

The EPC Network, RFID and Data

Friday 9.30AM

Presented by:

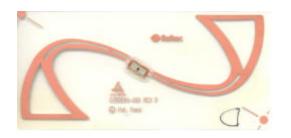
Chris Hook, Uniform Code Council

May 23rd, 2003

Presentation Overview

- Overview of the EPC Network
- Field Tests
- "Auto-ID, Inc." Next Steps
- Code "Mapping" Considerations
- Market Development Thoughts

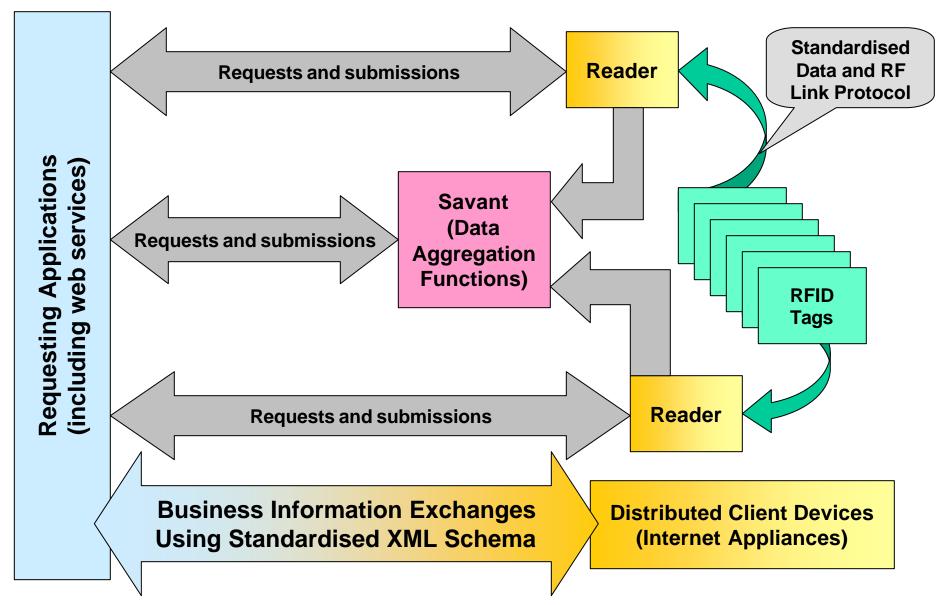
EPC Network – What?


ETags	The data carriers. RFID tags in various form factors. which carry EPCs.
Reader	The data capture device; portable or fixed (installed), connected to a Savant or network.
EPC	Electronic Product Code: the code carried by the data carrier; the globally unique pointer for making enquiries about the item associated with the EPC.
Savant	Servers which act as local repositories for EPCs and associated information, and which support sophisticated, flexible middleware for serving PML queries.
ONS	Object Name Service; the distributed resource that "knows" where information about EPCs is held (just like DNS).
PML	Physical Markup Language; like XML, with XQL query structure to allow structured querying and reporting of EPCs and attributed data.

EPC Network – What?

- Cheap, high performance RFID tag chips and tags enable the EPC vision
- Serialized items can be individually tracked across traditional trading boundaries in a standardized way and with unprecedented automation

What do Tags Look Like?



"Smart labels" is the common term

Tag images courtesy of Alien Technology and Matrics

A General Connectivity Model

MIT Auto-ID Center - Status

- Now just under 100 sponsors
- Technical specifications

- For all components of the EPC Network

- Phased field tests:
 - Rationale: internal learning & development
 - Phase 1 Pallets: completed
 - Phase 2 Boxes / totes: completed
 - Phase 3 Items: just commenced

Research	Development	Comm	ercialization	Implementation	
1999	2000	2003	2004	2005	

Presentation Overview

- Overview of the EPC Network
- Field Tests
- "Auto-ID, Inc." Next Steps
- Code "Mapping" Considerations
- Market Development Thoughts

Field Test Objectives

- "Internal" testing and learning
 Building to "reference implementations"
- Three phases of experimentation
- Refinements of EPC components
- Sharing of results with co-sponsors
- Source material for white papers

Field Test Sponsors

End-User

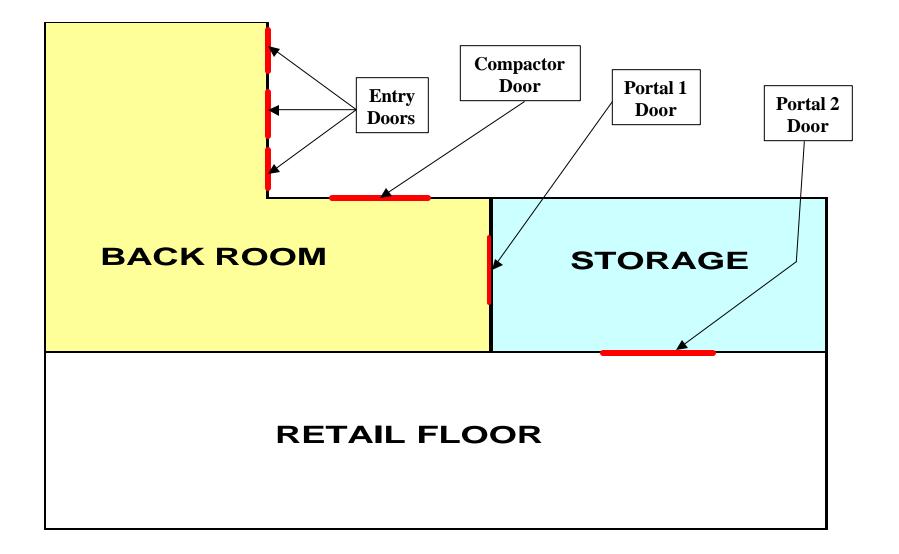
Chep **International Paper** Johnson & Johnson **Procter & Gamble** The Gillette Company Unilever Wal*Mart Mead Westvaco YFY Coca Cola **Dai Nippon Printing Kimberly Clark** Home Depot **Kraft Foods** Target Toppan Nestlé Purina Kodak

Technology

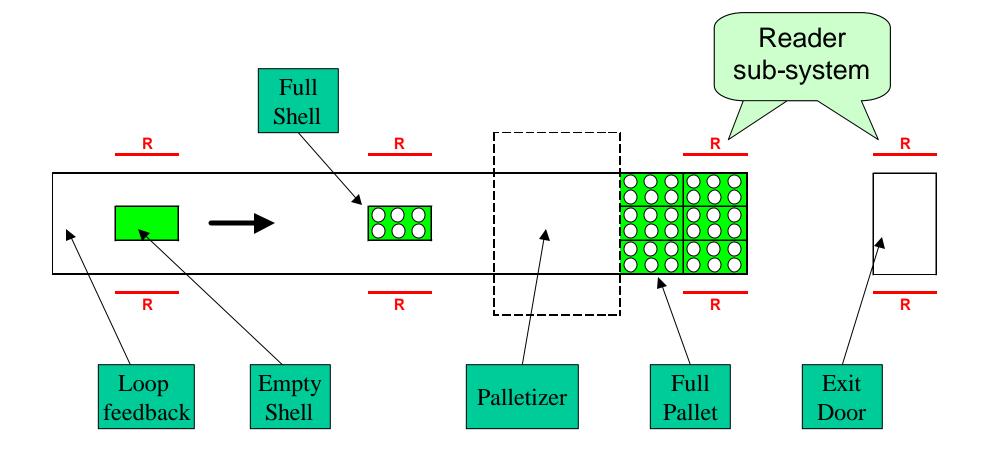
Invensys NCR SAP Sensormatic (Tyco) Sun Microsystems Alien Technology Markem Rafsec Savi Technology Checkpoint Systems Philips Semiconductors RF Saw Matrics Siemens/Dematics

Field Test Applications

- Focused on retail supply chain
 <u>From manufacturer to consumer</u>
- Consumer product availability
- Theft prediction and apprehension
- Freshness and OoD monitoring
- Automatic inventory at case level
- Safe and secure supply chain


Field Test Applications

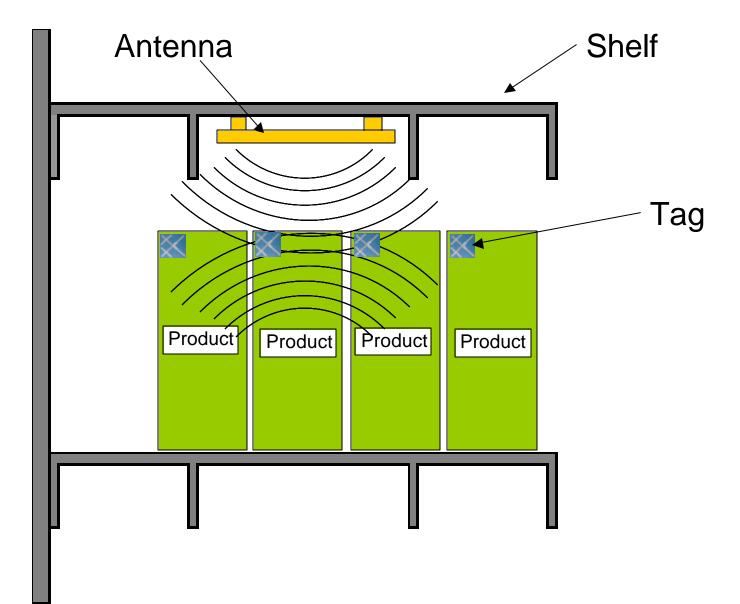
- Phase I:
 - Pallets (manufacturer? DC? store)
 - Evaluate ONS and Savant
 - Evaluate COTS products
- Phase II:
 - Cartons, cases, pallets
 - Test aggregation models
 - Test new EPC RFID products
 - Load the system (EPC Network)


Field Test Applications

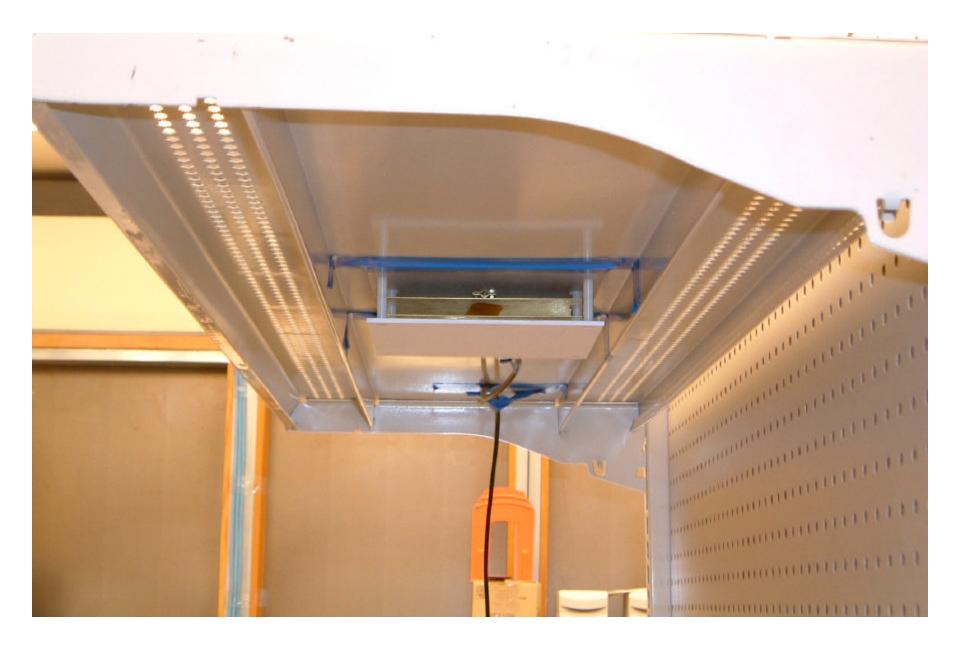
- Phase III:
 - Evaluate item tagging using low cost tags
 - Examine both HF and UHF RFID systems
 - Develop "smart shelves"
 - Tagging many differing item types

Example Retail Store Layout

Bottling and Distribution Center


Bottling and Distribution

- Key lessons learned:
 - Tag format
 - Tag placement
 - Reader antenna positioning
 - Operational feedback is essential
 - Handling exceptions requires method
- Sub-systems must be optimized
 - Initial reading results were < 100%</p>
 - Optimization gave 100 % reading accuracy


Products in Phase III

- Aerosol cans
- Razors and razor blades
- Liquid soap
- Shampoo
- Cosmetics
- Soda (bottles)
- Baby wipes
- Dog food (bags)
- DVD players
- Photographic film
- Sticking plasters

"Smart Shelf" Antenna

Smart Shelf Antenna

Phase III – Next Steps

- Bear in mind this is "new learning"
- Initial results show great promise
- Refine "smart shelf" sub-system
- Experiment with other product types
- Critically evaluate performance
- Publish results

Field Tests: Summary

- Allowed refinement of components
- Additional "private" testing performed
 - Not part of formal Field Tests:
 - Metro "store of the future"
 - Chep
 - Gillette and CVS
- Common objective:
 - Drive towards "reference implementations"
- "EPC compliance" remains the end-game
- This work will continue

Presentation Overview

- Overview of the EPC Network
- Field Tests
- "Auto-ID, Inc." Next Steps
- Code "Mapping" Considerations
- Market Development Thoughts

Auto-ID, Inc. – Next Steps

- UCC and EAN to commercialize EPC
 - Contract signed
 - Driving to create "EPC Network v1.0"
- Jointly managed initiative
- Transition plan formulated
- Building the team

- New President, Dicki Lulay

Research	Development	Comr	mercialization	Implementation	
1999	2000	2003	2004	2005	

Marketing and Communications

- We have retained Fleishman-Hillard
 - Forums, symposiums
 - Website, press and analyst briefings
- Expectations must be managed
- Gearing up for September "launch"
 - EPC Symposium, Chicago, September 16th
 - Sign up at the UCC booth

Research	Development	Comn	nercialization	Implementation	
1999	2000	2003	2004	2005	

Presentation Overview

- Overview of the EPC Network
- Field Tests
- "Auto-ID, Inc." Next Steps
- Code "Mapping" Considerations
- Market Development Thoughts

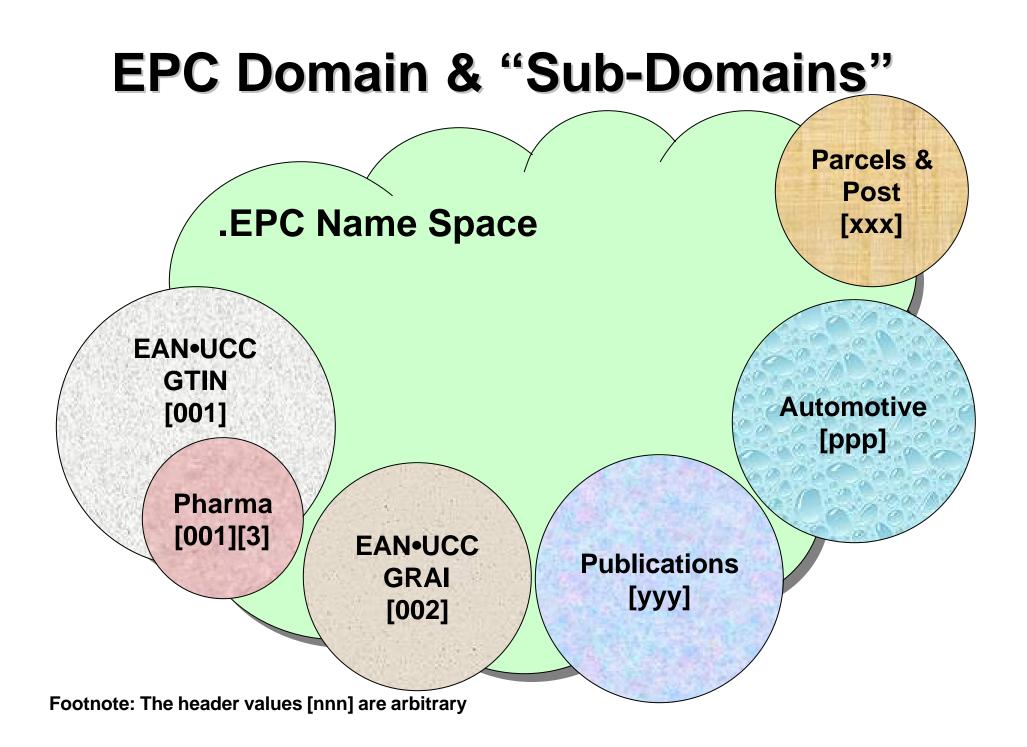
Use of EPC Partitions

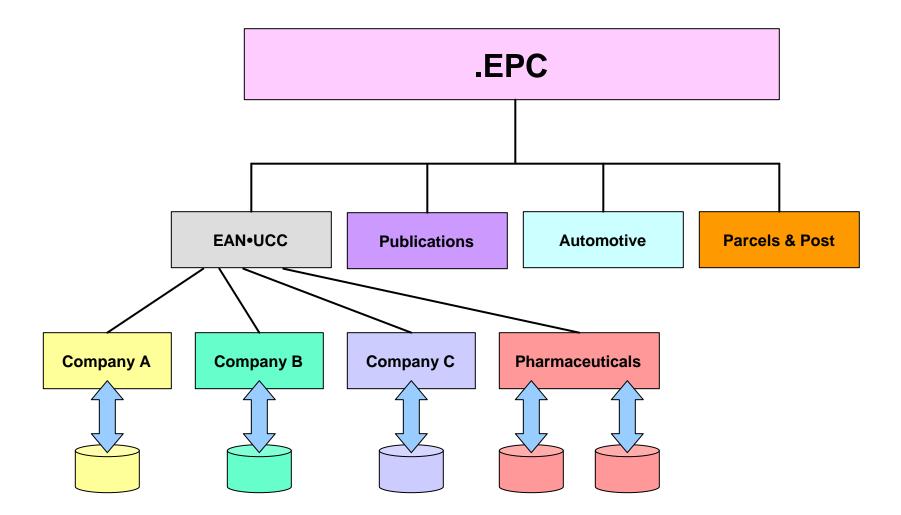
Header	EPC Manager	Object Class	Serial Number
--------	-------------	--------------	---------------

• Header

- Defines data type
- Indicates code partitions
- Used to partition sub-domains
- EPC Manager
 - Indicates originator of EPC
- Object Class
 - As needed by the segment / application
- Serial Number
 - As determined by the segment / application

EPC Domain & "Sub-Domains"


- A sub-domain:
 - Fragmented code space with unique numbers
- Problem analogy
 - US motor vehicle registration
 - Unrelated agencies
 - Established systems in place
 - Very similar code structures
 - KJ146T (NJ) and BJ733R (NY) or is it...?
 - Nothing in the "LP code" identifies state
 - Explicit "issuing authority" ID required



What You Are About to See...

- All that is presented here is just "works in progress", and not a statement of final specifications for code mapping schemes
- EPC is not just for EAN•UCC members
- The devil is in the detail

EPC Domain & "Sub-Domains"

EPC-64

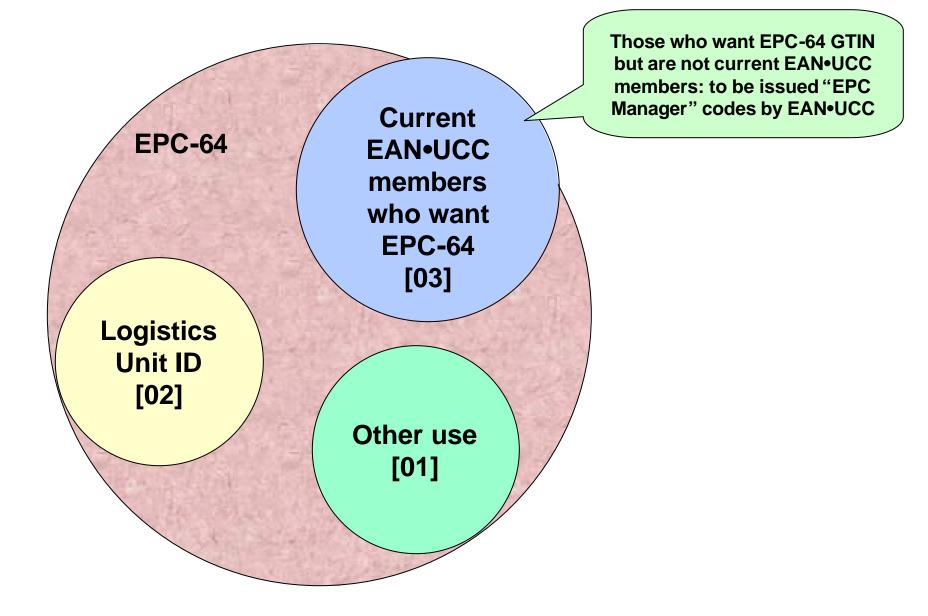
Element	Header	EPC Manager	Object Class	Serial Number
Bits	2	28	24	10
Value ₁₀	0-3	0- 268,435,455	0-16,777,215	0-1,023

- 64 bits is all we have now
- Header 01,10,11 = EPC-64

- 64 bit tags may be "flushed out" over time

- No long term sacrifice of code space
- Header 00xxxxx = EPC-96, etc.
- Must maintain partitions

- Sorting, grouping, searching, routing

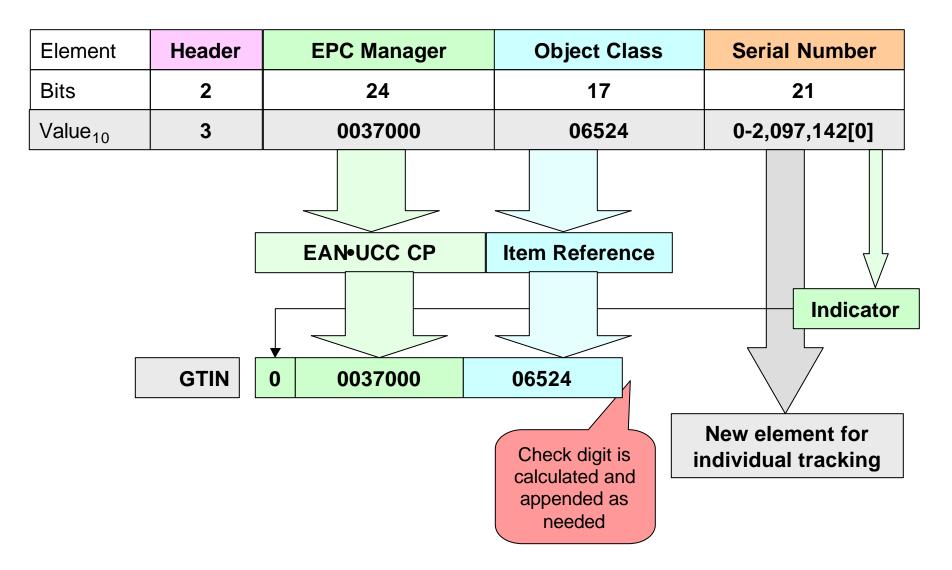

EPC-64

Element	Header	EPC Manager	Object Class	Serial Number
Bits	2	28	24	10
Value ₁₀	0-3	0-268,435,455	0-16,777,215	0-1,023

- Restricted serialization space
- Limited room for "sub-domains"
 - Does not fit well in an open world
 - May compromise "the big picture"
 - Code duplication in unrelated sub-domains?
- Standardization requires structure

- Structure means overhead

EPC-64 – Potential Users


EPC-64: EAN-UCC GTIN

Element	Header	EPC Manager	Object Class	Serial Nu	ımber
Bits	2	24	17	21	
Value ₁₀	3	0-16,777,215	0-131,071	(0-2,097,14	2)+[0-9]
		EAN•UCC CP	Item Reference		Indicator

- GTIN with least constraint is #1 concern
- Maintains basic code partitions
- Supports EAN•UCC GTIN (serialized)
 - GTIN is implied by the header code
 - Space for serialization is relatively limited
 - Check digit to be reconstructed
 - Indicator Digit value <u>appended to</u> serial #

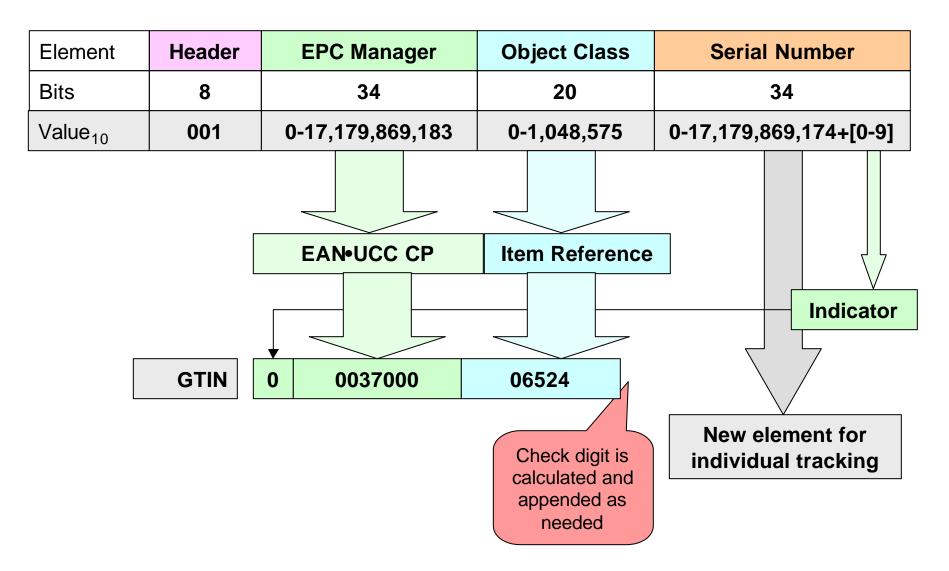
EPC-64: EAN-UCC GTIN

EPC-96

Element	Header	EPC Manager	Object Class	Serial Number
Bits	8	28	24	36
Value ₁₀	0-255	0-268,435,455	0-16,777,215	0-68,719,476,735

- Good generic structure
- Works well for open environments
- Supports sub-domains

 Adequate scope for global use
- Partitions must be maintained
- Code compatibility with EPC-64
- EPC-96 tags available very soon


EPC-96: EAN•UCC

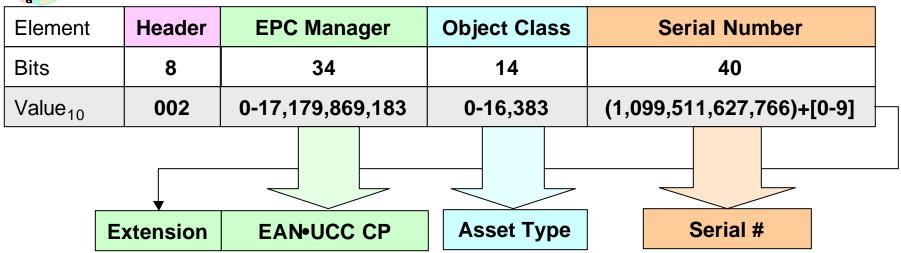
Element	Header	EPC Manager	Object Class	Serial Number	
Bits	8	34	20	34	
Value ₁₀	001	0-17,179,869,183	0-1,048,575	0-17,179,869,174+[0-9]	

- EAN•UCC keys implied by header value - SSCC, GTIN, GRAI, GIAI, GSRN, GLN
- Partitions determined by Header
- All other information carried in PML
- A good model for other sub-domains

EPC-96: EAN-UCC GTIN

EPC-96: EAN-UCC GTIN

ElementHeaderBits8		EPC Manager	Object Class	Serial Number 34	
		34	20		
Value ₁₀	001	0037000	06524	0-17,179,869,174+[0]	
GTI	N 0	0037000	06524		


Procter & Gamble Bounty[®] paper towels 15 pack

Element	Header	EPC Manager	Object Class	Serial Number	
Bits	8	34	20	34	
Value ₁₀	001	5010821	01002	0-17,179,869,174+[0]	
GTIN	GTIN 0 5010821		01002		

Glenryck[®] Pilchards 425g tin

EPC-96: EAN-UCC GRAI

- Serial Number restricted to 13 digits
 - GRAI definition is for an1...16 serial number
 - Code compaction scheme to be applied
 - Extension Digit placed as for GTIN

EPC-96: Automotive

HeaderEPC Manager8??		Object Class	Serial Number	
		??	??	

- VIN structure examples:
 - -JHMED923 2MS 002001
 - -Y S 3 EF48Z 1 X 3 048140
- Last 6 places are always numeric
 VIN can fit in 86 bits!
- Direct embedding possible, but...
 Too many "partitions"?
- Details tbd by industry experts

EPC-96: EAN-UCC

• Conclusions:

- Supports all primary EAN•UCC keys
 - Practically no restriction to any key
- Meets #1 concern over "GTIN mapping"
 - GTIN embedded directly in EPC structure
 - Does not impact purity of EPC design
- Sensible placement of Indicator Digit
- Model looks good for others

Remember...

- All this is work in progress
- EPC Network is not just about EAN-UCC
- We'll work diligently with all EPC users

Presentation Overview

- Overview of the EPC Network
- Field Tests
- "Auto-ID, Inc." Next Steps
- Code "Mapping" Considerations
- Market Development Thoughts

Market Development Thoughts

- Applicable data standards exist:
 - EAN•UCC keys and attributes
 - Other communities (such as automotive)
- Infrastructure change has inertia
- Evolution rather than "big bang"
 - Realise operational benefits now
 - Leverage investments in AIDC
- Identify the low-hanging fruits

Market Development Thoughts

Relative Relative Points of Manufacturer benefit risk, cost contact Sourcing \$ Μ Many In-process \$\$ Μ Few \$\$\$ Front Few Back \$\$\$ L Few **In-store**: \$\$ Μ Few Out-ofstock/Inventory \$ **Front-of-store** Н Many

Retailer

Summary

• Groundbreaking research at MIT

- Low cost, high performance RFID is key

Track & trace serialized items

- Track things differently and more efficiently

Commercialization plans formulated

- Open and inclusive

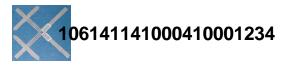
- Passionate desire to maintain momentum
- EPC standards will facilitate adoption

Research	Development	Com	nercialization	Implementation	
1999	2000	2003	2004	2005	

Seeking to Keep it Familiar...

The data structure

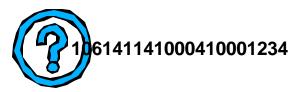
Start Character Å _{bet} B, or C	Function 1 Character (FNC1)	Element String		Symbol Check Character	Stop Character
		Application Identifier	Data Field (s)		


Some user data

In a bar code today

In an RFID tag today

10614114100041



In a bar code tomorrow

Tag image courtesy of Matrics

Questions...

Chris Hook, Director RF Programs, Uniform Code Council, Inc.

Tel. 609 620-4581

e-mail chook@uc-council.org