TR45.0.A

Common Cryptographic
Algorithms, Revision B

June 21, 1995

Information disclosed In this document may be subject 1o the export urisdiction of the US Doperiment of
State o0s speciliad in Intemational Traffie in Armne Banidatlnne fihle B% LD o . com s o o PRSI AR

NOTICE

EIA/TIA Engincering Standards and Publications are designed 1o serve
the public interest through climinating misunderstandings between
manufacturers and purchasers, facilitating inter-changeability and
improvement of products, and assisting the purchaser in selecting and
obtaining with minimum delay the proper product for their particular
need. Existence of such Standards and Publications shall not in any
respect preclude any member or non-member of EIA or TIA from
manufacturing or selling products not conforming to such Standards
and Publications, nor shall the existence of such Standards and
Publications preclude their volunitary usc by those other than EIA or -
TIA members, whether the standard is (o be used either domestically or
internationally.

Standards and Publications are adopted by EIA/TIA without regard lo
whether or not their adoption may involve patents or articles, materials,
or processes. By such action, ELA/TIA does not assume any liability 1o
any patent owner, nor docs it assume any obligation whatever to parties
adopling the Recommended Standard or Publication.

TIA TR45 Ad Hoc Authentication Group Documents

TIA TR45 Ad Hoc Authentication Group Documents contain
information deemed to be of technical value to the industry, and are
published at the request of the TR4S Ad Hoc Authentication Group
without necessarily following the rigorous public review and resolution
of comments which is a procedural part of the development of an
EIA/TIA Sundard.

TIA TR45 Ad Hoc Authentication Group Documents bear on or are
subject 1o the export jurisdiction of the US Department of State as
specified in Intemational Traffic in Anmns Regulations (ITAR), Tide 22
CFR parts 120 through 130 inclusive. An cxport license may be
required for the transmission of such material in any form outside of
the United States of America,

Contact

TELECOMMUNICATIONS INDUSTRY ASSOCIATION
Engineering Department

2001 Pennsylvania Avenue, N.W.. Suite 800

Washington, D.C. 20006-1813

Copyright 1995

TELECOMMUNICATIONS INDUSTRY ASSOCIATION
All rights rescrved

Printed in the United States

Information disclosed in this document [s subject 1o the export jurisdictlon of tho US Depanment of State a<

ennsiliad in Intarmatinns] Tratl e Fa & o - P 2 e

-

06/21/95 Common Cryptographic Algorithms Revision B
Document History
Revision Date Remarks
0 02-05-93 Frozen for PN-3118 Ballot
0.1 04-21-93 Adopted by TR45 AHAG
A 12-14-94 Major revision, incorporating ORYX data encryption algorithms and
ANSI C algorithm descriptions
Al 04-25-95 Corrections to ORYX algorithm and test vectors: conversion 1o Word 6.0
B 04-26-95 Add procedures for wircless residential extension authentication

Information disclosed in this document ks subject to the expont Jurisdiction of the U:: Dopanrnonl of State as

ecemanscstlooad n Intarmatinnel Teatlom la A svsme IS o

ebla s datal . s SRR a2 o=

Common Cryptographic Algorithms Revision B 06/21/95

No text.

Information disclosod in this document is subject to the e

xport jurisdiction of tho US Depariment of State as
speciliod in Intemational Traffic in Arms Regulations (title 22 CER narc 190 thrmimb 1930 it g o o

06/21/95 Common Cryptographic Algorithms Revision B

Table of Contents

1. INTRODUCTION ‘ 1
1.1. Notations ' 2
1.2 Definitions 2 .

2. PROCEDURES ' 5
2.1. Authentication Key (A-Key) Procedures 14

2.1.1. A-Key Checksum Calculation 14
2.1.2. A-Key Verification 18
2.2. SSD Generation and Update 21
2.2.1. SSD Generation Procedure 21
2.2.2. SSD Update Procedure 24
2.3. Authentication Signature Calculation Procedure 25
2.4. Encryption Key and VPM Generation Procedure 30
2.4.1. CMEA key Generation 31
2.4.2. Voice Privacy Mask Generation 31
2.5. CMEA Encryption/Decryption Procedure 36
2.6. Wireless Residential Extension Procedures 39
2.6.1. WIKEY Generation 39
2.6.2. WIKEY Update Procedure 43
2.6.3. Wireline Interface Authentication Signature Calculation Procedure 45
2.6.4. Wircless Residential Extension Authentication Signaturc Calculation Procedure 49
2.7. Cellular Data Encryption 52
2.7.1. Data Encryption Key Generation Procedure 55
2.7.2. Data Encryption Mask Generation Procedure 39

3. TEST VECTORS 61

3.1. CAVE Test Vectors 61
3.1.1. Vector | 61
3.1.2. Vector 2 62
3.1.3. Test Program 62

3.2 Wircless Residential Extension Test Vectors 67
3.2.1. Input data 67
3.2.2. Test Program 67
3.2.3. Test Program Output 68

3.3. Data Encryption Test Vector 69
3.3.1. Input data 69
3.3.2. Test Program 69
3.3.3. Test Program OQutput 71

Information disclosed in this document is subject 1o the expor jurisdiction of the US Department of State a<

ernntiliand in latmeme et cm el T 228 & a

vi Common Cryptographic Algorithms Revision B 06/21/95

No text

0 sCloso
Int lﬂla[lal 1 dizcl d m lllls dx““m“ h suﬂ“l !D "Iﬂ oxmll ul’sdlcllo" O‘ llo Do a"l“’l“ o' 1a

L T S

H K

5 Y8y

06/21/95

1.

Introduction

Common Cryptographic Algorithms Revision B

This document describes detailed cryptographic procedures for cellular
system applications. These procedures are used to perform the security
services of mobile station authentication, subscriber message
encryption, and encryption key and subscriber voice privacy key
generation within cellular equipment.

This document is organized as follows:

§2 describes the Cellular Authentication, Voice Privacy and Encryption
(CAVE) algorithm used for authentication of mobile subscriber
cquipment and for generation of cryptovariables to be used in other

procedures.

§2.1 describes the procedure to verify the manual entry of the
subscriber authentication key (A-key).

§2.2 describes the gencration of intermediate subscriber
cryptovariables, Shared Secret Data (SSD). from the unique and private
subscriber A-key.

$2.3 describes the procedure 1o calculate an authentication signature
used by cellular base station equipment for venilying the authenticity of
a mobile station,

§2.4 describes the procedures used for gencrating cryplographic keys.
Thesc keys include the Voice Privacy Mask (VPM) and the Cellular
Message Encryption Algorithm (CMEA) key. The VPM is used to
provide forward link and reverse link voice confidentiality over the air
interface. The CMEA key is used with the CMEA algorithm for
protection of digital data exchanged between the mobile station and the
base station,

§2.5 describes the Cellular Message Encryption Algorithm (CMEA),
used for enciphering and deciphering subscriber data cxchanged
between the mobile station and the base station.

§2.6 describes the procedures for key and authentication signature
genceration for wireless residential extension applications.

§2.7 describes the ORYX algorithm and procedures for key and mask
generation for encryption and decryption in cellular data services.

§3 provides l_c'sl data (vectors) that may be employed to verify the
correct operation of the cryptographic algorithms described in this
document.

Manufacturers are cautioned that no mechanisms should be provided
for the display at the ACRE, PB or mobilc swation (or any other
cquipment that may be interfaced with it) of valid A-key, SSD_A,
SSD_B, MANUFACT_KECY, WIKEY, WRE_KEY or other

Information disclosed In this document Is subject to the export jurisdiction of the US Depariment of State as

annrtdiand ln Intarmatliarmnal Toaddic o A - .

VA WU N o=

“

A XEEeHYY HY HH

&

Common Cryplographic Algorithms Revision B

1.1. Notations

cryptovariables associated with the cryptographic functions described
in this document. The invocation of test mode in the ACRE, PB or
mobile station must not alter the operational values of A-key, SSD_A,
SSD_B MANUFACT_KEY, WIKEY, WRE_KEY or other
cryptovariables.

12. Definitions

The notation Ox indicates a hexadeci mal (base 16) number.

Binary numbers are expressed as a string of zero(s) and/or once(s) .
followed by a lower-case “b",

Data amrays are indicated by square brackets, as Amay[). Amay indices
start at 2ero (0). Where an array is loaded using a quantity that spans
several array elements, the most significant bits of the quantity are
loaded into the element having the lowest index. Similarly, where a
quantity is loaded from several array clements, the clement having the
lowest index provides the most significant bits of the quantity.

For example, Exhibit 2-] shows the mixing registers R[00) through
R(15] and the lincar feedback shift register (LFSR). In this exhibit, the
mixing registers are loaded from left (most significant bit) to right
(lcast significant bit). Similarly, the LFSR is loaded with the most
significant bits in its leftmost byte (LFSR A7-A0) and the least
significant bits into its rightmost byte (LFSR D7-D0).

This document uses ANSI C language programming synwax to specify
the behavior of the cryptographic algorithms. This specification is not
meant o constrain implementations. Any implementation that
demonstrates the same behavior at the external interface as the
algorithm specified hercin, by definition, complics with this standard.

AAY

ACRE
ACRE_PHONE_NUMBER

A-key

AND

Authentication Algorithm Version, an 8-bit constant equal to
hexadecimal 0xC7, used in the algorithm. Use of different values for
this constant in some future version would allow other “versions™ or
“flavors” of the basic CAVE algorithm.

Authorization and Call Routing Equipment. A network device which
authorizes the Personal Base and provides automatic call routing.

A 24-bit pattern comprised of the last 6 digits of thc ACRE's directory
number,

A 64-bit cryplographic key variable stored in the semi-permanent
memory of the mobile station and also known (o the Authentication
Center (AC or HLR/AC) of the cellular system. Itis entered once from
the keypad of the mobile station when the mobile station is first put into
service with a particular subscriber, and usually will remain unchanged
unless the operator determines that its value has been compromised.
The A-key is used in the SSD gencration procedure,

Ditwise logical AND function,

Information disclosed in this document is subject 1o the expont jurisdiction of the US Department of Stale as

spocilied in Intemational Traffic in Arms Regulations (|r_lle 22 CFR perts 120 through 130 inclusiva) A

Branen ieessmel bas db o .

¥ g e b b

06/21/95

v a v a

o

HH 94 BNy

L}

E Ny

3

06/21/95

Boolean
CAVE
CaveTable

CMEA
CMEAKEY

MKey
Directory Number

ESN
Internal Stored Data

Iteration
kOk1._k7
LFSR

LFSR_A
LFSR_B
LFSR_C
LFSR_D
LFSR-Cycle

Offsetl
Offsct2

rn

Information dizclosed in this document Is euBlart 16 tha awrmet | oooferd mt’ x o o8 5o~ 8 1ee

Common Cryptographic Algorithms Revision B

Describes a quantity whose value is either TRUE or FALSE.
Cellular Authentication and Voice Encryption algorithm.

A lookup table consisting of 256 8-bit quantitics. The table, partitioned
into tablc0 and wablel, is used in the CAVE algorithm.

Cellular Message Encryption Algorithm.

A 64-bit cryptographic key stored in cight 8-bit registers identified
scparately as kO, k1, ... k7 or CMEAKEY(0 through 7). The data in
these registers results from the action of the CAVE algorithm and is
used (o encrypt certain messages, :

A 32-bit cryptographic key used for gencration of masks for cn'cryption
and decryption in cellular data services.

The telephone network address.
The 32-bit electronic serial number of the mobile station.

Stored data that is defined locally within the cryptographic procedures
and is not accessible for examination or usc outside those procedares.

Multi-round execution of the CAVE algorithm. Al applications of
CAVE throughout this document use either four or cight rounds per
ileration.

Eight 8-bit registers whose contents constitute the CMEA key.

A 32-bit Lincar Feedback Shift Register, which is composed of four 8-
bit registers,

The A register, a synonym for bits 31-24 of the LFSR.
The B register, a synonym for bits 23-16 of the LFSR.
The C register, a synonym for bits 15-8 of the LESR.
The D register, a synonym for bits 7-0 of the LFSR.
An LFSR-cycle consists of the following steps:

1. Computc the valuc of bit A7 using the formula A7 = B6 XOR
D2 XOR DI XOR DO. Save this valuc temporarily without
changing the prior value of the A7 bit in the A register.

2. Perform a linked 1-bit right shift on the 32-bit LFSR, and
discard the DO bit which has been shified out.

3. Use the previously computed and stored value of bit A7 from the
first of thesc three statements.

Least Significant Bit,
Most Significant Bit,
Bitwisc logical inclusive OR function,

An 8-bit quantity that points to one of the 256 4-bit values in able0.
Arithmeltic operations on Offset] are performed modulo 256. Also
called offset_l.

An 8-bit quantity that points 10 one of the 256 4-bit values in tablel,
Arithmetic opcrations on Offscl2 are performed modulo 256. Also
called offset_2,

Personal Basc. A fixed device which provides cordless like service 10 a
mobile station.

o

u

“

o u

PBID
RAND_ACRE
RAND_PB
RAND_WIKEY
RAND_WRE
Round

ROO-R15

SSD

SSD_A

SSD_A_NEW

SSD_B

SSD_B_NEW
Ltable0
tablel

VPM

WIKEY
WIKEY_NEW
WRE_KEY

XOR

Common Cryptographic Algorithms Revision B 06/21/95

Personal Base Identification Code.

A 32-bit random number which is generated by the PB.

A 32-bit random number which is generated by the ACRE.
A 56-bit random number which is generated by the ACRE.
A 19-bit random number which is generated by the PB.

A round is onc individual execution of the CAVE algorithm.

Sixteen separate 8-bit mixing registers used in the CAVE algorithm.
Also called register[0 through 15).

SSD is an abbreviation for Shared Secret Data. It consists of two
quantities, SSD_A and SSD_B.

A 64-bit binary quantity in the semi-permancnt memory of the mobile
station and also known to the serving MSC. It is used in the
computation of the authentication response.

The revised 64-bit quantity held separately from SSD_A, generated as a
result of the SSD gencration process.

A 64-bit binary quantity in the semi-permancent memory of the mobile
station and also known to the serving MSC. It is used in the
computation of the CMEA key, VPM and DawuKey.

The revised 64-bit quantity held separately from SSD_B, generated as a
result of the SSD generation process.)

The low-order four bits of the 256-byte lookup table used in the CAVE
algorithm. Computed as CaveTable{] AND 0xOF.

The high-order four bits of the 256-byte lookup table used in the CAVE
algorithm. Computed as CaveTable(! AND OxFO.

Voice Privacy Mask. This name describes a $20-bit entity that may be
used for voice privacy functions as specificd in cellular system
standards.

Wircline Interface key. A 64-bit pattern stored in the PB and the
ACRE (in semi-permanent memory).

A 64-bit patiemn stored in the PB and the ACRE. It contains the value
of an updated WIKEY,

Wircless Residential Extension key. A 64-bit pattern stored in the PB
and the MS (in semi-permanent memory).

Bitwise logical exclusive OR.

Information disclosed m this document is subject o the export jurisdiction of thn US Depnriment of Stale as

spocilied in International Traffic in Arms Regulations (tille 22 CFR pans 120 through 130 Inclusive). A

lrnnen irciwnd o tha NMamadamant o

L T

Y urouue s

L]

n

06/21/35

2. Procedures

Common Cryptographic Algorithms Revision B

CAVE is a software-compatible non-linear mixing function shown in
Exhibit 2-1. Its primary components are a 32-bit linear-feedback shift
register (LFSR), sixteen 8-bit mixing registers, and a 256-entry lookup

table. The table is organized as two (256 x 4 bit) tables. The 256-byte

table is listed in Exhibit 2-3. The low order four bits of the entries
comprise table0 and the high order four bits of the entries comprise

tablel,

The pictorial arrangement of Exhibit 2-1 shows that the lincar-feedback
shift register (LFSR) consists of the 8-bit register stages A, B, C, and
D. The CAVE process repeatedly uses the LFSR and table to
randomize the contents of the 8-bi mixing register stages RO, RO,
R02, RO3, R04, ROS, R06, RO7, ROS, R09,R10, R11, R12, R13, R14,
and R15. Two lookup table pointer offscts further randomize table
access. Finally, cight 16-entry permutation recipes are embedded in the
lookup tables to “shuffle” registers ROO through R1S after each
computational “round” through the al gonithm.

The algorithm operation consists of three steps: an initial loading, a
repeated randomization consisting of four or cight “rounds"”, and
processing of the output. Initial loading consists of filling the LFSR,
register stages ROQ through RIS, and the pointer offscts with
information that is specific (o the application. The randomization
process is common to all cascs that will be described in the later
sections. Randomization is a detailed operation: it is described below
by means of Exhibit 2-1, Exhibit 2-2, and Exhibit 2-3. The output
processing utilizes the final (randomized) contents of ROO through R15
in a simple function whose result is returned to the calling process.

The CAVE Algorithm may be applicd in a number of different cases.
In each, there are different initialization requircments, and different
output processing. All cases arc detailed in §2.1 through §2.4 of this
document.

Information disclosed in this document Is subject 10 the export |urisdiction of the US Department of Stale as

specified in Intemational Traffic in

Amms Regulations (title 22 CFR pans 120 through 130 inclusive). A

licenso issued by the Deparimont of State i reoulrad (08 tha avnan ~f ciimk tacbalaat dos-

Common Cryptographic Algorithms Revision B

Exhibit 2.1 CAVE Elements

06/21/95

“TT A1 A0 B7 B6 BS — Bl BO C7 " CO D7
' A7(input) = B6 XOR D2 XOR DI XOR DO

-

Mixing Registers:

......

[Roo] rot [ro2 [Ro3 [moa T Ros | Ros [Ro7][Ros || o5 || rio

L]

0x00
0x01
0x02

OxFD
OxFE
OxFF

Information disclosed in this document Is subject 10 the export
specifiod in Inlernational Traffic in Arms Regulations

XXXX

XXXX

XXX X
xxxx

XXXX

0x00
256 X 4 0x01
Tablel

OxI'F

[rRi[R2[R3]RI4] RIS

AXXX
XXxx

IXxx

XXXX
XXxx

IXXX

256 X 4
TableO

jurisdiction of the US Dopariment of State as
(utle 22 CFR pans 120 through 130 inclusive). A

licenso issued by tho Department of State is reauired {or the exnart nf €1irh tnrhnical data

HUR3?3?8“3335:l‘uﬁzcﬂzaonuausuu

BRAAAAL AL AN YUY H K

“
-

9Kgepn

06/21/95 Common Cryptographic Algorithms Revision B

Exhibit 2-2 CAVE Algorithm

/* header for CAVE and related procedures */

void CAVE(const int number_of_rounds,
int *offset_1,
int *offset_2);

void A_Key_Checksum(const char A_KEY_DIGITS[20],
s . . char A_KEY_CHECKSUH[SIJ;

int A_Key_Verify(const char A_KEY_DIGITS[26]):

void SSD_Generation (const unsigned char RANDSSD(7)) ;

unsigned long Auth_Signature (const unsigned char RAND_CHALLENGE(4],
const unsigned char AUTH_DATA(3),
const unsigned char *SSD_AUTH,
const int SAVE_REGISTEZRS):

void Key_VPM_Generation (void) ;

void CMEA(unsigned char *msg_buf, const int byte_count):

void WIKEY_Generation (const unsigned char MANUFACT_XEY([16]),
const unsigned char PBID[4])):;

void WIKEY_Update (const unsigned char RANDWIKEY (7],
const unsigned char PBID(4]);

unsigned long WI_Auth_Signature (const unsigned char RAMND_CHALLENGE(4),
const unsigned char PBID(4),
const unsigned char ACRE_PHONE_NUMBER([3]) ;

unsigned long WRE_Auth_Signature(const unsigned char RAND_WRE([3],
const unsigned char P3ID(4),
const unsigned char ESN(4]):

#define LOMASK 0x0F
#define HIMASK OxFO0
¢define TRUE 1
fdefine FALSE 0

/* authentication algorithm version (fixed) */
unsigned char AAV = { Oxc7);

/* external input data */

unsigned char ESN(4);

/* saved outputs */

unsigned char LFSR[4)]):

fdefine LFSR_A LFSR(0)

tdefine LFSR_B LFSR(1)
#define LFSR_C LFSR([2)

Information disclosed in this document is subject 1o the export jurisdiction of tho US Department of State as
specified in International Traffic in Arms Regulatlons (title 22 CFR pars 120 through 130 inclusive). A
'mﬂm issurd hv tha Nanarmant Al Ciata e cmmiiton s - *

Gﬁ:accw.u-uu—

-
-

URuuuus;:aa

8 Common Crypt

#define LFSR_D LFSR[3]

ographic Algorithms Revision B

. SSD_A(8);
. SSD_B[B);

unsigned char Register(16];
unsigned char A_key(B];
unsigned char SSD_A_NEW([8])
unsigned char SSD_B_NEW([8]
unsigned char cmeakey [8);
unsigned char VPM[65];
unsigned char , SAVED_LFSR([4];
int SAVED_OFFSET_1;
int SAVED_OFFSET_2;
unsigned char SAVED_RAND(4]:
unsigned char SAVED_DATA[3);
unsigned char SAVED_ESN(4]);
unsigned char WIKEY([8]);
unsigned char WIKEY_NEW([8];
unsigned char WRE_KEY([8);

/* tablel is the 4 1sbs of the array,
tablel is the 4 msbs of the array */

Information disclosed in this document ks s
specilied in Intemational Trotfic i Arms

ubject 1o the export jurisdiciion of the
Regulations (title 22 CFR parts 1201

licenso Esued by the Depariment of State Is required for the export of &

06/21/35

US Depariment of State as
hrough 130 Inclusive). A

1rh tarhnlenl Aatn

1
2
3
4
]
6
e
]
L
10

SBUUYR YN

4¥¥BHYUW

06/21/95

Common Cryptographic Algorithms Revision B

unsigned char CaveTable[256) =

(0xd9, 0x23, O0xSf,
0x7b, 0x£f2, 0x0c,
Ox0a, O0x46, 0x77,
0xfl, 0x34, Oxec,
0x59, 0x47, Oxel,
0x15, 0x8b, 0x7d,
0x49, 0x56, 0x23,
0x£f2, 0x70, Ox3c,
Oxe2, 0x38, Oxba,
Oxde, Oxab, -0xc7,
0x86, Oxbd, 0x0a,
Oxcb, 0x45, 0x5f,
O0xbB, 0x77, 0x80,
Oxe9, Oxcf, O0xf3,
Oxbl, 0x30, Oxad,
0x05, Oxlf, 0x62,
Oxbb, 0x86, 0x0d,
0x51, 0x30, OxeS,
0x91, 0x76, 0xfo0,
Oxa2, Oxdb, Oxef,
Oxe7, Oxfa, 0xds,
0x25, 0x7c, 0xSd,
Ox5a, Ox6f, 0x9b,
0x37, Oxa2, 0x88,
Ox4e, 0x96, 0Oxa8,
Ox3f, Oxf2, Oxec,
0x04, 0x79, Oxel,
0x25, 0x9d, Oxdc,
0x91, 0x34, Oxfe,
0%22, Oxaa, Oxcb,
Ox£fS, 0x36, Oxae,
Ox8b, Oxbd, 0x58,

/* end of CAVE header */

Oxe6,
0x34,
0x8d,
0xas,
0xd2,
0x38,
0x15,
0x88,
0x44,
0x65,
Oxf1l,
Oxe8,
0xdl,
0x54,
0x96,
0x7c,
0x7a,
0Oxf2,
0x17,
0x65,
0x81,
0xc9,
0xd9,
0x2d,
0xSa,
0x04,
0xc7?,
OxSE,
0x5c,
Oxee,
0x01,
0x12,

Oxca,
0x11,
0x10,
0xc9,
Oxff.
0x21,
0x97,
Oxba,
0xSf,
Oxfl,
0x3c,
0x10,
0x12,
0x3a,
0xf8,
Oxec3l,
0x97,
0x2f,
0x43,
0x5Se,
Ox6¢f,
Ox9e,
Oxfe,
0x00,
0xbs,
0x60,
0x1b,
Ox3e,
0x67,
Oxbf,
0x2¢€,
Oxe0,

0x68, 0x97, 0xbo,
Oxa5, 0x8d, Ox4e,
0x9f, OxSe, 0x62,
0xb3, 0xd8, 0x2b,
Oxae, 0x64, Oxca,
Oxbec, 0x96, 0x00,
Oxed, Oxcb, Ox6f,
Oxdl, 0x0d, Oxae,
0x83, 0x5d, Oxlc,
0x76, 0x09, 0x20,
Oxa7, 0x29, 0x93,
0x74, 0x62, Oxde,
0x26, Oxac, 0x6d,
0x0b, 0x95, Oxde,
0x57, 0x49, OxBe,
0x2b, Oxda, Oxed,
0x13, O0x6c, Oxse,
0xd8, Oxc4, 0xa9,
0x38, 0x29, 0x84,
Oxca, 0x0d, Oxbec,
0x00, 0xl4, 0x42,
O0xb6, 0x33, Oxab,
0x71, 0x44, O0xcsS,
Oxb6, 0x13, Oxec,
0xd7, Oxc3, Oxé&d,
0x71, Oxlb, 0x23,
0x66, 0xBl, Oxda,
0xb0, OxfB, Oxa2,
0x89, 0x73, 0x05,
0x18, 0xd0, 0x4d,
0x94, Oxc3, 0x¢9,
0x77, Ox6c, Oxda):

{nformation dicclosed in this document Is subject to the export jurisdiction of the US Department of State as
in Arms Regulatlons (thie 22 CFR pars 120 through 130 Inclusive). A

specified In Intemational Trafiic

license lssued by the Departm

ent of State Is required for the oxpor of such technlcal dala

TN AU N -

T
a0 8 23

auas:tukuusasza;s

2L EEYNBYHY Y

& Lt ea

L3

10 Common Cryptographic Algorithms Revision B 06/21/95

,tO...‘..""‘*‘.*'..".“..*.‘."..'...‘Q‘Q'.‘.................-.......-./

static unsigned char bit_val (const unsigned char byte, const int bit)
(

)

return((byte << (7 - bit)) & 0x80) ;

static void LFSR_cycle(void)
{

unsigned char temp:

int i; :

temp = bit_val(LFSR_B,6):
temp “= bit_wval (LFSR_D,2);
temp "= bit_val (LFSR_D,1):;
temp “= bit_val(LFSR_D,0);

/* Shift right LFSR, Discard LFSR_D[0) bit =+/

for (i = 3; i > 0; i--)
(
LFSR([1i] »>>= 1;
if (LFSR({i-1] & 0x01)
LFSR[i] [|= 0xB80:;
}
LFSR[0]) >>= 1;

LFSR_A |= temp;
)

static void Rotate_right_registers {void)
(

unsigned int temp_regq;

int 1i;

temp_reg = Register(15); /* save lsb */

for (i = 15; i > 0; i--)
{
Pegister([i) »>>= 1;
if (Register(i-1] & 0x01)
Register(i] |= 0x80;
)

Register[0) >>= i:
if (temp_reg & 0x01)
Register (0] |= 0xB0;

information dizclosed In this document is subject to the expont jurisdiction of tho US Dcpariment of State as
spacilied in Imtomational Traffic In Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license Issued by the Department of Stato is required for tho expon of such technical data.

BUHY U O YNNNYE ¢ 3a

88 HHYEHYY)y

b A2

06/21/95 Common Cryptographic Algorithms Revision B

void CAVE(const int number_of_rounds,
int *offset_1,
int *offset_2)

unsigned char temp_reg0;
unsigned char lowNibble;
unsigned char hiNibble;
unsigned char temp;

int round_index;
int . . R_index;
int - . :) fail_count;
~unsigned char T[16);

for (round_index = number_of_rounds - 1;
round_index >= 0;
round_index--)

/* save RO for reuse later </
temp_reg0 = Register(0];

for (R_index = 0; R_index < 16; R_index++)
(
fail_count = 0;
while (1)
{
“offset_1 += (LFSR_A - Register (R_index)):
/* will overflow: mask to prevent */
“offset_1 &= Oxff:
lowNibble = CaveTable[‘offset_l] & LOMASK;
if (lowNibble == {RegiSCer[R_index} & LOMASK))
(
LFSR_cycle():
fail_count+s+;
if (fail_count == 32)
{
LFSR_D++;: /* no carry to LFSR_C =/
break;
)
)
else break:

Information disclosed in this document Is sublect 10 the export lurtediction af sha 116 M o

et aned 1o bes o

1"

:55:-'.8‘-4&059»-

5

Common Cryptographic Algorithms Revision B 06/21/95

fail_count = 0;
while(1)
{

*offset_2 += (LFSR_B ~ Register[ﬂ_index}l;

/* will overflow; mask to prevent */
*offset_2 &= Oxff:

hiNibble = CaveTable[*offset_2] & HIMASK;

if (hiNibble == (Register [R_index] & HIMASK))
{

LFSR_cy_cle“;
fail_count+s+;
if (fail_count == 32)

(
LFSR_D++; /* no carry to LFSR_C +*/
break;
)
}
else
break;

)

temp = lowNibble | hiNibble;
if (R_index == 15)
Register[ﬂ_index] = temp_reg0 ~ temp:
else
Register(R_index) = Register(R_index+1) - temp:

LFSR_cycle();
)

Rotate_right_registers {):

/* shuffle the mixing registers */
for (R_index = 0; R_index < 16; R_index++)

{ .
temp = CaveTable[16*round_index « R_index) & LOMASK:

T(temp] = Register[R_index);

for (R_index = 0: R_index < 16; R_indexs+)
Register [R_index) = T[(R_index];

Information disclosed in this document ks subject to the export Jurisdiction of th

specified in Intemational TraHic in Amms Regulations (title 22 CFR pans 120 throu

Icense issuod by tho Department of Statn

i ramidrad (Anr tha momace at o ot o0

0 US Department of State as

gh 130 inclusive). A

06/21/95

Exhibit 2-3 CAVE Table

Common Cryptographic Algorithms Revision B

tableQ is compriscd by the 4 LSBs of the array
tablel is comprised by the 4 MSBs of the array

This table is read by rows, c.g. CaveTable[0x12] = 0x77.

hi/lo 0 1 2 3 4 5 6 7 8 S|A[B|C|D|E]|F
0 D9 |23 |SF |E6 |CA|68 |97 |BO|7B | P2 OC |34 |11 |A5|8D | 4E
1 OA 46 | 77 (8D | 10 [9F |SE | 62 | F1 | 34 EC|A5|[C9 | B3| D8 | 2B
2 59 |47 |E3 | D2 | FF |[AE| 64 |CA| 15 | 8B 7D {38)21 |BC| 9 | 00
3 49 156 |23 |15|97 |E4|cB|6F | R2 [70 3C | 8 |BA| DI | 0D | AE
4 E2 |38 |BA|44 |9F [83 |sD| 1c |DE | AB CT{65|F1 |76]| 09| 20
5 86 | BD|OA | FI |3C | A7| 29| 93 |[cCB 45 | SF | E8 [10 | 74 | 62 | DE
6 B8 | 77 [80 | D1 |12 |26 |AC| 6D | E9 CFIF3 |54 |3a]|0B |95 |4E
7 Bl |30 (A4 |96 [F8 | 57|49 [8E |05 | IF 62 | 7C | C3 | 2B [DA | ED
8 BB | 86 |OD | 7A | 97 | 13 | 6C | 4E | 51 30 [ES|F2 |2F | D8 | C4 | A9
9 91 [76 | FO [17 |43 [38 (29| 84 | A2 | DB CF | 65 | SE |CA | oD | BC
A E7 |[FA [D8 |81 [6F | 00 | 14 | a2 | 25 7C|SD[CY|9E | B6 | 33 | AB
B SA|6F |9B |DY|FE| 71 |41 |cCs|37] a2 88 12D | 00 | B6 | 13 | EC
C 4E | 96 | A8 | 5A | BS D7 [C3|8D|3F [F2 [ECc| os | 60 71 [1B | 29
D 4 | 79 [E3|CT|1B| 66|81 [4a] 25 | 9D DC|[SF |3 | BO | F8 | A2
C 91 | 34 [F6 | sC| 67 |89 | 73] 05| 22 AA|CB | EE|BF| 18 | DO | 4D
F F5 | 36 |AE| 01 | 2F | 94 | C3| 49 | 8B | BD 58112 |E0|77|6C|DA

Information disclosed in this document ks subject 1o the export lurlsdiction of 1ha 11 Pamea s —f e o

H

g8 a8y

H

Common Cryptographic Algorithms Revision B

21. Authentication Key (A-Key) Procedures

21.1. A-Key Checksum Calculation

Inputs from calling process:

Procedure name:
A_Key_Checksum

A_KEY_DIGITS 20 decimal digits
ESN 32 bits

Inputs from intcrnal stored data:

AAV 8 bits

Outputs to calling process:
A_KEY_CHECKSUM 6 decimal digits

Qutputs 1o internal stored data:

None.

This procedure computes the checksum for an A-key 1o be entered into
a mobile station. In a case where the number of digits (o be entered is
less than 20, the leading most significant digits will be set equal 10 zero.

The gencration of the A-key is the responsibility of the service
provider. A-keys should be chosen and managed using procedures that
minimize the likelihood of compromisc.

The checksum provides a check for the accuracy of the A-Key when
entered into a mobile station. The 20 A-Key digits are converted into a
64-bit represcntation to serve as an input to CAVE, slong with the
mobile station's ESN. CAVE is then run in the same manner as for the
Auth_Signature procedure, and its 18-bit responsc is the A-Key
checksum. The checksum is returned as 6 decimal digits for entry into
the mobile station.

The first decimal digit of the A-Key (0 be entered is considered 1o be
the most significant of the 20 decimal digits, followed in succession by
the other nineteen. A decimal to binary conversion process converts
the digit sequence into its equivalent mod-2 representation. For
cxample, the 20 digits

12345678901234567890
have a hexadecimal equivalent of
ABS4A98CEBIFOAD2.

CAVE will be initialized as shown in Exhibit 2-4. First, the 32 most
significant bits of the 64-bit entered number will be loaded into the
LFSR. If this 32-bit pattem fills the LFSR with all zcros, then the

06/21/95

Information disclosed in this document (s sublect to the export jurisdiction of the US Depariment of State as
specilied in Intematlonal Traffic in Arms Regulations (title 22 CFR pants 120 through 130 inclusive). A
licenso Issued by the Dapartment of Stats is required for the export of such lechnical data,

S8 eosvoeuwaun -

B

06/21/95

Common Cryptographic Algorithms Revision B

LFSR will be loaded with the ESN. Then, in all instances, the entire
64-bit entered number will be put into ROO through R07. The least
significant 24 bits will be repeated into RO9. R10, and RI11.
Authentication Algorithm Version (hexadecimal C7) will occupy ROS,
and ESN will be loaded into R12 through R15. CAVE will then be
performed for cight rounds, as described in §2. The checksum is
obtained from the final value of CAVE registers ROO, RO1, R02, R13,
R14, and R15. The two most significant bits of the checksum are equal
to the two lcast significant bits of R0OO Xor R13. The next cight bits of

15

the checksum are equal to RO1 Xor R14. Finally, the least significant

bits of the checksum are equal o R02 Xor R1S.

The 18-bit checksum is returned as 6 decimal dfgiu for entry into the
mobile station, ;

Exhibit 24 CAVE Initial Loading for A-key Checksum

CAVE Elemeat H Source Identifier Size

(Bits)
32 MSBs of A-key all zeros 32 MSBs of A-key not all zeros

LFSR ESN 32 MSBs of A-key 32

Register [0-7) | A-key A-key 64

Register [8) " AAV AAV 8

Register [9-11) || 24 LSBs of A-key 24 LSBs of A-key 24

Register [12-15) || ESN ESN 32

Information disclosed m this document Is subject 1o the export furisdiction of the US Depariment of State as
spectfied m Intemnational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 Inclusive). A
license issued by tho Departmant of Stato Is required for the expon of such technical data.

T e New e aw N

HUB YR

SE B8N ELELEAEAEN YN Y Y BN

E KL ER

“w
~-

16

Common Cryptographic Algorithms Revision B 06/21/85

Exhibit 2-5 A-key Checksum

/* A_Key_Checksum has the same header as CAVE (see Exhibit 2-2) =y

static void mull0(unsigned char i64 (8],
unsigned int carry)

{

)

static unsigned long Calc

({

int i;

unsigned int temp;

for (i = 7; i.5>= 0; i--)

1 . .
i64(i) = temp & OxFF:

carry = temp >> 8;
)

int i,offset_1,o0f fser_2;

temp = ((unsigned in't:) (i64(1)) * 10) + carry:

—Checksum(const unsigned char A_key(8))

unsigned.long A_key_checksum;

/* see if 32 MSB are zero */

if ((A_key[0] | A_key([l] 1| A_key(2) | A_key(3]) '= 0)

(

/* put 32 MSB into LFSR */

for (i = 0; i < 4; i+e)
LFSR([1i) = A_key[i];
)
else
(
/* put ESN into LFSR */
for (i = 0; i < 4; i+s)
LFSR[i] = ESN[i);
)

/* put A_key into r0-r7 */

for (i = 0; i < 8; i+s+)
Register(i) = A_key[i);

Register[B) = AAV;

/* put ls 24 bits of A_key into r9-ril .y

for (i = 9; i < 12; ies)

Register (i) = A_key[S5+i-9]; '

/* put ESN into rl2-rl§ *7°

for (i = 12; i < 16: 14e)
Register(i] = ESN([i-12);

offset_1 = offset_2 = 128;

CAVE(8, &offset_l, &offset_2);

Information disclosed in this document is subject to the export jurisdiction of the US Department of State as

specified in Intemational Traflc in Arms R

licenso issued by the Department of

egulations (title 22 CFR ports 120 through 130 Inclusive). A
State is required for the export of such technical data,

uao.vaunun-

HH‘dHBYUHE’UEE'&Z’.Ni‘BH!

06/21/95 Common Cryptographic Algorithms Revision B 17

A_key_checksum =
(((unsigned long) (Register (0] ~ Register([13]) << 16) +

((unsigned long) (Register([1] ~ Register(14])) << B) «+
((unsigned lonq)(Regis:er[2] " Register(15])))
& Ox3ffff; =

return (A_key_checksum);
)

/* A_KEY_DIGITS contains the ASCII digits in the order to be entered */

void A_Key_Checksum(const char A_KEY_DIGITS(20],
' : char A_KEY_CHECKSUM[S])

(
int i.offset_l.offset_2:
unsigned char temp_A_key[8);
unsigned long A_key_checksum;

/* convert digits to 64-bit representation in temp_A_key */

for (i = 0; i < 8:; i+4)
temp_A_key (i) = 0:

for (i = 0; i < 20; i++)
{
mullO{temp_A_key.{unsigned int!(A_KEY_DIGITS[i] - *0'));

)

A_key_checksum = Calc_Checksum(temp_A_key) :
/* convert checksum to decimal digits </
for (i = 0; i < 6: 1e4)

A_KEY_CHECKSUM(S-i) = '0' + (A_key_checksum % 10);
A_key_checksum /= 10;

Information disclosed in this document is subject (o the export jurisdiction of the US Department of State as
specafied in Intemational Tratffic in Arms Requlations (title 22 CER mere 1o - - oPorniment of State

BU Ny

BYHHEYYH @

18 Common Cryptographic Algorithms Revision B 06/21/95

212 A-Key Verification

Procedure name:
A_Kcy_Verify

Inputs from calling process:
A_KEY_DIGITS
ESN

Inputs from internal stored data:
AAY

Outputs to calling process:
A_KEY_VERIFIED

Outputs to internal stored data:

A-key
SSD_A
SSD_B

from 6 10 26 decimal digits
32 bis

B bits

Boolean

64 bits
6 bits (sct 1o zero)
64 bits (sct to zero0)

This procedure verifies the A-key entered into a mobile station.

The default value of the A-key when the mobile station is shipped from
the factory will be all binary zeros. The value of the A-key is specified
by the opcrator and is to be communicated 1o the subscriber according
to the methods specificd by cach operator. A multiple NAM mobile

station will require multiple A-

keys. as well as multiple sets of the

comresponding cryptovariables per A-key. Sce "User Interface for

Authentication Key Entry," TSB
mobile station.

=50, for details of A-key cntry into the

While A-key digits are being entered, the mobile station transmitter

shall be disabled.

When the A-key digits are entered from a keypad, the number of digits
entered is to be al least 6, and may be any number of digits up to and
including 26 digits. In a case where the number of digits entered is less
than 26, the leading most significant digits will be set cqual to zero, in
order (o produce a 26-digit quantity called the “entry value™,

The verification procedure checks the accuracy of the 26 decimal digit
enury value. The computed A-Key checksum is compared (o the binary
cquivalent of the last six entered digits. A maich will cause the 64-bi(
pattern determined by the first 20 digits of the cntry value (o be written
(o the subscriber's semi-permanent memory as the A-key. The retum

value A_KEY_VERIFIED will

be sct to TRUE. Furthermore, the

SSD_A and the SSD_B will be $ct 10 zero. In the case of 2 mismatch,
A_KEY_VERIFIED is st to FALSE, and no intemal data is updaled.

Information disclosed in this document is subject 1o the export jurisdiction of the US Department of State as

specilied in Intomational Trafflc In Arms Regulations (title 22 CFR
licensa issuod by the Department of State (s required for the

pans 120 through 130 inclusive). A
export ol such technical data,

L P T

0&/21/95

Common Cryptographic Algorithms Revision B

The first decimal digit of the “entry valuc” is considerced to be the most
significant of the 20 decimal digits, followed in succession by the other
nineteen. The twenty-first digit is the most significant of the check
digits, followed in succession by the remaining five. A decimal to
binary conversion process converts both digit sequences into their
equivalent mod-2 representation. For example, the 26 digits

12345678901234567890, 131136
has a hexadecimal equivalent of
AB54A98BCEBIF0AD2 20040.

The computed 18-bit A-Key checksum will be compared to the binary
cquivalent of the last six entered digits. A match will cnable semi-
permancat storage. A mismatch can initiate corrective action.

Information disciosed in this document is subject to the export jurisdiction of the US Depariment of State as
specificd in International Traffic In Arms Regulations (title 22 CFR pars 129 through 130 inclusive). A

license issued by tho Dopartment of State is required for the export of such lechnical data.

19

renz2sa N ow N

-
“w

HEUﬂ?HTHﬂBB::::

- B O A T R TR TR

Common Cryptographic Algorithms Revision B 06/21/95

Exhibit 2-6 A-key Verification

/* A_Key Verify has the same header as CAVE (see Exhibit 2-2) sy

/* A_KEY_DIGITS contains the ASCIT digits in the order entered */

int A_Key_Verify(const char A_KEY_DIGITS[26])

{

int i,offset_1,o0ffset_2;

unsigned char temp_A_key(8];

unsigned long entered_checksum;

/* convert first 20 digits to 64-bit representation in temp_A_key */

for (i = 0; i < 8; i++)
temp_A_key[i]) = 0;

for (i = 0; i < 20; i++4)
(i

)

mull0(temp_A_key, (unsigned int) (A_KEY_DIGITS(i] - '0'));

/* convert last 6 digits to entered checksum */

entered_checksum = 0;
for (i = 20; 1 < 26; i++)
(
entered_checksum = (entered_checksum * 10)
+ (A_KEY_DIGITS[i) - ‘0°);
)

if{Calc_Checksum{temp_A_key} == entered_checksun)
{
for (i = 0; i < B; i++)
{
temp_A_key[i];
SSD_B(1) = 0:

A_key[i]
SSD_A(1i)

}
return TRUE;

)

else
(

)

return FALSE;

informattion disciosed in this document is subject 10 the export jurisdiction of the US Depariment of State as

€pacified in Intemational Traffic in Ams Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by tho Department of State is required for the oxport of such technical data.

06/21/95

Common Cryptographic Algorithms Revision B

. ® 22 ggp Generation and Update

2

THN

HHYYH Uy ByRW

LB

221. SSD Generation Procedure

Procedure name:
SSD_Generation

{Inputs from calling process:

RANDSSD . 56 bits
ESN . 32 bits

Inputs from intemal stored data:

AAV 8 bits

A-key 64 bits
Outputs 1o calling process:

None,

Outputs to internal stored data:
SSD_A_NEW 64 bis

SSD B NEW 64 birs

This procedure performs the calculation of Shared Secret Data. The
result is held in memory as SSD_A_NEW and SSD_B_NEW until the
SSD_Update procedure (§2.2.2) is invoked. Exhibit 2-7 shows the
process graphically. Exhibit 2-8 indicates the opcrations in ANSI C.

The input variables for this procedurc are: RANDSSD (56 bits),
Authentication Algorithm Version (8 bits), ESN (32 bits), and A-key
(64 bits). CAVE will be initialized as follows. First, the LFSR will be
loaded with the 32 least significant bits of RANDSSD XOR'd with the
32 most significant bits of A-key XOR'd with the 32 least significant
bits of A-key. If the resulting bit pattern fills the LESR with all zerocs,
then the LFSR will be loaded with the 32 least significant bits of
RANDSSD to prevent a trivial null result.

Registers ROO through RO7 will be initialized with A-key, ROB will be
the 8-bit Authentication Algorithm Version (11000111). RO9, R10,
and R11 will be the most significant bits of RANDSSD, and the ESN
will be loaded into R12 through R15. Offset] and Offse2 will initially
be set 10 128,

CAVE will be run for 8 rounds as previously described in §2. When
this is complete, registers R0O through RO7 will become SSD_A_NEW
and Registers RO8 through R15 will become SSD_B_NEW.

Informatlon disclosed in this document is subject to the export jurisdiction of the US Department of State as
specifiod in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive) A

| S T AN RTS N SR | R . e U |

21

22 Common Cryptographic Algorithms Revision B 06221/95

Exhibit 2-7 Generation of SSD_A_NEW and S§ D_B_NEW

RANDSSD —
inltlalize LFSR, '
Akey —i registers, offsets Quantities passed to CAVE
ESN —b process al each round:
* contents of LFSR
* values of offgets
4 J J) * contents of 16 reglsters
internal basic
round of CAVE
L -
SSD SSD_A_NEW
Y L [post-
1 process
C _“'"ssn_ﬂ_usw
L
8 rounds

Information disclosed in this documont [s subject 1o the export jurisdiction of the US Depariment of State as
spedilied in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
licenso ssued by the Department of State Is required for the export of such technical data.

L I T TR

HHHB?HHEHUBR'&H?BB'—‘?3SS

06/21/95

Exhibit 2-8 SSD Generation

Common Cryptographic Algorithms Revision B

/* SSD_Generation has the same header as CAVE (see Exhibit 2-2) o 4

void SSD_Generation(const unsi

(

int i,offset_1,offset_2;

for (i = 0; i < 4; i++)
(

gned char RANDSSD(7])

LFSR(i] = RA@SSD[i_-t?-] ~ A_key[i) - A_key([i+4];

if ((LFSR{0] | LFSR(1] | LFSR(2) | LFSR(3]) == 0)

for (i = 0; i < 4; i++)

LFSR[i) = RANDSSD[i+3):

)

for (i = 0; i < B; i++)
Register(i) = A_key[i];

Register[8) = AAV:

for (i = 9; i < 12; i++)

Register(i] = RANDSSD[i-9];

for (i = 12; i < 16; i++)
Register(i) = ESN[i-12):;

offset_1 = offset_2 = 128:

CAVE(8, &offset_], &koffset_2);

for (i = 0; i < B; jese)

SSD_A_NEW[i)
S5D_3_NEwW (i)

Register(i);
Register[i+8]:

specified in Intemational Traffic in Arms Regulations (title 22 CFR

license issued by the Department of

State Is required for the

parts 120 through 130 inciusive). A
expon of such technical data.

Common Cryptographic Algorithms Revision B

222 SSD Update Procedure

06721795

Procedure name:
SSD_Update

Inputs from calling process:

None.

Inputs from internal stored data: _

- SSD_A_NEW 64 bits
'~ SSD_B_NEW 64 bits
Outputs (o calling process:

None.

Outputs to intemal stored data;

SSD_A 64 bits
SSD B 64 bits

This procedure copies the values SSD_A_NEW and SSD_B_NEW into

the stored SSD_A and SSD_B.

The values SSD_A_NEW and SSD_B_NEW calculated by the
SSD_Generation procedure (§2.2.1) should be validated prior to storing
them permanently as SSD_A and SSD_B. The base station and the
mobile station should exchange validation data sufficient to determine
that the values of the Shared Secret Data are the same in both locations.
When validation is completed successfully, the SSD_Update procedure
is invoked, sciting SSD_A 10 SSD_A_NEW and seiting SSD_B 10

SSD_B_NEW,

oAU N -

U2onNy g

HUEERYEN

26 Common Cryptographic Algorithms Revision B

When this procedure is used to gencrate an aut

a messag

authenticated. The contents shoul
possibility that other messages would

06/21/95

hentication signature for

¢, AUTH_DATA should include 2 part of the message 1o be

signature,

SSD_AUTH should be either SSD_A

d be chosen to minimize the
produce the same authentication

or SSD_A_NEW computed by

the SSD_Gencration proccdure, or SSD_A as obtained from the
HLR/AC.

Exhibit 2:9 CAVE Initial Loading for Authentication Signatures

CAVE Item Source Identifier Size (Bits)

LFSR RAND_CHALLENGE 32

Reg [0-7) SSD_AUTH 64

Reg (8] AAV 8

Reg [9-11] AUTH_DATA 24

Reg [12-15) ESN 32
CAVE is run for cight rounds. 18-bit result is
AUTH_SIGNATURE. Exhibit 2-10 shows the process in graphical

form, while ANSI C for the process is given in Exhibit 2-11.

The LFSR will initially be loaded with

value wil

XOR'd w

into the LFSR. If the resulting bit
zcrocs, then the LIFSR will be reloade

prevent a

The 18-bit authentication result AUT:
the final value of CAVE registers R
The (wo most significant bits of A

two least
AUTH_S

significant bits of AUTH_SIGNA

If the calling process sets SAVE
RAND_CHALLENGE, ESN and A
the LFSR, offscts a
the calling process sets SAVE_REGISTERS 1o FALS
are not changed. A means should be provided to
the intemnal storage contents are valid.

internal storage
indicate whether

RAND_CHALLENGE. This

I be XOR'd with the 32 most significant bits of SSD_AUTH
ith the 32 least significant bits of SSD_AUTH, then reloaded

trivial null result.

pattern fills the LFSR with al)
d with RAND_CHALLENGE 10

H_SIGNATURE is obtained from
00, ROI, R02, R13, R14, and R]S.
UTH_SIGNATURE are cqual to the

significant bits of ROO XOR RI3. The next cight bits of
IGNATURE are cqual to RO1 XOR R14. Finally, the least

TURE are equal to R02 XOR R15.

-REGISTERS (o TRUE, the
UTH_DATA end the contents of

nd CAVE registers are saved in internal storage, If

E, the contents of

information drsciosed in this document is subject 1o the export jurisdiction of the US Depariment of State as
' oguilations (title 22 CFR parts 120 through 130 inclusive). A
State is required for the expen of such technical data.

liconso issuod by the Depariment of

d

¥ HBEHYHUEY

¥ YyuH

06/21/95

Common Cryptographic Algorithms Revision B

23. Authentication Signature Calculation Procedure

Procedure name:

Auth_Signature

Inputs from calling process:
RAND_CHALLENGE 32 bits
ESN 32 bits
AUTH_DATA 24 bits
SSD_AUTH - 64 bis

SAVE_REGISTERS Boolean
Inputs from intemal stored data:
AAV 8 bits

Outputs to calling process:
AUTH_SIGNATURE 18 bits

Outputs o internal stored data:
SAVED_LFSR _ 32 bits
SAVED_OFFSET_I 8 bits
SAVED_OFFSET_2 8 bits
SAVED_RAND 32 bits
SAVED_DATA 24 bits
SAVED_ESN 32 bits

This procedure is used to calculate 18-bit signatures used for verifying
the authenticity of messages used to request cellular system services,
and for verifying Shared Secret Data,

The initial loading of CAVE for calculation of authentication signatures
is given in Exhibit 2-9,

AAV is as defined in §1.].

For authentication of mobile station messages and for base station
challenges of a mobile station, RAND_CHALLENGE should be
sclected by the authenticating entity (normally the HLR or VLR),
RAND_CHALLENGE must be received by the mobile station
cxecuting this procedure. Results returned by the mobile station should
include check data that can be used to verify that the
RAND_CHALLENGE value used by the mobile station matches that
used by the authenticating entity.

For mobile station challenges of a base station, as performed during the
verification of Shared Secret Data, the mobile station should select
RAND_CHALLENGE. The sclected value of RAND_CHALLENGE
must be received by the base station cxccuting this procedure,

Information disclosed in this document is subject 10 the export jurisdiction of the US Department of State as
specified in Intometional Traffic In Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A

liconse issued by the Department of State is required for the export of such technical data.

25

..“.\.AHN

-
o

ll&3&Rbh2333“38&'8'!!8!!3‘33828”3956

28 Common Cryptographic Algorithms Revision B

06/21/35

Exhibit 2-11 Code for Calculation of AUTH_SIGNATURE

/* Auth_Signature has the same header as CAVE (see Exhibit 2-2) +;

unsigned long Auth_Signature(const
const
const
const

int i,offsg:_l.offset_z;
unsigned long AUTH_SIGNATURE;

for (i = 0; i < 4; ies)

(

)

if ((LFSR_A | LFSR_B | LFSR_C |
{

LFSR[i])

for (i = 0; i < 4; i+4)

unsigned char RAND_CHALLENGE([4],
unsigned char AUTH_DATA(3],
unsigned char °*SSD_AUTH,

int SAVE_REG ISTERS)

= RAND_CHALLENGE(i) - SSD_AUTH[i) - SSD_AUTH[i+4]);

LFSR_D) == 0)

LFSR([i] = RAND_CHALLENGE([i]);

)
/* put SSD_AUTH into r0-r7 s

i< 8; i+s)
SSD_AUTH[1i);

for (i = 0; :
Register([i) =

Register(8) = AAvV;

/* put AUTH_DATA into r9-ri1l L8]

i< 12;

for (i = 9; 1++)

Register(i] =
/* put ESN into rl2-rl1S </

for (i = 12; i < 16; i++4)
Register(i) = ESN(i-12);

offset_1 = offset_2 = 128;
CAVE(8, &offset_1, &offser_2):

AUTH_SIGNATURE =

(((unsigned 1onqllRegister[0]
({unsigned long) (Register([l]
((unsigned long) (Register(2]

& Ox3£££ff;

AUTH_DATA[1-9);

" Register([13)) << 16) «
“ Register(14)) << B)
“ Register(15))))

Information disclosed in this document is subject 10 the export jursdiction of the US Department of State as
speclfied in Intemalional Tratfic In Arms Regulations (title 22 CFR parts 120 through 130 inciusive), A
license issued by the Department of State is required for the export of such technical data.

06/21/95

Common Cryptographic Algorithms Revision B

27

Exhibit 2-10 Calculation of AUTH_SIGNATURE

RAND._-
CHALLENGE —

SSD_AUTH —
AUTH_DATA —P

Initialiee LFSR,
registers, offsets

1y

Internal basic
round of CAVE

Quantities paseed to CAVE
proces s at each roun d:
*contents of LFSR
*values of offsets
*comdents of 16 reglsters

. AUTH_
IGNATU
?[-‘.f-y ot SIGNATURE
process [—9=
Ll_ 18 bits
|

xport jurisdiction of the US Department of State as

Information disclosed in this document is subject to the e
(titlo 22 CFR parts 120 through 130 Inclusive), A

specified in Intomational Traffic In Arms Regulations
bicenso issued by the Departmont

of Stale is required for tho export of such technical data,

L I I T L

Saa&xoR=s

8232 L ELEA2AEEYYHYEHYSBUYRELEUNY 3 &

28 Common Cryptographic Algorithms Revision B 06/21/95

Exhibit 2-11 Code for Calculation of AUTH_SIGNATURE

/* Auth_Signature has the same header as CAVE (see Exhibit 2-2) */

unsigned long Auth_Signature(const unsigned char RAND_CHALLENGE([4],
const unsigned char AUTH_DATA[(3],

const unsigned char *SSD_AUTH,
const int SAVE_REGISTERS)

int i,offset_l,offset_2;
unsigned long AUTH_SIGNATURE;

for (i ='0: i< 4; i++)
{

)

if ((LFSR_A | LFSR_B | LFSR_C | LFSR D) == 0)
{ .
for (i = 0; 1 < 4; i++)
LFSR([i]) = RAND_CHALLENGE[i];

LFSR[i] = RAND_CHALLENGE(i) ~ SSD_AUTH[i] ~ SSD_AUTH[i+d4]:

)
/* put SSD_AUTH into r0-r7 */

for (i = 0; i < 8; i++)

Register(i) = SSD_AUTHI[i]:
Register[8] = AAV;
/* put AUTH_DATA into rS-rll +*/

for (1 = 9; i < 12; i++)
Register[i) = AUTH_DATA[i-9);

/* put ESN into rl2-rl1S5 */

for (i = 12; i < 16; i++)
Register(i]) = ESN([i-12);

offset_1 = offset_2 = 128;
CAVE (B, &offset_1l, &offset_2);

AUTH_SIGNATURE =
(((unsigned long) (Register([0] ~ Register([13)) << 16) =+
((unsigned long) (Register[l]) " Register[l4)) << B) =+
((unsigned long) (Register(2]) " Register(15))))
& OxJffff;

Information disclosed in this document is subject 1o the export jurisdiction of the US Depariment of State as
speciliod In Intenational Trafiic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by the Department of Stale ks required for the export of such technical data.

IGS:SQQunmhuu—

06/21/95 Common Cryptographic Algorithms Revision B

)

if (SAVE_REGISTERS)

{
/* save LFSR and offsets */

SAVED_OFFSET_1 offsec_1;
SAVED_OFFSET_2 offset_2;
for (i = 0; 1 < 4; i++)

(

SAVED_LFSR(i]) = LFSR[i]);
SAVED_RAND[i] = RAND_CHALLENGE([i];
SAVED_ESN([i] = ESN([i];

JAf (i < 3)

t .

SAVED_DATA(i) = AUTH_DATA[i);
3 | |

)
return (AUTH_SIGNATURE) ;

Imormation drsclosed in this document is subject 10 the export jurisdiction of the US Department of State as
specilied in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by the Department of Stato is required for the export of such technical data.

-

¥4

*run

HE 28 UHEEYE N

30

Common Cryptographic Algorithms Revision B

24. Encryption Key and VPM Generation Procedure

.. In;",tuls from internal stored data:

Procedure name:
Key_VPM_Generation

Inputs from calling process:
None.

SAVED_LFSR 32 bits
SAVED_OFFSET_I 8 bits
SAVED_OFFSET_2 8 bits
SAVED_RAND 32 biws
SAVED_DATA 24 bits
SAVED_ESN 32 bits
SSD_B 64 bits
AAY 8 bits

Outputs to calling process:

None.

Outputs 0 internal stored data:

CMEAKEY([0-7) 64 bits
VPM 520 bits

This procedure computes the key for message encryption and the voice
privacy mask. Prior to invoking this proccdure. the authentication
signature calculation procedure (82.3) must have been invoked with
SAVE_REGISTERS set to TRUE. This procedure must be invoked
prior to execution of the encryption procedure (§2.5).

The process for generation of CMEA key and voice privacy mask
(VPM) will gencrally be most efficient when concatenated logether as
described in the following sections (§2.4.1 and §2.4.2). The post-
suthentication cryptovariables to be used are those from the last
autheatication signature calculation for which the calling process set
SAVE_REGISTERS to true. This should generally be the
authentication calculation for the message that establishes the call for
which encryption and/or voice privacy is to be invoked. See Exhibit 2-
10 and Exhibit 2-11 for graphical detail of the gencration process.

information disclosed in this document is subject to the export Jurisdiction of the US Deperiment of State as

specified in international Traffic in Ams Regulalions (title 22 CFR parts 120 through 130 Inclusive). A
license issued by the Department of State Is required for the export of such lechnical data.

06/21/95

L T R ST 1)

n

13

5

& 3

U 1

06/21/95

Common Cryptographic Algorithms Revision B

24.1. CMEA key Generation

Refer to Exhibit 2-13 or Exhibit 2-14 "CMEA Kcy Generation and
Voice Privacy Mask Generation.” Eight bytes of CMEA session key
are derived by running CAVE through an 8-round iteration and then
two 4-round iterations following an authentication. This is shown in
the upper portion of Exhibit 2-13 and Exhibit 2-14. The post-
authentication initialization and output processing requirements are as

follows:

= First, the LFSR will be re-initialized to the exclusive-or sum of
SAVED_LFSR and both halves of SSD_B. If the resulting bit -
pattern fills the LFSR with all zerocs, then the LESR will be
loaded with SAVED_RAND.

* Sccond, registers ROO through RO7 will be initialized with
SSD_B instead of SSD_A.

= Third, Registers R09, R10, and R11 will be loaded with
SAVED_DATA.

« Fourth, Registers R12 through R1S will be loaded with
SAVED_ESN.

= Fifth, the offset table pointers will begin this process al their
final authentication value (SAVED_OFFSET_1 and
SAVED_OFFSET_2). rather than bcing reset to a
predetermined state, .

= Sixth, the LFSR is loaded before the sccond and third post-
authentication iterations with a “roll-over RAND"™ comprised of
the contents of R0O, ROI, R14, and R1S. If the resulting bit
pattern fills the LFSR with all zeroes, then the LFSR will be
loaded with SAVED_RAND.

The CMEA key bytes drawn from iterations two and three are labelled:

= kO =register[4] XOR register(8]: (itcration 2)

* kil =register(S] XOR register(9): (itcration 2)

= K2 =register[6) XOR register(10]: (itcration 2)

= k3 =register[7) XOR register(11); (iteration 2)

= k4 =rcgister{4) XOR register(8): (itcration 3)

* kS5 = register(S) XOR register(9]; (itcration 3)

* k6 =register(6) XOR register(10]; (itcration 3)

= k7= register[7) XOR register[11]: (iteration 3)

242. Voice Privacy Mask Generation

VPM generation is a continuation of the CMEA key gencration and
should be performed at the same time under the same conditions as the
CMEA key. CAVE is run for eleven iterations beyond those that
produced the CMEA bytes. Each iteration consists of four rounds. The
CAVE registers R00 through R15 are not reset between iterations, but

Information disclosed In this document is subject 1o the export jurisdiction of tha US Departmont of State as
specified in International Traffic In Amms Regulations (titlo 22 CFR parts 120 through 130 inclusive). A

license issued by the Department of Stato is required for tho expon of such technical data

31

HBUHMYINRHUNYNGZ 2 22 3

[}

83 8K YREYHH

/* Key_VPM_Generation has the same header as CAVE (see Exhibit 2-2) */

Common Cryptographic Algorithms Revision B

the LFSR is reloaded between iterations with the “rollover RAND" as

described in §2.4.1.

The VPM is not to be changed during a call.

Exhibit 2-12 CMEA Key and VPM Generation

static void roll_LFSR (ioid} :

{
int i;
LFSR_A = Register[0];
LFSR_B = Register[l);
LFSR_C = Register([14);
LFSR_D = Register[15]:;

)

if ((LFSR_A | LFSR_B | LFSR_C | LFSR_D) == 0)

(

for (i = 0; i < 4; i++)

LFSR[i])

\

SAVED_RAND[i]:

void Key_VPM_Generation(void)

(

int i,).r_ptr,offset_1l,offset_2, vpm_ptr;

/* iteration 1, first pass through CAVE */

for (i

LFSR[1i)

io-!-l
SAVED_LFSR(i) ~ ssD_B(i) = SSD_B[i+4];

if ((LFSR_A | LFSR_B | LFSR_C | LFSR_D) == 0)

{

for (i = 0; i < 4; i++)
LFSR[1i) SAVED_RANDI[1i);
)
for (i = i+s)
Register(i] SSD_B([i]);

BE &8 382 L LA

L ¥

Register([B) = AAV;
/* put SAVED_DATA into r9-rll +*/

for (i = 9; i < 12; i++)
Register (i) = SAVED_DATA[i-9);:

/* put ESN into rl2-rl5 */

for (i = 12; i < 16; i++)
Register[i]) = ESN(i-12]);

Information disclosed in this document is subject 1o the export {urisdiction of the US Department of State as
specified in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by tho Department of Stale Is required for the export of such technical data.

SEC2O8 28 e L I T P TR

tbb-‘-‘6!!8!3?8338“95332855835

06/21/95 Common Cryptographic Algorithms Revision B

offset_1 = SAVED_OFFSET_1;
offset_2 = SAVED_OFFSET_2:

CAVE(8, &offset_1, &soffser_2):

/* iteration 2, generation of first CMEA key parameters *;

roll _LFSR();
CAVE(4, &offset_1, &offsetr_2);
for (i = 0; i < 4; i++)
.cmeakey [i] = Register[i+4) ~ Register([i+B);

/* iteration 3,'generatioﬁ of second CMEA key parameters -y
roll_LFSR();
CAVE(4, koffset_1, Loffset_2);

for (i = 4; i < B; i++)
cmeakey (i) = Register[i) ~ Register[i+d);

/* iterations 4-13, generation of VPM */

vpm_ptr = 0;
for (i = 0;
(

i< 10; i++)

roll_LFSR();

CAVE(4, &offset_1, Lkoffset_2);

for (r_ptr = 0; r_ptr < 6: I_ptr++)

(
VPM([vpm_ptr] = Register(r_ptr+2] -~ Register(r_ptr+8);
VPM_DPLIr++;

)

/* iteration 14, generation of last VPM bits =/

roll_LFSR():

CAVE(4, &offset_1, &offset_2);

for (J = 0; 3 < 5; jee)

{
VPM[vpm_ptr] = Register([j+2) - Register(j+8);
VPM_DLr++;

Information disdosed in this document ks subject 1o the export jurisdiction of the US Department of State as
specified in Intemational Traffkc in Arms Regulations (title 22 CFR pans 120 through 130 inclusive). A
licenso iscuod by the Department of State Is required for tho export of such technical data.

(R04 - R07 XOR R08 - R11)

(R04 - RO7 XOR R08 - R11)

(R0O2-R0O7 XOR R08-R13)

(R02-R07 XOR R08-R13)

34 Common Cryptographic Algorithms Revision B
Exhibit 2-13 Gencration of CMEA Kcey and VPM
post-auth contents of LFSR SSD_B(MSB) XOR SSD_B(LSB)
key: o
64-bit SSD_B CAVE #1
22-bit ESN 8 rounds
24-bit AUTH_DATA
8-bit Authentication
Algorithm Version 32-bit rollover RAND
(ROO, RO1, R14, R15)
i CAVE #2 ; » CMEAKO, k1, k2, k3
N . 4 rounds
Regqisters ROO thru
R15 are not re-initialized
for iterations #2 thru #14 32-bit rollover RAND
(R0O0, RO1, R14, R15)
“Round” number is reset to
3 and counted down to 0 for
iterations #2 thru #14 CAVE #3 | CMEA K4, k5, k6, k7
4 rounds
Offsets are no! reintialzed
for iterations #2 thru #14
32-bit rollover RAND
(R0O, RO1, R14, R15)
CAVE #4 , & 48 bits of VPM
4 rounds
32-bit rollover RAND
(ROO, RO1, R14, R15)
CAVE
#S5thru#13 | — = 48 bits of VPM (X9)
4 rounds
32-bit rollover RAND
(RO, RO1, R14, R15)
CAVE #14 , - 40 bits of VPM
4 rounds

(R02-R06 XOR R08-R12)

Information dizclosed in this document i su

bject to the export jurisdiction of the US Depariment of State as
specilied in Intemational Tratfic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
licenso issued by the Department of State is required for the export of such technical data.

06/21/85

06/21/95 Common Cryptographic Algorithms Revision B 35

Exhibit 2-14 Detailed Generation of CMEA Key and VPM

LFSR post-AUTH contents —
‘ 2508 —~1 |nitialize LFSR,

TESN —am]| ragisters, offects

Offset post-AUTH contents —am— Quantlities passed to CAVE

process at each round:
———— =*contents of LFSR

= values of offsels
* contents of 16 registers

internal basic
round of CAVE

@ rounds
boplaco LFSR cmlanls]
' 4 bytes of
internal baslc CMEA CMEAKEY
round of CAVE
post.
procass k0. k1, k2, k3

4 rounds F ALL _T
L k4, K5, K6, K7 |

'+ T"m

2 Rerstions

| Repiace LFSA conterts | + l‘|-’_l~
VPM 48 bits of VPM;
post-
process
-
e
xx h
= I
Ll -~uh-
11 herations & = :

information disclosed in this document is subject to the export jurisdiction of the US Department of State as
specified m Intemational Traffic In Arms Regulations (title 22 CFR pans 120 through 130 inclusive). A
license issued by the Depariment of State is required for the export of such technical data.

36 Common Cryptographic Algorithms Revision B 06/21/95

25. CMEA Encryption/Decryption Procedure

| Procedure name:
Encrypt

Inputs from calling process:
msg_bufln) n*g bits,n> |

‘{Inputs from internal stored data:
CMEAKEY[0-7] 64 bits

LOulputs 1o calling process:
msg_buf[n) - n*8 bits

Outputs to intemnal stored data:

None.

This algorithm encrypts and decrypts messages that are of length n*8
bits, where n is the number of message bytes, n> I. Decryption is
performed in the same manner as encryption.

The message is first stored in an n-byte buffer called msg_buf (1.
such that each byte is assigned to one "msg_buf[)" value.
msg_buf (] will be encrypted by means of three operations before it
is ready for ransmission.

This process uscs the CMEA cight-byte session key to produce
enciphered messages via a unique CMEA algorithm. The process of
CMEA key generation is described in §2.4,

The function tbox() is frequently used. This is defined as:

tbox(z) = C(((C(((C(((C((z XOR k0}+k1)+z)XOR k2}+k3)}+2)XOR kd)}+k5)+2)XOR k6 kT2

where “+7 denotes modulo 256 addition,
“XOR" is the XOR function,
2" is the function argument,
kO,. k7 are defined above,
;n:)C() is the outcome of a CAVE 8-bit table look-up, (Exhibit

Exhibit 2-15 shows ANSI C code for an algorithmic procedure for
tbox().

Information disciosad in this document is subject to the export jurisdiction of the US Depariment of State as
specified in Intemational Tratfic in Arms Regulations (title 22 CFR perts 120 through 130 Inclusive), A
license issued by the Department of State s required for the export of such tachnical data

S oo vweunasoun

SabvYuney

]

\!L‘B?B6!38&!6&:6888&8!53233

06/21/95 Common Cryptographic Algorithms Revision B

Exhibit 2-15 tbox

/* tbox has the same header as CAVE (see Exhibit 2-2) =/

static unsigned char tbox(const unsigned char z)

{

int k_index,i;
unsigned char result;

k_index = 0; -
result = z;

for (i = 0;"1i < 4; i++)

{ .
result “= cmeakey[k_index]:
result += cmeakey [k_index+1];
result = z + CaveTable [result]:
k_index += 2;

)

return(result);

The CMEA algorithm is the message cncryption process used for both
the encryption and decryption of a message. Each message to which
the CMEA algorithm is applicd must be a multiple of 8 bits in length.
The CMEA algorithm may be divided into three distinct manipulations.
See Exhibit 2-16.

Exhibit 2-16 CMEA Algorithm

/* CMEA has the same header as CAVE (see Exhibit 2-2) =<y

void CMEA(unsigned char *msg_buf, const int byte_count)

(

int msg_index, half;
unsigned char k,z;

/* first manipulation (inverse of third) =*/

z=0;:

for (msg_index = 0; msg_index < byte_count; msg_index++)
{ :

k = tbox(z ~ msg_index);
msg_buf (msg_index) += k:
Z += msg_buf [msg_index];
)

/* second manipulation (self-inyverse) +/

half = byte_count/2; .
for (msg_index = 0; msg_index < half: meg_index++)
(
msg_buf [msg_index] ~= msg_buf (byte_count - 1 - msg_index] | 0x01;
)

/* third manipulation (inverse of first) «y

Information disclosed In this document s sublect to the export furtsdiction of the US Deparniment of State as

specified In Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 Inclusive). A
license Issued by the Department of State is required for the export of such technical data.

B oo wvowaewun

38 Common Cryptographic Algorithms Revision B 08721/95

z = 0;

for (msg_index = 0; msg_index < byte_count; msg_indexs++)

(

k = tbox(z ~ msg_index):
z += msg_buf [msg_index]:
msg_buf [msg_index) -= k;

Information disclosed in this document
specitied in Intemalional Traffic in A

is subject 10 the export jurisdiction of the US Department of State as
mms Regulations (title 22 CFR perts 120 through 130 inclusive), A

license issued by tho Depariment of State Is required for the export of such technical data,

L T T T

11

2

bn

BEYRO?Y

06/21/95

Common Cryptographic Algorithms Revision B

26. Wireless Residential Extension Procedures

This section describes detailed cryptographic procedures for cellular
mobile telecommunications systems offering au xiliary services. These
procedures are used to perform the security services of Authorization
and Call Routing Equipment (ACRE), Personal Basec (PB) and Mobile
Station (MS) authentication,

26.1. WIKEY Generation

| Procedure name:
WIKEY _Generation

Inputs from calling process:

MANUFACT_KEY 122 bits
PBID 30 bits

Inputs from internal stored data:
AAV 8 bits

Outputs to calling process:

None.

Outputs to internal stored data:

WIKEY 64 bits

This procedure is used 10 calculate the WIKEY value gencerated during
the manufacturing process. This WIKEY value is stored in semi-
pcrmanent memory of the PB.

The initial loading of CAVE for calculation of WIKEY is given in
Exhibit 2-17.

MANUFACT_KEY is a 122-bit valuc that is chosen by the
manufacturer. This value is the same for all of the manufacturer’s PBs.
PB manufactures must provide this number to each ACRE manufacture
so that the ACREs can calculate the correct WIKEY values. The 32
MSBs of MANUFACT_KEY must not be all zerocs. There must be at
least 40 zerocs and 40 ones in MANUFACT _KEY.

Information disclosod in this document Is subject to the export jurisdiction of the US Depariment of State as
specilicd in Intomational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A

licenso issued by the Department of Stale is required for tho export of such technicel data,

39

40

Common Cryptographic Algorithms Revision B

Exhibit 2-17 CAVE Initial Loading for WIKEY Generation

CAVE Item Source Identifier Size (Bits)

LFSR bits 121-90 (32 MSBs) of 32
MANUFACT_KEY

Reg [0-7] bits 89-26 of 64
MANUFACT_KEY

Reg [8) AAV 8

Reg [9-11) . bits 25-2 of 24
MANUFACT_KEY

Reg [12) 2 MSBs bits 1-0 (2 LSBs) of 2
MANUFACT_KEY

Reg [12] 6 LSBs 6 MSBs of PBID 6

Reg [13-15) 24 LSBs of PBID 24

CAVE is run for ei
18 shows the proc

ght rounds. The 64-bit result is WIKEY. Exhibit 2-
ess in graphical form,

while the ANSI C for the

process is shown in Exhibit 2-19,

The 64-bit WIKEY

registers ROO through R1S. The first 8 CA
with the last 8 CAVE registers 1o produce the

Information disclosed in this document Is subjecttothe o
specilied In Intemational Traffic In Ams Regulations
license issued by the Department of State Is re

the final value of CAVE
VE registers are XORed
value for WIKEY.

result is obtained from

xporl jurisdiction of tho US Department of State as

(title 22 CFR pans 120 through 130 Inclusive). A
quired for the export of such technical data,

06/21/95

n

HUBYHHEYHNYY 3

06/21/95 Common Cryptographic Algorithms Revision B

Exhibit 2-18 Generation of WIKEY

MANUFACT-
_KEY
initialize LFSR, R
registers, offsets Quantities passed to CAVE
PBID —» process at each round:
=contents of LFSR
= values of offsets
4 ‘ ‘ =« contents of 16 reglsters
lnl.omal basic
round of CAVE
WIKEY
b . Generation WIKEY
' post- [—*
l . process 64 bits
L
|
B rounds

Exhibit 2-19 Code for WIKEY Generation

/* WIKEY_Generation has the same header as CAVE (see Exhibit 2-2) #y

/* lote that MANUFACT_KEY is left justified and P3ID is right justified.
This means that the 6 LSBs of MANUFACT_KEY and the 2 MSBs of PBID
must be set to 0 by the calling routine. =/

~vold WIKEY_Generation (const unsigned char M FACT_KEY([1s6),
const unsigned char PBID([4])
(
int i.offset__l.offset_z:

for (i = 0; i < 4; i++)

LFSR([1i] = MANUFACT_KEY([i):
for (i = 0; i < 8; ies)

Register(i]) = MANUFACT_KEY [i+4];
Register (8] = AAV:
for (i = 0; i < 4; i++)

Register(i+9) = MANUFACT_KEY (i+12];
Register(12] = Register(12) | PBID(0);
for (i = 0; i < 3; i++)

Register([i+13) = PBID[i+1);
offset_1 = offset_2 = 128;

CAVE(8B, &offget_1, &offgetr_2):
for (i = 0; i < 8; i+s) ‘
WIKEY[1i]) = Register([i] ~ Register(i+8];

Information disclosed In this document Is subject to the export jurisdiction of the US Depariment of State as
specified in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by the Department of State is required for the export of such technical data.

41

42 Common Cryplographic Algorithms Revision B 06/21/95

262. WIKEY Update Procedure

|Procedure name:
WIKEY_Update

Inputs from calling process:
RANDWIKEY 56 bits

PBID = 30 bits

Inputs from intemal stored data:

WIKEY 64 bits
AAV 8 bits

Outputs to calling process:

None.

Outputs to intemal stored data:
WIKEY _NEW 64 bits

This procedure is used 10 calculate 2 new WIKEY value,

The initial loading of CAVE for calculation of WIKEY_NEW is given
in Exhibit 2-20.

Exhibit 2-20 CAVE Initial Loading for WIKEY Update

CAVE Item Source Identifier Size (Bits)
LFSR 32 LSB of RANDWIKEY 32
Reg (0-7) WIKEY 64
Reg (8] AAV 8

Reg [9-11] 24 MSB of RANDWIKEY 24
Reg [12) 2 MSBs 00 2

Reg [12] 6 LSBs 6 MSBs of PBID

Reg [13-15) 24 L SBs of PBID 24

CAVE is run for cight rounds. The 64-bit result is WIKEY_NEW,
Exhibit 2-21 shows the process in graphical form, while the ANSI C for
the process is shown in

Information disciosed in this document is subject to the export jurisdiction of the US Deperiment of State as
specified in Intematlonal Traffic in Amns Regulatlons (title 22 CFR parts 120 through 130 inclusive). A
liconse issued by the Depariment of State Is required for the export of such technical data.

06/21/95

Exhibit

the LFS

prevent

b B TR O T Y)

CAVE
XORed

The LFSR will initially be loaded with the
This value will be XOR'd with the 32 mos
XOR'd with the 32 lcast significant bits.of

the LFSR will be reloaded with the 32

The 64-

Common Cryptographic Algorithms Revision B

2-22,

32 LSBs of RANDWIKEY.
tsignificant bits of WIKEY
WIKEY, then reloaded into
¢ LFSR with all zeroes, then
LSBs of RANDWIKEY to

R. If the resulting bit pattem fills th

a trivial null result.

bit WIKEY_NEW result is obtain
registers ROO through R1S. The first 8 CAVE. registers are
with' the last 8 CAVE registers 1o produce the value for.

WIKEY_NEW.

Exhibit 2-21 Generation of WIKEY NEW

RANDWIKEY .

WIKEY —p|
PBID —#

registers,
offsets

inftlailze LFSR,

Quantities passed to CAVE
process at each round:
= contents of LFSR

ey

* values of offsets
= contenls of 16 reglsters

internal basl

c

round of

CAVE

L]
WIKEY
W
T .- Updste IKEY_NEW
T post- 64 blts

T process

L

8 rounds

Information disclosed in this document is s

spocified in imemational Traffic in Arms

license issued by the Department

ubject to the export jurisdiction of the US Depariment of State as
Regulations (title 22 CFR pars 120 through 130 Inclusive). A
of State Is required for the export of such technical data.

cd from the final value of -

828 cmveaana o oN

BYNOBYBNYY 2z 2

ER Common Cryptographic Aigorithms Revision B 06/21/95

Exhibit 2-22 Code for WIKEY_NEW Generation

/* WIKEY Update has the same header as CAVE (see Exhibit 2-2) ey

/* Note that PBID is right justified. This means that the 2 MSBs of PBID
must be set to 0 by the calling routine. */

void WIKEY_ Update(const unsigned char RANDWIKEY (7],
const unsigned char PBID(4))

(.
int i.'offset_‘l.offs_et_z;

for (i = 0; i < 4; i+3d)” . .
+ LFSR[i) = RANDWIKEY [i+3] = WIKEY[1i] ~ WIKEY([i+4);
if HI-F_SR[D] | LFSR([1) | LFSR([2] | LFSR(3)) == 0)
for (i = 0; i < 4; i++)
LFSR[i) = RANDWIKEY[i+3]:
for (i = 0; i < B; i++)
Register (i) = WIKEY[i]:
Register (8] = AAV;
for (i = 0; i < 3; i+s)
Register(i+9)] = RANDWIKEY([i);
for (i = 0; i < 4; i++)
Register[i+12] = PBID(i);
offset_1 = offset_2 = 128;
CAVE (8B, &offset_1, &offset_2):
for (i = 0; i < B; i++)
WIKEY_NEW(i] = Register([i] ~ Register(i+8]:;

information disciosed in this document ks subject to the export jurisdiction of the US Depariment of State as
specified in Intemational Traffic In Arms Regulations (thle 22 CFR parts 120 through 130 inclusive). A
licensa Issued by the Department of Stats Is required for the export of such technical dats.

L

HZ2H8UERY NGO

06/21/95

Common Cryptographic Algorithms Revision B

26.3. Wireline Interface Authentication Signature Calculation

Information disclosed in this document is subject (o the axport

Procedure
|Procedure name:
WI_Auth_Signature
Inputs from calling process:
RAND_CHALLENGE = 32 bits
" PBID - 30 bits

ACRE_PHONE_NUMBER 24 bits

~ |Inputs from int.cmalhstomc_l data:

WIKEY 64 bits

AAV 8 bits
Outputs (o calling process:

AUTH_SIGNATURE 18 bits

Outputs 10 internal stored data:

None.

This procedure is used 1o calculate 18-bit signatures used for verifying
WIKEY values,

The initial loading of CAVE for calculation of wircline interface
authentication signatures is given in Exhibit 2-23.

For authentication of an ACRE, RAND_CHALLENGE is received
from the PB as RAND_ACRE.

For authentication of a PB, RAND_CHALLENGE is reccived from the
ACRE as RAND._ PB.

The ACRE_PHONE_NUMBER is 24 bits comprised of the least
significant 24 bits of the ACRE's dircctory number (4 bits per digit).
The digits 1 through 9 arc represented by their 4-bit binary value
(0001b - 1001b), while the digit 0 is represented by 1010b. If the
phone number of the acre is less than 6 digits, then the digits are filled
on the left with zeros until 6 full digits are reached. Example: If the
acrc’s phone number is (987) 654-3210, ACRE_PHONE_NUMBER is
010101000011001000011010b. If the acre's phone number is 8695,
ACRE_PHONE_NUMBER is 000000001000011010010101b.

{urisdiction of the US Department of State as

specilied in Intemational Traffic in Arms Regulations (thle 22 CFR parts 120 through 130 inclusive). A

license issued by the Department of State ls required for the export of such technical data,

45

46 Common Cryptographic Algorithms Revision B 06/21/95
Exhibit 2.23 CAVE Initial Loading for Wireline Interface
Authen!icalion_Siguatur’es

CAVE Item Source Identifier Size (Bits)

————————— ——

LFSR RAND_CHALLENGE 32
Reg [0-7) WIKEY 64
Reg [8) AAV 8

Reg [9-11) * 24 LSBs of 24

ACRE_PHONE_NUMBER

Reg (12] 2 MSBs 00 2
Reg [12] 6 LSBs 6 MSBs of PBID 6

Reg [13-15]) 24 LSBs of PBID 24

CAVE is run for cight rounds. The 18-bit result s

AUTH_SIGNATURE. Exhibit 2-24 s
form, while the ANSI C for the process i

The LFSR will initially be loaded with RAND
value will be XOR'd with the 32 most si
XOR'd with the 32 least significant

hows the process in graphical
s shown in Exhibit 2-25,

_CHALLENGE. This
gnificant bits of WIKEY
bits of WIKEY, then reloaded into

the LFSR. If the resulting bit pattern fills the LFSR with all zeroes, then
reloaded with RAND_CHALLENGE to prevent a

the LFSR will be
trivial null result.

The 18-bit authentication result AUT

the final value of CAVE registers R0O. ROI, RO2

The two most significant bits of AUTH_SIGNA

two least signific

AUTH_SIGNATURE are equal 1o ROI XOR
significant bits of AUTH_SIGNATURE are equ

licenso issued by the Department of State is r.

H_SIGNATURE is obtained from
. R13,R14, and R1S.
TURE are equal to the

ant bits of ROO XOR R13. The next cight bits of

equired for tho export of such technical data.

R14. Finally, the lcast
al 1o R02 XOR R]5.

06/21/95 Common Cryptographic Algorithms Revision B

Exhibit 2-24 Calculation of AUTH_SIGNATURE

RAND- »
_CHALLENGE
WIKEY —& initialize LFSR,
PBID — rog::lerl.
offsets
ACRE_PHONE- Quantities passed to CAVE
NUMBER process at each round:
B . = contents of LFSR
von o 2w : - ... =values of offsets
' ‘ = contents of 16 registers
internal basic
round of
CAVE
L] AUTH_SIGNATURE
) 4_4—"’7 post-process
L J
|
L. J AUTH_SIGNATURE
8 rounds 18 bits

Information disclosed in this document is subject 1o the expont jurisdiction of the US Department of State as
specified In Intemational Traffic in Ams Regulations (title 22 CFR pars 120 through 130 inclusive). A
license issued by the Department of Stals is required for the export of such technical data.

S oevawnvsoun

!&asauuﬂuu'zun‘.‘lazsaa

48 Common Cryptographic Algorithms Revision B 06/21/95

Exhibit 2-25 Code for calculation of AUTH_SIGNATURE

/* WI_Auth_Signature has

the same header as CAVE (see Exhibit 2-2) */

/* Note that PBID is right justified. This means that the 2 MSBs of PBID
must be set to 0 by the calling routine. */

unsigned long WI_Auth_Signature (const unsigned char RAND_CHALLENGE (4],

const unsigned char PBID(4],
const unsigned char ACRE_PHONE_NUMBER[3]) -

int i,offset_1,o0ffset_2:

unsigned long AUTH_SIGNATURE;

for'(i = 6: i< 4; i+s) .
LFSR[1i]) = RAN'D_CHALLENGE{i] ~ WIKEY[i]) =~ WIKEY(1+4);
if ((LFSR[O]) | LFSR([1] | LFSR[2] | LFSR(3)) == 0)

for (i = 0;-1i < 4;

i+s)

LFSR[i] = RAND_CHALLENGE(i];
for (i = 0; i < B; i++)
Register[i) = WIKEY(i];

Register(8) = AAV;

for (i = 0; i <.3; i+s)

Register[i+9) = ACRE_PHONE_NUHBER[i];
for (i = 0; 1 < d; di++)

Register(i+12) = PBID[i):

offset_1 = offset_2 =

128;

CAVE (8, &offset_1, Loffsetr_2);

AUTH_SIGNATURE =

(((unsigned long) (Register(0] ~ Register[13)) << 16) «+
((unsigned long) (Register(1] * Register(14])) << 8) +
((unsigned long) (Register[2] ~ Register(15))))

& Ox3fffE;

return (AUTH_SIGNATURE) ;

information disclosed in this document is subject (o the export jurisdiction of lh.o US Department of State as
specilied in International Traflic in Arms Reguiations (title 22 CFR parts 120 through 130 Inclusive). A

licensae issued by the Depa

rtment of Stale ls required for the export of such technical data,

by

06/21/95

Information disclosed in this document Is subjecitothe @
specified in Intemational Traffic in Arms Regulations
license issued by the Department of State Is r

Common Cryptographic Algorithms Revision B

26.4. Wireless Residential Extension Auth
' Calculation Procedure

entication Signature

Procedure name;
WRE_Auth_Signature

{Inputs from calling process:
RAND_WRE 19 bits
. ESN - 32 bits
. PBID ‘30 bits
Inputs from internal stored data:
WRE_KEY 64 bits
AAV 8 bits
Qutputs to calling process:
AUTH_SIGNATURE 18 bits
Outputs to internal stored data;
None.

This procedure is used to calculate 18-bit signatures used for verifying

a mobile station.

The initial loading of CAVE for calculation of wireless residential
cxtension authentication signatures is given in Exhibit 2-26.

Exhibit 2-26 CAVE Initial Loading
Extension Authentication Signature

for Residential Wireless

CAVE Item Source Identifier Size (Bits)
LFSR 19 MSBs RAND_WRE 19
LFSR 13 LSBs 13 LSBs of PBID 13
Reg (0-7) WRE_KEY 64
Reg [8) AAV 8

Reg (9] 2 MSBs 2

Reg [9) 6 LSBs 6 MSBs of PBID 6

Reg (10-11) bits 23-8 of PBID 16
Reg [12-15) 32

CAVE is run for cight rounds. The 18-bit result s

AUTH_SIGNATURE. Exhibit 2
form, while the ANSI C for the pr

-27 shows the process in graphical

ocess is shown in Exhibit 2-28.

xport jurisdiction of the US Depariment of State as
(tile 22 CFR parts 120 through 130 Inclusive). A
equired for the export of such technical data.

49

o e v A u N -

“

Common Cryptographic Algorithms Revision B

The 19 MSBs of LFSR will initially be loaded with RAND_WRE. The
13 LSBs of LFSR will initially be loaded with the 13 LSBs of PBID.
LFSR will be XOR'd with the 32 most significant bits of WRE_KEY
XOR'd with the 32 least significant bits of WRE_KEY, then reloaded
into the LFSR. If the resulting bit pattern fills the LFSR with all zeroes,
then the 19 MSBs of LFSR will be rcloaded with RAND_WRE, and
the 13 LSBs of LFSR will be reloaded with the 13 LSBs of PBID.

The 18-bit authentication result AUTH_SIGNATURE is obtained from
the final value of CAVE registers R0OO, ROI, RO2. R13, R14, and R15.
The two most significant bits of AUTH_SIGNATURE are equal to the

- two least significant bits of R0O XOR R13. The next eight bits of

AUTH_SIGNATURE are cqual to ROl XOR R4, Finally, the least
significant bits of AUTH_SIGNATURE are cqual to RO2 XOR R15.

Exhibit 2-27 Calculation of AUTH_SIGNATURE

RAND_WRE —P
WRE_KEY —
ESN —P

ftialize LFSR,

registers,

offsets Quentities passed to CAVE

11y

process at each round:

* contents of LFSR

* values of offsels

= conlents of 16 registers

internal basic

round of
CAVE
i
L AUTH_SIGNATURE
F 1 posl-process
[
{ 1
AUTH_SIGNATURE
8 rounds 18 bits

06/21/95

T OREZ3ce~~aovauwn

- s
LT

EEA2EBHYNHEYHHN Y BUBYNREREHNN® B3as

06/21/95 Common Cryptographic Algorithms Revision B

Exhibit 2-28 Code for calculation of AUTH_SIGNATURE

/* WRE_Auth_Signature has the same header as CAVE (see Exhibit 2-2) */

/* Note that RAND_WRE is left justified and PBID is right justified.
This means that the 5 LSBs of RAND_WRE and the 2 MSBs of PBID
must be set to 0 by the calling routine. */

unsigned long WRE_Auth_Signature (const unsigned char RAND_WRE (3],
_— L const unsigned char PBID(4],
const unsigned char ESN([4])

(- , > i :
int i,offset_1,offset_2;
unsigned long AUTH_SIGNATURE;

for (i = 0; 1 < 3; i++)

LFSR[i] = RAND_WRE([i];
LFSR([2] = LFSR(2] | (PBID(2]) & O0x1F);
LFSR[3] = PBID(3);
for (i = 0; i < 4;: i+4)

LFSR(i) = LFSR([i] ~ WRE_KEY (i) ~ WRE_KEY[i+4);
if ((LFSR([O] 1| LFSR([1) | LFSR([2]) | LFSR[3]) == 0)
{

for (i = 0; i < 3; 14+)
LFSR([i] = RAND_WRE[i]:
LFSR[(2] = LFSR(2] 1| (PBID(2) & Ox1F);
LFSR[3]) = PBID(3];
)
for (i = 0; i < B; i++)
Register (i) = WRE_KEY(i):;
Register (8] = AAV;
for (i = 0; 1 < 3; i++)
Register(i+9) = PBID(i);
for (i = 0; i < 4; i++)
Register(i+12) = ESN[i];
offset_1 = offset_2 = 128;
CAVE(8, &offset_1, &offset_2);
AUTH_SIGNATURE =
(((unsigned long) (Register(0] Register(13])) << 16) =+
((unsigned long) (Register([1l] ~ Register(14)) << 8) =+
((unsigned long) (Register (2] ~ Register(15))))
& Ox3ffff;
return (AUTH_SIGNATURE) ;

Information disclosed in this document is subject {0 the export jurisdiction of the US Depariment of State as
specilied In Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by the Depariment of State is required for the export of such technical data,

52 Common Cryptographic Algorithms Revision B 06721/35

2.7. Cellular Data Encryption

8 oo vae w

E

¥ d

4K

Data encryption for cellular data services is provided by the ORYX
algorithm (as named by its developers) which is described in the
following.

In this description, a “byte™ means “octer” and has 8 bits. The left-most
bit or byte of a numerical quantity is the numerically most significant,
the right-most bit or byte is the numerically least significant. Bit
positions in a multibit field (byte or 32 bit quantity) are numbered from’
I for the left-most up through 8 or 32 for the right-most bit. If x is a
multi-byte quantity, high(x) denotes the left-most byte of x.

The ORYX key byte generator mainwins three 32 bit registers, K. A,
and B and a 256-byte look up table L, whose i-th entry is denoted L[i).
for 0 i <256.) '

Register K is a 32-bit linear feedback “Galois™ shift register, with
feedback polynomial

k(z)=2"+ 2% 4 2"+ 2" 4 2" 4 o
n 1] L] [3
+Z 42 42 +2 4242+,

This is implemented by shifting the contents of K to the right (and
thereby clearing the left-most bit) and XORing the bit shifted out of the
right-most position into bit positions 28, 19, 18, 16, 14, 11, 10,9, 6, 5,
and 0, when counting the bit positions with 0 as the left-most bit and 31
as the right-most bit

Before stepping, a check is made 10 see if all of the bit positions in K
are 2¢r0. If they are, K is initialized with the hex constant 0x31415926.

The polynomial k(z) is primitive and has Peterson & Weldon octal code
42003247143,

Registers A and B are 32 bit linear feedback Galois shift registers,
shifting to the left: the lefumost bit is XORed into various bit positions.
Register A sometimes steps according 1o recursion polynomial

a@2)mz 424 2P 4 2Ry 04 g
7
+2%+ 24 e P ez

and cometimes according 1o recursion polynomial

1 4 "
a,(2) =2 4 2" 2 P M P 42
+20 42 4 2 e etz e

The decision is based on the current high order bit of K. First K is
stepped. If the (new) high order bit of K is set, register A steps
according to polynomial a,(z); if the high order bit of K is clear,
register A steps according to polynomial 2,(z). The a,(z) shift is

Information disclosed in this document is subject 10 the export jurisdiction of the US Depariment of State as
specified in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 Inclusive), A
license lssued by the Department of State Is required for the export of such technicel data.

Ve Ne N AN -

10
n

7

BYysgHy BB EYE b

4 ¥

06/21/85

Common Cryptographic Algorithms Revision B

implemented as follows: the 32 bits of A are shificd 1o the left, clearing
the right-most bit. The bit shifted out of the lefi-most position of A is
XORed into bit positions 26, 23, 22, 16, 12, 1 1,10,8,7,5,4,2, 1, and
0, when counting the bit positions so 0 is the right-most bit and 31 the
left-most. The a,(z) shift is the same, except the bit shifted out of the
left-most position is XORed into positions 27, 26, 25, 24, 23, 22, 17,
13,11,10,9,8,7,2,1,and 0. Then register B steps once (if the next-
to-high order bit of K is clear) or twice (if the next-to-high order bit of
K is set) according to recursion polynomial
ba) =+ 1)@+ 22+ + P+ +2°+ 1)’
B o AT T at Tl S ' L

This is also implemented with a left shift, XORing the shifted out bit
into bit positions 31, 21, 20, 16, 15, 6, 3. 1, and 0. Polynomials a,(z),
3,(2), and the degree 31 factor of polynomial b(z) are all primitive, with
Peterson & Weldon octal codes 40460216667, 41760427607, and
20004100071, respectively.

Exhibit 2-29 A Galois Stepping Shift Register

Here is how DatKey is formed from SSD-B, using ORYX as a hash
function: First, register A is initialized with the first 32 bits of SSD-B,
B is initialized with the remaining 32 bits of SSD-B and K is initialized
with the XOR of A and B, Then K is stepped 256 times.

After the i-th step, for 0 < i < 256, the i-th entry, L[i]. in the look up
table is initialized with the current value of Ko. Then the following

three-step procedure is repeated 32 times:

. ORYX is stepped, producing a key byte, which is temporarily
stored in byte x. Register A is modified by shifting its contents to
the left by 9 bits, so that what was in bit positions 10 through 32
now occupies positions 1 through 23. Bit position 24 is cleared,
The value of x is stored in bit positions 25 through 32,

2. ORYX is stepped, producing a key byte, which is temporarily
stored in byte x. Register B is modified by shifting its contents to
the lcft by 9 bits, so what was in bit positions 10 through 32 now
occupics positions 1 through 23. Bit position 24 is cleared. The
value of x is stored in bit positions 25 through 32,

3. ORYX is stepped, producing a key byte, which is temporarily
stored in byte x. The value of x is stored in bit positions 9 through

Information disclosed in this document is subject 10 the export jurisdiction of the US Depariment of State as
specllied In Intemational Traffic In Arms Regulations (tle 22 CFR parts 120 through 130 inclusive). A

license issued by the Department of State Is required for tha axnart of fiirh tarhnlcnl dara

n

Common Cryptographic Algorithms Revision B

16 of K. The value of x is ANDed into bit positions 17 through 24
of K

The XOR of the final values of K, A, and B is stored in DataKey.

All data streams in a call share the same look up table L, which is
imitialized as follows:

K is set equal 10 RAND;,

The i-th cell in the L table, L{i] is initialized with the value i, for 0 -
Si<256.

Thcﬁ. the K register is stepped 256 times. After the i-th step, for 0
<1< 256, the values stored in the high(K)-1h cell and the i-th cells
of the L table are interchanged. '

Once the DataKey and the look up table L have been initialized, ORYX
is ready to produce key bytes.

The key bytes in a frame mask are produced by initializing the registers
K, A, and B with values derived from DataKey and HOOK as follows.

1. Kis set equal 10 the current value of HOOK. IfK,, K;,K,, and K,
denote the four bytes of K. the following assignments are made in
wm;

K,=L[K,+K]
K;=L[K,+K))
K,=L[K,+K]

K=L[K/]

where the additions K, + K, are performed modulo 256, Then Kis =~

stepped oace. A is et equal 10 DataKey XOR-ed with K.
2. Kisucpp:dnpiu.ndaismu:iudloDuuK:yXOR-cdwimK.
3. Kissicpped again, and K is set equal to DataKey XOR-ed with K.

With these values of A, B, and K, the ORYX key generator is stepped n
times, and the resulting key bytes are the n bytes of the frame mask.

035/21/95

Information disclosed in this document is sublect to the export jurisdiction of the US Department of State as
speciied in Intemational Traffic in Arms Regulations (title 22 CFA parts 120 through 130 inclusive). A
licensa issued by the Department of Stats is required for the export of such technical data,

06721195 Common Cryptographic Algorithms Revision B

27.1. Data Encryption Key Generation Procedure

. Inpui‘s from mlcnulslorad data: .

Procedure name:
DataKey_Generation

Inputs from calling process:
RAND 32 bits

SSD_B ' . 64 bits

Outputs (o calling process:
None.)
Outputs 10 internal stored data:
DataKey 32 bits
L 2568 bits

This algorithm generates DataKe Y. a period key used for generation of
cncryption masks for cellular data, and L. a table used in mask

gencration,

The DataKey_Generation procedure is executed at the beginning of
cach call, using the values of SSD_B and RAND in effect at the start of
the call. The values of DataKey and L shall not change during a call.

The calculation of DataKey depends only on SSD_B, and may be
computed and saved when SSD is updated. The calculation of L
depends on RAND, and shall be performed at the beginning of cach
call.

Exhibit 2-30 describes the calculation in ANSIC.

Information disclosed in this document is subject to the export jurisdiction of the US Department of State as
specilied in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
license issued by the Department of State is required for the export of such technical data,

L

.

B yxbN

ssaaaaatcnsauuauu!ans

A

56 Common Cryptographic Algorithms Revision B 06/21/95

Exhibit 2-30 DataKey Generation

/* header for DataKey_Generation */

unsigned long K; /* 32-bit K register */

unsigned long A, B; /* 32-bit LFSRs */

unsigned char L[256]; /* look up table */

#define high(x) (unsigned char) (0x£fU& (x>>24)) /* leftmost byte */
#define FA1l 000460216667 ./* Peterson & Weldon prim 32 ./

#define FA2 001760427607 - /* Peterson & Weldon prim 32 </ e
‘#define.FB 020014300113) © .- /* P&W prim 31 020004100071 times z+1 */
#define FK 030634530010 . /* reverse of P&W prim 32 042003247143 7 A
unsigned char SSD_B[8];

unsigned long DataKey; /* data encryption key */

void kstep(void);

void DataKey_Generation (const unsigned char []):

unsigned char keygen (void);

void Data_Mask(const unsigned long , unsigned char []. const int);

/* end of header */

void DataKey_Generation(const unsigned char RAND[4])
(

int i,3;

unsigned long temp;

unsigned char tempc;

A= 0;
for(i=0; i<d; i++)
A = (A<<B) + (unsigned long)SSD_B[i);
B = 0;
for(iz4; i<B; i++)
B

= (B<<8) + (unsigned long)SSD_B(i}:
K= A " B;
for (i=0; i<256; i+4)
{
kstep();
L{i) = high(K);
)
for(i=0; i<32; i++)
{
temp = (unsigned long)keygen():
A = (A<<9) + temp;
temp = (unsigned long)keygen():;
B = (B<<9) + texp;
temp = (unsigned long)keygen():
K = (OxffO0£f£f£ffU & K) + (temp << 16);
K &= Ox££ff00££fU + (temp<<B);
)
DateKey = A ~ B ~ K;
DataKey &= Oxffffffff; . /* use only 32 bits */

Information disclosed in this document is subject (o the export jurisdiction of the US Department of State as
spocilied In Intemational Traffic in Arms Regulations (ttle 22 CFR parts 120 through 130 inclusive). A
license issued by the Depantment of Stale is requlired for the export of such technical data

‘ﬂtﬁﬂz'ﬁnnq.usuu-

= e
L

EABETAR2ABRARRELEAANLS YN YYHUHEHEHH Y BB BYRNRYUNYN g

06/21/95

)

unsigned char keygen (void)

{

/* make L table */
K= 0;
for(i=0; i<d; i++)

Common Cryptographic Algorithms Revision B

K = (K<<B) + (unsigned long)RAND([i];

for (i=0; i<256; i++)

L[i) = (unsigned char)i:

/* use high byte of K to permute 0 through 255 =/

for (i=0; i< 256; i++)

{ - . = . .Q . :

- kstep() ;" - S
j.=. high(K); "’ '
tempc = L[i]);

L[i] L(3);:
L(j] = tempc;

}

unsigned char x;
int i, trips;

kstep();

/-

* if high bit of K set, use Al feedback
* otherwise use A2 feedback

et 4
1f((1UL<<31) & A)
{
A += A;
if((1UL<<31) & K)
A:AnFA].:
else
A = A~ FA2;
)
else
A += A;

,Q
* if next-high bit of
* otherwise once
~/
if ((1UL<<30) & K)
trips = 2;
else
trips = 1;
for(i=0; i<trips; i++)
(
if ((1UL<<31) & B)
(
B += B;
B =B ~ FB;
)
else
B += B;

K set, step B twice

(nformation disclosed in this document is subject {0 the export furisdiction of the US Department of State as
specified In Intemational Traffic in Arms Regulations (tithe 22 CFR paris 120 through 130 inclusive). A
license lssued by the Department of State is required for the expor of such technical data.

83!553'8-.-10“;9".4

58 Common Cryptographic Algorithms Revision B 06/21/35

x = high(K) + L[high(aA
x &= Oxffu;
return x;
)
/.
* step the K register
Y
void kstep (void)
(:

© if(K==0) X = .0x3141592
CAf(K&l) (- T s
‘ K= (K>>1) ~ FK;
]} else @ =

K = (K>>1);
K &= Oxffffffff;

Information disclosed In this document ks subject 1o the export

specified In Intemational Traffic in
license issued by the Depan

)] + L[high(B));

/* use only B bits +*7

6:

Amms Regulations (title 22 CFR
ment of Stale Is required for the

jurisdiction of the US Depariment of State as

perts 120 through 130 inclusive). A
axnart of civh tarhnical dain

10

n

1

BN

06/21/95 Common Cryptographic Algorithms Revision B 59

272. Data Encryption Mask Generation Procedure

Procedure name:
Data_Mask

Inputs from calling process:

© HOOK. . " 3
mask © . - - +, . amypointer - - -
< len B * 7 " integer N B [gt '
Inputs from internal stored data:

SSD B 64 bits

Outputs to calling process:

mask len*8 bits

Outputs 1o internal stored data:

None.

This algorithm generates an encryption mask of length len*8 bits,
where 1 is the number of mask bytes.

Implementations using data encryption must comply with the following
requircments. These requircments apply to all data encrypted during a
call.

. The bits of the HOOK variable that change most frequently shall
be placed in the least significant octer,

- No value of HOOK shall be used more than once during a call,

. Mask bytes produced using a value of HOOK shall be used to
encrypt oaly one set of data bytes. Jon 2t

o __Mukbmgmauedusiugavdueofﬂooxthdlnolbcmd
for encryption of data sent in different directions of transmission
nor for data seat on different logical channels in any direction of
transmission,

Exhibit 2-31 describes the calculation in ANSIC.

Information disclosed in this document is subject to the export jursdiction of the US Department of State as
specified In Intemational Treffic in Arms Regulations (title 22 CFR parts 120 through 130 inciusive). A
license Issued by the Department of State is required for the export of such technical data

-
-

1"

-
A0 RNZ3veavaoauwn

Information disclosad in this document is subject (o the e

Common Cryptographic Algorithms Revision B

Exhibit 2-31 Data Eacryption Mask Generation

0621/95

/* Data_Mask has the same header as DataKey_Generation

(see Exhibit 2-30) +*/

void Data_ﬁnsk (const unsigned long HOOK,

unsigned char mask(],
s+ 7. const int len)

)

AUECRY ety s, _ ¥ o e

= (unsigned long)L(HOOK&OXEf), .- - = .
+= ((unsigned long)L[((HOOK>>8) +HOOK) &0x£f)) <<8;
+= ((unsigned longIL[{(HOOK>>16)+HOOK}&DX££]]<<16:

K += ((unsigned long}LI({HOOK>>24)+HOOKJ&0::££]}<<24:

'
K
K

kstep(); A = DataKey ~ K; /* kstep() is; defined in Exhibit

kstep(); B = DataKey ~ K:
kstep(); K = DataKey ~ K;

for(i=0; i<len; i++)

2-30 */

mask[i) = keygen(); /* keygen() is defined in Exhibit 2-30 -

mﬂhﬂndubnmmusmpammofsutou

specified In intemational Traffic in Arms Regulatlons (title 22 CFR parts 120 through 130 inclusive). A
MGMhyﬂwDepmmddSmthfmﬁnemoﬂohmhtmnhlm

TER

B HYRUYHEYY

06/21/95

Common Cryptographic Algorithms Revision B 61

3. Test Vectors

31. CAVE Test Vectors

RANDSSD .

AUTH_DATA -

ESN
msg_buf (0]

-msg_buf [5]

These two test cases utilize the following fixed input data (expressed in
hexadecimal form):

- et mT 4Dt IER AAOS - - 895C . - -
Algorithm Version - - ..

LT

Y o C?
79 2971

D75A 96EC
B6,2D, A2,44, FE, 9B '

The following A-key and check digits should be entered in decimal
form:

14 1421 3562 3730 9504 BBOB 6500

Conversion of the A-key, check digit entry into hex form will produce:
A-key, check bits = (€442 F563 E9E1 7158, 1 S1E4

The above entry, when combined with RANDSSD, will gencrate:
SSD_A = (CC38 1294 9F4D CDOD
SSD_B = 3105 0234 SBOE 63B4

3.1.1. Vector 1

If RAND_CHALLENGE = 34A2 BOSF:
 (Using SSD_AUTH = SSD_A)

AUTH_SIGNATURE= 3 66F6
CMEA key KD, k7 = A0 7B 1C D1 02 75 69 14
CMEA output = ES5 6B 5F 01 65 C6

VPM= 18 93 94 82 4A 1A 2F 99
A5 39 F9 5B 4D 22 DS 7C
EE 32 AC 21 6B 26 0D 36
A7 C9 63 B8 57 8C B9 57
E2 D6 CA 1D 77 B6 1F DS
C7 1A 73 A4 17 B2 12 1E
95 34 70 E3 9B CA 3F DO
50 BE 4F D6 47 BO CC B8
DF

Information disclosaed in this document is subject to the export juriadiction of the US Department of State as
specilied in intemational Tratfic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A

H

B h ok At AA2AEHUEKRYHBHEYYURYNUDRZBENEYS

62 Common Cryptographic Algorithms Revision B

312 Vector2

- 062185

If RAND_CHALLENGE = 5375 DF99:

(Using SSD_AUTH = SSD_A)

AUTH_SIGNATURE= 0 255A
CMEA key k0,. K7

VPM = 20
28
49
46
76
D2
D1
02
BF

313, Test Program

$ s, CMEA output

38 01
48 98
6E 0B
E6 D5
6C SE
DC 94
6C 7E
c9 23

FO

06

AB 5A 05 CD B3 2A

"= 2B AD-16 A9 BF 32

6B B9
75 AB
BB D2
B4 12
D4 98
B0 F6
SE AC
63 6F

ac
18
CB
B3
(of:}
D4
6B
61

F8
65
A8
BC
Al
3E
CA
68

A0
SA
28
SE
4A
EO
43
EB

#include <stdio.h>

void CAVE(int number_of_rounds,

int *offset_l,
int *offset_2)

void A_Key_Checksum(const char A_XEY_DIGITS[20],

char A_KEY_CHECKSUM[6]);

int A_Key_Verify(char A_KEY_DIGITS([26));

void SSD_Generation(unsigned char RANDSSD[7]);

unsigned long Auth_Signature (unsigned char RAND_CHALLENGE(4],
unsigned char AUTH_DATA([3].
unsigned char *SSD_AUTH,

- int SAVE_REGISTERS) ;

void Key_VPM_Generaticun(void);

void CMEA (unsigned char *msg_buf, int byte_count);

extern unsigned char
extern unsigned char
extern unsigned char
extern unsigned char

extern unsigned char

A_key[B);

SSD_A(B);
SSD_B(8);

cmeakey (8] ;

VPM(65);

Irformation disclosed in this document s sublect 1o the export jurisdiction of thve US Department of State as
spedified In Intemational Traffic in Arms Regulations (tile 22 CFR parts 120 through 130 inclusive). A
Hranca kecisard ber tha Neansrtman! of Siata o eacload {nr tha avmar af aich tachnleal data

ECRZ23covoawuaumna

-
-

lQlatbh:bﬂKQBH!HHEBHNNHN!HBQHazﬁz

06/21/95) Common Cryptographic Algorithms Revision 8

/*Test vector inmputs and results */

extern unsigned char ESN([4]:;

unsigned char RANDSSD(7) = (0x4d, 0x18, Oxee, Oxaa,
: . 0x05, 0xB9, 0x5¢c); .

unsigned char MIN1([3] = { 0x79, 0x29, 0x71);

unsigned char MIN2(2) = { 0x02, 0xBd);

unsxgned chnr cmeakeyl[ﬂ] = [0xa0, 0x7b, Oxlc, 0xd1l,

: +' . .0x02, 0x7S,. 0x69, 0x14):
uns;gned chnr cmeakey2[8] = [O0xf0, ‘0x06, OxaB8, OxSa, .- L "

' v OxDS. Oxcd, 0xb3, O0x2a); — " g

unsigned _char RANDl[d] = [0x34, O0xa2, 0xb0, 0xSf };:
unsigne_d cha;‘ RAND2 [4] = { 0x53. Ox'?S. Oxdf, 0x99):

unsigned char buf([6] = (0xb6, 0x2d, 0xa2, 0x44, Oxfe, 0x9b };
/* entered o_key and checksum »/ l '

char digits[26] =
'[.1.4 ‘4': '1.0. .4.c .2lo 'l.l .3'0 ls‘a .6'0 .2.4 .
130' 0‘70' n3t. IOU‘ lgl' ‘5!‘ IOI‘ 04|‘ lei' IBO‘ . ..
IOI' '8', IGI‘ aso' 001. 1011]‘. .

/* CAVE outputs */

extern unsigned char A_key([B];
extern unsigned char SSD_A_NEW(8];
extern unsigned char SSD_B_NEW(B);
unsigned long AUTHR;

/* CMEA keys */

extern unsigned char cmeakey([8];
extern unsigned char VPM(65);

void SSD_Update (void)
{
int i;

for (i = 0; i < ﬂ; i+d)
(
SSD_A[i] = SSD_A_NEW[i);
SSD_B[i] = SSD_B_NEW([i);
)

{information disclosed i this document is subject 1o the export jurisdiction of the US Depariment of State as
specified in intemational Traffic in Arms Regulations (tite 22 CFR parts 120 through 130 inclusive). A
license issued by the Depariment of Stats is required for the export of such technical data.

s a3

BBHHRH!HHEBHHGRR?BH‘JU

£E3BEBYERN 28 BAARAELAN

38:8528.¢unusuu-

64

Common Cryptographic Algorithms Revision B

void main(void)

{

int i, 3;

unsigned char auth_data(3],test_buf(6);
/e a'-'aiéh_ ESN value */

ESN[0) = 0xd7;. ...

ESN[1) = OxSa;.

Es"[z] '-' ms: “ oA

"/* check Akéy and SSD */ :

if (A_Key_Verify(digits))
{ g i .

printf ("A key verified ok\n*); ‘
}
elsel .
printf (*A key verification failed\n");
return:l e
) : '

/* check SSD generation process */

SSD_Generation {RANDSSD) ;
SSD_Update() :

Printf(*SSD_A =°);

for (i = 0; i < 4; i++)

{
printf(* *);
for (j = 0; 3 < 2; j++)
(

)

printf (*$02x*, (unsigned int)SSD_A(2%i+3));

) O
printf(*\n*);

printf(*ssSp_B -="):-

for (i = 0; i < 4; i+s)

(:
printf(* *); . . - .
for (j = 0; 5 < 2; J++)
{

printf (*02x*, (umsigned int)SSD_B[2%i+3j));
)
)
printf(*\n°®);

~/* Inputs for test vectors ber? A

/* put MIN1 into auth_data (no dialed digits for this test) =/

for (i w 0; 1 < 3; i+s)
auth_data(i] = MINI1[i):

06/21/95

spedified In intemational Traffic in Arme Regulations (ttle 22 CFR parts 120 through 130 inclusive). A

lcense issued by the Department of State is required for the expori of such tachnical data

:sznaaataaaaluunuruneuuusuusunssas:sa:as‘:_s...........-

06/21/95 : Common Cryptographic Algorithms Revision B

/* vector 1 */- ...

-

printf(*"\nVector 1\n\n") :
AUTHR = Auth_Signature (RANDI,auth_data,SSD_A,1); - ‘
printf ("RAND_CHALLENGE - =*); |

for (i = 0; i < 2; i++)

{ e o e B Gy
_ printf(yR) e T wea Bty U W ™ e N By Y
" -‘f_or‘tj a=_0_; 3'.-: 2:..3'-&4-]"_ . - * o ' . i ¢ M Wimn

~ printf (*802x*, (unsigned int)RAND1 (2%3+3]) ;
, DU R Py i

]‘ : b .

printf(*\n®); _ - .

Printf ("AUTH_SIGNATURE = $011x $041x\n*, AUTHR >> 16, AUTHR &
0x0000££££); - - . -

for (i;&wof iféé6; i;+]
test_buf[i) = buf[i);

Key_VPM_Generation();
CMEA (test_buf,6);

printf (“CMEAkey kD, . e K7 =°);
for (i = 0; i < B; i++)

printf(* ®02x*, (unsigned int)cmeakey(i]);
printf(*\n*); :

printf (*CMEA Output =*);
for (i = 0; i < 6; i+s)

printf(* $02x-, (unsigned int)test_buf(i));
printf(=\n*);

printf (*VPM:*):
for (i = 0; 4 < 65; i++)
(eel * G g
printf(* R02x*, (unsigned int)VPM[i)):;
if (((i+41)%8) == 0)
printf(*\n . . *);

printf(=\n"); -
/* vector 2 */
printf (*\nVector 2\n\n*") ;

AUTHR = Auth_Signature (RAND2,auth_data,SSD_A,1);

wmamahmmhmwm.wmmum US Department of State as
speciied In Intemational Tratfic in Arme Reguiatione (title 22 CFR parts 120 through 130 Inclusive). A
license issued by the Department of Stats ts required for the export of such technical data.

3!:0!{3-!..4.-;“»-

alﬂsatunuuuﬂﬂnukausuzsa

66 o Common Cryptographic Algorithms Revision B 06/21/95

printf (*RAND_CHALLENGE =*);
for (i = 0; i < 2; i++)
printf(* *); .

for (j = 0; J < 2; je+)
1 e,

- printf (*$02x*, (unsigned int)RAND2(2%i+j]);

} . .“I'_,-_.-'.. .,:‘-.

} ML D .‘.‘".“." _',.'-.A ';
printf(*\n?%);

- . -
L 5 RO L T P W |

- print ("AUTH_SIGNATURE' = 4011x $041x\n*, AUTHR 55 16, ‘AUTHR &
0X0000££££) ; =2+ o ol s L

for (i ;foﬁ‘i'<'é; i+;j o ‘ _ _ . . .
'tesl:__.buf.{i]“ = buf(i]; _

Key_VPM_Generation() ; : :

CMEA (test_buf,€);

printf ("CMEAkey k0,. .,k7 =*);
for (i = 0;°1 < B8; i++)

printf(* 802x*, (unsigned int)cmeakey(i)); .
printf(*\n*); --: - :

printf ("CMEA Output =*);
for (i = 0; i < 6; i++)

printf(* %02x*, (unsigned int)test_buf[i)):
printf(*\n°*);

printf (*VPM:*):;
for (i = 0; i < 65; i++)

(
printf(* 802x*, (unsigned int)VPM([i));
Cif (((i+1)88) == 0)
printf(*\n *):
) .

printf(*\n*); _
} oLy A

information Mmhﬂ%hnﬂmwﬂnmm of the US Department of State as
specified in Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 Inciusive), A
license isaued by the Dep-nmnldsuuhroqu.ﬁudfortruo:poﬂ of such technical data.

n

1

P EHYUHYHH YUY RNNN YR YN

06/21/95 Common Cryptographic Algorithms Revision B : 67

32. Wireless Residential Extension Test Vectors

321. inputdata

Manufacturer‘’s Key = 2 14 0E 9F 70 50 D7 EA
42 D9 C9 00 c9 14 14
CF

& s slgwti g BB v oo 5% 00 00 0% b0
a'a =g G £ rh e \ 5 : g . ¥ " . 1

* Random Challenge = 7E 49 AE 4F

ACRE Phone Number = 5459-8506

Random WRE . = 3 17 52
ESN . = ED 07 13 95
= B7 FC 75 SA FO A4 90

Random WIKEY

WRE Key = CB 60 F9 9F 5B 15 6F AE

322 Test Program

finclude <stdio.h>

void WIKEY_Generation (const unsigned char MANUFACT_KEY(16],
const unsigned char PBID([4)):

void WIKEY_ Update (const unsigned char RANDWIKEY (7],
const unsigned char PBID(4]));

unsigned long WI_Auth_Signature (const unsigned char RAND_CHALLENGE([4],
const unsigned char PBID(4]),
_ const unsigned char ACRELPHONE~NUHBER[3]}:
unsigned long HRE;Auth_Siqnatu:e{const unsigned char RAND_WRE[3],
const unsigned char PBID(4],
const unsigned char ESN(4)):
/* Test vector inputsg */

unsigned char manufact [16]) = (0x85S, 0x03, 0xA7, 0xDC, 0x14, 0x35, OxFA, 0x90,
0xB6, 0x72, 0x40, 0x32, 0x45, 0x05, 0x33, 0xCO0):

unsigned char baseid[4) = (0x00, 0x00, 0x01, 0x00);
unsigned char random_challenge(4)] = { 0x7E, 0x49, OxXAE, Ox4F);
unsigned char acre_phone([3] = (0x49, 0xB5, OxA6);

unsigned char random _wre(3)] = { 0x62, OxEA, 0x40):

3-.-..&-;““-

-
-

¢ aa=auuuuawauaamauuuruuauusssa:q-nl

A bhan

‘void meintvoid)’r v . Lo,
{'., b bt e . n)

68 Common Cryptographic Algorithms Revision B

unsigned char hs_esn[4] = { OxED, 0x07, 0x13, 0x95S };

06/21/95

unsigned char rand wikey[7) = { 0xB7, OxFC, 0x75, OxSA, OxFO, OxAd, 0x90 };

/* CAVE outputs */ ..

extern unsigned char WIKEY[B];
extern unsigned char - WIKEY_NEW([B]; S _
extern t_mgiqq:_eql char WRE_KEY(8); =" .. i BRI I

fat £7. . et
unsigned long auth_sig;

" WIKEY _Generation(manufact,baseid);: . -
Printf (*WIKEY = ")z y ¢
for(i=0;i<8;i++) - -

printf(*$02x*, (unsigned int)WIKEY[i]);

-prim:i('\n'l: - .. = r e z

aut.l:';.sig - W.‘L;)_tu.t}g,signature (rmdmLchallmqe.baseid. acre_phone) ;
printf (*ADTH_SIGNATURE = $051x\n*,auth_sig);

0xCB;

WRE_KEY[0] =
WRE_KEY([1) = 0x60;
WRE_KEY[2] = OxF9:;
WRE_KEY (3] = 0xSF;
WRE_KEY (4] = 0xSB:
WRE_KEY[5) = 0x15;
WRE_KEY([6] = Ox6F:
WRE_KEY[7) = OxAE:

auth_sig = HRE_Auth_signnture(randouLure,huseid.hn_esn}:
printf (*AUTH_SIGNATURE = §051x\n",auth_sig):

WIKEY Update (rand_wikey, baseid) ;
prin:f{'mm_m = *);
for(i=0;i<B;ie+)
printf (*802x*, (unsigned int)WIKEY_NEW[i]);
printf(*\n*); - - .
) W g g

323. Test Program Output

- WIKEY = cb60£99£5b156fae
AUTH_SIGNATURE « 2cf01
AUTH_SIGNATURE = 12893
WIKEY_NEW = 167ca928358cceba

Md&mmmmumwm. t uriediction of the US Department of State as
spacified in intemational Traffic in Arme mmcm parts 120 through 130 inclusive). A

lbmuhuﬁbyﬂnmpuumtdsmhqumd!orﬂmowdmchhdmkwm

LT I T

k&l!&taﬁﬁbUIHIRQBBQUNHHSUEBﬁBH

06/21/35

Common Cryptographic Algorithms Revision B

33. Data Encryption Test Vector

33.1. Input data

SSD_B= 1492 5280 1776 1867
RAND = 1234 ABCD

HOOK = CDEF 5678

24 bytes of mask to be retumed

'332 Test Program

‘#include <stdio.h>

extern unsigned char L[256):
extern unsigned char SSD_B(8]; -
extern unsigned long DataKey;

void DateKey_Generation(const unsigned char [l);
void Data_Mask (const unsigned long , unsigned char (], const int);

void main(void)

(
int i, j

unsigned long hook:;

unsigned char buf(24), rand(4];

rand([0]
rand[1l]
rand(2]
rand(3)

hook = OxcdefS5678;

SSD_B(0]
SSD_B[1)
SSD_B[2])
SSD_B[3)
SSD_B[4])
SSD_B(5)
SSD_B(6)
SSD_B(7)

Printf (*\nSSD_B =*);

for (i =

(

0x12;
0x34;
Oxab;
Oxecd;

0x14;
0x92;
0x52;
0xB0;
0x17;
0x76;
0x18;
0x67;

0; 1 < 4; i++)

printf(* *);
for (3 = 0; 3 < 2; J++)
(

printf(=%02x*, (unsigned int)SSD_B[2*i+3]);

)

knformation disciosed in this document s subject {o the export jurisdiction of the US Department of State as
specified in Intemational Tratfic in Arms Regulations (title 22 CFR parts 120 through 130 inciusive). A
license issued by the Department of State Is required for the export of such technical data,

Slﬁﬂﬂ!ﬂdzlnoq-upuu..

aataa:aaauuu!nuauuusuuunuss

70 CmnmonanhgﬂPNCAhomhmsReﬁﬂonB 0621/95

printf (*\nRAND =*);
for (i = 0; i < 2; i++)

{
printf(* *);
for (j = 0; 3 < 2; j++)
(
printf(*802x*, (unsigned int)rand(2*i+3));
)
)

printf (*\nHOOK = %041x %041x", hook >> 16, hook & 0x0000£££f);
printf (*\n24 bytes of mask to be returned”®);
DataKey_Generation(rand);

printf (*\n\nOutput:\n\n");

printf (“\nDataKey = &041x %041x\n*, DataKey >> 16, DataKey &
Ox0000££££) ;

printf(*\n\nL:\n\n*);

for(i = 0; i < 16; i++)
{ for (j = 0; 3 < 16; j++)

{ printf(*802x *, (unsigned int)L(16%i+j));
: ;rincf{'\n'}:

Data_Mask (hook, buf, 24):
printf (*\n\nmask:\n\n"):

for(i = 0; i < 2; i++)
{
for (3 = 0; J < 12; j++)

{
printf(“%02x *, (unsigned int)buf(12*i+3j)):

printf(*\n*);
} &

13

18

17

06/21/95

Common Cryptographic Algorithms Revision B

333. Test Program Output

specified in international Traff
license issued by the De

DataKey = 8469 B522

L:

47 D1 g8

15
6C
13
69
Cc5
4E
17
8A
EB
SE
El
89
F5
F8
SB

57
EOQ

83
66
06
6B
86
76
AB
ic
B3
SA
DC
iE
67
DF
sC

Fé6

4D

04
33
62
79
6D
00
78
BB
o8}
EF
BD
63
CF
1D
21

c2
73

BC
A3
53

40

SF
46

72
B7
BY
D6
45
58
61

03
80

3B
96
7B
oc
36
2C
7E
90
F6
52
8D
3E
91
“
9B
85

c
FF

7F 25 30

1F

09

‘B6

DE 2D 20

6F
5D
65
07
co
4c
A0
E6
37
92
DB
34
19

78
2A

0E
E8
7D
49
41
4B
0A
Ad
59
D4
22
ED
84

2F
4D

OF
74
SF
48
BF
27
E9
D5
CcD
11
FE
0B
DO

cc
2F

16
A7
Fl
4D
FC
8B
85

28
D8
82
EC
EE
55
D7
3c

88
8D

CE
70
ec
D
B8
BE
75
97
1A
Cé
F3
02
sc
c7

26

3E
74

A9
29
4F

51
8F
o
D3
03
3F
77
80
12
56
99
87

E4
BE

SD
D2

32
10

6E
43
c4

54
81
AS
Bl
TA
98

0B
DB

2E
93
Al
D9

cc
01
FA
05
42
AC
A6

Cl
BO

FB 2F E4

39
50
F2
4A

cs
E7

B2
2A
3A
F4
7c
F7

2B

£ 80 8

BS
c3
18
31
c2
F9
EO
23

SA
6A
1B
SE
64
oD
DD

Bo

73

35
57
E3
24

Regulations (title 22 CFR parts 120 through 130 inclusive). A
partment of Stale s required for the export of such lgd\nical data. o

71

72 Common Cryptographic Algorithms Revision B 06/21/95

Information disclosed in this document ks subject o the export jurisdiction of the US Department of State as
specified n Intemational Traffic in Arms Regulations (title 22 CFR parts 120 through 130 inclusive). A
kcense issued by the Department of State is required for the export of such technical data.

