Unmanned Aircraft Systems Present & Future Capabilities

Major General Blair Hansen 23 October 2009

This briefing is classified UNCLASSIFIED

Overview

- Why Unmanned Aircraft Systems
- Evolution of Capabilities
- Growing Demand
- Emerging Missions
- Challenges
- Vision

Why Unmanned Aircraft Systems?

- Persistence ability to loiter over a target for long time periods for ISR and/or opportunity to strike enemy target
- Undetected penetration / operation
- Operations in dangerous environments
- Can be operated remotely, so fewer personnel in combat zones projects power without projecting vulnerability
- Integrates "find, fix, finish" sensor and shooter capabilities on one platform

RQ-11 Raven

RQ-8 Fire Scout

Reaper

Evolution of Capabilities

	WWII	Vietnam	Gulf War	OIF/OEF	Near Future	Distant Future
Planes	1,000 ⁻ planes (B-17)	30 planes (F-4)	1 plane (F-117)	1 plane (F-16)	4 planes (MQ-X)	Swarm (Autonomous UAS)
People		60 crew	۲ ۲ ۲ crew	۲ ۲ ۲ crew	۲ ۲ ۲ crew	Mission Commander
Targets	1 Target	1 Target	2 Targets	6 Targets	32 Targets	??? Targets
Tech	Mass Aircraft	Tactical Strike	Laser Munitions	GPS Munitions	МАС	Collaboration
C2	In-the-Loop	In-the-Loop	In-the-Loop	In-the-Loop	On-the- Loop	Out-of-the-Loop
Mgmt	Active	Active	Active	Active	Responsive	Passive
	0 0 M M I T 3					4

...We must take a joint approach to:

Get the <u>most</u> out of UAS to <u>increase</u> joint warfighting capability, while promoting service interdependency and the wisest use of tax dollars

Requires:

- Optimal joint concept of operations (CONOPS)
- Airspace control resulting in safe / effective UAS operations
- Air defense architecture to achieve security w/o fratricide
- Acquisition effectiveness, efficiency, standardization

Principles of UAS Evolution

- Automation is key
- Modularity = flexibility
- UAS is compelling where the human is a limitation to mission success
- Seamless manned and unmanned systems integration
- "Integrated Systems" approach
- Robust, agile, redundant C2 enables supervisory control ("man on the loop")
- Solutions are linked and must be synchronized

Autonomy

Conventional Harbor

- 4 operators per crane
- Manpower-centric system
 - Legacy system
 - Manpower dependant
 - Manual Operation

"Multi-Crane Control"

- 1 operator per 6 cranes
 - 24x increase in efficiency
- Tech-centric system
 - Multi-crane Control
 - Automation (cranes and AGV)
 - DGPS
 - Algorithms

Autonomy – Multi-Aircraft Control Potential Manpower Savings

2011 (Current system)

- 50 CAPs
 - 50 MQ-9 CAPs
 - + 7 a/c in constant transit
- 10 pilots per CAP
 - 500 pilots required
 - + 70 pilots to transit a/c
 570 Total Pilots

2012 (MAC)

- 50 CAPs
 - **50 MQ-9 CAPs**
 - 2 CAPs per MAC GCS
 - 1 transit per MAC GCS
- 5 pilots per CAP
 - 250 Pilots required
 - + 0 to transit aircraft
 250 Total Pilots

MAC = 1 pilot can fly up to 4 a/c

TBD (MAC + 50% auto)

- 50 CAPs
 - 50 MQ-9 CAPs on orbit
- 25 CAPs automated
- 25 CAPs in MAC (5 pilots/CAP)
 - 125 pilots required
 - + 25 auto-msn monitor pilots
 - + 0 to transit aircraft

150 Total Pilots

Unmanned Aerial Systems Growth

- Overwhelming demand for persistent ISR has driven significant DoD investment in UAS
 - Over 2,000 UAS aircraft deployed to Iraq and Afghanistan
 - \$ 3.5B investment in PB10
 - Over 450K flight hours in FY09
 - Light-weight, low altitude UAS account for preponderance of growth

UAS Investment

DoD UAS Flight Hours

Anticipated growth within CONUS

Planned 2013 DOD UAS bed down

- 113 CONUS locations
- 1.1 million UAS flight hrs for initial/continuation training
- 91% of airspace is Class
 E&G

	# Base/ Posts	# UA	# Troops	Airspace Class (1000 Hrs/Yr)							
Service				A	в	с	D	E	G	Rest- ricted	Total
Army	84	4066	3521	0	0	0	17.1	110.8	284.6	5.2	417.7
Air Force	9	96	1140	51.8	0	1.6	4.4	17.3	0	5.1	80.2
Navy*	0	9	24	0	0	0	0	0	0	0	0
Marine Corps	18	1401	1134	0	0	0	2.1	10.3	67.1	0.8	80.3
SOCOM	41	1364	4465	9.9	0	0	4.7	25.9	499.6	7.4	547.5
Total:	150	6026	10284	61.7	0	1.6	28.3	164.3	851.3	18.5	1.1M Hrs
% of Use:	152	0930		5%	0	0%	2%	15%	76%	2%	
* Navy Programs of Record still in Development and Test phases in 2013											
Manned Aircraft Annual Training Hours (Worldwide in FY07): 405K Hrs Army 405K Hrs Air Force 1,700K Hrs Navy / Marine Corps 1,167K Hrs SOCOM 103K Hrs TOTAL 3.3M Hrs											

Emerging UAS Missions - Advanced ISR Capabilities

Open architecture allowing modular sensors to be integrated quickly and inexpensively

Analytical Challenges – Data ≠ Knowledge

- Tasking Processing, Exploitation and Dissemination (TPED)
 - Capabilities have not kept pace with platform growth
- Data Standards and Interoperability
 - Sufficient interoperability does not exist between platforms and TPED architectures
- Communications Architectures
 - Growth of UAS platforms and intelligence capabilities has driven significant frequency spectrum demand

Vision for an unmanned future

- Automated control and modular "plug-and-play" payloads
- Airspace integration/deconfliction addressing both cultural and technical challenges
- Joint UAS solutions and teaming
- Automated exploitation capabilities
- Technology to address bandwidth concerns
- An informed industry and academia knowing where we are going and what technologies to invest in

Unmanned Aircraft Systems Present & Future Capabilities

Major General Blair Hansen 23 October 2009

This briefing is classified UNCLASSIFIED

Back up slides

UAS Classification

- Joint Classification scheme developed to facilitate consensus on regulations, standards and certification
- Utilized at all echelons and levels within combat theaters

UAS Category	Maximum Weight (lbs) (MGTOW)	Normal Operating Altitude	Speed (KIAS)	Current/Future Representative UAS
Group 1	0-20	<1,200 AGL		WASP III, BATCAM, Raven, Dragon Eye
Group 2	21-55	<3,500 AGL	~250	Scan Eagle
Group 3	<1320		~ 230	Silver Fox, Shadow, Neptune,
Group 4	► 1 220	<18,000 MSL	Anv	Predator, Sky Warrior, Hunter, Fire Scout
Group 5	>1320	>18,000 MSL	Airspeed	Global Hawk, Reaper, BAMS, Global Observer,
				N-UCAS

UAS – an alternative to a range of traditionally manned systems

- Deeply modular and upgradable
 - Support future roles and mission needs
- Size, Weight and Power
 - Maximize sensor & weapons flexibility
- High subsonic dash
 - Force packaging and responsiveness
- Target area persistence
- Survivable in contested environment

