UNCLASSIFIED

Defend the Computing Environment

IATF Release 3.1—September 2002

UNCLASSIFIED

Defend the Computing Environment

IATF Release 3.1—September 2002

7.1
Security for System Applications

This section examines the security features and services that applications can or should provide, particularly with respect to the use of cryptography and good design practices. Several technology areas are considered:

· Network-to-network communication.

· Cryptographic security services and cryptographic application programming interfaces (CAPI) that provide generic encryption, key exchange, signature, and hash functions, or higher level security services for application developers.

· Executable content or software download, including software upgrade issues, e.g., firmware updates.

· Applications themselves that can be basic and relatively straightforward, taking advantage of security services for their functionality, or extremely complex, adapting basic functionality to meet a particular mission need.

In each technology area, the section describes specific security considerations and security and interoperability concerns. These include alternative technologies, protocols, and standards for interoperability that may be useful to those building complete and real systems.

This section generally follows the format established in other sections: target environment, consolidated requirements, potential attacks, potential countermeasures, technology assessment, cases, and guidance. The concerns for e-mail, distributed databases, file encryption, Internet phone, and Web-based applications have similarities but also differences because of use, technology, and standards. In the major sections, the common aspects of application-level security are considered. In the technology assessment section, additional, more application-specific information is supplied.

7.1.1
Target Environment

The environment for user- or application-layer security is generally considered to be a workstation (laptop, desktop, etc.) connected at least part of the time via a network to sensitive information servers. Additionally, the information on the servers (and on the workstation) may need protection even from other personnel or workstations privileged with access to network resources. Further, the section assumes that the environment is the “application space” where users and applications operate on information that has value. Physically, this environment applies anywhere within the Global Information Infrastructure (GII) that a particular application might send, store, retrieve, or destroy sensitive information. It typically embodies the elements of a three-tier model: the client, the business process, and the databases that serve a particular process.

7.1.1.1
Applications Environment

The environment for applications is considered to be a well-managed UNIX or Windows-based client/server OS, managed by knowledgeable system administrators, using security principles and practices in a documented networked environment, using all known system patches for security, and following good management practices to maintain a system information policy. Most applications will be commercial, i.e. the foundation will be commercial packages, but increasingly the application must be customized to fulfill a specific business process need. Customization may take many forms, and the coding language used by custom applications will affect the security of the resulting system. Highlights of these coding languages follow.

C and C++ are widely regarded as portable languages that allow applications to move across platforms. Compilation options and nonstandard terms may create debugging problems.

Common Gateway Interface (CGI), Practical Extraction and Report Language (PERL), JavaScript, Microsoft Macro Language, and similar scripting languages are very powerful, with cross-platform capabilities. Their power makes these languages good targets for hacking attacks, as they support both local and network capabilities.

Java is billed as cross-platform, but as with C and C++ great care must be used in writing actual code to ensure cross-platform capabilities. The Java language is somewhat unusual in having a security model (the sandbox), but the concept greatly limits the usefulness of some applications. Efforts to expand the sandbox are making Java more like ActiveX, providing more capability, though at greater risk, and with some user trust of the software provided through interfaces and signed code.

ActiveX is a Microsoft-unique language/capability for distributed custom applications. Though ActiveX is very powerful, the security model is fairly simple, based on signed code with authenticated signatures. Its flexibility is a concern to many security professionals.

There are other languages available, on various platforms, with other concerns. The four software applications considered in this section are generally assumed to be well-written code from developers lacking evil intent. The environment assumes that the vendor code functions as intended, without bugs.

7.1.1.2
Operating System Environment

This section of the framework is focused on the security services that applications could provide to protect data that the applications manage and manipulate on behalf of users. This data may be intended for private, narrowly shared, or widely shared consumption. Typically, an OS allows users to share hardware resources. The OS virtualizes and manages access to memory, disk drives, data ports, and other hardware resources. Its management separates users so that one user’s memory space cannot be read by another user’s process. The OS management also allows for portability, so that software code written on one machine may be ported to another machine with less difficulty than if all code directly called the hardware.

An OS provides several basic mechanisms to support information system and application security. The requirements for these mechanisms have been widely written about in the common operating environment (COE) requirements and in the Common Criteria (CC). A specific set of requirements for OSs is being captured in Common Criteria protection profile format through the Defense-wide Information Assurance Program (DIAP) to document requirements for protection of host computer OSs (clients and servers).

The OS environment should make it possible to securely identify and authenticate users of the system. Access controls and permission should be issued to all users of the operating system to ensure proper access to files and directories. The OS should also have an audit log, to provide security check points. An audit log can be used by system security administrators to backtrack system access if there is a security violation. The audit log itself must be well protected from unauthorized access and modification.

In selecting an OS, a risk assessment should be done to check vulnerabilities. This assessment can be especially necessary when an OS regularly receives patches. Failure to update patches regularly can leave an OS widely susceptible to hackers and other security breaches.

7.1.1.3
Standards and Protocols for Providing Security to System Applications

Efforts at standardizing security features and services have attempted, as a primary goal, to specify algorithms, formats, protocols, configurations, etc. If there is standardization, the common security services (Section 4.4, Important Security Technologies) can protect against the universe of threats (Chapter 4, Technical Security Countermeasures) with maximum interoperability (Section 4.6, Interoperability Framework).

From an environment standpoint, the Information Assurance Technical Framework (IATF) emphasizes the importance of using open standards and COTS solutions. Commercial implementers are more and more dedicated to generating and using open standards that allow multiple independent implementations to interoperate. The security community is demanding public disclosure of the details of security protocols and algorithms so that these standards may be tested to an appropriate level of assurance.

The term “standard” is used quite loosely in the IATF. It is meant to include any standard, or any technology or product initiative that could evolve into a standard. Standards can encompass national, international, Department of Defense (DoD), federal, allied, and commercial standards. This framework primarily addresses standards relating specifically to security but may also include other standards that affect interoperability or system infrastructure. Security is often simply an element of a broader standards activity.

Specific examples of standards and protocols of interest include the following (see also Section 4.4, Important Security Technologies).

· Application layer

· Secure Hypertext Transfer Protocol (S-HTTP)

· Object Management Group’s Common Object Request Broker Architecture (CORBA)

· W3C XML Transfer Protocol

· Secure File Transfer Protocol (S-FTP)

· Secure Electronic Transactions (SET)

· Message Security Protocol (MSP)

· Secure/Multipurpose Internet Mail Extensions (S/MIME)

· Transport and network layer

· Transport Layer Security (TLS)

· Secure Sockets Layer (SSL ver 3.0)

· Secure Shell (SSH)

· Internet Protocol Layer Security (IPSec)

· Data link layer

· Point-to-Point Protocol (PPP)

· Serial Line Internet Protocol (SLIP)

· Security management infrastructure

· Internet Engineering Task Force (IETF) Public Key Infrastructure (PKI)

· IETF Simple Public Key Infrastructure (SPKI)

· IETF Domain Name System Security (DNSSEC)

· Data labeling

· National Institute of Standards and Technology (NIST) Federal Information Processing Standard (FIPS) 188 Standard Security Label

· Institute of Electrical and Electronics Engineers (IEEE) 802.10g Secure Data Exchange (SDE) Security Label

· IETF Internet Security Label

· International Organization of Standardization (ISO) SC-32 Security Label

· Military Standard (MIL STD) 2045-48501 (Common Security Label)

· SDN.801 Reference Security Label

· ISO MHS X.411 Security Label.

7.1.2
Consolidated Requirements

Security requirements for applications can be divided into two areas: functionality and assurance. The application security functionality requirements are simply a list of the security functions the application must supply if the information on the system is to be protected. Functionality requirements can usually be specified and tested objectively. The functional requirements for application layer software are broad—and range from local applications to all the many different approaches to communication and collaboration between users. The difficult question is where the requirements should be levied, in the OS or the application program. Common, widely used functions, such as file system access control, belong in the OS, specialized functions, are in applications. High-level functional requirements include the following:

· The application must be user-friendly, with well-documented user interfaces.

· The application must use correct and efficient backend processing.

· The application must support standards and implementation with standards-based API.

· The application must protect the privacy and integrity of user and system data.

· The application must authenticate the user to assign accountability.
· The application must generate a log of user activity for administrative monitoring purposes.
Management of configuration information should be centralized where possible and supported by secure remote management when necessary.

Assurance is a more subjective requirement. Assurance is a measure of confidence that the security features and architecture of an information system accurately mediate and enforce the security policy. Assurance requirements provide confidence that an application meets its security goals.

There are many different approaches to assurance. Process assurance requires the software developer to adhere to a specified software-engineering life cycle. Product evaluation assesses the design and realization of a product before approving it for use. Assurance provides increased confidence in the “goodness” of a product’s security features.

The National Information Assurance Partnership (NIAP), a U.S. Government initiative, intended to foster the availability of objective measures and test methods for evaluating the quality of information technology (IT) security products and accreditation of laboratories that can provide evaluation and validation services. In the United States, NIAP-accredited facilities contract with application developers to evaluate security products using methods and standards dictated in the Common Evaluation Methodology (CEM) for IT Security and the CC.

NIAP ensures that products meet the requirements and assurance levels proposed in security targets or a protection profile. Therefore, NIAP’s duties are as follows:

· Evaluate application (using a standard, mutually agreed-upon process for reusable results—i.e., CC).

· Produce and monitor product evaluation test reports.

· Award NIAP-approved EAL certificate.

· Maintain lists of products evaluated.

· Standardized testing criteria and procedures.

7.1.3
Potential Attacks

The four classes of attacks are active, passive, insider, and distribution. These classes are a concern for security-enabled applications. Specific attacks, once identified will fall into one of these attack categories and can only be countered at a lower design level. Details of these attacks to application security are provided here.

7.1.3.1
Active Attacks

Protocol exchanges between clients and servers are common in application security. These protocols may have security as their immediate concern (authentication protocols) or they may provide application functionality, with the assumption that security is already in place. Many forms of spoofing and network connection hijacking have been observed; vulnerabilities have been identified in security protocols that were widely believed to be correct.

7.1.3.2
Passive Attacks

Passive attacks can vary greatly. Information collected may be clear-text or encrypted. Encrypted information may later be subjected to crypto analysis. Information passively captured may be used to support network replay attacks.

7.1.3.3
Insider Attacks

Attacks launched by trusted users inside an enclave are considered insider attacks. Insiders may be employees, contractors, service providers, or anyone else with legitimate access to a system. A cleared insider is a person who holds a clearance and has physical or administrative access to classified automated information system (AIS).

Protecting against and detecting malicious behavior by insiders is one of the most difficult IA challenges. Both technical and procedural countermeasures can reduce the risk, but to be effective technology and procedures must complement one another. Countermeasures to this form of attack include enhanced background checks, physical security, and limiting each individual’s authorized privileges. The application and the security features it provides can also partly counter these threats with features such as audit, two-person administrative requirements, and covert access prevention and detection.

7.1.3.4
Distribution Attacks

Because the risk of malicious code in commercial application software is difficult to quantify, it is difficult to judge the value of countermeasures. For mass-produced office application software, which can be obtained from many sources, the risk of malicious software hidden in applications must be considered. For custom applications created for security-conscious organizations, the malicious software risk may be addressed in the design and development of the software. Defensive options include review and control of the source code and security requirements on the software development process.

7.1.3.5
Lower Level Attack Analysis

Poor protocol specifications may enable lower level attacks. Careful analysis of the specifications of protocols such as Transmission Control Protocol (TCP) and Server Message Block (SMB) can identify opportunities for attacks that compromise information or deny service. For instance, the draft SMB protocol specification includes its security limitations.

Beyond the protocol specification, specific implementations can enable attacks. For example, some implementations that use a simple predictable algorithm to generate initial sequence numbers are susceptible to a well-known spoofing attack.

Another common group of lower level attacks exploits the failure of application code to do memory bound checks or other error analysis on data provided by external sources. Buffer overflows and other tricks can then be used to cause malicious remote command execution.

7.1.4
Potential Countermeasures

Because information systems can be susceptible to attacks at many levels, countermeasures must span a similar range. Some apply to the entire system. Some are application specific. At the most basic level some must respond to implementation-specific attacks.

Countermeasures must continually be improved to counter more sophisticated attacks. The ultimate goal is for the countermeasure to become so sophisticated that the cost of mounting the attack exceeds its potential value if successful: The threat to an information system is reduced when the rational attacker discovers the reward does not warrant the effort of the attack.

Countermeasures are enabled through various security mechanisms, such as cryptography. Cryptographic mechanisms include public key certificates, key exchange (public key cryptography), data encryption (private key cryptography), digital signatures, and secure hashing. Chapter 8, Supporting Infrastructures, is devoted entirely to supplying keys and certificates for cryptographic mechanisms and the infrastructure for managing keys and certificates. The chapter deals with PKI/certificate management infrastructures (CMI), and security management infrastructures (SMI) and the capabilities, security considerations, and policy that pertain to them. Functionally, PKI, CMI, and SMI are intended to authenticate that a certificate is tied to a unique entity, secure distribution of certificates and private key material, wide distribution of public key material, and notification of compromised and revoked certificates or key material. Technical and policy measures that counter attacks and security concerns related to key management are detailed in Chapter 8.

Details of security services and the countermeasures they provide are described in the following sections.

7.1.4.1
Access Control

Access control is the process of granting access to information and information systems only to authorized users, programs, processes, or other systems. Access can be controlled by identification and allotted roles, roles alone, user name, group membership, or other information known to the system. A well-managed Windows or UNIX OS can provide basic access control that limits user access to specific resources and privileges.

Controlling access to system resources, such as one of its applications, protects the data associated with the resource. Those who intend to alter the resource’s information or add a malicious process are foiled because they are denied access to that data by the OS. It is particularly important to control who may enable or disable (turn on or turn off) the security features that may be built into the application or change programs or the privileges of users.

Secure applications that process data must be aware of their role in managing access to that data. That includes knowing who is attempting access, mediating access according to processing rules, auditing user actions, and managing where (access to printers in particular locations) or how (encrypted channels like SSL) data is sent. Access control may be managed solely by the application, or it may use OS functionality for assistance, as when a database uses OS controls on files (user/group/world read/write privilege) by putting different classes of information into different files with different access privileges, with the users directly accessing none of the data.

7.1.4.2
Identification and Authentication

Identification and authentication (I&A) is the process of identifying and authenticating the identity of the user who is trying to access a system, thus providing accountability. When I&A is used with effective access control, the more uniquely the user can be identified and the more assuredly this identity can be authenticated, the more secure the system.

Identity can be assured by requiring the user to show something he or she has (e.g., an identification badge or a hardware token). That identity can be authenticated by requiring the user to provide something he or she alone knows, (e.g., a password or personal identification number [PIN]) and something uniquely his or hers (e.g., a fingerprint, retinal scan, or other biometric).

Electronic or digital signature can also authenticate users. A public key certificate—an electronic certificate signed by an issuer—that can provide a unique digital identity for the holder of the certificate. Validating the certificate chain is part of the authentication process. The certificate issuer authenticates the identity based on possession of the certificate issued.

7.1.4.3
Data Integrity

Data integrity means that data is maintained as intended and has not been exposed to accidental or malicious modification. Data integrity is separate from data encryption, although some encryption algorithms can be used to prove that integrity has been maintained.

An OS and an application can work together to protect data from modification. The OS can provide integrity on its files; they can be saved, opened, modified, and closed by applications with the assurance from the OS that the information on the files is changed only if an authorized application made the changes.

The application and the OS can provide additional integrity through use of a secure hash function: Each entry is mathematically hashed, producing a unique value for that entry. Verification of the hash guarantees integrity of the data. A digital signature applied to the hash value authenticates the hash value and who applied it. It is important to note that hashing is a one-way function; the hashing algorithm cannot be reversed to reconstruct the data from the hash value.

7.1.4.4
Data Confidentiality

Data confidentiality means that information is not disclosed to unauthorized entities or processes. Access control mechanisms support data confidentiality in information systems by controlling access to the system’s resources.

Confidentiality is especially important when the application is not running. Without the OS or application controlling access, data in storage is especially vulnerable, as is data in transit, outside the direct influence of its generating application. Encryption is useful in both cases. Both applications and OSs can encrypt stored data and data in transit. Data confidentiality is directly related to the algorithm used to encrypt data and the protection of the key used for encryption.

7.1.4.5
Availability

Availability means that the adversary does not deny the access and processing of data to authorized users. Data that is inaccessible might as well not be there. Likewise, applications that fail to work are useless. The OS and applications should be designed to withstand failure in either the OS or an application. Most UNIX systems and Windows-based systems have error handling routines and fault isolation, making the OS more available if there is an application failure. Applications should be designed and tested to ensure that they do not fail, particularly under extreme conditions—the robustness of an application cannot prevent problems when the underlying OS or external network components (guards, firewalls, routers, cable) fail.

7.1.4.6
Nonrepudiation

Nonrepudiation means that the recipient is assured of the originator’s identity and the originator is provided with proof of delivery, so that neither can later deny having processed the data. Nonrepudiation counters man-in-the-middle and spoofing attacks.

One way to achieve nonrepudiation is with digital signatures and auditing. Before transmitting, the originator signs the data with an algorithm that incorporates parameters unique to the originator. Verifying this signature verifies the originator’s identity. Auditing makes a complete record that can serve as evidence and protects the record’s integrity. For proof of delivery, the originator when sending data requests a signed receipt. The recipient signs it with an algorithm that incorporates parameters unique to the recipient. Verifying this signature verifies the recipient who received the data.

Since nonrepudiation often depends on an identity contained in a public key certificate, which can become invalid, it is important that a trusted third party be able to validate the certificate. It must be possible to prove the validity of the certificate at the time of the original communication, and the authentication must be recorded in the audit trail.

7.1.4.7
Auditing

Both the application and the OS can audit certain actions taken by users and software acting on the OS. An application might track when a user enters data into a database and information related to the data or its position in the database. An OS might track which users initiate a process or attempt to access certain files. Auditing is primarily an after-the-fact activity that supports information forensics activities and intrusion detection. To detect intrusions into a computer or network, tools are available to observe security logs or audit data. These tools can be integrated into either the OS or the application, or can be separate software added to a system. See Chapter 6, Defend the Enclave Boundary/External Connections, and Section 7.2 for an in-depth discussion of intrusion detection.

Auditing is a protective measure only in the sense that knowledge that there is auditing may deter some threats to information systems. Auditing is much more useful in detecting questionable activity and reacting to such activities.

Applications developers should make explicit use of OS audit capabilities and plan for the use of the audit data by system administrators or other security professionals. One of the overarching technology gaps today is the lack of useful audit tools.

7.1.5
Technology Assessment

Three technology areas—cryptographic security services, applications, software download, software update, and biometrics—will be considered separately.

7.1.5.1
Cryptographic Security Services

If applications are to use cryptographic security services, first some type of cryptographic algorithm must be available. This framework will assess, not specific algorithms, but the medium, the token, on which an algorithm is presented to the application for use. The algorithm on the token is presented through a CAPI.

7.1.5.1.1
Cryptographic Tokens

Stand-alone cryptographic devices met the security needs of the past. Confidentiality was the security service of choice; it was implemented with link encryption, with one device servicing many users.

The need for security services beyond confidentiality has arisen with the growth of network technology. One such needed service is I&A(the need to specifically name users and have assurance that the persons associated with those names are who they claim to be. As cryptographic technology has progressed in both size and cost, it can now provide personal security services. Each user can have a cryptographic device (security token) that is uniquely his or her own. Tokens can also provide data integrity and nonrepudiation services through hashing and digital signature algorithms.

Using a personal security token that implements public key cryptography enables each user to have a unique private key that can be used as the basis for the security services of nonrepudiation and I&A. One way to accomplish this is to use the keys to create digital signatures on messages. The recipient of such a signed message can verify the digital signature before accepting that the message is truly from the user who claimed to send it. Tokens can come in different forms(from Personal Computer Memory Card International Association (PCMCIA) cards to smart cards and even software. Each offers advantages and disadvantages.

PMCIA Tokens. A PCMCIA security token can offer a full suite of portable security services. Board real estate allows room for sizable RAM and electrically erasable programmable read only memory (EEPROM) or Flash EEPROM, providing ample memory for complex or multifunction firmware and certificate storage. Since it is a hardware token, the PMCIA card can also protect secret values reasonably well and still leave room for additional physical tamper-protection mechanisms. On the downside, PCMCIA cards require PCMCIA card readers, which, although they are prevalent in laptop computers, are not common in desktop computers. The added expense of a card reader for every desktop workstation is definitely a disadvantage of the PCMCIA token.

Smart Cards. The smart card offers the same portability as the PCMCIA token at less cost. These cards still require special readers but the readers are much less complex than PCMCIA readers and therefore less expensive. Some manufacturers are incorporating smart card readers into their computer keyboards.

One significant concern with smart cards is data throughput. The defined interface is just too slow to support confidentiality services for any but the least demanding applications. Confidentiality would normally be relegated to software running on the workstation, which can reduce the assurance of this service; I&A, nonrepudiation, and data integrity would remain in the hardware on the smart card.

Software Tokens. Software tokens are the cheapest but also the least assured solution. Their implementation in software allows for quick distribution, ease of updating, and responsiveness to the needs of most users without the need for special hardware. When the security solution calls for minimal assurance and when cost is a major consideration, software tokens could be the answer.

There is a price to be paid with software, though: Software tokens will execute on untrusted workstations running untrusted OSs that make them ultimately vulnerable to bypass, modification, or even replacement. Systems that process highly sensitive information should not rely solely on software tokens security.

7.1.5.1.2
Cryptographic
Application Programming Interfaces

As application developers become aware of the need for cryptographic protection, they add “hooks” to access cryptographic functions developed by others. These hooks at the lowest level (sometimes crossing into the OS and almost always within what would be called middleware) are the CAPIs. As CAPIs become more sophisticated, their value increases. Applications that use a standard CAPI can access multiple cryptographic implementations through a single interface. This helps to minimize life-cycle implementation efforts, and cryptographic modules built to a standard CAPI can be accessed by a greater number of applications, increasing reusability.

The numerous current efforts to create CAPI standards range from the very basic, like that found in Generic Security Services (GSS)-API, to those more directly controlling the cryptographic token, like Public Key Cryptographic Standards (PKCS) #11, and increasingly applications and cryptographic modules are being written to use certain CAPIs. While a single standard usable by all applications would be ideal, multiple CAPIs are required to support the broadest range of applications and cryptographic modules.

CAPIs are intended to provide these features—

· Interface between cryptography and applications

· Facilitate the development of new security-enabled applications

· Minimize cryptography processing by the application

· Application independence—support a broad range of application types: store and forward and connectionless.

· Module independence—support the entire range of hardware and software tokens.

· Algorithm independence—support a broad range of current and future algorithms.

· Functional completeness

· Provide comprehensive security services

· Facilitate cryptography export policy.

High Level: GSS-API. The GSS-API and the extensions for independent data unit protection (IDUP) support applications that do not interface with cryptographic services. These Microsoft security service providers (SSAPI) provide a high-level interface to authentication, integrity, confidentiality, and nonrepudiation (IDUP-only) services. The application merely indicates the required security services and optionally the quality of protection (QOP) for the per-message services.

GSS-API was designed to protect session-style communications like File Transfer Protocol (FTP) between entities. IDUP-GSS-API does not assume real-time communications between sender and recipient. It protects each data unit, whether file or message, independently of all others. IDUP-GSS-API is therefore suitable for protecting data in store-and-forward applications. The specifications for it were developed within the Common Authentication Technology (CAT) group within the Internet Engineering Task Force.

Mid-Level: CDSA, MS SSAPI. The Common Security Services Manager API (CSSM-API) is the heart of the common data security architecture (CDSA). CSSM-API offers a robust set of security services, among them cryptography, certificate management, trust policy, data storage, and optional key recovery. CSSM-API can support auditing services and provide integrity services via the Embedded Integrity Services Library (EISL).

CSSM-API, developed at Intel Architecture Labs, is approved as a standard within the Security Program Group (SPG) of the Open Group (the result of the X/OPEN and the Open Software Foundation merger). While such CSSM services as certificating management, trusting policy, and data storage fit logically at the middle level, the actual CAPI calls (their cryptographic service provider interface [SPI]) are more low level, like Cryptoki. For instance, CSSM-SPI supports user authentication and administrative control of tokens.

SSAPI is modeled after the GSS-API, though with more of a Windows style. It provides mutual authentication, message privacy, and message authentication because it is connection oriented, it is used for protocols defined by Microsoft as “SChannel”—SSL and WinPCT. It also supports NTLM, DPA, and Kerberos.

Low-Level: Cryptoki (PKCS-11), Cryptographic API (CryptoAPI), Cryptographic Interface (CI) Library. PKCS #11–Cryptoki is an OS-independent abstract token interface that defines the arguments and results of various algorithms. Cryptoki also specifies certain objects and data structures that the token makes available to the application; it interfaces directly to cryptographic tokens and is thus the logical place for functions that allow user authentication (e.g., logon or PIN entry) and administrative control of the token. Cryptoki, developed by RSA Labs and a member of their family of PKCS, is appropriate for use by developers of cryptographic devices and libraries. PKCS #11 workshops sponsored annually by RSA Labs for all interested parties contribute to the continuing development of Cryptoki.

As a service suite provided by the Windows NT OS, CryptoAPI provides extensive facilities for both hardware and software cryptographic modules, called cryptographic service providers (CSP). CryptoAPI has not been subjected to any formal standards process, but the authors at Microsoft did consult with various government and corporate customers. Applications using CryptoAPI can take advantage of default features of the interface to reduce their cryptographic awareness requirements, or they can exert full control over algorithms, keys, and modes of operation. Tables 7.1-1 to 7.1-3 depict specific pros and cons for GSS-API, CDSA, and Cryptoki:

The FORTEZZA® CI Library was initially the interface between the FORTEZZA PCMCIA card and applications wishing to use the security features associated with the National Security Agency’s (NSA) Multilevel Information Systems Security Initiative (MISSI) program. The CI Library is now being adapted for both smart card and software token implementations of FORTEZZA.

Table 7.1-1. Pros and Cons of GSS-API

	Advantages
	Disadvantages

	Abstracts the lower level details of such services as cryptographic routines and key management.
	GSS-API services must be implemented for each technology (e.g., Kerberos, Cryptoki).

	Is platform independent—written with low-level programming languages (C/C++) as well as platform-independent languages (Java).
	Complicated implementations require experienced developers to reduce the learning curve.

	Is constantly being updated to match changes in technology.
	

	Is flexible enough to allow for addition of current technologies, such as PKCS #11.
	

Table 7.1-2. Pros and Cons of CDSA

	Advantages
	Disadvantages

	CSSM provides an “all in one” interface to security services (privacy, authentication, integrity, and non-repudiation).
	It requires lower-level work to be done by plug-in modules. There must be trust that these modules are implemented correctly.

	It is expandable to future CAPI implementations via the elective module manager.
	Support is provided, not by Intel, but by the Open Group—mostly users, not developers.

	It is designed specifically to deal with network operability and security solutions.
	It is complicated to implement solutions.

	APIs allow for hardware tokens, software modules, and hybrids of the two.
	

	It calls mimic security calls from previous non-standard implementations, allowing easier transition from nonstandard APIs.
	

	It has already implemented a PKCS #11 layer.
	

Table 7.1-3. Pros and Cons of Cryptoki (PKCS #11)

	Advantages
	Disadvantages

	Allows use of broad range of token-based devices (hardware and software).
	As a stand-alone application, allows only for peer-to-peer security service.

	Is compatible with middle and high-level APIs, such as CDSA and GSS-API.
	Requires a user to log in for communication between software and token device—there is no built-in key infrastructure.

	Interface is intuitive object-oriented (OO): public and private objects with attributes and methods, allowing easy modeling within such popular low-level OO programming languages as C++ and Java.
	Requires token manufacturers to conform to the PKCS #11 standard.

	Is compatible with different key types (RSA, DSA, Diffie-Hellman, RC2, RC4, DES).
	

7.1.5.2
Applications

Applications are generally useful for exchanging information among many people within a specific system, or between information systems. The applications discussed here are “mission” applications; the basic functionality has been adapted to meet a particular mission need. Examples include databases, collaborative computing applications, and electronic commerce systems. Because information is being transmitted, the need for standard, interoperable, and secure applications is critical. While many applications are mature, most do not support the broad range of security services.

7.1.5.2.1
Mission-Specific Applications

Mission-specific applications can be as simple as a database making its data available through a fronting web server. They can be as complex as a complete travel service that checks and books airline, hotel, and rental car reservations through a Web browser; passes the information to the user via e-mail; and keeps the whole system secure with file encryption. These systems typically rely on existing COTS products, such as Web servers and clients and database management systems. As security is only one of many factors in the selection of such products, many desirable security features may not be present. In addition, legacy systems with very little security must often be included as part of the solution.

For mission-specific applications, which must enforce a definition of security unique to the application and the circumstances of its use, the security challenge is to combine many less-than-ideal generic component-level security services into a cohesive, meaningful application-level definition. This is a significant information system security engineering task.

Mission applications are often custom built in several distinct tiers. The three-tier model typically has a presentation layer, a business process layer, and a database layer. A conventional client/server system uses a two-tier approach. A system can have multiple separate application layers creating multiple tiers (see Figure 7.1-1). Collectively these systems are referred to as “n”-tier systems. Different systems will place different numbers of layers between the user and the data, and some may simultaneously support multiple paths to access data. There are many ways in which a mission application can be secured using readily available technology. Some of these enable the construction of new security-enabled systems. Others allow security to be retrofitted to existing systems or components. All are extensions of the security provided by the various system components.

[image: image1.emf]End User

End User

End User Browser

Client

Custom

Client

Custom

Client

Business

Application

Server

Web

Server

Database

Server

iatf_7_1_2_0076

End User

End User

End User Browser

Client

Custom

Client

Custom

Client

Business

Application

Server

Web

Server

Database

Server

End User

End User

End User Browser

Client

Custom

Client

Custom

Client

Business

Application

Server

Web

Server

Database

Server

iatf_7_1_2_0076

Figure 7.1-1. Custom N-Tier Applications

7.1.5.2.2
File Protection

File encryptors protect information in the computer if there is unauthorized physical access by encrypting the stored information. There are two basic types of file encryptors: one in which the user selects specific files to encrypt and one that automatically encrypts all information that is not currently being processed. The former can be used to securely transfer files as attachments or to protect critical information stored on floppy disk, CD, or a user’s system. The latter are often referred to as media encryptors.

Media encryptors encrypt the entire contents of the drive except for some system files that must be left unencrypted so that the computer can boot. The integrity of most of these system files can be protected by a cryptographic checksum; this will not prevent a tamper attack, but it will alert the user that the data has been altered. Some system files, however, contain data that changes when the computer is booted. These files cannot be protected at all. The mechanisms implemented by media encryptors provide—

· Encryption of system files.

· Integrity of the contents of the data storage media.

· Confidentiality of the contents of the data storage media.

· Integrity of the workstation, verifying the basic input/output system (BIOS) and ensuring that configuration and program files are not modified.

· Recovery of data if the original user can no longer access the media.

· Key management support: key generation, distribution, deletion, destruction, and revocation.

File encryptors typically implement a GUI that allows users to choose files to be encrypted or decrypted. This protects individual files but not all the files on the drive. The mechanisms implemented by file encryptors provide:

· Encryption of selected files.

· Integrity of the contents of the protected file.

· Confidentiality of the contents of the protected file.

· Authentication of a file’s source.

· Exchange of encrypted files between computers.

· Recovery of data if the original user can no longer access the file.

· Key management support: i.e., Key generation, distribution, deletion, destruction, and revocation.

Many applications generate temporary files that may contain user data. These files are normally erased when the application is closed, but when the application does not close in an orderly fashion, these temporary files may remain. Some OSs do not actually erase data when files are deleted; instead, they alter the name of the file in the file allocation table. The user’s data remains on the hard drive until the space is reallocated to another file and overwritten. Thus, after system shutdown, unencrypted and potentially classified user data can remain on the hard drive, because of either failure to erase temporary files or the design of the OS’s erasing function.

The Range of possible architectures for the KMI/PKI needed to support file protection is wide. Possibilities range from a user having complete control over key generation and distribution to a hierarchical architecture involving a complex certificate authority (CA). KMI/PKI is discussed in detail in Chapter 8, Supporting Infrastructures.

7.1.5.3
Software Download

Planning for the secure update or download of software must begin early in development and continue throughout deployment. Three types of software download will be considered: firmware updates, software updates, and new software distribution. In all cases, the most critical aspects of downloads are the integrity of the downloaded software and authentication of the origin of the software. Sometimes confidentiality of the download may be required. Validity periods, usage limitations, effects of the download on system data, and auditing of the download installation may also be important.

7.1.5.3.1
Firmware

The key to managing firmware updates, exemplified by a recent update of modem software to support a new 56k standard, is planning for the hardware’s ability to support that update: That hardware’s ability must verify the integrity and authenticity of the firmware originator and the originator’s associated firmware.. Because firmware is being updated, it can generally (but not always) be assumed that the firmware will be processed by the hardware during installation. In general, hardware processing is preferred over software processing because hardware is faster and has greater resistance to tampering.

Planning for a firmware update must begin with initial product development. Steps that must be taken during initial product development include the following:

· Decide what security services firmware update requires.

· Choose mechanisms to implement chosen security services.

· Confidentiality or integrity services may use a cryptographic mechanism.

· Cryptographic mechanisms include symmetric and asymmetric encryption.

· Determine whether symmetric or asymmetric cryptography will be used.

· If asymmetric encryption, generate a public/private key.

· Make the public key information readily available.

· If symmetric encryption, generate and store symmetric key material and determine secure distribution process to the user base see section 8.1.

· Field the initial product.

Updating the fielded product requires the firmware developer to take the following steps:

· Generate the code that updates the previously installed firmware.

· Cryptographically hash the updating software.

· Sign the hash with the appropriate keying material.

· Encrypt the package (software, hash, and signature).

· Distribute the package.

The deployed system user should then use the appropriate keying material to verify the signature and integrity of the firmware update. Then install the update package. Update status to include failures of the signature or integrity of the firmware update should be reported through a host user interface.

Integrity—Package integrity is provided by cryptographically hashing its contents. See section 7.1.5.4, Software Update for more detail.

Authenticated Origin—Signing the hash provides proof of origin; the private aspect of the public/private key pair must be appropriately protected. See section 7.1.5.4, Software Update for more detail.

Confidentiality—Encrypting provides confidentiality to the firmware updates. It is more efficient to use symmetric cryptography to support confidentiality mechanism and asymmetric cryptography to support key distribution for the symmetric cryptography. The user’s public/ private key pair creates a single-use private symmetric key for each download. See section 7.1.5.4, Software Update for more detail.

Other Security Services—Other security services can be provided by hardcoding information in the initial package or including information for processing in the package. For example, limiting use of an object to a specific time period could be handled by validity dates on the signature, coding in the object broker to allow a fixed period of use on each download. In all cases it is important to keep the security objective in mind and to manage a chain of trust till that objective is achieved.

7.1.5.4
Software Update

Developers distribute modifications to software that already resides on a system. These modifications include service updates to software packages such as Windows or Microsoft Office and distribution of active content code (e.g., Java, ActiveX, objects in Distributed Component Object Model [DCOM] or CORBA, macros, etc.). During the download some known trusted piece is already in place to verify the security.

Software updates and active code distribution are managed much like firmware updates, except that software updates may not be able to rely on hardware storage of key material, so the level of assurance is likely lower than with firmware updates. For most active content, there is a virtual machine (e.g., Java Sandbox or macro interpreter) limiting or at least managing the operation of the active code.

7.1.5.4.1
New Software Distribution

New software is best distributed on media that are hard to modify like CD-ROMS, in tamper-resistant packaging with unique vendor identification, like holographic labels, which are widely used by commercial vendors to prevent fraud. Some software distributions include side programs to verify authenticity of the package, or are self-checking. However, since anyone can write code that appears to verify or self-check other code, these mechanisms are not particularly useful.

7.1.5.5
Biometrics

Biometrics is an authentication mechanism to support access control. A truly automated biometrics system should be able to discern a user at any terminal. The associated authorization service determines the correct access and monitors to ensure that only the authorized user accesses the information or information system. Access controls are policies or procedures establish criteria for system access. Identification service determines the identity of a user and authentication service verifies that identity. Authentication mechanisms fall into one of three types:

· Authentication by Knowledge (Type 1)—Something a person knows: passwords, codes, or PINs.

· Authentication by Ownership (Type 2)—Something a person owns or possesses: tokens, magnetic stripe cards, PCMCIA cards and smart cards.

· Authentication by Characteristics (Type 3)—Something that is a physical aspect of the person, including unique personal biometric characteristics such as fingerprint, retina, or facial.

The rest of this section will discuss Type 3, authentication by characteristics, also known as biometrics authentication. Biometric technologies include both the automatic collection and comparison of characteristics stored in an electronic medium and later used to confirm the identity of an individual. A typical authentication process consists of the following basic steps:

· Enrollment or Capture Phase—The actual biometric sample is taken from the user and stored in a database.

· Feature Extraction Phase—The appropriate measurements of the biometric sample are taken from the live scan of the user.

· Comparison Phase—The features extracted from the live scan are compared with the template stored in the database.

· Decision/Evaluation Phase—The processed data that has been compared is evaluated and given a score. Depending on the security threshold, access will either be granted or denied.

The methodology for integrating products into usable solutions requires directorates, customer requirements, a prioritization process, and viable solutions that culminate in a decision to accept, reject, or delete the request.

7.1.6
Cases

The potential for insider attacks alone makes it paramount for security mechanisms to be implemented for all applications and on all workstations. How strong these security mechanisms need to be depends on the damage a successful attack could cause. Cases can be defined based on the sensitivity (security classification) of a workstation user, the associated threat, and the enclave configuration. High-sensitivity workstations are assumed to employ complementary confidentiality, integrity, and availability mechanisms, e.g., strong authentication and encrypting and signing files and e-mail. As sensitivity-classification differences between workstations and individuals in an enclave increase, the need for the countermeasures increases. As the size of the enclave increases, the need for coordinating and managing its security similarly increases.

7.1.6.1
Cases Within the Enclave

The following cases represent different environments where security mechanisms are needed on workstation applications to protect information within the enclave boundary:

· Individual user with unclassified information that is personally sensitive within an unclassified enclave.

· Individual user with classified/restricted information within an enclave of equal sensitivity level.

· Subnet of users with unclassified information that is limited to these users within an unclassified enclave.

· Subnet of users with classified/restricted information within an enclave of equal sensitivity level.

7.1.6.2
Cases Transiting the Enclave Boundary

Although cases involving information transiting enclave boundaries are handled elsewhere in this framework, applications can further protect this information. The following cases represent environments where the application can provide this additional layer of protection:

· Individual user with U/SBU personally sensitive information communicating with an unclassified network, e.g., the Internet.

· Individual user with classified/restricted information connecting to a network of equal sensitivity level.

· Remote user connecting through a public network to an unclassified local area network (LAN) (remote access).

· Remote classified user connecting through a lower level network to a classified network (several subcases by deltas in levels) (remote access).

· Unclassified/sensitive/restricted but lower-value-information LAN connecting to a large, open, unclassified network, e.g., the Internet (many adversaries of varying capabilities).

· Unclassified or classified (valuable information) LAN connecting to a network of the same classification (less open).

· Classified LAN or LAN containing valuable information communicating through a lower level network to another network of equal classification (System High Interconnects).

· Classified LAN or LAN containing highly valuable information communicating with a lower classification network (High-to-Low, multilevel security [MLS]) (multiple subcases exist for varying deltas between information on the LAN versus the wide area network [WAN]).

· Classified LAN or LAN containing valuable information connecting to same classification/value/organizational WAN that has limited connections to lower classification/value/external network, e.g., secret LAN connected to a secret WAN that is also also connected to an unclassified WAN.

· Sensitive, restricted, or compartmented information LAN or subnet connecting to a corporate net or intranet.

The first four cases describe a single workstation connecting to a similar-security-level component, employing a potentially lower sensitivity transmission medium. Cases 5 through 7 are interconnected networks of essentially the same sensitivity level, employing unprotected (lower sensitivity level) transmission media. Cases 8, 9, and perhaps 10 involve high-to-low connections that may jeopardize interconnected high-level systems that are not aware of the low connection. Case 10 may involve a range of differences in information value of the subnet versus the network.

7.1.7
Framework Guidance

This framework characterizes the security features and assurances needed to protect information in today’s richly interconnected environments. Applications process and circulate information, providing affordable security-enabled applications is therefore paramount to providing information assurance for the system. If implementing security-enabled applications involves significant financial investment, organizations and users will be reluctant to implement them. Developers must strive to create security-enabled applications that meet user needs without adding extras that drive costs to prohibitively high levels.

This section will not provide guidance for each case presented in Section 7.1.6, but will offer provide guidance that can apply in all cases. Specific requirements for each case and application type will be provided in the form of protection profiles that support the DoD Defense-in-Depth strategy.

7.1.7.1
User Interface

A security mechanism that is cumbersome to use will not be used. The importance of an intuitive and burden-free user interface for day-to-day operations cannot be overemphasized. The user interface also affects key management, both procedural and electronic, at least during start-up and it is important that it does not cause undue burden. If it does, encryption and digital signatures will not be widely accepted or used within the organization. The interface should keep the user apprised of security-related events and information, such as—

· Outgoing information that has been encrypted or digitally signed.

· Incoming information that is encrypted or digitally signed.

· The identity of the person who encrypted or digitally signed the incoming information.

7.1.7.2
Security Mechanisms

Not every vendor implements security mechanisms in the same way. Providing configurable options increases the chance that products from different vendors will operate together. These mechanism options can include the algorithms and associated key lengths supported by the application and the protocols used to transfer information between users, e.g., S/MIME or MSP for messaging. There must be a trade-off between the need for the secure application to support a number of options and the need for the application to be inexpensive and easy to use. Generic applications should be able to determine the mechanisms that are common when two or more applications attempt to interoperate.

There are two ways to add security mechanisms to applications: First, software plug-ins with security features can be added to existing nonsecure applications, or alternatively, security mechanisms can be directly integrated into the application during product development. Although there are advantages to both methods, the second is preferable. Security should be an integral part of an application, not an afterthought. The following is a list of constraints that security-enabled applications should meet:

· Applications with similar functions should interoperate, e.g., secure e-mail packages can communicate with different secure e-mail packages.

· The user has the choice to enable security mechanisms selectively for each message or file being sent.

· The user should be able to apply to information encryption only, digital signatures only, or both encryption and digital signatures.

The encryption and digital signature mechanisms (e.g., algorithms, key lengths, or random number generators) should be of sufficient strength and responsive to the current legal policies for the environment in which they will be used.

7.1.7.3
Certificate Revocation and Validation

A policy is needed for certificate revocation. The issues surrounding such a policy include what determines when a key should be revoked; who can request a revocation; what actions need to be taken once it is discovered that a received certificate has been compromised; where the list of revoked certificates is maintained; and how the list is disseminated. Electronic mechanisms must be in place to enforce the revocation policy. The security administrator should be able to configure the revocation enforcement mechanisms as needed to implement the site’s policy.

Revocation is necessary when a certificate becomes invalid before its normal expiration date. Some reasons that a certificate becomes invalid are—

· User name change (e.g., marriage).

· User status change (e.g., termination of employment).

· Compromise or suspected compromise of the private key (e.g., loss of the token or fraudulent use).

If a private key becomes compromised, an information systems security officer or someone else responsible for the organization’s computer security should be notified as soon as possible.

Revocation is the process of removing a certificate from operational status. The end user or responsible party can request revocation, as can any authorized personnel. The most common revocation method is through publication of a Certificate Revocation List (CRL). When a certificate number appears on a CRL, other users know that it is not to be relied on.

It is important for the CRL to be maintained in a location that is easily accessible to all users; the policy must establish the identity of the trusted central server and the circumstances under which the users must check with that server. For example, a CA is a component of a PKI that is responsible for maintaining and publishing CRLs. The CA prepares each new CRL using facilities on the CA server and posts the CRL on a directory server either in its complete form or incrementally. Incremental versions identify changes from the previous incremental release.

Another technique to check the validity of a certificate is dynamic-real time validation. A protocol that supports this is the on-line certificate status protocol (OCSP). For each validation, the relying party requests the status of the certificate from a revocation service, which maintains an unpublished list of revoked certificates.

As another measure to revoke a certificate, the certificate being revoked should be removed from the certificate repository.

7.1.7.4
Password Practices

A security policy must include good password usage practices for the site. FIPS Publication 112-1, “Passwords Usage,” provides information on good password practices, among them minimum password length of ten alphanumeric characters, maximum period of password usage, and random words (nondictionary). Electronic mechanisms should be in place to enforce good password practices, particularly when the passwords protect private key information. The security administrator should be able to configure the password enforcement mechanisms so as to implement the password policy.

7.1.7.5
Technology Gaps

Though the tools, mechanisms, and services necessary for building secure applications are generally available, there are serious gaps. The gaps result mainly from the difference between known capabilities and needs and the solutions that are available. Finding a full vertical solution is quite difficult; it would include tokens, certificate infrastructure, and applications that all understand each other, use the same type of certificate with the same fields, and as needed, use the same standards for interoperability.

This ideal solution is nearly impossible to find today. The market is fragmented at virtually every horizontal level. Tool vendors use different algorithms, service vendors use different protocols, standards are not completely defined for interoperability, the certificate infrastructure uses different certificate extensions (sometimes with different meaning or intent), directory services and query modes vary, and the applications use different standards or different protocols. E-mail is an excellent example: the Defense Message Service uses MSP mail formats, the commercial world uses S/MIME and OpenPGP. Some applications use X.509 version3 certificates, others still use version1.

This gap in vertical solutions is expected to be filled as products from larger vendors (Sun, Microsoft, Lotus, and IBM) begin to appear, but in the meantime, vertical solutions are often proprietary and thus of limited interest to the Government. As the gap in basic solutions narrows, there will be more concern with the capability and security provided by the products, with some implementations simply being more robust than others. Security for new technologies (smart cards, PCMCIA cards, dynamic hypertext markup language [HTML], Virtual Reality Modeling Language [VRML], and others), though needed, may be lacking in the first generation of products. Testing, evaluation, and use will eventually disclose the real security gaps are in applications, and what can best be done about them.

References

1.
Honorable Emmett Paige, Jr. Selection of Migration Systems. Assistant Secretary of Defense Memorandum. November 1993.

2.
Linn, J. Generic Security Service Application Program Interface. RFC 2743, Version 2, Update 1, January 2000.

3.
Adams, C. Independent Data Unit Protection Generic Security Service Application Program Interface (IDUP GSS API). RFC 2479. December 1998..

4.
X/Open X/Open Preliminary Specification: Generic Cryptographic Service API. draft 8, 20 April 1996.

5.
RSA Laboratories. PKCS #11 v2.11: Cryptographic Token Interface Standard. November 2001.

6.
National Security Telecommunications and Information Systems Security Committee, National Information Systems Security Glossary. NSTISSI No. 4009. 5 June 1992.

7.
National Computer Security Center. An Introduction to Certification and Accreditation. NCSC-TG-029, January 1994.

8.
National Computer Security Center. A Guide to Understanding Security Modeling in Trusted Systems, NCSC-TG-010. October 1992.

9.
Microsoft Corporation. Application Programmer’s Guide: Microsoft CryptoAPI. Version 2.0, August 2001.

10.
NSA Cross-Organization Team. Security Service API: Cryptographic API Recommendation. National Security Agency. 1996.

11.
Schneier, Bruce, Applied Cryptography, 2nd edition. John Wiley & Sons, 1996.

This page intentionally left blank.

7.1-12
UNCLASSIFIED
08/02
08/02
UNCLASSIFIED
7.1-13

