
Analysis of the Ciphire System’s

Resistance to Insider Attacks

Technical Report 05-01
January 10, 2005

Bruce Schneier

Counterpane Systems
101 East Minnehaha Parkway
Minneapolis, MN 55419, USA

tel: +1 (612) 823-1098
schneier@counterpane.com

c© 2005, Counterpane Systems. This document contains confidential information;
no use or disclosure of this information is permitted without prior written

consent.

Contents 2/34

Contents

1 Executive Summary 4

2 The Ciphire System 7
2.1 Cast of Characters . 7
2.2 Overview of the Ciphire System 8
2.3 Enrolling in the Ciphire System 9
2.4 Revoking Certificates . 9

2.4.1 Standard Revocation 10
2.4.2 Emergency Revocation 10

2.5 Fingerprint Lists . 10
2.6 Fingerprint Trees . 12
2.7 Verifying Certificates . 13

3 Compromising the Software 13
3.1 Hiding Security Holes in Software “Bugs” 14

3.1.1 The Attack . 15
3.1.2 Will Opening the Source Solve the Problem? 16
3.1.3 Plausible Deniability 16

3.2 Injecting Malicious Code via Software Updates 17
3.3 On the Feasibility of Ciphire’s Goal 17
3.4 Assumption for Subsequent Sections 17

4 Attacking the Clients’ “Views” 17
4.1 Man-in-the-Middle Attacks 18

4.1.1 A Basic Man-in-the-Middle Attack 19
4.1.2 Improvements to the Basic Attack 20
4.1.3 Continued Improvements 21
4.1.4 The Attack With More Users 23
4.1.5 Starting These Attacks After Alice Enrolls 23
4.1.6 Attacking Authenticity 25
4.1.7 Detecting These Attacks 26
4.1.8 On the Severity of These Attacks 26

4.2 Attempted Improvements: Attacking the Fingerprint Data
Structures Directly . 27

4.3 Assumption for Subsequent Sections 27

5 Multiple Active Certificates for a Single Address Identity 27

6 Creating Certificates for Users Not Enrolled in the System 28

7 Creating Certificates for Related E-mail Addresses 29

c© 2005, Counterpane Systems. Confidential. 2005/01/10

Contents 3/34

8 Creating Revocation Requests 30

9 Damaging Ciphire’s Reputation 32

c© 2005, Counterpane Systems. Confidential. 2005/01/10

1. Executive Summary 4/34

1 Executive Summary

We analyzed the Ciphire e-mail encryption system, as documented in [1]
and [2], and as further explained in [5]. We focused our analysis on inves-
tigating ways that a Ciphire insider or set of Ciphire insiders might attack
the users of the Ciphire System. We assume that such an insider would have
access to the internal Ciphire infrastructure, Ciphire private cryptographic
keys, and so on.

The driving question of our analysis was: can the users of the Ciphire
System feel confident that Ciphire insiders cannot or will not compromise
the confidentiality and authenticity of their (the users’) communications?
This question has two underlying components. First (1), is it possible for
a Ciphire insider to compromise the privacy or authenticity of a Ciphire
user’s communication? Second (2), if it is possible for a Ciphire insider to
compromise the security of a user’s communication, will it be possible for
the Ciphire user to, post facto, detect the fact that an attack has taken
place, and determine whether the attack was mounted by a Ciphire insider?
For the latter, the hope is that the chance of detection and incrimination
will deter an insider attack.

Our results. At a high level, we are very pleased with the care and
thought clearly put into the design of the Ciphire System. We also commend
the designers of the Ciphire System for being concerned enough about the
security of its users to try to design the Ciphire System to resist not only
attacks from outsiders, but also attacks originating from those within the
Ciphire infrastructure.

To address our question (1) from above, in our analysis we find that a
Ciphire insider will be able to compromise the privacy or authenticity of a
Ciphire user’s communications. To address our question (2), for some of the
insider attacks that we uncover, it may be possible for a powerful-enough
Ciphire insider to prevent the detection of an attack. Still, doing so could be
very challenging, if not infeasible, for a real attacker. Thus, in practice we
can probably assume that legitimate Ciphire users will eventually detect the
presence of these attacks, although not until after having had the security
of their communications compromised. Unfortunately, for some of our other
attacks, even if detection were possible, it would be impossible for the user
to convincingly point the blame for the attack at a Ciphire insider; these
attacks could appear to have been mounted by an outsider, although these
attacks might be easier to mount from within. For this latter class of attacks,
there will be little “threat of discovery” to deter the Ciphire insider from
mounting them in practice.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

1. Executive Summary 5/34

Our three main classes of attacks are summarized in the following three
headings.

Trojan horses. We understand that Ciphire plans to publicly release
the source code for their Ciphire client application this year. That will be a
major (and necessary) first step toward convincing users that there are no
Trojan horses or backdoors in the Ciphire client that an insider could use to
compromise the privacy or authenticity of a user’s communications. Still,
although releasing the source code to the Ciphire client is a necessary step,
it is not sufficient. In Section 3, we consider how a Ciphire insider might
embed the hooks for malicious code in the Ciphire client in ways that are
both very hard to find and that appear to be accidental coding mistakes
or bugs instead of intentionally placed backdoors. Further, although the
insider would clearly have an advantage in mounting this attack (since the
insider might have maliciously inserted the “bug”), an outsider could also
mount an attack that makes use of the “bug.”

Since our attacks in Section 3 would not incriminate the insider, and could
appear to be the result of an honest programming mistake on the part of
the Ciphire authors, we view this class of attacks as a realistic way that an
insider might try to compromise the security of Ciphire users’ communica-
tions. Even if the “bugs” were later uncovered and patched, the Ciphire in-
sider would likely have had amply opportunity to make use of those “bugs.”
Additionally, the insider could insert similar “bugs” in newer generations of
the Ciphire client.

Man-in-the-middle attacks. If security is a chain, the security of an
entire system is only as strong as its weakest link. In the case of the security
of the Ciphire System against insider attacks, we believe that one of the
weakest links is in the software implementation of the Ciphire protocol, as
described in the above heading.

Nevertheless, even if we ignore our concerns about the software implemen-
tation and focus solely on the cryptographic aspects of the Ciphire System,
we find that an insider can still mount man-in-the-middle attacks against
Ciphire users without triggering any detection mechanisms built into the
Ciphire clients themselves (Section 4). The attacks in Section 4 bypass the
Ciphire Fingerprint subsystem by carefully controlling the flow of informa-
tion between different users of the Ciphire System.

Although the man-in-the-middle attacks we consider may be difficult to
mount in practice, they do prove that the Ciphire System is not immune
to man-in-the-middle attacks from Ciphire insiders. Two questions remain.
First, although we claim that Ciphire could avoid triggering any detection

c© 2005, Counterpane Systems. Confidential. 2005/01/10

1. Executive Summary 6/34

mechanism built into the Ciphire clients, how difficult will it be for the
insider to maintain this deception? Second, could the attacks be detected
using out-of-band means? Although it is impossible to precisely quantify the
cost of an attack, in general we believe that the answer to the first question
is that it will be unrealistic to assume that a real-world adversary will be
able to maintain the deceit indefinitely. With regard to the second question,
our attacks in Section 4 can be detected using out-of-band mechanisms.

Exploiting Ciphire’s ease-of-use. The Ciphire e-mail system is de-
signed to be very transparent and easy to use: the Ciphire Mail client, which
sits between a user’s mail client and the user’s mail server, will transpar-
ently intercept outgoing messages, automatically look for the existence of
a certificate for the e-mail address in the To line of the message, and then
encrypt the message if a valid certificate is found.

The adversary could use tricks to convince the sender to send e-mail to the
wrong address. For example, if an encrypted e-mail from Alice to Bob did
not originally contain a Reply-To field, the adversary could insert a bogus
Reply-To field in the header of the encrypted e-mail. If the adversary is
able to do this, the adversary could trick Bob into sending his reply e-mail
to an address for which the insider knows the corresponding private keys.
Since the encryption happens transparently to Bob, and is based solely on
the recipient’s e-mail address, Bob’s reply to Alice will be encrypted under
a key created by the adversary and inserted in the Ciphire data structures
by an insider.

We consider these classes of attacks in Sections 6 and 7. As with our Trojan
horse attacks, these attacks could be mounted by both outsiders and insid-
ers, although in some cases the outsider may find it more difficult to register
certificates for the e-mail address to which Bob will eventually send e-mail.
Unlike our man-in-the-middle attacks, these attack might not incriminate
the Ciphire insider. Therefore, we believe that the attacks in Sections 6
and 7 will be another preferred way for Ciphire insiders to compromise the
security of the Ciphire System.

Summary. Protecting against attacks from insiders is an incredibly
daunting, if not impossible, task. Given such constraints, we believe that
the Ciphire System still performs remarkably well. Our concerns with Tro-
jan horses in Section 3 would be applicable regardless of what underlying
cryptographic mechanisms Ciphire decided to employ. In practice, eventu-
ally our man-in-the-middle attacks in Section 4 will likely be detected by
Ciphire users; this is in some sense the best that we can hope for, since
preventing such attacks in the first place may be impossible. Our attacks in

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 7/34

Sections 6 and 7 are byproducts of Ciphire’s ease-of-use, and thus cannot be
fully addressed without compromising on Ciphire’s ease-of-use design goal.

Addendum. We analyzed the version of the Ciphire System described
in the documents [1] and [2]. From recent communications with Ciphire, we
understand that Ciphire Labs is planning to address or has addressed some
of the issues that we raise. This review does not reflect those changes.

2 The Ciphire System

In this section we summarize the design of the Ciphire System and the
Ciphire Fingerprint System. We describe how the Ciphire System is sup-
posed to behave in the absence of an adversary. Since an adversary will try
to subvert the intended operation of the Ciphire System, we consider the
(potential) effects of an adversary in subsequent sections.

2.1 Cast of Characters

As is standard in much cryptographic literature, and to facilitate our dis-
cussions, in our discussions we shall use a cast of three main characters:

Alice: Alice is a user of the Ciphire System. Alice’s (primary) e-mail ad-
dress is alice@company.com.

Bob: Bob is another user of the Ciphire System. Bob’s (primary) e-mail
address is bob@company.com.

The adversary: In our analysis we assume that the adversary has “insider”
privileges.

The insider could be a Ciphire employee (or set of employees) with access
to Ciphire’s infrastructure, private keys, development environment, and so
on. The adversary could also be an individual or group of people who were
originally outsiders but who have broken into and compromised Ciphire’s
internal infrastructure.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 8/34

2.2 Overview of the Ciphire System

The Ciphire System is an e-mail encryption and signature system designed
for “ease of use.” There are two general installation modes for the Ciphire
System: it can be installed and used by individual users, or it can be in-
stalled by corporations to act as an “encryption gateway.” When installed
by an individual user, the Ciphire client sits between the user’s mail client
and the user’s mail server and automatically intercepts and, if possible and
depending on the user’s settings, encrypts and signs the user’s outgoing
messages. The Ciphire client also decrypts and verifies the signatures on in-
coming encrypted messages before delivering them to the user’s mail client.

Each individual user of the Ciphire system has a set of private and public
keys, and each user has a certificate signed by a Ciphire Certificate Au-
thority. The certificate is stored in the Ciphire Certificate Directory and is
made available to other users of the Ciphire System. When the Ciphire Sys-
tem is installed by a corporation as an “encryption gateway,” the high-level
architecture is not significantly different: the corporation would have a set
of public keys signed by the Ciphire Certificate Authority and included in
the Ciphire Certificate Directory. When an e-mail is sent to a user within
a corporation, it will be encrypted to the corporation’s public keys. Thus,
for the purposes of this review, when gateway encryption is used, one can
generally think of the corporation as a single Ciphire entity. If individual
users within the corporation have their own Ciphire certificates, however,
then e-mails to those users will be additionally encrypted to those users’
public keys.

The aforementioned “ease of use” comes from the fact that, after installing
the Ciphire Mail client, the process for encrypting and decrypting messages
is practically transparent to the user. When Alice wishes to send an e-mail
to Bob, she writes the message as normal, using her normal e-mail client.
She then sends the message as she would send any other message; e.g., by
clicking on the “send” button; she does not need to click any button like
“encrypt and sign.” The Ciphire Mail client will intercept the outgoing
message and look at the destination e-mail address (bob@company.com).
Assuming that Alice has not communicated with Bob recently, the Ciphire
client will communicate with the Ciphire Certificate Directory (or a proxy)
and try to obtain Bob’s latest certificate. If Alice’s Ciphire client is able to
find and verify Bob’s certificate, it will encrypt Alice’s message to Bob, and
then send that encrypted message to Alice’s mail server. If Alice’s Ciphire
client is unable to find and verify Bob’s certificate, then depending on the
settings that Alice pre-specified for the Ciphire client, the Ciphire client will
send the message to Bob unencrypted, return an error message to Alice’s
mail client, or prompt Alice, asking her whether she would like the e-mail

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 9/34

sent unencrypted or not. In subsequent sections, we consider what “verify”
in the previous sentences really means, including how “verify” depends on
certain properties of the Ciphire Fingerprint subsystem.

The decryption process is analogous. For signature verification, the pro-
cess for finding and verifying the signer’s public key is also automated and
transparent.

2.3 Enrolling in the Ciphire System

For individual users, Ciphire certificates bind a set of public keys to an
e-mail address, such as alice@company.com. For corporations using the
Ciphire System as an “encryption gateway,” Ciphire certificates bind a set
of public keys to a domain name or host name, such as @company.com.

For an individual user, Alice, to obtain a certificate and enroll in the Ciphire
System, Alice’s Ciphire client will first generate an RSA public and private
key pair (for encryption and signatures), an ElGamal public and private key
pair (for encryption), and a DSA public and private key pair (for signatures).
Alice’s client will then send a Certification Signing Request to the Ciphire
Certification Authority. To verify that the public keys do indeed belong to
a person who can receive e-mail at alice@company.com, the Ciphire Cer-
tification Authority sends a challenge back to alice@company.com. Using
her private keys, Alice will reply to the challenge. Upon receiving Alice’s
reply, the Certification Authority will sign Alice’s certificate. Alice signs
her certificate before the Certification Authority does, and Alice’s signa-
ture is included in the data that the Ciphire Certification Authority signs.
Each certificate has a unique Certificate Identity (CID), assigned by the
Ciphire Certification Authority. The e-mail address stored in the certificate
is referred to as the certificate’s Address Identity (AID).

After being signed by the Ciphire Certification Authority, Alice’s certificate
is given to the Ciphire Certificate Directory. When another user’s client
software wishes to obtain Alice’s certificate, it will do so by accessing the
Ciphire Certificate Directory, or a proxy sever.

2.4 Revoking Certificates

As designed, the Ciphire System only allows one certificate to be associated
with a given e-mail address (or domain name in the case of gateway encryp-
tion) at any given time. This section describes the method for revoking a
certificate and, if desired, obtaining a new one.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 10/34

2.4.1 Standard Revocation

To revoke Alice’s current certificate, Alice’s Ciphire client will create a re-
vocation request, signed using Alice’s current private keys, and sends that
request to the Ciphire Certification Authority. The Certification Authority
will then issue a revocation certificate that is identical to a regular (non-
revocation) certificate except that the “certificate type” field will indicate
that the certificate is a revocation certificate. The Certificate Identifier of
the revoked certificate will be included as part of the data signed in the new
revocation certificate.

If Alice chooses to create a new set of public and private keys at the same
time, then the revocation certificate for the old set of keys will include
a forward reference to the Certificate Identifier of Alice’s new certificate.
Furthermore, part of the data in the revocation certificate will be signed by
Alice’s new public keys, and those signatures will be included in the data
signed by the Certification Authority as part of the revocation certificate.
In the Ciphire documentation, this is referred to as certificate chaining.

2.4.2 Emergency Revocation

When Alice creates a new set of public and private keys and obtains a
certificate, she will also provide the Ciphire emergency revocation system
with a signed revocation request, encrypted under a passphrase of Alice’s
choice. The signed revocation request is encrypted by Alice’s client software
before being uploaded to the Ciphire emergency revocation system.

If Alice loses her private keys and cannot revoke her current certificate using
the standard method, she must invoke the Ciphire emergency revocation
system. She does this by entering her e-mail address and her passphrase
on a Ciphire website. Using Alice’s e-mail address, this website will look
up Alice’s current certificate and encrypted revocation request, decrypt the
encrypted revocation request using Alice’s passphrase, and then issue a
revocation certificate as in Section 2.4.1.

2.5 Fingerprint Lists

The purpose of the Ciphire Fingerprint System is to help mitigate attacks
against users of the Ciphire System from an attacker who has compromised
the Ciphire infrastructure or Ciphire private keys; e.g., the attacker might
be a Ciphire employee or set of Ciphire employees. The approach taken by
the Ciphire Fingerprint List System is to compute and regularly distribute
functions of the hashes of the certificates that the Ciphire Certification Au-
thority issues. The hope is that an attacker with access to the Ciphire

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 11/34

internal infrastructure should not be able to issue rogue certificates or mod-
ify existing certificates without triggering detection mechanisms built into
users’ Ciphire client software.

In more detail, let Cert1, Cert2, . . . , Certn denote the certificates or revoca-
tion certificates issued during a given time interval; e.g., one hour. Let
AID1, AID2, . . . , AIDn denote the respective Address Identifiers (e-mail ad-
dresses or domain names) in the certificates, and let CID1, CID2, . . . , CIDn

denote the respective Certificate Identifiers. The fingerprint for the i-th
such certificate is the concatenation of H(AIDi), H(CIDi), H(Certi), and
Mi, where H is a hash function and Mi is two bytes of metadata indicating
the type of the i-th certificate. For example, Mi might indicate that the
i-th certificate is a revocation certificate.

At the end of each time interval, the fingerprints for the time interval are
combined into a hash tree. The leaves of the tree, or the Branch FPLs
(fingerprint lists) contain the fingerprints for the certificates. The Branch
FPL that a given certificate is assigned to depends on the hash for the Ad-
dress Identifier, H(AIDi). Hashes of the Branch FPLs are stored in Section
FPLs, and hashes of the Section FPLs are stored in a Master FPL. In the
current Ciphire System, each Master FPL has two children Section FPLs,
and each Section FPL has two children Branch FPLs. Each Branch, Sec-
tion, and Master FPL contains header and footer information indicating the
time interval for the FPL, a hash over the complete FPL of the previous
and current intervals, and other metadata information.

A Cross FPL contains hashes of the Master FPLs for different time inter-
vals. Specifically, each entry in the Cross FPL contains at least information
indicating the end time of the corresponding interval and a Cross FPL Hash,
which is calculated over all previous Cross FPL entries (hashes and time-
stamps) and the full contents of the corresponding Master FPL. The Cross
FPL is signed by the Ciphire Fingerprint Authority, and is made available
to users of the Ciphire system.

There are several different configurations for Ciphire clients with respect
to how they download portions of the Ciphire Fingerprint data structures.
In the default mode, a Ciphire client will keep a fresh copy of the Cross
FPL by downloading it, or the updates, from a Ciphire server. As for
the other portions of the Ciphire Fingerprint data structure, in the default
mode a client will only download the portions needed to verify a certificate
in question.

As part of a cross-client verification step, when a Ciphire client sends an
encrypted e-mail message to another user, the latest hash in the Cross FPL
is included in the e-mail. The receiving side checks that the received hash

c© 2005, Counterpane Systems. Confidential. 2005/01/10

2. The Ciphire System 12/34

is identical to the copy that the receiver obtained directly from a Ciphire
server.

2.6 Fingerprint Trees

By stepping through the entire Fingerprint List data structure, a user of the
Ciphire system could theoretically use the Fingerprint Lists from Section 2.5
to determine whether an active certificate for a given Address Identity or
Certificate Identity exists. Alice might wish to do this if the Ciphire Certifi-
cate Directory claims that Bob does not have a certificate, but Alice believes
that Bob does.

Because stepping through the entire Fingerprint List data structure would
be too computationally expensive in practice, in addition to the Fingerprint
List data structure, the Ciphire system will also maintain two Fingerprint
Tree data structures, one indexed off of the certificates’ Address Identities,
and one indexed off of the certificates’ Certificate Identities. (Fingerprint
Trees are not implemented in the current version of the Ciphire system.)

For both the Address Identities and the Certificate Identities in Ciphire
certificates, a hash tree is recreated after each pre-specified interval of time
(e.g., one day). Each such tree is referred to as an Interval FPT (finger-
print tree). These trees, by definition, only reflect active certificates, which
means that recreation consists of adding new certificates to the previous
time interval’s tree, and removing revoked certificates.

Each Interval FPT consists of a single Master Bucket (the root) and multi-
ple children Hash Buckets. The Master Bucket contains the hash of each of
its child Hash Buckets. For the Fingerprint Trees keyed off of certificates’
Address Identities, each Hash Bucket contains the hash of Address Identi-
ties in currently active certificates. For the Fingerprint Trees keyed off of
certificates’ Certificate Identities, each Hash Bucket contains the hash of
Certificate Identities in currently active certificates. The Hash Bucket that
a given Address Identity or Certificate Identity is assigned to depends on
the output of the hash function. For example, if the system is defined to
have eight Hash Buckets per time interval, then the first three bits of the
hash of the Address or Certificate Identities will be used to determine the
appropriate Hash Bucket. In addition to the above-described contents, the
Master and each Hash Bucket contains a carry-over hash calculated over
the complete contents of the previous interval’s corresponding bucket and
the current interval, as well as metadata fields indicating, for example, the
end time of the interval.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

3. Compromising the Software 13/34

The Interval FPTs are chained together via a Cross Tree List, much like
the Cross FPL from Section 2.5. Here, however, the Master Buckets for the
Address and Certificate Identities take the place of the Master FPL.

2.7 Verifying Certificates

When Bob wishes to encrypt a message to Alice, he will first attempt to
obtain Alice’s certificate from the Ciphire Certificate Directory or a proxy.
He will look up her certificate based on her e-mail address. If he is able to
find such a certificate, he will first verify the self signature and the issuer
signature on the certificate, as well as the certificate chain. If all the above
checks pass, Bob will then verify the presence of Alice’s certificate in the
Fingerprint List by downloading the appropriate portions of the Fingerprint
List data structure to verify the hash contained in the latest Cross List entry.
If an error occurs when checking the Fingerprint List, the error is brought
to the user’s attention.

If the Ciphire Certificate Directory does not return a certificate for Al-
ice, Bob will look up Alice’s e-mail address in the Fingerprint Tree data
structure. If Bob finds a certificate for Alice in the Fingerprint Tree, an
appropriate error message is brought to the user’s attention, indicating that
the Ciphire Certificate Directory failed to return a certificate for Alice when
a certificate for Alice really exists.

If Bob wishes to verify Alice’s signature on an e-mail, the process is similar,
except that Bob looks up Alice’s certificate based on the Certificate Identifier
included in the e-mail, not on Alice’s e-mail address.

3 Compromising the Software

In an e-mail on December 23, 2004 [4], Ciphire wrote: “What we now
wanted is how an attacker or us as the operators of the infrastructure would
efficiently attack and compromise the infrastructure, given that the crypto
is all correctly implemented and that we do not compromise the source code
(which we will publish in 05).”

First, we commend Ciphire for planning to publicly release the source code
for their system in 2005. As we write in [8], publicly releasing the design and
source code for a security system is often a necessary step toward ensuring
the security of and public confidence in a system. Unfortunately, however,
although releasing the source code to a security system is often a necessary

c© 2005, Counterpane Systems. Confidential. 2005/01/10

3. Compromising the Software 14/34

condition, it is seldom a sufficient condition. This observation is supported
simply by the large number of security bugs found in open source software
systems [6], including cryptographic applications like OpenSSH [3] that were
written by competent and highly security-conscious developers.

Therefore, to fully address Ciphire’s question as to what types of attacks
they, as the designers of the Ciphire System and as the operators, could
mount, we must consider not just the cryptographic protocols used in the
Ciphire System, but the software implementation as well. If it turns out
that, regardless of the cryptographic strength of the Ciphire protocols or
Fingerprint System, a Ciphire insider could still mount an attack against
Ciphire users by exploiting some aspect of the software implementation,
then it will be unclear how much “additional security” the Fingerprint Sys-
tem provides.

Unfortunately, because of the difficulty in auditing software systems for
implementation-level security holes, we believe that it would be reasonable
to assume that a Ciphire insider could sneak a security hole into the im-
plementation of Ciphire clients. Moreover, we believe that, in practice, this
might be the easiest and least risky way for a Ciphire insider to attack the
security of the Ciphire System.

3.1 Hiding Security Holes in Software “Bugs”

While an insider might try to insert an explicit Trojan horse directly into
the Ciphire Mail client — e.g., malicious code that forwards unencrypted
copies of encrypted e-mails to the attacker — an important observation we
make is that intentionally inserted Trojan holes do not need to be so blatant.

Intentionally inserted Trojan security holes can be made completely indis-
tinguishable from accidentally occurring security-critical bugs. This obser-
vation is based on the fact that the insider does not need to introduce a
sophisticated Trojan horse in the Ciphire Mail client to be successful. For
example, the insider could still do serious damage if he or she (1) made the
Ciphire Mail client vulnerable to a remotely exploitable buffer overflow (or
related) attack and (2) could use the buffer overflow (or related) attack to
inject malicious code into a running client.

Because a buffer overflow vulnerability could just as easily be caused by nor-
mal programmer error instead of malicious intent, the insider who inserted
the buffer overflow vulnerability into the Ciphire Mail client may be able to
successfully plead innocence. Furthermore, even if the hole is later patched,
the insider would still have had a window of opportunity to compromise
the security of users’ Ciphire clients. And even if one hole is patched, there

c© 2005, Counterpane Systems. Confidential. 2005/01/10

3. Compromising the Software 15/34

is no guarantee that other holes do not exist, or that there might not be
(intentionally placed) holes in the patch itself or in later versions of the
software.

3.1.1 The Attack

We elaborate on our preferred method for installing a hard-to-detect Trojan
horse into the Ciphire Mail client. We do so to support our conclusion that
it will be difficult, if not impossible, to fully protect Ciphire users from
attacks by a Ciphire employee or other insider.

Under our preferred method, the Ciphire insider will begin by inserting a
remotely exploitable buffer overflow vulnerability, format string vulnera-
bility, or other related vulnerability into the Ciphire Mail client software.
Alternatively, the insider could begin by noticing the existence of such a
vulnerability in a development version of the Ciphire Mail client, but decide
not to fix the vulnerability nor bring it to the attention of anyone else.

To exploit the vulnerability, the attacker might pass a specially crafted “en-
crypted e-mail” or attachment to a user’s Ciphire Mail client for decryption.
Or the attacker might activate the exploit over some other channel, like the
one between the Ciphire Mail client and the Ciphire Certificate Directory
or its proxies.

Once the adversary is able to inject malicious code onto a user’s computer,
the adversary will have complete liberty in determining what to do with that
user’s data. For example, in addition to being able to forward unencrypted
copies of encrypted e-mails to the adversary, the adversary might be able to
install a keyboard logger and learn even more information. Or the adversary
could learn the user’s private decryption and signing keys. Or the adversary
could force the Ciphire Mail client to encrypt messages using symmetric
encryption keys with low entropy, i.e., with keys that the adversary could
easily guess.

We briefly remark that the attacks described here could be mounted by
anyone, once the source code for the Ciphire Mail client becomes publicly
available or someone reverse engineers enough of the client from a binary
to be able to find a remotely exploitable bug. But insiders would still have
an easier task because they understand the details of the system better and
because they were the ones to insert the remotely exploitable bugs into the
software in the first place.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

3. Compromising the Software 16/34

3.1.2 Will Opening the Source Solve the Problem?

The discussion above raises the following question: If Ciphire were to publish
the source code for their e-mail client for public review, wouldn’t any buffer
overflow or similar security problems be discovered by the public?

Unfortunately, because of the subtlety in buffer overflow and related bugs,
it may not be reasonable to assume that the public will discover the pres-
ence of the attacker-inserted security bug, at least not in a timely fashion.
Furthermore, even if the attacker-inserted security bug is found, the vul-
nerable version may have still been used by some individuals, and therefore
the security of those users’ e-mails is in question. Additionally, even after
the bugs are found and patched, there is little reason to believe that the
patch won’t have its own security problems and that there are not other re-
motely exploitable security bugs in other portions of the system (Section 3.2
and [6]).

We acknowledge that there have recently been important advances in the
field of automated analysis of software for security problems, like [10]. Still,
these recent tools are not guaranteed to discover all vulnerabilities in soft-
ware applications. This means that although members of the public might
run these tools against the Ciphire software, these tools may not uncover
bugs inserted by the adversary.

3.1.3 Plausible Deniability

Suppose that a software application is vulnerable to a hard-to-find buffer
overflow. Assuming that an outsider auditor actually discovers the existence
of the buffer overflow, it would likely still be impossible for the auditor
to determine whether the bug was the result of an unintentional coding
mistake, or whether it was maliciously inserted by an adversary. This means
that if Ciphire or an employee intentionally inserted a buffer overflow or a
similar problem into the Ciphire client, Ciphire or the employee could deny
any malicious intent. Such is not the case for some of the other attacks we
consider in this review (e.g., the attacks in Section 4 where the adversary
creates and signs, using Ciphire’s private keys, two different version of the
Fingerprint data structures). The plausible deniability of the attacks in this
section means that an attacker bent on compromising the security of the
Ciphire system could compromise the source code for the Ciphire client with
relatively little fear of being caught.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

3. Compromising the Software 17/34

3.2 Injecting Malicious Code via Software Updates

From [1] we infer that Ciphire plans to have the ability to automatically up-
date the Ciphire client software running on users’ machines. The automatic
software update capability will provide another vector for an attacker to
insert malicious code into the Ciphire clients, though we remark that users
can turn off automatic updates.

To elaborate, we know from their e-mail on December 23, 2004 [4], that
Ciphire plans to publicly release the source code for their Ciphire client
application. While individual users or the general public may review the
security of the publicly released source code, these reviewers may not have
the time or ability to review each individual update to the Ciphire client
application for vulnerabilities, and even if they do, there will likely be some
latency between when the new version of the software is released and when
the attacks, if any, are discovered.

3.3 On the Feasibility of Ciphire’s Goal

Figuring out how to create software immune to buffer overflow and other
remotely exploitable implementation-level attacks is currently an active area
of research, especially when the author of the software is malicious and
intentionally tries to embed (remotely exploitable) bugs into the software [9].
Indeed, we expect that one of the easiest ways for a Ciphire insider to attack
the Ciphire system would be to embed a remotely exploitable but hard-to-
detect bug in the Ciphire client. Given this discussion, it may not be possible
for Ciphire to convince users that an adversary or Ciphire insider would not
be able to use aspects of the Ciphire client software to compromise users’
privacy.

3.4 Assumption for Subsequent Sections

For the remainder of this review we shall assume that there are no bugs or
other problems in the implementation of the cryptographic or other portions
of the Ciphire System. In practice, we might assume that each Ciphire user
wrote their own Ciphire client, based on the Ciphire specification, and that if
there are remotely-exploitable bugs in the software implementation, Ciphire
does not know what they are and therefore will have a hard time exploiting
them.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 18/34

4 Attacking the Clients’ “Views”

The design of Ciphire’s Fingerprint Lists (FPLs) and Fingerprint Trees
(FPTs) is based on sound cryptographic principles. Indeed, the use of hash
chains and hash trees prevents certain classes of attacks (Section 4.2). Un-
fortunately, however, for the hash chains to be the most effective, we would
require that all parties be given the same Cross FPL and Cross Tree List
entries.

Unfortunately, in the Ciphire System, it does not seem possible to guar-
antee that all parties will receive the same copy of these data structures.
Specifically, although the Ciphire Mail clients are supposed to automati-
cally download the latest Cross FPL and Cross Tree List entries (under the
default mode), since we are considering attacks from within the Ciphire in-
frastructure, there is no reason to believe that all users will receive the same
copies of the Cross FPL and Cross Tree List entries.

In an attempt to address this problem, the Ciphire clients include copies
of their latest Cross FPL and Cross Tree List entries, and possible other
information, in the encrypted e-mails that they exchange with other Ciphire
users. In this way, it is hoped that if Alice and Bob are given different Cross
FPL and Cross Tree List entries from the Ciphire servers, they will be able
to detect such a situation once they begin to communicate. First, even if this
were true, it is not a perfect solution since the presence of an attack might
not be detected until after one user already reveals confidential information
to the adversary. Second and more importantly, it is not necessarily true
that Alice and Bob will be able to detect the fact that they were given
different Cross FPL and Cross Tree List entries. In this section we consider
how an adversary might “undetectably” exploit the fact that different users’
copies of the Cross Lists are not guaranteed to be identical. (“Undetectably”
is in quotes since here we are referring to the fact that the attacks will be
undetectable to the detection mechanisms built in to the Ciphire clients; the
presence of these attacks could be determined using out-of-band methods
that do not make use of the Ciphire clients themselves; we return to this in
Section 4.1.7.)

4.1 Man-in-the-Middle Attacks

When considering “man-in-the-middle” attacks against a system, it is cus-
tomary to give the adversary complete control over the delivery of messages
between the parties in the system [7]. For example, if Bob sends a message
or ciphertext X to Alice, the adversary could look at the contents of X,
delay the delivery of X, or not deliver X at all. The adversary could also

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 19/34

create its own messages and send them to Alice as if they were originally
sent by Bob. The adversary is thus the man (or entity) in the “middle.”

In the conventional model, and in the model we use, we limit the power
of the adversary by assuming that it does not have access to the users’
secret cryptographic keys and that the adversary is restricted to reasonable
computational resources (e.g., it cannot exhaustively search users’ private
keys). In the model we are considering, however, the adversary does have
access to Ciphire’s infrastructure and secret keys.

4.1.1 A Basic Man-in-the-Middle Attack

We begin by considering the following simple scenario. Assume that Alice
registers as a new user of the Ciphire System and obtains a certificate CertA
for her public key. But assume that the adversary is in control of the
Ciphire infrastructure and wants to read e-mails sent to Alice, and that the
adversary has the capability of monitoring Alice’s network communications.
Although in our model we also give the adversary the ability to modify the
communications on Alice’s network, the adversary mounting the attack in
this section will not need to do so.

Beginning when Alice registers, one thing that the adversary could do is to
start maintaining two copies of the Fingerprint List and Fingerprint Tree
data structures, one that it gives to Alice and one that it gives to all other
users. The version that it gives Alice will contain Alice’s certificate. This
means that if Alice were to check her copy of the Fingerprint data structures
for the presence of her certificate, she would find it, and Alice would not have
any reason to believe that the server is behaving maliciously. Now suppose
that the version of the Fingerprint data structures that the adversary gives
other users does not contain a copy of Alice’s certificate.

If Bob or any other user decides to send an e-mail to Alice, he will look
up Alice’s certificate in the Ciphire Certificate Directory, and not find it.
He will then look up Alice’s e-mail address in his copy of the Fingerprint
Tree, and again not find it. He will therefore send the message to Alice
unencrypted (or decide not to send the message at all). In this way, the
Ciphire insider could learn the contents of the e-mails that other users send
to Alice. Note that the cross-client exchange of entries in the Cross FPL
and Cross Tree List does not protect against the attack described here since
the message that Bob sends Alice is unencrypted. If Bob decides to sign
his message to Alice, and if the signature is also computed over the latest
Cross FPL and Cross Tree List entries, the adversary could simply remove
the signature and Cross entries before delivering the message to Alice; this
is unnecessary with the current design, however, since Cross FPL and Cross

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 20/34

Tree List entries are currently not included in unencrypted but signed e-
mails.

4.1.2 Improvements to the Basic Attack

Although simple and only of limited applicability, we consider the attack
in Section 4.1.1 to be strong evidence that the Ciphire Fingerprint System
does not achieve its design goal of protecting against man-in-the-middle
attacks. Still, one might consider the attack above to be unrealistic for
several reasons. For example, if Bob thinks that his message to Alice will
not be encrypted, Bob may decide not to send the message at all, in which
case the adversary will learn nothing. Moreover, if Bob communicates out-
of-band to Alice the fact that Alice does not have a public key (according
to Bob’s view of the Fingerprint data structures), then Alice and Bob may
learn that an attack is taking place; much better would be to have Bob
encrypt a message to Alice under a public key to which the insider knows
the corresponding private key. In this section, we begin addressing these
deficiencies with the attack in Section 4.1.1, and continue in Section 4.1.3
with additional improvements.

First, we provide more details about how messages are encrypted under the
Ciphire System. Let M be the plaintext message. According to Section 5.4
of [2], if the message is to be signed, Bob first signs M before encrypting
it. It is unclear from the description in [2] whether Bob’s copies of his
latest Cross FPL and Cross Tree List entries are included in the signed
data or not, but we assume that they are. When encrypting the message
and the signature, the Ciphire client first creates a symmetric encryption
key. It then encrypts the message using that symmetric encryption key,
and then signs the symmetric encryption key with Bob’s private key and
encrypts the symmetric encryption key under Alice’s public key (Sections 5.3
and 5.5 of [2]). Bob computes a signature on the symmetric encryption
key even if he does not sign the message itself. From [5] we know that
Alice’s Certificate Identity and public key index are signed along with the
symmetric encryption key.

Returning to our improvements to the attack in Section 4.1.1, instead of
giving Bob Fingerprint data structures that do not contain any certificate
for Alice, the Ciphire insider could give Bob Fingerprint data structures
that contain a certificate for Alice, Cert′A. Here, however Cert′A 6= CertA
and, in particular, the Ciphire insider knows the private keys corresponding
to the public keys in Cert′A. Now, when Bob sends an encrypted message
to Alice, Bob will encrypt the message under the public keys in Cert′A. The
Ciphire insider will remove the encryption under the public keys in Cert′A,

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 21/34

and re-encrypt the message under Alice’s real public keys. During the re-
encryption processes, the Ciphire insider will replace the Cross FPL and
Cross Tree List entries included by Bob with copies that will be consistent
with the data structures that it gave Alice.

If Bob chose to sign the message, the signature will most likely be computed
over Bob’s Cross FPL and Cross Tree List entries, as well as over the message
itself. In this case, since the Ciphire insider will not be able to change the
Cross List entries without voiding Bob’s signature, the Ciphire insider will
simply remove the signature from the message and forward the re-encrypted
but unsigned message to Alice.

Recall that, regardless of whether Bob signs the message, Bob will still sign
the symmetric key used during the encryption process, Alice’s Certificate
Identity, and the index of the public key used in the encryption. Note
that the Ciphire insider does not need to change this symmetric key when
re-encrypting the message for Alice. Also note that if the Ciphire insider
sets the Certificate Identity in Cert′A to be equal to the Certificate Identity
in CertA, the insider will not need to change Certificate Identity that Bob
signed along with the symmetric key. This means that the Ciphire insider
will not need to forge a signature on the symmetric encryption key and
Alice’s Certificate Identity, and can therefore simply include the original
signature in the re-encrypted e-mail that it delivers to Alice. (If Ciphire
protocol also mandated that Bob sign the fingerprint of Alice’s certificate
along with the symmetric encryption key, rather than the Certificate Iden-
tity and public key index, then the Ciphire insider would have to forge a
new signature in order to prevent Alice’s Ciphire Mail client from issuing a
warning to Alice.)

4.1.3 Continued Improvements

Although the attack in Section 4.1.2 is an improvement over the attack in
Section 4.1.1, and although the attack does provide even stronger evidence
for our claim that the Ciphire System is vulnerable to man-in-the-middle
attacks, the attack in Section 4.1.2 does suffer from at least one practical
problem: If Alice ever replies to an e-mail from Bob, without further chi-
canery on the part of the adversary, the structure of Alice’s reply will tip
Bob off to the fact that a man-in-the-middle attack has taken place. Instead
of delivering Alice’s replies to Bob, the adversary could simply drop all of
Alice’s replies, but that would likely also alert Bob to the presence of the
adversary.

There are several reasons why the adversary cannot just deliver Alice’s reply
e-mails directly to Bob. First, Alice’s reply e-mail will contain copies of

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 22/34

Alice’s latest Cross FPL and Cross Tree List entries, which will be different
from Bob’s. Second, even if Alice does not sign her reply message to Bob,
the symmetric key used in the encryption process will be signed by Alice’s
real private key, not the private key corresponding to the certificate Cert′A
given to the other users of the Ciphire System. Because of this situation, if
the adversary were just to implement the attack described in Section 4.1.2,
Bob might become wise to the fact that a man-in-the-middle attack was
taking place because either (1) he stopped receiving encrypted e-mails from
Alice or (2) the e-mails he received from Alice have different Cross FPL
and Cross Tree List entries and “invalid” signatures (with respect to the
public keys in Cert′A) on the symmetric encryption keys. We address these
concerns here.

For simplicity, in this subsection let us assume that there are only two
users of the Ciphire system, Alice and Bob; we will add additional users
in Section 4.1.4. In this attack, the Ciphire insider will present Alice with
Fingerprint List and Tree data structures that contains Alice’s real certifi-
cate, CertA, and a fake certificate for Bob, Cert′B. Similarly, the Ciphire
insider will present Bob with Fingerprint List and Tree data structures that
contain Bob’s real certificate, CertB, and a fake certificate for Alice, Cert′A.
As before, we assume that the insider knows the private keys corresponding
to the public keys in the fake certificates Cert′A and Cert′B.

Now suppose that Bob wishes to send a message M to Alice. Bob’s Ciphire
client will look up Alice’s certificate, find Cert′A, and then (possibly) sign the
message to Alice using Bob’s private keys, and then encrypt the message
using the public keys in Cert′A. The adversary will intercept this e-mail
and decrypt it using the private keys corresponding to the public keys in
Cert′A. The adversary will then take the plaintext message, re-sign it and
the symmetric encryption key using the private keys corresponding to the
fake certificate Cert′B, encrypt the message under Alice’s real public keys
in CertA, and send the resulting ciphertext to Alice. During the re-signing
process, the adversary will replace the latest Cross FPL and Cross Tree List
entries that Bob sent with entries that correspond to Alice’s latest entries.

Because of the symmetry of the data structures (Alice is given CertA and
Cert′B, while Bob is given Cert′A and CertB), the Ciphire insider can also
mount this man-in-the-middle attack when Alice sends encrypted replies to
Bob. Thus, Alice and Bob have complete liberty to use the Ciphire System
as normal, but the adversary will be able to read all of their communications
without triggering any detection mechanism built into the Ciphire clients.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 23/34

4.1.4 The Attack With More Users

In Section 4.1.3, we assumed for simplicity that Alice and Bob were the only
two users of the Ciphire System. But now suppose that there are additional
users of the Ciphire System, such as Charlie, Diane, and Ethan.

Let us assume that the adversary is interested in reading all of the e-mails
to and from Alice, but that the adversary is not interested in reading the
e-mails of the other Ciphire users. Then we can modify the attack in Sec-
tion 4.1.3 as follows. The Ciphire insider will include the fake certificate
for Alice, Cert′A, in the Fingerprint data structures that it gives to all of
the users of the Ciphire System, except Alice. In this way Bob, Charlie,
Diane, Ethan, and others, will all have the same Cross FPL and Cross Tree
Lists, and all these other users will be able to communicate with each other
as normal; most importantly, the adversary would not need to be able to
mount a man-in-the-middle attack on or modify any of the communications
between the other parties in order to change the values of the Cross FPL and
Cross Tree List entries included in the e-mails. As for the Fingerprint data
structures that the adversary gives to Alice, the Ciphire insider will create
fake certificates for all of the other users, and include these fake certificates
in the Fingerprint data structures that it gives to Alice.

Since we are assuming that the adversary is attacking Alice and is capable of
mounting man-in-the-middle attacks, the adversary will be able to intercept
and modify all of the e-mails that Alice sends and receives. Thus, when any
other user sends a (possibly signed and) encrypted message to Alice, the
attacker will be able to strip off the encryption, read the message, modify
the included Cross FPL and Cross Tree List entries, re-sign the message if
necessary, re-encrypt the message under Alice’s real public key, and re-sign
the symmetric encryption key using the fake certificate for the sender. The
adversary can similarly read the contents of and adjust the Cross FPL and
Cross Tree List entries and the signature on the symmetric encryption key
in the encrypted e-mails from Alice to the other users of the Ciphire System.

4.1.5 Starting These Attacks After Alice Enrolls

The attacks in Sections 4.1.1 through 4.1.4 work when the adversary or
Ciphire insiders knows that they wishes to mount a man-in-the-middle at-
tack against a user when that user first enrolls in the Ciphire System. This
allows the adversary to give Cert′A to all of the other users of the Ciphire
System without having to revoke any previous certificate for Alice. And this
allows the adversary to include fake certificates for the other users in the
Fingerprint data structures that it gives to Alice without having to revoke
any of the other users’ certificates.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 24/34

Now suppose that the Ciphire insider decides that he or she wishes to mount
a man-in-the-middle attack against Alice, but Alice has already enrolled in
the Ciphire System and her real certificate, CertA, is already reflected in the
Cross FPL and Cross Tree List downloaded by other users of the Ciphire
System. Also assume that CertA is not set to expire for quite some time.

If no other user has already communicated with Alice, then no user will
actually have a copy of CertA, and Alice would not have a copy of the
certificates for any other user. In this case, the insider could just issue fake
certificates for Alice and the other users as in Section 4.1.4. Since there does
not appear to be a mechanism within the Ciphire System for Ciphire clients
to look up all of the certificates ever issued for a given Address Identifier,
the new fake certificates will override the existence of the real certificates,
and the adversary will be able to read Alice’s communications, as described
in Section 4.1.4.

The attack becomes more complicated if Bob already has a copy of Alice’s
real certificate CertA, and if CertA has not already expired. If this were the
case, and because Bob’s client application is supposed to check the self-
signature on the revocation certificate for CertA before accepting the fake
new certificate Cert′A, then the adversary would have to create a valid re-
vocation certificate for CertA. Recall that the self-signature on a revocation
certificate is a signature generated by the private keys corresponding to the
public keys in the certificate being revoked. See Section 8 for how an in-
sider might attempt to forge a valid revocation certificate for CertA, perhaps
by exhaustively searching the decryption key for the emergency certificate
revocation messages stored on a Ciphire server.

In the first step of the attack, the adversary would revoke Alice’s certifi-
cate, create a new certificate Cert′A, and include it in the fingerprint data
structures that it gives to all of the users of the Ciphire System besides
Alice.

Now suppose that Bob looks up Alice’s certificate in the Ciphire Certificate
Directory, or a proxy. Here we assume that the Ciphire insider also has
insider access to the proxy server, which may not be the case if the proxy
server is run by an independent third party. When Bob does this, the
adversary will learn that Bob is planning on sending an encrypted e-mail to
Alice. If the adversary does not expect Alice to ever reply to Bob’s e-mail,
the adversary could just give Bob Cert′A, and then decrypt and re-encrypt
Bob’s ciphertext as in Section 4.1.2.

If the adversary anticipates that Alice will reply to Bob’s e-mail, and if Alice
already has a copy of Bob’s real certificate CertB, then the adversary will
need to create a revocation certificate for CertB and a new bogus certificate

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 25/34

Cert′B for Bob, as in Section 4.1.3. If the adversary is able to do this, it will
give Alice new Fingerprint data structures with the revocation certificate
for CertB and the new certificate Cert′B. If the adversary is unable to cre-
ate a revocation certificate for Bob, perhaps because the adversary cannot
exhaustively search the key for Bob’s emergency revocation certificate, it
might be risky for the adversary to mount a man-in-the-middle attack on
the communications from Bob to Alice since the adversary would not be
able to mount a man-in-the-middle attack on Alice’s reply. In such a situa-
tion, the adversary could just have the Ciphire Certificate Directory return
CertA to Bob instead of Cert′A, and Bob would encrypt his message under
Alice’s real public key.

In the above paragraph, we have the Ciphire insider returning either CertA
or Cert′A to Bob, depending on whether the adversary can create a valid
revocation certificate for CertB. There are several reasons why we can do
this. First, Bob’s Fingerprint List data structure will contain both CertA
and Cert′A, so when Bob tries to verify the certificate he receives from the
Ciphire Certificate Directory, the certificate verification procedure will suc-
ceed. During the verification procedure, Bob’s client application will not
access the Ciphire Fingerprint Tree data structure. Second, from the docu-
mentation we received, there does not currently seem to be a built-in mech-
anism for Bob to verify that Alice has only one active certificate, though
such a mechanism could be created using the Fingerprint Trees. It is also
unclear whether there exists a mechanism for Bob to look for the existence
of a revocation certificate for CertA, especially if the Ciphire insider does
not wish for Bob to be able to find that revocation certificate. Third, even if
Alice’s client has mechanisms to detect extraneous revocation certificates or
regular certificates for her e-mail address in her copy of the Fingerprint List
data structure, Alice’s copy of the Fingerprint data structures will contain
neither the revocation certificate for CertA nor the new certificate Cert′A.

4.1.6 Attacking Authenticity

Although the discussions above concentrate on the methods that a Ciphire
insider might use to compromise the privacy of two Ciphire users’ communi-
cations, we remark here that our attacks could also be used to compromise
the authenticity of those user’s communications. For example, before the
adversary re-signs a message from Bob to Alice with the private keys corre-
sponding to the certificate Cert′B, the adversary could change the contents
of the message. By doing this, the Ciphire insider could convince Alice that
Bob wrote something in his e-mail when in fact Bob did not.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

4. Attacking the Clients’ “Views” 26/34

4.1.7 Detecting These Attacks

In the preceding sections, we observed that the attacks would not be de-
tectable by mechanisms built into the Ciphire clients. Still, the attacks
could be detectable using some out-of-band communications mechanisms.
For example, if Alice and Bob communicate the fingerprints of their cer-
tificates to each other over another channel, such as the telephone, they
will quickly learn that they were given the wrong certificates, and therefore
that a man-in-the-middle attack might take or have taken place. Unfor-
tunately, requiring such out-of-band communications greatly reduces the
transparency and usability of the current Ciphire System.

The above attacks, once mounted, also require the adversary to continuously
mount the man-in-the-middle attack afterwards. Otherwise, Alice will get
messages encrypted to the wrong public key, Alice will send messages to oth-
ers encrypted under the wrong public key, or the hashes in the Fingerprint
Lists will not verify. If the adversary ever stops mounting the man-in-the-
middle attack, Alice or the party that she is communicating with will learn
that a man-in-the-middle attack has taken place in the past.

4.1.8 On the Severity of These Attacks

The question now arises: how serious are the man-in-the-middle attacks
that we uncover above?

From a theoretical perspective, the attacks are quite damaging because they
prove that a Ciphire insider could mount a man-in-the-middle attack against
a Ciphire user, and thereby read (or modify) all of that user’s communica-
tions. Further, the attack will be undetectable to any detection mechanism
built into the Ciphire clients.

In the real world, however, we recognize that it would likely be unreasonable
to assume that, once the adversary begins a man-in-the-middle attack, that
the adversary will be able to continuously mount the man-in-the-middle
attack on all of the user’s subsequent communications. Thus, we could
expect the attacked user to eventually realize that an attack has taken
place, and to raise the appropriate alarms.

The threat of eventual detection will likely be enough of a deterrent for the
Ciphire insider to not try to mount the attacks in the section, but to instead
mount an attack from, say, Section 3 or Section 7.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

5. Multiple Active Certificates for a Single Address Identity 27/34

4.2 Attempted Improvements: Attacking the Fin-

gerprint Data Structures Directly

It would be tempting to try to modify the Fingerprint data structures so
that the copy Alice receives does not include Cert′A, the copy Bob and others
receive includes Cert′A, and both Alice’s copy and the other copies have
the same Cross FPL entries. If the adversary were able to do this, the
adversary’s task in a man-in-the-middle attack would be simplified because
the adversary would not have to reconcile Alice’s and Bob’s differing views
of the latest Cross FPL and Cross Tree List entries. (Here we are assuming
that Alice will check her copy of the Fingerprint List data structures for
rouge certificates with her e-mail address, which happens under a certain
configuration for Alice’s Ciphire Mail client. Otherwise, the adversary could
just include Cert′A in the Fingerprint List data structures given to everyone,
including Alice; see Section 5 for related discussion.)

However, by judicious use of hash trees and hash chains in the Ciphire Fin-
gerprint System, the above goal does not seem to be possible. Rather, if
the adversary were able to create two Fingerprint data structures with dif-
ferent contents but the same Cross List entries, it seems that an adversary
would have found a collision for the underlying hash function. Since we con-
sider finding collisions against SHA-256 to be unrealistic, it is reasonable to
conclude that the adversary will not be able to create such data structures.

4.3 Assumption for Subsequent Sections

In addition to the assumption made in Section 3.4, for the remainder of this
review we shall assume that all users have access to the same Fingerprint
List and Fingerprint Tree data structures.

5 Multiple Active Certificates for
a Single Address Identity

In Section 4.2 we observe that the structure of the Ciphire Fingerprint List
data structure should prevent an adversary from creating two fingerprint
data structures with the same Cross List entries but with different contents
(one containing Cert′A, the other not).

c© 2005, Counterpane Systems. Confidential. 2005/01/10

6. Creating Certificates for Users Not Enrolled in the System 28/34

In this section, we ask the question: What could a Ciphire insider accom-
plish if he or she inserted the fake certificate Cert′A into the Fingerprint
List given to all parties, including Alice? Under the default download mode
(page 12 of [1]), Alice would not detect the presence of Cert′A since her client
would only download the portions of the Fingerprint List data structure nec-
essary to verify the certificate that the client is dealing with. This means
that Alice would likely not notice the introduction of Cert′A.

Having done this, the adversary could mount a man-in-the-middle attack
by giving Cert′A to Bob, decrypting Bob’s message to Alice using the private
keys for Cert′A, and then re-encrypting the message under the public keys in
CertA. Since even if Bob does not sign his message to Alice, he will still sign
the symmetric key used in the encryption and the Certificate Identity of the
certificate that he used for Alice (Cert′A), the adversary must also insert a
fake certificate Cert′B for Bob into the Fingerprint List data structures, and
give Cert′B to Alice as Bob’s certificate. The adversary would then re-sign
the symmetric encryption key and the Certificate Identity for CertA with
the private keys corresponding to Cert′B.

If Alice or Bob checked for a certificate for Alice in the Fingerprint Tree
data structure, then under the above construction, they would find two
active certificates for Alice. Similarly for the certificates for Bob. Thus,
instead of having Alice herself check all the entries in her branch of the
fingerprint list for a fake certificate Cert′A, one way to protect against the
attack above would be to have all users check for the uniqueness of their and
their peers’ certificates in the Fingerprint Tree data structure. (Although
these checks were not described in the documents that we reviewed, e.g.,
the verification scenarios on page 18 of [1], we understand that Ciphire now
plans to include such checks in their Ciphire Mail client.)

6 Creating Certificates for Users
Not Enrolled in the System

On page 27 of [2], Housley and Ferguson remark “The Ciphire CA may just
create a certificate for an arbitrary e-mail address if no active certificate
exists for that address. In combination with a man-in-the-middle attack,
this bogus certificate could trick a user into sending data he would have
never without encryption. The threat is minor. Most importantly, the
owner of the e-mail address will find out about the bogus certificate if he
tries to create a legitimate certificate.”

c© 2005, Counterpane Systems. Confidential. 2005/01/10

7. Creating Certificates for Related E-mail Addresses 29/34

We agree with Housley and Ferguson that the threat exists. However, with-
out further context about who the users in question are, and the situation,
we would be loath to claim without qualification that the risk is minor.
Indeed, one could envision situations where this attack could be serious.

There are at least three properties of the attack described here that make it
both practical and potentially a serious risk. First, it would be unreasonable
to assume that all users will eventually try to obtain a legitimate certificate,
which means that the condition “if he tries to create a legitimate certificate”
in the last sentence of the quote may not always mean much in practice.
Second, even if the legitimate user subsequently attempts to obtain a le-
gitimate certificate, the fact remains that the adversary could have read
e-mails already encrypted to the user under the adversary’s chosen public
keys; i.e., the adversary would already have succeeded in compromising the
privacy of the user. Third, the attack described above could be mounted by
an outsider instead of by a Ciphire employee, although the setup might not
be as simple. For example, Alice’s systems administrator might request and
obtain a certificate for Alice. This means that if a Ciphire employee were
to mount the attack described above, and if Alice did indeed later attempt
to obtain a legitimate certificate for herself, Ciphire could claim that the
attack was not mounted by a Ciphire insider. Thus, Alice may not realize
that her security was compromised from within Ciphire itself.

The discussion above raises the following question: How does the Ciphire
System handle the situation where the real owner of an e-mail address can-
not get a certificate because someone else has already (maliciously) obtained
a certificate for that address, or because that address once belonged to some-
one else who does not wish to revoke his or her Ciphire keys (e.g., the CFO
of a company quits, but does not wish to revoke his or her keys for the e-mail
address cfo@company.com). Although the documents [1, 2] do not discuss
any appropriate mechanism, from [5] we know that Ciphire does have an
Abuse Revocation mechanism for extreme situations where a self-signed re-
vocation certificate cannot be created. We discuss the security implications
of the Abuse Revocation mechanism in Section 8.

7 Creating Certificates for Related
E-mail Addresses

Related to the attack in Section 6, we could consider an attack in which a Ci-
phire insider creates certificates for variants of a legitimate user’s e-mail ad-
dress. For example, assume that Alice’s e-mail address is alice@company.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

7. Creating Certificates for Related E-mail Addresses 30/34

com. Now suppose that the Ciphire employee registers certificates for the
e-mail addresses alice@compny.com (“company” intentionally misspelled),
alcie@company.com (“Alice” intentionally misspelled), and alice@company.

org (domain name intentionally “.org” instead of “.com”). Then if Bob
were to try to send an encrypted message to Alice but accidentally mistyped
her e-mail address, the e-mail would be encrypted to a public key that the
adversary controlled. This attack may be very effective for an adversary
because of the transparency and ease-of-use of the Ciphire System — the
fact that the Ciphire Mail client automatically requests certificates for e-
mail addresses means that Bob may never realize that he mistyped Alice’s
e-mail address.

Also note that Alice may have multiple valid e-mail addresses at her com-
pany; e.g., alice@company.com, ali@company.com, Alice.Adams@company.
com, Adams.Alice@company.com, Alice_Adams@company.com, and Alice.

B.Adams@company.com might all reach Alice. Furthermore, Alice’s company
might have multiple domain names or hostnames, and Alice might also be
reachable at alice@companytwo.com and alice@companythree.com. Un-
less Alice obtains certificates for all these e-mail addresses, a Ciphire insider
could easily obtain certificates for these e-mail addresses. Since these are
all legitimate e-mail addresses for Alice, someone might encrypt a message
to Alice under the public key corresponding to one of these e-mail addresses
for which the adversary knows the private keys. In the current version of
the Ciphire Mail client, one way an adversary might trick the sender into
doing this is by adding an appropriate Reply-To address to e-mails from
Alice, assuming that the encrypted e-mails from Alice do not already con-
tain a Reply-To address. The adversary could then easily read the contents
of those private e-mails. (We remark that this latter trick, of adding bogus
Reply-To addresses to encrypted e-mails from Alice, will not work if Alice
already includes a Reply-To in her encrypted e-mails. This is because Al-
ice’s real Reply-To will be encrypted and MACed along with the body of
her message.)

As with the attack in Section 6, this attack could also be mounted by an
outsider, though not in all cases as easily. Nevertheless, knowing that he or
she will not necessarily be implicated as the party responsible for register-
ing the bogus certificates, the Ciphire insider might feel more comfortable
mounting these attacks than some of the other attacks in this review.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

8. Creating Revocation Requests 31/34

8 Creating Revocation Requests

In some cases a Ciphire insider may wish to issue revocation certificates for
a user unbeknown to or against that user’s wishes. For example, see the
attack in Section 4.1.5. As with the attack in Section 4.1.5, we assume that
the insider has some mechanism to prevent the user from learning that his
or her certificate has been revoked, as would be necessary if the user’s client
is configured to download the complete contents of his or her branch of the
Fingerprint Lists (which is not the default mode).

One approach the Ciphire insider might take is the following. Note that
although the normal procedure for revoking a certificate is interactive and
assumes that the user is currently in possession of his or her private key, the
Ciphire System does provide a mechanism for users to revoke their certificate
if they have lost access to their private key. This uses the Ciphire emergency
revocation system, as described in Section 2.4.2.

The critical observation is that many of the emergency revocation requests
may be encrypted under easily guessable passphrases. When this is the
case, the Ciphire insider with access to the database storing the encrypted
emergency revocation requests could issue emergency revocation messages
for the user in question. From [5] we know that future versions of the
Ciphire System will allow a user to choose not to store his or her encrypted
emergency revocation certificate on the Ciphire server, but to instead store it
on his or her own computer. Although this will prevent the attack described
earlier in this paragraph, it would seem reasonable to assume that users that
choose this option will also be the same users that would choose hard-to-
guess passphrases. Therefore, the users with easily guessable passphrases
might still be susceptible to the attack described above.

Another approach for issuing revocation certificates for a user against that
user’s will might be to try to trick the user into signing a revocation cer-
tificate instead of an e-mail message; e.g., the adversary might construct
a revocation certificate, and then send it to the user in the hopes that
the user would forward the certificate to another user and, in the process,
sign the certificate. Fortunately, from [5] it seems that this attack will not
work. Namely, it appears that revocation certificates and encrypted e-mails
have different structures, and therefore a signature on an e-mail or its at-
tachments cannot be mistaken as a signature on a certificate. If this were
not the case, we would suggest making sure that the certificate and e-mail
message spaces are disjoint, e.g., by prepending an appropriate tag to the
certificates and e-mails before signing them.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

9. Damaging Ciphire’s Reputation 32/34

There may be cases when certificates for e-mail addresses need to be re-
voked, but the standard revocation procedure, which involves using self-
signed certificates, cannot be invoked. For example, consider the case when
an attacker creates a certificate for Charlie’s e-mail address before Charlie
has a chance to. When Charlie later attempts to create a certificate for
himself, he will be unable to do so because a certificate already exists for
his e-mail address. Since we can expect the attacker not to willingly par-
ticipate in the standard revocation procedure, the Ciphire System needs a
way to revoke the attacker-created certificate for Charlie’s e-mail address
without having a valid self-signed certificate revocation request. From [5]
we know that the Ciphire has an “Abuse Revocation” mechanism designed
for such a situation.

Conceivably, an insider could use the Abuse Revocation mechanism to ma-
liciously revoke the certificates of normal users. Doing so may not, however,
be an attractive option to the adversary since, when Bob’s Ciphire Mail
client finds that Alice’s certificate has been revoked using the Abuse Revo-
cation mechanism, a suitable warning will be displayed to Bob’s computer.
It Bob were to communicate this fact to Alice using some out-of-bands
mechanism, both he and Alice would learn that an attack has taken place.

An outsider could pretend to be Alice and try to trick Ciphire into using
the Abuse Revocation mechanism to revoke a legitimate certificate for Al-
ice. Since in this case Ciphire is not intentionally trying to attack Alice,
Ciphire will give Alice access to the fingerprint data structures that con-
tain the revocation certificate. If Alice’s Ciphire Mail client is configured
to download the entire contents of her branch of the Fingerprint List, then
Alice will detect this attack.

9 Damaging Ciphire’s Reputation

A stated purpose of the Ciphire Fingerprint System is to make the Ciphire
System more auditable to outside parties, including Ciphire users. For ex-
ample, the hope is that if a Ciphire insider or someone else with access to
the Ciphire secret keys were to do something mischievous such as create
fake certificates, the users of the Ciphire System would be able to recognize
such an attack by checking the contents of the Ciphire Fingerprint data
structures.

We discussed the efficacy of the Ciphire Fingerprint System at achieving
the above goal in other sections of this analysis. In this section, we ask if

c© 2005, Counterpane Systems. Confidential. 2005/01/10

9. Damaging Ciphire’s Reputation 33/34

the Ciphire Fingerprint System could actually have negative side effects on
the security of the Ciphire System, or on Ciphire’s business operations.

For example, by making the Ciphire System more auditable, it could be
the case that an outsider, without access to Ciphire’s private keys, could
still trigger the Ciphire System’s audit warnings. For example, an outsider
could try to make all Ciphire Mail clients output a warning message that
would imply that the Ciphire private keys have been leaked and that there
may be security problems with the Ciphire System. If an outsider could
mount such an attack, he could make many Ciphire users suspicious of the
Ciphire System, and thereby drive away potential customers. (Certainly an
insider with access to the Ciphire private keys will be able to trigger the
audit warnings on the Ciphire clients and spoil Ciphire’s reputation, so we
do not consider attacks by the insider here.)

Fortunately, and as one might expect, because an outsider does not have
access to the Ciphire private keys, an outsider should not be able to create a
valid certificate (signed by the Ciphire private keys) that is not included in
the Ciphire Fingerprint List. Therefore, assuming no attacks from within
Ciphire, if the Ciphire Certificate Directory or a proxy returns a signed
certificate to a user, that user will be able to find that certificate in the
Ciphire Fingerprint List, and that user’s Ciphire client will not display a
warning to the user. Furthermore, if we consider the operators of the Ciphire
Certificate Directory proxy servers to be outsiders, then these outsiders will
not be able to pretend that certificates for certain e-mail addresses do not
exist in the Ciphire Certificate Directory. If the proxies could do this, they
could cause problems since the Fingerprint Tree data structure would reveal
the existence of certificates for those e-mail addresses. The proxies cannot
deny the existence of certificates because all responses from the Ciphire
Certificate Directory to the proxies are signed and contain the complete
contents of the original lookup, including the Address or Certificate Identity
of the lookup, and a timestamp. Thus, if a proxy informs a user that no
certificate exists for a given e-mail address, the user would expect a signed
message from the Ciphire Certificate Directory indicating that this is true.
An outsider could also try to have bogus revocation certificates issued for
users, but the approaches discussed in Section 8 either require insider access
or, in the case of an outsider trying to have an Abuse Revocation certificate
issued for another user, are not scalable.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

Bibliography 34/34

Bibliography

[1] Ciphire Labs. Ciphire fingerprint system technical description, Decem-
ber 2004. fingerprint-system-2004-12-02.pdf.

[2] Russ Housley and Niels Ferguson. Security design review of the Ci-
phire system, July 2004. Available at http://www.ciphire.com/cm/

technology/reviews.html.

[3] ISS X-Force. Internet Security Systems security advisory:
OpenSSH remote challenge vulnerability, June 2002. Avail-
able online at http://bvlive01.iss.net/issEn/delivery/xforce/

alertdetail.jsp?oid=2058%4.

[4] Errikos Pitsos, December 2004. Personal e-mail.

[5] Errikos Pitsos, January 2005. Personal e-mail.

[6] Eric Rescorla. Is finding security holes a good idea? In Workshop on
Economics and Information Security, May 2004.

[7] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, 1996.

[8] Bruce Schneier. Open source and security. Crypto-Gram Newslet-
ter, September 1999. Available online at http://www.schneier.com/

crypto-gram-9909.html#OpenSourceandSecurity.

[9] Ken Thompson. Reflections on trusting trust. Communications of the
ACM, 27(8):761–763, August 1984.

[10] David Wagner, Jeffrey S. Foster, Eric A. Brewer, , and Alexander Aiken.
A first step towards automated detection of buffer overrun vulnerabili-
ties. In Network and Distributed System Security Symposium, 2000.

c© 2005, Counterpane Systems. Confidential. 2005/01/10

