expression–like syntax.

<!ELEMENT product (name, size*, price,

➝ picture?)>

This line indicates that product can contain
up to four elements. One element, size, can
be listed anywhere from zero to multiple
times. Another element, picture, is entirely
optional, but if present, there can be only
one. Table 14.3 lists the pertinent charac-
ters for defining elements.

continues on next page

541

XML and PHP

D
o

cu
m

ent Type D
efinitio

ns

You can extend this even further by dictat-
ing that an element contain other elements,
parsed-character data, or nothing, using the
OR character:

<!ELEMENT thing (other_element | #PCDATA

➝ | EMPTY)>

The second problem with the current model
for Script 14.1 is that it doesn’t reflect the
picture element’s attribute (the filename).
To allow elements to have attributes, make
an attribute list within the DTD. This can
be done only after defining the elements (or
at least, the attributes of an element must
be defined after the element itself has been
defined).

<!ATTLIST element_name

attribute_name attribute_type

➝ attribute_description

>

The attribute_name field is simply a text
string like color or alignment. The attribute_
type indicates the format of the attribute.
Table 14.4 lists the possibilities.

Ty p e M e a n i n g E x a m p l e

CDATA Character Data General text
NMTOKEN Name Token String (without white

space)
NMTOKENS NMTOKENS separated

by white spaces (e.g.,
“Jessica Zoe Sam”)

ID Unique Identifier Text or numerical,
but it must be unique
for each element

Several Name
Tokens

Element Attribute Types

Table 14.4 There are more options for your attribute
type field, but these four cover the basics.

542

Chapter 14

D
o

cu
m

en
t

Ty
pe

 D
ef

in
it

io
ns

Another possibility is for an attribute to be
an enumerated list of possible values:

<!ATTLIST element_name

attribute_name (value1 | value2)

➝ “value1”

>

The preceding code says that element_name
takes an attribute of attribute_name with
possible values of value1 or value2, the for-
mer being the default.

The third parameter for an attribute—the
attribute’s description—allows you to fur-
ther define how it will function. Possibilities
include #REQUIRED, meaning that an element
must use that attribute; #IMPLIED, which
means that the attribute is optional; and
#FIXED, indicating that the attribute will
always have the same value. To round out
the definition of the picture element for
Script 14.1, an attribute should be added:

<!ATTLIST picture

filename NMTOKEN #REQUIRED

>

Now that you’ve seen the foundation of
defining elements, you can write a Document
Type Definition that corresponds to the
books XML.

1 <!-- Script 14.4 -->

2

3 <!ELEMENT collection (book+)>

4

5 <!ELEMENT book (title, author+, year, pages?, chapter*, cover?)>

6

7 <!ELEMENT title (#PCDATA)>

8 <!ELEMENT author (#PCDATA)>

9 <!ELEMENT year (#PCDATA)>

10 <!ELEMENT pages (#PCDATA)>

11 <!ELEMENT chapter (#PCDATA)>

12 <!ELEMENT cover EMPTY>

13

14 <!ATTLIST title

15 edition NMTOKEN #IMPLIED

16 >

17

18 <!ATTLIST chapter

19 number NMTOKEN #IMPLIED

20 pages NMTOKEN #IMPLIED

21 >

22

23 <!ATTLIST cover

24 filename NMTOKEN #REQUIRED

25 >

Script 14.4 The DTD file will establish all the rules by which the book XML pages must abide.

To write a Document Type Definition:

1. Create a new document in your text edi-
tor or IDE (Script 14.4).

<!-- Script 14.4 -->

2. Define the collection element.

<!ELEMENT collection (book+)>

The first element to be declared is the
root element, collection. It consists
only of one or more book elements.

continues on next page

543

XML and PHP

D
o

cu
m

ent Type D
efinitio

ns

Well-Formed and Valid XML

Two ways of describing an XML docu-
ment are well formed and valid. A well-
formed XML document conforms to the
XML standard. These are the rules dis-
cussed in the “XML Syntax” section of
this chapter. A valid XML document is
both well formed and adheres to the
rules laid out in its associated schema
or Document Type Definition file.

Most XML data can be used as long as
it is well formed, which is why many dis-
cussions of XML don’t even go into the
topics of schema and DTD. But being
valid is, for obvious reasons, better.

3. Define the book element.

<!ELEMENT book (title, author+, year,

➝ pages?, chapter*, cover?)>

This tag will contain up to six other
tags: title, author, and year, which are
required; chapter, which is optional and
can be listed numerous times; and pages
and cover_image, both of which are
optional but can occur only once. The
author is also flagged as being allowed
multiple times.

4. Define the title, author, year, pages,
and chapter elements.

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT pages (#PCDATA)>

<!ELEMENT chapter (#PCDATA)>

Each of these elements contains only
character data.

5. Define the cover element.

<!ELEMENT cover EMPTY>

This one item is different from the others
because the element will always be empty.
The information for this element will be
stored in the attribute.

6. Define the attributes for title
and chapter.

<!ATTLIST title

edition NMTOKEN #IMPLIED

>

<!ATTLIST chapter

number NMTOKEN #IMPLIED

pages NMTOKEN #IMPLIED

>

The title element has one optional
attribute, the edition. The chapter ele-
ment has two attributes—number and
pages—both of which are optional.

544

Chapter 14

D
o

cu
m

en
t

Ty
pe

 D
ef

in
it

io
ns

7. Define the attribute for cover.

<!ATTLIST cover

filename NMTOKEN #REQUIRED

>

The cover element will take one manda-
tory attribute, the filename of type
NMTOKEN, which means it will be a string
(e.g., image.jpg). Keep in mind that the
element itself is not required, as defined
in the book tag. So the XML file should
either include cover with a filename
attribute or not include it at all.

545

XML and PHP

D
o

cu
m

ent Type D
efinitio

ns

1 <?xml version="1.0"?>

2 <!-- Script 14.5 - books3.xml -->

3 <!DOCTYPE collection SYSTEM "collection.dtd">

4 <collection>

5 <book>

6 <title edition="2">PHP 5 Advanced: Visual QuickPro Guide</title>

7 <author>Larry Ullman</author>

8 <year>2007</year>

9 <chapter number="11">PHP's Command-Line Interface</chapter>

10 <chapter number="14">Image Generation</chapter>

11 <chapter number="15">Creating PDFs</chapter>

12 <cover filename="php5adv.jpg" />

13 </book>

14 <book>

15 <title edition="2">PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide</title>

16 <author>Larry Ullman</author>

17 <year>2005</year>

18 <pages>725</pages>

19 <chapter number="1" pages="34">Introduction to PHP</chapter>

20 <chapter number="2" pages="46">Programming with PHP</chapter>

21 <chapter number="3" pages="44">Creating Dynamic Web Sites</chapter>

22 </book>

23 <book>

24 <title>C++ Programming: Visual QuickStart Guide</title>

25 <author>Larry Ullman</author>

26 <author>Andreas Signer</author>

27 <year>2006</year>

28 <pages>500</pages>

29 <chapter number="12">Namespaces & Modularization</chapter>

30 </book>

31 </collection>

Script 14.5 The books file now references the corresponding DTD (Script 14.4).

8. Save this file as collection.dtd.

Now that the document modeling is
done, the DTD needs to be linked to
the XML file.

9. Open books2.xml (Script 14.3) in your
text editor or IDE.

10. After the prolog but before the root ele-
ment, add the doctype declaration
(Script 14.5).

<!DOCTYPE collection SYSTEM

➝ “collection.dtd”>

continues on next page

11. Save the file with these new changes (I’ve
also changed its name to books3.xml).
Place this file and collection.dtd in your
Web directory (in the same folder), and
test in your Web browser (Figure 14.6).

✔ Tips

■ There are other ways of creating a
schema, including XML Schema. More
sophisticated than a DTD, and having
vastly different syntax, XML Schema
serves the same purpose but requires a
whole new body of knowledge.

■ One of the great things about XML is
that you can write your own DTDs or
make use of document models created
by others, which are freely available
online. Developers have already written
models for books, recipes, and more.

■ If you get into developing complex XML
applications, you may want to learn
about namespaces, which is another way
to group elements. Check an XML refer-
ence for more information.

■ Script 14.6 shows books3.xml
(Script 14.5) with the element defini-
tions within the document instead
of using an external DTD.

Figure 14.6 The books3.xml, in Internet Explorer,
which indicates the added doctype.

546

Chapter 14

D
o

cu
m

en
t

Ty
pe

 D
ef

in
it

io
ns

1 <?xml version="1.0"?>

2 <!-- Script 14.6 - books4.xml -->

3 <!DOCTYPE collection [

4

5 <!ELEMENT collection (book+)>

6

7 <!ELEMENT book (title, author+, year, pages?, chapter*, cover?)>

8

9 <!ELEMENT title (#PCDATA)>

10 <!ELEMENT author (#PCDATA)>

11 <!ELEMENT year (#PCDATA)>

12 <!ELEMENT pages (#PCDATA)>

13 <!ELEMENT chapter (#PCDATA)>

14 <!ELEMENT cover EMPTY>

15

16 <!ATTLIST title

17 edition NMTOKEN #IMPLIED

18 >

19

20 <!ATTLIST chapter

21 number NMTOKEN #IMPLIED

22 pages NMTOKEN #IMPLIED

23 >

24

25 <!ATTLIST cover

26 filename NMTOKEN #REQUIRED

27 >

28

29]>

30 <collection>

31 <book>

32 <title edition="2">PHP 5 Advanced: Visual QuickPro Guide</title>

33 <author>Larry Ullman</author>

34 <year>2007</year>

35 <chapter number="11">PHP's Command-Line Interface</chapter>

36 <chapter number="14">Image Generation</chapter>

37 <chapter number="15">Creating PDFs</chapter>

38 <cover filename="php5adv.jpg" />

39 </book>

40 <book>

41 <title edition="2">PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide</title>

42 <author>Larry Ullman</author>

43 <year>2005</year>

44 <pages>725</pages>

45 <chapter number="1" pages="34">Introduction to PHP</chapter>

46 <chapter number="2" pages="46">Programming with PHP</chapter>

47 <chapter number="3" pages="44">Creating Dynamic Web Sites</chapter>

48 </book>

49 <book>

50 <title>C++ Programming: Visual QuickStart Guide</title>

51 <author>Larry Ullman</author>

52 <author>Andreas Signer</author>

53 <year>2006</year>

54 <pages>500</pages>

55 <chapter number="12">Namespaces & Modularization</chapter>

56 </book>

57 </collection>

Script 14.6 To define the elements in the XML file, the DTD reference could be replaced.

547

XML and PHP

D
o

cu
m

ent Type D
efinitio

ns

Parsing XML
There’s more to XML than just composing
XML documents and DTD files, although
that is the basis of XML. One thing you can
do with XML is parse it. Parsing XML is a
matter of using an application or library to
access XML files and…

◆ Check if they are well formed

◆ Check if they are valid

◆ Access the stored data

A parser, in short, takes XML files and breaks
them down into their various pieces. As an
example, the code <artist>Air</artist>
consists of the opening tag (<artist>), the
content (Air), and the closing tag (</artist>).
While this distinction is obvious to the
human eye, the ability of a computer to pull
meaning out of a string of characters is the
power of XML.

Figure 14.7 A DOM, or tree, representation of the store XML file (Script 14.1).

548

Chapter 14

Pa
rs

in
g

 X
M

L

There are two types of XML parsers: event-
based and tree-based. The former goes into
action when an event occurs. An example of
an event would be encountering an opening
tag in an XML file. By reading an entire file
and doing things at each event, this type of
parser—also called a SAX (Simple API for
XML)—manages the entire XML document.
Expat, to be demonstrated next, is an event-
based parser.

The second parser type views an XML file
and creates a tree-like representation of the
entire thing that can then be manipulated.
These are primarily DOM (Document Object
Model) systems such as libxml. Figure 14.7
shows how Script 14.1 would be represented
as a DOM tree. SimpleXML, covered later in
the chapter, is a DOM parser.

Parsing XML with Expat
Using Expat with PHP is a four-step process:

1. Create a new parser.

2. Identify the functions to use for handling
events.

3. Parse the file.

4. Free up the resources used by the parser.

The first step is accomplished using
xml_parse_create().

$parser = xml_parser_create();

The second step is the most important.
Because Expat is an event-handler parser, it
makes use of callback functions when
encountering events. The primary events
that occur are reading:

◆ An opening tag

◆ The content between tags

◆ A closing tag

You need to tell PHP what user-defined
functions should be called when each of
these events occurs. For the opening and
closing tags, use the xml_set_element_
handler() function:

xml_set_element_handler ($parser,

➝ ‘open_element_function’,

➝ ‘close_element_function’);

549

XML and PHP

Parsin
g

 X
M

L

For the tag content, use xml_set_character_
data_handler() to name the callback
function:

xml_set_character_data_handler ($parser,

➝ ‘data_function’);

Now, when the parser encounters the differ-
ent events, it will automatically send that
content to the proper function.

Parsing the file requires the use of the
xml_parse() function, which takes two
arguments (and an optional third).

xml_parse ($parser, $data,

➝ $stopping_point);

This function is first fed the pointer or refer-
ence to the parser, and then the information
to be parsed. The third argument tells the
parser when to stop working.

Finally, you should free up the resources
used by the parser by calling

xml_parser_free ($parser);

One use of PHP and XML is to turn XML
documents into HTML so that the informa-
tion can be displayed in the browser (espe-
cially because some of the currently avail-
able browsers will not do this automatically).
As an example, I’ll write a PHP script that
uses Expat to make a legible Web page from
an XML file.

To parse XML with PHP:

1. Create a new document in your text edi-
tor or IDE, beginning with the standard
HTML (Script 14.7).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>XML Expat Parser</title>

<style type=”text/css”

➝ title=”text/css” media=”all”>

.tag {

color: #00F;

}

.content {

color: #C03;

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>XML Expat Parser</title>

7 <style type="text/css" title="text/css" media="all">

8 .tag {

9 color: #00F;

10 }

11 .content {

12 color: #C03;

13 }

14 .attribute {

15 color: #063;

16 }

17 .avalue {

18 color: #000;

19 }

(script continues on next page)

Script 14.7 This script uses PHP in conjunction with the Expat library to parse XML documents, turning them into an
HTML page.

550

Chapter 14

Pa
rs

in
g

 X
M

L

}

.attribute {

color: #063;

}

.avalue {

color: #000;

}

</style>

</head>

<body>

<pre>

<?php # Script 14.7 - expat.php

I add the <pre> tag here because I’ll be
using spaces throughout the page to
align my code and I want the Web browser
to honor them. And yes, that means this
isn’t valid XHTML, but that’s a price I’m
willing to pay in this example.

Notice that I’ve also declared four CSS
classes to help with the formatting of
the output.

continues on page 553

20 </style>

21 </head>

22 <body>

23 <pre>

24 <?php # Script 14.7 - expat.php

25

26 /* This script will parse an XML file.

27 * It uses the Expat library, an event-based parser.

28 */

29

30 // Define some constants to represent

31 // the greater-than and less-than symbols.

32 define ('LT', '<');

33 define ('GT', '>');

34

35 // Function for handling the open tag:

36 function handle_open_element ($p, $element, $attributes) {

37

38 // Make the element lowercase:

39 $element = strtolower($element);

40

41 // Do different things based upon the element:

42 switch ($element) {

43

44 case 'collection':

45 echo LT . $element . GT . "\n";

46 break;

47

48 case 'book': // Indent books two spaces:

49 echo ' ' . LT . $element . GT . "\n";

50 break;

51

52 case 'chapter': // Indent four spaces:

53 echo ' ' . LT . $element;

54

55 // Add each attribute:

56 foreach ($attributes as $key => $value) {

57 echo ' ' . strtolower($key) . '="' .
$value . '"';

58 }

59 echo GT;

60 break;

61

62 case 'cover': // Show the image.

63

64 // Get the image info:

65 $image = @getimagesize ($attributes['FILENAME']);

66

67 // Make the image HTML:

68 echo "
\n";

69 break;

70

(script continues on next page)

Script 14.7 continued

551

XML and PHP

Parsin
g

 X
M

L

71 // Indent everything else four spaces:

72 default:

73 echo ' ' . LT . $element . GT;

74 break;

75

76 } // End of switch.

77

78 } // End of handle_open_element() function.

79

80 // Function for handling the closing tag:

81 function handle_close_element ($p, $element) {

82

83 // Make the element lowercase:

84 $element = strtolower($element);

85

86 // Indent closing book tags 2 spaces,

87 // Do nothing with cover,

88 // Do nothing special with everything else.

89 if ($element == 'book') {

90 echo ' ' . LT . '/' . $element . GT . "\n";

91 } elseif ($element != 'cover') {

92 echo LT . '/' . $element . GT . "\n";

93 }

94

95 } // End of handle_close_element() function.

96

97 // Function for printing the content:

98 function handle_character_data ($p, $cdata) {

99 echo "$cdata";

100 }

101

102 # ---------------------

103 # End of the functions.

104 # ---------------------

105

106 // Create the parser:

107 $p = xml_parser_create();

108

109 // Set the handling functions:

110 xml_set_element_handler ($p, 'handle_open_element', 'handle_close_element');

111 xml_set_character_data_handler ($p, 'handle_character_data');

112

113 // Read the file:

114 $file = 'books3.xml';

115 $fp = @fopen ($file, 'r') or die ("Could not open a file called '$file'.\n</body>\n</html>\n");

116 while ($data = fread ($fp, filesize($file))) {

117 xml_parse ($p, $data, feof($fp));

118 }

119

120 // Free up the parser:

121 xml_parser_free($p);

122 ?>

123 </pre>

124 </body>

125 </html>

Script 14.7 continued

552

Chapter 14

Pa
rs

in
g

 X
M

L

2. Define the necessary constants.

define (‘LT’, ‘<span

➝ class=”tag”><’);

define (‘GT’, ‘>’);

My script will mimic what the built-in
Firefox or Internet Explorer parser does
with XML files (see Figure 14.6). To this
end, I’ll frequently be printing out the
greater-than and less-than symbols in a
blue font. The start of the tags (the less-
than symbol) will also start the span
with the CSS class association. The close
of the tags (the greater-than symbol) will
close this same span.

3. Begin the function for handling
opening tags.

function handle_open_element ($p,

➝ $element, $attributes) {

$element = strtolower($element);

The function that will be called when-
ever an opening tag is encountered by
the parser will be handle_open_element().
This function will receive from the parser
the parser reference, the name of the ele-
ment, and an associative array of any
attributes that element contains. As an
example, the chapter element can have
both number and pages attributes. Upon
encountering that tag, the parser will
send this function the values $p (for
the parser), chapter (the name of the
element), and an array that could be
defined like so:

$attributes = array (‘NUMBER’ => 1,

➝ ‘PAGES’ => ‘34’);

(One oddity is that every element
and attribute name is received in
all-uppercase letters, so I use the
strtolower() function to turn them
back into a lowercase form.)

553

XML and PHP

Parsin
g

 X
M

L

4. Begin a switch for handling the different
elements.

switch ($element) {

case ‘collection’:

echo LT . $element . GT

➝ . “\n”;

break;

case ‘book’:

echo ‘ ‘ . LT .

➝ $element . GT . “\n”;

break;

Depending on the element received, the
function will do different things. For
the root element, collection, the ele-
ment name will be printed as a tag
(<collection>), using the HTML entity
versions of < and > stored in the con-
stants. For the book elements, the same
rules applied, but the tag is indented
two spaces.

5. Add a case for chapter elements.

case ‘chapter’:

echo ‘ ‘ . LT . $element;

foreach ($attributes as $key =>

➝ $value) {

echo ‘ <span

➝ class=”attribute”>’ .

➝ strtolower($key) . ‘=”<span

➝ class=”avalue”>’ . $value .

➝ ‘”’;

}

echo GT;

break;

For the chapter element, I’ll want to
loop through the $attributes array,
printing each name/value pair (or
key/value pair).

continues on next page

6. Add a case for cover elements.

case ‘cover’:

$image = @getimagesize

➝ ($attributes[‘FILENAME’]);

echo “<img

➝ src=\”{$attributes[‘FILENAME’]}\”

➝ $image[3] border=\”0\” />
\n”;

break;

If the element is the cover, I’ll place the
image itself in the page in lieu of refer-
ring to the textual name of the element
or its attributes.

7. Complete the switch and the function.

default:

echo ‘ ‘ . LT

➝ . $element . GT;

break;

}

}

The default case will apply to the title,
the pages, the year, and the author. Each
will be indented four spaces.

8. Write the function for handling any
closing elements.

function handle_close_element ($p,

➝ $element) {

$element = strtolower($element);

if ($element == ‘book’) {

echo ‘ ‘ . LT . ‘/’ .

➝ $element . GT . “\n”;

} elseif ($element != ‘cover’) {

echo LT . ‘/’ . $element

➝ . GT . “\n”;

}

}

This function is more straightforward
than its predecessor. All this does is
send a formatted version of the tag to
the browser, assuming the tag is not the
closing cover tag. The book tag is indented
two spaces, everything else four.

554

Chapter 14

Pa
rs

in
g

 X
M

L

9. Script the final function.

function handle_character_data ($p,

➝ $cdata) {

echo “

➝ $cdata”;

}

The handle_character_data() function
will be used for the information between
the opening and closing tags. It will be
printed in its own CSS class. Note that
the parser does not capitalize this infor-
mation as it does the element and
attribute names.

10. Create a new parser and identify the
functions to use.

$p = xml_parser_create();

xml_set_element_handler ($p,

➝ ‘handle_open_element’,

➝ ‘handle_close_element’);

xml_set_character_data_handler ($p,

➝ ‘handle_character_data’);

11. Read and parse the XML file.

$file = ‘books3.xml’;

$fp = @fopen ($file, ‘r’) or die

➝ (“Could not open a file called

➝ ‘$file’.\n</body>\n</html>\n”);

while ($data = fread ($fp,

➝ filesize($file))) {

xml_parse ($p, $data,

➝ feof($fp));

}

To parse the file I first try to open it
using fopen(). Then I loop through the
file and send the retrieved data to the
parser. The main loop stops once the
entire file has been read, and the parser
is told to stop once the end of the file
has been reached.

Figure 14.9 The parsed XML document in Firefox.

Figure 14.8 Running books3.xml through the PHP-
Expat parser generates this HTML page, viewable in
any browser.

12. Free up the parser and complete
the page.

xml_parser_free($p);

?>

</pre>

</body>

</html>

13. Save the file as expat.php, place it in your
Web directory, along with books3.xml
(Script 14.5), collection.dtd (Script
14.4), and the php5adv.jpg image file
(downloadable from the book’s Web
site, www.dmcinsights.com/phpvqp2/;
click Extras).

14. Test in your Web browser (Figures 14.8
and 14.9).

✔ Tips

■ Remember when working with XML
to always use formal PHP tags (<?php
and ?>). The informal PHP tags (<? and
?>) will conflict with XML tags.

■ There are many PEAR classes specifical-
ly for handling XML data.

■ For more on the Expat functions, see
www.php.net/xml.

■ The method of parsing the XML data
and displaying it in a Web site used in
this example is more a demonstration
than something you would do on a
live site. In all likelihood, you would
take XML data and either use XSLT
(Extensible Stylesheet Language
Transformation) or different HTML
to display it in a nicer format.

■ The Expat library can read an XML
document, but it cannot validate one.

555

XML and PHP

Parsin
g

 X
M

L

www.dmcinsights.com/phpvqp2/
www.php.net/xml

Using SimpleXML
Added in PHP 5 is a great tool for working
with XML documents, called SimpleXML.
While not as elaborate as other DOM-based
parsers, SimpleXML is terrifically easy to
use, with several nice built-in features.

To start the process off, use the simplexml_
load_file() function to load an XML file
into an object.

$xml = simplexml_load_file

➝ (‘filename.xml’);

Alternatively, you could use simplexml_load_
string() if you had a bunch of XML stored
in a string.

From there, there are many ways you could
go. To refer to specific elements, you would
use the format $xml->elementname. If there
are multiple items of the same element, you
could treat them like arrays:

echo $xml->elementname[0];

556

Chapter 14

Pa
rs

in
g

 X
M

L

Looking at the DOM in Figure 14.7, there is
$xml->product[0] and $xml->product[1].

For nested elements, just continue this syntax:

echo $xml->product[0]->name;

echo $xml->product[1]->price;

Using a foreach loop, it’s easy to access
every element in a tree:

foreach ($xml->product as $product) {

// Do something with:

// $product->name

// $product->size

// etc.

}

Attributes are easy to access as well, by
referring to them like an array:

$xml->elementname[‘attribute’];

Let’s parse the books3.xml file using
SimpleXML this time. Instead of just print-
ing out the tags and the data, we’ll create a
better-formatted Web page.

Modifying XML

The SimpleXML library also makes it easy
to modify the XML data. The addChild()
and addAttribute() methods let you add
new elements and attributes. You can
also change the value in an element by
using the assignment operator:

$xml->product->name = ‘Heavy

➝ T-Shirt’;

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>SimpleXML Parser</title>

7 </head>

8 <body>

9 <?php # Script 14.8 - simplexml.php

10

11 /* This script will parse an XML file.

12 * It uses the simpleXML library, a DOM parser.

13 */

14

15 // Read the file:

16 $xml = simplexml_load_file('books3.xml');

17

18 // Iterate through each book:

19 foreach ($xml->book as $book) {

20

21 // Print the title:

22 echo "<h2>$book->title";

23

24 // Check for an edition:

25 if (isset($book->title['edition'])) {

26 echo " (Edition {$book->title['edition']})";

27 }

28

29 echo "</h2><p>\n";

30

31 // Print the author(s):

32 foreach ($book->author as $author) {

33

34 echo "Author: $author
\n";

(script continues on next page)

Script 14.8 The SimpleXML library provides an easy, DOM-based way to access all of the data in an XML file.

To use SimpleXML:

1. Create a new document in your text edi-
tor or IDE, beginning with the standard
HTML (Script 14.8).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

557

XML and PHP

Parsin
g

 X
M

L

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>SimpleXML Parser</title>

</head>

<body>

<?php # Script 14.8 - simplexml.php

continues on page 559

35

36 }

37

38 // Print the other book info:

39 echo "Published: $book->year
\n";

40

41 if (isset($book->pages)) {

42 echo "$book->pages Pages
\n";

43 }

44

45 // Print each chapter:

46 if (isset($book->chapter)) {

47 echo '';

48 foreach ($book->chapter as $chapter) {

49

50 echo '';

51

52 if (isset($chapter['number'])) {

53 echo "Chapter {$chapter['number']}: \n";

54 }

55

56 echo $chapter;

57

58 if (isset($chapter['pages'])) {

59 echo " ({$chapter['pages']} Pages)\n";

60 }

61

62 echo '';

63

64 }

65 echo '';

66 }

67

68 // Handle the cover:

69 if (isset($book->cover)) {

70

71 // Get the image info:

72 $image = @getimagesize ($book->cover['filename']);

73

74 // Make the image HTML:

75 echo "cover['filename']}\" $image[3] border=\"0\" />
\n";

76

77 }

78

79 // Close the book's P tag:

80 echo "</p>\n";

81

82 }

83

84 ?>

85 </body>

86 </html>

Script 14.8 continued

558

Chapter 14

Pa
rs

in
g

 X
M

L

Figure 14.10 The books XML file as a DOM tree.

2. Read the file.

$xml = simplexml_load_file

➝ (‘books3.xml’);

This one line is all you need to read in
the entire XML document.

3. Create a loop that iterates through each
book element.

foreach ($xml->book as $book) {

The XML file contains several book ele-
ments. With each iteration of this loop,
another of the book elements will be
assigned (as an object) to the $book vari-
able. If the XML file is the tree shown in
Figure 14.10, then $book at this point is
one of the branches of the tree.

continues on next page

559

XML and PHP

Parsin
g

 X
M

L

4. Print the book’s title.

echo “<h2>$book->title”;

Referring to a subelement is this easy.
For the first iteration of the loop, this is
the equivalent of directly referring to
$xml->book[0]->title.

The title will be printed within H2 tags,
which are started here.

5. Print the book’s edition, if applicable.

if (isset($book->title[‘edition’])) {

echo “ (Edition {$book-

➝ >title[‘edition’]})”;

}

echo “</h2><p>\n”;

The isset() function can be used to test
if an element or attribute exists, as if it
were any other variable. If the edition
attribute exists, it’ll be printed in paren-
theses: (Edition X). Then the title’s
closing H2 tag is printed, followed by a
starting P tag (all of a book’s information
will be printed between one pair of para-
graph tags).

6. Print the author(s).

foreach ($book->author as $author) {

echo “Author: $author
\n”;

}

Another foreach loop can iterate through
all the authors. Remember that, by defi-
nition in the collection.dtd file, each
book element has at least one author
subelement, but it can also have multiple.

7. Print the year and the page count.

echo “Published: $book->year

➝
\n”;

if (isset($book->pages)) {

echo “$book->pages Pages

➝
\n”;

}

560

Chapter 14

Pa
rs

in
g

 X
M

L

8. Begin the process of printing each
chapter.

if (isset($book->chapter)) {

echo ‘’;

foreach ($book->chapter as

➝ $chapter) {

A book may or may not have any chap-
ter elements in it, but could have multi-
ple. The isset() checks if any exist. If
so, the chapters will be printed as an
unordered list. Another foreach loop
will access each chapter.

9. Print the chapter information.

echo ‘’;

if (isset($chapter[‘number’])) {

echo “Chapter

➝ {$chapter[‘number’]}: \n”;

}

echo $chapter;

if (isset($chapter[‘pages’])) {

echo “ ({$chapter[‘pages’]}

➝ Pages)\n”;

}

echo ‘’;

The chapter’s name will be printed with-
in LI tags. If the chapter has a number or
pages attribute, that information should
be printed as well.

10. Complete the chapter’s foreach loop and
conditional.

}

echo ‘’;

}

11. Handle the book’s cover.

if (isset($book->cover)) {

$image = @getimagesize

➝ ($book->cover[‘filename’]);

Figure 14.12 The second and third book records.

Figure 14.11 The beginning of the books data, as
viewed in Firefox.

echo “<img src=\”{$book-

➝ >cover[‘filename’]}\” $image[3]

➝ border=\”0\” />
\n”;

}

If a cover element exists, the image’s
information is gathered from the file
on the server and the appropriate
HTML img tag is generated.

12. Close the P tag for this book and
complete the page.

echo “</p>\n”;

}

?>

</body>

</html>

13. Save the file as simplexml.php, place
it in your Web directory, along with
books3.xml (Script 14.4), collection.dtd
(Script 14.5), and the php5adv.jpg image
file (downloadable from the book’s Web
site, www.dmcinsights.com/phpvqp2/;
click Extras).

14. Test in your Web browser (Figures 14.11
and 14.12).

✔ Tips

■ The asXML() method returns the loaded
XML data as an XML string.

■ Because PHP treats elements and attrib-
utes as objects, you’ll need to cast them
to strings if you want to use them for
comparison or in any standard string
functions.

■ SimpleXML also supports XPath, a lan-
guage used to perform queries (search
for data) within XML.

■ The DOM parsers, like SimpleXML, will
require more memory on the server than
SAX parsers because they load the entire
XML data into a variable.

561

XML and PHP

Parsin
g

 X
M

L

www.dmcinsights.com/phpvqp2/

Creating an RSS Feed
RSS, which stands for Really Simple
Syndication (it used to mean Rich Site
Summary or RDF Site Summary), is a
way for Web sites to provide listings of the
site’s content. Normally this list contains
at least the titles of articles, plus their
descriptions (and by “article,” think of any
type of content that a site might offer).
Users access these feeds using an RSS
client (many Web browsers support RSS,
as well). If they want to read more of an
article, there’s a link to click, which takes
them to the full Web page. RSS is a great
convenience and has become popular for
good reasons.

RSS feeds are just XML files that have already-
established tags. RSS documents begin with
the rss root element, with a mandatory
attribute called version. You’ll want to use
the latest version of RSS for that value, which
is 2.0 at this writing. So an RSS document
starts with:

<?xml version=”1.0”?>

<rss version=”2.0”>

After that, all RSS files contain a single
channel element. Nested within this ele-
ment are others, like title, description,
and link, all of which describe the
RSS feed.

<channel>

<title>Name of the RSS Feed</title>

<description>Description of the RSS

➝ Feed</description>

<link>Link to the Web site</link>

Those three elements are required within
channel. There are many optional ones,
too, like language (e.g., en-us), copyright,
managingEditor (an email address), webMaster
(also an email address), and so on. See the
formal specifications at www.rssboard.org/
rss-specification for more.

562

Chapter 14

Cr
ea

ti
n

g
 a

n
 R

S
S

 F
ee

d

www.rssboard.org/rss-specification
www.rssboard.org/rss-specification

Figure 14.13 My supporting forums.

The channel also contains multiple item ele-
ments, each item being a piece of content
(an article). The item elements also have
title, description, link, and other nested
elements.

<item>

<title>Article Title</title>

<description>Article

➝ Description</description>

<link>Link to this article</link>

</item>

None of the item subelements are required,
except that either a title or description
must be present. You might also use author
(an email address) and pubDate (the article’s
publication date). This last one is tricky
because its value must be in the RFC
822–specified format. If you don’t know
what that is offhand, it’s: Wed, 01 Nov
2006 16:45:23 GMT.

That’s really all there is to it! Remember: RSS
is just formatted XML. If you understand
XML, you can create RSS.

For this example, I’ll create something
that may be somewhat particular but is
tremendously useful. As part of my Web site
(www.DMCinsights.com), I use the Phorum
software (www.phorum.org) to create a sup-
port forum for readers (Figure 14.13). Each
book I’ve written has its own forum, mean-
ing there are quite a few. To simplify looking
through all of these forums, I want to create
an RSS feed that displays the latest newly
created threads across every forum, using
the subject and part of the thread’s body as
the title and description. If you aren’t
using Phorum or don’t care about this fea-
ture, you’ll only need to change a wee bit of
this code to create the RSS feed you do want.

563

XML and PHP

Creatin
g

 an
 R

S
S

 Feed

www.DMCinsights.com
www.phorum.org

To create an RSS feed:

1. Begin a new document in your text edi-
tor or IDE (Script 14.9).

<?php # Script 14.9 - forum_rss.php

1 <?php # Script 14.9 - forum_rss.php

2

3 /* This script will create an RSS feed.

4 * The feed content will be recent Phorum threads.

5 */

6

7 // Send the Content-type header:

8 header('Content-type: text/xml');

9

10 // Create the initial RSS code:

11 echo '<?xml version="1.0"?>

12 <rss version="2.0">

13 <channel>

14 <title>Larry Ullman's Recent Forum Threads</title>

15 <description>The most recent threads started in Larry's supporting book
forums.</description>

16 <link>http://www.dmcinsights.com/phorum/</link>

17 ';

18

19 // Connect to the database:

20 $dbc = @mysql_connect ('localhost', 'username', 'password') OR die ("</channel>\n</rss>\n");

21 @mysql_select_db('database') or die ("</channel>\n</rss>\n");

22

23 // Define the query:

24 // Change this query for different sources!

25 $q = 'SELECT message_id, forum_id, subject, LEFT(body, 200), datestamp FROM p5_messages WHERE
status=2 and parent_id=0 order by datestamp desc LIMIT 50';

26

27 // Retrieve the results:

28 $r = mysql_query($q);

29 while ($row = mysql_fetch_array($r, MYSQL_NUM)) {

30

31 // Print each record as an item:

32 echo '<item>

33 <title>' . htmlentities($row[2]) . '</title>

34 <description>' . htmlentities($row[3]) . '...</description>

35 <link>http://www.dmcinsights.com/phorum/read.php?' . $row[1] . ',' . $row[0] . '</link>

36 <guid>http://www.dmcinsights.com/phorum/read.php?' . $row[1] . ',' . $row[0] . '</guid>

37 <pubDate>' . date('r', $row[4]) . '</pubDate>

38 </item>

39 ';

40

41 } // End of while loop

42

43 // Complete the channel and rss elements:

44 echo '</channel>

45 </rss>

46 ';

47

48 ?>

Script 14.9 This PHP script uses a MySQL query to generate an RSS feed.

564

Chapter 14

Cr
ea

ti
n

g
 a

n
 R

S
S

 F
ee

d

Figure 14.15 A database connection failure still results
in a valid RSS feed, but with no articles (being viewed
in Safari on Mac OS X here).

Figure 14.14 Firefox, which supports RSS, shows the
channel element’s title and description values at
the top of the page.

2. Send the Content-type header.

header(‘Content-type: text/xml’);

This page will have a .php extension,
because it’s a PHP page that must be
properly handled by the Web server. But
to create an XML page, a header should
be sent with the proper Content-type.

3. Create the initial RSS code.

echo ‘<?xml version=”1.0”?>

<rss version=”2.0”>

<channel>

<title>Larry Ullman's Recent

➝ Forum Threads</title>

<description>The most recent threads

➝ started in Larry's supporting

➝ book forums.</description>

<link>http://www.dmcinsights.com/

➝ phorum/</link>

‘;

These lines of XML get the ball rolling.
To start, there’s the XML prolog, required
in all XML documents. Next is the rss
element and the opening channel tag.
Within the channel, three tags are used
to help describe this feed (Figure 14.14).

4. Connect to the database.

$dbc = @mysql_connect (‘localhost’,

➝ ‘username’, ‘password’) OR die

➝ (“</channel>\n</rss>\n”);

@mysql_select_db(‘database’) or die

➝ (“</channel>\n</rss>\n”);

If you want to use another database or
resource for your feed (like a text file or
different database application), you’ll
need to change this code.

If a database connection couldn’t be
made, the XML page is completed,
resulting in no articles in an RSS reader
(Figure 14.15).

continues on next page

565

XML and PHP

Creatin
g

 an
 R

S
S

 Feed

5. Define the query.
$q = ‘SELECT message_id, forum_id,

➝ subject, LEFT(body, 200), datestamp

➝ FROM p5_messages WHERE status=2 and

➝ parent_id=0 order by datestamp desc

➝ LIMIT 50’;

Understanding this query requires a
knowledge of the Phorum software and
its database design. I’m selecting the
message_id and forum_id values, which
are used in creating the link to a thread.
I also select the thread’s subject and the
first 200 characters in its body, which will
be used as the title and description

values in the feed. The datetime will be
used for the pubDate.

If you don’t want to (or can’t) follow this
example exactly, just change this query
to retrieve any data that’s represented
in your Web site. You could even select
something from one of the other data-
bases created in this book.

6. Retrieve the results.
$r = mysql_query($q);

while ($row = mysql_fetch_array($r,

➝ MYSQL_NUM)) {

566

Chapter 14

Cr
ea

ti
n

g
 a

n
 R

S
S

 F
ee

d

7. Print each record as an item.
echo ‘<item>

<title>’ . htmlentities($row[2]) .

➝ ‘</title>

<description>’ .

➝ htmlentities($row[3]) .

➝ ‘...</description>

<link>http://www.dmcinsights.com/

➝ phorum/read.php?’ . $row[1] . ‘,’ .

➝ $row[0] . ‘</link>

<guid>http://www.dmcinsights.com/

➝ phorum/read.php?’ . $row[1] . ‘,’ .

➝ $row[0] . ‘</guid>

<pubDate>’ . date(‘r’, $row[4]) .

➝ ‘</pubDate>

</item>

‘;

This is the most important part of the
whole script, where each item is generat-
ed. First, you have the opening item tag.
Then, there’s the title, which is the sub-
ject of the forum thread and becomes
the title of the article in the feed. After
that is the description, which is what
will be printed in the feed describing the
article. For that value, I use some of the
thread’s body. For both the title and the
description, the retrieved value is run
through the htmlentities() function
because XML does not allow many char-
acters that might appear.

Next is the link element, which is a link
to the actual “article” online. In this case,
it’s a link to the thread itself in the forum.
After that is an element called a guid,
which isn’t required but is a good idea.
This is a unique identifier for each item.
The URL, which will be unique for each
item, can be used here as well.

Finally, there’s the pubDate, which needs to
be in an exact format. Fortunately, PHP’s
date() function has a shortcut for this: r.
This makes the formatting a lot easier!

continues on next page

567

XML and PHP

Creatin
g

 an
 R

S
S

 Feed

8. Complete the while loop.

} // End of while loop

9. Complete the channel and rss elements.

echo ‘</channel>

</rss>

‘;

10. Complete the PHP page.

?>

11. Save the file as forum_rss.php, place
it in your Web directory, and load it in
an application that supports RSS feeds
(Figures 14.16 and 14.17).

✔ Tips

■ If you want to confirm that you’ve gen-
erated a valid RSS feed, check out
http://feedvalidator.org.

■ Because of some perceived issues with
RSS, an offshoot format called Atom
was created. Meant to define a better
standard for feeds, Atom is an open
standard (unlike RSS, which is both
closed and frozen from further develop-
ment). Although Atom is worth consid-
ering, many of the largest Web sites
still use RSS 2.0 for their feeds.

Figure 14.17 Viewing the RSS feed in Firefox.

Figure 14.16 Viewing the RSS feed in Safari.

568

Chapter 14

Cr
ea

ti
n

g
 a

n
 R

S
S

 F
ee

d

http://feedvalidator.org

; (semicolon), 111
:: (scope resolution) operator, 289–293
* (asterisk), 399, 541
` (backticks), 415
// (comment symbol), 44–46
@ (error suppression operator), 314
| (or symbol), 541
% (percent sign), 37, 42
+ (plus sign), 541
? (question mark), 541
“ (quotation marks), 284, 444, 445–455
‘ (quote marks), 444, 445–455
+/- (sign specifier), 37
/ (slash), 189

A
a mode, 374
a+ mode, 374
abstract classes, 300–307
abstract keyword, 300
abstract methods, 300–307
abstraction, 234
access control, 234, 281–288
ActiveXObject() function, 492–494
addAttachment() method, 478
addAttribute() method, 556
addBcc() method, 470
addCc() method, 470
addChild() method, 556
addHTMLImage() method, 476–477, 479
add_item() method, 333–334, 344
addresses table, 182

addRule() method, 461–467
addUser() function, 149
addUser() method, 145
Advanced Encryption Standard (AES), 158
advcheckbox element type, 456
AES (Advanced Encryption Standard), 158
Ajax, 481–528

considerations, 528
database creation, 485–486
described, 481–482
example, advanced, 506–522
example, simple, 484–505
GET requests, 495, 526
HTTP status codes, 496
introduction to, 482–483
populating database, 486
POST requests, 523, 526
server requests, 482, 496
Web browser support, 482–528
XML and, 481, 483

Ajax applications
creating HTML for, 500–503, 520–522
creating PHP script for, 487–490, 507–512
debugging, 523–528
testing, 504–505
testing PHP script, 491, 524–527
Web browser support, 482–528
writing JavaScript for, 492–499, 513–519

Ajax model, 482
Ajax transactions, 482, 483, 494
alignment specifier, 37
alphabetical sorts, 2–7

569

Index
i

In
dex

ASCII integer, 37
asterisk (*), 399, 541
asXML() method, 561
asynchronous behavior, 483
Asynchronous JavaScript and XML. See Ajax
Atom format, 568
attach() method, 395
attachments, email, 469, 478, 479
attributes. See also specific attributes

class, 235, 236, 244
description, 542
empty elements, 536–539
format of, 541–542
static, 294–299
values, 541–542
visibility of, 281
vs. variables, 236
XML, 536–539

Auth class, 144–156
auth element, 470
Auth package, 143–156
Auth type, 144
authentication. See also passwords; security

custom, 151–156
database-driven, 144
HTTP, 157, 372
logout feature, 154
Mail_Mime package, 469
MySQL, 145–149, 152
optional, 150
PEAR Auth package, 143–156
simple, 144–150
Web site, 143–156

authentication system, 143–156
Auth_HTTP authorization, 157
autocomplete element type, 456
autoload() function, 260–262, 306
autoloading classes, 260–262
autoloading functions, 306

B
b mode, 374
backticks (`), 415
backups, database, 375–384
base class, 265

alphanumeric rule, 462
Alternative PHP Cache (APC), 80
Amazon, 530
& entity, 536
Andrews, Tjobbe, 190
ANY type, 541
Apache server, 424
APC (Alternative PHP Cache), 80
API (application programming interface), 232
' entity, 536
application programming interface (API), 232
applications

Ajax. See Ajax applications
command-line, 435, 437
PuTTY, 422
running through URLs, 524
shopping cart, 212–223
SSH, 422
templates for, 190–196
Terminal, 400
testing, 504–505
Web. See Web applications

applyFilter() method, 461–463, 468
$argc array, 432
arguments

command-line, 432–436
constructors, 251
filter, 137
methods, 235, 240, 300, 301
sessions, 84
stored functions, 110

$argv array, 432
arrays. See also specific arrays

adding tasks to, 23
database-driven, 8–17
default form values, 461
filters, 142
form validation, 131, 461–465
multidimensional, 2–24
nested structure, 8–17
serialized, 89
sorting, 2–7
two-dimensional, 2

array_sum() function, 303
ASCII characters, 38

570

In
de

x

Index

cart class, 340–346
catch block, 311, 316, 319
catch statement, 310
catching exceptions, 310–316
categories

browsing by, 199–204
no products in, 211
printing as links, 194
validating, 202

categories table, 172, 176–178, 193, 194
category ID, 194, 200–204
category page, 200–204
CDATA type, 542
CGI (Common Gateway Interface), 418, 427
character data, 554
Character Type functions, 127
characters

ASCI, 38, 499
control, 127
escaped, 189, 499
formatting, 37–38
length, 510
letters only, 127
lowercase, 127
newline, 124, 423, 427, 438
out-of-range, 499
printable, 127
special, 536
uppercase, 127
UTF-8, 499
white space, 127
XML, 549

check boxes, 32–33, 35, 456
checkAuth() method, 145, 154
checkbox element type, 456
checkdate() function, 126, 132
checkout systems, 224–232
check_url() function, 359, 362
check_urls() function, 361
check_username() function, 498, 502, 505
child classes, 264–270
chmod utility, 431
ciphers, 158
class constants, 295
class definition files, 261–262

base64_decode() function, 157, 166
base64_encode() function, 157, 162
base64_encode() version, 163
BASE_URI constant, 54
BASE_URL constant, 54
BEGIN keyword, 111
Benchmark package, 444–456
benchmark timers, 445–450
benchmarking, 444–456
benchmarking functions, 451–456
Benchmark_Iterate class, 451, 455
binary data, 157, 380
binary files, 382
binary integer, 37
binary mode, 374
binary numbers, 37–38
Boolean value, 84, 466
bots, 135
browsers. See Web browsers
browsing, by category, 199–204
button element type, 456
buttons

associating keys with, 398
calculator, 386–396, 398
radio, 456
reset, 456
submit, 456, 457, 460, 516, 520

C
cache-control directives, 75
Cache-Control header, 75, 79
caching

APC, 80
browsers, 74–80, 526
considerations, 80
in proxy servers, 74
server-side, 80
session, 80
in Web pages, 74–80

calculate() function, 387–388, 392
calculator example, 386–398
call() method, 280
call_this_function() function, 495
captcha test, 135
carriage returns (\r), 124

571

In
dex

Index

client URL (cURL) utility, 80, 368–372,
399, 401

client/server model, 482
client/server performance, 80
client-side validation, 462, 464, 465–466
“close” function, 84
close() method, 326
close_session() function, 94
closing brackets, 46
code. See also scripts

benchmarking, 444, 445–450
comments, 44–46
consistency and, 47
indenting, 48
structure, 47–48
style, 47–48
testing snippets of, 422–423
updates to, 46
white space in, 44, 48

code blocks, 423
code snippets, 422–423
colors table, 172, 176, 179
columns, 83, 98–100, 102, 413
COM (Component Object Module), 404–415
COM classes, 414, 415
com() function, 404
COM objects, 410
com_exception class, 414
Command Line Interface. See CLI
commands. See also specific commands

running on server, 125, 415
SQL, 98, 173, 486
variables and, 125

comment symbol (//), 44–46
comments

errors and, 287
filtering, 140–142
regular expression patterns, 126, 132
writing, 44–46
XML documents, 533

Common Gateway Interface (CGI), 418, 427
compare rule, 462, 465
Component Object Module (COM), 404–415
compression, 80, 374–384
CONCAT_WS() function, 107

class keyword, 237
classes. See also specific classes

abstract, 300–307
attributes, 235, 236, 244
autoloading, 260–262
base, 265
child, 264–270
COM, 414, 415
CSS, 362, 550–554
defining, 235–239
derived, 265
described, 234, 235
inheriting, 266–270
members of, 265
methods within, 235
names, 235, 243, 262
network-related, 354
OOP. See OOP classes
parent, 264–270
shopping cart, 328–346
static class attributes, 294–299
subclass, 265, 276, 288, 298
superclass, 265
visibility, 265

clauses
IN, 220
else, 167, 334, 442, 490
else if, 494
“out,” 18
RETURNS, 111
WHERE, 106

clear() function, 396
CLI (Command Line Interface), 417–442

arguments, 432–436
errors, 431, 435, 436, 441–442
running scripts from, 424–431
testing code snippets, 422–423
testing installation of, 418–422
uses for, 417, 423
vs. CGI, 418

CLI applications, 435, 437
CLI php.ini file, 424
CLI scripts

creating, 424–427
running, 428–431

572

In
de

x

Index

counter, 116, 120, 121, 295–298, 427
count_to_100() function, 25
CREATE TABLE command, 10, 151–152,

174–178
credit card processing, 171, 224–232
cron utility, 399–401
crontab file, 399–401
crontab format, 399
cryptType function, 151
CSS classes, 362, 550–554
CSS files, 58, 190
ctype_ functions, 127
ctype_alnum() function, 131
ctype_digit() function, 132
cURL (client URL) utility, 80, 368–372,

399, 401
curl_errno() function, 372
curl_error() function, 372
curl_exec() command, 369
curl_getinfo() function, 372
curl_init() function, 368, 370
CURLOPT_POSTFIELDS option, 370
curl_setopt() function, 368
curly braces, 48
custom authentication, 151–156
customers table, 171, 174, 182

D
data

binary, 157, 380
encrypting/decrypting. See encryption
escaping, 189, 468
importing, 98
processing in forms, 466–468
reading from Web sites, 348–354
session, 82–95, 125
trimming, 461
validating. See validation

data source name (DSN), 144
database connections

closing, 195, 370–372, 490
configuration file, 184–186
errors, 14, 189, 379, 489
establishing, 184, 189, 495, 498
file compression and, 378–379

conditionals
commenting, 46
nested, 310
processing form data, 466, 468
session handlers, 92
switch, 64–65, 238, 324
validation, 202–204

configuration files
creating, 183–189
e-commerce application, 183–189
index pages, 197–198
Web applications, 50–57

connections. See database connections
connect_simple() method, 386, 390, 398
Console_Getargs package, 436
Console_Getopt package, 436
const keyword, 295
constants

accessing, 295
BASE_URI, 54
BASE_URL, 54
class, 295
DB, 54, 187
“magic,” 465
server-specific, 53–54, 187
STDIN, 437–439, 442
values, 295

construct() method, 251–252, 255, 271
constructors

arguments, 251
calling, 255
creating, 251–255
declaring, 255
default, 255
described, 251
Exception, 318, 327
inheritance, 271–275
subclass, 272–275
using, 252–256
vs. destructors, 256

containers, 385, 394
content modules, 66–69
contingencies, 45
control characters, 127
cookies, 157, 159–163, 372

573

In
dex

Index

products from shopping cart, 219, 223,
335–336

sessions, 89
delimiters, 111
derived class, 265
design patterns, 235
destroy events, 397
destruct() function, 256, 258
destructors

creating, 256–259
described, 256
inheritance, 271, 274
Java and, 259
OOP, 256–259
vs. constructors, 256

directories
backup, 376–383
permissions, 378, 380–381
session, 82, 125
site structure, 48
temporary, 82
writable, 378

display() method, 445, 466–468
display windows, 391, 395, 396
display_cart() method, 346
distance calculations, 103–109
dl() function, 391
DMCinsights.com, 170
do() function, 289
do() method, 244
document modeling, 540–541
Document Object Model. See DOM
Document Type Definitions (DTDs), 540–547
Dojo software, 518
DOM (Document Object Model), 496, 548
DOM parsers, 548, 556–561
drop-down menus, 15, 16
DSN (data source name), 144
DTDs (Document Type Definitions), 540–547

E
eBay, 530
echo() function, 37, 398, 447–454, 475
echo() statement, 423
ECMAScript language, 494

RSS feeds and, 565
secure, 422

database creation
Ajax example, 485–486
e-commerce example, 171–182
multidimensional arrays, 10–11

database files, 57, 187
database-driven arrays, 8–17
databases. See also records; tables

adding tasks to, 12–18
advanced concepts, 81–122
backing up, 375–384
compression, 374–384
connections. See database connections
creating. See database creation
escaping data for, 468
names, 375
normalization, 172, 173, 176
populating, 486
selecting, 174
storing sessions in, 82–95
zip code, 96–109

date element type, 456
date() function, 423, 567
date_added attribute, 9
date_completed attribute, 9
day menu, 456
DB constant, 54, 187
DB container, 151
debug mode, 187–188
$debug variable, 54
debuggers, 527
debugging. See also errors

Ajax applications, 523–528
error messages associated with, 188
JavaScript, 523–528
selecting mode, 187

debugging level, 54
decimal point, 390, 393, 396
DECLARE statement, 110
decrypting data, 164–167
DELETE query, 89
delete_item() method, 335–336
deleting

objects, 240, 242, 249, 259

574

In
de

x

Index

encapsulation, 234, 242, 288
encodeURIComponent() method, 499
encryption, 157–167

AES, 158
MCrypt, 157–167
passwords, 149, 154

END keyword, 111
entities, 536–539
EOD delimiter, 32
EOT delimiter, 32
error handling, 55, 57, 188–189, 310, 327
error messages, 55–56, 188, 324, 464
error reporting, 125
error suppression operator (@), 314
error_log() function, 56, 188
errors. See also debugging

CLI, 431, 435, 436, 441–442
COM, 410, 413
comments, 287
connection, 14, 189, 379, 489
cURL, 370, 372
emailing, 53, 56, 184
exception, 310–316
file open, 314
handling, 55, 57, 188, 310, 327
HTML, 464
JavaScript, 464, 527
live sites, 125
OOP, 234, 310, 327
parse, 32, 422
PEAR packages, 446, 461, 464
printing, 56
unable to open URL, 352
validation, 133
variable names and, 196

escape() method, 499
escaped characters, 189
escapeshellarg() function, 125, 415
escapeshellcmd() function, 125, 415
escaping data, 468
eval() function, 513, 517, 519
event-based parsers, 548
events

destroy, 397
form-related, 456

e-commerce
checkout systems, 224–232
configuration file, 183–189
credit card processing, 171, 224–232
database creation, 171–182
overview, 170
payments, 232
showing products online, 205–211
templates, 190–196

e-commerce example
browse feature, 199–204
index page, 197–198
product catalog, 205–211
shopping cart, 212–223

e-commerce sites, 170, 174
element type symbols, 541
element types, 541
elements

empty, 536–539
HTML, 456, 457
JavaScript, 500
password, 460
XML, 530, 536–539

else clause, 167, 334, 442, 490
else if clause, 494
email

attachments, 469, 478, 479
avoiding abuse of, 124
carbon copies, 470
HTML, 469–479
images, 476–479
passwords, 131
plain text, 469–470, 474–479

email address element, 458
email addresses

carbon copies, 470
e-commerce sites, 174
rules, 462, 464, 465
validating, 131, 462

email rule, 462, 464
emailing errors, 53, 56, 184
emailorblank rule, 462
empty elements, 536–539
EMPTY type, 541

575

In
dex

Index

file_exists() function, 325
FileIO class, 326
filename rule, 462
filenames, 125, 462, 545
files

backup, 375–384
binary, 382
class definition, 261–262
closing, 316, 374
compressing, 374–384
configuration. See configuration files
CSS, 58, 190
database, 57, 187
FTP, 368, 372
help, 418, 420, 421, 475
included, 125
modification date, 423
moving, 125
names, 125, 462, 545
opening, 316, 348, 374, 380, 426
permissions, 314, 315, 348, 381
PHP, 199, 400–401
php.ini, 406, 424
read/write modes, 374–375
time modified, 378
Word, 404
XML. See XML documents

$filter argument, 137
filter_has_var() function, 142
filtering

comments, 140–142
form data, 461–465
variables, 136–142

filter_input() function, 137
filter_list() function, 137
filters

array of, 142
listed, 137
PECL Filter, 136–142

filter_var() function, 137
filter_var_array() function, 142
final function, 279
Firefox browser, 493, 526, 527, 531, 565
flag variables, 202
floating-point numbers, 37, 38, 98, 438–442

JavaScript, 500
user, 386, 397

Excel class, 415
Excel spreadsheets, 405, 406–415
Exception class, 311, 317–327
Exception class methods, 311
Exception constructor, 318, 327
exception handling, 310, 312–316, 320
exceptions

catching, 310–316, 414
COM, 414
errors, 310–316
throwing, 310–316
vs. error handling, 310

exec() function, 415
execution tendencies, 444
Expat parser, 548, 549–551, 555
Expires header, 75, 79
extends statement, 266
Extensible Markup Language. See XML
Extensible Stylesheet Language

Transformation (XSLT), 555
extensions, 48, 61, 64, 424, 440

F
-f flag, 428
f mode, 374
factory() method, 470–471, 474
fclose() function, 316, 352, 360, 383
fgetc() function, 442
fgetcsv() function, 352, 353, 442
fgets() function, 437
fields

comments, 141
name, 140, 141, 464
password, 465
required, 465, 484
textarea, 456
timestamp, 78

file element type, 456
file extensions, 48, 61, 64, 424, 440
file() function, 426
file open modes, 374
file pointer, 355
file upload prompt, 456

576

In
de

x

Index

call_this_(), 495
Character Type, 127
checkdate(), 126, 132
check_url(), 359, 362
check_urls(), 361
check_username(), 498, 502, 505
clear(), 396
close_session(), 94
com(), 404
commenting, 45
CONCAT_WS(), 107
count_to_100(), 25
cryptType, 151
ctype_alnum(), 131
ctype_digit(), 132
curl_errno(), 372
curl_error(), 372
curl_getinfo(), 372
curl_init(), 368, 370
curl_setopt(), 368
date(), 423, 567
destruct(), 256, 258
dl(), 391
do(), 289
echo(), 37, 398, 447–454, 475
error_log(), 56, 188
escapeshellarg(), 125, 415
escapeshellcmd(), 125, 415
eval(), 513, 517, 519
exec(), 415
fclose(), 316, 352, 360, 383
fgetc(), 442
fgetcsv(), 352, 353, 442
fgets(), 437
file(), 426
file_exists(), 325
filter_has_var(), 142
filter_input(), 137
filter_list(), 137
filter_var(), 137
filter_var_array(), 142
final, 279
fopen(). See fopen() function
fscanf(), 42, 437, 438, 442
fsockopen(), 355

folders, 48, 54
fopen() function

CLI scripts, 426
file compression, 374, 380, 383–384
opening files, 316, 348, 374, 426, 554
Web site access, 348

fopen() method, 362
fopen() mode, 316
for loop, 73, 122, 519
foreach loop, 362, 413, 427, 560
foreign keys, 9, 175, 176, 182
formatting items

characters, 37–38
with CSS classes, 550–554
numbers, 37–38
strings, 38
XML output, 550–554

forms. See also HTML forms
credit card processing, 229–231
default values, 461
filtering data, 461–465
hidden input, 131
login functionality, 144–156
logout functionality, 93–95, 154
processing data in, 466–468
registration. See registration forms
rules, 461–467
validating, 126–135, 131, 461–465

fragment value, 356
Frameworks, 72
fscanf() function, 42, 437, 438, 442
fsockopen() function, 355
fsockopen() method, 356–362
FTP files, 368, 372
FTP port, 355
functions

ActiveXObject(), 492–494
addUser(), 149
array_sum(), 303
autoload(), 260–262, 306
autoloading, 306
base64_decode(), 157, 166
base64_encode(), 157, 162
benchmarking, 451–456
calculate(), 387–388, 392

577

In
dex

Index

popen(), 415
printf(), 37–38, 398, 441
print_r(), 6, 93
readgzfile(), 375
recursive, 18–24
references and, 30
registerRule(), 465
require_once(), 241, 243
return_distance(), 114, 507
rtrim(), 164
scanf(), 42
session, 84–90
session.auto_start, 90
session_cache_limit(), 80
session_destroy(), 89
session_save_path(), 82
session_set_save_handler(), 84, 90, 91
session_start(), 90, 93
session_write_close(), 91, 94, 95
set_display(), 391–392, 396
setlocale(), 127
setMarker(), 445–449
set_number(), 392–393, 396
set_operator(), 396
set_time_limit(), 362, 406–407
SHA(), 174, 485
shell_exec(), 368, 415
show_login_form(), 154
show_stores(), 517–519
signature, 280
sleep(), 269
sprintf(), 38, 39–42, 490
srand(), 158
stored, 110–115
strcasecmp(), 6, 352
strcmp(), 3
strip_tags(), 125
strtolower(), 553
system(), 415
trigger_error(), 189
trim(), 462
uasort(), 3, 6
uksort(), 3
UNIX_TIMESTAMP(), 78
unserialize(), 343

fwrite(), 314, 355, 380
getAuthData(), 151, 156
get_class(), 270
gethostbyaddr(), 367
gethostbyname(), 363
gethostbynamel(), 367
get_parent_class(), 270
get_perimeter(), 246
get_stores(), 516, 521
grade_sort(), 28
gzfile(), 375
gzopen(), 374, 377, 380
gzwrite(), 380
handle_character_data(), 554
handle_check(), 498, 499
handle_open_element(), 553
handle_stores(), 517, 518
header(), 74–76
htmlentities(), 372, 567
include_once(), 241
is_a(), 284
isset(), 560
is_subclass_of(), 284
is_writable(), 378
mail(), 124, 469–471
make_list(), 23, 24, 35
MCRYPT_DEV_RANDOM, 158
mcrypt_enc_get_iv_size(), 158
mcrypt_end_get_key_size(), 163
mcrypt_module_open(), 158
MCRYPT_RAND, 158
MD5(), 149, 158–161, 160, 163
mdecrypt_generic(), 164, 166
my_error_handler(), 189
mysqli_real_escape_string(), 88, 189,

468, 490
names, 243
name_sort(), 26
number(), 228
ob_gzhandler(), 80
open(), 523
parse_url(), 355–356
passthru(), 415
pclose(), 415
performance, 452–455

578

In
de

x

Index

Google, 530
grade_sort() function, 28
graphical calculator example, 386–398
group element type, 456
> entity, 536
GTK+ (GIMP Tool Kit), 385–398
GTK home page, 385
GtkWindow() widget, 394
gzfile() function, 375
gzopen() function, 374, 377, 380
gzwrite() function, 380

H
h mode, 374
handle_character_data() function, 554
handle_check() function, 498, 499
handle_open_element() function, 553
handle_stores() function, 517, 518
header element type, 456
header() function, 74–76
header types, 74–75, 458
headers() method, 470
HelloWorld class, 237–244
HelloWorld example, 237–244
help files, 418, 420, 421, 475
heredoc syntax, 31–36, 339, 445–451
hexadecimal integer, 37
hexidecimal numbers, 127
hidden element type, 456
hidden input, 131, 456
hidden values, 135
hiddenselect element type, 456
hide() method, 397
hierselect element type, 456
hinting, type, 319
home page, 69, 197–198
host value, 356
HTML

Ajax applications, 500–503, 520–522
clearing, 125
entities, 539
errors, 464
vs. XML, 530

HTML elements, 456, 457

usort(), 3, 6
vprintf(), 42
write_session(), 94
xml_parse(), 549
xml_parse_create(), 549, 554
xml_parse_free(), 549
xml_set_character_data_handler(), 549
xml_set_element_hander(), 549

fwrite() function, 314, 355, 380

G
garbage collection function, 89
Garrett, Jesse James, 483
general_widgets table, 173, 177–180
get() method, 451, 470
get_ methods, 250
GET requests, 495, 526
get_area() method, 248, 301, 304
getAuth() method, 150
getAuthData() function, 151, 156
get_class() function, 270
getCode() method, 311
get_count() method, 298
getFile() method, 311
gethostbyaddr() function, 367
gethostbyname() function, 363
gethostbynamel() function, 367
getMessage() method, 311, 315
get_parent_class() function, 270
get_perimeter() function, 246
get_perimeter() method, 304
getProfiling() method, 445
getRecord() method, 364
get_stores() function, 516, 521
getTrace() method, 311
getTraceAsString() method, 311
GIMP (GNU Image Manipulation

Program), 385
GIMP Tool Kit (GTK+), 385–398
global statement, 30
global variables, 25, 55, 137, 391–394
Gnope Web site, 385
GNU Image Manipulation Program

(GIMP), 385

579

In
dex

Index

inheritance theory, 274
innerHTML property, 496, 498, 499
InnoDB storage engine, 175, 176, 182
input

hidden, 131, 456
image, 456
password, 456
standard, 437–439, 442
text, 456
user, 438–442

instanceof keyword, 284
INT keyword, 102
integers, 37, 38
interfaces, 307
Internet Explorer browser, 74, 492, 526,

527, 531
Internet service provider (ISP), 363
IP addresses, 356–367
IP geolocation, 363
is_a() function, 284
ISBN numbers, 182
is_empty() method, 333
ISP (Internet service provider), 363
isset() function, 560
is_subclass_of() function, 284
is_writable() function, 378
Iterate class, 451, 454

J
Java language, 494
JavaScript

Ajax applications, 482, 492–499, 513–519
asynchronous transactions and, 483
clearing, 125
errors/debugging, 464, 523–528

JavaScript alerts, 519, 525
JavaScript console, 527
JavaScript debugger, 527
JavaScript events, 500
JavaScript Object Notation (JSON), 506–521
JavaScript-enhanced text boxes, 456
joins, 100, 102
JSON (JavaScript Object Notation), 506–521

HTML email, 469–479. See also email
HTML forms. See also forms

Ajax applications, 501–503, 520–522
creating, 134, 457–460, 501–503
credit card processing, 229–231
elements, 457
hidden values in, 135
HTML_QuickForm package, 456–468
shopping cart, 337

HTML tags, 372, 496, 530
HTML templates, 58–61
HTML_AJAX package, 518
htmlentities() function, 372, 567
HTML_QuickForm class, 456, 457, 459
HTML_QuickForm package, 456–468
HTTP authentication, 157, 372
HTTP status codes, 356, 360, 361, 496
Huffman-only compression, 374

I
ID type, 542
IIS (Internet Information Server), 424
image element type, 456
image input, 456
images

directory for, 48
GD library, 135
HTML email, 476–479
as input, 456

IMAP port, 355
img tag, 476–478, 561
importing data, 98
IN clause, 220
included files, 125
include_once() function, 241
index page, 62–65, 197–198
indexes, 10, 99, 102, 519
infinite loop, 18
inheritance

from classes, 266–270
constructors, 271–275
described, 264, 266
destructors, 271, 274
terminology, 265

580

In
de

x

Index

MySQL Administrator, 112–115
remote server connections, 422
running scripts, 424–425, 431
Terminal application, 400, 421
testing CLI installation on, 421

macros, 415
“magic” constants, 465
Magic Quotes, 189
mail. See email
Mail class, 469–471
mail() function, 124, 469–471
Mail_Mime class, 469, 471, 474
Mail_Mime package, 469–479
main() method, 397
main module, 66–69
main page, 62–65
main_quit() method, 397
make_list() function, 23, 24, 35
markup language, 530, 531
max-age directive, 75
maxfilesize rule, 462
maxlength rule, 462
MCrypt application, 157–167
MCrypt library, 157
MCRYPT_DEV_RANDOM function, 158
mcrypt_enc_get_iv_size() function, 158
mcrypt_end_get_key_size() function, 163
mcrypt_module_open() function, 158
MCRYPT_RAND function, 158
MD5() function, 149, 158–161, 163
MD5() method, 154
mdecrypt_generic() function, 164, 166
member access, 281–288
META tags, 80
metadata, 171, 175
meta-properties, 45
methods

abstract, 300–307
access control, 281–288
accessibility of, 281–288
addAttachment(), 478
addAttribute(), 556
addBcc(), 470
addCc(), 470
addChild(), 556

K
keys

associating buttons with, 398
foreign, 9, 175, 176, 182
primary, 9, 83, 88, 149, 173–178

keywords, 110, 300

L
labels, 395, 456
Last-Modified header, 74–75, 79
LDAP port, 355
lettersonly rule, 462
libmcrypt, 157
libraries

GD, 135
MCrypt, 157
PHP, 345
SimpleXML, 557
SPL, 345
zlib, 374–376

libxml parser, 548
link element type, 456
links

categories as, 194
“Log Out,” 93–95
product catalog, 205–211
to shopping cart, 210

LOAD DATA INFILE query, 98
local variables, 110
login functionality, 144–156
logout functionality, 93–95, 154
logout() method, 154
loops

for, 73, 122, 519
foreach, 362, 413, 427, 560
infinite, 18
parsed files, 554, 559
while, 121, 413, 511

< entity, 536
Lynx browser, 399

M
Mac OS X

binary files and, 382

581

In
dex

Index

open(), 495, 513, 523
overloading, 280
overriding, 277–281
print_var(), 284, 285, 288
run(), 455
send(), 523
set_, 250
setAdvancedSecurity(), 156
setAuthData(), 156
set_default_size(), 394
set_size(), 245, 247, 248, 255
set_title(), 394
show(), 397
show_all(), 397
start(), 154
static, 295–299
testing, 455
timeElapsed(), 445, 449
toString(), 311, 318
update_item(), 333, 335, 345
visibility of, 281–288

Microsoft Script Debugger, 527
Microsoft.XMLHTTP object, 494
mimetype rule, 462
minlength rule, 462
modularity, 49–73, 234
month menu, 456
Msxml2.XMLHTTP object, 494
multidimensional arrays, 2–24
must-revalidate directive, 75
my_error_handler() function, 189
MySQL

authentication, 145–149, 152
connecting to. See database connections
database access, 83
database creation, 10–11
distance calculation, 104–109
errors. See errors
importing data, 98
joins, 102
stored functions, 110–115
versions, 81, 183

MySQL Administrator, 112, 113
mysql client, 111
MySQL GUI Tools package, 112

addHTMLImage(), 476–477, 479
add_item(), 333–334, 344
addRule(), 461–467
addUser(), 145
applyFilter(), 461–463, 468
arguments, 235, 240, 300, 301
asXML(), 561
attach(), 395
call(), 280
checkAuth(), 145, 154
within classes, 235
close(), 326
connect_simple(), 386, 390, 398
construct(), 251–252, 255, 271
delete_item(), 335–336
display(), 445, 466–468
display_cart(), 346
do(), 244
encodeURIComponent(), 499
escape(), 499
Exception class, 311
factory(), 470–471, 474
fopen(), 362
fsockopen(), 356–362
get(), 451, 470
get_area(), 248, 301, 304
getAuth(), 150
getCode(), 311
get_count(), 298
getFile(), 311
getMessage(), 311, 315
get_perimeter(), 304
getProfiling(), 445
getRecord(), 364
getTrace(), 311
getTraceAsString(), 311
headers(), 470
hide(), 397
is_empty(), 333
logout(), 154
main(), 397
main_quit(), 397
MD5(), 154
names, 243
OOP, 277–281, 300–307

582

In
de

x

Index

SKU, 172, 178, 182
type specifiers, 37

numeric rule, 462
numeric sorts, 2–7

O
ob_gzhandler() function, 80
Object Browser, 405
object type hinting, 319
object-oriented programming. See OOP
objects

ActiveXObject, 492–494
COM, 410
creating, 240–243, 492
deleting, 240, 242, 249, 259
Microsoft.XMLHTTP, 494
Msxml2.XMLHTTP, 494
.NET, 415
OOP, 234
$this attribute, 244–250
XMLHttpRequest, 492–496

octal integer, 37
onblur() event, 500
onchange() event, 500
onclick() event, 521
onfocus() event, 500
onload() event, 500
onreadystatechange property, 495
onreset() event, 500
onsubmit() event, 500
OOP (object-oriented programming),

233–346
abstract classes/methods, 300–307
access control, 281–288
advanced techniques, 263–308
autoloading classes, 260–262
cart class, 340–346
constructors, 251–255
creating objects, 240–243
defining classes, 235–239
design patterns, 235
destructors, 256–259
errors, 234, 310, 327
exceptions. See exceptions
inheritance. See inheritance

MySQL Improved extension, 14, 183, 489
MySQL users, 145
mysqli_real_escape_string() function, 88,

189, 468, 490

N
\\n (newline), 124, 423, 427, 438
name attribute, 288
name element, 458
name fields, 140, 464
name_sort() function, 26
nested items

conditionals, 310
tasks, 19, 24
to-do lists, 8–17
XML elements, 532, 534

.NET objects, 415
Net_Geo PEAR class, 363
Net_GeoIP PEAR class, 363
networking, 347–372

cURL utility, 368–372
IP geolocation, 363–367
PEAR and, 354
sockets, working with, 355–362
Web site access, 348–354

network-related classes, 354
new keyword, 240
newline (\n), 124, 423, 427, 438
NMTOKEN type, 542
NMTOKENS type, 542
no-cache directive, 75
nodes, 499
nonzero rule, 462
nopunctuation rule, 462
normalization, 172, 173, 176
NULL values, 99, 176, 510
number() function, 228
numbers

binary, 37–38
character type functions, 127
floating-point, 37–38, 98, 438–442
formatting, 37–38
hexidecimal, 127
integers, 37–38
ISBN, 182

583

In
dex

Index

PHP, 548, 550–555
SAX, 548, 561
SimpleXML, 556–561

parse_url() function, 355–356
parsing XML, 548–561
pass value, 356
passthru() function, 415
password element type, 456
password elements, 460
password field, 465
password input, 456
passwords. See also authentication

email, 131
encrypted, 149, 154
input, 456
rules, 465
validating, 131, 465

path value, 356
paths, 82, 359
patterns, design, 235
payments, credit card, 224–232
PayPal, 530
#PCDATA type, 541
pclose() function, 415
pcntl (process control) extension, 440
PEAR (PHP Extension and Application

Repository), 443–479
errors, 446, 461, 464
installing, 446
networking and, 354

PEAR HTML_AJAX package, 518
PEAR Net_Geo class, 363
PEAR packages

Auth, 143–156
Benchmark, 444–456
Cache/Cache_Lite, 80
Console_Getargs, 436
Console_Getopt, 436
described, 443
HTML_AJAX, 518
HTML_QuickForm, 456–468
installing, 446
Mail_Mime, 469–479
Text_CAPTCHA, 135

PECL (PHP Extension Code Library), 80

object type hinting, 319
overriding methods, 277–281
performance and, 234
pros and cons, 234
real-world uses of, 309–346
scope resolution (::) operator, 289–293
shopping cart class, 328–339
static class attributes, 294–299
theories, advanced, 264–265
theories, basic, 233–262
$this attribute, 244–250
versions, 233
visibility, 281–288

OOP classes
abstract, 300–307
autoloading, 260–262
considerations, 234
defining, 235–239

open() function, 523
“open” function, 84
open() method, 495, 513, 523
Open Source Web Design, 58, 190
$operator variable, 392–393
operators, 398
optimizing joins, 102
or symbol (|), 541
Oracle database, 83
order_contents table, 172, 173, 175
orders table, 171, 172, 175
“out” clause, 18
overloading methods, 280
overriding methods, 277–281

P
padding specifier, 37
page caching, 80
parent classes, 264–270
parent keyword, 289
parent_id attribute, 9
parent_id value, 10, 14
parse errors, 32, 422
parsers

described, 548
DOM, 548, 556–561
Expat, 548, 549–551, 555

584

In
de

x

Index

POST data, 370, 372
POST method, 135
POST requests, 523, 526
PostgreSQL database, 83
Pragma header, 75
precision specifier, 37
primary keys, 9, 83, 88, 149, 173–178
printf() function, 37–38, 398, 441
printing

array items, 21
categories as links, 194
error messages, 56
items in cart, 222
with printf(), 37–38, 398, 441
with print_r(), 6, 93
with print_var(), 284, 285, 288
with sprintf(), 38, 39–42, 490
with vprintf(), 42

print_r() function, 6, 93
print_var() method, 284, 285, 288
private directive, 75
process control (pcntl) extension, 440
product catalog, 205–211
product ID, 172, 208, 213–219, 344, 345
product page, 205–211
product tables, 172, 177, 178
products. See also widgets

adding to shopping cart, 217, 218,
333–334, 344

browsing by category, 199–204
calculating prices, 221
deleting in shopping cart, 219, 223,

335–336
displaying in shopping cart, 219–223
displaying online, 205–211
invalid ID, 211
names, 209
out-of-stock, 210
printing items in cart, 222
retrieving information about, 217
updating in shopping cart, 218–223, 333,

335, 345, 346
properties, 235, 281–288. See also specific

properties
protected variable, 286

PECL Filter, 136–142
PECL json package, 507
percent sign (%), 37, 42
performance

client/server, 80
functions, 452–455
OOP and, 234

permissions
crontab file, 401
directories, 378, 380–381
files, 314, 315, 348, 381

PHP
accessing Web sites with, 348–354
distance calculation, 103
errors. See error messages; errors
networking with, 347–372
parsing XML with, 548, 550–555
testing, 491, 524–527
using COM with, 404–415
versions, 81, 418

PHP CLI help file, 418, 420, 421
PHP CLI man page, 421
PHP Coding Standard, 46
php executable, 403, 430
.php extension, 48, 424, 565
PHP Extension and Application Repository.

See PEAR
PHP Extension Code Library. See PECL
PHP files, 199, 400–401
PHP Library, 345
PHP scripts. See scripts
PHP tags, 48, 555
phpDocumentor, 46
PHP-GTK, 385–398, 427
PHP-GTK Web site, 385
phpinfo() scripts, 125, 157, 374
php.ini file, 406, 424
phpMyAdmin, 10–11, 97, 174
pipes, 415
plus sign (+), 541
polymorphism, 264–265
POP port, 355
popen() function, 415
port value, 356
ports, 355, 359

585

In
dex

Index

register_globals, 124
registerRule() function, 465
registration forms

creating with Ajax, 484–505
creating with HTML_QuickForm, 456–468
default form values, 461
filtering data, 461–465
processing data, 466–468
validating (Ajax), 484, 488–489, 499
validating (QuickForm), 128–131, 138–139

regular expressions, 124, 126, 131, 132
Remote Procedure Calls (RPC), 530
remote servers, 422
renderers, 460
Representational State Transfer (REST), 530
required rule, 462
require_once() function, 241, 243
reset button, 456
reset element type, 456
responseText attribute, 513, 517
responseText property, 495, 496, 525
responseXML property, 495
REST (Representational State Transfer), 530
return_distance() function, 114, 507
RETURNS clause, 111
Rico software, 518
Rijndael algorithm, 158
root element, 532, 534–535, 562
root folder, 54
routines, stored, 110–115
rows, 116–122, 395, 413
RPC (Remote Procedure Calls), 530
RSS (Really Simple Syndication), 562–568
RSS feeds, 529, 562–568
rtrim() function, 164
Ruby technology, 518
rules

adding to form elements, 461–467
email addresses, 462, 464, 465
error messages, 464
passwords, 465
validation, 461–465

run() method, 455

proxy servers, 74
proxy-revalidate directive, 75
public directive, 75
public variables, 285
punctuation, 127
PuTTY application, 422

Q
query results

displaying horizontally, 116–122
reporting on, 15
sent to browser, 8

query value, 356
question mark (?), 541
QuickForms. See HTML_QuickForm

package
" entity, 536
quotation marks (“), 284, 444, 445–455
quote marks (‘), 444, 445–455

R
\r (carriage returns), 124
r mode, 374
r+ mode, 374
radio button, 456
radio element type, 456
rangelength rule, 462
Ray, Arpad, 518
read access, 374
“read” function, 84
readgzfile() function, 375
readyState property, 495, 496, 498, 499
Really Simple Syndication. See RSS
records. See also databases

adding to database, 101, 178–181, 485–486
backing up, 375–384
displaying horizontally, 116–122
retrieving, 379, 384, 413

Rectangle class, 246–250
Rectangle example, 244–250
recursive functions, 18–24
references, 30
regex rule, 462

586

In
de

x

Index

semicolon (;), 111
send() method, 523
serialized arrays, 89
server requests, 80, 482, 496
servers, 373–415

Ajax and, 482, 496
Apache, 424
cron utility, 399–401
file compression, 374–384
IIS (Internet Information Server), 424
live vs. test, 53, 54, 187
local, 53
multiple, 82
PHP and, 373
PHP-GTK, 385–398
proxy, 74
remote, 422
running commands on, 125, 415
scheduling tasks (Mac OS X), 399, 400–401
scheduling tasks (Unix), 399–401
scheduling tasks (Windows), 402–403
SMTP, 469
using COM with PHP, 404–415

server-side caching, 80
server-side validation, 462, 466
server-specific constants, 53–54, 187
$_SESSION array, 88, 89
session caching, 80
session data, 82–95, 125
session directory, 82, 125
session functions, 84–90
session handlers, 91–95
session ID, 83, 88
session table, 82
session.auto_start function, 90
session_cache_limit() function, 80
session_destroy() function, 89
sessions

arguments, 84
caching, 80
closing, 94
deleting, 89
opening, 88
security, 82
storing in databases, 82–95

S
Safari browser, 527, 531
SAJAX software, 518
salutation element, 458
SAX (Simple API for XML), 548
SAX parsers, 548, 561
scalar values, 111
scanf() function, 42
Scheduled Tasks (Windows), 402–403
schema, 540, 546
scheme value, 356
scientific notation, 37
scope resolution (::) operator, 289–293
script.aculo.us, 518
scripts. See also code

Ajax examples, 487–490, 507–512
benchmarking, 444–450
CLI. See CLI scripts
comments, 44–46
phpinfo(), 125, 157, 374
running (Mac OS X), 424–425, 431
running (Unix systems), 424–425, 431
running (Windows), 403, 424–425,

429–430
testing, 491, 524–527
time limits for, 362, 406–407

search module, 70–73
security, 123–167. See also authentication;

passwords
basics, 124–125
captcha test, 135
database connections, 422
encryption, 149, 154, 157–167
frameworks and, 72
mail abuses, 124
MCrypt, 157–167
modularization and, 64, 65
PEAR Auth package, 143–156
session storage and, 82
setAdvancedSecurity() method, 156
validating forms, 126–135

select element type, 456
select menu, 456
self keyword, 289

587

In
dex

Index

signals, 440
signature, 280
signed integer, 38
Simple API for XML (SAX), 548, 561
simple authentication, 144–150
SimpleXML, 556–561
sizes table, 172, 177, 179
SKU numbers, 172, 178, 182
slash (/), 189
sleep() function, 269
Smarty system, 58
s-maxage directive, 75
SMTP port, 355
SMTP server, 469
SOAP, 530
sockets, 355–362
sorting, 2–7, 26, 28
specific_widgets table, 173, 178–181, 196
SPL (Standard PHP Library), 345
sprintf() function, 38, 39–42, 490
SQL injection attacks, 125
SQLite database, 83
srand() function, 158
SSH application, 422
SSH port, 355
SSL port, 355
Standard Generalized Markup Language

(SGML), 529
standard input (STDIN) constant,

437–439, 442
standard integer, 37
Standard PHP Library (SPL), 345
start() method, 154
static class attributes, 294–299
static element type, 456
static keyword, 294
static members, 294–299
static methods, 295–299
static statement, 25–29
static variables, 25–29, 294
status property, 495, 496, 499
stdClass class, 239
STDIN (standard input) constant, 437–439, 442
stored functions, 110–115
stored routines, 110–115

sessions table, 83
session_save_path() function, 82
session_set_save_handler() function, 84,

90, 91
session_start() function, 90, 93
session_write_close() function, 91, 94, 95
set_ method, 250
setAdvancedSecurity() method, 156
setAuthData() method, 156
set_default_size() method, 394
set_display() function, 391–392, 396
setlocale() function, 127
setMarker() function, 445–449
set_number() function, 392–393, 396
set_operator() function, 396
set_size() method, 245, 247, 248, 255
set_time_limit() function, 362, 406–407
set_title() method, 394
SGML (Standard Generalized Markup

Language), 529
SHA() function, 174, 485
shebang line, 424–425
shell scripting, 417
shell_exec() function, 368, 415
shopping cart

adding items to, 217, 218, 333–334, 344
calculating item prices, 221
deleting items in, 219, 223, 335–336
displaying contents, 219–223,

337–339, 346
HTML form for, 337–339
links to, 210
printing items in, 222
retrieving product information, 217
templates, 190, 191–196
updating items in, 218–223, 333, 335,

345, 346
shopping cart application, 212–223
shopping cart class, 328–339
shopping cart page, 213–223
show() method, 397
show_all() method, 397
show_login_form() function, 154
show_stores() function, 517–519
sign specifier (+/-), 37

588

In
de

x

Index

specific_widgets, 173, 178–181, 196
stores, 100–102
testing, 11
zip code, 96–99

task attribute, 9
task_id attribute, 9, 10
tasks

adding to arrays, 23
adding to database, 12–18
nested to-do lists, 8–17
recursion and, 18–24
scheduling (Mac OS X), 399–401
scheduling (Unix), 399–401
scheduling (Windows), 402–403

Telnet port, 355
templates

applications, 190–196
e-commerce example, 190–196
HTML, 58–61
shopping cart, 190, 191–196
Web pages, 58–61

temporary directory, 82
Terminal application, 400, 421
testing

Ajax applications, 504–505
captcha test, 135
CLI installation (Mac/Unix), 421
CLI installation (Windows), 419–420
code snippets, 422–423
methods, 455
PHP scripts, 491, 524–527
scripts, 491, 524–527
tables, 11
validate() test, 466

text blocks, 456
text boxes, 456
text element type, 456
text input, 456
textarea element type, 456
textarea field, 456
$this attribute, 244–250
$this variable, 245–246
throw syntax, 311
time

current, 378

stores table, 100–102
strcasecmp() function, 6, 352
strcmp() function, 3
strings

formatting, 38
heredoc syntax, 31–36
specifiers, 37
user input, 438
XML, 561

strip_tags() function, 125
strtolower() function, 553
subclass constructors, 272–275
subclasses, 265, 276, 288, 298
submit button, 456, 457, 460, 516, 520
submit element type, 456
superclass, 265
switch case, 64
switch conditional, 64–65, 238, 324
synchronous transactions, 483
system() function, 415

T
tables

addresses, 182
backing up, 375–384
categories, 172, 176–178, 193, 194
colors, 172, 176, 179
columns, 83, 98–100, 102, 413
compression, 374–384
creating with CREATE TABLE, 10, 151–152,

174–178
creating with GTK, 394–395
creating with HTML, 116, 457
customers, 171, 174, 182
general_widgets, 173, 177–180
joining, 102
metadata, 171, 175
order, 171, 172, 175
order_contents, 172, 173, 175
populating, 173, 178–180, 486
product, 172, 177, 178
retrieving, 379, 411
sessions, 83
sizes, 172, 177, 179

589

In
dex

Index

redirects, 348
running applications through, 524
unable to open, 352
validating, 355–362

user events, 386, 397
user input, 438–442
user value, 356
usernames

checking availability of, 485–505
registered, 491

users
adding, 145, 149
events, 386, 397
finding location of, 363–367
input, 438–442
MySQL, 145

usort() function, 3, 6
UTF-8 characters, 499

V
validate() test, 466
validation

categories, 202
client-side, 462, 464, 465–466
conditionals, 202–204
credit card, 224–232
email addresses, 131, 462
errors, 133
form data (Ajax), 461–465
form data (QuickForm), 128–131, 138–139
passwords, 131, 465
product ID, 208
rules, 461–465
server-side, 462, 466
URL, 355–362
usernames, 485–505

var keyword, 493
variable scope, 498
variables

checking values of, 525
checking with JavaScript alerts, 525
commands and, 125
commenting, 45
$debug, 54
declaring, 110

elapsed, 445, 449
script time limits, 362, 406–407

time zones, 228
timeElapsed() method, 445, 449
Timer class, 445–450
timers, 445–450
timestamp, 76, 78, 83, 175, 423
TINYINT keyword, 102
to-do list, 8–17
toString() method, 311, 318
transactions

Ajax, 482, 483, 494
synchronous vs. asynchronous, 483

tree-based parsers, 548, 559
Triangle class, 302–307
trigger_error() function, 189
trim() function, 462
try block, 311, 314, 318
try statement, 310
try...catch blocks, 310, 311, 315, 318, 410
type hinting, 319
type specifiers, 37

U
uasort() function, 3, 6
uksort() function, 3
Uniform Resource Indicators (URIs), 540
Uniform Resource Locators. See URLs
Unix servers, 399–401
Unix-based systems

binary files and, 382
cron utility, 399–401
remote server connections, 422
running scripts, 424–425, 431
Terminal application, 400, 421
testing CLI installation on, 421

UNIX_TIMESTAMP() function, 78
unserialize() function, 343
unsigned decimal integer, 37
update_item() method, 333, 335, 345
uploadedfile rule, 462
URIs (Uniform Resource Indicators), 540
URL links, 456
URLs (Uniform Resource Locators)

information passed via, 135

590

In
de

x

Index

Safari, 531
Wget, 399
XML and, 531

Web pages
Ajax applications, 482–528
caching in, 74–80
home page, 69, 197–198
HTML templates, 58–61
login functionality, 144–156
logout functionality, 93–95
opening, 355, 369–372
ports, 355
posting data to, 369–372
product page, 205–211
shopping cart page, 213–223
titles, 60
updates to, 482–483

Web port, 355
Web Services Description Language

(WSDL), 530
Web sites. See also specific Web sites

accessing with PHP, 348–354
authentication system, 143–156
companion site to book, 170
distance calculations on, 96–109
e-commerce home page, 197–198
home page, 69, 197–198
HTML templates, 58–61
modularizing, 49–73
reading data from, 348–354
sessions, 82
structure, 48

Wget browser, 399
WHERE clause, 106
while loop, 121, 413, 511
white space, 44, 48, 533
white space characters, 127
widget ID, 343
widgets, 385–386. See also products
WidgetShoppingCart class, 329–339, 340–346
$window variable, 394
Windows Vista systems, 420
Windows XP systems, 410, 419–420
Windows-based systems

binary files and, 382

filtering, 136–142
flag, 202
global, 25, 55, 137, 391–394
included files and, 125
initializing, 124
local, 110
names, 45, 110, 196
$operator, 392–393
passing by reference, 30
protected, 286
public, 285
static, 25–29, 294
$this, 245–246
vs. attributes, 236
$window, 394

Venkman debugger, 527
visibility, 234, 236, 265, 281–288
Visual Basic editor, 404, 405
vprintf() function, 42

W
w mode, 374
w+ mode, 374
W3C (World Wide Web Consortium), 530
Web applications, 43–80. See also applications

caching and, 74–80
code style/structure, 47–48
configuration files, 50–57
content modules, 66–69
documenting code, 44–46
HTML templates, 58–61
index page, 62–65
main module, 66–69
main page, 62–65
modularization and, 49–73
search modules, 70–73

Web browsers
Ajax applications, 482–528
caching Web pages, 74–80
Firefox, 493, 526, 527, 531, 565
history feature, 528
Internet Explorer, 74, 492, 526, 527, 531
Lynx, 399
query results sent to, 8
RSS feeds, 562–568

591

In
dex

Index

browser-viewable, 531
comments in, 533
creating, 531, 534–535
examples, 532–535
nested elements in, 534
structure of, 532
valid, 544
well-formed, 544
white space and, 533

XML elements, 530, 536–539
XML prolog, 532
XML Schema, 546
XML strings, 561
XML tags, 48, 530–534, 555
XMLHttpRequest object, 492–496, 513
xml_parse() function, 549
xml_parse_create() function, 549, 554
xml_parse_free() function, 549
xml_set_character_data_handler()

function, 549
xml_set_element_hander() function, 549
XPath language, 561
XSLT (Extensible Stylesheet Language

Transformation), 555

Y
Yahoo!, 530
y-coordinates, 396
year menu, 456
Yeung, Anthony, 58

Z
ZCTA (Zip Code Tabulation Areas), 96
Zend, 72, 80
Zend Framework, 354
Zend Optimizer, 80
zip code search example, 506–522
zip code table, 96–99
Zip Code Tabulation Areas (ZCTA), 96
zip codes, 96–109
zips database, 96–109, 507–521
zlib library, 374–376
zlib tool, 80, 374–376, 382

Component Object Module (COM), 404–415
MySQL Administrator, 112–113, 114
remote server connections, 422
running scripts, 403, 424–425, 429–430
Scheduled Tasks, 402–403
testing CLI installation on, 419–420

Word documents, 404
workbooks, Excel, 405, 406–415
World Wide Web Consortium (W3C), 530
write access, 374
“write” function, 84
write_session() function, 94
WriteToFile class, 326
WSDL (Web Services Description

Language), 530

X
x mode, 374
XAJAX software, 518
x-coordinates, 395, 396
XHTML, 483, 529, 550
XML (Extensible Markup Language),

529–568
Ajax and, 481, 483
attributes, 536–539
browsers and, 531
Document Type Definitions, 540–547
empty elements, 536–539
entities, 536–539
naming conventions, 533
overview, 529, 530–531
parsing with Expat, 548, 549–551, 555
parsing with PHP, 548, 550–555
parsing with SimpleXML, 556–561
purpose of, 530
RSS feeds, 562–568
syntax, 532–535
versions, 532
vs. HTML, 125
white space and, 533
XPath language, 561

XML data, 531, 544, 555, 556
XML documents

associating DTDs with, 540–547

592

In
de

x

Index

	PHP 5 Advanced
	Table of Contents
	Introduction
	Chapter 1: Advanced PHP Techniques
	Multidimensional Arrays
	Advanced Function Definitions
	The Heredoc Syntax
	Using printf() and sprintf()

	Chapter 2: Developing Web Applications
	Documenting Code
	Code Style and Structure
	Modularizing a Web Site
	Affecting the Browser Cache

	Chapter 3: Advanced Database Concepts
	Storing Sessions in a Database
	Working with U.S. Zip Codes
	Creating Stored Functions
	Displaying Results Horizontally

	Chapter 4: Security Techniques
	Remembering the Basics
	Validating Form Data
	Using PECL Filter
	Authentication with PEAR Auth
	Using MCrypt

	Chapter 5: E-commerce Techniques
	E-commerce Concepts
	Creating the Database
	Creating the Configuration File
	Making the Template
	Creating the Index Page
	Browsing by Category
	Showing a Product
	Implementing a Shopping Cart
	Validating Credit Cards

	Chapter 6: Basic Object-Oriented Programming
	OOP Theory
	Defining a Class
	Creating an Object
	The $this Attribute
	Creating Constructors
	Creating Destructors
	Autoloading Classes

	Chapter 7: Advanced OOP
	Advanced Theories
	Inheriting Classes
	Inheriting Constructors and Destructors
	Overriding Methods
	Access Control
	Using the Scope Resolution Operator
	Creating Static Members
	Abstract Classes and Methods

	Chapter 8: Real-World OOP
	Catching Exceptions
	Extending the Exception Class
	Creating a Shopping Cart Class
	Using the Cart Class

	Chapter 9: Networking with PHP
	Accessing Other Web Sites
	Working with Sockets
	Performing IP Geolocation
	Using cURL

	Chapter 10: PHP and the Server
	Compressing Files
	PHP-GTK
	Establishing a cron
	Scheduling Tasks on Windows
	Using COM with PHP

	Chapter 11: PHP’s Command-Line Interface
	Testing Your Installation
	Executing Bits of Code
	Creating a Command-Line Script
	Running a Command-Line Script
	Working with Command-Line Arguments
	Taking Input

	Chapter 12: Using PEAR
	Using Benchmark
	Using HTML_QuickForm
	Using Mail_Mime

	Chapter 13: Ajax
	Introduction to Ajax
	A Simple Example
	Full-Fledged Ajax
	Debugging Ajax Applications

	Chapter 14: XML and PHP
	What Is XML?
	XML Syntax
	Attributes, Empty Elements, and Entities
	Document Type Definitions
	Parsing XML
	Creating an RSS Feed

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

